
M A N N I N G

Mark Seemann
FOREWORD BY GLENN BLOCK

in .NET

GLOSSARY CONCEPTUAL MAP

This figure maps out how the important concepts and terms in this book relate to each other, and
provides a reference to the chapters where they are covered. There's also a Glossary in the back of
the book with one-sentence descriptions of each term.

Dependency Injection in .NET

Dependency
Injection in .NET

MARK SEEMANN

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Copyeditors: June Eding, Tiffany Taylor
PO Box 261 Proofreader: Katie Tennant
Shelter Island, NY 11964 Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781935182504
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12 11

www.manning.com

 To Cecilie
I couldn’t have done it without you

brief contents
PART 1 PUTTING DEPENDENCY INJECTION ON THE MAP.............1

1 ■ A Dependency Injection tasting menu 3
2 ■ A comprehensive example 29
3 ■ DI Containers 58

PART 2 DI CATALOG ...93
4 ■ DI patterns 95
5 ■ DI anti-patterns 133
6 ■ DI refactorings 162

PART 3 DIY DI ...197
7 ■ Object Composition 199
8 ■ Object Lifetime 236
9 ■ Interception 275

PART 4 DI CONTAINERS..311
10 ■ Castle Windsor 313
11 ■ StructureMap 347
12 ■ Spring.NET 385
13 ■ Autofac 417
14 ■ Unity 448
15 ■ MEF 492
vii

contents
foreword xvii
preface xix
acknowledgments xxi
about this book xxiv
about the cover illustration xxix

PART 1 PUTTING DEPENDENCY INJECTION ON THE MAP ...1

1 A Dependency Injection tasting menu 3
1.1 Writing maintainable code 5

Unlearning DI 5 ■ Understanding the purpose of DI 8

1.2 Hello DI 13
Hello DI code 13 ■ Benefits of DI 15

1.3 What to inject and what not to inject 22
Seams 22 ■ Stable Dependencies 23
Volatile Dependencies 23

1.4 DI scope 24
Object Composition 25 ■ Object Lifetime 26
Interception 26 ■ DI in three dimensions 27

1.5 Summary 28
ix

CONTENTSx
2 A comprehensive example 29
2.1 Doing it wrong 30

Building a tightly coupled application 31
Smoke test 36 ■ Evaluation 37 ■ Analysis 39

2.2 Doing it right 41
Rebuilding the commerce application 43 ■ Analyzing the
loosely coupled implementation 51

2.3 Expanding the sample application 53
Architecture 53 ■ Basket feature 54

2.4 Summary 57

3 DI Containers 58
3.1 Introducing DI Containers 61

Hello container 62 ■ Auto-wiring 64

3.2 Configuring DI Containers 67
Configuring containers with XML 68 ■ Configuring containers
with code 70 ■ Configuring containers by convention 72

3.3 DI Container patterns 75
Composition Root 75 ■ Register Resolve Release 81

3.4 DI Container landscape 87
Selecting a DI Container 87 ■ Microsoft and DI 89

3.5 Summary 91

PART 2 DI CATALOG..93

4 DI patterns 95
4.1 Constructor Injection 98

How it works 98 ■ When to use it 99 ■ Known use 100
Example: Adding a currency provider to the shopping basket 101
Related patterns 103

4.2 Property Injection 104
How it works 104 ■ When to use it 105 ■ Known use 107
Example: Defining a currency profile service for the
BasketController 108 ■ Related patterns 110

4.3 Method Injection 111
How it works 111 ■ When to use it 112 ■ Known use 113
Example: Converting baskets 114 ■ Related patterns 117

CONTENTS xi
4.4 Ambient Context 118
How it works 118 ■ When to use it 120 ■ Known use 123
Example: Caching Currency 123 ■ Related patterns 130

4.5 Summary 131

5 DI anti-patterns 133
5.1 Control Freak 136

Example: newing up Dependencies 136 ■ Example: Factory 137
Analysis 143

5.2 Bastard Injection 144
Example: ProductService with Foreign Default 144
Analysis 146

5.3 Constrained Construction 149
Example: late-binding ProductRepository 149
Analysis 151

5.4 Service Locator 154
Example: ProductService using a Service Locator 156
Analysis 157

5.5 Summary 160

6 DI refactorings 162
6.1 Mapping runtime values to Abstractions 163

Abstractions with runtime Dependencies 164
Example: selecting a routing algorithm 166
Example: using a CurrencyProvider 168

6.2 Working with short-lived Dependencies 170
Closing connections through Abstractions 170
Example: invoking a product-management service 173

6.3 Resolving cyclic Dependencies 175
Addressing Dependency cycles 176
Example: composing a window 178

6.4 Dealing with Constructor Over-injection 182
Recognizing and addressing Constructor Over-injection 182
Example: refactoring order reception 185

6.5 Monitoring coupling 188
Unit-testing coupling 189 ■ Integration-testing coupling 191
Using NDepend to monitor coupling 193

6.6 Summary 195

CONTENTSxii
PART 3 DIY DI..197

7 Object Composition 199
7.1 Composing console applications 202

Example: updating currencies 202

7.2 Composing ASP.NET MVC applications 206
ASP.NET MVC extensibility 206 ■ Example: implementing
CommerceControllerFactory 208

7.3 Composing WCF applications 210
WCF extensibility 211 ■ Example: wiring up
a product-management service 212

7.4 Composing WPF applications 219
WPF Composition 219 ■ Example: wiring up
a product-management rich client 220

7.5 Composing ASP.NET applications 224
ASP.NET composition 224 ■ Example: wiring up
a CampaignPresenter 225

7.6 Composing PowerShell cmdlets 230
Example: composing basket-management cmdlets 231

7.7 Summary 235

8 Object Lifetime 236
8.1 Managing Dependency Lifetime 239

Introducing Lifetime Management 239
Managing lifetime with a container 242

8.2 Working with disposable Dependencies 247
Consuming disposable Dependencies 248
Managing disposable Dependencies 251

8.3 Lifestyle catalog 255
Singleton 255 ■ Transient 258 ■ Per Graph 259
Web Request Context 261 ■ Pooled 266 ■ Other lifestyles 271

8.4 Summary 273

9 Interception 275
9.1 Introducing Interception 277

Example: implementing auditing 277 ■ Patterns and principles
for Interception 281

CONTENTS xiii
9.2 Implementing Cross-Cutting Concerns 285
Intercepting with a Circuit Breaker 286
Handling exceptions 292 ■ Adding security 293

9.3 Declaring aspects 295
Using attributes to declare aspects 296
Applying dynamic Interception 300
Example: intercepting with Windsor 303

9.4 Summary 308

PART 4 DI CONTAINERS ..311

10 Castle Windsor 313
10.1 Introducing Castle Windsor 314

Resolving objects 315 ■ Configuring the container 317
Packaging configuration 322

10.2 Managing lifetime 323
Configuring lifestyle 324 ■ Using advanced lifestyles 325
Developing a custom lifestyle 327

10.3 Working with multiple components 333
Selecting among multiple candidates 333
Wiring sequences 336 ■ Wiring Decorators 339

10.4 Configuring difficult APIs 341
Configuring primitive Dependencies 341
Registering components with code blocks 343
Wiring with Property Injection 344

10.5 Summary 345

11 StructureMap 347
11.1 Introducing StructureMap 348

Resolving objects 350 ■ Configuring the container 352
Packaging configuration 358

11.2 Managing lifetime 361
Configuring lifestyles 362 ■ Developing a
custom lifestyle 364

11.3 Working with multiple components 370
Selecting among multiple candidates 371
Wiring sequences 374 ■ Wiring Decorators 377

CONTENTSxiv
11.4 Configuring difficult APIs 380
Configuring primitive Dependencies 380 ■ Creating objects
with code blocks 381 ■ Wiring with Property Injection 382

11.5 Summary 383

12 Spring.NET 385
12.1 Introducing Spring.NET 386

Resolving objects 387 ■ Configuring the container 389
Loading XML 393

12.2 Managing lifetime 397
Configuring object scopes 398

12.3 Working with multiple components 399
Selecting among multiple candidates 400
Wiring sequences 402 ■ Wiring Decorators 405
Creating Interceptors 407

12.4 Configuring difficult APIs 412
Configuring primitive Dependencies 412 ■ Configuring static
factories 413 ■ Wiring with Property Injection 414

12.5 Summary 416

13 Autofac 417
13.1 Introducing Autofac 418

Resolving objects 420 ■ Configuring the ContainerBuilder 422
Packaging configuration 427

13.2 Managing lifetime 429
Configuring instance scope 430

13.3 Working with multiple components 433
Selecting among multiple candidates 434
Wiring sequences 438 ■ Wiring Decorators 440

13.4 Registering difficult APIs 442
Configuring primitive Dependencies 443 ■ Registering objects
with code blocks 444 ■ Wiring with Property Injection 445

13.5 Summary 447

14 Unity 448
14.1 Introducing Unity 450

Resolving objects 451 ■ Configuring the container 453
Packaging configuration 458

CONTENTS xv
14.2 Managing lifetime 459
Configuring lifetime 460 ■ Developing a custom lifetime 464

14.3 Working with multiple components 473
Selecting among multiple candidates 473
Wiring sequences 476 ■ Wiring Decorators 479
Creating Interceptors 481

14.4 Configuring difficult APIs 486
Configuring primitive Dependencies 486
Registering components with code blocks 487
Wiring with Property Injection 489

14.5 Summary 490

15 MEF 492
15.1 Introducing MEF 495

Resolving objects 496 ■ Defining imports and exports 499
Working with catalogs 504

15.2 Managing lifetime 509
Declaring creation policy 509 ■ Releasing objects 511

15.3 Working with multiple components 513
Selecting among multiple candidates 513
Wiring sequences 516 ■ Wiring Decorators 519

15.4 Composing difficult APIs 521
Compositing primitive parts 521 ■ Composing parts
with non-public constructors 522 ■ Wiring with
Property Injection 523

15.5 Summary 524

resources 526
glossary 531
index 535

foreword
My first experience with Dependency Injection was almost 10 years ago. I was working at
an ISV (independent software vendor) as an architect on an enterprise framework build-
ing LOB (line-of-business) applications. In those days, it seemed like all my friends in the
industry were building similar frameworks. The framework supported various layers
across n-tier applications addressing data access, business, and UI concerns. The product-
supported business objects could be persisted across multiple databases and represented
in multiple UIs; the challenge was finding a way to build the system to make it extensible
and maintainable. We found our answer by wading into the waters of Dependency Injec-
tion. Using a DI approach, we clearly defined contracts for the layers, allowing us to more
easily test the layers as well as to swap their implementations without breaking the code.

 Mark talks quite a bit in this book about “poor man’s DI” and this is exactly what we
were doing. In those days, we didn’t have DI containers at our disposal. We also didn’t
have the type of guidance you’ll find in this book. As a result, we made a lot of mis-
takes—mistakes you won’t have to make.

 In the past four years, I’ve personally worked with hundreds of customers and I’m
aware of thousands that have found success using the techniques described in this book.

 It all starts with patterns.
DI containers are just tools. The tools are only useful if you’re building systems that

incorporate the patterns that the tools are addressing. They aren’t the solution to
every problem. Ideally, you need to first learn what Dependency Injection is, what
kinds of problems it solves, and what the patterns are for using it. Then you can look
at the various tools as aids in applying those patterns.
xvii

FOREWORDxviii
 This book will help you with all of the above. The early chapters present an over-
view of the general problems that occur when software is tightly coupled. The book
then discusses ways we can apply various techniques, both simple and advanced, to
address those problems. Along the way, the book classifies various patterns and identi-
fies when they are most appropriate for specific situations. In the second half, the book
presents a comprehensive overview of the most common DI containers/frameworks in
.NET and explains how to use them to apply different techniques.

 With this book, you will benefit from the knowledge of someone who has many
years of real-world experience in applying these techniques. This is a real treat; often,
those who start using DI quickly find themselves lost in a sea of confusion. This book
addresses any potential misunderstanding, starting with basic questions like, “Where
should I put my IoC?” or “Should I expose my container?” Mark covers these ques-
tions and many more.

 Throughout the book, Mark not only describes the techniques but really goes into
depth explaining when you should—and, more importantly—shouldn’t use them. When
he describes a problem, he uses realistic examples to keep the big picture in focus.

 If you are new to IoC, I believe you’ll find Dependency Injection in .NET to be a great
resource for learning. Even if you have extensive experience with IoC, you’ll still ben-
efit from the painstaking work Mark has done to classify various patterns and create a
taxonomy for IoC. I also think that you will find his comparisons with other IoC con-
tainers beneficial.

 Regardless of your level of experience, I wish you success with this book.

GLENN BLOCK

 SENIOR PROGRAM MANAGER

MICROSOFT

preface
There’s a peculiar phenomenon related to Microsoft called the Microsoft Echo Chamber.
Microsoft is a huge organization and the surrounding ecosystem of Microsoft Certi-
fied Partners multiplies that size by orders of magnitude. If you’re sufficiently embed-
ded in this ecosystem, it can be hard to see past its boundaries. Whenever you look for
a solution to a problem with a Microsoft product or technology, you’re likely to find
an answer that involves throwing even more Microsoft products at it. No matter what
you yell within the echo chamber, the answer is Microsoft!

 When Microsoft hired me in 2003, I was already firmly embedded in the echo
chamber, having worked for Microsoft Certified Partners for years—and I loved it!
They soon shipped me off to an internal tech conference in New Orleans to learn
about the latest and greatest Microsoft technology.

 Today, I can’t recall any of the Microsoft product sessions I attended—but I do
remember the last day. On that day, having failed to experience any sessions that
could satisfy my hunger for cool tech, I was mostly looking forward to flying home to
Denmark. My top priority was to find a place to sit so I could attend to my email, so I
chose a session that seemed marginally relevant for me and fired up my laptop.

 The session was loosely structured and featured several presenters. One was a
bearded guy named Martin Fowler, who talked about Test-Driven Development (TDD)
and dynamic mocks. I had never heard of him and I didn’t listen very closely, but,
nonetheless, something must have stuck in my mind.

 Soon after returning to Denmark, I was tasked with rewriting a big ETL (extract,
transform, load) system from scratch, and I decided to give TDD a try (it turned out to
xix

PREFACExx
be a very good decision). The use of dynamic mocks followed naturally, but also intro-
duced a need to manage dependencies. I found that to be a very difficult but very cap-
tivating problem, and I couldn’t stop thinking about it.

 What started as a side effect of my interest in TDD became a passion in itself. I did
a lot of research, read lots of blog posts about the matter, wrote quite a few blogs
myself, experimented with code, and discussed the topic with anyone who cared to lis-
ten. Increasingly, I had to look outside the Microsoft Echo Chamber for inspiration
and guidance. Along the way, people associated me with the ALT.NET movement even
though I was never very active in it.

 I made all the mistakes it was possible to make, but I was gradually able to develop
a coherent understanding of Dependency Injection (DI).

 When Manning approached me with the idea for a book about Dependency Injec-
tion in .NET my first reaction was, Is this even necessary? I felt that all the concepts you
need to understand DI were already described in numerous blog posts. Was there
anything to add? Honestly, I thought DI in .NET was a topic that had been done to
death already.

 Upon reflection, however, it dawned on me that while the knowledge is definitely
out there, it’s very scattered and uses a lot of conflicting terminology. Before this book,
there were no titles about DI that attempted to present a coherent description of it.
After thinking about it further, I realized that Manning was offering me a tremendous
challenge and a great opportunity to collect and systematize all that I knew about DI.

 The result is this book. It uses .NET and C# to introduce and describe a compre-
hensive terminology and guidance for DI, but I hope that the value of the book will
reach well beyond the platform. I think that the pattern language articulated here is
universal. Whether you are a .NET developer or use another object-oriented platform,
I hope that this book will help you be a better software engineer.

acknowledgments
Gratitude may seem like a cliché, but this is only because it’s such a fundamental part
of human nature. While I was writing the book, many people gave me good reasons to
be grateful, and I would like to thank them all.

 First of all, writing a book in my spare time has given me a new understanding of
just how taxing such a project is on marriage and family life. My wife Cecilie stayed
with me and actively supported me during the whole process. Most importantly, she
understood just how important this project was to me. We are still together and I look
forward to being able to spend more time with her and our kids Linea and Jarl (who
miss me, although I’ve been right here all the time).

 Both my parents and in-laws have also been a huge help in keeping the family run-
ning during those times when I needed to direct my efforts towards the book. I
couldn’t have done it without them.

 On a more professional level, I wish to thank Manning for giving me this oppor-
tunity. Karen Tegtmeyer originally “discovered” me and helped me establish a rela-
tionship with Manning. Michael Stephens initiated the project and believed in me
when things looked bleak. There were times when it looked like I’d never be able to
finish the book by myself, but Michael took a chance with me, and I’m immensely
grateful that I was allowed to complete the book as the consistent work of a single
person. Cynthia Kane served as my development editor and kept a keen eye on the
quality of the text. She helped me identify weak spots in the manuscript and provided
extensive constructive criticism. Despite all the frustration along the way, I’m particu-
larly grateful that she convinced me to rework chapters 1 through 3. Kill your darlings,
xxi

ACKNOWLEDGMENTSxxii
as the saying goes. I’m much happier with the final result, and I have Cynthia to
thank for that.

 Although writing the book was an unpaid side project, I never had any doubt that
it would impact my work performance. When I started the project, my manager at the
time, Peter Haastrup, was very supportive. I want to thank both him and our CEO,
Niels Flensted-Jensen, for providing an inspiring and supportive work environment.
Unfortunately, the company went out of business, but my new employer, Jørn Floor
Andersen, has been exceptionally patient with me.

 Karsten Strøbæk and Brian Rasmussen read through numerous early drafts and
provided much helpful feedback. Karsten also served as the technical proofreader
during production.

 The following reviewers read the manuscript at various stages of development and
I am grateful for their comments and insight: Christian Siegers, Amos Bannister,
Rama Krishna Vavilala, Doug Ferguson, Darren Neimke, Chuck Durfee, Paul
Grebenc, Lester Lobo, Jonas Bandi, Braj Panda, Alan Ruth, Timothy Binkley-Jones,
Andrew Siemer, Javier Lozano, David Barkol, and Patrick Steger.

 Many of the participants in the Manning Early Access Program (MEAP) also
provided feedback and asked difficult questions that exposed the weak parts of
the text.

 I was so fortunate that the existing .NET DI CONTAINER community received
the book project with a very positive attitude. Several of the specific DI CONTAIN-
ERS’ creators offered to review the chapters on “their” container. Krzysztof
Koźmic reviewed the Castle Windsor chapter, Stephen Bohlen the Spring.NET
chapter, Nicholas Blumhardt the Autofac chapter, Chris Tavares the Unity chap-
ter, and Glenn Block looked over the MEF chapter while Jeremy Miller answered
my stupid questions via Twitter and the StructureMap forum. I’m grateful for
their participation, for it provided confirmation that my way of presenting their
work could be aligned with their own. I would also like to thank Glenn Block for
contributing the foreword.

 Mogens Heller Grabe courteously allowed me to use his picture of a hairdryer
wired directly into a wall outlet, and Patrick Smacchia provided me with a copy of
NDepend and reviewed the related section.

 In many ways, Martin Gildenpfennig sowed more seeds for this book than he may
realize. Even before I was (lightly) exposed to Martin Fowler’s presentation of TDD
back in 2003, Martin Gildenpfennig had already introduced me to the concept of unit
testing, although we never got around using it at that time. Much later, I was stuck
with the false conviction that SERVICE LOCATOR was a blessing, and, with a few simple
sentences, he made me realize that there’s a better alternative.

 My former colleague, Mikkel Christensen, was a pleasure to work with while I
wrote great portions of the book. We had many good discussions about API design and
patterns, and I could bounce even my craziest ideas off of him and always get an open
and qualified discussion out of it.

ACKNOWLEDGMENTS xxiii
 Finally, I wish to thank Thomas Jaskula for all the support and inspiration along
the way. We’ve never had the pleasure of meeting each other, but Thomas has time
and again exhibited an almost overwhelming delight with my work. He may not real-
ize it, but there were times when this was the only thing that kept me going.

about this book
This is a book about Dependency Injection first and foremost. It’s also a book about
.NET, but that’s much less important. C# is used for code examples, but much of the
discussion in this book can be easily applied to other languages and platforms. In fact,
I learned a lot of the underlying principles and patterns from reading books where
Java or C++ was used in examples.

 Dependency Injection (DI) is a set of related patterns and principles. It’s a way to
think about and design code more than it’s a specific technology. The ultimate purpose
of using DI is to create maintainable software within the object-oriented paradigm.

 The concepts used throughout this book all relate to object-oriented programming.
The problem that DI addresses (code maintainability) is universal, but the proposed solu-
tion is given within the scope of object-oriented programming in statically typed lan-
guages: C#, Java, Visual Basic .NET, C++, and so on. You can’t apply DI to procedural
programming, and it may not be the best solution in functional or dynamic languages.

DI in isolation is just a small thing, but it’s closely interconnected with a large com-
plex of principles and patterns for object-oriented software design. Whereas the book
focuses consistently on DI from start to finish, it also discusses many of these other top-
ics in the light of the specific perspective that DI can give. The goal of the book is
more than just teaching you about DI specifics: it’s to make you a better object-
oriented programmer.
xxiv

ABOUT THIS BOOK xxv
Who should read this book?

It would be tempting to state that this is a book for all .NET developers. However, the
.NET community today is vast and spans developers working with web applications,
desktop applications, smartphones, RIA, integration, office automation, content man-
agement systems, and even games. Although .NET is object-oriented, not all of those
developers write object-oriented code.

 This is a book about object-oriented programming, so at minimum readers should
be interested in object orientation and understand what an interface is. A few years of
professional experience and knowledge of design patterns or SOLID will certainly be a
benefit as well. In fact, I don’t expect beginners to get much out of the book; it’s
mostly targeted towards experienced developers and software architects.

 The examples are all written in C#, so readers working with other .NET languages
must be able to read and understand C#. Readers familiar with non-.NET object-
oriented languages such as Java and C++ may also find the book valuable, because the
.NET platform-specific content is relatively light. Personally, I read a lot of pattern
books with examples in Java and still get a lot out of them, so I hope the converse is
true as well.

Roadmap

The contents of this book are divided into four parts. Ideally, I’d like you to first read
it from cover to cover and then subsequently use it as a reference, but I understand if
you have other priorities. For that reason, a majority of the chapters are written so that
you can dive right in and start reading from that point.

 The first part is the major exception. It contains a general introduction to DI and is
probably best read sequentially. The second part is a catalog of patterns and the like,
whereas the third part is an examination of DI from three different angles. The fourth
and largest part of the book is a big catalog of six DI CONTAINER libraries.

 There are a lot of interconnected concepts and because I introduce them the first
time it feels natural, this means that I often mention concepts before I’ve formally
introduced them. To distinguish these universal concepts from more local terms, I
consistently use SMALL CAPS to make them stand out. All these terms are briefly defined
in the glossary, which also contains references to a more extensive description.

■ Part 1 is a general introduction to DI. If you don’t know what DI is, this is the place
to start; but even if you do, you may want to familiarize yourself with the contents
of part 1, as it establishes a lot of the context and terminology used in the rest of
the book. Chapter 1 discusses the purpose and benefits of DI and provides a gen-
eral outline. Chapter 2 contains a big and rather comprehensive example, and
chapter 3 explains how DI CONTAINER libraries fit into the overall picture. Com-
pared to the other parts, part 1 has a much more linear progression of its content.
You’ll need to read each chapter from the beginning to gain the most from it.

■ Part 2 is a catalog of patterns, anti-patterns, and refactorings. This is where
you’ll find prescriptive guidance on how to implement DI, and the dangers to

ABOUT THIS BOOKxxvi
look out for. Chapter 4 is a catalog of DI design patterns, and, conversely, chap-
ter 5 is a catalog of anti-patterns. Chapter 6 contains generalized solutions to
commonly occurring issues. As a catalog, each chapter contains a set of loosely
related sections that are designed to be read in isolation as well as in sequence.

■ Part 3 examines DI from three different angles: OBJECT COMPOSITION, LIFETIME

MANAGEMENT, and INTERCEPTION. In chapter 7, I discuss how to implement DI on
top of existing application frameworks such as WCF, ASP.NET MVC, WPF, and
others. In many ways, you can use chapter 7 as a catalog of how to implement DI
on a set of frameworks. Chapter 8 describes how to manage dependency life-
times to avoid resources leaks. Whereas the structure is a little less stringent
than previous chapters, a large part of the chapter can be used as a catalog of
well-known lifetime styles. Chapter 9 finally describes how to compose applica-
tions with CROSS-CUTTING CONCERNS. This is where we harvest the benefits of all
the work that came before, so, in many ways, I consider this to be the climax of
the book.

■ Part 4 is a catalog of DI CONTAINER libraries. Six chapters each cover a specific
container in a fair amount of detail: Castle Windsor, StructureMap, Spring.NET,
Autofac, Unity, and MEF. Each chapter covers its container in a rather con-
densed form to save space, so you may want to read about only the two or three
containers that interest you the most. In many ways, I regard part 4 as a very big
set of appendixes.

To keep the discussion of the DI principles and patterns free of any specific container
APIs, most of the book, with the exception of part 4, is written without referencing a
particular container. This is also why the containers appear with such force in part 4.
It’s my hope that by keeping the discussion general, the book will be useful for a lon-
ger period of time.

 You can also take the concepts from parts 1 through 3 and apply them to container
libraries not covered in part 4. There are good containers available that, unfortu-
nately, I couldn’t cover, but even for users of these libraries, I hope that this book has
a lot to offer.

Code conventions and downloads

There are many code examples in this book. Most of it is C#, but there’s also a bit of
XML here and there. Source code in listings and text is in a fixed-width font to sepa-
rate it from ordinary text.

 All the source code for the book is written in C# and Visual Studio 2010. The
ASP.NET MVC applications are written against ASP.NET MVC 3.

 Only a few of the techniques described in this book hinge on modern language
features. I started writing loosely coupled code in .NET 1.1 and I could have written
most of the book’s code examples on that platform without having to change my
conclusions. As it were, I wanted to strike a reasonable balance between conservative
and modern coding styles. When I write code professionally I use the modern

ABOUT THIS BOOK xxvii
language features to a much greater degree, but here the most advanced features are
generics and LINQ. The last thing I want is for you to get the idea that DI can only be
applied with ultra-modern languages.

 Writing code examples for a book presents its own set of challenges. Compared to
a modern computer monitor, a book only allows for very short lines of code. It was
very tempting to write code in a terse style with short but cryptic names for methods
and variables. Such code is already difficult to understand as real code when you still
have an IDE and a debugger nearby, but it becomes really difficult to follow in a book.
I found it very important to keep names as readable as possible. To make it all fit, I’ve
often had to resort to some unorthodox line breaks. All the code compiles, but some-
times the formatting looks a bit funny.

 The code also makes extensive use of the var keyword. In my professional code I
use this almost exclusively, but for written text I often find it helpful when paired with
explicit declarations because the IDE isn’t around to help. Still, to save space, I use var
wherever I judge that an explicit declaration is unnecessary.

 The word class is often used as a synonym for a type. In .NET, classes, structs, inter-
faces, enums, and so on are all types, but because the word type is also a word with a lot
of overloaded meaning in ordinary language, it would often make the text less clear
if used.

 Most of the code in this book relates to an overarching example running through
the book: an online store complete with supporting internal management applica-
tions. This is about the least exciting example you can expect to see in any software
text, but I chose it for a few reasons:

■ It’s a well-known problem domain for most readers. Although it may seem bor-
ing, I think this is an advantage because it doesn’t steal focus from DI.

■

I also have to admit that I couldn’t really think of any other domain that was
rich enough to support all the different scenarios I had in mind.

I wrote a lot of code to support the code examples, and most of that code is not even
in the book. In fact, I wrote almost all of it using Test-Driven Development (TDD), but
as this isn’t a TDD book, I generally don’t show the unit tests in the book.

 The source code for all examples in this book is available from Manning’s website:
http://manning.com/DependencyInjectionin.NET. The ReadMe.txt in the root of the
download contains instructions for compiling and running the code.

Author Online

The purchase of Dependency Injection in .NET includes free access to a private web forum
run by Manning Publications, where you can make comments about the book, ask tech-
nical questions, and receive help from the author and from other users. To access the
forum and subscribe to it, point your web browser to http://manning.com/Dependency-
Injectionin.NET.This page provides information on how to get on the forum once
you’re registered, what kind of help is available, and the rules of conduct on the forum.

http://manning.com/DependencyInjectionin.NET
http://manning.com/DependencyInjectionin.NET
http://manning.com/DependencyInjectionin.NET

ABOUT THIS BOOKxxviii
 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It isn’t a commitment to any specific amount of participation on the part of the
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray! The
Author Online forum and the archives of previous discussions will be accessible from
the publisher’s website as long as the book is in print.

About the author

Mark Seemann is a programmer, software architect, and speaker living in Copenha-
gen, Denmark. He has been working with software since 1995 and TDD since 2003,
including six years with Microsoft as a consultant, developer, and architect. Mark is
currently professionally engaged with software development, and is working out of
Copenhagen. He enjoys reading, painting, playing the guitar, good wine, and gour-
met food.

about the cover illustration
On the cover of Dependency Injection in .NET is “A woman from Vodnjan,” a small
town in the interior of the peninsula of Istria in the Adriatic Sea, off Croatia. The
illustration is taken from a reproduction of an album of Croatian traditional cos-
tumes from the mid-nineteenth century by Nikola Arsenovic, published by the
Ethnographic Museum in Split, Croatia, in 2003. The illustrations were obtained
from a helpful librarian at the Ethnographic Museum in Split, itself situated in the
Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s
retirement palace from around AD 304. The book includes finely colored illustra-
tions of figures from different regions of Croatia, accompanied by descriptions of
the costumes and of everyday life.

 Vodnjan is a culturally and historically significant town, situated on a hilltop with
a beautiful view of the Adriatic and known for its many churches and treasures of
sacral art. The woman on the cover wears a long black linen skirt and a short black
jacket over a white linen shirt. The jacket is trimmed with blue embroidery and a
blue linen apron completes the costume. The woman is also wearing a large-
brimmed black hat, a flowered scarf, and big hoop earrings. Her elegant costume
indicates that she is an inhabitant of the town, rather than a village. Folk costumes
in the surrounding countryside are more colorful, made of wool, and decorated with
rich embroidery.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
of different continents, let alone of different hamlets or towns separated by only a few
xxix

ABOUT THE COVER ILLUSTRATIONxxx
miles. Perhaps we have traded cultural diversity for a more varied personal life—cer-
tainly for a more varied and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.

Part 1

Putting Dependency
Injection on the map

Dependency Injection (DI) is one of the most misunderstood concepts of
object-oriented programming. The confusion is abundant and spans terminol-
ogy, purpose, and mechanics. Should it be called Dependency Injection, Inversion
of Control, or even Third-Party Connect? Is the purpose of DI only to support unit
testing or is there a broader purpose? Is DI the same as Service Location? Is a
DI CONTAINER required?

 There are plenty of blog posts, magazine articles, conference presentations,
and so on that discuss DI, but, unfortunately, many of them use conflicting ter-
minology or give bad advice. This is true across the board, and even big and
influential actors like Microsoft add to the confusion.

 It doesn’t have to be this way. In this book I present and use a consistent ter-
minology that I hope others will adopt. For the most part, I’ve adopted and clar-
ified existing terminology defined by others, but occasionally I add a bit of
terminology where none existed previously. This has helped me tremendously in
evolving a specification of the scope or boundaries of DI.

 One of the underlying reasons behind all the inconsistency and bad advice is
that the boundaries of DI are quite blurry. Where does DI end and other object-
oriented concepts begin? I think that it’s impossible to draw a distinct line between
DI and other aspects of writing good object-oriented code. To talk about DI we have
to draw in other concepts such as SOLID and Clean Code. I don’t feel that I can
credibly write about DI without also touching on some of these other topics.

2 PART 1 Putting Dependency Injection on the map
 The first part of the book helps you understand the place of DI in relation to other
facets of software engineering—putting it on the map, so to speak.

 The first chapter gives you a quick tour of DI, covering its purpose, principles, and
benefits, as well as providing an outline of the scope for the rest of the book. If you
want to learn what DI is, and why you should be interested in it, this is the place to
start. The chapter assumes you have no prior knowledge of DI, but even if you already
know about it you may still want to read it—it may turn out to be something other
than what you expected.

 Chapter 1 is focused on the big picture and doesn’t go into a lot of details. Chapter 2,
on the other hand, is completely reserved for a big example. This example is intended
to give you a much more concrete feel for DI. It’s divided into two parts and almost
shaped like a narrative. To contrast DI with a more “traditional” style of programming,
the chapter first showcases a typical, tightly coupled implementation of a sample
application, and then subsequently re-implements it with DI.

 The third and final chapter of part 1 introduces the concept of a DI CONTAINER and
explains how it fits into the overall picture of DI. I discuss DI in general terms and,
although I provide code examples that demonstrate how a typical DI CONTAINER works,
the purpose of the chapter isn’t to explain specific API details. The main point of
chapter 3 is to show that a DI CONTAINER is a (very helpful) optional tool. It’s entirely
possible to utilize DI without using a DI CONTAINER, so parts 2 and 3 more or less ignore
DI CONTAINERS and instead discuss DI in a container-agnostic way. Then, in part 4, we
return to DI CONTAINERS to dissect six specific containers.

 Part 1 establishes the context for the rest of the book. It’s aimed at readers who
don’t have any prior knowledge of DI, but experienced DI practitioners may also ben-
efit from skimming the chapters to get a feeling for the terminology used throughout
the book. By the end of part 1, you should have a firm grasp of the vocabulary and
overall concepts, even if some of the concrete details are still a little fuzzy. That’s
okay—the book becomes more concrete as you read on, so parts 2, 3, and 4 should
answer the questions you’re likely to have after reading part 1.

A Dependency
Injection tasting menu
You may have heard that making a sauce béarnaise is difficult. Even many people who
cook regularly have never attempted to make one. This is a shame, because the
sauce is delicious (it’s traditionally paired with steak, but it’s also an excellent
accompaniment with white asparagus, poached eggs, and other dishes). Some
resort to substitutes like ready-made sauces or instant mixes, but these aren’t nearly
as satisfying as the real thing.

DEFINITION A sauce béarnaise is an emulsified sauce made from egg yolk
and butter that’s flavored with tarragon, chervil, shallots, and vinegar. It
contains no water.

The biggest challenge to making a sauce béarnaise is that preparation can fail—the
sauce may curdle or separate, and if that happens, you can’t resurrect it. It takes
about 45 minutes to prepare, so a failed attempt means that you’ll have no time for
a second try.

Menu
■ Misconceptions about Dependency Injection
■ Purpose of Dependency Injection
■ Benefits of Dependency Injection
■ When to apply Dependency Injection
3

4 CHAPTER 1 A Dependency Injection tasting menu
 On the other hand, any chef can prepare a sauce béarnaise. It’s part of their train-
ing and, as they will tell you, it’s not difficult. You don’t have to be a professional cook
to make it. Anyone learning to make it will fail at least once, but once you get the hang
of it, you’ll succeed every time.

 I think Dependency Injection (DI) is like sauce béarnaise. It’s assumed to be difficult
and so few employ it. If you try to use it and fail, it’s likely there won’t be time for a sec-
ond attempt.

DEFINITION Dependency Injection is a set of software design principles and pat-
terns that enable us to develop loosely coupled code.

Despite the Fear, Uncertainty, and Doubt (FUD) surrounding DI, it’s as easy to learn as
making a sauce béarnaise. You may make mistakes while you learn, but once you’ve
mastered the technique, you’ll never again fail to apply it successfully.

 The software development Q&A website Stack Overflow
features an answer to the question How to explain Dependency
Injection to a 5-year old. The most highly rated answer, pro-
vided by John Munsch,1 provides a surprisingly accurate
analogy targeted at the (imaginary) five-year-old inquisitor:

When you go and get things out of the refrigerator for yourself,
you can cause problems. You might leave the door open, you
might get something Mommy or Daddy doesn’t want you to
have. You might even be looking for something we don’t even
have or which has expired.

What you should be doing is stating a need, “I need something
to drink with lunch,” and then we will make sure you have
something when you sit down to eat.

What this means in terms of object-oriented software devel-
opment is this: collaborating classes (the five-year-olds)
should rely on the infrastructure (the parents) to provide
the necessary services.

 As figure 1.1 shows, this chapter is fairly linear in struc-
ture. First, I introduce DI, including its purpose and bene-
fits. Although I include examples, overall, this chapter has
less code than any other chapter in the book.

 Before I introduce DI, I’ll discuss the basic purpose of
DI: maintainability. This is important because it’s easy to
misunderstand DI if you aren’t properly prepared. Next,
after an example (Hello DI), I’ll discuss benefits and scope,

1 John Munsch et al., “How to explain Dependency Injection to a 5-year old,” 2009, http://stackoverflow.com/
questions/ 1638919/how-to-explain-dependency-injection-to-a-5-year-old

Figure 1.1 The structure
of the chapter is fairly
linear. You should read the
first section before the
next, and so on. This may
seem obvious, but some of
the later chapters in the
book are less linear
in nature.

http://stackoverflow.com/qu estions/ 1638919/how-to-explain-dependency-injection-to-a-5-year-old
http://stackoverflow.com/qu estions/ 1638919/how-to-explain-dependency-injection-to-a-5-year-old

5Writing maintainable code
essentially laying out a road map for the book. When you’re done with this chapter,
you should be prepared for the more advanced concepts in the rest of the book.

 To most developers, DI may seem like a rather backward way of creating source
code, and, like sauce béarnaise, there’s much FUD involved. To learn about DI, you
must first understand its purpose.

1.1 Writing maintainable code
What purpose does DI serve? DI isn’t a goal in itself; rather, it’s a means to an end. Ulti-
mately, the purpose of most programming techniques is to deliver working software as
efficiently as possible. One aspect of that is to write maintainable code.

 Unless you write prototypes or applications that never make it past release 1, you’ll
soon find yourself maintaining and extending existing code bases. To be able to work
effectively with such a code base, it must be as maintainable as possible.

 One of many ways to make code maintainable is through loose coupling. As far
back as 1995, when the Gang of Four wrote Design Patterns,2 this was already com-
mon knowledge:

Program to an interface, not an implementation.

This important piece of advice isn’t the conclusion, but, rather, the premise, of Design
Patterns; to wit: it appears on page 18. Loose coupling makes code extensible, and
extensibility makes it maintainable.

DI is nothing more than a technique that enables loose coupling. However, there
are many misconceptions about DI, and sometimes they get in the way of proper
understanding. Before you can learn, you must unlearn what (you think) you
already know.

1.1.1 Unlearning DI

Like a Hollywood martial arts cliché, you must unlearn before you can learn. There
are many misconceptions about DI, and if you carry those around, you’ll misinterpret
what you read in this book. You must clear your mind to understand DI.

 There are at least four common myths about DI:

■ DI is only relevant for late binding.
■ DI is only relevant for unit testing.
■ DI is a sort of Abstract Factory on steroids.
■ DI requires a DI CONTAINER.

Although none of these myths are true, they’re prevalent nonetheless. We need to dis-
pel them before we can start to learn about DI.

2 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (New York, Addison-Wesley,
1994), 18.

6 CHAPTER 1 A Dependency Injection tasting menu
LATE BINDING

In this context, late binding refers to the ability to replace parts of an application with-
out recompiling the code. An application that enables third-party add-ins (such as
Visual Studio) is one example.

 Another example is standard software that supports different runtime environ-
ments. You may have an application that can run on more than one database engine:
for example, one that supports both Oracle and SQL Server. To support this feature,
the rest of the application can talk to the database through an interface. The code
base can provide different implementations of this interface to provide access to Ora-
cle and SQL Server, respectively. A configuration option can be used to control which
implementation should be used for a given installation.

 It’s a common misconception that DI is only relevant for this sort of scenario.
That’s understandable, because DI does enable this scenario, but the fallacy is to think
that the relationship is symmetric. Just because DI enables late binding doesn’t mean
it’s only relevant in late binding scenarios. As figure 1.2 illustrates, late binding is only
one of the many aspects of DI.

 If you thought DI was only relevant for late binding scenarios, this is something you
need to unlearn. DI does much more than enable late binding.

UNIT TESTING

Some people think that DI is only relevant to support unit testing. This isn’t true,
either—although DI is certainly an important part of supporting unit testing.

 To tell you the truth, my original introduction to DI came from struggling with
certain aspects of Test-Driven Development (TDD). During that time I discovered DI
and learned that other people had used it to support some of the same scenarios I
was addressing.

 Even if you don’t write unit tests (if you don’t, you should start now), DI is still rele-
vant because of all the other benefits it offers. Claiming that DI is only relevant to sup-
port unit testing is like claiming that it’s only relevant for supporting late binding.
Figure 1.3 shows that although this is a different view, it’s a view as narrow as figure 1.2.
In this book, I’ll do my best to show you the whole picture.

 If you thought DI was only relevant for unit testing, unlearn this assumption. DI
does much more than enable unit testing.

Figure 1.2 Late binding is enabled by DI, but to assume it’s only applicable in late binding scenarios is to adopt
a narrow view of a much broader vista.

7Writing maintainable code
AN ABSTRACT FACTORY ON STEROIDS

Perhaps the most dangerous fallacy is that DI involves some sort of general-purpose
Abstract Factory3 that we can use to create instances of the DEPENDENCIES that we need.

 In the introduction to this chapter, I wrote that “collaborating classes…should rely
on the infrastructure…to provide the necessary services.”

 What were your initial thoughts about this sentence? Did you think about the infra-
structure as some sort of service you could query to get the DEPENDENCIES you need? If
so, you aren’t alone. Many developers and architects think about DI as a service that
can be used to locate other services; this is called a SERVICE LOCATOR, but it’s the exact
opposite of DI.

 If you thought of DI as a SERVICE LOCATOR—that is, a general-purpose Factory—this
is something you need to unlearn. DI is the opposite of a SERVICE LOCATOR; it’s a way to
structure code so that we never have to imperatively ask for DEPENDENCIES. Rather, we
force consumers to supply them.

DI CONTAINERS

Closely associated with the previous misconception is the notion that DI requires a DI
CONTAINER. If you held the previous, mistaken belief that DI involves a SERVICE LOCATOR,
then it’s easy to conclude that a DI CONTAINER can take on the responsibility of the SER-
VICE LOCATOR. This might be the case, but it’s not at all how we should use a DI CONTAINER.

 A DI CONTAINER is an optional library that can make it easier for us to compose
components when we wire up an application, but it’s in no way required. When we
compose applications without a DI CONTAINER we call it POOR MAN’S DI; it takes a little
more work, but other than that we don’t have to compromise on any DI principles.

 If you thought that DI requires a DI CONTAINER, this is another notion you need to
unlearn. DI is a set of principles and patterns, and a DI CONTAINER is a useful, but
optional tool.

 You may think that, although I’ve exposed four myths about DI, I have yet to make
a compelling case against any of them. That’s true. In a sense, this whole book is one
big argument against these common misconceptions.

 In my experience, unlearning is vital because people tend to try to retrofit what I
tell them about DI and align it with what they think they already know. When this hap-
pens, it takes a lot of time before it finally dawns on them that some of their most basic

3 Ibid., 87.

Figure 1.3 Although the assumption that unit testing is the sole purpose of DI is a different view than late binding,
it’s also a narrow view of a much broader vista.

8 CHAPTER 1 A Dependency Injection tasting menu
premises are wrong. I want to spare you that experience. So, if you can, try to read this
book as though you know nothing about DI.

 Let’s assume that you don’t know anything about DI or its purpose and begin by
reviewing what DI does.

1.1.2 Understanding the purpose of DI
DI isn’t an end-goal—it’s a means to an end. DI enables loose coupling, and loose cou-
pling makes code more maintainable. That’s quite a claim, and although I could refer
you to well-established authorities like the Gang of Four for details, I find it only fair
to explain why this is true.

 Software development is still a rather new profession, so in many ways we’re still
figuring out how to implement good architecture. However, individuals with expertise
in more traditional professions (such as construction) figured it out a long time ago.

CHECKING INTO A CHEAP HOTEL

If you’re staying at a cheap hotel, you might encounter a sight like the one in
figure 1.4. Here, the hotel has kindly provided a hair dryer for your convenience, but
apparently they don’t trust you to leave the hair dryer for the next guest: the appli-
ance is directly attached into the wall outlet. Although the cord’s long enough to give
you a certain degree of movement, you can’t take the dryer with you. Apparently, the
hotel management has decided that the cost of replacing stolen hair dryers is high
enough to justify what’s otherwise an obviously inferior implementation.

 What happens when the hair dryer stops working? The hotel has to call in a skilled
professional who can deal with the issue. To fix the hardwired hair dryer, they will
have to cut the power to the room, rendering it temporarily useless. Then, the techni-
cian will use special tools to painstakingly disconnect the hair dryer and replace it with
a new one. If you’re lucky, the technician will remember to turn the power to the
room back on and go back to test whether the new hair dryer works…if you’re lucky.

Figure 1.4 In a cheap hotel
room, you might find the hair
dryer wired directly into the
wall outlet. This is equivalent
to using the common practice
of writing tightly coupled code.

9Writing maintainable code
Does this procedure sound at all familiar?
 This is how you would approach working with tightly coupled code. In this scenario,

the hair dryer is tightly coupled to the wall and you can’t easily modify one without
impacting the other.

COMPARING ELECTRICAL WIRING TO DESIGN PATTERNS

Usually, we don’t wire electrical appliances together by attaching the cable directly to
the wall. Instead, as in figure 1.5, we use plugs and sockets. A socket defines a shape
that the plug must match. In an analogy to software design, the socket is an interface.

 In contrast to the hardwired hair dryer, plugs and sockets define a loosely coupled
model for connecting electrical appliances. As long as the plug fits into the socket, we
can combine appliances in a variety of ways. What’s particularly interesting is that
many of these common combinations can be compared to well-known software design
principles and patterns.

 First, we’re no longer constrained to hair dryers. If you’re an average reader, I
would guess that you need power for a computer much more than you do for a hair
dryer. That’s not a problem: we unplug the hair dryer and plug a computer into the
same socket, as shown in figure 1.6.

 It’s amazing that the concept of a socket predates computers by decades, and yet it
provides an essential service to computers, too. The original designers of sockets
couldn’t possibly have foreseen personal computers, but because the design is so ver-
satile, needs that were originally unanticipated can be met. The ability to replace one
end without changing the other is similar to a central software design principle called
the LISKOV SUBSTITUTION PRINCIPLE. This principle states that we should be able to

Figure 1.5 Through the use of sockets and plugs, a hair dryer can be loosely coupled to
the wall outlet.

10 CHAPTER 1 A Dependency Injection tasting menu
replace one implementation of an interface with another without breaking either cli-
ent or implementation.

 When it comes to DI, the LISKOV SUBSTITUTION PRINCIPLE is one of the most impor-
tant software design principles. It’s this principle that enables us to address require-
ments that occur in the future, even if we can’t foresee them today.

 As figure 1.7 illustrates, we can unplug the computer if we don’t need to use it at
the moment. Even though nothing is plugged in, the wall doesn’t explode.

 If we unplug the computer from the wall, neither the wall outlet nor the computer
breaks down (in fact, if it’s a laptop computer, it can even run on its batteries for a
period of time). With software, however, a client often expects a service to be available.
If the service was removed, we get a NullReferenceException. To deal with this type of
situation, we can create an implementation of an interface that does “nothing.” This is
a design pattern known as Null Object,4 and it corresponds roughly to unplugging the

4 Robert C. Martin et al., Pattern Languages of Program Design 3 (New York, Addison-Wesley, 1998), 5.

Figure 1.6 Using sockets and plugs, we can replace the original hair dryer from figure 1.5 with
a computer. This corresponds to the LISKOV SUBSTITUTION PRINCIPLE.

Figure 1.7 Unplugging the computer causes neither wall nor computer to explode. This can
be roughly likened to the Null Object pattern.

11Writing maintainable code
computer from the wall. Because we’re using loose coupling, we can replace a real
implementation with something that does nothing without causing trouble.

 There are many other things we can do. If we live in a neighborhood with intermit-
tent power failures, we may wish to keep the computer running by plugging in into an
Uninterrupted Power Supply (UPS), as shown in figure 1.8: we connect the UPS to the
wall outlet and the computer to the UPS.

 The computer and the UPS serve separate purposes. Each has a SINGLE RESPONSIBIL-
ITY that doesn’t infringe on the other appliance. The UPS and computer are likely to
be produced by two different manufacturers, bought at different times, and plugged
in at different times. As figure 1.6 demonstrates, we can run the computer without a
UPS, but we could also conceivably use the hair dryer during blackouts by plugging it
into the UPS.

 In software design, this way of INTERCEPTING one implementation with another
implementation of the same interface is known as the Decorator 5 design pattern. It
gives us the ability to incrementally introduce new features and CROSS-CUTTING CON-
CERNS without having to rewrite or change a lot of our existing code.

 Another way to add new functionality to an existing code base is to compose an
existing implementation of an interface with a new implementation. When we aggre-
gate several implementations into one, we use the Composite 6 design pattern. Figure 1.9
illustrates how this corresponds to plugging diverse appliances into a power strip.

 The power strip has a single plug that we can insert into a single socket, while the
power strip itself provides several sockets for a variety of appliances. This enables us to
add and remove the hair dryer while the computer is running. In the same way, the
Composite pattern makes it easy to add or remove functionality by modifying the set
of composed interface implementations.

5 Gamma, Design Patterns, 175.
6 Ibid., 163.

Figure 1.8 An Uninterrupted Power Supply can be introduced to keep the computer running
in case of power failures. This corresponds to the Decorator design pattern.

12 CHAPTER 1 A Dependency Injection tasting menu
Here’s a final example. We sometimes find ourselves in situations where a plug
doesn’t fit into a particular socket. If you’ve traveled to another country, you’ve likely
noticed that sockets differ across the world. If you bring something, like the camera in
figure 1.10, along when traveling, you need an adapter to charge it. Appropriately,
there’s a design pattern with the same name.

 The Adapter7 design pattern works like its physical namesake. It can be used to
match two related, yet separate, interfaces to each other. This is particularly useful

7 Ibid., 139.

Figure 1.9 A power strip makes it possible to plug several appliances into a single wall
outlet. This corresponds to the Composite design pattern.

Figure 1.10 When traveling, we often need to use an adapter to plug an appliance into a
foreign socket (for example, to recharge a camera). This corresponds to the Adapter design
pattern.

13Hello DI
when you have an existing third-party API that you wish to expose as an instance of an
interface your application consumes.

 What’s amazing about the socket and plug model is that, over decades, it’s proven
to be an easy and versatile model. Once the infrastructure is in place, it can be used by
anyone and adapted to changing needs and unpredicted requirements. What’s even
more interesting is that, when we relate this model to software development, all the
building blocks are already in place in the form of design principles and patterns.

 Loose coupling can make a code base much more maintainable.
 That’s the easy part. Programming to an interface instead of an implementation is

easy. The question is, where do the instances come from? In a sense, this is what this
entire book is about.

 You can’t create a new instance of an interface the same way that you create a new
instance of a concrete type. Code like this doesn’t compile:

An interface has no constructor, so this isn’t possible. The writer instance must be
created using a different mechanism. DI solves this problem.

 With this outline of the purpose of DI, I think you’re ready for an example.

1.2 Hello DI
In the tradition of innumerable programming textbooks, let’s take a look at a simple
console application that writes “Hello DI!” to the screen. In this section, I’ll show you
what the code looks like and briefly outline some key benefits without going into
details—in the rest of the book, I’ll get more specific.

1.2.1 Hello DI code

You’re probably used to seeing Hello World examples that are written in a single line
of code. Here, we’ll take something that’s extremely simple and make it more compli-
cated. Why? We’ll get to that shortly, but let’s first see what Hello World would look
like with DI.

COLLABORATORS

To get a sense of the structure of the program, we’ll start by looking at the Main
method of the console application, and then I’ll show you the collaborating classes:

private static void Main()
{
 IMessageWriter writer = new ConsoleMessageWriter();
 var salutation = new Salutation(writer);
 salutation.Exclaim();
}

14 CHAPTER 1 A Dependency Injection tasting menu
The program needs to write to the console, so it creates a new instance of Console-
MessageWriter that encapsulates exactly that functionality. It passes that message
writer to the Salutation class so that the salutation instance knows where to write
its messages. Because everything is now wired up properly, you can execute the logic,
which results in the message being written to the screen.

 Figure 1.11 shows the relationship between the collaborators.
 The main logic of the application is encapsulated in the Salutation class, shown

in the following listing.

public class Salutation
{
 private readonly IMessageWriter writer;

 public Salutation(IMessageWriter writer)
 {
 if (writer == null)
 {
 throw new ArgumentNullException("writer");
 }

 this.writer = writer;
 }

 public void Exclaim()
 {
 this.writer.Write("Hello DI!");
 }
}

The Salutation class depends on a custom interface called IMessageWriter, and it
requests an instance of it through its constructor B. This is called CONSTRUCTOR INJEC-
TION and is described in detail in chapter 4, which also contains a more detailed walk-
through of a similar code example.

 The IMessageWriter instance is later used in the implementation of the Exclaim
method c, which writes the proper message to the DEPENDENCY.

Listing 1.1 Salutation class

Figure 1.11 The Main method creates new instances of both the ConsoleMessageWriter and
Salutation classes. ConsoleMessageWriter implements the IMessageWriter interface, which
Salutation uses. In effect, Salutation uses ConsoleMessageWriter, although this indirect usage
isn’t shown.

Inject
Dependency

B

Use
Dependency

c

15Hello DI
IMessageWriter is a simple interface defined for the occasion:

public interface IMessageWriter
{
 void Write(string message);
}

It could have had other members, but in this simple example you only need the Write
method. It’s implemented by the ConsoleMessageWriter class that the Main method
passes to the Salutation class:

public class ConsoleMessageWriter : IMessageWriter
{
 public void Write(string message)
 {
 Console.WriteLine(message);
 }
}

The ConsoleMessageWriter class implements IMessageWriter by wrapping the Base
Class Library’s Console class. This is a simple application of the Adapter design pat-
tern that we talked about in section 1.1.2.

 You may be wondering about the benefit of replacing a single line of code with two
classes and an interface with a total line count of 11, and rightly so. There are several
benefits to be harvested from doing this.

1.2.2 Benefits of DI

How is the previous example better than the usual single line of code we normally use
to implement Hello World in C#? In this example, DI adds an overhead of 1,100%,
but, as complexity increases from one line of code to tens of thousands, this overhead
diminishes and all but disappears. Chapter 2 provides a more complex example of
applied DI, and although that example is still overly simplistic compared to real-life
applications, you should notice that DI is far less intrusive.

 I don’t blame you if you find the previous DI example to be over-engineered, but
consider this: by its nature, the classic Hello World example is a simple problem with
well-specified and constrained requirements. In the real world, software development
is never like this. Requirements change and are often fuzzy. The features you must
implement also tend to be much more complex. DI helps address such issues by
enabling loose coupling. Specifically, we gain the benefits listed in table 1.1.

 In table 1.1, I listed the late binding benefit first because, in my experience, this is
the one that’s foremost in most people’s minds. When architects and developers fail
to understand the benefits of loose coupling, this is most likely because they never
consider the other benefits.

LATE BINDING

When I explain the benefits of programming to interfaces and DI, the ability to swap out
one service with another is the most prevalent benefit for most people, so they tend to
weigh the advantages against the disadvantages with only this benefit in mind.

16 CHAPTER 1 A Dependency Injection tasting menu
Remember when I asked you to unlearn before you can learn? You may say that you
know your requirements so well that you know you’ll never have to replace, say, your
SQL Server database with anything else. However, requirements change.

In section 1.2.1, you didn’t use late binding because you explicitly created a new
instance of IMessageWriter by hard-coding creation of a new ConsoleMessageWriter

Table 1.1 Benefits gained from loose coupling. Each benefit is always available but will be valued
differently depending on circumstances.

Benefit Description When is it valuable?

Late binding Services can be swapped with
other services.

Valuable in standard software, but perhaps
less so in enterprise applications where the
runtime environment tends to be well-defined

Extensibility Code can be extended and reused
in ways not explicitly planned for.

Always valuable

Parallel
development

Code can be developed in parallel. Valuable in large, complex applications; not so
much in small, simple applications

Maintainability Classes with clearly defined
responsibilities are easier to main-
tain.

Always valuable

TESTABILITY Classes can be unit tested. Only valuable if you unit test (which you really,
really should)

NoSQL, Windows Azure, and the argument for composability
Years ago, I was often met with a blank expression when I tried to convince develop-
ers and architects of the benefits of DI.

“Okay, so you can swap out your relational data access component for something
else. For what? Is there any alternative to relational databases?”

XML files never seemed like a convincing alternative in highly scalable enterprise sce-
narios. This has changed significantly in the last couple of years.

Windows Azure was announced at PDC 2008 and has done much to convince even
die-hard Microsoft-only organizations to reevaluate their position when it comes to
data storage. There’s now a real alternative to relational databases, and I only have
to ask if people want their application to be “cloud-ready.” The replacement argument
has now become much stronger.

A related movement can be found in the whole NoSQL concept that models applica-
tions around denormalized data—often document databases, but concepts such as
Event Sourcing8 are also becoming increasingly important.

8 Martin Fowler, “Event Sourcing,” 2005, www.martinfowler.com/eaaDev/EventSourcing.htmls

www.martinfowler.com/eaaDev/EventSourcing.html

17Hello DI
instance. However, you can introduce late binding by changing only a single piece of
the code. You only need to change this line of code:

IMessageWriter writer = new ConsoleMessageWriter();

To enable late binding, you might replace that line of code with something like this:

var typeName =
 ConfigurationManager.AppSettings["messageWriter"];
var type = Type.GetType(typeName, true);
IMessageWriter writer =
 (IMessageWriter)Activator.CreateInstance(type);

By pulling the type name from the application configuration file and creating a Type
instance from it, you can use Reflection to create an instance of IMessageWriter with-
out knowing the concrete type at compile time.

 To make this work, you specify the type name in the messageWriter application
setting in the application configuration file:

<appSettings>
 <add key="messageWriter"
 value="Ploeh.Samples.HelloDI.CommandLine.ConsoleMessageWriter,
 ➥HelloDI" />
</appSettings>

WARNING This example takes some shortcuts to make a point. In fact, it suf-
fers from the CONSTRAINED CONSTRUCTION anti-pattern, covered in detail in
chapter 5.

Loose coupling enables late binding because there’s only a single place where you cre-
ate the instance of the IMessageWriter. Because the Salutation class works exclu-
sively against the IMessageWriter interface, it never notices the difference.

 In the Hello DI example, late binding would enable you to write the message to a
different destination than the console—for example, a database or a file. It’s possible
to add such features even though you didn’t explicitly plan ahead for them.

EXTENSIBILITY

Successful software must be able to change. You’ll need to add new features and extend
existing features. Loose coupling enables us to efficiently recompose the application,
similar to the way that we can rewire electrical appliances using plugs and sockets.

 Let’s say that you want to make the Hello DI example more secure by only allowing
authenticated users to write the message. The next listing shows how you can add that
feature without changing any of the existing features: you add a new implementation
of the IMessageWriter interface.

public class SecureMessageWriter : IMessageWriter
{
 private readonly IMessageWriter writer;

Listing 1.2 Extending the Hello DI application with a security feature

18 CHAPTER 1 A Dependency Injection tasting menu
 public SecureMessageWriter(IMessageWriter writer)
 {
 if (writer == null)
 {
 throw new ArgumentNullException("writer");
 }

 this.writer = writer;
 }

 public void Write(string message)
 {
 if (Thread.CurrentPrincipal.Identity
 .IsAuthenticated)
 {
 this.writer.Write(message);
 }
 }
}

The SecureMessageWriter class implements the IMessageWriter interface while also
consuming it: it uses CONSTRUCTOR INJECTION to request an instance of IMessageWriter.
This is a standard application of the Decorator design pattern that I mentioned in sec-
tion 1.1.2. We’ll talk much more about Decorators in chapter 9.

 The Write method is implemented by first checking whether the current user is
authenticated B. Only if this is the case does it allow the decorated writer field to
Write c the message.

NOTE The Write method in listing 1.2 accesses the current user via an AMBI-
ENT CONTEXT. A more flexible, but slightly more complex, option would’ve
been to also supply the user via CONSTRUCTOR INJECTION.

The only place where you need to change existing code is in the Main method,
because you need to compose the available classes differently than before:

IMessageWriter writer =
 new SecureMessageWriter(
 new ConsoleMessageWriter());

Notice that you decorate the old ConsoleMessageWriter instance with the new
SecureMessageWriter class. Once more, the Salutation class is unmodified because
it only consumes the IMessageWriter interface.

 Loose coupling enables you to write code which is open for extensibility, but closed for
modification. This is called the OPEN/CLOSED PRINCIPLE. The only place where you need to
modify the code is at the application’s entry point; we call this the COMPOSITION ROOT.

 The SecureMessageWriter implements the security features of the application,
whereas the ConsoleMessageWriter addresses the user interface. This enables us to
vary these aspects independently of each other and compose them as needed.

Check
authentication

b

Write
messagec

19Hello DI
PARALLEL DEVELOPMENT

Separation of concerns makes it possible to develop code in parallel teams. When a
software development project grows to a certain size, it becomes necessary to separate
the development team into multiple teams of manageable sizes. Each team is assigned
responsibility for an area of the overall application.

 To demarcate responsibilities, each team will develop one or more modules that will
need to be integrated into the finished application. Unless the areas of each team are
truly independent, some teams are likely to depend on the functionality developed by
other teams.

 In the above example, because the SecureMessageWriter and ConsoleMessageWriter
classes don’t depend directly on each other, they could’ve been developed by parallel
teams. All they would’ve needed to agree upon was the shared interface IMessageWriter.

MAINTAINABILITY

As the responsibility of each class becomes clearly defined and constrained, maintenance
of the overall application becomes easier. This is a known benefit of the SINGLE RESPONSI-
BILITY PRINCIPLE, which states that each class should have only a single responsibility.

 Adding new features to an application becomes simpler because it’s clear where
changes should be applied. More often than not, we don’t even need to change exist-
ing code, but can instead add new classes and recompose the application. This is the
OPEN/CLOSED PRINCIPLE in action again.

 Troubleshooting also tends to become less grueling, because the scope of likely
culprits narrows. With clearly defined responsibilities, you’ll often have a good idea of
where to start looking for the root cause of a problem.

TESTABILITY

For some, TESTABILITY is the least of their worries; for others, it’s an absolute require-
ment. Personally, I belong in the latter category: in my career, I’ve declined several job
offers because they involved working with certain products that aren’t TESTABLE.

DEFINITION An application is considered TESTABLE when it can be unit tested.

The benefit of TESTABILITY is perhaps the most controversial of the benefits I’ve listed.
Many developers and architects don’t practice unit testing, so they consider this bene-
fit irrelevant at best. Others, like me, consider it essential. Michael Feathers even
defines the term Legacy Application as any application that isn’t covered by unit tests.9

 Almost by accident, loose coupling enables unit testing because consumers follow
the LISKOV SUBSTITUTION PRINCIPLE: they don’t care about the concrete types of their
DEPENDENCIES. This means that we can inject Test Doubles into the System Under Test
(SUT), as we shall see in listing 1.3.

 The ability to replace the intended DEPENDENCIES with test-specific replacements is
a by-product of loose coupling, but I chose to list it as a separate benefit because the
derived value is different.

9 Michael Feathers, Working Effectively with Legacy Code (New York, Prentice Hall, 2004), xvi.

20 CHAPTER 1 A Dependency Injection tasting menu
Depending on the type of application I’m developing, I may or may not care about
the ability to do late binding, but I always care about TESTABILITY. Some developers
don’t care about TESTABILITY, but find late binding important for the application
they’re developing.

TESTABILITY

The term TESTABLE is horribly imprecise, yet it’s widely used in the software develop-
ment community, chiefly by those who practice unit testing.

In principle, any application can be tested by trying it out. Tests can be performed by
people using the application via its user interface or whatever other interface it pro-
vides. Such manual tests are time consuming and expensive to perform, so auto-
mated testing is much preferred.

There are different types of automated testing, such as unit testing, integration test-
ing, performance testing, stress testing, and so on. Because unit testing has few
requirements on runtime environments, it tends to be the most efficient and robust
type of test; it’s often in this context that TESTAB LITY is evaluated.

Unit tests provide rapid feedback on the state of an application, but it’s only possible
to write unit tests when the unit in question can be properly isolated from its DEPEN-
DENCIES. There’s some ambiguity about how granular a unit really is, but everyone
agrees that it’s certainly not something that spans multiple modules. The ability to
test modules in isolation is very important in unit testing.

It’s only when an application is susceptible to unit testing that it’s considered TEST-
ABLE. The safest way to ensure TESTABILITY is to develop it using Test-Driven Develop-
ment (TDD).

It should be noted that unit tests alone don’t ensure a working application. Full sys-
tem tests or other in-between types of tests are still necessary to validate whether
an application works as intended.

Test Doubles
It’s a common technique to create implementations of DEPENDENCIES that act as
stand-ins for the real or intended implementations. Such implementations are called
Test Doubles, and they will never be used in the final application. Instead, they serve
as placeholders for the real DEPENDENCIES, when these are unavailable or undesirable
to use.

There’s a complete pattern language around Test Doubles, and many subtypes, such
as Stubs, Mocks, and Fakes.10

10 Gerard Meszaros, xUnit Test Patterns: Refactoring Test Code (New York, Addison-Wesley, 2007), 522.

21Hello DI
EXAMPLE: UNIT TESTING THE “HELLO” LOGIC

In section 1.21, you saw a Hello DI example. Although I showed you the final code
first, I actually developed it using TDD. Listing 1.3 shows the most important unit test.

NOTE Don’t worry if you don’t have experience with unit testing or dynamic
mocks. They will occasionally pop up throughout this book, but are in no way
a prerequisite for reading it.11

[Fact]
public void ExclaimWillWriteCorrectMessageToMessageWriter()
{
 var writerMock = new Mock<IMessageWriter>();
 var sut = new Salutation(writerMock.Object);

 sut.Exclaim();

 writerMock.Verify(w => w.Write("Hello DI!"));
}

The Salutation class needs an instance of the IMessageWriter interface, so you need
to create one. You could use any implementation, but in unit tests a dynamic mock
can be very useful—in this case, you use Moq,12 but you could’ve used other libraries
or rolled your own instead. The important part is to supply a test-specific implementa-
tion of IMessageWriter to ensure that you test only one thing at a time; right now
you’re testing the Exclaim method of the Salutation class, so you don’t want any pro-
duction implementation of IMessageWriter to pollute the test.

 To create the Salutation class, you pass in the Mock instance of IMessageWriter.
Because writerMock is an instance of Mock<IMessageWriter>, the Object property is
a dynamically created instance of IMessageWriter. Injecting the required DEPENDENCY

through the constructor is called CONSTRUCTOR INJECTION.
 After exercising the System Under Test (SUT), you can use the Mock to verify that

the Write method was invoked with the correct text. With Moq, you do this by calling the
Verify method with an expression that defines what you expected. If the IMessage-
Writer.Write method was invoked with the "Hello DI!" string, the Verify method
call completes, but if the Write method wasn’t called, or called with a different param-
eter, the Verify method would throw an exception and the test would fail.

 Loose coupling provides many benefits: code becomes easier to develop, maintain,
and extend, and it becomes more TESTABLE. It’s not even particularly difficult. We pro-
gram against interfaces, not concrete implementations. The only major obstacle is to
figure out how to get hold of instances of those interfaces. DI answers this question by
injecting the DEPENDENCIES from the outside. CONSTRUCTOR INJECTION is the preferred
method of doing that.

Listing 1.3 Unit testing the Salutation class

11 You may, however, want to read The Art of Unit Testing followed by xUnit Test Patterns. See the bibliography for
more details.

12 code.google.com/p/moq/

22 CHAPTER 1 A Dependency Injection tasting menu
1.3 What to inject and what not to inject
In the previous section, I described the motivational forces that make us think about
DI in the first place. If you’re convinced that loose coupling is a good idea, you may
want to make everything loosely coupled. Overall, this is a good idea. When you must
decide how to package modules, loose coupling provides especially useful guidance.
You don’t have to abstract everything away and make everything pluggable. In this sec-
tion, I’ll provide you with some decision tools that can help you decide how to model
your DEPENDENCIES.

 The .NET Base Class Library (BCL) consists of many assemblies. Every time you
write code that uses a type from a BCL assembly, you add a dependency to your mod-
ule. In the previous section, I discussed how loose coupling is important, and how pro-
gramming to an interface is the cornerstone.

 Does this imply that you can’t reference any BCL assemblies and use their types
directly in your application? What if you would like to use an XmlWriter, which is
defined in the System.Xml assembly?

 You don’t have to treat all DEPENDENCIES equally. Many
types in the BCL can be used without jeopardizing an
application’s degree of coupling—but not all of them. It’s
important to know how to distinguish between types that
pose no danger and types that may tighten an applica-
tion’s degree of coupling. Focus mainly on the latter.

1.3.1 Seams

Everywhere we decide to program against an interface
instead of a concrete type, we introduce a SEAM into the
application. A SEAM is a place where an application is
assembled from its constituent parts,13 similar to the way a
piece of clothing is sewn together at its seams. It’s also a
place where we can disassemble the application and work
with the modules in isolation.

 The Hello DI sample I built in section 1.2 contains a
SEAM between Salutation and ConsoleMessageWriter, as
illustrated in figure 1.12. The Salutation class doesn’t
directly depend on the ConsoleMessageWriter class; rather,
it uses the IMessageWriter interface to write messages.
You can take the application apart at this SEAM and reas-
semble it with a different message writer.

 As you learn DI, it can be helpful to categorize your dependencies into STABLE DEPEN-
DENCIES and VOLATILE DEPENDENCIES, but deciding where to put your SEAMS will soon
become second nature to you. The next sections discuss these concepts in more detail.

13 Feathers, Working Effectively with Legacy Code, 29-44.

Figure 1.12 The Hello DI
application from section 1.2
contains a SEAM between
the Salutation and
ConsoleMessageWriter
classes because the
Salutation class only
writes through the
ABSTRACTION of the
IMessageWriter interface.

23What to inject and what not to inject
1.3.2 Stable Dependencies

Many of the modules in the BCL and beyond pose no threat to an application’s degree
of modularity. They contain reusable functionality that you can leverage to make your
own code more succinct.

 The BCL modules are always available to your application, because it needs the
.NET Framework to run. The concern about parallel development doesn’t apply to
these modules because they already exist, and you can always reuse a BCL library in
another application.

 By default, you can consider most (but not all) types defined in the BCL as safe, or
STABLE DEPENDENCIES—I call them stable because they’re already there, tend to be back-
wards compatible, and invoking them has deterministic outcomes.

 Most STABLE DEPENDENCIES are BCL types, but other dependencies can be stable as
well. The important criteria for STABLE DEPENDENCIES are

■ The class or module already exists.
■ You expect that new versions won’t contain breaking changes.
■ The types in question contain deterministic algorithms.
■ You never expect to have to replace the class or module with another.

Ironically, DI CONTAINERS themselves will tend to be STABLE DEPENDENCIES, because they
fit all the criteria. When you decide to base your application on a particular DI CON-
TAINER, you risk being stuck with this choice for the entire lifetime of the application;
that’s yet another reason why you should limit the use of the container to the applica-
tion’s COMPOSITION ROOT.

 Other examples may include specialized libraries that encapsulate algorithms rele-
vant to your application. If you’re developing an application that deals with chemistry,
you may reference a third-party library that contains chemistry-specific functionality.

 In general, DEPENDENCIES can be considered stable by exclusion: they’re stable if
they aren’t volatile.

1.3.3 VOLATILE DEPENDENCIES

Introducing SEAMS into an application is extra work, so you should only do it when it’s
necessary. There may be more than one reason it’s necessary to isolate a DEPENDENCY

behind a SEAM, but they’re closely related to the benefits of loose coupling, discussed
in section 1.2.2.

 Such DEPENDENCIES can be recognized by their tendency to interfere with one or
more of these benefits. They aren’t stable because they don’t provide a sufficient foun-
dation for applications, and I call them VOLATILE DEPENDENCIES for that reason. A
DEPENDENCY should be considered Volatile if any of the following criteria is true:

■ The DEPENDENCY introduces a requirement to set up and configure a runtime envi-
ronment for the application. A relational database is the archetypical example: if
we don’t hide the relational database behind a SEAM, we can never replace it by any
other technology. It also makes it hard to set up and run automated unit tests.

24 CHAPTER 1 A Dependency Injection tasting menu
Databases are a good example of BCL types that are VOLATILE DEPENDENCIES:
even though LINQ to Entities is a technology contained in the BCL, its usage
implies a relational database.

Other out-of-process resources such as message queues, web services, and
even the file system fall into this category. Please note that it isn’t so much the
concrete .NET types that are Volatile, but rather what they imply about the run-
time environment.

The symptoms of this type of DEPENDENCY are lack of late binding and extensibil-
ity, as well as disabled TESTABILITY.

■ The DEPENDENCY doesn’t yet exist, but is still in development. The obvious symp-
tom of such dependencies is the inability to do parallel development.

■ The DEPENDENCY isn’t installed on all machines in the development organiza-
tion. This may be the case for expensive third-party libraries, or dependencies
that can’t be installed on all operating systems. The most common symptom is
disabled TESTABILITY.

■ The dependency contains nondeterministic behavior. This is particularly
important in unit tests, because all tests should be deterministic. Typical sources
of nondeterminism are random numbers and algorithms that depend on the
current date or time.

Note that common sources of nondeterminism, such as System.Random,
System.Security.Cryptography.RandomNumberGenerator, or System.Date-

Time.Now are defined in mscorlib, so you can’t avoid having a reference to the
assembly in which they’re defined. Nevertheless, you should treat them as VOLA-
TILE DEPENDENCIES, because they tend to destroy TESTABILITY.

VOLATILE DEPENDENCIES are the focal point of DI. It’s for VOLATILE DEPENDENCIES, rather
than STABLE DEPENDENCIES, that we introduce SEAMS into our application. Again, this
obliges us to compose them using DI.

 Now that you understand the differences between STABLE and VOLATILE DEPENDEN-
CIES, you may begin to see the contours of the scope of DI. Loose coupling is a perva-
sive design principle, so DI (as an enabler) should be everywhere in your code base.
There’s no hard line between the topic of DI and good software design, but to define
the scope of the rest of the book, I’ll quickly describe what it covers.

1.4 DI scope
As we saw in section 1.2, an important element of DI is to break up various responsibil-
ities into separate classes. One responsibility that we take away from classes is the task
of creating instances of DEPENDENCIES.

 As a class relinquishes control of DEPENDENCIES, it gives up more than the decision to
select particular implementations. However, as developers, we gain some advantages.

NOTE As developers, we gain control by removing that control from the classes
that consume DEPENDENCIES. This is an application of the SINGLE RESPONSIBILITY

25DI scope
PRINCIPLE: these classes should only deal with their given area of responsibility,
without concerning themselves with how DEPENDENCIES are created.

At first, it may seem like a disadvantage to let a class surrender control over which
objects are created, but, as developers, we don’t lose that control—we only move it to
another place.

 However, OBJECT COMPOSITION isn’t the only dimension of control that we remove,
because a class also loses the ability to control the lifetime of the object. When a DEPEN-
DENCY instance is injected into a class, the consumer doesn’t know when it was created,
or when it will go out of scope. Many times, this is of no concern to the consumer, but
in other cases, it may be.

DI gives us an opportunity to manage DEPENDENCIES in a uniform way. When con-
sumers directly create and set up instances of DEPENDENCIES, each may do so in its own
way, which may be inconsistent with how other consumers do it. We have no way to
centrally manage DEPENDENCIES, and no easy way to address CROSS-CUTTING CONCERNS.
With DI, we gain the ability to intercept each DEPENDENCY instance and act upon it
before it’s passed to the consumer.

 With DI, we can compose applications while intercepting dependencies and control-
ling their lifetimes. OBJECT COMPOSITION, INTERCEPTION, and LIFETIME MANAGEMENT are
three dimensions of DI. Next I’ll cover them briefly; a more detailed treatment follows
in part 3 of the book.

1.4.1 Object Composition

To harvest the benefits of extensibility, late binding, and parallel development, we must be
able to compose classes into applications (see figure 1.13). Such OBJECT COMPOSITION is
often the foremost motivation for introducing DI into an application. Initially, DI was
synonymous with OBJECT COMPOSITION; it’s the only aspect discussed in Martin Fowler’s
original article on the subject.14

14 Martin Fowler, “Inversion of Control Containers and the Dependency Injection pattern,” 2004, http://
martinfowler.com/articles/injection.html

Figure 1.13 OBJECT COMPOSITION signifies that modules can be composed into applications.

http://ma rtinfowler.com/articles/injection.html
http://ma rtinfowler.com/articles/injection.html

26 CHAPTER 1 A Dependency Injection tasting menu
There are several ways we can compose classes into an application. When I discussed
late binding I used a configuration file and a bit of dynamic object instantiation to man-
ually compose the application from the available modules, but I could also have used
CODE AS CONFIGURATION or a DI CONTAINER. We’ll return to these in chapter 7.

 Although the original meaning of DI was closely tied to OBJECT COMPOSITION, other
aspects have also turned out to be relevant.

1.4.2 Object Lifetime

A class that has surrendered control of its DEPENDENCIES gives up more than the power
to select particular implementations of an ABSTRACTION. It also gives up the power to
control when instances are created, and when they go out of scope.

 In .NET, the garbage collector takes care of a lot of
these things for us. A consumer can have its DEPENDEN-
CIES injected into it and use them for as long as it
wants. When it’s done, the DEPENDENCIES go out of
scope. If no other classes reference them, they’re eli-
gible for garbage collection.

 What if two consumers share the same type of
DEPENDENCY? Figure 1.14 illustrates that we can choose
to inject a separate instance into each consumer,
whereas figure 1.15 shows that we may alternatively
choose to share a single instance across several con-
sumers. However, from the perspective of the con-
sumer, there’s no difference. According to the LISKOV SUBSTITUTION PRINCIPLE, the
consumer must treat all instances of a given interface equally.

 Because DEPENDENCIES may be shared, a single con-
sumer can’t possibly control its lifetime. As long as a
managed object can go out of scope and be garbage
collected, this isn’t much of an issue, but when DEPEN-
DENCIES implement the IDisposable interface, things
become much more complicated.

 As a whole, LIFETIME MANAGEMENT is a separate
dimension of DI and important enough that I’ve set
aside all of chapter 8 for it.

 Giving up control of a DEPENDENCY also means giv-
ing up control of its lifetime; something else higher
up in the call stack must manage the lifetime of the
DEPENDENCY.

1.4.3 Interception

When we delegate control over DEPENDENCIES to a third party, as figure 1.16 shows, we also
gain the power to modify them before we pass them on to the classes consuming them.

Figure 1.14 Each consumer
sharing the same type of
DEPENDENCY is injected with its own
private instance.

Figure 1.15 Separate consumers
sharing the same type of
DEPENDENCY are injected with a
shared instance.

27DI scope
In the Hello DI example, I initially injected a ConsoleMessageWriter instance into a
Salutation instance. Then, modifying the example, I added a security feature by cre-
ating a new SecureMessageWriter that only delegates further work to the Console-
MessageWriter when the user is authenticated. This allows us to maintain the SINGLE

RESPONSIBILITY PRINCIPLE.
 This is possible to do because we always program to interfaces; recall that DEPENDEN-

CIES must always be ABSTRACTIONS. In the case of the Salutation, it doesn’t care
whether the supplied IMessageWriter is a ConsoleMessageWriter or a SecureMessage-
Writer. The SecureMessageWriter can wrap a ConsoleMessageWriter that still per-
forms the real work.

NOTE INTERCEPTION is an application of the Decorator design pattern. Don’t
worry if you aren’t familiar with the Decorator design pattern—I’ll provide a
refresher in chapter 9, which is entirely devoted to INTERCEPTION.

Such abilities of INTERCEPTION move us along the path towards Aspect-Oriented Program-
ming—a closely related topic that, nonetheless, is outside the scope of this book. With
INTERCEPTION, we can apply CROSS-CUTTING CONCERNS such as logging, auditing, access
control, validation, and so forth in a well-structured manner that lets us maintain Sepa-
ration of Concerns.

1.4.4 DI in three dimensions

Although DI started out as a series of patterns aimed at solving the problem of OBJECT

COMPOSITION, the term has subsequently expanded to also cover OBJECT LIFETIME and
INTERCEPTION. Today, I think of DI as encompassing all three in a consistent way.

OBJECT COMPOSITION tends to dominate the picture because, without flexible OBJECT

COMPOSITION, there would be no INTERCEPTION and no need to manage OBJECT LIFETIME.
OBJECT COMPOSITION has dominated most of this chapter, and will continue to domi-
nate the book, but we shouldn’t forget the other aspects. OBJECT COMPOSITION provides
the foundation and LIFETIME MANAGEMENT addresses some important side effects, but
it’s mainly when it comes to INTERCEPTION that we start to reap the benefits.

 In part 3, I’ve devoted a chapter to each dimension, but I provided an overview here
because it’s important to know that, in practice, DI is more than OBJECT COMPOSITION.

Figure 1.16 Instead of injecting
the originally intended DEPENDENCY,
we can modify it by wrapping
another class around it before we
pass it on to its consumer. The
dotted arrows indicate the
direction of the action—the
direction of DEPENDENCY goes the
opposite way.

28 CHAPTER 1 A Dependency Injection tasting menu
1.5 Summary
Dependency Injection is a means to an end, not a goal in itself. It’s the best way to
enable loose coupling, an important part of maintainable code. The benefits we can
reap from loose coupling aren’t always immediately apparent, but they become visible
over time, as the complexity of a code base grows. A tightly coupled code base will
eventually deteriorate into Spaghetti Code,15 whereas a well-designed, loosely coupled
code base can stay maintainable. It takes more than loose coupling to reach a truly
Supple Design,16 but programming to interfaces is a prerequisite.

DI is nothing more than a collection of design principles and patterns. It’s more
about a way of thinking and designing code than it is about tools and techniques—an
important point about loose coupling and DI is that, in order to be effective, it should
be everywhere in your code base.

TIP DI must be pervasive. You can’t easily retrofit loose coupling onto an exist-
ing code base.17

There are many misconceptions about DI. Some people think that it only addresses
narrow problems, such as late binding or unit testing; although these aspects of soft-
ware design certainly benefit from DI, the scope is much broader. The overall purpose
is maintainability.

 In the beginning of the chapter, I stated that you must unlearn to learn DI. This
will remain true for the rest of the book: you must free your mind. In an excellent
blog post, Nicholas Blumhardt writes:

The dictionary or associative array is one of the first constructs we learn about in software
engineering. It’s easy to see the analogy between a dictionary and an IoC container that
composes objects using dependency injection[.]18

The idea of DI as a service modeled along the lines of a dictionary leads directly to the
SERVICE LOCATOR anti-pattern. This is why I put so much emphasis on the need to clear
your mind of even the most basic assumptions. After all, when we’re talking about dic-
tionaries, we’re talking about stuff that belongs in the “reptile brain of programming.”

 The purpose of DI is to make code maintainable. Small code bases, like a classic
Hello World example, are inherently maintainable because of their size; this is why DI
tends to look like over-engineering in simple examples. The larger the code base
becomes, the more visible the benefits. I’ve dedicated the next chapter to a larger and
more complex example to showcase these benefits.

15 William J. Brown et al., AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis (New York, Wiley
Computer Publishing, 1998), 119.

16 Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software (New York, Addison-Wesley, 2004), 243.
17 However, see Feathers, Michael, Working Effectively with Legacy Code (New York, Prentice Hall, 2004).
18 Blumhardt, Nicholas, “Container-Managed Application Design, Prelude: Where does the Container Belong?” 2008,

http://blogs.msdn.com/b/nblumhardt/archive/2008/12/27/container-managed-application-design-prelude-
where-does-the-container-belong.aspx

http://blogs.msdn.com/b/nblumhardt/archive/2008/12/27/container-managed-application-design-prelude-where-does-the-container-belong.aspx

A comprehensive example
Telling you that a sauce béarnaise is “an emulsified sauce made from egg yolk and
butter” doesn’t magically instill in you the ability to make one. The best way to
learn is to practice; an example can often bridge the gap between theory and prac-
tice. Watching a professional cook making a sauce béarnaise is helpful before you
try it out yourself.

 When I introduced Dependency Injection in the last chapter, I presented a high-
level tour to help you understand its purpose and general principles. However, this
simple example didn’t do justice to DI. DI is a way to enable loose coupling, and loose
coupling is first and foremost an efficient way to deal with complexity.

 Most software is complex in the sense that it must address many concerns at the
same time. Besides the business concerns (which may be complex in their own
right), software must also address concerns related to security, diagnostics, opera-
tions, and extensibility. Instead of addressing all of these concerns in one big ball of
mud, loose coupling encourages us to address each concern separately. It’s easier

Menu
■ Comprehensive example
■ Doing it wrong
■ Doing it right
29

30 CHAPTER 2 A comprehensive example
to address each concern in isolation—but ultimately we must still compose this com-
plex set of concerns. Let’s take a look at a complex example to better showcase DI.

WARNING The whole point of loosely coupled code is to deal with complexity
in an efficient manner, and we need complex examples to illustrate complex
concepts. You should expect most examples in this book to be complex and
involve multiple classes from multiple libraries. Complexity is part of the game.

I have devoted this entire chapter to a complex example. I
think it’s important to contrast the loosely coupled code
with a more “traditional,” tightly coupled example, so in
this chapter you’ll find the same feature implemented in
both ways. First, I set the stage by showcasing how easy it is
to write tightly coupled code. Second, I implement the
same functionality using DI. You can skip the tightly cou-
pled example if you want to see some loosely coupled
code right away. When you’re done with this chapter, you
should begin to understand how you can use DI to com-
pose loosely coupled code.

2.1 Doing it wrong
The idea of building loosely coupled code isn’t particu-
larly controversial, but there’s a huge gap between intent
and practice. Before I show you how to use DI to build a
loosely coupled application, I want to show you how easily
it can go wrong.

 A common attempt at loosely coupled code is building
a layered application. Anyone can draw a three-layer appli-
cation diagram, and figure 2.2 proves that I can, too.

 Drawing a three-layer diagram is deceptively simple, but
the act of drawing the diagram is akin to stating that you’ll
have sauce béarnaise with your steak: it’s a declaration of

Figure 2.1 This chapter contains two variations of the same example. First, you’ll
see how easy it is to write tightly coupled code. Then, you’ll see how to write the
same application in a loosely coupled fashion. Both examples contain the example
itself as well as an analysis. If you want to see loosely coupled code right away, you
may want to skip the first section.

Figure 2.2 Standard three-
layer application architecture.
This is the simplest common
variation of the n-layer
application architecture,
where an application is
composed of n layers, each
consisting of one or more
modules. Some variants of
n-layer diagrams will have
vertical boxes that span
multiple application layers.
These are often used to
represent CROSS-CUTTING

CONCERNS, such as security
or logging.

31Doing it wrong
intent that carries no guarantee with regard to the final result. You may end up with
something else, as you shall soon see.

2.1.1 Building a tightly coupled application

There’s more than one way to view and design a flexible and maintainable complex
application,1 but the n -layer application architecture constitutes a well-known, tried-
and-true approach. The challenge is to implement it correctly.

 Armed with a three-layer diagram like the one in figure 2.2, you can now start
building an application.

MEET MARY ROWAN

Mary Rowan is a professional .NET developer working for a local Certified Microsoft
Partner that mainly develops web applications. She’s 34-years old and has been work-
ing with software for 11 years. This makes her one of the more experienced develop-
ers in the company, and she often acts as a mentor for junior developers in addition to
performing her regular duties as a senior developer.

 In general, Mary is happy about the work that she’s doing, but it frustrates her that
milestones are often being missed, forcing her and her colleagues to work long hours
and weekends to meet deadlines. She suspects that there must be more efficient ways
to build software. In an effort to learn about efficiency, she buys a lot of programming
books—but she rarely has time to read them.

 Much of her spare time is spent with her hus-
band and two girls. Mary likes to go hiking in the
mountains. She’s also an enthusiastic cook, and she
definitely knows how to make a real sauce béarnaise.

 Mary has been asked to create a new e-commerce
application on ASP.NET MVC and the Entity Frame-
work with SQL Server as the data store. To maximize
modularity, it must be a three-layer application.

 The first feature to be implemented should be a
simple list of featured products, pulled from a data-
base table and displayed on a web page; an example
is shown in figure 2.3. If the user viewing the list is a
preferred customer, the price on all products should
be discounted by five percent.

 Let’s look over Mary’s shoulder as she imple-
ments the application’s first feature.

1 Currently, the most promising alternative to n-layer applications is an architectural style related to the Command-
Query Responsibility Segregation (CQRS) pattern. For more information, see Rinat Abdullin, “CQRS Starting
Page,” http://abdullin.com/cqrs

Figure 2.3 Screen shot of the
e-commerce web application Mary
has been asked to develop. It
features a simple list of featured
products and their prices (“kr.” is the
currency symbol for Danish Kroner).

http://abdullin.com/cqrs

32 CHAPTER 2 A comprehensive example
DATA LAYER

Because she’ll need to pull data from a
database table, Mary has decided to begin
by implementing the data layer. The first
step is to define the database table itself.
Mary uses SQL Server Management Studio
to create the table shown in figure 2.4.

 To implement the Data Access Layer,
Mary adds a new library to her solution.
From Visual Studio, she uses the Entity
Data Model Wizard to generate an entity
model from the database she just created.
She changes a few names to finalize the
model, as shown in figure 2.5.

NOTE Don’t worry if you aren’t
familiar with the Microsoft Entity
Framework. The details of the
data access implementation aren’t
that important in this context, so
you should be able to follow the
example even if you’re more
familiar with a different data
access technology.

The generated ObjectContext and the Product entity are
public types contained within the same assembly. Mary
knows that she’ll later need to add more features to her
application, but the data access component needed to
implement the first feature is now completed.

 Figure 2.6 shows how far Mary has come in implement-
ing the layered architecture envisioned in figure 2.2.

 Now that the Data Access Layer has been imple-
mented, the next logical step is the Domain Logic Layer.

DOMAIN LAYER

In the absence of any domain logic, the list of Products
exposed by the generated ObjectContext could technically
have been used directly from the User Interface Layer.

WARNING With the exception of pure data-reporting
applications, there’s always domain logic. You may not
realize it at first, but as you get to know the domain, its
embedded and implicit rules and assumptions will

Figure 2.4 Mary creates the Product table
using SQL Server Management Studio;
alternative approaches include writing a T-SQL
script or creating the table through Visual
Studio, or by some other means.

Figure 2.6 So far Mary has
implemented the Data Access
Layer of her application. The
Domain Logic Layer and User
Interface Layer are still left
before the feature is
complete.

Figure 2.5 The Product
entity generated from the
Product database table shown
in figure 2.4. Mary has
changed the name of the
Featured column to IsFeatured,
as well as changed a few
names in the generated
ObjectContext
(not shown).

33Doing it wrong
gradually emerge. Implementing such logic in either the User Interface or
Data Access Layers will lead to pain and suffering. Do yourself a favor and cre-
ate a Domain Logic Layer from the beginning.

The requirements for Mary’s application state that preferred customers should be
shown the list prices with a five percent discount. Mary has yet to figure out how to
identify a preferred customer, so she asks her coworker Jens for advice:

MARY: I need to implement this business logic so that a preferred customer gets a five percent
discount.

JENS: Sounds easy. Just multiply by .95.

MARY: Thanks, but that’s not what I wanted to ask you about. What I wanted to ask you is, how
should I identify a preferred customer?

JENS: I see. Is this a web application or a desktop application?

MARY: It’s a web app.

JENS: Okay, then you can define a user profile and have an IsPreferredCustomer property.
You can get the profile through the HttpContext.

MARY: Slow down, Jens. This code must be in the Domain Logic Layer. It’s a library. There’s no
HttpContext.

JENS: Oh. [Thinks for a while] I still think you should use the Profile feature of ASP.NET to look
up the value on the user. You can then pass the value to your domain logic as a Boolean.

MARY: I don’t know…

JENS: That will also ensure that you have good separation of concerns, because your domain logic
doesn’t have to deal with security. You know: The SINGLE RESPONSIBILITY PRINCIPLE! It’s the
Agile way to do it!

MARY: I guess you’ve got a point.

WARNING Jens is basing his advice on his technical knowledge of ASP.NET.
As the discussion takes him away from his comfort zone, he steamrolls Mary
with a triple combo of buzzwords. Be aware that he doesn’t know what he is
talking about: he misuses the concept of separation of concerns, com-
pletely misses the point with the SINGLE RESPONSIBILITY PRINCIPLE, and he only
mentions Agile because he recently heard someone else talk enthusiasti-
cally about it.

Armed with Jens’ advice, Mary creates a new C# library project and adds a class called
ProductService, shown in the following listing. To make the ProductService class
compile, she must add a reference to her Data Access library, because the Commerce-
ObjectContext class is defined there.

public partial class ProductService
{
 private readonly CommerceObjectContext objectContext;

Listing 2.1 Mary’s ProductService class

34 CHAPTER 2 A comprehensive example
 public ProductService()
 {
 this.objectContext = new CommerceObjectContext();
 }

 public IEnumerable<Product> GetFeaturedProducts(
 bool isCustomerPreferred)
 {
 var discount = isCustomerPreferred ? .95m : 1;
 var products = (from p in this.objectContext
 .Products
 where p.IsFeatured
 select p).AsEnumerable();
 return from p in products
 select new Product
 {
 ProductId = p.ProductId,
 Name = p.Name,
 Description = p.Description,
 IsFeatured = p.IsFeatured,
 UnitPrice = p.UnitPrice * discount
 };
 }
}

Mary is happy that she has encapsulated data access technology (LINQ to Entities), con-
figuration, and domain logic in the ProductService class. She has delegated the
knowledge of the user to the caller by passing in the isCustomerPreferred parameter,
and she uses this value to calculate the discount for all
the products.

 Further refinement could include replacing the hard-
coded discount value (.95) with a configurable number,
but, for now, this implementation will suffice. Mary is
almost done—the only thing still left is the User Interface.
Mary decides that can wait until the next day.

 Figure 2.7 shows how far Mary has come with imple-
menting the architecture envisioned in figure 2.2.

 With the Data Access and Domain Logic Layers
implemented, the only remaining layer to implement is
the User Interface Layer.

USER INTERFACE LAYER

The next day, Mary resumes her work with the e-com-
merce application, adding a new ASP.NET MVC applica-
tion to her solution.

NOTE Don’t worry if you aren’t familiar with the
ASP.NET MVC framework. The intricate details of

Figure 2.7 At this point,
Mary has implemented the
Data Access Layer and the
Domain Logic Layer.
Compared to figure 2.6, the
Domain Logic Layer has been
added. The User Interface
Layer still remains to be
implemented.

35Doing it wrong
how the MVC framework operates aren’t the focus of this discussion. The
important part is how DEPENDENCIES are consumed, and that’s a relatively plat-
form-neutral subject.

The next listing shows how she implements an Index method on her HomeController
class to extract the featured products from the database and pass them to the View. To
make this code compile, she must add references to both the Data Access library and
the Domain library because the ProductService class is defined in the Domain
library, but the Product class is defined in the Data Access library.

public ViewResult Index()
{
 bool isPreferredCustomer =
 this.User.IsInRole("PreferredCustomer");

 var service = new ProductService();
 var products =
 service.GetFeaturedProducts(isPreferredCustomer);
 this.ViewData["Products"] = products

 return this.View();
}

As part of the ASP.NET MVC lifecycle, the User property on the HomeController class
is automatically populated with the correct user object, so Mary uses it to determine if
the current user is a preferred customer. Armed with this information, she can invoke
the Domain Logic to get the list of featured products. In a moment, I’ll return to this,
because it contains a trap, but for now, I’ll let Mary discover it for herself.

ASP.NET MVC crash course
ASP.NET MVC takes its name from the Model View Controller2 design pattern. In this
context, the most important thing to understand is that when a web request arrives,
a Controller handles the request, potentially using a (Domain) Model to deal with it
and form a response that’s finally rendered by a View.

A Controller is normally a class that derives from the abstract Controller class. It has
one or more action methods that handle requests; for example, a HomeController
class has an Index method that handles the request for the default page.

When an action method returns, it passes on the resulting Model to the View through
a ViewResult instance.

2 Martin Fowler et al., Patterns of Enterprise Application Architecture (New York: Addison-Wesley, 2003), 330.

Listing 2.2 Index method on the default controller class

36 CHAPTER 2 A comprehensive example
 The list of products must be rendered by the Index View. The following listing
shows the markup for the View.

<h2>Featured Products</h2>
<div>
<% var products =
 (IEnumerable<Product>)this.ViewData["Products"];
 foreach (var product in products)
 { %>
 <div>
 <%= this.Html.Encode(product.Name) %>
 (<%= this.Html.Encode(product.UnitPrice.ToString("C")) %>)
 </div>
<% } %>
</div>

ASP.NET MVC enables you to write standard HTML with
bits of imperative code embedded to access objects cre-
ated and assigned by the Controller that created the View.
In this case, the HomeController’s Index method assigned
the list of featured products to a key called Products that
Mary uses in the View to render the list of products.

 Figure 2.8 shows how Mary has now implemented the
architecture envisioned in figure 2.2.

 With all three layers in place the applications should
theoretically work, but only a test can verify whether that’s
the case.

2.1.2 Smoke test

Mary has now implemented all three layers, so it’s time to
see if the application works. She presses F5 and soon
receives this message:

The specified named connection is either not found in the configuration, not intended to be
used with the EntityClient provider, or not valid.

Because Mary used the default constructor of CommerceObjectContext (shown in list-
ing 2.1), it implicitly expects that a connection string named CommerceObjectContext
is present in the web.config file. As I alluded to when I discussed listing 2.2, this
implicitness contains a trap. During the night, Mary forgot the implementation details
of her Domain Layer. The code compiles, but the site doesn’t work.

 In this case, fixing the error is straightforward. Mary inserts the correct connection
string in the web.config file. When she runs the application, the web page shown in
figure 2.3 appears.

Listing 2.3 Index View markup

Get products populated
by Controller

Figure 2.8 Mary has now
implemented all three layers
in the application. This figure
is identical to figure 2.2, but
repeated here to illustrate the
current state of Mary’s
application.

37Doing it wrong
 The Featured Products feature is now done, and Mary feels confident and ready to
implement the next feature in the application. After all, she has followed established
best practices and created a three-layer application.

2.1.3 Evaluation

Did Mary succeed in developing a proper, layered appli-
cation? No, she did not—although she certainly had the
best of intentions. She created three Visual Studio proj-
ects that correspond to the three layers in the planned
architecture, as shown in figure 2.9. To the casual
observer, this looks like the coveted layered architec-
ture, but, as you’ll see, the code is tightly coupled.

 Visual Studio makes it easy and natural to work with
solutions and projects in this way. If we need functional-
ity from a different library, we can easily add a refer-
ence to it and write code that creates new instances of
the types defined in these other libraries. Every time we
add a reference, we take on a DEPENDENCY.

DEPENDENCY GRAPH

When working with solutions in Visual Studio, it’s easy
to lose track of the important DEPENDENCIES, because
Visual Studio displays them together with all the other
project references that may point to assemblies in the
.NET Base Class Library (BCL).

 To understand how the modules in Mary’s applica-
tion relate to each other, we can draw a graph of the
dependencies (see figure 2.10).

 The most remarkable insight to be gained from fig-
ure 2.10 is that the User Interface library is dependent
on both Domain and Data Access libraries. It seems as though the User Interface may
bypass the Domain Layer in certain cases. This bears further investigation.

EVALUATING COMPOSABILITY

A major goal of building a three-layer application is to separate concerns. We’d like to
separate our Domain Model from the Data Access Layer and the User Interface Layer
so that none of these concerns pollute the Domain Model. In large applications, it’s
essential for it to be possible to work with one area of the application in isolation.

 To evaluate Mary’s implementation, we can ask a simple question:

TEST Is it possible to use each module in isolation?

In theory, we should be able to compose modules in any way we like. We may need to
write new modules to bind existing modules together in new and unanticipated ways,
but, ideally, we should be able to do so without having to modify the existing modules.

Figure 2.9 Mary’s e-commerce
web application has a Visual
Studio project for each layer in
the planned architecture—but is
it a three-layer application?

Figure 2.10 Dependency graph
for Mary’s application showing
how the modules depend on each
other. The arrows point towards
a module’s DEPENDENCY.

38 CHAPTER 2 A comprehensive example
NOTE The following analysis discusses whether modules can be replaced, but
be aware that this is a technique we use to evaluate composability. Even if we
never want to swap modules, this sort of analysis uncovers potential issues
regarding coupling. If we find that the code is tightly coupled, all the benefits
of loose coupling are lost.

Can we use the modules in Mary’s application in new and exciting ways? Let’s look at
some likely scenarios.

NEW USER INTERFACE

If Mary’s application becomes a success, the project’s stakeholders would like her to
develop a rich client version in Windows Presentation Foundation (WPF). Is this possi-
ble to do while reusing the Domain Layer and the Data Access Layer?

 When we examine the dependency graph in figure 2.10, we can quickly ascertain
that no modules are depending on the Web User Interface, so it’s possible to remove
it and replace it with a WPF User Interface.

 Creating a rich client based on WPF is a new application that shares most of its
implementation with the original web application. Figure 2.11 illustrates how a WPF
application would need to take the same dependencies as the web application. The
original web application can remain unchanged.

 Replacing the User Interface Layer is certainly possible with Mary’s implementa-
tion, so let’s examine another interesting decomposition.

NEW DATA ACCESS LAYER

Imagine that market analysts figure out that, to optimize profits, Mary’s application
should be available as a cloud application hosted on Windows Azure. In Windows
Azure, data can be stored in the highly scalable Azure Table Storage Service. This stor-
age mechanism is based on flexible data containers that contain unconstrained data.
The service enforces no particular database schema, and there’s no referential integrity.

 The protocol used to communicate with the Table Storage Service is HTTP, and the
most obvious data access technology on .NET is based on ADO.NET Data Services.

 This type of database is sometimes known as a key-value database, and it’s a different
beast than a relational database accessed through the Entity Framework.

Figure 2.11 Replacing the
Web User Interface with a
WPF User Interface is
possible because no module
depends on the Web User
Interface. The original Web
User Interface remains in the
figure in grayscale to
illustrate the point that
adding a new user interface
doesn’t preclude the original.

39Doing it wrong
To enable the e-commerce application as a cloud application, the Data Access library
must be replaced with a module that uses the Table Storage Service. Is this possible?

 From the dependency graph in figure 2.10, we already know that both User Inter-
face and Domain libraries depend on the Entity Framework-based Data Access library.
If we try to remove the Data Access library, the solution will no longer compile,
because a required DEPENDENCY is missing.

 In a big application with dozens of modules, we could also try to remove those
modules that don’t compile to see what would be left. In the case of Mary’s applica-
tion, it’s evident that we’d have to remove all modules, leaving nothing behind.

 Although it would be possible to develop an Azure Table Data Access library that
mimics the API exposed by the original Data Access library, there’s no way we could
inject it into the application.

 The application isn’t nearly as composable as the project stakeholders would have
liked. Enabling the profit-maximizing cloud abilities requires a major rewrite of the
application, because none of the existing modules can be reused.

OTHER COMBINATIONS

We could analyze the application for other combinations of modules, but it would be
a moot point because we already know that it fails to support an important scenario.

 Besides, not all combinations make sense. We could ask whether it would be possi-
ble to replace the Domain Model with a different implementation. In most cases, this
would be an odd question to ask, because the Domain Model encapsulates the heart
of the application. Without the Domain Model, most applications have no raison
d’être (reason for being).

2.1.4 Analysis

Why did Mary’s implementation fail to achieve the desired degree of composability? Is
it because the User Interface has a direct dependency on the Data Access library?
Let’s examine this possibility in greater detail.

Figure 2.12 Attempting to
remove the relational Data
Access library leaves
nothing left, because all
other modules depend on it.
There’s no place where we
can instruct the Domain
library to use the new Azure
Table Data Access library
instead of the original.

40 CHAPTER 2 A comprehensive example
DEPENDENCY GRAPH ANALYSIS

Why is the User Interface dependent on the Data Access library? The culprit is this
Domain Model method signature:

The GetFeaturedProducts method returns a sequence of products, but the Product
class is defined in the Data Access library. Any client consuming the GetFeatured-
Products method must reference the Data Access library to be able to compile.

 It’s possible to change the signature of the method to
return a sequence of a type defined within the Domain
Model. It would also be more correct, but it doesn’t solve
the problem.

 Let’s assume that we break the dependency between
the User Interface and Data Access libraries. The modi-
fied dependency graph would now look like figure 2.13.

 Would such a change enable Mary to replace the rela-
tional Data Access library with one that encapsulates
access to the Azure Table service? Unfortunately, no,
because the Domain library still depends on the Data
Access library. The User Interface, in turn, still depends
on the Domain Model, so if we try to remove the origi-
nal Data Access library, there would be nothing left of
the application.

 The root cause of the problem lies somewhere else.

DATA ACCESS INTERFACE ANALYSIS

The Domain Model depends on the Data Access library because the entire data model
is defined there. The Product class was generated when Mary ran the LINQ to Entities
wizard. Using the Entity Framework to implement a Data Access Layer may be a rea-
sonable decision.

 However, consuming it directly in the Domain Model isn’t.
 The offending code can be found spread out in the ProductService class. The

constructor creates a new instance of the CommerceObjectContext class and assigns it
to a private member variable:

this.objectContext = new CommerceObjectContext();

This tightly couples the ProductService class to the Data Access library. There’s no
reasonable way we can intercept this piece of code and replace it with something else.
The reference to the Data Access library is hard-coded into the ProductService class.

 The implementation of the GetFeaturedProducts method uses the Commerce-
ObjectContext to pull Product objects from the database:

Figure 2.13 Dependency
graph of the hypothetical
situation where the
dependency of the User
Interface on the Data Access
library has been severed.

41Doing it right
var products = (from p in this.objectContext
 .Products
 where p.IsFeatured
 select p).AsEnumerable();

This only reinforces the hard-coded dependency, but, at this point, the damage is already
done. What we need is a better way to compose modules without such tight coupling.

MISCELLANEOUS OTHER ISSUES

Before I show you the better alternative, I’d like to point out a few other issues with
Mary’s code that ought to be addressed.

■ Most of the Domain Model seems to be implemented in the Data Access library.
Whereas it’s a technical problem that the Domain Model library references the Data
Access library, it’s a conceptual problem that the Data Access library defines such a
class as the Product class. A public Product class belongs in the Domain Model.

■ Under the influence of Jens, Mary decided to implement the code that deter-
mines whether or not a user is a preferred customer in the User Interface. How-
ever, how a customer is identified as a preferred customer is a piece of Business
Logic, so it ought to be implemented in the Domain Model.

Jens’ argument about separations of concern and the SINGLE RESPONSIBILITY

PRINCIPLE is no excuse for putting code in the wrong place. Following the SINGLE

RESPONSIBILITY PRINCIPLE within a single library is entirely possible—that’s the
expected approach.

■ The ProductService class relies on XML configuration. As you saw when we fol-
lowed Mary’s efforts, she forgot that she had to put a particular piece of config-
uration code in her web.config file. Although the ability to configure a
compiled application is important, only the finished application should rely on
configuration files. It’s much more flexible for reusable libraries to be impera-
tively configurable by their callers.

In the end, the ultimate caller is the application itself. At that point, all rele-
vant configuration data can be read from a .config file and fed to the underly-
ing libraries, as needed.

■ The View (as shown in listing 2.3) seems to contain too much functionality. It
performs casts and specific string formatting. Such functionality should be
moved to the underlying model.

In the next section, I’ll show you a more composable way of building an application
with the same features as the one Mary built. I’ll also address these minor issues at the
same time.

2.2 Doing it right
Dependency Injection (DI) can be used to solve the issues that we discovered. Because
DI is a radical departure from the way Mary created her application, I’m not going to
modify it. Rather, I’m going to re-create it from scratch.

42 CHAPTER 2 A comprehensive example
 You shouldn’t infer from this decision that it’s impossible to refactor an existing
application towards DI; it can be done, but it’s hard. In my experience, it takes a lot of
refactorings to get there.3

NOTE As I walk you through this example, don’t worry if you get lost along
the way. DI is complex, and there are many elements in play. I chose this
example because it resembles a realistic scenario, but the disadvantage is that
it’s more complex than a toy example. Later in the book, I’m going to delve
deeper into the concepts and techniques that are being introduced here.
After you’ve read more, you can always come back and reread this section.

Many people refer to DI as INVERSION OF CONTROL (IoC). These two terms are some-
times used interchangeably, but DI is a subset of IoC. Throughout the book, I’ll consis-
tently use the most specific term: DI. If I mean IoC, I’ll refer to it specifically.

3 There’s a whole book about this subject. See Michael Feathers, Working Effectively with Legacy Code (New York:
Prentice Hall, 2004).

Dependency Injection or Inversion of Control?
The term Inversion of Control (IoC) originally meant any sort of programming style
where an overall framework or runtime controlled the program flow.4 According to that
definition, most software developed on the .NET Framework uses IoC.

When you write an ASP.NET application, you hook into the ASP.NET page life cycle,
but you aren’t in control—ASP.NET is.

When you write a WCF service, you implement interfaces decorated with attributes.
You may be writing the service code, but ultimately, you aren’t in control—WCF is.

These days, we’re so used to working with frameworks that we don’t consider this to
be special, but it’s a different model from being in full control of your code. This can
still happen for a .NET application—most notably for command-line executables. As
soon as Main is invoked, your code is in full control. It controls program flow, life-
time, everything. No special events are being raised and no overridden members are
being invoked.

Before DI had a name, people started to refer to frameworks that manage DEPENDEN-
CIES as Inversion of Control Containers, and soon, the meaning of IoC gradually drifted
towards that particular meaning: Inversion of Control over DEPENDENCIES. Always the
taxonomist, Martin Fowler introduced the term Dependency Injection to specifically
refer to IoC in the context of dependency management.5 Dependency Injection has
since been widely accepted as the most correct terminology.

In short, IoC is a much broader term that includes, but isn’t limited to, DI.

4 Martin Fowler, “InversionOfControl,” 2005, http://martinfowler.com/bliki/InversionOfControl.html
5 Martin Fowler, “Inversion of Control Containers and the Dependency Injection pattern,” 2004, http://

martinfowler.com/articles/injection.html

http://martinfowler.com/bliki/InversionOfControl.html
http://ma rtinfowler.com/articles/injection.html
http://ma rtinfowler.com/articles/injection.html

43Doing it right
In the context of managing dependencies, INVERSION OF CONTROL accurately describes
what we’re trying to accomplish. In Mary’s application, the code directly controls its
dependencies: when the ProductService needs a new instance of the Commerce-
ObjectContext class, it simply creates an instance using the new keyword. When the
HomeController needs a new instance of the ProductService class, it, too, news up an
instance. The application is in total control. That may sound powerful, but it’s actually
limiting. I call this the CONTROL FREAK anti-pattern. INVERSION OF CONTROL instructs us to
let go of that control and let something else manage the dependencies.

2.2.1 Rebuilding the commerce application

When I write software, I prefer to start in the most significant place. This is often the
user interface. From there, I work my way in, adding more functionality until the fea-
ture is done and I can move on to the next. This outside-in technique helps me to focus
on the requested functionality without over-engineering the solution.

NOTE The outside-in technique is closely related to the YAGNI principle (“You
Aren’t Gonna Need It”). This principle emphasizes that only required fea-
tures should be implemented, and that the implementation should be as sim-
ple as possible.

Because I always practice Test-Driven Development (TDD), I start by writing unit tests
as soon as my outside-in approach prompts me to create a new class. Although I wrote
a lot of unit tests to create this example, TDD isn’t required to implement and use DI,
so I’m not going to show these tests in the book. If you’re interested, they’re available
in the source code that accompanies the book.

USER INTERFACE

The specification for the list of featured products is to write an application that
extracts the featured products from the database and displays them in a list, as shown
in figure 2.3. Because I know that the project’s stakeholders will mainly be interested
in the visual result, the User Interface sounds like a good place to start.

 The first thing I do after opening Visual Studio is to add a new ASP.NET MVC appli-
cation to my solution. Because the list of featured products needs to go on the front
page, I start by modifying the Index.aspx to include the markup shown in the follow-
ing listing.

<h2>Featured Products</h2>
<div>
<% foreach (var product in this.Model.Products)
 { %>
 <div><%= this.Html.Encode(product.SummaryText) %></div>
<% } %>
</div>

Listing 2.4 Index View markup

44 CHAPTER 2 A comprehensive example
Notice how much cleaner listing 2.4 is compared to list-
ing 2.3. The first improvement is that it’s no longer nec-
essary to cast a dictionary item to a sequence of products
before iteration is possible. I accomplished this easily by
letting the Index.aspx page inherit from System.Web
.Mvc.ViewPage<FeaturedProductsViewModel> instead of
System.Web.Mvc.ViewPage. This means that the Model
property of the page is of the FeaturedProductsView-
Model type.

 The entire product display string is pulled directly
from the SummaryText property of the product.

 Both improvements are related to the introduction of
View-specific Models that encapsulate the behavior of the
View. These Models are Plain Old CLR6 Objects (POCOs).
Figure 2.14 provides an outline of their structure.

 The HomeController must return a View with an
instance of FeaturedProductsViewModel for the code in
listing 2.4 to work. As a first step, this can be imple-
mented inside the HomeController like this:

public ViewResult Index()
{
 var vm = new FeaturedProductsViewModel();
 return View(vm);
}

This will enable the web application to execute without error, but the list of featured
products will always be empty. Providing the list of featured products is a task for the
Domain Model.

 Figure 2.15 shows the current state of implementing the architecture envisioned in
figure 2.2.

6 Common Language Runtime

Figure 2.14 The
FeaturedProductsView-
Model contains a list of
ProductViewModels. Both
are POCOs, which makes them
eminently susceptible to unit
testing. The SummaryText
property is derived from the
Name and UnitPrice
properties to encapsulate
rendering logic.

Figure 2.15 At this stage, only the User Interface Layer has been
implemented, and the Domain Logic and Data Access Layers still
remain. Contrast this figure with figure 2.6, which shows Mary’s
progress at a comparable stage. One advantage of starting with
the user interface is that we already have software we can run and
test. Only at a much later stage, shown in figure 2.8, does Mary
arrive at a point where she can run the application.

45Doing it right
Although a user interface exists, it doesn’t do much of interest. The list of featured
products is always empty, so I need to implement some Domain Logic that can supply
a proper list of products.

DOMAIN MODEL

The Domain Model is a plain vanilla C# library that I add to the solution. This library
will contain POCOs and abstract types. The POCOs will model the Domain while the
abstract types provide abstractions that will serve as my main external entry point into
the Domain Model.

 The principle of programming to interfaces instead of concrete classes is a corner-
stone of DI. It’s this principle that allows us to replace one concrete implementation
with another.

I’m still following the outside-in approach, so I’ll be adding code to the User Interface
Layer for a while yet. Some of the code I’ll add will now use types from the Domain
Model. This means that I’ll add a reference to the Domain Model from the User Inter-
face, like Mary did. That will turn out okay, but I’ll postpone doing a dependency
graph analysis until section 2.2.2, so that I can provide you with the full picture.

 A common abstraction over data access is provided by the Repository pattern,8 so
I’ll define a ProductRepository abstract class in the Domain Model library:

public abstract class ProductRepository
{
 public abstract IEnumerable<Product> GetFeaturedProducts();
}

A full-blown Repository would have more methods to find and modify products, but,
following the outside-in principle, I only define the classes and members I need for
the task at hand. It’s easier to add functionality to code than it is to remove anything.

Interfaces or abstract classes?
Many guides to object-oriented design focus on interfaces as the main abstraction
mechanism, whereas the .NET Framework Design Guidelines endorse abstract
classes over interfaces.7 Should you use interfaces or abstract classes?

With relation to DI, the reassuring answer is that it doesn’t matter. The important part
is that you program against some sort of abstraction.

Choosing between interfaces and abstract classes is important in other contexts, but
not here. You’ll notice that I use the words interchangeably; I often use the term
ABSTRACTION to encompass both interfaces and abstract classes.

7 Krzysztof Cwalina and Brad Abrams, Framework Design Guidelines: Conventions, Idioms, and Patterns for Reusable
.NET Libraries (New York, Addison-Wesley, 2006), 77-83.

8 Fowler, Patterns of Enterprise Application Architecture, 322-327.

46 CHAPTER 2 A comprehensive example
The Product class is also implemented with the bare minimum of members, as illus-
trated in figure 2.16.

 The Index method on HomeController should use a ProductService instance to
retrieve the list of featured products, apply any discounts, convert the Product
instances to ProductViewModel instances, and add them to the FeaturedProducts-
ViewModel. Because the ProductService class takes an instance of ProductRepository
in its constructor, the tricky part is to provide it with a proper instance. Recall from
the analysis of Mary’s implementation that newing up dependencies is a cardinal sin.
As soon as I do that, I’m tightly coupled with the type I just used.

 I’m going to relinquish control of the ProductRepository dependency. As shown
in the next listing, I’d rather be relying on something else to provide me with an
instance through the HomeController’s constructor. This pattern is called CONSTRUC-
TOR INJECTION—how the instance is created, and by whom, is of no concern to the
HomeController.

public partial class HomeController : Controller
{
 private readonly ProductRepository repository;

 public HomeController(ProductRepository repository)
 {
 if (repository == null)
 {

Listing 2.5 HomeController with CONSTRUCTOR INJECTION

Figure 2.16 The Product class only contains the Name and UnitPrice properties, because these
are the only properties needed to implement the desired application feature. The ApplyDiscountFor
applies the discount (if any) for a user and returns an instance of the DiscountedProduct class. The
abstract GetFeaturedProducts returns a sequence of Products.

Constructor
Injection

B

47Doing it right
 throw new ArgumentNullException("repository");
 }

 this.repository = repository;
 }

 public ViewResult Index()
 {
 var productService =
 new ProductService(this.repository);

 var vm = new FeaturedProductsViewModel();

 var products =
 productService.GetFeaturedProducts(this.User);
 foreach (var product in products)
 {
 var productVM = new ProductViewModel(product);
 vm.Products.Add(productVM);
 }

 return View(vm);
 }
}

The HomeController constructor B specifies that anyone wishing to use the class
must provide an instance of ProductRepository (which, as you may remember, is an
abstract class). A Guard Clause9 guarantees this precondition by throwing an excep-
tion if the supplied instance is null. The injected dependency can be saved for later
and safely used by other members of the HomeController class.

 The first time I heard about CONSTRUCTOR INJECTION, I had a hard time understand-
ing the real benefit. Doesn’t it push the burden of controlling the DEPENDENCY onto
some other class?

 Yes, it does—and that’s the whole point. In an n -layer application, we can push that
burden all the way to the top of the application, into a COMPOSITION ROOT. This is a
centralized place where the different modules of an application can be composed.
This can be done manually or delegated to a DI CONTAINER.

 The HomeController delegates most of its work to the ProductService class,
shown in the following listing. The ProductService class corresponds to Mary’s class
of the same name, but is now a pure Domain Model class.

public class ProductService
{
 private readonly ProductRepository repository;

 public ProductService(ProductRepository repository)
 {
 if (repository == null)
 {

9 Martin Fowler et al., Refactoring: Improving the Design of Existing Code (New York: Addison-Wesley, 1999), 250.

Listing 2.6 ProductService class

Save injected
dependency for later

Pass injected
dependency on

Constructor
Injection again

48 CHAPTER 2 A comprehensive example
 throw new ArgumentNullException("repository");
 }

 this.repository = repository;
 }

 public IEnumerable<DiscountedProduct>
 GetFeaturedProducts(IPrincipal user)
 {
 if (user == null)
 {
 throw new ArgumentNullException("user");
 }

 return from p in
 this.repository.GetFeaturedProducts()
 select p.ApplyDiscountFor(user);
 }
}

The GetFeaturedProducts method B now takes an instance of IPrincipal that rep-
resents the current user. This is another departure from Mary’s implementation in
listing 2.1, which only took a Boolean value, indicating whether the user is a preferred
customer. However, because deciding whether a user is a preferred customer is a piece
of Domain Logic, it’s more correct to explicitly model the current user as a DEPENDENCY.
We must always adhere to the principle of programming to an interface, but in this case I
don’t need to invent one (as I did with ProductRepository) because the .NET Base
Class Library (BCL) already includes the IPrincipal interface, which represents a
standard way of modeling application users.

 Passing a DEPENDENCY as a parameter in a method is known as METHOD INJECTION.
Once again, control is delegated to the caller, similar to CONSTRUCTOR INJECTION.
Although the details vary, the main technique remains the same.

 At this stage, the application doesn’t work at all. There are two problems left:

■ There are no concrete implementations of ProductRepository. This is easily
solved. In the next section, I’ll implement a concrete ProductRepository that
reads the featured products from the database.

■ By default, ASP.NET MVC expects Controllers to have default constructors.
Because I introduced a parameter to HomeController’s constructor, the MVC
framework doesn’t know how to create an instance of HomeController. This
issue can be solved by developing a custom IControllerFactory. How this
is done is outside the scope of this chapter, but it’s a subject that will be
discussed in chapter 7. Suffice it to say that this custom factory will create
an instance of the concrete ProductRepository and supply it to Home-
Controller’s constructor.

In the Domain Model, I work only with types defined within the Domain Model (and
the .NET Base Class Library). The concepts of the Domain Model are implemented as
POCOs. At this stage, there’s only a single concept represented, namely, a Product. The

Method
Injection

b

Use both injected
dependencies to
implement behavior

49Doing it right
Domain Model must be able to communicate with the out-
side world (such as databases). This need is modeled as
abstract classes (such as Repositories) that we must replace
with concrete implementations before the Domain Model
becomes useful.

 Figure 2.17 shows the current state of implementing
the architecture envisioned in figure 2.2.

 The application’s Domain Model isn’t yet particularly
object-oriented;10 there’s only the single abstract Product-
Repository that I need to implement to close the loop.

DATA ACCESS

Like Mary, I’d like to implement my Data Access library
using LINQ to Entities, so I follow the same steps as she
did in section 2.1.1 to create the Entity Model. The main
difference is that the Entity Model and the Commerce-
ObjectContext are now only implementation details; but,
with them, I can create an implementation of Product-
Repository, as shown in the following listing.

public class SqlProductRepository : Domain.ProductRepository
{
 private readonly CommerceObjectContext context;

 public SqlProductRepository(string connString)
 {
 this.context =
 new CommerceObjectContext(connString);
 }

 public override IEnumerable<Domain.Product> GetFeaturedProducts()
 {
 var products = (from p in this.context.Products
 where p.IsFeatured
 select p).AsEnumerable();
 return from p in products
 select p.ToDomainProduct();
 }
}

In Mary’s application, the generated Product entity was used as a Domain object,
although it was defined in the database. This is no longer the case, because I already
defined the Product class in the Domain Model. When I generated the Entity Model,
the wizard created another Product class for me and I need to convert between the
two B. Figure 2.18 illustrates how they’re defined in two different modules. The

10 We call this an Anemic model. Martin Fowler, “AnemicDomainModel,” 2003, http://www.martinfowler.com/
bliki/AnemicDomainModel.html

Listing 2.7 Implementing ProductRepository using LINQ to Entities

Convert to Domain
Product

B

Figure 2.17 The User
Interface and Domain Logic
Layers are now both in place,
while the Data Access Layer
remains to be implemented.
Contrast this figure with
figure 2.7, which shows
Mary’s progress at a similar
stage.

http://www.martinfowler.com/bliki/AnemicDomainModel.html
http://www.martinfowler.com/bliki/AnemicDomainModel.html

50 CHAPTER 2 A comprehensive example
Product entity class is merely an implementation detail, and I could easily have made
it internal to express that more explicitly.

NOTE You could argue that it’s a specific shortcoming of the Entity Frame-
work that it doesn’t support persistence-ignorant entities11 (at least not in the
.NET 3.5 SP1 version). However, this is the sort of constraint you must deal
with in real software projects.

The Entity Product defines a conversion to the Domain Product type. This conversion
is a trivial mapping of property values. Although not particularly related to DI, I
include it here for good measure:

Domain.Product p = new Domain.Product();
p.Name = this.Name;
p.UnitPrice = this.UnitPrice;
return p;

With SqlProductRepository implemented, I can now set up ASP.NET MVC to inject
an instance of it into instances of HomeController. Because I discuss this in greater
detail in chapter 7, I don’t show that here.

 Figure 2.19 shows the current state of the application architecture as envisioned in
figure 2.2.

 Now that everything is correctly wired together, I can browse to the application’s
homepage and get the same page as shown in figure 2.3.

11 For a good introduction to persistence ignorance, see Jeremy Miller, “Patterns in Practice: The Unit Of Work
Pattern And Persistence Ignorance,” (MSDN Magazine, June 2009). Also available online at http://
msdn.microsoft.com/en-us/magazine/dd882510.aspx

Figure 2.18 The Domain Model and Data Access libraries both define
a class named Product. The Domain Product is the important
class that encapsulates the Domain concept of a Product. The Data
Access Product class is only an artifact of the Entity Framework
wizard. It can easily be renamed or made internal.

http://msdn.microsoft.com/en-us/magazine/dd882510.aspx
http://msdn.microsoft.com/en-us/magazine/dd882510.aspx

51Doing it right
2.2.2 Analyzing the loosely coupled implementation

The previous section contained lots of details, so it’s
hardly surprising if you lost sight of the big picture along
the way. In this section, I’ll try to explain what happened
in broader terms.

INTERACTION

The classes in each layer interact with each other in
either direct or abstract form. They do so across module
boundaries, so it can be difficult to follow how they
interact. Figure 2.20 illustrates how dependencies are
being connected.

 When the application starts, the code in Global.asax
creates a new custom Controller factory. The applica-
tion keeps a reference to the Controller factory, so when
a page request comes in, the application invokes
CreateController on the factory. The factory looks up
the connection string from web.config and supplies it

Figure 2.19 All three layers
in the application are now
implemented as envisioned in
figure 2.2. This figure is
identical, but is repeated here
to illustrate the current state
of the application. The figure
is also identical to figure 2.8,
which shows Mary’s
completed application.

Figure 2.20 Interaction between elements involved in Dependency Injection in the Commerce
application. Notice how the SqlProductRepository instance is injected into the
HomeController, and then again later, through the HomeController into a ProductService
that ultimately uses it.

52 CHAPTER 2 A comprehensive example
to a new instance of SqlProductRepository. It injects the SqlProductRepository
instance into a new instance of HomeController and returns that instance.

 The application then invokes the Index method on the HomeController instance,
causing it to create a new instance of ProductService, passing the SqlProduct-
Repository instance to it in its constructor. The ProductService invokes the Get-
FeaturedProducts method on the SqlProductRepository instance.

 Finally, the ViewResult with the populated FeaturedProductsViewModel is
returned, and the ASP.NET MVC framework finds and renders the correct page.

DEPENDENCY GRAPH

In section 2.1.3, we saw how a dependency graph can help us analyze and understand
the degree of flexibility provided by the architectural implementation. Has DI changed
the dependency graph for the application?

 Figure 2.21 shows that the dependency graph has indeed changed. The Domain
Model no longer has any dependencies and can act as a stand-alone module. On the
other hand, the Data Access library now has a dependency; in Mary’s application, it
had none.

 This should raise our hopes that we can answer the original questions about com-
posability more favorably this time:

■ Can we replace the web-based user interface with a WPF-based user interface?
That was possible before, and is still possible with the new design. Neither the
Domain Model nor the Data Access libraries depend on the web-based user
interface, so we can easily put something else in its place.

■ Can we replace the relational Data Access library with one that works with the
Azure Table Service? In chapter 3 I’ll describe how the application locates and
instantiates the correct ProductRepository, so for now take the following at

Figure 2.21 Dependency
graph showing the example
commerce application when
Dependency Injection is
applied. The most notable
difference is that the Domain
library no longer has any
dependencies. The grey boxes
within the black boxes show
sample classes in each library
to give you an idea which
classes go where. There are
more classes in each library
than the ones shown.

53Expanding the sample application
face value: the Data Access library is being loaded by late binding, and the type
name is defined as an application setting in web.config. It’s possible to throw
the current Data Access library away and inject a new one, as long as it also pro-
vides an implementation of ProductRepository.

It’s no longer possible to use the current Data Access library in isolation, as it now
depends on the Domain Model. In many types of applications, that’s not an issue, but
if the stakeholders want that feature, I can solve the problem by adding another layer
of indirection: by extracting an interface from Product (say, IProduct) and changing
ProductRepository to work with IProduct instead of Product. These abstractions can
then be moved to a separate library that’s shared by both the Data Access library and
the Domain Model. It would require more work, because I’d need to write code to
map between Product and IProduct, but it’s certainly possible.

 With the DI-based design, the original web application can be gradually trans-
formed to a Software + Services application with a rich WPF interface and a cloud-
based storage engine. The only thing remaining from the initial effort is the Domain
Model, but that’s only appropriate because it encapsulates all the important business
rules and, as such, we should expect that to be the most essential module.

 When we develop applications, we can’t possibly foresee every future direction we
may need to take the product, but that’s no problem as long as we can keep our
options open. DI helps us build loosely coupled applications so that we can reuse or
replace different modules as needed.

2.3 Expanding the sample application
To support the rest of the book and fully demonstrate different aspects of DI, I’ll need
to expand the sample commerce application. Until now, I have kept the application as
simple and small as possible to gently introduce some core concepts and principles.
Because one of the main purposes of DI is to manage complexity, we need a complex
application to fully appreciate its power.

 I’ll expand the application along two axes: an architectural refactoring and an
added feature.

2.3.1 Architecture

So far, the sample application has been a three-layer application, but now I want to
slide a Presentation Model layer in between the UI and the Domain Model, as shown in
figure 2.22.

 I move all the Controllers and ViewModels from the User Interface Layer to
the Presentation Model layer, leaving only the Views (the .aspx and .ascx files) and the
COMPOSITION ROOT in the User Interface Layer.

 The main reason for this move is to separate the COMPOSITION ROOT from the pre-
sentation logic; this way, I can show you different variations of configuration styles
while keeping invariant as much of the application as possible.

54 CHAPTER 2 A comprehensive example
Apart from this architectural change, I also want to add a richer feature than what
we’ve been looking at so far.

2.3.2 Basket feature

The list of featured products only presents us with a limited level of complexity:
there’s only a single Repository involved in a read-only scenario.

Humble Object
It isn’t only for educational purposes that I split up the application into a User Inter-
face Layer and a Presentation Model layer; I routinely do this for all applications I
write if they have a user interface at all.

This split provides clear separation of concerns between presentation logic (how user
interfaces behave) and rendering (how user interfaces look). It puts all logic into a
layer where it can be unit tested, and puts all markup in a layer where a graphic
designer can work without fear of breaking things too easily.

The goal is to have as little imperative code as possible in the User Interface Layer,
because I’m not going to write any unit tests for this layer.

An application root that contains only the bare minimum of code to bootstrap itself,
after which it delegates all other work to TESTABLE modules, is called a Humble Object.12

In this case, it contains only Views and bootstrap code: the COMPOSITION ROOT.

12 Gerard Meszaros, xUnit Test Patterns: Refactoring Test Code (New York: Addison-Wesley, 2007), 695-708.

Figure 2.22 A Presentation Model layer is inserted into the sample application to
separate the presentation logic from the application root.

55Expanding the sample application
 The logical next step is to introduce a shopping
basket feature. Figure 2.23 shows a screenshot of the
shopping basket in use.

 To support a shopping basket for each user, I
need a Basket, a BasketRepository, and a host of
supporting classes. If you’re like me, you want to see
the Basket class first: figure 2.24 shows the basket
and its list of items.

 From a DI perspective, the Basket and Extent
classes aren’t particularly interesting: they’re both
Plain Old CLR Object (POCO) classes with no DEPEN-
DENCIES. Of much more interest is the BasketService
and supporting classes, shown in figure 2.25.

 A BasketService can be used to retrieve a user’s Basket and apply discounts. It
uses the abstract BasketRepository to get the contents of the Basket, and the
abstract BasketDiscountPolicy to apply discounts. Both of these ABSTRACTIONS are
injected into the BasketService via CONSTRUCTOR INJECTION:

Figure 2.23 The spectacularly
feature-poor shopping basket in the
refactored commerce sample
application.

Figure 2.24 Basket and its Contents,
which is a list of Extent<Evaluated-
Product>. An Extent represents a
quantity of a given product.

Figure 2.25 BasketService and supporting classes. A BasketService can retrieve and evaluate
a Basket for a given user. It uses a BasketRepository to retrieve the Basket and a
BasketDiscountPolicy to apply discounts (if any).

56 CHAPTER 2 A comprehensive example
public BasketService(BasketRepository repository,
 BasketDiscountPolicy discountPolicy)

A BasketDiscountPolicy can be a simple implementation with a hard-coded policy,
such as giving preferred customers a five percent discount, as we saw earlier in this chap-
ter. This policy is implemented by the DefaultProductDiscountPolicy, while a more
complex, data-driven implementation is provided by RepositoryBasketDiscountPolicy,
that itself uses the abstract DiscountRepository to get a list of discounted products.
This ABSTRACTION is once again injected into the RepositoryBasketDiscountPolicy via
CONSTRUCTOR INJECTION:

public RepositoryBasketDiscountPolicy(DiscountRepository repository)

To manage all this, I can use the BasketService to orchestrate the operations on the
Basket: adding items, as well as displaying and emptying the Basket. To do this, it
needs both a BasketRepository and a BasketDiscountPolicy that (you guessed it) is
supplied to it via its constructor:

public BasketService(BasketRepository repository,
 BasketDiscountPolicy discountPolicy)

To further complicate matters, I need an ASP.NET MVC controller called Basket-
Controller that wraps around the IBasketService interface that I again inject into
it via its constructor:

public BasketController(IBasketService basketService)

As figure 2.25 shows, the BasketService class implements IBasketService, so that’s
the implementation we use.

 The BasketController is ultimately created by a custom IControllerFactory, so
it will need these ABSTRACTIONS as well.

 If you lost track along the way, figure 2.26 shows a diagram that illustrates how the
DEPENDENCIES are to be composed in the final application.

Figure 2.26 Composition of the sample commerce application with the added Basket feature, as well
as the original list of featured products on the front page. Each class encapsulates its contents, and only
the COMPOSITION ROOT has knowledge of all DEPENDENCIES.

57Summary
The custom IControllerFactory creates instances of BasketController and Home-
Controller by providing them with their respective DEPENDENCIES. The Basket-
Service, for instance, uses the supplied BasketDiscountPolicy instance to apply a
discount policy to the basket:

var discountedBasket = this.discountPolicy.Apply(b);

It has no inkling that in this case, the supplied BasketDiscountPolicy is an instance of
RepositoryBasketDiscountPolicy that itself is a container of a DiscountRepository.

 This expanded sample application serves as the basis for many of the code samples
in the rest of the book.

2.4 Summary
It’s surprisingly easy to write tightly coupled code. Even when Mary set out with the
express intent of writing a three-layer application, it turned into a largely monolithic
piece of Spaghetti Code13 (when we’re talking about layering, we call this Lasagna).

 One of the many reasons that it’s so easy to write tightly coupled code is that both
the language features and our tools already pull us in that direction. If we need a new
instance of an object, we can use the new keyword, and if we don’t have a reference to
the required assembly, Visual Studio makes it easy to add it.

 However, every time we use the new keyword, we introduce a tight coupling.
 The best way to minimize the use of new is to use the CONSTRUCTOR INJECTION design

pattern whenever we need an instance of a DEPENDENCY. The second example in the
chapter demonstrated how to re-implement Mary’s application by programming to
ABSTRACTIONS instead of concrete classes.

CONSTRUCTOR INJECTION is an example of INVERSION OF CONTROL because we invert
the control over DEPENDENCIES. Instead of creating instances with the new keyword, we
delegate that responsibility to a third party. As we shall see in the next chapter, we call
this place the COMPOSITION ROOT. This is where we compose all the loosely coupled
classes into an application.

13 William J. Brown et al., AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis (New York: Wiley
Computer Publishing, 1998), 119.

DI Containers
When I was a kid, my mother and I would occasionally make ice cream. This didn’t
happen too often, because it required a lot of work and it was hard to get right. In
case you’ve never tried making ice cream, figure 3.1 illustrates the process.

 Real ice cream is based on a crème anglaise, which is a light custard made from
sugar, egg yolks, and milk or cream. If heated too much, this mixture will curdle.
Even if you manage to avoid this, the next phase presents more problems. Left
alone in the freezer, the cream mixture will crystallize, so you have to stir it at regu-
lar intervals until it becomes so stiff that this is no longer possible. Only then will
you have a good, homemade ice cream.

 Although this is a slow and labor-intensive process, if you want to and you have
the necessary ingredients and equipment, you can use the technique I’ve outlined to
make ice cream.

Menu
■ XML configuration
■ Code as configuration
■ AUTO-REGISTRATION

■ COMPOSITION ROOT

■ REGISTER RESOLVE RELEASE
58

59DI Containers
Today, some 30 years later, my mother-in-law makes ice cream with a frequency
unmatched by my mother and me at much younger ages—not because she loves mak-
ing ice cream, but because she uses technology to help her. The technique is still the
same, but instead of regularly taking out the ice cream from the freezer and stirring it,
she uses an electric ice cream maker to do the work for her (see figure 3.2).

DI is first and foremost a technique, but you can use technology to make things easier. In
part 3, I’ll describe DI as a technique. Then, in part 4, we’ll take a look at the technology
that can be used to support the DI technique. We call this technology DI CONTAINERS.

 In this chapter, we’ll look at DI CONTAINERS as a concept: how they fit into the over-
all topic of DI, some patterns and practices concerning their usage, and some history
about .NET DI CONTAINERS. We’ll also look at some examples along the way.

 The general outline of the chapter is illustrated by figure 3.3. It begins with a
general introduction to DI CONTAINERS, including a description of a concept called
AUTO-WIRING, followed by a section on various configuration options. You can read

Figure 3.1 Making ice cream is an arduous process, with plenty of opportunities for error.

60 CHAPTER 3 DI Containers
about each of these configuration options in isolation, but I think it would be beneficial
to at least read about CODE AS CONFIGURATION before you read about AUTO-REGISTRATION.

 The central section in the chapter is a mini-catalog of design patterns related to DI
CONTAINERS. Although it follows the catalog format, the REGISTER RESOLVE RELEASE

(RRR) pattern description relies on the COMPOSITION ROOT pattern, so it makes sense to
read both in sequence. You can skip the section about configuration options to go
directly to the patterns, but those sections are best read in order.

 The last section is different. It’s much less technical and focuses on how DI CON-
TAINERS fit into the .NET ecosystem. You can skip reading this section if you don’t care
about that aspect.

 The purpose of the chapter is to give you a good understanding of what a DI CON-
TAINER is and how it fits in with all the rest of the patterns and principles in this book;
in a sense, you can view this chapter as an introduction to part 4 of the book. Here,
we’ll talk about DI CONTAINERS in general, whereas in part 4, we’ll talk about specific
containers and their APIs.

 It may seem a bit strange that we talk about DI CONTAINERS here in chapter 3 and
then more or less forget about them again in the next six chapters, but there’s a

Figure 3.2 My mother-in-law’s
Italian ice cream maker.

61Introducing DI Containers
reason for that. In this part of the book, I want to draw the big picture of DI, and it’s
essential that you understand how DI CONTAINERS fit into the scheme of things. In
parts 2 and 3, I’ll occasionally show you some examples that involve a DI CONTAINER,
but for the most part I’ll keep the discussion general. The principles and patterns
described in the middle of the book can be applied to all DI CONTAINERS.

3.1 Introducing DI Containers
A DI CONTAINER is a software library that can automate many of the tasks involved in
composing objects and managing their lifetimes. Although it’s possible to write all the
required infrastructure code with POOR MAN’S DI, it doesn’t add much value to an
application. On the other hand, the task of composing objects is of a general nature
and can be resolved once and for all; this is what’s known as a Generic Subdomain.1

DEFINITION A DI CONTAINER is a library that provides DI functionality.

1 Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software (New York: Addison-Wesley, 2004),
406.

Figure 3.3 The structure of this chapter. The DI Container landscape section is optional.

62 CHAPTER 3 DI Containers
NOTE DI CONTAINERS are also known as Inversion of Control (IoC) Containers or
(more rarely) Lightweight Containers.

Although you need to address the application infrastructure, doing so doesn’t in itself
add business value, so using a general-purpose library makes the most sense. It’s no
different than implementing logging or data access. Logging application data is the
kind of problem that’s best addressed by a general-purpose logging library. The same
is true for composing object graphs.

WARNING Don’t expect a DI CONTAINER to magically make tightly coupled
code loosely coupled. A DI CONTAINER can make the use of DI more efficient,
but an application must first and foremost be designed with the DI patterns
and techniques in mind.

In this section, I’ll discuss how DI CONTAINERS compose object graphs, and I’ll show
you some examples to give you a general sense of what using a container might
look like.

3.1.1 Hello container

A DI CONTAINER is a software library like any other software library. It exposes an API
that you can use to compose objects. Composing an object graph is a single method
call. All DI CONTAINERS also require you to configure them before you use them to
compose objects, but I’ll revisit that in section 3.2.

 Here, I’ll show you some examples of how DI CONTAINERS may resolve object graphs
for the expanded sample application from section 2.3. For each request, the ASP.NET
MVC framework will ask for an instance of the appropriate type of IController, so
you must implement a method that uses a DI CONTAINER to compose the correspond-
ing object graph.

TIP Section 7.2 contains detailed information about how to compose
ASP.NET MVC applications.

The MVC framework will invoke the method with a Type instance that identifies the
type of IController (for example, HomeController or BasketController) that it
needs, and you must return an instance of that type.

 This functionality can be implemented with all the DI CONTAINERS covered in
part 4, but I’ll show only a few examples here.

RESOLVING CONTROLLERS WITH VARIOUS DI CONTAINERS

Unity is a DI CONTAINER with a fairly pattern-conforming API. Assuming you already
have an instance of Unity’s UnityContainer class, you can resolve an IController
instance from a controllerType Type argument:

var controller = (IController)this.container.Resolve(controllerType);

You’ll pass the controllerType parameter to the Resolve method and get back an
instance of the requested type, fully populated with all appropriate DEPENDENCIES.

63Introducing DI Containers
Because the weakly-typed Resolve method returns an instance of System.Object, it
must be cast to IController.

 For those cases where you know the requested type at design time, there’s also a
generic version of the Resolve method.

 Many of the DI CONTAINERS have APIs that are similar to Unity’s. The corresponding
code for Castle Windsor looks identical to Unity’s, although the container instance
would instead be an instance of the WindsorContainer class. Other containers have
slightly varying names—with StructureMap, for example, the previous code would
look like this:

var controller = (IController)this.container.GetInstance(controllerType);

The only real difference is that the Resolve method is called GetInstance. You can
extract a general shape of a DI CONTAINER from these examples.

RESOLVING OBJECT GRAPHS WITH DI CONTAINERS

A DI CONTAINER is an engine that resolves and manages object graphs. Although
there’s more to a DI CONTAINER than resolving objects, this is a central part of any con-
tainer’s API. The previous examples show that containers have a weakly-typed method
for that purpose. With variations in names and signature, it looks like this:

object Resolve(Type service);

As the previous examples demonstrate, because the returned instance is typed as
System.Object, you often need to cast the return value to the expected type before
using it.

 Many DI CONTAINERS also offer a generic version for those cases where we know
which type to request at compile time. They often look like this:

T Resolve<T>();

Instead of supplying a Type method argument, such an overload takes a type parame-
ter (T) that indicates the requested type. The method returns an instance of T.

 Most containers throw an exception if they can’t resolve the requested type.

WARNING The signature of the Resolve method is extremely powerful and
versatile. You can request an instance of any type and your code will still com-
pile. In fact, the Resolve method fits the signature of a SERVICE LOCATOR,2 and
you’ll need to exercise care not to use your DI CONTAINER as a SERVICE LOCATOR.

If we view the Resolve method in isolation, it looks almost like magic. From a com-
piler perspective, it’s possible to ask it to resolve instances of arbitrary types. How does
the container know how to compose the requested type, including all DEPENDENCIES?

 It doesn’t know this, and you’ll have to tell it first. You do so using registration or
configuration and this is where you map ABSTRACTIONS to concrete types—I’ll return to

2 Mark Seemann, “Pattern Recognition: Abstract Factory or Service Locator?” http://blog.ploeh.dk/2010/11/
01/PatternRecognitionAbstractFactoryOrServiceLocator.aspx

http://blog.ploeh.dk/2010/11/01/PatternRecognitionAbstractFactoryOrServiceLocator.aspx
http://blog.ploeh.dk/2010/11/01/PatternRecognitionAbstractFactoryOrServiceLocator.aspx

64 CHAPTER 3 DI Containers
this topic in section 3.2. If a container has insufficient configuration to fully compose
a requested type, it will normally throw a descriptive exception. As an example, Castle
Windsor has exemplary exceptions messages like this one:

Can’t create component ‘Ploeh.Samples.MenuModel.Mayonnaise’ as it has dependencies to
be satisfied.

Ploeh.Samples.MenuModel.Mayonnaise is waiting for the following dependencies:

Services:

- Ploeh.Samples.MenuModel.EggYolk which was not registered.

In this example, you can see that Castle Windsor can’t resolve Mayonnaise because it
wasn’t configured to deal with the EggYolk class.

 If the container is correctly configured, it can resolve even complex object graphs
from the requested type. If something is missing from the configuration, the con-
tainer can provide detailed information about what’s missing. In the next section,
we’ll take a closer look at how this is done.

3.1.2 Auto-wiring

DI CONTAINERS thrive on the static information compiled into all classes that use CON-
STRUCTOR INJECTION. Using Reflection, they can analyze the requested class and figure
out which DEPENDENCIES are needed.

 Some DI CONTAINERS also understand the PROPERTY INJECTION pattern, but all of
them inherently understand CONSTRUCTOR INJECTION and compose object graphs by
combining their own configuration with the information extracted from the classes’
constructors. This is called AUTO-WIRING.

DEFINITION AUTO-WIRING is the ability to automatically compose an object
graph from maps between ABSTRACTIONS and concrete types.

Figure 3.4 describes the general algorithm most DI CONTAINERS follow to AUTO-WIRE an
object graph. A DI CONTAINER will use its configuration to find the appropriate con-
crete class that matches the requested type. It then uses Reflection to examine the
class’s constructor. If there’s a default constructor, it will invoke the constructor and
return the created instance.

 If the constructor requires arguments, a recursive process starts where the DI
CONTAINER will repeat the process for each argument type until all constructors can
be satisfied.

 In section 3.2, we’ll take a closer look at how containers can be configured, but
for now the most important thing to understand is that at the core of the configura-
tion is a map of how various ABSTRACTIONS map to concrete classes. That sounds a bit
theoretical (I’m sure that the word abstraction doesn’t help), so I think an example
will be helpful.

65Introducing DI Containers
EXAMPLE: AUTO-WIRING A BASKETCONTROLLER

In this example, I’ll explain how AUTO-WIRING works in principle. The example doesn’t
rely on any particular DI CONTAINER but instead provides an outline of how containers
compose object graphs.

 Imagine that you want to resolve an instance of the BasketController class. You
do this by invoking the Resolve method with typeof(BasketController). In the end,
you’d like to end up with an instance of BasketController, composed as shown in
figure 2.26. In order to achieve this, you must first make sure that the container has
the correct configuration. Table 3.1 shows how this configuration maps ABSTRACTIONS

to concrete types. I also added a column that shows whether the ABSTRACTION is an
interface or abstract base class—from a DI CONTAINER’S perspective this isn’t impor-
tant, but I thought it would help to clarify what’s going on.

When a DI CONTAINER receives a request for a BasketController, the first thing it will
do is look up the type in its configuration. BasketController is a concrete class, so
it maps to itself. The container then uses Reflection to inspect BasketController’s

Table 3.1 Mapping types to support AUTO-WIRING of BasketController

ABSTRACTION type ABSTRACTION Concrete type

Concrete BasketController BasketController

Interface IBasketService BasketService

Abstract class BasketRepository SqlBasketRepository

Abstract class BasketDiscountPolicy RepositoryBasketDiscountPolicy

Abstract class DiscountRepository SqlDiscountRepository

String connString "metadata=res://*/CommerceModel.csdl| […]"

Figure 3.4 Simplified
workflow for AUTO-WIRING.
A DI CONTAINER will
recursively find concrete
types and examine their
constructors until it
can create the entire
object tree.

66 CHAPTER 3 DI Containers
constructor. From section 2.3.2 you may recall that BasketController has a single
constructor with this signature:

public BasketController(IBasketService basketService)

Because this constructor isn’t a default constructor, we need to repeat the process
for the IBasketService constructor argument when following the general flowchart
from figure 3.4.

 The container looks up IBasketService in its configuration and finds that it maps
to the concrete BasketService class. The single public constructor for BasketService
has this signature:

public BasketService(BasketRepository repository,
 BasketDiscountPolicy discountPolicy)

That’s still not a default constructor, and now you have two constructor arguments to
deal with. The container takes care of each in order so it starts with the abstract Basket-
Repository class that, according to the configuration, maps to SqlBasketRepository.

SqlBasketRepository has a public constructor with this signature:

public SqlBasketRepository(string connString)

The single constructor argument is a string parameter with the name connString
which is configured to have a particular value. Now that the container has the appro-
priate value, it can invoke the SqlBasketRepository constructor. It has now success-
fully handled the repository parameter for the BasketService constructor, but it
will need to hold on to that value for a while longer because it also needs to take care
of the discountPolicy parameter.

 According to the configuration, BasketDiscountPolicy maps to the concrete
RepositoryBasketDiscountPolicy class, which has this public constructor:

public RepositoryBasketDiscountPolicy(DiscountRepository repository)

Looking up DiscountRepository in its configuration, the container finds that it maps
to SqlDiscountRepository, which has this constructor:

public SqlDiscountRepository(string connString)

This situation is the same as what you encountered with the SqlBasketRepository.
The connString argument is mapped to a particular connection string that the con-
tainer can supply to the constructor.

 It can now pass the new SqlDiscountRepository instance to the Repository-
BasketDiscountPolicy constructor. Together with the SqlBasketRepository from
before, it can now fulfill the BasketService constructor and invoke it via Reflection.
Finally, it passes the newly created BasketService instance to the BasketController
constructor and returns the BasketController instance.

 Essentially, this is how AUTO-WIRING works, although it’s more complicated than that.
DI CONTAINERS also need to take care of LIFETIME MANAGEMENT and perhaps address PROP-
ERTY INJECTION as well as other, more special creational requirements. The salient point is

67Configuring DI Containers
that CONSTRUCTOR INJECTION statically advertises the DEPENDENCY requirements of a class,
and DI CONTAINERS use that information to AUTO-WIRE complex object graphs.

 As the example shows, the container must be configured before it can compose
object graphs. Registration of components can be done in various ways.

3.2 Configuring DI Containers
Although the Resolve method is where all the action happens, you should expect to
spend more time with a DI CONTAINER’S configuration API. Resolving object graphs is,
after all, a single method call.

DI CONTAINERS tend to support two or three of the common configuration options
shown in figure 3.5. A few don’t support AUTO-REGISTRATION and a single one also lacks
support for CODE AS CONFIGURATION, whereas XML configuration is ubiquitous. Most
allow you to mix several approaches in the same application.

 These three configuration options have different characteristics that make them
useful in different situations. Both XML and CODE AS CONFIGURATION tend to be explicit
because they require us to register each component individually. AUTO-REGISTRATION,
on the other hand, is much more implicit because it uses conventions to register a set
of components by a single rule.

 When we use CODE AS CONFIGURATION, we compile the container configuration into
an assembly, whereas XML configuration enables us to support late binding where we
can change the configuration without recompiling the application. In that dimension,
AUTO-REGISTRATION falls somewhere in the middle, because we can ask it to scan a sin-
gle assembly known at compile time, or alternatively to scan all assemblies in a pre-
defined folder.

Figure 3.5 The most common ways
to configure a DI CONTAINER shown
against dimensions of explicitness
and the degree of binding

68 CHAPTER 3 DI Containers
Table 3.2 lists the advantages and disadvantages of each option.
 Historically, DI CONTAINERS started out with XML configuration, which also explains

why all of them support this option. However, the current trend is that this feature is
being downplayed in favor of more convention-based approaches.3 Although AUTO-
REGISTRATION is the most modern option, it’s not the most obvious place to start.
Because of its implicitness it may seem more abstract than the more explicit options,
so instead I’ll cover each option in historical order, starting with XML configuration.

3.2.1 Configuring containers with XML

When DI CONTAINERS first appeared back in the early 2000s, they all used XML as a con-
figuration mechanism—most things did back then. Much experience with XML as a
configuration mechanism has later revealed that this is rarely the best option.

XML tends to be verbose and brittle. When you configure a DI CONTAINER in XML,
you identify various classes and interfaces, but you have no compiler support to warn
you if you misspell something. Even if the class names are correct, there’s no guaran-
tee that the required assembly is going to be in the application’s probing path.

 The advantage of XML configuration is that you can change the behavior of the
application without recompilation. This is valuable if you develop software that ships
to thousands of customers because it gives them a way to customize the application.
However, if you write an internal application or a website where you control the
deployment environment, it’s often easier to just recompile and redeploy the applica-
tion when you need to change the behavior.

Table 3.2 Configuration options

Style Description Advantages Disadvantages

XML Configuration settings
(often in .config files)
specify the mappings.

Supports replacement
without recompilation
High degree of control

No compile-time checks
Verbose

CODE AS
CONFIGURATION

Code explicitly deter-
mines mappings.

Compile-time checks
High degree of control

No support for replace-
ment without recompila-
tion

AUTO-REGISTRATION Rules are used to locate
suitable components and
build the mappings.

Supports replacement
without recompilation
Less effort required
Helps enforce conventions
to make a code base more
consistent

Partial compile-time
checks
Less control

3 For a good overview article on Convention over Configuration, see Jeremy Miller, “Patterns in Practice: Conven-
tion Over Configuration,” (MSDN Magazine, February 2009). Also available online at http://msdn.microsoft
.com/en-us/magazine/dd419655.aspx

http://msdn.microsoft.com/en-us/magazine/dd419655.aspx
http://msdn.microsoft.com/en-us/magazine/dd419655.aspx

69Configuring DI Containers
TIP Use XML configuration only in those cases where you actively wish to sup-
port late binding. Prefer CODE AS CONFIGURATION or AUTO-REGISTRATION in all
other cases.

A DI CONTAINER is often configured with XML by pointing it at a particular XML file,
but sometimes it can also pick up the configuration from the application configura-
tion file. The following example uses the latter option.

EXAMPLE: CONFIGURING THE SAMPLE COMMERCE APPLICATION WITH XML
Because the Unity container is one of the more XML-centric of the DI CONTAINERS cov-
ered in this book, it makes sense to use it for an example of XML configuration.

 In this example, you’ll configure the sample commerce application from
section 2.3. A large part of the task is to apply the configuration outlined in table 3.1,
but you must also supply a similar configuration to support composition of the Home-
Controller class. The following listing shows the configuration necessary to get the
application up and running.

<register type="IBasketService"
 mapTo="BasketService" />
<register type="BasketDiscountPolicy"
 mapTo="RepositoryBasketDiscountPolicy" />
<register type="BasketRepository"
 mapTo="SqlBasketRepository">
 <constructor>
 <param name="connString">
 <value value="CommerceObjectContext"
 typeConverter="ConnectionStringConverter" />
 </param>
 </constructor>
</register>
<register type="DiscountRepository"
 mapTo="SqlDiscountRepository">
 <constructor>
 <param name="connString">
 <value value="CommerceObjectContext"
 typeConverter="ConnectionStringConverter" />
 </param>
 </constructor>
</register>
<register type="ProductRepository"
 mapTo="SqlProductRepository">
 <constructor>
 <param name="connString">
 <value value="CommerceObjectContext"
 typeConverter="ConnectionStringConverter" />
 </param>
 </constructor>
</register>
<register type="CurrencyProvider"
 mapTo="SqlCurrencyProvider">

Listing 3.1 Configuring Unity with XML

Simple mappingb

Specify
connection
string

c

70 CHAPTER 3 DI Containers
 <constructor>
 <param name="connString">
 <value value="CommerceObjectContext"
 typeConverter="ConnectionStringConverter" />
 </param>
 </constructor>
</register>

As you can see from even this simple code listing, XML configuration tends to be quite
verbose. Simple mappings like the one from the IBasketService interface to the
BasketService class B are easily expressed with a simple register element.

 However, as you may recall, some of the concrete classes take a connection string
as input, so you need to specify how the value of this string is found c. With Unity,
you can do that by indicating that you use a custom type converter called Connection-
StringConverter. This converter will look up the value CommerceObjectContext
among the standard web.config connection strings and return the connection string
with that name.

 The rest of the elements repeat these two patterns.
 Because Unity can automatically resolve requests for concrete types even if there

are no explicit registrations, you don’t need to supply XML elements for Home-
Controller and BasketController.

 Loading the configuration into the container is done with a single method call:

container.LoadConfiguration();

The LoadConfiguration method loads the XML configuration from listing 3.1 into
the container. With the configuration in place, the container can now resolve requests
for HomeController, and so on.

 Other DI CONTAINERS also support XML configuration. The exact XML schema is
different for each container, but the overall structure tends to be similar.

WARNING As your application grows in size and complexity, so will your con-
figuration file if you use configuration-based composition. It can grow to
become a real stumbling block because it models coding concepts such as
classes, parameters, and such, but without the benefits of the compiler, debug-
ging options, and so forth. Configuration files will tend to become brittle and
opaque to errors, so only use this approach when you need late binding.

Because of the disadvantages of verbosity and brittleness, you should prefer the other
alternatives for configuring containers. CODE AS CONFIGURATION is similar to XML con-
figuration in granularity and concept, but obviously uses code instead of XML.

3.2.2 Configuring containers with code

Perhaps the easiest way to compose an application is to write code that does it. This
may seem to go against the whole spirit of DI, because it hard-codes which concrete
implementations should be used for all ABSTRACTIONS. However, if done in a COMPOSI-
TION ROOT, it only violates a single of the benefits listed in table 1.1.

71Configuring DI Containers
 The benefit of late binding is lost if DEPENDENCIES are hard-coded, but, as I mentioned
in chapter 1, this may not be relevant for all types of applications. If your application is
deployed in a limited number of instances in a controlled environment, it may be easier
to recompile and redeploy the application if you need to replace modules.

I often think that people are over-eager to define configuration files. Often a programming
language makes a straightforward and powerful configuration mechanism.

– Martin Fowler4

When we use CODE AS CONFIGURATION, we explicitly state the same discrete mappings as
we do when we use XML configuration—only, we use code instead of XML.

 With the single exception of Spring.NET, all DI CONTAINERS fully support CODE AS

CONFIGURATION as an alternative to XML configuration—in fact, most of them present
this as the default mechanism with XML configuration as an optional feature.

 The API exposed to support CODE AS CONFIGURATION differs from DI CONTAINER to DI
CONTAINER, but the overall goal is still to define discrete mappings between ABSTRAC-
TIONS and concrete types.

TIP Prefer CODE AS CONFIGURATION over XML configuration unless you need
late binding. The compiler can be helpful and the Visual Studio build system
will automatically copy all required DEPENDENCIES to the output folder.

Many configuration APIs use generics and Fluent Builders to register components;
StructureMap is no exception.

EXAMPLE: CONFIGURING THE SAMPLE COMMERCE APPLICATION WITH CODE

In section 3.2.1, you saw how to configure the sample commerce application with
XML, using Unity. I could also demonstrate CODE AS CONFIGURATION with Unity, but in
this example I’ll instead use StructureMap; because it has a terser API, it fits better on
the pages of the book.

 Using StructureMap’s configuration API, you can express the configuration from
listing 3.1 more compactly, as shown in the following listing.

c.For<IBasketService>().Use<BasketService>();
c.For<BasketDiscountPolicy>()
 .Use<RepositoryBasketDiscountPolicy>();

string connectionString =
 ConfigurationManager.ConnectionStrings
 ["CommerceObjectContext"].ConnectionString;
c.For<BasketRepository>().Use<SqlBasketRepository>()
 .Ctor<string>().Is(connectionString);
c.For<DiscountRepository>().Use<SqlDiscountRepository>()
 .Ctor<string>().Is(connectionString);

4 Martin Fowler, “Inversion of Control Containers and the Dependency Injection pattern,” 2004, http://
martinfowler.com/articles/injection.html

Listing 3.2 Configuring StructureMap with code

http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html

72 CHAPTER 3 DI Containers
c.For<ProductRepository>().Use<SqlProductRepository>()
 .Ctor<string>().Is(connectionString);
c.For<CurrencyProvider>().Use<SqlCurrencyProvider>()
 .Ctor<string>().Is(connectionString);

Compare this code with listing 3.1 and notice how much more compact it is—even
though it does the same thing. A simple mapping like the one from IBasketService
to BasketService is expressed with the generic For and Use methods. The c variable
is actually something called a ConfigurationExpression, but think about it as the
container itself.

 To support those classes that require a connection string, you continue the For/
Use sequence with invoking the Ctor method and supplying the connection string.
This Ctor method looks for a string parameter in the concrete class’s constructor and
uses the supplied value for that parameter.

 The rest of the code repeats these two patterns.
 Not only is CODE AS CONFIGURATION much more compact than XML configuration, it

also enjoys compiler support. The type arguments used in listing 3.2 represent real
types that the compiler checks. StructureMap’s fluent API even comes with some
generic constraints that tell the compiler to check whether the type identified by the
Use method matches the ABSTRACTIONS indicated by the For method. If a conversion
isn’t possible, the code will not compile.

 Although CODE AS CONFIGURATION is safe and easy to use, it still requires more main-
tenance than you might like. Every time you add a new type to an application, you
must also remember to register it—and many registrations end up being similar. AUTO-
REGISTRATION addresses this issue.

3.2.3 Configuring containers by convention

In listing 3.2, did you notice how similar many of the registrations are? Particularly all
the SQL Server–based data access components follow a common pattern wherein you
configure the component with the appropriate connection string.

 Repeatedly writing registration code like that violates the DRY5 principle. It also
seems like an unproductive piece of infrastructure code that doesn’t add much value
to the application. You can save time and make fewer errors if you can automate the
registration of components.

 An increasingly popular architectural model is the concept of Convention over Con-
figuration. Instead of writing and maintaining a lot of configuration code, you can
agree on conventions that affect the code base.

 The way ASP.NET MVC finds Controllers based on controller names is a great exam-
ple of a simple convention:

5 Don’t Repeat Yourself

73Configuring DI Containers
1 A request comes in for a Controller named Home.
2 The default Controller Factory searches through a list of well-known name-

spaces for a class named HomeController. If it finds such a class and it implements
IController, it’s a match.

3 The default Controller Factory uses the default constructor of the matched
class to create an instance of the Controller.

At least two conventions are in play here: a controller must be named [Controller-
Name]Controller and it must have a default constructor.

 You can deviate from these conventions by implementing your own IController-
Factory, and that’s what I have done so far to support CONSTRUCTOR INJECTION—I dis-
cuss this in more detail in chapter 7.

 It would be nice if you could use some conventions to get rid of all that error-
prone and time-consuming container configuration. With the DefaultController-
Factory, adding a new Controller is as simple as adding an appropriately named class
in the correct namespace. We’d like to keep that convenience even when we use CON-
STRUCTOR INJECTION.

 Many DI CONTAINERS provide AUTO-REGISTRATION capabilities that allow us to intro-
duce our own conventions.

DEFINITION AUTO-REGISTRATION is the ability to automatically register compo-
nents in a container by scanning one or more assemblies for implementations
of desired ABSTRACTIONS.

Conventions can be applied to more than ASP.NET MVC Controllers. The more con-
ventions you add, the more you can automate the various parts of the container
configuration.

TIP Convention over Configuration has more advantages than supporting DI
configuration. It makes your code more consistent because your code will
automatically work as long as you follow your conventions.

In reality, you may need to combine AUTO-REGISTRATION with CODE AS CONFIGURATION or
XML configuration because you may not be able to fit every single component into a
meaningful convention. However, the more you can move your code base towards
conventions, the more maintainable it will be.

EXAMPLE: CONFIGURING THE SAMPLE COMMERCE APPLICATION WITH AUTO-REGISTRATION

StructureMap supports AUTO-REGISTRATION, but I thought it would be more interesting
to use yet another DI CONTAINER to configure the sample commerce application using
conventions. I chose Autofac because it has a fairly readable AUTO-REGISTRATION API.

 If you consider listings 3.1 and 3.2, I hope you’ll agree that the registrations of the
various data access components are the most repetitive. Can we express some sort of
convention around them?

 All four concrete types share some characteristics:

74 CHAPTER 3 DI Containers
■ They are all defined in the same assembly.
■ Each is a concrete class inheriting from an abstract base class.
■ Each has a name that starts with Sql.
■ Each has a single public constructor that takes a string parameter called connString.

It seems as though an appropriate convention would express these similarities by scan-
ning the assembly in question and register all classes that match the convention. With
Autofac it would look like this:

string connectionString =
 ConfigurationManager.ConnectionStrings
 ["CommerceObjectContext"].ConnectionString;
var a = typeof(SqlProductRepository).Assembly;
builder.RegisterAssemblyTypes(a)
 .Where(t => t.Name.StartsWith("Sql"))
 .As(t => t.BaseType)
 .WithParameter("connString", connectionString);

This particular convention should scan the assembly that contains the data access
components. There are many ways you could get a reference to that assembly, but the
easiest way is to pick a representative type, such as SqlProductRepository, and get
the assembly from that. You could also have chosen a different class or found the
assembly by name.

 Now that you have the assembly, you can tell the container that you want to scan it.
The RegisterAssemblyTypes method indicates an intention to register all types in the
assembly that fit the criterion that the class name must start with Sql. The builder vari-
able is an instance of the ContainerBuilder class, but you can think about it as repre-
senting the container.

 Each of the classes that make it through the Where filter should be registered
against their base class. For example, because SqlProductRepository’s base class
is ProductRepository, it will end up as a mapping from ProductRepository to
SqlProductRepository.

 Finally, you state that you expect each constructor to have a connString parameter
and that its value should be assigned from the connection string read from the config-
uration file.

 Comparing this convention against the four registrations in listing 3.2 may not be
entirely fair, because we’re also holding two different DI CONTAINERS up against each
other. Still, you may think that the benefit looks negligible. However, the convention
scales much better.

 Because there are only four data access components in the current example, you
only save a few code statements with the convention. However, once the convention is
written, it handles hundreds of components without extra effort.

 You can also address the other mappings from listings 3.1 and 3.2 by conventions,
but currently there wouldn’t be much value from doing it. As an example, you can
register all services by this convention:

75DI Container patterns
builder.RegisterAssemblyTypes(typeof(BasketService).Assembly)
 .Where(t => t.Name.EndsWith("Service"))
 .AsImplementedInterfaces();

This convention scans the identified assembly for all types where the name ends with
Service and registers each type against the interfaces it implements. This effectively
registers BasketService against the IBasketService interface, but because you cur-
rently don’t have any other matches for this convention, nothing much is gained. Still,
it may make sense to formulate a convention up front in order to encourage develop-
ers to follow it.

AUTO-REGISTRATION is a powerful technique that has the potential to make the DI
CONTAINER invisible. Once appropriate conventions are in place, you may only have to
modify the container configuration on rare occasions.

 So far, you’ve seen three different approaches to configuring a DI CONTAINER:
■ XML
■ CODE AS CONFIGURATION

■ AUTO-REGISTRATION

None of these are mutually exclusive. You can choose to mix AUTO-REGISTRATION with
specific mappings of abstract to concrete types, and even mix all three approaches to
have some AUTO-REGISTRATION, some CODE AS CONFIGURATION, and some of the configu-
ration in XML for late binding purposes.

 As a rule of thumb, you should prefer AUTO-REGISTRATION as a starting point, com-
plemented by CODE AS CONFIGURATION to handle more special cases. You should reserve
XML for cases where you need to be able to vary an implementation without recompil-
ing the application (which is rarer than you may think).

 Now that we have covered how to configure a DI CONTAINER and how to resolve
object graphs with it, you should have a good idea about how to use it. Using a DI CON-
TAINER is one thing, but using it correctly is another.

3.3 DI Container patterns
DI CONTAINERS are great tools, but, as with all tools, there are correct and incorrect
ways of using them. In the same way that cooks know to treat their knives with respect,
so should you learn to properly wield your DI CONTAINER—it doesn’t have the potential
to lop off your fingers, but you may not harvest the benefits it can provide.

 The most important thing to understand is where in the application architecture a
DI CONTAINER should be used. Once you understand that, you must also learn how to
use it. The following two mini-patterns provide the answers.

3.3.1 Composition Root

Where should we compose object graphs?
AS CLOSE AS POSSIBLE TO THE APPLICATION’S ENTRY POINT.

A DI CONTAINER is a library that you can potentially use from wherever you would
like—but that doesn’t mean that you should. Although you can spread out the use of

76 CHAPTER 3 DI Containers
the container so that it permeates a large percentage of your classes, you should
instead concentrate it into a single area of your application. This place is called the
COMPOSITION ROOT and you should only use a DI CONTAINER from within that place.

 The COMPOSITION ROOT concept isn’t particularly tied to DI CONTAINERS. It also
applies if you use POOR MAN’S DI, but I find it important to discuss it in this context
because understanding this pattern enables you to use your DI CONTAINER correctly
and effectively. Before I discuss the implications of COMPOSITION ROOT on the use of DI
CONTAINERS, I’ll briefly talk about it in general.

COMPOSITION ROOT AS A GENERAL CONCEPT

When you write loosely coupled code, you create many classes that you must compose
to create an application. It can be tempting to compose these classes a little at a time
in order to create small subsystems, but that limits your ability to INTERCEPT those sys-
tems to modify their behavior. Instead, you should compose classes all at once.

DEFINITION A COMPOSITION ROOT is a (preferably) unique location in an appli-
cation where modules are composed together.

TIP The COMPOSITION ROOT can be spread out across multiple classes as long
as they all reside in a single module.

When you look at CONSTRUCTOR INJECTION in isolation you may wonder, doesn’t it just
defer the decision about selecting a dependency to another place? Yes, it does, and that’s a
good thing; this means that you get a central place where you can connect collaborat-
ing classes. The COMPOSITION ROOT acts as a third party that connects consumers with
their services. In fact, Nat Pryce prefers the term Third-party Connect over DI6 for
exactly that reason.

6 Nat Pryce, “‘Dependency Injection’ Considered Harmful,” 2011, http://www.natpryce.com/articles/
000783.html

Figure 3.6 When composing an application
from many loosely coupled classes, the
composition should take place as close to
the application’s entry point as possible. The
COMPOSITION ROOT composes the object
graph, which subsequently performs the
actual work of the application.

http://www.natpryce.com/articles/000783.html
http://www.natpryce.com/articles/000783.html

77DI Container patterns
 The longer you defer the decision on how to connect classes together, the more
you keep your options open. Thus, the COMPOSITION ROOT should be placed as close to
the application’s entry point as possible.

NOTE I like to think about COMPOSITION ROOTS as the architectural equiva-
lent to a concept from Lean Software Development:7 the Last Responsible
Moment. The idea is to defer all decisions as long as responsibly possible (but
no longer), because we’d like to keep our options open and base our deci-
sions upon as much information as possible. When it comes to composing
applications, we can similarly defer the decision about wiring DEPENDENCIES to
the application root.

Even a modular application that uses loose coupling and late binding to compose
itself has a root that contains the entry point into the application. Examples are

■ A console application is an executable (.exe) with a Main method.
■ An ASP.NET web application is a library (.dll) with an Application_Start event

handler in its Global.asax.
■ A WPF application is an executable (.exe) with an App.xaml file.
■ A WCF service is a library (.dll) with a class that derives from a service interface,

although you can hook into a more low-level entry point by creating a custom
ServiceHostFactory.

Many other technologies exist, but common to them all is that one module contains
the entry point of the application: this is the root of the application, as illustrated in fig-
ure 3.7. The COMPOSITION ROOT of the application should be located in the applica-
tion’s root so that it can properly compose the application.

 You shouldn’t attempt to compose classes in any of the modules because that
approach limits your options. All classes in application modules should use CONSTRUC-
TOR INJECTION (or, in rare cases, one of the other patterns from chapter 4) and leave it
up to the COMPOSITION ROOT to compose the application’s object graph. Any DI CON-
TAINER in use should be limited to the COMPOSITION ROOT.

USING A DI CONTAINER IN A COMPOSITION ROOT

A DI CONTAINER can be misused as a SERVICE LOCATOR, but it should only be used as an
engine that composes object graphs. When you consider a DI CONTAINER in that per-
spective, it only makes sense to constrain it to the COMPOSITION ROOT. This also has the
great benefit of removing any coupling between the DI CONTAINER and the rest of
the application code base.

TIP A DI CONTAINER should only be referenced from the COMPOSITION ROOT.
All other modules should have no reference to the container.

7 See, for example, Mary Poppendieck and Tom Poppendieck, Implementing Lean Software Development: From Con-
cept to Cash (New York: Addison-Wesley, 2007).

78 CHAPTER 3 DI Containers
In figure 3.8 you can see that only the COMPOSITION ROOT has a reference to the DI CON-
TAINER. The rest of the application has no reference to the container and instead relies
on the patterns described in chapter 4. DI CONTAINERS understand those patterns and
use them to compose the application’s object graph.

 A COMPOSITION ROOT can be implemented with a DI CONTAINER. This means that you
use the container to compose the entire application’s object graph in a single call to
the Resolve method. Whenever I talk to developers about doing it like this, I can
always tell that it makes them uncomfortable because they’re afraid that it’s terribly
inefficient and bad for performance. You don’t have to worry about that because it’s
almost never the case, and in the very few situations where it is, there are ways to
address the issue.8

TIP Don’t worry about the performance overhead of using a DI CONTAINER to
compose large object graphs. It’s almost never an issue.

When it comes to request-based applications, such as websites and services, you config-
ure the container only once, but resolve an object graph for each incoming request.
The sample commerce application is an example of that.

8 Mark Seemann, “Compose object graphs with confidence,” 2011, http://blog.ploeh.dk/2011/03/04/Com-
poseObjectGraphsWithConfidence.aspx

Figure 3.7 The entry point of an application is the root of a modular application. Either
directly or indirectly, the root consumes the other modules. A COMPOSITION ROOT should be
placed in the application’s root—as close to the entry point as possible.

http://blog.ploeh.dk/2011/03/04/ComposeObjectGraphsWithConfidence.aspx
http://blog.ploeh.dk/2011/03/04/ComposeObjectGraphsWithConfidence.aspx

79DI Container patterns
EXAMPLE: IMPLEMENTING A COMPOSITION ROOT

The sample commerce application from section 2.3 must have a COMPOSITION ROOT to
compose object graphs for incoming HTTP requests. As with all other .NET web appli-
cations, the entry point is in the Application_Start method in the Global.asax file.

 In this example, I use the Castle Windsor DI CONTAINER, but the code would be sim-
ilar with any other container. With Castle Windsor the Application_Start method
could look like this:

protected void Application_Start()
{
 MvcApplication.RegisterRoutes(RouteTable.Routes);

 var container = new WindsorContainer();
 container.Install(new CommerceWindsorInstaller());

 var controllerFactory =
 new WindsorControllerFactory(container);

 ControllerBuilder.Current.SetControllerFactory(
 controllerFactory);
}

Before you can configure the container, you must create a new instance. Because
the entire setup for the application is encapsulated in a class called Commerce-
WindsorInstaller, you install that into the container to configure it. The code in

Figure 3.8 Only the COMPOSITION ROOT contained in the application root should have a reference
to a DI CONTAINER. All other modules in the application should rely entirely on DI patterns and have
no reference to the container.

80 CHAPTER 3 DI Containers
CommerceWindsorInstaller is obviously implemented with Castle Windsor’s API, but,
conceptually, it’s identical to the examples in section 3.2.

 To enable the container to wire up Controllers in the application, you must
employ the appropriate SEAM in ASP.NET MVC, called an IControllerFactory (dis-
cussed in detail in section 7.2). For now, it’s enough to understand that to integrate
with ASP.NET MVC, you must create an Adapter9 around the container and tell the
framework about it.

 Because the Application_Start method only runs once, the container is a single
instance which is only initialized a single time. When requests come in, this container
instance must handle each concurrently—but because all containers are imple-
mented with thread-safe Resolve methods, that’s not an issue.

 Because you set up ASP.NET MVC with the custom WindsorControllerFactory, it
will invoke its GetControllerInstance method for each incoming HTTP request (you
can read about the details in section 7.2). The implementation delegates the work to
the container:

protected override IController GetControllerInstance(
 RequestContext requestContext, Type controllerType)
{
 return (IController)this.container.Resolve(controllerType);
}

Notice that you’re more or less back to the introductory examples from section 3.1.1.
The Resolve method composes the complete graph that should be used to serve this
particular request and returns it. This is the only place in the application where you
invoke the Resolve method.

TIP An application’s code base should only contain a single call to the
Resolve method.

The COMPOSITION ROOT in this exam-
ple is spread out across a few classes,
as shown in figure 3.9. This is
expected—the important thing is that
all classes are contained in the same
module, which in this case is the
application root.

 The most important thing to notice
here is that these three classes are the
only classes in the entire sample appli-
cation that reference the DI CONTAINER.
All the rest of the application code

9 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (New York: Addison-Wesley,
1994), 139.

Figure 3.9 The COMPOSITION ROOT is spread across
three classes, but they’re all defined within the same
module.

81DI Container patterns
only uses the CONSTRUCTOR INJECTION pattern; go back and reread chapter 2 if you
don’t believe me.

TIP I like to summarize all the guidance contained in this section by para-
phrasing the Hollywood Principle: don’t call the container; it’ll call you.

You can read specific details on how to implement COMPOSITION ROOTS in various
frameworks (including ASP.NET MVC) in chapter 7. In the current context, how you do
it is much less important than where you do it. As the name implies, the COMPOSITION

ROOT is that part of the application root where you compose all the loosely coupled
classes. This is true whether you use a DI CONTAINER or POOR MAN’S DI. However, when
you use a DI CONTAINER, you should follow the REGISTER RESOLVE RELEASE pattern.

3.3.2 Register Resolve Release

How should we use a DI Container?
BY FOLLOWING THE STRICT REGISTER RESOLVE RELEASE METHOD CALL SEQUENCE.

The COMPOSITION ROOT pattern describes where you should use a DI CONTAINER. How-
ever, it doesn’t state how to use it. The REGISTER RESOLVE RELEASE pattern addresses
this question.

 A DI CONTAINER should be used in three successive
phases called Register, Resolve, and Release. Table 3.3
describes each of the phases in more detail.

DEFINITION The REGISTER RESOLVE RELEASE pat-
tern states that a DI CONTAINER’S methods must
be invoked in this strict sequence: Register,
Resolve, and Release (see figure 3.10).

You must use the three phases in the correct order
and you’re not allowed to move back and forth willy-
nilly. As an example, you shouldn’t go back and recon-
figure the container once you have started resolving
object graphs. Sometimes people ask about how to add

Common Service Locator
There’s an open source project called the Common Service Locator (http://common-
servicelocator.codeplex.com/) that aims to decouple application code from specific DI
CONTAINERS by hiding each container behind a common IServiceLocator interface.

I hope that this explanation of how a COMPOSITION ROOT effectively decouples the rest
of the application code from DI CONTAINERS enables you now to understand why you
don’t need the Common Service Locator. As I explain in section 5.4, because SERVICE
LOCATOR is an anti-pattern, it’s best to stay away from it—and with a COMPOSITION
ROOT, you don’t need it, either.

Figure 3.10 Container methods
should be invoked in the strict
sequence shown: first, the
Register method, followed by
the Resolve method, and
terminated by the Release
method.

http://commonservicelocator.codeplex.com/
http://commonservicelocator.codeplex.com/

82 CHAPTER 3 DI Containers
more components to a container after they have started resolving components. Don’t
do that—it will only give you grief.

NOTE Some DI CONTAINERS don’t support explicit Release of object graphs
and instead rely on the .NET garbage collector. When using such containers,
you must use a modified Register Resolve pattern instead and address the
potential resource leaks in your object implementations. See chapter 8 for
more details.

In the following section I talk about Register, Resolve, and Release methods as well as
phases. Castle Windsor actually has three methods with these exact names, and the
phases are named after these methods. Other DI CONTAINERS may use different names,
but the underlying concept is identical. I only use the Castle Windsor names because
they provide a consistent terminology—as well as a nice alliteration.

STATIC STRUCTURE

In its pure form, the REGISTER RESOLVE RELEASE pattern states that you should only
make a single method call in each phase. Krzysztof Koźmic calls this the Three Calls Pat-
tern10—you’re only allowed to make three method calls to the container.

 The Resolve and Release methods make this easy. In section 3.3.1 I already stated
that an application should only contain a single call to the Resolve method. As a corol-
lary, you should always Release what you Resolve.

Table 3.3 Container phases

Phase What happens in this phase? Further reading

Register Register components with the container.
You configure the container by informing it about
which classes it can use, how it should map ABSTRAC-
TIONS to concrete types, and, optionally, how certain
classes should be wired together.

In section 3.2, I already discussed
how to configure a DI CONTAINER.
In part 4, I discuss configuration of
six individual DI CONTAINERS in detail.

Resolve Resolve root components.
A single object graph is resolved from a request for a
single type.

In section 3.1, we saw how to
resolve object graphs with a
DI CONTAINER.
In part 4, you can read more about
container-specific APIs.

Release Release components from the container.
All object graphs resolved in the previous phase
should be released when they’re no longer needed.
This signals to the container that it can clean up the
object graph, which is particularly important if some
of the components are disposable.

In chapter 8, I discuss LIFETIME MAN-
AGEMENT, including the importance of
cleaning up.
Additionally, in part 4, I look at
LIFETIME MANAGEMENT APIs for individ-
ual DI CONTAINERS.

10 Krzysztof Koźmic, “How I use Inversion of Control containers,” 2010, http://kozmic.pl/2010/06/20/how-i-
use-inversion-of-control-containers

http://kozmic.pl/2010/06/20/how-i-use-inversion-of-control-containers
http://kozmic.pl/2010/06/20/how-i-use-inversion-of-control-containers

83DI Container patterns
TIP Any object graph composed with the Resolve method should be decom-
missioned with the Release method.

Configuring a DI CONTAINER in a single method call requires more explanation. The
reason that registration of components should happen in a single method call is
because you should regard configuration of a DI CONTAINER as a single, atomic action.
Once configuration is completed, the container should be regarded as read-only.

 Autofac even makes this notion explicit by separating configuration of the con-
tainer out into a distinct ContainerBuilder: you Register components with the
ContainerBuilder and when you’re done you ask it to build a container instance
from the configuration. In Autofac, you don’t directly configure the container.

 By regarding configuration as a single atomic action, it becomes easier to manage
the configuration code because it’s evident where it should go. Many DI CONTAINERS

also use this concept to freeze the configuration once you start resolving object graphs
from it. This makes them perform better.

 If you recall listing 3.2, you may argue that it contains more than a single method
call. Registration is always going to involve many statements, but most DI CONTAINERS

have a packaging mechanism that allows you to encapsulate all those configuration
statements into a single class (perhaps composed of other classes). Autofac calls them
Modules, StructureMap calls them Registries, and Castle Windsor calls them Installers.
Common to them all is that they can be used to configure the container with a single
method call. In section 3.3.1, you already saw Castle Windsor using an Installer:

container.Install(new CommerceWindsorInstaller());

For DI CONTAINERS that don’t have a packaging mechanism, you can always create a
custom class that encapsulates the configuration in a single method.

 The advice that there must only be a single line of code each for Resolve and
Release should be taken seriously—but for the Register phase, it should be under-
stood more conceptually. The important point is that registration should be com-
pleted before the Resolve method is called. Figure 3.11 illustrates how the sequence
looks, including the encapsulation of many Register method calls.

 A common source of confusion is that the Three Calls Pattern makes an adamant
statement about how often each method must appear in your code base, but it says
nothing about how many times they must be invoked.

Figure 3.11 Any number of calls
to the Register method can
take place in the Register phase,
but you should still regard it as an
atomic action. In the Resolve and
Release phase, you literally
should have only one invocation
of each method.

84 CHAPTER 3 DI Containers
DYNAMIC INTERACTION

The name of the Three Calls Pattern may lead you to believe that each method must
only be called once. The source of this confusion lies in the name itself, and this is one
of several reasons I prefer the name REGISTER RESOLVE RELEASE.

 The Three Calls Pattern states that there must only be a single line of code that
invokes each method. However, depending on circumstances, some of the methods
may be invoked more than once.

 In a single-threaded application such as a desktop application, command-line utility,
or batch job, each method will normally only be invoked once, as figure 3.12 illustrates.

 In a request-based application such as a website, web service, or asynchronous mes-
sage consumer, the COMPOSITION ROOT composes an object graph for each incoming
request. In this type of application, as illustrated in figure 3.13, the Register method
is still only invoked once, whereas the Resolve and Release methods are invoked in a
pair for each request—a potentially huge number of times.

 It’s important to note that you must only configure the container once. The con-
tainer is a shared instance that’s used to resolve multiple requests, but the configura-
tion must remain stable and complete.

Figure 3.12 In a single-threaded application, each method will tend to be invoked only once.
Configuration of the container is immediately followed by composing the application’s object graph that
performs the actual work. When the work is completed, the Release method is invoked before the
application exits.

Figure 3.13 In a request-based application, the Register method is invoked only once, whereas the
Resolve and Release methods are invoked many times—once per request.

85DI Container patterns
The dynamic picture of REGISTER RESOLVE RELEASE is almost the inverse of the static
view—contrast figure 3.11 with figure 3.13. In the static view, we tolerate multiple lines
of code that invoke the Register method, but in the dynamic view, this block of code
must be invoked exactly once. On the other hand, the static rule is that you must only
have one line of code invoking Resolve and Release, but at runtime, these may be
called multiple times.

 This may sound complicated and difficult, but as the following example demon-
strates, it’s only three method calls.

EXAMPLE: USING REGISTER RESOLVE RELEASE

In this example you’ll implement the COMPOSITION ROOT of the sample application
from section 2.3 with the Castle Windsor DI CONTAINER. This is the same container you
used in the example in section 3.3.1, so this example can be read as a continuation of
the previous.

 The entry point of the application is the Application_Start method, and because
this is a website, the Register phase is isolated from the Resolve and Release phases
because you must only configure the container once. The code is the same as in the
previous example, but I want to change the focus a bit:

protected void Application_Start()
{
 MvcApplication.RegisterRoutes(RouteTable.Routes);

 var container = new WindsorContainer();
 container.Install(new CommerceWindsorInstaller());

 var controllerFactory =
 new WindsorControllerFactory(container);

 ControllerBuilder.Current.SetControllerFactory(
 controllerFactory);
}

According to the REGISTER RESOLVE RELEASE pattern, the first method call you make on
the container instance should be an atomic Register call. In this case, the method is
called Install and the CommerceWindsorInstaller encapsulates the individual regis-
trations in a single class. The following listing shows the implementation of the
CommerceWindsorInstaller.

public class CommerceWindsorInstaller : IWindsorInstaller
{
 public void Install(IWindsorContainer container,
 IConfigurationStore store)
 {
 container.Register(AllTypes
 .FromAssemblyContaining<HomeController>()
 .BasedOn<IController>()
 .Configure(r => r.LifeStyle.PerWebRequest));

Listing 3.3 Encapsulating multiple registrations

Register
calls

B

86 CHAPTER 3 DI Containers
 container.Register(AllTypes
 .FromAssemblyContaining<BasketService>()
 .Where(t => t.Name.EndsWith("Service"))
 .WithService
 .FirstInterface());
 container.Register(AllTypes
 .FromAssemblyContaining<BasketDiscountPolicy>()
 .Where(t => t.Name.EndsWith("Policy"))
 .WithService
 .Select((t, b) => new[] { t.BaseType }));

 string connectionString =
 ConfigurationManager.ConnectionStrings
 ["CommerceObjectContext"].ConnectionString;
 container.Register(AllTypes
 .FromAssemblyContaining<SqlProductRepository>()
 .Where(t => t.Name.StartsWith("Sql"))
 .WithService
 .Select((t, b) => new[] { t.BaseType })
 .Configure(r => r.LifeStyle.PerWebRequest
 .DependsOn((new
 {
 connString = connectionString
 }))));
 }
}

The CommerceWindsorInstaller looks complicated, but the important thing to
notice is that it encapsulates four calls to the Register method B and that’s the only
way it interacts with the container. The rest of the code isn’t important right now. It
uses conventions to configure the container. You can read more about Castle Wind-
sor’s AUTO-REGISTRATION API in section 10.1.2.

 Because the sample application is a website, Resolve and Release should be imple-
mented as a single pair. For each HTTP request, you must Resolve an object graph that
will handle that request, and when it’s completed you must Release it again. You do
this from a class called WindsorControllerFactory that derives from ASP.NET MVC’s
DefaultControllerFactory—you can read more about the details of the ASP.NET
MVC SEAM in section 7.2.

 The ASP.NET MVC framework invokes the GetControllerInstance method to
resolve IControllers and the ReleaseController method when the request has
been handled. These are the appropriate methods for us to invoke the Resolve and
Release methods:

protected override IController GetControllerInstance(
 RequestContext requestContext, Type controllerType)
{
 var controller =
 this.container.Resolve(controllerType);
 return (IController)controller;
}

public override void ReleaseController(IController controller)
{

Register
calls

b

87DI Container landscape
 this.container.Release(controller);
}

In the GetControllerInstance method, you pass the controllerType argument to
the Resolve method and return the resulting object graph. When the request has
been handled, the ASP.NET MVC framework invokes the ReleaseController method
with the IController instance previously created by the GetControllerInstance
method, and you can pass that controller instance to the Release method.

 Notice that these are the only appearances of the Resolve and Release methods
in the entire code base of the application.

 This example dug a little deeper than the previous example that demonstrated the
COMPOSITION ROOT pattern, but it’s essentially the same code. The COMPOSITION ROOT

pattern addresses where you should compose object graphs, whereas REGISTER RESOLVE

RELEASE deals with how to use a DI CONTAINER within a COMPOSITION ROOT.
 In the next chapter I’ll review more DI patterns, but before I do that I want to take

a little detour and discuss how DI CONTAINERS fit into the overall .NET ecosystem.

3.4 DI Container landscape
Now that I have described what a DI CONTAINER is and how to apply it in a COMPOSITION

ROOT, I want to change the pace a bit and provide an overview of the current state of DI
CONTAINERS in the .NET ecosystem. These are the softer aspects of DI CONTAINERS, such as
historical background and why there are so many open source containers available.

 Because there’s a plethora of DI CONTAINERS to choose from, I also want to provide
a little bit of guidance on how to select a container.

3.4.1 Selecting a DI Container

The decision to use DI as a technique shouldn’t hinge on the choice of a particular DI
CONTAINER. DI is first and foremost a technique, and I’ll use POOR MAN’S DI throughout
most of parts 2 and 3 to emphasize this point.

 Still, a DI CONTAINER will make your life easier, so use one whenever you can. Used
according to the patterns outlined in this book, there are few disadvantages to using a
container, but there are still things to consider.

DECISION PROCESS

A DI CONTAINER is a STABLE DEPENDENCY, so from a DI perspective, using one isn’t an
issue, but there are other, minor concerns to consider:

■ Adding another library always adds a bit to the complexity of an application—
not in terms of maintainability, but in terms of the learning curve. New devel-
opers will not only need to learn to understand the application’s code, but
also understand the API of the selected DI CONTAINER. In this chapter I hope
that I managed to give you the impression that by isolating container usage to
a COMPOSITION ROOT you can shield the container from beginners. If you use
AUTO-REGISTRATION the container may even take care of the infrastructure for
you without calling much attention to itself.

88 CHAPTER 3 DI Containers
■ With the exception of the Managed Extensibility Framework (MEF), you need
to deploy the DI CONTAINER assemblies with your application. This could poten-
tially have legal implications, although this isn’t likely. All common open source
DI CONTAINERS have permissive licenses, but I’m not a lawyer, so don’t go and bet
your business on my word: consult your own legal advisers.

■ Once more with the exception of MEF, all other DI CONTAINERS are open source
libraries. For each you have to assess how much you trust the people or organi-
zation behind it.

■ There are technical differences between the various DI CONTAINERS. In the intro-
duction to part 4 I’ve provided a table that lists the advantages and disadvan-
tages of each container covered in this book. You can use this table as a starting
point and then read the chapter on each of the containers you find interesting.

Selecting a DI CONTAINER need not be a big deal. Take one for a spin and see if it fits
your need—if it doesn’t, then replace it with another. When you constrain the DI CON-
TAINER to a COMPOSITION ROOT you can replace containers with relative ease.

SELECTED DI CONTAINERS

I won’t tell you which DI CONTAINER to choose. Selecting a DI CONTAINER involves more
than technical evaluation. You must also evaluate whether the license model is accept-
able, whether you trust the people or organization that develops and maintains the DI
CONTAINER, how it fits in to your organization’s IT strategy, and so on.

 Most .NET DI CONTAINERS are open source projects—also something to keep in
mind, because there may be no official support and often limited documentation.

 Table 3.4 lists the DI CONTAINERS covered in part 4 of the book. The selection is
based on criteria such as relevance, market share, and distinguishing features, but can
never be anything but a subjective and incomplete list. Several popular containers
(such as Ninject) aren’t included, mostly due to time and space constraints.

Table 3.4 Selected DI CONTAINERS. More are available, but these are selected either because they’re in
widespread usage, because they offer an interesting angle on DI, or because they’re poised to become
important in the future.

Name Organization Comments

Castle Windsor Open source Mature and widely used

StructureMap Open source Mature and widely used

Spring.NET SpringSource Mature and widely used port of the Java Spring DI
CONTAINER

Autofac Open source More recent DI CONTAINER designed around C#
3.0 language features

Unity Microsoft patterns &
practices

Microsoft’s first play in the DI space, but not a
product per se

Managed Extensibility
Framework (MEF)

Microsoft Ships with .NET 4, but not really a DI CONTAINER

89DI Container landscape
Part 4 is dedicated to these DI CONTAINERS, where each is covered by an entire chapter.
 Note how this field is dominated by open source and other non-commercial proj-

ects, with Microsoft relegated to a minor role.

3.4.2 Microsoft and DI

Even though the .NET platform is a product of Microsoft, other organizations (often
single individuals) are much more prominent when it comes to DI in .NET. In short,
this can be attributed to the fact that Microsoft doesn’t offer any DI CONTAINER in the
Base Class Library (BCL). Even as a separate offering, Microsoft’s only DI CONTAINER is
the relatively recent Unity.

 I think it’s fair to say that for the first many years of the .NET Framework’s life,
Microsoft blissfully ignored the very concept of DI. It’s not easy to explain exactly why,
and I doubt that it was ever an explicit strategy.

A BRIEF HISTORY OF DI IN .NET
Here’s my subjective attempt to outline the history of DI in .NET to explain why
Microsoft ignored DI for so long (see figure 3.14). As far as I’m aware, there’s no
authoritative answer to that question.11

 Before it hit .NET, DI seems to have grown out of the Java open source community.
Martin Fowler published his DI article12 in early 2004 as a reaction to ongoing work. At
that time, .NET 1.1 was the current version, and Microsoft was working on .NET 2.0,
while Java was rapidly approaching its decennary. It’s my belief that Microsoft simply

11 Although it doesn’t deal with DI in particular, a good overview of the history of .NET in general can be found
in Jon Skeet, C# in Depth, Manning, 2008.

12 Martin Fowler, “Inversion of Control Containers and the Dependency Injection pattern,” 2004, http://mar-
tinfowler.com/articles/injection.html

Figure 3.14 Timeline of selected platform and DI CONTAINER releases. Notice how mature Java appeared
in 2004 compared to .NET.

http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html

90 CHAPTER 3 DI Containers
had their efforts directed elsewhere. Even if they’d been widely aware of DI at the
time, I think they would still have prioritized other features, such as Generics, first.

 In June 2004, the StructureMap DI CONTAINER was released, beating Castle Windsor
by approximately half a year.

 In late 2005, Microsoft released .NET 2.0 with Generics as the major new feature,
and then decided to focus on WCF, WPF, and, later, LINQ for their next big release
(Visual Studio 2008).

 In the meantime, DI slowly gained in popularity. Spring.NET appeared in 2006.
 It wasn’t until early 2008, when Microsoft patterns & practices released Unity, that the

mainstream Microsoft school of thought seemed to approach DI. That four-year time
span gave skilled individuals a good head start, and DI CONTAINERS like StructureMap
and Castle Windsor grew in popularity.

DI GRASSROOTS

An interesting observation about figure 3.14 is how quickly members of the .NET
development community picked up the idea of DI. According to the Castle Windsor
homepage, the concepts had been germinating even before Fowler’s article:

Castle was born from the Apache Avalon project, in mid 2003, as an attempt to build a
very simple inversion of control container.

– Castle web page at 2008.08.0113

For a long time, DI CONTAINERS for .NET remained a grassroots movement, and many
leading members were sympathetic to Agile development. In fact, even if modular
application architecture has a number of different benefits, it was first and foremost
the question of TESTABILITY that seemed to motivate people to develop and use DI CON-
TAINERS (that was also true in my case).

 At that time, the official development methodology at Microsoft was the Microsoft
Solutions Framework (MSF) 3.0—a waterfall-style process that leaves little room for
Agile development practices such as Test-Driven Development (TDD). In short, it was
a completely different mindset.

 Over time, Agile development, TDD, and DI have proven effective and gained in
popularity, and Microsoft slowly seems to be moving to support that development style
as well. In contrast to the situation in 2004, product teams now openly discuss DI,
TDD, and other matters related to Agile development.

MICROSOFT DI CONTAINERS

Over the years, the patterns & practices (p&p) team in Microsoft has been developing a
lot of proof of concepts for various .NET-related areas. Much of the experience har-
vested from these projects has been used to define and scope further development of
the .NET Framework itself. As an example, the Updater Application Block provided a
wealth of experience that was later used when ClickOnce was developed.

13 http://www.castleproject.org/castle/history.html

http://www.castleproject.org/castle/history.html

91Summary
 In early 2008, p&p released their first Community Technical Preview (CTP) of
Unity, their new DI CONTAINER, and release 1.0 followed in April 2008. Unity is a full-
fledged DI CONTAINER that supports OBJECT COMPOSITION, LIFETIME MANAGEMENT, and
INTERCEPTION. It’s not a Microsoft product, but rather a disclosed source14 project that just
happens to be developed by Microsoft.

With .NET 4.0, Microsoft delivered the Managed Extensibility Framework (MEF) that
marks the first time DI concerns are explicitly being addressed within .NET itself. In its
first installment, MEF isn’t a full-fledged DI CONTAINER that supports all three aspects of
DI, but rather an engine focused on OBJECT COMPOSITION.

 The MEF team is well aware of such aspects as LIFETIME MANAGEMENT and INTERCEP-
TION, so it’s not unlikely that we’ll see MEF evolve into a fully featured DI CONTAINER

over the next few years (as I’m writing this, technical previews indicate that this is
indeed the case).

3.5 Summary
A DI CONTAINER can be a tremendously helpful tool if you use it correctly. The most
important thing to understand about it is that the use of DI in no way hinges on the
use of a DI CONTAINER. An application can be made from many loosely coupled classes
and modules, and none of these modules must know anything about a container. The
most effective way to make sure that application code is unaware of any DI CONTAINER

is to rigidly implement the REGISTER RESOLVE RELEASE pattern in a COMPOSITION ROOT.
This effectively prevents you from inadvertently applying the SERVICE LOCATOR anti-
pattern because it constrains the container to a small isolated area of the code.

 Used in this way, a DI CONTAINER becomes an engine that takes care of a lot of the
application’s infrastructure. It composes object graphs based on its configuration.

14 While the Unity source code is freely available, Microsoft doesn’t accept patches. You can review the source,
but not contribute. For that reason I find the term disclosed source more appropriate, as open source normally
indicates that contributions can go both ways. However, to be fair the license is permissive, so you can use,
modify, and redistribute the source.

Object Builder
There seems to be some confusion as to exactly when p&p introduced a DI CONTAINER
to the world. When the p&p Enterprise Library for .NET 2.0 was introduced in early
2006 it contained a module called Object Builder that was used to build complex
objects from constituent elements.

It was attribute-driven and only worked for classes that integrated tightly with Object
Builder itself. It was never introduced as a DI CONTAINER, although it was acknowl-
edged that it might be possible to build a DI CONTAINER on top of it.

Many people mistakenly believe that Object Builder was Microsoft’s first DI CON-
TAINER, but this isn’t true: Unity has that title.

92 CHAPTER 3 DI Containers
This can be particularly beneficial if you employ CONVENTION-BASED CONFIGURATION—if
suitably implemented, it can take care of composing object graphs and you can con-
centrate your efforts on adding new classes implementing new features. The con-
tainer will automatically discover new classes that follow the established conventions
and make them available to consumers.

 In some cases, you need more explicit control over the configuration of the con-
tainer. It’s most efficient to use CODE AS CONFIGURATION, but if you need to support late
binding you can also use XML to configure DI CONTAINERS.

 This chapter concludes the first part of the book. The purpose of part 1 was to “put
DI on the map.” The previous chapters introduced DI in general, whereas this chapter
explained how DI CONTAINERS relate to DI and application design in general. I found it
only fitting to round off the chapter with a historical overview of DI CONTAINERS in the
.NET ecosystem to really put the various containers on the map.

 The chapter introduced COMPOSITION ROOT and REGISTER RESOLVE RELEASE as two mini-
patterns that relate to DI CONTAINERS. In the next chapter, we’ll focus on design patterns.

Part 2

DI catalog

Part 1 provided an overview of DI, discussing the purpose and benefits of DI
and explaining how DI CONTAINERS fit into the overall picture. Even though chap-
ter 2 contained an extensive example, I’m sure the first chapters still left you
with some unresolved questions. In part 2, we dig a little deeper to answer some
of those questions.

 As the title of part 2 implies, this is a catalog of patterns, anti-patterns, and
refactorings. Some people dislike design patterns because they find them dry or
too abstract. Personally, I love patterns because they provide us with a high-level
language that makes us more efficient and concise when we discuss software
design. It’s my intent to use this catalog to provide a pattern language for DI.
Although a pattern description must contain some generalizations, I’ve attempted
to make each pattern concrete, using examples.

 You can read all three chapters in sequence, but each item in the catalog is
also written so that you can read it by itself.

 Chapter 4 contains a mini-catalog of DI design patterns. In a sense, these pat-
terns constitute prescriptive guidance on how to implement DI, but you should
be aware that I don’t consider them to be of equal importance. CONSTRUCTOR

INJECTION is by far the most important design pattern, whereas all the other pat-
terns should be treated as fringe cases that can be applied in specialized circum-
stances. The AMBIENT CONTEXT pattern, in particular, should be so rarely employed
that I seriously considered not including it in the book (I only left it in because
those who read the book before publication asked me to keep it).

 Whereas chapter 4 gives you a set of generalized solutions, chapter 5 contains
a catalog of situations to avoid. These anti-patterns (or code smells) describe

94 PART 2 DI catalog
common, but incorrect ways to address typical DI challenges. In each case, the anti-
pattern describes how to identify occurrences and how to resolve the issue. It’s impor-
tant to know and understand these anti-patterns to avoid the traps that they represent,
and, just as chapter 4 presents one dominatingly important pattern, the most impor-
tant anti-pattern is SERVICE LOCATOR, the antithesis of DI.

 As you apply DI to real-life programming tasks, you will run into some challenges. I
think we’ve all had moments of doubt where we feel that we understand a tool or tech-
nique, and yet we think, “In theory, this may work, but my case is special…” Whenever I
find myself thinking like this, it’s clear to me that I have more to learn.

 During my career, I’ve seen a particular set of problems appear again and again.
Each of these problems has a general solution you can apply to move your code
towards one of the DI patterns from chapter 4. In the spirit of refactoring to patterns I
chose to call this chapter DI refactorings, because it contains a catalog of issues and cor-
responding solutions.

 Part 2 presents a complete catalog of patterns, anti-patterns, and refactorings. I
expect this to be the most useful part of the book, because it’s the most enduring. Hope-
fully, you’ll return to these chapters months and even years after you first read them.

DI patterns
Like all professionals, cooks have their own jargon that allow them to communicate
about complex food preparation in a language that often sounds esoteric to the
rest of us. It doesn’t help that most of the terms they use are based on French
(unless you already speak French, that is).

 Sauces are a great example of the way cooks use their professional terminology.
In chapter 1, I briefly discussed sauce béarnaise, but I didn’t elaborate on the tax-
onomy that surrounds it (see figure 4.1).

 A sauce béarnaise is really a sauce hollandaise where the lemon juice is replaced
by a reduction of vinegar, shallots, chervil, and tarragon. Other sauces are based on
sauce hollandaise—including my favorite, sauce mousseline, which is made by folding
whipped cream into the hollandaise.

 Did you notice all the jargon? Instead of saying, “carefully mixing the whipped
cream into the sauce, taking care not to collapse it,” I used the term folding. When
you know what it means, it’s a lot easier to say and understand.

Menu
■ CONSTRUCTOR INJECTION

■ PROPERTY INJECTION

■ METHOD INJECTION

■ AMBIENT CONTEXT
95

96 CHAPTER 4 DI patterns
The term folding isn’t limited to sauces—it’s a general way to combine something that’s
whipped with other ingredients. When making a classic mousse au chocolat, for example, I
fold whipped egg whites into a mixture of whipped egg yolks and melted chocolate.

 In software development, we have a complex and impenetrable jargon of our own.
Although you may not know what the cooking term bain-marie refers to, I’m pretty
sure most cooks would be utterly lost if you told them that "strings are immutable
classes that represent sequences of Unicode characters."

 When it comes to talking about how to structure code to solve particular types of
problems, we have Design Patterns that give names to common solutions. In the same
way that the terms sauce hollandaise and fold help us succinctly communicate how to
make sauce mousseline, patterns help us talk about how code is structured. The event-
ing system in .NET is based on a design pattern called Observer, and foreach loops
on Iterator.1

 In this chapter, I’ll describe the four basic DI patterns listed in figure 4.2. Because
the chapter is structured to provide a catalog of patterns, each pattern is written so
that it can be read independently. However, CONSTRUCTOR INJECTION is by far the most
important of the four patterns.

 Don’t worry if you have only limited knowledge of design patterns in general. The
main purpose of a design pattern is to provide a detailed and self-contained descrip-
tion of a particular way of attaining a goal—a recipe, if you will.

1 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (New York: Addison-Wesley,
1994), 293, 257.

Figure 4.1 Several sauces are based on sauce hollandaise. In a sauce béarnaise the lemon
is replaced with a reduction of vinegar and certain herbs, whereas the distinguishing feature
of sauce mousseline is that whipped cream is folded into it—a technique also used to make
mousse au chocolat.

97DI patterns
For each pattern, I’ll provide a short description, a code example, advantages and dis-
advantages, and so on. You can read about all four patterns in sequence or only read
the ones that interest you. The most important pattern is CONSTRUCTOR INJECTION,
which you should use in most situations; the other patterns become more specialized
as the chapter progresses.

Figure 4.2 The structure of this chapter takes the
form of a pattern catalog. Each pattern is written so
it can be read independently of the other patterns.

98 CHAPTER 4 DI patterns
4.1 Constructor Injection
How do we guarantee that a necessary Dependency is always available to the class we’re currently

developing?
BY REQUIRING ALL CALLERS TO SUPPLY THE DEPENDENCY AS A PARAMETER TO THE CLASS’S CON-

STRUCTOR.

When a class requires an instance of a DEPENDENCY to work at all, we can supply that
DEPENDENCY through the class’s constructor, enabling it to store the reference for
future (or immediate) use.

4.1.1 How it works
The class that needs the DEPENDENCY must expose a public constructor that takes an
instance of the required DEPENDENCY as a constructor argument. In most cases, this
should be the only available constructor. If more than one DEPENDENCY is needed, addi-
tional constructor arguments can be used.

private readonly DiscountRepository repository;

public RepositoryBasketDiscountPolicy(
 DiscountRepository repository)
{
 if (repository == null)
 {
 throw new ArgumentNullException("repository");
 }

 this.repository = repository;
}

The DEPENDENCY (in the previous listing that would be the abstract DiscountRepository
class) is a required constructor argument B. Any client code that doesn’t supply an

Listing 4.1 CONSTRUCTOR INJECTION

Figure 4.3 NeedyClass needs an instance of Dependency to work, so it requires any
Client to supply an instance via its constructor. This guarantees that the instance is
available to NeedyClass whenever it’s needed.

Dependency
field is
read-onlye

Inject Dependency
as constructor
argument

b

Guard
Clause

c

Save the Dependency
for later

D

99Constructor Injection
instance of the DEPENDENCY can’t compile. However, because both interfaces and
abstract classes are reference types, a caller can pass in null as an argument to make
the calling code compile; we need to protect the class against such misuse with a
Guard Clause2 c.

 Because the combined efforts of the compiler and the Guard Clause guarantee
that the constructor argument is valid if no exception is thrown, at this point, the con-
structor can save the DEPENDENCY for future use without knowing anything about the
real implementation d.

 It’s good practice to mark the field holding the DEPENDENCY as readonly—this guar-
antees that once the initialization logic of the constructor has executed: the field can’t
be modified e. This isn’t strictly required from a DI point of view, but it protects you
from accidentally modifying the field (such as setting it to null) somewhere else in the
depending class’s code.

TIP Keep the constructor free of any other logic. The SINGLE RESPONSIBILITY

PRINCIPLE implies that members should do only one thing, and now that we
use the constructor to inject DEPENDENCIES, we should prefer to keep it free of
other concerns.

TIP Think about CONSTRUCTOR INJECTION as statically declaring a class’s Dependen-
cies. The constructor signature is compiled with the type and is available for
all to see. It clearly documents that the class requires the DEPENDENCIES it
requests through its constructor.

When the constructor has returned, the new instance of the depending class is in a
consistent state with a proper instance of its DEPENDENCY injected into it. Because it
holds a reference to this DEPENDENCY, it can use it as often as necessary from any of its
other members. It doesn’t need to test for null, because the instance is guaranteed to
be present.

4.1.2 When to use it

CONSTRUCTOR INJECTION should be your default choice for DI. It addresses the most
common scenario where a class requires one or more DEPENDENCIES, and no reasonable
LOCAL DEFAULTS are available.

CONSTRUCTOR INJECTION addresses that scenario well because it guarantees that the
DEPENDENCY is present. If the depending class absolutely can’t function without the
DEPENDENCY, that guarantee is valuable.

TIP If at all possible, constrain the design to a single constructor. Overloaded
constructors lead to ambiguity: which constructor should a DI CONTAINER use?

In cases where the local library can supply a good default implementation, PROPERTY

INJECTION may be a better fit—but this is often not the case. In the earlier chapters, I

2 Martin Fowler et al., Refactoring: Improving the Design of Existing Code (New York: Addison-Wesley, 1999), 50.

100 CHAPTER 4 DI patterns
showed many examples of Repositories as DEPENDENCIES. These are good examples of
DEPENDENCIES where the local library can supply no good default implementation,
because the proper implementations belong in specialized Data Access libraries.

Apart from the guaranteed injection already discussed, this pattern is also easy to
implement using the four steps implied by listing 4.1.

 The main disadvantage to CONSTRUCTOR INJECTION is that you need to modify your
current application framework to support it. Most frameworks assume that your
classes will have a default constructor and may need special help to create instances
when the default constructor is missing. In chapter 7, I explain how to enable CON-
STRUCTOR INJECTION for common application frameworks.

 An apparent disadvantage of CONSTRUCTOR INJECTION is that it requires that the
entire dependency graph is initialized immediately—often at application startup.
However, although this sounds inefficient, it’s rarely an issue. After all, even for a com-
plex object graph, we’re typically talking about creating a dozen new object instances,
and creating an object instance is something the .NET Framework does extremely fast.
Any performance bottleneck your application may have will appear in other places, so
don’t worry about it.

 In extremely rare cases this may be a real issue, but in chapter 8, I’ll describe the
Delayed lifetime option that offers one possible remedy to this issue. For now, I’ll
merely observe that there may (in fringe cases) be a potential issue with initial load
and move on.

4.1.3 Known use

Although CONSTRUCTOR INJECTION tends to be ubiquitous in applications employing DI,
it’s not very present in the .NET Base Class Library (BCL). This is mainly because the
BCL is a set of libraries and not a full-fledged application.

 Two related examples where we can see a sort of CONSTRUCTOR INJECTION in the BCL
is with System.IO.StreamReader and System.IO.StreamWriter. Both take a System
.IO.Stream instance in their constructors. They also have a lot of overloaded con-
structors that take a file path instead of a Stream instance, but these are convenience
methods that internally create a FileStream based on the specified file path—here
are all the StreamWriter constructors, but the StreamReader constructors are similar:

public StreamWriter(Stream stream);
public StreamWriter(string path);
public StreamWriter(Stream stream, Encoding encoding);
public StreamWriter(string path, bool append);

Table 4.1 CONSTRUCTOR INJECTION advantages and disadvantages

Advantages Disadvantages

Injection guaranteed
Easy to implement

Some frameworks make using CONSTRUCTOR INJECTION difficult.

101Constructor Injection
public StreamWriter(Stream stream, Encoding encoding,
 int bufferSize);
public StreamWriter(string path, bool append, Encoding encoding);
public StreamWriter(string path, bool append, Encoding encoding,
 int bufferSize);

The Stream class is an abstract class that serves as an ABSTRACTION upon which Stream-
Writer and StreamReader operate to perform their duties. You can supply any Stream
implementation in their constructors and they will use it, but they will throw
ArgumentNullExceptions if you try to slip them a null Stream.

 Although the BCL can provide us with
examples where we can see CONSTRUCTOR INJEC-
TION in use, it’s always more instructive to see an
example. The next section walks you through a
full implementation example.

4.1.4 Example: Adding a currency provider
to the shopping basket

I’d like to add a new feature to the sample
commerce application I expanded upon in
chapter 2—namely, the ability to perform cur-
rency conversions. I’ll spread the example
throughout this chapter to demonstrate the dif-
ferent DI patterns in play, but when I’m done,
the homepage should look like figure 4.4.

 One of the first things you need is a Cur-
rencyProvider—a DEPENDENCY that can pro-
vide you with the currencies you request. You
define it like this:

public abstract class CurrencyProvider
{
 public abstract Currency GetCurrency(string currencyCode);
}

The Currency class is another abstract class that provides conversion rates between
itself and other currencies:

public abstract class Currency
{
 public abstract string Code { get; }

 public abstract decimal GetExchangeRateFor(
 string currencyCode);
}

You want the currency conversion feature on all pages that display prices, so you need
it in both the HomeController and the BasketController. Because both implementa-
tions are quite similar, I’ll only show you the BasketController.

Figure 4.4 The sample commerce
application with currency conversion
implemented. The user can now select
among three different currencies, and both
product prices and basket totals (on
the basket page) will be displayed in
that currency.

102 CHAPTER 4 DI patterns
 A CurrencyProvider is likely to represent an out-of-process resource, such as a web
service or a database that can supply conversion rates. This means that it would be
most fitting to implement a concrete CurrencyProvider in a separate project (such as
a Data Access library). Hence, there’s no reasonable LOCAL DEFAULT. At the same time,
the BasketController class will need a CurrencyProvider to be present; CONSTRUC-
TOR INJECTION is a good fit. The following listing shows how the CurrencyProvider
DEPENDENCY is injected into the BasketController.

private readonly IBasketService basketService;
private readonly CurrencyProvider currencyProvider;

public BasketController(IBasketService basketService,
 CurrencyProvider currencyProvider)
{
 if (basketService == null)
 {
 throw new
 ArgumentNullException("basketService");
 }
 if (currencyProvider == null)
 {
 throw new
 ArgumentNullException("currencyProvider");
 }

 this.basketService = basketService;
 this.currencyProvider = currencyProvider;
}

Because the BasketController class already had a DEPENDENCY on IBasketService,
you add the new CurrencyProvider DEPENDENCY as a second constructor argument B
and then follow the same sequence outlined in listing 4.1: Guard Clauses guarantee
that the DEPENDENCIES aren’t null c, which means it’s safe to store them for later use d
in read-only fields e.

 Now that the CurrencyProvider is guaranteed to be present in the BasketCon-
troller, it can be used from anywhere—for example, in the Index method:

public ViewResult Index()
{
 var currencyCode =
 this.CurrencyProfileService.GetCurrencyCode();
 var currency =
 this.currencyProvider.GetCurrency(currencyCode);

 // …
}

I haven’t yet discussed the CurrencyProfileService, so for now, know that it provides
the current user’s preferred currency code. In section 4.2.4, I’ll discuss the Currency-
ProfileService in greater detail.

Listing 4.2 Injecting a CurrencyProvider into the BasketController

Dependency fields
are read-only

e

Inject Dependencies as
constructor arguments

b

Guard
Clauses

c

Save Dependencies
for later

d

103Constructor Injection
 Given a currency code, the CurrencyProvider can be invoked to provide a Currency
that represents that code. Notice that you can use the currencyProvider field without
needing to check it in advance, because it’s guaranteed to be present.

 Now that you have the Currency, you can then proceed to perform the rest of the
work in the Index method; note that I haven’t yet shown that implementation. As we
progress through this chapter, I’ll build on this method and add more currency con-
version functionality along the way.

4.1.5 Related patterns

CONSTRUCTOR INJECTION is the most generally applicable DI pattern available, and also
the easiest to implement correctly. It applies when the DEPENDENCY is required.

 If we need to make the DEPENDENCY optional, we can change to PROPERTY INJECTION if
we have a proper LOCAL DEFAULT.

 When the DEPENDENCY represents a CROSS-CUTTING CONCERN that should be potentially
available to any module in the application, we can use an AMBIENT CONTEXT, instead.

 The next pattern in this chapter is PROPERTY INJECTION, which is closely related to
CONSTRUCTOR INJECTION; the only deciding parameter is whether the DEPENDENCY is
optional or not.

104 CHAPTER 4 DI patterns
4.2 Property Injection
How do we enable DI as an option in a class when we have a good Local Default?

BY EXPOSING A WRITABLE PROPERTY THAT LETS CALLERS SUPPLY A DEPENDENCY IF THEY WISH TO
OVERRIDE THE DEFAULT BEHAVIOR.

When a class has a good LOCAL DEFAULT, but we still want to leave it open for extensibil-
ity, we can expose a writable property that allows a client to supply a different imple-
mentation of the class’s DEPENDENCY than the default.

NOTE PROPERTY INJECTION is also known as SETTER INJECTION.

Referring to figure 4.5, clients wishing to use the SomeClass as-is can new up an
instance of the class and use it without giving it a second thought, whereas clients
wishing to modify the behavior of the class can do so by setting the Dependency prop-
erty to a different implementation of ISomeInterface.

4.2.1 How it works

The class that uses the DEPENDENCY must expose a public writable property of the
DEPENDENCY’s type. In a bare-bones implementation, this may be as simple as the fol-
lowing listing.

public partial class SomeClass
{
 public ISomeInterface Dependency { get; set; }
}

SomeClass depends on ISomeInterface. Clients can supply implementations of
ISomeInterface by setting the Dependency property. Notice that in contrast to
CONSTRUCTOR INJECTION, you can’t mark the Dependency property’s backing field as
readonly because you allow callers to modify the property at any given time of Some-
Class’s lifetime.

 Other members of the depending class can use the injected DEPENDENCY to per-
form their duties, like this:

public string DoSomething(string message)
{
 return this.Dependency.DoStuff(message);
}

Listing 4.3 PROPERTY INJECTION

Figure 4.5 SomeClass has
an optional DEPENDENCY on
ISomeInterface; instead of
requiring callers to supply an
instance, it’s giving callers an
option to define it via a property.

105Property Injection
However, such an implementation is fragile because the Dependency property isn’t
guaranteed to return an instance of ISomeInterface. Code like this would throw a
NullReferenceException because the value of the Dependency property is null:

var mc = new SomeClass();
mc.DoSomething("Ploeh");

This issue can be solved by letting the constructor set a default instance on the prop-
erty, combined with a proper Guard Clause in the property’s setter.

 Another complication arises if you allow clients to switch the DEPENDENCY in the
middle of the class’s lifetime. This can be addressed by introducing an internal flag
that only allows a client to set the DEPENDENCY once.3

 The example in section 4.2.4 shows how you can deal with these complications, but
before I get to that, I’d like to explain when it’s appropriate to use PROPERTY INJECTION.

4.2.2 When to use it
PROPERTY INJECTION should only be used when the class you’re developing has a good
LOCAL DEFAULT and you still want to enable callers to provide different implementa-
tions of the class’s DEPENDENCY.

PROPERTY INJECTION is best used when the DEPENDENCY is optional.

NOTE There’s some controversy around the issue of whether PROPERTY INJEC-
TION indicates an optional DEPENDENCY. As a general API design principle, I
consider properties to be optional because you can easily forget to assign
them and the compiler doesn’t complain. If you accept this principle in the
general case, you must also accept it in the special case of DI.

3 Eric Lippert calls this popsicle immutability. Eric Lippert, “Immutability in C# Part One: Kinds of Immutability,”
2007, http://blogs.msdn.com/ericlippert/archive/2007/11/13/immutability-in-c-part-one-kinds-of-immutability
.aspx

Local Default
When you’re developing a class that has a DEPENDENCY, you probably have a particular
implementation of that DEPENDENCY in mind. If you’re writing a Domain Service that
accesses a Repository, you’re most likely planning to develop an implementation of
that Repository that uses a relational database.

It would be tempting to make that implementation the default used by the class under
development. However, when such a prospective default is implemented in a different
assembly, using it as a default would mean creating a hard reference to that other assem-
bly, effectively violating many of the benefits of loose coupling described in chapter 1.

Conversely, if the intended default implementation is defined in the same library as
the consuming class, you don’t have that problem. This is unlikely to be the case with
Repositories, but such LOCAL DEFAULTS are more likely as Strategies.4

The example in this section contains an example of a LOCAL DEFAULT.

4 Gamma, Design Patterns, 315.

http://blogs.msdn.com/ericlippert/archive/2007/11/13/immutability-in-c-part-one-kinds-of-immutability.aspx
http://blogs.msdn.com/ericlippert/archive/2007/11/13/immutability-in-c-part-one-kinds-of-immutability.aspx

106 CHAPTER 4 DI patterns
In chapter 1, I discussed many good reasons for writing code with loose coupling, iso-
lating modules from each other. However, loose coupling can also be applied to
classes within a single module with great success. This is often done by introducing
ABSTRACTIONS within a single module and letting classes communicate via ABSTRAC-
TIONS, instead of being tightly coupled to each other.

 Figure 4.6 illustrates that ABSTRACTIONS can be defined, implemented, and consumed
within a single module with the main purpose of opening classes for extensibility.

NOTE The concept of opening a class for extensibility is captured by the
OPEN/CLOSED PRINCIPLE5 that, briefly put, states that a class should be open for
extensibility, but closed for modification.

When we implement classes following the OPEN/CLOSED PRINCIPLE, we may have a
LOCAL DEFAULT in mind, but we still provide clients with a way to extend the class by
replacing the DEPENDENCY with something else.

NOTE PROPERTY INJECTION is only one among many different ways of applying
the OPEN/CLOSED PRINCIPLE.

TIP Sometimes you only wish to provide an extensibility point, but leave the
LOCAL DEFAULT as a no-op. In such cases, you can use the Null Object6 pattern
to implement the LOCAL DEFAULT.

TIP Sometimes you wish to leave the LOCAL DEFAULT in place, but have the abil-
ity to add more implementations. You can achieve this by modeling the DEPEN-
DENCY around either the Observer or the Composite patterns.7

5 A good .NET-related introduction to the OPEN/CLOSED PRINCIPLE can be found in Jeremy Miller, “Patterns in
Practice: The Open Closed Principle,” (MSDN Magazine, June 2008). Also available online at http://
msdn.microsoft.com/en-us/magazine/cc546578.aspx

6 Robert C. Martin et al., Pattern Languages of Program Design 3 (New York: Addison-Wesley, 1998), 5.
7 Gamma, Design Patterns, 293, 163.

Figure 4.6 Even within a single module, we can introduce ABSTRACTIONS

(represented by the vertical rectangle) that help reduce class coupling within
that module. The main motivation for doing this is to enhance maintainability of
the module by enabling classes to vary independently of each other.

http://msdn.microsoft.com/en-us/magazine/cc546578.aspx
http://msdn.microsoft.com/en-us/magazine/cc546578.aspx

107Property Injection
So far, I haven’t shown you any examples of PROPERTY INJECTION, because the applicabil-
ity of this pattern is more limited.

The main advantage of PROPERTY INJECTION is that it’s so easy to understand. I have
often seen this pattern used as a first attempt when people decide to adopt DI.

 Appearances can be deceptive, and PROPERTY INJECTION is fraught with difficulties.
It’s challenging to implement it in a robust manner. Clients may forget (or not want)
to supply the DEPENDENCY, or mistakenly supply null as a value. Additionally: what
should happen if a client tries to change the DEPENDENCY in the middle of the class’s life-
time? This could lead to inconsistent or unexpected behavior, so you may want to pro-
tect yourself against that event.

 With CONSTRUCTOR INJECTION, you could protect the class against such incidents by
applying the readonly keyword to the backing field, but this isn’t possible when you
expose the DEPENDENCY as a writable property. In many cases, CONSTRUCTOR INJECTION

is much simpler and more robust, but there are situations where PROPERTY INJECTION is
the correct choice. This is the case when supplying a DEPENDENCY is optional, because
you have a good LOCAL DEFAULT.

 The existence of a good LOCAL DEFAULT depends in part on the granularity of mod-
ules. The .NET Base Class Library (BCL) ships as a rather large package; as long as the
default stays within the BCL, it could be argued that it’s also local. In the next section,
I’ll briefly touch upon that subject.

4.2.3 Known use

In the .NET BCL, PROPERTY INJECTION is a bit more common than CONSTRUCTOR INJEC-
TION—probably because good LOCAL DEFAULTS are defined in many places.

System.ComponentModel.IComponent has a writable Site property that allows
you to define an ISite instance. This is mostly used in design time scenarios (for
example, by Visual Studio) to alter or enhance a component when it’s hosted in
a designer.

 Another example that seems closer to how we’re used to think about DI can be
found in Windows Workflow Foundation (WF). The WorkflowRuntime class gives you
the ability to add, get, and remove services. This isn’t true PROPERTY INJECTION, because
the API allows you to add zero or many untyped services through the same general-
purpose API:

public void AddService(object service)
public T GetService<T>()

Table 4.2 PROPERTY INJECTION advantages and disadvantages

Advantages Disadvantages

Easy to understand Limited applicability
Not entirely simple to implement robustly

108 CHAPTER 4 DI patterns
public object GetService(Type serviceType)
public void RemoveService(object service)

Although AddService will throw an ArgumentNullException if the service is null,
there’s no guarantee that you can retrieve a service with a given type because it may
never have been added to the current WorkflowRuntime instance (in fact, this is
because the GetService method is a SERVICE LOCATOR).

 On the other hand, WorkflowRuntime comes with a lot of LOCAL DEFAULTS for each
of the required services that it needs, and these are even named with the prefix
Default, such as DefaultWorkflowSchedulerService and DefaultWorkflowLoader-
Service. If, for example, no alternative WorkflowSchedulerService is added either
via the AddService method or the application configuration file, the DefaultWork-
flowSchedulerService class is used.

 With these BCL examples as hors d’œuvres, let’s move on to a more substantial
example of using and implementing PROPERTY INJECTION.

4.2.4 Example: Defining a currency profile service
for the BasketController

In section 4.1.4, I started adding currency conversion functionality to the sample com-
merce application, and I briefly showed you some of the implementation of the
BasketController’s Index method—but glossed over the appearance of a Currency-
ProfileService. Here’s the deal:

 The application needs to know which currency the user wishes to see. If you refer
back to the screen shot in figure 4.4, you’ll notice some currency links at the bottom
of the screen. When the user clicks one of these links, you need to save the selected
currency somewhere and associate that selection with the user. The Currency-
ProfileService facilitates saving and retrieving the user’s selected currency:

public abstract class CurrencyProfileService
{
 public abstract string GetCurrencyCode();

 public abstract void UpdateCurrencyCode(string currencyCode);
}

It’s an ABSTRACTION that encodes the actions of applying and retrieving the current
user’s currency selection.

 In ASP.NET MVC (and ASP.NET in general), you have a well-known piece of infra-
structure that deals with such a scenario: the Profile service. An excellent LOCAL

DEFAULT implementation of CurrencyProfileService is one that wraps around the
ASP.NET Profile service and provides the necessary functionality defined by the Get-
CurrencyCode and UpdateCurrencyCode methods. The BasketController will use
this DefaultCurrencyProfileService as the default while exposing a property that
will allow the caller to substitute it by something else.

109Property Injection
private CurrencyProfileService currencyProfileService;

public CurrencyProfileService CurrencyProfileService
{
 get
 {
 if (this.currencyProfileService == null)
 {
 this.CurrencyProfileService =
 new DefaultCurrencyProfileService(
 this.HttpContext);
 }
 return this.currencyProfileService;
 }
 set
 {
 if (value == null)
 {
 throw new ArgumentNullException("value");
 }
 if (this.currencyProfileService != null)
 {
 throw new InvalidOperationException();
 }
 this.currencyProfileService = value;
 }
}

The DefaultCurrencyProfileService itself uses CONSTRUCTOR INJECTION because it
requires access to the HttpContext, and because the HttpContext isn’t available to the
BasketController at creation time, it has to defer creation of the DefaultCurrency-
ProfileService until the property is requested for the first time. In this case, lazy ini-
tialization B is required, but in other cases, the LOCAL DEFAULT could have been
assigned in the constructor. Notice that the LOCAL DEFAULT is assigned through the
public setter, which ensures that all the Guard Clauses get evaluated.

 The first Guard Clause guarantees that the DEPENDENCY isn’t null. The next Guard
Clause c ensures that the DEPENDENCY can only be assigned once. In this case, I prefer
that the CurrencyProfileService can’t be changed once it’s assigned, because other-
wise it could lead to inconsistent behavior where a user’s currency selection is first
stored using one CurrencyProfileService and then subsequently retrieved from a
different place, most likely yielding a different value.

 You may also notice that, because you use the setter for lazy initialization B, the
DEPENDENCY will also be locked once the property has been read. Once again, this is
to protect clients from the case where the DEPENDENCY is subsequently changed with-
out notification.

 If you can get past all the Guard Clauses, you can save the instance for future use.

Listing 4.4 Exposing a CurrencyProfileService property

Lazy initialization
of Local Default

b

Only allow
Dependency to
be defined once

c

110 CHAPTER 4 DI patterns
 Compared to CONSTRUCTOR INJECTION, this is much more involved. PROPERTY INJECTION

may look simple in its raw form as shown in listing 4.3, but properly implemented, it
tends to be much more complex—and, in this example, I have even elected to ignore
the issue of thread safety.

 With the CurrencyProfileService in place, the start of the BasketController’s
Index method can now use it to retrieve the user’s preferred currency:

public ViewResult Index()
{
 var currencyCode =
 this.CurrencyProfileService.GetCurrencyCode();
 var currency =
 this.currencyProvider.GetCurrency(currencyCode);

 // …
}

This is the same code fragment shown in section 4.1.4. The CurrencyProfileService
is used to get the user’s selected currency, and the CurrencyProvider is subsequently
used to retrieve that Currency.

 In section 4.3.4, I’ll return to the Index method to show what happens next.

4.2.5 Related patterns

You use PROPERTY INJECTION when the DEPENDENCY is optional because you have a good
LOCAL DEFAULT. If you don’t have a LOCAL DEFAULT, you should change the implementa-
tion to CONSTRUCTOR INJECTION.

 When the DEPENDENCY represents a CROSS-CUTTING CONCERN that should be available
to all modules in an application, you can implement it as an AMBIENT CONTEXT.

 But before we get to that, METHOD INJECTION, in the next section, takes a slightly dif-
ferent approach, because it tends to apply more to the situation where we already
have a DEPENDENCY that we wish to pass on to the collaborators we invoke.

111Method Injection
4.3 Method Injection
How can we inject a Dependency into a class when it’s different for each operation?

BY SUPPLYING IT AS A METHOD PARAMETER.

When a DEPENDENCY can vary with each method call, you can supply it via a method
parameter.

4.3.1 How it works

The caller supplies the DEPENDENCY as a method parameter in each method call. It can
be as simple as this method signature:

public void DoStuff(ISomeInterface dependency)

Often, the DEPENDENCY will represent some sort of context for an operation that’s sup-
plied alongside a “proper” value:

public string DoStuff(SomeValue value, ISomeContext context)

In this case, the value parameter represents the value on which the method is sup-
posed to operate, whereas the context contains information about the current con-
text of the operation. The caller supplies the DEPENDENCY to the method, and the
method uses or ignores the DEPENDENCY as it best suits it.

 If the service uses the DEPENDENCY, it should be sure to test for null references first,
as shown in the following listing.

public string DoStuff(SomeValue value, ISomeContext context)
{
 if (context == null)
 {
 throw new ArgumentNullException("context");
 }

 return context.Name;
}

Listing 4.5 Checking a method parameter for null before using it

Figure 4.7 A Client creates an instance of SomeClass, but first injects an instance of the
DEPENDENCY ISomeInterface with each method call.

112 CHAPTER 4 DI patterns
The Guard Clause guarantees that the context is available to the rest of the method
body. In this example, the method uses the context’s name to return a value, so ensur-
ing that the context is available is important.

 If a method doesn’t use the supplied DEPENDENCY, it doesn’t need to contain a
Guard Clause. This sounds like a strange situation because, if the parameter isn’t
used, then why have it at all? However, you may need to keep it if the method is part of
an interface implementation.

4.3.2 When to use it

METHOD INJECTION is best used when the DEPENDENCY can vary with each method call.
This can be the case when the DEPENDENCY itself represents a value, but is often seen
when the caller wishes to provide the consumer with information about the context in
which the operation is being invoked.

 This is often the case in add-in scenarios where an add-in is provided with informa-
tion about the runtime context via a method parameter. In such cases, the add-in is
required to implement an interface that defines the injecting method(s).

 Imagine an add-in interface with this structure:

public interface IAddIn
{
 string DoStuff(SomeValue value, ISomeContext context);
}

Any class implementing this interface can be used as an add-in. Some classes may not
care about the context at all, whereas other implementations will. A client may use a
list of add-ins by calling each with a value and a context to return an aggregated result.
This is shown in the following listing.

public SomeValue DoStuff(SomeValue value)
{
 if (value == null)
 {
 throw new ArgumentNullException("value");
 }

 var returnValue = new SomeValue();
 returnValue.Message = value.Message;

 foreach (var addIn in this.addIns)
 {
 returnValue.Message =
 addIn.DoStuff(returnValue, this.context);
 }

 return returnValue;
}

The private addIns field is a list of IAddIn instances, which allows the client to loop
through the list to invoke each add-in’s DoStuff method. Each time the DoStuff

Listing 4.6 A sample add-in client

Pass context
to add-in

b

113Method Injection
method is invoked on an add-in, the operation’s context represented by the context
field is passed as a method parameter B.

NOTE METHOD INJECTION is closely related to the use of Abstract Factories
described in section 6.1. Any Abstract Factory that takes an ABSTRACTION as
input can be viewed as a variation of METHOD INJECTION.

At times, the value and the operational context are encapsulated in a single ABSTRAC-
TION that works as a combination of both.

METHOD INJECTION is different from other types of DI patterns we’ve seen so far in that
the injection doesn’t happen in a COMPOSITION ROOT, but, rather, dynamically at invo-
cation time. This allows the caller to provide operation-specific context, which is a
common extensibility mechanism used in the .NET BCL.

4.3.3 Known use

The .NET BCL provides many examples of METHOD INJECTION, particularly in the System
.ComponentModel namespace.

System.ComponentModel.Design.IDesigner is used for implementing custom
design-time functionality for components. It has an Initialize method that takes an
IComponent instance so that it knows which component it’s currently helping to
design. Designers are created by IDesignerHost implementations that also take
IComponent instances as parameters to create designers:

IDesigner GetDesigner(IComponent component);

This is a good example of a scenario where the parameter itself carries information: the
component may carry information about which IDesigner to create, but at the same
time, it’s also the component upon which the designer must subsequently operate.

 Another example in the System.ComponentModel namespace is provided by the
TypeConverter class. Several of its methods take an instance of ITypeDescriptor-
Context that, as the name says, conveys information about the context of the current
operation. Because there are many such methods, I don’t want to list them all, but
here is a representative example:

public virtual object ConvertTo(ITypeDescriptorContext context,
 CultureInfo culture, object value, Type destinationType)

In this method, the context of the operation is communicated explicitly by the context
parameter while the value to be converted and the destination type are sent as separate
parameters. Implementers can use or ignore the context parameter as they see fit.

Table 4.3 METHOD INJECTION advantages and disadvantages

Advantages Disadvantages

Allows the caller to provide operation-specific context Limited applicability

114 CHAPTER 4 DI patterns
ASP.NET MVC also contains several examples of METHOD INJECTION. The IModel-
Binder interface can be used to convert HTTP GET or POST data into strongly typed
objects. Its only method is

object BindModel(ControllerContext controllerContext,
 ModelBindingContext bindingContext);

In the BindModel method, the controllerContext parameter contains information
about the operation’s context (among other things the HttpContext), whereas the
bindingContext carries more explicit information about the values received from
the browser.

 When I recommend that CONSTRUCTOR INJECTION should be your preferred DI pat-
tern, I’m assuming that you generally build applications based on frameworks. On the
other hand, if you’re building a framework, METHOD INJECTION can often be useful,
because it allows you to pass information about the context to add-ins to the frame-
work. That’s one reason why we see METHOD INJECTION used so prolifically in the BCL.

4.3.4 Example: Converting baskets

In previous examples, we’ve seen how the BasketController in the sample com-
merce application retrieves the user’s preferred currency (see sections 4.1.4 and
4.2.4). I’ll now complete the currency conversion example by converting a Basket to
the user’s currency.

Currency is an ABSTRACTION that models a currency.

public abstract class Currency
{
 public abstract string Code { get; }

 public abstract decimal GetExchangeRateFor(
 string currencyCode);
}

The Code property returns the currency code for the Currency instance. Currency
codes are expected to be international currency codes. For example, the currency
code for Danish Kroner is DKK, whereas it’s USD for US Dollars.

 The GetExchangeRateFor method returns the exchange rate between the
Currency instance and some other currency. Notice that this is an abstract method,
which means that I’m making no assumptions about how that exchange rate is going
to be found by the implementer.

 In the next section, we’ll examine how Currency instances are used to convert
prices, and how this ABSTRACTION can be implemented and wired up so that you can
convert some prices into such exotic currencies as US Dollars or Euros.

Listing 4.7 Currency

115Method Injection
INJECTING CURRENCY

You’ll use the Currency ABSTRACTION as an information-carrying DEPENDENCY to perform
currency conversions of Baskets, so you’ll add a ConvertTo method to the Basket class:

public Basket ConvertTo(Currency currency)

This will loop through all the items in the basket and convert their calculated prices to
the provided currency, returning a new Basket instance with the converted items.
Through a series of delegated method calls, the implementation is finally provided by
the Money class, as shown in the following listing.

public Money ConvertTo(Currency currency)
{
 if (currency == null)
 {
 throw new ArgumentNullException("currency");
 }
 var exchangeRate =
 currency.GetExchangeRateFor(this.CurrencyCode);
 return new Money(this.Amount * exchangeRate,
 currency.Code);
}

The Currency is injected into the ConvertTo method via the currency parameter B
and checked by the ubiquitous Guard Clause that guarantees that the currency
instance is available to the rest of the method body.

 The exchange rate to the current currency (represented by this.CurrencyCode)
is retrieved from the supplied currency and used to calculate and return the new
Money instance.

 With the implementation of the ConvertTo methods, you can finally implement
the Index method on the BasketController, as shown in the following listing.

public ViewResult Index()
{
 var currencyCode =
 this.CurrencyProfileService.GetCurrencyCode();
 var currency =
 this.currencyProvider.GetCurrency(currencyCode);

 var basket = this.basketService
 .GetBasketFor(this.User)
 .ConvertTo(currency);
 if (basket.Contents.Count == 0)
 {
 return this.View("Empty");
 }

 var vm = new BasketViewModel(basket);
 return this.View(vm);
}

Listing 4.8 Converting Money to another currency

Listing 4.9 Converting a Basket’s currency

Inject Currency
as method
parameterb

Convert the user’s
basket to the
selected currency

b

116 CHAPTER 4 DI patterns
The BasketController uses an IBasketService instance to retrieve the user’s Basket.
You may recall from chapter 2 that the IBasketService DEPENDENCY is provided to the
BasketController via CONSTRUCTOR INJECTION. Once you have the Basket instance,
you can convert it to the desired currency by using the ConvertTo method, passing in
the currency instance B.

 In this case, you’re using METHOD INJECTION because the Currency ABSTRACTION is
information-carrying, but will vary by context (depending on the user’s selection).
You could’ve implemented the Currency type as a concrete class, but that would‘ve
constrained your ability to define how exchange rates are retrieved.

 Now that we’ve seen how the Currency class is used, it’s time to change our view-
point and examine how it might be implemented.

IMPLEMENTING CURRENCY

I haven’t yet talked about how the Currency class is implemented because it’s not that
important from the point of view of METHOD INJECTION. As you may recall from
section 4.1.4, and as you can see in listing 4.9, the Currency instance is served by the
CurrencyProvider instance that was injected into the BasketController class by
CONSTRUCTOR INJECTION.

 To keep the example simple, I’ve shown what would happen if you decided to
implement CurrencyProvider and Currency using a SQL Server database and LINQ to
Entities. This assumes that the database has a table with exchange rates that has been
populated in advance by some external mechanism. You could also have used a web
service to request exchange rates from an external source.

 The CurrencyProvider implementation passes a connection string on to the
Currency implementation that uses this information to create an ObjectContext. The
heart of the matter is the implementation of the GetExchangeRateFor method, shown
in the following listing.

public override decimal GetExchangeRateFor(string currencyCode)
{
 var rates = (from r in this.context.ExchangeRates
 where r.CurrencyCode == currencyCode
 || r.CurrencyCode == this.code
 select r)
 .ToDictionary(r => r.CurrencyCode);

 return rates[currencyCode].Rate
 / rates[this.code].Rate;
}

The first thing to do is get the rates from the database. The table contains rates as
defined against a single, common currency (DKK), so you need both rates to be able
to perform a proper conversion between two arbitrary currencies. You will index the
retrieved currencies by currency code so that you can easily look them up in the final
step of the calculation.

Listing 4.10 SQL Server–backed Currency implementation

117Method Injection
 This implementation potentially performs a lot of out-of-process communication
with the database. The ConvertTo method of Basket eventually calls this method in a
tight loop, and hitting the database for each call is likely to be detrimental to perfor-
mance. I’ll return to this challenge in the next section.

4.3.5 Related patterns

Unlike the other DI patterns in this chapter, we mainly use METHOD INJECTION when we
already have an instance of the DEPENDENCY we want to pass on to collaborators, but
where we don’t know the concrete types of the collaborators at design time (such as is
the case with add-ins).

 With METHOD INJECTION, we’re on the other side of the fence compared to the other
DI patterns: we don’t consume the DEPENDENCY, but rather supply it. The types to which
we supply the DEPENDENCY have no choice in how to model DI or whether they need
the DEPENDENCY at all. They can consume it or ignore it as they see fit.

118 CHAPTER 4 DI patterns
4.4 Ambient Context
How can we make a Dependency available to every module without polluting every API with

Cross-Cutting Concerns?
BY MAKING IT AVAILABLE VIA A STATIC ACCESSOR.

A truly universal CROSS-CUTTING CONCERN can potentially pollute a large part of the API
for an application if you have to pass an instance around to every collaborator. An
alternative is to define a context that’s available to anyone who needs it and that can
be ignored by everyone else.

4.4.1 How it works
The AMBIENT CONTEXT is available to any consumer via a static property or method. A
consuming class might use it like this:

public string GetMessage()
{
 return SomeContext.Current.SomeValue;
}

In this case, the context has a static Current property that a consumer can access. This
property may be truly static, or may be associated with the currently executing thread.

 To be useful in DI scenarios, the context itself must be an ABSTRACTION and it must
be possible to modify the context from the outside—in the previous example, this
means that the Current property must be writable. The context itself might be imple-
mented as shown in the following listing.

public abstract class SomeContext
{
 public static SomeContext Current
 {
 get
 {
 var ctx =
 Thread.GetData(
 Thread.GetNamedDataSlot("SomeContext"))
 as SomeContext;

Listing 4.11 AMBIENT CONTEXT

Figure 4.8 Every module can access
an AMBIENT CONTEXT if it needs to.

Get current
context
from TLS

b

119Ambient Context
 if (ctx == null)
 {
 ctx = SomeContext.Default;
 Thread.SetData(
 Thread.GetNamedDataSlot("SomeContext"),
 ctx);
 }
 return ctx;
 }
 set
 {
 Thread.SetData(
 Thread.GetNamedDataSlot("SomeContext"),
 value);
 }
 }

 public static SomeContext Default =
 new DefaultContext();

 public abstract string SomeValue { get; }
}

The context is an abstract class, which allows us to replace one context with another
implementation at runtime.

 In this example, the Current property stores the current context in Thread Local
Storage (TLS) B, which means that every thread has its own context that’s indepen-
dent from the context of any other thread. In cases where no one has already assigned a
context to TLS, a default implementation is returned. It’s important to be able to guar-
antee that no consumer will ever get a NullReferenceException when they try to
access the Current property, so there must be a good LOCAL DEFAULT. Note that in this
case, the Default property is shared across all threads. This works because, in this exam-
ple, DefaultContext (a class that derives from SomeContext) is immutable. If the
default context was mutable, you would need to assign a separate instance to each
thread to prevent cross-thread pollution.

 External clients can assign a new context to TLS c. Notice that it’s possible to assign
null, but if this happens, the next read will automatically reassign the default context.

 The whole point of having an AMBIENT CONTEXT is to interact with it. In this exam-
ple, this interaction is represented by a solitary abstract string property d, but the
context class can be as simple or complex as is necessary.

WARNING For simplicity’s sake, I’ve skipped lightly over the thread-safety of
the code in listing 4.11. If you decide to implement a TLS-based AMBIENT CON-
TEXT, be sure that you know what you’re doing.

TIP The example in listing 4.11 uses TLS, but you can also use CallContext
to similar effect.8

8 See Mark Seemann, “Ambient Context,” 2007, http://blogs.msdn.com/ploeh/archive/2007/07/23/
AmbientContext.aspx for more information.

Save current
context in TLS

c

Value carried by
the context

D

http://blogs.msdn.com/ploeh/archive/2007/07/23/Ambient Context.aspx for more information
http://blogs.msdn.com/ploeh/archive/2007/07/23/Ambient Context.aspx for more information

120 CHAPTER 4 DI patterns
NOTE An AMBIENT CONTEXT doesn’t need to be associated with a thread or call
context. Sometimes, it makes more sense to make it apply to the entire App-
Domain by making it static.

When you want to replace the default context with a custom context, you can create a
custom implementation that derives from the context and assign it at the correct time:

SomeContext.Current = new MyContext();

For TLS-based contexts, you should assign the custom instance when you spawn the new
thread, whereas for truly universal contexts, you can assign it in a COMPOSITION ROOT.

4.4.2 When to use it

AMBIENT CONTEXT should only be used in the rarest of cases. In most cases, CONSTRUC-
TOR INJECTION or PROPERTY INJECTION is far more suitable, but you may have a true CROSS-
CUTTING CONCERN that would pollute every API in your application if you had to pass it
along to all services.

WARNING AMBIENT CONTEXT is similar in structure to the SERVICE LOCATOR anti-
pattern that I’ll describe in chapter 5. The difference is that an AMBIENT CON-
TEXT only provides an instance of a single, strongly-typed DEPENDENCY, whereas
a SERVICE LOCATOR is supposed to provide instances for every DEPENDENCY you
might request. The differences are subtle, so be sure to fully understand when
to apply AMBIENT CONTEXT before you do so. When in doubt, pick one of the
other DI patterns.

In section 4.4.4, I’ll implement a TimeProvider that can be used get the current time,
and I’ll also discuss why I prefer that to the static DateTime members. The current
time is a true CROSS-CUTTING CONCERN because you can’t predict which classes in which
layers may need it. Most classes could conceivably use the current time, but only a
small fraction are going to do so.

 This could potentially force you to write a lot of code with an extra TimeProvider
parameter, because you never know when you’re going to need it:

public string GetSomething(SomeService service,
 TimeProvider timeProvider)
{
 return service.GetStuff("Foo", timeProvider);
}

The previous method passes the TimeProvider parameter on to the service. That may
look innocuous, but when we then review the GetStuff method, we discover that it’s
never being used:

public string GetStuff(string s, TimeProvider timeProvider)
{
 return this.Stuff(s);
}

121Ambient Context
In this case, the TimeProvider parameter is being passed along as extra baggage only
because it might be needed some day. This is polluting the API with irrelevant con-
cerns and a big code smell.

AMBIENT CONTEXT can be the solution to this challenge, provided the conditions
listed in table 4.4 are met.

In most cases, the advantages of AMBIENT CONTEXT don’t justify the disadvantages, so
make sure that you can satisfy all of these conditions, and if you can’t, consider other
alternatives.

By far the greatest disadvantage of AMBIENT CONTEXT is its implicitness, but, as
listing 4.11 suggests, it can also be hard to implement correctly, and there may even be
issues with certain runtime environments (ASP.NET).

 In the next sections, we’ll take a more detailed look at each of the disadvantages
in table 4.5.

Table 4.4 Conditions for implementing AMBIENT CONTEXT

Condition Description

You need the
context to be
queryable.

If you only need to write some data (all methods on the context would return void),
INTERCEPTION is a better solution. This may seem like a rare case to you, but it’s quite
common: log that something happened, record performance metrics, assert that the
security context is uncompromised—all such actions are pure Assertions9 that are
better modeled with INTERCEPTION.
You should only consider using an AMBIENT CONTEXT if you need to query it for some
value (like the current time).

A proper LOCAL
DEFAULT exists.

The existence of an AMBIENT CONTEXT is implicit (more on this to follow), so it’s impor-
tant that the context just works—even in the cases where it was never explicitly
assigned.

It must be
guaranteed
available.

Even with a proper LOCAL DEFAULT, it’s still important to ensure that it’s impossible to
assign null, which would make the context unavailable and all clients throw
NullReferenceExceptions. Listing 4.11 shows some of the steps you can
take to ensure this.

9 Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software (New York: Addison-Wesley, 2004),
255.

Table 4.5 AMBIENT CONTEXT advantages and disadvantages

Advantages Disadvantages

Doesn’t pollute APIs
Is always available

Implicit
Hard to implement correctly
May not work well in certain runtimes

122 CHAPTER 4 DI patterns
IMPLICITNESS

When an AMBIENT CONTEXT is in play, it’s impossible to tell
whether a given class uses it just by looking at its interface.

 Consider the class shown in figure 4.9: it shows no outward
sign of using an AMBIENT CONTEXT, yet the GetMessage method
is implemented like this:

public string GetMessage()
{
 return SomeContext.Current.SomeValue;
}

When the AMBIENT CONTEXT is correctly implemented, you can
at least expect that no exceptions will be thrown, but in this
example, the context impacts the behavior of the method because it determines the
return value. If the context changes, the behavior may change, and you may not ini-
tially understand why this is the case.

NOTE In Domain-Driven Design, Eric Evans discusses Intention-Revealing Inter-
faces,10 which captures the notion that an API should communicate what
it does by its public interface alone. When a class uses an AMBIENT CONTEXT it
does exactly the opposite: your only chances of knowing that this is the case
are by reading the documentation or perusing the code itself.

Apart from the potential for subtle bugs, this implicitness also makes it hard to dis-
cover a class’s extensibility points. An AMBIENT CONTEXT enables you to inject custom
behavior into any class that uses it, but it’s not apparent that this may be so. You can
only discover this by reading the documentation or understanding the implementa-
tion in far more detail than you might have wanted.

IMPLEMENTATION IS TRICKY

Properly implementing an AMBIENT CONTEXT can be challenging. At the very least, you
must guarantee that the context is always in a consistent state—that is, it must not
throw any NullReferenceExceptions only because one context implementation was
removed without replacing it with another.

 To ensure that, you must have a suitable LOCAL DEFAULT which can be used if no
other implementation was explicitly defined. In listing 4.11, I used lazy initialization
of the Current property, because C# doesn’t enable thread-static initializers.

 When the AMBIENT CONTEXT represents a truly universal concept, such as time, you
can get by with a simple writable Singleton11—a single instance that’s shared across
the entire AppDomain. I’ll show you an example of this in section 4.4.4.

 An AMBIENT CONTEXT can also represent a context that varies by the call stack’s con-
text, such as who initiated the request. We see that often in web application and web
services, where the same code executes in context of many different users—each on

10 Evans, Domain-Driven Design, 246.
11 Gamma, Design Patterns, 127.

Figure 4.9 The class
and its GetMessage
method show no
outward sign of using
an AMBIENT CONTEXT,
yet this may very well
be the case.

123Ambient Context
their own thread. In this case, the AMBIENT CONTEXT can have affinity with the currently
executing thread and be stored in TLS, as we saw in listing 4.11, but this leads to other
issues, particularly with ASP.NET.

CHALLENGES WITH ASP.NET
When an AMBIENT CONTEXT uses TLS, there can be issues with ASP.NET, because it may
change threads at certain points in the page lifecycle, and there’s no guarantee that
anything stored in TLS will be copied from the old to the new thread.

 When this is the case, you should use the current HttpContext to store request-
specific data instead of TLS.

 This thread-switching behavior isn’t an issue when the AMBIENT CONTEXT is a univer-
sally shared instance, because a Singleton is shared across all threads in an AppDomain.

4.4.3 Known use

The .NET BCL contains a few AMBIENT CONTEXT implementations.
 Security is addressed with the System.Security.Principal.IPrincipal interface

that’s associated with every thread. You can get or set the current principal for the
thread with the Thread.CurrentPrincipal accessor.

 Another AMBIENT CONTEXT based on TLS models the current culture of the thread.
Thread.CurrentCulture and Thread.CurrentUICulture allows you to access and
modify the cultural context of the current operation. Many formatting APIs, such as
parsing and converting value types, implicitly use the current culture if one isn’t
explicitly provided.

 Tracing provides an example of a universal AMBIENT CONTEXT. The Trace class
isn’t associated with a particular thread, but is truly shared across an entire App-
Domain. You can write a trace message from anywhere with the Trace.Write method
and have it written to any number of TraceListeners configured by the Trace
.Listeners property.

4.4.4 Example: Caching Currency

The Currency ABSTRACTION in the sample commerce application from the previous
sections is about as chatty an interface as it can be. Every time you want to convert a
currency, you call the GetExchangeRateFor method that potentially looks up the
exchange rate in some external system. This is a flexible API design because you can
look up the rate with close to real-time precision if you need it, but in most cases, this
won’t be necessary and is more likely to become a performance bottleneck.

 The SQL Server–based implementation I exhibited in listing 4.10 certainly per-
forms a database query every single time you ask it about an exchange rate. When the
application displays a shopping basket, each item in the basket is being converted, so
this leads to a database query for every item in the basket even though the rate is
unlikely to change from the first to the last item. It would be better to cache the
exchange rate for a little while so that the application doesn’t need to hit the database
about the same rate several times within the same fraction of a second.

124 CHAPTER 4 DI patterns
 Depending on how important it is to have current currencies, the cache timeout
can be short or long: cache for a single second or for hours. The timeout should be
configurable.

 To determine when to expire a cached currency, you need to know how much time
went by since the currency was cached, so you need access to the current time. Date-
Time.UtcNow seems like a built-in AMBIENT CONTEXT, but it’s not, because you can’t
assign the time—only query it.

 The inability to redefine the current time is rarely an issue in a production applica-
tion, but can be an issue when unit testing.

In the case of the sample commerce application, I want to be able to control time
when I write unit tests so that I can verify that the cached currencies expire correctly.

Time simulations
Whereas the average web-based application is unlikely to need the ability to modify
the current time, another type of application can benefit greatly from this ability.

I once wrote a rather complex simulation engine that depended on the current time.
Because I always use Test-Driven Development (TDD), I had already used an ABSTRAC-
TION of the current time so I could inject DateTime instances that were different from
the actual machine time. This turned out to be a huge advantage when I later needed
to accelerate time in the simulation by several orders of magnitude. All I had to do
was to register a time provider that accelerated time, and the entire simulation imme-
diately sped up.

If you want to see a similar feature in effect, you can take a look at the WorldWide
Telescope12 client application that allows you to simulate the night sky in accelerated
time. The figure below shows a screen shot of the control that allows you to run time
forward and backward at different speeds. I have no idea whether the developers
behind that particular feature implemented it by using an ambient time provider, but
that’s what I would do.

12 http://www.worldwidetelescope.org

WorldWide Telescope allows you to pause time
or move forward or backward in time at
different speeds. This simulates how the night
sky looks at different times.

http://www.worldwidetelescope.org

125Ambient Context
TIMEPROVIDER

Time is a pretty universal concept (even if time moves at different speeds in different
parts of the universe), so I can model it as a generally shared resource. Because there’s
no reason to have separate time providers per thread, the TimeProvider AMBIENT CON-
TEXT is a writable Singleton, as shown in the following listing.

public abstract class TimeProvider
{
 private static TimeProvider current;

 static TimeProvider()
 {
 TimeProvider.current =
 new DefaultTimeProvider();
 }

 public static TimeProvider Current
 {
 get { return TimeProvider.current; }
 set
 {
 if (value == null)
 {
 throw new ArgumentNullException("value");
 }
 TimeProvider.current = value;
 }
 }

 public abstract DateTime UtcNow { get; }

 public static void ResetToDefault()
 {
 TimeProvider.current =
 new DefaultTimeProvider();
 }
}

The purpose of the TimeProvider class is to enable you to control how time is communi-
cated to clients. As described in table 4.4, a LOCAL DEFAULT is important, so you statically
initialize the class to use the DefaultTimeProvider class (I’ll show you that shortly) B.

 Another condition from table 4.4 is that you must guarantee that the TimePro-
vider can never be in an inconsistent state. The current field must never be allowed
to be null, so a Guard Clause guarantees that this isn’t possible c.

 All of this is scaffolding to make the TimeProvider easily accessible from anywhere.
Its raison d’être is its ability to serve DateTime instances representing the current time d.
I purposefully modeled the name and signature of the abstract property after Date-
Time.UtcNow. If necessary, I could also have added such abstract properties as Now and
Today, but I don’t need them for this example.

Listing 4.12 TimeProvider AMBIENT CONTEXT

Initialize to default
TimeProvider

b

Guard
Clause

c

The important
partd

126 CHAPTER 4 DI patterns
 Having a proper and meaningful LOCAL DEFAULT is important, and luckily it’s not
hard to think of one in this example because it should simply return the current time.
That means that, unless you explicitly go in and assign a different TimeProvider, any
client using TimeProvider.Current.UtcNow will get the real current time.

 The implementation of DefaultTimeProvider can be seen in the following listing.

public class DefaultTimeProvider : TimeProvider
{
 public override DateTime UtcNow
 {
 get { return DateTime.UtcNow; }
 }
}

The DefaultTimeProvider class derives from TimeProvider to provide the real time
any time a client reads the UtcNow property.

 When CachingCurrency uses the TimeProvider AMBIENT CONTEXT to get the cur-
rent time, it will get the real current time unless you specifically assign a different
TimeProvider to the application—and I only plan to do this in my unit tests.

CACHING CURRENCIES

To implement cached currencies, you’re going to implement a Decorator that modi-
fies a “proper” Currency implementation.

NOTE The Decorator13 design pattern is an important part of INTERCEPTION;
I’ll discuss it in greater detail in chapter 9.

Instead of modifying the existing SQL Server–backed Currency implementation shown
in listing 4.10, you’ll wrap the cache around it and only invoke the real implementation
if the cache has expired or doesn’t contain an entry.

 As you may recall from section 4.1.4, a CurrencyProvider is an abstract class that
returns Currency instances. A CachingCurrencyProvider implements the same base
class and wraps the functionality of a contained CurrencyProvider. Whenever it’s
asked for a Currency, it returns a Currency created by the contained Currency-
Provider, but wrapped in a CachingCurrency (see figure 4.10).

Listing 4.13 Default time provider

13 Gamma, Design Patterns, 175.

Figure 4.10 A CachingCurrencyProvider wraps a “real” CurrencyProvider and
returns CachingCurrency instances that wrap “real” Currency instances.

127Ambient Context
TIP The Decorator pattern is one of the best ways to ensure Separation of
Concerns.

This design enables me to cache any currency implementation, and not only the SQL
Server–based implementation I currently have. Figure 4.12 shows the outline of the
CachingCurrency class.

CachingCurrency uses CONSTRUCTOR INJECTION to get the “real” instance whose
exchange rates it should cache. For example, CachingCurrency delegates its Code
property to the inner Currency’s Code property.

 The interesting part of the CachingCurrency implementation is its GetExchange-
RateFor method exhibited in the following listing.

private readonly Dictionary<string, CurrencyCacheEntry> cache;

public override decimal GetExchangeRateFor(string currencyCode)
{
 CurrencyCacheEntry cacheEntry;
 if ((this.cache.TryGetValue(currencyCode,
 out cacheEntry))
 && (!cacheEntry.IsExpired))
 {
 return cacheEntry.ExchangeRate;
 }

Listing 4.14 Caching the exchange rate

Figure 4.11 Caching-
Currency takes an inner
currency and a cache timeout in
its constructor and wraps the
inner currency’s functionality.

Return cached
exchange rate if
appropriate

b

128 CHAPTER 4 DI patterns
 var exchangeRate =
 this.innerCurrency
 .GetExchangeRateFor(currencyCode);

 var expiration =
 TimeProvider.Current.UtcNow + this.CacheTimeout;
 this.cache[currencyCode] =
 new CurrencyCacheEntry(exchangeRate, expiration);

 return exchangeRate;
}

When a client asks for an exchange rate, you first intercept the call to look up the
currency code in the cache. If there’s an unexpired cache entry for the requested cur-
rency code, you return the cached exchange rate and the rest of the method is
skipped B. I’ll get back to the part about evaluating whether the entry has expired a
bit later.

 Only if there was no unexpired cached exchange rate do you invoke the inner
Currency to get the exchange rate. Before you return it, you need to cache it. The first
step is to calculate the expiration time, and this is where you use the TimeProvider
AMBIENT CONTEXT, instead of the more traditional DateTime.Now. With the expiration
time calculated, you can now cache the entry c before returning the result.

 Calculating whether a cache entry has expired is also done using the Time-
Provider AMBIENT CONTEXT:

return TimeProvider.Current.UtcNow >= this.expiration;

The CachingCurrency class uses the TimeProvider AMBIENT CONTEXT in all places
where it needs the current time, so writing a unit test that precisely controls time
is possible.

MODIFYING TIME

When unit testing the CachingCurrency class, you can now accurately control how
time seems to pass totally irrespective of the real system clock. That enables you to
write deterministic unit tests even though the System Under Test (SUT) depends on
the concept of the current time. The next listing shows a test that verifies that even
though the SUT is asked for an exchange rate four times, only twice is the inner cur-
rency invoked: at the first call, and again when the cache expires.

[Fact]
public void InnerCurrencyIsInvokedAgainWhenCacheExpires()
{
 // Fixture setup
 var currencyCode = "CHF";
 var cacheTimeout = TimeSpan.FromHours(1);

 var startTime = new DateTime(2009, 8, 29);

Listing 4.15 Unit testing that a currency is correctly cached and expired

Cache
exchange rate

c

129Ambient Context
 var timeProviderStub = new Mock<TimeProvider>();
 timeProviderStub
 .SetupGet(tp => tp.UtcNow)
 .Returns(startTime);
 TimeProvider.Current = timeProviderStub.Object;

 var innerCurrencyMock = new Mock<Currency>();
 innerCurrencyMock
 .Setup(c => c.GetExchangeRateFor(currencyCode))
 .Returns(4.911m)
 .Verifiable();

 var sut =
 new CachingCurrency(innerCurrencyMock.Object,
 cacheTimeout);
 sut.GetExchangeRateFor(currencyCode);
 sut.GetExchangeRateFor(currencyCode);
 sut.GetExchangeRateFor(currencyCode);

 timeProviderStub
 .SetupGet(tp => tp.UtcNow)
 .Returns(startTime + cacheTimeout);
 // Exercise system
 sut.GetExchangeRateFor(currencyCode);
 // Verify outcome
 innerCurrencyMock.Verify(
 c => c.GetExchangeRateFor(currencyCode),
 Times.Exactly(2));
 // Teardown (implicit)
}

JARGON ALERT The following text contains some unit testing terminology—I
have emphasized it with italics, but because this isn’t a book about unit test-
ing, I’ll refer you to the book xUnit Test Patterns14 that is the source of all these
pattern names.

One of the first things to do in this test is to set up a TimeProvider Test Double that will
return DateTime instances as defined, instead of based on the system clock. In this
test, I use a dynamic mock framework called Moq15 to define that the UtcNow property
should return the same DateTime until told otherwise. When defined, this Stub is
injected into the AMBIENT CONTEXT B.

 The first call to GetExchangeRateFor should invoke the CachingCurrency’s inner
Currency, because nothing has yet been cached c, whereas the two next calls should
return the cached value d, because time is currently not passing at all according to
the TimeProvider Stub.

 With a couple of calls cached, it’s now time to let time advance; you modify
the TimeProvider Stub to return a DateTime instance that’s exactly past the cache time-
out e and invoke the GetExchangeRateFor method again f, expecting it to invoke

14 Gerard Meszaros, xUnit Test Patterns: Refactoring Test Code (New York: Addison-Wesley, 2007).
15 http://code.google.com/p/moq/

Set TimeProvider
Ambient Context

b

Should call
inner currency

c

Should be
cached

d

Advance time
past timeout

e

Should call
inner

currency

f

Verify that inner
currency was
invoked correctly

g

http://code.google.com/p/moq/

130 CHAPTER 4 DI patterns
the inner Currency for the second time because the original cache entry should now
have expired.

 Because you expect the inner Currency to have been invoked twice, you finally ver-
ify that this was the case by telling the inner Currency Mock that the GetExchange-
RateFor method should have been invoked exactly twice g.

 One of the many dangers of AMBIENT CONTEXT is that once it’s assigned, it stays that
way until modified again, but due to its implicit nature, this can be easy to forget. In
the unit test, for example, the behavior defined by the test in listing 4.15 stays like that
unless explicitly reset (which I do in a Fixture Teardown). This could lead to subtle bugs
(this time in my test code) because that would spill over and pollute the tests that exe-
cute after that test.

AMBIENT CONTEXT looks deceptively simple to implement and use, but can lead to
many difficult-to-locate bugs. There’s a place for it, but use it only where no better
alternative exists. It’s like horseradish: great for certain things, but definitely not uni-
versally applicable.

4.4.5 Related patterns

AMBIENT CONTEXT can be used to model a CROSS-CUTTING CONCERN, although it requires
that we have a proper LOCAL DEFAULT.

 If it turns out that the DEPENDENCY isn’t a CROSS-CUTTING CONCERN after all, you
should change the DI strategy. If you still have a LOCAL DEFAULT you can switch to PROP-
ERTY INJECTION, but otherwise, you must change to CONSTRUCTOR INJECTION.

131Summary
4.5 Summary
The patterns presented in this chapter are a central part of DI. Armed with a COMPOSI-
TION ROOT and an appropriate mix of the DI patterns, you can implement POOR MAN’S DI.
When applying DI, there are many nuances and fine details to learn, but the patterns
cover the core mechanics that answer the question, how do I inject my Dependencies?

 These patterns aren’t interchangeable. In most cases, your default choice should
be CONSTRUCTOR INJECTION, but there are situations where one of the other patterns
affords a better alternative. Figure 4.12 shows a decision process that can help you
decide on a proper pattern, but if in doubt, choose CONSTRUCTOR INJECTION—you can
never go horribly wrong with that choice.

 The first thing to examine is whether the DEPENDENCY is something you need or
something you already have but wish to communicate to another collaborator. In most
cases, you probably need the DEPENDENCY, but in add-in scenarios, you may wish to con-
vey the current context to an add-in. Every time the DEPENDENCY may vary from opera-
tion to operation, METHOD INJECTION is a good candidate for an implementation.

Figure 4.12 In most cases, you should end up choosing CONSTRUCTOR INJECTION, but there are situations
where one of the other DI patterns is a better fit.

132 CHAPTER 4 DI patterns
When the DEPENDENCY represents a CROSS-CUTTING CONCERN, the best pattern fit depends
on the direction of communication. If you only need to record something (for exam-
ple, the length of time an operation took, or what values were being passed in) INTER-
CEPTION (which I’ll discuss in chapter 9) is the best fit. It also works well if the answer
you need from it is already included in the interface definition. Caching is an excel-
lent example of this latter use of INTERCEPTION.

 If you need to query the CROSS-CUTTING DEPENDENCY for a response not included in
the original interface, you can use AMBIENT CONTEXT only if you have a proper LOCAL

DEFAULT that enables you to package the context itself with a reasonable default behav-
ior that works for all clients without explicit configuration.

 When the DEPENDENCY doesn’t represent a CROSS-CUTTING CONCERN, a LOCAL DEFAULT

is once more the deciding factor, as it can make explicitly assigning the DEPENDENCY

optional—the default takes over if no overriding implementation is specified. This
scenario can be effectively implemented with PROPERTY INJECTION.

 In any other cases, the CONSTRUCTOR INJECTION pattern applies. As illustrated in fig-
ure 4.12, it looks as though CONSTRUCTOR INJECTION is a last-ditch pattern that only
comes into play when all else fails. This is only partly true, because in most cases the
specialized patterns don’t apply, and by default CONSTRUCTOR INJECTION is the pattern
left on the field. It’s easy to understand and much simpler to implement robustly than
any of the other DI patterns. You can build entire applications with CONSTRUCTOR INJEC-
TION alone, but knowing about the other patterns can help you choose wisely in the
few cases where it doesn’t fit perfectly.

 This chapter contained a systematic catalog that explained how you should inject
DEPENDENCIES into your classes. The next chapter approaches DI from the opposite
direction and takes a look at how not to go about it.

DI anti-patterns
Gastronomically speaking, Denmark was a developing country in the 1970s—I was
there, but I never suffered because I didn’t know any better. The staple was meat
and potatoes, but foreign ideas were slowly being integrated—I think part of the
reason was that it was also the dawn of the era of mass tourism.

 Danes traveled south to other parts of Europe in increasing numbers, and the
most adventurous sampled the local food. Back home, pasta became increasingly
popular among the younger generation, but no Italian would have recognized the
Danish version of bolognese sauce.

 Here’s what I imagine happened. Some enterprising Danish tourist liked taglia-
telle alla bolognese so much that that she decided to try to make it when she got
home. (I’m assuming it was a woman because men didn’t cook much back then.)
She did her best to remember what went into the sauce, but this wasn’t easy on the
long bus ride back to Denmark.

Menu
■ CONTROL FREAK

■ BASTARD INJECTION

■ CONSTRAINED CONSTRUCTION

■ SERVICE LOCATOR
133

134 CHAPTER 5 DI anti-patterns
 As far as ingredients go, the pancetta and red wine were forgotten before she left
Italy, the broth and chicken liver were lost from memory somewhere in Austria or
Switzerland, and most of the vegetables were one by one dropped during the long
haul through (West) Germany. As she crossed the Danish border, what was left of the
original recipe were chopped onions and minced meat served with the only type of
pasta readily available in Denmark at the time: spaghetti.

 We ate the resulting dish for years and liked it. At some time during the 1980s,
tomato paste and oregano were added to the recipe to make it more authentic. This
was more or less the recipe I used for more than a decade until someone pointed out
to me that it might benefit from some carrots, celery, chicken liver, red wine, and so on.

 The point of the story is that I thought I was making ragù alla bolognese whereas in
reality I wasn’t even close. It never occurred to me to question the authenticity of the
recipe because I grew up with it. Although authenticity isn’t the ultimate yardstick,
the authentic recipe tastes much better and I’m not going back to my old ways.

 In the previous chapter, I briefly compared design patterns to recipes. A pattern
provides a common language we can use to succinctly discuss a complex concept—
and ragù alla bolognese is such a concept, because we can discuss how it fits with tagli-
atelle or lasagna. On the other hand, when the concept (or rather, the implementa-
tion) becomes warped, we have an anti-pattern on our hands.

DEFINITION An anti-pattern is a description of a commonly occurring solu-
tion to a problem that generates decidedly negative consequences.1

Anti-patterns are often caused by ignorance (as with my bolognese sauce) and are
something to avoid, and knowing about these common traps can help you avoid
them. They’re a more or less formalized way of describing common mistakes that peo-
ple make again and again, independently of each other.

 In this chapter, I’ll describe some common anti-patterns related to DI. During my
career, I’ve seen all of them in use in one form or other, and I’ve been guilty of apply-
ing more than one of them myself. In many cases, they represented sincere attempts
at DI for an application; but without fully understanding DI fundamentals, the imple-
mentations derailed into solutions that did more harm than good.

 Learning about these anti-patterns should give you an idea about what traps to be
aware of as you venture into your first DI projects. Your mistakes won’t look exactly like
mine or the examples presented here, but this chapter will show you the danger signs.

 Anti-patterns can be fixed by refactoring the code toward one of the DI patterns
introduced in chapter 4. Exactly how difficult it is to fix each occurrence depends on
the details of the implementation, but for each anti-pattern I’ll supply some general-
ized guidance on how to refactor it toward a pattern.

1 William J. Brown et al., AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis (New York: Wiley
Computer Publishing), 1998, 7.

135DI anti-patterns
TIP My coverage of refactoring from DI anti-pattern to DI pattern is con-
strained by the space of this chapter, because it isn’t the main topic of this
book. If you’re interested in learning more about how you can move an exist-
ing application in the direction of DI, an entire book discusses refactoring
such applications: Working Effectively with Legacy Code.2 Although it doesn’t deal
exclusively with DI, it covers many of the same concepts I do here.

The anti-patterns covered in this chapter are
listed in table 5.1. Figure 5.1 illustrates the
structure of the chapter.

WARNING This chapter is different from
the other chapters because most of the
code I’ll show you gives examples of how not
to implement DI. Don’t try this at home!

Just as CONSTRUCTOR INJECTION is the most
important DI pattern, CONTROL FREAK is the
most dominating of the anti-patterns. It effec-
tively prevents you from applying any kind of
proper DI, so you’ll need to focus your energy
on this anti-pattern before you address the
others. On the other hand, SERVICE LOCATOR is
the most dangerous because it looks like it’s
actually solving a problem.

The rest of this chapter describes each anti-pattern in greater detail. You can read
from start to finish or read about only the ones you’re interested in—each has a self-
contained section. However, if you decide to read about only one anti-pattern, you
should focus your attention on CONTROL FREAK.

2 Michael Feathers, Working Effectively with Legacy Code (New York: Prentice Hall, 2004).

Table 5.1 DI anti-patterns

Anti-pattern Description

CONTROL FREAK DEPENDENCIES are controlled directly, as opposed to INVERSION OF CONTROL.

BASTARD INJECTION FOREIGN DEFAULTS are used as default values for DEPENDENCIES.

CONSTRAINED CONSTRUCTION Constructors are assumed to have a particular signature.

SERVICE LOCATOR An implicit service can serve DEPENDENCIES to consumers but isn’t guaran-
teed to do so.

Figure 5.1 This chapter takes the form of a
catalog of anti-patterns. Each anti-pattern is
written to be read independently of the other
anti-patterns.

136 CHAPTER 5 DI anti-patterns
5.1 Control Freak
What is the opposite of INVERSION OF CONTROL? Originally the term INVERSION OF CON-
TROL was coined to identify the opposite of the normal state of affairs, but we can’t
very well talk about the Business as Usual anti-pattern. Instead, after much delibera-
tion, I named it CONTROL FREAK to describe a class that won’t relinquish control of
its DEPENDENCIES.

 This happens every time we create a new instance of a type by using the new key-
word. When we do that, we explicitly state that we’re going to control the lifetime of
the instance and that no one else will get a chance to intercept that particular object.

TIP The number of times the new keyword is used in code is a very rough indi-
cation of how tightly coupled that code is.

The CONTROL FREAK anti-pattern occurs every time we get an instance of a DEPENDENCY by
directly or indirectly using the new keyword in any place other than a COMPOSITION ROOT.

NOTE Although the new keyword is a code smell when it comes to VOLATILE

DEPENDENCIES, you don’t need to worry about using it for STABLE DEPENDENCIES.
The new keyword isn’t suddenly “illegal” in general, but you should refrain
from using it to get instances of VOLATILE DEPENDENCIES.

The most blatant example of CONTROL FREAK is when we make no effort to introduce
ABSTRACTIONS in our code. You saw several examples of that in chapter 2 when Mary
implemented her commerce application (section 2.1.1). Such an approach makes no
attempt to introduce DI; but even where developers have heard about DI and compos-
ability, the CONTROL FREAK anti-pattern can often be found in some variation.

 In the next sections, I’ll show you some examples that resemble code I’ve seen in
production use. In every case, the developers had the best intentions of programming to
interfaces but never really understood the underlying forces and motivations.

5.1.1 Example: newing up Dependencies

Many developers have heard about the principle of programming to interfaces but don’t
understand the deeper rationale behind it. In an attempt to do the right thing or fol-
low best practices, they write code that doesn’t make much sense.

 In chapter 2, you saw an example of a ProductService that uses an instance of the
abstract ProductRepository class (listing 2.6) to retrieve a list of featured products.
As a reminder, here is the relevant method in essence:

public IEnumerable<Product> GetFeaturedProducts(IPrincipal user)
{
 return from p in this.repository.GetFeaturedProducts()
 select p.ApplyDiscountFor(user);
}

Compared to listing 2.6, I’ve omitted a Guard Clause, but the salient point is that the
repository member variable represents an abstract class. In chapter 2, you saw how

137Control Freak
the repository field can be populated via CONSTRUCTOR INJECTION, but I’ve seen other,
more naïve attempts, such as the following.

private readonly ProductRepository repository;

public ProductService()
{
 string connectionString =
 ConfigurationManager.ConnectionStrings
 ["CommerceObjectContext"].ConnectionString;

 this.repository =
 new SqlProductRepository(connectionString);
}

The repository field is declared as the abstract ProductRepository class so any
member in the ProductService class (such as GetFeaturedProducts) will be pro-
gramming to an interface. Although this sounds like the right thing to do, not much
is gained from doing so, because at runtime, the type will always be a SqlProduct-
Repository B. There is no way you can intercept or change the repository variable
unless you change the code and recompile.

 You don’t gain much by defining a variable as an interface or abstract class if you
hard-code it to always have a specific concrete type. The only small benefit is that the con-
crete type is defined in just one or a few places in the code, so replacing one concrete
implementation with another need not require major refactoring. In this example, you
would only need to new up a different implementation of ProductRepository in the con-
structor B while the rest of the ProductService would work without modification.

 Directly newing up DEPENDENCIES is just one example of the CONTROL FREAK anti-
pattern. Before I get to the analysis and possible ways to fix the problems generated by
CONTROL FREAK, let’s look at some more examples to give you a better idea of the con-
text and common failed attempts to address some of the resulting issues.

 In this particular example, it’s apparent that the solution isn’t optimal. Most devel-
opers will attempt to refine their approach, as you’ll see in the next example.

5.1.2 Example: Factory

The most common (erroneous) attempt to fix the evident problems from newing up
DEPENDENCIES involves a factory of some sort. There are several options when it comes
to factories, and I’ll quickly cover each of the following:

■ Concrete Factory
■ Abstract Factory
■ Static Factory

If told that she could only deal with the abstract ProductRepository class, Mary
Rowan (from chapter 2) would introduce a ProductRepositoryFactory that would
produce the instances she needs to get the job done. Let’s listen in as she discusses the

Listing 5.1 newing up a ProductRepository

Directly create
a new instance

b

138 CHAPTER 5 DI anti-patterns
approach with her colleague Jens—I predict that their discussion conveniently will
cover the factory options I listed:

MARY: We need an instance of ProductRepository in this ProductService class. However,
ProductRepository is abstract, so we can’t just create new instances of it, and our
consultant says that we shouldn’t just create new instances of SqlProductRepository either.

JENS: What about some sort of factory?

MARY: Yes, I was thinking the same thing, but I’m not sure how to proceed. I don’t understand how
it solves our problem. Look here…

Mary starts to write some code to demonstrate her problem.

CONCRETE FACTORY

This is the code that Mary writes:

public class ProductRepositoryFactory
{
 public ProductRepository Create()
 {
 string connectionString =
 ConfigurationManager.ConnectionStrings
 ["CommerceObjectContext"].ConnectionString;
 return new SqlProductRepository(connectionString);
 }
}

MARY: This ProductRepositoryFactory encapsulates knowledge about how to create
ProductRepository instances, but it doesn’t solve the problem because we would have to
use it in the ProductService like this:

var factory = new ProductRepositoryFactory();
this.repository = factory.Create();

See? Now we just have to create a new instance of the ProductRepositoryFactory class
in the ProductService, but that still hard-codes the use of SqlProductRepository. The
only thing we have achieved is moving the problem into another class.

JENS: Yes, I see… Couldn’t we solve the problem with an Abstract Factory instead?

Let’s pause Mary’s and Jens’ discussion to evaluate what happened. Mary is entirely
correct that a Concrete Factory class doesn’t solve the CONTROL FREAK issue but only
moves it around. It makes the code more complex without adding any value. The
ProductService now directly controls the lifetime of the factory, and the factory
directly controls the lifetime of the ProductRepository, so we still can’t intercept or
replace the repository instance at runtime.

NOTE Don’t conclude from this section that I generally oppose the use of
Concrete Factory classes. A Concrete Factory can solve other problems, such
as code repetition, by encapsulating complex creation logic. It just doesn’t
provide any value with regard to DI. Use it when it makes sense.

139Control Freak
It’s fairly evident that a Concrete Factory won’t solve any DI problems, and I don’t
think I’ve ever seen it used in this fashion. Jens’ comment about Abstract Factory
sounds more promising.

ABSTRACT FACTORY

Let’s resume Mary’s and Jens’ discussion and hear what Jens has to say about Abstract
Factory:

JENS: What if we made the factory abstract, like this?

public abstract class ProductRepositoryFactory
{
 public abstract ProductRepository Create();
}

This means we haven’t hard-coded any references to SqlProductRepository, and we can
use the factory in the ProductService to get instances of ProductRepository.

MARY: But now that the factory is abstract, how do we get a new instance of it?

JENS: We create an implementation of it that returns SqlProductService instances.

MARY: Yes, but how do we create an instance of that?

JENS: We just new it up in the ProductService… Oh. Wait…

MARY: That would just put us back where we started.

Mary and Jens quickly realize that an Abstract Factory doesn’t change their situation.
Their original conundrum was that they needed an instance of the abstract Product-
Repository class, and now instead they need an instance of the abstract Product-
RepositoryFactory.

Abstract Factory
Abstract Factory is one of the design patterns from the original Design Patterns book.3

It’s useful in relation to DI because it can encapsulate complex logic that creates
other DEPENDENCIES.

It offers a good alternative to the complete transfer of control that’s involved in full
INVERSION OF CONTROL, because it partially allows the consumer to control the lifetime
of the DEPENDENCIES created by the factory; the factory still controls what is being cre-
ated and how creation happens.

The Abstract Factory pattern is more common than you may realize—the names of
the classes involved often hide this fact. The CurrencyProvider class introduced in
section 4.1.4 is actually an Abstract Factory with another name: it’s an abstract class
that creates instances of another abstract class (Currency).

In section 6.1, we’ll return to the Abstract Factory pattern to see how it can help
address a type of problem that often occurs with DI.

3 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (New York: Addison-Wesley,
1994), 87.

140 CHAPTER 5 DI anti-patterns
Ironically, Mary and Jens dismiss the only factory implementation that wouldn’t be
harmful for them. On the other hand, it wouldn’t solve their problem either; and
because the creation logic for ProductRepository instances isn’t expected to be com-
plex, it wouldn’t add any value.

 Now that Mary and Jens have rejected the only safe factory implementation, just
one damaging option is still open.

STATIC FACTORY

Mary and Jens are about to reach a conclusion. Let’s listen as they decide on an
approach that they think will work:

MARY: Let’s make a Static Factory. Let me show you:

public static class ProductRepositoryFactory
{
 public static ProductRepository Create()
 {
 string connectionString =
 ConfigurationManager.ConnectionStrings
 ["CommerceObjectContext"].ConnectionString;
 return new SqlProductRepository(connectionString);
 }
}

Now that the class is static, we don’t need to deal with how to create it.

JENS: But we’ve still hard-coded that we return SqlProductRepository instances, so does it
help us in any way?

MARY: We could deal with this via a configuration setting that determines which type of
ProductRepository to create. Like this:

public static ProductRepository Create()
{
 var repositoryType =
 ConfigurationManager.AppSettings["productRepository"];
 switch (repositoryType)
 {
 case "sql":
 return ProductRepositoryFactory.CreateSql();
 case "azure":
 return ProductRepositoryFactory.CreateAzure();
 default:
 throw new InvalidOperationException("...");
 }
}

See? This way we can determine whether we should use the SQL Server–based
implementation or the Windows Azure–based implementation, and we don’t even need to
recompile the application to change from one to the other.

JENS: Cool! That’s what we’ll do. That consultant must be happy now!

There are several reasons why such a Static Factory doesn’t provide a satisfactory solu-
tion to the original goal of programming to interfaces. Let’s look at the dependency
graph in figure 5.2.

141Control Freak
All classes need to reference the abstract ProductRepository class:

■ ProductService because it consumes ProductRepository instances
■ ProductRepositoryFactory because it exposes ProductRepository instances
■ AzureProductRepository and SqlProductRepository because they implement

ProductRepository

ProductRepositoryFactory depends on both the AzureProductRepository and
SqlProductRepository classes. Because ProductService directly depends on Product-
RepositoryFactory, it also depends on both concrete ProductRepository imple-
mentations.

I’m not making this up
If I were the consultant in this example, I wouldn’t be at all happy. In fact, such a
“solution” was suggested on a project I was involved with, and I ended up writing a
14-page document describing why it wouldn’t work and what to do instead.

This was a pretty big project that targeted a central business area of a Fortune 500 com-
pany, so proper modularization was important due to the complexity of the application.
Unfortunately, I became involved with the project too late, and my suggestions were dis-
missed because they involved dramatic changes to the already-developed code base.

I moved on to other projects, but I later learned that although the team managed
to deliver enough to fulfill the contract, the project was considered a failure and
heads rolled.

It would be unreasonable for me to claim that the project failed only because DI
wasn’t employed, but the approach taken was symptomatic of a lack of proper
design. I can’t say I was surprised to learn that the project didn’t succeed.

Figure 5.2 Dependency graph for the proposed solution: a static
ProductRepositoryFactory is used to create ProductRepository instances

142 CHAPTER 5 DI anti-patterns
Instead of loosely coupled ProductRepository implementations, Mary and Jens end
up with tightly coupled modules. Even worse, the factory always drags along all imple-
mentations—even those that aren’t needed.

 If Mary and Jens ever need a third type of ProductRepository, they’ll have to
change the factory and recompile their solution. Although their solution may be con-
figurable, it isn’t extensible.

 It’s also impossible to replace the concrete ProductRepository implementations
with test-specific implementations such as dynamic mocks, because that would require
them to define the ProductRepository instance at runtime, instead of statically in a
configuration file at design time.

NOTE Dynamic mocks are outside the scope of this book, but I briefly touched
on the subject when I described TESTABILITY in chapter 1 (section 1.2.2).

In short, a Static Factory may seem to solve the problem but in reality only compounds
it. Even in the best cases, it will force you to reference VOLATILE DEPENDENCIES.

 Now that you’ve seen lots of examples of CONTROL FREAK, I hope you have a pretty
good idea what to look for: occurrences of the new keyword next to DEPENDENCIES. This
may enable you to avoid the most obvious traps; but if you need to untangle yourself
from an existing occurrence of this anti-pattern, the next section discusses how to deal
with such a task.

Dependency collapse
A degenerate case occurs when the ProductRepository ABSTRACTION and the con-
suming ProductService are defined in the same assembly (as is the case in the
implementations I’ve created in the book so far). Let’s assume that this is the
Domain Model assembly. In that case, the ProductRepositoryFactory must also
be in the same assembly—otherwise we would have a circular reference, which
isn’t possible.

However, the factory has references to both implementations, and they have a refer-
ence to the Domain Model assembly because they implement the Product-
Repository class. Once again, the only way to avoid a circular reference is to place
the concrete implementations in the same assembly.

Having AzureProductRepository and SqlProductRepository implemented in the
Domain Model assembly totally goes against the principle of Separation of Concerns.
We would essentially be left with a monolithic application.

The only way out of this problem is to define the ProductRepository ABSTRACTION in
a separate assembly. Doing so can be a good idea for many other reasons, but it
isn’t enough to make a Static Factory a viable DI solution.

143Control Freak
5.1.3 Analysis

CONTROL FREAK is the antithesis of INVERSION OF CONTROL. When we directly control the
creation of VOLATILE DEPENDENCIES, we end up with tightly coupled code, missing many
(if not all) of the benefits of loose coupling outlined in chapter 1.

IMPACT

With the tightly coupled code that’s the result of CONTROL FREAK, many benefits of
modular design are lost:

■ Although we can configure an application to use one of multiple preconfigured
DEPENDENCIES, we can’t replace them at will. It isn’t possible to provide an imple-
mentation that was created after the application was compiled, and it certainly
isn’t possible to provide specific instances as an implementation.

■ It becomes harder to reuse the consuming module because it drags with it
DEPENDENCIES that may be undesirable in the new context.

■ It makes parallel development more difficult because the consuming applica-
tion is tightly coupled to all implementations of its DEPENDENCIES.

■ TESTABILITY suffers because dynamic mocks can’t be used as substitutes for
the DEPENDENCY.

With careful design, we may still be able to implement tightly coupled applications
with clearly defined responsibilities so that maintainability doesn’t suffer, but even so,
the cost is too high. We need to move away from CONTROL FREAK and toward proper DI.

REFACTORING TOWARD DI
To get rid of CONTROL FREAK, we need to refactor our code toward one of the proper DI
design patterns presented in chapter 4. As an initial step, we should use the guidance
given to determine which pattern to aim for. In most cases, this will be CONSTRUCTOR

INJECTION. The refactoring steps are as follows:

1 Ensure that you’re programming to an interface. In the examples just presented,
this was already the case; but in other situations, you may need to first extract
the interface and change variable declarations.

2 If you create a particular implementation of a DEPENDENCY in multiple places,
move them all to a single creation method. Make sure this method’s return
value is expressed as the ABSTRACTION, not the concrete type.

3 Now that you only have a single place where you create the instance, move this
creation out of the consuming class by implementing one of the DI patterns,
such as CONSTRUCTOR INJECTION.

In the case of the ProductService examples in the previous sections, CONSTRUCTOR

INJECTION is an excellent solution:

private readonly ProductRepository repository;

public ProductService(ProductRepository repository)
{
 if (repository == null)

144 CHAPTER 5 DI anti-patterns
 {
 throw new ArgumentNullException("repository");
 }

 this.repository = repository;
}

In some cases, the original code uses complex logic to determine how to create
instances of the DEPENDENCY. In such cases, this complex logic can be implemented in
a factory, and we can then extract an interface of such a factory to create an Abstract
Factory. In essence, this means the DEPENDENCY changes so the new Abstract Factory
becomes the DEPENDENCY instead of the original ABSTRACTION, and we can apply the
same refactoring logic to the factory. In most cases, we’ll end up injecting the factory
into the consuming class via its constructor.

CONTROL FREAK is the most common DI anti-pattern. It represents the default way of
creating instances in most programming languages, so it can be observed even in
applications where developers have never considered DI. It’s such a natural and
deeply rooted way to create new objects that many developers find it difficult to dis-
card. Even when developers begin to think about DI, many have a hard time shaking
the mindset that they must somehow control when and where instances are created.
Letting go of that control can be a difficult mental leap to make; but even if you make
it, there are other, although lesser, pitfalls to avoid.

CONTROL FREAK is by far the most damaging anti-pattern, but even when you have it
under control, more subtle issues can arise. The next sections look at these anti-
patterns. Although they’re less problematic than CONTROL FREAK, they also tend to be
easier to resolve, so keep an eye open for them and fix them as you discover them.

5.2 Bastard Injection
Constructor overloads are fairly common in many .NET code bases (including the
Base Class Library). Often, the many overloads provide reasonable defaults to one or
two full-blown constructors that take all relevant parameters as input.

 At times, we see other uses when it comes to DI. An all-too-common anti-pattern
defines a test-specific constructor overload that allows us to explicitly define a DEPEN-
DENCY while a default constructor is used by the production code.

 This can be detrimental when the default implementation of the DEPENDENCY rep-
resents a FOREIGN DEFAULT rather than a LOCAL DEFAULT.

 When we fully embrace DI, such overloaded constructors become redundant at
best. Considering the negative consequences, it’s best to avoid them.

5.2.1 Example: ProductService with Foreign Default

When Mary originally implemented her ProductService class (in chapter 2), she had
only one DEPENDENCY in mind: an implementation based on SQL Server. The Sql-
ProductRepository class was originally envisioned as the only implementation of
ProductRepository, so it seemed obvious to use it as a default.

145Bastard Injection
Mary isn’t yet comfortable with the idea of CONSTRUCTOR INJECTION because she has
trouble figuring out where the object composition will take place. She has yet to grok
the concept of a COMPOSITION ROOT.

 A visiting consultant told her to use CONSTRUCTOR INJECTION for the Product-
Service, but she still believes that she must create a new instance of it like this:

var productService = new ProductService();

To accomplish this, she adds the following code to the ProductService class.

FOREIGN DEFAULT

A FOREIGN DEFAULT is the opposite of a LOCAL DEFAULT. It’s an implementation of a
DEPENDENCY that’s used as a default even though it’s defined in a different module
than its consumer.

As an example, let’s consider the Repository implementations we have seen in the
sample commerce application throughout the previous chapters. A service such as
ProductService requires an instance of a ProductRepository to work. In many
cases, when we develop such applications, we have a reasonable implementation in
mind: one that implements the desired functionality by reading and writing data to
and from a relational database. It would be tempting to use such an implementation
as the default.

The problem is that the default implementation we have in mind (SqlProduct-
Repository) is defined in a different module than ProductService. This forces us
to take an undesirable DEPENDENCY on the CommerceSqlDataAccess module, as
shown here.

Dragging along unwanted modules robs us of many of the benefits of loose coupling
that were discussed in chapter 1. It becomes harder to reuse the CommerceDomain
module because it drags along the CommerceSqlDataAccess module, and we may
not wish to use that in a different context. It also makes parallel development more
difficult because the ProductService class now depends directly on the Sql-
ProductRepository class.

These are the main reasons you should avoid FOREIGN DEFAULTS if at all possible.

When ProductService uses SqlProductRepository as a default implementation, it forces
us to make a hard reference to the CommerceSqlDataAccess module, and we don’t want that.

146 CHAPTER 5 DI anti-patterns
private readonly ProductRepository repository;

public ProductService()
 : this(ProductService.CreateDefaultRepository())
{
}

public ProductService(ProductRepository repository)
{
 if (repository == null)
 {
 throw new ArgumentNullException("repository");
 }

 this.repository = repository;
}

private static ProductRepository CreateDefaultRepository()
{
 string connectionString =
 ConfigurationManager.ConnectionStrings
 ["CommerceObjectContext"].ConnectionString;

 return new SqlProductRepository(connectionString);
}

The ProductService class now has a default constructor B that invokes its other con-
structor using a FOREIGN DEFAULT.

 The other constructor correctly implements the CONSTRUCTOR INJECTION pattern by
having a Guard Clause and then saving the injected ProductRepository in a read-
only field c. The default constructor calls into this constructor with the FOREIGN

DEFAULT created in the private CreateDefaultRepository method. The SqlProduct-
Repository class is a FOREIGN DEFAULT because it’s defined in a different assembly than
the ProductService class. This causes the assembly containing the ProductService
class to be tightly coupled with the assembly containing the SqlProductRepository class.

 Although ProductService can be reused with different ProductRepository types
by supplying them via the most flexible constructor overload, Mary won’t be able to
INTERCEPT the ProductRepository instance in her application if she insists on using
the default constructor.

5.2.2 Analysis

BASTARD INJECTION is most often encountered when developers attempt to make their
classes TESTABLE without fully understanding DI. When writing a unit test for a class, it’s
important that we can replace a VOLATILE DEPENDENCY with a Test Double so we can
properly isolate the System Under Test (SUT) from its DEPENDENCIES, and CONSTRUCTOR

INJECTION allows us to do just that.
 Although it enables TESTABILITY, BASTARD INJECTION has some undesirable conse-

quences.

Listing 5.2 ProductService with BASTARD INJECTION

Default
Constructor

b

Injection
Constructor

c

147Bastard Injection
IMPACT

The main problem with BASTARD INJECTION is its use of a FOREIGN DEFAULT. Although
TESTABILITY is enabled, we can no longer freely reuse the class because it drags along a
DEPENDENCY we may not want. It also becomes more difficult to do parallel develop-
ment because the class depends strongly on its DEPENDENCY.

4 I had to reformat the code so the line lengths fit in the book. I also added the this keyword to make it more
apparent what’s going on. Apart from that, I haven’t changed anything. You can find this code in the down-
load for this book—I left the default code as it was.

5 Ayende Rahien, “Reviewing NerdDinner,” 2009, http://ayende.com/Blog/archive/2009/07/30/
reviewing-nerddinner.aspx

Case study: ASP.NET MVC
When you create a new ASP.NET MVC project, a few prewritten Controller classes are
automatically created. One of these is the AccountController class, which uses
BASTARD INJECTION. The source even explains this in the code comments:4

// This constructor is used by the MVC framework to
// instantiate the controller using the default forms
// authentication and membership providers.
public AccountController()
 : this(null, null)
{
}
// This constructor is not used by the MVC framework but
// is instead provided for ease of unit testing this type.
// See the comments at the end of this file for more
// information.
public AccountController(IFormsAuthentication formsAuth,
 IMembershipService service)
{
 this.FormsAuth =
 formsAuth ?? new FormsAuthenticationService();
 this.MembershipService =
 service ?? new AccountMembershipService();
}

How can I say that BASTARD INJECTION is bad when it seems as though Microsoft uses
and endorses it? In this case, the motivation seems to be exclusively related to TEST-
ABILITY, and BASTARD INJECTION does address that goal adequately—it just doesn’t
address the other goals of modularity, such as the ability to replace and reuse mod-
ules and do parallel development.

Others are of the same mind. Ayende Rahien noted the following in a blog post that
reviewed an ASP.NET MVC application:

I mean, if you want to do poor man’s IoC, go ahead. But please don’t create this
bastard child.5

This sentence inspired me to name the anti-pattern as I did.

http://ayende.com/Blog/archive/2009/07/30/reviewin g-nerddinner.aspx
http://ayende.com/Blog/archive/2009/07/30/reviewin g-nerddinner.aspx

148 CHAPTER 5 DI anti-patterns
 In addition to the consequences of BASTARD INJECTION on the modularity of the
application, the existence of multiple constructors also presents a different type of
problem. When only one constructor exists, a DI CONTAINER can AUTO-WIRE all depen-
dencies because there is never a question of which constructor to use.

 When more than one constructor exists, the choice between constructors becomes
ambiguous. A DI CONTAINER must resort to some kind of heuristic to decide between
the different constructors—or it may give up. Ironically, this is one of the few scenar-
ios where POOR MAN’S DI is less affected, because we can decide on a case-by-case basis
when we manually wire up the dependencies.

 Among the different DI anti-patterns, BASTARD INJECTION isn’t nearly as damaging as
CONTROL FREAK, but it’s also much easier to get rid of.

REFACTORING TOWARD DI
BASTARD INJECTION is often the result of a misguided attempt to implement DI. The
good thing is that such fundamentals as programming to interfaces are already in place,
so it’s easy to refactor to a proper DI pattern.

TIP Even if you think the impact of BASTARD INJECTION is of no concern to you,
you should still refactor to a proper DI pattern. It’s so easy to do that there’s
no excuse.

The first step is to select which DI pattern is
an appropriate goal. Figure 5.3 illustrates a
simple decision process. When the default
value that has been used so far is a FOREIGN

DEFAULT the best choice is CONSTRUCTOR

INJECTION. In the other case, PROPERTY INJEC-
TION is a good alternative.

 In many cases, the default value used by
the default constructor represents a FOREIGN

DEFAULT. In these cases, CONSTRUCTOR INJEC-
TION is the best answer, because it’s so simple
to implement and deals well with any kind
of DEPENDENCY. The constructor that takes
the DEPENDENCY as a parameter is already in
place, so the only change we need to impart
on the consuming class is to remove the
default constructor.

 This will undoubtedly lead to some compiler errors, but at this point we can lean on
the compiler6 and move all code that creates the class in question to a COMPOSITION ROOT.

 When the default value represents a LOCAL DEFAULT, the situation closely resembles
the core scenario for PROPERTY INJECTION. Although the mechanics are different, the

6 Feathers, Working Effectively with Legacy Code, 315.

Figure 5.3 When refactoring from BASTARD

INJECTION, the deciding factor is whether the
DEPENDENCY is a LOCAL or FOREIGN DEFAULT.

149Constrained Construction
structure is the same: in both cases we have a proper LOCAL DEFAULT, but we still wish
to open our consuming class for extensibility.

 This is a degenerate case of BASTARD INJECTION where the impact is much less severe.
Because the default value is a LOCAL DEFAULT, there is no effect on the degree of com-
posability of the class; the only negative consequence is that the constructor ambiguity
makes AUTO-WIRING more complex.

 In this case, we could implement PROPERTY INJECTION by removing the constructor
that takes the DEPENDENCY as a parameter and replacing it with a writable property. If
this change results in compiler errors, we can again lean on the compiler and move the
creating code to a COMPOSITION ROOT.

 In a COMPOSITION ROOT there are many different ways to wire up the DEPENDENCIES—
including some that are less than ideal, as the next anti-pattern shows.

5.3 Constrained Construction
The biggest challenge of properly implementing DI is getting all classes with DEPEN-
DENCIES moved to a COMPOSITION ROOT. When we accomplish this, we’ve already come a
long way.

 Even so, there are still some traps to look out for. A common mistake is to require
all DEPENDENCIES to have a constructor with a particular signature. This normally origi-
nates from the desire to attain late binding so that DEPENDENCIES can be defined in an
external configuration file and thereby changed without recompiling the application.

NOTE The so-called Provider pattern7 used in ASP.NET is an example of CON-
STRAINED CONSTRUCTION, because Providers must have default constructors.
This is normally exacerbated by the Provider’s constructor attempting to read
from the application configuration file. Often, the constructor throws an
exception if the required configuration section isn’t available.

NOTE This section applies only to scenarios where late binding is desired. In
scenarios where we directly reference all DEPENDENCIES from the application’s
root, we don’t have this problem—but then again, we don’t have the ability to
replace DEPENDENCIES without recompiling, either.

In chapter 3, we briefly touched on this issue. This section examines it more carefully.

5.3.1 Example: late-binding ProductRepository

In the sample commerce application, some classes depend on the abstract Product-
Repository class. This means that to create those classes, we first need to create an
instance of ProductRepository. At this point, you’ve learned that a COMPOSITION ROOT is

7 Rob Howard, “Provider Model Design Pattern and Specification, Part 1,” 2004, http://msdn.microsoft.com/
en-us/library/ms972319.aspx

http://msdn.microsoft.com/en-us/library/ms972319.aspx
http://msdn.microsoft.com/en-us/library/ms972319.aspx

150 CHAPTER 5 DI anti-patterns
the correct place to do this. In an ASP.NET application, this means Global.asax; the fol-
lowing listing shows the relevant part that creates an instance of ProductRepository.

string connectionString =
 ConfigurationManager.ConnectionStrings
 ["CommerceObjectContext"].ConnectionString;

string productRepositoryTypeName =
 ConfigurationManager.AppSettings
 ["ProductRepositoryType"];
var productRepositoryType =
 Type.GetType(productRepositoryTypeName, true);
var repository =
 (ProductRepository)Activator.CreateInstance(
 productRepositoryType, connectionString);

The first thing that should trigger suspicion is that a connection string is read from
the web.config file. Why do you need a connection string if you plan to treat a
ProductRepository as an ABSTRACTION? Although it’s perhaps a bit unlikely, you could
choose to implement a ProductRepository with an in-memory database or an XML
file. A REST-based storage service such as the Windows Azure Table Storage Service
offers a more realistic alternative, but once again this year, the most popular choice
seems to be a relational database. The ubiquity of databases makes it all too easy to
forget that a connection string implicitly represents an implementation choice.

 To late-bind a ProductRepository, you also need to determine which type has
been chosen as the implementation. This can be done by reading an assembly-
qualified type name from web.config and creating a Type instance from that name.
This in itself isn’t problematic—the difficulty arises only when you need to create an
instance of that type.

 Given a Type, you can create an instance using the Activator class. The Create-
Instance method invokes the type’s constructor, so you must supply the correct con-
structor parameters to prevent an exception from being thrown. In this case, you
supply a connection string B.

 If you didn’t know anything else about the application other than the code in list-
ing 5.3, you should by now be wondering why a connection string is passed as a con-
structor argument to an unknown type. It wouldn’t make a lot of sense if the
implementation was based on a REST-based web service or an XML file.

 Indeed, it doesn’t make sense, because this represents an accidental constraint on
the DEPENDENCY’s constructor. In this case, you have an implicit requirement that any
implementation of ProductRepository should have a constructor that takes a single
string as input. This is in addition to the explicit constraint that the class must derive
from ProductRepository.

NOTE The implicit constraint that the constructor should take a single string
still leaves us a great degree of flexibility, because we can encode a lot of

Listing 5.3 Implicitly constraining the ProductRepository constructor

Create instance of
concrete type

b

151Constrained Construction
different information in strings to be decoded later. Imagine instead that the
constraint was a constructor that takes a TimeSpan and a number, and you can
begin to imagine how limiting that would be.

You could argue that a ProductRepository based on an XML file would also require a
string as constructor parameter, although that string would be a file name and not a
connection string. However, conceptually it would still be weird, because you would
have to define that file name in the connectionStrings element in web.config (and
in any case, I think such a hypothetical XmlProductRepository should take an Xml-
Reader as constructor argument instead of a file name).

 Modeling DEPENDENCY construction exclusively on explicit constraints (interface or
base class) is a much better and more flexible option.

5.3.2 Analysis

In the previous example, the implicit constraint required implementers to have a con-
structor with a single string parameter. A more common constraint is that all imple-
mentations should have a default constructor so the simplest form of Activator
.CreateInstance will work:

var dep = (ISomeDependency)Activator.CreateInstance(type);

Although this can be said to be the lowest common denominator, the cost in flexibility
is too high.

IMPACT

No matter how we constrain object construction, we lose flexibility. It might be tempt-
ing to declare that all DEPENDENCY implementations should have a default construc-
tor—after all, they could perform their initialization internally, like reading
configuration data such as configuration strings directly from the .config file. How-
ever, this would limit us in other ways, because we might want to be able to compose
an application of layers of instances that encapsulate other instances. In some cases,
for example, we might wish to share an instance between different consumers, as illus-
trated in figure 5.4.

Figure 5.4 In this example, we wish to create a single instance of the
ObjectContext class and inject the same instance into both Repositories.
This is possible only if we can inject the instance from the outside.

152 CHAPTER 5 DI anti-patterns
When we have more than one class requiring the same DEPENDENCY, we may want to
share a single instance among all those classes. This is possible only when we can
inject that instance from the outside. Although we could write code inside each of
those classes to read type information from a configuration file and use Activator
.CreateInstance to create the correct type of instance, we could never share a single
instance this way—instead, we would have multiple instances of the same class, taking
up more memory.

NOTE Just because DI allows us to share a single instance among many con-
sumers doesn’t mean we should always do it. Sharing an instance saves mem-
ory but may introduce interaction-related problems such as threading issues.
Whether we wish to share an instance is closely related to the concept of
OBJECT LIFETIME, which is discussed in chapter 8.

Instead of imposing implicit constraints on how objects should be constructed, we
should rather implement our COMPOSITION ROOT so that it can deal with any kind of
constructor or factory method we may throw at it.

REFACTORING TOWARD DI
How can we deal with having no constraints on components’ constructors when we
need late binding? It may be tempting to introduce an Abstract Factory that can be
used to create instances of the required ABSTRACTION and then require that implemen-
tations of such Abstract Factories have default constructors, but doing so is likely to
move the underlying problem around without solving it.

WARNING Although we can use Abstract Factories to successfully implement
late binding, doing so requires discipline. In general, we’re better off with a
proper DI CONTAINER; but I’ll sketch out how to do it the hard way nonetheless.

Let’s briefly examine such an approach. Imagine that you have a service ABSTRACTION

imaginatively called ISomeService. The Abstract Factory scheme dictates that you also
need an ISomeServiceFactory interface. Figure 5.5 illustrates this structure.

 Now let’s assume that you wish to use an implementation of ISomeService that
requires an instance of ISomeRepository to work, as shown in the following listing.

Figure 5.5 ISomeService represents the real DEPENDENCY. However, to keep
its implementers free of implicit constraints, you attempt to solve the late-
binding challenge by introducing the ISomeServiceFactory that will be
used to create instances of ISomeService. And you will require of any
factories that they have a default constructor.

153Constrained Construction
public class SomeService : ISomeService
{
 public SomeService(ISomeRepository repository)
 {
 }
}

The SomeService class implements the ISomeService interface, but requires an
instance of ISomeRepository. Because the only constructor isn’t the default construc-
tor, the ISomeServiceFactory will come in handy.

 Currently, you want to use an implementation of ISomeRepository that’s based on
the Entity Framework. You call this implementation SomeEntityRepository, and it’s
defined in a different assembly than SomeService.

 Because you don’t want to drag a reference to the EntityDataAccess library along
with SomeService, the only solution is to implement SomeServiceFactory in a differ-
ent assembly than SomeService, as shown in figure 5.6.

 Even though ISomeService and ISomeServiceFactory look like a cohesive pair,
it’s important to implement them in two different assemblies, because the factory
must have references to all DEPENDENCIES to be able wire them together correctly.

 By convention, the ISomeServiceFactory implementation has a default construc-
tor, so you can write the assembly-qualified type name in a .config file and use
Activator.CreateInstance to create an instance. Every time you need to wire
together a new combination of dependencies, you must implement a new ISome-
ServiceFactory that wires up exactly that combination and then configure the appli-
cation to use that factory instead of the previous one. This means you can’t define
arbitrary combinations of DEPENDENCIES without writing and compiling code, but you
can do it without recompiling the application itself.

Listing 5.4 SomeService that requires ISomeRepository

Figure 5.6 The SomeServiceFactory class must be implemented in a
separate assembly than SomeService, to prevent coupling the
DomainModel library to the EntityDataAccess library.

154 CHAPTER 5 DI anti-patterns
Essentially, such an Abstract Factory becomes an Abstract COMPOSITION ROOT that’s
defined in an assembly separate from the core application. Although this is certainly a
viable approach, it’s generally much easier to utilize a general-purpose DI CONTAINER

that can do all this for us out of the box based on configuration files.
 The CONSTRAINED CONSTRUCTION anti-pattern only really applies when we employ

late binding, because when we utilize early binding the compiler ensures that we
never introduce implicit constraints on how components are constructed.

 The last pattern applies much more generally—some people even consider it a
proper pattern instead of an anti-pattern.

5.4 Service Locator
It can be difficult to give up on the idea of directly controlling DEPENDENCIES, so many
developers take Static Factories (as described in section 5.1.2) to new levels. This leads
to the SERVICE LOCATOR anti-pattern.

WARNING Calling SERVICE LOCATOR an anti-pattern is controversial. Some peo-
ple consider it a proper design pattern, whereas others (me included) con-
sider it an anti-pattern.8 In this book, I’ve decided to describe it as an anti-
pattern because I think its disadvantages are greater than its advantages; but
don’t be surprised if you see it endorsed in other places. The important thing
is to understand the benefits and shortcomings enough to be able to make an
informed decision for yourself.

SERVICE LOCATOR was introduced as a design pattern by Martin Fowler in 2004,9 so
denouncing it as an anti-pattern is a big step. In short, it introduces a Static Factory
with the added detail that it’s possible to inject services into this factory.

NOTE The term service in this context is roughly equivalent to a DEPENDENCY.

As it’s most commonly implemented, the SERVICE LOCATOR is a Static Factory10 that can
be configured with concrete services before the first consumer begins to use it (see
figure 5.7). This could conceivably happen in the COMPOSITION ROOT. Depending on
the particular implementation, the SERVICE LOCATOR can be configured with code, by
reading a configuration file, or using a combination thereof.

8 Daniel Cazzulino, “What is all the fuzz about the new common IServiceLocator?” 2008, http://www.clariusconsult-
ing.net/blogs/kzu/archive/2008/10/03/WhatisallthefuzzaboutthenewcommonIServiceLocator.aspx
Nicholas Blumhardt, “Container-Managed Application Design, Prelude: Where does the Container Belong?” 2008,
http://blogs.msdn.com/b/nblumhardt/archive/2008/12/27/container-managed-application-design-prelude-
where-does-the-container-belong.aspx

9 Martin Fowler, “Inversion of Control Containers and the Dependency Injection pattern,” 2004, http://
martinfowler.com/articles/injection.html

10 For more variations, see Mark Seemann, “Service Locator is an Anti-Pattern,” 2010, http://blog.ploeh.dk/
2010/02/03/ServiceLocatorIsAnAntiPattern.aspx

http://www.clariusconsulting.net/blogs/kzu/archive/2008/10/03/WhatisallthefuzzaboutthenewcommonIServiceLocator.aspx
http://blogs.msdn.com/b/nblumhardt/archive/2008/12/27/container-managed-application-design-prelude-where-does-the-container-belong.aspx
http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html
http://blog.ploeh.dk/2010/02/03/ServiceLocatorIsAnAntiPattern.aspx
http://blog.ploeh.dk/2010/02/03/ServiceLocatorIsAnAntiPattern.aspx
http://www.clariusconsulting.net/blogs/kzu/archive/2008/10/03/WhatisallthefuzzaboutthenewcommonIServiceLocator.aspx

155Service Locator
WARNING If you look at only the static structure of classes, a DI CONTAINER

looks just like a SERVICE LOCATOR. The difference is subtle and lies not in the
mechanics of implementation but in how you use it. In essence, asking a con-
tainer or locator to resolve a complete dependency graph from the COMPOSI-
TION ROOT is proper usage. Asking it for granular services from anywhere else
implies the SERVICE LOCATOR anti-pattern.

Let’s review an example where it’s configured with code.

My personal history with SERVICE LOCATOR

SERVICE LOCATOR and I had an intense relationship for a couple of years before we
parted ways. Although I can’t remember exactly when I first came across Fowler’s arti-
cle, it provided me with a potential solution to a problem that I had been pondering
for some time: how to inject DEPENDENCIES.

As described, the SERVICE LOCATOR pattern seemed like the answer to all my issues,
and I quickly set forth to develop a SERVICE LOCATOR for the first version of Microsoft
patterns & practices’ Enterprise Library. It was hosted on the now-defunct GotDotNet
site. Although I still have the source code, I lost my release history when GotDotNet
shut down; so I can’t say for certain, but I seem to have published the first version
in mid-2005.

In 2007, I released a complete rewrite targeted at Enterprise Library 2. It’s still avail-
able on CodePlex, but I’ve long since abandoned it because I soon thereafter came
to the conclusion that it was really an anti-pattern.

As you can see, it took me a couple of years of intense use to realize the shortcom-
ings of SERVICE LOCATOR and that better alternatives existed. For this reason, I find it
easy to understand why so many developers find it attractive despite its disadvan-
tages. The patterns described in chapter 4 offer superior alternatives, but it isn’t until
you learn those that SERVICE LOCATOR starts to look inferior.

Figure 5.7 A SERVICE LOCATOR’s prime responsibility is to serve instances of services when consumers
request them. The Consumer uses the IService interface and requests an instance from the SERVICE

LOCATOR, which then returns an instance of whatever concrete implementation it’s configured to return.

156 CHAPTER 5 DI anti-patterns
5.4.1 Example: ProductService using a Service Locator

For an example, let’s return to our tried-and-true ProductService that requires an
instance of the abstract ProductRepository class. In this case, the ProductService
can use the static GetService method to get the required instance:

this.repository = Locator.GetService<ProductRepository>();

In this example, I chose to implement the methods using generic type parameters to
indicate the type of service being requested, but I could also use a Type instance to
indicate the type if that’s more to my liking.

 As the following listing shows, this implementation of the Locator class is as mini-
malistic as possible. I could have added Guard Clauses and error handling, but I wanted
to highlight the core behavior. The code could also include a feature that enables it to
load its configuration from a .config file, but I’ll leave that as an exercise for you.

public static class Locator
{
 private readonly static Dictionary<Type, object> services
 = new Dictionary<Type, object>();

 public static T GetService<T>()
 {
 return (T)Locator.services[typeof(T)];
 }

 public static void Register<T>(T service)
 {
 Locator.services[typeof(T)] = service;
 }

 public static void Reset()
 {
 Locator.services.Clear();
 }
}

The Locator is a class with only static members, so you might as well mark it explicitly
as a static class. It holds all the configured services in an internal dictionary that maps
the abstract types to each concrete instance.

 Clients such as the ProductService can use the GetService method B to request
an instance of the abstract type T. Because this example code contains no Guard
Clauses or error handling, this method will throw a rather cryptic KeyNotFound-
Exception if the requested type has no entry in the dictionary, but you can imagine
how to add code to throw a more communicative exception.

 The GetService method can only return an instance of the requested type if it has
previously been inserted in the internal dictionary. This can be done with the
Register method. Again, this example code contains no Guard Clause, so it would be
possible to Register null, but a more robust implementation shouldn’t allow that.

Listing 5.5 A minimalistic SERVICE LOCATOR implementation

Get
service

b

157Service Locator
 In certain cases (particularly when unit testing), it’s important to be able to reset
the SERVICE LOCATOR. That functionality is provided by the Reset method, which clears
the internal dictionary.

 Classes like ProductService rely on the service to be available in the SERVICE LOCA-
TOR, so it’s important that it has been previously configured. In a unit test, this could
be done with a Test Double11 implemented by a dynamic mock library such as Moq,12

as used in this example:

var stub = new Mock<ProductRepository>().Object;
Locator.Register<ProductRepository>(stub);

We first create a Stub of the abstract ProductRepository class and then use the static
Register method to configure the SERVICE LOCATOR with that instance. If this is done
before ProductService is used for the first time, ProductService will use the config-
ured Stub to work against the ProductRepository. In the full production application,
the SERVICE LOCATOR will be configured with the correct ProductRepository imple-
mentation in the COMPOSITION ROOT.

 This way of locating DEPENDENCIES from the ProductService class definitely works
if our only success criterion is that the DEPENDENCY can be used and replaced at will,
but it has some other serious shortcomings.

5.4.2 Analysis

SERVICE LOCATOR is a dangerous pattern because it almost works. We can locate DEPEN-
DENCIES from consuming classes, and we can replace those DEPENDENCIES with different
implementations—even with Test Doubles from unit tests.

 When we apply the analysis model outlined in chapter 1 to evaluate whether SER-
VICE LOCATOR can match the benefits of modular application design, we find that it fits
in most regards:

■ We have support for late binding by changing the registration.
■ We can develop code in parallel because we program against interfaces and can

replace modules at will.
■ We can achieve good separation of concerns, so nothing stops us from writing

maintainable code. But doing so becomes much more difficult.
■ We can replace DEPENDENCIES with Test Doubles, so TESTABILITY is ensured.

There is only one area where SERVICE LOCATOR falls short.

IMPACT

The main problem with SERVICE LOCATOR is that it impacts the reusability of the classes
consuming it. This manifests itself in two ways:

■ The module drags along a redundant DEPENDENCY.
■ It isn’t apparent that DI is being used.

11 Gerard Meszaros, xUnit Test Patterns: Refactoring Test Code (New York: Addison-Wesley, 2007), 522.
12 http://code.google.com/p/moq/

http://code.google.com/p/moq/

158 CHAPTER 5 DI anti-patterns
Let’s first look at the dependency graph for the ProductService from the example in
section 5.4.1, shown in figure 5.8. In addition to the expected reference to the abstract
ProductRepository class, ProductService also depends on the Locator class.

 This means that to reuse the ProductService class, we must redistribute not only it
and its relevant DEPENDENCY ProductRepository, but also the Locator DEPENDENCY that
only exists for mechanical reasons. If the Locator class is defined in a different mod-
ule than ProductService and ProductRepository, new applications wishing to reuse
ProductService must accept that module as well.

 To compound the matter, imagine that a new application reusing ProductService is
already using a different DI strategy centered on CONSTRUCTOR INJECTION. Product-
Service doesn’t fit into this strategy but instead enforces its own DI strategy that effec-
tively pollutes the DI architecture of the new application. To use it, developers must
accept the existence of a SERVICE LOCATOR; and after it’s introduced, it may accidentally
be used by novice developers for other purposes where better alternatives exist.

 Perhaps we could even tolerate that extra DEPENDENCY on Locator if it was truly
necessary for DI to work—we would accept it as a tax to be paid to gain other benefits.
However, there are better options (such as CONSTRUCTOR INJECTION) available, so this
DEPENDENCY is redundant.

 To add insult to injury, neither this redundant
DEPENDENCY nor its relevant counterpart, Product-
Repository, is explicitly visible to developers wishing
to consume the ProductService class. Figure 5.9
shows that Visual Studio can offer no guidance on
the use of this class.

 When we wish to create a new instance of the
ProductService class, Visual Studio can only tell us
that the class has a default constructor. However, if we subsequently attempt to run the
code we just wrote, we get a runtime error if we forgot to register a ProductRepository
instance with the Locator class. This is likely to happen if we don’t intimately know
the ProductService class.

TIP Imagine that the code we write ships in an undocumented, obfuscated
.dll. How easy would it be for someone else to use? It’s possible to develop

Figure 5.8 Dependency graph for a
ProductService implementation that uses
a SERVICE LOCATOR to serve instances of the
abstract ProductRepository class

Figure 5.9 The only thing
IntelliSense can tell us about the
ProductService class is that it has
a default constructor. Its DEPENDENCIES

are invisible.

159Service Locator
APIs that are close to self-documenting, and although doing so takes practice,
it’s a worthy goal.

NOTE The problem with SERVICE LOCATOR is that any client using it is being
dishonest about its level of complexity. It looks simple as seen through the
public API, but it turns out to be complex—and we don’t find out about this
before we get a runtime exception.

The problem with the ProductService class is that it’s far from self-documenting: we
can’t tell which DEPENDENCIES must be present before it will work. In fact, the develop-
ers of ProductService may even decide to add more DEPENDENCIES in future versions,
so code that works on the current version may fail on a future version, and we aren’t
even going to get a compiler error that warns us. SERVICE LOCATOR makes it easy to
inadvertently introduce breaking changes.

WARNING The use of generics may trick you into thinking that a SERVICE LOCA-
TOR is strongly typed. However, even an API like the one shown in listing 5.5 is
weakly typed because we can request any type. Being able to compile code
invoking the GetService<T> method gives us no guarantee that it won’t
throw exceptions left and right at runtime.

NOTE When unit testing, we have the additional problem that a Test Double
registered in one test case will cause Interdependent Tests because it will
remain in memory when the next test case is executed. It’s therefore neces-
sary to perform Fixture Teardown after each and every test by invoking Loca-
tor.Reset(); This is something that we must manually remember to do, and
it’s easy to forget.

This is all really bad. SERVICE LOCATOR may seem innocuous, but it can lead to all sorts
of nasty runtime errors. How do we avoid those problems?

REFACTORING TOWARD DI
When we decide to get rid of SERVICE LOCATOR, we need to find a way to do it. As always,
the default goal should be CONSTRUCTOR INJECTION unless one of the other DI patterns
from chapter 4 provides a better fit.

WARNING When we look at the structure of SERVICE LOCATOR, it’s close to AMBI-
ENT CONTEXT. Both are implicitly consumed Singletons,13 but the difference
lies in the availability of LOCAL DEFAULTS. An AMBIENT CONTEXT guarantees that
it can always deliver an appropriate instance of the requested service (nor-
mally, there’s only one). This guarantee can’t be made by a SERVICE LOCATOR

because it’s in essence a weakly-typed container of services about which it has
no built-in knowledge.

In many cases, a class that consumes a SERVICE LOCATOR may have calls to it spread
throughout its code base. In such cases, it acts as a replacement for the new statement.

13 Gamma, Design Patterns,127.

160 CHAPTER 5 DI anti-patterns
When this is so, the first refactoring step is to consolidate the creation of each DEPEN-
DENCY in a single method.

 If we don’t have a member field to hold an instance of the DEPENDENCY, we can
introduce such a field and make sure the rest of the code uses this field when it con-
sumes the DEPENDENCY. Mark the field readonly to ensure that it can’t be modified out-
side the constructor. Doing so forces us to assign the field from the constructor using
the SERVICE LOCATOR. We can now introduce a constructor parameter that assigns the
field instead of the SERVICE LOCATOR, which can then be removed. Introducing a DEPEN-
DENCY parameter to a constructor is likely to break existing consumers, so we also need
to deal with that and move all wiring of DEPENDENCIES to a COMPOSITION ROOT.

 Refactoring a class that uses SERVICE LOCATOR is similar to refactoring a class that
uses CONTROL FREAK, because a SERVICE LOCATOR is just a roundabout variant of CON-
TROL FREAK. Section 5.1.3 contains further notes on refactoring CONTROL FREAK imple-
mentations to use DI.

 At first glance, SERVICE LOCATOR may look like a proper DI pattern, but don’t be
fooled: it may explicitly address loose coupling, but it sacrifices other concerns along
the way. The DI patterns presented in chapter 4 offer better alternatives with fewer
drawbacks. This is true for the SERVICE LOCATOR anti-pattern as well as the other anti-
patterns presented in this chapter. Even though they’re different, they all share the
common trait that they can be resolved by one of the DI patterns from chapter 4.

5.5 Summary
Because DI is a set of patterns and techniques, no single tool can mechanically verify
whether we’ve applied it correctly. In chapter 4, we looked at patterns that describe
how DI can be used properly, but that’s only one side of the coin. It’s also important to
study how it’s possible to fail even with the best of intentions. There are important les-
sons to be learned from failure, but we don’t have to always learn from our own—
sometimes we can learn from other people’s mistakes.

 In this chapter, I’ve described the most common DI mistakes in the form of anti-
patterns. I’ve seen all these mistakes in real life on more than one occasion, and I con-
fess myself guilty of all of them:

■ My name is Mark Seemann, and I’ve used CONTROL FREAK.
■ My name is Mark Seemann, and I’ve used BASTARD INJECTION.
■ My name is Mark Seemann, and I’ve used CONSTRAINED CONSTRUCTION.
■ My name is Mark Seemann, and I’ve used SERVICE LOCATOR. Worse than that, I not

only used it, but I produced it and attempted to get innocent people hooked.

Fortunately, I’ve long since shed those habits—I’ve been clean for many years.
 The first and most important habit to get rid of is the imaginary need to exert

direct control over DEPENDENCIES. It’s easy to spot instances of CONTROL FREAK: every
place you use the new keyword (in C#, at least) to create an instance of a VOLATILE

DEPENDENCY, you’re a CONTROL FREAK, and it doesn’t matter how many layers of factories

161Summary
you use to hide the fact. The only place you’re permitted to new up a DEPENDENCY is
from a COMPOSITION ROOT.

 Getting rid of CONTROL FREAK is by far the most important task. Only when you have
succeeded in weeding out instances of CONTROL FREAK should you turn your attention
to those other anti-patterns; they’re far less damaging.

TIP CONTROL FREAK prevents you from using loose coupling; the other DI anti-
patterns merely make it awkward, so focus your attention on CONTROL FREAK first.

BASTARD INJECTION enables DI but then spoils the party by dragging along redundant
DEPENDENCIES. Fortunately, it’s easy to refactor a BASTARD INJECTION implementation
toward CONSTRUCTOR INJECTION, so whereas we might have been able to live with the
inelegance of BASTARD INJECTION, there’s no need to do so. We gain more than we
lose by moving to a proper solution—in fact, we only lose the time it takes to per-
form the refactoring.

CONSTRAINED CONSTRUCTION imposes artificial constraints on the types we use to
implement ABSTRACTIONS. In most cases, this takes the form of constraining all imple-
mentations to have default constructors, but in other cases constructors may be
required to take a particular parameter to initialize the component.

 You should lift those constraints and use a DI CONTAINER or manual composition to
wire up all objects with their required DEPENDENCIES—whatever they may be. If you
have a scenario where you need to initialize certain components with information
about the current context, METHOD INJECTION is the proper pattern to apply.

 A SERVICE LOCATOR may look compelling, but I consider it an anti-pattern although
that’s a somewhat controversial opinion. Although it solves some DI challenges, it
introduces other problems that outweigh its benefits. There is no reason to accept
those disadvantages because the DI patterns presented in chapter 4 offer better alter-
natives. This is a common theme for all the anti-patterns described in this chapter: the
DI patterns from chapter 4 offer solutions to the problems caused by the anti-patterns.

 By now, you should know what to avoid and what you should ideally be doing
instead, but there may still be issues that look as though they’re hard to solve. The
next chapter discusses such challenges and how to resolve them.

DI refactorings
You may have noticed that I have a fascination with sauce béarnaise, or sauce
hollandaise in general. One reason is that it tastes so good; another is that it’s a
bit tricky to make. In addition to the challenge of production, sauce hollandaise
presents an entirely different problem: it must be served immediately (or so
I thought).

 This used to be less than ideal when I was having guests. Instead of being able to
casually greet my guests and make them feel welcome and relaxed, I was frantically
whipping the sauce in the kitchen, leaving them to entertain themselves.

 After a couple of repeat performances, my very sociable wife decided to take
matters into her own hands. We live just across the street from a restaurant, so one
day she chatted up the cooks to find out whether there is a trick that would enable
me to prepare a genuine sauce hollandaise well in advance. It turns out that there

Menu
■ Mapping runtime value to ABSTRACTIONS

■ Working with short-lived DEPENDENCIES

■ Resolving cyclic DEPENDENCIES

■ Dealing with Constructor Over-injection
■ Monitoring coupling
162

163Mapping runtime values to Abstractions
is, so now I can serve a delicious sauce for my guests without first subjecting them to
an atmosphere of stress and frenzy.

 Each craft has its own tricks of the trade. This is also true for software development
in general and DI in particular. There are challenges that just keep on popping up,
and in many cases there are well-known ways to deal with them.

 Over the years, I’ve seen people struggle when learning DI, and it occurred to me
that many of the issues were similar in structure. In this chapter, we’ll look at the most
common challenges that appear when we apply DI to a code base, and how we can
resolve them. When we’re finished, you should be able to better recognize and handle
these situations when they occur.

 Similar to the two previous chapters in this part of the book, this chapter is orga-
nized as a catalog—this time of problems and solutions (or, if you will, refactorings).
Figure 6.1 shows the structure of the chapter.

 In each section, I’ll present a common issue and how you can address it, including
an example. You can read each section independently or in sequence, as you prefer.
The purpose of each section is to familiarize you with a solution to a commonly occur-
ring problem so that you’ll be better equipped to deal with it if it occurs.

6.1 Mapping runtime values to Abstractions
When you start applying DI, one of the first difficulties you’re likely to encounter is
when ABSTRACTIONS depend on runtime values. For example, an online map site may
offer to calculate a route between two locations. It may give you a choice of how you
want the route calculated: Do you want the shortest route? The fastest route based on
known traffic patterns? The most scenic route?

 Each option represents a different algorithm, and the application may treat each
routing algorithm as an ABSTRACTION so it can treat them all equally. To calculate a
route, the application needs a routing algorithm, but it doesn’t care which one. We
must tell it which algorithm it should use, but we don’t know this until runtime,
because it’s based on the user’s choice.

Figure 6.1 The structure of
this chapter is a catalog of
refactorings or solutions to
common DI issues. Each of
the sections can be read
independently.

164 CHAPTER 6 DI refactorings
 This section discusses how we can deal with this type of issue. Before turning to an
example, we’ll briefly talk about the general problem. When we’re finished, your
knee-jerk reaction to this challenge should be to introduce an Abstract Factory.

6.1.1 Abstractions with runtime Dependencies

When we use CONSTRUCTOR INJECTION, we implicitly state that we expect the DEPENDENCY

to be unambiguous at runtime. Consider a constructor signature like this one:

This is never going to work if, at runtime, it’s unclear which implementation of
DiscountRepository should be used. At design-time, we can treat the DEPENDENCY as
an ABSTRACTION and follow the LISKOV SUBSTITUTION PRINCIPLE; but at runtime, a deci-
sion about which DiscountRepository to use must be made before the Repository-
BasketDiscountPolicy can be created. Because the DEPENDENCY is requested through
the constructor, we can’t defer the decision past this point.

 This only means that, as far as the RepositoryBasketDiscountPolicy class goes,
there can be no ambiguity concerning DiscountRepository. Other consumers may
also request DiscountRepository instances, and whether they all get the same or dif-
ferent instances is of less importance. Such DEPENDENCIES often represent Services1

instead of Domain Objects. Conceptually, there is only one instance of a given Service.

NOTE As you’ll see in chapter 9, there may be several implementations of the
same ABSTRACTION in play at the same time. However, from the consumer’s
perspective, there is only one.

Services belong to a common group of DEPENDENCIES, but at times a DEPENDENCY repre-
sent a proper Domain Object. This is particularly true when it comes to behavior-
changing ABSTRACTIONS such as Strategies.2 The previous route-calculation algorithm is
one such example. Another may be a graphics editor’s collection of bitmap effects: each
effect performs a transformation of a bitmap, but they may all be exposed to the appli-
cation as ABSTRACTIONS—this is also an architecture that allows add-ins to be supported.

 In such cases, we can’t request the DEPENDENCY through the constructor, because a
COMPOSER won’t know which implementation to pick. There may be zero, one, or
many instances in play at different times through an application’s lifetime. The DEPEN-
DENCY is ambiguous at design-time.

1 Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software (New York: Addison-Wesley, 2004),
104.

2 Erich Gamma et al, Design Patterns: Elements of Reusable Object-Oriented Software (New York: Addison-Wesley,
1994), 315.

165Mapping runtime values to Abstractions
 As always in software design, the solution is another level of indirection: this time,
the Abstract Factory design pattern.

Abstract Factory is one of the most useful design patterns. Keep it in mind, because it
can be used to solve many issues with DI.

TIP When one or more of the arguments supplied to an Abstract Factory
is in itself an ABSTRACTION, this technique also becomes an example of
METHOD INJECTION.

Abstract Factory
The Abstract Factory3 design pattern addresses the problem when we need to be able
to request an instance of an ABSTRACTION at will. It offers a bridge between ABSTRAC-
TIONS and concrete runtime values, allowing us to translate a runtime value to
a DEPENDENCY.

The following figure illustrates how it works by introducing a new ABSTRACTION that cre-
ates instances of the originally required ABSTRACTION.

An Abstract Factory is itself an ABSTRACTION whose only purpose is to create instances
of the originally required ABSTRACTION. If we need to be able to create IFoo instances
from concrete Bar instances, the corresponding Abstract Factory might look like this:

public interface IFooFactory
{
 IFoo Create(Bar bar);
}

In this case, Bar is a concrete class. IFooFactory allows us to translate a concrete
Bar instance to an abstract IFoo instance. The IFoo implementation may contain the
bar instance or use the input as guidance to pick a particular IFoo instance.

In the degenerate case, an Abstract Factory may take no input parameters:

public interface IFooFactory
{
 IFoo Create();
}

In that case, the Abstract Factory becomes a pure factory, whereas the translation
aspect disappears.

3 Ibid., 87.

If we need to be able to create IFoo
instances on request, we need a way to
do that. An ABSTRACT FACTORY is another
ABSTRACTION that we can use to create
such instances as necessary.

166 CHAPTER 6 DI refactorings
An Abstract Factory is the universal solution when we need to create DEPENDENCIES

from runtime values.

DESIGN CONSIDERATIONS

As useful as Abstract Factory can be, we must take care to apply it with discrimination. The
DEPENDENCIES created by an Abstract Factory should conceptually require a runtime value.
The translation from a runtime value into an ABSTRACTION should make sense on the con-
ceptual level. If you feel the urge to introduce an Abstract Factory to be able to create
instances of a concrete implementation, you may have a LEAKY ABSTRACTION at hand.

Always consider whether a given ABSTRACTION makes sense for other implementations
than the one you have in mind. If it doesn’t, you should reconsider your design.

 Abstract Factories come in many shapes and forms, and it may not always be appar-
ent that you have one.

NOTE Any ABSTRACTION that creates instances of other ABSTRACTIONS is an
Abstract Factory. It doesn’t need to have a name that ends with Factory.

Let’s look at a couple of examples: first a simple, idiomatic example and subsequently a
more complex example where the Abstract Factory is hidden under a different name.

6.1.2 Example: selecting a routing algorithm
The introduction to this section briefly discussed an online map site where the user
can choose from different route-calculation algorithms. In this section, we’ll walk
through how to apply an Abstract Factory to address this requirement.

 In a web application, you can only transfer primitive types4 from the browser to the
server, so when the user selects a routing algorithm from a drop-down box, you must

LEAKY ABSTRACTIONS

Just as Test-Driven Development (TDD) ensures TESTABILITY, it’s safest to define inter-
faces first and then subsequently program against them. Even so, there are cases
where we already have a concrete type and now wish to extract an interface.

When we do this, we must take care that the underlying implementation doesn’t leak
through. One way this can happen is if we only extract an interface from a given con-
crete type, but all the parameter and return types are still concrete types defined in
the same library.

If we need to extract an interface, we need to do it in a recursive manner, ensuring
that all types exposed by the root interface are themselves interfaces. I call this Deep
Extraction and the result Deep Interfaces.

ASP.NET MVC has some examples of Deep Interface extraction. For example, Http-
ContextBase has a Request property of type HttpRequestBase, and so on. This
ABSTRACTION was recursively extracted from System.Web.HttpContext.

4 To be pedantic, we can only transfer strings, but most web frameworks support type conversion for primitive types.

167Mapping runtime values to Abstractions
represent this by a number or a string. An enum is really just a number, so on the
server you can represent the selection using this RouteType:

public enum RouteType
{
 Shortest = 0,
 Fastest,
 Scenic
}

However, what you need is an instance of IRouteAlgorithm that can calculate the
route for you. To translate from the runtime RouteType value to IRouteAlgorithm,
you can define an Abstract Factory:

public interface IRouteAlgorithmFactory
{
 IRouteAlgorithm CreateAlgorithm(RouteType routeType);
}

This enables you to implement a GetRoute method for a RouteController by
injecting the IRouteAlgorithmFactory and using it to translate the runtime value
to the DEPENDENCY you need: IRouteAlgorithm. The following listing demonstrates
the interaction.

public class RouteController
{
 private readonly IRouteAlgorithmFactory factory;

 public RouteController(IRouteAlgorithmFactory factory)
 {
 if (factory == null)
 {
 throw new ArgumentNullException("factory");
 }

 this.factory = factory;
 }

 public IRoute GetRoute(RouteSpecification spec,
 RouteType routeType)
 {
 IRouteAlgorithm algorithm =
 this.factory.CreateAlgorithm(routeType);
 return algorithm.CalculateRoute(spec);
 }
}

The RouteController class’s responsibility is to handle web requests. The GetRoute
method receives the user’s specification of origin and destination, as well as a selected
RouteType. You need an ABSTRACT FACTORY to map the runtime RouteType value to an
IRouteAlgorithm instance, so you request an instance of IRouteAlgorithmFactory
using standard CONSTRUCTOR INJECTION.

Listing 6.1 Using an IRouteAlgorithmFactory

Map runtime
value

b

Use mapped
algorithmc

168 CHAPTER 6 DI refactorings
 In the GetRoute method, you can use the factory to map the routeType variable
to an IRouteAlgorithm B. When you have that, you can use it to calculate the route c
and return the result.

NOTE For the sake of conciseness, I omitted a Guard Clause in the GetRoute
method. However, the supplied RouteSpecification may be null, so a more
robust implementation should check for that.

The most obvious implementation of IRouteAlgorithmFactory would involve a sim-
ple switch statement and return three different implementations of IRouteAlgorithm
based on the input. However, I’ll leave this as an exercise for the reader.

 This example demonstrated mapping from runtime value to DEPENDENCY using
an Abstract Factory in its purest form. The next example shows a more complex
variation where at first glance you may not even realize that Abstract Factories are
being used.

6.1.3 Example: using a CurrencyProvider

In most of chapter 4, you saw how to implement currency conversion in an ASP.NET
MVC Controller. The Currency type is an abstract class, reproduced here so that you
won’t have to flip back to section 4.1.4:

public abstract partial class Currency
{
 public abstract string Code { get; }

 public abstract decimal GetExchangeRateFor(
 string currencyCode);
}

At first glance it seems a little weird to treat a concept like currency as an ABSTRACTION,
because it sounds more like a Value Object.5 However, notice that the GetExchange-
RateFor method enables us to query it about a virtually unbounded set of conversion
rates. If we assume 100 conversion rates, each Currency instance would consume
more than 2 KB of memory. That doesn’t sound like a lot, but it may warrant an opti-
mization like use of the Flyweight6 design pattern.

 Another issue that quickly arises with currency conversion regards the currency
(sic!) of the currency: in other words, how up-to-date it is. Applications such as trader
software for monetary markets require exchange rates to be updated several times a
second, whereas an international commerce site is likely to get by with few updates for
stable currencies. Such applications may also include markup or rounding strategies,
adding to the potential complexity of implementing a Currency type. In that light, an
abstract Currency class begins to sound reasonable.

5 Evans, Domain-Driven Design, 97.
6 Gamma, Design Patterns, 195.

169Mapping runtime values to Abstractions
 When a consumer like an ASP.NET MVC Controller needs to convert prices, it
requires a Currency as a DEPENDENCY to perform the conversion. In the sample com-
merce application used in this book, the Money class used to represent prices has this
conversion method:

public Money ConvertTo(Currency currency)

A consumer such as a Controller can supply a Currency instance to all prices to con-
vert them, but the question now arises, which Currency instance?

 The choice of target Currency relies on a runtime value: the user’s preferred cur-
rency. This means we can’t request a single Currency object through CONSTRUCTOR

INJECTION, because a COMPOSER is unable to know which Currency to use.
 As you saw in section 4.1.1, the solution is to inject a CurrencyProvider instead of

a single Currency:

public abstract class CurrencyProvider
{
 public abstract Currency GetCurrency(string currencyCode);
}

Figure 6.2 illustrates how a Controller typically retrieves the user’s preferred currency
code from the profile and uses the injected CurrencyProvider to create the appropri-
ate Currency instance.

 Although it has a different name, CurrencyProvider is an Abstract Factory that
helps us bridge the gap between a runtime value and a runtime DEPENDENCY. A Cur-
rency conceptually depends on a currency code, so we can rest assured that we haven’t
introduced a LEAKY ABSTRACTION by introducing the CurrencyProvider.

 Another example from chapter 4 shows the degenerate case where there is no ini-
tial input parameter. In section 4.2.4, you saw how an abstract CurrencyProfile-
Service has a GetCurrencyCode method that will return the user’s current currency code:

public abstract string GetCurrencyCode();

Although the GetCurrencyCode method returns a string instead of an ABSTRACTION,
you can still view CurrencyProfileService as an Abstract Factory variant.

Figure 6.2 The injected CurrencyProvider is used to map a primitive runtime
value (the currency code string) to a runtime DEPENDENCY (the Currency instance).

170 CHAPTER 6 DI refactorings
In the HomeController, you combine both variations to figure out the user’s pre-
ferred Currency:

var currencyCode = this.CurrencyProfileService.GetCurrencyCode();
var currency = this.currencyProvider.GetCurrency(currencyCode);

Both CurrencyProfileService and currencyProvider are injected Abstract Factories
that are available to any member of the HomeController class. Sections 4.1.4 and 4.2.4
show how they’re injected.

 Whenever we need to produce a runtime value and we want to be able to vary the
means by which we produce this value independently of the consumer, we can inject
an Abstract Factory. It’s typically a stateless service, so it fits better with how we nor-
mally treat DEPENDENCIES, and we can use CONSTRUCTOR INJECTION or PROPERTY INJECTION

to supply the consumer with the factory.
 There is another, different type of scenario where Abstract Factory also provides a

good solution. This happens when we need to deal with short-lived DEPENDENCIES.

6.2 Working with short-lived Dependencies
Some DEPENDENCIES seem to be conceptually short-lived. These typically represent con-
nections to external resources such as databases or web services. Such connections
must be closed, or resource leaks will occur. In this section, we look at the best way to
address such concerns.

 Similar to the previous section, we’ll start by studying the general case and then pro-
ceed to look at an example. When we’re finished, you should understand two things:

■ You can model such interactions with an Abstract Factory that produces dispos-
able instances.

■ You should strive to hide this pattern behind a stateless ABSTRACTION.

Before we turn to an example, let’s see what would cause me to say that.

6.2.1 Closing connections through Abstractions

The whole point of loose coupling and the LISKOV SUBSTITUTION PRINCIPLE is that a
DEPENDENCY can be implemented in any number of ways. Even when you have a partic-
ular implementation in mind, a radically different implementation may potentially
come along in the future.

 Even so, some DEPENDENCIES represent access to external resources, and these tend
to drag along issues related to resource usage. I am, of course, talking about connec-
tions in many shapes and forms.

 Most .NET developers know that they should open an ADO.NET connection just
before using it, and close it again as soon as the work is finished. Modern APIs like
LINQ to SQL or LINQ to Entities automatically do this for us so we don’t have to explic-
itly deal with it.

 Although the correct usage pattern concerning ADO.NET connections should be
common knowledge, it’s far less known that the same is true for WCF clients. They

171Working with short-lived Dependencies
should be closed as soon as we’re finished with a particular set of operations on a ser-
vice, because they may otherwise leave orphaned resources on the server side.

How can we reconcile the need to close a WCF connection with the desire to avoid a
LEAKY ABSTRACTION? This issue can be addressed on two levels:

■ Hiding the entire connection management logic behind an ABSTRACTION

■ Mimicking opening and closing connections on a more detailed level

The first option is preferred, but sometimes the second is required as well. Both
options can be combined to get the best of both worlds.

HIDING CONNECTION MANAGEMENT BEHIND AN ABSTRACTION

DI is no excuse for writing applications with memory leaks, so we must be able to
explicitly close connections as soon as possible. On the other hand, any DEPENDENCY

may or may not represent out-of-process communication, so it would be a LEAKY

ABSTRACTION if we were to model an ABSTRACTION to include a Close method.
 Some people resort to letting their DEPENDENCIES derive from IDisposable. How-

ever, the Dispose method is just a Close method with another name, so that approach
doesn’t solve the underlying problem.

 Fortunately, database access technologies such as LINQ to SQL and LINQ to Entities
show the way. In both cases, we access data through a context that contains a connec-
tion. Whenever we communicate with the database, the context automatically opens

WCF services and state
A fundamental rule of service orientation is that services should be stateless. If we follow
this rule, surely a WCF client should keep no resources alive on the server side, right?

Surprisingly, this may not be true. Even if we design a service to be completely state-
less, WCF may not be. It depends on the binding.

One example among many relates to security. Message-based security tends to
impact performance. This is true because asymmetric keys are computationally inten-
sive, but it’s even more true for Federated security because multiple message
exchanges are involved in establishing a security context. WCF’s default behavior is
to establish a secure conversation based on the asymmetric key exchange. The ser-
vice and client use the asymmetric security handshake to exchange an ad hoc sym-
metric key that is used to secure all future messages that are part of that session.

However, that behavior requires that both sides keep the shared secret in memory.
The client must sign off with the service when it finishes the session, or it will orphan
the symmetric key at the server. It will eventually be cleaned up after a timeout, but
it takes up memory until then. To save resources on the server, the client should
explicitly close the “connection” when it’s finished.

Although this isn’t true for all WCF bindings, it’s true for so many that we need to
ensure that our WCF clients are good citizens.

172 CHAPTER 6 DI refactorings
and closes the connection as necessary, entirely freeing us from the burden of dealing
with this.

 Our first reaction should be to do the same. Figure 6.3 shows how to define the
ABSTRACTION at a level that is sufficiently coarse-grained that the implementation can
open and close connections as necessary.

 The consumer is never aware that some implementations may be opening and
closing connections on its behalf.

 Whenever possible, we should strive to design a consumer’s DEPENDENCIES so that
we never need to explicitly deal with the lifetime of the DEPENDENCY at this level. There
are, however, instances where we can’t do that.

OPENING AND CLOSING DEPENDENCIES

The problem with coarse-grained APIs is that they may not be flexible enough. Some-
times we simply need an ABSTRACTION that lets us explicitly model the lifecycle of
DEPENDENCIES that otherwise will cause memory leaks.

WARNING Stopping one leak creates another. We exchange memory leaks for
LEAKY ABSTRACTIONS.

The most common lifecycle we need to model is shown in figure 6.4.
 In section 6.1, you saw how to use an Abstract Factory to create DEPENDENCIES at will,

so we need to find a coding idiom that fits with closing a connection. As figure 6.4 hints,
we can use the IDisposable pattern to dispose of connection-using DEPENDENCIES.

WARNING Disposable DEPENDENCIES are design smells. Use them only when
there is no other option. Read more in section 8.2.

Figure 6.3 We can design an interface so that it’s sufficiently coarse-grained that each method
encapsulates all interactions with an external resource in a single batch. The Consumer invokes a
method on the IResource interface. An implementation of that method could open a connection and
invoke several methods against the external resource before closing the connection and returning a
result to the consumer.

173Working with short-lived Dependencies
In other words, we can model just
about any interaction that fits the life-
cycle from figure 6.4 with an Abstract
Factory that creates disposable DEPEN-
DENCIES (see figure 6.5).

 The usage pattern shown in figure
6.5 is often best implemented by using
the C# using keyword (or a similar
construct in other languages).

 As the following example will show,
it makes sense to combine both of
the approaches just discussed. The
resource access is modeled as a coarse-
grained ABSTRACTION that shields the
consumer from explicitly dealing with lifecycle management, whereas the implemen-
tation uses the described combination of Abstract Factory and disposable DEPENDEN-
CIES. Let’s see how that works.

6.2.2 Example: invoking a product-management service

Imagine a Windows Presentation Foundation (WPF) application that provides a rich
user interface for managing a product catalog. Such an application could communi-
cate with the backend via a WCF service that exposes the necessary product catalog
management operations.

 Figure 6.6 shows how an implementation combines both techniques from the pre-
vious section.

NOTE We’ll return to this WPF application in sections 6.3.2 and 7.4.2.

The consumer is shielded from connection management, which is an implementation
detail of WcfProductManagementAgent.

 Whenever the MainWindowViewModel class wants to invoke a service operation,
it invokes its IProductManagementAgent DEPENDENCY. This is a completely normal

Figure 6.4 The most common lifecycle for a connection is that we create it, use it, and close it when
we’re finished with it. This is the lifecycle that we should model if we must model such things.

Figure 6.5 We can model connection management
and similar lifecycles by taking a DEPENDENCY on an
Abstract Factory such as the IFooFactory shown
here. Each time the consumer needs an instance of
IFoo, it’s created by IFooFactory, but the consumer
must remember to dispose of it appropriately.

174 CHAPTER 6 DI refactorings
DEPENDENCY injected via CONSTRUCTOR INJECTION. This, for example, shows how to
delete a product:

this.agent.DeleteProduct(productId);

In this case, this.agent is the injected IProductManagementAgent DEPENDENCY. As you
can see, no explicit connection management is taking place here; but if you look at
the implementation in WcfProductManagementAgent, you see how Abstract Factory is
used in combination with a disposable DEPENDENCY:

using (var channel = this.factory.CreateChannel())
{
 channel.DeleteProduct(productId);
}

You don’t have an injected WCF client you can use to invoke the service operation
because you need to close the client as soon as you’re finished with it, and it isn’t pos-
sible to reuse WCF channels. Instead, you have an injected Abstract Factory that you
use to create a new channel. Because the operation is enclosed in a using scope, leav-
ing the scope disposes the channel.

 The factory DEPENDENCY is an instance of the IProductChannelFactory interface.
This is a custom interface created for the occasion:

public interface IProductChannelFactory
{
 IProductManagementServiceChannel CreateChannel();
}

However, the IProductManagementServiceChannel interface is an auto-generated
interface created together with all the other WCF proxy types. Every time we create a

Figure 6.6 The MainWindowViewModel class consumes the IProductManagementAgent
interface. This is a coarse-grained interface that exposes appropriate methods for the
consumer to call. From MainWindowViewModel’s perspective, no connection management
is taking place. When the application is running, the WcfProductManagementAgent class
provides the implementation of the coarse-grained interface. It does this by consuming the
Abstract Factory IProductChannelFactory that creates disposable instances. The
IProductManagementServiceChannel interface derives from IDisposable, which
enables WcfProductManagementAgent to dispose of the WCF client when the operations
have been successfully invoked.

175Resolving cyclic Dependencies
service reference in Visual Studio or use svcutil.exe, such an interface is created along
with the other types. The attractive feature of this auto-generated interface is that it
implements IDisposable along with all the service operations.

 This type is understood by WCF, making the implementation of IProductChannel-
Factory trivial because we can use System.ServiceModel.ChannelFactory<TChannel>
to create the instances.

 As a dominant principle, I prefer a stateless and coarse-grained interface like
IProductManagementAgent to shield the implementation details from consumers.
Although we must view disposable DEPENDENCIES as LEAKY ABSTRACTIONS, a leak can be
contained within a particular implementation; and by doing that we gain TESTABILITY

without compromising the overall design.
 Abstract Factory is an extremely useful design pattern. It helps resolve runtime

DEPENDENCIES and short-lived DEPENDENCIES. We can also include it in an effort to
resolve cyclic DEPENDENCIES, but it doesn’t play a central role in that context.

6.3 Resolving cyclic Dependencies
Occasionally, DEPENDENCY implementations turn out to be cyclic. An implementation
requires another DEPENDENCY whose implementation requires the first ABSTRACTION.
Such a dependency graph can’t be satisfied.

 It’s important to realize that the ABSTRACTIONS themselves can be perfectly acyclic,
while particular implementation can introduce a cycle. Figure 6.7 shows how this
could happen.

 As long as the cycle remains, we can’t possibly satisfy all DEPENDENCIES, and our
applications won’t be able to run. Clearly, something must be done, but what?

 In this section, we look into the issue concerning cyclic DEPENDENCIES, including an
example. When we’re finished, your first reaction should be to try to redesign your
DEPENDENCIES. If that isn’t possible, you can break the cycle by refactoring from

Figure 6.7 Cycles in the dependency
graph can occur even if the ABSTRACTIONS

have no relations to each other. In this
example, each implementation
implements a separate interface but also
requires a DEPENDENCY. Because
ConcreteC requires IA, but the only
implementation of IA is ConcreteA with
its DEPENDENCY on IB and so forth, we
have a cycle that can’t be resolved as is.

176 CHAPTER 6 DI refactorings
CONSTRUCTOR INJECTION to PROPERTY INJECTION. This represents a loosening of a class’s
invariants, so it isn’t something you should do lightly.

6.3.1 Addressing Dependency cycles

Whenever I encounter a DEPENDENCY cycle, my first question is, “Where did I fail?”

TIP A DEPENDENCY cycle is a design smell. If one appears, you should seriously
reconsider your design.

A DEPENDENCY cycle should immediately
trigger a thorough evaluation of the root
cause of the cycle. It’s often based on either
incorrect assumptions or a serious break of
the rule of unidirectional DEPENDENCIES. In
a layered application, classes should only
talk to other classes in their own layer and
the layer immediately below.

 If the cycle traverses more than one layer,
we know something is fundamentally wrong.
As figure 6.8 shows, this would mean that
some references go the wrong way.

 It’s a little less clear what is going on if
we have a cycle within a single layer. This
may even be the result of valid consider-
ations that just ended up as less-than-
optimal implementations.

 It’s imperative that we break a cycle in
some way. As long as the cycle exists, the
application won’t run.

 Any cycle is a design smell, so our first reaction should be to redesign the involved
part to prevent the cycle from happening in the first place. Table 6.1 shows some gen-
eral directions we can take.

 I don’t intend to elaborate upon the first option because the existing literature
already provides detailed treatment.

TIP Attempt to address cycles by using events. If that fails, try an Observer.
Only if you’re still unsuccessful should you consider breaking the cycle by
using PROPERTY INJECTION.

Make no mistake: a DEPENDENCY cycle is a design smell. Our first priority should be to
analyze the code to understand why the cycle appears. When we understand why, we
should change the design.

 Still, sometimes we can’t change the design. Even if we understand the root cause
of the cycle, the offending API may be out of our control.

Figure 6.8 When a cycle crosses one or more
layer boundaries, at least one reference is
architecturally illegal. In this case, the
reference from D to A is the culprit. If a
situation like this occurs, it should be
addressed immediately.

177Resolving cyclic Dependencies
BREAKING THE CYCLE WITH PROPERTY INJECTION

In some cases, the design error is out of our control, but we still need to break the
cycle. In such cases, we can break the cycle by using PROPERTY INJECTION.

WARNING You should only resort to solving cycles by using PROPERTY INJECTION

as a last-ditch effort. It only treats the symptoms instead of curing the illness.

To break the cycle, we must analyze it to figure out where we can make a cut. Because
using PROPERTY INJECTION suggests an optional rather than a required DEPENDENCY, it’s
important that we closely inspect all DEPENDENCIES to determine where cutting hurts
the least.

 In figure 6.9, B requires an instance of IC
(the interface that C implements). We can
resolve the cycle by changing B’s DEPENDENCY

from CONSTRUCTOR INJECTION to PROPERTY

INJECTION. This means that we can create B
first and inject it into A, and then subse-
quently assign C to B:

var b = new B();
var a = new A(b);
b.C = new C(new D(a));

Using PROPERTY INJECTION this way adds extra complexity to B because it must now be
able to deal with the case where its DEPENDENCY isn’t yet available.

TIP Classes should never perform work involving DEPENDENCIES in their con-
structors because the injected DEPENDENCY may not yet be fully initialized.

Table 6.1 Some redesign strategies for breaking DEPENDENCY cycles

Strategy Description

Events You can often break a cycle by changing one of the ABSTRACTIONS to raise events instead
of having to explicitly invoke a DEPENDENCY to inform the DEPENDENCY that something
happened.
Events are particularly appropriate if one side only invokes void methods on its
DEPENDENCY.
.NET events are an application of the Observer7 design pattern, and you may occasion-
ally consider implementing it explicitly. This is particularly true if you decide to use
Domain Events8 to break the cycle. This has the potential to enable true asynchronous
one-way messaging.

PROPERTY
INJECTION

If all else fails, we can break the cycle by refactoring one class from CONSTRUCTOR INJEC-
TION to PROPERTY INJECTION.
This should be a last-ditch effort because it only treats the symptoms.

7 Ibid., 293.
8 Udi Dahan, “Domain Models: Employing the Domain Model Pattern” (MSDN Magazine, August 2009), http://

msdn.microsoft.com/en-us/magazine/ee236415.aspx

Figure 6.9 Given a cycle, we must first
decide where to cut it. In this case, we decide
to cut between B and C.

http://msdn.microsoft.com/en-us/magazine/ee236415.aspx
http://msdn.microsoft.com/en-us/magazine/ee236415.aspx

178 CHAPTER 6 DI refactorings
If we don’t wish to loosen any of the original classes in this way, we can introduce a Vir-
tual Proxy9 that leaves B intact:

var lb = new LazyB();
var a = new A(lb);
lb.B = new B(new C(new D(a)));

LazyB implements IB just like B does. However, it takes its IB DEPENDENCY through
PROPERTY INJECTION instead of CONSTRUCTOR INJECTION, allowing us to break the cycle
without violating the invariants of any of the original classes.

 Although classes with the imaginative names A–D illustrate the structure of a solu-
tion, a more realistic example is warranted.

6.3.2 Example: composing a window

One of the most common situations where we can’t redesign our way out of a DEPEN-
DENCY cycle is when we deal with external APIs. One such example is WPF.

 In WPF, we can use the MVVM10 pattern to implement separation of concerns by
splitting the code into Views and underlying models. The models are assigned to the
Views through a DataContext property. This is essentially PROPERTY INJECTION at work.

TIP You can read more about composing WPF applications with MVVM in sec-
tion 7.4.

A DataContext serves as the Window’s DEPENDENCY, but the model plays a large part in
controlling which Views are activated where. One of the actions a model must be able
to perform is to pop up a dialog box. And one way to implement this is by injecting an
ABSTRACTION like this into the model:

public interface IWindow
{
 void Close();

 IWindow CreateChild(object viewModel);

 void Show();

 bool? ShowDialog();
}

With an injected IWindow, any model can create new Windows and display them as
modal or modeless windows. However, to implement this interface, we need a refer-
ence to the real Window to properly set the Owner property. The following listing shows
the implementation of the CreateChild method.

9 Gamma, Design Patterns, 208.
10 Josh Smith, “Patterns: WPF Apps With The Model-View-ViewModel Design Pattern” (MSDN Magazine, Febru-

ary 2009), http://msdn.microsoft.com/en-us/magazine/dd419663.aspx

http://msdn.microsoft.com/en-us/magazine/dd419663.aspx

179Resolving cyclic Dependencies
public virtual IWindow CreateChild(object viewModel)
{
 var cw = new ContentWindow();
 cw.Owner = this.wpfWindow;
 cw.DataContext = viewModel;
 WindowAdapter.ConfigureBehavior(cw);

 return new WindowAdapter(cw);
}

ContentWindow is a WPF Window you can use to show a new window. It’s important to
set the owner of a Window before showing it, because otherwise weird bugs can occur
where a focused or modal window is hidden behind other windows. To prevent such
bugs, you set the Owner property to the current Window. The wpfWindow field is
another instance of System.Windows.Window.

 You also assign the viewModel to the
new Window’s DataContext before
wrapping it in a new IWindow imple-
mentation and returning it.

 The issue is that with this imple-
mentation, you have ViewModels that
require IWindow, an IWindow imple-
mentation that requires a WPF Window,
and WPF Windows that through their
DataContext require a ViewModel to
work. Figure 6.10 shows this cycle.

 There is no reasonable kind of rede-
sign you can apply to get out of the
circular DEPENDENCY. The relationship between Window and ViewModel is fixed because
System.Windows.Window is an external API (defined in the Base Class Library [BCL]).
Likewise, WindowAdapter depends on a Window to avoid focus bugs, so this relation-
ship is also externally given.

 The only relationship you can change is between a ViewModel and its IWindow.
Technically, you could redesign this to use events, but that would lead to a rather
counter-intuitive API. To show a dialog box, you would have to raise an event and hope
someone subscribes by showing a modal window. Furthermore, you would have to
return the result of the dialog box by reference via the original event arguments. Rais-
ing the event would be a blocking call. This would be technically possible, but strange,
so we’ll rule that out.

 It seems we can’t redesign our way out of the cycle, so how do we break it?

Listing 6.2 Creating a child window

Figure 6.10 A WPF MVVM cycle. In MVVM, a
Window depends on a ViewModel, which in turn
depends on an IWindow instance. The proper
implementation of IWindow is WindowAdapter,
which depends on a WPF Window to be able to set
the owner of each Window to avoid focus bugs.

180 CHAPTER 6 DI refactorings
BREAKING THE CYCLE

We need to find a relationship where we can cut the cycle to introduce PROPERTY INJEC-
TION. In this case it’s easy, because the relationship between a WPF Window and a View-
Model already uses PROPERTY INJECTION. This is where we’ll cut.

 The simplest solution is to wire up anything else and set the DataContext property
on the MainWindow as the last thing before showing it. This is possible but not particu-
larly DI CONTAINER–friendly, because it would require us to explicitly assign a DEPEN-
DENCY after composition has been performed.

 As an alternative, we can encapsulate this deferred assignment in a lazy-loading
adapter. This enables us to wire up everything properly with a DI CONTAINER.

NOTE The following example draws on the same project that is also described
in section 7.4.2. You can see all the code in the code download for the book.

Let’s see how to encapsulate creation of an IWindow implementation that correctly
bootstraps a MainWindowViewModel and assigns it to a WPF MainWindow instance. To
help do that, you introduce this Abstract Factory:

public interface IMainWindowViewModelFactory
{
 MainWindowViewModel Create(IWindow window);
}

The MainWindowViewModel class has more than one DEPENDENCY, but all the DEPENDEN-
CIES other than IWindow can be satisfied immediately, so you don’t need to supply
them as a parameter to the Create method. Instead, you can inject them into the con-
crete implementation of IMainWindowViewModelFactory.

 You use IMainWindowViewModelFactory as a DEPENDENCY in an implementation of
IWindow derived from the WindowAdapter glimpsed in listing 6.2. This enables you to
defer initialization of the IWindow implementation until the first method is invoked.
Here you see how the CreateChild method from listing 6.2 is overridden:

public override IWindow CreateChild(object viewModel)
{
 this.EnsureInitialized();
 return base.CreateChild(viewModel);
}

Before performing any real work, you must make sure that all DEPENDENCIES are fully
initialized. When they are, you can safely invoke the base implementation.

 The next listing shows how the EnsureInitialized method is implemented using
the injected IMainWindowViewModelFactory.

private void EnsureInitialized()
{
 if (this.initialized)
 {

Listing 6.3 Deferred initialization of DEPENDENCIES

181Resolving cyclic Dependencies
 return;
 }

 var vm = this.vmFactory.Create(this);
 this.WpfWindow.DataContext = vm;
 this.DeclareKeyBindings(vm);

 this.initialized = true;
}

When initializing the MainWindowAdapter, you first invoke the injected Abstract Fac-
tory to produce the desired ViewModel B. This is possible at this point because the
MainWindowAdapter instance is already created; and because it implements IWindow,
you can pass the instance to the Create method.

 When you have the ViewModel, you can assign it to the DataContext of the encap-
sulated WPF Window c. With a bit of further setup, the Window is now fully initialized
and ready for use.

 In the application’s COMPOSITION ROOT, you can wire it all up like this:

IMainWindowViewModelFactory vmFactory =
 new MainWindowViewModelFactory(agent);

Window mainWindow = new MainWindow();
IWindow w =
 new MainWindowAdapter(mainWindow, vmFactory);

The mainWindow variable becomes the WpfWindow property in listing 6.3, and
vmFactory matches the field of the same name. When you invoke the Show or Show-
Dialog method on the resulting IWindow, the EnsureInitialize method is invoked
and all DEPENDENCIES are satisfied.

 This combination of a deferred initialization with the help of an Abstract Factory
can be a nice extra touch, but it’s the presence of PROPERTY INJECTION that enables you
to break the cycle in the first place. In this case you were “lucky” because a WPF Window
already uses PROPERTY INJECTION through its DataContext property.

 Always keep in mind that the best way to address a cycle is to redesign the API so
that the cycle disappears. However, in the rare cases where this is impossible or highly
undesirable, we must break the cycle by using PROPERTY INJECTION in at least one place.
This enables us to compose the rest of the object graph apart from the DEPENDENCY

associated with the property. When the rest of the object graph is fully populated,
we can inject the appropriate instance via the property. As an optional extra touch, we
can encapsulate this property-assignment logic in a class and use an Abstract Factory
to assign the property value at the last possible moment.

PROPERTY INJECTION signals that a DEPENDENCY is optional, so we shouldn’t make the
change lightly. CONSTRUCTOR INJECTION is much preferred in most cases, but it may
make some people uneasy. Let’s see why.

Create
ViewModel

B

Inject ViewModel
into Windowc

182 CHAPTER 6 DI refactorings
6.4 Dealing with Constructor Over-injection
Unless you have special requirements, CONSTRUCTOR INJECTION should be your preferred
injection pattern. However, some people become uncomfortable when the number of
DEPENDENCIES grows. They don’t like a constructor with too many parameters.

 In this section, we’ll look at the apparent problem of a growing number of con-
structor parameters and why this is a good thing rather than a bad thing. As you’ll see,
it doesn’t mean we should accept long parameter lists in constructors, so we’ll also
review what we can do about too many constructor arguments. An example rounds off
the section.

6.4.1 Recognizing and addressing Constructor Over-injection

When a constructor’s parameter list grows too large, we call the phenomenon Con-
structor Over-injection11 and consider it a code smell. It’s a general code smell unrelated
to, but magnified by, DI. Although our initial reaction might be that we don’t like CON-
STRUCTOR INJECTION because of Constructor Over-injection, we should be thankful that
a general design issue is revealed to us.

 In this section, we’ll first take a moment to appreciate how Constructor Over-
injection makes our lives a little easier, and then consider appropriate reactions.

CONSTRUCTOR OVER-INJECTION AS A SIGNAL

Although CONSTRUCTOR INJECTION is easy to implement and use, it makes people
uncomfortable when their constructors start looking like this:

public MyClass(IUnitOfWorkFactory uowFactory,
 CurrencyProvider currencyProvider,
 IFooPolicy fooPolicy,
 IBarService barService,
 ICoffeeMaker coffeeMaker,
 IKitchenSink kitchenSink)

I can’t say I blame anyone for disliking such a constructor, but don’t blame CONSTRUC-
TOR INJECTION. We can agree that a constructor with six parameters is a code smell, but
it indicates a violation of the SINGLE RESPONSIBILITY PRINCIPLE rather than a problem
related to DI.

TIP CONSTRUCTOR INJECTION makes it easy to spot SINGLE RESPONSIBILITY PRINCI-
PLE violations.

Instead of feeling uneasy about Constructor Over-injection, we should embrace it as
a fortunate side effect of CONSTRUCTOR INJECTION. It’s a signal that alerts us whenever a
class takes on too much responsibility.

 My personal threshold lies at four constructor arguments. Whenever I add a third
argument, I begin considering whether I could design things differently, but I can live

11 Jeffrey Palermo, “Constructor over-injection smell—follow up,” 2010, http://jeffreypalermo.com/blog/
constructor-over-injection-smell-ndash-follow-up/

http://jeffreypalermo.com/blog/co nstructor-over-injection-smell-ndash-follow-up/
http://jeffreypalermo.com/blog/co nstructor-over-injection-smell-ndash-follow-up/

183Dealing with Constructor Over-injection
with four arguments for a few classes. Your limit may be different, but when you cross
it, it’s time to refactor.

 How we refactor a particular class that has grown too big depends on the particular
circumstances: the object model already in place, the domain, business logic, and so
on. Splitting up a budding God Class12 into smaller, more focused classes according to
well-known design patterns is always a good move.

 Still, there are cases where business requirements oblige us to do a lot of different
things at the same time. This is often the case at the boundary of an application.
Think about a coarse-grained web service operation that triggers many business
events. One way to model such operations is by hiding the myriad DEPENDENCIES

behind Facade Services.

REFACTORING TO FACADE SERVICES

There are many ways we can design and implement collaborators so that they don’t
violate the SINGLE RESPONSIBILITY PRINCIPLE. In chapter 9, we’ll discuss how the Decora-
tor13 design pattern can help us stack CROSS-CUTTING CONCERNS instead of injecting
them into consumers as services. This can eliminate a lot of constructor arguments.

 Still, in some scenarios a single entry point needs to orchestrate many DEPENDENCIES.
One example is a web service operation that triggers a complex interaction of many dif-
ferent services. The entry point of a scheduled batch job may face the same issue.

 Figure 6.11 shows how we can refactor key relationships into Facade Services.
 Refactoring to Facade Services is more than just a party trick to get rid of

too many DEPENDENCIES. The key is to identify natural clusters of interaction. In
figure 6.11, it turns out that DEPENDENCIES A–C form a natural cluster of interaction,
and so do D and E.

 A beneficial side effect is that discovering these natural clusters draws previously
undiscovered relations and domain concepts out in the open. In the process, we turn
implicit concepts into explicit concepts.14 Each Facade becomes a service that cap-
tures this interaction on a higher level, and the consumer’s single responsibility
becomes to orchestrate these high-level services.

NOTE Facade Services are abstract Facades15—hence the name.

Facade Services are related to Parameter Objects,16 but instead of combining and expos-
ing components, a Facade Service exposes only the encapsulated behavior, while hid-
ing the constituents.

12 William J. Brown, et al., AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis (New York: Wiley
Computer Publishing, 1998), 73.

13 Gamma, Design Patterns, 175.
14 Evans, Domain-Driven Design, 206-223.
15 Gamma, Design Patterns, 185.
16 Martin Fowler et al., Refactoring: Improving the Design of Existing Code (New York: Addison-Wesley, 1999), 295.

184 CHAPTER 6 DI refactorings
Obviously, we can repeat this refactoring if we have such a complex application that
the consumer ends up with too many DEPENDENCIES on Facade Services. Creating a
Facade for Facade Services is a perfectly sensible thing to do.

 Close to the boundary of our application (such as the UI or a web service), we can
operate with a set of rather coarse-grained ABSTRACTIONS. As we examine the imple-
mentations of DEPENDENCIES, we see that behind coarse-grained services are finer-
grained services, which are combinations of even finer-grained services. This enables
us to quickly get an overview at the entry level while ensuring that each final imple-
mentation adheres to the SINGLE RESPONSIBILITY PRINCIPLE.

 Let’s look at an example.

Figure 6.11 In the top diagram, the consumer has five DEPENDENCIES, which is a
strong indication that it violates the SINGLE RESPONSIBILITY PRINCIPLE. Still, if the role of
the consumer is to orchestrate those five DEPENDENCIES, we can’t throw any away.
Instead, we can introduce Facade Services that orchestrate parts of the relationship.
In the bottom diagram, the consumer has only two DEPENDENCIES, and the Facades have
two and three DEPENDENCIES.

185Dealing with Constructor Over-injection
6.4.2 Example: refactoring order reception

The sample commerce application that we look at from time to time needs to be able
to receive orders. This is often best done by a separate application or subsystem
because at that point the semantics of the transaction change.

 As long as you’re looking at a shopping basket, you can dynamically calculate unit
prices, exchange rates, and discounts; but when a customer places an order, all those
values must be captured and frozen as they were presented when the customer
approved the order. Table 6.2 provides an overview of the order-reception process.

Five different DEPENDENCIES are required just to receive an order. Imagine which other
DEPENDENCIES you would need to handle other order-related operations!

 Let’s first review how this would look if the consuming OrderService class directly
imported all these DEPENDENCIES; subsequently, you’ll see how you can refactor the
functionality by using Facade Services.

TOO MANY FINE-GRAINED DEPENDENCIES

If you let OrderService directly consume all five DEPENDENCIES, the structure is as
shown in figure 6.12.

 If you use CONSTRUCTOR INJECTION for the OrderService class (which you should),
you have a constructor with five parameters. This is too many and indicates that the
OrderService has too many responsibilities. On the other hand, all these DEPENDEN-
CIES are required because the OrderService class must implement all of the desired
functionality when it receives a new order.

 You can address this issue by redesigning OrderService.

REFACTORING TO FACADE SERVICES

The first thing you need to do is to look for natural clusters of interaction to identify
potential Facade Services. The interaction between ILocationService and IInventory-
Management should immediately draw your attention, because you use them to find
the closest warehouses that can fulfill the order. This could potentially be a complex
algorithm, but after you’ve selected the warehouses you need to notify them about
the order.

Table 6.2 When the order subsystem receives a new order, it must perform a number of different actions.

Action Required DEPENDENCIES

Save the order OrderRepository

Send a receipt email to the customer IMessageService

Notify the accounting system about the invoice amount IBillingSystem

Select the best warehouses to pick and ship the order based on
the items in the order and proximity to the shipping address

ILocationService,
IInventoryManagement

Ask the selected warehouses to pick and ship the entire order or
parts of it

IInventoryManagement

186 CHAPTER 6 DI refactorings
If you think about this a little further, ILocationService is an implementation detail
of notifying the appropriate warehouses about the order. The entire interaction can
be hidden behind an IOrderFulfillment interface, as shown in figure 6.13. Interest-
ingly, order fulfillment sounds a lot like a domain concept in its own right; chances are
that you just discovered an implicit domain concept and made it explicit.

 The default implementation of IOrderFulfillment consumes the two original
DEPENDENCIES, so it has a constructor with two parameters, which is fine. As a further
benefit, you’ve encapsulated the algorithm for finding the best warehouse for a given
order into a reusable component.

 This refactoring collapses two DEPENDENCIES into one but leaves you with four
DEPENDENCIES of the OrderService class. You need to look for other opportunities to
aggregate DEPENDENCIES into a Facade.

 The next thing you may notice is that all the requirements involve notifying other
systems about the order. This suggests that you can define a common ABSTRACTION that
models notifications—perhaps something like this following code snippet:

Figure 6.12 OrderService has five direct DEPENDENCIES, indicating that it violates the SINGLE

RESPONSIBILITY PRINCIPLE.

Figure 6.13 The interaction between IInventoryManagement and
ILocationService is implemented in the LocationOrderFulfillment
class, which implements the IOrderFulfillment interface. Consumers of the
IOrderFulfillment interface have no idea that the implementation has
two DEPENDENCIES.

187Dealing with Constructor Over-injection
public interface INotificationService
{
 void OrderAdded(Order order);
}

TIP The Domain Event design pattern is another good alternative in
this scenario.

Each notification to an external system can be implemented using this interface. You
can even consider wrapping OrderRepository in INotificationService, but it’s
likely that the OrderService class will need access to other methods on OrderRepository
to implement other functionality. Figure 6.14 shows how you implement the other
notifications using INotificationService.

 You may wonder how this helps, because you’ve wrapped each DEPENDENCY in a new
interface. The number of DEPENDENCIES didn’t decrease, so did you gain anything?

 Yes. Because all three notifications implement the same interface, you can wrap
them in a Composite.17 This is another implementation of INotificationService
that decorates a collection of INotificationService instances and invokes the
OrderAdded method on them all.

 From a conceptual perspective, this also makes sense because from a high-level view
you don’t care about the details of how OrderService notifies other systems. However,
you do care that it does. Figure 6.15 shows the final DEPENDENCIES of OrderService.

 This reduces OrderService to only two DEPENDENCIES, which is a much more rea-
sonable number. Functionality is unchanged, making this a true refactoring. On the
other hand, the conceptual level of OrderService changed. Its responsibility is now
to receive an order, save it, and notify other systems. The details of which systems
are notified and how this is implemented have been pushed down to a more
detailed level.

17 Gamma, Design Patterns, 163.

Figure 6.14 Every notification to an external system can be hidden behind the
INotificationService—even the new IOrderFulfillment interface you just
introduced.

188 CHAPTER 6 DI refactorings
Even though you consistently use CONSTRUCTOR INJECTION throughout, no single class’s
constructor ends up requiring more than two parameters (CompositeNotification-
Service takes an IEnumerable<INotificationService> as a single argument).

 Constructor Over-injection isn’t a problem related to DI in general or CONSTRUCTOR

INJECTION specifically. Rather, it’s a signal that the class in question has too many
responsibilities. The code smell comes from the class, not CONSTRUCTOR INJECTION; and
as always, we should regard the smell as an opportunity to improve the code.

 There are many ways we can refactor to patterns, but one option is to introduce
Facade Services that model concepts at a higher abstraction level. This addresses the
violation of the SINGLE RESPONSIBILITY PRINCIPLE and often draws out previously undis-
covered domain concepts in the process.

 This is one of the many ways DI helps us write better code. Because loose coupling
is so valuable, we want to make sure loosely coupled code stays loosely coupled. The
next section discusses how to do that.

6.5 Monitoring coupling
Loose coupling is valuable, but it’s surprisingly easy to introduce tight coupling. All it
takes is a novice developer and a moment of inattention, and a hard reference may be
introduced. In Visual Studio, it’s easy to add new references to an existing project, but
this is often what we want to avoid. Discipline must be observed to ensure that each
module focuses on its own area of responsibility.

 In this section, we’ll look at some techniques that can be useful when we want to
make sure loosely coupled code stays loosely coupled. Perhaps we want to protect the
code against our mistakes, or perhaps junior developers on the team need a bit of help.

 Nothing beats human interaction when it comes to transferring knowledge. Pair
programming is ideal, but it may still be a good idea to back up manual review with
automated tooling. In the next sections, we’ll look at how automated testing can be
helpful, along with a dedicated tool called NDepend.

Figure 6.15 The final
OrderService with refactored
DEPENDENCIES. You keep
OrderRepository as a
separate DEPENDENCY because
you need its additional methods
to implement other functionality
of OrderService. All the other
notifications are hidden behind
the INotificationService
interface. At runtime, you use a
CompositeNotification-
Service that contains the
remaining three notifications.

189Monitoring coupling
6.5.1 Unit-testing coupling

If we have a unit-test suite that we run regularly, we can quickly add a few unit tests
that examine DEPENDENCIES and fail if an unwarranted dependency is detected. Using
the type system in .NET, we can easily write a unit test that loops through all of an
assembly’s references and fails if it finds one that shouldn’t be there.18

 The Commerce sample application already has unit tests in place, so you can easily
add one more. The following listing shows a unit test that protects the Presentation
Logic module from directly referencing the SQL Server–based Data Access module.

[Fact]
public void SutShouldNotReferenceSqlDataAccess()
{
 // Fixture setup
 Type sutRepresentative = typeof(HomeController);
 var unwanted = "Ploeh.Samples.Commerce.Data.Sql";
 // Exercise system
 var references =
 sutRepresentative.Assembly
 .GetReferencedAssemblies();
 // Verify outcome
 Assert.False(
 references.Any(a => a.Name == unwanted),
 string.Format(
 "{0} should not be referenced by SUT",
 unwanted));
 // Teardown
}

This test looks for DEPENDENCIES of the Presentation Logic module. To get the list of
references, you need to query the assembly in question. You can get the assembly from
any type contained within that assembly, so you can pick one. It’s often a good idea to
choose a type you expect to stay around for the long haul, because otherwise you’ll
have to rewrite the test if you ever delete the type you selected. This test chooses Home-
Controller because the website will always have a front page.

 You also need to identify the assembly you wish to prevent from being referenced.
You could use the same technique and pick a representative type from that assembly,
but that would mean you need to reference that assembly from the unit test. This isn’t
quite as bad as referencing the unwanted assembly from the production code, but it
would still create an artificial coupling between these two libraries—you could say
they become guilty by association. Although type safety is desirable, loose coupling
trumps in this case, so instead you identify the unwanted assembly with a string (but
see the following discussion for alternatives).

18 This idea was presented in Glenn Block, “PrismShouldNotReferenceUnity,” 2008, http://blogs.msdn.com/b/
gblock/archive/2008/05/05/prismshouldnotreferenceunity.aspx

Listing 6.4 Enforcing loose coupling with a unit test

http://blogs.msdn.com/b/gblock/archive/2008/05/05/prismshouldnotreferenceunity.aspx
http://blogs.msdn.com/b/gblock/archive/2008/05/05/prismshouldnotreferenceunity.aspx

190 CHAPTER 6 DI refactorings
 Getting the referenced assemblies from the representative type is as easy as a single
method call. You can now use a simple LINQ query to verify that none of the refer-
enced assemblies have the unwanted name. In the assertion, you also print out a mes-
sage to display if the assertion fails.

TIP This assertion uses a simple LINQ query, but you can replace it with a
foreach loop if you’re developing on .NET 3.0 or earlier versions.

TIP You can also reverse the logic and write the test so that only specific ref-
erences on a predefined list are allowed and all other references are consid-
ered illegal.

The previous example adds the unit test to an existing unit-test suite that targets the
Presentation Logic module. Figure 6.16 illustrates the references in action.

 Listing 6.4 identifies the unwanted assembly with a simple string, but it would have
been more type-safe to identify it using a representative type. However, that would
require you to add a reference to the SQL Server–based Data Access module to the
unit test, as shown in figure 6.17.

 You may think that adding an extra reference to a unit-test project can’t be that
bad, but doing so has more disadvantages than are immediately apparent.

Testing coupling with Red/Green/Refactor
If you’re using Test-Driven Development (TDD) to implement your code, you’re used
to the so-called Red/Green/Refactor development cycle where you first write a failing
test, then make it pass, and finally modify the code to make it more maintainable.

It turns out that making a tight-coupling-preventing test fail is more difficult than you
may think. Even if the targeted Visual Studio project has a reference to the undesir-
able DEPENDENCY, the compiler will only include the reference if it’s being used.

Thus, to make such a test fail, we must first add the reference we don’t want and
then write a line of dummy code that uses a type from the unwanted DEPENDENCY.
As soon as we’ve seen the test fail, we can then reverse the process to make it
pass. This is obviously not a problem if the library under test already violates the
coupling constraint.

Figure 6.16 The Presentation-
LogicUnitTest library is a
test suite that targets the
PresentationLogic library. To
do that, it needs a reference to its
target as well as the shared
ABSTRACTIONS that are defined in
the Domain Model. Because
PresentationLogicUnitTest
doesn’t target the Domain Model,
the DomainModel module is
shown in gray.

191Monitoring coupling
If we want to keep such tight-coupling-preventing unit tests within an existing unit-test
project, the cost of adding a hard reference to all the unwanted assemblies is too
great. The best option is to identify the unwelcome DEPENDENCIES using strings, as
shown in listing 6.4.

 The disadvantage is that if we change the name of the prohibited assembly, the test
becomes worthless—or maybe even worse than worthless, because we may think we’re
protected when we aren’t.

 This isn’t a major issue if we have reason to believe that assembly names are stable.
When this isn’t the case, we need a different strategy.

6.5.2 Integration-testing coupling

There are compelling reasons why unit-test projects should only reference their tar-
gets. Yet to stay robust in the face of changing assembly names, we may at times need
type-safe references to all the undesirable DEPENDENCIES. These sound like contradic-
tory requirements, but we can solve this conundrum by introducing a new integration-
test project.

 You can add a new test project to the Commerce solution and add all the refer-
ences you need. Figure 6.18 shows this solution; and although it looks a lot like
figure 6.17, the difference is that for the integration test, all the references are legal
and equally valid.

Indirect dependencies
A detailed treatment of why a unit-test project should only reference the project it tar-
gets is outside the scope of this book, but the overall problem is that it creates an
indirect dependency between PresentationModel and SqlDataAccess. Although
both of these projects can exist and compile without the other, the unit-test project
ties them together.

This indirect dependency can only be broken by throwing away the unit test that orig-
inally caused the dependency to exist. However, unit tests are written to be executed,
so this is far from desirable.

Figure 6.17 If we want type safety
by adding a representative type from
the SqlDataAccess library to
PresentationLogicUnitTest,
we introduce a new DEPENDENCY to
the unit-test suite for the sole
reason that we want to make sure
it’s never accidentally added to the
PresentationLogic library.
Ironic, isn’t it?

192 CHAPTER 6 DI refactorings
An integration-test suite is tightly coupled to a particular constellation of modules, so
it’s much less reusable. It must be constrained to only contain the tests that absolutely
only can be defined as integration tests, and tests that protect against unwanted cou-
pling may belong in this category. Listing 6.5 shows a type-safe equivalent to the test in
listing 6.4. It follows the same blueprint but varies when it comes to identifying the
unwanted DEPENDENCY.

[Fact]
public void PresentationModuleShouldNotReferenceSqlDataAccess()
{
 // Fixture setup
 Type presentationRepresentative =
 typeof(HomeController);
 Type sqlRepresentative =
 typeof(SqlProductRepository);
 // Exercise system
 var references =
 presentationRepresentative.Assembly
 .GetReferencedAssemblies();
 // Verify outcome
 AssemblyName sqlAssemblyName =
 sqlRepresentative.Assembly.GetName();
 AssemblyName presentationAssemblyName =
 presentationRepresentative.Assembly.GetName();

Integration tests
An integration test is another type of automated test at the API level. The difference
between a unit test and an integration test is that a unit test deals with the unit in
isolation, whereas integration tests focus on verifying that several units (often across
different libraries) integrate with each other as intended.

Per definition, an integration-test project can reference all the DEPENDENCIES it needs to
do its job, so it’s well suited to containing tests that enforce architectural constraints.

Listing 6.5 Enforcing loose coupling with an integration test

Figure 6.18 The Commerce-
IntegrationTest project
contains automated tests that verify
that the relationships between
modules are correct. Unlike unit
tests, an integration-test suite can
contain as many references as are
necessary to perform the test.

Get referenced
assemblies

b

Get assembly
names

c

193Monitoring coupling
 Assert.False(references.Any(a =>
 AssemblyName.ReferenceMatchesDefinition(
 sqlAssemblyName, a)),
 string.Format(
 "{0} should not be referenced by {1}",
 sqlAssemblyName,
 presentationAssemblyName));
 // Teardown
}

Now that you have references to all necessary DEPENDENCIES, you can pick a type from
each module that you can use to represent their assemblies. In contrast with the previ-
ous example, you can identify both in a type-safe way.

 Just as you did before, you retrieve a list of all the assemblies the Presentation-
Logic library references B. Using the AssemblyName of each assembly c, you then
verify that the references don’t contain the SQL Server–based assembly d. The built-
in static ReferenceMatchesDefinition method compares AssemblyNames.

 You may have noticed that the tests in listings 6.4 and 6.5 are similar. You could
write new tests like the one in listing 6.5 by varying the two representative types and
keep everything else constant.

 The next logical step would be to extract the common part of the test into a
Parameterized Test.19 This would allow you to write a simple list of almost declarative
tests that define what is and isn’t allowed in this particular constellation of modules.

 Unit tests and integration tests are great options if you’re already using automated
API-level tests. If not, you should start doing so today, but there are also other alternatives.

6.5.3 Using NDepend to monitor coupling
If for some unfathomable reason you don’t wish to use unit tests, you can use a tool
called NDepend (http://ndepend.com) to warn you if you or your team members
introduce unwanted coupling.

NDepend is a commercial software tool that analyzes projects or solutions and
reports a lot of statistics about the code. As an example, it can generate dependency
graphs not unlike the ones you’ve seen throughout this book. If we analyze Mary’s
original commerce solution from chapter 2, we get the graph shown in figure 6.19.

19 Gerard Meszaros, xUnit Test Patterns: Refactoring Test Code (New York: Addison-Wesley, 2007), 607.

Look for unwanted
Dependency

d

Figure 6.19 Dependency graph generated by NDepend for Mary’s commerce solution. By default, NDepend
includes all DEPENDENCIES, including modules from the BCL. The size of the boxes reflects the number of code lines
in each module, and the thickness of the arrows reflects the number of members used across the references.

http://ndepend.com

194 CHAPTER 6 DI refactorings
This looks complicated, but we can hide the BCL
modules and rearrange the view to arrive at fig-
ure 6.20.

 Does figure 6.20 look familiar? If you have
eidetic memory, you may recall figure 2.10; but
otherwise you can flip back to it. Notice how
they share the same structure and illustrate the
same relationship.

NDepend can do much more than draw
pretty graphs. One of its most powerful features
is the Code Query Language (CQL), which lets us
query our code about a wide range of informa-
tion with syntax reminiscent of SQL.

 If Mary had written a CQL check before devel-
oping her solution, she would have been warned
before much damage had been done. Here is a
query that could have saved her a lot of trouble:

WARN IF Count > 0 IN SELECT ASSEMBLIES WHERE
IsDirectlyUsing "ASSEMBLY:Ploeh.Samples.Mary.ECommerce.Data.Sql" AND
NameIs "Ploeh.Samples.Mary.ECommerce.Domain"

When executed, this CQL query issues a warning if the Domain module directly refer-
ences the SQL Server DataAccess module. In Mary’s solution, this query indeed issues
a warning.

 We can write as many CQL queries for a solution as we like and either run them
using a visual editor or automate the process using a command-line tool. In both
cases, XML files with analysis results are generated, so we can write our own automa-
tion tools that take appropriate action if we want to include such a step in an auto-
mated build process.

NOTE I’ve only scratched the surface of NDepend’s features. It can do many
other things, but I wanted to focus on its ability to keep an eye on coupling.

NDepend and automated tests are two ways to automatically monitor code to ensure
that illegal DEPENDENCIES don’t sneak in by accident. We can use one or both of these
methods as part of an automated Build Verification Test (BVT) or Continuous Integra-
tion (CI) effort.

 In large code bases maintained by big teams, this can protect us from considerable
grief. Although we can’t keep an eye on everything that goes on and perform manual
code reviews of every check-in, automated tools can alert us when suspect things happen.

WARNING Some tools may produce false positives, so don’t blindly believe
them when they tell you that you have a problem. Always use your experience
and knowledge to evaluate warnings. Discard them if you don’t agree.

Figure 6.20 Modified NDepend graph
for Mary’s commerce solution. In this
graph, I’ve manually removed all BCL
modules and made the boxes and arrows
the same size.

195Summary
Review each incident with the appropriate amount of care, and take personal action if
it represents a real issue.

 Consider using automated tools to monitor coupling in large code bases. Doing so
can prevent inadvertent tight coupling from messing up your code base while you
concentrate on the other challenges described in this chapter.

6.6 Summary
DI isn’t particularly difficult when you understand a few basic principles, but as you
learn, you’re guaranteed to run into issues that may leave you stumped for a while.
This chapter attempts to address some of the most common issues people encounter.

 One of the most versatile and useful design patterns related to DI is Abstract Fac-
tory. We can use it to translate primitive runtime values such as strings or numbers
entered by users to instances of complex ABSTRACTIONS. We can also use Abstract Facto-
ries in combination with the IDisposable interface to mimic short-lived DEPENDENCIES

such as connections to external resources.

TIP Translate runtime values to DEPENDENCIES with Abstract Factories.

TIP Mimic connections with ABSTRACT FACTORIES that create disposable
DEPENDENCIES.

A problem that sometimes arises is DEPENDENCY cycles. These tend to occur because of
APIs that are too demanding. The more APIs are designed around a query paradigm,
the more likely cycles become. We can avoid cycles by observing the Hollywood Princi-
ple (tell, don’t ask). Methods with void signatures can be redesigned as events, which
can often be used to break cycles. If a redesign is impossible, we can break a cycle by
changing a single CONSTRUCTOR INJECTION to PROPERTY INJECTION. However, this shouldn’t
be done lightly, because it changes the semantics of the consumer.

TIP Break cycles with PROPERTY INJECTION.

CONSTRUCTOR INJECTION should be your preferred DI pattern; an additional benefit is
that it becomes glaringly obvious every time you violate the SINGLE RESPONSIBILITY PRIN-
CIPLE. When a single class has too many DEPENDENCIES, it’s a signal that we should rede-
sign it in some way. Perhaps we can split it into several smaller classes, but occasionally
we need to keep all the functionality within a single class.

TIP Resolve Constructor Over-injection by refactoring to Facade Services.

In those cases, we can raise the abstraction level by inserting a layer of Facade Services
between the consumer and the original DEPENDENCIES. Performing such a refactoring
often results in the positive side effect that some of these Facade Services turn out to
be previously undiscovered implicit domain concepts. Drawing implicit concepts out
in the open and making them explicit is an improvement of the domain model.

196 CHAPTER 6 DI refactorings
 While we perform these nitty-gritty refactorings, we must not lose sight of the big
picture. Automated tests or tools can help us monitor whether tight coupling reap-
pears in parts of the code base.

 If we write a lot of unit tests (and particularly if we use Test-Driven Development),
tight coupling will quickly manifest itself in complex and brittle test code. Or perhaps
it’s impossible to unit-test large pieces of an application.

TIP Write automated tests to enforce loose coupling.

If we don’t write unit tests, tight coupling may be overlooked, but we may experience
many of its symptoms: as the code base evolves, it becomes more and more difficult to
maintain. The nice clean design we originally intended slowly erodes into Spaghetti
Code.20 Adding a new feature requires us to touch the code base in many seemingly
unrelated areas.

 This chapter described solutions for issues commonly encountered with DI. Together
with the two preceding chapters, it forms a catalog of patterns, anti-patterns, and refac-
torings. This catalog constitutes part 2 of the book. In part 3, we’ll turn toward the three
dimensions of DI: OBJECT COMPOSITION, LIFETIME MANAGEMENT, and INTERCEPTION.

20 Brown, AntiPatterns, 119.

Part 3

DIY DI

In chapter 1, I gave a short outline of the three dimensions of DI: OBJECT COM-
POSITION, LIFETIME MANAGEMENT, and INTERCEPTION. In this part of the book, I
expand this viewpoint into three distinct chapters. Many DI CONTAINERS have fea-
tures that directly relate to these dimensions. Some provide features in all three
dimensions, whereas others only support some of them.

 However, because a DI CONTAINER is an optional tool, I feel that it’s more
important to explain the underlying principles and techniques that containers
typically use to implement these features. Part 3 examines how you can do-it-
yourself instead of using a DI CONTAINER. You can potentially use this information
to build your own DI CONTAINER (but please don’t—the world doesn’t need yet
another container) or apply DI without using a container at all—this is what we
call POOR MAN’S DI. The main purpose of this part of the book, though, is to
expose the underlying mechanisms of OBJECT COMPOSITION, LIFETIME MANAGEMENT,
and INTERCEPTION without having to use a specific DI CONTAINER. I think that had I
used a specific container, it would have been difficult to distinguish general prin-
ciples from specific API details.

 Chapter 7 explains how to compose objects in various concrete frameworks
such as ASP.NET MVC, WPF, WCF, and so on. Not all frameworks support DI
equally well, and even among those that do, the ways they do it differ a lot. For
each framework, it can be difficult to identify the SEAM that enables DI in that
framework. However, once that SEAM is found, you have a solution for all applica-
tions that use this particular framework. In chapter 7, I have done this work
for the most common .NET application frameworks. Think of it as a catalog of
framework SEAMS.

198 PART 3 DIY DI
 Even if your particular framework of choice isn’t covered, I’ve tried to address all
the various sorts of framework limitations you may encounter. For instance, from a DI
perspective, PowerShell is the most restrictive type of framework I can think of, so I
use that as an example. You should be able to extrapolate a solution for similar frame-
works, even if they aren’t explicitly covered.

 Although composing objects isn’t particularly hard with POOR MAN’S DI, you should
begin to see the benefits of a real DI CONTAINER after reading about LIFETIME MANAGE-
MENT. It’s possible to properly manage the lifetime of various objects in an object
graph, but it requires more custom code than OBJECT COMPOSITION, and none of that
code adds any particular business value to an application.

 In addition to explaining the basics of LIFETIME MANAGEMENT, chapter 8 also con-
tains a catalog of common lifestyles. This catalog serves as a vocabulary for discussing
lifestyles throughout part 4, so although you don’t have to be able to implement any
of these by hand, it’s good to know how they work.

 In chapter 9, we look at the frequently occurring problem of implementing CROSS-
CUTTING CONCERNS in a component-based way. Going from a simple application of the
Decorator design pattern all the way to run-time INTERCEPTION, we look at ways to com-
pose loosely coupled applications in a modular way. I consider this chapter the climax
of the book—this is where many readers during the early access program said they
began to see the contours of a tremendously powerful way to model software.

 Although I use POOR MAN’S DI to explore and explain DI, I don’t recommend it
for professional use. Many good DI CONTAINERS are available on .NET, and they are
all free. Thus it’s only fitting that part 4 is dedicated to detailed API coverage of spe-
cific containers.

Object Composition
Cooking a gourmet meal with several courses is a challenging undertaking, partic-
ularly if you wish to partake in the consumption. You can’t very well eat and cook at
the same time, yet many dishes require last-minute cooking to turn out well.

 Professional cooks know how to resolve many of these challenges. Amidst many
tricks of the trade, they use the general principle of mise en place, which can be
loosely translated to everything in place : everything that can possibly be prepared
well in advance is prepared in advance. Vegetables are cleaned and chopped, meats
cut, stocks cooked, ovens preheated, tools laid out, and so on.

 The components of the meal are prepared as much as possible. If ice cream is part
of the dessert, it can be made the day before. If the first course contains mussels,
they can be cleaned hours before. Even such a fragile component as sauce béarnaise

Menu
■ Console applications
■ ASP.NET MVC
■ Windows Communication Foundation
■ Windows Presentation Foundation
■ ASP.NET (Web Forms)
■ PowerShell
199

200 CHAPTER 7 Object Composition
can be prepared up to an hour before. When the guests are ready to eat, only the final
preparations are necessary: reheat the sauce while frying the meat, and so on. In many
cases, this final composition of the meal need not take more than 5 to 10 minutes. Fig-
ure 7.1 illustrates the process.

 The principle of mise en place is similar to developing a loosely coupled application
with DI. We can write all the required components well in advance and only compose
them when we absolutely must.

NOTE In section 3.3.1, I compared the COMPOSITION ROOT to the concept
of the Last Responsible Moment from Lean Software Development.1 Comparing
the COMPOSITION ROOT to mise
en place is a similar analogy,
although it highlights a slightly
different aspect: composition.

As with all analogies, we can only take
them so far. The difference is that in
cooking, preparation and composition
are separated over time, whereas in
application development, this separa-
tion occurs across modules and layers.
Figure 7.2 shows how we compose the
components in the COMPOSITION ROOT

(often the UI layer).
 At runtime, the first thing that hap-

pens is this OBJECT COMPOSITION. As soon
as the object graph is wired up, OBJECT

COMPOSITION is finished, and the constit-
uent components take over.

 Although OBJECT COMPOSITION is the
foundation of DI, it’s one of the easiest

1 See, for example, Mary Poppendieck and Tom Poppendieck, Implementing Lean Software Development: From Con-
cept to Cash (New York: Addison-Wesley, 2007).

Figure 7.1 Mise en place involves preparing all components of the meal well in advance so that the final
composition of the meal can be done as quickly and effortlessly as possible.

Figure 7.2 The COMPOSITION ROOT composes all the
independent modules of the application. In contrast
to mise en place, this doesn’t happen as late as
possible, but happens in a place where the
integration of the different modules is required.

201Object Composition
parts to understand. You already know how to do it, because you compose objects all
the time when you create objects that contain other objects. In section 3.3, we covered
the basics of when and how to compose applications. As a consequence, I don’t intend
to use the next 40 pages telling you how to compose objects.

 Instead, I want to help you address some of the difficulties that may arise as you
compose objects. Those difficulties stem not from OBJECT COMPOSITION itself, but
rather from the application frameworks in which you wish to compose your objects.
These issues tend to be specific to each framework, and so do the resolutions. In my
experience, these challenges pose some of the greatest obstacles to successfully apply-
ing DI, so I’ll focus on them. Doing so will make the chapter less theoretical and more
practical than the previous chapters.

TIP If you only want to read about applying DI in your framework of choice,
you can skip ahead to that section. Each section is intended to stand alone.

It’s easy to compose an application’s entire dependency hierarchy when we have full
control over the application’s lifetime (as we do with command-line applications).
However, most frameworks (ASP.NET, WCF, and so on) in .NET involve INVERSION OF

CONTROL that can sometimes make it difficult to apply DI. Understanding each frame-
work’s SEAMS is the key to applying DI for that particular framework. As figure 7.3 illus-
trates, in this chapter we’ll examine how to implement COMPOSITION ROOTS in some
common Base Class Library (BCL) frameworks.

NOTE Due to space constraints, I won’t cover Windows Forms applications.
However, when it comes to OBJECT COMPOSITION, they’re similar to WPF
applications.

Each section deals with one of these frameworks and can be read more or less inde-
pendently. I’ll begin each section with a general introduction to applying DI in that
particular framework, followed by an extensive example that builds on the common
Commerce example that runs through most of this book.

Figure 7.3 The structure of
this chapter takes the form
of a catalog of various BCL
frameworks and the SEAMS they
may have for enabling DI. Each
section is written so that it can
be read independently of the
other sections.

202 CHAPTER 7 Object Composition
We’ll start with the easiest framework in which to apply DI and gradually work through
more complex frameworks. When we reach ASP.NET, we need to cross an abyss beyond
which we can only apply DI by compromising on at least some of our principles. There
is no denying that frameworks such as ASP.NET and PowerShell are downright hostile
environments in which to apply DI, so we must do the best we can. However, until we
reach that point, there is no need to compromise.

 A console application is probably the easiest type of application in which to apply DI.

7.1 Composing console applications
A console application is hands down the easiest type of application to compose. Con-
trary to most other BCL application frameworks, a console application involves virtu-
ally no INVERSION OF CONTROL. When execution hits the application’s entry point
(usually the Main method), we’re on our own. There are no special events to subscribe
to, no interfaces to implement, and precious few services we can use.

 The Main method is a suitable COMPOSITION ROOT. The first thing we should do in
the Main method is to compose the application’s modules and let them take over.
There’s nothing to it, but let’s look at an example.

7.1.1 Example: updating currencies

In chapter 4, we looked at how to provide a currency conversion feature for the sam-
ple Commerce application. Section 4.3.4 introduced the Currency class, which pro-
vides exchange rates from one currency to other currencies. Because Currency is an
abstract class, we could have created many different implementations, but in the
example we used a database. The purpose of the example code in chapter 4 was to
demonstrate how to retrieve and implement currency conversion, so we never looked
at how to update exchange rates in the database.

 To continue the example, let’s examine how to write a simple console application
that allows an administrator or super-user to update the exchange rates without hav-
ing to interact directly with the database.

THE UPDATECURRENCY PROGRAM

Because the purpose of this program is to update the exchange rates in the database,
it’s called UpdateCurrency.exe. It will take three command-line arguments:

■ The destination currency code
■ The source currency code
■ The exchange rate

It may sound strange to list the destination before the source, but this way should be
most familiar to most people. It tells you how much of the source currency you’ll need
in order to buy one unit of the destination currency; for example, the exchange rate
for USD to EUR is expressed as 1 EUR costing 1.44 USD.2

2 January 10, 2010, that is.

203Composing console applications
 At the command line, it looks like this:

PS Ploeh:\> .\UpdateCurrency.exe EUR USD "1,44"
Updated: 1 EUR in USD = 1,44.

Executing the program updates the database and writes the updated values back to
the console.

COMPOSITION ROOT

UpdateCurrency uses the default entry point for a console program: the Main method
in the Program class. This is the COMPOSITION ROOT for the application, as shown in the
following listing.

public static void Main(string[] args)
{
 var container = new CurrencyContainer();
 container.ResolveCurrencyParser()
 .Parse(args)
 .Execute();
}

The Main method’s only responsibility is to compose all relevant modules and let the
composed object graph take care of the functionality. In this example, a custom con-
tainer encapsulates how modules are composed. Because it performs exactly the same
function as a DI CONTAINER, I chose to call it a container, although it’s a custom container
with hard-wired DEPENDENCIES. We’ll return to it shortly to examine how it’s implemented.

 With the container in place, you can now ask it to resolve a CurrencyParser that
parses the incoming arguments and eventually executes the corresponding command.

TIP The COMPOSITION ROOT should do only two things: set up the container and
resolve the type that implements the desired functionality. As soon as it has done
that, it should get out of the way and leave the rest to the resolved instance.

TIP Use a proper DI CONTAINER instead of a home-grown custom container
for your production applications.

This example uses a custom container explicitly created for this application, but it’s
straightforward to replace it with a proper DI CONTAINER such as those covered in part 4.

CONTAINER

The CurrencyContainer class is a custom container created for the express purpose
of wiring up all DEPENDENCIES for the UpdateCurrency program. The following listing
shows the implementation.

public class CurrencyContainer
{
 public CurrencyParser ResolveCurrencyParser()

Listing 7.1 Console application COMPOSITION ROOT

Listing 7.2 Custom CurrencyContainer

204 CHAPTER 7 Object Composition
 {
 string connectionString =
 ConfigurationManager.ConnectionStrings
 ["CommerceObjectContext"].ConnectionString;

 CurrencyProvider provider =
 new SqlCurrencyProvider(connectionString);
 return new CurrencyParser(provider);
 }
}

In this example, the dependency graph is rather shallow. The CurrencyParser class
requires an instance of the abstract CurrencyProvider class, and in the Currency-
Container you decide that the implementation should be the SqlCurrencyProvider
that provides the desired communication with the database.

 The CurrencyParser class uses CONSTRUCTOR INJECTION, so you pass it the Sql-
CurrencyProvider instance that was just created before returning it from the method.

 In case you were wondering, here is the constructor signature of CurrencyParser:

public CurrencyParser(CurrencyProvider currencyProvider)

Recall that CurrencyProvider is an abstract class that is implemented by SqlCurrency-
Provider. Although CurrencyContainer contains a hard-coded mapping from
CurrencyProvider to SqlCurrencyProvider, the rest of the code is loosely coupled
because it consumes only the ABSTRACTION.

 This example may seem simple, but it composes types from three different applica-
tion layers. Let’s briefly examine how these layers interact in this particular example.

LAYERING

The COMPOSITION ROOT is the place where components from all layers are wired
together. The entry point and the COMPOSITION ROOT constitute the only code of the
executable. All implementation is delegated to lower layers, as figure 7.4 illustrates.

 The diagram in figure 7.4 may look complicated, but it represents almost the
entire code base of the application. Most of the application logic consists of parsing
the input arguments and choosing the correct command based on the input. All this
takes place in the Application Services layer, which only talks directly with the Domain
Model via the abstract CurrencyProvider and Currency classes.

CurrencyProvider is injected into the CurrencyParser by the container and is
subsequently used as an Abstract Factory3 to create a Currency instance used by
CurrencyUpdateCommand.

 The Data Access layer supplies the SQL Server–based implementations of the
Domain Classes. Although none of the other application classes talk directly to these
classes, the CurrencyContainer maps the ABSTRACTIONS to the concrete classes.

3 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (New York: Addison-Wesley,
1994), 87.

Get connection
string from config

205Composing console applications
Using DI with a console application is easy because there’s virtually no external INVER-
SION OF CONTROL involved. The .NET Framework simply spins up the process and hands
the control to the Main method.

 In most other BCL frameworks, there is a higher degree of INVERSION OF CONTROL,
which means we need to be able to identify the correct extensibility points to wire up
the desired object graph. One such framework is ASP.NET MVC.

Figure 7.4 Component composition of the UpdateCurrency application. CurrencyParser parses the
command-line arguments and returns an appropriate ICommand. If the arguments were intelligible, it
returns a CurrencyUpdateCommand that uses a Currency instance to update the exchange rate. The
vertical line to the right shows the corresponding application layer. Each layer is implemented in a
separate assembly.

206 CHAPTER 7 Object Composition
7.2 Composing ASP.NET MVC applications
ASP.NET MVC was built with the express intent to be DI-friendly, and it is. It doesn’t
enforce the use of DI, but it easily allows DI without making any assumption about the
kind of DI we’ll apply. We can use POOR MAN’S DI or whichever DI CONTAINER we like.

7.2.1 ASP.NET MVC extensibility

As is always the case with DI, the key to applying it is finding the correct extensibility
point. In ASP.NET MVC, this is an interface called IControllerFactory. Figure 7.5
illustrates how it fits into the framework.

 Controllers are a central concept in ASP.NET MVC. They handle requests and
determine how to respond. If we need to query a database, validate and save incoming
data, invoke domain logic, and so on, we initiate such actions from a Controller.

 A Controller shouldn’t do such things itself, but rather delegate the work to appro-
priate DEPENDENCIES. This is where DI comes in. We want to be able to supply DEPENDEN-
CIES to a given Controller class, ideally by CONSTRUCTOR INJECTION. This is possible with
a custom IControllerFactory.

Figure 7.5 When the ASP.NET MVC runtime receives a request, it asks its Controller
Factory to create a Controller for the requested URL. The Controller Factory determines
the correct type of Controller to use for the given request and creates and returns a new
instance of that type. ASP.NET MVC then invokes the appropriate action method on the
Controller instance. When it’s finished, ASP.NET MVC gives the Controller Factory a
chance to dispose of resources by calling ReleaseController.

207Composing ASP.NET MVC applications
CREATING A CUSTOM CONTROLLER FACTORY

ASP.NET MVC comes with a DefaultControllerFactory that requires Controller classes
to have a default constructor. That’s a sensible default behavior that doesn’t force us
to use DI if we don’t want to. However, default constructors and CONSTRUCTOR INJEC-
TION are mutually exclusive, so we need to modify this behavior by implementing a
custom Controller Factory.

 Doing so isn’t particularly difficult. It requires you to implement the IController-
Factory interface:

public interface IControllerFactory
{
 IController CreateController(RequestContext requestContext,
 string controllerName);

 SessionStateBehavior GetControllerSessionBehavior(
 RequestContext requestContext, string controllerName);

 void ReleaseController(IController controller);
}

The CreateController method provides a RequestContext that contains such infor-
mation as the HttpContext, whereas controllerName indicates which Controller
is requested.

 You may choose to ignore the RequestContext and only use the controllerName
to determine which Controller to return. No matter what you do, this is the method
where you get the chance to wire up all required DEPENDENCIES and supply them to the
Controller before returning the instance. You’ll see an example in section 7.2.2.

IDependencyResolver

When ASP.NET MVC 3 was released in 2011, one of the new features was marketed
as “DI support.” It turns out that this support revolves around a new interface called
IDependencyResolver. This interface and the way it’s being used in the ASP.NET
MVC framework are problematic.

On a conceptual level, the intended use of IDependencyResolver is as a SERVICE
LOCATOR, and that is how the framework uses it.

On a more concrete level, the interface has limited usefulness because it lacks a
Release method. In other words, we can’t properly manage the lifetime of object
graphs using this interface. With some DI CONTAINERS, this guarantees resource leaks.4

In its current incarnation, I find it safer and more correct to ignore IDependency-
Resolver. The irony of the situation is that true DI has been supported by ASP.NET
MVC since the first version through the IControllerFactory interface.

4 Mike Hadlow, “The MVC 3.0 IDependencyResolver interface is broken. Don’t use it with Windsor,” 2011,
http://mikehadlow.blogspot.com/2011/02/mvc-30-idependencyresolver-interface-is.html

http://mikehadlow.blogspot.com/2011/02/mvc-30-idependencyresolver-interface-is.html

208 CHAPTER 7 Object Composition
 If you created any resources that need to be explicitly disposed of, you can do that
when the ReleaseController method is called.

TIP DefaultControllerFactory implements IControllerFactory and has
several virtual methods. Instead of implementing IControllerFactory from
scratch, it’s often easier to derive from DefaultControllerFactory.

Although implementing a custom Controller Factory is the hard part, it won’t be used
unless we tell ASP.NET MVC about it.

REGISTERING A CUSTOM CONTROLLER FACTORY

Custom Controller Factories are registered as part of the application startup sequence—
usually in Global.asax. They’re registered by calling ControllerBuilder.Current
.SetControllerFactory. Here’s a snippet from the sample Commerce application:

var controllerFactory = new CommerceControllerFactory();

ControllerBuilder.Current.SetControllerFactory(controllerFactory);

This example creates and assigns a new instance of the custom CommerceController-
Factory. ASP.NET MVC will now use the controllerFactory instance as its Controller
Factory for this application.

 If this code looks vaguely familiar, it’s because you saw something similar in
section 3.3. Back then, I promised to show you how to implement a custom Controller
Factory in chapter 7, and what do you know? This is chapter 7.

7.2.2 Example: implementing CommerceControllerFactory

The Commerce sample application needs a custom Controller Factory to wire up Con-
trollers with the required DEPENDENCIES. Although the entire dependency graph for all
Controllers is considerably deeper, from the perspective of the Controllers themselves,
the union of all immediate DEPENDENCIES is as small as three items, as shown in figure 7.6.

Figure 7.6 Dependency graph for the three Controllers in the sample
Commerce application. The concrete implementations of each of these
DEPENDENCIES have other DEPENDENCIES but these aren’t shown.
BasketController and HomeController share a DEPENDENCY on
CurrencyProvider. AccountController is inherited unchanged from the
default ASP.NET MVC template; because it uses BASTARD INJECTION, it has no
unresolved DEPENDENCIES.

209Composing ASP.NET MVC applications
Although you could implement IControllerFactory directly, it’s easier to derive from
DefaultControllerFactory and override its GetControllerInstance method. This
means the DefaultControllerFactory takes care of mapping a Controller name to a
Controller type, and all you have to do is return instances of the requested types.

protected override IController GetControllerInstance(
 RequestContext requestContext, Type controllerType)
{
 string connectionString =
 ConfigurationManager.ConnectionStrings
 ["CommerceObjectContext"].ConnectionString;

 var productRepository =
 new SqlProductRepository(connectionString);
 var basketRepository =
 new SqlBasketRepository(connectionString);
 var discountRepository =
 new SqlDiscountRepository(connectionString);

 var discountPolicy =
 new RepositoryBasketDiscountPolicy(
 discountRepository);

 var basketService =
 new BasketService(basketRepository,
 discountPolicy);

 var currencyProvider = new CachingCurrencyProvider(
 new SqlCurrencyProvider(connectionString),
 TimeSpan.FromHours(1));

 if (controllerType == typeof(BasketController))
 {
 return new BasketController(
 basketService, currencyProvider);
 }
 if (controllerType == typeof(HomeController))
 {
 return new HomeController(
 productRepository, currencyProvider);
 }

 return base.GetControllerInstance(
 requestContext, controllerType);
}

This method overrides DefaultControllerFactory.GetControllerInstance B to
create instances of the requested Controller types. If the requested type is either
BasketController or HomeController, you explicitly wire it up with the required
DEPENDENCIES c and return them d. Both types use CONSTRUCTOR INJECTION, so you
supply the DEPENDENCIES through their constructors.

 To keep the code simple, I chose to wire up all the DEPENDENCIES c before check-
ing the controllerType. Obviously, this means some of the created DEPENDENCIES

Listing 7.3 Creating Controllers

Overrideb

Create
Dependencies

c

Return wired
Controllers

d

Use base for
other Controllers

e

210 CHAPTER 7 Object Composition
won’t be used, so it’s not a particularly efficient implementation. You can refactor list-
ing 7.3 into a more appropriate (but slightly more complex) form.

 For those types not explicitly handled, you default to the base behavior e, which is
to create the requested Controller using its default constructor. Notice that you aren’t
explicitly handling AccountController, so you let the base behavior deal with it
instead. AccountController is a carryover from the ASP.NET MVC project template
and uses BASTARD INJECTION, which gives it a default constructor.

NOTE I consider BASTARD INJECTION to be an anti-pattern, but I left Account-
Controller in that state because I had plenty of other proper DI examples to
showcase. I did it because this is, after all, sample code, but I would never
leave it like that in production code.

When a CommerceControllerFactory instance is registered in Global.asax, it will cor-
rectly create all requested Controllers with the required DEPENDENCIES.

TIP Consider not writing a custom Controller Factory yourself. Instead, use a
general-purpose Controller Factory that works together with your DI CON-
TAINER of choice. Look at the MVC Contrib5 project for inspiration, or use one
of the reusable implementations available there. Some DI CONTAINERS also
have “official” ASP.NET MVC integration.

The nice thing about ASP.NET MVC is that it was designed with DI in mind, so we only
need to know and use a single extensibility point to enable DI for an application. In
other frameworks, enabling DI can be a more complex task. Windows Communication
Foundation (WCF), although extensible, is one example.

7.3 Composing WCF applications
WCF is one of the most extensible parts of the BCL. Although it’s fairly easy to get
started writing WCF services, the myriad of extensibility points can make it difficult to
find exactly the one you need. This is also the case when it comes to DI.

NOTE A joke claims that WCF is an acronym for Windows Complication Founda-
tion. There’s a certain degree of truth in that claim.

You could easily be led to believe that WCF doesn’t support CONSTRUCTOR INJECTION. If
you implement a WCF service with CONSTRUCTOR INJECTION and no default constructor,
the WCF service host will at runtime throw a ServiceActivationException with a
message similar to this:

The service type provided could not be loaded as a service because it does not have a default
(parameter-less) constructor. To fix the problem, add a default constructor to the type, or
pass an instance of the type to the host.

5 www.codeplex.com/MVCContrib/

www.codeplex.com/MVCContrib/

211Composing WCF applications
This message strongly indicates that a default constructor is required. The only way
out seems to be to pass an already-created instance to the WCF host, but doing so
raises several issues:

■ How can we do this if we host the service in Internet Information Services (IIS)?
■ This requires the service to run in the Single InstanceContextMode, which is

undesirable for a number of other reasons.

The good news is that the exception message is misleading. There are other ways to
enable CONSTRUCTOR INJECTION with WCF.

7.3.1 WCF extensibility

WCF has lots of extensibility points, but when it comes to DI we only need to know
about the IInstanceProvider interface and contract behaviors. A contract behavior is a
SEAM in WCF that allows us to modify how a given contract (that is, a service) behaves.

IInstanceProvider is an interface that defines how service instances are created
(and released). Here is the interface definition in all its glory:

public interface IInstanceProvider
{
 object GetInstance(InstanceContext instanceContext);
 object GetInstance(InstanceContext instanceContext, Message message);
 void ReleaseInstance(InstanceContext instanceContext, object instance);
}

The two GetInstance overloads are responsible for creating an appropriate service
instance, and ReleaseInstance provides a hook for cleaning up if necessary.

 The default implementation looks for a default constructor on the service type,
but we can replace it with one that uses DI. Figure 7.7 illustrates the overall flow when
a hosted service receives a message.

 When the ServiceHost applies behaviors, it picks them up from at least three dif-
ferent places before aggregating them:

■ Attributes
■ .config file
■ In-memory objects

Although we can define behaviors in attributes, it’s not a particularly attractive strat-
egy to use when it comes to DI because that means we’re compiling into the code a
particular creation strategy with particular DEPENDENCIES. The net result is almost the
same as if we had hard-coded the DEPENDENCIES directly in the service, just in a much
more convoluted way.

 A configuration file may sound like the ultimate in flexibility, but it isn’t because it
doesn’t allow us to imperatively configure DEPENDENCIES if we want to do that.

 In-memory objects provide the best flexibility because we can choose to create the
DEPENDENCIES directly in code or based on configuration settings. If we use a DI
CONTAINER, we get both options for free. This means we should create a custom

212 CHAPTER 7 Object Composition
ServiceHostFactory that creates instances of a custom ServiceHost that again can
wire up the desired service with all its DEPENDENCIES.

 We can create a set of general-purpose classes that do this based on a DI CONTAINER

of choice or use one of the already-implemented reusable container-based Service-
HostFactorys. We can also create a specialized ServiceHostFactory for a particular
service. Because this provides the best illustration of the process, the following exam-
ple uses a specialized factory.

7.3.2 Example: wiring up a product-management service
As an example, imagine you’ve been asked to extend the Commerce sample applica-
tion with a WCF-based service that exposes operations that allow other applications to
manage product data. This lets you hook up a rich client (you’ll do that in a subse-
quent section) or a batch job to manage product data.

INTRODUCING THE PRODUCT-MANAGEMENT SERVICE

To keep the example simple, let’s assume that you wish to expose simple Create, Read,
Update, and Delete (CRUD) operations. Figure 7.8 shows a diagram of the service and
associated Data Contracts.

 Because you already have an existing Domain Model, you wish to implement this
service by extending the Domain Model and expose its operations through this WCF
contract. The exact details aren’t important; suffice it to say that you expand the
abstract ProductRepository class, which you saw in previous chapters.

TIP Although I won’t walk you through all the domain code here, you can
review the details in the code download for the book.

Figure 7.7 When a message (request) arrives for a service operation, WCF determines which CLR
type implements the service. It asks a ServiceHostFactory to create an appropriate
ServiceHost that can host the requested service. The ServiceHost does its part by applying
behaviors and creating the requested instance.

When we host a WCF service in IIS, a ServiceHostFactory is mandatory, although the default
implementation will be used if we don’t explicitly define an alternative. If we host the service manually,
a ServiceHostFactory may still be useful, but it isn’t required because we can create the
appropriate ServiceHost directly in code.

213Composing WCF applications
The Domain Model represents a product as the ENTITY Product, and the service
contract exposes its operations in terms of the DATA TRANSFER OBJECT (DTO) Product-
Contract. To map between these two different types, you also introduce an interface
called IContractMapper.

 The bottom line is that you end up with a service implementation with two DEPEN-
DENCIES; and because both are mandatory, you wish to use CONSTRUCTOR INJECTION.
Here is the service’s constructor signature:

public ProductManagementService(ProductRepository repository,
 IContractMapper mapper)

So far, we’ve been happily ignoring the elephant in the room: how do we get WCF to
correctly wire up an instance of ProductManagementService?

WIRING UP PRODUCTMANAGEMENTSERVICE IN WCF
As illustrated in figure 7.7, the COMPOSITION ROOT in WCF is the triplet of Service-
HostFactory, ServiceHost, and IInstanceProvider. To wire up a service with CON-
STRUCTOR INJECTION, we must supply custom implementations of all three.

TIP You can write completely reusable implementations that wrap your favor-
ite DI CONTAINER in those three types and use them to implement IInstance-
Provider. Many people have already done that, so you can probably find a
readymade set for your chosen DI CONTAINER.

NOTE This example implements a hard-wired container using POOR MAN’S DI.
I chose to encapsulate the hard-coded DEPENDENCIES in a custom container

Figure 7.8 IProductManagementService is a WCF service that defines simple CRUD
operations on products. It uses the associated ProductContract and MoneyContract to
expose these operations. Although not shown in this diagram, all three types are decorated with
the usual WCF attributes: ServiceContract, OperationContract, DataContract, and
DataMember.

214 CHAPTER 7 Object Composition
class to give you a good idea of how to create a reusable solution based on a
particular DI CONTAINER.

Let’s start with the custom ServiceHostFactory, which is the true entry point to a
WCF service. The following listing shows the implementation.

public class CommerceServiceHostFactory : ServiceHostFactory
{
 private readonly ICommerceServiceContainer container;

 public CommerceServiceHostFactory()
 {
 this.container =
 new CommerceServiceContainer();
 }

 protected override ServiceHost CreateServiceHost(
 Type serviceType, Uri[] baseAddresses)
 {

ENTITY vs. DTO
The previous paragraph threw some more jargon at you, so let’s briefly review what
is meant by ENTITY and DTO.

An ENTITY is a term from Domain-Driven Design6 that covers a Domain Object that has
a long-term identity unrelated to a particular object instance. This may sound abstract
and theoretical, but it means that an ENTITY represents an object that lives beyond
arbitrary bits in memory. Any .NET object instance has an in-memory address (iden-
tity), but an ENTITY has an identity that lives across process lifetimes. We often use
databases and primary keys to identify ENTITIES and ensure that we can persist and
read them even if the host computer reboots.

The Domain Object Product is an ENTITY because the concept of a product has a
much longer lifetime than a single process, and we use a product ID to identify it in
the ProductRepository.

A Data Transfer Object7 (DTO), on the other hand, exists only for the purpose of being
transferred from one application tier to another. Whereas an ENTITY may encapsulate
a lot of behavior, a DTO is a structure of data without behavior.

When exposing a Domain Model to external systems, we often do so with services
and DTOS because we can never be sure the other system can share our type system
(it may not even use .NET). In such situations, we always need to map between the
ENTITIES and the DTOS.

6 Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software (New York: Addison-Wesley, 2004),
89.

7 Martin Fowler et al., Patterns of Enterprise Application Architecture (New York: Addison-Wesley, 2003), 401.

Listing 7.4 Custom ServiceHostFactory

Create container
instance

b

215Composing WCF applications
 if (serviceType == typeof(ProductManagementService))
 {
 return new CommerceServiceHost(
 this.container,
 serviceType, baseAddresses);
 }
 return base.CreateServiceHost(serviceType, baseAddresses);
 }
}

The custom CommerceServiceHostFactory derives from ServiceHostFactory

with the single purpose of wiring up ProductManagementService instances. It uses
a custom CommerceServiceContainer to do the actual work, so it creates an
instance of the container in its constructor B. You can easily expand this example
to use a true DI CONTAINER by creating and configuring an instance of that con-
tainer instead.

 When asked to create a ServiceHost, it returns a new CommerceServiceHost with
the configured container c if the requested service type is appropriate. The Commerce-
ServiceHost is responsible for assigning appropriate behaviors to all the service types
it hosts. In this case, you only want to add a single behavior that assigns the desired
IInstanceProvider to the services. You can accomplish all this work in the construc-
tor shown next, and the base class takes care of the rest.

public class CommerceServiceHost : ServiceHost
{
 public CommerceServiceHost(ICommerceServiceContainer container,
 Type serviceType, params Uri[] baseAddresses)
 : base(serviceType, baseAddresses)
 {
 if (container == null)
 {
 throw new ArgumentNullException("container");
 }

 var contracts = this.ImplementedContracts.Values;
 foreach (var c in contracts)
 {
 var instanceProvider =
 new CommerceInstanceProvider(
 container);
 c.Behaviors.Add(instanceProvider);
 }
 }
}

The CommerceServiceHost class derives from ServiceHost, which is a concrete class
that does all the heavy lifting. In most cases, you’ll host only a single service type (in
this case, ProductManagementService), but you’re allowed to host multiple services;

Listing 7.5 Custom ServiceHost

Create custom
ServiceHost

c

Create
InstanceProvider

b

Add InstanceProvider
as behaviorc

216 CHAPTER 7 Object Composition
this means you must add the IInstanceProvider to them all. The ImplementedCon-
tracts property is a dictionary, so you must loop over its Values to target them all.

 For each service type, you initialize a new instance of the custom CommerceInstance-
Provider class with the container B. Because it doubles as a behavior, you can add it
to the service’s Behaviors c.

 The last part of the custom WCF triplet is Commerce-
InstanceProvider, which doubles as both IInstance-
Provider and IContractBehavior. It’s a simple
implementation, but because it implements two differ-
ent interfaces with complex signatures, it can look a bit
daunting if you see it in one go. Instead, I’ll show the
code a little at a time; figure 7.9 provides an overview.

 Listing 7.6 shows the class declaration and the con-
structor. Nothing much goes on here apart from the
use of CONSTRUCTOR INJECTION to inject the container.
Normally, we use CONSTRUCTOR INJECTION to announce
to a DI CONTAINER that a class requires some DEPENDEN-
CIES, but here it’s backward because you inject the con-
tainer itself. This is normally a big code smell because it
usually indicates intent to use the SERVICE LOCATOR anti-
pattern, but it’s necessary here because you’re imple-
menting the COMPOSITION ROOT.

public partial class CommerceInstanceProvider :
 IInstanceProvider, IContractBehavior
{
 private readonly ICommerceServiceContainer container;

 public CommerceInstanceProvider(
 ICommerceServiceContainer container)
 {
 if (container == null)
 {
 throw new ArgumentNullException("container");
 }

 this.container = container;
 }
}

CommerceInstanceProvider implements both IInstanceProvider and IContract-
Behavior B. You supply the container through standard CONSTRUCTOR INJECTION c.
In this sample, you use the custom CommerceServiceContainer, but replacing it with
a general-purpose DI CONTAINER is a trivial exercise.

Listing 7.6 CommerceInstanceProvider class declaration and constructor

Figure 7.9 Commerce-
InstanceProvider implements
both IInstanceProvider and
IContractBehavior, so you’re
required to implement seven
methods. You can leave three
empty, and the other four are
one-liners.

Implement WCF
interfaces

b

Constructor
Injection

c

217Composing WCF applications
 The IInstanceProvider implementation in the next listing is used by the WCF
runtime to create instances of the ProductManagementService class.

public object GetInstance(InstanceContext instanceContext, Message message)
{
 return this.GetInstance(instanceContext);
}

public object GetInstance(InstanceContext instanceContext)
{
 return this.container
 .ResolveProductManagementService();
}

public void ReleaseInstance(InstanceContext instanceContext,
 object instance)
{
 this.container.Release(instance);
}

The WCF runtime invokes one of the GetInstance methods to get an instance of the
requested service type, so you ask the container to wire up the ProductManagement-
Service B with all its required DEPENDENCIES.

 When the service operation has completed, the WCF runtime asks you to release
the instance, and again you delegate this work to the container c.

 The other part of CommerceInstanceProvider is the IContractBehavior imple-
mentation. The only reason you implement this interface is to allow you to add it to
the list of behaviors as shown in listing 7.5. All the methods on the IContractBehavior
interface return void, so you can leave most of them empty because you don’t need to
implement them.

 The following listing shows the implementation of the only method you care about.

public void ApplyDispatchBehavior(
 ContractDescription contractDescription, ServiceEndpoint endpoint,
 DispatchRuntime dispatchRuntime)
{
 dispatchRuntime.InstanceProvider = this;
}

You only need to do one exceedingly simple thing in this method. The WCF runtime
calls this method and passes an instance of DispatchRuntime, which lets you tell it
that it should be using this particular IInstanceProvider implementation—recall that
CommerceInstanceProvider also implements IInstanceProvider. The WCF runtime
now knows which IInstanceProvider to use, and it can subsequently invoke the Get-
Instance method shown in listing 7.7.

 This seems like a lot of code to implement to enable DI for WCF, and I haven’t even
shown you the implementation of CommerceServiceContainer.

Listing 7.7 IInstanceProvider implementation

Listing 7.8 Core implementation of IContractBehavior

Delegate to overload

Use container
to resolve

b

Ask container
to release

c

218 CHAPTER 7 Object Composition
TIP Remember that you can easily write reusable versions of these three
classes that wrap your favorite DI CONTAINER, and package that implementa-
tion into a library. Many developers have done that, so you can probably find
a suitable ready-made library on the internet.

The container is the last piece of the WCF DI puzzle.

IMPLEMENTING THE SPECIALIZED CONTAINER

CommerceServiceContainer is a specialized container with the single purpose of wir-
ing up the ProductManagementService class. Recall that this class requires instances
of ProductRepository and IContractMapper as DEPENDENCIES.

 With the entire WCF infrastructure out of the way, the container is free to concen-
trate on wiring up the dependency graph.

NOTE In addition to adhering nicely to the SINGLE RESPONSIBILITY PRINCIPLE,
this separation of concerns shows that you can replace this specialized con-
tainer with a general-purpose DI CONTAINER, because there’s no WCF-specific
code present.

The ResolveProductManagementService method wires up the instance with POOR

MAN’S DI, as shown next.

public IProductManagementService ResolveProductManagementService()
{
 string connectionString =
 ConfigurationManager.ConnectionStrings
 ["CommerceObjectContext"].ConnectionString;

 ProductRepository repository =
 new SqlProductRepository(connectionString);

 IContractMapper mapper = new ContractMapper();

 return new ProductManagementService(repository,
 mapper);
}

In a sense, when it comes to resolving a dependency graph, it often pays to work your
way backward. You know you need to return an instance of ProductManagementService
with ProductRepository and IContractMapper instances. The IContractMapper
instance is easy to create c, but the ProductRepository requires a bit more work.

 You wish to use SqlProductRepository B, but to do that you need a connection
string that you can read from the web.config file.

 If you wish to host the service in your own application, you can now do that by creat-
ing a new instance of the CommerceServiceHostFactory class and invoking its Create-
ServiceHost method with the correct parameters. It will return a CommerceServiceHost
instance that you can open, and it will figure out the rest for you and host the Product-
ManagementService.

Listing 7.9 Resolving ProductManagementService

Create product
repository

b

Create contract
mapperc

219Composing WPF applications
 However, if you wish to host the service in IIS, you must take one more step.

HOSTING PRODUCTMANAGEMENTSERVICE IN IIS
In IIS, we don’t manually create new instances of CommerceServiceHostFactory.
Instead, we must tell IIS to do so on our behalf. This can be done in an .svc file by sup-
plying the Factory attribute:

<%@ ServiceHost
 Factory = "Ploeh.Samples.CommerceService.CommerceServiceHostFactory,
 ➥Ploeh.Samples.CommerceService"
 Service = "Ploeh.Samples.CommerceService.ProductManagementService"
%>

This .svc file instructs IIS to use the CommerceServiceHostFactory every time it needs
to create an instance of the ProductManagementService class. It’s a requirement that
the ServiceHostFactory in question has a default constructor, but this is also the case
in this example.

 Enabling DI in WCF is harder than it should be, but at least it’s possible, and the
end result is entirely satisfactory. We can use whichever DI CONTAINER we like, and we
end up having a proper COMPOSITION ROOT.

 Some frameworks don’t give us the appropriate SEAMS to allow us that luxury. How-
ever, before we look at one such notorious framework, let’s relax and look at a much
simpler framework.

7.4 Composing WPF applications
If you thought that composing a WCF service was difficult (I do), you’ll appreciate that
composing a Windows Presentation Foundation (WPF) application is almost as easy as
composing a console application.

 A WPF application’s entry point is fairly obvious and uncomplicated, and although
it doesn’t provide SEAMS explicitly targeted at enabling DI, we can easily compose an
application in any way we prefer.

7.4.1 WPF Composition

A WPF application’s entry point is defined in its App class. As with most other classes in
WPF, this class is split into two files: App.xaml and App.xaml.cs. We can define what
happens at application startup in both files, depending on our need.

 When you create a new WPF project in Visual Studio, the App.xaml file defines a
StartupUri attribute that defines which window is shown when the application
starts—in this case, Window1:

<Application x:Class="MyWpfApplication.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="Window1.xaml">
</Application>

The implication of this declarative style is that the Window1 object is created and
shown without any sort of additional context. When you want to supply DEPENDENCIES

220 CHAPTER 7 Object Composition
to the window, a more explicit approach can be more appropriate. You can remove
the StartupUri attribute and wire up the window by overriding the OnStartup
method. This allows you to fully wire up the first window before it’s shown, but you pay
one tax: you must remember to explicitly invoke the window’s Show method.

 The OnStartup method thus becomes the
application’s COMPOSITION ROOT. You can use a
DI CONTAINER or POOR MAN’S DI to compose the
window. The next example uses POOR MAN’S DI to
illustrate that you don’t have to rely on features
of any particular DI CONTAINER.

7.4.2 Example: wiring up a product-management
rich client

The previous example developed a web service
we can use to manage the product catalog for
the sample Commerce application. In this exam-
ple, you’ll create a WPF application that uses this
web service to manage products. Figure 7.10
shows a screen shot of the application.

 The entire application is implemented using
the Model View ViewModel (MVVM) approach
and contains the three layers shown in figure 7.11.
As usual, we keep the part with the most logic
isolated from the other modules—in this case,
PresentationLogic. ProductManagementClient
is a HUMBLE EXECUTABLE that does little apart from defining the UI and delegating
implementation to the other modules.

 With MVVM, we assign a ViewModel to the main window’s DataContext property,
and data binding and the data-templating engine take care of presenting the data cor-
rectly as we spin up new ViewModels or change the data in the existing ViewModels.

Figure 7.10 The Product Management
application’s main window is a list of
products. You can add new products, edit
existing products, or delete them. When
adding or editing products, a modal edit
dialog is used. All operations are
implemented by invoking appropriate
operations on the product-management
web service from section 7.3.2.

Figure 7.11 The application consists of three distinct assemblies.
The ProductManagementClient assembly is the executable and
contains the UI implemented in XAML with no code-behind. The
PresentationLogic library contains the ViewModels and
supporting classes, and the ProductWcfAgent library contains
an Adapter between the custom IProductManagementAgent
ABSTRACTION and the concrete WCF proxy that is used to
communicate with the product-management web service. The
dependency arrows imply that ProductManagementClient
acts as the COMPOSITION ROOT, because it wires together the
other modules.

221Composing WPF applications
INJECTING DEPENDENCIES INTO THE MAIN VIEWMODEL

MainWindow contains only XAML markup and no custom code-behind. Instead, it uses
data binding to display data and handle user commands. To enable this, we must
assign a MainWindowViewModel to its DataContext property.

MainWindowViewModel exposes data such as the list of products as well as commands
to create, update, or delete a product. Enabling this functionality depends on a service
that provides access to the product catalog: the IProductManagementAgent ABSTRACTION.

 Apart from IProductManagementAgent, MainWindowViewModel also needs a service
it can use to control its windowing environment, such as showing modal dialog boxes.
This other DEPENDENCY is called IWindow.

MainWindowViewModel uses CONSTRUCTOR INJECTION with this constructor signature:

public MainWindowViewModel(IProductManagementAgent agent, IWindow window)

To wire up the application, we must create MainWindowViewModel and assign it to the
DataContext property of a MainWindow instance.

WIRING UP MAINWINDOW AND MAINWINDOWVIEWMODEL

This example contains the extra spice that to implement IWindow correctly, you need
a reference to the real WPF window (MainWindow); but the ViewModel requires an
IWindow, and the MainWindow’s DataContext should be the ViewModel. In other
words, you have a circular DEPENDENCY.

 In chapter 6, we dealt with circular DEPENDENCIES and walked through the relevant
part of this particular example, so I won’t repeat it here. Suffice it to say that you

MVVM
Model View ViewModel (MVVM)8 is a design pattern for which WPF is particularly well
suited. It divides UI code into three distinct responsibilities.

The Model is the underlying model for the application. This is often, but not always,
the Domain Model. It often consists of Plain Old CLR Objects (POCOs). In the present
example, the Domain Model is implemented in the web service, so you don’t have a
proper Domain Model in this tier. However, the application operates with an ABSTRAC-
TION on top of the web service proxy, and this is your Model. Notice that the Model is
usually expressed in a UI-neutral way. It doesn’t assume that it will be exposed
directly by a UI, so it doesn’t expose any WPF-specific functionality.

The View is the UI we look at. In WPF, we can declaratively express the View in XAML
and use data binding and data templating to present the data. It’s possible to
express the Views without the use of code-behind.

The ViewModel is the bridge between the View and the Model. Each ViewModel is a
class that translates and exposes the Model in a technology-specific way. In WPF,
this means it may expose lists as ObservableCollections, and so on.

8 Read more about MVVM in Josh Smith, “Patterns: WPF Apps With The Model-View-ViewModel Design Pat-
tern,” 2009, http://msdn.microsoft.com/en-us/magazine/dd419663.aspx

http://msdn.microsoft.com/en-us/magazine/dd419663.aspx

222 CHAPTER 7 Object Composition
introduce a MainWindowViewModelFactory responsible for creating instances of Main-
WindowViewModel.

 You use this factory from within an implementation of IWindow called Main-
WindowAdapter to create the MainWindowViewModel and assign it to the MainWindow’s
DataContext property:

var vm = this.vmFactory.Create(this);
this.WpfWindow.DataContext = vm;

The vmFactory member variable is an instance of IMainWindowViewModelFactory,
and you pass its Create method an instance of the containing class, which implements
IWindow. The resulting ViewModel instance is then assigned to the DataContext of
WpfWindow, which is an instance of MainWindow.

NOTE I am glossing over the details on purpose because we covered them in
chapter 6. Go back and reread the section on circular DEPENDENCIES if you
need a refresher about what’s going on.

TIP WPF data binding requires us to assign the DEPENDENCY (the ViewModel)
to the DataContext property. This is, in my opinion, misuse of PROPERTY INJEC-
TION because it signals that the DEPENDENCY is optional, which it isn’t. However,
WPF 4 introduces something called a XamlSchemaContext, which can be used
as a SEAM that gives us greater flexibility when it comes to instantiating Views
based on markup.9

Figure 7.12 shows the complete dependency graph for the application.
 Now that you’ve identified all the building blocks of the application, you can com-

pose it. To keep the POOR MAN’S DI code symmetrical with the use of a DI CONTAINER, I
have implemented this as a Resolve method on a specialized container class. The fol-
lowing listing shows the implementation.

9 For more information, see Simon Ferquel, “[Xaml] IoC-enabled Xaml parser,” 2010, www.simonferquel.net/
blog/archive/2010/02/19/xaml-ioc-enabled-xaml-parser.aspx

Figure 7.12 Dependency graph for
MainWindowAdapter, which ends up being
the root object in the application. It uses a
MainWindowViewModelFactory to
create the appropriate ViewModel and assign
it to the MainWindow. To create
MainWindowViewModel, the factory needs
a WcfProductManagementAgent to pass
to the ViewModel. This agent is an Adapter
between IProductManagementAgent
and the WCF proxy. It requires a
ProductChannelFactory to create
instances of the WCF proxy, as well as an
IClientContractMapper that can
translate between ViewModels and WCF
Data Contracts.

www.simonferquel.net/blog/archive/2010/02/19/xaml-ioc-enabled-xaml-parser.aspx
www.simonferquel.net/blog/archive/2010/02/19/xaml-ioc-enabled-xaml-parser.aspx

223Composing WPF applications
public IWindow ResolveWindow()
{
 IProductChannelFactory channelFactory =
 new ProductChannelFactory();
 IClientContractMapper mapper =
 new ClientContractMapper();
 IProductManagementAgent agent =
 new WcfProductManagementAgent(
 channelFactory, mapper);

 IMainWindowViewModelFactory vmFactory =
 new MainWindowViewModelFactory(agent);

 Window mainWindow = new MainWindow();
 IWindow w =
 new MainWindowAdapter(mainWindow, vmFactory);
 return w;
}

Ultimately, you return an IWindow instance implemented by MainWindowAdapter, and
you need a WPF Window and an IMainWindowViewModelFactory for that. The first win-
dow you want to show to users should be a MainWindow, so this is what you pass to
MainWindowAdapter.

MainWindowViewModelFactory uses CONSTRUCTOR INJECTION to request an IProduct-
ManagementAgent, so you must compose a WcfProductManagementAgent with its
two DEPENDENCIES.

 The final MainWindowAdapter returned from the method wraps the MainWindow, so
when we invoke the Show method, it delegates to the MainWindow’s Show method. That
is exactly what you’ll do from the COMPOSITION ROOT.

IMPLEMENTING THE COMPOSITION ROOT

Now that you know how to wire up the application, you only need to do so in the cor-
rect place. As described in the previous section, you first need to open App.xaml and
remove the StartupUri attribute because you wish to explicitly compose the startup
Window yourself.

 After you’ve done that, you only need to override the OnStartup method in
App.xaml.cs and invoke the container.

protected override void OnStartup(StartupEventArgs e)
{
 base.OnStartup(e);

 var container =
 new ProductManagementClientContainer();
 container.ResolveWindow().Show();
}

Listing 7.10 Composing the main window

Listing 7.11 Implementing a WPF COMPOSITION ROOT

224 CHAPTER 7 Object Composition
In this example, you use the specialized ProductManagementClientContainer, but
you could just as well use a general-purpose DI CONTAINER like Unity or StructureMap.
You ask the container to resolve an IWindow instance and subsequently invoke its Show
method. The returned IWindow instance is a MainWindowAdapter; when you invoke its
Show method, it invokes the Show method on the encapsulated MainWindow, which
causes the desired window to be shown to the user.

WPF offers a simple place for a COMPOSITION ROOT. All you need to do is to remove
StartupUri from App.xaml, override OnStartup in App.xaml.cs, and compose the
application here.

 So far, you’ve seen examples where the frameworks provide a SEAM that allows us to
take over the lifetime of key object instances (web pages, service instances, windows, and
so on). In many cases, doing so is fairly easy; but even when it gets as difficult as in WCF,
we can still prevail and implement pure DI without compromising our principles.

 Some frameworks, however, don’t give us that luxury.

7.5 Composing ASP.NET applications
Some frameworks insist on creating and managing the lifetime of the classes we write.
The most popular framework is ASP.NET (Web Forms, as opposed to MVC).

NOTE Some other frameworks sharing this trait are the Microsoft Management
Console (MMC) managed SDK, and such recent inventions as PowerShell.

The most obvious symptom of such frameworks is that to fit in, our classes must have a
default constructor. In ASP.NET, for example, any Page class we implement must have
a parameterless constructor. We can’t use CONSTRUCTOR INJECTION with these frame-
works, so let’s examine our options.

7.5.1 ASP.NET composition
CONSTRUCTOR INJECTION would be preferable because it would ensure that our Page
classes would be properly initialized with their DEPENDENCIES. Because that isn’t possi-
ble, we must choose from these alternatives:

■ Move and duplicate our COMPOSITION ROOTS within each Page class.
■ Use a SERVICE LOCATOR to resolve all DEPENDENCIES from within each Page class.

However, remember that SERVICE LOCATOR is an anti-pattern, so that option isn’t desir-
able. A better alternative is to compromise on the location of our COMPOSITION ROOT.

 Ideally, we would prefer the scenario in figure 7.13 where we have only one COMPO-
SITION ROOT per application, but that isn’t possible in ASP.NET because we can’t com-
pose Page instances from the outside. In other words, the Web Forms framework
forces us to compose the application from within each Page.

NOTE So far, I have only talked about Page objects, but ASP.NET requires a
default constructor for lots of objects if we want to use the framework.
Another example is Object Data Sources. The discussion in this section
applies equally well to all other types that must have a default constructor.

225Composing ASP.NET applications
To address this issue, we must compromise on our ideals, but I find it much safer to
compromise on the location of COMPOSITION ROOTS than to allow a SERVICE LOCATOR to
enter the picture.

 In essence, we turn each Page into a
COMPOSITION ROOT as shown in figure 7.14.
The SINGLE RESPONSIBILITY PRINCIPLE reminds
us that each class should have only a sin-
gle responsibility; now that we use the Page
to compose all required DEPENDENCIES, we
should delegate the responsibility of imple-
mentation to an implementer. This effectively
turns the Page into a HUMBLE OBJECT, expos-
ing other members such as click-event han-
dlers solely for the purpose of delegating to
the Page’s resolved implementer.

 The distinction between moving the
COMPOSITION ROOT into each class and
using a SERVICE LOCATOR is subtle. The dif-
ference is that with a SERVICE LOCATOR we
resolve each of the Page class’s DEPENDENCIES individually and use them directly from
within the Page class. As always with SERVICE LOCATOR, this tends to blur the focus of the
class. In addition, it becomes tempting to keep the container and use it to resolve
other DEPENDENCIES as necessary.

 To counter this tendency, it’s important to only use our container to resolve the
implementer and then forget about it. This allows us to follow appropriate DI patterns
(such as CONSTRUCTOR INJECTION) for the rest of the application’s code.

 Although this is theoretical, you’ll be relieved to hear that it’s easy to implement.
This is best illustrated with an example.

7.5.2 Example: wiring up a CampaignPresenter

The Commerce sample application you know and love supports product discounts and
featured products, but so far you haven’t provided business users with an application to
manage these aspects. In this example, we’ll examine how to compose the ASP.NET

Figure 7.13 In a perfect world, we would like to be able to compose Page
objects from an application’s COMPOSITION ROOT. When a request arrives, we
should be able to use the defined configuration of DEPENDENCIES to compose an
appropriate Page object. However, this isn’t possible because ASP.NET manages
the lifetime of Page objects on our behalf.

Figure 7.14 In ASP.NET, we can use the
application entry point (global.asax) to configure
the DEPENDENCIES, but we then have to wait until
the framework creates a new Page object before
we can continue with the composition. From
within each Page, we can use the configured
DEPENDENCIES to compose an implementer that
implements all the behavior of the Page class.

226 CHAPTER 7 Object Composition
application (shown in figure 7.15) that allows a business user to update campaign data
for a product.

 To keep things simple, this application consists of a single GridView control bound
to an ObjectDataSource. The data source is an application-specific class that dele-
gates its behavior to the Domain Model and through that ultimately to the data-access
library that stores the data in a SQL Server database.

 You can still use global.asax to configure DEPENDENCIES, but you must defer compos-
ing the application until the Page and its ObjectDataSource have been created. Con-
figuring the DEPENDENCIES is similar to previous examples.

CONFIGURING DEPENDENCIES IN ASP.NET
The application entry point in ASP.NET is the global.asax file, and although you can’t
compose anything at this point, you can create your mise en place, making everything
ready for when the application starts:

protected void Application_Start(object sender, EventArgs e)
{
 this.Application["container"] =
 new CampaignContainer();
}

The only thing you do here is to create your container and save it in the Application
Context so you can use it when you need it. This allows you to share the container across
separate web requests, which is beneficial if you need to keep some DEPENDENCIES for the
duration of the process’s lifetime (we’ll talk more about lifetimes in chapter 8).

NOTE As with all the other examples in this chapter, I use POOR MAN’S DI to
demonstrate the core principles involved. CampaignContainer is a custom
class created explicitly for this example, but you can easily replace it with the
DI CONTAINER of your choice.

Many different Page and data source objects can share the same container by access-
ing the Application Context. However, this approach poses a danger of being misused

Figure 7.15 The CampaignManagement application allows a business user to edit
campaign data (Featured and Discount Price) for a product. It’s an ASP.NET application
built with the GridView control bound to an ObjectDataSource control.

227Composing ASP.NET applications
as a SERVICE LOCATOR, because any class can potentially access the Application Context.
Thus, it’s important to delegate the implementation to classes that can’t access the
Application Context. In practice, this means delegating to classes implemented in
other separate libraries that don’t reference ASP.NET.

NOTE We can also get by with a bit of discipline, constraining ourselves from
accessing the Application Context unless we’re implementing a COMPOSITION

ROOT. This can work well when all developers are experienced in writing
loosely coupled code; but if we suspect that some team members may not fully
understand the issues involved, we can better protect the code by using sepa-
rate libraries. Section 6.5 described how to do that.

In the current example, you’ll delegate all implementation to a separate presentation
logic library to ensure that no classes directly access the Application Context. You don’t
allow the library to reference any of the ASP.NET assemblies (such as System.Web).

 Figure 7.16 shows a partial view of the application architecture. The salient point is
that you use classes in the root of the application (the Default Page and Campaign-
DataSource) as COMPOSITION ROOTS that resolve classes from the Presentation Logic
layer together with their DEPENDENCIES.

Figure 7.16 The root of
the CampaignManagement
application is the only part of
the application that
references ASP.NET. The
CampaignDataSource
class has a default
constructor but acts as a
COMPOSITION ROOT and HUMBLE

OBJECT that delegates all
method calls to a
CampaignPresenter. As
usual, the arrows denote
references, and the root
application references all
other modules because it
wires them together. Both
the Presentation Logic and
Data Access modules
reference the Domain Model
library. Not all involved
classes are shown.

228 CHAPTER 7 Object Composition
Armed with the knowledge of the application’s dependency graph, you can now
implement a COMPOSITION ROOT for the screen shown in figure 7.15.

COMPOSING AN OBJECTDATASOURCE

The Default Page shown in figure 7.15 consists of a GridView control and an associ-
ated ObjectDataSource control. As is the case with Page classes, a class used for
ObjectDataSource must also have a default constructor. To meet that goal, you explic-
itly create the class shown in the following listing.

public class CampaignDataSource
{
 private readonly CampaignPresenter presenter;

 public CampaignDataSource()
 {
 var container =
 (CampaignContainer)HttpContext.Current
 .Application["container"];
 this.presenter = container.ResolvePresenter();
 }

 public IEnumerable<CampaignItemPresenter> SelectAll()
 {
 return this.presenter.SelectAll();
 }

 public void Update(CampaignItemPresenter item)
 {
 this.presenter.Update(item);
 }
}

The CampaignDataSource class has a default constructor because this is required by
ASP.NET. True to the spirit of Fail Fast, it immediately attempts to extract the container
from the Application Context and resolve a CampaignPresenter instance B that will
serve as the real implementation.

 All members of the CampaignDataSource class delegate the call to the resolved pre-
senter c, thus acting as a HUMBLE OBJECT.

NOTE For design pattern enthusiasts, the CampaignDataSource class looks a
lot like either a Decorator or an Adapter.10 It implements no strongly typed
interface but wraps a proper implementation in a class that conforms to the
requirements put forth by ASP.NET.

You may wonder what we gain from this extra layer of indirection. If you’re used to
TDD, it should be straightforward: HttpContext.Current isn’t available during unit

Listing 7.12 Composing a Presenter as data source

10 Gamma, Design Patterns, 139.

Compose
Presenter

b

Delegate to
Presenter

c

229Composing ASP.NET applications
testing, so you can’t unit-test CampaignDataSource. This is an important reason why
you must keep it a HUMBLE OBJECT.

 Although this construct is awkward at best, it allows you to follow proper DI patterns
from the CampaignPresenter class and further down through the application’s layers.

COMPOSING THE PRESENTER

I won’t walk you through the nitty-gritty details of CampaignPresenter, but it’s worth
looking at its constructor signature because it uses CONSTRUCTOR INJECTION:

public CampaignPresenter(CampaignRepository repository,
 IPresentationMapper mapper)

Its DEPENDENCIES are the abstract CampaignRepository class and the IPresentation-
Mapper interface. Exactly what these ABSTRACTIONS do is less important than how you
compose them. This is the job of the CampaignContainer in the next listing. You may
recall that you configured it in global.asax and registered it in the Application Context.

public CampaignPresenter ResolvePresenter()
{
 string connectionString =
 ConfigurationManager.ConnectionStrings
 ["CommerceObjectContext"].ConnectionString;
 CampaignRepository repository =
 new SqlCampaignRepository(connectionString);

 IPresentationMapper mapper =
 new PresentationMapper();

 return new CampaignPresenter(repository, mapper);
}

The ResolvePresenter method’s responsibility is to compose a CampaignPresenter
instance. From the constructor, you know it needs a CampaignRepository, so you map
that to a SqlCampaignRepository instance B. The other DEPENDENCY is IPresentation-
Mapper, and you map that to the concrete PresentationMapper class c.

 Armed with all required DEPENDENCIES, you can subsequently d return a new
CampaignPresenter instance.

 Using DI with ASP.NET isn’t impossible, but it’s more work than we would like. The
main drawback with using each Page and object data source as a combined COMPOSI-
TION ROOT and HUMBLE OBJECT is that it requires us to duplicate a lot of class members.

 Did you notice how every member of CampaignDataSource delegates its implementa-
tion to a similarly named method on CampaignPresenter? You have to repeat this cod-
ing idiom throughout an entire ASP.NET application. For every button-click handler,
you need to define and maintain an associated method on a Presenter class, and so on.

 As we discussed in chapter 3, I liken the concept of a COMPOSITION ROOT to Lean
Software Development’s idea of the Last Responsible Moment. With frameworks such as
ASP.NET MVC and WCF, we can defer the composition of the application all the way to

Listing 7.13 Resolving CampaignPresenter

Create
repository

b

Create
mapper

c
Compose
Presenter

d

230 CHAPTER 7 Object Composition
the application’s entry point, but this isn’t the case with ASP.NET. No matter how hard
we try, we can only defer decisions about OBJECT COMPOSITION until we meet a require-
ment for a default constructor.

 That, then, becomes the “highest possible place” in which we can compose objects.
Although we feel that we’re compromising, we still follow the overall spirit of COMPOSI-
TION ROOT. We compose object hierarchies as close to the architectural top as possible
and enable correct DI patterns from there on down.

ASP.NET still allows us a small luxury: we can share one container instance through
the Application Context. Some frameworks don’t even grant us that.

7.6 Composing PowerShell cmdlets
Some frameworks offer absolutely no SEAMS that allow us to manage the lifetime of the
core elements of the framework. Windows PowerShell is such a framework.

NOTE Read on even if you have no particular interest in PowerShell. I mainly
chose it as an example of the ultimate DI challenge. I could also have chosen
the Managed MMC SDK, but it’s unpleasant in so many other ways that I found
PowerShell preferable as an example.

An important element in PowerShell is a cmdlet. (I suppose it’s pronounced command-
let, but I have only seen it spelled cmdlet.) You can think of a cmdlet as an advanced
command-line utility.

 A cmdlet is a class that derives from Cmdlet,11 and it must have a default construc-
tor. As with ASP.NET, that requirement effectively bars any use of CONSTRUCTOR INJEC-
TION. The solution is similar: we move the COMPOSITION ROOT into the constructor of
each cmdlet. The only difference is that there is no built-in Application Context so we
must instead resort to the lowest common denominator: a static class.

NOTE I consider any use of the static keyword a code smell, but in contrast
with anti-patterns, code smells only indicate a potential design flaw. In some
special cases, the smelly idiom is warranted, and this is such a case.

You may wonder how this is different from the SERVICE LOCATOR anti-pattern. Just as
with ASP.NET, the main difference is not in the structure of the code, but in the usage
pattern. Instead of trying to use a static SERVICE LOCATOR as a virtual new keyword, we
use it only once per cmdlet. To further protect ourselves from misuse, we can make
the COMPOSER internal and use it only to resolve types from different assemblies, as
shown in figure 7.17.

 The result of resolving the dependency graph is a class defined in a different
assembly, and that class can’t access the static container because it’s internal to the
application’s root assembly. The cmdlet implementer needs to use proper DI patterns

11 System.Management.Automation.Cmdlet to be exact, although it can also derive from System
.Management.Automation.PSCmdlet.

231Composing PowerShell cmdlets
such as CONSTRUCTOR INJECTION to consume any DEPENDENCIES, and we’ve effectively
shielded ourselves from the dangers of SERVICE LOCATOR.

 Let’s look at an example that illustrates this principle.

7.6.1 Example: composing basket-management cmdlets
This example returns to the commerce sample application. Like all other commerce
applications, this one has shopping basket functionality. It’s common for users to put
items in their shopping basket but then leave the site, never to return.

 Although storage is cheap these days, project stakeholders have requested that you
provide them with a flexible ability to clean up orphaned baskets based on different
criteria. They want to be able to select orphaned baskets based on when they were last
updated. If the basket represents a significant amount, it shouldn’t be deleted (or per-
haps it should be given a longer grace period), but the total should be calculated
according to all current business rules.

 It sounds like a scripting API would be a good fit, because an administrator would
be able to define and schedule simple cleanup scripts. PowerShell is appropriate here
because of its advanced filtering and piping functionality.

 You can implement the desired API with two cmdlets: one to retrieve all baskets
and one to delete a basket for a given user. The following listing is an example of how
this might look in an interactive session.

PS C:\> Get-Basket

LastUpdated Owner Total
----------- ----- -----
19.03.2010 20:5... ploeh 89,4000
22.01.2010 19:5... ndøh 199,0000
21.03.2010 09:1... fnaah 171,7500

PS C:\> $now = [System.DateTime]::Now
PS C:\> $month = [System.TimeSpan]::FromDays(30)
PS C:\> $old = $now - $month

Listing 7.14 Deleting baskets more than a month old

Figure 7.17 When there is no way around a
static container, we can make it internal and
place it in the application’s root assembly. All
Resolve methods return classes defined in
other assemblies. Thus as soon as the
container has resolved the implementer, no
classes in the resolved dependency hierarchy
have access to the static container because
they’re all outside the application’s root
assembly and the container is internal.

Old
basket

b

Calculate
cutoff date

c

232 CHAPTER 7 Object Composition
PS C:\> Get-Basket | ? { $_.LastUpdated -lt $old } |
Remove-Basket
PS C:\> Get-Basket

LastUpdated Owner Total
----------- ----- -----
19.03.2010 20:5... ploeh 89,4000
21.03.2010 09:1... fnaah 171,7500

PS C:\>

Before you begin deleting baskets, you want to review the current baskets in the sys-
tem. You can use the custom cmdlet Get-Basket to list all baskets. Notice that each
basket has three properties that tell you when the basket was last updated, who the
owner is, and the total value (including discounts) of the basket.

 The current date when this particular session was performed was March 22, 2010.
Notice that the second basket B is more than 30 days old. You can now calculate the
cutoff date c from the current date and use it in a filter expression d. You can delete
all old baskets by piping the result of Get-Basket to the filter and then piping the
result of the filtered baskets to the Remove-Basket cmdlet. If you wanted to also filter
on the Total property, you could do so as well.

 Finally, you list all baskets to verify that the old basket was deleted.

NOTE Don’t worry if you don’t understand all the details of the filter expres-
sion. This book isn’t about PowerShell, so I won’t linger on this subject.

To facilitate this scripting API, you need to implement two custom cmdlets. Because
one of the requirements is that the Total must take into account all relevant business
rules, you need to compose the cmdlets with your Domain Model.

COMPOSING GETBASKETCMDLET

Let’s examine how the Get-Basket cmdlet is implemented. Remove-Basket is imple-
mented in a similar manner, so I won’t cover it.

 To escape the lure of the static container, you’ll implement the entire bridge
between the PowerShell cmdlet and the Domain Model in a separate library called
BasketPowerShellLogic. Figure 7.18 shows how the application is composed
across libraries.

NOTE If you think figure 7.18 looks a lot like figure 7.16, you’re beginning to
see a pattern.

NOTE You may remember IBasketService from chapter 2, section 2.3.2.

The GetBasketCmdlet class must have a default constructor to satisfy PowerShell, so
you use it as a COMPOSITION ROOT and leave it as a HUMBLE OBJECT. The next listing dem-
onstrates just how humble it is.

Delete old
baskets

d

233Composing PowerShell cmdlets
[Cmdlet(VerbsCommon.Get, "Basket")]
public class GetBasketCmdlet : Cmdlet
{
 private readonly BasketManager basketManager;

 public GetBasketCmdlet()
 {
 this.basketManager =
 BasketContainer.ResolveManager();
 }

 protected override void ProcessRecord()
 {
 var baskets =
 this.basketManager.GetAllBaskets();
 this.WriteObject(baskets, true);
 }
}

In the required default constructor, you use the static container to resolve the Basket-
Manager B that serves as the implementation c. BasketManager uses CONSTRUCTOR

INJECTION to request an IBasketService instance. By now, you should be familiar with
this pattern and the implementation of BasketContainer shown in the following listing.

Listing 7.15 Implementing GetBasketCmdlet

Figure 7.18 The Basket-
PowerShell library only
contains the infrastructure
necessary to make PowerShell
happy—it’s a HUMBLE OBJECT.
As soon as the static
BasketContainer has
resolved a BasketManager, all
further implementation happens
in different assemblies. The
BasketManager class has no
access to the internal
BasketContainer but
consumes an
IBasketService from the
Domain Model. As usual, arrows
denote references. Not all
involved classes are shown.

Composition
root

b

Delegate to
implementer

c

234 CHAPTER 7 Object Composition
internal static BasketManager ResolveManager()
{
 BasketRepository basketRepository =
 new SqlBasketRepository(
 BasketContainer.connectionString);
 DiscountRepository discountRepository =
 new SqlDiscountRepository(
 BasketContainer.connectionString);

 BasketDiscountPolicy discountPolicy =
 new RepositoryBasketDiscountPolicy(
 discountRepository);

 IBasketService basketService =
 new BasketService(basketRepository,
 discountPolicy);

 return new BasketManager(basketService);
}

The method, as well as the entire class, is internal B, which makes it possible to
invoke it from the GetBasketCmdlet as shown in listing 7.15 but impossible to inadver-
tently use from BasketManager or its DEPENDENCIES.

 The implementation of the method should now look familiar to you. Again I find
it most straightforward to work backward from the result. The BasketManager class
requires an IBasketService instance c, and you use the BasketService class (not
that you currently have any other implementation to choose from).

BasketService requires a BasketRepository and a BasketDiscountPolicy. For
the latter, you use RepositoryBasketDiscountPolicy. This class requires another
repository ABSTRACTION, and for both repositories, you use the SQL Server–based
implementations.

 The BasketManager implementation is basic, so I won’t show it. All it does is
express the requested operation in terms of the Domain Model.

 The Remove-Basket cmdlet follows exactly the same pattern: it uses the static but
internal BasketContainer to resolve a BasketManager instance and then delegates
the implementation to the resolved instance. Both cmdlets act as a combination of
COMPOSITION ROOT and HUMBLE OBJECT.

 The BasketManager class is implemented in a different assembly. As soon as the
code leaves the cmdlets, there is no risk that any of the underlying implementation
will use the static container as a SERVICE LOCATOR because it’s internal to the assembly
containing the cmdlets.

NOTE Obviously, the underlying code will never do anything by accident, but
the developer writing the code might. We shield the static container from the
rest of the code to protect ourselves from making mistakes.

Listing 7.16 Resolving BasketManager

Internal
methodb

Return basket
manager

c

235Summary
A framework like PowerShell represents the ultimate in DI-unfriendliness. Using the
simple technique of making each framework element a COMPOSITION ROOT and a HUM-
BLE OBJECT gives you an easy way to deal with the issue.

7.7 Summary
OBJECT COMPOSITION is one of three important dimensions of DI (the others being LIFE-
TIME MANAGEMENT and INTERCEPTION). In this chapter, I have shown you how to compose
applications from loosely coupled modules in a variety of different environments.

 Some frameworks make it easy. When we’re writing console applications and Win-
dows clients (WPF or Windows Forms), we’re more or less in direct control of what is
happening at the application’s entry point. This provides us with a distinct and easily
implemented COMPOSITION ROOT at the entry point.

 Other frameworks, such as ASP.NET MVC and WCF, make us work a little harder,
but they still provide SEAMS we can use to define how the application should be com-
posed. ASP.NET MVC was designed with DI in mind, so composing an application is as
easy as implementing a custom IControllerFactory and registering it with the frame-
work. In WCF, the SEAM almost appears to be there accidentally; but although it’s more
roundabout than implementing a single interface, we can still achieve all the DI good-
ness we could wish for.

 Other frameworks are decidedly DI-unfriendly and require us to use default con-
structors to fit in. ASP.NET (Web Forms) is the most notorious of these, but other
examples include PowerShell and the Managed MMC SDK. These frameworks manage
the lifetimes of the classes we provide, so the only option is to treat each class as a sep-
arate COMPOSITION ROOT. This is more work, so I personally prefer to use DI-friendly
frameworks whenever I have the choice.

 Without OBJECT COMPOSITION, there is no DI, but you may not yet have fully realized
the implications for OBJECT LIFETIME when we move creation of objects out of the con-
suming classes. You may find it self-evident that the external caller (often a DI CON-
TAINER) creates new instances of DEPENDENCIES—but when are injected instances
deallocated? And what if the external caller decides not to create new instances all the
time, but rather hands you an existing instance? These are topics for the next chapter.

Object Lifetime
The passing of time has a profound effect on most foods and drinks, but the conse-
quences vary. Personally, I find 12-month-old Gruyère much more interesting than
6-month-old Gruyère, but I prefer my asparagus much fresher than either of those.
In many cases, it’s easy to assess the proper age of an item; but in certain cases,
doing so becomes very complex. This is most notable when it comes to wine (see
figure 8.1).

 Wines tend to get better with age—until they suddenly become too old and lose
most of their flavor. This depends on a lot of factors, including the origin and vin-
tage of the wine. Although wines interest me, I don’t expect to ever be able to predict
when a wine will peak. For that, I rely on experts: books at home and sommeliers at

Menu
■ Managing DEPENDENCY LIFETIME

■ Disposable DEPENDENCIES

■ SINGLETON

■ TRANSIENT

■ PER GRAPH

■ WEB REQUEST CONTEXT

■ POOLED
236

237Object Lifetime
restaurants. They understand wines better than I do because it’s their specialty, so
whenever I trust them I happily let them take control.

 Unless you dove straight into this chapter without reading any of the previous
ones, you know that letting go of control is a key concept in DI. This is the INVERSION OF

CONTROL aspect, but it implies more than just letting someone else pick an implemen-
tation of a required ABSTRACTION. When we accept letting a COMPOSER supply a DEPEN-
DENCY, we must also accept that we can’t control its lifetime.

 Just as the sommelier intimately knows the contents of the restaurant’s wine cellar
and can make a far more informed decision than we can, so should we trust the COM-
POSER to be able to control the lifetime of DEPENDENCIES more efficiently than the con-
sumer. Composing and managing components is its single responsibility.

DEFINITION COMPOSER—As I use it here, COMPOSER is a unifying term to refer
to any object or method that composes DEPENDENCIES. This is often a DI CON-
TAINER, but may also be any method used in POOR MAN’S DI, such as the Main
method of a console application.

Figure 8.1 Wine, cheese,
and asparagus. Although the
combination may be a bit off,
their age greatly affects their
overall qualities.

238 CHAPTER 8 Object Lifetime
In this chapter, we’ll explore DEPENDENCY LIFETIME MANAGEMENT. Understanding this
topic is important because just as you can have a subpar experience if you drink a wine
at the wrong age,1 you may experience degraded performance from configuring
DEPENDENCY LIFETIME incorrectly. Even worse, you may get the LIFETIME MANAGEMENT

equivalent of spoiled food: resource leaks. Understanding the principles of correctly
managing the life cycle scopes of components should enable you to make informed
decisions and configure your applications correctly.

NOTE Throughout this chapter, I use the terms lifestyle type, life cycle strategy, life
cycle scope, and other unlikely combinations interchangeably.

As figure 8.2 illustrates, we’ll start with a general introduction to the concept, followed
by a discussion about disposable DEPENDENCIES. This first part of the chapter is meant
to provide all the background information and guiding principles you need to make
knowledgeable decisions about your own applications’ life cycle scope configuration.

 After that, we’ll use the rest of the chapter to look at different lifetime strategies.
This part of the chapter takes the form of a catalog of available lifestyles. In most

1 Both your own and the wine’s!

Figure 8.2 The overall structure of this chapter. We’ll start with a general discussion about
managing DEPENDENCY Lifetime, including a particular discussion of dealing with disposable
objects. We need that foundation to efficiently discuss the common patterns of the small
lifestyle catalog that follows. We’ll start by looking at some common and highly useful patterns
and finish with a brief glance at some more exotic lifestyle scopes to give you an impression
of the breadth of the topic.

239Managing Dependency Lifetime
cases, one of these stock lifestyle patterns will provide a good match for a given chal-
lenge, so understanding them in advance equips you to deal with many difficult situa-
tions. When we’re finished, you should have a good grasp of LIFETIME MANAGEMENT and
common lifetimes.

 First, let’s look at OBJECT LIFETIME and how it relates to DI in general.

8.1 Managing Dependency Lifetime
So far, we’ve mostly discussed how DI enables us to compose DEPENDENCIES. The previous
chapter explored this subject in great detail, but as I alluded to in section 1.4, OBJECT

COMPOSITION is just one aspect of DI. Managing OBJECT LIFETIME is another.

NOTE In .NET, an object’s life cycle is simple: the object is created, used, and
garbage-collected. The presence of IDisposable complicates things a bit, but
the life cycle isn’t more complicated than that. When we discuss OBJECT LIFE-
TIME, we talk about how we manage objects’ life cycles.

The first time I was introduced to the idea that the scope of DI includes LIFETIME MAN-
AGEMENT I failed to understand the deep connection between OBJECT COMPOSITION and
OBJECT LIFETIME. I finally got it, and it’s simple, so let’s take a look!

 In this section, I’ll introduce LIFETIME MANAGEMENT and how it applies to DEPENDEN-
CIES. We’ll start by looking at the general case of composing objects and how it has
implications for the lifetimes of DEPENDENCIES. From there, we’ll move on to study how
DI CONTAINERS can manage DEPENDENCY LIFETIME. Although most of the examples are
specialized code that deals with particular configurations, we’ll also make a brief
detour around a sample DI CONTAINER to get a glimpse at what lifetime configuration
might look like.

 First, we’ll investigate why OBJECT COMPOSITION implies LIFETIME MANAGEMENT.

8.1.1 Introducing Lifetime Management

When we accept that we should let go of our psychological need for control over
DEPENDENCIES and rather request them through CONSTRUCTOR INJECTION or one of the
other DI patterns, we must let go completely. To understand why, we’ll examine
the issue progressively. Let’s begin by reviewing what the standard .NET object life
cycle means for DEPENDENCIES. You should already know this, but bear with me for the
next half page while I establish the context.

SIMPLE DEPENDENCY LIFE CYCLE

You know that DI means we let a third party (often a DI CONTAINER) serve us the DEPEN-
DENCIES we need. This also means we must let it manage the DEPENDENCIES’ lifetimes.
This is easiest to understand when it comes to object creation. Here is a code fragment
from the sample Commerce application’s COMPOSITION ROOT (you can see the com-
plete example in listing 7.3):

var discountRepository =
 new SqlDiscountRepository(connectionString);

240 CHAPTER 8 Object Lifetime
var discountPolicy =
 new RepositoryBasketDiscountPolicy(discountRepository);

I hope that it’s evident that the RepositoryBasketDiscountPolicy class doesn’t con-
trol when discountRepository is created. In this case, it’s likely to happen within the
same millisecond; but as a thought experiment, we could insert a call to Thread.Sleep
between these two lines of code to demonstrate that we can arbitrarily separate them
over time. That would be a pretty weird thing to do, but you get the point.

 Consumers don’t control creation of their DEPENDENCIES, but what about destruc-
tion? As a general rule, we don’t control when objects are destroyed in .NET. The gar-
bage collector collects unused objects, but unless we’re dealing with disposable
objects, we can’t explicitly destroy an object.

NOTE I use the term disposable object as shorthand for referring to object
instances of types that implement the IDisposable interface.

Objects are garbage-collected when they go out of scope. Conversely, they last as long
as someone else holds a reference to them. Although a consumer can’t explicitly
destroy an object, it can keep the object alive by holding on to the reference. This is
what we do when we use CONSTRUCTOR INJECTION, because we save the DEPENDENCY in a
private field. But as figure 8.3 illustrates, when the consumer goes out of scope, so may
the DEPENDENCY.

 Even when a consumer goes out of scope, the DEPENDENCY may live on if other
objects hold a reference to it. Otherwise, it will be garbage-collected. Because you’re
an experienced .NET developer, this is old news to you, but now the discussion should
begin to get more interesting.

ADDING COMPLEXITY TO THE DEPENDENCY LIFE CYCLE

Until now our analysis of the DEPENDENCY life cycle has been mundane, but we can add
some complexity. What happens when more than one consumer requires the same
DEPENDENCY? One option is to supply each consumer their own instance, as shown in
the following listing.

Figure 8.3 Whoever injects the DEPENDENCY into a consumer decides when it’s created, but the
consumer can keep the DEPENDENCY alive by holding a reference to it. When the consumer goes
out of scope, the DEPENDENCY may be eligible for garbage collection.

241Managing Dependency Lifetime
var repositoryForPolicy =
 new SqlDiscountRepository(connectionString);
var repositoryForCampaign =
 new SqlDiscountRepository(connectionString);

var discountPolicy =
 new RepositoryBasketDiscountPolicy(
 repositoryForPolicy);

var campaign =
 new DiscountCampaign(repositoryForCampaign);

In this example, two consumers both require a DiscountRepository instance, so you
wire up two separate instances with the same connection string. You can now pass
repositoryForPolicy to a new RepositoryBasketDiscountPolicy instance and
repositoryForCampaign to a new DiscountCampaign instance B.

 When it comes to the life cycles of each repository in listing 8.1, nothing has
changed compared to the previous example. Each goes out of scope and is garbage-
collected when the consumers go out of scope. This may happen at different times,
but the situation is only marginally different than before.

 It would be a somewhat different situation if both consumers were to share the
same DEPENDENCY, as shown in this example:

var repository =
 new SqlDiscountRepository(connectionString);

var discountPolicy =
 new RepositoryBasketDiscountPolicy(repository);

var campaign = new DiscountCampaign(repository);

Instead of creating two different SqlDiscountRepository instances, you create a sin-
gle instance that you inject into both consumers. Both save the reference for later use.

NOTE The consumers are blissfully unaware that the DEPENDENCY is shared.
Because they both accept whichever version of the DEPENDENCY they’re given, no
modification of the source code is necessary to accommodate this change in
DEPENDENCY configuration. This is a result of the LISKOV SUBSTITUTION PRINCIPLE.

Listing 8.1 Composing with multiple instances of the same DEPENDENCY

Liskov Substitution Principle
As originally stated, the LISKOV SUBSTITUTION PRINCIPLE is an academic and abstract
concept. But in object-oriented design, we can paraphrase it as follows: Methods that
consume ABSTRACTIONS must be able to use any derived class without knowing it. In
other words, we must be able to substitute the ABSTRACTION for an arbitrary implemen-
tation without changing the correctness of the system.

Inject appropriate
repository

b

242 CHAPTER 8 Object Lifetime
The life cycle situation for the repository DEPENDENCY has changed distinctly com-
pared to the previous example. Both consumers must go out of scope before repository
may be eligible for garbage collection, and they may do so at different times. The situ-
ation becomes less predictable when the DEPENDENCY reaches the end of its lifetime,
and this trait is only reinforced when the number of consumers increases.

 Given enough consumers, it’s likely that there will always be one around to keep
the DEPENDENCY alive. This may sound like a problem, but it rarely is: instead of a mul-
titude of similar instances, we have only one, which saves memory. This is such a desir-
able quality that we formalize it in a lifestyle pattern called SINGLETON LIFESTYLE. Don’t
confuse this with the Singleton2 design pattern, although there are similarities. We’ll
go into greater detail about this subject in section 8.3.1.

 The key point to appreciate is that the COMPOSER has a greater degree of influence
over the lifetime of DEPENDENCIES than any single consumer. The COMPOSER decides
when instances are created, and by its choice of whether to share instances, it deter-
mines whether a DEPENDENCY goes out of scope with a single consumer, or whether all
consumers must go out of scope before the DEPENDENCY can be released.

 This is comparable to visiting a restaurant with a good sommelier. The sommelier
spends a large proportion of the day managing and evolving the wine cellar, buying
new wines, sampling the available bottles to track how they develop, and working with
the chefs to identify optimal matches to the food being served. When we’re presented
with the wine list, it includes only what the sommelier deems fit to offer for sale. We’re
free to select a wine according to our personal taste, but we don’t presume to know
more about the restaurant’s selection of wines and how they go with the food than the
sommelier does.

 The sommelier will often decide to keep lots of bottles in stock for years; and as
you’ll see in the next section, a COMPOSER may decide to keep instances alive by hold-
ing on to their references.

8.1.2 Managing lifetime with a container

The previous section explained how we can vary the composition of DEPENDENCIES to
influence their lifetimes. In this section, we’ll look at how a DI CONTAINER can address
these variations.

NOTE This section discusses the principles behind managing lifetimes with a
DI CONTAINER, so I won’t go into great detail about particular containers. As
is the case throughout part 3 of this book, I use POOR MAN’S DI to illustrate
the concepts.

We’ll start by examining how to control the life cycle of DEPENDENCIES using custom con-
tainers, and then turn to a quick example of specifying lifestyles in a real DI CONTAINER.

2 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (New York: Addison-Wesley,
1994), 127.

243Managing Dependency Lifetime
MANAGING LIFESTYLES USING A SPECIALIZED CONTAINER

In chapter 7, we created specialized containers to compose applications. One of these
was CommerceServiceContainer. Listing 7.9 shows the implementation of its Resolve-
ProductManagementService method; and as figure 8.4 shows, this method is about
the only code in the class.

 As you may recall from listing 7.9, the Resolve method creates the entire depen-
dency graph on the fly each time it’s invoked. In other words, each DEPENDENCY is pri-
vate to the issued IProductManagementService, and there is no sharing. When the
IProductManagementService instance goes out of scope (which it does every time
the service has replied to a request), all the DEPENDENCIES go out of scope as well. This
is often called a TRANSIENT lifestyle, but we’ll talk more about that in section 8.3.2.

 Let’s analyze the object graph created by CommerceServiceContainer and shown
in figure 8.5 to see if there is room for improvement.

 The ContractMapper class is a completely stateless service, so there is no reason to
create a new instance every time we need to service a request. The connection string is
also unlikely to change, so we may also decide to reuse it across requests.

 The SqlProductRepository class, on the other hand, relies on an Entity Framework
Object Context, and it’s considered a best practice to use a new instance per request.

 Given this particular configuration, a better implementation of CommerceService-
Container would reuse the same instances of both ContractMapper and the connec-
tion string while creating new instances of SqlProductRepository. In short, you should
configure ContractMapper and the connection string to use SINGLETON LIFESTYLE and

Figure 8.4 All of the CommerceServiceContainer class’s
implementation currently resides in the ResolveProduct-
ManagementService method. The Release method does
absolutely nothing, and there are no fields or properties on the class.
If you’re wondering why we have the Release method, we’ll get to
it in section 8.2.2.

Figure 8.5 Object graph as created by
CommerceServiceContainer.
Each ProductManagementService
instance created contains its own
ContractMapper and its own
SqlProductRepository, which
in turn contains its own connection
string. The DEPENDENCIES on the right
are immutable.

244 CHAPTER 8 Object Lifetime
SqlProductRepository as TRANSIENT. The following listing shows how to implement
this change.

public partial class LifetimeManagingCommerceServiceContainer :
 ICommerceServiceContainer
{
 private readonly string connectionString;
 private readonly IContractMapper mapper;

 public LifetimeManagingCommerceServiceContainer()
 {
 this.connectionString =
 ConfigurationManager.ConnectionStrings
 ["CommerceObjectContext"].ConnectionString;

 this.mapper = new ContractMapper();
 }

 public IProductManagementService
 ResolveProductManagementService()
 {
 ProductRepository repository =
 new SqlProductRepository(
 this.connectionString);
 return new ProductManagementService(
 repository, this.mapper);
 }
}

Because you want to reuse the connection string and the ContractMapper across all
requests, you save them in private fields and initialize them in the constructor B. The
readonly keyword provides an extra guarantee that once assigned, these SINGLETON

instances are permanent and can’t be replaced, but apart from that extra guarantee,
readonly is in no way required when implementing the SINGLETON LIFESTYLE.

 Each time the container is asked to create a new instance, it creates a TRANSIENT

instance of SqlProductRepository using the SINGLETON connection string c. It finally
uses this TRANSIENT repository together with the SINGLETON mapper to compose and
return an instance of ProductManagementService.

NOTE The code in listing 8.2 is functionally equivalent to the code in
listing 7.9—it’s just slightly more efficient.

By holding on to the DEPENDENCIES it creates, a container can keep them alive for as
long as it wants. In the previous example, it creates both SINGLETON DEPENDENCIES

as soon as it’s initialized, but it could also have used lazy initialization.
 This example should give you an idea of how DI CONTAINERS manage life cycles.

Because a DI CONTAINER is a reusable library, we can’t modify its source code every time
we want to reconfigure a DEPENDENCY’s lifestyle. In the next section, we’ll take a quick
look at how to configure lifestyles for a sample container.

Listing 8.2 Managing lifetime with a container

Create
Singleton
Dependencies

b

Create Transient
Dependency

c

245Managing Dependency Lifetime
MANAGING LIFESTYLE USING AUTOFAC

Occasionally throughout this book, I take a break from pure POOR MAN’S DI to provide
an example of how we can achieve a result using a sample DI CONTAINER. Each DI CON-
TAINER has its own specific API to express many different features; but although the
details differ, the principles remain the same. This is also true for LIFETIME MANAGEMENT.

NOTE Even the term LIFETIME MANAGEMENT isn’t ubiquitous. For instance, Auto-
fac3 calls it Instance Scope.

In this section, we’ll take a brief glance at configuring lifetimes with Autofac.

NOTE There is no particular reason I chose Autofac over other DI CONTAINERS

for this example. I could just as well have chosen a different one.

The next listing shows how to configure Autofac with pure TRANSIENT DEPENDENCIES,
equivalent to the example from listing 7.9.

var builder = new ContainerBuilder();
builder.RegisterType<ContractMapper>()
 .As<IContractMapper>();
builder.Register((c, p) =>
 new SqlProductRepository(
 ConfigurationManager
 .ConnectionStrings["CommerceObjectContext"]
 .ConnectionString))
 .As<ProductRepository>();
builder.RegisterType<ProductManagementService>()
 .As<IProductManagementService>();
var container = builder.Build();

One peculiarity of Autofac is that you don’t configure the container itself, but rather
configure a ContainerBuilder and use it to create the container when the configura-
tion is completed.

 The simplest form of registration is when you only need to define a map between
an ABSTRACTION and a concrete type, such as the map from IContractMapper to
ContractMapper. Notice that the concrete type is specified before the ABSTRACTION,
which is the reverse order of that used by most other DI CONTAINERS.

 Although Autofac supports AUTO-WIRING as well as any other DI CONTAINER, injecting
primitive types such as strings always represents a special case because there could
potentially be many different strings in play. In this case, you have only a single con-
nection string, but you still need to supply it to the SqlProductRepository you now
register. You can do that by using a lambda expression4 that will be executed when the
ProductRepository type is requested.

3 http://code.google.com/p/autofac/

Listing 8.3 Configuring Autofac with TRANSIENT DEPENDENCIES

4 Technically, it isn’t a lambda expression but rather a code block. Most .NET developers know such code constructs
as lambda expressions, so I chose the more well-known term over the more correct one.

http://code.google.com/p/autofac/

246 CHAPTER 8 Object Lifetime
 The use of lambdas is one of Autofac’s claims to fame. Although most DI CONTAIN-
ERS now have a similar feature, Autofac was among the first to introduce it. You can use
the lambda to specify how the SqlProductRepository class is created; and, more spe-
cifically, you pull the connectionString constructor parameter from the application
configuration.

 The advantage of using a lambda is that it’s type-safe, so you get compile-time veri-
fication of the construction of the SqlProductRepository. The disadvantage is that
you don’t get AUTO-WIRING, so unless you explicitly need to specify a constructor
parameter, the simpler map using the RegisterType method is preferable. This is how
you map IProductManagementService to ProductManagementService so it can take
advantage of AUTO-WIRING.

 You can now use the container instance to create new instances of IProductMan-
agementService like this:

var service = container.Resolve<IProductManagementService>();

But wait, what about LIFETIME MANAGEMENT? Most DI CONTAINERS have a default lifestyle.
In the case of Autofac, the default is called Per Dependency, which is the same as the
TRANSIENT lifestyle. Because it’s the default, you didn’t need to specify it, but you could
have done it like this if you wanted to:

builder.RegisterType<ContractMapper>()
 .As<IContractMapper>()
 .InstancePerDependency();

Notice that you use the fluent registration interface to specify the Instance Scope (Auto-
fac’s term for lifestyle) with the InstancePerDependency method.

 There is also a Single Instance Scope that corresponds to the SINGLETON lifestyle.
Armed with that knowledge, you can write the Autofac equivalent of listing 8.2:

builder.RegisterType<ContractMapper>()
 .As<IContractMapper>()
 .SingleInstance();
builder.Register((c, p) =>
 new SqlProductRepository(connectionString))
 .As<ProductRepository>();
builder.RegisterType<ProductManagementService>()
 .As<IProductManagementService>();

You want ContractMapper to have the SINGLETON lifestyle, so you define this by invoking
the SingleInstance method. When it comes to the SqlProductRepository, things
become a little more difficult because the SqlProductRepository instance should be
TRANSIENT, but the injected connection string should be a SINGLETON. You can achieve
this by extracting the connectionString from the application configuration (not
shown, but similar to before) and using this outer variable from within the closure you
use to specify the constructor. Because connectionString is an outer variable, it
remains the same across many invocations of the constructor. Notice how you implic-
itly scope both SqlProductRepository and ProductManagementService as TRANSIENTS

by not specifying a lifestyle.

247Working with disposable Dependencies
 Although this example describes how to specify lifestyles with Autofac, other DI
CONTAINERS have vaguely similar APIs for the same purpose.

 The ability to fine-tune each DEPENDENCY’s lifestyle is important for performance
reasons but can also be important for functionality. For instance, the Mediator5 design
pattern relies on a shared director through which several components communicate.
This only works when the Mediator is shared among the involved collaborators.

 So far, we’ve discussed how INVERSION OF CONTROL implies that consumers can’t
manage the lifetimes of their DEPENDENCIES because they obviously don’t control cre-
ation of objects, and because .NET uses garbage collection consumers can’t explicitly
destroy objects either.

 This leaves a question unanswered: what about disposable DEPENDENCIES? We’ll now
turn our attention to that delicate question.

8.2 Working with disposable Dependencies
Although .NET is a managed platform with a garbage collector, it can still interact with
unmanaged code. When this happens, .NET code interacts with unmanaged memory
that isn’t garbage-collected. To prevent memory leaks, we must have a mechanism
with which to deterministically release unmanaged memory. This is the key purpose of
the IDisposable interface.6

 It’s likely that some DEPENDENCY implementations will contain unmanaged
resources. As an example, ADO.NET connections are disposable because they tend to
use unmanaged memory, so database-related implementations such as repositories
backed by databases are likely to be disposable themselves.

 How should we model disposable DEPENDENCIES? Should we also let ABSTRACTIONS be
disposable? That might look like this:

public interface IMyDependency : IDisposable { }

This is technically possible but not a particularly good idea, because it’s a design smell
that indicates a LEAKY ABSTRACTION:

[An] interface [...] generally shouldn’t be disposable. There’s no way for the one defining
an interface to foresee all possible implementations of it - you can always come up with a
disposable implementation of practically any interface.

—Nicholas Blumhardt on the Common Context
Adapters discussion forum7

If you feel the urge to add IDisposable to your interface, it’s probably because you have
a particular implementation in mind. But you must not let that knowledge leak through
to the interface design. Doing so would make it more difficult for other classes to

5 Gamma, Design Patterns, 273.
6 In my opinion, the definitive article about IDisposable is Shawn Farkas’s “CLR Inside Out: Digging into

IDisposable” (MSDN Magazine, July 2007), http://msdn.microsoft.com/en-us/magazine/cc163392.aspx
7 http://cca.codeplex.com/discussions/82987?ProjectName=cca

http://msdn.microsoft.com/en-us/magazine/cc163392.aspx
http://cca.codeplex.com/discussions/82987?ProjectName=cca

248 CHAPTER 8 Object Lifetime
implement the interface and would introduce vagueness into the ABSTRACTION. Who is
responsible for disposing of a disposable DEPENDENCY? Could it be the consumer?

8.2.1 Consuming disposable Dependencies

For the sake of argument, imagine that we have a disposable ABSTRACTION like this
abstract OrderRepository class:

public abstract class OrderRepository : IDisposable

How should an OrderService class deal with such a DEPENDENCY? Most design guide-
lines (including FxCop and Visual Studio’s built-in Code Analysis) would insist that if
a class holds a disposable resource as a member, it should itself implement IDisposable
and dispose of the resource like this:

protected virtual void Dispose(bool disposing)
{
 if (disposing)
 {
 this.repository.Dispose();
 }
}

But this turns out to be a spectacularly bad idea because the repository member was
originally injected, and it may be shared by other consumers as shown in figure 8.6.

 It would be less dangerous not to dispose of the injected repository, but this means
we’re essentially ignoring the fact that the ABSTRACTION is disposable. In other words,
declaring an ABSTRACTION as deriving from IDisposable provides no benefit.

 Then again, there can be scenarios where we need to signal the beginning and end
of a short-lived scope, and IDisposable is sometimes used for that purpose. Before we
examine how a COMPOSER can manage the lifetime of a disposable DEPENDENCY, we
should consider how to deal with such ephemeral disposables.

Figure 8.6 A single instance of SqlOrderRepository is injected into both
OrderService and SupplierReorderPolicy. These two instances
share the same DEPENDENCY. If OrderService disposes its injected
OrderRepository, it destroys SupplierReorderPolicy’s DEPENDENCY,
and exceptions will be thrown when SupplierReorderPolicy tries to use it.

249Working with disposable Dependencies
CREATING EPHEMERAL DISPOSABLES

Many APIs in the .NET Base Class Library (BCL) use IDisposable to signal that a par-
ticular scope has ended. One of the more prominent examples is WCF proxies.

It’s important to remember that the use of IDisposable for such purposes need not
indicate a LEAKY ABSTRACTION, because these types aren’t always ABSTRACTIONS in the
first place. On the other hand, some of them are; and when that is the case, how do we
deal with them?

 Fortunately, after an object is disposed of, we can’t reuse it. This means if we want
to invoke the same API again, we must create a new instance. As an example, this fits
well with how we use WCF proxies or ADO.NET commands: we create the proxy, invoke
its operations, and dispose of it as soon as we’re finished. How can we reconcile this
with DI if we consider disposable ABSTRACTIONS to be LEAKY ABSTRACTIONS?

 As always, hiding the messy details behind an interface can be helpful. If we return
to the WPF application from section 7.4, we hid the WCF proxy behind an IProduct-
ManagementAgent interface.

NOTE The IProductManagementAgent interface is most notable in listing 7.10,
but apart from that, we didn’t look at this interface in detail. In essence, such
an agent occupies the same spot as a Repository, but many years ago I picked
up the habit of naming the data access components of Smart Clients agent
instead of repository.

From the MainViewModel’s perspective, this is how you delete a product:

this.agent.DeleteProduct(productId);

You ask the injected agent to delete the product. MainViewModel can safely hold a ref-
erence to the agent because the IProductManagementAgent interface doesn’t derive
from IDisposable.

WCF proxies and IDisposable
All auto-generated WCF proxies implement IDisposable, and it’s important to
remember to invoke the Dispose (or Close) method on a proxy as soon as possi-
ble. Many bindings automatically create a session on the service when they sub-
mit the first request, and this session lingers in the service until it times out or is
explicitly disposed.

If we forget to dispose of our WCF proxies after use, the number of sessions will
increase until we hit the limit for concurrent connections from the same source. When
we reach the limit, exceptions are thrown. Too many sessions also place an undue
burden on the service, so disposing of WCF proxies as soon as possible is important.

To be entirely technically correct, we don’t have to invoke the Dispose method on a
WCF proxy. Using the Close method achieves the same result.

250 CHAPTER 8 Object Lifetime
 Another picture forms when we look at the WCF implementation of that interface.
Here is the implementation of the DeleteProduct method:

public void DeleteProduct(int productId)
{
 using (var channel = this.factory.CreateChannel())
 {
 channel.DeleteProduct(productId);
 }
}

The WcfProductManagementAgent class has no mutable state but does have an
injected Abstract Factory8 you can use to create a channel. Channel is just another
word for a WCF proxy, and it’s the auto-generated client interface you get for free
when you create a service reference with Visual Studio or svcutil.exe. Because this
interface derives from IDisposable, you can wrap it in a using statement.

 You use the channel to delete the product. When you exit the using scope, the
channel is disposed of.

 But wait! Didn’t I claim that a disposable ABSTRACTION is a LEAKY ABSTRACTION? Yes, I did,
but I have to balance pragmatic concerns against principles. In this case, WcfProduct-
ManagementAgent, the Abstract Factory IProductChannelFactory, and IProduct-
ManagementServiceChannel are all defined in the same, WCF-specific library outlined
in figure 8.7.

 Every time you invoke a method on the WcfProductManagementAgent class, it
quickly opens a new channel and disposes it after use. Its lifetime is extremely short,
which is why I call such a disposable ABSTRACTION an ephemeral disposable.

 Notice that the ephemeral disposable is never injected into the consumer. Instead,
an Abstract Factory is injected, and you use that factory to control the lifetime of the
ephemeral disposable.

8 Gamma, Design Patterns, 87.

Figure 8.7 Among other types, the Product-
WcfAgent library contains the implementation of
IProductManagementAgent and its supporting
types. WcfProductManagementAgent uses an
IProductChannelFactory to create instances of
IProductManagementServiceChannel, which
is disposable. Although this can be considered a
LEAKY ABSTRACTION, it doesn’t leak very far because
all consumers and implementers are contained in the
same assembly.

251Working with disposable Dependencies
In summary, disposable ABSTRACTIONS are LEAKY ABSTRACTIONS. Sometimes we must accept
such a leak to avoid bugs (such as refused WCF connections); but when we do that, we can
do our best to contain that leak so it doesn’t propagate throughout an entire application.

 We’ve now examined how to consume disposable DEPENDENCIES. Let’s turn our atten-
tion to how we can serve and manage them for consumers.

8.2.2 Managing disposable Dependencies

Because I so adamantly insist that disposable ABSTRACTIONS are LEAKY ABSTRACTIONS, the
consequence is that ABSTRACTIONS shouldn’t be disposable. On the other hand, some-
times implementations are disposable, and if we don’t properly dispose of them, we’ll
have resource leaks in our applications. Someone must dispose of them.

TIP Try hard to implement services so they don’t hold references to dispos-
ables, but rather create and dispose of them on demand as illustrated in
figure 6.3. This makes memory management much simpler, because the ser-
vice can be garbage-collected like other objects.

As always, this responsibility falls on the COMPOSER (such as a DI CONTAINER). It, better
than anyone else, knows when it creates a disposable instance, so it also knows that the
instance needs to be disposed of. It’s easy for the COMPOSER to keep a reference to
the disposable instance and invoke its Dispose method at an appropriate time.

 The challenge lies in identifying when the time to dispose is appropriate. How do
we know when all consumers have gone out of scope?

 Unless someone tells us when that happens, we don’t know, but often our code
lives inside some sort of context with a well-defined lifetime and events that tell us
when a specific scope completes. Table 8.1 shows the scopes for the technologies we
looked at in chapter 7.

Table 8.1 Entry and exit points for various .NET Frameworks

Technology Entry point Exit point

Console applications Main* Main*

ASP.NET MVC IControllerFactory.
CreateController

IControllerFactory.
ReleaseController

WCF IInstanceProvider.
GetInstance

IInstanceProvider.
ReleaseInstance

WPF Application.OnStartup Application.OnExit

ASP.NET Constructors**,
Page_Load

IDisposable.Dispose**,
Page_Unload

PowerShell Constructors** IDisposable.Dispose**

* The Main method is both the entry and exit point because the application starts when it enters Main and ends when it
exits. Use the beginning of Main to resolve DEPENDENCIES and the end to release them.
** We can resolve DEPENDENCIES in constructors, and both ASP.NET and PowerShell at least have the decency to invoke
Dispose if we implement IDisposable.

252 CHAPTER 8 Object Lifetime
We can use the various exit points to tell the COMPOSER that it should release all DEPEN-
DENCIES for a given object. It’s then up to the COMPOSER to keep track of those DEPEN-
DENCIES and their lifestyles and to decide whether anything must be disposed.

RELEASING DEPENDENCIES

Releasing an object graph isn’t the same as disposing of it. It’s a signal to the COMPOSER

that the root of the graph goes out of scope, so if the root itself implements IDisposable,
it should be disposed of. But the root’s DEPENDENCIES may be shared with other roots,
so the COMPOSER may decide to keep some of them around because it knows other
objects still rely on them. Figure 8.8 illustrates the sequence of events.

 To release DEPENDENCIES, a COMPOSER must track all disposable DEPENDENCIES it has
ever served and to which consumers it served them, so it can dispose of them when
the last consumer is released.

TIP If you’ve ever worked with reference counts (or experienced bugs
because of bad implementations), you’ll appreciate how complex it can be to
keep tabs on all DEPENDENCIES and their consumers. This is an area where a DI
CONTAINER shines because it takes care of all that for you. Use a DI CONTAINER

instead of developing your own lifetime-tracking code. A DI CONTAINER’s

Figure 8.8 When a COMPOSER is asked to resolve an object, it gathers all of the requested object’s
DEPENDENCIES. In this case, the requested object has three DEPENDENCIES, and two of them are disposable.
One of these disposable DEPENDENCIES is shared with other consumers, so it’s reused, whereas the other
DEPENDENCIES are instantiated on the spot. When the request to release the object comes in, the
COMPOSER disposes of the private disposable DEPENDENCY and lets the non-disposable DEPENDENCY and the
object itself go out of scope. The only interaction with the shared DEPENDENCY is that it’s injected into
the requested object; but because it’s shared, it isn’t disposed of (yet).

253Working with disposable Dependencies
implementation of LIFETIME MANAGEMENT is guaranteed to be more thoroughly
tested than anything you can produce within a reasonable timeframe.

Let’s go back to the WCF service
example from section 8.1.2. As it
turns out, there is a bug in listing 8.2
because, as figure 8.9 shows, Sql-
ProductRepository implements
IDisposable.

 The code in listing 8.2 creates
new instances of SqlProduct-

Repository, but it never releases
those instances. This will cause
resource leaks, so let’s fix that bug with a new version of the specialized container.

 First, keep in mind that the container must be able to service many concurrent
requests, so it has to associate each SqlProductRepository instance with the IProduct-
ManagementService it creates. The container uses a Dictionary<IProductManagement-
Service, SqlProductRepository> called repositories to keep track of those
associations. The following listing shows how the container resolves requests for
IProductManagementService instances.

public IProductManagementService ResolveProductManagementService()
{
 var repository = new SqlProductRepository(this.connectionString);
 var srvc = new ProductManagementService(repository, this.mapper);

 lock (this.syncRoot)
 {
 this.repositories.Add(srvc, repository);
 }

 return srvc;
}

The method starts by resolving all the DEPENDENCIES. This is similar to the implementa-
tion in listing 8.2. But before returning the resolved service, the container must
remember the association between the service and the repository.

 There is only one instance of the container in the WCF application, and because
it’s likely that it will receive concurrent requests, you need to lock the dictionary
before you add the repository to it. Adding items to a dictionary isn’t a thread-safe
operation, so you need the lock to ensure that all repositories are saved for later even
from within concurrent calls.

 If you refer back to listing 7.7, you’ll notice that the IInstanceProvider imple-
mentation already calls the Release method on the container. So far, you haven’t
implemented this method, relying on the garbage collector to do the job; but with

Listing 8.4 Associating disposable DEPENDENCIES with a resolved root

Figure 8.9 SqlProductRepository implements
IDisposable because it encapsulates a disposable
resource. It also derives from the abstract
ProductRepository class that doesn’t implement
IDisposable.

254 CHAPTER 8 Object Lifetime
disposable DEPENDENCIES it’s essential that you grasp this opportunity to clean up.
Here’s the implementation.

public void Release(object instance)
{
 var srvc = instance as IProductManagementService;
 if (srvc == null)
 {
 return;
 }

 lock (this.syncRoot)
 {
 SqlProductRepository repository;
 if (this.repositories.TryGetValue(srvc, out repository))
 {
 repository.Dispose();
 this.repositories.Remove(srvc);
 }
 }
}

Because the Release method accepts any type of object, you first need a Guard Clause
to make sure that instance is an IProductManagementService.

 Concurrent threads may invoke the Release method simultaneously, so once more
you must serialize access to the repositories dictionary to ensure that concurrent
threads don’t corrupt its state. It could lead to memory leaks if repositories aren’t
removed from the dictionary.

 The srvc variable acts as a key to the dictionary, so you can use it to find the
disposable DEPENDENCY. When you have it, you can dispose of it B and remove it from
the dictionary c to ensure that the container doesn’t keep it alive for no good reason.

 The examples shown in listings 8.4 and 8.5 are specialized to deal with one particu-
lar disposable DEPENDENCY: SqlProductRepository. It would be trivial to expand the
code to be able to deal with any sort of disposable DEPENDENCY, but after that it
becomes more difficult. Imagine having to deal with multiple disposable DEPENDENCIES

for the same object, or nested disposable DEPENDENCIES, where some of them should be
SINGLETONS and some of them TRANSIENT—and we haven’t even begun to discuss more
advanced lifestyles!

TIP Do yourself a favor and use a DI CONTAINER instead of trying to address all
those issues in custom code. The only reason I show this custom code is to
explain the principles of LIFETIME MANAGEMENT.

DI CONTAINERS can deal with complex combinations of lifestyles, and they offer oppor-
tunities (such as a Release method) to explicitly release components when we’re
finished with them. We must remember to use these methods to avoid memory leaks,
particularly when one or more of the configured DEPENDENCIES are disposable.

Listing 8.5 Releasing disposable DEPENDENCIES

Dispose of
repository

 b

Remove repository
from dictionaryc

255Lifestyle catalog
 We’ve now discussed LIFETIME MANAGEMENT in some detail. As a consumer, we can’t
manage the lifetime of injected DEPENDENCIES; that responsibility falls on the COMPOSER,
who may decide to share a single instance among many consumers or give each con-
sumer its own private instance. These SINGLETON and TRANSIENT lifestyles are only the
most common members of a larger set of lifestyles, and we’ll use the rest of the chap-
ter to work our way through a catalog of life cycle strategies.

8.3 Lifestyle catalog
Now that we’ve covered the principles behind LIFETIME MANAGEMENT in the previous
sections, we’ll spend the rest of this chapter looking at common lifestyle patterns.

NOTE I’ll use comparable examples throughout this section. But to allow us
to focus on the essentials, I’ll compose shallow hierarchies, and I’ll sometimes
ignore the issue with disposable DEPENDENCIES to avoid that added complexity.

Because you’ve already encountered both SINGLETON and TRANSIENT, we’ll begin with
them and then expand to other types. As we progress through those lifestyles, we’ll
move from commonplace lifestyles to more exotic ones, as described in table 8.2.

Although you may rarely use lifestyles such as POOLED, it’s good to know about them,
and this list should give you a good indication of the wide range of lifestyles available.
Compared to advanced lifestyles, SINGLETON may seem mundane, but it’s nevertheless
a common and appropriate life cycle strategy.

8.3.1 Singleton
In this book, we have implicitly used the SINGLETON lifetime style from time to time.
The name is both clear and somewhat confusing at the same time. It makes a lot of
sense because the resulting behavior is similar to the Singleton design pattern,9 but the
structure is different.

Table 8.2 Lifestyle patterns covered in this section

Name Description

SINGLETON A single instance is perpetually reused.

TRANSIENT New instances are always served.

PER GRAPH A single instance is reused within each object graph.

WEB REQUEST CONTEXT At most one instance of each type is served per web request.

POOLED Instances are served from a pool of ready objects.

Lazy An expensive DEPENDENCY is lazily created and served.

Future A DEPENDENCY becomes available in the future.

9 Ibid., 127.

256 CHAPTER 8 Object Lifetime
WARNING Don’t confuse the SINGLETON lifestyle with the Singleton design
pattern.

Within the scope of a single COMPOSER, a component with SINGLETON lifestyle behaves
much like a SINGLETON. Each and every time a consumer requests the component, the
same instance is served.

 But the similarity ends there. A consumer can’t access a SINGLETON-scoped DEPEN-
DENCY through a static member, and if we ask two different COMPOSERS to serve us an
instance, we’ll get two different instances.

TIP Use the SINGLETON lifestyle whenever it’s possible.

Because only a single instance is in use, the SINGLETON lifestyle generally consumes a
minimal amount of memory. The only time this isn’t the case is when the instance is
used rarely but consumes inordinate amounts of memory. In such cases, a Lazy life-
style backed by a TRANSIENT instance may be a better configuration (but I have a hard
time coming up with a reasonable example for this).

WHEN TO USE IT
Use the SINGLETON lifestyle when possible. The main issue preventing you from using SIN-
GLETON is when a component isn’t thread-safe. Because the SINGLETON instance is shared
among potentially many consumers, it must be able to handle concurrent access.

 All stateless services are by definition thread-safe, as are immutable types and obvi-
ously classes specifically designed to be thread-safe. In these cases, there is no reason
not to configure them as SINGLETONS.

 In addition to the argument for efficiency, some DEPENDENCIES may work as
intended only if they’re shared. For example, this is the case for implementations of
the Circuit Breaker10 design pattern, as well as in-memory caches. In these cases, it’s
essential that the implementations are thread-safe.

 Let’s take a closer look at an in-memory repository.

EXAMPLE: USING A THREAD-SAFE IN-MEMORY REPOSITORY

Let’s once more turn our attention to implementing an ICommerceServiceContainer
like those from sections 7.3.2, 8.1.2, and 8.2.2. Instead of using a SQL Server–based
ProductRepository, we could decide to use a thread-safe in-memory implementation.
For an in-memory data store to make any sense, it must be shared among all requests,
so it has to be thread-safe as illustrated in figure 8.10.

 Instead of explicitly implementing such a repository as a SINGLETON, we can use a
concrete class and scope it appropriately. The only requirement is that it must be
thread-safe.

 Listing 8.6 shows how a container can return new instances every time it’s asked to
resolve an IProductManagementService, while the ProductRepository is shared
among all instances.

10 Nygard, Release It, 104.

257Lifestyle catalog
public class SingletonContainer : ICommerceServiceContainer
{
 private readonly ProductRepository repository;
 private readonly IContractMapper mapper;

 public SingletonContainer()
 {
 this.repository =
 new InMemoryProductRepository();
 this.mapper = new ContractMapper();
 }

 public IProductManagementService
 ResolveProductManagementService()
 {
 return new ProductManagementService(
 this.repository, this.mapper);
 }

 public void Release(object instance) { }
}

Listing 8.6 Managing SINGLETONS

Figure 8.10 When multiple ProductManagementService instances running on separate threads
access a shared resource such as an in-memory ProductRepository, we must ensure that the shared
resource is thread-safe.

Singleton
instances

b

Create
Singletons

Create
service

c

Nothing to do

258 CHAPTER 8 Object Lifetime
The SINGLETON lifetime is pretty easy to implement: you keep a reference B to each
DEPENDENCY for the duration of the container’s lifetime. Notice that you use the
readonly keyword to ensure that you can’t accidentally change the references at a
later date. This isn’t strictly necessary to implement the SINGLETON lifestyle but pro-
vides a bit of extra safety at the cost of writing eight letters.

 Every time the container is asked to resolve an IProductManagementService
instance, it creates a TRANSIENT instance with the SINGLETONS injected into it c. In this
example, both repository and mapper are SINGLETONS, but you can mix lifestyles if
you wish.

 The SINGLETON lifestyle is one of the easiest lifestyles to implement. All it requires is
that you keep a reference to the object and serve the same object every time it’s
requested. The instance doesn’t go out of scope until the COMPOSER goes out of scope.
When that happens, the COMPOSER should dispose of the object if it’s a disposable type.

 Another lifestyle that is trivial to implement is the TRANSIENT lifestyle.

8.3.2 Transient

The TRANSIENT lifestyle involves returning a new instance every time it’s requested.
Unless the instance returned implements IDisposable, there is nothing to keep track
of. Conversely, when the instance implements IDisposable, the COMPOSER must keep it
in mind and explicitly dispose of it when asked to release the applicable object graph.

 It’s worth noting that in desktop and similar applications, we tend to resolve the
entire object hierarchy only once: at application startup. This means even for TRAN-
SIENT components, only a few instances will be created, and they may be around for a
long time. In the degenerate case where there is only one consumer per DEPENDENCY,
the end result of resolving a graph of pure TRANSIENT components is equivalent to
resolving a graph of pure SINGLETONS, or any mix thereof. This is because the graph is
resolved only once, so the difference in behavior never kicks in.

WHEN TO USE IT
The TRANSIENT lifestyle is the safest choice of lifestyles but also one of the least effi-
cient, because it can cause a myriad of instances to be created and garbage-collected
even when a single instance would have sufficed. But if you have doubts about the
thread-safety of a component, the TRANSIENT lifestyle is safe because each consumer
has its own instance of the DEPENDENCY.

 In many cases, we can safely exchange the TRANSIENT lifestyle for a context-scoped
lifestyle such as WEB REQUEST CONTEXT where access to the DEPENDENCY is also guaran-
teed to be serialized, but that depends on the runtime environment (WEB REQUEST

CONTEXTS make no sense in a desktop application).

EXAMPLE: RESOLVING MULTIPLE REPOSITORIES

You saw several examples of using the TRANSIENT lifestyle earlier in this chapter. In list-
ing 8.2, the repository is created and injected on the spot in the resolving method,
and the container keeps no reference to it. In listings 8.4 and 8.5, you subsequently
saw how to deal with a TRANSIENT disposable component.

259Lifestyle catalog
 In these examples, you may have noticed that the mapper stays a SINGLETON

throughout. This is a purely stateless service, so there is no reason to create a new
instance for every ProductManagementService created. The noteworthy point is that
you can mix DEPENDENCIES with different lifestyles.

 When multiple components require the same DEPENDENCY, each is given a separate
instance. The following listing shows a method resolving an ASP.NET MVC Controller.

public IController ResolveHomeController()
{
 var connStr = ConfigurationManager
 .ConnectionStrings["CommerceObjectContext"]
 .ConnectionString;

 var discountCampaign =
 new DiscountCampaign(
 new SqlDiscountRepository(connStr));
 var discountPolicy =
 new RepositoryBasketDiscountPolicy(
 new SqlDiscountRepository(connStr));

 return new HomeController(
 discountCampaign, discountPolicy);
}

Both the DiscountCampaign and RepositoryBasketDiscountPolicy classes require a
DiscountRepository DEPENDENCY. When the DiscountRepository is TRANSIENT, each
consumer gets it own private instance, so DiscountCampaign gets one instance B and
RepositoryBasketDiscountPolicy gets another c.

 The TRANSIENT lifestyle implies that every consumer receives a private instance of
the DEPENDENCY even when multiple consumers in the same object graph have the
same DEPENDENCY (as is the case in listing 8.7). If many consumers share the same
DEPENDENCY, this approach can be inefficient; but if the implementation isn’t thread-
safe, the more efficient SINGLETON lifestyle is inappropriate. In such cases, the PER

GRAPH lifestyle may be a better fit.

8.3.3 Per Graph

SINGLETON is the most efficient lifestyle and TRANSIENT is the safest, but can we devise
a lifestyle that combines the advantages of both? Although we can’t get the best of
both worlds, in some cases it makes sense to share a single instance across a single
resolved graph. We can view this as a sort of locally scoped SINGLETON. We can use a
shared instance within a single object graph, but we don’t share that instance with
other graphs.

 Each time we resolve an object graph, we create only a single instance of each
DEPENDENCY. If there are multiple consumers of that DEPENDENCY, they share the same
instance; but when we resolve a new object graph, we create a new instance.

Listing 8.7 Resolving TRANSIENT DiscountRepositorys

New
SqlDiscountRepository
instance

b

Another
SqlDiscountRepository
instancec

260 CHAPTER 8 Object Lifetime
WHEN TO USE IT
We can use the PER GRAPH lifestyle in most cases where we would otherwise use TRAN-
SIENT. We normally assume that the thread that resolves the object graph is also the
only consumer of that object graph. Even when the DEPENDENCY in question isn’t
thread-safe, we can use the PER GRAPH lifestyle, because the shared instance is only
shared by consumers running on the same thread.

 In the rare cases where one or more consumers spin up new threads and con-
sume the DEPENDENCY from those threads, TRANSIENT is still the safest lifestyle, but that
should be a rare occurrence. There may be other cases when the DEPENDENCY repre-
sents a mutable resource and each consumer needs its own private state. In such a
case, TRANSIENT is the correct life cycle because it guarantees that the instances are
never shared.

 Compared to TRANSIENT, there is no additional overhead from using PER GRAPH, so
we can often use it as a replacement for TRANSIENT. Although there is no overhead, we
also aren’t guaranteed any benefit. We only gain a boost in efficiency if a single object
graph contains multiple consumers of the same DEPENDENCY. In this case, we can share
an instance between those consumers; but if there are no shared DEPENDENCIES, there
will be nothing to share and so no benefit.

NOTE PER GRAPH is superior to TRANSIENT in the majority of cases, but not
many DI CONTAINERS support it out of the box.

In the cases where the implementation is thread-safe, the SINGLETON lifestyle is still a
more efficient choice.

EXAMPLE: SHARING A REPOSITORY WITHIN A GRAPH

In listing 8.7, you saw how each consumer received its own private SqlDiscount-
Repository instance. This class isn’t thread-safe, so you shouldn’t configure it as a SIN-
GLETON. But you don’t expect multiple threads to access individual HomeController
instances, so it’s safe to share a SqlDiscountRepository instance between both con-
sumers. The next listing shows how to create a single instance PER GRAPH to the
ResolveHomeController method.

public IController ResolveHomeController()
{
 var connStr = ConfigurationManager
 .ConnectionStrings["CommerceObjectContext"]
 .ConnectionString;
 var repository =
 new SqlDiscountRepository(connStr);

 var discountCampaign =
 new DiscountCampaign(repository);
 var discountPolicy =
 new RepositoryBasketDiscountPolicy(repository);

Listing 8.8 Resolving a single repository per graph

Shared SqlDiscountRepository
instance

b

Inject
shared
instance

c

261Lifestyle catalog
 return new HomeController(discountCampaign, discountPolicy);
}

Instead of creating separate instances for all consumers, you create a single instance
that you can share among all consumers B. You inject this single instance into
both DiscountCampaign and RepositoryBasketDiscountPolicy c. Notice that
compared to SINGLETONS, where the shared instance is a private member of the con-
tainer, the repository instance is local to the ResolveHomeController method; the
next time the method is invoked, a new instance is created and shared among the
two consumers.

 The PER GRAPH lifestyle is a good alternative to TRANSIENT when the only reason not
to use SINGLETON is because the implementation isn’t thread-safe. Although PER GRAPH

offers a generally usable solution to sharing DEPENDENCIES within a well-defined scope,
there are other, more specialized alternatives.

8.3.4 Web Request Context

As users of a web application, we would like a response from the application as quickly
as possible, even when other users use it at the same time. We don’t want our request
to be put on a queue together with all the other users’ requests. We might have to wait
an inordinately long time for a response if there were many requests ahead of ours.

 To address this issue, web applications handle requests concurrently. The .NET
infrastructure shields us from this by letting each request execute in its own context
and with its own instance of Controllers (if you use ASP.NET MVC) or Pages (if you use
ASP.NET Web Forms).

 Because of concurrency, DEPENDENCIES that aren’t thread-safe can’t be used as SIN-
GLETONS. On the other hand, using them as TRANSIENTS may be inefficient or even
downright problematic if we need to share a DEPENDENCY between different consumers
within the same request.

 Although the ASP.NET engine doesn’t guarantee that a single request executes
entirely on a single thread, it does guarantee that code is executed in a serialized man-
ner. This means that if we can share a DEPENDENCY only within a single request, thread-
safety isn’t an issue.

 Figure 8.11 demonstrates how the WEB REQUEST CONTEXT lifestyle works. DEPENDEN-
CIES behave like SINGLETONS within a single request but aren’t shared across requests.
Each request has its own set of associated DEPENDENCIES.

 Any disposable components should be disposed of when the request ends.

WHEN TO USE IT
The WEB REQUEST CONTEXT lifestyle obviously makes sense only in a web application.
Even within a web application, it can only be used in requests. Although requests tend
to constitute the vast majority of a web application, it’s worth noting that if we spin up
a background thread for asynchronous processing, this lifestyle doesn’t apply because
the background thread won’t be synchronized with a web request.

262 CHAPTER 8 Object Lifetime
The WEB REQUEST CONTEXT lifestyle is preferable to TRANSIENT, but the SINGLETON life-
style is still more efficient. Use WEB REQUEST CONTEXT only in situations where SINGLE-
TON won’t work.

NOTE If you follow the general advice of only resolving a single object graph
per web request, the WEB REQUEST CONTEXT and PER GRAPH lifestyles are func-
tionally equivalent.

TIP If you ever need to compose an Entity Framework ObjectContext in a
web request, the WEB REQUEST CONTEXT is an excellent lifestyle. ObjectContext
instances aren’t thread-safe, but there should be only one ObjectContext per
web request.

Not all DI CONTAINERS support this lifestyle, so obviously we can only use it if it’s available.

TIP Some DI CONTAINERS allow you to write your own lifestyle extension, so this
may be an option if your container of choice doesn’t support the WEB REQUEST

CONTEXT lifestyle out of the box. Still, this may not be a trivial undertaking.

As with other lifestyles, we can mix lifestyles so that, for example, some are configured
as SINGLETONS and others are shared per web request.

EXAMPLE: COMPOSING A HOMECONTROLLER WITH A REQUEST-SHARED REPOSITORY

In this example, you’ll see how to compose an ASP.NET MVC HomeController instance
with DEPENDENCIES that both require a DiscountRepository. This situation is outlined
in figure 8.11: the HomeController requires a BasketDiscountPolicy and a Discount-
Campaign, and both of these require a DiscountRepository.

NOTE The example code in this section is more complex than warranted by
a one-off solution. I would never expect you to write custom WEB REQUEST

Figure 8.11 The WEB REQUEST CONTEXT lifestyle indicates that we create at most one instance per web
request. The DiscountRepository instance is shared between BasketDiscountPolicy and
DiscountCampaign, but only within Request 1. Request 2 uses the same configuration, but instances
are constrained to that request.

263Lifestyle catalog
CONTEXT life cycle code like this, but I want to show you how it works. Use a DI
CONTAINER that supports this lifestyle instead.

You want to use a shared SqlDiscountRepository, but because this class isn’t thread-
safe you can’t share it as a SINGLETON. Instead, you’ll share it within each web request.
The specialized container composes HomeController instances as shown in the follow-
ing listing.

public IController ResolveHomeController()
{
 var discountPolicy =
 new RepositoryBasketDiscountPolicy(
 this.ResolveDiscountRepository());

 var campaign = new DiscountCampaign(
 this.ResolveDiscountRepository());

 return new HomeController(
 campaign, discountPolicy);
}

By now, most of the mechanics of this method should be familiar to you. The only note-
worthy item is that you delegate resolution of the DiscountRepository B to a separate
method. This method ensures that at most one instance is resolved per web request.

 When asked to resolve a DiscountRepository, the container must check if there is
already an instance associated with the web request. If this is the case, that instance
is returned; otherwise the instance is created and associated with the web request
before it’s returned. As the next listing shows, in ASP.NET (both MVC and Web Forms)
you can use the current HttpContext to maintain this association.

protected virtual DiscountRepository ResolveDiscountRepository()
{
 var repository = HttpContext.Current
 .Items["DiscountRepository"]
 as DiscountRepository;
 if (repository == null)
 {
 var connStr = ConfigurationManager
 .ConnectionStrings["CommerceObjectContext"]
 .ConnectionString;
 repository = new SqlDiscountRepository(connStr);
 HttpContext.Current
 .Items["DiscountRepository"] = repository;
 }

 return repository;
}

Listing 8.9 Composing HomeController

Listing 8.10 Resolving a web request context-scoped DEPENDENCY

Delegate resolution
of repository

b

Return composed
HomeController

Look up repository
in request context

b

Save repository in
request context

c

264 CHAPTER 8 Object Lifetime
The point of the WEB REQUEST CONTEXT lifestyle is to reuse instances already associ-
ated with the current request, so the first thing to do is check whether the desired
instance already exists B. If this is the case, you can return it. If the instance isn’t
found, you must create it and associate it with the current web request c before
returning it.

 The first time you invoke the ResolveDiscountRepository method, it creates the
repository and associates it with the request so that every subsequent call reuses the
same instance.

 When the request ends, you may have left a disposable DEPENDENCY in the web
request, which could lead to memory leaks, so you should also ensure that all DEPEN-
DENCIES are released when the request ends. One way to do this is to register a custom
IHttpModule that subscribes to the EndRequest event to properly dispose of all dispos-
able DEPENDENCIES. The following listing shows a sample implementation.

public class DiscountRepositoryLifestyleModule : IHttpModule
{
 public void Init(HttpApplication context)
 {
 context.EndRequest += this.OnEndRequest;
 }

 public void Dispose() { }

 private void OnEndRequest(object sender, EventArgs e)
 {
 var repository = HttpContext.Current
 .Items["DiscountRepository"];
 if (repository == null)
 {
 return;
 }

 var disposable = repository as IDisposable;
 if (disposable != null)
 {
 disposable.Dispose();
 }

 HttpContext.Current
 .Items.Remove("DiscountRepository");
 }
}

When a web request ends, you attempt to look up the repository in the request con-
text B. If you find it, you can dispose of it if applicable c. Whether it’s disposable or
not, you must remember to remove it d from the request context.

 The WEB REQUEST CONTEXT lifestyle associates a DEPENDENCY with the current request
by saving and retrieving it via HttpContext.Current. This example demonstrated
a specialized solution, but the technique can be generalized so that an arbitrary

Listing 8.11 Releasing disposable WEB REQUEST CONTEXT–scoped DEPENDENCIES

Look up repository
in request context

b

Dispose of
repository

c

Remove repository
from request context

d

265Lifestyle catalog
number of DEPENDENCIES of many different types can be associated with the request
context. This is the realm of a proper DI CONTAINER.

VARIATION: SESSION REQUEST CONTEXT

A rarer variation of the WEB REQUEST CONTEXT lifestyle is one where the scope of a
DEPENDENCY’S lifetime is associated not with a particular web request but rather with
a session. This is a much more exotic lifestyle, and you should exercise extreme cau-
tion if you decide to use it.

 Technically, it may seem similar to the WEB REQUEST CONTEXT, but the most impor-
tant distinction is that, whereas an HTTP request has a well-defined lifetime, sessions
don’t. A session rarely ends explicitly but rather expires after a time of inactivity. This
means all DEPENDENCIES registered this way are likely to be around for a long time
where they aren’t being used. All that time they take up memory, which can severely
impact an application’s capacity.

WARNING Only use the Session Request Context lifestyle if you really need it.
It’s likely to degrade your system’s capacity.11

TIP If you need to link certain DEPENDENCIES to a session, you’re better off
configuring it with a WEB REQUEST CONTEXT and using a factory that wires up
each instance based on the appropriate session key. This approach lets you
more explicitly manage the lifetime of the DEPENDENCY while still linking it
with a session.

Another issue we face is that session state may be saved in an out-of-process store, such
as a separate session server or SQL Server session state. In these configurations, all ses-
sion data must be serializable, and so must the affected DEPENDENCIES. Making a type
serializable can be as simple as decorating it with the [Serializable] attribute, but
it’s still something we must remember to do.

 Overall, I find Session Request Context unattractive, and I can’t recall ever seeing
it in use.

VARIATION: THREAD CONTEXT

Another, more applicable, variation is to associate a DEPENDENCY with a particular
thread. The concept is the same: the DEPENDENCY is managed as a SINGLETON on each
thread, but there is an instance per thread.

 This approach is mostly useful in scenarios where we spin up multiple equivalent
worker threads and use the start of each thread as a COMPOSITION ROOT. This is the situ-
ation illustrated in figure 8.12.

 To implement the Thread Context lifestyle, we can look after a requested DEPEN-
DENCY in Thread Local Storage (TLS).12 If we find the instance, we reuse it; otherwise
we create it and store it in TLS.

11 For an in-depth treatment of why session-scoped objects are problematic in general, see Michael T. Nygard,
Release It! Design and Deploy Production-Ready Software (Raleigh, NC: Pragmatic Bookshelf, 2007), 175.

12 We also used TLS in section 4.4.1.

266 CHAPTER 8 Object Lifetime
Whereas Session Request Context may be downright dangerous and Thread Context
a bit exotic, the WEB REQUEST CONTEXT lifestyle is useful. It enables us to share DEPEN-
DENCIES within a web request without having to worry about whether they’re thread-
safe. It provides a good middle ground between SINGLETON and TRANSIENT.

 It provides a more efficient alternative to the TRANSIENT lifestyle, but we can only
use it in web applications. If we have expensive DEPENDENCIES to manage in other types
of applications, we can turn to other optimization techniques.

8.3.5 Pooled

Sometimes, components are expensive to create. A common solution is to have a pool
of already-created components available for easy access. A well-known example is data-
base connections, which are almost always pooled. We automatically use database-
connection pooling, and we can use the same technique if we have custom compo-
nents that are expensive to create.

 Although the overall concept of pooled objects should be familiar to you, table 8.3
lists some variation in implementation.

 These are all relevant concerns regarding object pools. But as is the case with the
WEB REQUEST CONTEXT lifestyle, we shouldn’t be custom-developing our own object
pools, but rather should use those provided by DI CONTAINERS.

NOTE Not all DI CONTAINERS provide the POOLED lifestyle, so we can obviously
choose this lifestyle only if it’s supported by our DI CONTAINER.

When using the POOLED lifestyle provided by a DI CONTAINER, all the options described
in table 8.3 may not be available. We have to go with what is available.

Figure 8.12 When an application immediately spins up a number of parallel
tasks and resolves DEPENDENCIES from within each thread, we can use the Thread
Context lifestyle to ensure that any DEPENDENCIES that aren’t thread-safe can be
shared among any number of consumers on the same thread. Each thread has its
own instances.

267Lifestyle catalog
WHEN TO USE IT
The POOLED life cycle comes into play when we have specific components that are
often used but expensive to create. Even if the component is expensive to create, we
should still prefer the SINGLETON lifestyle if possible because that allows us to get by
with a single instance and only pay the tax of creating the object once.

 From this, it follows that pooling is applicable only when the component in question
must not be shared, which is often the case when it isn’t thread-safe. If we’re running in
a web application, the WEB REQUEST CONTEXT lifestyle may be a reasonable alternative; we
should mostly expect to see the POOLED lifestyle used outside web applications.

 Note that it’s a requirement that the component in question can be reused. If it
has a natural life cycle that precludes reuse, we can’t pool it. One example is WCF’s
ICommunicationObject interface, which has a clearly defined life cycle. When an
ICommunicationObject is either Closed or Faulted, it can by definition never leave
that state. Such a type of object isn’t eligible for pooling. We must be able to return
the object back to the pool in pristine state.

Table 8.3 Options for implementing object pools

Option Description

Pool
preparation

How do we prepare the pool? Do we create all the objects in the pool well in advance,
or do we fill it gradually as requests arrive?
Filling the pool in advance requires that we know at least the starting size of the pool.
It may also be an expensive operation, because the purpose of the pool is to make
expensive objects readily available. But the advantage of doing this is that the objects
are available for fast access. Perhaps it’s even possible to prefill the pool from a back-
ground thread so it can begin serving objects while it’s filling.
Alternatively, we can start with an empty pool and gradually fill it as required. This
causes access times to be slower in the beginning but may help keep the pool at just
the right size.

Minimum
size

We can address the issue of pool preparation by introducing a configurable minimum
size. If we set the minimum size to anything other than zero, the pool must first fill
itself to this point before it can start serving objects. At a minimum size of zero, on
the other hand, it can begin serving objects immediately while filling the pool.

Maximum size What is the maximum size of the pool?

Boundary
behavior

What happens when we hit the maximum size of the pool? Do we allow the pool to
grow? If so, we run the risk of running out of memory. If not, how do we treat addi-
tional requests for objects?
One option is to block the call until an object becomes available. But if we do that, we
should at least provide the caller with an opportunity to specify a timeout.12

Another option is to immediately throw an exception.

Pool cleanup Do we keep the pool filled until the application shuts down, or do we begin to drain it if
we notice that it has excess capacity?

13 Read more about the Blocked Threads anti-pattern and the Timeout pattern in Nygard, Release It, 70 and 100.

268 CHAPTER 8 Object Lifetime
EXAMPLE: REUSING EXPENSIVE REPOSITORIES

I once was involved in a project that required us to communicate with a mainframe
from .NET code. Earlier consultants had created an unmanaged COM library that
could talk to some endpoint on the mainframe, and we decided to wrap that library in
a managed assembly.

 The COM library communicated with the mainframe via a proprietary protocol
over network sockets. To use it, we had to open the connection and go through a
handshake. When the connection was open, we could transfer messages at a reason-
able speed, but opening the connection took time.

 Let’s see how to create a pool of ProductRepository instances that can communi-
cate via such a protocol. In the project I was involved with, we called the COM library
for Xfer (very generic), so let’s create a pool of XferProductRepository instances.

NOTE As was the case with the WEB REQUEST CONTEXT lifestyle example, I don’t
expect you to write custom object-pooling lifetime managers. Although you
should use an appropriate DI CONTAINER to manage object pools, I want to
show you a simplified example to give you an idea of how it works.

WARNING The following example isn’t thread-safe. I left out the synchroniza-
tion code to keep the example at a reasonable level of complexity, and I leave
a thread-safe implementation as an exercise to the reader (I have always
wanted to write this).

This example is yet another variation of the ICommerceServiceContainer, of which
you’ve seen several variations in this chapter. The following listing shows the founda-
tion of the container.

public partial class PooledContainer : ICommerceServiceContainer
{
 private readonly IContractMapper mapper;
 private readonly List<XferProductRepository> free;
 private readonly List<XferProductRepository> used;
 public PooledContainer()
 {
 this.mapper = new ContractMapper();
 this.free = new List<XferProductRepository>();
 this.used = new List<XferProductRepository>();
 }

 public int MaxSize { get; set; }

 public bool HasExcessCapacity
 {
 get
 {
 return this.free.Count + this.used.Count < this.MaxSize;

Listing 8.12 Laying out a foundation for a pooling container

269Lifestyle catalog
 }
 }
}

Although you plan to pool instances of XferProductRepository, you still configure
ContractMapper as a SINGLETON because it’s a stateless service.

 To keep track of the pool, you use two collections: one that holds available reposi-
tories and one that contains the repositories that are currently in use. When you cre-
ate and release components, you’ll move repositories between these two collections.

 The MaxSize property lets you define the maximum size of the pool, and the
HasExcessCapacity property is essentially an encapsulated calculation you can use in
a conditional expression to determine whether you still have excess capacity.

 In this pool variation, you’ll fill the pool gradually as requests arrive, until you
reach the maximum. As the next listing shows, you throw an exception if you reach
capacity and get more requests.

public IProductManagementService ResolveProductManagementService()
{
 XferProductRepository repository = null;
 if (this.free.Count > 0)
 {
 repository = this.free[0];
 this.used.Add(repository);
 this.free.Remove(repository);
 }
 if (repository != null)
 {
 return this.ResolveWith(repository);
 }

 if (!this.HasExcessCapacity)
 {
 throw new InvalidOperationException(
 "The pool is full.");
 }

 repository = new XferProductRepository();
 this.used.Add(repository);

 return this.ResolveWith(repository);
}

private IProductManagementService ResolveWith(
 ProductRepository repository)
{
 return new ProductManagementService(repository,
 this.mapper);
}

Listing 8.13 Resolving repositories from a pool

Pick from pool
if available

b

Return from
pool

c

Add new
repository

d

270 CHAPTER 8 Object Lifetime
To resolve an IProductManagementService instance, you begin by checking whether a
reusable repository is available. If this is the case, you pick one from the collection of
free repositories and move it to the list of repositories in use B. If you succeed in find-
ing a reusable repository, you can return the service c immediately.

 If you can’t find an available repository in the pool, there are two possible reasons:
the pool is full and all repositories are in use, or you have yet to fill the pool. If you can
get past the Guard Clause that checks for the first case, you create a new instance of
the expensive repository and add it to the collection of repositories in use d before
you return the composed service.

ResolveProductManagementService only moves repositories from the free to the
used collection, so it’s important to release the services after use. The following listing
shows how to do this.

public void Release(object instance)
{
 var service = instance as ProductManagementService;
 if (service == null)
 {
 return;
 }
 var repository = service.Repository
 as XferProductRepository;
 if (repository == null)
 {
 return;
 }
 this.used.Remove(repository);
 this.free.Add(repository);
}

Returning the repository to the pool is easy: you move it B from the collection of
repositories in use to the collection of available repositories.

 Note that even though this example may seem complex, I didn’t address a few issues:

■ The example definitely isn’t thread-safe. A production implementation should
allow several threads to resolve and release instances concurrently.

■ Because the XferProductRepository class encapsulates unmanaged code, it
implements IDisposable. As long as you keep reusing instances, you need not
dispose of them, but you should certainly do so when the container goes out of
scope. Thus, the container itself must implement IDisposable and dispose
of all repositories from its Dispose method.

Object pooling is a well-known design pattern, but it’s often encapsulated in existing
APIs; for example, ADO.NET uses connection pools, but this isn’t something we have
to explicitly deal with. Only when we explicitly need to optimize access to expensive
resources does the POOLED lifestyle begin to make sense.

Listing 8.14 Returning repositories to the pool

Guard
Clauses

Return repository
to pool

b

271Lifestyle catalog
 The POOLED lifestyle helps address the situation where we need to optimize the use
of expensive resources. This is the last of the common DEPENDENCY lifestyle types.

8.3.6 Other lifestyles

The lifestyle types examined in this chapter represent the most common types, but
you may have more exotic needs that aren’t satisfactorily addressed. When I find
myself in such a situation, my first reaction is to feel immensely proud that I have dis-
covered a rare and precious corner case that requires me to use an exotic item from
my programming toolbox.

 My next reaction is to realize that my approach is all wrong, and if I change my
design a bit, everything will fit nicely into standard patterns. This realization is often
a letdown, but it leads to better and more maintainable code. The point is that if you
feel a need to implement a custom lifestyle, you should first seriously reconsider
your design.

 That said, some DI CONTAINERS provide extensibility points that let you develop cus-
tom lifestyles. Let’s briefly look at two technically possible, but rather exotic, lifestyles.
In both cases, I provide only a brief sketch of how the lifetime would work. I don’t pro-
vide full sections because I’m having a hard time coming up with a reasonable sce-
nario in which they should be applied.

LAZY

The Lazy or Delayed lifestyle is a Virtual Proxy14 of a more expensive DEPENDENCY. The
idea is that if we have an expensive DEPENDENCY that we don’t expect to use often, we
can defer creation of the expensive DEPENDENCY until it’s needed. Figure 8.13 illus-
trates how a consumer can be injected with a lightweight stand-in for the actual, more
expensive implementation.

 It only makes sense to use such a lifetime style if the consumer only uses the expen-
sive DEPENDENCY in a small fraction of its own lifetime, or if we can realistically expect
that it will take a noticeable amount of time before the DEPENDENCY is invoked. If the
DEPENDENCY is invoked immediately or often, the Lazy Decorator buys us nothing, but
uses extra resources.

 If at all possible, an expensive DEPENDENCY should be registered as a SINGLETON so
we only need to pay the tax of creating it once. If this isn’t possible for thread-safety
reasons, we can often better resolve this conundrum by pooling the expensive compo-
nent. Even if we can only have a single instance, a pool of one combined with a time-
out on access will effectively give us serialized access to the DEPENDENCY.

 The Lazy lifetime style is more of a technical curiosity than a practically useful life-
cycle strategy; if you’re curious, I refer you to the suggested literature associated with
this book.15

14 Gamma, Design Patterns, 208.
15 Mark Seemann, “Rebuttal: Constructor over-injection anti-pattern,” 2010, http://blog.ploeh.dk/2010/01/

20/RebuttalConstructorOverinjectionAntipattern.aspx

http://blog.ploeh.dk/2010/01/20/RebuttalConstructorOverinjectionAntipattern.aspx
http://blog.ploeh.dk/2010/01/20/RebuttalConstructorOverinjectionAntipattern.aspx

272 CHAPTER 8 Object Lifetime
FUTURE

The Future lifestyle is even more exotic. The idea is that we may want to use a DEPEN-
DENCY that isn’t available at the moment but that we’ll use as it becomes available.

 The best way to implement such a lifestyle is similar to the Lazy lifestyle: we can use
a Decorator that delegates to an initial implementation until the desired DEPENDENCY

becomes available. Figure 8.14 illustrates the conceptual interaction between compo-
nents. The initial implementation used as a stand-in while the Future Decorator waits
for the desired DEPENDENCY is often an application of the Null Object16 design pattern.

 I must admit that I’m hard pressed to come up with a reasonable example of when
a DEPENDENCY may become available after we’ve wired up the entire object graph. This
might sound a bit like the case where we rely on an external resource such as a data-
base or web service, but keep in mind that even if the actual resource is unavailable,
the programmatic DEPENDENCY still exists; for example, a web service may be down, but
the WCF proxy we use to communicate with it is still available.

 We can better deal with the issue of unavailable out-of-process resources using
the Circuit Breaker pattern that we’ll look at in the next chapter. Until someone
presents me with a reasonable scenario, I regard the Future life cycle strategy as a
technical curiosity.

16 Robert C. Martin et al., Pattern Languages of Program Design (New York: Addison-Wesley, 1998), 5.

Figure 8.13 A consumer requires an IService DEPENDENCY, but if it only uses this DEPENDENCY in a
small fraction of the time, it can live for a long time before requiring the services of IService. When it
finally invokes IService.SelectItem(), LazyService uses its injected IServiceFactory to
create an instance of another IService. It isn’t until this point that the ExpensiveService instance
is created. After ExpensiveService is created, all subsequent calls can be delegated to it.

273Summary
We’ve now looked at a wide range of available DEPENDENCY lifestyles, from the com-
monplace to the truly exotic.

8.4 Summary
When we apply INVERSION OF CONTROL to DEPENDENCIES, we invert control not only over
type selection but also over LIFETIME MANAGEMENT. When a consumer no longer creates
its own instances of DEPENDENCIES, it can’t decide when the DEPENDENCY was created or
whether it’s shared with other consumers.

COMPOSERS may decide to let many consumers share a single instance, or they may
decide to let each consumer have their own instance. More advanced strategies may
also come into play.

Figure 8.14 A consumer requires an instance of IService, but DesiredService may not yet be
available. In this case, we can encapsulate a NullService as a stand-in to be used while we wait for
Godot. FutureService is a state machine that polls to see if DesiredService has become
available. As long as it isn’t, the FutureService Decorator has no choice but to use the fallback
implementation provided by NullService. When DesiredService finally becomes available, all
future requests are directed to it.

274 CHAPTER 8 Object Lifetime
 Although COMPOSERS have a great deal of control over when objects are created,
the managed memory model of .NET means that in many cases they have little influ-
ence over when objects are destroyed. DEPENDENCIES may go out of scope and be
reclaimed by the garbage collector. But a special place is reserved for components
that also implement IDisposable because we must ensure that all unmanaged
resources are cleaned up—otherwise our applications will soon begin to experience
memory leaks.

 Equivalent to invoking a Resolve method (or whatever its name is), we must always
remember to invoke a Release method when the resolved object graph goes out of
scope. This gives the COMPOSER a chance to dispose of any disposable components that
become unused.

 Each dependency graph may have a mix of many different lifestyles, and we also
need to keep track of whether the components are disposable. Add thread-safety to
this mix, and it becomes complicated to keep track of all these things. This is an area
where a full-blown DI CONTAINER shines, and it’s one of the many reasons we should
use a DI CONTAINER instead of POOR MAN’S DI.

 Each of the many available DI CONTAINERS offers its own mix of available lifestyles.
Some support only a few, others support most or all of them, but many also offer
extensibility points that allow us to implement our own lifestyles.

 The safest lifestyle is TRANSIENT because instances aren’t shared with anyone else.
It’s also the most inefficient because many instances of the same type are likely to be
in memory.

 The most efficient lifestyle is SINGLETON because only a single instance is in memory
(per container, that is). But it requires that the component be thread-safe, so it isn’t
always possible to use this lifestyle.

 The WEB REQUEST CONTEXT and POOLED lifestyles provide good alternatives to SINGLE-
TON and TRANSIENT, but in more limited scenarios.

 More exotic lifestyles are possible. The Future lifestyle may at first glance look like
a good way to handle unavailable resources, but as you’ll see in the next chapter, we
can better address such issues with INTERCEPTION.

Interception
One of the most interesting things about cooking is the way we can combine many
ingredients, some of them not particularly savory in themselves, into a whole that is
greater than the parts. Often, we start with a simple ingredient that provides the
basis for the meal, and then modify and embellish it until the end result is a deli-
cious dish.

 Consider a veal cutlet. If we were desperate, we could eat it raw, but in most
cases we’d prefer to fry it. However, if we simply slap it on a hot pan, the result will
be less than stellar. Apart from the burned flavor, it won’t taste of much.

 Fortunately, there are lots of steps we can take to enhance the experience:

■ Frying the cutlet in butter prevents burning the meat, but the taste is likely to
remain bland.

■ Adding salt enhances the taste of the meat.
■ Adding other spices, such as pepper, makes the taste more complex.

Menu
■ CROSS-CUTTING CONCERNS

■ ASPECT-ORIENTED PROGRAMMING

■ Dynamic INTERCEPTION
275

276 CHAPTER 9 Interception
■ Breading it with a mixture that includes salt and spices not only adds to the
taste, but also envelops the original ingredient in a new texture. At this point,
we’re getting close to having a Cotoletta.

■ Slitting open a pocket in the cutlet and adding ham, cheese, and garlic into the
pocket before breading the cutlet takes us over the top. Now we have Cordon
Bleu, which is a most excellent dish.

The difference between a burned cutlet and Cordon Bleu is significant, but the basic
ingredient is the same. The variation is caused by the things we add to it. Given a veal cut-
let, we can embellish it without changing the main ingredient to create a different dish.

 With loose coupling, we can perform a similar feat when developing software.
When we program to an interface, we can transform or enhance a core implementa-
tion by wrapping it in other implementations of that interface. You already saw a bit of
this technique in action in section 8.3.6, where we used it to modify an expensive
DEPENDENCY’S lifetime by wrapping it in a Proxy.1

 This approach can be generalized, providing us with the ability to INTERCEPT a call
from a consumer to a service; this is what we’ll cover in this chapter. Like the veal cut-
let, we start out with a basic ingredient and add more ingredients to make it better,
but without changing the core of what it was originally. INTERCEPTION is one of the most
powerful abilities that we gain from loose coupling. It enables us to apply the SINGLE

RESPONSIBILITY PRINCIPLE and Separation of Concerns with ease.
 In the previous chapters, we expended a lot of energy maneuvering our code into

a position where it’s truly loosely coupled. In this chapter, we’ll start harvesting the
benefits of that investment.

 Figure 9.1 shows an outline of the chapter’s structure. When you’re done with the
chapter, you should be able to use INTERCEPTION to develop loosely coupled code
according to established object-oriented design principles. In particular, you should
gain the ability to successfully observe Separation of Concerns and apply CROSS-
CUTTING CONCERNS, all while keeping your code in good condition.

1 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (New York: Addison-Wesley,
1994), 207.

Figure 9.1 The overall structure of this chapter is pretty linear. We’ll start with an introduction to
INTERCEPTION, including an example. From there we move on to talk about CROSS-CUTTING CONCERNS. This
section of the chapter is light on theory and heavy on examples, so if you’re already familiar with this
subject, you can consider moving directly to the last section, about aspects. This section serves as the
climax of the chapter as it introduces the advanced yet versatile concept of dynamic INTERCEPTION.

277Introducing Interception
Because understanding how INTERCEPTION works isn’t difficult, we’ll start with a quick
example to establish the context. To fully appreciate the potential, we must study
some related concepts, such as ASPECT-ORIENTED PROGRAMMING (AOP) and SOLID and
relate them to INTERCEPTION with examples. Finally, you’ll see how a DI CONTAINER can
be used to generalize INTERCEPTION and make it easier to apply.

 Because the concepts behind INTERCEPTION are well-known design patterns and
object-oriented principles, this chapter is rather heavy on examples. The flow of the
chapter is fairly linear, beginning with an introductory example and building to
increasingly more complex notions and examples. The final, and most advanced, con-
cept can be quickly explained in the abstract, but, because it will probably only click
for you with a solid example, the chapter culminates with a multipage example that
demonstrates how it works.

 Before we get to that point, we must start at the beginning.

9.1 Introducing Interception
The concept of INTERCEPTION is simple: we wish to be able to intercept the call between
a consumer and a service and execute some code before or after the actual service is
invoked. In figure 9.2, a normal call from consumer to service is being intercepted by
an intermediary that can execute its own code before or after passing the call on to
the real service.

 In this section, we’re going to get acquainted with INTERCEPTION and learn how, at
its core, it’s an application of the Decorator design pattern. If you aren’t familiar with
the Decorator pattern, we’ll review it as part of the discussion, and when we’re done,
you should have a good understanding of how it works. We’ll begin by looking at a
simple example that showcases the pattern, and follow up with a discussion of how
INTERCEPTION relates to the Decorator pattern.

9.1.1 Example: implementing auditing

In this example, we’ll be implementing auditing for ProductRepository. Auditing is a
common example of a CROSS-CUTTING CONCERN: it may be required, but the core func-
tionality of reading and editing products should not be affected by auditing. Because

Figure 9.2 INTERCEPTION in a
nutshell. We can convert a
simple call from consumer to
service to a more complex
interaction by slotting in a piece
of intermediate code. It receives
the original call and passes it on
to the actual implementation,
while also acting on the call by
doing whatever it needs to do.

278 CHAPTER 9 Interception
the SINGLE RESPONSIBILITY PRINCIPLE suggests that we should not let ProductRepository
itself implement auditing, using a Decorator is an excellent choice.

IMPLEMENTING AUDITINGPRODUCTREPOSITORY

We can do this by introducing a new AuditingProductRepository class that wraps
another ProductRepository and implements auditing. Figure 9.3 illustrates how the
types relate to each other.

 In addition to a decorated ProductRepository, AuditingProductRepository also
needs a service that implements auditing. In the following listing, this is the role of the
IAuditor interface.

public partial class AuditingProductRepository :
 ProductRepository
{
 private readonly ProductRepository
 innerRepository;
 private readonly IAuditor auditor;

 public AuditingProductRepository(
 ProductRepository repository,
 IAuditor auditor)
 {
 if (repository == null)
 {
 throw new ArgumentNullException("repository");
 }
 if (auditor == null)
 {
 throw new ArgumentNullException("auditor");
 }

 this.innerRepository = repository;
 this.auditor = auditor;
 }
}

Listing 9.1 Declaring an AuditingProductRepository

Figure 9.3 The AuditingProductRepository derives from the
abstract ProductRepository class and wraps an instance of any other
ProductRepository implementation. It delegates all work to the
decorated ProductRepository, but adds auditing in appropriate places.
Can you spot the breading?

Derive from and wrap
ProductRepository

b

Audit
service

c

279Introducing Interception
AuditingProductRepository derives from the same ABSTRACTION that it decorates B.
It uses standard CONSTRUCTOR INJECTION to request a ProductRepository that it can
wrap and to which it can delegate its core implementation. In addition to the deco-
rated repository, it also requests an IAuditor c it can use to audit the operations
implemented by the decorated repository.

 The following listing shows sample implementations of two methods on Auditing-
ProductRepository.

public override Product SelectProduct(int id)
{
 return this.innerRepository.SelectProduct(id);
}

public override void UpdateProduct(Product product)
{
 this.innerRepository.UpdateProduct(product);
 this.auditor.Record(
 new AuditEvent("ProductUpdated", product));
}

Not all operations need auditing. A common requirement is to audit all Create,
Update, and Delete operations while ignoring Read operations. Because the Select-
Product method is a pure Read operation, you delegate the call to the decorated
repository and immediately return the result.

 The UpdateProduct method, on the other hand, must be audited. You still dele-
gate the implementation to the decorated repository, but after the delegated method
returns, you use the injected IAuditor to audit the operation.

 A Decorator, like AuditingProductRepository, is like the breading around
the veal cutlet: it embellishes the basic ingredient without modifying it. The breading
itself isn’t just an empty shell, but comes with its own list of ingredients. Real breading
is made from breadcrumbs and spices; similarly, the AuditingProductRepository
contains an IAuditor.

 Note that the injected IAuditor is itself an ABSTRACTION, which means that you can
vary the implementation independently of AuditingProductRepository. All the
AuditingProductRepository class does is coordinate the actions of the decorated
ProductRepository and the IAuditor.

 You can write any implementation of IAuditor you like, but one based on SQL
Server is a common choice. Let’s see how you can wire up all relevant DEPENDENCIES to
make this work.

COMPOSING AUDITINGPRODUCTREPOSITORY

Although many applications use the ProductRepository class to retrieve product
information, because the CommerceService WCF web service from section 7.3.2
exposes CRUD operations for Products, this is an appropriate place to start.

Listing 9.2 Implementing AuditingProductRepository

280 CHAPTER 9 Interception
 In chapter 8, you saw several examples of how to compose a ProductManagement-
Service instance. Listings 8.4 and 8.5 provided the most correct implementation, but,
in the following listing, we’ll ignore that SqlProductRepository is disposable in order
to focus on composing Decorators.

public IProductManagementService ResolveProductManagementService()
{
 string connectionString =
 ConfigurationManager.ConnectionStrings
 ["CommerceObjectContext"].ConnectionString;

 ProductRepository sqlRepository =
 new SqlProductRepository(connectionString);

 IAuditor sqlAuditor =
 new SqlAuditor(connectionString);

 ProductRepository auditingRepository =
 new AuditingProductRepository(
 sqlRepository, sqlAuditor);

 IContractMapper mapper = new ContractMapper();

 return new ProductManagementService(
 auditingRepository, mapper);
}

As in listing 7.9, because you wish to use a SQL Server–based ProductRepository, you
create a new instance of SqlProductRepository B. But, instead of injecting it directly
into a ProductManagementService instance, you’ll wrap it in an AuditingProduct-
Repository.

 You inject both the SqlProductRepository B and a SQL Server–based IAuditor
implementation into an AuditingProductRepository instance c. Notice how
sqlRepository and auditingRepository are both declared as ProductRepository
instances.

 You can now inject auditingRepository into a new instance of ProductManagement-
Service d and return it. The ProductManagementServices sees only the auditing-
Repository and knows nothing about the sqlRepository.

WARNING Listing 9.3 is a simplified example that ignores lifetime issues.
Because SqlProductRepository and SqlAuditor are disposable types, the
code will cause resource leaks. A more correct implementation would be an
interpolation of listing 9.3 with listings 8.4 and 8.5—but I’m sure you’ll appre-
ciate that it starts to get rather complex at that point.

TIP Use a DI CONTAINER instead of manually dealing with the permutations of
OBJECT COMPOSITION, LIFETIME MANAGEMENT, and INTERCEPTION.

Listing 9.3 Composing a Decorator

Inner
ProductRepository

b

Decoratorc

Inject
Decorator

d

281Introducing Interception
Notice that you were able to add behavior to ProductRepository without changing
the source code of existing classes. We didn’t have to change SqlProductRepository
to add auditing. This is a desirable trait, known as the OPEN/CLOSED PRINCIPLE.

OBLIGATORY FOOD ANALOGY I think this corresponds to covering a veal cutlet
in breading. Although we change the cutlet, we keep it in one size instead of
chopping it up and making stew out of it.

Now that you’ve seen an example of INTERCEPTING the concrete SqlProductReposi-
tory with a decorating AuditingProductRepository, let’s take a step back and study
the patterns and principles behind it.

9.1.2 Patterns and principles for Interception

As is the case with many other DI patterns, the Decorator pattern is an old and well-
described design pattern that predates DI by several years. It’s such a fundamental
part of INTERCEPTION that, whether or not you’re intimately familiar with it, it warrants
a refresher.

 You may have noticed a denser-than-usual usage of terms such as SINGLE RESPONSIBILITY

PRINCIPLE and OPEN/CLOSED PRINCIPLE. These are items on the SOLID five-course menu.
 All these patterns and principles are recognized as valuable guidance about clean

code. The general purpose of this section is to relate this established guidance to DI to
showcase that DI is only a means to an end. We use DI as an enabler of maintainable code.

 All consumers of DEPENDENCIES should observe the LISKOV SUBSTITUTION PRINCIPLE

when they invoke their DEPENDENCIES. This allows us to replace the originally intended
implementation with another implementation of the same ABSTRACTION. Because a
Decorator implements the same ABSTRACTION as the class it wraps, we can replace the
original with a Decorator.

 This was exactly what you did in listing 9.3 when you substituted the original Sql-
ProductRepository with an AuditingProductRepository. You could do this without
changing the code of the consuming ProductManagementService because it adheres
to the LISKOV SUBSTITUTION PRINCIPLE: it requires an instance of ProductRepository,
and any implementation will do.

 Being able to extend a class’s behavior without modifying its code is known as the
OPEN/CLOSED PRINCIPLE, and this is another of five principles codified as a concept
known as SOLID.

SOLID Who doesn’t want to write solid software? Software that can withstand
the test of time and provide value to its users sounds like a worthy goal; intro-
ducing SOLID2 as an acronym for building quality software makes sense.

2 Robert C Martin, The Principles of OOD, http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

282 CHAPTER 9 Interception
3 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (New York: Addison-Wesley,
1994).

4 Ibid. p. 175.

Decorator
The Decorator pattern was first described in the book Design Patterns.3 Its intent is
to “attach additional responsibilities to an object dynamically. Decorators provide a
flexible alternative to subclassing for extending functionality.”4

A Decorator works by wrapping one implementation of an ABSTRACTION in another
implementation. The wrapper delegates operations to the contained implementation,
while adding behavior before or after invoking the wrapped object.

A Decorator can wrap another Decorator, which wraps another Decorator, and so on.
The following figure shows how Decorators can wrap each other. At the core, there
must be a self-contained implementation that performs the desired work.

When a Decorator receives a call to one of the members of the ABSTRACTION it imple-
ments, it may choose to simply delegate the call without doing anything at all:

public string Greet(string name)
{
 return this.innerComponent.Greet(name);
}

It may also choose to modify the input before delegating the call:

public string Greet(string name)
{
 var reversed = this.Reverse(name);
 return this.innerComponent.Greet(reversed);
}

In a similar move, it may decide to modify the return value before returning it:

public string Greet(string name)
{
 var returnValue = this.innerComponent.Greet(name);
 return this.Reverse(returnValue);
}

A Decorator wraps another Decorator that wraps a self-
contained Component. When a member is invoked on the
outmost Decorator, it delegates the call to its wrapped
component. Because the wrapped component is itself a
Decorator, it delegates the call to its contained component.
For each call, a Decorator has the opportunity to use the
input or the return value from the contained component to
perform additional work.

283Introducing Interception
Behind the acronym SOLID, we find five principles for object-oriented design that have
all turned out to be helpful in writing maintainable code. Table 9.1 lists those principles.

NOTE None of the principles encapsulated by SOLID represent absolutes.
They’re guidelines that can help you write clean code. To me, they represent
goals that help me decide which direction I should take my APIs. I’m always
happy when I succeed, but sometimes I don’t.

Decorator (and design patterns in general) and guidelines such as the SOLID prin-
ciples have been around now for many years and are generally viewed as being ben-
eficial when applied. In this section I’ve attempted to provide you with a hint of
how they relate to DI.

 The SOLID principles have been relevant throughout the book’s chapters, and you
may have noticed that I’ve mentioned some of them here and there. But it is when we
start talking about INTERCEPTION and how it relates to Decorators that the connection
with SOLID starts to stand out. Some are more subtle than others, but adding behavior
(such as auditing) by using a Decorator is a clear application of the OPEN/CLOSED PRIN-
CIPLE with the SINGLE RESPONSIBILITY PRINCIPLE not far behind, because the first allows us
to create implementations that have specifically-defined scopes.

 In this section, we took a detour around patterns and principles to understand
the relationship DI has with other established guidelines. Armed with this extra

Given the two previous examples, we can wrap the latter around the former to com-
pose a combination that modifies both input and output.

A Decorator may also decide not to invoke the underlying implementation:

public string Greet(string name)
{
 if (name == null)
 {
 return "Hello world!";
 }

 return this.innerComponent.Greet(name);
}

In this example, a Guard Clause provides a default behavior for null input, in which
case the wrapped component isn’t invoked at all.

What differentiates a Decorator from any class containing DEPENDENCIES is that the
decorated object implements the same ABSTRACTION as the Decorator. This enables
a COMPOSER to replace the original component with a Decorator without changing the
consumer. The decorated object is often injected into the Decorator declared as
the abstract type, in which case the Decorator must adhere to the LISKOV SUBSTITUTION
PRINCIPLE and treat all decorated objects equally.

You’ve already seen Decorators in action several places in the book. The example in
section 9.1.1 used a Decorator, as did section 4.4.4.

284 CHAPTER 9 Interception
5 William J Brown et al., AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis (Wiley Computer Pub-
lishing, 1998), 73.

6 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley, 1994), 315.
7 Mark Seemann, Interfaces are not abstractions, 2010, http://blog.ploeh.dk/2010/12/02/InterfacesAreNotAb-

stractions.aspx

Table 9.1 The five principles of SOLID

Principle Description Relation to DI

SINGLE
RESPONSIBILITY

PRINCIPLE (SRP)

A class should only have a single
responsibility. It should do one thing
only, but do it well. The opposite of
this principle is an anti-pattern known
as God Class,5 where a single class
can do everything, including making
coffee.

It can be difficult to stick to this principle,
but one of the many benefits of CONSTRUC-
TOR INJECTION is that it makes it obvious
every time we violate it.
In the auditing example in section 9.1.1,
you were able to adhere to the SRP by sepa-
rating responsibilities into separate types:
SqlProductRepository deals only
with storing and retrieving product data,
whereas SqlAuditor concentrates on
persisting the audit trail in the database.
The AuditingProductRepository
class’s single responsibility is to coordinate
the actions of ProductRepository and
IAuditor.

OPEN/CLOSED
PRINCIPLE (OCP)

A class should be open for extensibil-
ity, but closed for modification. That
is, it should be possible to add behav-
ior to an existing class without modify-
ing its code.
This isn’t always easy to achieve, but
the SRP at least makes it easier,
because the simpler the code is, the
easier it is to spot potential SEAMS.

There are many ways you can make a class
extensible, including virtual methods, injec-
tion of Strategies,6 and application of Deco-
rators—but no matter the details, DI makes
this possible by enabling us to compose
objects.

LISKOV
SUBSTITUTION

PRINCIPLE (LSP)

A client should treat all implementa-
tions of an ABSTRACTION equally. We
should be able to replace any imple-
mentation with a different implemen-
tation without breaking the consumer.

The LSP is a foundation of DI. When con-
sumers don’t observe it, you can’t replace
DEPENDENCIES at will, and we lose any (if not
all) benefits of DI.

INTERFACE
SEGREGATION

PRINCIPLE (ISP)

Interfaces should be designed to be
fine-grained. We don’t want to lump
too many responsibilities together
into one interface, because it
becomes too cumbersome to imple-
ment.
I consider the ISP to be the concep-
tual underpinning of the SRP. The ISP
states that interfaces should model
only a single concept, whereas the
SRP states that implementations
should have only one responsibility.

The ISP may at first seem to be only dis-
tantly related to DI. But it’s important
because an interface that models every-
thing, including the kitchen sink, pulls you
in the direction of a particular implementa-
tion. It’s often a smell of a LEAKY ABSTRAC-
TION and makes it much harder to replace
DEPENDENCIES because some of the inter-
face members may make no sense in a con-
text which is different from what originally
drove the design.7

http://blog.ploeh.dk/2010/12/02/InterfacesAreNotAbstractions.aspx
http://blog.ploeh.dk/2010/12/02/InterfacesAreNotAbstractions.aspx

285Implementing Cross-Cutting Concerns
knowledge, let’s now turn our attention back to the goal of the chapter, which is to
write clean and maintainable code in the face of inconsistent or changing require-
ments, and the need to address CROSS-CUTTING CONCERNS.

9.2 Implementing Cross-Cutting Concerns
Most applications must address aspects that don’t directly relate to any particular fea-
ture, but, rather, addresses a wider matter. These concerns tend to touch many other-
wise unrelated areas of code, even in different modules or layers. Because they cut
across a wide area of the code base, we call them CROSS-CUTTING CONCERNS. The follow-
ing table lists some examples. This table isn’t an all-inclusive list of every aspect avail-
able; rather, it’s an illustrative sample.

DEPENDENCY

INVERSION

PRINCIPLE (DIP)

Another term for the catch-phrase of
programming to an interface instead of
a concrete implementation.

DIP is the principle that guides DI.

Table 9.2 Common examples of CROSS-CUTTING CONCERNS

Aspect Description

Auditing Any data-altering operation should leave an audit trail including timestamp, the iden-
tity of the user who performed the change, and information about what changed. You
saw an example of this in section 9.1.1.

Logging Slightly different than auditing, logging tends to focus on recording events that reflect
the state of the application. This could be events of interest to IT operations staff,
but might also be business events.

Performance
monitoring

Slightly different than logging, because this deals more with recording performance
than specific events. If you have specific Service Level Agreements (SLAs) that can’t
be monitored via standard infrastructure, you must implement custom performance
monitoring. Custom Windows Performance Counters are a good choice for this, but
you must still add some code that captures the data.

Security Some operations should only be allowed for certain users, and you must
enforce this.

Caching You can often increase performance by implementing caches, but there’s no
reason why a specific data access component should deal with this aspect. You
may want to be able to enable or disable caching for different data access
implementations. We already saw a glimpse of implementing caching with
Decorators in section 4.4.4.

Error handling We may want to handle certain exceptions and either log them or show a message to
the user. We can use an error-handling Decorator to deal with errors in a proper way.

Fault tolerance Out-of-process resources are guaranteed to be unavailable from time to time. You can
implement fault tolerance patterns, such as Circuit Breaker, using a Decorator.

Table 9.1 The five principles of SOLID (continued)

Principle Description Relation to DI

286 CHAPTER 9 Interception
When we draw diagrams of layered application
architecture, CROSS-CUTTING CONCERNS are often
represented as vertical blocks placed beside the
layers, as shown in figure 9.4.

 In this section, we’ll look at some examples that
illustrate how we can use INTERCEPTION in the form
of Decorators to implement CROSS-CUTTING CON-
CERNS. We’ll pick a few aspects from table 9.2 to get
a feeling for implementing those using SOLID
principles, but we’ll only look at a small subset. As
is the case with many other concepts, INTERCEPTION

may be easy to understand in the abstract, but the
devil is in the details. It takes exposure to properly
absorb the technique, and I’d rather provide you
with one too many examples than too few. When we’re done with these examples, you
should have a clearer picture of what INTERCEPTION is, and how you can apply it.

 Because we already saw an introductory example in section 9.1.1, we’ll take a look
at a more complex example to illustrate how INTERCEPTION can be used with arbitrarily
complex logic. Once we’ve done this, we’ll study an example that leads us towards a
more declarative approach.

9.2.1 Intercepting with a Circuit Breaker

Any application that communicates with out-of-process resources will occasionally
experience that the resource is unavailable. Network connections go down, databases
go offline, and web services get swamped by Distributed Denial of Service (DDOS)
attacks. In such cases, the calling application must be able to recover and appropri-
ately deal with the issue.

 Most .NET APIs have default timeouts that ensure that an out-of-process call
doesn’t block the consuming thread forever. Still, in a situation where you just
received a timeout exception, how do you treat the next call to the faulting resource?
Do you attempt to call the resource again? Because a timeout often indicates that the
other end is either offline or swamped by requests, making a new blocking call may
not be a good idea. It would be better to assume the worst and throw an exception
immediately. This is the rationale behind the Circuit Breaker pattern.

 Circuit Breaker is a stability pattern because it adds robustness to an application by
failing fast, instead of hanging and consuming resources while it hangs. This is a good
example of a nonfunctional requirement and a true CROSS-CUTTING CONCERN, because
it has little to do with the feature implemented with the out-of-process call.

 The Circuit Breaker pattern itself is a bit complex and can be intricate to imple-
ment, but we only need to make that investment once. We could even implement it in
a reusable library if we would like. Once we have a reusable Circuit Breaker, we can
easily apply it to multiple components by employing the Decorator pattern.

Figure 9.4 We often represent a
CROSS-CUTTING CONCERN in application
architecture diagrams with vertical
blocks that span all layers. In this case,
security is a CROSS-CUTTING CONCERN.

287Implementing Cross-Cutting Concerns
Let’s look at an example that shows how the Decorator pattern can be used to add Cir-
cuit Breaker behavior to an existing out-of-process component. In this example, we’ll
focus on applying the reusable Circuit Breaker, but not on how it’s implemented.

8 Michael T. Nygard, Release It! Design and Deploy Production-Ready Software (Cambridge, Massachusetts: Prag-
matic Bookshelf, 2007), 104.

Circuit Breaker
The Circuit Breaker8 design pattern takes its name from the electric switch of the
same name. It’s designed to cut the connection when a fault occurs, in order to pre-
vent the fault from propagating.

In software applications, once a timeout or similar communications error occurs, it
can often make a bad situation worse if you keep hammering on a downed system.
If the remote system is swamped, multiple retries may take it over the edge—a pause
might give it a chance to recover. On the calling tier, threads blocked waiting for tim-
eouts may make the consuming application unresponsive. It’s better to detect that
communications are down and fail fast for a while.

The Circuit Breaker design addresses this by tripping the switch when an error occurs.
It usually includes a timeout that makes it retry the connection after a while; this way,
it can automatically recover when the remote system comes back up.

The following figure illustrates a simplified view of the state transitions in a Circuit
Breaker.

You may want to make a Circuit Breaker more complex than described here. First, you
may not want to trip the breaker every time a sporadic error occurs, but, rather, use
a threshold. Second, you should only trip the breaker on certain types of errors. Time-
outs and communication exceptions are fine, but a NullReferenceException is
likely to indicate a bug instead of an intermittent error.

Simplified state transition diagram
of the Circuit Breaker pattern. It
starts in the Closed state, indicating
that the circuit’s closed and
messages can flow. When an error
occurs, the breaker is tripped and
the state switches to Open. In this
state, the breaker lets no calls
through to the remote system;
instead, it throws an exception
immediately. After a timeout, the
state switches to Half-Open, where
a single remote call is allowed to go
through. If it succeeds, the state
goes back to Closed, but if it fails,
the breaker goes back to Open,
starting a new timeout.

288 CHAPTER 9 Interception
EXAMPLE: IMPLEMENTING A CIRCUIT BREAKER

In section 7.4.2, we created a WPF application that communicates with a WCF service
using an IProductManagementAgent interface. Although we briefly returned to it in
section 8.2.1, we never studied this interface in detail.

 In the previous examples, you used a WcfProductManagementAgent that implements
the interface by invoking the WCF service operations. Because this implementation has
no explicit error handling, any communication error will bubble up to the caller.

 This is an excellent case for a Circuit Breaker. You would like to fail fast once
exceptions start occurring; this way, you won’t block the calling thread and swamp the
service. As figure 9.5 shows, you start by declaring a Decorator for IProductManagement-
Agent and requesting the necessary DEPENDENCIES via CONSTRUCTOR INJECTION.

 You can now wrap any call to the decorated IProductManagementAgent like the
example shown in the following listing.

public void InsertProduct(ProductEditorViewModel product)
{
 this.breaker.Guard();
 try
 {
 this.innerAgent.InsertProduct(product);
 this.breaker.Succeed();
 }
 catch (Exception e)
 {
 this.breaker.Trip(e);
 throw;
 }
}

Listing 9.4 Decorating with a Circuit Breaker

Figure 9.5 The CircuitBreakerProductManagementAgent is a Decorator of
IProductManagementAgent: notice how it implements the interface and also contains
an instance injected through the constructor. The other DEPENDENCY is an
ICircuitBreaker that we can use to implement the Circuit Breaker pattern.

289Implementing Cross-Cutting Concerns
The first thing you need to do before you try to invoke the decorated agent is to check
the state of the Circuit Breaker. The Guard method will let you through when the state
is either Closed or Half-Open, whereas it will throw an exception when the state is Open.
This ensures that you fail fast when you have reason to believe that the call isn’t going
to succeed.

 If you make it past the Guard method, you can attempt to invoke the decorated
agent. Notice that the call is wrapped in a try block: if the call fails, you trip the
breaker. In this sample, you’re keeping things simple, but in a proper implementa-
tion, you should only catch and trip the breaker from a selection of exception types.
Because NullReferenceExceptions or similar types of exceptions rarely indicate inter-
mittent errors, there’d be no reason to trip the breaker in such cases.

 From both the Closed and Half-Open states, tripping the breaker puts us back in
the Open state. From the Open state, a timeout determines when we move back to the
Half-Open state.

 Conversely, you signal the Circuit Breaker if the call succeeds. If you’re already in
the Closed state, you stay in the Closed state. If you’re in the Half-Open state, you
transition back to Closed. It’s impossible to signal success when the Circuit Breaker is
in the Open state, because the Guard method will ensure that you never get that far.

 All other methods of IProductManagementAgent look similar, with the only differ-
ence being the method they invoke on innerAgent and an extra line of code for
methods that return a value. You can see this variation inside the try block for the
SelectAllProducts method:

var products = this.innerAgent.SelectAllProducts();
this.breaker.Succeed();
return products;

Because you must indicate success to the Circuit Breaker, you have to save the return
value of the decorated agent before returning it; but that’s the only difference
between methods that return a value and methods that don’t.

 At this point, you’ve left the implementation of ICircuitBreaker open, but the real
implementation is a completely reusable complex of classes that employ the State9

design pattern. Figure 9.6 shows the involved classes.
 Although we aren’t going to dive deeper into the implementation of Circuit-

Breaker here in the book, the important message is that you can INTERCEPT with arbi-
trarily complex code.

TIP If you’re curious about the implementation of the CircuitBreaker class,
it’s available in the code that accompanies this book.

9 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (New York: Addison-Wesley,
1994), 305.

290 CHAPTER 9 Interception
To compose a ProductManagementAgent with the Circuit Breaker functionality added,
you can wrap it around another implementation:

var timeout = TimeSpan.FromMinutes(1);
ICircuitBreaker breaker = new CircuitBreaker(timeout);
IProductManagementAgent circuitBreakerAgent =
 new CircuitBreakerProductManagementAgent(wcfAgent, breaker);

In listing 7.10, you composed a WPF application from several DEPENDENCIES, includ-
ing a WcfProductManagementAgent instance. You can decorate this wcfAgent variable
by injecting it into a CircuitBreakerProductManagementAgent instance that imple-
ments the same interface. In this particular example, you create a new instance of the
CircuitBreaker class every time you resolve DEPENDENCIES, and that corresponds to
the TRANSIENT lifestyle.

 In a WPF application where you only resolve the DEPENDENCIES once, using a TRAN-
SIENT Circuit Breaker isn’t an issue, but, in general, this isn’t the optimal lifestyle for
such functionality. There will only be a single web service at the other end. If this ser-
vice becomes unavailable, the Circuit Breaker should disconnect all attempts to

Figure 9.6 The CircuitBreaker class implements the ICircuitBreaker interface by
utilizing the State pattern. All three methods are implemented by delegating to a polymorphic
State member that changes as the states transition between each other.

291Implementing Cross-Cutting Concerns
connect to it. If several instances of CircuitBreakerProductManagementAgent are in
use, this should happen for them all.

 This is an obvious case for setting up CircuitBreaker with the SINGLETON lifetime,
but this also means that it must be thread-safe. Due to its very nature, the Circuit-
Breaker maintains state; thread-safety must be explicitly implemented. This makes the
implementation even more complex.

 Despite its complexity, you can easily INTERCEPT an IProductManagementAgent
instance with a Circuit Breaker. Although the first INTERCEPTION example in section 9.1.1
was fairly simple, the Circuit Breaker example demonstrates that you can INTERCEPT a
class with a CROSS-CUTTING CONCERN whose implementation is easily more complex
than the original implementation.

 The Circuit Breaker pattern ensures that an application fails fast instead of tying
up precious resources; but, ideally, the application wouldn’t crash at all. To address
this issue, you can implement some kinds of error handling with INTERCEPTION.

A more compact ICircuitBreaker
As presented here, the ICircuitBreaker interface contains three members: Guard,
Succeed, and Trip. An alternative interface definition could use continuation
passing10 to reduce the footprint to a few single-use methods:

public interface ICircuitBreaker
{
 void Execute(Action action);

 T Execute<T>(Func<T> action);
}

This would allow us to more succinctly use ICircuitBreaker in each method, like this:

public void InsertProduct(ProductEditorViewModel product)
{
 this.breaker.Execute(() =>
 this.innerAgent.InsertProduct(product));
}

I chose to use the more explicit and old-fashioned version of ICircuitBreaker
because I want you to be able to focus on the current topic of INTERCEPTION. Although
I personally like continuation passing, I consider lambdas and generics “advanced”
topics in their own right, and I think they might be more distracting than helpful in
this context.

Whether we ultimately choose one interface definition over the other doesn’t change
the conclusion of the current chapter.

10 For a good introduction to continuation passing style, see Jeremy Miller, Patterns in practice: Functional Program-
ming for Everyday .NET Development, MSDN Magazine, October 2009. Also available online at http://msdn
.microsoft.com/en-us/magazine/ee309512.aspx

http://msdn.microsoft.com/en-us/magazine/ee309512.aspx
http://msdn.microsoft.com/en-us/magazine/ee309512.aspx

292 CHAPTER 9 Interception
9.2.2 Handling exceptions

DEPENDENCIES are likely to throw exceptions from time to time. Even the best-written
code will (and should) throw exceptions if it encounters situations it can’t deal with.
Clients that consume out-of-process resources fall into that category. A class like the
WcfProductManagementAgent class from the sample WPF application is one example.
When the web service is unavailable, the agent will start throwing exceptions.

 A Circuit Breaker doesn’t change this fundamental trait. Although it INTERCEPTS

the WCF client, it still throws exceptions.
 Instead of a crashing application, you might prefer a message box that tells you

that the operation didn’t succeed and that you should try again later.
 You can use INTERCEPTION to add error handling in a SOLID manner. You don’t want

to burden a DEPENDENCY with error handling. Because a DEPENDENCY should be viewed
as a reusable component that can be consumed in a lot of different scenarios, it
wouldn’t be possible to add an exception-handling strategy into the DEPENDENCY itself
that would fit all scenarios. It would also be a violation of the SINGLE RESPONSIBILITY

PRINCIPLE if you did this.
 By using INTERCEPTION to deal with exceptions, you follow the OPEN/CLOSED PRINCI-

PLE. It allows you to implement the best error-handling strategy for any given situation.
Let’s look at an example.

EXAMPLE: HANDLING EXCEPTIONS

In the previous example, you wrapped a
WcfProductManagementAgent in a Circuit
Breaker for use with the Product Manage-
ment client application originally intro-
duced in section 7.4.2. A Circuit Breaker
only deals with errors by making certain that
the client fails fast, but it still throws excep-
tions. If left unhandled, they’ll cause the
application to crash, so you should imple-
ment a Decorator that knows how to handle
some of those errors. When an exception is
thrown, it should pop up a message as
shown in figure 9.7.

 Implementing this behavior is easy to do.
The same way you did in section 9.2.1, you add
a new ErrorHandlingProductManagement-
Agent class that decorates the IProduct-
ManagementAgent interface. The following
listing shows a sample of one of the methods
of that interface, but they’re all similar.

Figure 9.7 The Product Management
application handles communication exceptions
by showing a message to the user. Notice that
in this case the error message originates from
the Circuit Breaker instead of the underlying
communication failure.

293Implementing Cross-Cutting Concerns
public void InsertProduct(ProductEditorViewModel product)
{
 try
 {
 this.innerAgent.InsertProduct(product);
 }
 catch (CommunicationException e)
 {
 this.AlertUser(e.Message);
 }
 catch (InvalidOperationException e)
 {
 this.AlertUser(e.Message);
 }
}

The InsertProduct method is representative of the entire implementation of the
ErrorHandlingProductManagementAgent class. You attempt to invoke the decorated
agent B and alert the user with the exception message c if an exception is thrown.
Notice that you only handle a particular set of known exceptions, because it can be
dangerous to suppress all exceptions.

 Alerting the user involves formatting a string and showing it to the user using the
MessageBox.Show method.

 Once again, you added functionality to the original implementation (WcfProduct-
ManagementAgent) by implementing a Decorator. You’re solidly following both the
SINGLE RESPONSIBILITY PRINCIPLE and the OPEN/CLOSED PRINCIPLE by continually adding
new types instead of modifying existing code. By now, you should already begin to see
a pattern that suggests a more general arrangement than Decorator.

 For a given CROSS-CUTTING CONCERN, the implementation based on a Decorator
tends to be repetitive. Implementing a Circuit Breaker involves applying the same
code template to all methods of the IProductManagementAgent interface. Had you
wanted to add a Circuit Breaker to another ABSTRACTION, you would’ve had to apply
the same code to more methods. Although the template is different, the same is true
for the exception handling code we just reviewed.

 To drive home this point, let’s briefly glance at implementing security. This will
suggest a more general approach to composing CROSS-CUTTING CONCERNS that we’ll
then examine further in section 9.3.

9.2.3 Adding security

Security is another common CROSS-CUTTING CONCERN. We wish to secure our applica-
tions as much as possible to prevent unauthorized access to sensitive functionality.

Listing 9.5 Handling exceptions

Delegate to
decorated agent

b

Alert
the user

c

294 CHAPTER 9 Interception
NOTE Security is a big topic11 that addresses many areas, including the disclo-
sure of sensitive information and breaking into networks. In this section, I
only touch briefly on the subject of authorization—that is, making sure that
only authorized people (or systems) can perform certain actions.

Similar to how we used Circuit Breaker, we’d like to INTERCEPT a method call and
check whether the call should be allowed. If not, instead of allowing the call to be
made, an exception should be thrown. The principle is the same: the difference lies in
the criterion we use to determine the validity of the call.

 A common approach to implementing authorization logic is to employ role-based
security by using Thread.CurrentPrincipal. You might start out with a Secure-
ProductRepository Decorator. Because, as you’ve seen in the previous sections, all
methods look similar, the following listing only shows a sample method implementation.

public override void InsertProduct(Product product)
{
 if (!Thread.CurrentPrincipal.IsInRole("ProductManager"))
 {
 throw new SecurityException();
 }

 this.innerRepository.InsertProduct(product);
}

The InsertProduct method starts with a Guard Clause that explicitly accesses
Thread.CurrentPrincipal and asks whether it has the ProductManager role. If not, it
immediately throws an exception. Only if the calling IPrincipal has the required
role do you allow it past the Guard Clause to invoke the decorated repository.

NOTE Recall that Thread.CurrentPrincipal is an example of the AMBIENT

CONTEXT pattern.

This is such a common coding idiom that it’s encapsulated in the System.Security
.Permissions.PrincipalPermission class; so you could instead write the previous
example a bit more tersely:

public override void InsertProduct(Product product)
{
 new PrincipalPermission(null, "ProductManager").Demand();

 this.innerRepository.InsertProduct(product);
}

11 For a thorough treatment of security, you may want to read Michael Howard and David LeBlanc, Writing Secure
Code: Second Edition (Cambridge, Massachusetts: Microsoft Press, 2003).

Listing 9.6 Explicitly checking authorization

295Declaring aspects
The PrincipalPermission class encapsulates the request for the current IPrincipal
to have a particular role. Invoking the Demand method will throw an exception if
Thread.CurrentPrincipal doesn’t have the ProductManager roles. This example is
functionally equivalent to listing 9.6.

 When the only thing you do is demand that the current IPrincipal has a particu-
lar role, you can move into a purely declarative style:

[PrincipalPermission(SecurityAction.Demand, Role = "ProductManager")]
public override void InsertProduct(Product product)
{
 this.innerRepository.InsertProduct(product);
}

The PrincipalPermission attribute offers the same functionality as the Principal-
Permission class, but exposed as an attribute. Because the .NET Framework under-
stands this attribute, whenever it encounters it, it executes the corresponding
PrincipalPermission demand.

 At this point, having a separate Decorator only to apply an attribute begins to look
a little like overkill. Why not apply the attribute directly on the original class itself?

 Although this seems attractive, there are several reasons why you might not want to
do that:

■ The use of attributes precludes more complex logic. What if you wanted to
allow most users to update a product’s description, but only ProductManagers
to update the price? Such logic can be expressed in imperative code, but not
easily with an attribute.

■ What if you want to make sure that the permission rules are in place no matter
which ProductRepository implementation you use? Because attributes on con-
crete classes can’t be reused across implementations, that would violate the
DRY12 principle.

■ You wouldn’t be able to vary the security logic independently of the Product-
Repository.

Still, the idea of addressing a CROSS-CUTTING CONCERN in a declarative fashion isn’t new.
Because it’s often employed in ASPECT-ORIENTED PROGRAMMING, it’s only fitting that we
take a closer look at this and how it leads us to loosely coupled INTERCEPTION.

9.3 Declaring aspects
In the previous sections, we looked at patterns for INTERCEPTION and how they can help
you address CROSS-CUTTING CONCERNS using SOLID principles. In section 9.2.3 you saw
how it was possible to reduce the implementation of a security check to a purely
declarative approach.

12 Don’t Repeat Yourself.

296 CHAPTER 9 Interception
 Applying attributes to declare aspects is a common technique in ASPECT-ORIENTED

PROGRAMMING (AOP). But, as alluring it may seem at first, the use of attributes comes
with several built-in issues that make it a less-than-ideal solution. I’ll use the first part
of this section to review this concept and its little known disadvantages.

NOTE I occasionally use the term aspect attribute to denote a custom attribute
that implements or signifies an aspect.

Once we’ve properly dismissed the idea of using attributes to declare aspects, we’ll
spend the rest of this chapter looking at dynamic INTERCEPTION using a DI CONTAINER,
which offers a better alternative.

9.3.1 Using attributes to declare aspects

Attributes share a trait with Decorators: although they may add or imply a modifica-
tion of behavior of a member, they leave the signature unchanged. As you saw in sec-
tion 9.2.3, you can replace explicit, imperative authorization code with an attribute.
Instead of writing one or more lines of explicit code, you could achieve the same
result by applying the [PrincipalPermission] attribute.

 It sounds attractive to extrapolate this concept to other CROSS-CUTTING CONCERNS.
Wouldn’t it be nice if you could decorate a method or class with a [HandleError]
attribute, or even a custom [CircuitBreaker] attribute, and, in this way, apply the
aspect with a single line of declarative code?

 It might be, but there are several issues with this approach that you need to under-
stand and address.

 First and foremost is the challenge that arises from the fact that attributes are
inherently passive. Although defining a custom attribute and applying it is as easy as
deriving a class from System.Attribute and adorning other classes with the custom
attribute, it sits there doing nothing.

 But wait! Didn’t the [PrincipalPermission] attribute change the behavior of a
method? Yes, but this attribute (and some other attributes available in the Base Class
Library) is special. The .NET Framework understands and acts upon this attribute, but
it won’t do so for any custom attribute you’d like to introduce.

 You have two options if you want to enable custom attributes to modify behavior of
an application:

■ Modify the compilation step
■ Introduce a custom runtime host

Let’s briefly investigate each option.

MODIFYING COMPILATION

One of the most popular AOP frameworks, PostSharp,13 works exactly by enabling you
to add custom attributes to your code. These attributes must derive from a special

13 www.sharpcrafters.com/postsharp

www.sharpcrafters.com/postsharp

297Declaring aspects
attribute defined in the PostSharp SDK which supplies virtual methods you can over-
ride to define the behavior of the aspect you wish to apply. You can then apply these
attributes to your classes or class members. Figure 9.8 shows what happens next.

 PostSharp relies on post-compilation to turn passive attributes into active code.
The PostSharp processor looks after attributes that derive from the PostSharp attri-
butes and interleaves the code from those attributes with the code adorned by these
attributes. The result is a new assembly with the proper aspect code interleaved with
the original code.

 This assembly is a perfectly normal assembly that runs wherever all other .NET
code runs. It requires no special runtime to work.

 Among the advantages of this approach is that it doesn’t require any special design
effort on your part. DI isn’t necessary, although not precluded, either. I’m sure that
there are other advantages as well.

 One disadvantage of this approach is that the code that runs is different from the
code you wrote. If you want to debug the code, you’ll need to take special steps, and,
although the vendor happily supplies tools that allow you to do just that, it also pulls
you towards the Vendor Lock-In14 anti-pattern.

 But the greatest disadvantage lies in the use of attributes itself. This disadvantage is
shared with using a custom host for activating attributes. Let’s review this option
before we examine the disadvantages of attributes.

USING A CUSTOM HOST

Another option for activating attributes is to require all code to be activated or initial-
ized by a custom host or factory. Such a factory will be able to inspect all attributes on
the classes it initializes and act accordingly.

 We know this technique from numerous .NET technologies that rely on attributes.
Examples include the following:

14 William J. Brown et al., AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis (New York: Wiley
Computer Publishing, 1998), 167.

Figure 9.8 PostSharp works by adding a post-compilation step after normal compilation
has completed. Because the custom PostSharp attributes on your code are treated no
differently than any other attribute by the normal compiler (for example, csc.exe), the
output is a normal assembly with passive attributes. PostSharp includes a post-compilation
step where PostSharp picks up the compiled assembly and interleaves the code from your
custom attributes directly into the attributed code. The result is a new .NET assembly with
the aspects embedded.

298 CHAPTER 9 Interception
■ WCF includes many attributes such as [ServiceContract], [OperationContract],
and so on. These attributes only take on behavior when you host a service in a
ServiceHost instance (this is also what IIS does for you).

■ ASP.NET MVC gives you the option to specify which HTTP verbs you’ll accept
with the [AcceptVerbs] attribute, as well as handle exceptions with the
[HandleError] attribute, and several others. This works because ASP.NET MVC
is one big custom host and it controls the lifetime of your controllers.

■ All .NET unit testing frameworks that I’m aware of use attributes to identify test
cases. A unit test framework initializes test classes and interprets the attributes
to figure out which tests to execute.

Composing objects with a DI CONTAINER is similar to these examples. Because a DI CON-
TAINER initializes instances of the involved classes, it has the opportunity to inspect
each class to look for custom attributes.

 It should come as no surprise, then, that many DI CONTAINERS come with features
that allow you to do just that. If you’ve already decided to use a DI CONTAINER,
shouldn’t you go all the way and define and apply custom attributes?

 I can only think of one advantage this gives us over dynamic INTERCEPTION: because
an attribute is fairly easy to spot, even though it offers a pretty advanced level of indi-
rection, you still get a valuable hint that something else is going on than the method
body you’re looking at.

 But there are disadvantages to applying CROSS-CUTTING CONCERNS with attributes.
These disadvantages are common for post-compilation and custom hosts.

DISADVANTAGES OF ASPECT ATTRIBUTES

As attractive as it sounds to implement aspects as custom attributes, there are disad-
vantages.

 First, attributes are compiled together with the code they adorn. This means that
you can’t easily change your mind. Consider error handling as an example. In
section 9.2.2, you saw how you can use the Decorator design pattern to implement
error handling for any IProductManagementAgent. One interesting point is that
the underlying WcfProductManagementAgent knows nothing of the ErrorHandling-
ProductManagementAgent. As figure 9.9 illustrates, they’re even implemented in two
different libraries.

 The core implementation offered by WcfProductManagementAgent explicitly doesn’t
include error handling because proper exception handling is context-dependent. In a
GUI application like the WPF application we’ve been using as an example so far, a dia-
log message may be a good strategy, but in a console application you might instead
prefer writing to the error output stream, and an automated service could move the
operation to a retry queue and move on to do something else.

 To stay open and flexible, the ProductWcfAgent library must not include error
handling. But, if you apply an aspect attribute to WcfProductManagementAgent (or, even
worse, IProductManagementAgent), you tightly couple this aspect to the implementation

299Declaring aspects
(or even the ABSTRACTION). If you do that, you force a particular error-handling strat-
egy on WcfProductManagementAgent and you lose the ability to vary the aspect inde-
pendently of the implementation.

 A second problem with aspect attributes is that you have limited options when it
comes to applying attributes, which can only be used at the following levels:

■ Parameters, including return values
■ Members, such as methods, properties and fields
■ Types, such as classes and interfaces
■ Libraries

Although this provides you with a wide range of options, you can’t easily express more
convention-based configurations such as “I want to apply the Circuit Breaker aspect to
all types whose name starts with Wcf.” Instead, you would have to apply a hypothetical
[CircuitBreaker] attribute to all appropriate classes, violating the DRY principle.

 The last drawback of aspect attributes is that attributes must have a simple con-
structor. If you need to consume DEPENDENCIES from the aspect, you can only do so
using an AMBIENT CONTEXT. You already saw an example of that in section 9.2.3, where
Thread.CurrentPrincipal is an AMBIENT CONTEXT. But, this pattern is rarely the most
appropriate, and it makes the LIFETIME MANAGEMENT more difficult. As an example,

Figure 9.9 ErrorHandlingProductManagementAgent and
WcfProductManagementAgent both implement
IProductManagementAgent, but are defined in two different
libraries. Because the ProductManagementClient assembly
contains the COMPOSITION ROOT, it has a DEPENDENCY on
ProductWcfAgent and PresentationLogic.

300 CHAPTER 9 Interception
sharing a single ICircuitBreaker instance across multiple WCF clients suddenly
becomes much more difficult.

 Despite all these shortcomings, the attraction of aspect attributes is that you only
have to implement the aspect code in a single place. In the next section, you’ll see
how you can use INTERCEPTION capabilities of DI CONTAINERS to achieve this goal without
the tight coupling of aspect attributes.

9.3.2 Applying dynamic Interception

So far you’ve seen how Decorators can be used to address and implement CROSS-
CUTTING CONCERNS. This technique satisfies the SOLID principle but violates the DRY
principle. It may not have been apparent from the examples in this chapter, but apply-
ing an aspect by manually developing decorating classes involves lots of repetitive code.

REPETITIVENESS OF DECORATORS

The examples in sections 9.1.1 and 9.2.1 show only representative methods because
every method is implemented in the same way, and I didn’t want to dump several
pages of near-identical code because it would’ve detracted from the point I was
making. The following listing shows how similar the methods of CircuitBreaker-
ProductmanagementAgent are. This listing shows only two of the methods of the
IProductManagementAgent interface, but I’m confident that you can extrapolate and
imagine how the rest of the implementation looks.

public void DeleteProduct(int productId)
{
 this.breaker.Guard();
 try
 {
 this.innerAgent.DeleteProduct(productId);
 this.breaker.Succeed();
 }
 catch (Exception e)
 {
 this.breaker.Trip(e);
 throw;
 }
}

public void InsertProduct(ProductEditorViewModel product)
{
 this.breaker.Guard();
 try
 {
 this.innerAgent.InsertProduct(product);
 this.breaker.Succeed();
 }
 catch (Exception e)
 {

Listing 9.7 Violating the DRY principle

The only
difference

b

301Declaring aspects
 this.breaker.Trip(e);
 throw;
 }
}

Because you’ve already seen the InsertProduct method in listing 9.4, the purpose of
this code example is to illustrate the repetitive nature of Decorators used as aspects.
The only difference B between the DeleteProduct and InsertProduct methods is
that they each invoke their own corresponding method on the decorated agent.

 Even though we’ve successfully delegated the Circuit Breaker implementation to a
separate class via the ICircuitBreaker interface, this plumbing code clearly violates
the DRY principle. It may tend to be reasonably unchanging, but it’s still a liability.
Every time you want to add a new member to a type you decorate, or when you wish to
apply a Circuit Breaker to a new ABSTRACTION, you must apply the same plumbing code.

 One way you might consider addressing this issue is by applying code generators
like Visual Studio’s Text Template Transformation Toolkit (T4), but many DI CONTAIN-
ERS offer a better option with dynamic INTERCEPTION.

AUTOMATING DECORATORS

The code in each method in listing 9.7 looks a lot like a template. The hard part of
implementing a Decorator as an aspect is to design this template, but from there it’s a
rather mechanical process:

■ Create a new class
■ Derive from the desired interface
■ Implement each interface member by applying the template

This process is so mechanical that you can use a tool to automate it. Such a tool would
use Reflection or similar APIs to discover all the members to implement, and then
apply the template to all members. Figure 9.10 shows how this procedure can be
applied using a T4 template.15

 Although code generators allow you to address the symptom of repetitive coding,
they still leaves a lot of repetitive code in their trail. If you believe that code is a liabil-
ity,16 more code incurs a greater cost, auto-generated or not.

 Even if you don’t buy this argument, you’re still left with a static set of auto-gener-
ated Decorators. If you want a new Decorator for a given combination of aspect and
ABSTRACTION, you must explicitly add this class. It may be auto-generated, but you still
need to remember to create it and wire it up. A more convention-based approach isn’t
possible in this case.

 Some DI CONTAINERS provide you with a better option than automatically generated
code: automatically generated classes. This may sound like an esoteric difference, but
read on.

15 Read more about Decorators and T4 templates at Oleg Sych, How to use T4 to generate Decorator classes, 2007,
www.olegsych.com/2007/12/how-to-use-t4-to-generate-decorator-classes/

16 Tim Ottinger, Code is a Liability, 2007, http://blog.objectmentor.com/articles/2007/04/16/code-is-a-liability

www.olegsych.com/2007/12/how-to-use-t4-to-generate-decorator-classes/
http://blog.objectmentor.com/articles/2007/04/16/code-is-a-liability

302 CHAPTER 9 Interception
DYNAMIC INTERCEPTION

Among the many powerful features of the .NET Framework is the ability to dynami-
cally emit types. In addition to automatically generating code at design time, it’s also
possible to write code that emits a fully functional class at runtime. Such a class has no
underlying source code file, but is compiled directly from some abstract model.

 In the same way that you can automate the generation of Decorators to source code
files, you can automate the generation of Decorators to be emitted straight into a run-
ning process. As figure 9.11 shows, this is what dynamic INTERCEPTION enables you to do.

NOTE Not all DI CONTAINERS support runtime INTERCEPTION; if you need this
feature, be sure to pick your DI CONTAINER accordingly.

Figure 9.10 T4 makes it possible to auto-generate Decorator code from templates. The
starting point is a template prototype that understands the basic concept of Decorator.
The template prototype contains the code generation code that will generate the
frame of the decorating class, but it doesn’t define any aspect code. From the template
prototype, an aspect template that describes how a specific aspect (such as Circuit
Breaker) should be applied when decorating any interface is developed. The result of
that is a specialized template (SomeAspect.tt) for that particular aspect, which can
be used to generate Decorators for particular interfaces. The result is a normal code file
(SomeAspectDecorator.cs) that compiles normally together with other code files.

Figure 9.11 Some DI CONTAINERS allow us to define aspects as Interceptors. The
Interceptor is a piece of code that implements the aspect and integrates with the container.
Registering the Interceptor with the container enables the container to dynamically create
and emit Decorators that contain the aspect behavior. These classes only exist at runtime.

303Declaring aspects
To use dynamic INTERCEPTION, you must still write the code that implements the aspect.
This could be the plumbing code required for the Circuit Breaker aspect, as shown in
listing 9.7. Once you’ve done this, you must tell the DI CONTAINER about the aspect,
and when it should apply it.

 At runtime, the DI CONTAINER will dynamically emit new classes into the running
AppDomain based on the registered aspects. The best part of this approach is that you
can use convention-based configuration to define how aspects are applied, and
you can decide to use differing conventions in different applications (for example,
although you may share a lot of libraries, you may have different error handling strat-
egies in a WPF application and a PowerShell application).

NOTE In AOP, a convention that matches aspects to classes and members is
called a Pointcut.

Enough with the theory—let’s see an example.

9.3.3 Example: intercepting with Windsor

With their repetitive code, the Circuit Breaker and error handler aspects from
sections 9.2.1 and 9.2.2 are excellent candidates for dynamic INTERCEPTION. As an
example, let’s see how you can achieve DRY, SOLID code with Castle Windsor’s17 INTER-
CEPTION capabilities.

NOTE I could’ve chosen another DI CONTAINER than Castle Windsor, but defi-
nitely not just any container. Some support INTERCEPTION while others don’t—
part 4 covers features of specific DI CONTAINERS.

In this example, you’ll implement and register Interceptors for both error handling
and Circuit Breaker. Adding an aspect to Windsor is a three-step process, as shown in
figure 9.12.

 You’ll do this for both aspects in this example. Error handling is the simplest to
implement because it has no DEPENDENCIES; let’s start with that.

IMPLEMENTING THE EXCEPTION HANDLING INTERCEPTOR

Implementing an Interceptor for Windsor requires us to implement the IInterceptor
interface, which has only a single method. The following listing shows how to imple-
ment the exception handling strategy from listing 9.5, but, contrary to listing 9.5, the
following listing shows the entire class.

17 www.castleproject.org/

Figure 9.12 The three steps
involved in adding an aspect
to Windsor

www.castleproject.org/

304 CHAPTER 9 Interception
public class ErrorHandlingInterceptor : IInterceptor
{
 public void Intercept(IInvocation invocation)
 {
 try
 {
 invocation.Proceed();
 }
 catch (CommunicationException e)
 {
 this.AlertUser(e.Message);
 }
 catch (InvalidOperationException e)
 {
 this.AlertUser(e.Message);
 }
 }

 private void AlertUser(string message)
 {
 var sb = new StringBuilder();
 sb.AppendLine("An error occurred.");
 sb.AppendLine("Your work is likely lost.");
 sb.AppendLine("Please try again later.");
 sb.AppendLine();
 sb.AppendLine(message);

 MessageBox.Show(sb.ToString(), "Error",
 MessageBoxButton.OK, MessageBoxImage.Error);
 }
}

To implement an Interceptor, you must derive from the IInterceptor interface B
defined by Windsor. There’s only one method to implement, and you implement it by
applying the same code c that you used repeatedly when you implemented the
ErrorHandlingProductManagementAgent.

 The only difference from listing 9.5 is that, instead of delegating the method call
to a specific method, you must be more general because you apply this code to poten-
tially any method. You instruct Windsor to let the call proceed to the decorated item
by invoking the Proceed method d on the invocation input parameter.

 The IInvocation interface passed to the Intercept method as a parameter repre-
sents the method call. It might, for example, represent the call to the InsertProduct
method. The Proceed method is one of the key members of this interface because it
enables us to let the call proceed to the next implementation on the stack.

 The IInvocation interface also allows you to assign a return value before letting the
call proceed, as well as providing access to detailed information about the method call.
From the invocation parameter, you can get information about the name and parameter
values of the method, as well as a lot of other information about the current method call.

 Implementing the Interceptor is the hard part. The next step is easy.

Listing 9.8 Implementing the exception handling Interceptor

Implement
IInterceptorb

Implement
aspect

c

Invoke decorated
method

d

Show
dialog box

305Declaring aspects
REGISTERING THE EXCEPTION HANDLING INTERCEPTOR

The interceptor must be registered with the container before it can be used. This step
doesn’t configure the rules governing how and when the Interceptor is activated (the
Pointcut), but only makes it available as a component.

NOTE You may consider this step as ceremony to satisfy Windsor. One of
Windsor’s quirks is that every component must be explicitly registered, even
when it’s a concrete type with a default constructor. Not all DI CONTAINERS

work the same way, but in Windsor, this behavior is by design.

Registering the ErrorHandlingInterceptor class is easy (container is an instance of
IWindsorContainer):

container.Register(Component.For<ErrorHandlingInterceptor>());

This is no different from registering any other component with Windsor, and you
could even choose to use a convention-based approach to register all implementa-
tions of IInterceptor found in a particular assembly. This might look similar to the
example code in section 3.2.

 The last step in activating the Interceptor is to define the rules for when and how it
applies, but because this rule should also address the Circuit Breaker Interceptor,
we’ll postpone this step until the other Interceptor is ready as well.

IMPLEMENTING THE CIRCUIT BREAKER INTERCEPTOR

The Circuit Breaker Interceptor is a bit more complex because it requires the
ICircuitBreaker DEPENDENCY, but, as the following listing shows, you address this by
applying standard CONSTRUCTOR INJECTION. When it comes to composing the class,
Windsor treats it like any other component: as long as it can resolve the DEPENDENCY,
all is well.

public class CircuitBreakerInterceptor : IInterceptor
{
 private readonly ICircuitBreaker breaker;

 public CircuitBreakerInterceptor(
 ICircuitBreaker breaker)
 {
 if (breaker == null)
 {
 throw new ArgumentNullException(
 "breaker");
 }

 this.breaker = breaker;
 }

 public void Intercept(IInvocation invocation)
 {

Listing 9.9 Implementing the Circuit Breaker Interceptor

Constructor
Injection

b

306 CHAPTER 9 Interception
 this.breaker.Guard();
 try
 {
 invocation.Proceed();
 this.breaker.Succeed();
 }
 catch (Exception e)
 {
 this.breaker.Trip(e);
 throw;
 }
 }
}

The CircuitBreakerInterceptor requires the ICircuitBreaker DEPENDENCY, and
injecting DEPENDENCIES into an IInterceptor is done with CONSTRUCTOR INJECTION B,
just like in any other service.

 As you saw in listing 9.8, you implement the IInterceptor interface by applying
the template c suggested by the previous, repetitive implementation from listing 9.4.
Once more, instead of invoking a specific method, you invoke the Proceed method d
to instruct the Interceptor to let processing continue to the next component in the
Decorator stack.

 By now you should begin to see a pattern forming. Instead of repeating the Circuit
Breaker plumbing code for each and every method of an ABSTRACTION, you can state it
exactly once, in an Interceptor.

 You also need to register the CircuitBreakerInterceptor class with the con-
tainer; because it has a DEPENDENCY, this requires not one, but two lines of code.

REGISTERING THE CIRCUIT BREAKER INTERCEPTOR

The exception-handling Interceptor required only a single line of registration code,
but, because CircuitBreakerInterceptor depends on ICircuitBreaker, you must
also register this DEPENDENCY:

container.Register(Component
 .For<ICircuitBreaker>()
 .ImplementedBy<CircuitBreaker>()
 .DependsOn(new
 {
 timeout = TimeSpan.FromMinutes(1)
 }));
container.Register(Component.For<CircuitBreakerInterceptor>());

You map the ICircuitBreaker interface to the concrete CircuitBreaker class, that
itself requires a timeout constructor parameter.

 With both Interceptors in place, the only thing you still need to do is to define the
rules for when they’re activated.

ACTIVATING THE INTERCEPTORS

So far, the Interceptors are implemented and registered with the Windsor container,
but you have yet to define when they’re activated. If you don’t do this, they’ll just be
passive registrations in the container, without ever getting invoked.

Implement
aspect

c

Invoke decorated
method

d

307Declaring aspects
 You can think of this step as the equivalent to applying aspect attributes. If we
apply a hypothetical [CircuitBreaker] attribute to a method, we connect the Circuit
Breaker aspect to that method. Defining and applying custom attributes is one of the
ways we can activate Windsor Interceptors, but we also have several other, and better,
options available.

 The most flexible is to implement and register the IModelInterceptorsSelector
interface. This allows us to write imperative code that decides which Interceptor to
apply to which types or members. Because we can write arbitrarily complex code, we
have the option to apply our aspects in a much more convention-based manner.

 In the following listing, you use a simple implementation of such a Pointcut.

public class ProductManagementClientInterceptorSelector :
 IModelInterceptorsSelector
{
 public bool HasInterceptors(ComponentModel model)
 {
 return typeof(IProductManagementAgent)
 .IsAssignableFrom(model.Service);
 }

 public InterceptorReference[]
 SelectInterceptors(ComponentModel model,
 InterceptorReference[] interceptors)
 {
 return new[]
 {
 InterceptorReference
 .ForType<ErrorHandlingInterceptor>(),
 InterceptorReference
 .ForType<CircuitBreakerInterceptor>()
 };
 }
}

The IModelInterceptorsSelector interface follows the Tester-Doer18 pattern. Wind-
sor will first call the HasInterceptors method to ask whether the given component
it is about to initialize has any Interceptors. In this case, you answer in the affirma-
tive when the component implements the IProductManagementAgent interface B,
but you could’ve written arbitrarily complex code here if you’d wanted to imple-
ment a more heuristic approach.

 When the HasInterceptors method returns true, the SelectInterceptors
method will be called. From this method you return references to the Interceptors
you already registered c. Notice that you don’t return instances of the Interceptors,
but, rather, references to the Interceptors you already implemented and registered.

Listing 9.10 Implementing a Pointcut

18 Krzysztof Cwalina and Brad Abrams, Framework Design Guidelines: Conventions, Idioms, and Patterns for Reusable
.NET Libraries (New York, Addison-Wesley 2006), 203.

Apply Interceptors to
IProductManagementAgent

b

Return
Interceptors

c

308 CHAPTER 9 Interception
This enables Windsor to AUTO-WIRE any Interceptors that may have DEPENDENCIES on
their own (such as the CircuitBreakerInterceptor from listing 9.9).

 Guess what! You also need to register the ProductManagementClientInterceptor-
Selector class with the container. This is done a little differently, but is still a single
line of code:

container.Kernel.ProxyFactory.AddInterceptorSelector(
 new ProductManagementClientInterceptorSelector());

This finally activates the Interceptors so that when you resolve the application using
Windsor, they automatically kick in whenever they should.

 You may think that this multipage walkthrough of Windsor Interceptors seems
pretty complex, but you should keep a few things in mind:

■ You implemented two, not one, Interceptors.
■ I repeated some code from previous examples to show how it fits in. No matter

whether you elect to write manual Decorators, use an AOP framework, or use
dynamic INTERCEPTION, you’ll always need to write the code that implements
the aspect.

Dynamic INTERCEPTION offers a lot of benefits. It enables us to address CROSS-CUTTING

CONCERNS following both the SOLID and DRY principles. It gives us truly loosely coupled
aspects and an option to apply conventions or complex heuristics to determine when
and where to apply which aspects. It’s the ultimate level of freedom and flexibility.

 You may be concerned about the performance implications of compiling and emit-
ting custom types on the fly, but as far as I’ve been able to determine, Windsor only
does this once and reuses the type for all subsequent invocations. I did a few informal
benchmarks without registering any noticeable performance degradation.

 Another concern is the added level of indirection. You could argue that, by apply-
ing aspect attributes, we still leave a visible trace on the core method that behavior-
changing aspects are in place. With Decorators, and dynamic INTERCEPTION in particular,
there’s no such clue. Novice developers could potentially run afoul in this semi-magical
behavior, ending up stuck for days before someone helps them out by explaining the
concept to them.

 This is a real concern in some organizations. Consider how you would like to
address it if you choose to apply dynamic INTERCEPTION.

9.4 Summary
DI really shines when it comes to applying recognized object-oriented principles such
as SOLID. In particular, the loosely coupled nature of DI lets us use the Decorator pat-
tern to follow the OPEN/CLOSED PRINCIPLE as well as the SINGLE RESPONSIBILITY PRINCIPLE.
This is valuable in a wide range of situations, because it enables us to keep our code
clean and well-organized, but applies especially well when it comes to addressing
CROSS-CUTTING CONCERNS.

CROSS-CUTTING CONCERNS traditionally belong in the realm of ASPECT-ORIENTED PRO-
GRAMMING, but can also be addressed with great success using DI. The Decorator design

309Summary
pattern is the central pattern that enables us to wrap existing functionality in addi-
tional layers of behavior without changing the original code.

 But, despite its many virtues, the main problem with implementing Decorators is
that they tend to be verbose and repetitive. Even though we can follow SOLID design
principles, we end up violating the DRY principle because we must write the same
plumbing code over and over again—for each member of each interface that we wish
to decorate with a particular aspect.

 Attributes seem like an appealing alternative to Decorators because they allow us
to add aspects in a much terser way. But, because attributes are compiled into the
code they decorate, they lead to tight coupling and are better avoided.

 Some DI CONTAINERS offer a more attractive alternative, with the ability to dynami-
cally emit Decorators at runtime. These dynamic Decorators provide INTERCEPTION that
follow both the SOLID and DRY principles.

 It’s interesting to note that dynamic INTERCEPTION is the only feature of DI CONTAIN-
ERS that have no direct equivalent in POOR MAN’S DI. At this point in part 3, you’ve seen
how to address OBJECT COMPOSITION and LIFETIME MANAGEMENT by judicious application
of patterns, but when it comes to INTERCEPTION, the closest we get is a lot of Decorators.

 Although the concept of a Decorator is comparable to INTERCEPTION, the leap from
many hand-coded Decorators to a single, DRY Interceptor is considerable. The first
may lead to an explosion of repetitive plumbing code, whereas the other offers to
address CROSS-CUTTING CONCERNS in as few lines of code as possible, and with the
option to use convention-based application of aspects as an added bonus.

 It’s only fitting that here, at the conclusion of part 3, we finally arrive at an area
where DI CONTAINERS indisputably leave POOR MAN’S DI behind. Even without INTERCEP-
TION, a DI CONTAINER can much better manage the complexity involved in mapping
ABSTRACTIONS to concrete types and manage their lifetimes; but when we add INTERCEP-
TION to the mix, we can’t beat the combination.

 On that note, we can now happily leave POOR MAN’S DI behind in part 3 and move
on to read about specific DI CONTAINERS in part 4.

Part 4

DI Containers

The previous parts of the book have been about the various principles and
patterns that together define DI. As chapter 3 explained, a DI CONTAINER is an
optional tool that you can use to implement a lot of the general-purpose infrastruc-
ture that you would otherwise have to implement if you were using POOR MAN’S DI.

 Throughout the book, I’ve strived to keep it as container-agnostic as possible.
Don’t interpret this as a recommendation of POOR MAN’S DI; rather, I wanted you
to see DI in its pure form, untainted by any particular container’s (possibly
quirky) API.

 There is little reason to waste your time with POOR MAN’S DI because many
excellent DI CONTAINERS are available for .NET. Here in part 4 is a selection of six
specific free containers. In each chapter I provide detailed coverage of that par-
ticular container’s API as it relates to the dimensions covered in part 3, as well as
various other issues that traditionally cause beginners grief.

 The containers covered in part 4 are Castle Windsor, StructureMap,
Spring.NET, Autofac, Unity, and MEF. There are other container frameworks
that I didn’t include for one reason or another: Ninject, Hiro, Funq, LinFu,
OCInject, and so on. Please note that inclusion in this book isn’t in itself a seal
of approval. Although many of the containers included here are of excellent
quality, that wasn’t the only selection criterion. There are certain containers I
simply couldn’t exclude because of their market share, whereas I chose to
include others because they provide good contrast due to their different design
philosophies or purposes. This also means I had to leave out some excellent
containers. Given unlimited space, I would have loved to include them all, but
alas, that wasn’t possible.

312 PART 3 DI Containers
 Each chapter follows a common template. This may give you a certain sense of déjà
vu as you read the same sentence for the sixth time, but I consider it an advantage
because it should enable you to quickly find similar sections across different chapters
if you want to compare how a specific feature is addressed across two or more contain-
ers. For a quick comparison, refer to this table:

Many of the containers described here are open source projects with fast release
cycles. The information presented in part 4 was accurate at the time of writing, but
always be sure to also consult more up-to-date sources as well.

 These chapters are meant as inspiration. If you have yet to pick a favorite DI CON-
TAINER you can read through all six chapters to compare them all, but you can also just
read one or two that particularly interest you.

DI CONTAINER Advantages Disadvantages

Castle Windsor Complete
Understands Decorator
Typed factories
Commercial support available

Quirky API in places

StructureMap Just works in many cases No INTERCEPTION

Spring.NET INTERCEPTION

Comprehensive documentation
Commercial support available

Very XML-centric
No convention-based API
No custom lifetimes
Limited AUTO-WIRING

Autofac Easy to learn API
Commercial support available

No INTERCEPTION

Partial support for custom lifetimes

Unity INTERCEPTION

Good documentation
Consistent API

Poor lifetime management
No convention-based API

MEF Available in the .NET 4/Silverlight 4 BCL
Commercially supported

Not a real DI CONTAINER

Configuration based on static attributes
No XML support
No CODE AS CONFIGURATION

No convention-based API
No custom lifetimes
No INTERCEPTION

Castle Windsor
In the previous nine chapters, we discussed patterns and principles that apply to DI
in general, but, apart from a few examples, we have yet to take a detailed look at
how to apply them using any particular DI CONTAINER. In this chapter, you’ll see how
these overall patterns map to Castle Windsor; you’ll need to be familiar with the
material from the previous chapters to fully benefit from this.

 Castle Windsor is the second-oldest DI CONTAINER for .NET. It’s part of a larger
open source project known as the Castle Project1 that provides reusable libraries for
many purposes. Windsor is the DI CONTAINER part of the Castle Project, but it can be
used independently of any other Castle component. In this chapter, we’ll review it
as a stand-alone component.

Menu
■ Introducing Castle Windsor
■ Managing lifetime
■ Working with multiple components
■ Configuring difficult APIs

1 www.castleproject.org/
313

www.castleproject.org/

314 CHAPTER 10 Castle Windsor
In addition to being one of the oldest DI CONTAINERS, Castle Windsor is one of the
most mature and, if we’re to believe several totally unscientific internet polls, most
popular containers. Although it’s fairly easy to get started with Windsor, it offers a rich
and extensible API.

 In this chapter, we’ll take a tour of Castle Windsor. When we’re done, you should
know enough about it to be able to start using it immediately. We aren’t going to cover
advanced extensibility scenarios but will instead focus on mainstream usage patterns.
Figure 10.1 shows the structure of the chapter.

 The first section provides an overall introduction to Castle Windsor and demon-
strates how to configure and resolve components. The next three sections deal with
usage patterns that require a bit of extra attention; you can read them all in order, or
you can skip some and read only the ones that interest you.

 This chapter should enable you to get started as well as deal with the most com-
mon issues that may come up as you use Castle Windsor on a day-to-day basis. It isn’t a
complete treatment of Castle Windsor—that would take a whole book in its own right.

 You can read the chapter in isolation from the rest of part 4 to learn specifically
about Castle Windsor, or you can read it together with the other chapters in part 4
to compare DI CONTAINERS. The focus of this chapter is to show how Castle Windsor
relates to and implements the patterns and principles described in the previous
nine chapters.

10.1 Introducing Castle Windsor
In this section, you’ll learn where you get Castle Windsor, what you get, and how you
start using it. We’ll also look at common configuration options, as well as how we pack-
age configuration settings into reusable components. Table 10.1 provides fundamen-
tal information that you’re likely to need to get started.

 As figure 10.2 shows, there’s a simple rhythm to Castle Windsor: configure the con-
tainer by adding components, and subsequently resolve the required components.

Figure 10.1 The structure of this chapter resembles a tree. The first section introduces the
Castle Windsor container and explains how to configure and resolve components. Based on the
introduction, the rest of the sections can be read sequentially or more or less independently. The
last section uses syntax and a few methods that initially appear in the section about multiple
components, so if you decide to skip the penultimate section, you may still want to occasionally
refer back to it.

315Introducing Castle Windsor
When you’re done with this section, you should be familiar with the overall usage pat-
tern of Castle Windsor, and you should be able to start using it in scenarios where all
components follow proper DI patterns, such as CONSTRUCTOR INJECTION. We’ll start with
the simplest scenario and see how you can resolve objects using the Windsor container.

10.1.1 Resolving objects

Every DI CONTAINER’S core purpose is to resolve objects by wiring them up with all their
DEPENDENCIES. Castle Windsor offers a simple API to resolve services; but before you
can resolve a service, it must be registered with the container. Here’s the simplest possi-
ble use of Windsor:

Table 10.1 Castle Windsor at a glance

Question Answer

Where do I get it? Go to www.castleproject.org/castle/projects.html and click the appropriate link
under Stable release.
From Visual Studio 2010 you can also get it via NuGet. The package name is
Castle.Windsor.

What’s in the down-
load?

You can download a .zip file with precompiled binaries. You can also get the cur-
rent source code and compile it yourself.
The binaries are .dll files that you can place wherever you like and reference from
your own code.

Which platforms
are supported?

.NET 3.5 SP1, .NET 4 Client Profile, .NET 4, Silverlight 3, Silverlight 4.

How much does it
cost?

Nothing. It’s open source software with a benign (non-viral) license.

Where can I get
help?

You can get commercial support from Castle Stronghold. Read more at
www.castlestronghold.com/services/support.
Other than commercial support, Castle Windsor is still open source software with
a thriving ecosystem, so you’re likely (but not guaranteed) to get help in the offi-
cial forum at http://groups.google.com/group/castle-project-users. Stack Over-
flow (http://stackoverflow.com/) is another good place to ask questions.

On which version is
this chapter
based?

2.5.2.

Figure 10.2 The overall usage
pattern of Castle Windsor is simple:
first we configure the container; then
we resolve components from it. In
the vast majority of cases, we create
an instance of WindsorContainer
and completely configure it before
we start resolving components from
it. We resolve components from the
same instance that we configure.

www.castleproject.org/castle/projects.html
www.castlestronghold.com/services/support
http://groups.google.com/group/castle-project-users
http://stackoverflow.com/

316 CHAPTER 10 Castle Windsor
var container = new WindsorContainer();
container.Register(Component.For<SauceBéarnaise>());
SauceBéarnaise sauce = container.Resolve<SauceBéarnaise>();

Before you can ask a WindsorContainer to resolve anything, you must explicitly regis-
ter the appropriate components. In this case, you can get by registering a single con-
crete type. However, as you’ll see next, you’ll more frequently register a map from an
ABSTRACTION to a concrete type.

 Once you have the container properly configured, you can resolve the Sauce-
Béarnaise type to get an instance of it. You don’t have to check for null because
WindsorContainer will throw an exception if it can’t AUTO-WIRE and return an instance
of the requested type.

NOTE Windsor requires that all required components are registered, even if
they’re concrete types. This is by design,2 but not a design shared by all other
DI CONTAINERS.

This first example is functionally equivalent to directly creating an instance of the
SauceBéarnaise class with the new keyword: nothing is yet gained. Recall that DI is a
means to an end, and that end is loose coupling. To achieve loose coupling, you must
map ABSTRACTIONS to concrete types.

MAPPING ABSTRACTIONS TO CONCRETE TYPES

Although it’s sometimes necessary to register a concrete class as itself, a much more
common requirement is to map an ABSTRACTION to a concrete type. This is, after all,
the core service offered by DI CONTAINERS.

 Here you map the IIngredient interface to the concrete SauceBéarnaise class,
which allows you to successfully resolve IIngredient:

var container = new WindsorContainer();
container.Register(Component
 .For<IIngredient>()
 .ImplementedBy<SauceBéarnaise>());
IIngredient ingredient = container.Resolve<IIngredient>();

Instead of registering a concrete type, you map an ABSTRACTION to a concrete type.
When you later request an instance of IIngredient, the container will return an
instance of SauceBéarnaise.

 The strongly typed fluent API available through the Component class (that’s Castle
.MicroKernel.Registration.Component, not System.ComponentModel.Component)
helps preven configuration mistakes because the ImplementedBy method has a
generic constraint that makes sure the type specified in the type argument imple-
ments the ABSTRACTION type argument specified in the For method. That is, the previ-
ous example code compiles because SauceBéarnaise implements IIngredient.

2 See http://docs.castleproject.org/Default.aspx?Page=FAQ&NS=Windsor&AspxAutoDetectCookieSupport=1
for a complete explanation.

http://docs.castleproject.org/Default.aspx?Page=FAQ&NS=Windsor&AspxAutoDetectCookieSupport=1

317Introducing Castle Windsor
 In many cases, the strongly typed API is all that you need, and, because it pro-
vides desirable compile-time checking, you should use it whenever you can. Still,
there are situations where you need a more weakly typed way to resolve services.
This is also possible.

RESOLVING WEAKLY TYPED SERVICES

In some cases, we can’t write generic code to resolve a type because we might not even
know the exact type of the ABSTRACTION at design time. A good example of this is the
ASP.NET MVC DefaultControllerFactory that we discussed in section 7.2. The rele-
vant part of that class is the virtual GetControllerInstance method:

protected internal virtual IController GetControllerInstance(
 RequestContext requestContext, Type controllerType);

There aren’t strongly typed generics in this API. Instead, we’re given a Type and asked
to return an IController instance. The WindsorContainer class also has a weakly
typed version of the Resolve method; you can use this method to implement Get-
ControllerInstance:

return (IController)this.container.Resolve(controllerType);

Notice that, in this case, you pass the controllerType argument to the Resolve
method. Because the weakly typed version of Resolve returns an instance of System
.Object, you must explicitly cast to IController before returning the result.

 No matter which overload of Resolve you use, Windsor guarantees that it will
return an instance of the requested type or throw an exception if there are DEPENDEN-
CIES that can’t be satisfied. When all required DEPENDENCIES have been properly regis-
tered, Windsor will AUTO-WIRE the requested type based on its configuration.

 In the previous example, this.container is an instance of IWindsorContainer. To
be able to resolve the requested types, all types and their DEPENDENCIES must previously
have been registered. There are many ways to configure a Windsor container, and the
next section reviews the most common ones.

10.1.2 Configuring the container

As we discussed in section 3.2, there are several conceptually different ways we can
configure a DI CONTAINER. Figure 10.3 reviews the options.

 Like other DI CONTAINERS with a long history, Castle Windsor started out with XML
as the main configuration source. But it didn’t take long for many teams to learn that
defining type registrations in XML is extraordinarily brittle; today, we prefer strongly
typed configuration. This can be done with CODE AS CONFIGURATION, but it’s often more
effectively done with more convention-based AUTO-REGISTRATION.

 Castle Windsor supports all three approaches and even allows us to mix them
all within the same container; in this regard, it gives us all we could ask for. In this
section, you’ll see how you can use each of these three types of configuration sources.

318 CHAPTER 10 Castle Windsor
CODE AS CONFIGURATION

In chapter 3, you saw examples of Castle Windsor’s CODE AS CONFIGURATION API. Each reg-
istration is initiated with the Register method and usually specified using a Fluent API.

 We configure a WindsorContainer with the Register method that takes an array
of IRegistration as input. At first glance that looks pretty abstract, but, instead of
leaving us to figure out which IRegistration implementations to use, Castle Windsor
also provides a Fluent Registration API that enables us to build IRegistration
instances with a more intuitive syntax.

 To use the Fluent Registration API, we use the static Component class as an entry point.

WARNING Don’t confuse Castle.MicroKernel.Registration.Component with
System.ComponentModel.Component from the Base Class Library.

As you saw previously, the simplest possible registration is one for a concrete type:

container.Register(Component.For<SauceBéarnaise>());

This registers the SauceBéarnaise class with the container but provides no mapping.
Even though SauceBéarnaise implements IIngredient, the container will throw an
exception if you ask it to resolve IIngredient:

container.Resolve<IIngredient>()

To enable this more relevant scenario, you must map the concrete type to an ABSTRACTION:

container.Register(Component
 .For<IIngredient>()
 .ImplementedBy<SauceBéarnaise>());

Figure 10.3 Conceptually different
configuration options. CODE AS

CONFIGURATION is strongly typed and
tends to be explicit. XML, on the
other hand, is late bound, but still
explicit. AUTO-REGISTRATION instead
relies on conventions that can be
both strongly typed and more
loosely defined.

319Introducing Castle Windsor
Note how you now register the IIngredient interface instead of the SauceBéarnaise
class. This will allow you to resolve IIngredient, but, perhaps a bit surprisingly, you
lose the ability to resolve the concrete SauceBéarnaise class. This is rarely an issue
when all your code is loosely coupled, but in the rare cases where you need to be able
to resolve both types, you can specify this with an overload of the For method:

container.Register(Component
 .For<SauceBéarnaise, IIngredient>());

This registers the SauceBéarnaise component, while at the same time forwarding the
registration to the IIngredient interface. This means that both SauceBéarnaise and
IIngredient are registered as resolvable types. In both cases, the implementation is
provided by SauceBéarnaise. Notice that when this overload is used, you don’t need
to implicitly use the ImplementedBy method.

 Obviously, you can register multiple types with successive calls to the Register
method:

container.Register(Component
 .For<IIngredient>()
 .ImplementedBy<SauceBéarnaise>());
container.Register(Component
 .For<ICourse>()
 .ImplementedBy<Course>());

This registers both the IIngredient and ICourse interfaces and maps them to con-
crete types. However, registering the same ABSTRACTION several times has some inter-
esting results:

container.Register(Component
 .For<IIngredient>()
 .ImplementedBy<Steak>());
container.Register(Component
 .For<IIngredient>()
 .ImplementedBy<SauceBéarnaise>());

In this example, you register IIngredient twice. If you resolve IIngredient, you get
an instance of Steak. The first registration wins, but subsequent registrations aren’t
forgotten. Castle Windsor has a sophisticated model for dealing with multiple registra-
tions; we’ll get back to this in section 10.3.

 There are more advanced options available in the Fluent Registration API, but we
can configure an entire application in this way. However, to save us from too much
explicit maintenance of container configuration, we can instead consider a more
convention-based approach, using AUTO-REGISTRATION.

AUTO-REGISTRATION

In many cases, a lot of registrations will be similar. Such registrations are tedious to main-
tain and explicitly registering each and every component is often counterproductive.

 Consider a library that contains a lot of IIngredient implementations. You can
register each class individually, but it will result in numerous similar-looking calls to

320 CHAPTER 10 Castle Windsor
the Register method. What’s worse, every time you add a new IIngredient imple-
mentation, you must also explicitly register it with the container if you want it to be
available. It would be more productive to state that all implementations of IIngredient
found in a given assembly should be registered.

 This is possible using the static AllTypes class, which fills a role similar to the
Component class. We can use one of its methods to scan an assembly for types that fit a
certain criterion. This registers all IIngredient implementations in one go:

container.Register(AllTypes
 .FromAssemblyContaining<Steak>()
 .BasedOn<IIngredient>());

The AllTypes class provides many methods that enable us to point to a particular
assembly, but I find the FromAssemblyContaining generic method to be particularly
concise: provide a representative type as the type parameter, and it will use the assem-
bly containing that type. There are also other methods that enable us to provide an
Assembly by other means.

 In the previous example, you unconditionally register all implementations of the
IIngredient interface, but you can specify other selection criteria to either narrow
the selection or select on other criteria than interfaces or base classes. Here’s a con-
vention-based registration where you add all classes whose names start with Sauce and
register them against all the interfaces they implement:

container.Register(AllTypes
 .FromAssemblyContaining<SauceBéarnaise>()
 .Where(t => t.Name.StartsWith("Sauce"))
 .WithService.AllInterfaces());

Notice that you supply a predicate to the Where method that filters on the type name.
Any type whose name starts with Sauce will be selected from the assembly that con-
tains the SauceBéarnaise class. The WithService property allows you to specify a
rule for registering the type; in this case, you register all types against all the inter-
faces they implement.

 With convention-based registration, you can move from strong typing into an area
where type safety seems to disappear. An example like the previous one compiles, but
you aren’t guaranteed that any types will get registered at all. It depends on whether
there are any types that satisfy the selection criterion. You could rename all sauce
classes to something else, and you’d be left with no sauces.

 There’s even a method on AllTypes that takes the name of an assembly as input. It
will use Fusion (the .NET Framework’s assembly loading engine) to find the corre-
sponding assembly. By combining a late-bound assembly with an untyped predicate,
you can move far into late-bound territory. This can be a useful technique to imple-
ment add-ins because Castle Windsor can also scan all assemblies in a directory.

 Another way to register add-ins and other late-bound services is by employing Cas-
tle Windsor’s XML configuration feature.

321Introducing Castle Windsor
XML CONFIGURATION

When you need to be able to change a configuration without recompiling the applica-
tion, XML configuration is a good option.

TIP Use XML configuration only for those types you need to change without
recompiling the application. Use AUTO-REGISTRATION or CODE AS CONFIGURATION

for the rest.

We can embed XML configuration in normal .NET configuration files, or import XML
from specialized files. Like everything else in Castle Windsor, nothing happens unless we
explicitly ask for it, so we must also specify if we want to load configuration from XML.

 There are several ways to do this, but the recommended way is to use the Install
method (we’ll talk more about Installers in section 10.1.3):

container.Install(Configuration.FromAppConfig());

The FromAppConfig method returns an instance of ConfigurationInstaller that
reads Castle Windsor’s XML configuration from the application’s configuration file
and translates it to objects understood by the container.

 To enable Castle Windsor configuration in a configuration file, you must first add
a configuration section:

<configSections>
 <section name="castle"
 type="Castle.Windsor.Configuration.AppDomain
 ➥.CastleSectionHandler, Castle.Windsor" />
</configSections>

This enables you to add a castle configuration section in the configuration file.
Here’s a simple example that maps the IIngredient interface to the Steak class:

<castle>
 <components>
 <component id="ingredient.sauceBéarnaise"
 service="IIngredient"
 type="Steak"/>
 </components>
</castle>

Notice that you don’t have to supply the assembly qualified type name for either ser-
vice or class. As long as the names are unique across all loaded assemblies, they’ll be
correctly resolved—but, should you have name conflicts, you can still use assembly
qualified type names.

 Obviously, you can add as many components as you need. The Configuration-
Installer translates this XML configuration to the registration objects that configure
the container, and you can subsequently resolve the types configured.

XML configuration is a good option when you need to change the configuration of
one or more components without recompiling the application. However, because it
tends to be quite brittle, you should reserve it for those occasions and use either AUTO-
REGISTRATION or CODE AS CONFIGURATION for the main part of the container’s configuration.

322 CHAPTER 10 Castle Windsor
TIP Remember how the first configuration of a type wins? You can use this
behavior to overwrite hard-coded configuration with XML configuration. To
do this, you must remember to install the ConfigurationInstaller before
any other components.

In this section, we mainly looked at various configuration APIs for Castle Windsor.
Although it’s certainly possible to write one big block of unstructured configuration code,
it’s better to modularize configuration. We have Windsor Installers for this purpose.

10.1.3 Packaging configuration

It’s sometimes desirable to package configuration logic into reusable groups, and
even when reuse itself isn’t our top priority, we may want to provide a bit of structure if
we have a big and complex application to configure.

 With Castle Windsor, we can package configuration into Installers. An Installer is a
class that implements the IWindsorInstaller interface:

public interface IWindsorInstaller
{
 void Install(IWindsorContainer container, IConfigurationStore store);
}

Everything you’ve done so far you can do from inside an Installer as well. The follow-
ing listing shows an Installer that registers all IIngredient implementations.

public class IngredientInstaller : IWindsorInstaller
{
 public void Install(IWindsorContainer container,
 IConfigurationStore store)
 {
 container.Register(AllTypes
 .FromAssemblyContaining<Steak>()
 .BasedOn<IIngredient>());
 }
}

The IngredientInstaller implements the IWindsorInstaller interface by using
the exact same API you saw earlier to register all IIngredient implementations.

 To register an Installer, invoke the Install method:

container.Install(new IngredientInstaller());

Although it’s possible to invoke the Install method multiple times, the Castle Windsor
documentation recommends that you perform all configuration in a single call to the
Install method.3 The Install method takes an array of IWindsorInstaller instances:

public IWindsorContainer Install(params IWindsorInstaller[] installers);

Listing 10.1 Implementing a Windsor Installer

3 http://stw.castleproject.org/Windsor.Installers.ashx

http://stw.castleproject.org/Windsor.Installers.ashx

323Managing lifetime
TIP Windsor Installers let you package and structure your container configu-
ration code. Use them instead of inline configuration: it will make your COM-
POSITION ROOT more readable.

TIP Besides the benefits that Installers offer for your own code, Castle Wind-
sor is moving in the direction of optimizing much of its API around Installers.
It’s the idiomatic and recommended way of configuring Castle Windsor to a
greater degree than for other containers.

You can also specify one or more Installers in XML and load the configuration file as
previously described:

<installers>
 <install type="IngredientInstaller" />
</installers>

Using Installers, you can configure a WindsorContainer in any way you like: CODE AS

CONFIGURATION, AUTO-REGISTRATION, or with XML; or, you can mix all three approaches.
Once a container is configured, you can ask it to resolve services.

 This section introduced the Castle Windsor DI CONTAINER and demonstrated the
fundamental mechanics: how to configure the container and subsequently use it to
resolve services. Resolving services is easily done with a single call to the Resolve
method, so the complexity involves configuring the container. This can be done in
several different ways, including imperative code and XML. Until now, we’ve only
looked at the most basic API; there are more advanced areas we have yet to cover. One
of the most important topics is how to manage component lifetime.

10.2 Managing lifetime
In chapter 8, we discussed LIFETIME MANAGEMENT, including the most common concep-
tual lifetime styles, such as SINGLETON and TRANSIENT. Castle Windsor supports many
different lifestyles and enables you to configure the lifetime of all services. The life-
styles shown in table 10.2 are available as part of the API.

Table 10.2 Castle Windsor lifestyles

Name Comments

Singleton This is Castle Windsor’s default lifestyle.

Transient A new instance is created each time, but the instance is still tracked by
the container.

PerThread One instance is created per thread.

PerWebRequest Requires registration in web.config (see section 10.2.2).

Pooled Configuration of pool size will often be advisable (see section 10.2.2).

Custom Write your own custom lifestyle (see section 10.2.3).

324 CHAPTER 10 Castle Windsor
Some of the built-in lifestyles are entirely equivalent to the general lifestyle patterns
described in chapter 8. This is particularly true for the SINGLETON and TRANSIENT life-
style, so I won’t use any dedicated space on them in this chapter.

NOTE The default lifestyle in Castle Windsor is SINGLETON. This is different
from many other containers. As we discussed in chapter 8, SINGLETON is the
most efficient, although not always the safest, of all lifestyles; Castle Windsor’s
default prioritizes efficiency over safety.

In this section, you’ll see how we can configure lifestyles for components and how to
use some of the more special lifestyles like PerWebRequest and POOLED. We’ll also look
at implementing a custom lifestyle to showcase that we aren’t constrained to use only
the built-in lifestyles. At the end of this section, you should be able to use Castle Wind-
sor’s lifestyles in your own application.

 Let’s start by reviewing how to configure lifestyles for components.

10.2.1 Configuring lifestyle

In this section, we’ll review how to manage component lifestyles with Castle Wind-
sor. Lifestyle is configured as part of component registration, so the same options
are available to us as with configuration in general: code or XML. We’ll look at each
in turn.

CONFIGURING LIFESTYLE WITH CODE

Lifestyle is configured using the Fluent Registration API with which we register com-
ponents. It’s as easy as this:

container.Register(Component
 .For<SauceBéarnaise>()
 .LifeStyle.Transient);

Notice that you specify the lifestyle using the Lifestyle property. In this example,
you set the lifestyle to TRANSIENT so that each time SauceBéarnaise is resolved, a new
instance is returned.

 You can still explicitly specify the SINGLETON lifestyle even though it’s the default.
These two examples are entirely equivalent:

container.Register(Component container.Register(Component
 .For<SauceBéarnaise>() .For<SauceBéarnaise>());
 .LifeStyle.Singleton);

Because SINGLETON is the default lifestyle, you don’t have to explicitly specify it, but
you can do so if you’d like.

 In the same way that we can configure components from both code and XML, we
can also configure lifestyles in both places.

CONFIGURING LIFESTYLE WITH XML
In section 10.1.2, you saw how to configure components using XML, but you didn’t
supply any lifestyle. As is the case when configuring a component using the Fluent

325Managing lifetime
Registration API, the SINGLETON lifestyle is default, but you can explicitly specify a dif-
ferent lifestyle if you need to:

<component id="ingredient.sauceBéarnaise"
 service="IIngredient"
 type="Steak"
 lifestyle="transient" />

Compared to the example in section 10.1.2, the only difference is the added lifestyle
attribute. As you can see, specifying a lifestyle is easy in both code and XML.

RELEASING COMPONENTS

As we discussed in section 8.2.2, it’s important to release objects when we’re done with
them. This is as easy as calling the Release method:

container.Release(ingredient);

This will release the instance provided to the Release method (the ingredient vari-
able in the previous example) as well as all those DEPENDENCIES of the instance whose
lifetime is up. That is, if the instance has a TRANSIENT DEPENDENCY, this DEPENDENCY will be
released (and potentially disposed of), whereas a SINGLETON will remain in the container.

TIP Castle Windsor tracks all, even TRANSIENT, components, so it’s important
to remember to release all resolved instances to avoid memory leaks.

TIP Release explicitly what you resolve explicitly.

TIP Remember to dispose of the container itself when the application shuts
down. This will dispose of SINGLETON components and ensure that the applica-
tion cleans up properly after itself.

Let’s now turn our attention to some of those lifestyles that require a bit more config-
uration than a simple statement.

10.2.2 Using advanced lifestyles

In this section, we’ll look at two of Castle Windsor’s lifestyles that require more config-
uration than just a simple declaration: POOLED and PerWebRequest.

USING THE POOLED LIFESTYLE

In section 8.3.5, we looked at the general concept of a POOLED lifestyle; in this section,
you’ll see how to use Windsor’s implementation. Castle Windsor’s POOLED lifestyle
comes with a default pool size, but because the optimal pool size is entirely dependent
on the circumstances, you should prefer to explicitly configure the size of the pool.
You can specify a POOLED lifestyle with default sizes the same way that you configure
any other lifestyle:

container.Register(Component
 .For<IIngredient>()
 .ImplementedBy<SauceBéarnaise>()
 .LifeStyle.Pooled);

326 CHAPTER 10 Castle Windsor
However, this doesn’t communicate the size of the pool. Although I haven’t been able to
find any documentation that states what the default pool values are, Castle Windsor 2.1.1’s
source code reveals that the default initial size is 5 and the max size is 15. To me, these
values seem rather arbitrary, which is another reason to explicitly decide the size.

 To explicitly configure the pool sizes, you can use the PooledWithSize method:

container.Register(Component
 .For<IIngredient>()
 .ImplementedBy<SauceBéarnaise>()
 .LifeStyle.PooledWithSize(10, 50));

This example sets the initial size to 10 and the maximum size to 50. Castle Windsor
pools have two configuration values: initial size and max size. The initial size obviously
controls the initial size of the pool and the max size the maximum size of the pool, but
the behavior at edge cases may be surprising to some. Figure 10.4 demonstrates how
the pool size evolves during the lifetime of a container.

 When an instance is resolved from a pool, it’s marked as being in use. Because it
stays in that state until explicitly released from the container, it’s important to remem-
ber to release instances when you’re done with them. This enables the container to
recycle the instances:

container.Release(ingredient);

NOTE The behavior when the pool is fully utilized is surprising. Instead of
throwing an exception or blocking the call, surplus instances are created.
These are thrown away after use instead of being recycled.

Although slightly more advanced than SINGLETON or TRANSIENT, the POOLED lifestyle is
still easy to use. The only extra effort you need to do is to supply two extra numbers to

Figure 10.4 Size progression of a pool with an initial size of 3 and maximum size of 5. Even
though the initial size of the pool is 3, the pool stays empty until the first instance is resolved.
At that point, all 3 instances for the initial size are created and one is immediately put to use.
When an instance is released, it’s returned to the pool. The pool increases in size if more
instances than the minimum size are necessary. Notice that it’s possible to exceed the
maximum size, but that the surplus instances aren’t recycled when released.

327Managing lifetime
configure the pool sizes. The PerWebRequest lifestyle is a bit different but a little more
complex to configure.

USING THE PERWEBREQUEST LIFESTYLE

As the name implies, the PerWebRequest lifestyle works by creating an instance per
web request. Declaring it is as easy as declaring the TRANSIENT lifestyle:

container.Register(Component
 .For<IIngredient>()
 .ImplementedBy<SauceBéarnaise>()
 .LifeStyle.PerWebRequest);

However, if we attempt to use it without further configuration, we receive this exception:

Looks like you forgot to register the HTTP module Castle.MicroKernel.Lifestyle.PerWeb-
RequestLifestyleModule

Add ‘<add name="PerRequestLifestyle" type="Castle.MicroKernel.Lifestyle.PerWebRequest-
LifestyleModule, Castle.Windsor" />’ to the <httpModules> section on your web.config. If
you’re running IIS7 in Integrated Mode you will need to add it to <modules> section under
<system.webServer>

As far as error messages go, this one is exemplary. It tells you exactly what you need to do.
 In any case, it’s relevant to notice that the PerWebRequest lifestyle uses an HTTP

module to figure out which web request is currently executing. One consequence of
that is that we need to register the HTTP module as I described; another is that this
particular lifestyle only works within web requests. If we try to use it in another type of
application, we’ll get the same exception as in the previous example.

 Both the POOLED and PerWebRequest lifestyles require a tiny bit more work to use
than just a simple declaration, but they’re still easy to configure and use. Castle Wind-
sor’s built-in lifestyles provide a comprehensive and useful suite of lifestyles that fit most
scenarios. Still, if none of them fit a specialized need, we can write a custom lifestyle.

10.2.3 Developing a custom lifestyle

In most cases, Castle Windsor’s built-in lifestyles should suffice, but if we need some-
thing special, we can write a custom lifestyle.

 In this section, you’ll see how to do this. First, we’ll briefly look at the relevant SEAM

that makes this possible, but we’ll quickly proceed to look at an example.

UNDERSTANDING THE LIFESTYLE API
You can create a custom lifestyle by implementing the ILifestyleManager interface:

public interface ILifestyleManager : IDisposable
{
 void Init(IComponentActivator componentActivator,
 IKernel kernel, ComponentModel model);
 bool Release(object instance);
 object Resolve(CreationContext context);
}

328 CHAPTER 10 Castle Windsor
One of the slightly odd requirements of an ILifestyleManager implementation is that
it has a default constructor. That is, CONSTRUCTOR INJECTION is prohibited here, of all
places. Instead, we’re provided with one of the relatively rare cases of METHOD INJECTION.
The Init method will be invoked, providing among other parameters an IKernel
instance that we can use as a SERVICE LOCATOR. This is definitely not my cup of tea, and
when we look at some example code, you’ll also see how this makes the implementation
more complicated than it would have been if CONSTRUCTOR INJECTION had been possible.

 The other methods of the ILifestyleManager interface are Resolve and Release,
but we should use them as hooks more than to provide our own implementations of
Resolve and Release—that’s the responsibility of the IComponentActivator passed to us
in the Init method. Figure 10.5 shows that we should only use these methods to inter-
cept calls to Resolve and Release so that we can control the lifetime of each component.

 Castle Windsor provides a default implementation of ILifestyleManager in the
form of the AbstractLifestyleManager class. It implements the interface and pro-
vides a reasonable default implementation for most methods. This is the class you’ll
use to implement a sample lifestyle.

DEVELOPING A CACHING LIFESTYLE

Because Castle Windsor offers a comprehensive set of standard lifestyles, it’s difficult
to come up with a great example. However, imagine that you’d like to develop a cach-
ing lifestyle that would keep an instance around for a certain amount of time, and
then release it. This is a good example because it’s complex enough to demonstrate
different aspects of implementing a custom lifestyle, but not so complex that it
doesn’t fit on a few pages.

NOTE A caching lifestyle is a contrived example. There are better ways to
implement caching functionality, because normally you don’t wish to cache
Services,4 but rather the data those Services manage.

4 Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software (New York: Addison-Wesley, 2004),
104.

Figure 10.5 An ILifestyleManager acts as a sort of interceptor that’s called instead of the
underlying IComponetActivator. An ILifestyleManager implementation is expected
to use the supplied IComponentActivator to create object instances. Because the
ILifestyleManager sits in the middle, it gets a chance to intercept each call and
perform its own lifestyle logic. It’s free to reuse instances instead of calling through
to the IComponentActivator each time.

329Managing lifetime
WARNING The sample code shown here ignores thread-safety, but a real pro-
duction implementation of ILifestyleManager must be thread-safe.

The easiest way to implement a custom lifestyle is to derive from AbstractLifestyle-
Manager as shown in the following listing.

public partial class CacheLifestyleManager :
 AbstractLifestyleManager
{
 private ILease lease;

 public ILease Lease
 {
 get
 {
 if (this.lease == null)
 {
 this.lease = this.ResolveLease();
 }
 return this.lease;
 }
 }

 private ILease ResolveLease()
 {
 var defaultLease = new SlidingLease(TimeSpan.FromMinutes(1));
 if (this.Kernel == null)
 {
 return defaultLease;
 }
 if (this.Kernel.HasComponent(typeof(ILease)))
 {
 return this.Kernel.Resolve<ILease>();
 }
 return defaultLease;
 }
}

One of the things you get from deriving from AbstractLifestyleManager B is that
the Init method is implemented for you. You can override it, but it isn’t necessary in
this case. All it does is save the injected services so that you can later access them via
protected properties.

 To implement the functionality that decides when a cached object times out, you
need an instance of ILease. If you had been able to use CONSTRUCTOR INJECTION you could
have requested an ILease through the constructor in three lines of code (including a
Guard Clause). Now you need 12 lines of code because you need to deal with the
many potential states of the CacheLifestyleManager: was the Init method invoked
yet? Does the Kernel have an ILease?

Listing 10.2 Defining a custom lifestyle

Derive from
AbstractLifestyleManagerb

Lazy
load

c

Attempt to
locate ILease

d

330 CHAPTER 10 Castle Windsor
 You deal with this by exposing a lazy-loaded Lease property c. The first time you
read it, it invokes the ResolveLease method to figure out what the lease should be. It
uses a default lease but attempts to look up an alternative through the Kernel d—if
there’s a Kernel at all. I think this is a pretty good illustration of the demerits of
METHOD INJECTION. Notice that if anyone reads the Lease property before the Init
method is called, the default lease will be used even if the Kernel contains an ILease
component. However, because Castle Windsor knows nothing of the Lease property,
this doesn’t happen in normal use.

NOTE The ILease interface used in this example is a custom interface
defined for this particular purpose. It isn’t System.Runtime.Remoting.Life-
time.ILease, which has a similar, but much more complex API.

Compared to all the hoops you must jump through to inject a DEPENDENCY into your
custom lifestyle, implementing the Resolve method is simpler, as you can see in the
following listing.

private object obj;

public override object Resolve(CreationContext context)
{
 if (this.Lease.IsExpired)
 {
 base.Release(this.obj);
 this.obj = null;
 }
 if (this.obj == null)
 {
 this.Lease.Renew();
 this.obj = base.Resolve(context);
 }
 return this.obj;
}

Every time CacheLifestyleManager is asked to resolve the component, it starts by
checking whether the current lease is expired. If this is the case, it Releases the cur-
rent cached instance and nulls it out B. The Release method is explicitly invoked on
the base class and through it to the IComponentActivator, as shown in figure 10.5.
This is important to do because it gives the underlying implementation a chance to
dispose of the instance if it implements IDisposable.

 The next thing to do is to check whether the cached instance is null. This can be
the case if it was released just previously but will also be the case the first time the
Resolve method is invoked. In both cases, you renew the lease c and ask the base
implementation to Resolve the component for you. This is where the base class
invokes the appropriate method on IComponentActivator.

 In this custom lifestyle, you override the Release method to do nothing:

Listing 10.3 Implementing the Resolve method

Expire
object

b

Renew
leasec

331Managing lifetime
public override bool Release(object instance)
{
 return false;
}

This may seem strange but is a fairly normal thing to do. You should consider that the
Release method is a Hook Method5 that is part of Castle Windsor’s lifestyle SEAM.
You’re being informed that the component can be released, but it doesn’t mean that
you have to do it. As an example, the SINGLETON lifestyle per definition never releases
its instance, so it has the same implementation of the Release method as the one
shown previously.

 In the case of the CacheLifestyleManager, you do release the cached instance
from time to time, but, as is shown in listing 10.3, you do it from within the Resolve
method, when it’s appropriate.

 The CacheLifestyleManager caches the resolved instance until the lease expires,
and then resolves a new instance and renews the lease. There are several ways we
could implement the lease logic, but we’ll only look at one.

IMPLEMENTING A LEASE

You need at least one implementation of ILease to go with the CacheLifestyle-
Manager. The SlidingLease class expires after a fixed time span, but you could create
other implementations that expire on fixed times of the day, or after they have
resolved the component a preset number of times.

NOTE The ILease interface and the SlidingLease class shown here have
nothing to do with Castle Windsor, but I wanted to show them for complete-
ness’ sake. You can skip ahead and read about how to register the custom life-
time if you don’t care about SlidingLease.

The following listing shows the SlidingLease implementation.

public class SlidingLease : ILease
{
 private readonly TimeSpan timeout;
 private DateTime renewed;

 public SlidingLease(TimeSpan timeout)
 {
 this.timeout = timeout;
 this.renewed = DateTime.Now;
 }

 public TimeSpan Timeout
 {
 get { return this.timeout; }
 }

5 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (New York: Addison-Wesley,
1994), 328.

Listing 10.4 Implementing an ILease

332 CHAPTER 10 Castle Windsor
 public bool IsExpired
 {
 get { return DateTime.Now >
 this.renewed + this.timeout; }
 }

 public void Renew()
 {
 this.renewed = DateTime.Now;
 }
}

The SlidingLease class implements ILease by keeping track of when the lease was
renewed. Every time you ask it whether it’s expired, it compares the current time against
the renewal time and the timeout B. When you renew the lease, it sets the renewal
time to the current time c. I could’ve used the TimeProvider AMBIENT CONTEXT from
section 4.4.4 instead of DateTime.Now, but I chose to keep things as simple as possible.

 Now that you know how to implement a custom lifestyle and any custom DEPENDEN-
CIES it might have, you only need to learn how to use them.

CONFIGURING COMPONENTS WITH A CUSTOM LIFESTYLE

Using the CacheLifestyleManager with a component is easy and works in the same
way as specifying any other lifestyle:

container.Register(Component
 .For<IIngredient>()
 .ImplementedBy<SauceBéarnaise>()
 .LifeStyle.Custom<CacheLifestyleManager>());

You use a generic overload of the Custom method to specify which ILifestyle-
Manager type to use, but there’s also an overload that takes a Type instance.

 Unless you remember to also register an ILease, the CacheLifestyleManager will
use the default lease of a SlidingLease with a one-minute timeout. Here’s one way
you can register a custom ILease:

container.Register(Component
 .For<ILease>()
 .Instance(new SlidingLease(TimeSpan.FromHours(1))));

This will register an instance of SlidingLease with a one-hour time span. You must
remember to register the ILease before using the custom lifestyle, because otherwise
the default lease will be used instead.

 Developing a custom lifestyle for Castle Windsor isn’t particularly difficult. In
many cases, the AbstractLifestyleManager class provides a good starting point, and
we only need to override the methods that we particularly care about. Often, this will
be the Resolve method, although we can leave the few other methods at their default
implementations. It will only be in rare cases that we need to create a custom lifestyle,
because Castle Windsor’s standard set of lifestyles is quite comprehensive.

 This completes our tour of LIFETIME MANAGEMENT with Castle Windsor. Components
can be configured with mixed lifestyles, and this is even true when we register multiple

Expire if past
timeout

b

Renewc

333Working with multiple components
implementations of the same ABSTRACTION. We have yet to look at how to work with
multiple components, so let’s now turn our attention in that direction.

10.3 Working with multiple components
DI CONTAINERS thrive on distinctness but have a hard time with ambiguity. When using
CONSTRUCTOR INJECTION, a single constructor is preferred over overloaded constructors
because it’s clear which constructor to use when there’s no choice. This is also the case
when mapping from ABSTRACTIONS to concrete types. If we attempt to map multiple
concrete types to the same ABSTRACTION, we introduce ambiguity.

 Despite the undesirable qualities of ambiguity, we often need to work with multiple
implementations of a single interface. This can be the case in these situations:

■ Different concrete types should be used for different consumers.
■ DEPENDENCIES are sequences.
■ Decorators6 are in use.

In this section, we’ll look at each of these cases and see how Castle Windsor addresses
each one in turn. When we’re done, you should be able to register and resolve compo-
nents even when multiple implementations of the same ABSTRACTION are in play.

 Let’s first take a look at how we can provide more fine-grained control than what
AUTO-WIRING provides.

10.3.1 Selecting among multiple candidates

AUTO-WIRING is convenient and powerful but provides us with less control. As long as all
ABSTRACTIONS are distinctly mapped to concrete types we have no problems, but as
soon as we introduce more implementations of the same interface, ambiguity rears its
ugly head.

 Let’s first recap how Castle Windsor deals with multiple registrations of the
same ABSTRACTION.

REGISTERING MULTIPLE IMPLEMENTATIONS OF THE SAME SERVICE

As you saw in section 10.1.2, you can register multiple components for the
same service:

container.Register(Component
 .For<IIngredient>()
 .ImplementedBy<Steak>());
container.Register(Component
 .For<IIngredient>()
 .ImplementedBy<SauceBéarnaise>());

This example registers both the Steak and SauceBéarnaise classes with the IIngredient
service. The first registration wins, so if you resolve IIngredient with container
.Resolve<IIngredient>() you’ll get a Steak instance. However, a call to container
.ResolveAll<IIngredient>() returns an array of IIngredient that contains both

6 Gamma, Design Patterns, 175.

334 CHAPTER 10 Castle Windsor
Steak and SauceBéarnaise. That is, subsequent registrations aren’t forgotten, but are
harder to get at.

TIP The first registration for a given type wins. It defines the default registra-
tion for that type.

WARNING If there are registrations of a given type that can’t be resolved
because of missing DEPENDENCIES, ResolveAll silently ignores them and only
returns those it can resolve. Because no exception is thrown, this can some-
times lead to some hard-to-understand bugs.7

The following listing shows one way you can provide hints that can later be used to
select among multiple candidates.

container.Register(Component
 .For<IIngredient>()
 .ImplementedBy<Steak>()
 .Named("meat"));
container.Register(Component
 .For<IIngredient>()
 .ImplementedBy<SauceBéarnaise>()
 .Named("sauce"));

You can give each registration a unique name that can later be used to distinguish this
particular component from other components.

 Given the named components in listing 10.5, you can resolve both Steak and
SauceBéarnaise like this:

var meat = container.Resolve<IIngredient>("meat");
var sauce = container.Resolve<IIngredient>("sauce");

Notice that you supply the same key that you used to name the component during
registration.

 Given that you should always resolve services in a single COMPOSITION ROOT, you
should normally not expect to deal with such ambiguity on this level.

TIP If you find yourself invoking the Resolve method with a specific key,
consider if you can change your approach to be less ambiguous.

However, you can use named components to select among multiple alternatives when
configuring DEPENDENCIES for a given service.

7 As I’m completing the book, this has changed in the Castle Windsor code base, although no release yet
includes this change. However, when you’re reading this book, the current version of Castle Windsor most
likely has a different behavior than described here.

Listing 10.5 Naming components

335Working with multiple components
REGISTERING NAMED DEPENDENCIES

As useful as AUTO-WIRING is, sometimes you need to override the normal behavior to
provide fine-grained control over which DEPENDENCIES go where; but it may also be that
you need to address an ambiguous API. As an example, consider this constructor:

public ThreeCourseMeal(ICourse entrée,
 ICourse mainCourse, ICourse dessert)

In this case, you have three identically typed DEPENDENCIES that each represents a different
concept. In most cases, you want to map each of the DEPENDENCIES to a separate type. The
following listing shows how you could choose to register the ICourse mappings.

container.Register(Component
 .For<ICourse>()
 .ImplementedBy<Rillettes>()
 .Named("entrée"));
container.Register(Component
 .For<ICourse>()
 .ImplementedBy<CordonBleu>()
 .Named("mainCourse"));
container.Register(Component
 .For<ICourse>()
 .ImplementedBy<MousseAuChocolat>()
 .Named("dessert"));

Like listing 10.6, you register three named components, mapping the Rilettes to a
registration named “entrée” (American readers are reminded that this is the proper
word for starter or appetizer), CordonBleu to a registration named “mainCourse,” and
the MousseAuChocolat to a registration named “dessert.”

 Given this configuration, you can now register the ThreeCourseMeal class, as
shown in the following listing.

container.Register(Component
 .For<IMeal>()
 .ImplementedBy<ThreeCourseMeal>()
 .ServiceOverrides(new
 {
 entrée = "entrée",
 mainCourse = "mainCourse",
 dessert = "dessert"
 }));

You can explicitly provide overrides for those parameters (or properties) that you wish
to explicitly address. In the case of the ThreeCourseMeal class, you need to address all
three constructor parameters. However, in other cases, you may only want to override
one of several parameters; that’s also possible. The ServiceOverrides method
enables you to supply an anonymously typed object that specifies which parameters to

Listing 10.6 Registering named courses

Listing 10.7 Overriding AUTO-WIRING

336 CHAPTER 10 Castle Windsor
override. If you don’t want to use anonymous types, other overloads of the Service-
Overrides methods allow us to supply an array of specialized ServiceOverride
instances, or an IDictionary.

 Using an anonymous type, you match the parameters that you want to override
with a named registration. In the first case, you match the entrée parameter name with
a registration named “entrée.” In this case, the parameter names are identical to the
registration names, but this need not be so. The other parameters are mapped in a
similar fashion.

WARNING Although an anonymous type may look like strong typing, used in
this fashion it’s another group of magic strings. In the end it’s converted to a
dictionary of names and values. The property names of the anonymous type
must match the parameter names of the corresponding constructor. If you
change the parameter name in the constructor the ServiceOverride will
stop working until you correct it, so don’t rely on this feature more than
absolutely necessary.

Because the ServiceOverrides method depends on a text-based match between
parameter names and configured overrides, it’s best not to rely on it too much. If you
feel compelled to use it only to deal with ambiguity, a better solution is to design the
API to get rid of that ambiguity. It often leads to a better overall design.

 In the next section, you’ll see how to refactor the current ThreeCourseMeal class to
a more general implementation and, at the same time, get rid of the inherent ambigu-
ity. You can do that by allowing an arbitrary number of courses in a meal—but that
compels you to understand how Castle Windsor wires lists and sequences.

10.3.2 Wiring sequences

In section 6.4.1, we discussed how CONSTRUCTOR INJECTION acts as a warning system for
SINGLE RESPONSIBILITY PRINCIPLE violations. The lesson then was that, instead of viewing
constructor over-injection as a weakness of the CONSTRUCTOR INJECTION pattern, we
should rather rejoice that it makes problematic design so obvious.

 When it comes to DI CONTAINERS and ambiguity, we see a similar relationship. DI
CONTAINERS generally don’t deal with ambiguity in a graceful manner. Although we can
make a good DI CONTAINER like Castle Windsor deal with it, it often feels awkward. This
is often an indication that we could improve upon the design of our own code.

TIP If configuring a certain part of your API is difficult with Castle Windsor,
consider whether you can make your API more explicit and distinct. Not only
will it make it easier to configure with Castle Windsor, but it’s also likely to
make the overall design better.

Instead of feeling constrained by Castle Windsor, we should embrace its conventions
and let it guide us toward a better and more consistent design. In this section, we’ll
look at an example that will demonstrate how we can refactor away from ambiguity, as
well as show how Castle Windsor deals with sequences, arrays, and lists.

337Working with multiple components
REFACTORING TO A BETTER COURSE

In section 10.3.1, you saw how the ThreeCourseMeal and its inherent ambiguity
forced us to abandon AUTO-WIRING and, instead, use an explicit ServiceOverride. This
should prompt you to reconsider the API design.

 A simple generalization moves us toward an implementation of IMeal that takes an
arbitrary number of ICourse instances instead of exactly three, as was the case with
the ThreeCourseMeal class:

public Meal(IEnumerable<ICourse> courses)

Notice that, instead of requiring three distinct ICourse instances in the constructor,
the single DEPENDENCY on an IEnumerable<ICourse> instance allows you to provide
any number of courses to the Meal class—from zero to … a lot! This solves the issue
with ambiguity because there’s now only a single DEPENDENCY. In addition, it also
improves the API and implementation by providing a single, general-purpose class
that can model many different types of meal, from a simple meal with a single course
to an elaborate, 12-course dinner.

 Given the registration of courses shown in listing 10.6, you might expect to be able
to automatically resolve IMeal if you register it like this:

container.Register(Component
 .For<IMeal>()
 .ImplementedBy<Meal>());

However, when you try to resolve IMeal, the container throws an exception. Although
the exception is far from self-explanatory, the reason is that you haven’t told the con-
tainer how it should resolve IEnumerable<ICourse>. Let’s review some different
options that are available.

CONFIGURING ARRAYS

Castle Windsor understands arrays pretty well. Because arrays implement IEnumera-
ble<T>, you can explicitly configure an array for the courses constructor parameter.
This can be done in a way that’s similar to the syntax you saw in listing 10.7. In the fol-
lowing listing, you see the same courses specified as services.

container.Register(Component
 .For<IMeal>()
 .ImplementedBy<Meal>()
 .ServiceOverrides(new
 {
 courses = new[]
 {
 "entrée",
 "mainCourse",
 "dessert"
 }
 }));

Listing 10.8 Explicitly defining an array of services

Override
courses
parameter

b

338 CHAPTER 10 Castle Windsor
Similar to listing 10.7, you use the ServiceOverrides method when you want to over-
ride AUTO-WIRING for specific parameters. In this case, you want to explicitly configure
the courses constructor parameter B of the Meal class. Because this parameter is an
IEnumerable<ICourse> you must now specify a sequence of ICourse services.

 Because arrays implement IEnumerable<T>, you can define an array of named ser-
vices. You do this by creating an array of service names. These names are identical to
the names assigned to each registration in listing 10.6, and Castle Windsor is so kind as
to translate this array of service names to an array of ICourse instances at runtime. This
is analogous to listing 10.7, with the only difference being that the fluent registration
API natively understands and translates arrays of service names to arrays of services.

 Although the refactoring from ThreeCourseMeal to Meal looked like a step in the
right direction, you seem to have gained nothing in the area of configuration awk-
wardness. Is it possible to do better?

 It’s certainly possible to make the configuration simpler, but at the expense of loss
of control. As figure 10.6 illustrates, sometimes we need to be able to pick from the list
of all configured services of a given type, but at other times, we want them all.

 The example you saw corresponds to the situation on the left, where we hand-pick
an explicit list of named services form the conceptually larger list of all configured ser-
vices of the given type. In other cases, we might prefer a simpler convention where we
use all available services of the required type. Let’s see how this can be accomplished.

Figure 10.6 There is more than one way to deal with enumerable DEPENDENCIES. In the situation to
the right, we want to resolve all services configured in the container. In the situation to the left, we
only want a subset.

339Working with multiple components
RESOLVING SEQUENCES

Castle Windsor doesn’t resolve arrays or IEnumerable<T> by default. This may seem a
little surprising, because invoking ResolveAll returns an array:

IIngredient[] ingredients = container.ResolveAll<IIngredient>();

However, if you try to let the container resolve a component that depends on an array
of services, you’ll get an exception. The correct way to deal with this issue is to register
the built-in CollectionResolver with the container, like this:

container.Kernel.Resolver.AddSubResolver(
 new CollectionResolver(container.Kernel));

The CollectionResolver will enable the container to resolve sequences of DEPENDEN-
CIES such as IEnumerable<T>. With that, you can now resolve the Meal class without
using explicit ServiceOverrides. Given this registration

container.Register(Component
 .For<IMeal>()
 .ImplementedBy<Meal>());

you can resolve IMeal with the help of the CollectionResolver:

var meal = container.Resolve<IMeal>();

This will create an instance of Meal with all ICourse services from the container.
 Consumers that rely on lists of DEPENDENCIES may be the most intuitive use of multi-

ple registrations of the same ABSTRACTION, but before we leave this subject completely,
we need to look at one last, and perhaps a bit surprising, case: a case where multiple
registrations come into play.

10.3.3 Wiring Decorators

In section 9.1.2, we discussed how the Decorator design pattern is useful when imple-
menting CROSS-CUTTING CONCERNS. By definition, Decorators introduce multiple types
of the same ABSTRACTION. At the very least, we have two implementations of an ABSTRAC-
TION: the Decorator itself and the decorated type. If we stack the Decorators, we might
have even more.

 This is another example of having multiple registrations of the same service.
Unlike the previous sections, these registrations aren’t conceptually equal, but, rather,
DEPENDENCIES of each other. In this section, you’ll see how to configure Castle Windsor
to deal with this pattern.

EXPLICITLY WIRING DECORATORS

Castle Windsor requires us to register all components that we wish to use. When it
comes to Decorators, we must register both the Decorator and the decorated types.
Because both types implement the same interface, we introduce ambiguity that can be
addressed. As the following listing shows, we can do this explicitly.

340 CHAPTER 10 Castle Windsor
container.Register(Component
 .For<IIngredient>()
 .ImplementedBy<Breading>()
 .ServiceOverrides(new
 {
 ingredient = "cutlet"
 }));
container.Register(Component
 .For<IIngredient>()
 .ImplementedBy<VealCutlet>()
 .Named("cutlet"));

As we discussed in the introduction to chapter 9, you can view breading as a decora-
tion of a veal cutlet; register a Cotoletta. When you resolve the Cotoletta, you want a
reference to the breading which should contain the veal cutlet. You first register the
Breading. Recall that, in Castle Windsor, the first registration always wins. You explic-
itly use the ServiceOverrides method to configure which named service should be
used for the ingredient constructor parameter. Notice that you reference a compo-
nent named cutlet, although that component hasn’t yet been registered at that point.
This is possible because the order of registration matters less. You can register compo-
nents before you register their DEPENDENCIES and it will all work, as long as everything is
properly registered when you attempt to resolve the services.

 This means that you must still register the veal cutlet before resolving IIngredient.
You subsequently register it with the cutlet name. This name matches the service name
supplied to the ingredient constructor parameter in the previous configuration.

 Although such explicit configuration of Decorators is possible and sometimes nec-
essary, Castle Windsor natively understands the Decorator pattern and provides a
more implicit way to do the same thing.

IMPLICITLY WIRING DECORATORS

Castle Windsor enables us to implicitly configure Decorators by registering them in
the correct order. Recall that the first registration wins, in the sense that this is the
type returned from a call to the Resolve method; we must register the outermost Dec-
orator first.

 By definition, a Decorator has a DEPENDENCY on another instance of the same type.
If we don’t explicitly define which registration to use, we might expect a circular ref-
erence to occur. However, Castle Windsor is smarter than that. Instead, it picks the
next registration of the appropriate type. This means that instead of listing 10.9, you
can write

container.Register(Component
 .For<IIngredient>()
 .ImplementedBy<Breading>());
container.Register(Component
 .For<IIngredient>()
 .ImplementedBy<VealCutlet>());

Listing 10.9 Explicitly configuring a Decorator

341Configuring difficult APIs
There’s no need to explicitly name components or use the ServiceOverrides
method to configure DEPENDENCIES. When you resolve IIngredient, Castle Windsor
will AUTO-WIRE the Breading class with the next available IIngredient service, which is
the VealCutlet class.

NOTE The next logical progression from Decorator is INTERCEPTION. Castle
Windsor has excellent INTERCEPTION capabilities, but because section 9.3.3
already contains a comprehensive example, I’ll refer you there instead of
repeating it here.

Castle Windsor lets us work with multiple components in several different ways. We
can register components as alternatives to each other, as peers resolved as sequences,
or as hierarchical Decorators. In many cases, Castle Windsor will figure out what to
do, but we can always use the ServiceOverrides method to explicitly define how ser-
vices are composed if we need more explicit control.

 This may also be the case when we need to deal with APIs that deviate from CON-
STRUCTOR INJECTION. So far, you’ve seen how to configure components in a Windsor-
Container, including how to specify lifetime styles and how to deal with multiple
components; but, until now, we’ve allowed the container to wire DEPENDENCIES by
implicitly assuming that all components use CONSTRUCTOR INJECTION. Because this isn’t
always the case, in the next section we’ll review how we can deal with classes that must
be instantiated in special ways.

10.4 Configuring difficult APIs
Until now, we’ve considered how we can configure components that use CONSTRUCTOR

INJECTION. One of the many benefits of CONSTRUCTOR INJECTION is that DI CONTAINERS,
such as Castle Windsor, can easily understand how to compose and create all classes in
a dependency graph.

 This becomes less clear when APIs are less well-behaved. In this section, you’ll see
how to deal with primitive constructor arguments, static factories, and PROPERTY INJEC-
TION. These all require our special attention. Let’s start by looking at classes that take
primitive types, such as strings or integers, as constructor arguments.

10.4.1 Configuring primitive Dependencies

As long as we inject ABSTRACTIONS into consumers, all is well. But it becomes more diffi-
cult when a constructor depends on a primitive type, such as a string, number, or
enum. This is most often the case for data access implementations that take a connec-
tion string as a constructor parameter, but is a more general issue that applies to all
strings and numbers.

 Conceptually, it doesn’t make much sense to register a string or number as a com-
ponent in a container, and, with Castle Windsor, it doesn’t even work. If we try to
resolve a component with a primitive DEPENDENCY, we’ll get an exception even though
the primitive type was previously registered.

342 CHAPTER 10 Castle Windsor
 Consider, as an example, this constructor:

public ChiliConCarne(Spiciness spiciness)

In this example, Spiciness is an enum:

public enum Spiciness
{
 Mild = 0,
 Medium,
 Hot
}

WARNING As a rule of thumb, enums are code smells and should be refac-
tored to polymorphic classes.8 However, they serve us well for this example.

You need to explicitly tell Castle Windsor how to resolve the spiciness constructor
parameter. The following listing shows how it’s possible, using syntax very much like
the ServiceOverrides method, but with a different method.

container.Register(Component
 .For<ICourse>()
 .ImplementedBy<ChiliConCarne>()
 .DependsOn(new
 {
 spiciness = Spiciness.Hot
 }));

Instead of the ServiceOverrides method that overrides AUTO-WIRING, you can use the
DependsOn method that enables you to supply instances for specific DEPENDENCIES. In this
case, you supply the value Spiciness.Hot for the spiciness constructor parameter.

NOTE The difference between ServiceOverrides and DependsOn is that, with
DependsOn, we supply actual instances that are used for the given parameter or
property, whereas with ServiceOverrides, we supply names or types of services
that will be resolved for the given parameter or property.

WARNING As is the case with ServiceOverrides, the DependsOn method
relies on a match between the parameter name and the name of the anony-
mous property supplied to DependsOn. If we rename the parameter we must
also edit the DependsOn call.

Whenever we need to supply a primitive value, such as a connection string, we can
define the value explicitly in code (or pull if from the application configuration) and
assign it using the DependsOn method. The good thing about the DependsOn method is
that we don’t need to explicitly invoke the constructor or supply any other DEPENDEN-
CIES where AUTO-WIRING is more appropriate. But the disadvantage is that it’s more brit-
tle in the face of refactoring.

8 Martin Fowler et al., Refactoring: Improving the Design of Existing Code (New York: Addison-Wesley, 1999), 82.

Listing 10.10 Supplying a primitive constructor argument value

343Configuring difficult APIs
 There’s a more robust alternative that lets us explicitly invoke the constructor. This
can also be used to deal with classes that don’t have traditional constructors.

10.4.2 Registering components with code blocks

Some classes can’t be instantiated through a public constructor. Instead, you must use
some sort of factory to create instances of the type. This is always troublesome for DI
CONTAINERS because, by default, they look after public constructors.

 Consider this example constructor for the public JunkFood class:

internal JunkFood(string name)

Even though the JunkFood class is public, the constructor is internal. Obviously,
instances of JunkFood should be created through the static JunkFoodFactory class:

public static class JunkFoodFactory
{
 public static IMeal Create(string name)
 {
 return new JunkFood(name);
 }
}

From Castle Windsor’s perspective, this is a problematic API because there are no
unambiguous and well-established conventions around static factories. It needs
help—and we can provide it with a code block, as shown in the following listing.

container.Register(Component
 .For<IMeal>()
 .UsingFactoryMethod(() =>
 JunkFoodFactory.Create("chicken meal")));

You can use the UsingFactoryMethod method to define a code block that creates
the appropriate instance—in this case, by calling the Create method on JunkFood-
Factory with the desired parameter.

 This code block will be invoked at the appropriate time according to the compo-
nent’s configured lifestyle. In this case, because you didn’t explicitly define a life-
style, SINGLETON is the default and the Create method will be called only once, no
matter how many times you resolve IMeal. Had you instead configured the compo-
nent to use the TRANSIENT lifestyle, the Create method would be invoked each time
we resolve IMeal.

 Apart from enabling more exotic object initialization than normal public construc-
tors, using a code block also gives you a more type-safe alternative to supplying primi-
tives than the DependsOn method you saw in section 10.4.1:

container.Register(Component
 .For<ICourse>()
 .UsingFactoryMethod(() =>
 new ChiliConCarne(Spiciness.Hot)));

Listing 10.11 Configuring a factory method

344 CHAPTER 10 Castle Windsor
In this case, you use the code block to explicitly create a new instance of the Chili-
ConCarne class with the desired Spiciness. This adds type-safety, but totally disables
AUTO-WIRING for the type in question.

TIP There are more advanced overloads of UsingFactoryMethod that enable
you to resolve DEPENDENCIES from the container. This is useful when you want
to use the UsingFactoryMethod to explicitly assign only a single of several
parameters, but must supply all the other parameters in order to compile.

The UsingFactoryMethod is a good tool when you must deal with classes that can’t be
created through a public constructor. As long as there’s some public API you can invoke
to create the desired instance of the class, you can use the UsingFactoryMethod method
to explicitly define the code block that will create the requested instance.

 The last common deviation from CONSTRUCTOR INJECTION we’ll examine here is
PROPERTY INJECTION.

10.4.3 Wiring with Property Injection

PROPERTY INJECTION is a less well-defined form of DI because you aren’t forced by the
compiler to assign a value to a writable property. Even so, Castle Windsor natively
understands PROPERTY INJECTION and assigns values to writable properties, if it can.

 Consider this CaesarSalad class:

public class CaesarSalad : ICourse
{
 public IIngredient Extra { get; set; }
}

It’s a common misconception that a Caesar Salad includes chicken. At its core, a Cae-
sar Salad is a salad, but, because it tastes great with chicken, many restaurants offer the
option to add chicken as an extra ingredient. The CaesarSalad class models this by
exposing a writable property named Extra.

 If you register only the CaesarSalad class without any Chicken, the Extra property
will not be assigned:

container.Register(Component
 .For<ICourse>()
 .ImplementedBy<CaesarSalad>());

Given this registration, resolving ICourse will return an instance of CaesarSalad with-
out any Extra ingredient. However, you can change the outcome by adding Chicken
to the container:

container.Register(Component
 .For<IIngredient>()
 .ImplementedBy<Chicken>());
container.Register(Component
 .For<ICourse>()
 .ImplementedBy<CaesarSalad>());

345Summary
Now, when you resolve ICourse, the resulting CaesarSalad instance’s Extra property
will be an instance of the Chicken class. That is, Castle Windsor scans a new instance
for writable properties and assigns a value if it can provide a component that matches
the type of the property.

TIP In cases where you need to explicitly control how properties are
assigned, you can use the ServiceOverrides method.

In this section, you’ve seen how to deal with APIs that deviate from plain vanilla CON-
STRUCTOR INJECTION. You can address primitive constructor arguments with the
DependsOn method or with UsingFactoryMethod that also supports factory methods
and other alternatives to public constructors. PROPERTY INJECTION is natively supported
by Castle Windsor.

10.5 Summary
The overview of Castle Windsor provided in this chapter only scratches the surface of
what is possible with one of the most mature and comprehensive DI CONTAINERS avail-
able. Because SEAMS are everywhere, we can customize it to our heart’s content, and
many extra features are available.

 In this chapter we focused on the most common pieces of Windsor’s API. The
material presented here covers mainstream usage of the container as well as hints of
more advanced parts. It’s all you need to know if your code base follows proper DI pat-
terns and conventions; armed with this knowledge, you should be able to wire up
entire applications with Castle Windsor.

 Even as a bare-bones DI CONTAINER, Castle Windsor is formidable. It supports
almost any feature we could ask for. As one of the oldest .NET DI CONTAINERS around, it
benefits greatly from years of development. Yet it doesn’t show its age; rather, it sup-
ports many new ideas and modern language constructs. Still, perhaps the greatest dis-
advantage of Castle Windsor is that the big feature set is realized at the expense of a
somewhat heterogeneous API. Although it’s easy to get started with the Windsor-
Container class, more advanced scenarios can be harder to implement unless you
truly master the entire API. Luckily, because the Castle Windsor support forum is
active and monitored by skilled and helpful developers, you’re likely to get a quick
response if you have a question.

 Although the advanced API may seem daunting, it’s as easy to get started with Cas-
tle Windsor as with any other DI CONTAINER: create an instance of WindsorContainer,
configure it, and resolve components with it.

 There are several ways to configure the container: CODE AS CONFIGURATION, XML,
and convention-based configuration are all possible, and we can even mix and match
all three to arrive at an optimal solution.

 A broad range of lifetime styles are available, including SINGLETON, TRANSIENT, and
WEB REQUEST CONTEXT. If the included lifestyles aren’t sufficient, we can also imple-
ment custom lifestyles—but this should be a rare occurrence.

346 CHAPTER 10 Castle Windsor
 Support for multiple components for the same ABSTRACTION seems to be one of
Castle Windsor’s weaker points. It seems to understand arrays better than other types
of sequences or lists, but we can address this shortcoming relatively easily. The exact
way this is done depends on whether we want to resolve all or only a subset of compo-
nents of the same service.

 Although we should prefer to rely on AUTO-WIRING, the ServiceOverrides method
enables us to explicitly configure how DEPENDENCIES are assigned to components.

 Sometimes components don’t use CONSTRUCTOR INJECTION, but may instead use
PROPERTY INJECTION or require use of separate factory classes. Such scenarios are also
supported through various methods.

 As one of the most versatile DI CONTAINERS available, there’s little reason not to use
Castle Windsor, but that doesn’t preclude alternatives that are just as good. In the next
chapter, we’ll look at another mature and advanced DI CONTAINER: StructureMap.

StructureMap
In the previous chapter, we looked at the Castle Windsor DI CONTAINER to see how
the principles and patterns described in parts 1–3 can be applied. In this chapter,
we’ll do exactly the same with another DI CONTAINER: StructureMap.

 StructureMap is the oldest DI CONTAINER for .NET—it has been around longer
than the others. Despite its age, it’s still being actively developed and has many
modern features, so we should view its age mostly as a testament to its maturity. It’s
also one of the most commonly used DI CONTAINERS.1

 In this chapter, we’ll examine how StructureMap can be used to apply the
principles and patterns laid forth in parts 1–3. Figure 11.1 shows the structure of
the chapter.

Menu
■ Introducing StructureMap
■ Managing lifetime
■ Working with multiple components
■ Configuring difficult APIs

1 Once more I need to stress that there are no scientifically sound statistics about DI CONTAINER usage, so
all such claims are based on ad hoc internet polls, and so on. Take it for what it is.
347

348 CHAPTER 11 StructureMap
The first section provides an overall introduction to StructureMap and demonstrates
how to configure and resolve components. The next three sections each deal with
usage patterns that require a bit of extra attention; you can read them all in order, or
you can skip some and read only the ones that interest you.

 This chapter should enable you to get started, as well as deal with the most com-
mon issues that may come up as you use StructureMap on a day-to-day basis. It isn’t a
complete treatment of StructureMap—that would take several more chapters, or per-
haps a whole book in itself.

 You can read the chapter in isolation from the rest of part 4 specifically to learn
about StructureMap, or you can read it together with the other chapters in part 4 to
compare DI CONTAINERS. The focus of this chapter is to show how StructureMap relates
to and implements the patterns and principles described in parts 1–3.

11.1 Introducing StructureMap
In this section, you’ll learn where to get StructureMap, what you get, and how you
start using it. We’ll also look at common configuration options, as well as how to pack-
age configuration settings into reusable components. Table 11.1 provides fundamen-
tal information that you’re likely to need to get started.

Table 11.1 StructureMap at a glance

Question Answer

Where do I get it? Go to http://structuremap.github.com/structuremap/index.html,
and click the Download the Latest Release link.
From Visual Studio 2010 you can also get it via NuGet. The pack-
age name is structuremap.

What’s in the download? You can download a .zip file with precompiled binaries. You can
also get the source code and compile it yourself.
The binaries are .dll files that you can place wherever you like and
reference from your own code.

Figure 11.1 This chapter is divided into four sections. The first section introduces the
StructureMap API and should be considered a prerequisite for the next three sections. Each of
these can be read independently of each other, although the fourth section uses some methods
that are introduced in the third section. These methods have relatively self-explanatory names, so
you may be able to read the fourth section without reading the third, but on the other hand you may
also find that you need to refer back to that section occasionally.

http://structuremap.github.com/structuremap/index.html

349Introducing StructureMap
As is also the case with Castle Windsor, using StructureMap follows a simple rhythm,
illustrated by figure 11.2.

WARNING The StructureMap API has changed a lot recently. It’s often the
case that we find a code example on the internet that uses a method or class
that isn’t available in the current version; most likely, it was renamed or other-
wise refactored. Although all code examples compiled and worked when this

Which platforms are supported? .NET 3.5 SP1, .NET 4.

How much does it cost? Nothing. It’s open source software.

Where can I get help? There’s no guaranteed support, but you’re likely to get help in the
official forum at http://groups.google.com/group/structuremap-
users.

On which version is the chapter
based?

2.6.1.

Container or ObjectFactory?
Earlier versions of StructureMap used a static ObjectFactory class as a single,
application-wide container. It was used like this:

SauceBéarnaise sauce =
 ObjectFactory.GetInstance<SauceBéarnaise>();

Among several problems with using a static factory is that it encourages us to misuse
it as a SERVICE LOCATOR; use of the ObjectFactory class is now discouraged in favor
of container instances. There are still many examples on the StructureMap site (and
elsewhere) that use ObjectFactory code samples to demonstrate various Struc-
tureMap features, but we should consider these as rudiments of an earlier age.

In the rest of this chapter, we’ll ignore that ObjectFactory exists and focus exclu-
sively on container instances.

Table 11.1 StructureMap at a glance (continued)

Question Answer

Figure 11.2 The overall usage
pattern of StructureMap is simple:
First we configure the container, and
then we resolve components from
it. In the vast majority of cases,
we create an instance of the
Container class and completely
configure it before we start resolving
components from it. We resolve
components from the same instance
that we configure.

http://groups.google.com/group/structuremap-users
http://groups.google.com/group/structuremap-users

350 CHAPTER 11 StructureMap
chapter was written, some parts of the API might have changed between then
and when you’re reading this.

When you’re done with this section, you should have a good feeling for the overall
usage pattern of StructureMap, and you should be able to start using it in well-
behaved scenarios where all components follow proper DI patterns such as CONSTRUC-
TOR INJECTION. Let’s start with the simplest scenario and see how we can resolve objects
using a StructureMap container.

11.1.1 Resolving objects

The core service of any DI CONTAINER is to resolve components. In this section, we’ll
look at the API that enables us to resolve components with StructureMap.

 If you remember the discussion about resolving components with Castle Windsor,
you may recall that Windsor requires you to register all relevant components before
you can resolve them. This isn’t the case with StructureMap; if you request a concrete
type with a default constructor, no configuration is necessary. The simplest possible
use of StructureMap is this:

var container = new Container();
SauceBéarnaise sauce = container.GetInstance<SauceBéarnaise>();

Given an instance of StructureMap.Container, you can use the generic GetInstance
method to get an instance of the concrete SauceBéarnaise class. Because this class
has a default constructor, StructureMap automatically figures out how to create an
instance of it. No explicit configuration of the container is necessary.

NOTE The GetInstance<T> method is equivalent to Windsor’s Resolve<T>
method.

Because StructureMap supports AUTO-WIRING, even in the absence of a default con-
structor, it will be able to create instances without configuration as long as the
involved constructor parameters are all concrete types and the entire tree of parame-
ters have leaf types with default constructors.

 As an example, consider this Mayonnaise constructor:

public Mayonnaise(EggYolk eggYolk, OliveOil oil)

Whereas the mayonnaise recipe is a bit simplified, both EggYolk and OliveOil are
concrete classes with default constructors. Although Mayonnaise itself has no default
constructor, StructureMap can still create it without any configuration:

var container = new Container();
var mayo = container.GetInstance<Mayonnaise>();

This works because StructureMap is able to figure out how to create all required con-
structor parameters. However, as soon as we introduce loose coupling, we must config-
ure StructureMap by mapping ABSTRACTIONS to concrete types.

351Introducing StructureMap
MAPPING ABSTRACTIONS TO CONCRETE TYPES

Whereas StructureMap’s ability to AUTO-WIRE concrete types certainly can come in
handy from time to time, loose coupling normally requires you to map ABSTRACTIONS

to concrete types. Creating instances based on such maps is the core service offered by
any DI CONTAINER, but you must still define the map.

 In this example, you map the IIngredient interface to the concrete Sauce-
Béarnaise class, which allows you to successfully resolve IIngredient:

var container = new Container();
container.Configure(r => r
 .For<IIngredient>()
 .Use<SauceBéarnaise>());
IIngredient ingredient = container.GetInstance<IIngredient>();

The Configure method provides the opportunity to configure a Configuration-
Expression using a code block (see the following sidebar “Nested Closures” for an
explanation). The configuration statement reads almost like a sentence (or like
instructions from a cookbook): for IIngredient use SauceBéarnaise. The For method
enables you to define the ABSTRACTION while the Use method lets you define the con-
crete type that implements the ABSTRACTION.

 The strongly typed API provided by the ConfigurationExpression class helps pre-
vent configuration mistakes because the Use method has a generic constraint that
enforces that the type specified in the type argument must derive from the abstraction
type argument specified in the For method. The previous example code compiles
because SauceBéarnaise implements IIngredient.

 In many cases, the strongly typed API is all we need, and, because it provides
desirable compile-time checking, we should use it whenever we can. Still, there are
situations where we need a more weakly typed way to resolve services. This is
also possible.

RESOLVING WEAKLY TYPED SERVICES

Sometimes we can’t use a generic API because we don’t know the appropriate type at
design time. All we have is a Type instance, but we’d still like to get an instance of that
type. You saw an example of that in section 7.2, where we discussed ASP.NET MVC’s
DefaultControllerFactory class. The relevant method is this one:

protected internal virtual IController GetControllerInstance(
 RequestContext requestContext, Type controllerType);

Because you only have a Type instance, you can’t use generics, but must resort to a
weakly typed API. Fortunately, StructureMap offers a weakly typed overload of the
GetInstance method, which allows you to implement the GetControllerInstance
method, like this:

return (IController)this.container.GetInstance(controllerType);

352 CHAPTER 11 StructureMap
The weakly typed overload of GetInstance enables you to pass the controllerType
argument directly to StructureMap, but also requires you to explicitly cast the return
value to IController.

 No matter which overload of GetInstance you use, StructureMap guarantees that
it will return an instance of the requested type or throw an exception if there are
DEPENDENCIES that can’t be satisfied. When all required DEPENDENCIES have been prop-
erly configured, StructureMap can AUTO-WIRE the requested type.

 In the previous example, this.container is an instance of StructureMap
.IContainer. To be able to resolve the requested type, all loosely coupled DEPENDEN-
CIES must previously have been configured. There are many ways to configure Struc-
tureMap; the next section reviews the most common ones.

11.1.2 Configuring the container

As we discussed in section 3.2, there are several conceptually different ways to config-
ure a DI CONTAINER. Figure 11.3 reviews the options.

 Like other DI CONTAINERS with a long history, StructureMap started out with XML as
the main configuration source. However, many teams soon learned that defining type
registrations in XML is extraordinarily brittle, so today we prefer strongly typed config-
uration. This can be done with CODE AS CONFIGURATION, but is often more effectively
done with more convention-based AUTO-REGISTRATION.

 StructureMap supports all three approaches and even allows us to mix them all
within the same container; in this regard, it gives us all we could ask for. In this sec-
tion, you’ll see how you can use each of these three types of configuration sources.

CODE AS CONFIGURATION

In section 11.1.1, you already saw a brief glimpse of StructureMap’s strongly typed
configuration API. Here we’ll examine it in greater detail.

Figure 11.3 Conceptually different
configuration options. CODE AS

CONFIGURATION is strongly typed and
tends to be explicit. XML, on the other
hand, is late bound, but still explicit.
AUTO-REGISTRATION instead relies on
conventions that can be both strongly
typed and more loosely defined.

353Introducing StructureMap
There are several entry points into the configuration API. You’ve seen it invoked
through explicit use of the Configure method:

var container = new Container();
container.Configure(r => r
 .For<IIngredient>()
 .Use<SauceBéarnaise>());

Another alternative is to specify the exact same code block directly when creating the
Container instance:

var container = new Container(r => r
 .For<IIngredient>()
 .Use<SauceBéarnaise>());

The result is exactly the same; however, in this chapter, I’ll follow a consistent conven-
tion and prefer the Configure method over the constructor.

Nested Closures
StructureMap makes extensive use of the Nested Closure pattern,2 where configura-
tion is defined by code blocks (popularly known as lambda expressions). As an exam-
ple, this is the Configure method’s signature:

public void Configure(Action<ConfigurationExpression> configure);

The configure parameter is a delegate that takes a ConfigurationExpression as
input. In the code examples in this chapter, this parameter is usually denoted by r,
and I normally supply the delegate as a code block expressed using the r parameter.

As a side note: looking through the code samples on the StructureMap site and Jer-
emy Miller’s blog, sometimes the parameter name used in the code block is x, and
sometimes it is registry. Because there’s no consistent precedent, I have chosen
r (for registry) as the convention in this chapter; although r isn’t a particularly self-
explanatory variable name, the tiny scope of the code blocks in question makes it
more appropriate than a longer, less succinct name.3

The ConfigurationExpression class contains many methods we can use to config-
ure StructureMap; one of them is the For method we’ve already seen. As you’ll see
later in this section, another is the Scan method with this signature:

public void Scan(Action<IAssemblyScanner> action);

Notice that the Scan method itself takes a delegate as input. When you supply a code
block for the Scan method, you have a code block within a code block—hence the
name Nested Closure.

2 For a good introduction to Nested Closures, see Jeremy Miller, “Patterns in Practice: Internal Domain Specific
Languages,” MSDN Magazine (January 2010). Also available online at http://msdn.microsoft.com/en-us/
magazine/ee291514.aspx
This article is written by one of the main authors of StructureMap and uses examples from the StructureMap
API to illustrate the thinking behind the API design.

3 Robert C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship (Upper Saddle River, NJ: Prentice Hall,
2008), 312 (N5).

http://msdn.microsoft.com/en-us/magazine/ee291514.aspx
http://msdn.microsoft.com/en-us/magazine/ee291514.aspx

354 CHAPTER 11 StructureMap
Unlike Castle Windsor, mapping IIngredient to SauceBéarnaise in the same way as
previously shown doesn’t preclude you from resolving SauceBéarnaise itself. That is,
both sauce and ingredient will be appropriately resolved here:

container.Configure(r =>
 r.For<IIngredient>().Use<SauceBéarnaise>());
var sauce = container.GetInstance<SauceBéarnaise>();
var ingredient = container.GetInstance<IIngredient>();

If you recall the discussion in section 10.1.2, mapping IIngredient to Sauce-
Béarnaise with Castle Windsor causes the concrete class (SauceBéarnaise) to
“disappear,” and you have to use Type Forwarding to be able to resolve both.
Such extra steps aren’t necessary with StructureMap, where you can resolve both
IIngredient and SauceBéarnaise. In both cases, the returned objects are Sauce-
Béarnaise instances.

 In real applications, we always have more than one ABSTRACTION to map, so we must
configure multiple mappings. We can do so in a single call to the Configure method,
or using multiple successive calls. These two examples are equivalent:

container.Configure(r => container.Configure(r => r
{ .For<IIngredient>()
 r.For<IIngredient>() .Use<SauceBéarnaise>());
 .Use<SauceBéarnaise>(); container.Configure(r => r
 r.For<ICourse>() .For<ICourse>()
 .Use<Course>(); .Use<Course>());
});

Although the example to the right uses two successive calls to configure, the example
to the left passes a code block with more statements to a single Configure method
call. Both code examples end up registering correct mappings for both ICourse and
IIngredient interfaces. However, configuring the same ABSTRACTION multiple times
has some interesting results:

container.Configure(r =>
 r.For<IIngredient>().Use<SauceBéarnaise>());
container.Configure(r =>
 r.For<IIngredient>().Use<Steak>());

In this example, you register IIngredient twice. If you resolve IIngredient you get
an instance of Steak. The last configuration wins, but previous configurations aren’t
forgotten. StructureMap handles multiple configurations for the same ABSTRACTION

well, but we’ll return to this topic in section 11.3.1.
 There are more advanced options available for configuring StructureMap, but we

can configure an entire application with the methods shown here. To save ourselves
from too much explicit maintenance of container configuration, we could instead
consider a more convention-based approach, using AUTO-REGISTRATION.

355Introducing StructureMap
AUTO-REGISTRATION

In many cases, registrations will be similar. Such registrations are tedious to main-
tain and explicitly registering each and every component may not be the most pro-
ductive approach.

 Consider a library that contains a lot of IIngredient implementations. We can
configure each class individually, but it will result in numerous similar-looking calls to
the Configure method. What’s worse, every time we add a new IIngredient imple-
mentation, we must also explicitly configure it in the container if we want it to be avail-
able. It would be more productive to state that all implementations of IIngredient
found in a given assembly should be registered.

 This is possible with the Scan method, which is another example of StructureMap’s
extensive use of delegates. The Scan method is available on the Configuration-
Expression class, which is already accessed via a code block. This is where we see the
Nested Closure pattern in effect. This example configures all IIngredient implemen-
tations in a single swoop:

container.Configure(r =>
 r.Scan(s =>
 {
 s.AssemblyContainingType<Steak>();
 s.AddAllTypesOf<IIngredient>();
 }));

The Scan method is nested within the Configure code block. The s variable repre-
sents an IAssemblyScanner instance, which we can use to define how an assembly
should be scanned and types configured.

 The IAssemblyScanner instance provides several methods we can use to define
which assemblies to scan and how to configure types from those assemblies. We can
use the generic AssemblyContainingType method to identify an assembly from a rep-
resentative type, but there are several other methods that enable us to provide an
Assembly instance or even add all assemblies from a given file path.

 A different set of methods gives us the ability to define which types to add and how
to map them. The AddAllTypesOf method provides an easy shortcut to add all types
that implement a given interface, but there are several other methods that enable us
to accurately control how types are configured.

 The previous example unconditionally configures all implementations of the
IIngredient interface, but we can provide filters that enable us to select only a sub-
set. Here’s a convention-based scan where you add only classes whose name starts
with Sauce:

container.Configure(r =>
 r.Scan(s =>
 {
 s.AssemblyContainingType<Steak>();
 s.AddAllTypesOf<IIngredient>();
 s.Include(t => t.Name.StartsWith("Sauce"));
 }));

356 CHAPTER 11 StructureMap
The only difference from the previous example is the addition of the Include method
call, which introduces a third level of Nested Closure. The Include method takes a
predicate that’s used to determine whether a given Type should be included or not. In
this case, the answer is true whenever the Type’s Name starts with Sauce.

 If we want full control over convention-based configuration, we can define a cus-
tom convention by implementing the IRegistrationConvention interface. The fol-
lowing listing shows the Sauce convention implemented as a custom convention.

public class SauceConvention : IRegistrationConvention
{
 public void Process(Type type, Registry registry)
 {
 var interfaceType = typeof(IIngredient);
 if (!interfaceType.IsAssignableFrom(type))
 {
 return;
 }
 if (!type.Name.StartsWith("Sauce"))
 {
 return;
 }

 registry.For(interfaceType).Use(type);
 }
}

The SauceConvention class implements IRegistrationConvention, which defines a
single member. The Process method will be invoked by StructureMap for each type
in the assembly defined in the Scan method, so you must explicitly provide a set of
Guard Clauses that filters out all those types you don’t care about.

 The Guard Clauses guarantee that any type that makes it past them is an
IIngredient whose name starts with Sauce, so you can now register it with the
registry. Notice, by the way, that the Registry is provided through METHOD INJEC-
TION, which makes a lot of sense because IRegistrationConvention defines an add-in
for StructureMap.

 You can use the SauceConvention class in the Scan method like this:

container.Configure(r =>
 r.Scan(s =>
 {
 s.AssemblyContainingType<Steak>();
 s.Convention<SauceConvention>();
 }));

Notice that you still define the assembly outside of the convention. This lets you vary
the source of the types to process independently of the convention itself. The Sauce-
Convention is specified using the Convention method. This method requires that the
IRegistrationConvention specified as the type argument has a default constructor,

Listing 11.1 Implementing a custom convention

357Introducing StructureMap
but there’s also a With method that takes an IRegistrationConvention instance that
you can manually create any way you want.

 Because you can use the Scan method to scan all assemblies in a specified folder,
you can use it to implement add-in functionality where add-ins can be added without
recompiling a core application. This is one way to implement late binding; another is
to use the XML-based configuration API.

XML CONFIGURATION

When we need to be able to change a configuration without recompiling the applica-
tion, XML configuration is a good option.

TIP Use XML configuration only for those types you need to change without
recompiling the application. Use AUTO-REGISTRATION or CODE AS CONFIGURATION

for the rest.

We can use specialized XML files to configure StructureMap, or we can embed the
configuration in the standard application configuration file. However, surprisingly,
the last option isn’t directly supported, so let’s first look at how to use a specialized
XML file.

 Configuration can be defined in XML and read using the AddConfiguration-
FromXmlFile method:

container.Configure(r =>
 r.AddConfigurationFromXmlFile(configName));

In this example, configName is a string which contains the name of the appropriate
XML file. If you wish to use the standard application configuration file, you need to
use the AppDomain API to figure out the path for the current configuration file:

var configName =
 AppDomain.CurrentDomain.SetupInformation.ConfigurationFile;

NOTE Although the static ObjectFactory class directly supports reading con-
figuration from App.config, this isn’t supported for Container instances.
Using the AppDomain API to get the file name is the recommended work-
around.4

In addition to pointing StructureMap to a file, you can supply XML configuration as
an XmlNode:

container.Configure(r =>
 r.AddConfigurationFromNode(xmlNode));

This enables you to pull XML configuration from arbitrary places besides files, such as
databases or embedded resources.

 No matter the source of the XML, the schema remains the same. Here’s a simple
configuration that maps IIngredient to Steak:

4 This was confirmed in a Twitter conversation between Jeremy Miller and me: http://twitter.com/jeremyd-
miller/statuses/18134210141

http://twitter.com/jeremydmiller/statuses/18134210141
http://twitter.com/jeremydmiller/statuses/18134210141

358 CHAPTER 11 StructureMap
<StructureMap MementoStyle="Attribute">
 <DefaultInstance PluginType="Ploeh.Samples.MenuModel.IIngredient,
 ➥Ploeh.Samples.MenuModel"
 PluggedType="Ploeh.Samples.MenuModel.Steak,
 ➥Ploeh.Samples.MenuModel" />
</StructureMap>

Notice that you must supply the assembly qualified type name for both the ABSTRAC-
TION and the implementation—StructureMap calls these Plugins and Plugged types.

 If you want to embed this XML in the application’s configuration file, you must
also register the StructureMap element as a configuration section:

<configSections>
 <section name="StructureMap"
 type="StructureMap.Configuration.
 ➥StructureMapConfigurationSection, StructureMap"/>
</configSections>

XML configuration is a good option when you need to change the configuration of
one or more components without recompiling the application; however, because it
tends to be quite brittle, you should reserve it for only those occasions and use
either AUTO-REGISTRATION or CODE AS CONFIGURATION for the main part of the con-
tainer’s configuration.

TIP Remember that the last configuration of a type wins? You can use this
behavior to overwrite hard-coded configuration with XML configuration. To
do this, you must remember to read in the XML configuration after any other
components have been configured.

In this section, we mainly looked at various configuration APIs for StructureMap.
Although it’s certainly possible to write one big block of unstructured configu-
ration code, it’s better to modularize configuration. StructureMap supports this
through Registries.

11.1.3 Packaging configuration

It’s sometimes desirable to package configuration logic into reusable groups, and
even when reuse itself isn’t your top priority, you may want to provide a bit of structure
if you have a big and complex application to configure.

 With StructureMap, we can package configuration into Registries, which are
classes deriving from the concrete Registry class. Figure 11.4 shows the relationship
between the Registry class and the Configure method used in section 11.1.2.

 Whenever you use the Configure method in this chapter, you represent the
ConfigurationExpression instance with the variable name r. Most of the methods we
invoke on r (such as the For and Scan methods) are defined on the Registry class.

 To implement a Registry, we implement a class that derives from Registry. The fol-
lowing listing shows an example that configures a default ICourse and also adds

359Introducing StructureMap
IIngredient types from an assembly. It uses the same API that we already used in
section 11.1.2, but now packaged within a separate class.

public class MenuRegistry : Registry
{
 public MenuRegistry()
 {
 this.For<ICourse>().Use<Course>();
 this.Scan(s =>
 {

Registry or ConfigurationExpression?
Whereas most of the configuration API (such as the For and Scan methods) are still
available when we derive directly from Registry, we can’t use the methods defined
directly on the ConfigurationExpression class. What functionality do we lose?

There are only five methods defined directly on ConfigurationExpression, and
they fall into two categories:

■ Reading configuration from XML
■ Adding Registries

It isn’t likely that we’d want to add a Registry from within a Registry, so this doesn’t
seem like that big of a deal.

Configuration defined in XML is a completely different way to express configuration.
We express a certain part of an application’s configuration either in XML or by using
the configuration API, but not both. In that light, the inability to define XML sources
from a Registry isn’t much of a limitation.

Even so, wouldn’t it be possible to derive a Registry from Configuration-
Expression instead of directly from Registry? Unfortunately, we can’t, because the
ConfigurationExpression constructor is internal.

The bottom line is that a Registry can’t derive from ConfigurationExpression, but
must derive from Registry itself.

Listing 11.2 Implementing a Registry

Figure 11.4 The Configure method of the Container class takes as input a delegate
that operates on a ConfigurationExpression—in this chapter, we represent
this ConfigurationExpression instance with the variable name r. The
ConfigurationExpression class is a child class of the concrete Registry class.

Use Registry
API

b

360 CHAPTER 11 StructureMap
 s.AssemblyContainingType<Steak>();
 s.AddAllTypesOf<IIngredient>();
 });
 }
}

The MenuRegistry class derives from Registry and defines the entire configuration
in the constructor. From within the class you can access the entire public API of the
Registry class, so you can use the For and Scan methods in the same way you did in
section 11.1.2 B—the only difference is that, in this case, you’re not implementing an
anonymous delegate, but rather a constructor. Instead of the code block and the ubiq-
uitous r variable you may have grown accustomed to by now, you access the API
through the this variable.

 With the MenuRegistry in place, you can now add it to the container with the
Configure method:

container.Configure(r =>
 r.AddRegistry<MenuRegistry>());

This generic version of the AddRegistry method requires that the Registry imple-
mentation has a default constructor, but there’s also a non-generic overload available
that takes a Registry instance as input, giving us full control over how it’s created.

NOTE The AddRegistry methods are two of the five methods defined directly
on ConfigurationExpression, and not available from within a Registry.

You can also supply a Registry directly through a Container’s constructor:

var container = new Container(new MenuRegistry());

I prefer the Configure method because it lets me add more than one Registry in
a sequence.

TIP Registries let you package and structure your container configuration
code. Use them instead of inline configuration, because it will make your
COMPOSITION ROOT more readable.

With Registries, we can configure StructureMap with CODE AS CONFIGURATION or AUTO-
REGISTRATION, whereas XML configuration must be imported directly via the Configure
method. We can still mix both approaches, pulling some configuration from XML and
other from one or more Registries:

container.Configure(r =>
{
 r.AddConfigurationFromXmlFile(configName);
 r.AddRegistry<MenuRegistry>();
});

Once the container is configured, you can start resolving services with it as described
in section 11.1.1.

Use Registry
API

b

361Managing lifetime
 This section introduced the StructureMap DI CONTAINER and demonstrated the
fundamental mechanics: how to configure the container and subsequently use it to
resolve services. Resolving services is easily done with a single call to the GetInstance
method, so the complexity involves configuring the container. This can be done in
several different ways, including imperative code and XML. Until now, we’ve only
looked at the most basic API so there are more advanced areas we have yet to cover.
One of the most important topics is how to manage component lifetime.

11.2 Managing lifetime
In chapter 8, we discussed LIFETIME MANAGEMENT, including the most common concep-
tual lifetime styles, such as SINGLETON and TRANSIENT. StructureMap supports many dif-
ferent lifestyles and enables us to configure the lifetime of all services. The lifestyles
shown in table 11.2 are available as part of the API.

StructureMap’s implementations of the different lifestyles are equivalent to the general
lifestyles described in chapter 8, so I won’t spend much time on them in this chapter.

TIP The default lifestyle is PER GRAPH. As we discussed in section 8.3.3, this
offers a good balance between efficiency and safety. Still, when you have
thread-safe services, SINGLETON is a more efficient lifestyle, but you must
explicitly remember to configure those services like that.

In this section, you’ll see how to define lifestyles for components in both code and
XML. As a more advanced scenario, you’ll also see how to implement a custom lifestyle
to showcase that you’re not limited to the built-in lifestyles supplied by StructureMap.

Table 11.2 StructureMap lifestyles

Name Comments

PerRequest StructureMap’s name for PER GRAPH. This is the default lifestyle. Instances
aren’t tracked by the container.

Singleton Standard SINGLETON.

HttpContext StructureMap’s name for WEB REQUEST CONTEXT.

ThreadLocal One instance is created per thread.

Hybrid A combination of HttpContext and ThreadLocal. HttpContext is used when avail-
able (for example, when the container is hosted in a web application), but
ThreadLocal is used as a fallback scope.

HttpSession One instance is created per HTTP session. Use with caution.

HybridHttpSession A combination of HttpSession and ThreadLocal. HttpSession is used when avail-
able (for example, when the container is hosted in a web application), but
ThreadLocal is used as a fallback scope.

Unique StructureMap’s name for TRANSIENT.

362 CHAPTER 11 StructureMap
At the end of this section, you should be able to use StructureMap’s lifestyles in your
own application.

 Let’s start by reviewing how to configure lifestyles for components.

11.2.1 Configuring lifestyles

In this section, we’ll review how to manage component lifestyles with StructureMap.
Lifestyles are configured as part of configuring components, and you can define them
in both code and XML. We’ll look at each in turn.

CONFIGURING LIFESTYLES WITH CODE

Lifestyles are configured as part of the Configure API you use to configure compo-
nents in general. It’s as easy as this:

container.Configure(r =>
 r.For<SauceBéarnaise>().Singleton());

This configures the concrete SauceBéarnaise class as a SINGLETON so that the same
instance is returned each time SauceBéarnaise is requested. If you want to map an
ABSTRACTION to a concrete class with a specific lifetime, the lifestyle declaration comes
between the For and the Use method calls:

container.Configure(r =>
 r.For<IIngredient>().Singleton().Use<SauceBéarnaise>());

This maps IIngredient to SauceBéarnaise and also configures it as a SINGLETON.
There are other methods, similar to the Singleton method, which enable you to
declare many of the other lifestyles; but not all lifestyles have a dedicated method.
All lifestyles can be configured using the general-purpose LifecycleIs method. As
an example, the Unique lifestyle has no dedicated method, but can be configured
like this:

container.Configure(r => r
 .For<SauceBéarnaise>()
 .LifecycleIs(new UniquePerRequestLifecycle()));

The LifecycleIs method takes an instance of ILifecycle, so you can pass in any
class that implements that interface. As you’ll see in section 11.2.2, this is also how we
configure a component with a custom lifetime.

 All built-in StructureMap lifestyles have a corresponding ILifecycle implementa-
tion except the PER GRAPH lifestyle, which is the default. This lifestyle is normally
implicitly configured by omitting an explicit lifestyle. All the configurations you saw in
section 11.1 used the PER GRAPH lifestyle.

TIP Omitting the lifestyle declaration implies PER GRAPH, which is the default.
But null in place of an ILifecycle instance also implies PER GRAPH.

If we’re writing some general-purpose code that takes an ILifecycle instance and passes
it to the LifecycleIs method, we can still use it to configure a component with the PER

GRAPH lifestyle; null implies PER GRAPH, so these two examples are functionally equivalent:

363Managing lifetime
container.Configure(r => r container.Configure(r => r
 .For<IIngredient>() .For<IIngredient>()
 .LifecycleIs(null) .Use<SauceBéarnaise>());
 .Use<SauceBéarnaise>());

TIP Although you can use null to imply the PER GRAPH lifestyle, you should
prefer omitting the lifestyle declaration completely.

Whereas the API exposed by the Configure method and the ConfigurationExpression
enables us to declare lifestyles explicitly, the convention-based Scan API doesn’t in
itself. There’s no method on the IAssemblyScanner interface that gives us the option
of broadly declaring a lifestyle for a set of components in one go.

 However, we can implement a simple IRegistrationConvention that can do that.
Here’s how you’d use one called SingletonConvention:

container.Configure(r =>
 r.Scan(s =>
 {
 s.AssemblyContainingType<Steak>();
 s.AddAllTypesOf<IIngredient>();
 s.Convention<SingletonConvention>();
 }));

Notice how this is the same configuration as the first AUTO-REGISTRATION example in
section 11.1.2, only you added a line of code that adds the SingletonConvention
shown in the listing that follows.

public class SingletonConvention : IRegistrationConvention
{
 public void Process(Type type, Registry registry)
 {
 registry.For(type).Singleton();
 }
}

If you recall from the previous discussion about IRegistrationConvention in
listing 11.1, the Process method is invoked for each included type in the assembly
Scan operation. In this case, the only thing you need to do is to declare the lifestyle for
each using the Singleton method. This configures each type as a SINGLETON.

 Using CODE AS CONFIGURATION, we can configure components with various lifestyles
in any way we want. Whereas this is by far the most flexible way to configure compo-
nents, we sometimes need to resort to XML for late binding purposes. In that case, we
can also declare lifestyles.

CONFIGURING LIFESTYLES WITH XML
When we need to define components in XML, we’ll also want to be able to configure
their lifestyles in the same place. This is easily done as part of the XML schema intro-
duced in section 11.1.2. You can use the optional Scope attribute to declare the lifestyle:

Listing 11.3 Implementing a lifestyle-declaring convention

364 CHAPTER 11 StructureMap
<DefaultInstance PluginType="Ploeh.Samples.MenuModel.IIngredient,
 ➥Ploeh.Samples.MenuModel"
 PluggedType="Ploeh.Samples.MenuModel.Steak,
 ➥Ploeh.Samples.MenuModel"
 Scope="Singleton" />

Compared to the example in section 11.1.2, the only difference is the added Scope
attribute that configures the instance as a SINGLETON. When you previously omitted the
Scope attribute, StructureMap’s PER GRAPH default was automatically used.

 In both code and XML, it’s easy to configure lifestyles for components. In all cases it’s
done in a rather declarative fashion. Although configuration is easy, you must not forget
that some lifestyles involve long-lived objects that use memory as long as they’re around.

PREVENTING MEMORY LEAKS

Like any other DI CONTAINER, StructureMap creates object graphs for us. But it doesn’t
track the created objects for us. It may keep track of those objects for its own pur-
poses, but that depends on the object lifetime. As an example, to implement the SIN-
GLETON scope, it must keep a reference to the created instance. This is also the case for
the HttpContext lifestyle where all instances are stored in HttpContext.Current
.Items; however, when the HTTP request finishes, all these instances go out of scope
and are eligible for garbage collection.

 On the other hand, the PER GRAPH and TRANSIENT lifestyles don’t keep track of the
objects that StructureMap creates. As you saw in listings 8.7 and 8.8, object instances
are created and returned with no internal tracking. This has some advantages and
disadvantages.

 Because StructureMap doesn’t hold on to instances unnecessarily, the risk of inad-
vertent memory leaks is much smaller. With a container like Castle Windsor, memory
leaks are guaranteed if we forget to call the Release method for all resolved object
graphs. This isn’t the case with StructureMap because objects will automatically be
garbage-collected as they go out of scope.

 The disadvantage is that disposable objects can’t be deterministically disposed of.
Because we can’t explicitly release an object graph, we can’t dispose of any disposable
objects. This means that it becomes even more important to wrap disposable APIs in
non-disposable services, as discussed in section 6.2.1.

 In short, StructureMap is well behaved and allows objects to be garbage-collected
when they go out of scope in our code, but the requirement is that our own classes must
be just as well behaved. We can’t rely on the container or the calling code to dispose of
any services, so we must keep usage of disposable objects within single methods.

 The built-in lifestyles of StructureMap are a rather comprehensive collection that
should meet most daily needs. Still, in the rare cases where we need a specialized life-
style, we still have the option to create one ourselves.

11.2.2 Developing a custom lifestyle

In most cases, we should be able to get by with the comprehensive selection of life-
styles already offered by StructureMap, but if we have special needs, it’s possible to

365Managing lifetime
implement a custom lifestyle. In this section, you’ll see how to do this. After a brief
review of the SEAM that makes this possible, we’ll spend most of the time going
through an example.

UNDERSTANDING THE LIFESTYLE API
In section 11.2.1, you already got a glimpse of StructureMap’s lifestyle API. The Life-
cycleIs method takes an instance of the ILifecycle interface, which models how
lifestyles interact with the rest of StructureMap:

public interface ILifecycle
{
 string Scope { get; }
 void EjectAll();
 IObjectCache FindCache();
}

Of those three methods, the FindCache method is the fulcrum. It returns a cache that
StructureMap uses to look up and insert objects with that particular lifestyle. The
ILifecycle interface mostly serves as an Abstract Factory5 for IObjectCache instances
that contain the implementation of the lifestyle. This interface is far more complex,
but not terribly difficult to implement:

public interface IObjectCache
{
 object Locker { get; }
 int Count { get; }
 bool Has(Type pluginType, Instance instance);
 void Eject(Type pluginType, Instance instance);
 object Get(Type pluginType, Instance instance);
 void Set(Type pluginType, Instance instance, object value);
 void DisposeAndClear();
}

Most of the methods in this interface deal with looking up, supplying, or evicting an
instance based on a Type and an Instance. Figure 11.5 illustrates how StructureMap
interacts with an IObjectCache implementation.

NOTE The mechanism illustrated in figure 11.5 is similar to the interaction
between Unity and ILifetimePolicy as shown in figure 14.6.

StructureMap first attempts to get the requested instance from the Get method. If
this method returns null for the provided Type and Instance, StructureMap creates
the requested instance and adds it to the cache through the Set method before
returning it.

 Let’s see how this works in an example.

5 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (New York: Addison-Wesley,
1994), 87.

366 CHAPTER 11 StructureMap
DEVELOPING A CACHING LIFESTYLE

In this example, you’ll develop the same caching lifestyle that you also created for Cas-
tle Windsor in section 10.2.3. In short, this lifestyle caches and reuses instances for a
time before releasing them.

WARNING This sample code isn’t thread-safe, but a proper production imple-
mentation should be, because it’s likely that several threads would simultane-
ously attempt to resolve objects from the container.

Let’s start with the easy part: the following listing shows the implementation of the
ILifecycle interface.

public partial class CacheLifecycle : ILifecycle
{
 private readonly LeasedObjectCache cache;

 public CacheLifecycle(ILease lease)
 {
 if (lease == null)
 {
 throw new ArgumentNullException("lease");
 }

 this.cache = new LeasedObjectCache(lease);
 }

 public void EjectAll()
 {
 this.FindCache().DisposeAndClear();
 }

 public IObjectCache FindCache()
 {

Listing 11.4 Implementing ILifecycle

Figure 11.5 StructureMap interacts with the
IObjectCache interface by first invoking the Get
method on a cache object. If the cache returns a
value, this value is used immediately. If not,
StructureMap creates the new value and adds it to
the cache before returning it.

Save lease in
custom cache

b

ILifecycle
members

367Managing lifetime
 return this.cache;
 }

 public string Scope
 {
 get { return "Cache"; }
 }
}

The CacheLifecycle class implements the ILifecycle interface as required. It uses
CONSTRUCTOR INJECTION to receive an ILease instance. The ILease interface is a local
helper interface that you introduce to implement the CacheLifestyle. It was initially
introduced in section 10.2.3 and has nothing to do with StructureMap or any other
particular DI CONTAINER.

NOTE For an example of an ILease implementation, see section 10.2.3.

Instead of saving the ILease instance directly in a private field, you immediately wrap
it B in a custom implementation of the IObjectCache interface called Leased-
ObjectCache. This is the cache you return c from the FindCache method.

NOTE Contrast the constructor in listing 11.4 with the much more compli-
cated code from listing 10.2. This clearly illustrates the superiority of CON-
STRUCTOR INJECTION over METHOD INJECTION.

Although the CacheLifecycle provides the root ILifecycle interface, the real imple-
mentation is provided by the custom LeasedObjectCache class, which implements the
IObjectCache interface.

 StructureMap already provides an implementation of IObjectCache called
MainObjectCache. Unfortunately, MainObjectCache doesn’t have any virtual members
that we can override to implement our caching lifestyle. Instead, we can decorate
MainObjectCache with the custom LeasedObjectCache. The following listing shows
the constructor.

private readonly IObjectCache objectCache;
private readonly ILease lease;

public LeasedObjectCache(ILease lease)
{
 if (lease == null)
 {
 throw new ArgumentNullException("lease");
 }

 this.lease = lease;
 this.objectCache = new MainObjectCache();
}

Listing 11.5 Constructing LeasedObjectCache

Return custom
cachec ILifecycle

members

368 CHAPTER 11 StructureMap
In the LeasedObjectCache constructor, you use standard CONSTRUCTOR INJECTION to inject
an ILease instance. The LeasedObjectCache is a Decorator6 of MainObjectCache so you
create an instance and assign it to a private field. Notice that the objectCache field is
declared as IObjectCache, so you could easily extend the LeasedObjectCache class
with an overloaded constructor that enabled you to inject any IObjectCache imple-
mentation from the outside.

 The combination of a decorated IObjectCache and an ILease member makes it
close to trivial to implement the LeasedObjectCache class. The following listing shows
the implementation of the significant Get and Set methods, but the rest of the imple-
mentation follows the same blueprint.

public object Get(Type pluginType, Instance instance)
{
 this.CheckLease();
 return this.objectCache.Get(pluginType, instance);
}

public void Set(Type pluginType, Instance instance, object value)
{
 this.objectCache.Set(pluginType, instance, value);
 this.lease.Renew();
}

private void CheckLease()
{
 if (this.lease.IsExpired)
 {
 this.objectCache.DisposeAndClear();
 }
}

When StructureMap invokes the Set method, you first ensure that the cache doesn’t
hold any stale instances. When that method returns, you can be certain that if the dec-
orated cache holds the requested instance, you can safely return it.

 Conversely, when the Set method is invoked, you immediately delegate the
method to the decorated object cache. Because you understand that StructureMap
uses IObjectCache as shown in figure 11.5, you know that the Set method is only
invoked when the container has created a new instance because no cached instance
was available. This means that the instance supplied by the value parameter repre-
sents a newly created instance, so you can safely renew the lease.

6 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (New York: Addison-Wesley,
1994), 175.

Listing 11.6 Implementing Get and Set

369Managing lifetime
 The CheckLease helper method is invoked by many of the IObjectCache member
implementations in ways similar to the Get method. It flushes the decorated cache if
the lease has expired.

 Now that you know how to implement a custom lifestyle and any custom DEPENDEN-
CIES it might have, you only need to learn how to use it.

CONFIGURING COMPONENTS WITH A CUSTOM LIFESTYLE

Using the CacheLifecycle when configuring a component is easy and is done the
same way you’d configure any other lifestyle:

var lease = new SlidingLease(TimeSpan.FromMinutes(1));
var cache = new CacheLifecycle(lease);
container.Configure(r => r
 .For<IIngredient>()
 .LifecycleIs(cache)
 .Use<SauceBéarnaise>());

This configures the container to use a CacheLifecycle with a one-minute timeout for
the IIngredient interface. Within a one-minute time span, you can request as many
object graphs as you want, and you’ll always get the same SauceBéarnaise back when-
ever the graph contains an IIngredient instance. When that minute is up, subse-
quent requests will get a new SauceBéarnaise instance.

 It’s worth noting that the way CacheLifecycle is implemented, it can be used to
bundle together several instances with the same lease, like this:

container.Configure(r =>
{
 r.For<IIngredient>().LifecycleIs(cache).Use<Steak>();
 r.For<ICourse>().LifecycleIs(cache).Use<Course>();
});

This will cause the ICourse and IIngredient instances to expire and renew at the
same time. This may sometimes be desirable and sometimes not. An alternative is to
use two separate instances of CacheLifecycle. As the following listing shows, this also
enables you to use two different timeouts.

container.Configure(r => r
 .For<IIngredient>()
 .LifecycleIs(
 new CacheLifecycle(
 new SlidingLease(
 TimeSpan.FromHours(1))))
 .Use<Steak>());
container.Configure(r => r
 .For<ICourse>()
 .LifecycleIs(
 new CacheLifecycle(
 new SlidingLease(
 TimeSpan.FromMinutes(15))))
 .Use<Course>());

Listing 11.7 Using different cache lifestyles for each Instance

370 CHAPTER 11 StructureMap
The first cache is defined with a one-hour timeout. No matter how many or few times
you need an IIngredient, you’ll get the same instance within a time span of one
hour. When that hour is up, the old instance is discarded and a new instance is used
indiscriminately for the next hour.

 The cache for ICourse is a different instance configured with a 15-minute timeout.
Within those 15 minutes, you’ll get the same instance, but when they’re up, a new
instance is used. It’s worth noting that even when the ICourse times out, the
IIngredient chugs along on its longer lease. Although they both use the same life-
style type, they’re on different schedules.

 In listing 11.7 you used different timeouts, but the SlidingLease type in both
cases. This isn’t a requirement—you could’ve used two widely different ILease imple-
mentations for each instance.

 Implementing a custom lifestyle for StructureMap isn’t particularly difficult. It may
look complex on paper, but if you were to look at it in an IDE, you would quickly real-
ize that it consists of only two classes where the most complex method (CheckLease)
has a single if statement and two lines of code.

 Even so, it should be a rare occurrence when we need to implement a custom life-
style for StructureMap. The comprehensive set of built-in lifestyles should meet our
everyday needs.

 This completes our tour of LIFETIME MANAGEMENT with StructureMap. Components
can be configured with mixed lifestyles and this is even true when we register multiple
implementations of the same ABSTRACTION. We have yet to look at how to work with
multiple components, so let’s now turn our attention in that direction.

11.3 Working with multiple components
DI CONTAINERS thrive on distinctness but have a hard time with ambiguity. When using
CONSTRUCTOR INJECTION, a single constructor is preferred over overloaded constructors
because it’s evident which constructor to use when there’s no choice. This is also the
case when mapping from ABSTRACTIONS to concrete types. If we attempt to map multi-
ple concrete types to the same ABSTRACTION, we introduce ambiguity.

 Despite the undesirable qualities of ambiguity, we often need to work with multiple
implementations of a single interface. This can be the case in these situations:

■ Different concrete types should be used for different consumers.
■ DEPENDENCIES are sequences.
■ Decorators are in use.

In this section, we’ll look at each of these cases and see how StructureMap addresses
each one in turn. When we’re done, you should be able to register and resolve compo-
nents even when multiple implementations of the same ABSTRACTION are in play.

 Let’s first see how we can provide more fine-grained control than what AUTO-
WIRING provides.

371Working with multiple components
11.3.1 Selecting among multiple candidates

AUTO-WIRING is convenient and powerful but provides us with little control. As long as
all ABSTRACTIONS are distinctly mapped to concrete types we have no problems, but
as soon as we introduce more implementations of the same interface, ambiguity rears
its ugly head.

 Let’s first recap how StructureMap deals with multiple registrations of the same
ABSTRACTION.

CONFIGURING MULTIPLE IMPLEMENTATIONS OF THE SAME PLUG-IN
As you saw in section 11.1.2, you can configure multiple plug-ins for the same service:

container.Configure(r =>
{
 r.For<IIngredient>().Use<SauceBéarnaise>();
 r.For<IIngredient>().Use<Steak>();
});

This example registers both the Steak and SauceBéarnaise classes with the
IIngredient plug-in. The last registration wins, so if you resolve IIngredient with
container.GetInstance<IIngredient>() you’ll get a Steak instance. However, a call
to container.GetAllInstances<IIngredient>() returns an IList<IIngredient>
that contains both Steak and SauceBéarnaise. That is, subsequent configurations
aren’t forgotten but are harder to get at.

TIP The last configuration for a given type wins. It defines the default instance
for that type.

If there are configured instances of a plug-in that can’t be resolved when GetAll-
Instances is invoked, StructureMap throws an exception explaining that there are
DEPENDENCIES which can’t be satisfied. This is consistent with the behavior of the Get-
Instance method, but different from the way that Castle Windsor or MEF behaves.

 The following listing shows how you can provide hints that can later be used to
select among different configured instances.

container.Configure(r =>
{
 r.For<IIngredient>()
 .Use<SauceBéarnaise>()
 .Named("sauce");
 r.For<IIngredient>()
 .Use<Steak>()
 .Named("meat");
});

You can give each configured instance a unique name that you can later use to distin-
guish each from other similar instances.

 Given the named instances in listing 11.8, you can resolve both Steak and Sauce-
Béarnaise like this:

Listing 11.8 Naming Instances

372 CHAPTER 11 StructureMap
var meat = container.GetInstance<IIngredient>("meat");
var sauce = container.GetInstance<IIngredient>("sauce");

Notice that you supply the same key you used to name the instance during configuration.
 Given that you should always resolve services in a single COMPOSITION ROOT, you

should normally not expect to deal with such ambiguity on this level.

TIP If you find yourself invoking the GetInstance method with a specific
key, consider whether you can change your approach so it’s less ambiguous.

You can use named instances to select among multiple alternatives when configuring
DEPENDENCIES for a given plug-in.

CONFIGURING NAMED DEPENDENCIES

As useful as AUTO-WIRING is, sometimes we need to override the normal behavior to
provide fine-grained control over which DEPENDENCIES go where. It may also be that we
need to address an ambiguous API. As an example, consider this constructor:

public ThreeCourseMeal(ICourse entrée,
 ICourse mainCourse, ICourse dessert)

In this case, you have three identically typed DEPENDENCIES that each represents a dif-
ferent concept. In most cases, you want to map each of the DEPENDENCIES to a sepa-
rate type. The following listing shows how you could choose to configure the
ICourse mappings.

container.Configure(r => r
 .For<ICourse>()
 .Use<Rillettes>()
 .Named("entrée"));
container.Configure(r => r
 .For<ICourse>()
 .Use<CordonBleu>()
 .Named("mainCourse"));
container.Configure(r => r
 .For<ICourse>()
 .Use<MousseAuChocolat>()
 .Named("dessert"));

Like listing 11.8, you register three named components, mapping the Rilettes to an
instance named “entrée,” CordonBleu to an instance named “mainCourse,” and the
MousseAuChocolat to an instance named “dessert.”

 Given this configuration, you can now register the ThreeCourseMeal class, as
shown in the following listing.

container.Configure(r => r
 .For<IMeal>()
 .Use<ThreeCourseMeal>()

Listing 11.9 Configuring named courses

Listing 11.10 Overriding AUTO-WIRING

373Working with multiple components
 .Ctor<ICourse>("entrée").Is(i =>
 i.TheInstanceNamed("entrée"))
 .Ctor<ICourse>("mainCourse").Is(i =>
 i.TheInstanceNamed("mainCourse"))
 .Ctor<ICourse>("dessert").Is(i =>
 i.TheInstanceNamed("dessert")));

You start the configuration expression as usual, by mapping the IMeal interface to the
concrete ThreeCourseMeal. But then you extend the expression with the Ctor
method. The Ctor (short for constructor) method enables you to express how a con-
structor parameter of a given type should be mapped. In the cases where there’s only
a single parameter of a given type, you can use an overload where you don’t have to
supply the parameter name. However, because the ThreeCourseMeal has three
ICourse parameters, you need to identify the parameter by its name, “entrée.”

 The Ctor method returns an object that enables you to define how the construc-
tor parameter will be populated. The Is method allows you to use an IInstance-
Expression<ICourse> to pick a named instance—yet another example of the Nested
Closure pattern. You can then repeat this coding idiom for the next two parameters.

NOTE In this example, I gave the configuration instances the same names as
the parameters, but that isn’t required. I could’ve named the instances what-
ever I liked, whereas the parameter names are obviously bound by the names
of the real constructor parameters.

WARNING Identifying parameters by their names is convenient but not
refactoring-safe. If we rename a parameter, we may break the configuration
(depending on your refactoring tool).

Overriding AUTO-WIRING by explicitly mapping parameters to named instances is a uni-
versally applicable solution. We can do this even if we configure the named instances
in one expression and the constructor in a completely different expression because
the only identification that ties a named instance together with a parameter is the
name. This is always possible but can be brittle if we have a lot of names to manage.

WIRING INSTANCE REFERENCES

Whenever we have the opportunity to define the instances and the constructor in a
single expression, we can do it more elegantly. The listing that follows shows how.

container.Configure(r =>
{
 var entrée =
 r.For<ICourse>().Use<Rillettes>();
 var mainCourse =
 r.For<ICourse>().Use<CordonBleu>();
 var dessert =
 r.For<ICourse>().Use<MousseAuChocolat>();

 r.For<IMeal>()
 .Use<ThreeCourseMeal>()

Listing 11.11 Using Instance references to override AUTO-WIRING

Instance
references

b

374 CHAPTER 11 StructureMap
 .Ctor<ICourse>("entrée").Is(entrée)
 .Ctor<ICourse>("mainCourse").Is(mainCourse)
 .Ctor<ICourse>("dessert").Is(dessert);
});

Until now, we have been ignoring that the typical For/Use method chain returns a
result; we’ve had no use for it. But the returned values are SmartInstance<T>
instances, which you can use as references to the configurations you made B. Instead
of the instance names you had to use in listing 11.10, you can use these references
directly with one of the many overloads of the Is method c, matching each local vari-
able with the appropriate named constructor parameter.

 Although this feature enables us to get rid of the instance names, we’re still left
with magic strings that identify the constructor parameters. This API depends on a
text-based match between the configuration and the parameter names, so it’s fragile
and best avoided when possible. If we feel compelled to use it only to deal with ambi-
guity, a better solution is to design the API to get rid of that ambiguity. It often leads to
a better overall design.

 In the next section, you’ll see how you can use the less ambiguous and more flexi-
ble approach where you allow any number of courses in a meal. To this end, you must
learn how StructureMap deals with lists and sequences.

11.3.2 Wiring sequences

In section 10.3.2, we discussed how to refactor an explicit ThreeCourseMeal class to
the more general-purpose Meal class with this constructor:

public Meal(IEnumerable<ICourse> courses)

In this section, we’ll look at how you can configure StructureMap to wire up Meal
instances with appropriate ICourse DEPENDENCIES. When we’re done, you should have
a good idea of the options available to you when you need to configure instances with
sequences of DEPENDENCIES.

AUTO-WIRING SEQUENCES

StructureMap has a rather good understanding of sequences. If we want to use all config-
ured instances of a given plug-in, AUTO-WIRING just works. As an example, given the
configured ICourse instances in listing 11.9, you can configure the IMeal plug-in like this:

container.Configure(r => r.For<IMeal>().Use<Meal>());

Notice that this is a completely standard mapping from an ABSTRACTION to a concrete
type. StructureMap will automatically understand the Meal constructor and determine
that the correct course of action is to resolve all ICourse instances. When you resolve
IMeal you get a Meal instance with the ICourse instances from listing 11.9: Rillettes,
CordonBleu, and MousseAuChocolat.

NOTE Contrast the ease of AUTO-WIRING sequences in StructureMap with sec-
tion 10.3.2, which shows how hard it is to enable the same functionality in
Castle Windsor.

Use instance
references

c

375Working with multiple components
StructureMap automatically handles sequences, and unless we specify otherwise, it
does what we expect it to do: it resolves a sequence of DEPENDENCIES to all registered
instances of that type. Only when we need to explicitly pick only some instances from
a larger set do we need to do more. Let’s see how to do that.

PICKING ONLY SOME INSTANCES FROM A LARGER SET

StructureMap’s default strategy of injecting all instances is often the correct policy, but
as figure 11.6 shows, there may be cases where we want to pick only some configured
instances from the larger set of all configured instances.

 When we previously let StructureMap AUTO-WIRE all configured instances, it corre-
sponded to the situation depicted on the right side of figure 11.6. If we want to configure
an instance like the left side, we must explicitly define which instances should be used.

 When we have the option of configuring the DEPENDENCIES and the consumer in a
single invocation of the Configure method, we can use referenced instances as you
saw in listing 11.11. The following listing shows the equivalent configuration for the
scenario where the constructor expects a sequence of DEPENDENCIES.

container.Configure(r =>
{
 var entrée = r.For<ICourse>().Use<Rillettes>();

Listing 11.12 Using Instance references to inject a sequence

Figure 11.6 In the situation on the left, we wish to explicitly select only certain DEPENDENCIES from
the larger list of all configured instances. This is different from the situation to the right, where we
indiscriminately want them all.

376 CHAPTER 11 StructureMap
 var entrée1 = r.For<ICourse>().Use<LobsterBisque>();
 var mainCourse = r.For<ICourse>().Use<CordonBleu>();
 var dessert = r.For<ICourse>().Use<MousseAuChocolat>();

 r.For<IMeal>().Use<Meal>()
 .EnumerableOf<ICourse>()
 .Contains(entrée, mainCourse, dessert);
});

Like the code in listing 11.11, you assign a variable to each Instance returned by the
Use method. Notice that you configure four ICourse instances even though you only
use three of them for the IMeal instance. However, you might need the mapping from
ICourse to LobsterBisque for some other purpose not shown here. Because you
don’t use the resulting entrée1 variable, you could’ve omitted it completely, but I
chose to include it to keep the code consistent.

 Because the Meal constructor takes an IEnumerable<ICourse> as input, you can
use the EnumerableOf method to denote a sequence of ICourse instances, explicitly
defined in the Contains method, where you supply the three Instance references you
want to use.

 This approach works well when we have the opportunity to configure all relevant
ICourse instances in the same code block as the IMeal configuration. This isn’t always
possible—it could be that configuration of ICourse instances are spattered over sev-
eral different Registries from different assemblies. When that’s the case, we can still
resort to referring to them by name. The following listing shows one way to do that.

container.Configure(r => r
 .For<IMeal>()
 .Use<Meal>()
 .EnumerableOf<ICourse>().Contains(i =>
 {
 i.TheInstanceNamed("entrée");
 i.TheInstanceNamed("mainCourse");
 i.TheInstanceNamed("dessert");
 }));

Given a set of named instances similar to those created in listing 11.9, you can
refer to each named instance when configuring the IMeal instance. As you did in
listing 11.12, you use the EnumerableOf/Contains method chain to denote a
sequence of DEPENDENCIES. This time you don’t have Instance variables, so instead
you must look them up by name. An overload to the Contains method enables you
to supply a Nested Closure that expresses which named instances you wish to be
injected into the Meal instance.

 StructureMap understands sequences; unless we need to explicitly pick only some
instances from all plug-ins of a given type, StructureMap automatically does the right
thing. AUTO-WIRING works not only with single instances, but also for sequences, and
the container maps a sequence to all configured instances of the corresponding type.

Listing 11.13 Injecting named Instances into a sequence

377Working with multiple components
 Consumers that rely on sequences of DEPENDENCIES may be the most intuitive users
of multiple instances of the same ABSTRACTION, but before we leave this subject com-
pletely, we need to look at one last—and perhaps a bit surprising—case, where multi-
ple instances come into play.

11.3.3 Wiring Decorators

In section 9.1.2, we discussed how the Decorator design pattern is useful when imple-
menting CROSS-CUTTING CONCERNS. By definition, Decorators introduce multiple types
of the same ABSTRACTION. At the very least, we have two implementations of an ABSTRAC-
TION: the Decorator itself and the decorated type. If we stack the Decorators, we may
have even more.

 This is another example of having multiple registrations of the same service.
Unlike the previous sections, these registrations aren’t conceptually equal, but rather
are DEPENDENCIES of each other. In this section, you’ll see how to configure Structure-
Map to deal with this pattern. There are many ways to configure a Decorator, and we’ll
look at three different ways of achieving the same result. Each has its own advantages
and disadvantages.

DECORATING WITH INSTANCE REFERENCES

Let’s see how we can configure the Breading class, which is a Decorator of IIngredient.
It uses CONSTRUCTOR INJECTION to receive the instance it should decorate:

public Breading(IIngredient ingredient)

To make a Cotoletta, you’d like to decorate a VealCutlet (another IIngredient) with
the Breading class. One way to do this is to use Instance references within a single
Configure method:

container.Configure(r =>
{
 var cutlet = r.For<IIngredient>().Use<VealCutlet>();
 r.For<IIngredient>().Use<Breading>()
 .Ctor<IIngredient>().Is(cutlet);
});

As you already saw in listing 11.11 and 11.12, you can use the return value from the
Use method to capture a reference to an Instance. The cutlet variable represents
the configured mapping from IIngredient to VealCutlet and you can use it to
express that this is the appropriate Instance to use for the Breading class’s IIngredient
constructor parameter. Because the last configuration wins, the Breading Instance is
now the default Instance.

 When you ask the container to resolve IIngredient, it will return an object
based on the default Instance. This is the Breading Instance where you provided
the extra hint that it should resolve the cutlet Instance for the Breading class’s
IIngredient parameter. The end result is a Breading instance that contains a Veal-
Cutlet instance.

378 CHAPTER 11 StructureMap
 Passing objects around is safer than passing strings around, so we should prefer to
use this technique whenever we have the option to configure Decorator and the deco-
rated type in a single method call. However, that’s not always possible.

DECORATING WITH NAMED INSTANCES

Sometimes we have to resort to Instance names because we configure the involved
collaborators in different method calls—perhaps even in different Registries imple-
mented in separate assemblies. In such cases, we can’t pass objects around, but must
rely on strings even though they’re easier to mess up.

 Let’s assume that you have already configured a VealCutlet like this:

container.Configure(r => r
 .For<IIngredient>()
 .Use<VealCutlet>()
 .Named("cutlet"));

Because you know that the name of the instance is cutlet, you can use it to configure
the Breading class:

container.Configure(r => r
 .For<IIngredient>()
 .Use<Breading>()
 .Ctor<IIngredient>()
 .Is(i => i.TheInstanceNamed("cutlet")));

As you did in listings 11.10 and 11.13, you use the overload of the Is method that
enables you to provide a code block that identifies a named instance. Once again, you
see the Nested Closure pattern in action.

 If you compare the two previous examples, you won’t notice that they’re similar. In
both cases you used the Ctor<T> method to represent a constructor parameter. The
only difference is how you identify the parameter with the Is method.

 The Ctor/Is method chain has the advantage in that we can use it to specify a sin-
gle constructor parameter even if the constructor in question has more than one
parameter. All the parameters we don’t configure with the Ctor method will be AUTO-
WIRED according to StructureMap’s default algorithms. This is useful if we only want to
explicitly configure a single among several parameters.

 However, it isn’t a strongly typed solution. There’s no guarantee that the construc-
tor in question has a parameter of the identified type. It could have, but then we
changed the design, and now it takes parameters of a different type. The compiler
doesn’t know, because it takes our word when we invoke the Ctor method with a par-
ticular type argument.

 Another alternative offers a more strongly typed approach.

DECORATING WITH DELEGATES

Instead of referring to a constructor parameter by type and name, we can write a
strongly typed code block that uses the constructor. Although it also has disadvantages
we’ll return to, the benefit is that it’s strongly typed and, by that token, safer from a
design-time perspective.

379Working with multiple components
 This sounds a bit abstract, so let’s see an example of how to configure the Cotoletta
in this way:

container.Configure(r => r
 .For<IIngredient>().Use<VealCutlet>()
 .EnrichWith(i => new Breading(i)));

The EnrichWith method is a member of the generic SmartInstance<T> class
returned by the Use method. In this case, you invoke the Use method with the Veal-
Cutlet type argument, which returns an instance of SmartInstance<VealCutlet>.
The EnrichWith method takes a delegate that takes a VealCutlet as input and returns
an object.

 You can match this delegate with a code block that takes VealCutlet as input. The
compiler infers that the variable i is an instance of VealCutlet, so you can now imple-
ment the code block by invoking the Breading constructor with that VealCutlet variable.

 When you ask the container to resolve IIngredient, it will first create a Veal-
Cutlet instance and then pass that instance as input to the code block you defined
with the EnrichWith method. When the code block executes, the VealCutlet
instance is passed to the Breading constructor and the Breading instance is returned.

 The advantage of this is that in the code block you write code that uses the
Breading constructor. This is a line of code like any other line of code, so it’s checked
by the compiler. This provides you with a great deal of confidence that if the Configure
method compiles, the VealCutlet will be correctly decorated.

 Although strong typing is safer, it also requires more maintenance. If you subse-
quently decide to add another constructor parameter to the Breading constructor,
the code block no longer compiles, and you must manually address the issue. This
wouldn’t be necessary if you’d used the Ctor<T> method, because StructureMap
would’ve been able to sort out the new parameter for you, with AUTO-WIRING.

 As you’ve seen, there are several different ways to configure Decorators. The
strongly typed approach is a bit safer but may require more maintenance. The more
weakly typed API is more flexible and enables StructureMap to deal with changes to
our API, but at the expense of less type safety.

NOTE In this section we didn’t discuss runtime INTERCEPTION. Although Struc-
tureMap has SEAMS that enable INTERCEPTION, it has no built-in support for
dynamically emitting Proxies. It’s possible to use those SEAMS to use another
library (such as Castle Dynamic Proxy) to emit such classes, but because this
isn’t part of StructureMap itself, it’s beyond the scope of this chapter.

StructureMap lets us work with multiple instances in several different ways. We can con-
figure instances as alternatives to each other, as peers resolved as sequences, or as hierar-
chical Decorators. In many cases, StructureMap will figure out what to do, but we can
always explicitly define how services are composed if we need more explicit control.

 This may also be the case when we need to deal with APIs that deviate from CON-
STRUCTOR INJECTION. So far, you’ve seen how to configure instances, including how to

380 CHAPTER 11 StructureMap
specify lifetime styles and how to deal with multiple components, but until now you’ve
allowed the container to wire DEPENDENCIES by implicitly assuming that all components
use CONSTRUCTOR INJECTION. This isn’t always the case; in the next section, we’ll review
how to deal with classes that must be instantiated in special ways.

11.4 Configuring difficult APIs
Until now, we’ve considered how to configure components that use CONSTRUCTOR

INJECTION. One of the many benefits of CONSTRUCTOR INJECTION is that DI CONTAINERS

such as StructureMap can easily understand how to compose and create all classes in a
dependency graph.

 This becomes less clear when APIs are less well behaved. In this section, you’ll see
how to deal with primitive constructor arguments, static factories, and PROPERTY INJEC-
TION. These all require special attention. Let’s start by looking at classes that take prim-
itive types, such as strings or integers as constructor arguments.

11.4.1 Configuring primitive Dependencies

As long as we inject ABSTRACTIONS into consumers, all is well. It becomes more diffi-
cult when a constructor depends on a primitive type, such as a string, number, or
enum. Often, this is the case for data access implementations that take a connec-
tion string as constructor parameter, but it’s also a more general issue that applies to
strings and numbers.

 Conceptually, it doesn’t make much sense to register a string or number as a com-
ponent in a container, and with StructureMap it doesn’t even work. If we try to resolve
a component with a primitive DEPENDENCY, we’ll get an exception, even though the
primitive type was previously registered.

 Consider, as an example, this constructor:

public ChiliConCarne(Spiciness spiciness)

In this example, Spiciness is an enum:

public enum Spiciness
{
 Mild = 0,
 Medium,
 Hot
}

WARNING As a rule of thumb, enums are code smells and should be refac-
tored to polymorphic classes;7 here, they serve us well for this example.

You need to explicitly tell StructureMap how to resolve the spiciness constructor
parameter. This example shows how it’s possible to use the Ctor<T> method to
directly provide a value for a constructor parameter:

7 Martin Fowler et al., Refactoring: Improving the Design of Existing Code (New York: Addison-Wesley, 1999), 82.

381Configuring difficult APIs
container.Configure(r => r
 .For<ICourse>()
 .Use<ChiliConCarne>()
 .Ctor<Spiciness>()
 .Is(Spiciness.Hot));

In section 11.3, you repeatedly saw how the Ctor<T> method can be used to override
AUTO-WIRING for a particular constructor parameter. Here you implicitly state that you
expect that the ChiliConCarne constructor only has a single Spiciness parameter—
otherwise the Ctor<spiciness>() method call would be ambiguous, and you’d have
to supply a parameter name as well.

 The Ctor<T> method returns a SmartInstance<T> with various methods. There
are five overloads of the Is method, and one of them enables you to provide an
instance of the appropriate type. The type argument T is Spiciness in this example,
so you provide Spiciness.Hot as a concrete value.

 As we discussed in section 11.3, using the Ctor<T> method has advantages and dis-
advantages. If we want a more strongly typed configuration that invokes the construc-
tor or a static factory, we can do this as well.

11.4.2 Creating objects with code blocks
Some classes can’t be instantiated through a public constructor. Instead, we must use
some sort of factory to create instances of the type. This is always troublesome for DI
CONTAINERS because, by default, they look after public constructors.

 Consider this example constructor for the public JunkFood class:

internal JunkFood(string name)

Even though the JunkFood class is public, the constructor is internal. Obviously,
instances of JunkFood should be created through the static JunkFoodFactory class:

public static class JunkFoodFactory
{
 public static IMeal Create(string name)
 {
 return new JunkFood(name);
 }
}

From StructureMap’s perspective, this is a problematic API because there are no
unambiguous and well-established conventions around static factories. It needs help,
and you can provide it by providing a code block it can execute to create the instance:

container.Configure(r => r
 .For<IMeal>()
 .Use(() =>
 JunkFoodFactory.Create("chicken meal")));

By now, the For/Use method chain should be familiar. However, in this variation, you
use a different overload of the Use method than used previously. This overload
enables you to supply a Func<IMeal> and you do that by providing a code block that
invokes the static Create method on the JunkFoodFactory class.

382 CHAPTER 11 StructureMap
TIP If you want to resolve the ChiliConCarne class from section 11.4.1 in
a strongly typed fashion, you can use this Use overload to directly invoke
the constructor.

When you end up writing the code to create the instance, how is this in any way better
than invoking the code directly? By using a code block inside a For/Use statement,
you still gain something:

■ You map from IMeal to JunkFood.
■ A lifestyle can still be configured. Whereas the code block will be invoked to create

the instance, it may not be invoked every time the instance is requested—unless you
use the Unique lifestyle, a cached instance will sometimes be used instead.

In total, there are five different overloads of the Use method. We can use the generic
version to define a concrete type, but other overloads enable us to supply a concrete
instance, or code blocks that create a concrete instance.

 The last common deviation from CONSTRUCTOR INJECTION we’ll examine here is
PROPERTY INJECTION.

11.4.3 Wiring with Property Injection
PROPERTY INJECTION is a less well-defined form of DI because you’re not forced by the
compiler to assign a value to a writable property. This is also the case for Structure-
Map, which will leave writable properties alone unless we explicitly ask it to do some-
thing about them.

 Consider this CaesarSalad class:

public class CaesarSalad : ICourse
{
 public IIngredient Extra { get; set; }
}

It’s a common misconception that a Caesar Salad includes chicken. A Caesar Salad is a
salad, but it tastes great with chicken, so many restaurants offer chicken as an
extra ingredient. The CaesarSalad class models this by exposing a writable property
named Extra.

 If you configure only the CaesarSalad without explicitly addressing the Extra
property, the property won’t be assigned. You can still resolve the instance, but the
property will have the default value that the constructor assigns to it (if any).

 There are several ways you can configure the CaesarSalad so that the Extra prop-
erty will be appropriately populated. One way to do it is to use Instance references, as
you’ve seen several times already in this chapter:

container.Configure(r =>
{
 var chicken = r.For<IIngredient>().Use<Chicken>();
 r.For<ICourse>().Use<CaesarSalad>()
 .Setter<IIngredient>().Is(chicken);
});

383Summary
You may recall from several previous examples that the Use method returns an
Instance you can remember as a variable. In listing 11.10 and many subsequent
examples, you used the Ctor<T> method to indicate a constructor parameter of a par-
ticular type. The Setter<T> method works in the same way, only for properties. You
pass the chicken Instance to the Is method to make StructureMap assign the prop-
erty when it builds the instance.

 When you resolve ICourse based on this configuration, you’ll get back a Caesar-
Salad instance with a Chicken instance assigned to its Extra property. This gives you
fine-grained control over specific properties for specific types. A more convention-
based API provides the option to state that we want StructureMap to use all properties
of a given type for PROPERTY INJECTION. As an example, we could state that all settable
IIngredient properties should be injected with the appropriate instance.

 For the CaesarSalad, you can express it like this:

container.Configure(r =>
 r.For<IIngredient>().Use<Chicken>());
container.Configure(r =>
 r.For<ICourse>().Use<CaesarSalad>());
container.Configure(r =>
 r.FillAllPropertiesOfType<IIngredient>());

With the FillAllPropertiesOfType method, you can state that all writable properties
of the IIngredient type should be assigned a value. StructureMap will use the default
instance configured for IIngredient, so when you resolve ICourse you’ll get a Caesar-
Salad instance with Extra Chicken.

 The FillAllPropertiesOfType will fill any writable property of the identified
type, so if other concrete classes also have writable properties of that type, they’ll also
have the configured instances injected. This can be practical if we follow a convention
that uses PROPERTY INJECTION for certain types.

 In this section, you’ve seen how you can use StructureMap to deal with more diffi-
cult creational APIs. You can use the many overloads of the Use and Is methods to
specify concrete instances or code blocks that will be used to create instances. You also
saw that PROPERTY INJECTION can be configured explicitly while we configure instances,
or as a convention for a specific type.

11.5 Summary
This chapter offered a tasting menu of StructureMap and its features, and we related
the principles and patterns from the rest of the book to StructureMap’s API. Structure-
Map is the oldest DI CONTAINER available on .NET, but it doesn’t show its age, with its
pervasive use of Nested Closures, type-safe configuration API, and convention-based
type scanning.

 The use of Nested Closures may be one of its most distinguishing traits; using it
requires familiarity with delegates and code blocks.

 Getting started with StructureMap is quite easy. It supports AUTO-WIRING and auto-
matically figures out how to create concrete types, even if they haven’t been explicitly

384 CHAPTER 11 StructureMap
configured. This means that you can focus on mapping ABSTRACTIONS to concrete
types, and when you’re done with that, you’re able to resolve object graphs. The type-
scanning API even enables you to configure a multitude of services with only a few
lines of code, using a convention-based approach to configuration.

 Although we don’t need to configure concrete services, we may still want to when
we want to change the lifestyle. By default, the lifestyle is PER GRAPH, so whenever we
have thread-safe services, we can potentially increase efficiency by configuring them as
SINGLETONS. This requires an explicit step, although it can be expressed during type-
scanning using a custom registration convention.

 Instances aren’t guaranteed to be tracked by the container, so it offers no API to
release a specific object graph. This effectively prevents memory leaks for normal
classes, but on the other hand, almost guarantees memory leaks for disposable DEPEN-
DENCIES. This makes it important to implement all DEPENDENCIES so that they them-
selves manage all use of disposable types internally.

 StructureMap handles sequences of DEPENDENCIES well. When a class depends on a
sequence of instances of the same type, StructureMap will AUTO-WIRE the instance with
all instances of the DEPENDENCY type. Once again, it has intuitive default behavior, so
we only need to take explicit action if we have special needs for selecting only a subset
of all available instances.

 Although we can configure Decorators explicitly, StructureMap has no convention
for wiring Decorators, and no dynamic INTERCEPTION capabilities. There are SEAMS that
can be used to integrate StructureMap with a dynamic proxy API if we would like to do
such a thing.

 Because StructureMap relies so heavily on Nested Closures, it should come as no
surprise that many of the configuration methods have overloads that enable us to sup-
ply a code block that will be invoked upon creation. Although these overloads aren’t
necessary when the classes we register use CONSTRUCTOR INJECTION, we can use them if
one or more of our classes must be created in special ways.

 StructureMap is a comprehensive DI CONTAINER that offers a wide range of
advanced features. It has excellent default behavior and can be easy to use—particu-
larly when it comes to AUTO-WIRING with concrete types or sequences. On the other
hand, it has no dynamic INTERCEPTION capabilities and can’t dispose of disposable
DEPENDENCIES. These apparent shortcomings are mostly the result of a design philoso-
phy. If we never implement disposable services and prefer explicit Decorators instead
of dynamic INTERCEPTION, StructureMap is an excellent choice because it uses those
constraints to make other things simpler for its users.

Spring.NET
In the previous chapters, you saw how to map the principles and patterns from
parts 1–3 to Castle Windsor and StructureMap. In this chapter, we’ll do the same
with the Spring.NET DI CONTAINER.

 Together with Castle Windsor and StructureMap, Spring.NET belongs to the set
of “first generation” DI CONTAINERS on .NET. It appeared in 2006, and even today it
still offers basic support for .NET 1.1. It’s a port of the Java version of the Spring
Framework, which is a big and comprehensive application framework that addresses
many different aspects of software—not only OBJECT COMPOSITION. The DI CONTAINER

is one of the many components available in the framework, but it can perfectly well
be used as a stand-alone component without the need to reference any of the other
Spring.NET components.

 In this chapter, we’ll focus on the Spring.NET DI CONTAINER while ignoring the
rest of the application framework. As in the previous chapters and in those to

Menu
■ Introducing Spring.NET
■ Managing lifetime
■ Working with multiple components
■ Configuring difficult APIs
385

386 CHAPTER 12 Spring.NET
follow, we’ll examine how Spring.NET can be used to apply the principles and patterns
set out in parts 1–3. Figure 12.1 shows the structure of the chapter.

 The first section provides an overall introduction to Spring.NET and demonstrates
how to configure and resolve objects. The next three sections each deal with usage
patterns that require a bit of extra attention; you can read them all in order, or you
can skip some and read only the ones that interest you.

 This chapter should enable you to get started, as well as deal with the most com-
mon issues that may come up as you use Spring.NET on a daily basis. It isn’t a complete
treatment of Spring.NET—that would take several more chapters or perhaps a whole
book in itself. In any case, the entire Spring.NET framework is beyond the scope of
this book—only the Spring.NET DI CONTAINER pertains to the topic at hand, so when I
use the name Spring.NET, I am specifically referring to the container.

 You can read the chapter in isolation from the rest of part 4 to learn specifically
about Spring.NET, or you can read it together with the other chapters in part 4 to
compare DI CONTAINERS. The focus of this chapter is to show how Spring.NET relates
to and implements the patterns and principles described in parts 1–3.

12.1 Introducing Spring.NET
In this section, you’ll learn where to get Spring.NET, what you get, and how you start
using it. You’ll also look at common configuration options. Table 12.1 provides funda-
mental information that you’re likely to need to get started.

Table 12.1 Spring.NET at a glance

Question Answer

Where do I get it? Go to www.springframework.net/download.html and download the latest
release.
From Visual Studio 2010 you can also get it via NuGet. The package name is
Spring.Core unless you also want the INTERCEPTION features—in that case,
you need the Spring.Aop package.

What’s in the download? A .zip file that contains everything you need: compiled binaries, the source
code, example code and documentation.

Figure 12.1 This chapter is divided into four sections. The first section introduces the Spring.NET
container API and should be considered a prerequisite for the next three sections. Each of these
can be read independently of each other.

www.springframework.net/download.html

387Introducing Spring.NET
Using the Spring.NET DI CONTAINER is a three-step process, as illustrated by figure 12.2.
 When you’re done with this section, you should have a good feeling for the overall

usage pattern of Spring.NET, and you should be able to start using it in well-behaved
scenarios where all components follow proper DI patterns, such as CONSTRUCTOR INJEC-
TION. We’ll start with the simplest scenario and see how to resolve objects using a
Spring.NET container.

12.1.1 Resolving objects

The core service of any DI CONTAINER is to compose object graphs, and Spring.NET is
no exception. Because it’s such a central feature, it’s the most natural place to start
when introducing the API, so this is what I’ll do here.

 In the previous chapters about Castle Windsor and StructureMap, you saw how those
DI CONTAINERS take different approaches to whether it’s necessary to configure compo-
nents before we can resolve them. Castle Windsor requires us to explicitly configure
every single component, whereas StructureMap can work with concrete types without
configuration. But both of these DI CONTAINERS, as well as all of the DI CONTAINERS we’ll
cover in the next chapters, operate on types: we ask the container to resolve a type for us.

Which platforms are
supported?

All .NET versions from .NET 1.1 are supported, although future versions will
target only .NET 2.0 and above.

How much does it cost? Nothing. It’s open source.

Where can I get help? You can get commercial support from SpringSource, which is the organiza-
tion behind Spring.NET.
Other than commercial support, Spring.NET is still open source software
with a thriving ecosystem, so you’re also likely (but not guaranteed) to get
help in the official forum at http://forum.springframework.net.

On which version is this
chapter based?

1.3.1.

Table 12.1 Spring.NET at a glance (continued)

Question Answer

Figure 12.2 The overall usage pattern of Spring.NET involves three steps: first, we define how
objects are configured and composed in an XML file. Second, we load that XML configuration into
a container instance. In the third and final step, we can resolve objects from the container instance.

http://forum.springframework.net

388 CHAPTER 12 Spring.NET
Spring.NET is different because its core query mechanism isn’t based on types, but on
names. Instead of requesting a particular type, we ask Spring.NET for a named object.
Similar to Castle Windsor, all objects must be configured before they can be served.

 Configuration for Spring.NET is done in XML, so even the simplest scenario
involves a piece of XML and some .NET code. As an example, to resolve the concrete
SauceBéarnaise class, you must first define the object in XML configuration:

<objects xmlns="http://www.springframework.net">
 <object id="Sauce"
 type="Ploeh.Samples.MenuModel.SauceBéarnaise,
 ➥Ploeh.Samples.MenuModel" />
</objects>

In Spring.NET, every configured object must appear in an object element. The element
may have an id attribute that names the object, as well as a type attribute that defines
the .NET type of the object. The name is used when you wish to resolve the object.

 To resolve a SauceBéarnaise instance, you must load the XML configuration into a
container instance. Using an XmlApplicationContext, you can load XML from several
different sources, including embedded resources and the application configuration
file; but this example uses a stand-alone XML file named sauce.xml:

var context = new XmlApplicationContext("sauce.xml");
SauceBéarnaise sauce = (SauceBéarnaise)context.GetObject("Sauce");

To resolve a SauceBéarnaise instance, you invoke the GetObject method with the
Sauce ID you provided for the object in the XML configuration. The ID can be any
string, but Spring.NET recommends Pascal casing as a naming convention.

 Because the GetObject method returns a weakly typed System.Object instance,
you need to cast the return value to the expected type in order to use it.

 Notice how Spring.NET doesn’t explicitly distinguish between concrete and
abstract types. Whereas other DI CONTAINERS require us to provide a mapping from
ABSTRACTIONS to concrete types, Spring.NET is exclusively based on mappings from
names to concrete types. As this chapter will demonstrate, Spring.NET is still able to
resolve requests for ABSTRACTIONS into concrete instances, but the mechanism is more
implicit than what other DI CONTAINERS use.

 The GetObject method is defined by the IObjectFactory interface, which is one
of the fundamental interfaces defined by Spring.NET. As the name implies, it
focuses on creating objects, and it contains no methods that enable us to configure
the container. Rather, this is the responsibility of higher-level types like the Xml-
ApplicationContext.

 The GetObject method is one among several that we can use to resolve objects.
However, because all of them are weakly typed, we must always explicitly cast the
return value to the type upon which we wish to work. With the GetObject method, we
can only request objects based on names instead of types, so how do we address situa-
tions where a type is all we have?

389Introducing Spring.NET
RESOLVING TYPE REQUESTS

Sometimes we don’t have a name, but rather a Type instance that we need to resolve to
an instance of that type. You saw an example of that in section 7.2, where we discussed
ASP.NET MVC’s DefaultControllerFactory class. The relevant method is this one:

protected internal virtual IController GetControllerInstance(
 RequestContext requestContext, Type controllerType);

Given only a type instead of a name, we might be tempted to define and maintain an
explicit map of types to names, but that would be redundant work. A slightly better
option would be to use a naming convention that enables us to deterministically
derive a name from a Type instance. But the IListableObjectFactory interface,
which derives directly from IObjectFactory, defines a method called GetObjectsOf-
Type that can be used to get all objects that match a given type. Assuming that the
requested controllerType is unique in the Spring.NET configuration, you can imple-
ment the GetControllerInstance method like this:

IDictionary controllers =
 this.context.GetObjectsOfType(controllerType);
return controllers.Values.OfType<IController>().Single();

The context field is an instance of IListableObjectFactory that you can query for
all objects that match the controllerType. Although you get back a dictionary, you
care only about the values, and you expect that each requested controller will be
unique in the underlying XML configuration.

 Although Spring.NET doesn’t provide any generic APIs, you can easily encapsulate
the previous query into an extension method:

public static T Resolve<T>(this IListableObjectFactory factory)
{
 return factory.GetObjectsOfType(typeof(T))
 .Values.OfType<T>().Single();
}

This would enable you to resolve a type like this:

SauceBéarnaise sauce = context.Resolve<SauceBéarnaise>();

The GetObjectsOfType method returns all configured objects that match the
requested type. Because SauceBéarnaise implements the IIngredient interface, you
can also resolve IIngredient from the context:

IIngredient ingredient = context.Resolve<IIngredient>();

A typical ASP.NET Controller, and any other application code that we’re likely to write,
will have a complex hierarchy of DEPENDENCIES. To enable Spring.NET to compose
objects from loosely coupled services, we must provide proper configuration.

12.1.2 Configuring the container

As we discussed in section 3.2, there are several conceptually different ways you can
configure a DI CONTAINER. Figure 12.3 reviews the options and how Spring.NET fits in.

390 CHAPTER 12 Spring.NET
Like other DI CONTAINERS with a long history, Spring.NET started out with XML as the
major configuration source, but contrary to the evolution of both Castle Windsor and
StructureMap, Spring.NET has remained focused on XML—perhaps because of its
strong ties to the Java Spring framework.

In this chapter, the focus will be exclusively on XML configuration.

WORKING WITH .NET TYPES IN XML
Spring.NET works on configuration based on XML. That XML can come from a variety
of sources. Most of the time, we’ll be loading XML from a file.

 In section 12.1.1, you already saw a simple example of Spring.NET’s XML
configuration:

<objects xmlns="http://www.springframework.net">
 <object id="Sauce"
 type="Ploeh.Samples.MenuModel.SauceBéarnaise,
 ➥Ploeh.Samples.MenuModel" />
</objects>

CODE AS CONFIGURATION with Spring.NET
When I wrote this chapter, Spring.NET didn’t have support for CODE AS CONFIGURATION.
However, literally days before I turned in the final manuscript for the book, Spring-
Source released Spring CodeConfig, which provides CODE AS CONFIGURATION support
for Spring.NET.

Unfortunately, this happened so late that I didn’t have time to rewrite the chapter.

Figure 12.3 Spring.NET mainly
supports XML configuration out of
the three possible options outlined in
chapter 3. CODE AS CONFIGURATION is
only marginally supported and AUTO-
REGISTRATION isn’t available at all, so
these options are shown in grey.

391Introducing Spring.NET
It’s no secret that XML is a verbose language in itself, but when it comes to identifying
.NET types, it becomes extra verbose. To properly identify a .NET type by a string, we
must resort to assembly qualified names. Even in the cases where we can omit Culture,
Version, and PublicKeyToken, the type will often be identified by a long string with a
lot of repeated information. This hurts both readability and maintainability.

 Readability is impacted because the relevant part of the type name (Sauce-
Béarnaise) is buried between a namespace and an assembly name. Maintainability
suffers because it becomes harder to rename namespaces or assemblies. Every time we
rename anything, we must edit a potentially large set of type definitions.

 Granted, these issues apply to all frameworks where types must be defined as XML,
but this is also the reason why all other DI CONTAINERS have moved on to other ways of
configuring the container. This is also the reason why I generally recommend against
XML configuration unless it’s mandated by the usage scenario. However, when it
comes to Spring.NET, XML is the most prevalent option.

 To make it easier to work with .NET types in XML, SpringSource provides tools
such as XML schemas and a Visual Studio add-in with type and property completion.
The framework itself also enables us to define a set of type aliases, which are shorthand
names that we can define for types. This is also done in XML. The type alias for the
SauceBéarnaise class might look like this:

<alias name="SauceBéarnaise"
 type="Ploeh.Samples.MenuModel.SauceBéarnaise,
 ➥Ploeh.Samples.MenuModel" />

The name can be anything, but I find it most intuitive and easy to remember to pick
the simple name of the type as the name of the alias.

 This type alias enables us to rewrite the previous example, like this:

<object id="Sauce" type="SauceBéarnaise" />

This feature can be particularly helpful when we need to refer to the same type multi-
ple times in the same XML file; in any case, it makes the configuration much more
readable. In the rest of this chapter, I’ll use type aliases. With this notation, the object
element begins to look like what it is: a map from a name to a concrete type.

 In this simple form, this is all the object element does. When the objects have
DEPENDENCIES, you must tell Spring.NET how to resolve them.

EXPLICITLY CONFIGURING DEPENDENCIES

The SauceBéarnaise class is easy to create because it has a default constructor; no DI
CONTAINERS need a lot of help to create such types. This changes when there’s no
default constructor. As an example, consider this Mayonnaise constructor:

public Mayonnaise(EggYolk eggYolk, OliveOil oil)

Although the mayonnaise recipe is a bit simplified, both EggYolk and OliveOil are
concrete classes with default constructors. However, because the Mayonnaise class has
no default constructor, you must tell Spring.NET how to resolve it. One option is to
explicitly wire the types together:

392 CHAPTER 12 Spring.NET
<object id="EggYolk" type="EggYolk" />
<object id="OliveOil" type="OliveOil" />
<object id="Mayonnaise" type="Mayonnaise">
 <constructor-arg ref="EggYolk" />
 <constructor-arg ref="OliveOil" />
</object>

The EggYolk and OliveOil types are configured the way you saw previously, but the
Mayonnaise element now contains two constructor-arg elements. Each of those ele-
ments references a named object in order to define the parameters for the Mayonnaise
constructor. The ref attribute identifies another configured object by name, so the
EggYolk reference refers to the EggYolk name—not directly to the EggYolk type.

 In the previous example, the order of the constructor-arg elements is important
because you didn’t explicitly refer to the parameter names; that’s also possible.

 Whereas we can always explicitly configure DEPENDENCIES in this way, we don’t gain the
benefits that AUTO-WIRING can provide. Contrary to other DI CONTAINERS, with Spring.NET
we must explicitly ask it to use AUTO-WIRING, and even so it only works in certain cases.

AUTO-WIRING DEPENDENCIES

Spring.NET supports limited AUTO-WIRING, but we must explicitly turn it on using an
XML attribute. Instead of the explicitly wired Mayonnaise specified previously, you
could’ve configured it like this:

<object id="EggYolk" type="EggYolk" />
<object id="OliveOil" type="OliveOil" />
<object id="Mayonnaise" type="Mayonnaise"
 autowire="autodetect" />

The optional autowire attribute can be used to turn on AUTO-WIRING for a given
object. In this example, we use the autodetect value which tells Spring.NET to figure
out exactly how matching objects are found. Other available options enable us to indi-
cate that matching objects should be found by name, type, or other means.

 If we expect to use AUTO-WIRING for all objects, we can enable it for an entire block
of configured objects instead of writing out the autowire attribute for each and every
object element:

<objects xmlns="http://www.springframework.net"
 default-autowire="autodetect">
 <object id="EggYolk" type="EggYolk" />
 <object id="OliveOil" type="OliveOil" />
 <object id="Mayonnaise" type="Mayonnaise" />
</objects>

The default-autowire attribute defines a default AUTO-WIRING strategy for all objects
within the objects element. This is a much easier way to turn on AUTO-WIRING once
and for all—but you should be aware that it won’t always work.

 The support for AUTO-WIRING in Spring.NET relies on uniqueness. For the Mayonnaise
class, Spring.NET examines the constructor and determines that it needs instances of
EggYolk and OliveOil. To satisfy the EggYolk DEPENDENCY, it searches through all

393Introducing Spring.NET
other configured elements to find one that can satisfy that requirement (and it does
the same for the OliveOil DEPENDENCY).

 In the previous example, there’s only one object that satisfies the EggYolk DEPEN-
DENCY, so there’s no ambiguity. However, had there been more than one object that
could satisfy the requirement, an exception would have been thrown. That goes for
both concrete EggYolk elements, but also any derived types.

NOTE In Spring.NET, AUTO-WIRING only works when the DEPENDENCIES can be
uniquely resolved. This is different from other DI CONTAINERS.

The advantage of requiring distinctness to support AUTO-WIRING is that the contract
with the container is clear and explicit. AUTO-WIRING is only possible when there’s no
ambiguity regarding resolved types, so the risk of misconfiguration is much smaller.
On the other hand, this design makes it harder to work with multiple objects that
implement the same ABSTRACTION.

 We’ve looked at some basic configuration options for Spring.NET. Although it’s
certainly possible to write one big block of unstructured XML, it’s better to modularize
configuration. Spring.NET supports this by enabling XML to be loaded from more
than one source.

12.1.3 Loading XML
It’s sometimes desirable to package configuration into reusable groups; and even
when reuse itself isn’t our top priority, we may want to provide a bit of structure if we
have a big and complex application to configure.

 With Spring.NET, we can package configuration into separate XML elements that
are defined in different resources. Table 12.2 lists the supported resource types.
They’re easy to use, but I’ll briefly discuss each of them to give you an impression.

Table 12.2 XML resource types

Resource type Uri syntax Description

FileSystemResource file://<filename>
The file:// moniker is optional.

XML configuration is
defined in files.

ConfigSectionResource config://<path to section> XML configuration is
defined in the applica-
tion configuration file.

UriResource Standard .NET URI syntax is supported. XML configuration is read
from standard Sys-
tem.Uri protocols, such
as HTTP and HTTPS.

AssemblyResource assembly://<AssemblyName>/

➥<NameSpace>/<ResourceName>
XML configuration is
embedded in an assembly.

InputStreamResource Not supported. XML configuration
is read from a
System.IO.Stream.

394 CHAPTER 12 Spring.NET
Some of the resource types support URI syntax, where we can use a moniker to indi-
cate the resource type as part of a string-encoded address. If no moniker is supplied,
the resource is assumed to be a file.

USING XML FILES

So far, you’ve only seen examples of loading XML configuration from a single file.
This example loads the entire configuration from the file sauce.xml:

var context = new XmlApplicationContext("sauce.xml");

Because no explicit path information is given, the sauce.xml file is assumed to be
located in the working folder of the running process. A full path can also be used.

 In this example, no moniker was supplied so Spring.NET defaults to the File-
SystemResource. Alternatively, you could’ve chosen to explicitly use the file://
moniker like this:

var context = new XmlApplicationContext("file://sauce.xml");

This is equivalent to the previous example. It’s often intuitive to work with XML as
files, so in most cases it makes sense to dispense with the file:// moniker and instead
write the file path directly.

 In addition to defining XML configuration in text files, we can also integrate it in
the standard application configuration file.

USING APPLICATION CONFIGURATION FILES

If we prefer to integrate Spring.NET configuration with the rest of the application’s
configuration, we can also use the standard .NET application .config file.

 Because the .NET application configuration system expects custom configuration
sections to be explicitly registered, we must also register Spring.NET’s configuration sec-
tions when we wish to use the .config file. There are various configuration sections
that you can register, but to use the objects element you’ve been using so far, it’s nec-
essary to register Spring.NET’s default section handler:

<configSections>
 <sectionGroup name="spring">
 <section name="objects"
 type="Spring.Context.Support.DefaultSectionHandler,
 ➥Spring.Core" />
 </sectionGroup>
</configSections>

This enables you to define objects directly in the .config file, as you’ve previously been
doing in stand-alone XML files:

<spring>
 <objects xmlns="http://www.springframework.net">
 <object id="Sauce" type="SauceBéarnaise" />
 </objects>
</spring>

395Introducing Spring.NET
Using the config:// moniker, you can now load the Spring.NET configuration from
the .config file into an XmlApplicationContext instance, like this:

var context = new XmlApplicationContext("config://spring/objects");

The context instance can now safely resolve the Sauce name.
 In many ways, integrating Spring.NET configuration into the standard .NET applica-

tion configuration file format is a special case of using an XML file, because .config files
are also XML files; but we can also view files as a special case of XML loaded from any URI.

LOADING XML FROM URIS
When we load XML from files, we use the file:// moniker as we would a URI scheme
delimiter. Spring.NET can download XML files from other URIs than files, such as
HTTP, HTTPS, and FTP. It’s a simple as this:

var context = new XmlApplicationContext("http://localhost/sauce.xml");

In this example, the sauce.xml file is hosted by the local machine’s web server, but any
publicly available resource can be used.

 In all the previous cases we can change the configuration without recompiling the
application. This isn’t possible with the next option.

USING EMBEDDED RESOURCES

In .NET, we can compile resources into assemblies. If we embed XML configuration in
an assembly, Spring.NET can load it.

 The advantage of embedded XML files is that operations staff can’t accidentally
change configuration values when they’re compiled into the assembly. Only files with
parameters that might need to be adjusted by operations staff should be exposed out-
side the assembly on the file system where they can be edited on a deployment-by-
deployment basis.

 If you embed the sauce.xml file into an assembly, you can load it into an Xml-
ApplicationContext, like this:

var context = new XmlApplicationContext(
 "assembly://Ploeh.Samples.Menu.SpringNet/
 ➥Ploeh.Samples.Menu.SpringNet/sauce.xml");

To load from an embedded resource, we can construct the resource string from the
assembly:// moniker, followed by the assembly name, the namespace, and the name
of the embedded resource itself. Table 12.2 shows the required format for referencing
an embedded resource.

AssemblyResources enable us to load Spring.NET configuration from embedded
resources in addition to the externally defined XML files and URIs. If we keep XML
configuration in other places, we might need to resort to reading from streams.

USING STREAMS

Until now, we’ve looked at loading XML from static resources such as files, application
configuration, web resources, and embedded resources. At times, we need to load

396 CHAPTER 12 Spring.NET
XML from other sources, or perhaps we need to dynamically build the XML configura-
tion. One way to do that is to load the configuration directly from a stream.

 Because a stream isn’t a static resource, Spring.NET doesn’t support identifying it
by a string. We can’t use the XmlApplicationContext class at all but must instead
resort to one of Spring.NET’s many other context classes:

var resource = new InputStreamResource(stream, "");
var context = new XmlObjectFactory(resource);

The InputStreamResource serves as an Adapter1 around a System.IO.Stream object.
The stream object contains the XML configuration that you wish to load. We can load
the XML into the stream from many different sources, including a string, or by build-
ing up the XML model using LINQ to XML. The empty string supplied to the Input-
StreamResource constructor is a description. We can supply a proper description, but
it isn’t required.

 Given the resource (or any implementation of IResource), we can now create
an instance of XmlObjectFactory. This class offers functionality equivalent to Xml-
ApplicationContext but loads configuration directly from an IResource instance,
instead of from strings representing static resources.

 The IResource interface is a common interface for all the XML resources we
reviewed. We can also provide a custom implementation of IResource and use it in
the same way we used the InputStreamResource, or we can register it with its own
moniker—but that’s beyond the scope of this chapter.

 So far, you’ve seen how to load a single XML configuration from a single resource,
but to achieve modularity, we’d often prefer to organize parts of a big application’s
configuration in different modules.

COMBINING XML RESOURCES

A big application will require a lot of XML configuration code. To keep the configura-
tion more maintainable, we might want to split it into several smaller documents. Per-
haps we even want to keep these in separate places; some in XML files, some in the
.config file, and some as embedded resources.

 The XmlApplicationContext makes it possible to combine several different
resources because it receives each of the resource strings as part of a parameter array.
Here’s the signature of the constructor you’ve been using all along:

public XmlApplicationContext(params string[] configurationLocations)

Notice that the configurationLocations parameter is defined as a parameter array.
So far, you’ve only been supplying a single resource at a time, like this:

var context = new XmlApplicationContext("sauce.xml");

However, you can supply an arbitrary number of strings to the constructor to combine
several resources into a single context:

1 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (New York: Addison-Wesley,
1994), 139.

397Managing lifetime
var context = new XmlApplicationContext(
 "config://spring/objects",
 "meat.xml",
 "file://course.xml");

This example combines three different resources that each defines a piece of the
greater whole. Part of the configuration is defined and loaded from the applica-
tion’s configuration file, while the two other parts are loaded from XML files—one
using the implicit syntax for file names and the other explicitly using the file://
moniker. Together, they form a complete set of configuration that defines the Xml-
ApplicationContext.

 Another way to combine multiple resources is via the import element in an
XML file:

<objects xmlns="http://www.springframework.net">
 <import resource="config://spring/objects" />
 <import resource="meat.xml" />
 <import resource="file://course.xml" />
</objects>

This configuration is identical to the previous example.
 As you’ve seen, there are several different ways in which we can load XML configu-

ration into Spring.NET. Because we can load and combine configuration from more
than one resource, this gives us a degree of modularity, which we sorely need for
maintainability reasons.

 But we shouldn’t forget that, overall, XML configuration isn’t the most attractive
way to configure a DI CONTAINER. It’s brittle, verbose, and hard to troubleshoot. Until
CodeConfig came along, Spring.NET offered few other options.

 This section introduced the Spring.NET DI CONTAINER and demonstrated the fun-
damental mechanics: how to configure the container with XML and subsequently use
it to resolve objects. Resolving objects is done with a single call to the GetObject
method, so the complexity involves configuring the container. Until now, we’ve only
looked at the most basic API; there are more advanced areas we have yet to cover. One
of the most important topics is how to manage component lifetime.

12.2 Managing lifetime
In chapter 8, we discussed LIFETIME MANAGEMENT, including the most common concep-
tual lifetime styles, such as SINGLETON and TRANSIENT. Spring.NET supports a few differ-
ent lifestyles and enables us to configure the lifetime of all objects. The lifestyles
shown in table 12.3 are available as part of the package.

NOTE The Spring.Net documentation refers to lifestyles as object scopes.

Spring.NET’s implementations of SINGLETON and TRANSIENT are equivalent to the
general lifestyles described in chapter 8, so I won’t spend much time on them in
this chapter.

398 CHAPTER 12 Spring.NET
NOTE The default lifestyle in Spring.NET is SINGLETON. This is different from
many other containers. As discussed in chapter 8, SINGLETON is the most effi-
cient, although not always the safest, of all object scopes; Spring.NET priori-
tizes efficiency over safety.

The three web-aware scopes (Request, Session, and Application) are all closely cou-
pled with particular IApplicationContexts and don’t work with the XmlApplication-
Context or the XmlObjectFactory we’ve been looking at so far. The currently
available implementations are so closely coupled to ASP.NET Web Forms that even get-
ting them to work with ASP.NET MVC is difficult. To be frank, it’s a mess and not
usable, so we won’t cover the web-aware scopes in this chapter. Expect future versions
of Spring.NET to have a more streamlined story in this space.

 Here, I’ll show you how to configure object scopes with the SINGLETON and TRAN-
SIENT object scopes. Because Spring.NET doesn’t support custom object scopes, this is
going to be a short section. When we’re done, you should be able to use object scopes
with Spring.NET.

12.2.1 Configuring object scopes

Object scopes are configured as part of configuring objects in XML.
 To configure an object as TRANSIENT you set the singleton attribute to false:

<object id="Sauce" type="SauceBéarnaise" singleton="false" />

Changing the value to true instead configures the object as a SINGLETON:

<object id="Sauce" type="SauceBéarnaise" singleton="true" />

The singleton attribute is optional, and because SINGLETON is the default, omitting it
implicitly configures a SINGLETON. This is what you’ve been doing so far in this chapter.

PREVENTING MEMORY LEAKS

Like any other DI CONTAINER, Spring.NET creates object graphs. However, it doesn’t
track the created objects for us. It may keep track of those objects for its own pur-
poses, but that depends on the object lifetime. As an example, to implement the

Table 12.3 Spring.NET lifestyles

Name Comments

Singleton This is the default lifestyle.

Prototype Spring.NET’s name for TRANSIENT. Instances aren’t tracked by the container.

Request Spring.NET’s name for WEB REQUEST CONTEXT. Only valid in the context of a web-aware
IApplicationContext.

Session One instance is created per HTTP session. Use with caution. Only valid in the context of
a web-aware IApplicationContext.

Application Scopes a single object definition to the lifecycle of a web application. Only valid in the
context of a web-aware IApplicationContext.

399Working with multiple components
SINGLETON scope, it must keep a reference to the created instance. On the other hand,
the TRANSIENT object scope doesn’t keep track of the objects that Spring.NET creates.
As you saw in listings 8.7 and 8.8, object instances are created and returned with no
internal tracking. This has some advantages and disadvantages.

 Because Spring.NET doesn’t hold on to instances, the risk of inadvertent memory
leaks is much smaller. With a container like Castle Windsor, memory leaks are guaran-
teed if you forget to call the Release method for all resolved object graphs. This isn’t
the case with Spring.NET, because objects will automatically be garbage-collected as
they go out of scope.

 The disadvantage is that disposable objects can’t be deterministically disposed of.
Because we can’t explicitly release an object graph, we can’t dispose of any disposable
objects. This means that it becomes even more important to wrap disposable APIs in
non-disposable services, as discussed in section 6.2.1.

 In short, Spring.NET is well behaved and allows objects to be garbage-collected when
they go out of scope in our own code—but the requirement is that our own classes must
also be as well behaved. Because we can’t rely on the container or the calling code to dis-
pose of any services, we must keep usage of disposable objects within single methods.

 This chapter has provided a remarkably short tour of object scopes in Spring.NET;
there isn’t a lot to say. The only universally available object scopes are SINGLETON and
TRANSIENT, whereas a couple of other scopes rely on particular implementations of
IApplicationContext. When we configure objects, we can configure some as SINGLE-
TONS and some as TRANSIENTS, and this is even true if we configure multiple implemen-
tations of the same ABSTRACTION. We have yet to look at how to work with multiple
components, so let’s now turn our attention in that direction.

12.3 Working with multiple components
DI CONTAINERS thrive on distinctness but have a hard time with ambiguity. When using
CONSTRUCTOR INJECTION, a single constructor is preferred over overloaded constructors
because it’s evident which constructor to use when there’s no choice. This is also the
case when mapping from ABSTRACTIONS to concrete types. If we attempt to map multi-
ple concrete types to the same ABSTRACTION, we introduce ambiguity.

 Despite the undesirable qualities of ambiguity, we often need to work with multiple
implementations of a single interface. This can be the case in these situations:

■ Different concrete types should be used for different consumers.
■ DEPENDENCIES are sequences.
■ Decorators are in use.

We’ll look at each of these cases and see how Spring.NET addresses each one in turn.
When we’re done, you should be able to configure and resolve components even
when multiple implementations of the same ABSTRACTION are in play.

 As you saw in section 12.1.2, contrary to most other DI CONTAINERS, AUTO-WIRING

isn’t the default behavior for Spring.NET. Fine-grained control of wiring is an equally
valid option and can be used to select among multiple candidates.

400 CHAPTER 12 Spring.NET
12.3.1 Selecting among multiple candidates

AUTO-WIRING in Spring.NET is convenient, but requires that services are distinct. As
long as we have only one object that matches a particular ABSTRACTION we have no
problems, but as soon as we introduce more implementations of the same interface,
ambiguity rears its ugly head.

 To deal with that ambiguity, we can use the explicit wiring of DEPENDENCIES that
you’ve already seen in several examples.

CONFIGURING MULTIPLE IMPLEMENTATIONS OF THE SAME ABSTRACTION

Until now, you’ve been configuring named objects—but objects don’t have to have
names. You can configure multiple objects without providing a name:

<objects xmlns="http://www.springframework.net">
 <object type="SauceBéarnaise" />
 <object type="Steak" />
</objects>

The SauceBéarnaise and Steak classes are both configured without a name. Because
you haven’t explicitly provided names for the SauceBéarnaise and Steak objects,
Spring.NET assigns an automatically generated name for each. If you knew the algo-
rithm that Spring.NET uses to generate a name, you could request the objects using
the GetObject method; but it might turn out to be a somewhat brittle solution.
Instead, you can use the GetObjectsOfType method which was also introduced in sec-
tion 12.1.1. As soon as we configure a type in Spring.NET, we can retrieve it using any
of the types from which it derives.

 To get an instance of the concrete Steak class, for example, you can mix the Get-
ObjectsOfType method with a couple of LINQ extension methods:

var meat = context.GetObjectsOfType(typeof(Steak))
 .Values
 .OfType<Steak>()
 .FirstOrDefault();

You request the Steak type from the GetObjectsOfType method. Spring.NET will find
all configured objects that match the requested type (whether they’re named or not)
and return them as a dictionary. The keys in this dictionary are the object names, but
because you don’t know the names, you’re only interested in the values.

 The Values property is an instance of the non-generic ICollection interface, so,
to use LINQ, we must somehow cast it to a generic sequence. One possibility is to use
the Cast<T> method, but a slightly safer option is to use the OfType<T> filter.
Although the Cast method might throw an exception if there’s an element that can’t
be cast to the desired type, the OfType method filters the sequence. Finally, we get the
object from the sequence. In this case, we used FirstOrDefault, but a stronger con-
straint can be introduced by using the Single extension method.

 The SauceBéarnaise and Steak classes both implement the IIngredient inter-
face. When we configure objects, Spring.NET places no restrictions on how many

401Working with multiple components
objects we can configure of a given interface, but it still enables us to resolve them
using the GetObjectsOfType method:

var ingredients = context.GetObjectsOfType(typeof(IIngredient));

Given the previous configuration, the returned ingredients dictionary will contain
instances of both SauceBéarnaise and Steak, and we can use LINQ queries like we did
in the previous example to retrieve particular elements that might interest us.

 Although we can configure several IIngredient objects without names, we can still
give them names if we want to:

<objects xmlns="http://www.springframework.net">
 <object id="Sauce" type="SauceBéarnaise" />
 <object id="Meat" type="Steak" />
</objects>

This enables us to resolve each of the objects by their names:

var meat = context.GetObject("Meat");
var sauce = context.GetObject("Sauce");

This doesn’t preclude us from using the GetObjectsOfType method, so all of the pre-
vious examples would still apply.

 Given that we should always resolve services in a single COMPOSITION ROOT, we
should normally not expect to deal with such ambiguity on this level—but we can use
named objects to select among multiple alternatives when configuring DEPENDENCIES

for a given consumer.

CONFIGURING NAMED DEPENDENCIES

Wiring objects with named objects is a central feature in Spring.NET, although we also
get limited AUTO-WIRING. Even though we should prefer AUTO-WIRING when possible,
there are times when we need to address an ambiguous API. As an example, consider
this constructor:

public ThreeCourseMeal(ICourse entrée,
 ICourse mainCourse, ICourse dessert)

In this case, we have three identically typed DEPENDENCIES that each represents a differ-
ent concept. In most cases, we want to map each of the DEPENDENCIES to a separate type.
The following listing shows how we could choose to configure the ICourse and the
ThreeCourseMeal objects.

<object id="Entrée" type="Rillettes" />
<object id="MainCourse" type="CordonBleu" />
<object id="Dessert" type="MousseAuChocolat" />
<object id="Meal" type="ThreeCourseMeal">
 <constructor-arg ref="Entrée" />
 <constructor-arg ref="MainCourse" />
 <constructor-arg ref="Dessert" />
</object>

Listing 12.1 Wiring a list of dependencies

402 CHAPTER 12 Spring.NET
The three ICourse implementations are configured as named objects. When we con-
figure the ThreeCourseMeal object, we can refer to the names when wiring the construc-
tor arguments. The constructor-arg element also takes optional name or index
attributes that we can use to identify exactly which parameter we’re referring to; but
in this example we’re listing them all in the appropriate order.

 Explicitly mapping constructor arguments to named objects is a universally appli-
cable solution. We can do this even if we configure the named objects in one XML
resource and the constructor in a completely different resource, because the only
identification that ties a named object together with an argument is the name. This is
always possible but can be brittle if we have a lot of names to manage.

 When the original reason prompting us to abandon AUTO-WIRING is to deal with
ambiguity, a better solution is to design the API to get rid of that ambiguity. This often
leads to a better overall design.

 In the next section, you’ll see how you can use the less ambiguous and more flexi-
ble approach, where you allow any number of courses in a meal. To this end, you must
learn how Spring.NET deals with lists and sequences.

12.3.2 Wiring sequences

In section 10.3.2, we discussed how to refactor an explicit ThreeCourseMeal class to
the more general-purpose Meal class with this constructor:

public Meal(IEnumerable<ICourse> courses)

You can configure Spring.NET to wire up Meal instances with appropriate ICourse
DEPENDENCIES, and I’ll show you how. When we’re done, you should have a good
idea of the options available to you when you need to configure instances with
sequences of DEPENDENCIES.

AUTO-WIRING SEQUENCES

Spring.NET understands arrays well, but not other types of sequences. If we need an
array of a particular ABSTRACTION and want to use all those configured, AUTO-WIRING just
works. As an example, imagine that the Meal class offers this constructor overload:

public Meal(params ICourse[] courses)

If we want all configured ICourse objects to be injected into Meal, we can provide
this configuration:

<object id="Entrée" type="Rillettes" />
<object id="MainCourse" type="CordonBleu" />
<object id="Dessert" type="MousseAuChocolat" />
<object id="Meal" type="Meal" autowire="autodetect" />

The Meal object is configured to AUTO-WIRE, and, because Spring.NET inherently under-
stands arrays, it finds all objects that implement the ICourse interface and provides
them to the Meal constructor. Array-based DEPENDENCIES are AUTO-WIRED out of the box.

 Now, imagine that the constructor overload that takes an array of ICourse doesn’t
exist; you have only the constructor that takes an IEnumerable<ICourse>. Although

403Working with multiple components
AUTO-WIRING doesn’t work in this case, you can take advantage of the built-in under-
standing of arrays by defining a simple Decorator2 that must be initialized with an
array. The following listing shows a generic implementation. Recall that taking
IEnumerable<T> in a constructor indicates a statically typed request for that particular
DEPENDENCY. What you must do is as simple as translating this request into a request for
an array of the same type.

public class ArrayEnumerable<T> : IEnumerable<T>
{
 private readonly IEnumerable<T> sequence;

 public ArrayEnumerable(params T[] items)
 {
 if (items == null)
 {
 throw new ArgumentNullException("items");
 }

 this.sequence = items;
 }

 public IEnumerator<T> GetEnumerator()
 {
 return this.sequence.GetEnumerator();
 }
}

The ArrayEnumerable<T> implements IEnumerable<T> B so that it satisfies every
constructor that requires such a sequence. On the other hand, it requires an array of
the same type c. Because Spring.NET inherently knows how to deal with arrays, it can
satisfy a closed ArrayEnumerable by providing it with all the objects that match the
item type T.

 To properly wire up the Meal class with all ICourse objects, you can now configure
the context like this:

<object id="Entrée" type="Rillettes" />
<object id="MainCourse" type="CordonBleu" />
<object id="Dessert" type="MousseAuChocolat" />
<object id="Courses"
 type="ArrayEnumerable<ICourse>"
 autowire="autodetect" />
<object id="Meal" type="Meal" autowire="autodetect" />

You define Courses as an ArrayEnumerable<ICourse> with AUTO-WIRING turned on.
Because its only constructor requires an array of ICourse, Spring.NET automatically
AUTO-WIRES it with all the ICourse implementations it can find: Rillettes, CordonBleu,
and MousseAuChocolat.

2 Erich Gamma et al, Design Patterns: Elements of Reusable Object-Oriented Software (New York: Addison-Wesley,
1994), 175.

Listing 12.2 Translating requests for a sequence into requests for arrays

Define
sequenceb

Require
arrayc

404 CHAPTER 12 Spring.NET
 The Meal class requires an IEnumerable<ICourse> and is also configured to be
AUTO-WIRED. When you ask Spring.NET to resolve the Meal object, it will search for
a configured object that implements IEnumerable<ICourse> and find the Courses
object. All three ICourse objects will be injected into the Meal object via the
Courses object.

 The ArrayEnumerable<T> class is a little hack that fills in a small gap in Spring.NET.
It’s a pure infrastructure component which could be packaged into a reusable library.

 Spring.NET automatically handles arrays, and, with a little help from Array-
Enumerable<T>, it also handles other requests for sequences by resolving them to
sequences of objects that implement the requested type. The only thing you need is
to configure an ArrayEnumerable of the appropriate item type. Only when you need to
explicitly pick only some components from a larger set do you need to do more than
that. This is possible with more explicit configuration.

PICKING ONLY SOME OBJECTS FROM A LARGER SET

When we use Spring.NET’s ability to resolve arrays, all objects are injected into con-
sumers. This is often the correct policy. However, as figure 12.4 shows, there may be
cases where we want to pick only some components from the larger set of all regis-
tered components.

 When we previously let Spring.NET AUTO-WIRE all configured objects, it corre-
sponded to the situation depicted on the right side of figure 12.4. If we want to

Figure 12.4 In the situation on the left, we wish to explicitly select only certain DEPENDENCIES from
the larger list of all configured objects. This is different from the situation to the right, where we
indiscriminately want them all.

405Working with multiple components
configure an instance like the left side, we must explicitly define which objects should
be used.

 This is easy to do with named objects, because it’s more or less the idiomatic way to
configure Spring.NET, which provides a special list XML element to address this par-
ticular scenario. The following listing shows an example.

<object id="Entrée" type="Rillettes" />
<object id="Entrée1" type="LobsterBisque" />
<object id="MainCourse" type="CordonBleu" />
<object id="Dessert" type="MousseAuChocolat" />
<object id="Meal" type="Meal">
 <constructor-arg>
 <list element-type="ICourse">
 <ref object="Entrée" />
 <ref object="MainCourse" />
 <ref object="Dessert" />
 </list>
 </constructor-arg>
</object>

The list element B can be used to indicate that the following elements are items in
a list. When Spring.NET wires up the list, it creates an array of the type indicated by
the element-type attribute. The list element can contain many different child ele-
ments; the ref element c is used to refer to other named objects.

 When you resolve the Meal object, you’ll get a Meal instance with Rillettes,
CordonBleu, and MousseAuChocolat as the contained courses, while the Lobster-
Bisque won’t be used.

 Once more, you see that Spring.NET natively works with arrays. Although support
for other sequence types is missing, you can work around this limitation by wrapping
sequences in a class like ArrayEnumerable<T>.

 Consumers that rely on sequences of DEPENDENCIES may be the most intuitive use of
multiple instances of the same ABSTRACTION, but before we leave this subject, we need
to look at yet another case where multiple instances come into play.

12.3.3 Wiring Decorators

In section 9.1.2, we discussed how the Decorator design pattern is extremely useful
when implementing CROSS-CUTTING CONCERNS. By definition, Decorators introduce
multiple types of the same ABSTRACTION. At the very least, we have two implementa-
tions of an ABSTRACTION: the Decorator itself and the decorated type. If we stack the
Decorators, we may have even more.

 This is another example of having multiple objects that implement the same
ABSTRACTION. Unlike the previous sections, these objects aren’t conceptually equal, but
rather DEPENDENCIES of each other. I’ll show you two different ways to configure
Spring.NET to deal with this pattern.

Listing 12.3 Injecting named objects into a sequence

Indicate
list

b

Named
objects

c

406 CHAPTER 12 Spring.NET
DECORATING WITH NAMED OBJECTS

Throughout this chapter, you’ve seen plenty of examples of how to reference named
objects as constructor arguments. You can also use this idiomatic approach to config-
ure Decorators.

 The Breading class is a Decorator of IIngredient; it uses CONSTRUCTOR INJECTION to
receive the instance it should decorate:

public Breading(IIngredient ingredient)

To make a Cotoletta, you would like to decorate a VealCutlet (another IIngredient)
with the Breading class. Because you already know how to connect named objects with
constructor arguments, it should feel natural to do something similar to this:

<object id="Breading" type="Breading">
 <constructor-arg ref="Cutlet" />
</object>
<object id="Cutlet" type="VealCutlet" />

By now, this approach should be familiar to you. You use a reference to a named
object B to wire the Breading object with the Cutlet object. Because Spring.NET
doesn’t explicitly deal with mappings from ABSTRACTIONS to concrete type, each of
these two elements represents an object like any other object element would. That
they both implement the IIngredient interface does in no way impact how you con-
figure them.

 When you resolve the Breading name, you get a Breading instance that decorates a
VealCutlet.

 This is a universally applicable way to decorate a component, but when you don’t
otherwise care about the decorated component, you can use a more implicit method.

DECORATING WITH INLINE OBJECTS

If you never need to resolve the decorated component directly, you can use a more
implicit way to decorate it. Imagine that you never expect having to resolve the Veal-
Cutlet directly as an IIngredient; when you want an IIngredient, you always want to
get the Cotoletta.

 In such cases, there’s no need to explicitly configure the VealCutlet as an inde-
pendent object. Instead, you can take advantage of Spring.NET’s inline object syntax:

<object id="Breading" type="Breading">
 <constructor-arg>
 <object type="VealCutlet" />
 </constructor-arg>
</object>

Spring.NET enables you to define objects as nested elements. Instead of referring to a
named object, the constructor-arg element can contain full object configurations.
Because you don’t expect to have to refer to a VealCutlet object from anywhere else
in the configuration, you can provide an unnamed object element with the correct
type attribute. When nested within the constructor-arg element, the VealCutlet
type will be resolved as the first constructor argument to the Breading class.

Reference
named objectb

407Working with multiple components
There are a few variations available to us when configuring Decorators. Unlike Castle
Windsor, Spring.NET has no implicit understanding of Decorators, which may be a bit
surprising because, like Windsor, it offers the ultimate support for the Decorator pat-
tern: INTERCEPTION.

12.3.4 Creating Interceptors

In section 9.3.3, you saw an example of how to add error handling and a Circuit
Breaker3 to a WCF client with Castle Windsor’s dynamic INTERCEPTION capability. To
demonstrate Spring.NET’s INTERCEPTION capability and compare it to Castle Windsor
and Unity, I’ll walk you through the same familiar example, but now implemented
with Spring.NET.

 As figure 12.5 shows, adding an aspect to Spring.NET is a pretty simple process.
 The bulk of the work involves developing the interceptor itself, but once we’ve

done that, we must add it to the container. This is done in XML configuration, like
everything else.

 However, we can’t configure the interceptors before we implement them, so the
first step is to write some code for the error handling and Circuit Breaker intercep-
tors. Once they’re completed, we can configure the container with both.

IMPLEMENTING AN EXCEPTION HANDLING INTERCEPTOR

Implementing an interceptor for Spring.NET requires us to implement the IMethod-
Interceptor interface. The following listing shows how to implement the exception
handling strategy from chapter 9. This particular implementation for Spring.NET cor-
responds to listing 9.8 for Castle Windsor and listing 14.13 for Unity.

public class ErrorHandlingInterceptor : IMethodInterceptor
{
 public object Invoke(IMethodInvocation invocation)
 {
 try
 {
 return invocation.Proceed();
 }
 catch (CommunicationException e)
 {
 this.AlertUser(e.Message);
 }

3 Michael T Nygard, Release It! Design and Deploy Production-Ready Software (Raleigh, NC: Pragmatic Bookshelf,
2007), 104.

Listing 12.4 Implementing an exception handling IMethodInterceptor

Figure 12.5 The simple overall
process of adding an aspect in
Spring.NET.

Implement
interception logic

b

Attempt to
return result

c

Handle
exceptions

d

408 CHAPTER 12 Spring.NET
 catch (InvalidOperationException e)
 {
 this.AlertUser(e.Message);
 }
 return null;
 }

 private void AlertUser(string message)
 {
 var sb = new StringBuilder();
 sb.AppendLine("An error occurred.");
 sb.AppendLine("Your work is likely lost.");
 sb.AppendLine("Please try again later.");
 sb.AppendLine();
 sb.AppendLine(message);

 MessageBox.Show(sb.ToString(), "Error",
 MessageBoxButton.OK, MessageBoxImage.Error);
 }
}

The ErrorHandlingInterceptor class implements the IMethodInterceptor inter-
face, which only defines the single Invoke method B. This is where you must define
the INTERCEPTION logic. The only argument to the method is an instance of the
IMethodInvocation interface; with its Proceed method, you attempt to invoke
the decorated method and return the result c. However, because the purpose of this
interceptor is to handle known exceptions, the call to the Proceed method is wrapped
in a try block.

 If the Proceed method (or rather the decorated method that Proceed invokes)
throws one of the known exceptions, the interceptor catches it and alerts the user
about the error d. In this example, the set of known exceptions is hard-coded into
the interceptor itself, but a more general-purpose implementation could decide to
suppress or rethrow exceptions based on an injected Specification.4

 Because the Invoke method must return an object, it returns null in the cases
where an exception was caught and suppressed. This is already the correct value to
return in all the cases where the decorated method returns void, but for a method with
real return values, this can be problematic because it can easily lead to NullReference-
Exceptions. However, we can create another interceptor that assigns appropriate
default values for different return types. This would be more correct than trying to
guess the correct default value from within the ErrorHandlingInterceptor, which is
a general-purpose interceptor that can be used to intercept any interface; it would
also be true to the spirit of the SINGLE RESPONSIBILITY PRINCIPLE.

 The ErrorHandlingInterceptor takes care of handling certain exceptions from a
decorated component. This component can itself be another interceptor in the form
of a Circuit Breaker.

4 Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software (New York: Addison-Wesley, 2004),
224.

Handle
exceptions

d

409Working with multiple components
IMPLEMENTING A CIRCUIT BREAKER INTERCEPTOR

The Circuit Breaker interceptor is a bit more complex because it requires the ICircuit-
Breaker DEPENDENCY, but as the following listing shows, we address this by applying
standard CONSTRUCTOR INJECTION. When it comes to composing the class, Spring.NET
treats it like any other object, so as long as it can resolve the DEPENDENCY, all is well.

public class CircuitBreakerInterceptor :
 IMethodInterceptor
{
 private readonly ICircuitBreaker breaker;

 public CircuitBreakerInterceptor(
 ICircuitBreaker breaker)
 {
 if (breaker == null)
 {
 throw new ArgumentNullException("breaker");
 }

 this.breaker = breaker;
 }

 public object Invoke(IMethodInvocation invocation)
 {
 this.breaker.Guard();
 try
 {
 var result = invocation.Proceed();
 this.breaker.Succeed();
 return result;
 }
 catch (Exception e)
 {
 this.breaker.Trip(e);
 throw;
 }
 }
}

The CircuitBreakerInterceptor needs to delegate its actual implementation to an
ICircuitBreaker instance. Because Spring.NET can AUTO-WIRE an interceptor like it
does any other object, you can use standard CONSTRUCTOR INJECTION B to inject the
ICircuitBreaker.

 In the Invoke method, you need to implement the Guard-Succeed/Trip idiom you
already saw in listings 9.4 and 9.9. As in listing 12.4, you invoke the decorated method
by calling the Proceed method c, but instead of returning the value right away, you
need to assign it to the local result variable so that you can indicate success to the
Circuit Breaker d. Recall that this can close an otherwise open breaker.

 Any exception which might be thrown by the decorated method is rethrown
unmodified by the Proceed method, so you can catch it and Trip the breaker e as
you would normally do.

Listing 12.5 Implementing a Circuit Breaker IMethodInterceptor

Implement
IMethodInterceptor

Constructor
Injection

b

Get result from
decorated method

c

Record
successd

Trip
breakere

410 CHAPTER 12 Spring.NET
 With both ErrorHandlingInterceptor and CircuitBreakerInterceptor imple-
mented, it’s time to configure the container to make them decorate an IProduct-
ManagementAgent object.

CONFIGURING INTERCEPTION

What we really want to do is to intercept an IProductManagementAgent object with
both Circuit Breaker and error handling so that when an exception happens during
communication with the web service, the Circuit Breaker is opened and the exception
is handled, giving the application a chance to recover once the web service or the net-
work is back online.

 Configuring INTERCEPTION in Spring.NET is easy. The first thing you need to do is to
configure the interceptors themselves:

<objects xmlns="http://www.springframework.net"
 default-autowire="constructor">

 <object id="ErrorHandlingInterceptor"
 type="ErrorHandlingInterceptor" />
 <object id="CircuitBreakerInterceptor"
 type="CircuitBreakerInterceptor" />

</objects>

Being particularly unimaginative, I gave
the objects the same id as their type.
Notice that CONSTRUCTOR INJECTION–based
AUTO-WIRING is switched on by default.
Whereas the ErrorHandlingInterceptor
has a default constructor, the Circuit-
BreakerInterceptor uses CONSTRUCTOR

INJECTION to request an ICircuit-

Breaker. AUTO-WIRING works for both, as
well as most other objects in the configu-
ration, so switching it on by default is the
easiest thing to do.

 Now that you have the interceptors in
place, the only thing left is to configure
the IProductManagementAgent object with
the desired interceptors. Figure 12.6
shows the configuration you’re aiming for.

 As the following listing demonstrates, this is done with the configuration XML syn-
tax and a special namespace and classes that Spring.NET provides for this purpose.
The general concept of configuring INTERCEPTION involves decoupling what to do from
where to do it. We must still answer both of these questions, but we do it separately
and then tie them together.

Figure 12.6 The IProductManagementAgent
should be decorated by the Circuit Breaker
interceptor so that when an exception is thrown by
the agent, the circuit’s opened for a while. Because
the Circuit Breaker only registers exceptions, but
doesn’t handle them, this is the responsibility of the
error handling interceptor, which must be outermost
to be able to handle exceptions from both the agent
as well as the Circuit Breaker.

411Working with multiple components
<object type="WcfProductManagementAgent" />
<object id="AgentPointCut"
 type="RegularExpressionMethodPointcut">
 <property name="patterns">
 <list>
 <value>.*WcfProductManagementAgent.*</value>
 </list>
 </property>
</object>
<aop:config>
 <aop:advisor pointcut-ref="AgentPointCut"
 advice-ref="ErrorHandlingInterceptor"
 order="1" />
 <aop:advisor pointcut-ref="AgentPointCut"
 advice-ref="CircuitBreakerInterceptor"
 order="2" />
</aop:config>

In the previous code, you registered the interceptors—but you also need to register
the classes to be intercepted B. In this example it’s a single class, but you could inter-
cept many different classes with the same set of interceptors if you’d like.

 To specify which classes or methods to intercept, you must define something
called a Pointcut, which is a fancy name for a rule that defines what to intercept. If
you recall the original introduction of INTERCEPTION back in chapter 9, this corresponds
to the Castle Windsor IModelInterceptorsSelector implemented in listing 9.10. Like
Castle Windsor, Spring.NET allows you to write imperative code that defines a Point-
cut, but in addition to that it also provides some declarative Pointcuts. One such
static Pointcut is the RegularExpressionMethodPointcut c, which you can use to
define the matching rule with a regular expression. For each method call it will
attempt to match the full name of the method with the regular expression. In this
particular case you only want to match members on the WcfProductManagement-
Agent class.

 Finally, you need to bind the Pointcut to the interceptors you previously registered.
This is done with a series of advisor elements d that declare the interceptors and
the order in which they’re composed. Notice that because you list ErrorHandling-
Interceptor first, it becomes the outermost interceptor, itself intercepting the
CircuitBreakerInteceptor.

 The final thing you need to do to configure the application with robust out-of-
process communication management is to make sure that all DEPENDENCIES can be sat-
isfied. Because CircuitBreakerInteceptor requires an ICircuitBreaker, you must
also configure this object:

<object type="CircuitBreaker" autowire="no">
 <constructor-arg value="00:01:00" />
</object>

Listing 12.6 Configuring interceptors

Object to
interceptb

Specify where to
apply interception

c

Bind interceptors
with specification

d

412 CHAPTER 12 Spring.NET
The CircuitBreaker constructor requires a timeout in the form of a TimeSpan
instance, and you prefer to define this primitive value inline. To do that, you must dis-
able the default AUTO-WIRING setting to explicitly set the timeout to one minute.

 To be effective at all it’s important that there’s only one Circuit Breaker instance
(at least per out-of-process resource), but because the default object scope is SINGLE-
TON, you don’t need to explicitly express that.

 The example demonstrated how to utilize dynamic INTERCEPTION with Spring.NET.
In my personal opinion, I find the complexity comparable with Castle Windsor’s and
Unity’s INTERCEPTION support. While not entirely trivial, the potential benefit is great.

INTERCEPTION is a dynamic implementation of the Decorator pattern, and the Deco-
rator pattern is itself a combined application of multiple objects of the same type.
Spring.NET lets us work with multiple components in several different ways. We can
configure them as alternatives to each other, as peers resolved as sequences, as hierar-
chical Decorators, or even as interceptors. When it comes to arrays, Spring.NET will
figure out what to do, but we can often map other sequence types into arrays using an
adapter such as the ArrayEnumerable<T> class. This also enables us to explicitly define
how services are composed if we need more explicit control.

 This may also be the case when we need to deal with APIs that deviate from CON-
STRUCTOR INJECTION. So far, you’ve seen how to configure objects, including how to
specify object scopes and how to deal with multiple objects, but until now we’ve
allowed the container to wire DEPENDENCIES by implicitly assuming that all components
use CONSTRUCTOR INJECTION. This isn’t always the case, so in the next section we’ll
review how to deal with classes that must be instantiated in special ways.

12.4 Configuring difficult APIs
Until now, we’ve considered how to configure components that use CONSTRUCTOR

INJECTION. One of the many benefits of CONSTRUCTOR INJECTION is that DI CONTAINERS

such as Spring.NET can easily understand how to compose and create all classes in a
dependency graph.

 However, this becomes less clear when APIs are less well behaved. Here I’ll show
you how to deal with primitive constructor arguments, static factories, and PROPERTY

INJECTION. These all require special attention. We’ll start by looking at classes that take
primitive types, such as strings or integers as constructor arguments.

12.4.1 Configuring primitive Dependencies

As long as we inject ABSTRACTIONS into consumers, all is well. But it becomes more difficult
when a constructor depends on a primitive type, such as a string, number, or enum. This
is often the case for data access implementations that take a connection string as a con-
structor parameter, but it’s a more general issue that applies to all strings and numbers.

 Conceptually, it doesn’t make much sense to register a string or number as a com-
ponent in a container, and with Spring.NET, it isn’t possible to register the value of a
primitive type as an object.

413Configuring difficult APIs
 Consider, as an example, this constructor:

public ChiliConCarne(Spiciness spiciness)

In this example, Spiciness is an enum:

public enum Spiciness
{
 Mild = 0,
 Medium,
 Hot
}

WARNING As a rule of thumb, enums are code smells and should be refac-
tored to polymorphic classes.5 However, they serve us well for this example.

You need to explicitly supply the value of the spiciness constructor parameter as part
of configuring the ChiliConCarne object:

<object id="Course" type="ChiliConCarne">
 <constructor-arg value="Hot" />
</object>

Spring.NET comes with several type converters that convert text representations into
instances of the desired types. One of the built-in type converters converts text to
enums, which enables us to supply the text Hot as the value of the constructor-arg
element B. Spring.NET looks at the type of the constructor parameter for the Chili-
ConCarne class, determines that it’s an enum, and uses the appropriate type converter
to convert the text Hot into the value Spiciness.Hot.

 This feature of Spring.NET addresses situations where we need to supply primitive
values as arguments. The ChiliConCarne example supplied the argument to a con-
structor, but sometimes a class has no public constructor.

12.4.2 Configuring static factories

Some classes can’t be instantiated through a public constructor. Instead, we must use
some sort of factory to create instances of the type. This is always troublesome for DI
CONTAINERS because, by default, they look after public constructors.

 Consider this example constructor for the public JunkFood class:

internal JunkFood(string name)

Even though the JunkFood class is public, the constructor is internal. Obviously,
instances of JunkFood should be created through the static JunkFoodFactory class:

public static class JunkFoodFactory
{
 public static IMeal Create(string name)
 {

5 Martin Fowler et al., Refactoring: Improving the Design of Existing Code (New York: Addison-Wesley, 1999), 82.

Supply
value

b

414 CHAPTER 12 Spring.NET
 return new JunkFood(name);
 }
}

From Spring.NET’s perspective, this is a problematic API because there are no unam-
biguous and well-established conventions around static factories. It needs help—and
you can provide this when you configure the object:

<object id="Meal"
 type="JunkFoodFactory"
 factory-method="Create">
 <constructor-arg value="chicken meal" />
</object>

As always, the configuration of the object is expressed within an object element, but
rather than defining the type of the object itself, you define the type of the factory. You
must also configure that the name of the factory-method is Create. Notice that even
though the Create method isn’t a constructor per se, you still use the constructor-arg
element to define the value of the name argument for the Create method.

 Even though the type attribute is defined as the factory type instead of the result-
ing type, Spring.NET is clever enough to understand that the return type of the
Create method is JunkFood. This means that you can dispense with the id attribute
and create an unnamed object, as you did in section 12.3.1, and you would still be able
to resolve a JunkFood object with the GetObjectsOfType method.

 The last common deviation from CONSTRUCTOR INJECTION we’ll examine is PROP-
ERTY INJECTION.

12.4.3 Wiring with Property Injection

PROPERTY INJECTION is a less well-defined form of DI because we’re not forced by the
compiler to assign a value to a writable property. Even so, Spring.NET understands
and works with PROPERTY INJECTION in an intuitive way. If we enable AUTO-WIRING it tends
to just work, but it will also work with explicit wiring.

 Consider this CaesarSalad class:

public class CaesarSalad : ICourse
{
 public IIngredient Extra { get; set; }
}

It’s a common misconception that a Caesar Salad includes chicken; this isn’t true. A
Caesar Salad is a salad, but it tastes great with chicken, so chicken is often offered as an
extra ingredient. The CaesarSalad class models this by exposing a writable property
named Extra.

 If you configure only the CaesarSalad without explicitly addressing the Extra
property, the property won’t be assigned. You can still resolve the instance, but the
property will have the default value that the constructor assigns to it (if any).

415Configuring difficult APIs
EXPLICITLY WIRING PROPERTIES

There are several ways you can configure the CaesarSalad so that the Extra property
will be appropriately populated. One is to explicitly wire the property to a named object:

<object id="Course" type="CaesarSalad">
 <property name="Extra" ref="Chicken" />
</object>
<object id="Chicken" type="Chicken" />

The property element identifies that the name of the property is Extra and that it
should be assigned with the named object Chicken. Instead of using a reference to a
named object, you can also use an inline object:

<object id="Course" type="CaesarSalad">
 <property name="Extra">
 <object type="Chicken" />
 </property>
</object>

You can always explicitly wire properties with the property element, but because the
property is identified by its name, this approach tends to be brittle. If you later
rename the property, most refactoring tools won’t identify and change the value of a
name attribute in various XML files. This may cause runtime errors.

 A better option is to AUTO-WIRE objects.

AUTO-WIRING PROPERTIES

As you may recall from section 12.1.2, you must explicitly enable AUTO-WIRING in
Spring.NET, but once you do that, PROPERTY INJECTION just works. If the DEPENDENCY

can’t be satisfied, the property is ignored:

<objects xmlns="http://www.springframework.net">
 <object id="Course" type="CaesarSalad"
 autowire="autodetect" />
</objects>

In this example, the Course object is the only object configured for the container.
Although it’s configured to be AUTO-WIRED, the Extra property will never be assigned
because there’s no available IIngredient object. An exception isn’t thrown; the prop-
erty is simply ignored.

 This changes as soon as an IIngredient object becomes available:

<object id="Course" type="CaesarSalad"
 autowire="autodetect" />
<object type="Chicken" />

Now, when you resolve the Course object, you’ll receive an instance of CaesarSalad
with Extra Chicken.

 Using AUTO-WIRING is more robust because we can rename properties without fear-
ing that the Spring.NET configuration will break at runtime.

416 CHAPTER 12 Spring.NET
 You saw how to use Spring.NET to deal with more difficult creational APIs. In gen-
eral you can always explicitly configure wiring using the XML configuration, but you
also saw that PROPERTY INJECTION can be configured with AUTO-WIRING.

12.5 Summary
Among the DI CONTAINERS covered in this book, Spring.NET is unique in the sense that
it’s the only container which is implemented as a port from Java. Nowhere is this more
apparent than in Spring.NET’s strong reliance on XML configuration.

 Most of the older .NET DI CONTAINERS started out with a strong focus on XML, but
while others have moved on, Spring.NET has not.

 Although future versions of Spring.NET may get stronger support for CODE AS CON-
FIGURATION and perhaps even CONVENTION-BASED CONFIGURATION, the current idiomatic
usage involves lots of XML.

 Perhaps the weakest area is the limited support for LIFETIME MANAGEMENT. One
thing is that, like StructureMap, Spring.NET has no explicit support for releasing
object graphs—this can be viewed as much as a design decision as a lack of a feature.
Another thing is that there’s no support for custom object scopes.

 Whereas the LIFETIME MANAGEMENT features are weak, Spring.NET is one of the few
DI CONTAINERS to offer built-in INTERCEPTION.

 Spring.NET is still based on .NET 1.1, which may be a benefit for some people. We
get comprehensive documentation and the option of purchasing commercial sup-
port, so although the overall impression may be slightly outmoded, it’s also one of a
professional package.

 We may regard Spring.NET as an old-but-trusted framework. In contrast, the next
chapter presents one of the most modern DI CONTAINERS: Autofac.

Autofac
In the previous chapters, you saw how to map the principles and patterns from
parts 1–3 to specific DI CONTAINERS. In this chapter, we’ll do the same with the Auto-
fac DI CONTAINER.

 Autofac is an example of what we could call second-generation DI CONTAINERS.

NOTE Examples of other second-generation DI CONTAINERS are Ninject1

and Unity.2

The second-generation DI CONTAINERS are based directly on .NET 3.5, so their archi-
tectures are often directly based on the language and platform features that
became available at that time. Not only do they have an intimate understanding of

Menu
■ Introducing Autofac
■ Managing lifetime
■ Working with multiple components
■ Configuring difficult APIs

1 http://ninject.org/
2 http://unity.codeplex.com/
417

http://ninject.org/
http://unity.codeplex.com/

418 CHAPTER 13 Autofac
generics, but many also employ lambda expressions as central API elements. Although
the majority of the mature DI CONTAINERS also support these more modern language
constructs, their core engines are typically based on earlier .NET versions. Because the
second-generation containers have no such baggage, they’re typically designed
around these features from the ground up.

 Autofac is a fairly comprehensive DI CONTAINER that offers a carefully designed
and consistent API. It has been around since late 2007 and seems to have a fair-sized
user base.3

 In this chapter, we’ll examine how Autofac can be used to apply the principles and
patterns laid forth in parts 1–3. Figure 13.1 shows the structure of the chapter.

 This chapter should enable you to get started, as well as deal with the most com-
mon issues that may come up as you use Autofac on a daily basis. It’s not a complete
treatment of Autofac—that would take several more chapters or perhaps a whole book
in itself, but if you want to know more about Autofac, the best place to start is at the
Autofac home page at to http://autofac.org.

 You can read the chapter in isolation from the rest of part 4 specifically to learn
about Autofac, or you can read it together with the other chapters in part 4 to com-
pare DI CONTAINERS. The focus of this chapter is to show how Autofac relates to and
implements the patterns and principles described in parts 1–3.

13.1 Introducing Autofac
In this section, you’ll learn where to get Autofac, what you get, and how you start
using it. We’ll also look at common configuration options, as well as how to package
configuration settings into reusable components. Table 13.1 provides fundamental
information that you’re likely to need to get started.

3 No official statistics exist on DI CONTAINER usage, so this is my subjective assessment.

Figure 13.1 This chapter is divided into four sections. The first section introduces the Autofac API
and should be considered a prerequisite for the next three sections. Most of these can be read
independently of each other, although the fourth section uses some methods and classes that are
introduced in the third section. The subject of the fourth section is sufficiently different from the
third, so you may be able to read them independently—but even so, you may want to refer back for
an explanation of parts of the API.

http://autofac.org

419Introducing Autofac
Using Autofac is a little different
from using other DI CONTAINERS. As
figure 13.2 illustrates, it’s a more
explicit two-step process: first we
configure a ContainerBuilder, and
when we’re done with that, we use it
to build a container that can be
used to resolve components.

 When you’re done with this sec-
tion, you should have a good feel-
ing for the overall usage pattern of
Autofac, and you should be able to
start using it in well-behaved scenar-
ios where all components follow
proper DI patterns such as CON-
STRUCTOR INJECTION. Let’s start with
the simplest scenario and see how we can resolve objects using an Autofac container.

Table 13.1 Autofac at a glance

Question Answer

Where do I get it? Go to http://autofac.org and click the appropriate link under Featured Download.
From Visual Studio 2010 you can also get it via NuGet. The package name is
Autofac.

What’s in the down-
load?

You can download a .zip file with precompiled binaries. You can also download
the source code and compile it yourself, although it can be difficult to figure out
which change set corresponds to a particular release. The last part of the build
number (for example, 724 in this chapter) corresponds to the source code revi-
sion, but to find that you’ll need the Mercurial source control tools.

Which platforms are
supported?

.NET 3.5 SP1, .NET 4, Silverlight 3, Silverlight 4. Older versions are available
that support .NET 2.0, 3.0 and Silverlight 2 (select All Releases on the Download
tab).

How much does it
cost?

Nothing. It’s open source.

Where can I get
help?

You can get commercial support from companies associated with the Autofac
developers. Read more about the options at http://code.google.com/p/autofac/
wiki/CommercialSupport.
Other than commercial support, Autofac is still open source software with a thriv-
ing ecosystem, so you’re also likely (but not guaranteed) to get help in the official
forum at http://groups.google.com/group/autofac.

On which version is
the chapter based?

2.4.5.724.

Figure 13.2 With Autofac, we first create and configure
a ContainerBuilder instance. When we’re done
configuring the ContainerBuilder, we use it to
create a Container that we can subsequently use to
resolve components. Notice that the rhythm is pretty
much similar to Castle Windsor or StructureMap: configure,
then resolve. However, here the separation of concerns is
much clearer. A ContainerBuilder can’t resolve
components, and we can’t configure a Container.

http://autofac.org
http://code.google.com/p/autofac/wiki/CommercialSupport
http://groups.google.com/group/autofac
http://code.google.com/p/autofac/wiki/CommercialSupport

420 CHAPTER 13 Autofac
13.1.1 Resolving objects

The core service of any DI CONTAINER is to resolve components. In this section, we’ll
look at the API that enables us to resolve components with Autofac.

 If you recall the discussion about resolving components with Castle Windsor and
StructureMap, you may remember that Windsor requires us to register all relevant
components before we can resolve them, whereas StructureMap makes a best effort to
figure it out for us if we’re requesting concrete types with public constructors. Autofac
can behave in both ways, but by default, it behaves like Windsor. We must register all
relevant components before resolving them, so one of the simplest possible uses of
Autofac is this:

var builder = new ContainerBuilder();
builder.RegisterType<SauceBéarnaise>();
var container = builder.Build();
SauceBéarnaise sauce = container.Resolve<SauceBéarnaise>();

As was already foreshadowed by figure 13.2, you need a ContainerBuilder instance to
configure components. Here you register the concrete SauceBéarnaise class with the
builder so that when you ask it to build a container, the resulting container is config-
ured with the SauceBéarnaise class. This again enables you to resolve the Sauce-
Béarnaise class from the container.

 If you hadn’t registered the SauceBéarnaise component, the attempt to resolve it
would have thrown a ComponentNotRegisteredException.

 Comparing this, the simplest of all scenarios, with similar code snippets for Castle
Windsor or StructureMap, Autofac seems somewhat verbose. However, the verbosity
mostly stems from having to take the extra step of creating a container from a
ContainerBuilder, so in larger and more complex configurations, Autofac will be
completely comparable with other DI CONTAINERS.

 By default, Autofac requires us to explicitly register all relevant components; this is
the behavior we also get from Castle Windsor. If you’d prefer a behavior more like
StructureMap, you can enable it like this:

var builder = new ContainerBuilder();
builder.RegisterSource(
 new AnyConcreteTypeNotAlreadyRegisteredSource());
var container = builder.Build();
SauceBéarnaise sauce = container.Resolve<SauceBéarnaise>();

The only difference from the previous code example is that you don’t explicitly regis-
ter the SauceBéarnaise class. Instead, you register an IRegistrationSource called
AnyConcreteTypeNotAlreadyRegisteredSource. That’s quite a mouthful, but it does
more or less what it says: it acts as a source for registrations of any concrete type that
hasn’t already previously been registered. When you add the AnyConcreteTypeNot-
AlreadyRegisteredSource you don’t need to explicitly add the SauceBéarnaise type
because it’s a concrete class with a public constructor, and the registration source can
automatically provide a registration for it. 4

421Introducing Autofac
Registering the AnyConcreteTypeNotAlreadyRegisteredSource effectively changes
the container’s behavior from Castle Windsor style to StructureMap style. Not only
can the container resolve concrete types with default constructors—it can also AUTO-
WIRE a type with other concrete DEPENDENCIES without the need for explicit registra-
tions. Still, as soon as we introduce loose coupling, we must configure Autofac by map-
ping ABSTRACTIONS to concrete types.

MAPPING ABSTRACTIONS TO CONCRETE TYPES

Whereas Autofac’s optional ability to AUTO-WIRE concrete types can certainly come in
handy from time to time, loose coupling normally requires us to map ABSTRACTIONS to
concrete types. Creating instances based upon such maps is the core service offered by
any DI CONTAINER, but we must still define the map.

 In this example, you map the IIngredient interface to the concrete Sauce-
Béarnaise class, which allows you to successfully resolve IIngredient:

var builder = new ContainerBuilder();
builder.RegisterType<SauceBéarnaise>().As<IIngredient>();
var container = builder.Build();
IIngredient ingredient = container.Resolve<IIngredient>();

You use the ContainerBuilder instance to register types and define maps. The
RegisterType method enables you to register a concrete type. As you saw in the first
Autofac code example in this chapter, you can stop right there if you only wish to reg-
ister the SauceBéarnaise class. You can also continue with the As method to define
how the concrete type should be registered.

4 However, for an outline on how to do this, see http://stackoverflow.com/questions/2462340/automockcon-
tainer-with-support-for-automocking-class-instances

Registration Sources
An advanced feature of Autofac is the ability to provide more advanced sources for
registration than by directly using the API exposed by ContainerBuilder. It’s an
extensibility mechanism that Autofac uses internally to implement various features,
but because it’s based on a public interface called IRegistrationSource, we can
also use it as an extensibility mechanism.

The only public implementation of IRegistrationSource shipping with Autofac is
the AnyConcreteTypeNotAlreadyRegisteredSource you’ve already seen, but
Autofac has other, internal implementations of the interface.

The idea behind IRegistrationSource is that implementations can provide fallback
mechanisms or more heuristically-based sources for component registrations than
what the normal API allows. Apart from the aforementioned source of concrete types,
we could also use it to turn Autofac into an auto-mocking container. This is well beyond
the scope of this book,4 and we don’t need to talk more about IRegistrationSource
to use Autofac effectively.

http://stackoverflow.com/questions/2462340/automockcontainer-with-support-for-automocking-class-instances
http://stackoverflow.com/questions/2462340/automockcontainer-with-support-for-automocking-class-instances

422 CHAPTER 13 Autofac
NOTE With Autofac, we start with the concrete type and map it to an ABSTRAC-
TION. This is the reverse of most other DI CONTAINERS that start with the
ABSTRACTION and map it to a concrete type.

WARNING Contrary to Castle Windsor and StructureMap, there are no
generic type constraints in effect between the types defined by the Register-
Type and As methods. This means that it’s possible to map incompatible
types. The code will compile, but we’ll get an exception at runtime when the
ContainerBuilder builds the container.

In many cases, the generic API is all we need. Although it doesn’t offer the same
degree of type safety as some other DI CONTAINERS, it’s still a readable way to configure
the container. Still, there are situations where we need a more weakly typed way to
resolve services. This is also possible.

RESOLVING WEAKLY TYPED SERVICES

Sometimes we can’t use a generic API because we don’t know the appropriate type at
design time. All we have is a Type instance, but we’d still like to get an instance of that
type. You saw an example of that in section 7.2, where we discussed ASP.NET MVC’s
DefaultControllerFactory class. The relevant method is this one:

protected internal virtual IController GetControllerInstance(
 RequestContext requestContext, Type controllerType);

Because you only have a Type instance, you can’t use generics but must resort to a
weakly typed API. Fortunately, Autofac offers a weakly typed overload of the Resolve
method which allows you to implement the GetControllerInstance method like this:

return (IController)this.container.Resolve(controllerType);

The weakly typed overload of Resolve enables you to pass the controllerType
argument directly to Autofac, but also requires you to explicitly cast the return value
to IController.

 No matter which overload of Resolve we use, Autofac guarantees that it will return
an instance of the requested type or throw an exception if there are DEPENDENCIES that
can’t be satisfied. When all required DEPENDENCIES have been properly configured,
Autofac can AUTO-WIRE the requested type.

 In the previous example, this.container is an instance of Autofac.IContainer.
To be able to resolve the requested type, all loosely coupled DEPENDENCIES must previ-
ously have been configured. There are many ways to configure Autofac, and the next
section reviews the most common ones.

13.1.2 Configuring the ContainerBuilder

As we discussed in section 3.2, there are several conceptually different ways we can
configure a DI CONTAINER. Figure 13.3 reviews the options.

 As a second-generation DI CONTAINER, Autofac wasn’t originally designed around
XML configuration and later retrofitted with a programmatic configuration API like

423Introducing Autofac
some of the more mature containers. Rather, it’s designed to be able to leverage
many different sources of configuration, and XML is an optional module we can
choose to use.

 The core configuration API is centered on code and supports both CODE AS CONFIG-
URATION and convention-based AUTO-REGISTRATION while XML remains an option.

 Autofac supports all three approaches and even allows us to mix them all within
the same container, so in this regard it gives us all we could ask for. In this section,
you’ll see how to use each of these three types of configuration sources.

CODE AS CONFIGURATION

In section 13.1.1, you already saw a brief glimpse of Autofac’s strongly typed configu-
ration API. Here, we’ll examine it in greater detail.

 All configuration in Autofac uses the API exposed by the ContainerBuilder class,
although most of the methods we use are extension methods. One of the most com-
monly used methods is the RegisterType method that you’ve already seen:

builder.RegisterType<SauceBéarnaise>().As<IIngredient>();

Like Castle Windsor, registering SauceBéarnaise as IIngredient hides the concrete
class so that you can no longer resolve SauceBéarnaise with this registration.
However, you can easily fix this by using an overload of the As method that enables
you to specify that the concrete type maps to more than one registered type:

builder.RegisterType<SauceBéarnaise>()
 .As<SauceBéarnaise, IIngredient>();

Figure 13.3 Conceptually different
configuration options. CODE AS

CONFIGURATION is strongly typed and
tends to be explicit. XML, on the
other hand, is late bound, but still
explicit. AUTO-REGISTRATION instead
relies on conventions that can be
both strongly typed and more
loosely defined.

424 CHAPTER 13 Autofac
Instead of registering the class only as IIngredient, you can register it as both itself
and the interface it implements. This enables the container to resolve requests for
both SauceBéarnaise and IIngredient.

 As an alternative, you can also chain calls to the As method:

builder.RegisterType<SauceBéarnaise>()
 .As<SauceBéarnaise>().As<IIngredient>();

This produces the same result as in the example just given.
 There are three generic overloads of the As method that enable us to specify one,

two, or three types. If we need to specify more, there’s also a non-generic overload we
can use to specify as many types as we’d like.

TIP If you need to specify more than three types with the As method, you
should consider it a design smell of the class you’re registering. If it
implements that many interfaces, it probably violates the SINGLE RESPONSIBIL-
ITY PRINCIPLE.

In real applications, we always have more than one ABSTRACTION to map, so we must
configure multiple mappings. This is done with multiple calls to RegisterType:

builder.RegisterType<SauceBéarnaise>().As<IIngredient>();
builder.RegisterType<Course>().As<ICourse>();

This maps IIngredient to SauceBéarnaise and ICourse to Course. There’s no over-
lap of types, so it should be pretty evident what’s going on. However, you can also reg-
ister the same ABSTRACTION several times:

builder.RegisterType<SauceBéarnaise>().As<IIngredient>();
builder.RegisterType<Steak>().As<IIngredient>();

Here you register IIngredient twice. If you resolve IIngredient, you get an instance
of Steak. The last registration wins, but previous registrations aren’t forgotten. Auto-
fac handles multiple configurations for the same ABSTRACTION well, but we’ll get back
to this topic in section 13.3.

 There are more advanced options available for configuring Autofac, but you can
configure an entire application with the methods shown here. However, to save your-
self from too much explicit maintenance of container configuration, you could
instead consider a more convention-based approach, using AUTO-REGISTRATION.

AUTO-REGISTRATION

In many cases, a lot of registrations will be similar. Such registrations are tedious to
maintain, and explicitly registering each and every component might not be the most
productive approach.

 Consider a library that contains a lot of IIngredient implementations. We can
configure each class individually, but it will result in numerous similar-looking calls to
the RegisterType method. What’s worse is that, every time we add a new IIngredient
implementation, we must also explicitly register it with the ContainerBuilder if we

425Introducing Autofac
want it to be available. It would be more productive to state that all implementations
of IIngredient found in a given assembly should be registered.

 This is possible using the RegisterAssemblyTypes extension method. This
method enables us to specify an assembly and to configure all selected classes from
this assembly in a single statement. To get the Assembly instance we can use a repre-
sentative class—in this case, Steak:

builder.RegisterAssemblyTypes(typeof(Steak).Assembly)
 .As<IIngredient>();

The RegisterAssemblyTypes method returns the same interface as the RegisterType
method, so many of the same configuration options are available. This is really a
strong feature because it means that we don’t have to learn a new API to use AUTO-
REGISTRATION. In the previous example, we used the As method to register all types in
the assembly as IIngredient services.

NOTE Although the return type is the same, it’s a complex generic interface;
and because most of the API we use is implemented as extension methods,
not all methods are available in all situations. It depends on the type argu-
ments of the returned generic interface.

The previous example unconditionally configures all implementations of the
IIngredient interface, but we can provide filters that enable us to select only a sub-
set. Here is a convention-based scan where we add only classes whose name starts
with Sauce:

builder.RegisterAssemblyTypes(typeof(Steak).Assembly)
 .Where(t => t.Name.StartsWith("Sauce"))
 .As<IIngredient>();

When we register all types in an assembly, we can use a predicate to define a selection
criterion. The only difference from the previous code example is the inclusion of the
Where method, where we select only those types whose names start with Sauce. Notice
how this is the exact same syntax we used to filter types with both Castle Windsor and
StructureMap.

 There are many other methods that enable us to provide various selection criteria.
The Where method gives us a filter that only lets those types through that match the
predicate, but there’s also an Except method that works the other way around.

 Apart from selecting the correct types from an assembly, another part of
AUTO-REGISTRATION is defining the correct mapping. In the previous examples, we
used the As method with a specific interface to register all selected types against
that interface.

 However, sometimes we want to use different conventions. Let’s say that instead of
interfaces, we use abstract base classes, and we wish to register all types in an assembly
where the name ends with Policy. For this purpose, there are several other overloads of
the As method, including one that takes a Func<Type, Type> as input:

426 CHAPTER 13 Autofac
builder.RegisterAssemblyTypes(typeof(DiscountPolicy).Assembly)
 .Where(t => t.Name.EndsWith("Policy"))
 .As(t => t.BaseType);

The code block provided to the As method will be used for every single type whose
name ends with Policy. This ensures that all classes with the Policy suffix will be regis-
tered against their base class so that when the base class is requested, the container
will resolve it to the type mapped by this convention.

 Convention-based registration with Autofac is surprisingly easy and uses an API
that closely mirrors the API exposed by the singular RegisterType method.

TIP Think of RegisterAssemblyTypes as the plural of RegisterType.

The RegisterAssemblyTypes method takes a params array of Assembly instances, so
we can supply as many assemblies as we’d like to a single convention. It’s not a far-
fetched thought to scan a folder for assemblies and supply them all to implement add-
in functionality where add-ins can be added without recompiling a core application.
This is one way to implement late binding; another is to use XML configuration.

XML CONFIGURATION

When we need to be able to change a configuration without recompiling the applica-
tion, XML configuration is a good option.

TIP Use XML configuration only for those types you need to change without
recompiling the application. Use AUTO-REGISTRATION or CODE AS CONFIGURATION

for the rest.

The most natural way to use XML configuration is to embed it into the standard .NET
application configuration file. This is possible, but we can also use a stand-alone XML
file if we need to be able to vary the Autofac configuration independently of the stan-
dard .config file. Whether we want to do one or the other, the API is almost the same.

NOTE Autofac’s XML configuration support is implemented in a separate
assembly, so to use this feature we must add a reference to the Autofac
.Configuration assembly.

Once we have a reference to Autofac.Configuration, we can ask the Container-
Builder to read component registrations from the standard .config file, like this:

builder.RegisterModule(new ConfigurationSettingsReader());

We’ll discuss Autofac modules in more details in section 13.1.3, but for now all you
need to know is that the ConfigurationSettingsReader is the class that’s responsible
for merging XML configuration with the rest of the registrations applied to the
ContainerBuilder. When we use the default constructor, it automatically reads from
a configuration section in the standard application configuration file, but we can use
another overload to specify a different XML file.

427Introducing Autofac
NOTE Unfortunately, there’s no API that enables us to read XML from other
sources such as streams or nodes.

To enable Autofac configuration in a configuration file, we must first add the configura-
tion section, using the standard .NET API for defining custom configuration sections:

<configSections>
 <section name="autofac"
 type="Autofac.Configuration.SectionHandler,
 ➥Autofac.Configuration"/>
</configSections>

This enables you to add an autofac configuration section in the configuration file.
Here is a simple example that maps the IIngredient interface to the Steak class:

<autofac defaultAssembly="Ploeh.Samples.MenuModel">
 <components>
 <component type="Ploeh.Samples.MenuModel.Steak"
 service="Ploeh.Samples.MenuModel.IIngredient" />
 </components>
</autofac>

In the components element, you can add as many component elements as you’d like. In
each element you must specify a concrete type with the type attribute. This is the only
required attribute, but to map the Steak class to IIngredient you can use the
optional service attribute. Specifying a type is done using a fully qualified type name,
but you can omit the assembly name if the type is defined in the default assembly. The
defaultAssembly attribute is optional, but a really nice feature that can save you from
a lot of typing if you have many types defined in the same assembly.

XML configuration is a good option when we need to change the configuration of
one or more components without recompiling the application, but because it tends to
be quite brittle, we should reserve it for only those occasions and use either AUTO-
REGISTRATION or CODE AS CONFIGURATION for the main part of the container’s configuration.

TIP Remember that the last configuration of a type wins? You can use this
behavior to overwrite hard-coded configuration with XML configuration. To
do this, you must remember to read in the XML configuration after any other
components have been configured.

In this section, we mainly looked at various configuration APIs for Autofac. Although
it’s certainly possible to write one big block of unstructured configuration code, it’s
better to modularize configuration. Autofac supports this through Modules.

13.1.3 Packaging configuration

It’s sometimes desirable to package configuration logic into reusable groups, and
even when reuse itself isn’t our top priority, we may simply want to provide a bit of
structure if we have a big and complex application to configure.

428 CHAPTER 13 Autofac
 With Autofac, we can package
configuration into Modules. A Mod-
ule is a class that implements the
IModule interface, but in most cases
it’s easier to derive from the abstract
Module class. Figure 13.4 shows the
type hierarchy.

 Everything you’ve done so far, you
can do from inside a Module as well.
The following listing shows a Module
that registers all IIngredient imple-
mentations.

public class IngredientModule : Module
{
 protected override void Load(ContainerBuilder builder)
 {
 var a = typeof(Steak).Assembly;
 builder.RegisterAssemblyTypes(a).As<IIngredient>();
 }
}

The IngredientModule derives from the abstract Module class and overrides its Load
method. The Load method is a convenience method defined by the Module class to
make it easier to implement IModule. Through the Load method, you receive a
ContainerBuilder instance that you can use to register components in exactly the
same way as you would do outside a Module. This makes it easy to implement a Mod-
ule when you already know how to use the ContainerBuilder API.

 To use a Module, you can invoke one of the RegisterModule overloads. When the
Module has a default constructor, you can use a generic shorthand version:

builder.RegisterModule<IngredientModule>();

There’s also an overload that lets you provide an instance to enable situations where
you need to create the Module manually:

builder.RegisterModule(new IngredientModule());

You can also configure Modules in XML:

<modules>
 <module
 type="Ploeh.Samples.Menu.Autofac.IngredientModule,
 ➥Ploeh.Samples.Menu.Autofac" />
</modules>

These three examples are functionally equivalent.

Listing 13.1 Implementing an Autofac Module

Figure 13.4 Reusable
configurations can be
packaged into IModule
implementations. The easiest
way to implement IModule is
to derive from the abstract
Module class—just as the
IngredientModule does.

429Managing lifetime
TIP Autofac Modules let you package and structure your container configu-
ration code. Use them instead of inline configuration; it will make your COM-
POSITION ROOT more readable.

Using Modules, we can configure an Autofac container in any way we like: CODE AS

CONFIGURATION, AUTO-REGISTRATION, or with XML; or we can mix all three approaches.
Once a container is configured, we can ask it to resolve services.

 This section introduced the Autofac DI CONTAINER and demonstrated the funda-
mental mechanics: how to configure a ContainerBuilder and subsequently use the
constructed container to resolve services. Resolving services is easily done with a single
call to the Resolve method, so the complexity involves configuring the container.
This can be done in several different ways, including imperative code and XML. Until
now, we’ve only looked at the most basic API so there are more advanced areas we’ve
yet to cover. One of the most important topics is how to manage component lifetime.

13.2 Managing lifetime
In chapter 8, we discussed LIFETIME MANAGEMENT, including the most common concep-
tual lifetime styles such as SINGLETON and TRANSIENT. Autofac supports several different
lifestyles and enables you to configure the lifetime of all services. The lifestyles shown
in table 13.2 are available as part of the API.

NOTE In Autofac, lifestyles are called instance scopes.

Autofac’s implementation of TRANSIENT and SINGLETON are equivalent to the general
lifestyles described in chapter 8, so I won’t spend much time on them in this chapter.

TIP The default TRANSIENT lifestyle is the safest, but not always the most effi-
cient, choice. SINGLETON is a more efficient choice for thread-safe services, but
you must remember to explicitly register those services like that.

In this section, you’ll see how we can define lifestyles for components in both code
and XML. We’ll also look at Autofac’s concept of lifetime scopes and how they can be
used to implement WEB REQUEST CONTEXT and similar lifestyles. At the end of this sec-
tion, you should be able to use Autofac’s lifestyles in your own application.

Table 13.2 Autofac lifestyles

Name Comments

Per Dependency Standard TRANSIENT. This is the default instance scope. Instances are tracked by
the container.

Single Instance Standard SINGLETON.

Per Lifetime Scope Ties the lifetime of components together with a container scope (see
section 13.2.1).

Contextual A finer-grained version of Per Lifetime Scope.

430 CHAPTER 13 Autofac
 Let’s start by reviewing how to configure instance scopes for components.

13.2.1 Configuring instance scope

In this section, we’ll review how to manage component instance scopes with Autofac.
Instance scope is configured as part of registering components, and we can define it
in both code and XML. We’ll look at each in turn.

CONFIGURING INSTANCE SCOPE WITH CODE

Instance scope is defined as part of the registrations we make on a ContainerBuilder
instance. It’s as easy as this:

builder.RegisterType<SauceBéarnaise>().SingleInstance();

This configures the concrete SauceBéarnaise class as a SINGLETON so that the same
instance is returned each time SauceBéarnaise is requested. If we want to map an
ABSTRACTION to a concrete class with a specific lifetime, we can use the usual As
method and place the SingleInstance method call wherever we like. These two regis-
trations are functionally equivalent:

builder builder
 .RegisterType<SauceBéarnaise>() .RegisterType<SauceBéarnaise>()
 .As<IIngredient>() .SingleInstance()
 .SingleInstance(); .As<IIngredient>();

Notice that the only difference is that we’ve swapped the As and SingleInstance
method calls. Personally, I prefer the sequence on the left because the RegisterType
and As method calls form a mapping between concrete class and ABSTRACTION; keep-
ing them close together makes the registration more readable, and we can then state
the instance scope as a modification to the mapping.

 Although TRANSIENT is the default instance scope we can still explicitly state it.
These two examples are equivalent:

builder builder
 .RegisterType<SauceBéarnaise>(); .RegisterType<SauceBéarnaise>()

 .InstancePerDependency();

Configuring instance scope for convention-based registrations is done using the same
method as for singular registrations:

builder.RegisterAssemblyTypes(typeof(Steak).Assembly)
 .As<IIngredient>()
 .SingleInstance();

We can use SingleInstance and the other related methods to define the instance
scope for all registrations in a convention. In the previous example, we define all
IIngredients as SINGLETONS.

 In the same way that we can register components from both code and XML, we can
also configure instance scope in both places.

431Managing lifetime
CONFIGURING INSTANCE SCOPE WITH XML
When you need to define components in XML, you’ll also want to be able to configure
their instance scopes in the same place. This is easily done as part of the XML schema
you already saw in section 13.1.2. You can use the optional instance-scope attribute
to declare the lifestyle:

<component type="Ploeh.Samples.MenuModel.Steak"
 service="Ploeh.Samples.MenuModel.IIngredient"
 instance-scope="single-instance" />

Compared to the example in section 13.1.2, the only difference is the added
instance-scope attribute that configures the instance as a SINGLETON. When you pre-
viously omitted the instance-scope attribute, Autofac’s TRANSIENT default was automati-
cally used.

 In both code and XML, it’s easy to configure instance scopes for components. In all
cases it’s done in a rather declarative fashion. Although configuration is easy, you
must not forget that some lifestyles involve long-lived objects that use resources as
long as they’re around.

RELEASING COMPONENTS

As discussed in section 8.2.2, it’s important to release objects when we’re done with
them. Autofac has no explicit Release method but instead uses a concept called life-
time scopes. A lifetime scope can be regarded as a throw-away copy of the container. As fig-
ure 13.5 illustrates, it defines a boundary where components can be reused.

 A lifetime scope defines a derived container that we can use for a particular dura-
tion or purpose; the most obvious example is a web request. We spawn a scope from
a container so that the scope inherits all the SINGLETONS tracked by the parent con-
tainer, but the scope also acts as a container of “local SINGLETONS.” When a lifetime
scoped component is requested from a lifetime scope, we always receive the same
instance. The difference from true SINGLETONS is that if we query a second scope,
we’ll get another instance.

TRANSIENT components still act as they should, whether we resolve them from the
root container or a lifetime scope.

TIP We can use lifetime scopes to implement context-based lifestyles such as
the WEB REQUEST CONTEXT lifestyle: create a new lifetime scope at the start of
each context and use it to resolve components. Then dispose of the scope
when the request ends. However, for web request scope, Autofac has built-in
integration to both Web Forms and ASP.NET MVC, so we don’t need to do
much of this work ourselves.

One of the important features of lifetime scopes is that they allow us to properly
release components when the scope completes. We create a new scope with the
BeginLifetimeScope method and release all appropriate components by invoking its
Dispose method:

432 CHAPTER 13 Autofac
using (var scope = container.BeginLifetimeScope())
{
 var meal = scope.Resolve<IMeal>();

}

A new scope is created from the container by invoking the BeginLifetimeScope
method. The return value implements IDisposable, so you can wrap it in a using
scope. Because it also implements the same interface that the container itself imple-
ments, you can use the scope to resolve components in exactly the same way as with
the container itself.

 When we’re done with the lifetime scope, we can dispose of it. When using a using
scope this happens automatically when we exit the scope, but we can obviously also
choose to explicitly dispose of it by invoking the Dispose method. When we dispose of
scope, we also release all the components that were created by the lifetime scope;
here it means that you release the meal object graph.

NOTE Remember that releasing a disposable component isn’t the same as dis-
posing of it. It’s a signal to the container that the component is eligible for
decommissioning. If the component is TRANSIENT or lifetime scoped, it will be
disposed of; it will remain active if it’s a SINGLETON.

Figure 13.5 Autofac
lifetime scopes act as
containers that can share
components for a limited
duration or purpose. A
lifetime scoped component
is a SINGLETON within that
scope. No matter how many
times we ask a scope for
such a component, we get
the same instance. Another
scope will have its own
instance, and the parent
container manages the truly
shared SINGLETONS. TRANSIENT

components are never
shared, but will be
decommissioned when the
scope is disposed of.

Consume
meal

433Working with multiple components
Earlier in this section, you already saw how to configure components as SINGLETONS or
TRANSIENTS. Configuring a component to have its instance scope tied to a lifetime
scope is done in a similar way:

builder.RegisterType<SauceBéarnaise>()
 .As<IIngredient>()
 .InstancePerLifetimeScope();

Similar to the SingleInstance and InstancePerDependency methods, you can use
the InstancePerLifetimeScope method to state that the component’s lifetime should
follow the lifetime scope that created the instance.

TIP Autofac tracks most, even disposable TRANSIENT, components, so it’s
important to remember to resolve all components from a lifetime scope and
dispose of the scope after use.

Due to their very nature, SINGLETONS are never released for the lifetime of the con-
tainer itself. Still, we can release even those components if we don’t need the container
any longer. This is done by disposing the container itself:

container.Dispose();

In practice this isn’t nearly as important because the lifetime of a container tends to
correlate closely with the lifetime of the application it supports. We normally keep the
container around as long as the application runs, so we’d only dispose of it when
the application shuts down, in which case memory would be reclaimed by the operat-
ing system in any case.

 Lifetime scopes enable us to address many of the scenarios where we’d normally
want to use a WEB REQUEST CONTEXT or another contextual lifestyle. This is the idiom-
atic way to implement custom lifetimes with Autofac.

 This completes our tour of LIFETIME MANAGEMENT with Autofac. Components can be
configured with mixed instance scopes, and this is even true when we register multi-
ple implementations of the same ABSTRACTION. We have yet to look at how to work with
multiple components, so let’s now turn our attention in that direction.

13.3 Working with multiple components
DI CONTAINERS thrive on distinctness but have a hard time with ambiguity. When using
CONSTRUCTOR INJECTION, a single constructor is preferred over overloaded constructors
because it’s evident which constructor to use when there’s no choice. This is also the
case when mapping from ABSTRACTIONS to concrete types. If we attempt to map multi-
ple concrete types to the same ABSTRACTION, we introduce ambiguity.

 Despite the undesirable qualities of ambiguity, we often need to work with multiple
implementations of a single interface. This can be the case in these situations:

■ Different concrete types should be used for different consumers.
■ DEPENDENCIES are sequences.
■ Decorators are in use.

434 CHAPTER 13 Autofac
In this section, we’ll look at each of these cases and see how Autofac addresses each
one in turn. When we’re done, you should be able to register and resolve components
even when multiple implementations of the same ABSTRACTION are in play.

 Let’s first see how we can provide more fine-grained control than AUTO-WIRING

provides.

13.3.1 Selecting among multiple candidates

AUTO-WIRING is convenient and powerful but provides us with little control. As long as
all ABSTRACTIONS are distinctly mapped to concrete types we have no problems, but
as soon as we introduce more implementations of the same interface, ambiguity rears
its ugly head.

 Let’s first recap how Autofac deals with multiple registrations of the same ABSTRACTION.

CONFIGURING MULTIPLE IMPLEMENTATIONS OF THE SAME SERVICE

As you saw in section 13.1.2, you can register multiple implementations of the same
interface:

builder.RegisterType<SauceBéarnaise>().As<IIngredient>();
builder.RegisterType<Steak>().As<IIngredient>();

This example registers both the Steak and SauceBéarnaise classes as the IIngredient
service. The last registration wins, so if we resolve IIngredient with container
.Resolve<IIngredient>(), we’ll get a Steak instance.

TIP The last registration of a given service wins. It defines the default
instance for that type.

We can also ask the container to resolve all IIngredient components. Autofac has no
dedicated method to do that, but instead relies on relationship types.5 A relationship type
is a type that indicates a relationship that the container can interpret. As an example,
we can use IEnumerable<T> to indicate that we want all services of a given type:

var ingredients = container.Resolve<IEnumerable<IIngredient>>();

Notice that we use the normal Resolve method, but that we request IEnumerable
<IIngredient>. Autofac interprets this as a convention and gives us all the IIngredient
components it has.

TIP As an alternative to IEnumerable<T>, we can also request an array. The
results are equivalent: in both cases we get all the components of the
requested type.

If there are registrations that can’t be resolved when we request all services of a type,
Autofac throws an exception explaining that there are DEPENDENCIES that can’t be satis-
fied. This is consistent with the behavior when we resolve a single component, but dif-
ferent from the way that Castle Windsor or MEF behaves.

5 Nicholas Blumhardt, The Relationship Zoo, 2010, http://nblumhardt.com/2010/01/the-relationship-zoo/

http://nblumhardt.com/2010/01/the-relationship-zoo/

435Working with multiple components
 When we register components, we can give each registration a name that we can
later use to select among the different components:

builder.RegisterType<Steak>()
 .Named<IIngredient>("meat");
builder.RegisterType<SauceBéarnaise>()
 .Named<IIngredient>("sauce");

As always, we start out with the RegisterType method, but instead of following up
with the As method, we use the Named method to specify a service type as well as a
name. This enables us to resolve named services by supplying the same name to the
ResolveNamed method:

var meat = container.ResolveNamed<IIngredient>("meat");
var sauce = container.ResolveNamed<IIngredient>("sauce");

NOTE A named component doesn’t count as a default component. If we only
register named components, we can’t resolve a default instance of the service.
However, nothing prevents us from also registering a default (unnamed)
component with the As method, and we can even do it in the same statement
by method chaining.

Naming components with strings is a fairly common feature of DI CONTAINERS, but
Autofac also enables us to identify components with arbitrary keys:

var meatKey = new object();
builder.RegisterType<Steak>().Keyed<IIngredient>(meatKey);

The key can be any object, and we can subsequently use it to resolve the component:

var meat = container.ResolveKeyed<IIngredient>(meatKey);

Given that we should always resolve services in a single COMPOSITION ROOT, we should
normally not expect to deal with such ambiguity on this level.

TIP If you find yourself invoking the Resolve method with a specific name or
key, consider if you can change your approach to be less ambiguous.

However, we can use named or keyed instances to select among multiple alternatives
when configuring DEPENDENCIES for a given service.

REGISTERING NAMED DEPENDENCIES

As useful as AUTO-WIRING is, sometimes we need to override the normal behavior to
provide fine-grained control over which DEPENDENCIES go where, but it may also be that
we need to address an ambiguous API. As an example, consider this constructor:

public ThreeCourseMeal(ICourse entrée,
 ICourse mainCourse, ICourse dessert)

In this case, you have three identically typed DEPENDENCIES, each of which represents a dif-
ferent concept. In most cases, you want to map each of the DEPENDENCIES to a separate type.
The following listing shows how you could choose to register the ICourse mappings.

436 CHAPTER 13 Autofac
builder.RegisterType<Rillettes>()
 .Named<ICourse>("entrée");
builder.RegisterType<CordonBleu>()
 .Named<ICourse>("mainCourse");
builder.RegisterType<MousseAuChocolat>()
 .Named<ICourse>("dessert");

Here, you register three named components, mapping the Rilettes to an instance
named “entrée,” CordonBleu to an instance named “mainCourse,” and the MousseAu-
Chocolat to an instance named “dessert.”

 Given this configuration, you can now register the ThreeCourseMeal class with the
named registrations. This turns out to be surprisingly complex. In the following list-
ing, I’ll first show you what it looks like, and then we’ll subsequently pick the example
apart to understand what’s going on.

builder.RegisterType<ThreeCourseMeal>()
 .As<IMeal>()
 .WithParameter(
 (p, c) => p.Name == "entrée",
 (p, c) =>
 c.ResolveNamed<ICourse>("entrée"))
 .WithParameter(
 (p, c) => p.Name == "mainCourse",
 (p, c) =>
 c.ResolveNamed<ICourse>("mainCourse"))
 .WithParameter(
 (p, c) => p.Name == "dessert",
 (p, c) =>
 c.ResolveNamed<ICourse>("dessert"));

The WithParameter method B enables you to provide parameter values for the
ThreeCourseMeal constructor. One of its overloads takes two arguments. The first one
is a predicate that determines whether a parameter is targeted by this particular invo-
cation of the method. For the first parameter you state that it only deals with the
parameter called entrée c. If that expression is true, the second code block is executed
to provide the value for the entrée parameter. The c parameter is an instance of
IComponentContext that you can use to resolve the entrée named component d.

TIP The WithParameter method arguments represent a variation of the Tes-
ter-Doer pattern.6

Let’s take a closer look at what’s going on here. The WithParameter method really
wraps around the ResolvedParameter class that has this constructor:

Listing 13.2 Registering named courses

Listing 13.3 Overriding AUTO-WIRING

6 Krzysztof Cwalina and Brad Abrams, Framework Design Guidelines: Conventions, Idioms, and Patterns for Reusable
.NET Libraries (New York: Addison-Wesley, 2006), 203.

Defines
parameter

b
Filtersc

Defines valued

437Working with multiple components
public ResolvedParameter(
 Func<ParameterInfo, IComponentContext, bool> predicate,
 Func<ParameterInfo, IComponentContext, object> valueAccessor);

The predicate parameter is a test that determines whether the valueAccessor dele-
gate will be invoked: when predicate returns true, valueAccessor is invoked to pro-
vide the value for the parameter. Both delegates take the same input: information
about the parameter in the form of a ParameterInfo object, and an IComponent-
Context that can be used to resolve other components. When Autofac uses the Resolved-
Parameter instances, it provides both of these values when it invokes the delegates.

 Sometimes there’s no other way than to painstakingly use the WithParameter
method for each and every constructor parameter; but in other cases we can take
advantage of conventions.

RESOLVING NAMED COMPONENTS BY CONVENTION

If you examine listing 13.3 closely, you may notice a repetitive pattern. Each call to
WithParameter addresses only a single constructor parameter, but each valueAccessor
does the same thing: it uses the IComponentContext to resolve an ICourse component
with the same name as the parameter.

 There’s no requirement that says we must name the component after the construc-
tor parameter, but whenever this is the case, we can take advantage of this convention
and rewrite listing 13.3 in a much simpler way; the following listing demonstrates how.

builder.RegisterType<ThreeCourseMeal>()
 .As<IMeal>()
 .WithParameter(
 (p, c) => true,
 (p, c) => c.ResolveNamed(p.Name, p.ParameterType));

It may be a little surprising, but you can address all three constructor parameters of
the ThreeCourseMeal class with the same WithParameter call. You do that by stating
that this instance will handle any parameter Autofac might throw at it. Because you
only use this method to configure the ThreeCourseMeal class, the convention only
applies within this limited scope.

 As the predicate always returns true, the second code block will be invoked for all
three constructor parameters. In all three cases it will ask the IComponentContext to
resolve a component that has the same name and type as the parameter. This is func-
tionally the same as you did in listing 13.3.

WARNING Identifying parameters by their names is convenient but not
refactoring-safe. If you rename a parameter, you may break the configuration
(depending on your refactoring tool).

Overriding AUTO-WIRING by explicitly mapping parameters to named components is a uni-
versally applicable solution. We can do this even if we configure the named components
in one Module and the consumer in a completely different Module because the only

Listing 13.4 Overriding AUTO-WIRING with a convention

438 CHAPTER 13 Autofac
identification that ties a named component together with a parameter is the name.
This is always possible, but can be brittle if we have a lot of names to manage. When
the original reason prompting us to use named components is to deal with ambiguity,
a better solution is to design our own API to get rid of that ambiguity. It often leads to
a better overall design.

 In the next section, you’ll see how to use the less ambiguous and more flexible
approach where you allow any number of courses in a meal. To this end, you must
learn how Autofac deals with lists and sequences.

13.3.2 Wiring sequences

In section 10.3.2, we discussed how to refactor an explicit ThreeCourseMeal class to
the more general-purpose Meal class with this constructor:

public Meal(IEnumerable<ICourse> courses)

In this section, we’ll look at how we can configure Autofac to wire up Meal instances
with appropriate ICourse DEPENDENCIES. When we’re done, you should have a good
idea of the options available when you need to configure instances with sequences
of DEPENDENCIES.

AUTO-WIRING SEQUENCES

Autofac has a rather good understanding of sequences, so if we want to use all registered
components of a given service, AUTO-WIRING just works. As an example, given the config-
ured ICourse instances in listing 13.2, you can configure the IMeal service like this:

builder.RegisterType<Meal>().As<IMeal>();

Notice that this is a completely standard mapping from a concrete type to an ABSTRAC-
TION. Autofac will automatically understand the Meal constructor and determine that
the correct course of action is to resolve all ICourse components. When you resolve
IMeal, you get a Meal instance with the ICourse components from listing 13.2:
Rillettes, CordonBleu, and MousseAuChocolat.

 Autofac automatically handles sequences, and unless we specify otherwise, it does
what we’d expect it to do: it resolves a sequence of DEPENDENCIES to all registered com-
ponents of that type. Only when we need to explicitly pick only some components
from a larger set do we need to do more. Let’s see how we can do that.

PICKING ONLY SOME COMPONENTS FROM A LARGER SET

Autofac’s default strategy of injecting all components is often the correct policy, but as
figure 13.6 shows, there may be cases where we want to pick only some registered com-
ponents from the larger set of all registered components.

 When we previously let Autofac AUTO-WIRE all configured instances, it corre-
sponded to the situation depicted on the right side of figure 13.6. If we want to regis-
ter a component as is shown on the left side, we must explicitly define which
components should be used.

439Working with multiple components
In order to achieve this, you can once more utilize the WithParameter method the
way you did in listings 13.3 and 13.4. This time around, you’re dealing with the Meal
constructor that only takes a single parameter. The following listing demonstrates how
you can implement the value-providing part of WithParameter to explicitly pick
named components off the IComponentContext.

builder.RegisterType<Meal>()
 .As<IMeal>()
 .WithParameter(
 (p, c) => true,
 (p, c) => new[]
 {
 c.ResolveNamed<ICourse>("entrée"),
 c.ResolveNamed<ICourse>("mainCourse"),
 c.ResolveNamed<ICourse>("dessert")
 });

As you saw in section 13.3.1, the WithParameter method takes two delegates as input
parameters. The first is a predicate that’s used to determine if the second delegate
should be invoked. In this case, I decided to be a bit lazy and return true. You know
that the Meal class has only a single constructor parameter, so this will turn out to

Listing 13.5 Injecting named components into a sequence

Figure 13.6 In the situation on the left, we wish to explicitly select only certain DEPENDENCIES from
the larger list of all registered components. This is different from the situation on the right, where we
indiscriminately want them all.

440 CHAPTER 13 Autofac
work. However, if you later refactor the Meal class to take a second constructor param-
eter, this may not work correctly anymore, so it might be safer to define an explicit
check for the parameter name.

 The second delegate provides the value for the parameter. You use the IComponent-
Context to resolve three named components into an array. The result is an array of
ICourse, which is compatible with IEnumerable<ICourse>.

 Autofac natively understands sequences; unless we need to explicitly pick only some
components from all services of a given type, Autofac automatically does the right thing.
AUTO-WIRING works not only with single instances, but also for sequences, and the con-
tainer maps a sequence to all configured instances of the corresponding type.

 Consumers that rely on sequences of DEPENDENCIES may be the most intuitive use of
multiple instances of the same ABSTRACTION, but before we leave this subject com-
pletely, we need to look at one last, and perhaps a bit surprising, case where multiple
instances come into play.

13.3.3 Wiring Decorators
In section 9.1.2, we discussed how the Decorator design pattern is useful when imple-
menting CROSS-CUTTING CONCERNS. By definition, Decorators introduce multiple types
of the same ABSTRACTION. At the very least we have two implementations of an ABSTRAC-
TION: the Decorator itself and the decorated type. If we stack the Decorators, we may
have even more.

 This is another example of having multiple registrations of the same service.
Unlike the previous sections, these registrations aren’t conceptually equal, but rather
DEPENDENCIES of each other. In this section, you’ll see two different ways to configure
Autofac to deal with this pattern.

DECORATING WITH WITHPARAMETER

The WithParameter method offers a versatile way to define how components are cre-
ated and injected. In sections 13.3.1 and 13.3.2, you saw how you could use it to select
specific components for constructor parameters. It’s also a good option to provide
parameters for Decorators.

 Let’s see how you can use it to configure the Breading class, which is a Decorator of
IIngredient. It uses CONSTRUCTOR INJECTION to receive the instance it should decorate:

public Breading(IIngredient ingredient)

To make a Cotoletta, you’d like to decorate a VealCutlet (another IIngredient) with
the Breading class. Another way to look at this is that you want to inject a VealCutlet
into Breading; the following listing demonstrates how you can use the WithParameter
method to do that.

builder.RegisterType<VealCutlet>().Named<IIngredient>("cutlet");
builder.RegisterType<Breading>()
 .As<IIngredient>()

Listing 13.6 Decorating with WithParameter

441Working with multiple components
 .WithParameter(
 (p, c) => p.ParameterType == typeof(IIngredient),
 (p, c) => c.ResolveNamed<IIngredient>("cutlet"));

Breading is the Decorator, but you also need something to decorate, so you register
VealCutlet as a named component. In this example, you register VealCutlet before
Breading, but you could also have done it the other way around; the order doesn’t matter.

 For the Breading registration, you use the WithParameter method to define the
ingredient parameter of the Breading constructor. You implement the predicate by test-
ing that the parameter type is IIngredient, and provide the value for the parameter
by resolving the cutlet named component from the provided IComponentContext.

 In this example, you used a named registration of IIngredient to register the
VealCutlet component. This makes the Breading component the default IIngredient
component. Another alternative is to register VealCutlet as both IIngredient and
VealCutlet itself. The next example demonstrates that approach and combines it
with a strongly typed delegate.

DECORATING WITH DELEGATES

Instead of referring to a constructor parameter by type or name, we can write a
strongly typed code block that uses the constructor:

builder.RegisterType<VealCutlet>()
 .As<IIngredient, VealCutlet>();
builder.Register(c => new Breading(c.Resolve<VealCutlet>()))
 .As<IIngredient>();

As an alternative to registering VealCutlet as a named component, you can also regis-
ter it as both IIngredient and VealCutlet itself. When you do that, it’s important
that you do it before registering Breading, because otherwise VealCutlet would
become the default IIngredient component.

 Instead of the RegisterType method that you’ve mostly been using so far, you can
also register a service with a method called Register. There are two overloads of this
method, and they both take as input a delegate that creates the service in question. To
register the IIngredient service, you implement a code block that creates a new
Breading instance by directly invoking the constructor. To supply a value for the con-
structor’s ingredient parameter you resolve the VealCutlet type from the supplied
IComponentContext. This is possible because you registered VealCutlet as a concrete
type as well as IIngredient.

NOTE You could also have resolved the VealCutlet by name if you had regis-
tered it as a named component as you did in the previous example.

When you ask the container to resolve IIngredient, it will pass an IComponent-
Context as input to the code block you defined in the Register method. When the
code block executes, the VealCutlet instance is resolved from the context and passed
to the Breading constructor, where the Breading instance is returned.

442 CHAPTER 13 Autofac
 The advantage of this is that in the code block you write code that uses the
Breading constructor. This is a line of code like any other line of code, so it’s checked
by the compiler. This provides you with a great deal of confidence that if the Register
method compiles, the VealCutlet will be correctly decorated.

 Although strong typing is safer, it also requires more maintenance. If you subse-
quently decide to add another constructor parameter to the Breading constructor,
the code block no longer compiles and you must manually address the issue. This
wouldn’t be necessary if you had used the WithParameter method because Autofac
would have been able to sort out the new parameter for you with AUTO-WIRING.

 As you’ve seen in this section, there are different ways you can configure Decora-
tors. The strongly typed approach is a bit safer but may require more maintenance.
The more weakly typed API is more flexible and enables Autofac to deal with changes
to your API, but at the expense of less type safety.

NOTE In this section, we didn’t discuss runtime INTERCEPTION. Although Auto-
fac has SEAMS that enable INTERCEPTION, it has no built-in support for dynami-
cally emitting Proxies. It’s possible to use those SEAMS to use another library
(such as Castle Dynamic Proxy) to emit such classes, but because this isn’t
part of Autofac itself, it’s beyond the scope of this chapter.7

Autofac lets us work with multiple instances in several different ways. We can register
components as alternatives to each other, as peers resolved as sequences, or as hierar-
chical Decorators. In many cases, Autofac will figure out what to do, but we can always
explicitly define how services are composed if we need more explicit control.

 This may also be the case when we need to deal with APIs that deviate from CON-
STRUCTOR INJECTION. So far, you’ve seen how to register components, including how to
specify instance scopes and how to deal with multiple components; however, until
now, you’ve allowed the container to wire DEPENDENCIES by implicitly assuming that all
components use CONSTRUCTOR INJECTION. This isn’t always the case, so in the next sec-
tion, we’ll review how to deal with classes that must be instantiated in special ways.

13.4 Registering difficult APIs
Until now, we’ve considered how we can configure components that use CONSTRUCTOR

INJECTION. One of the many benefits of CONSTRUCTOR INJECTION is that DI CONTAINERS

such as Autofac can easily understand how to compose and create all classes in a
dependency graph.

 But this becomes less clear when APIs are less well behaved. In this section, you’ll
see how to deal with primitive constructor arguments, static factories, and PROPERTY

INJECTION. These all require our special attention. Let’s start by looking at classes that
take primitive types, such as strings or integers as constructor arguments.

7 However, see http://code.google.com/p/autofac/wiki/DynamicProxy2 for more information.

http://code.google.com/p/autofac/wiki/DynamicProxy2 for more information

443Registering difficult APIs
13.4.1 Configuring primitive Dependencies
As long as we inject ABSTRACTIONS into consumers, all is well, but it becomes more diffi-
cult when a constructor depends on a primitive type, such as a string, a number, or an
enum. This is particularly the case for data access implementations that take a connec-
tion string as constructor parameter, but is a more general issue that applies to all
strings and numbers.

 Conceptually, it doesn’t always make much sense to register a string or number as a
component in a container. But with Autofac, this is at least possible.

 Consider, as an example, this constructor:

public ChiliConCarne(Spiciness spiciness)

In this example, Spiciness is an enum:

public enum Spiciness
{
 Mild = 0,
 Medium,
 Hot
}

WARNING As a rule of thumb, enums are code smells and should be refac-
tored to polymorphic classes.8 But they serve us well for this example.

If you want all consumers of Spiciness to use the same value, you can register Spiciness
and ChiliConCarne independently of each other:

builder.Register<Spiciness>(c => Spiciness.Medium);
builder.RegisterType<ChiliConCarne>().As<ICourse>();

When you subsequently resolve ChiliConCarne, it will have a Medium Spiciness, as
will all other components with a DEPENDENCY on Spiciness.

 If you’d rather control the relationship between ChiliConCarne and Spiciness on
a finer level, you can use the WithParameter method that same way you did in
listings 13.4, 13.5, and 13.6:

builder.RegisterType<ChiliConCarne>()
 .As<ICourse>()
 .WithParameter("spiciness", Spiciness.Hot);

Because you want to supply a concrete value for the spiciness parameter, you can use
another overload of the WithParameter method that takes a parameter name and
a value. This overload delegates to the other WithParameter by creating a Named-
Parameter instance from the parameter name and value; NamedParameter also derives
from Parameter like ResolvedParameter does.

 Both of the options described here leverage AUTO-WIRING to provide a concrete value
to a component. As we discussed in section 13.3, this has advantages and disadvantages.
If you want a more strongly typed configuration that invokes the constructor or a
static factory, you can do this as well.

8 Martin Fowler et al, Refactoring: Improving the Design of Existing Code (New York: Addison-Wesley, 1999), 82.

444 CHAPTER 13 Autofac
13.4.2 Registering objects with code blocks
Another option for creating a component with a primitive value is to use the Register
method that enables you to supply a delegate that creates the component:

builder.Register<ICourse>(c =>
 new ChiliConCarne(Spiciness.Hot));

You already saw the Register method when we discussed Decorators in section 13.3.3.
The ChiliConCarne constructor will be invoked with Hot Spiciness every time the
ICourse component is resolved.

NOTE The Register method is type-safe but disables AUTO-WIRING.

When it comes to the ChiliConCarne class, you have a choice between AUTO-WIRING

and using a code block. But other classes are more restrictive: they can’t be instanti-
ated through a public constructor. Instead, you must use some sort of factory to create
instances of the type. This is always troublesome for DI CONTAINERS because, by default,
they look after public constructors.

 Consider this example constructor for the public JunkFood class:

internal JunkFood(string name)

Even though the JunkFood class is public, the constructor is internal. Obviously,
instances of JunkFood should be created through the static JunkFoodFactory class:

public static class JunkFoodFactory
{
 public static IMeal Create(string name)
 {
 return new JunkFood(name);
 }
}

From Autofac’s perspective, this is a problematic API because there are no unambigu-
ous and well-established conventions around static factories. It needs help—and you
can give it to it by providing a code block it can execute to create the instance:

builder.Register(c =>
 JunkFoodFactory.Create("chicken meal"));

This time, you use the Register method to create the component by invoking a static
factory within the code block. JunkFoodFactory.Create will be invoked every time
IMeal is resolved and the result will be returned.

 When we end up writing the code to create the instance, how is this in any way bet-
ter than invoking the code directly? By using a code block inside a Register method
call, we still gain something:

■ We map from IMeal to JunkFood.
■ Instance scope can still be configured. Although the code block will be invoked to

create the instance, it may not be invoked every time the instance is requested—by
default it does, but if we change it to a SINGLETON, the code block will only be
invoked once and the result cached and reused thereafter.

445Registering difficult APIs
The last common deviation from CONSTRUCTOR INJECTION we’ll examine here is PROP-
ERTY INJECTION.

13.4.3 Wiring with Property Injection

PROPERTY INJECTION is a less well-defined form of DI because we aren’t forced by the
compiler to assign a value to a writable property. This is also the case for Autofac,
which will leave writable properties alone unless we explicitly ask it to do something
about them.

 Consider this CaesarSalad class:

public class CaesarSalad : ICourse
{
 public IIngredient Extra { get; set; }
}

It’s a common misconception that a Caesar Salad includes chicken; this isn’t true.
Fundamentally, a Caesar Salad is a salad, but it tastes great with chicken, so many res-
taurants allow customers to order chicken as an extra ingredient in their salad. The
CaesarSalad class models this by exposing a writable property named Extra.

 If you configure only the CaesarSalad without explicitly addressing the Extra
property, the property won’t be assigned. You can still resolve the instance, but the
property will have the default value that the constructor assigns to it (if any).

 There are several ways you can configure the CaesarSalad so that the Extra property
will be appropriately populated. The easiest is to use the PropertiesAutowired method:

builder.RegisterType<CaesarSalad>()
 .As<ICourse>()
 .PropertiesAutowired();
builder.RegisterType<Chicken>().As<IIngredient>();

As part of the ordinary fluent Registration API, you can invoke the Properties-
Autowired method to tell Autofac that it should AUTO-WIRE the writable properties of
the CaesarSalad class. Autofac will only AUTO-WIRE those properties that it knows how
to fill so you also register Chicken as an IIngredient—if you hadn’t done that, the
Extra property would’ve been ignored.

 When you resolve ICourse based on this registration, you’ll get back a Caesar-
Salad instance with a Chicken instance assigned to its Extra property.

 If you want more granular control that the sweeping statement expressed by the
PropertiesAutowired method, you can use the WithProperty method that’s similar
to the WithParameter method you’ve used so many times already:

builder.RegisterType<Chicken>().As<IIngredient>();
builder.RegisterType<CaesarSalad>()
 .As<ICourse>(
 .WithProperty(new ResolvedParameter(
 (p, c) => p.Member.Name == "set_Extra",
 (p, c) => c.Resolve<IIngredient>()));

446 CHAPTER 13 Autofac
The WithProperty method mirrors the WithParameter method you already know and
love: it takes a single Parameter argument and also has an overload that takes a prop-
erty name and value.

 To properly resolve the Extra method, we can use the trusted ResolvedParameter
class. When it comes to properties, the predicate we supply has a little twist because
Autofac invokes the code block with a ParameterInfo, not a PropertyInfo; the p
parameter represents the value parameter that’s always implicitly available when
implementing a property,9 so we need to navigate to the Member that defines this
parameter. This is a MethodInfo instance, so we need to know a little bit about how C#
properties are implemented at the IL level: the Extra property is really a method
named set_Extra.

 With the predicate in place, it’s a breeze to implement the value provider by resolv-
ing IIngredient from the supplied IComponentContext.

 Using the WithProperty method gives us more fine-grained control over PROPERTY

INJECTION while we retain loose coupling. If we want a strongly typed alternative, this is
also possible.

 Autofac enables us to supply code blocks that will be invoked when certain events
occur during a component’s lifetime. We can hook into these events to fill properties
while a component is being built.

 One of these events is the OnActivating event that Autofac raises whenever it cre-
ates a new component instance. You can use this event to populate the Extra property
before Autofac returns the CaesarSalad instance:

builder.RegisterType<Chicken>().As<IIngredient>();
builder.RegisterType<CaesarSalad>()
 .As<ICourse>()
 .OnActivating(e =>
 e.Instance.Extra = e.Context.Resolve<IIngredient>());

The OnActivating method gives you an opportunity to do something to the compo-
nent before Autofac returns it to whoever requested it. As a single parameter, it takes
an Action<IActivatingEventArgs<CaesarSalad>> that you can use to implement
the post-processing logic of your choice. The e parameter represents the event args
and it has an Instance property of the CaesarSalad type and a Context property you
can use to resolve other components. You use this combination to resolve IIngredient
and assign the result to the Extra property. When you resolve ICourse you’ll get a
CaesarSalad instance with Extra Chicken.

 Because the Instance property is tied to the generic type argument of the
IActivatingEventArgs<T> interface, this approach is strongly typed with the advan-
tages and disadvantages this entails.

 In this section, you’ve seen how you can use Autofac to deal with more difficult cre-
ational APIs. You can use various derivations of the abstract Parameter class to wire
constructors and properties with services to maintain a semblance of AUTO-WIRING, or

9 I assume this must be confusing to VB.NET developers.

447Summary
you can use the Register method with a code block for a more type-safe approach.
PROPERTY INJECTION is generally well-supported both for AUTO-WIRING and for strongly
typed assignment.

13.5 Summary
In this chapter, you got a taste of the Autofac DI CONTAINER; although it’s a second-
generation container, it’s still fairly comprehensive and addresses many of the more
tricky situations we typically encounter when we use DI CONTAINERS. Its architecture is
built directly on the features of .NET 3.5 and C# 3.0, but even though it internally uti-
lizes delegates and code blocks, the general API is fairly easy to use.

 An important overall theme for Autofac seems to be one of explicitness. It doesn’t
attempt to guess what we mean, but rather offers an easy-to-use API that provides us
with options to explicitly enable features.

 One example of this explicitness is that, contrary to many other DI CONTAINERS, Auto-
fac enforces more strict separation of concerns between configuring and consuming a
container. We configure components using a ContainerBuilder instance, but a Con-
tainerBuilder can’t resolve components. When we’re done configuring a Container-
Builder, we use it to build an IContainer that we can use to resolve components.

 We can configure a ContainerBuilder in every conceivable way: through impera-
tive code, through XML, or by defining conventions, and we can package configura-
tions into Modules.

 The way Autofac addresses LIFETIME MANAGEMENT is a bit different than other DI
CONTAINERS. Standard lifestyles such as TRANSIENT and SINGLETON are built-in, but other
contextual lifestyles such as WEB REQUEST CONTEXT are addressed by lifetime scopes where
we explicitly interact with the container to define a context within which components
are resolved and released. This effectively addresses contextual lifestyles such as WEB

REQUEST CONTEXT. On the other hand, this model doesn’t enable us to custom imple-
ment a POOLED or cached lifestyle, and there’s no other easy way to implement custom
lifestyles with Autofac. According to Nicholas Blumhardt (the Autofac author), this
has never come up in any discussion forum, so it’s unlikely to be a real issue.10 In most
cases, the LIFETIME MANAGEMENT offered by Autofac is more than sufficient.

 In closing, Autofac is a modern DI CONTAINER that offers a fairly comprehensive fea-
ture set. In the next chapter, we’ll turn our attention to another second-generation DI
CONTAINER: Unity.

10 Private correspondence, 2011.

Unity
In the previous chapter, we looked at Autofac, which is one of the more recent DI
CONTAINERS to enter the game. Another contemporary DI CONTAINER is Unity, which
we’ll examine in this chapter.

 Autofac can be labeled as a second-generation DI CONTAINER because it was con-
ceived and developed directly on .NET 3.5 without any legacy baggage from earlier
versions of .NET. Although Unity appeared in roughly the same time frame, it took
a more conservative approach. Unity 1.0 was released in May 2008, but targeted
.NET 2.0, acknowledging that many development organizations would take their
time before upgrading to .NET 3.5.

 Unity is an application block from Microsoft’s patterns & practices (p&p) group, but
don’t be fooled by the name: an application block is just a reusable library with associ-
ated documentation and samples.

Menu
■ Introducing Unity
■ Managing lifetime
■ Working with multiple components
■ Configuring difficult APIs
448

449Unity
According to one completely unscientific internet poll,1 Unity is the most widely used
DI CONTAINER. This is surprising given its relatively late entry on the scene, but is likely
to be related to the fact that Microsoft is behind it. The existing contenders, like Cas-
tle Windsor or StructureMap, haven’t noticed any drop in interest, so it seems likely
that Unity has introduced the concept of DI CONTAINERS to a completely new segment
of users who weren’t aware of it before.

 In this chapter, we give Unity the exact same treatment that we give the other DI
CONTAINERS. You’ll see how Unity can be used to apply the principles and patterns laid
forth in parts 1–3. Figure 14.1 shows the structure of the chapter.

 The first section introduces the Unity API and should be considered a prerequisite
for the next three sections. Each of these can be read independently of each other,
although the fourth section uses some classes that are introduced in the third section.
These classes have relatively self-explanatory names, so you may be able to read the
fourth section without reading the third, but on the other hand, you may also find
that you need to refer back to that section occasionally.

 Like Castle Windsor, Unity supports several advanced features, such as custom life-
times and INTERCEPTION.2 This chapter provides examples of both, as well as many of

Unity and Enterprise Library
Some people tend to mix up Unity and Enterprise Library (another p&p offering), or at
least how they relate to each other. Let there be no doubt.

Unity is a stand-alone library. It doesn’t require Enterprise Library.

Enterprise Library, on the other hand, ships with Unity included in the bundle,
although even here it simply acts as the default container for Enterprise Library. Other
DI CONTAINERS can replace Unity in Enterprise Library if necessary.

1 Oliver Sturm, Poll Results: IoC containers for .NET. 2010, www.sturmnet.org/blog/2010/03/04/poll-results-ioc-
containers-for-net

2 We already covered INTERCEPTION with Castle Windsor in chapter 9, which kept the page count of chapter 10 down.

Figure 14.1 This chapter is divided into four sections. The first section provides an overall
introduction to Unity and demonstrates how to configure and resolve components. The next three
sections each deal with usage patterns that require a bit of extra attention; you can read them all
in order, or you can skip some and read only the ones that interest you.

www.sturmnet.org/blog/2010/03/04/poll-results-ioc-containers-for-net
www.sturmnet.org/blog/2010/03/04/poll-results-ioc-containers-for-net

450 CHAPTER 14 Unity
the more common DI CONTAINER features. This all adds up, which is why this is one of
the longest chapters in the entire book.

 This chapter should enable you to get started, as well as deal with the most com-
mon issues that may come up as you use Unity on a daily basis. It isn’t a complete treat-
ment of Unity, but you can get more information online.3 Unity is perhaps the best-
documented DI CONTAINER currently available.

 You can read the chapter in isolation from the rest of part 4 specifically to learn
about Unity, or you can read it together with the other chapters in part 4 to compare
DI CONTAINERS. The focus of this chapter is to show how Unity relates to and imple-
ments the general DI patterns and principles described in the rest of the book.

14.1 Introducing Unity
In this section, you’ll learn where to get Unity, what you get, and how you start using
it. We’ll also look at common configuration options, as well as how you package con-
figuration settings into reusable components. Table 14.1 provides fundamental infor-
mation that you’re likely to need to get started.

As is also the case with Castle Windsor and StructureMap, using Unity follows a simple
rhythm, illustrated by figure 14.2.

3 http://msdn.microsoft.com/unity is a good place to start.

Table 14.1 Unity at a glance

Question Answer

Where do I get it? http://unity.codeplex.com/ is a good place to start. Links to
the latest release are available on the front page and will typ-
ically take you to the Microsoft Download Center.
From Visual Studio 2010, you can also get it via NuGet. The
package name is Unity.

What’s in the download? Contrary to other containers, the Unity download is an .msi
file. When installed, it creates Start Menu shortcuts and
places the binaries and source code in the Program Files
folder. But once you have the binaries, you can Xcopy deploy
them if you prefer that.

Which platforms are supported? .NET 3.5 SP1 and 4.0. Silverlight 3 and 4.

How much does it cost? Nothing. In a sense, Unity is open source software, although
the p&p team doesn’t accept patches.

Where can I get help? Unity isn’t a Microsoft product, but rather an offering from
p&p. As such, it doesn’t come with Microsoft’s usual sup-
port, but there’s a lively discussion forum at http://
unity.codeplex.com/discussions.

On which version is the chapter based? 2.0.

http://msdn.microsoft.com/
http://unity.codeplex.com/
http://unity.codeplex.com/discussions
http://unity.codeplex.com/discussions

451Introducing Unity
When you’re done with this section, you should have a good feeling for the overall
usage pattern of Unity, and you should be able to start using it in well-behaved scenarios
where all components follow proper DI patterns such as CONSTRUCTOR INJECTION. We’ll
start with the simplest scenario to see how to resolve objects using a Unity container.

14.1.1 Resolving objects

The core service of any DI CONTAINER is to resolve components. In this section, we’ll
look at the API that enables us to resolve components with Unity.

 In previous chapters, you learned that some containers (such as Castle Windsor)
require you to explicitly configure all components with the container before you can
resolve them, whereas other containers (such as StructureMap) implicitly figure out
how to AUTO-WIRE requested components as long as they’re concrete types with pub-
lic constructors. In a sense you could say that Unity defined the latter category by
being the first DI CONTAINER to include this feature, so the simplest possible use of it
is this:

var container = new UnityContainer();
SauceBéarnaise sauce = container.Resolve<SauceBéarnaise>();

Given an instance of UnityContainer, you can use the generic Resolve method to get
an instance of the concrete SauceBéarnaise class. Because this class has a default con-
structor, Unity automatically figures out how to create an instance of it. No explicit
configuration of the container is necessary.

 Unity supports AUTO-WIRING, so even in the absence of a default constructor, it will
be able to create instances without configuration, as long as the involved constructor
parameters are all concrete types and the entire tree of parameters have leaf types
with default constructors.

 As an example, consider this Mayonnaise constructor:

public Mayonnaise(EggYolk eggYolk, OliveOil oil)

Although the mayonnaise recipe is a bit simplified, both EggYolk and OliveOil are
concrete classes with default constructors. Mayonnaise itself has no default construc-
tor, but Unity can still create it without any configuration:

var container = new UnityContainer();
var mayo = container.Resolve<Mayonnaise>();

Figure 14.2 First, configure the
container, and then resolve
components from it. In the vast
majority of cases, we create an
instance of the UnityContainer
class and completely configure it
before we start resolving components
from it. We resolve components from
the same instance that we configure.

452 CHAPTER 14 Unity
This works because Unity is able to figure out how to create all required constructor
parameters. But as soon as we introduce loose coupling, we must configure Unity by
mapping ABSTRACTIONS to concrete types.

MAPPING ABSTRACTIONS TO CONCRETE TYPES

While Unity’s ability to AUTO-WIRE concrete types certainly can come in handy from
time to time, loose coupling normally requires you to map ABSTRACTIONS to concrete
types. Creating instances based upon such maps is the core service offered by any DI
CONTAINER, but you must still define the map.

 In this example, you map the IIngredient interface to the concrete Sauce-
Béarnaise class, which allows you to successfully resolve IIngredient:

var container = new UnityContainer();
container.RegisterType<IIngredient, SauceBéarnaise>();
IIngredient ingredient = container.Resolve<IIngredient>();

The generic RegisterType method is one of several extension methods that all invoke
a weakly typed RegisterType method defined on IUnityContainer. In the previous
example, you use an overload where you define the ABSTRACTION as well as the
concrete type as two generic type arguments. Here you map from IIngredient to
SauceBéarnaise so that when you subsequently resolve IIngredient, you get a Sauce-
Béarnaise instance.

 The generic RegisterType extension method helps prevent configuration mis-
takes because the destination type has a generic constraint that states that it must
derive from the source type. The previous example code compiles because Sauce-
Béarnaise implements IIngredient.

 In many cases the strongly typed API is all that you need, and because it pro-
vides desirable compile-time checking, you should use it whenever you can. Still,
there are situations where you need a more weakly typed way to resolve services.
This is also possible.

RESOLVING WEAKLY TYPED SERVICES

Sometimes you can’t use a generic API because you don’t know the appropriate type at
design time. All you have is a Type instance, but you would still like to get an instance
of that type. You saw an example of that in section 7.2, where we discussed ASP.NET
MVC’s DefaultControllerFactory class. The relevant method is this one:

protected internal virtual IController GetControllerInstance(
 RequestContext requestContext, Type controllerType);

Because you only have a Type instance, you can’t use generics, but must resort to a
weakly typed API. Fortunately, Unity offers a weakly typed overload of the Resolve
method which allows you to implement the GetControllerInstance method
like this:

return (IController)this.container.Resolve(controllerType);

453Introducing Unity
The weakly typed overload of Resolve enables you to pass the controllerType
argument directly to Unity, but also requires you to explicitly cast the return value
to IController.

 No matter which overload of Resolve you use, Unity guarantees that it will return
an instance of the requested type or throw an exception if there are DEPENDENCIES that
can’t be satisfied. When all required DEPENDENCIES have been properly configured,
Unity can AUTO-WIRE the requested type.

 In the previous example, this.container is an instance of IUnityContainer. To
be able to resolve the requested type, all loosely coupled DEPENDENCIES must previously
have been configured. There are many ways to configure Unity, and the next section
reviews the most common ones.

14.1.2 Configuring the container

As discussed in section 3.2, there are several conceptually different ways we can config-
ure a DI CONTAINER. Figure 14.3 reviews the options.

 Despite having a comprehensive XML configuration schema, Unity is built around
imperative configuration. XML configuration is well supported, but implemented in
an optional library that we must explicitly reference if we want to use it.

 Although Unity supports both CODE AS CONFIGURATION and XML configuration,
there’s no built-in support for convention-based AUTO-REGISTRATION. Still, as we’ll briefly
cover, we can always implement a convention by writing custom imperative code. In
this section, you’ll see how you can use the various configuration options.

Figure 14.3 Conceptually different
configuration options. CODE AS

CONFIGURATION is strongly typed and
tends to be explicit. XML, on the
other hand, is late bound, but still
explicit. AUTO-REGISTRATION instead
relies on conventions that can be both
strongly typed and more loosely
defined, but Unity has no built-in
support for that.

454 CHAPTER 14 Unity
CODE AS CONFIGURATION

In section 14.1.1, you already saw a brief glimpse of Unity’s strongly typed configura-
tion API. Here we’ll examine it in greater detail.

 With a few exceptions, all configuration of Unity goes through the weakly typed
RegisterType method defined on IUnityContainer:

IUnityContainer RegisterType(Type from, Type to, string name,
 LifetimeManager lifetimeManager,
 params InjectionMember[] injectionMembers);

In addition to this method, Unity also includes many extension methods; some of
those are strongly typed generic methods, and some are weakly typed convenience
methods. In this chapter, we’ll concentrate on the strongly typed API. One of the most
commonly used methods is this overload that you’ve already seen:

container.RegisterType<IIngredient, SauceBéarnaise>();

Unlike Castle Windsor or Autofac, mapping IIngredient to SauceBéarnaise like the
previous example doesn’t preclude you from resolving SauceBéarnaise itself. Both
sauce and ingredient will be appropriately resolved here:

container.RegisterType<IIngredient, SauceBéarnaise>();
var sauce = container.Resolve<SauceBéarnaise>();
var ingredient = container.Resolve<IIngredient>();

As you may recall from the discussion in sections 10.1.2 and 13.1.2, mapping IIngredient
to SauceBéarnaise with Castle Windsor or Autofac causes the concrete class (Sauce-
Béarnaise) to “disappear,” unless you take extra steps. This isn’t necessary with Unity,
where you can resolve both IIngredient and SauceBéarnaise. In both cases, the
returned objects are SauceBéarnaise instances.

 In real applications we always have more than one ABSTRACTION to map, so we must
configure multiple mappings. This is done with multiple calls to RegisterType:

container.RegisterType<IIngredient, SauceBéarnaise>();
container.RegisterType<ICourse, Course>();

This maps IIngredient to SauceBéarnaise and ICourse to Course. There’s no overlap
of types so it should be pretty evident what’s going on. You can also try to register the
same ABSTRACTION several times, but if you do it like this, something surprising happens:

container.RegisterType<IIngredient, Steak>();
container.RegisterType<IIngredient, SauceBéarnaise>();

Registering a type without a name defines the default for the type, but the previous
default is overwritten. The end result here is that if you resolve IIngredient you’ll get
an instance of SauceBéarnaise, but the Steak registration is no longer available.
There can be only one default for a type, but you can register as many named compo-
nents as you want. To keep Steak as the default IIngredient, you can register Sauce-
Béarnaise with a name:

container.RegisterType<IIngredient, Steak>();
container.RegisterType<IIngredient, SauceBéarnaise>("sauce");

455Introducing Unity
Steak remains the default IIngredient, but now you can also resolve IIngredient to
SauceBéarnaise by requesting the named sauce IIngredient. You can use named
components to fine-tune how DEPENDENCIES are wired; we’ll return to this subject in
section 14.3.1.

 There are more advanced options available for configuring Unity, but we can con-
figure an entire application with the methods shown here. To save ourselves from too
much explicit maintenance of container configuration, it would be nice if we could
instead use a more convention-based approach, using AUTO-REGISTRATION.

AUTO-REGISTRATION

In many cases, many registrations will be similar. Such registrations are tedious to
maintain and explicitly registering each and every component may not be the most
productive approach.

 Consider a library that contains a lot of IIngredient implementations. You can
register each class individually, but it will result in numerous similar-looking calls to
the RegisterType method. What’s worse is that every time you add a new IIngredient
implementation, you must also explicitly register it with the container if you want it to be
available. It would be more productive to state that all implementations of IIngredient
found in a given assembly should be registered.

 Unfortunately, Unity has no built-in support for AUTO-REGISTRATION, but because it
has a comprehensive imperative API, we can write custom code to achieve the same
effect. In the following listing we’ll review a simple example that demonstrates how
this can be achieved. This is in no way meant to be a comprehensive treatment of the
subject, but more as a sketch of the options available to us.

 To scan an assembly and register all IIngredient implementations we can com-
bine .NET’s Reflection API with the weakly typed RegisterType method, as demon-
strated in the following listing.

foreach (var t in typeof(Steak).Assembly.GetExportedTypes())
{
 if (typeof(IIngredient).IsAssignableFrom(t))
 {
 container.RegisterType(typeof(IIngredient), t, t.FullName);
 }
}

From a given assembly, you can pull a list of all public types and select only those
that directly or indirectly implement the IIngredient interface. After having
applied the filter, you can use the weakly typed Register method to register each
IIngredient type against the interface. For each registration, you must remember
to supply a unique name to prevent them from overwriting each other—here you
use the full name of each concrete class, but anything that ensures the uniqueness
of the name will do.

Listing 14.1 Registering all IIngredients in an assembly

456 CHAPTER 14 Unity
 Although Unity offers no API that addresses convention-based AUTO-REGISTRATION,
we can write our own code to achieve the same effect. It would have been preferable
to have built-in support for this, but at least the Unity API doesn’t preclude us from
defining conventions manually.

TIP The Unity Auto Registration open source project4 is one attempt to define
a reusable API to enable AUTO-REGISTRATION for Unity.

If we were to be generous, we could say that the lack of an AUTO-REGISTRATION API puts us
in a position with no constraints. If we can code it, we can have it. If we want to scan a
folder for assemblies and scan each assembly for types we could even implement add-in
functionality where add-ins can be added without recompiling a core application. This
would be one way to implement late binding; another is to use XML configuration.

XML CONFIGURATION

When we need to be able to change a configuration without recompiling the applica-
tion, XML configuration is a good option.

TIP Use XML configuration only for those types you need to change without
recompiling the application. Use CODE AS CONFIGURATION for the rest.

Unity assumes that we place the XML configuration in an application configuration file. It
uses the standard .NET configuration API to load and interpret the XML configuration.

TIP Unity’s support for XML configuration is quite comprehensive compared
to many other DI CONTAINERS; there’s even an XSD file that can be used to get
IntelliSense support in Visual Studio.

NOTE Because Unity’s XML configuration support is implemented in a sepa-
rate assembly, to use this feature, we must add a reference to the Microsoft
.Practices.Unity.Configuration assembly.

Once we have a reference to Microsoft.Practices.Unity.Configuration, we must
also add a using directive for the Microsoft.Practices.Unity.Configuration
namespace to make the LoadConfiguration extension method available. This enables
us to load XML configuration with a single method call:

container.LoadConfiguration();

The LoadConfiguration method loads XML configuration from the standard applica-
tion configuration file into the container.

NOTE Unfortunately, there’s no API that enables us to read XML from other
sources, such as streams or XML nodes.

TIP Although we can’t read XML from arbitrary sources, we can read from
any configuration file using the ConfigurationManager API.

4 http://autoregistration.codeplex.com/

http://autoregistration.codeplex.com/

457Introducing Unity
To enable Unity configuration in a configuration file, we must first add the configura-
tion section, using the standard .NET API for defining custom configuration sections:

<configSections>
 <section name="unity"
 type="Microsoft.Practices.Unity.Configuration.
 ➥UnityConfigurationSection,
 ➥Microsoft.Practices.Unity.Configuration"/>
</configSections>

This enables us to add a unity configuration section in the configuration file. Here is
a simple example that maps the IIngredient interface to the Steak class:

<unity>
 <namespace name="Ploeh.Samples.MenuModel" />
 <assembly name="Ploeh.Samples.MenuModel" />
 <container>
 <register type="IIngredient" mapTo="Steak" />
 </container>
</unity>

The Unity XML schema provides us with options for defining sensible defaults that
can help reduce the verbosity that often occurs when we work with assembly qualified
type names in XML. Although not required, we can add as many namespace elements
as we would like. They’re equivalent to using directives in C# code. Here, we add the
Ploeh.Samples.MenuModel namespace as the only namespace, but we could’ve added
more, or omitted this element altogether. If we omit a namespace element, we can still
explicitly supply the fully qualified type name as part of a registration.

 The assembly element works in the same way as the namespace element. We can
add as many as we want—or none at all. Here we add the Ploeh.Samples.MenuModel
assembly where the IIngredient interface and Steak class are defined.

 This enables us to define the map between IIngredient and Steak in a concise
manner using the register element. Because we added namespaces and assemblies
to the context, we can refer to IIngredient and Steak by their short-form names. As
long as the names are unambiguous within the context, Unity figures it out for us,
much like the C# compiler does.

XML configuration is a good option when we need to change the configuration of
one or more components without recompiling the application, but because it tends to
be quite brittle, we should reserve it for only those occasions and use CODE AS CONFIGU-
RATION for the main part of the container’s configuration.

TIP Remember that the last configuration of a type wins? You can use this
behavior to overwrite hard-coded configuration with XML configuration. To
do this, you must remember to load XML configuration after any other com-
ponents have been configured. Conversely, if you have configuration that
must never be overwritten by XML, apply that configuration after loading the
XML configuration.

458 CHAPTER 14 Unity
In this section, we mainly looked at various registration APIs for Unity. While it’s cer-
tainly possible to write one big block of unstructured configuration code, it’s better to
modularize configuration. Although Unity doesn’t have any explicit support for this,
it turns out we can achieve that goal nevertheless.

14.1.3 Packaging configuration

It’s sometimes desirable to package configuration logic into reusable groups, and
even when reuse itself isn’t our top priority, we may want to provide a bit of structure if
we have a big and complex application to configure.

 Castle Windsor has Installers, StructureMap Registries, and Autofac Modules, but
Unity doesn’t have anything quite equivalent. There’s no interface defined with the
main purpose of packaging configuration into reusable components. It does have
something else that’s a more-than-adequate substitute: Container Extensions.

 The purpose of a Unity Container Extension is much broader than packaging con-
figuration into reusable packages; as the name implies, it can be used to extend the
behavior of Unity in various different ways. Unity’s INTERCEPTION feature, for instance,
is implemented as a Container Extension (we’ll cover that particular extension in sec-
tion 14.3.4).

 Although they can be used for many other things, Container Extensions can also
be used to modularize configuration. To implement a Container Extension, all we
have to do is to derive from the abstract UnityContainerExtension class and imple-
ment its Initialize method. The following listing demonstrates how the code from
listing 14.1 is easily moved into a Container Extension.

public class IngredientExtension : UnityContainerExtension
{
 protected override void Initialize()
 {
 var a = typeof(Steak).Assembly;
 foreach (var t in a.GetExportedTypes())
 {
 if (typeof(IIngredient).IsAssignableFrom(t))
 {
 this.Container.RegisterType(
 typeof(IIngredient), t, t.FullName);
 }
 }
 }
}

The IngredientExtension class derives from the abstract UnityContainerExtension
class to package the convention-based configuration from listing 14.1 into a reusable
class. When you derive from that class, you must implement the abstract Initialize
method, which is also where you can perform all the work you need to do.

Listing 14.2 Implementing a Container Extension

459Managing lifetime
 The only functional difference from listing 14.1 is that you now invoke the Register-
Type method on the inherited Container property instead of a local variable.

 To use a Container Extension, you can invoke the AddExtension method or a
related extension method. When the Extension has a default constructor, you can use
the generic shorthand extension method:

container.AddNewExtension<IngredientExtension>();

The AddNewExtension method invokes the AddExtension method which you can also
use in situations where you need to create the Module manually:

container.AddExtension(new IngredientExtension());

These two examples are functionally equivalent.

TIP Unity Container Extensions let you package and structure your con-
tainer configuration code. Even though they aren’t particularly designed for
this exact purpose, you may prefer using them instead of inline configura-
tion—it will make your COMPOSITION ROOT more readable.

Using Container Extensions, we can configure a Unity container with both CODE AS

CONFIGURATION and XML—even with custom implemented AUTO-REGISTRATION, although
this is a bit of a stretch. Once the container is configured, we can start resolving ser-
vices with it, as described in section 14.1.1.

 This section introduced the Unity DI CONTAINER and demonstrated the fundamen-
tal mechanics: how to configure the container and subsequently use it to resolve ser-
vices. Resolving services is easily done with a single call to the Resolve method, so the
complexity involves configuring the container. This can be done in several different
ways, including imperative code and XML. Until now, we’ve only looked at the most
basic API; there are more advanced areas we have yet to cover. One of the most impor-
tant topics is how to manage component lifetime.

14.2 Managing lifetime
In chapter 8, we discussed LIFETIME MANAGEMENT, including the most common concep-
tual lifetime styles, such as SINGLETON and TRANSIENT. Unity supports many different
lifestyles and enables you to configure the lifetime of all services. The lifestyles shown
in table 14.2 are available as part of the API.

 Unity’s implementation of TRANSIENT, PER GRAPH, and SINGLETON are equivalent to
the general lifestyles described in chapter 8, so I won’t spend much time on them in
this chapter.

WARNING Although the Per Resolve lifetime matches the description from sec-
tion 8.3.3, it has a known bug5 that makes it less desirable to use.

5 http://unity.codeplex.com/workitem/8777

http://unity.codeplex.com/workitem/8777

460 CHAPTER 14 Unity
TIP The default TRANSIENT lifestyle is the safest, but not always the most effi-
cient, choice. SINGLETON is a more efficient choice for thread-safe services, but
you must remember to explicitly register those services like that.

In this section, you’ll see how to define lifetimes for components in both code and
XML. As a more advanced scenario, you’ll also see how to implement a custom lifestyle
to showcase that we aren’t limited to the built-in lifetimes supplied by Unity. At the
end of this section, you should be able to use Unity’s lifetimes in your own application.

 Before we go into the advanced topic of developing a custom lifetime, we need to
review how to configure and use lifetimes.

14.2.1 Configuring lifetime
In this section, we’ll review how to manage component lifetimes with Unity. Lifetime
is configured as part of registering components, and we can define it in both code and
XML. We’ll look at each in turn.

CONFIGURING LIFETIME WITH CODE

Lifetime is configured with an overload of the RegisterType method that we use to
register components in general. It’s as easy as this:

container.RegisterType<SauceBéarnaise>(
 new ContainerControlledLifetimeManager());

This configures the concrete SauceBéarnaise class as a SINGLETON so that the same
instance is returned each time SauceBéarnaise is requested. If we want to map an
ABSTRACTION to a concrete class with a specific lifetime, we can use another, familiar
RegisterType overload:

container.RegisterType<IIngredient, SauceBéarnaise>(
 new ContainerControlledLifetimeManager());

This maps IIngredient to SauceBéarnaise and also configures it as a SINGLETON. In
both the previous examples you used RegisterType overloads that take a Lifetime-
Manager instance as an argument. Besides ContainerControlledLifetimeManager

Table 14.2 Unity lifetimes

Name Comments

Transient This is the default lifestyle. Instances aren’t tracked by the container.

Container Controlled Unity’s name for SINGLETON.

Per Resolve Unity’s name for PER GRAPH. Instances aren’t tracked by the container.

Hierarchical Ties the lifetime of components together with a child container
(see section 14.2.1).

Per Thread One instance is created per thread. Instances aren’t tracked by the container.

Externally Controlled A variation of SINGLETON where the container itself holds only a weak reference
to the instance, allowing it to be garbage-collected if not used.

461Managing lifetime
you can use any other class that derives from the abstract LifetimeManager class. Unity
has a LifetimeManager for every lifetime in table 14.2, but as you’ll see in section 14.2.2,
you can also create your own.

 Although TRANSIENT is the default instance scope, we can still explicitly state it.
These two examples are equivalent:

container.RegisterType<SauceBéarnaise>();

container.RegisterType<SauceBéarnaise>(
 new TransientLifetimeManager());

Using CODE AS CONFIGURATION, we can register components with various lifetimes in
any way we want. Although this is by far the most flexible way to configure compo-
nents, we sometimes need to resort to XML for late binding purposes. In that case, we
can also declare lifetimes.

CONFIGURING LIFETIME WITH XML
When we need to define components in XML, we’ll also want to be able to configure
their lifetimes in the same place. This is easily done as part of the XML schema you
already saw in section 14.1.2. You can use the optional lifetime element to declare
the lifetime:

<register type="IIngredient" mapTo="Steak">
 <lifetime type="ContainerControlledLifetimeManager" />
</register>

Compared to the example in section 14.1.2, the difference is that you have now added
the optional lifetime element to define which LifetimeManager should be used for
the registration. To configure the component as a SINGLETON you set the type attribute
to the ContainerControlledLifetimeManager alias, but you could also have used
an assembly qualified type name or a custom alias if you wanted to assign a custom
LifetimeManager.

 In both code and XML it’s easy to configure lifetimes for components. In all cases
it’s done in a rather declarative fashion. Although configuration is easy, you must not
forget that some lifetimes involve long-lived objects that use resources as long as
they’re around.

RELEASING COMPONENTS

As discussed in section 8.2.2, it’s important to release objects when we’re done with
them so that any disposable instances can be disposed of if their lifetime is up. This is
possible, but surprisingly difficult to do with Unity.

WARNING Unity doesn’t dispose of disposable DEPENDENCIES unless very
explicitly told to do so.

IUnityContainer defines a Teardown method that at first glance looks like a direct equiv-
alent of Castle Windsor’s Release method. We can attempt to use it in the same manner:

container.Teardown(ingredient);

462 CHAPTER 14 Unity
However, no matter which of the built-in lifetimes we choose, no components are dis-
posed of. This certainly violates the Principle of Least Surprise.

WARNING The Teardown method doesn’t dispose of disposable DEPENDENCIES.

Although the Teardown method doesn’t (by default) do what we’d like it to do, there
are still a few other options available to us. One is to implement a custom lifetime
(which you’ll do in the next section); another is to use a combination of child contain-
ers and the Hierarchical lifestyle.

 The concept of a Hierarchical lifetime is that it acts like a SINGLETON within a child
container, but that each child container has its own local SINGLETON.

NOTE The combination of child containers and Hierarchical lifetime is simi-
lar to Autofac’s lifetime scopes described in section 13.2.1.

A child container is a copy of the parent container. When we create a child container
from a parent container, the child inherits its entire configuration from the parent,
but we can subsequently change the child without affecting the parent. This can be
useful if we wish to override only a small part of the parent’s configuration. A child
container is normally intended to have a more limited scope. As figure 14.4 illustrates,
it also defines a boundary within which components can be reused.

 When we create a new child container, it inherits all the SINGLETONS tracked by
the parent container, but it also acts as a container of “local SINGLETONS.” When a

Figure 14.4 Child containers
can share components for a
limited duration or purpose. A
Hierarchical component is
essentially a SINGLETON within
that container. No matter how
many times we ask a child
container for such a
component, we get the same
instance. Another child
container will have its own
instance, and the parent
container manages the truly
shared SINGLETONS. TRANSIENT

components are never shared.

463Managing lifetime
Hierarchical component is requested from a child container, we always receive the
same instance. The difference from true SINGLETONS is that if we query a second child
container, we’ll get another instance.

TRANSIENT components still act as they should, whether or not we resolve them
from the parent or a child container.

TIP You can use child containers and the Hierarchical lifetime as an alterna-
tive to the missing WEB REQUEST CONTEXT lifestyle: create a new child container
at the beginning of each web request, and use it to resolve components. Then
dispose of the child container when the request ends.

One of the important features of child containers is that they allow us to properly
release components when the usage scope completes. We create a new child container
with the CreateChildContainer method and release all appropriate components by
invoking its Dispose method:

using (var child = container.CreateChildContainer()
{
 var meal = child.Resolve<IMeal>();

}

A new child container is created from the container by invoking the CreateChild-
Container method. The return value implements IDisposable so you can wrap it in a
using scope. It’s a new instance of IUnityContainer, so you can use the child to
resolve components in exactly the same way as with the parent container.

 When you’re done with the child container, you can dispose of it. When using a
using scope this happens automatically when you exit the scope, but you can obvi-
ously also choose to explicitly dispose of it by invoking the Dispose method. When
you dispose of child you also release all the components that were created by the
child container; here it means that you release the meal object graph.

NOTE Remember that releasing a disposable component isn’t the same as dis-
posing of it. It’s a signal to the container that the component is eligible for
decommissioning. If the component is Hierarchical it will be disposed of,
whereas it will remain active if it’s a SINGLETON.

WARNING Disposable objects with TRANSIENT or PER GRAPH lifetimes aren’t dis-
posed of when a child container is disposed of. This can lead to memory leaks.

Earlier in this section, you already saw how to configure components as SINGLETONS

or TRANSIENTS. Configuring a component with a Hierarchical lifetime is done in the
same way:

container.RegisterType<IIngredient, SauceBéarnaise>(
 new HierarchicalLifetimeManager());

Registering a component with a lifetime always uses an overload of the RegisterType
method that takes a LifetimeManager as an argument. To use the Hierarchical life-
time, you supply a HierarchicalLifetimeManager instance.

Consume
meal

464 CHAPTER 14 Unity
 Due to their nature, SINGLETONS are never released for the lifetime of the container
itself. Still, we can release even those components if we don’t need the container any
longer. This is done by disposing of the container itself:

container.Dispose();

In practice, this isn’t nearly as important because the lifetime of a container tends to
correlate closely with the lifetime of the application it supports. We normally keep the
container around as long as the application runs, so we would only dispose of it when
the application shuts down, in which case memory would be reclaimed by the operat-
ing system.

 The built-in lifetimes of Unity may seem like a rather comprehensive set that could
meet many of your daily needs. But there are issues in the form of bugs as well as
inconsistencies when it comes to releasing components. On the other hand, Unity has
enough SEAMS to enable us to address these issues by developing custom lifetimes.

14.2.2 Developing a custom lifetime

In many cases, we should be able to get by with the selection of lifetimes already offered
by Unity, but if we have special needs or need to address the decommissioning issues, it’s
possible to implement a custom lifetime. In this section, you’ll see how to do this. We’ll
both review the SEAMS that make this possible and spend some time going through an
example, alternating back and forth between theory and example.

UNDERSTANDING THE LIFETIMEMANAGER API
In section 14.2.1, you already got your first glimpse of Unity’s lifetime API. Several
overloads of the RegisterType method take an instance of the abstract Lifetime-
Manager class, which models how lifetimes interact with the rest of Unity. Figure 14.5
shows the small type hierarchy related to the LifetimeManager class.

 When implementing a custom lifetime, the important type is the abstract Lifetime-
Manager class. Even though LifetimeManager implements ILifetimePolicy, it’s of no
direct concern to us because the RegisterType overloads only accept LifetimeManager
instances, and not ILifetimePolicy or IBuilderPolicy instances.

Figure 14.5 The SomeLifetimeManager implements a custom lifetime by deriving from the abstract
LifetimeManager class which itself implements the ILifetimePolicy interface that derives from
the IBuilderPolicy marker interface. A custom lifetime can optionally implement IDisposable to
implement cleanup functionality when a container is being disposed of.

465Managing lifetime
We can optionally implement IDisposable to implement cleanup functionality, but
by default it doesn’t work exactly as we’d expect; the Dispose method isn’t always
invoked. We’ll get back to this subject a little later in this section.

WARNING Implementing IDisposable doesn’t guarantee that the Dispose
method will be invoked.

When Unity resolves a component, it interacts with its LifetimeManager as illustrated
in figure 14.6.

NOTE The mechanism illustrated in figure 14.6 is similar to the interaction
between StructureMap and IObjectCache, as shown in figure 11.5.

Unity first attempts to get the requested instance from the GetValue method. If this
method returns null, Unity creates the requested instance and adds it to the policy
through the SetValue method before returning it. In this way, a single ILifetime-
Policy instance manages a single component.

WARNING The RemoveValue method is never invoked by Unity.

Although the GetValue and SetValue methods take part when Unity resolves a request,
the RemoveValue method is never invoked by Unity. This goes a long way toward explain-
ing why the Teardown method doesn’t do what you’d expect it to do. We could leave the
implementation blank, but it turns out we can repurpose the method. Before we go into
details about that, an example covering the basics should make it all clearer.

DEVELOPING A CACHING LIFESTYLE

In this example, you’ll develop the same caching lifestyle that you also created for Cas-
tle Windsor and StructureMap in sections 10.2.3 and 11.2.2. In short, this lifestyle
caches and reuses instances for a time before releasing them.

Figure 14.6 Unity interacts with the
ILifetimePolicy interface by first invoking the
GetValue method. If the policy returns a value, this
value is used immediately. If not, Unity creates the
new value and sets the value on the policy before
returning it.

466 CHAPTER 14 Unity
 Although you can add extra behavior by implementing IDisposable and doing
other tricks, at minimum you need to implement the three abstract methods defined
by LifetimeManager; this is shown in the following listing.

public partial class CacheLifetimeManager :
 LifetimeManager, IDisposable
{
 private object value;
 private readonly ILease lease;

 public CacheLifetimeManager(ILease lease)
 {
 if (lease == null)
 {
 throw new ArgumentNullException("lease");
 }

 this.lease = lease;
 }

 public override object GetValue()
 {
 this.RemoveValue();
 return this.value;
 }

 public override void RemoveValue()
 {
 if (this.lease.IsExpired)
 {
 this.Dispose();
 }
 }

 public override void SetValue(object newValue)
 {
 this.value = newValue;
 this.lease.Renew();
 }
}

The CacheLifetimeManager class derives from the abstract LifetimeManager class
to implement the caching lifetime. It also implements IDisposable, but we’ll wait a
little before we look at the implementation so the Dispose method is omitted from
listing 14.3.

CacheLifetimeManager uses CONSTRUCTOR INJECTION to receive an ILease instance.
The ILease interface is a local helper interface that you introduce to implement the
desired functionality. It was initially introduced in section 10.2.3 and has nothing to
do with Unity or any other particular DI CONTAINER.

NOTE For an example of an ILease implementation, see section 10.2.3.

Listing 14.3 Implementing a custom LifetimeManager

Set
value

d

Provide
value

b

Remove
value

c

467Managing lifetime
The GetValue method B returns the value field after first invoking the RemoveValue
method to guard against an expired lease. The value field may be null, but as
figure 14.6 illustrates, this is an expected scenario. On the other hand, the field may
also have a value if the SetValue method was initially invoked and the lease didn’t
expire in the meantime.

 Although the RemoveValue method c is never invoked by Unity itself, it’s still a
good place to implement code for releasing the component. Because the purpose of
the CacheLifetimeManager is to cache the value for a time, you only dispose of the
component when the lease has expired; otherwise, you hold on to it a little longer.
The Dispose method isn’t included in listing 14.3, but we’ll get back to it shortly.

 The SetValue method d saves the value to the value field and renews the lease.
According to the diagram in figure 14.6, the SetValue method is only invoked when
Unity creates a new value for the component in question, in which case it’s appropri-
ate to renew the lease.

NOTE Contrast the constructor in listing 14.3 with the much more compli-
cated code from listing 10.2. This clearly illustrates the superiority of CON-
STRUCTOR INJECTION over METHOD INJECTION.

This implements the core functionality required by a LifetimeManager. Although we
still need to discuss the implementation of IDisposable and what this means, we
should briefly look up from the implementation itself to see how the CacheLifetime-
Manager fits together with a UnityContainer instance.

REGISTERING COMPONENTS WITH A CUSTOM LIFETIME

Using the CacheLifetimeManager with a component is easy and works like specifying
any other lifestyle:

var lease = new SlidingLease(TimeSpan.FromMinutes(1));
var cache = new CacheLifetimeManager(lease);
container.RegisterType<IIngredient, SauceBéarnaise>(cache);

This configures the container to use a CacheLifetimeManager with a one-minute tim-
eout for the IIngredient interface. Within a one-minute time span, you can request
as many object graphs as you want, and you’ll always get the same SacueBéarnaise
back whenever the graph contains an IIngredient instance. When that minute is up,
subsequent requests will get a new SauceBéarnaise instance.

 Resolving components with a custom lifetime works as expected. The surprises
only begin when we attempt to release the resolved object graphs.

RELEASING COMPONENTS WITH A CUSTOM LIFETIME

As I mentioned, the RemoveValue method is never invoked by Unity. However, if we want
to add clean-up functionality to a custom LifetimeManager, we can make it implement
IDisposable. This will cause it to be disposed of when the owning container is disposed of.

 There are still some surprises left for you, but let’s take a closer look. In listing 14.3
you already saw that CacheLifetimeManager implements IDisposable, but the fol-
lowing listing is the first time you see the implementation.

468 CHAPTER 14 Unity
public void Dispose()
{
 GC.SuppressFinalize(this);
 this.Dispose(true);
}

protected virtual void Dispose(bool disposing)
{
 if (disposing)
 {
 var d = this.value as IDisposable;
 if (d != null)
 {
 d.Dispose();
 }
 this.value = null;
 }
}

The CacheLifetimeManager class implements IDisposable by following the stan-
dard Dispose pattern.6 If the managed value implements IDisposable, you dispose
of it B, but in any case you set the value field to null to allow the component to be
garbage-collected.

 According to theory, if you register and resolve a disposable component with the
CacheLifetimeManager, the component should be disposed of together with the con-
tainer like this:

var lease = new SlidingLease(TimeSpan.FromMinutes(1));
var cache = new CacheLifetimeManager(lease);
container.RegisterType<IIngredient, Parsley>(cache);

var ingredient = container.Resolve<IIngredient>();

container.Dispose();

As you’d expect from the Unity documentation, disposing of the container also
releases ingredient. As we all know, we must never re-heat parsley, so the Parsley class
is obviously disposable. Disposing of the container also disposes of the Parsley instance.
So far, so good.

 However, if you create and dispose of a child container, you’d expect the dispos-
able LifetimeManager to act in the same manner as HierarchicalLifetimeManager:

IIngredient ingredient;
using (var child = container.CreateChildContainer())
{
 ingredient = child.Resolve<IIngredient>()
}

Listing 14.4 Disposing a LifetimeManager

6 Krzysztof Cwalina and Brad Abrams, Framework Design Guidelines: Conventions, Idioms, and Patterns for Reusable
.NET Libraries (New York: Addison-Wesley, 2006), 248.

Dispose
disposable

b

Doesn’t dispose
of ingredient!

b

469Managing lifetime
Given the same configuration of the Parsley component as in the previous example,
you’d expect that the ingredient is disposed of when the child container is disposed
of B. Alas, this doesn’t happen; CacheLifetimeManager.Dispose is never invoked.

WARNING Even when a LifetimeManager implements IDisposable, the
Dispose method is only invoked when the owning container is disposed of.

How can this be the case when similar code worked with HierarchicalLifetime-
Manager as you saw in section 14.2.1? It turns out that Unity has an associated Builder-
Strategy that contains special logic for HierarchicalLifetimeManager that enables
this functionality. The good news is that we can do the same.

IMPLEMENTING A CUSTOM LIFETIMESTRATEGY

The reason that HierarchicalLifetimeManager works as it does is that Unity has
a BuilderStrategy that makes a copy of the parent container’s Hierarchical-
LifetimeManager and associates it with the child container. This enables the child
container to dispose of the LifetimeManager when it is itself disposed of. We can
do the same by implementing a custom BuilderStrategy, as shown in the follow-
ing listing.

public class CacheLifetimeStrategy : BuilderStrategy
{
 public override void PreBuildUp(
 IBuilderContext context)
 {
 if (context == null)
 {
 throw new ArgumentNullException("context");
 }

 IPolicyList policySource;
 var lifetimePolicy = context
 .PersistentPolicies
 .Get<ILifetimePolicy>(context.BuildKey,
 out policySource);

 if (object.ReferenceEquals(policySource,
 context.PersistentPolicies))
 {
 return;
 }

 var cacheLifetime =
 lifetimePolicy as CacheLifetimeManager;
 if (cacheLifetime == null)
 {
 return;
 }

 var childLifetime = cacheLifetime.Clone();

Listing 14.5 Implementing a custom LifetimeStrategy

Override
PreBuildUp

b

Get lifetime
policy

c

Check
ownership

d

Check
type

e

Make
copy

f

470 CHAPTER 14 Unity
 context
 .PersistentPolicies
 .Set<ILifetimePolicy>(childLifetime,
 context.BuildKey);
 context.Lifetime.Add(childLifetime);
 }
}

CacheLifetimeStrategy derives from the abstract BuilderStrategy class and imple-
ments the PreBuildUp method B, which is invoked every time Unity creates an
instance. This gives you the chance to modify the context before the object is created.

 The first thing you want to do is to get the current ILifetimePolicy for the com-
ponent c. The context can provide this information, as well as information about
the source of the policy. The policySource instance indirectly tells you where the
lifetime was defined. If the source is a parent container, but you’re currently building
within a child container, you expect the source of the lifetime to be different from
the current context if the lifetime was originally defined on the parent container.
This is the scenario we’re targeting, so you return prematurely from the method if
this isn’t the case d.

 This particular implementation only cares about CacheLifetimeManager, so you
also return if the lifetime is something else e. On the other hand, if the lifetime is a
CacheLifetimeManager, you make a copy f to be used in the child container.

 Now that you know that you are, indeed, building within a child container, you
add the cloned CacheLifetimeManager back to the context g, effectively overwrit-
ing the inherited lifetime from the parent container with a lifetime specific for this
child container.

 That’s a bit of a mouthful, and then you’re even not quite done yet. Although
you’ve implemented a custom BuilderStrategy, you haven’t yet told Unity about it.
Fortunately, as the following listing demonstrates, that’s a lot easier than implement-
ing the CacheLifetimeStrategy.

public class CacheLifetimeStrategyExtension : UnityContainerExtension
{
 protected override void Initialize()
 {
 this.Context.Strategies
 .AddNew<CacheLifetimeStrategy>(
 UnityBuildStage.Lifetime);
 }
}

To add the CacheLifetimeStrategy to Unity, you create a new Container Exten-
sion. Remember how you used you used Container Extensions to package configu-
ration in section 14.1.3? Here is another, perhaps more idiomatic, usage of a
Container Extension.

Listing 14.6 Extending Unity with CacheLifetimeStrategy

Replace lifetime
policy

g

471Managing lifetime
 In the Initialize method, you add the CacheLifetimeStrategy to the con-
text, with the added information that this particular BuilderStrategy deals with
lifetime management.

 Finally, with all this in place, you can extend Unity so that CacheLifetimeManager
now works exactly like HierarchicalLifetimeManager:

container.AddNewExtension<CacheLifetimeStrategyExtension>();

After adding this Container Extension, the scenario that didn’t work at first finally
works: you can use child containers to release objects with a CachedLifetimeManager.

 Now that you’ve learned about BuilderStrategies, we can now complete the circle
and implement support for the Teardown method.

IMPLEMENTING SUPPORT FOR TEARDOWN

When we started the discussion about releasing components in section 14.2.1, we
quickly dismissed the Teardown method because it doesn’t properly release compo-
nents. On the other hand, this shouldn’t lead you to believe that the Teardown
method does nothing; on the contrary, it invokes various methods on registered
BuilderStrategies. This implies that we can implement a custom BuilderStrategy
that properly releases components during Teardown.

 Teardown support for the CacheLifetimeManager would be desirable. Fortunately,
although this involves creating another BuilderStrategy (or extending the one we
already created), listing 14.7 shows that this is a lot easier than implementing the
CacheLifetimeStrategy displayed in listing 14.5.

public class CacheReleasingLifetimeStrategy : BuilderStrategy
{
 public override void PostTearDown(
 IBuilderContext context)
 {
 if (context == null)
 {
 throw new ArgumentNullException("context");
 }

 var lifetimes = context
 .Lifetime.OfType<CacheLifetimeManager>();
 foreach (var lifetimePolicy in lifetimes)
 {
 lifetimePolicy.RemoveValue();
 }
 }
}

Instead of overriding the PreBuildUp method as you did in listing 14.5, you override
the PostTearDown method B which is invoked from the Teardown method after most
other resources have been decommissioned for the component in question.

Listing 14.7 Implementing a releasing strategy

Implement
PostTearDown

b

Guard
clause

Release
value

c

472 CHAPTER 14 Unity
 The context has a list of lifetime objects, but in most cases you expect that it only con-
tains a single CacheLifetimeManager instance. Even so, for good measure, you pretend
that there can be any number of them and invoke RemoveValue on each one c. If you
recall the implementation of CacheLifetimeManager from listing 14.3, the RemoveValue
method only removes and disposes of the tracked value if the lease has expired.

 Now you’re close to closing the loop. You can add CacheReleasingLifetime-
Strategy to the CacheLifetimeStrategyExtension from listing 14.6:

this.Context.Strategies
 .AddNew<CacheLifetimeStrategy>(
 UnityBuildStage.Lifetime);
this.Context.Strategies
 .AddNew<CacheReleasingLifetimeStrategy>(
 UnityBuildStage.Lifetime);

This finally enables you to release cached components with the Teardown method:

container.AddNewExtension<CacheLifetimeStrategyExtension>();

var lease = new SlidingLease(TimeSpan.FromTicks(1));
var cache = new CacheLifetimeManager(lease);
container.RegisterType<IIngredient, Parsley>(cache);

var ingredient = container.Resolve<IIngredient>();

container.Teardown(ingredient);

With all this infrastructure in place, the ingredient variable, which is really an
instance of the disposable Parsley class, is properly released when the Teardown
method is invoked. When the lease is expired the instance is disposed of, whereas
nothing happens if it isn’t expired.

 After we have added all these LifetimeManagers, BuilderStrategies, and Con-
tainer Extensions, Unity finally behaves like we want it to behave—for the cache life-
time, that is. Recall that TRANSIENT and PER GRAPH still don’t behave as we would like
them to do.

TIP Although neither TransientLifetimeManager nor PerResolveLifetime-
Manager implements IDisposable or performs any logic in their RemoveValue
methods, they’re at least unsealed. If we need them to properly release com-
ponents, we can derive from them and also remember to implement associ-
ated BuilderStrategies.

In conclusion, we must recognize that while Unity provides us with all the SEAMS neces-
sary to implement custom lifetimes exactly how we would like them, it’s more work
than it ought to be. On the other hand, at least it’s possible, which is more than we
can say about some other DI CONTAINERS.

 It would be possible to package such a custom lifetime into a reusable library so that
at least we wouldn’t have to re-implement them for every new application we were to
build. This is also necessary, because Unity’s LIFETIME MANAGEMENT model leaves some-
thing to be desired, despite its apparent comprehensive support for different lifetimes.

473Working with multiple components
 This completes our tour of LIFETIME MANAGEMENT with Unity. Compared to other
chapters about specific DI CONTAINERS, this was a long section. In part, this is because
we have a lot of options available to us when we implement custom lifetimes, and in
part it’s also because Unity presents some unique pitfalls in this area that I wanted
to point out. Components can be configured with mixed lifestyles, and this is even
true when we register multiple implementations of the same ABSTRACTION. We have
yet to look at how to work with multiple components, but the next section dives into
this subject. Unity enables us to go deep here, because it’s one of the few contain-
ers that support INTERCEPTION. This fits naturally as an extension to a discussion
about Decorators.

14.3 Working with multiple components
DI CONTAINERS thrive on distinctness, but have a hard time with ambiguity. When using
CONSTRUCTOR INJECTION, a single constructor is preferred over overloaded constructors
because it’s evident which constructor to use when there’s no choice. This is also the
case when mapping from ABSTRACTIONS to concrete types. If we attempt to map multi-
ple concrete types to the same ABSTRACTION we introduce ambiguity.

 Despite the undesirable qualities of ambiguity, we often need to work with multiple
implementations of a single interface. This can be the case in these situations:

■ Different concrete types should be used for different consumers.
■ DEPENDENCIES are sequences.
■ Decorators are in use.

In this section, we’ll look at each of these cases and see how Unity addresses each one
in turn. When we’re done, you should be able to register and resolve components
even when multiple implementations of the same ABSTRACTION are in play.

 First, let’s see how we can provide more fine-grained control than AUTO-WIRING

provides.

14.3.1 Selecting among multiple candidates

AUTO-WIRING is convenient and powerful, but provides us with little control. As long as
all ABSTRACTIONS are distinctly mapped to concrete types we have no problems, but
as soon as we introduce more implementations of the same interface, ambiguity rears
its ugly head.

 Unity’s way of dealing with multiple registrations of the same ABSTRACTION is
slightly different than most other DI CONTAINERS. This is a good place for us to start,
because it establishes some ground rules we’ll need in the rest of this section.

REGISTERING MULTIPLE IMPLEMENTATIONS OF THE SAME COMPONENT

As you saw in section 14.1.2, you can register multiple components for the
same service:

container.RegisterType<IIngredient, Steak>();
container.RegisterType<IIngredient, SauceBéarnaise>("sauce");

474 CHAPTER 14 Unity
There can be only one unnamed registration. This is called the default registration. If
you subsequently invoke the RegisterType method for IIngredient without a name,
the Steak registration will be overwritten by the new component.

NOTE There can be only one default registration for a type, but as many named
registrations as we need.

When we invoke the Resolve method without a name, we get back an object based on
the default registration. Given the previous configuration, this returns a Steak instance:

var ingredient = container.Resolve<IIngredient>();

The named sauce registration isn’t forgotten. You can resolve multiple IIngredients
like this:

IEnumerable<IIngredient> ingredients =
 container.ResolveAll<IIngredient>();

Based on the configuration in the previous example, you’d get back a sequence that
includes a SauceBéarnaise instance, but not a Steak.

WARNING ResolveAll returns all named registrations, but not the default
registration.

If there are configured instances of a plug-in that can’t be resolved when ResolveAll
is invoked, Unity throws an exception explaining that there are DEPENDENCIES that
can’t be satisfied. This is consistent with the behavior of the Resolve method but dif-
ferent from the way that Castle Windsor or MEF behaves.

 The following listing shows how you can use named registrations to provide hints
that can later be used to select among different configured components.

container.RegisterType<IIngredient, Steak>("meat");
container.RegisterType<IIngredient, SauceBéarnaise>("sauce");

You can give each registration a unique name that you can later use to distinguish
each from other similar components.

NOTE It’s possible to register only named components for a type. If we do
that, there will be no default registration.

Given the named registrations in listing 14.8, you can resolve both Steak and Sauce-
Béarnaise like this:

var meat = container.Resolve<IIngredient>("meat");
var sauce = container.Resolve<IIngredient>("sauce");

Notice that you supply the same key that you used to name the component during
registration.

Listing 14.8 Naming registrations

475Working with multiple components
 Given that we should always resolve services in a single COMPOSITION ROOT we
should normally not expect to deal with such ambiguity on this level.

TIP If you find yourself invoking the Resolve method with a specific key,
consider if you can change your approach to be less ambiguous.

We can use named registrations to select among multiple alternatives when configur-
ing DEPENDENCIES for a given service.

CONFIGURING NAMED DEPENDENCIES

As useful as AUTO-WIRING is, sometimes we need to override the normal behavior to
provide fine-grained control over which DEPENDENCIES go where; but it may also be that
we need to address an ambiguous API. As an example, consider this constructor:

public ThreeCourseMeal(ICourse entrée,
 ICourse mainCourse, ICourse dessert)

In this case, you have three identically typed DEPENDENCIES, each of which represents a dif-
ferent concept. In most cases, you want to map each of the DEPENDENCIES to a separate type.
The following listing shows how you could choose to configure the ICourse mappings.

container.RegisterType<ICourse, Rillettes>("entrée");
container.RegisterType<ICourse, CordonBleu>("mainCourse");
container.RegisterType<ICourse, MousseAuChocolat>("dessert");

As you did in listing 14.8, you register three named components, mapping the
Rilettes to an instance named “entrée,” CordonBleu to an instance named “main-
Course,” and the MousseAuChocolat to an instance named “dessert.”

 Given these registrations, you can now register the ThreeCourseMeal class, as
shown in the following listing.

container.RegisterType<IMeal, ThreeCourseMeal>(
 new InjectionConstructor(
 new ResolvedParameter<ICourse>("entrée"),
 new ResolvedParameter<ICourse>("mainCourse"),
 new ResolvedParameter<ICourse>("dessert")));

Something that we haven’t yet discussed in detail is that all RegisterType overloads
take a params array of an abstract class called InjectionMember. An InjectionMember
is a Strategy7 that Unity uses as a guide when composing types with each other. The
InjectionConstructor, for example, enables you to define parameters used for CON-
STRUCTOR INJECTION.

Listing 14.9 Registering named courses

Listing 14.10 Overriding AUTO-WIRING

7 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (New York: Addison-Wesley,
1994), 315.

476 CHAPTER 14 Unity
 One of the ways you can do that is by defining it with an array of Resolved-
Parameter instances. Each ResolvedParameter defines a type to be resolved, as
well as an optional name—this isn’t the name of the constructor argument, but
rather of a named registration. The entrée ResolvedParameter refers to the named
entrée registration. Constructor parameters are filled in a positional manner, so
that the first ResolvedParameter is matched with the first constructor argument,
and so on.

NOTE Compared to most other DI CONTAINERS, the positional strategy makes
Unity more robust when faced with refactorings in the form of the con-
structor argument name changes. On the other hand, it breaks down if we
reorder the constructor arguments—something that other DI CONTAINERS

can handle.

Overriding AUTO-WIRING by explicitly mapping parameters to named components is a
universally applicable solution. We can do this even if we configure the named compo-
nents in one Container Extension and the consumer in a completely different Con-
tainer Extension, because the only identification that ties a named component
together with a parameter is the name. This is always possible, but can be brittle if we
have a lot of names to manage. When the original reason prompting us to use named
components is to deal with ambiguity, a better solution is to design our own API to get
rid of that ambiguity. It often leads to a better overall design.

 In the next section, you’ll see how to use the less ambiguous and more flexible
approach where you allow any number of courses in a meal. To this end, you must
learn how Unity deals with lists and sequences.

14.3.2 Wiring sequences

In section 10.3.2, we discussed how to refactor an explicit ThreeCourseMeal class to
the more general-purpose Meal class with this constructor:

public Meal(IEnumerable<ICourse> courses)

In this section, we’ll look at how we can configure Unity to wire up Meal instances with
appropriate ICourse DEPENDENCIES. When we’re done, you should have a good idea of
the options available to you when you need to configure instances with sequences
of DEPENDENCIES.

AUTO-WIRING SEQUENCES

Unity understands arrays well, but not other types of sequences, such as IEnumera-
ble<T> or IList<T>. To effectively work with sequences, we must define or transform
them into arrays to enable Unity to deal appropriately with them.

 If you try to register Meal without telling the container how it should deal with the
IEnumerable<ICourse> DEPENDENCY, an exception will be thrown when you try to
resolve IMeal:

477Working with multiple components
container.RegisterType<IMeal, Meal>();
var meal = container.Resolve<IMeal>();

Resolving IMeal throws an exception because Unity doesn’t know how to resolve
IEnumerable<ICourse>. This is true even if you have previously registered several
ICourse components, as you did in listing 14.9.

 To map all named ICourse registrations to IEnumerable<ICourse>, we can take
advantage of Unity’s built-in knowledge of arrays. The easiest way to do this is by map-
ping those two types:

container.RegisterType<IEnumerable<ICourse>, ICourse[]>();

That may look a little weird, but it works well. Whenever Unity encounters an
IEnumerable<ICourse> DEPENDENCY, it converts it to a request for an array of ICourse
instances, which gives us the same result that a call to container.ResolveAll
<ICourse>() would.

NOTE Unity resolves arrays like it returns a result from ResolveAll. All
named components of the requested type are returned, but the default com-
ponent isn’t.

With this translation in place, resolving IMeal now gives us the correct result: a Meal
instance with the ICourse instances from listing 14.9: Rillettes, CordonBleu, and
MousseAuChocolat.

 Unity handles arrays consistently with the way it implements ResolveAll. But
other types of sequences aren’t natively understood, so we must map them into arrays
to make Unity understand them. This will give us all registered components of a given
type, which is often sufficient. Only when we need to explicitly pick only some compo-
nents from a larger set do we need to do more than that. This is possible with more
explicit configuration.

PICKING ONLY SOME COMPONENTS FROM A LARGER SET

When we use Unity’s ability to resolve arrays, all named components are injected into
consumers. This is often the correct policy, but as figure 14.7 shows, there may be
cases where we want to pick only some components from the larger set of all regis-
tered components.

 When we previously let Unity AUTO-WIRE all configured instances, it corresponded
to the situation depicted on the right side of figure 14.7. If we want to configure an
instance like the left side, we must explicitly define which instances should be used.

 In listing 14.10, you used the InjectionConstructor class to define an alternative
strategy to the default AUTO-WIRING strategy. When it comes to the Meal class, you can do
the same, with the only difference that the injected DEPENDENCY is now an IEnumerable
<ICourse> instead of three separate ICourse arguments. The following listing shows
how to configure an explicit array with an InjectionConstructor.

478 CHAPTER 14 Unity
container.RegisterType<IMeal, Meal>(
 new InjectionConstructor(
 new ResolvedArrayParameter<ICourse>(
 new ResolvedParameter<ICourse>("entrée"),
 new ResolvedParameter<ICourse>("mainCourse"),
 new ResolvedParameter<ICourse>("dessert"))));

To override AUTO-WIRING and explicitly define a strategy for injecting DEPENDENCIES into
the Meal constructor, you once more look toward the InjectionConstructor class.
Because the Meal constructor requires an IEnumerable<ICourse>, you can use a
ResolvedArrayParameter<ICourse> instance to define an array that will be evaluated
when the container resolves the Meal class. The ResolvedArrayParameter<ICourse>
class defines a Strategy where resolution of the array of ICourse instances is deferred
until Meal itself is being resolved.

 To define the values that will be used when Meal is resolved, you use three named
instances of ResolvedParameter<ICourse>, as you did in listing 14.10; the only differ-
ence is that they’re now used as arguments for the ResolvedArrayParameter<ICourse>
constructor instead of directly in the InjectionConstructor. When IMeal is resolved,
the ResolvedArrayParameter<ICourse> resolves the three named registrations entrée,

Listing 14.11 Injecting named components into a sequence

Figure 14.7 In the situation on the left, we wish to explicitly select only certain DEPENDENCIES from
the larger list of all registered components. This is different from the situation on the right, where we
indiscriminately want them all.

479Working with multiple components
mainCourse, and dessert and creates an array of ICourse from those three components.
Because ICourse[] implements IEnumerable<ICourse>, the constructor for Meal can
be satisfied.

 Once more, you see that Unity has good support for arrays. Although support for
other sequence types is missing, we can work around this limitation by mapping our
DEPENDENCIES into arrays.

 Consumers that rely on sequences of DEPENDENCIES may be the most intuitive use of mul-
tiple instances of the same ABSTRACTION, but before we leave this subject, we need to look at
one more, and perhaps a bit surprising, case where multiple instances come into play.

14.3.3 Wiring Decorators
In section 9.1.2, we discussed how the Decorator design pattern is useful when imple-
menting CROSS-CUTTING CONCERNS. By definition, Decorators introduce multiple types
of the same ABSTRACTION. At the very least, we have two implementations of an ABSTRAC-
TION: the Decorator itself and the decorated type. If we stack the Decorators, we may
have even more.

 This is another example of having multiple registrations of the same service.
Unlike the previous sections, these registrations aren’t conceptually equal, but rather
DEPENDENCIES of each other. In this section, you’ll see two slightly different ways to con-
figure Unity to deal with this pattern.

DECORATING A NAMED COMPONENT

The Breading class is a Decorator of IIngredient; it uses CONSTRUCTOR INJECTION to
receive the instance it should decorate:

public Breading(IIngredient ingredient)

To make a Cotoletta, you’d like to decorate a VealCutlet (another IIngredient) with
the Breading class. Because you already know how to connect named components
with constructor arguments, it should feel natural to do something similar with the
following listing.

container.RegisterType<IIngredient, VealCutlet>("cutlet");
container.RegisterType<IIngredient, Breading>(
 new InjectionConstructor(
 new ResolvedParameter<IIngredient>("cutlet")));

The Breading component should be the default IIngredient, so you need the
VealCutlet to be a named IIngredient because there can be only one default
IIngredient. When you register the Breading component, you once more use an
InjectionConstructor to define how Unity should wire the Breading class’s ingredient
constructor argument. A ResolvedParameter<IIngredient> enables you to define
that the first (and only) constructor parameter should be resolved and wired with the
named cutlet component.

Listing 14.12 Decorating with a named component

480 CHAPTER 14 Unity
 When you resolve IIngredient, you get a Breading instance that decorates a
VealCutlet.

 This is a universally applicable way to decorate a component, but when we don’t
otherwise care about the decorated component, we can use a more implicit method.

DECORATING A CONCRETE COMPONENT

If we never need to resolve the decorated component directly, we can use a more
implicit way to decorate it. Imagine that you never expect having to resolve the Veal-
Cutlet directly as an IIngredient; when you want an IIngredient, you always want to
get the Cotoletta.

 In such a case, there’s no need to configure the VealCutlet at all. Instead, you can
take advantage of the fact that Unity automatically resolves concrete types, even if they
aren’t registered:

container.RegisterType<IIngredient, Breading>(
 new InjectionConstructor(
 new ResolvedParameter<VealCutlet>()));

You already know that what you want to inject into the Breading instance is a Veal-
Cutlet, so there’s no particular reason why you need to take the indirect route of
defining a ResolvedParameter<IIngredient> when you can directly supply a
ResolvedParameter<VealCutlet>. When you ask the container to resolve IIngredient,
the ResolvedParameter<VealCutlet> will automatically resolve into a VealCutlet
instance because it’s a concrete class. Because VealCutlet implements IIngredient,
the Breading constructor is satisfied.

 Although you didn’t register the VealCutlet component at all, you can still do that
if you need to configure other aspects, such as its lifetime:

container.RegisterType<VealCutlet>(
 new ContainerControlledLifetimeManager());
container.RegisterType<IIngredient, Breading>(
 new InjectionConstructor(
 new ResolvedParameter<VealCutlet>()));

Here you configure the concrete VealCutlet as a SINGLETON, but because you never
expect to have a need for resolving it as an IIngredient, you don’t map it to the inter-
face. This makes it the default VealCutlet; the ResolvedParameter<VealCutlet> can
then correctly resolve it.

 As you’ve seen in this section, there are a few variations available to us when con-
figuring Decorators—both involve the InjectionConstructor class. Unlike Castle
Windsor, Unity has no implicit understanding of Decorators, which may be a bit sur-
prising because, like Windsor, it offers the ultimate support for the Decorator pat-
tern: INTERCEPTION.

481Working with multiple components
14.3.4 Creating Interceptors

In section 9.3.3, you saw an example of how to add error handling and a Circuit
Breaker8 to a WCF client with Castle Windsor’s dynamic INTERCEPTION capability. In
this section, we’ll do the same with Unity.

 Adding an aspect to Unity is a process involving a few steps, as illustrated in figure 14.8.
 The bulk of the work involves developing the interceptor itself, but once we have

done that, we must add it to the container. INTERCEPTION is an extension to Unity, so we
must also add the extension to the container to make it all work.

 In this section, we’ll first create interceptors for error handling and Circuit
Breaker, and finally configure the container with both.

IMPLEMENTING AN EXCEPTION HANDLING INTERCEPTOR

Implementing an interceptor for Unity requires us to implement the IInterception-
Behavior interface. Listing 14.13 shows how to implement the exception handling
strategy from chapter 9. This particular implementation for Unity corresponds to list-
ing 9.8 for Castle Windsor and listing 12.4 for Spring.NET.

public class ErrorHandlingInterceptionBehavior :
 IInterceptionBehavior
{
 public IEnumerable<Type> GetRequiredInterfaces()
 {
 return Type.EmptyTypes;
 }

 public bool WillExecute
 {
 get { return true; }
 }

 public IMethodReturn Invoke(
 IMethodInvocation input,
 GetNextInterceptionBehaviorDelegate getNext)

8 Michael T Nygard, Release It! Design and Deploy Production-Ready Software (Raleigh, NC: Pragmatic Bookshelf,
2007), 104.

Listing 14.13 Implementing an exception handling IInterceptionBehavior

Figure 14.8 The steps involved in adding an aspect to Unity

Supply
interfaces

b

Enable
interceptor

c

Implement
interception logic

d

482 CHAPTER 14 Unity
 {
 var result = getNext()(input, getNext);
 if (result.Exception is CommunicationException
 || result.Exception is
 InvalidOperationException)
 {
 this.AlertUser(result.Exception.Message);
 return input.CreateMethodReturn(null);
 }
 return result;
 }

 private void AlertUser(string message)
 {
 var sb = new StringBuilder();
 sb.AppendLine("An error occurred.");
 sb.AppendLine("Your work is likely lost.");
 sb.AppendLine("Please try again later.");
 sb.AppendLine();
 sb.AppendLine(message);

 MessageBox.Show(sb.ToString(), "Error",
 MessageBoxButton.OK,
 MessageBoxImage.Error);
 }
}

The ErrorHandlingInterceptionBehavior class implements IInterceptionBehavior
which is an interface with three members. Two of those members are mostly concerned
with Unity infrastructure and trivial to implement. The GetRequiredInterfaces
method B enables you to specify which interfaces this interceptor addresses, but by
returning an empty array, you can postpone that decision until the time you configure
which components you want intercepted. The WillExecute property c must return true
if you want the interceptor to work. This gives you an opportunity to configure whether a
particular interceptor should execute or not, but in this case you always want to execute
the ErrorHandlingInterceptionBehavior if it’s configured for a component.

 The core implementation of an IInterceptionBehavior happens in the Invoke
method d, which is invoked (sic!) by Unity when an intercepted component is
invoked. The input parameter provides you with some information about the current
method call, while the getNext parameter provides a delegate that you can use to
invoke the decorated component. It corresponds roughly to Castle Windsor’s Proceed
method that you see in listing 9.8.

 Invoking the getNext method e gives you an Invoke method that represents the
method that this interceptor decorates. It may be another interceptor, or the leaf com-
ponent itself. Invoking this Invoke method with the original parameters gives you the
result from the decorated method.

 If the result is one of the exceptions that you’ve decided to handle, you alert the user
by showing a dialog box f. In the case of a handled exception, you wish to suppress the
exception now that you’ve alerted the user. Returning the result from the decorated

Handle
exceptions

f

Get result from
decorated object e

483Working with multiple components
method would allow the exception to propagate, so instead you create a new return
value and return it. Conversely, if there were no exceptions, you’d return the result
from the decorated method.

 The ErrorHandlingInterceptionBehavior takes care of handling certain excep-
tions from a decorated component. This component can itself be another interceptor
in the form of a Circuit Breaker.

IMPLEMENTING A CIRCUIT BREAKER INTERCEPTOR

The Circuit Breaker interceptor is a bit more complex because it requires the ICircuit-
Breaker DEPENDENCY, but as the following listing shows, we address this by applying
standard CONSTRUCTOR INJECTION. When it comes to composing the class, Unity treats it
like any other component: as long as it can resolve the DEPENDENCY, all is well.

public class CircuitBreakerInteceptionBehavior :
 IInterceptionBehavior
{
 private readonly ICircuitBreaker breaker;

 public CircuitBreakerInteceptionBehavior(
 ICircuitBreaker breaker)
 {
 if (breaker == null)
 {
 throw new ArgumentNullException("breaker");
 }

 this.breaker = breaker;
 }

 public IMethodReturn Invoke(IMethodInvocation input,
 GetNextInterceptionBehaviorDelegate getNext)
 {
 try
 {
 this.breaker.Guard();
 }
 catch (InvalidOperationException e)
 {
 return
 input.CreateExceptionMethodReturn(e);
 }

 var result = getNext()(input, getNext);
 if (result.Exception != null)
 {
 this.breaker.Trip(result.Exception);
 }
 else
 {
 this.breaker.Succeed();
 }

Listing 14.14 Implementing a Circuit Breaker IInterceptionBehavior

Implement
guard

b

Get result from
decorated method

c

Handle
exception

d

Indicate
success

e

484 CHAPTER 14 Unity
 return result;
 }

 public IEnumerable<Type> GetRequiredInterfaces()
 {
 return Type.EmptyTypes;
 }

 public bool WillExecute
 {
 get { return true; }
 }
}

The CircuitBreakerInteceptionBehavior needs to delegate its implementation to
an ICircuitBreaker instance. Because Unity will AUTO-WIRE an interceptor like it does
any other component, you can use standard CONSTRUCTOR INJECTION to inject the
ICircuitBreaker.

 In the Invoke method you need to implement the Guard-Succeed/Trip idiom you
already saw in listings 9.4 and 9.9. First, you need to invoke the Guard method and
return an exception if the Guard method throws an exception B. Unity doesn’t
expect you to communicate exceptions by throwing them, but by encapsulating them
in IMethodReturn instances, so you must explicitly catch the InvalidOperation-
Exception and create a return value from the caught exception.

 If you make it past the Guard method you can proceed to invoke the decorated
method c. This is done in exactly the same way as you saw in listing 14.13. Now that
you have the result from the decorated method, you can examine it to see if it
returned an exception. If this is the case, you Trip the breaker d, but notice that you
don’t change the result. Recall that after you Trip the breaker you still want the
exception to be rethrown, so you can leave the result as it is—it already encapsulates
the exception.

 When there’s no exception, you can likewise indicate this to the breaker e by
invoking its Succeed method. Recall that this can close an otherwise open breaker.

 Now that we have both ErrorHandlingInterceptionBehavior and CircuitBreaker-
InteceptionBehavior, it’s time to configure the container to make them decorate an
IProductManagementAgent.

CONFIGURING INTERCEPTION

What we want to do is to intercept an IProductManagementAgent component with
both Circuit Breaker and error handling so that when an exception happens during
communication with the web service, the Circuit Breaker is opened and the exception
is handled, giving the application a chance to recover once the web service or the net-
work is back online.

 The first thing we need to do is to add the INTERCEPTION feature to Unity. Although
INTERCEPTION is part of the Unity Application Block, it’s implemented in a separate
assembly and must be added explicitly.

Required by
IInterceptionBehavior

485Working with multiple components
NOTE To use INTERCEPTION with Unity, you must add a reference to the
Microsoft.Practices.Unity.InterceptionExtension assembly.

Once we have a reference to Microsoft.Practices.Unity.InterceptionExtension,
we must add the Interception extension to the container. This is yet another Con-
tainer Extension, so we can add it with the AddNewExtension method:

container.AddNewExtension<Interception>();

Although this adds general INTERCEPTION capability to the container, we must still con-
figure the IProductManagementAgent component with the desired interceptors. Fig-
ure 14.9 shows the configuration we’re aiming for.

 Configuring INTERCEPTION for a component utilizes the fact that all overloads of
RegisterType accept an array of InjectionMember. Until now you’ve only seen the
InjectionConstructor class, but a set of other InjectionMember classes is used to
configure INTERCEPTION:

container.RegisterType<IProductManagementAgent,
 ➥WcfProductManagementAgent>(
 new Interceptor<InterfaceInterceptor>(),
 new InterceptionBehavior<ErrorHandlingInterceptionBehavior>(),
 new InterceptionBehavior<CircuitBreakerInteceptionBehavior>());

Let’s break that down into its constituent parts. First of all, you add an Interceptor
<InterfaceInterceptor>. This is an InjectionMember that signals to Unity that what
follows is one or more interception behaviors that intercepts on the interface level (as
opposed to intercepting virtual members, for example).

 The next two InjectionMembers add the ErrorHandlingInterceptionBehavior
and CircuitBreakerInteceptionBehavior interceptors you implemented. Notice
that because you list ErrorHandlingInterceptionBehavior first, it becomes the out-
ermost interceptor, itself intercepting the CircuitBreakerInteceptionBehavior.

 The final thing you need to do in this example is to make sure that all DEPENDENCIES

can be satisfied. Because CircuitBreakerInteceptionBehavior requires an ICircuit-
Breaker, you must also register this component:

container.RegisterType<ICircuitBreaker, CircuitBreaker>(
 new ContainerControlledLifetimeManager(),
 new InjectionConstructor(TimeSpan.FromMinutes(1)));

Figure 14.9 The IProductManagement-
Agent should be decorated by the Circuit
Breaker interceptor so that when an exception is
thrown by the agent, the circuit’s opened for a
while. The Circuit Breaker only registers
exceptions but doesn’t handle them, so this is
the responsibility of the error handling interceptor
which must be outermost to be able to handle
exceptions from both the agent as well as the
Circuit Breaker.

486 CHAPTER 14 Unity
To be effective at all it’s important that there’s only one Circuit Breaker instance (at
least per out-of-process resource), so we register the component as a SINGLETON. We
also configure the CircuitBreaker constructor with a one-minute timeout, ensuring
that the application is allowed to retry a failed connection once per minute.

 This section demonstrated how to utilize dynamic INTERCEPTION with Unity. In my
personal opinion, I find the complexity comparable with Castle Windsor’s and
Spring.NET’s INTERCEPTION support. Although not entirely trivial, the potential benefit
is great.

INTERCEPTION is a dynamic implementation of the Decorator pattern,9 and the
Decorator pattern is itself a combined application of multiple components of the
same type. Unity lets us work with multiple components in several different ways. We
can configure them as alternatives to each other, as peers resolved as sequences, as
hierarchical Decorators, or even as interceptors. When it comes to arrays, Unity will
figure out what to do, but we can often map other sequence types into arrays. This
also enables us to explicitly define how services are composed if we need more
explicit control.

 This may also be the case when we need to deal with APIs that deviate from CON-
STRUCTOR INJECTION. So far you’ve seen how to configure instances, including how to
specify lifetimes and how to deal with multiple components, but until now we have
allowed the container to wire DEPENDENCIES by implicitly assuming that all components
use CONSTRUCTOR INJECTION. This isn’t always the case, so in the next section we’ll
review how to deal with classes that must be instantiated in special ways.

14.4 Configuring difficult APIs
Until now, we’ve considered how we can configure components that use CONSTRUCTOR

INJECTION. One of the many benefits of CONSTRUCTOR INJECTION is that DI CONTAINERS

such as Unity can easily understand how to compose and create all classes in a depen-
dency graph.

 This becomes less clear when APIs are less well behaved. In this section, you’ll see
how to deal with primitive constructor arguments, static factories, and PROPERTY INJEC-
TION. These all require your special attention. We’ll start by looking at classes that take
primitive types such as strings or integers as constructor arguments.

14.4.1 Configuring primitive Dependencies

As long as we inject ABSTRACTIONS into consumers all is well. It becomes more difficult
when a constructor depends on a primitive type, such as a string, a number, or an
enum. This is particularly the case for data access implementations that take a connec-
tion string as a constructor parameter, but it’s a more general issue that applies to all
strings and numbers.

9 Gamma, Design Patterns, 175.

487Configuring difficult APIs
 Conceptually, it doesn’t always make much sense to register a string or number as a
component in a container. However, with Unity this is at least possible.

 Consider, as an example, this constructor:

public ChiliConCarne(Spiciness spiciness)

In this example, Spiciness is an enum:

public enum Spiciness
{
 Mild = 0,
 Medium,
 Hot
}

WARNING As a rule of thumb, enums are code smells and should be refac-
tored to polymorphic classes.10 However, they serve us well for this example.

If you want all consumers of Spiciness to use the same value, you can register
Spiciness and ChiliConCarne independently of each other:

container.RegisterInstance(Spiciness.Medium);
container.RegisterType<ICourse, ChiliConCarne>();

When you subsequently resolve ChiliConCarne it will have a Medium Spiciness, as will
all other components with a DEPENDENCY on Spiciness.

 If you’d rather control the relationship between ChiliConCarne and Spiciness on
a finer level, you can do so with the ubiquitous InjectionConstructor, supplying the
value to the constructor:

container.RegisterType<ICourse, ChiliConCarne>(
 new InjectionConstructor(Spiciness.Hot));

Previously in this chapter, you’ve mostly seen InjectionConstructor used with
ResolvedParameter<T>, but another alternative is to supply a value that will then be
passed directly to the constructor of the component. Here you supply Spiciness.Hot,
which will be passed directly to the ChiliConCarne constructor, resulting in Hot chili.

 Both of the options described here leverage AUTO-WIRING to provide a concrete
value to a component. If we want a more strongly typed configuration that invokes the
constructor or a static factory, we can do this as well.

14.4.2 Registering components with code blocks

Another option for creating a component with a primitive value is to use yet another
InjectionMember that enables us to supply a delegate that creates the component:

container.RegisterType<ICourse, ChiliConCarne>(
 new InjectionFactory(
 c => new ChiliConCarne(Spiciness.Hot)));

10 Martin Fowler et al., Refactoring: Improving the Design of Existing Code (New York: Addison-Wesley, 1999), 82.

488 CHAPTER 14 Unity
The InjectionFactory is another class that derives from the abstract Injection-
Member class. There are two overloaded constructors, but we use the simplest one that
takes a Func<IUnityContainer, object> as input. This gives us the opportunity to
provide a code block that will create the component. Here the ChiliConCarne con-
structor will be invoked with the Hot Spiciness every time the ICourse component
is resolved.

NOTE The code block in the previous example looks completely identical to
the corresponding code block for Autofac in section 13.4.2.

When it comes to the ChiliConCarne class, you have a choice between AUTO-WIRING

and using a code block, but other classes are more restrictive: they can’t be instanti-
ated through a public constructor. Instead, you must use some sort of factory to create
instances of the type. This is always troublesome for DI CONTAINERS because, by default,
they look after public constructors.

 Consider this example constructor for the public JunkFood class:

internal JunkFood(string name)

Even though the JunkFood class is public, the constructor is internal. Obviously,
instances of JunkFood should be created through the static JunkFoodFactory class:

public static class JunkFoodFactory
{
 public static IMeal Create(string name)
 {
 return new JunkFood(name);
 }
}

From Unity’s perspective, this is a problematic API because there are no unambiguous
and well-established conventions around static factories. It needs help—and you can
give it to it by providing a code block it can execute to create the instance:

container.RegisterType<IMeal, JunkFood>(
 new InjectionFactory(
 c => JunkFoodFactory.Create("chicken meal")));

This time, you use the InjectionFactory class to create the component by invoking a
static factory within the code block. JunkFoodFactory.Create will be invoked every
time IMeal is resolved and the result will be returned.

 When we end up writing the code to create the instance, how is this in any way bet-
ter than invoking the code directly? By using a code block inside an InjectionFactory
constructor, we still gain something:

■ We map from IMeal to JunkFood.
■ Lifetime can still be configured. Although the code block will be invoked to cre-

ate the instance, it may not be invoked every time the instance is requested—by
default it does, but if we change it to a SINGLETON the code block will only be
invoked once and the result cached and reused thereafter.

489Configuring difficult APIs
The last common deviation from CONSTRUCTOR INJECTION we’ll examine here is PROP-
ERTY INJECTION.

14.4.3 Wiring with Property Injection

PROPERTY INJECTION is a less well-defined form of DI because we aren’t forced by the com-
piler to assign a value to a writable property. This is also the case for Unity, which will
leave writable properties alone unless we explicitly ask it to do something about them.

 Consider this CaesarSalad class:

public class CaesarSalad : ICourse
{
 public IIngredient Extra { get; set; }
}

It’s a common misconception that a Caesar Salad always includes chicken. A Caesar
Salad is fundamentally a salad, but it tastes great with chicken, so many menus offer
chicken as an extra ingredient. The CaesarSalad class models this by exposing a writ-
able property named Extra.

 If you configure only the CaesarSalad without explicitly addressing the Extra
property, the property won’t be assigned. You can still resolve the instance, but the
property will have the default value that the constructor assigns to it (if any).

 Once again, you can use an InjectionMember to configure a component to popu-
late a property:

container.RegisterType<IIngredient, Chicken>();
container.RegisterType<ICourse, CaesarSalad>(
 new InjectionProperty("Extra"));

Just as you can use the InjectionConstructor class to configure CONSTRUCTOR

INJECTION, you can use the InjectionProperty class to configure PROPERTY INJECTION.
The InjectionProperty is yet another class that derives from InjectionMember. To
use it, you must specify the name of the property to be filled; here you want to popu-
late the Extra property. This will cause the property to be AUTO-WIRED so it’s impor-
tant that Unity can resolve the type. The Extra property’s type is IIngredient, so
Unity will resolve the property to Chicken because you previously registered Chicken
as IIngredient.

WARNING When we configure PROPERTY INJECTION for a property, Unity must
be able to resolve the property’s type. If it can’t, an exception will be thrown
when we attempt to resolve the owning type.

When you resolve ICourse based on this registration, you’ll get back a CaesarSalad
instance with a Chicken instance assigned to its Extra property.

 The previous example uses the default IIngredient, but we can use another over-
load of the InjectionProperty class to provide a value for the property. We can pro-
vide a direct value, or we can use the trusted ResolvedParameter<T> class to refer to a
named component:

490 CHAPTER 14 Unity
container.RegisterType<IIngredient, Chicken>("chicken");
container.RegisterType<IIngredient, Steak>("steak");
container.RegisterType<ICourse, CaesarSalad>(
 new InjectionProperty("Extra",
 new ResolvedParameter<IIngredient>("chicken")));

The ResolvedParameter instance refers to the chicken component previously regis-
tered, ensuring that when you resolve ICourse, you get back a CaesarSalad with
Extra Chicken.

 In this section, you’ve seen how to use Unity to deal with more difficult creational
APIs. We can use the many classes that derive from InjectionMember to specify con-
crete instances or code blocks that will be used to create instances, as well as configur-
ing PROPERTY INJECTION. This is a consistent API that I find easy to learn once you get
the hang of it.

14.5 Summary
Unity is a DI CONTAINER developed and offered by Microsoft patterns & practices.
Although not a Microsoft product as such, many development organizations still view
it as a sort of semi-official Microsoft commodity. This can be perceived as an advantage
by development organizations that follow a strict policy of using only Microsoft prod-
ucts, because p&p application blocks are often included. The official documentation
is also second to none.

 Unity offers a consistent API for configuration, but, unlike many other containers,
has no fluent API. This can sometimes make discoverability a little more difficult, but
once you get the hang of it, you may appreciate the consistency: apart from the
optional names and LifetimeManagers, all further configuration is done via classes
that derive from the abstract InjectionMember class. The most commonly used
derived class may be InjectionConstructor.

 In addition to the imperative API, Unity also has a comprehensive XML schema
that enables us to define container configuration in XML as well as in code. On the
other hand, there’s no support for convention-based AUTO-REGISTRATION.

 Unity is one of the relatively few DI CONTAINERS to support INTERCEPTION. This support
is an extension to the core container, but bundled as part of the Application Block.

 One of Unity’s relative weaknesses is in the area of LIFETIME MANAGEMENT. Although
the built-in lifetimes seem to present an appropriate menu of lifestyles, resource man-
agement can become difficult because components aren’t properly released after use.
Fortunately, not all is lost, because we can implement custom lifetimes that address
these issues. It’s much harder than it should be, but at least it’s possible.

 All in all, Unity provides us with a reasonably solid DI CONTAINER. It has weaknesses
in some slightly surprising places, but on the other hand offers a near-complete fea-
ture set. The only major feature missing is AUTO-REGISTRATION, but because there’s an
open API, it’s possibly to retrofit this if desired.

491Summary
 This chapter provided an introduction to Microsoft’s semi-official DI CONTAINER. In
the next chapter, we’ll look at something a little bit different. Some say that it isn’t a DI
CONTAINER at all. On the other hand, it’s a part of the Base Class Library from .NET 4,
and it shares a lot of similarities with DI CONTAINERS, so it’s still appropriate to look at
the Managed Extensibility Framework.

MEF
In the previous five chapters, you saw how various DI CONTAINERS can be used as
tools to implement the patterns and practices laid out in the rest of the book. In
this chapter, we’re going to do something slightly different, because the Managed
Extensibility Framework (MEF) isn’t really a DI CONTAINER.

 As its name implies, MEF is a framework that addresses extensibility concerns for
applications. The focus is on enabling add-in scenarios for standard software.
Visual Studio 2010 is probably the first and most prominent application that uses
MEF to support plug-ins, but any application built on .NET 4 or Silverlight 4 can use
it to expose extensibility features.

 If MEF isn’t a DI CONTAINER, then why use an entire chapter covering it in this
book? The most important reason is that MEF looks so much like a DI CONTAINER that
you need to spend some time with it to understand the differences between it and
real DI CONTAINERS. Because it’s part of .NET 4 and Silverlight 4, it may be tempting

Menu
■ Introducing MEF
■ Managing lifetime
■ Working with multiple components
■ Configuring difficult APIs
492

493MEF
to use it as a DI CONTAINER if you don’t understand the subtle differences. The purpose
of this chapter is to exhibit these differences so you can make an informed decision.

NOTE Please keep in mind that you can always skip this chapter if MEF doesn’t
interest you and you’ve already decided to use another DI CONTAINER.

Is MEF a DI CONTAINER?
There’s a lot of confusion about whether or not MEF is a DI CONTAINER. The short
answer is that it isn’t, but that it shares so many traits with “proper” DI CONTAINERS
that it may become a full-fledged DI CONTAINER in the future.

MEF was built for a different purpose than a DI CONTAINER. Its purpose is to provide a
common framework for enabling add-in functionality for standard applications. From
the perspective of a standard application, an add-in is an unknown component.
Whereas the add-in is most likely required to expose a certain interface, this is about
all the application knows about it. There may be zero, one, or a lot of add-ins, depend-
ing on the environment. This is different from a DI CONTAINER, where we typically know
about all (or most of) the components at compile time.

When we use a DI CONTAINER as a tool to compose an application, we know about the
components that make up the application, and we use this knowledge to configure
the container in the application’s COMPOSITION ROOT.

On the other hand, when it comes to plug-ins, we only know that the plug-ins must
implement some sort of ABSTRACTION, but we can’t compile the application with a con-
figuration of specific plug-ins, because they are unknown at design time. Instead, we
need a discoverability mechanism.

A traditional discoverability mechanism for add-ins is to scan a certain folder for
assemblies to find all classes implementing the required ABSTRACTION. However, this
doesn’t address the issue that may occur when the add-in itself has DEPENDENCIES.
MEF, on the other hand, addresses exactly this scenario through its advanced discov-
ery model that uses attributes to define consumers and their services.

A DI CONTAINER favors decoupled composition of services. This provides the greatest
degree of flexibility, but comes at a cost: as developers, we must have knowledge
about the components we wish to compose at the time we configure the container.

MEF favors discovery of components. This successfully addresses the issue when we
know little about the add-ins at design time. The tradeoff is that the discovery mech-
anism is tightly coupled with the components, so we lose some flexibility.

When we consider the internal architecture of MEF, it turns out that discovery and com-
position are decoupled. This means that it’s possible for Microsoft to evolve MEF in the
direction of a true DI CONTAINER.1 On the other hand, some DI CONTAINERS offer such pow-
erful convention-based features that they may encroach on MEF in the future.

Even today, MEF shares so many similarities with DI CONTAINERS that some of its cre-
ators already view it as one, while others don’t.

1 For more information, see Glenn Block, “Should I use MEF for my general IoC needs?” 2009, http://
blogs.msdn.com/b/gblock/archive/2009/08/16/should-i-use-mef-for-my-general-ioc-needs.aspx

http://blogs.msdn.com/b/gblock/archive/2009/08/16/should-i-use-mef-for-my-general-ioc-needs.aspx
http://blogs.msdn.com/b/gblock/archive/2009/08/16/should-i-use-mef-for-my-general-ioc-needs.aspx

494 CHAPTER 15 MEF
TIP If you’ve already attempted to use MEF as a DI CONTAINER and have been
left bewildered and disappointed, this chapter should explain why.

Although being a dedicated DI CONTAINER was not the first priority when MEF was con-
ceived and designed, it turns out that you can use it as one. At times it’s somewhat awk-
ward, but still possible. There are some scenarios where it makes sense to use MEF as a
DI CONTAINER—particularly in applications that already use it to implement extensibil-
ity features.

NOTE The whole premise of this chapter is (inadvertently) setting MEF up to
fail. This doesn’t mean that MEF isn’t good at what it does; it means that we’re
trying to make it do something for which it isn’t designed. We’re trying to fit a
square peg in a round hole.

In this chapter, we’ll examine how MEF can be used to apply the principles and pat-
terns covered in parts 1–3. Figure 15.1 shows the structure of the chapter.

 The structure of the chapter mirrors the structure of all the other chapters in
part 4, because I believe that this makes it easier to compare the different DI CONTAIN-
ERS. In the case of MEF, this results in four sections of rather unequal size and impor-
tance. We’ll spend a lot of time in the introduction to get a feel for MEF and its API, but
then cover LIFETIME MANAGEMENT in only a few pages, because MEF doesn’t have many
options in that area. The topic of multiple components then takes up most of the rest
of the chapter, with the last section again being rather short. With the introduction as a
prerequisite, each of the three other sections can be read independently of each other.

 This chapter should enable you to get started, as well as deal with the most com-
mon issues that may come up as you use MEF. However, this is by no way a fair or com-
prehensive treatment of MEF because we evaluate it in terms of a DI CONTAINER,2

instead of its real purpose.

2 For a more idiomatic introduction to MEF, see Glenn Block, “Managed Extensibility Framework: Building
Composable Apps in .NET 4 with the Managed Extensibility Framework,” MSDN Magazine (February 2010).
Also available online at http://msdn.microsoft.com/en-us/magazine/ee291628.aspx

Figure 15.1 This chapter is divided into four sections. The first section provides an overall
introduction to MEF and demonstrates how to configure and resolve components. The next three
sections each deal with usage patterns that require a bit of extra attention; you can read them all
in order, or you can skip some and read only the ones that interest you.

http://msdn.microsoft.com/en-us/magazine/ee291628.aspx

495Introducing MEF
You can read the chapter in isolation from the rest of part 4 specifically to learn about
MEF, or you can read it together with the other chapters in part 4 to compare it with
“real” DI CONTAINERS. The focus of this chapter is to show how MEF relates to and
implements the patterns and principles described in parts 1–3.

15.1 Introducing MEF
In this section, you’ll learn where to get MEF, what you get, and how you start using it.
We’ll also look at how components are configured and packaged. Table 15.1 provides
fundamental information that you’re likely to need to get started.

In contrast with other DI CONTAINERS, MEF has a different rhythm of usage. We never
configure a container, but rather annotate the components themselves with attri-
butes. Figure 15.2 shows the relationship between components and the composition
engine itself.

Table 15.1 MEF at a glance

Question Answer

Where do I get it? MEF is part of .NET 4 and Silverlight 4.

What’s in the download? You get MEF when you install .NET 4 or Silverlight 4. It’s part
of the Base Class Library and packaged in the System
.ComponentModel.Composition assembly.
If you visit http://mef.codeplex.com/, you can also down-
load the source code to peruse.

Which platforms are supported? .NET 4 and Silverlight 4.
On http://mef.codeplex.com/ you can also find unsupported
versions for .NET 3.5 SP1 and Silverlight 3.

How much does it cost? Nothing. It’s part of .NET 4 and Silverlight 4.

Where can I get help? Because MEF is part of .NET and Silverlight, you can get
support from Microsoft.

On which version is this chapter based? .NET 4.

Figure 15.2 With MEF, we annotate parts (for example, classes and members) with attributes in a
separate work phase. When we compose an application, we first select the appropriate parts into a
catalog and then use the catalog to define a container from which we can resolve components.

http://mef.codeplex.com/
http://mef.codeplex.com/

496 CHAPTER 15 MEF
With other DI CONTAINERS, we use a decoupled configuration API to define which com-
ponents are available, how concrete types map to ABSTRACTIONS, how components are
created, and whether instances are shared or not.

 Conversely, with MEF, we bundle that information with each part by applying attri-
butes on types and members. This is easy to understand, but tightly couples the con-
figuration of the component to the component itself.

NOTE Keep in mind that MEF in version 1 uses attributes as the default (and
only) method of discovery, but at the core, isn’t at all coupled to attributes as
a means of discovery.

To compose an application, we select appropriate parts and package them into a cata-
log, and then create a container that can resolve components from that catalog.

 When we’re done with this section, you should have a good feeling for the overall
usage pattern of MEF, and you should be able to start using it in well-behaved scenar-
ios where all parts define simple imports and exports. We’ll start with the simplest sce-
nario and see how you can resolve objects using a MEF container.

15.1.1 Resolving objects
The core service of any DI CONTAINER is to compose and resolve components. In this
section, we’ll look at the API that enables us to resolve components with MEF. As with
any other container, resolving objects is as simple as invoking a simple method, but
with MEF, we can’t resolve anything until the required exports are available.

 If you recall the discussion about resolving components with Castle Windsor, you
may remember that Windsor requires us to register all relevant components before we
can resolve them. MEF has an analogous requirement, although there’s no way we can
register a component; instead, a part must export the desired service.

 To resolve the SauceBéarnaise service, we must export it. The easiest and most idi-
omatic way to do that is by annotating the class itself like this:

MEF terminology
MEF uses terminology that’s a bit different than what you’re used to when we talk
about DI CONTAINERS.

We normally call collaborating classes components, but in MEF the nearest term is
part. A part is a class or member that provides or consumes DEPENDENCIES.

When a part consumes a DEPENDENCY, we say that it imports it. Conversely, when it
provides a service, it exports it. In a classic case of jargon-fueled grammatical may-
hem, both import and export can also be used as nouns.

Exports and imports are defined by annotating parts with attributes.

When we compose applications, we match exports with imports according to con-
tracts. We often use types (such as interfaces) as contracts, but MEF is more flexible
than that; a contract is really just a string.

497Introducing MEF
[Export]
public class SauceBéarnaise : IIngredient { }

Notice the [Export] attribute annotating the SauceBéarnaise class. This is a MEF
attribute that declares that the SauceBéarnaise class exports itself. This means that if
you put the class in a catalog, you can now resolve the SauceBéarnaise class, but noth-
ing else, because it’s the only export:

var catalog = new TypeCatalog(typeof(SauceBéarnaise));
var container = new CompositionContainer(catalog);
SauceBéarnaise sauce =
 container.GetExportedValue<SauceBéarnaise>();

You already saw a glimpse of the catalog concept in figure 15.2, and we’ll discuss it in
greater detail in section 15.1.3. For now, suffice it to say that you package the anno-
tated SauceBéarnaise class into a catalog that you use to define a container. Now that
you have the container, you can use it to resolve the SauceBéarnaise service.

NOTE The GetExportedValue method corresponds directly to Windsor’s,
Autofac’s, and Unity’s Resolve methods.

Apart from the GetExportedValue method, MEF also supports another style where we
first get an export and then later extract the value from the export. In its simplest
form, it looks like this:

Lazy<SauceBéarnaise> export =
 container.GetExport<SauceBéarnaise>();
SauceBéarnaise sauce = export.Value;

The GetExport method is a good example of an export being a first-class concept in
MEF. It encapsulates the export without necessarily instantiating the part. Creation of
the part may be postponed until we query its Value property, but that also depends on
the lifetime of the part.

 Both the GetExportedValue and GetExport methods have plural counterparts that
enable us to resolve sequences of parts. They look like this:

IEnumerable<IIngredient> ingredients =
 container.GetExportedValues<IIngredient>();
IEnumerable<Lazy<IIngredient>> exports =
 container.GetExports<IIngredient>();

So far, the SauceBéarnaise class exports only its own, concrete type. Even though it also
implements IIngredient, it doesn’t export that interface unless you explicitly state that
it does. Mapping ABSTRACTIONS to concrete types also involves the [Export] attribute.

MAPPING ABSTRACTIONS TO CONCRETE TYPES

The [Export] attribute exports the part it annotates. Sometimes the exported part is
already an ABSTRACTION, but when we annotate a class, the concrete class is exported by
default, even if it implements one or more interfaces.

 Loose coupling normally requires us to map ABSTRACTIONS to concrete types. Creat-
ing instances based upon such maps is the core service offered by any DI CONTAINER,

498 CHAPTER 15 MEF
but we must still define the map. With MEF, we do that by modifying the export by
explicitly stating what it exports.

 In this example, you let the concrete SauceBéarnaise class export the IIngredi-
ent interface:

[Export(typeof(IIngredient))]
public class SauceBéarnaise : IIngredient { }

Compared to the previous example, you’ve now changed the [Export] attribute to
use an overload that enables you to specify that IIngredient is the export. Once
again, you can package the SauceBéarnaise class into a catalog and create a container
out of the catalog.

IIngredient ingredient = container.GetExportedValue<IIngredient>();

When you resolve IIngredient from the container, the ingredient value now turns
out to be a SauceBéarnaise instance, as you would’ve expected. However, if you
attempt to resolve SauceBéarnaise as you did in the first example, you’ll now get an
exception because there are no parts that export the SauceBéarnaise contract.

 You can easily resolve this by applying the Export attribute multiple times:

[Export]
[Export(typeof(IIngredient))]
public class SauceBéarnaise : IIngredient { }

The [Export] attribute can be applied as many times as needed, so this version
exports both the concrete SauceBéarnaise class as well as the IIngredient interface.

 So far, we’ve looked at a strongly typed, generic method that can be used to resolve
services. Still, there are situations where we need a more weakly typed way to resolve ser-
vices. This is also possible, although a bit more involved than we might wish.

RESOLVING WEAKLY TYPED SERVICES

Sometimes we can’t use a generic API because we don’t know the appropriate type at
design time. All we have is a Type instance, but we’d still like to get an instance of that
type. You saw an example of that in section 7.2, where we discussed ASP.NET MVC’s
DefaultControllerFactory class. The relevant method is this one:

protected internal virtual IController GetControllerInstance(
 RequestContext requestContext, Type controllerType);

Because we only have a Type instance, we can’t use generics, but must resort to a
weakly typed API. Unfortunately, the only untyped API exposed by Composition-
Container is a little unwieldy. There’s no untyped version of the GetExportedValue or
GetExportedValues methods, so we must resort to the non-generic version of Get-
Exports to implement GetControllerInstance:

var export = this.container.GetExports(
 controllerType, null, null).Single();
return (IController)export.Value;

There are several overloads of the non-generic GetExports method, and here we use
one that enables us to pass in the controllerType directly. The two other parameters

499Introducing MEF
can be used to provide constraints for the query, but we can pass in null when we
don’t need to do that. The GetExports method returns a sequence of exports, but
we require that there’s only a single export that satisfies the query, so we invoke the
Single extension method to get the single instance from the sequence.

 Because the GetExports method is weakly typed, we must cast the exported value
to IController before returning it. In any case, no matter which specific method we
use to resolve parts, MEF composes the parts by matching imports with exports. It can
only do this when we have explicitly defined these in advance.

15.1.2 Defining imports and exports

In section 3.2, we discussed several conceptually different ways we can configure a DI
CONTAINER. Figure 15.3 reviews the options and illustrates how MEF doesn’t fit into that
model at all.

 We can’t configure the container itself in any way—neither with imperative code
nor through XML configuration. MEF only gives us one option to define imports and
exports, and that is by applying attributes to parts. Attributes are part of the type they
annotate, so we must view this mechanism as more explicit and early bound than
even CODE AS CONFIGURATION. Catalogs, on the other hand, provide us with a great
deal of flexibility because they enable us to pick the types we wish to include into
a composition.

WARNING The use of attributes tightly couples the configuration to the
implementation. In section 9.3.1, we discussed the disadvantages of using
attributes for aspects, but the discussion applies in general. Keep in mind that
MEF may gain alternatives to attributes in the future.

Figure 15.3 MEF doesn’t fit into
our standard conceptual model for
configuration options, because we
can’t configure the container. All
the normal options we’re used to
reviewing are unavailable and
grayed out. Annotating parts with
attributes defines the
configuration statically together
with the type, whereas catalogs
provide flexibility.

500 CHAPTER 15 MEF
In this section, we’ll look at options for importing and exporting parts, and then in sec-
tion 15.1.3, we’ll look at catalogs. Although we can’t cover our standard options for con-
figuring a container, we can make some approximations to cover different scenarios. In
this section, you’ll see different ways in which we can export and import parts.

EXPORTING TYPES

In this section, we’ll cover the scenario where we control the classes we wish to export.
When we have full control over the source code for the classes that we want to export,
we can export a class by applying the [Export] attribute:

[Export]
[Export(typeof(IIngredient))]
public class SauceBéarnaise : IIngredient { }

The [Export] property can be applied as many times as needed, so that the same class
can export different contracts. The SauceBéarnaise class shown here exports both
itself as a concrete class and the IIngredient interface.

 The [Export] overload that enables you to specify an exported type provides no
compile-time checking. You can declare an invalid export without compilation errors:

[Export(typeof(ICourse))]
public class SauceBéarnaise : IIngredient { }

The SauceBéarnaise class doesn’t implement the ICourse interface, yet you can still
compile the claim that it does. However, when you attempt to resolve ICourse, an
exception will be thrown because MEF can’t cast SauceBéarnaise to ICourse.

WARNING It’s possible to declare invalid exports.

Obviously, you can let different classes export different contracts without conflict:

[Export(typeof(IIngredient))]
public class SauceBéarnaise : IIngredient { }

[Export(typeof(ICourse))]
public class Course : ICourse { }

Because each class exports different contracts, there’s no conflict and you can ask the
container to resolve both ICourse and IIngredient and receive instances of Course
and SauceBéarnaise, respectively.

 However, exporting the same ABSTRACTION multiple times changes the picture:

[Export(typeof(IIngredient))]
public class SauceBéarnaise : IIngredient { }

[Export(typeof(IIngredient))]
public class Steak : IIngredient { }

In this example, you export IIngredient twice. If you attempt to resolve IIngredient,
the container will throw an exception because there are multiple exports; by invoking
GetExport or GetExportedValue you imply that you request a ubiquitous part. You
can still get both SauceBéarnaise and Steak by invoking the plural methods Get-
Exports and GetExportedValues.

501Introducing MEF
NOTE MEF has no concept of a default component. All exports are equally ranked.

This is your first glimpse of an important concept in MEF: cardinality of imports and
exports. The number of exports must be compatible with the number of imports.
Table 15.2 shows how MEF matches imports and exports based on cardinality.

In this context, the term many indicates a sequence of parts, typically an array or
IEnumerable<T>. If we explicitly import many parts of the same contract, MEF will
always find us a match because zero exports is a special case of multiple exports.

 On the other hand, when we explicitly import a single instance we get a cardinality
mismatch if there are zero or multiple exports because importing a single instance
indicates that we must have exactly one, ubiquitous instance.

NOTE Cardinality is one among several dimensions where imports and
exports must match.

As you’ll see in section 15.2, LIFETIME MANAGEMENT can also play a role when it comes to
matching parts, but cardinality is always active. Later in this section, you’ll see how to
define single and multiple imports; but before we cover that we should look at export-
ing parts when we don’t control the classes involved.

EXPORTING ADAPTERS

Applying the [Export] attribute to a class is the easiest way to export a part, but this
might not always be possible. We may wish to export classes that were already com-
piled, and we might not have access to the source code. In such cases, we can’t apply
attributes, yet we would still like to include the class into a composition.

 We can still achieve that goal by leveraging MEF’s ability to export properties as
well as classes. As an example, consider this Mayonnaise constructor:

public Mayonnaise(EggYolk eggYolk, OliveOil oil)

Imagine that the Mayonnaise class and its constituent EggYolk and OliveOil DEPEN-
DENCIES are outside your control. One option would be to derive from the original
class and apply the [Export] attribute to the derived class:

[Export(typeof(OliveOil))]
[Export(typeof(IIngredient))]
public class MefOliveOil : OliveOil { }

Notice that if you wish to export both the original concrete class as well as the
IIngredient interface, you must explicitly state that the base class (which is also a

Table 15.2 Import and export cardinality matches

Export.Single Export.Many

Import.Single Match No match

Import.Many Match Match

502 CHAPTER 15 MEF
concrete class) is being exported. Had you used the [Export] attribute without a type,
you would’ve exported the MefOliveOil class instead.

 However, if the classes in question are sealed, you can’t export them in this way.
Instead, as the following listing shows, you can create an adapter3 and export the part
via a property.

public class OliveOilAdapter
{
 private readonly OliveOil oil;

 public OliveOilAdapter()
 {
 this.oil = new OliveOil();
 }

 [Export]
 public OliveOil OliveOil
 {
 get { return this.oil; }
 }
}

The OliveOilAdapter class is a completely new class that wraps the original OliveOil
class and exports it through an annotated property B. The [Export] attribute can be
applied to properties as well as types, but otherwise works in the same way. The type of
the OliveOil property is OliveOil, which is also the contract you wish to export, so in
this case, you can use the [Export] property without explicitly stating a type.

TIP It’s always possible to export a type by creating an adapter.

When the class that you need to compose has DEPENDENCIES of its own, you need to
import these through the adapter. As the following listing demonstrates, this becomes
a little more involved, but is still quite manageable.

public class MayonnaiseAdapter
{
 private readonly Mayonnaise mayo;

 [ImportingConstructor]
 public MayonnaiseAdapter(
 EggYolk yolk, OliveOil oil)
 {
 if (yolk == null)
 {

3 I have chosen the term adapter because the purpose of such MEF Adapters corresponds to the purpose, if not
all the specifics, of the original Adapter design pattern: Erich Gamma et al., Design Patterns: Elements of Reusable
Object-Oriented Software (New York: Addison-Wesley, 1994), 139.

Listing 15.1 Exporting OliveOil via an adapter

Listing 15.2 Adapting a class with DEPENDENCIES

Export
property

b

Mimic Mayonnaise
constructor signature

b

503Introducing MEF
 throw new ArgumentNullException("yolk");
 }
 if (oil == null)
 {
 throw new ArgumentNullException("oil");
 }

 this.mayo = new Mayonnaise(yolk, oil);
 }

 [Export]
 public Mayonnaise Mayonnaise
 {
 get { return this.mayo; }
 }
}

To export the Mayonnaise class via an adapter, you must address the fact that it has
DEPENDENCIES of its own that you need to import. To be able to provide an instance, you
must mimic the signature of the Mayonnaise constructor in the adapter’s constructor B
so that you can import all the necessary parts. After passing appropriate Guard Clauses,
you create a new Mayonnaise instance c from the constructor parameters and save the
result in a private field. This is the CONSTRUCTOR INJECTION pattern at work.

 To export Mayonnaise, you can expose the mayo field as a property and annotate it
with an [Export] attribute d.

 With an EggYolkAdapter similar to the OliveOilAdapter from listing 15.1, you
can create a catalog from the three adapters and successfully resolve a Mayonnaise
instance even though you never modified the original classes.

 You may have noticed the [ImportingConstructor] attribute that appeared in list-
ing 15.2. This is part of the other side of the equation. So far, we’ve been looking at
how to export parts; now we need to see how to import them.

IMPORTING PARTS

There’s symmetry about MEF. Most of the statements we can make about exports we
can also make about imports. However, when it comes to CONSTRUCTOR INJECTION,
we must resort to the [ImportingConstructor] attribute, which has no equivalent for
exports. We saw it applied to the MayonnaiseAdapter in listing 15.2, but it must be
applied wherever we wish to use CONSTRUCTOR INJECTION.

 In the example we assumed that the Mayonnaise class was out of our control. In a sud-
den reverse of fortune, we have unexpectedly gotten hold of the source code and can
now change the types directly. In this case, we don’t have to create adapters, but can
apply the [Export] attributes directly to the Mayonnaise, OliveOil, and EggYolk classes.

MEF doesn’t recognize the CONSTRUCTOR INJECTION pattern, so even though
Mayonnaise has only a single constructor, we’ll initially get an exception if we attempt
to resolve it. We need to explicitly tell MEF which constructor it should use if there’s
no default constructor available:

[ImportingConstructor]
public Mayonnaise(EggYolk eggYolk, OliveOil oil)

Create
Mayonnaise

c

Export
Mayonnaised

504 CHAPTER 15 MEF
The [ImportingConstructor] is a signal to MEF that the constructor it annotates
should be used to compose the type.

TIP The [ImportingConstructor] isn’t necessary for default constructors.
Use it if a class has no default constructor, or if composition should happen
through a different constructor than the default.

We can also use an [Import] attribute to sup-
port PROPERTY INJECTION, but we’ll get back
to that in section 15.4.3, which deals explic-
itly with this pattern. Likewise, there’s an
[ImportMany] attribute which is used to
import sequences of parts, but we’ll deal with
that in section 15.3.2.

 Importing and exporting parts relies on
applying attributes, and because attributes
are compiled into the type, this is about as
inflexible as it gets. MEF instead gets its flexi-
bility from catalogs.

15.1.3 Working with catalogs

A catalog encapsulates a collection of parts that
the container can use to compose an object
graph. In this section, we’ll review various types
of catalogs that MEF makes available.

USING CATALOGS WITH CONTAINERS

In section 15.1.1, you already saw an example
of a catalog and a container interacting:

var catalog = new
TypeCatalog(typeof(SauceBéarnaise));

var container = new
CompositionContainer(catalog);

Here you use a TypeCatalog with a single
type, but you can create a Composition-
Container with any ComposablePartCatalog;
TypeCatalog is one child class among several.
Figure 15.4 sketches the type hierarchy.

DEFINITION A catalog is any class that
derives from the abstract Composable-
PartCatalog class.

As the name implies, a ComposablePartCatalog is a catalog of parts that a Composition-
Container uses to match imports with exports. One of the CompositionContainer

Figure 15.4 MEF include four concrete
catalogs, but we can also conceivably define
custom catalogs. It may be fairly
straightforward to implement a catalog that
acts as a Decorator for other catalogs (for
example, a filtering catalog), whereas a true
custom catalog would be more involved.

505Introducing MEF
class’s constructor overloads enables us to supply a ComposablePartCatalog, and this
is the constructor we’ve been using so far:

public CompositionContainer(ComposablePartCatalog catalog,
 params ExportProvider[] providers)

In addition to accepting a ComposablePartCatalog instance, this constructor also
accepts a params array of ExportProviders, which is another extensibility mechanism
outside the scope of this chapter.

 Because ComposablePartCatalog is an abstract class and CompositionContainer
accepts any derived class, we can in theory create custom catalogs from scratch. This is
a major SEAM for MEF and can even be used to define alternatives to the MEF’s default
attributed model for defining imports and exports. Although this is possible, it’s also a
lot of work, so it isn’t something we’ll cover in this chapter.

TIP The MEF Contrib open source project4 provides an example of a custom
ComposablePartCatalog that completely replaces the attributed configura-
tion model with a more open model that looks more like other DI CONTAINERS.

All the catalogs provided with MEF in .NET 4 use [Import] and [Export] attributes to
define imports and exports, but they locate parts in different ways. As an example,
TypeCatalog locates parts by reading attributes off the types contained in the catalog.

USING TYPE CATALOGS

The TypeCatalog class lets us define a catalog from a list of types, with the underly-
ing assumption that these types define imports and exports via attributes. There are
two overloaded constructors that both enable us to provide an arbitrary number of
Type instances:

public TypeCatalog(params Type[] types)
public TypeCatalog(IEnumerable<Type> types)

As an example, to be able to compose Mayonnaise from the adapters you created in
listings 15.1 and 15.2, you can create a catalog like this:

var catalog = new TypeCatalog(
 typeof(MayonnaiseAdapter),
 typeof(EggYolkAdapter),
 typeof(OliveOilAdapter));

This is the minimal catalog that enables you to resolve Mayonnaise. If you remove any
of the three adapter types, exports would be missing. In addition to letting you resolve
Mayonnaise itself, this catalog also enables you to resolve EggYolk and OliveOil, but
nothing else.

 Obviously you could provide more types to a TypeCatalog to offer more exports,
but you must explicitly provide the list of types. This makes sense for small scenarios
with limited scope. The advantage is that you can pick only those types from which

4 http://mefcontrib.codeplex.com/

http://mefcontrib.codeplex.com/

506 CHAPTER 15 MEF
you wish to compose. If you have types that export competing parts, you can select
only the ones you want.

TIP You can create different adapters that export the same part in mutually
exclusive ways, and supply only one of them to a TypeCatalog. When writing
the sample code for this chapter I used this trick to vary the attributes of
MayonnaiseAdapter without having to edit the code.

The disadvantage of using a TypeCatalog is that you must explicitly supply all the
types. When you add a new type to an assembly, you also need to add it to a TypeCatalog
if you want to include it. This violates the DRY5 Principle. You could get around that
issue by writing code that uses Reflection to scan an assembly for all public types, but
you don’t have to do that because there’s already a catalog that does exactly that.

USING ASSEMBLY CATALOGS

The AssemblyCatalog class scans an assembly for all imports and exports defined in
that assembly. This enables us to keep adding parts to an assembly without having to
remember to also add the part to a catalog.

 Using AssemblyCatalog is as simple as providing an Assembly instance via
the constructor:

var assembly = typeof(Steak).Assembly;
var catalog = new AssemblyCatalog(assembly);

Here you use an indiscriminate representative type (Steak) to define the assembly,
but any method that creates the appropriate Assembly instance will do.

 There’s also a constructor overload that takes a file name instead of an Assembly
instance. This enables more loosely coupled scenarios because we can replace the .dll
file without recompiling the rest of the application. This moves us even closer toward
MEF’s raison d’être of enabling add-in scenarios. With the AssemblyCatalog, we could
write an imperative loop and create a catalog for each file we find in a given directory.
However, we don’t need to do that because MEF already provides a dedicated catalog
that does that.

USING DIRECTORY CATALOGS

The main purpose of MEF is to enable add-in scenarios. A common add-in architec-
ture is to designate a special directory for add-ins; any assembly placed in this direc-
tory will be loaded and used by the main application.

MEF supports this scenario through the DirectoryCatalog class. We supply a
directory path to the constructor, and it automatically scans that directory for .dll files
and loads all parts from the assemblies it finds:

var catalog = new DirectoryCatalog(directory);

An alternative constructor overload also enables us to specify a search pattern using
common wildcards.

5 Don’t Repeat Yourself.

507Introducing MEF
NOTE When MEF is used in its key role as an extensibility framework you
should expect DirectoryCatalog to be the most commonly used catalog.

Although we can place any number of assemblies in a directory and use a Directory-
Catalog to pick them up, we may want to combine catalogs from several different sources.
Even if we use a DirectoryCatalog to enable extensibility, we may also want to provide
some default or internal implementations of the relevant imports and exports. These
shouldn’t reside in the add-in folder because that would enable users to remove vital func-
tionality from the application. Such default implementations may be better provided by a
TypeCatalog, but that means that we must combine different catalogs into one.

USING AGGREGATE CATALOGS

To combine catalogs, we can use an AggregateCatalog, which is a Composite6 with
another name. It aggregates any number of other catalogs while being a catalog in its
own right:

var catalog = new AggregateCatalog(catalog1, catalog2);
var container = new CompositionContainer(catalog);

The four catalogs included with MEF already provide a good deal of flexibility, and we
can also implement custom catalogs for greater control. One example that is fairly
easy to implement and use could be a filtering catalog.

IMPLEMENTING A FILTERING CATALOG

Although it can be a rather intricate undertaking to implement a custom catalog com-
pletely from scratch, we can fairly easily implement a Decorator7 that modifies the
behavior of another catalog.

 The most obvious example is a filtering catalog that filters a decorated catalog.
The following listing shows a custom catalog that decorates another catalog and only
allows through those parts that export a contract containing the string Sauce ; you can
use it to get only the sauces from a catalog of all ingredients.

public class SauceCatalog : ComposablePartCatalog
{
 private readonly ComposablePartCatalog catalog;

 public SauceCatalog(ComposablePartCatalog cat)
 {
 if (cat == null)
 {
 throw new ArgumentNullException("cat");
 }

 this.catalog = cat;
 }

6 Gamma, Design Patterns, 163.
7 Ibid., 175.

Listing 15.3 Implementing a custom catalog

Derive from
ComposablePartCatalogb

Constructor
Injection

c

508 CHAPTER 15 MEF
 public override
 IQueryable<ComposablePartDefinition> Parts
 {
 get
 {
 return this.catalog.Parts.Where(def =>
 def.ExportDefinitions.Any(x =>
 x.ContractName
 .Contains("Sauce")));
 }
 }
}

To implement a custom catalog, you derive from the abstract ComposablePartCatalog
class B. Because you wish to decorate another catalog you request it via CONSTRUCTOR

INJECTION c.
 The Parts property d is the only abstract member of ComposablePartCatalog, so

this is the only member you must implement; there are other virtual members that you
can implement if you like, but this isn’t necessary for this example. The filter is imple-
mented by a Where expression that filters away all ComposablePartDefinitions that
don’t export any contract that contains the word Sauce.

 The SauceCatalog is specific, but you can generalize the concept to create a gen-
eral-purpose FilteringCatalog; the MEF documentation includes an example.8

Catalogs are an essential building block of MEF. Whereas attributes are static, catalogs
provide a certain flexibility that partially makes up for that. MEF comes with four built-
in catalogs that contain parts drawn from explicit types, from a single assembly, or
from assemblies found in a folder. When we need to combine parts from multiple cat-
alogs, we can use an AggregateCatalog.

MEF only supports configuration of parts via attributes, but if we need to compose
parts without attributes we can always create adapters that import and export those
parts. Such adapters can be used to bridge the gap between the static attributed
model and the container configuration we’re used to from other DI CONTAINERS. We

Custom catalogs
Perhaps listing 15.3 made you wonder: if we only need to implement a single property
to create a custom catalog, how can it be so difficult? The problem is that Composable-
PartDefinition is an abstract type without any public implementations. Implement-
ing a derived ComposablePartCatalog requires that we also implement a custom
ComposablePartDefinition. The pattern is now repeated because Composable-
PartDefinition defines another abstract method with a return type that has no pub-
lic implementation. Although it’s possible to implement a custom catalog, it’s outside
the scope of this book.

8 http://mef.codeplex.com/wikipage?title=Filtering%20Catalogs

Implement
filter

d

http://mef.codeplex.com/wikipage?title=Filtering%20Catalogs

509Managing lifetime
can subclass the existing catalog types to pre-package a set of parts or adapters that
can later be combined with an AggregateCatalog to compose an application.

 Until now, we’ve only looked at how to define imports and exports so that MEF can
compose object graphs. There are other dimensions of DI that we have yet to look at.
One of the most important topics is how to manage OBJECT LIFETIME.

15.2 Managing lifetime
In chapter 8, we discussed LIFETIME MANAGEMENT, including the most common concep-
tual lifetime styles such as SINGLETON and TRANSIENT. It’s easy to get an overview of the
available lifestyles in MEF, because there are only the two shown in table 15.3.

NOTE MEF calls lifestyles creation policies.

MEF’s implementation of both SINGLETON and TRANSIENT are equivalent to the general
lifestyles described in chapter 8, so I won’t spend much time on them in this chapter.

TIP The default lifestyle in MEF is SINGLETON. This is different from many
other containers. As we discussed in chapter 8, SINGLETON is the most efficient,
although not always the safest, of all lifestyles, so MEF’s default prioritizes effi-
ciency over safety.

There are only two creation policies, and it isn’t possible to implement custom lifetimes,
so compared to the other chapters in part 4, this section will be rather short. You’ll see
how to declare lifestyles for parts and how to release components. At the end of this sec-
tion, you should be able to use MEF’s creation policies in your own application.

 Consistently with the rest of MEF’s API, creation policy is defined with attributes.

15.2.1 Declaring creation policy

Declaring the creation policy for a part is as easy as adding the [PartCreationPolicy]
attribute to a class:

[Export(typeof(IIngredient))]
[PartCreationPolicy(CreationPolicy.NonShared)]
public class SauceBéarnaise : IIngredient { }

The [PartCreationPolicy] attribute requires that you specify a CreationPolicy
value. Here you specify NonShared to declare SauceBéarnaise as TRANSIENT, but as
table 15.4 shows, the CreationPolicy enum has a few other options.

Table 15.3 MEF lifestyles

Name Comments

Shared You should consider this the default, although it depends on matching imports and
exports. This is MEF’s name for the SINGLETON lifestyle.

NonShared MEF’s name for the TRANSIENT lifestyle. Instances are tracked by the container.

510 CHAPTER 15 MEF
NOTE The [PartCreationPolicy] attribute can only be applied to classes.
This is different than the [Import] and [Export] attributes that can be applied
to classes, members, and parameters.

It isn’t surprising that we can specify the values Shared and NonShared, but the Any
value may come as a surprise. We’ll look at the Any value shortly, but before we do that
we should first complete the short tour of Shared and NonShared.

EXPORTING WITH CREATION POLICIES

As we just discussed, we specify the creation policy with the [PartCreationPolicy]
attribute. If we don’t supply this attribute, the default creation policy is Any. However,
if we stick with the standard [Import] and [ImportingConstructor] attributes you’ve
seen in this chapter so far, this effectively defaults to SINGLETON behavior.

 In that context, the following two examples are equivalent:

[Export(typeof(IIngredient))]
public class SauceBéarnaise : IIngredient { }

[Export(typeof(IIngredient))]
[PartCreationPolicy(CreationPolicy.Shared)]
public class SauceBéarnaise : IIngredient { }

The only difference between the top two and the bottom three lines of code is that in
the lower example you explicitly state that the part is a SINGLETON. As long as the
importer doesn’t specifically request a particular creation policy, the behavior will
be identical.

 The difference is that the top example has an implicit creation policy value of Any.
Whereas in most cases this will default to SINGLETON behavior, it’s a little more complex
than that.

IMPORTING WITH CREATION POLICY REQUIREMENTS

CreationPolicy.Any explicitly states that the creation policy of the part hasn’t been
decided, and that matching of imports and export will decide the lifetime.

 Among the many options MEF gives us for importing DEPENDENCIES is a feature that
enables us to require a part with a certain creation policy. This might look like this:

[ImportingConstructor]
public Mayonnaise(

Table 15.4 CreationPolicy values

Value Description

Any This is the default value. The part can be either a SINGLETON or TRANSIENT, but unless
NonShared is explicitly requested, the part will behave as Shared.

Shared The part is a SINGLETON.

NonShared The part is always TRANSIENT.

511Managing lifetime
 [Import(RequiredCreationPolicy = CreationPolicy.NonShared)]
 EggYolk eggYolk,
 OliveOil oil)
{ }

This Mayonnaise constructor explicitly states that only fresh egg yolks are accepted.
From a culinary perspective, this might not sound so bad, but when it comes to code,
this creates a hard constraint on the importing part. This requirement is compiled
into the Mayonnaise class via the [Import] attribute that annotates the eggYolk con-
structor argument. Notice that only the eggYolk parameter is annotated, allowing you
to use olive oil from the same bottle to make mayonnaise more than once.

WARNING Specifying a creation policy requirement in a compiled attribute on
the consumer is a variation of the CONTROL FREAK anti-pattern. MEF allows it, but
you should abstain from it, because it constrains your options for composition.

The RequiredCreationPolicy property has the potential of changing the context of
matching exports with imports. When we don’t use it, we accept anything (Shared and
NonShared alike), but when we do use it, incompatible exports will be rejected.

 Do you recall table 15.2 that describes how imports and exports are matched on
cardinality? Matching on creation policy is another dimension of MEF’s matching
algorithm. Table 15.5 shows how creation policies are matched.

Remember that matching on creation policy is only one dimension of matching imports
and exports, and all constraints must be satisfied before a match can be made. Keeping
imports unspecified with respect to creation policy is by far the preferable option.

 In this section, you saw that creation policy is defined with attributes, like imports
and exports in general. Specifying creation policies is the first part of LIFETIME MANAGE-
MENT, but after we resolve object graphs that may contain parts with mixed lifetimes,
we should also remember to release them again.

15.2.2 Releasing objects

As discussed in section 8.2.2, it’s important to release objects when we’re done with
them so that any disposable instances can be disposed of if their lifetime is up. With
MEF, this is fairly easy to accomplish. We can explicitly release exports, or we can dis-
pose of the entire container when we don’t need it any longer.

Table 15.5 Import and export creation policy matches

Export.Any Export.Shared Export.NonShared

Import.Any Shared Shared NonShared

Import.Shared Shared Shared No match

Import.NonShared NonShared No match NonShared

512 CHAPTER 15 MEF
RELEASING EXPORTS

Releasing an export is easy, but a quirk of MEF is that, although we can release
exports, we can’t release exported values. What’s the difference?

 This is an exported value:

var ingredient = container.GetExportedValue<IIngredient>();

As you saw in section 15.1.1, the GetExportedValue method returns an instance of the
requested type, so that ingredient is an instance of IIngredient. As an alternative to
requesting the exported value, you can request the export:

var x = container.GetExport<IIngredient>();

Instead of returning an IIngredient instance, the GetExport method returns a
Lazy<IIngredient>. You can still get the exported value from the Value property on
the export:

var ingredient = x.Value;

Whereas x is an instance of Lazy<IIngredient>, ingredient is an instance of
IIngredient. When you want to release the resolved components, you must keep the
export around because there’s only one Release method available on Composition-
Container:

public void ReleaseExport<T>(Lazy<T> export)

The ReleaseExport method requires the export and not the exported value. This
means that you can’t release the exported value directly by supplying the ingredient
variable, but must keep the export around to release it:

container.ReleaseExport(x);

Because ingredient was created from x, it’s released when you release the export like
that. Disposable DEPENDENCIES are properly disposed of if their lifetime is up. Releasing
parts is as easy as invoking the ReleaseExport method, but you must keep around the
original export to be able to do it.

 It’s important to be able to release exports without disposing of the entire con-
tainer in scenarios where the same container resolves many instances. This is a typical
scenario in web applications and web services where the same container handles mul-
tiple requests. On the other hand, in client applications, they should only resolve a
single object graph, in which case we can dispose of the container when the applica-
tion shuts down.

DISPOSING OF THE CONTAINER

Client applications like WPF, Windows Forms, or console applications should follow
the pure REGISTER RESOLVE RELEASE pattern, only composing a single object graph for
the entire lifetime of the application. This means that we only need to release the
object graph at the end of the application’s lifetime.

 Although we can still release the export with the ReleaseExport method, an easier
alternative that doesn’t require us to keep a reference to the export is to dispose of

513Working with multiple components
the container itself. When the application exits, the container is no longer needed, so
we can properly release all parts by disposing of the container:

container.Dispose();

Disposing of the container releases all parts, disposing of both SINGLETON and TRAN-
SIENT disposables.

 This completes our tour of LIFETIME MANAGEMENT with MEF. Parts can be composed
from constituents with mixed lifestyles, and this is even true when we define multiple
exports of the same ABSTRACTION. We have yet to look at how to work with multiple
parts, so we’ll now turn our attention in that direction.

15.3 Working with multiple components
DI CONTAINERS thrive on distinctness but have a hard time with ambiguity. When using
CONSTRUCTOR INJECTION a single constructor is preferred over overloaded constructors
because it’s evident which constructor to use when there’s no choice.9 This is also the
case when mapping from ABSTRACTIONS to concrete types. If we attempt to map multi-
ple concrete types to the same ABSTRACTION, we introduce ambiguity.

 Despite the undesirable qualities of ambiguity, we often need to work with multiple
implementations of a single interface. This can be the case in these situations:

■ Different concrete types should be used for different consumers.
■ DEPENDENCIES are sequences.
■ Decorators are in use.

In this section, we’ll look at each of these cases and see how MEF addresses each one
in turn. When we’re done, you should be able to annotate and successfully resolve
parts even when multiple implementations of the same ABSTRACTION are in play.

NOTE In this section, we don’t discuss runtime INTERCEPTION because MEF
doesn’t support it.

Sometimes we need to provide more fine-grained control than what AUTO-WIRING

allows. The next section describes how we can do that with MEF.

15.3.1 Selecting among multiple candidates

AUTO-WIRING is convenient and powerful but provides us with little control. As long as
all ABSTRACTIONS are distinctly mapped to concrete types we have no problems, but
as soon as we introduce more implementations of the same interface, ambiguity rears
its ugly head.

 First we need a little recap of how MEF deals with multiple exports of the same
ABSTRACTION.

9 Even in this case, however, MEF still requires the redundant [ImportingConstructor] attribute.

514 CHAPTER 15 MEF
WORKING WITH MULTIPLE IMPLEMENTATIONS OF THE SAME EXPORT

As you saw in section 15.1.2, you can create multiple parts for the same export:

[Export(typeof(IIngredient))]
public class SauceBéarnaise : IIngredient { }

[Export(typeof(IIngredient))]
public class Steak : IIngredient { }

This example defines both SauceBéarnaise and Steak as IIngredient exports. How-
ever, contrary to most other DI CONTAINERS, MEF has no concept of a default compo-
nent. There’s either a single export of a part, or there are multiple exports. This is the
concept of cardinality that you saw illustrated by table 15.2. When you export both
SauceBéarnaise and Steak as IIngredient you have multiple exports and you can
only resolve them by importing multiple instances.

 With the two exports, trying to resolve a single IIngredient instance throws
an exception:

var ingredient = container.GetExportedValue<IIngredient>();

This throws an exception because there are multiple exports of IIngredient and MEF
refuses to pick one over the other. This makes a lot of sense when we consider the
core scenario of MEF: in extensibility scenarios, we’ll typically get the exports from
assemblies in a folder. Exports are add-ins, so at design time we don’t know which
exports will be available—if any. In such a context, it doesn’t make much sense to pick
a single export at the expense of others. Either we must make the exports unambigu-
ous in some other way, or we must be able to deal with a multitude. We’ll shortly
return to the subject of importing multiple components, but first we’ll look at the
options we have for making exports more distinct.

 One way we can make an export more distinct is by naming it. An overload to the
[Export] attribute’s constructor allows us to supply a name for the export:

[Export("sauce", typeof(IIngredient))]
public class SauceBéarnaise : IIngredient { }

[Export("meat", typeof(IIngredient))]
public class Steak : IIngredient { }

Instead of defining two parts that provide the same export (IIngredient), this exam-
ple defines two different exports: one that exports the combination of IIngredient
and the name sauce, and one that exports the combination of IIngredient and the
name meat. Now there’s no export of the unnamed IIngredient contract.

NOTE When exporting only named types, there’s no export for the
unnamed type.

If you attempt to resolve an unnamed IIngredient, an exception will be thrown:

var ingredient = container.GetExportedValue<IIngredient>();

Although that throws an exception, you can resolve both named IIngredient exports
by asking specifically for them:

515Working with multiple components
var meat = container.GetExportedValue<IIngredient>("meat");
var sauce = container.GetExportedValue<IIngredient>("sauce");

Explicitly resolving a named export by using the appropriate overload for GetExported-
Value is a good way to demonstrate how parts are resolved, but when we follow the
REGISTER RESOLVE RELEASE pattern, it shouldn’t be necessary to request a specifically
named component in this way.

TIP If you find yourself invoking the GetExportedValue method with a specific
name, consider whether you can change your approach to be less ambiguous.

We can use named exports to select among multiple alternatives when defining parts
to be matched with a given consumer.

IMPORTING NAMED EXPORTS

As useful as AUTO-WIRING is, sometimes we need to override the normal behavior to
provide fine-grained control over which DEPENDENCIES go where, but it may also be that
we need to address an ambiguous API. As an example, consider this constructor:

public ThreeCourseMeal(ICourse entrée,
 ICourse mainCourse, ICourse dessert)

In this case, you have three identically typed DEPENDENCIES that each represents a differ-
ent concept. In most cases, you want three distinct exports to fill in the appropriate
parameters. The following listing shows how you can annotate the desired classes to
provide the necessary exports.

[Export("entrée", typeof(ICourse))]
public class Rillettes : ICourse { }

[Export("mainCourse", typeof(ICourse))]
public class CordonBleu : ICourse { }

[Export("dessert", typeof(ICourse))]
public class MousseAuChocolat : ICourse { }

You annotate the Rillettes with the “entrée” named export, the CordonBleu class
with the “mainCourse” named export, and the MousseAuChocolat with the “dessert”
named export.

 Given these exports, you can annotate the ThreeCourseMeal class’s constructor
with matching [Import] attributes like this:

[ImportingConstructor]
public ThreeCourseMeal(
 [Import("entrée", typeof(ICourse))]ICourse entrée,
 [Import("mainCourse", typeof(ICourse))]ICourse mainCourse,
 [Import("dessert", typeof(ICourse))]ICourse dessert)

Notice that you can apply the [Import] attribute to constructor arguments. Normally
you don’t need to do this explicitly when you already have the [ImportingConstructor]

Listing 15.4 Defining named exports

516 CHAPTER 15 MEF
attribute on the constructor, but in this case you need to annotate each parameter to
match a different named export. Because you have the matching exports defined in
listing 15.4, you can now successfully resolve ThreeCourseMeal from these parts.

TIP If you can’t (or don’t want to) alter the classes directly, you can create
exporting adapters instead.

We can always match named imports with similarly named exports to get rid of ambi-
guity, but a better solution is to design the underlying API to get rid of that ambiguity.
It often leads to a better overall design.

 In the next section, you’ll see how you can use the less ambiguous and more flexi-
ble approach where you allow any number of courses in a meal. To this end, you must
learn how MEF deals with lists and sequences.

15.3.2 Wiring sequences

In section 10.3.2, we discussed how to refactor an explicit ThreeCourseMeal class to
the more general-purpose Meal class with this constructor:

public Meal(IEnumerable<ICourse> courses)

In this section, we’ll look at how we can configure MEF to wire up Meal instances
with appropriate ICourse DEPENDENCIES. When we’re done, you should have a good
idea of the options available to you when you need to configure parts with sequences
of DEPENDENCIES.

AUTO-WIRING SEQUENCES

As we discussed in sections 15.1.2 and 15.3.1, cardinality is an explicit concept with
MEF. This also means that MEF has an inherent understanding of multiple imports
and exports, but that we need to be explicit about it. In section 15.1.2, you saw
how you must apply the [ImportingConstructor] attribute to explicitly enable

Metadata
Matching imports with exports using named contracts is a convenient and easy way
to address ambiguity. However, using hard-coded strings as we have done in this
chapter isn’t refactoring-safe. We can attempt to remedy this by defining constants
which we use instead of hard-coded strings, but this doesn’t ensure that all develop-
ers remember to use the constants.

Another alternative is to use MEF’s metadata feature. This enables us to define cus-
tom export attributes that encapsulate extra metadata we would like to attach to an
export. A full treatment is beyond the scope of this book, but a good overview is pro-
vided in Glenn Block’s MSDN article.10

10 Block, Managed Extensibility Framework.

517Working with multiple components
CONSTRUCTOR INJECTION. Although it’s necessary to apply the [ImportingConstructor]
attribute to the Meal constructor, it isn’t enough. This instructs MEF that the Meal
constructor should be used for composition, but the implied import here is
IEnumerable<ICourse>.

 You can export ICourse parts in a manner similar to listing 15.4. However, now
that you don’t want to explicitly distinguish between them, none of them should
be named:

[Export(typeof(ICourse))]
public class Rillettes : ICourse { }

[Export(typeof(ICourse))]
public class CordonBleu : ICourse { }

[Export(typeof(ICourse))]
public class MousseAuChocolat : ICourse { }

Notice that the only difference from listing 15.4 is that none of the exports are
named. You now have multiple exports of ICourse, but that doesn’t in itself bridge the
gap from multiple ICourse exports to a single import of IEnumerable<ICourse>. The
last step is to apply the [ImportMany] attribute:

[ImportingConstructor]
public Meal([ImportMany]IEnumerable<ICourse> courses)

The [ImportMany] attribute is used to explicitly map multiple exports to a single
import of a sequence. The exports can originate from different assemblies but will be
composed into a single sequence. When you resolve IMeal, you get a Meal instance
with the three ICourse exports: Rillettes, CordonBleu, and MousseAuChocolat.

 Using the [ImportMany] attribute, a part can import a sequence of all the exports
that match. Only when we need to explicitly pick only some instances from a larger set
do we need to do more. Let’s see how to do that.

PICKING ONLY SOME EXPORTS FROM A LARGER SET

When we deal with a multitude of exports, the strategy implied by [ImportMany] is
often the correct policy. This provides the importer with all the exports of the desired
contract, but as figure 15.5 shows, there may be cases where we want to pick only some
exports from the larger set of all exports.

 When we previously let MEF AUTO-WIRE all exports it corresponded to the situation
depicted on the right side of figure 15.5. If we want to compose a part as shown on the
left side, we must explicitly define which exports should be used.

 The only way we can do that is to once more resort to named exports. However,
compared to listing 15.4, the solution is a bit different because now we want to use a
named export to mark all those exports we wish to import into the Meal class. As the
following listing demonstrates, this doesn’t preclude the parts from exporting other
contracts, as well as a set-based contract.

518 CHAPTER 15 MEF
[Export(typeof(ICourse))]
[Export("meal", typeof(ICourse))]
public class Rillettes : ICourse { }

[Export(typeof(ICourse))]
public class LobsterBisque { }

[Export(typeof(ICourse))]
[Export("meal", typeof(ICourse))]
public class CordonBleu : ICourse { }

[Export(typeof(ICourse))]
[Export("meal", typeof(ICourse))]
public class MousseAuChocolat : ICourse { }

The three classes Rillettes, CordonBleu, and MousseAuChocolat all export a contract
with the name meal B. This named contract can be used to import only those parts that
export this particular contract. However, for other consumers that may want all ICourse
exports irrespective of the name, you can also export these three classes as the unnamed
ICourse contract c; you can add as many [Export] attributes to a part as you’d like.

 The LobsterBisque class only exports the unnamed ICourse contract, but not the
named meal contract d. This means that those consumers that wish to import all
ICourse exports can do that using the default [ImportMany] attribute as you saw

Listing 15.5 Targeting exports for a set

Figure 15.5 In the situation on the left, we wish to explicitly select only certain DEPENDENCIES from
the larger list of all exports. This is different from the situation on the right, where we indiscriminately
want them all.

No targeted
export

dNormal
export

c
Targeted
export

b

519Working with multiple components
before. However, you can also state that a part only imports those parts that explicitly
export the named meal contract:

[ImportingConstructor]
public Meal(
 [ImportMany("meal", typeof(ICourse))]
 IEnumerable<ICourse> courses)

Instead of using the default constructor of the [ImportMany] attribute, you can use a
constructor overload that enables you to import only a named contract B. The attri-
bute annotates the courses parameter, which means that only those parts that export
the named meal contract will be composed into the courses sequence. Given the
exports from listing 15.5, you’d end up with a Meal with Rillettes, CordonBleu, and
MousseAuChocolat, but without the LobsterBisque.

 Named exports can be used as markers so that the marked exports can be selec-
tively composed into consumers. Because you can apply as many [Export]attributes as
you’d like, you can mark an export for more than a single purpose.

 In both of the cases shown in figure 15.5, the [ImportMany] attribute is the key to
importing a multitude of exports into a single consumer. Importing sequences is an
important way of dealing with ambiguity, and with its concept of cardinality and
explicit attributes, MEF makes this clear.

 Consumers that rely on sequences of DEPENDENCIES may be the most intuitive exam-
ple of having multiple exports of the same ABSTRACTION, but before we leave this sub-
ject completely, we need to look at one last, and perhaps a bit surprising, case where
multiple exports come into play.

15.3.3 Wiring Decorators
In section 9.1.2, we discussed how the Decorator design pattern is useful when imple-
menting CROSS-CUTTING CONCERNS. By definition, Decorators introduce multiple types
of the same ABSTRACTION. At the very least, we have two implementations of an ABSTRAC-
TION: the Decorator itself and the decorated type. If we stack the Decorators, we may
have even more.

 This is another example of having multiple exports of the same contract. Unlike
the previous sections, these exports aren’t conceptually equal, but rather are DEPEN-
DENCIES of each other. In this section, you’ll see how to configure parts to deal with this
pattern. There are several ways we can compose Decorators with MEF, but because
they’re all similar, we’ll look at only one.

DECORATING WITH CONCRETE CONTRACTS

Consider our trusty Breading class, which is a Decorator of IIngredient. It uses CON-
STRUCTOR INJECTION to receive the instance it should decorate:

public Breading(IIngredient ingredient)

To make a Cotoletta, you’d like to decorate a VealCutlet (another IIngredient) with
the Breading class. One way you can accomplish this is to link the VealCutlet
together with the Breading class using the concrete VealCutlet class as a contract:

Import a
subset

b

520 CHAPTER 15 MEF
[Export(typeof(VealCutlet))]
public class VealCutlet : IIngredient { }

Notice that the VealCutlet part only exports the concrete type, but not IIngredient—
even though it implements the interface. The Breading constructor can now explic-
itly state that it imports the concrete VealCutlet contract:

[ImportingConstructor]
public Breading(
 [Import(typeof(VealCutlet))]
 IIngredient ingredient)

MEF matches exports and imports, so as long as there’s an unambiguous match, the com-
position succeeds. VealCutlet implements IIngredient, so even though the matching
algorithm uses the concrete type as a contract, the parts are still compatible. However,
note that the compiler doesn’t guarantee this.

NOTE This approach is conceptually similar to the approach outlined in sec-
tion 14.3.3 where we used Unity to compose Breading and VealCutlet via the
concrete VealCutlet class.

NOTE Because the attribute is compiled into the class, it would’ve been even
simpler to change the Breading constructor to take a VealCutlet as a param-
eter instead of IIngredient. In my opinion, this is an excellent demonstra-
tion of the shortcomings of using attributes to guide composition.

Although the VealCutlet class implements IIngredient, it doesn’t export it. This is
an essential part of this approach. If VealCutlet had also exported IIngredient it
would’ve introduced ambiguity because Breading already exports the interface. This
would result in a cardinality mismatch because there would now be two exports of
IIngredient, and you wouldn’t be able to resolve Breading by importing IIngredient.

WARNING Wiring Decorators isn’t possible if the decorated export must also
export its ABSTRACTION.

The Breading and VealCutlet parts are composed together because they have match-
ing contracts. The exact form of the contract is less important. In this example, you
used the concrete type of the decorated class, but you also could’ve used a named con-
tract, or for that matter, any distinct string. The important part is that the match
between the two parts is unambiguous.

MEF enables us to work with multiple exports in several different ways. We can con-
figure exports as alternatives to each other, as peers resolved as sequences, or as hier-
archical Decorators. In every case we must explicitly specify how MEF should match
imports and exports.

 This is also the case when we need to deal with APIs that deviate from CONSTRUCTOR

INJECTION. So far you’ve seen how to compose parts, including how to specify creation
policies and how to deal with multiple exports, but until now we have only used CON-
STRUCTOR INJECTION. Sometimes we must deal with other patterns and APIs, so in the

521Composing difficult APIs
next section, we’ll review how we can deal with classes that must be instantiated in spe-
cial ways.

15.4 Composing difficult APIs
Until now, we’ve considered how we can compose parts that use CONSTRUCTOR INJEC-
TION. As a general observation, one of the many benefits of CONSTRUCTOR INJECTION is
that DI CONTAINERS can easily understand how to compose and create all classes in a
dependency graph. MEF, on the other hand, requires explicit use of the [Importing-
Constructor] attribute, so this is less true for MEF.

 In this section, you’ll see how to deal with primitive constructor arguments, static fac-
tories, and PROPERTY INJECTION. These all require special attention. Let’s start by looking
at classes that take primitive types, such as strings or integers as constructor arguments.

15.4.1 Compositing primitive parts

As long as we inject ABSTRACTIONS into consumers all is well. However, it becomes more
difficult when a constructor depends on a primitive type, such as a string, a number,
or an enum. This is particularly the case for data access implementations that take a
connection string as a constructor parameter, but is a more general issue that applies
to all strings and numbers.

 Conceptually, it doesn’t always make much sense to register a string or number as a
contract. What does it mean to import a string or a number if the type is the only
thing we have to go by? Do we really want just any string? Most of the time, we want a
specific string, such as a connection string. The same sort of consideration can be
applied to any primitive value, including strings, numbers, and enums.

 Consider, as an example, this constructor:

public ChiliConCarne(Spiciness spiciness)

In this example, Spiciness is an enum:

public enum Spiciness
{
 Mild = 0,
 Medium,
 Hot
}

WARNING As a rule of thumb, enums are code smells and should be refac-
tored to polymorphic classes.11 But they serve us well for this example.

To properly annotate ChiliConCarne, you can add the [ImportingConstructor] attri-
bute to the constructor. To export Spiciness it makes most sense to do it via an adapter:

public class SpicinessAdapter
{

11 Martin Fowler et al., Refactoring: Improving the Design of Existing Code. (New York: Addison-Wesley, 1999), 82.

522 CHAPTER 15 MEF
 [Export]
 public Spiciness Spiciness
 {
 get { return Spiciness.Hot; }
 }
}

This adapter exports the value Spiciness.Hot so that if you compose ChiliConCarne
from a catalog containing those parts, we’ll get a hot Chili con Carne.

TIP Instead of exporting and importing the Spiciness type itself, you can
instead choose to use a custom string as a shared contract. That would
require you to add an additional [Import] attribute to the spiciness con-
structor argument to specify the contract.

With adapters and contracts, we can properly match primitive types with imports. This
still works well when all types and constructors are public, but how do we deal with
types without public constructors?

15.4.2 Composing parts with non-public constructors
Some classes can’t be instantiated through a public constructor. Instead, we must use
some sort of factory to create instances of the type. This is always troublesome for DI
CONTAINERS because by default they look after public constructors.

 Consider this example constructor for the public JunkFood class:

internal JunkFood(string name)

Even though the JunkFood class is public, the constructor is internal. Obviously,
instances of JunkFood should be created through the static JunkFoodFactory class:

public static class JunkFoodFactory
{
 public static IMeal Create(string name)
 {
 return new JunkFood(name);
 }
}

Assuming that you can’t change this API, then how do you deal with this situation so
that you can properly wire and compose JunkFood? The answer is the same as in any
other case where you can’t change the original exported type: you use an adapter like
the one in the following listing.

public class JunkFoodAdapter
{
 private readonly IMeal junk;

 public JunkFoodAdapter()
 {
 this.junk = JunkFoodFactory.Create("chicken meal");
 }

Listing 15.6 Exporting a type with an internal constructor

523Composing difficult APIs
 [Export]
 public IMeal JunkFood
 {
 get { return this.junk; }
 }
}

The JunkFoodAdapter encapsulates the knowledge that a JunkFood instance is created
with the JunkFoodFactory.Create method. It creates the instance in the constructor
and exports it via a property. Because the type of the property is IMeal, this is also the
exported contract.

 With the JunkFoodAdapter class available in a catalog, you can successfully resolve
IMeal and get back a “chicken meal” JunkFood instance.

 The last common deviation from CONSTRUCTOR INJECTION we’ll examine here is
PROPERTY INJECTION.

15.4.3 Wiring with Property Injection

PROPERTY INJECTION is a less well-defined form of DI because we aren’t forced by the
compiler to assign a value to a writable property. Ironically, MEF is designed with PROP-
ERTY INJECTION in mind much more than CONSTRUCTOR INJECTION. This explains why we
need to explicitly apply attributes to everything we wish to compose: from MEF’s per-
spective, the default composition pattern is PROPERTY INJECTION (which is ambiguous)
and CONSTRUCTOR INJECTION is a less idiomatic alternative.

 Although I consider this perspective both backwards and wrong, it does make
PROPERTY INJECTION easy to apply with MEF. All we have to do is apply the [Import] attri-
bute to a property.

 Consider this CaesarSalad class:

public class CaesarSalad : ICourse
{
 public IIngredient Extra { get; set; }
}

It is a common misconception that a Caesar Salad includes chicken; this isn’t the case.
At its core, a Caesar Salad is a salad, but it tastes great with chicken, so many restau-
rants offer chicken as an extra ingredient. The CaesarSalad class models this by
exposing a writable property named Extra.

 To enable PROPERTY INJECTION for CaesarSalad, all you have to do is to apply the
[Import] attribute:

[Import(AllowDefault = true)]
public IIngredient Extra { get; set; }

In this book, I consistently consider PROPERTY INJECTION a pattern that applies when it’s
optional to supply the DEPENDENCY from the outside. This makes sense because the
compiler doesn’t force you to assign a value to the property (as opposed to a construc-
tor argument). But this isn’t the view taken by MEF. By default, an import must be satis-
fied unless you explicitly state that it’s optional, using the AllowDefault property. To

524 CHAPTER 15 MEF
stay true to the PROPERTY INJECTION pattern as described here, you set the AllowDefault
property to true. This means that MEF will not throw an exception when it can’t satisfy
the IIngredient import.

 You should be aware that with AllowDefault set to true, MEF will explicitly assign
the default value (in this case null) to the property instead of ignoring it if it can’t sat-
isfy the import. To utilize this feature, you must be ready to deal with null values, but
this can wreak havoc with the class’s invariants; you should go to great lengths to avoid
assigning null to private fields.

 One way to deal with null values is to silently swallow such a value, like this:

[Import(AllowDefault = true)]
public IIngredient Extra
{
 get { return this.extra; }
 set
 {
 if (value == null)
 {
 return;
 }
 this.extra = value;
 }
}

You can explicitly check for null and return if the caller attempts to inject null B.
This violates the Principle of Least Astonishment, because callers may be surprised to
find that assigning a value has no effect, even though no exception is thrown. Once
again, you’re left with the experience that PROPERTY INJECTION is a more problematic
pattern which is best avoided unless absolutely warranted.

 On the surface, PROPERTY INJECTION is the idiomatic use case for MEF, but as is so
often the case, the devil is in the details. Even with MEF, I’d prefer to use CONSTRUCTOR

INJECTION as my default approach.
 In this section, you’ve seen how we can use MEF to deal with more difficult cre-

ational APIs. PROPERTY INJECTION is easy to apply, and the rest we can address with
exporting adapters. This is always the universal solution if all else fails and we can’t
change the parts.

15.5 Summary
Among all the DI CONTAINERS covered in part 4, MEF is special in more than one way.
First, it’s the only composition technology officially delivered and supported by Micro-
soft. Second, it isn’t a real DI CONTAINER, but rather an extensibility framework (as the
name Managed Extensibility Framework implies), so examining it as if it were a DI CON-
TAINER isn’t entirely fair.

 There are so many similarities between MEF and real DI CONTAINERS that this chap-
ter isn’t only warranted, but necessary. You need to understand in what ways MEF isn’t
a DI CONTAINER to make an informed decision on when to use it and when not to use it.

Silently ignore
null

b

525Summary
 This chapter demonstrated that we can squeeze a lot of regular DI CONTAINER func-
tionality out of MEF, but often in rather awkward ways. The most problematic part of
MEF is the dependency on attributes because it tightly couples issues such as lifetime
and set-based selection of imports to the type. In extensibility scenarios this isn’t an
issue, but when we work with composition of a full application, this constraint
becomes unwieldy.

 When we can’t, or don’t wish to, annotate our types with MEF attributes we can cre-
ate adapters that import and export the appropriate parts on behalf of the real imple-
mentation. In many ways, we can think of such MEF Adapters as MEF’s configuration
API, but compared to most other DI CONTAINERS’ strongly typed fluent interfaces, this is
still clunky. However, a MEF Adapter is a universally applicable trick we can use to
address particular challenges with MEF. Not only can we use them to compose unat-
tributed types with MEF, but we can also use them to export parts from factory meth-
ods, and so on.

 Does it make sense to use MEF as a DI CONTAINER in an application? As always, the
answer depends on circumstances. One of the strong arguments for using MEF is that
it ships as part of .NET 4 and Silverlight 4, so if the application targets these platforms,
MEF is already available. This isn’t only a question of convenience, but can also be a
huge benefit in organizations where policies dictate that only official Microsoft tech-
nologies can be used.

 Because MEF is an official Microsoft product we also get a different level of support
for MEF than we do for other DI CONTAINERS. We get the same support that we get for
the rest of .NET and Silverlight, and we can have confidence that MEF is going to be
around for a long time.

 Still, these benefits may not outweigh the disadvantages of using MEF in a role it
was not designed for. MEF was designed for extensibility scenarios, so it makes a lot of
sense to use it in applications where extensibility is a major feature. In such applica-
tions it may make sense to expand the responsibility of MEF to include composition of
the overall application, because it’s already in use.

 For applications where extensibility isn’t a feature it may make more sense to select
a dedicated DI CONTAINER for object composition.

 No matter which DI CONTAINER you select, or even if you prefer POOR MAN’S DI, I
hope that this book has conveyed one important point: DI doesn’t rely on a particular
technology, such as a particular DI CONTAINER. An application can, and should, be
designed using the DI-friendly patterns and practices presented in this book. When we
succeed in doing that, selection of a DI CONTAINER becomes of less importance; a DI
CONTAINER is a tool that composes our application, but ideally, we should be able to
replace one container with another without rewriting any other part of our applica-
tion than the COMPOSITION ROOT.

resources
All URLs listed here were valid at the time of publication. No doubt some of these
will change over time.

In print
Block, Glenn. “Managed Extensibility Framework: Building Composable Apps in

.NET 4 with the Managed Extensibility Framework.” MSDN Magazine, February
2010.

Brown, William J., et al. AntiPatterns: Refactoring Software, Architectures, and Projects in Cri-
sis. New York: Wiley Computer Publishing, 1998.

Cwalina, Krzysztof, and Brad Abrams. Framework Design Guidelines: Conventions, Idioms,
and Patterns for Reusable .NET Libraries. New York: Addison-Wesley, 2006.

Dahan, Udi. “Domain Models: Employing the Domain Model Pattern.” MSDN Maga-
zine, August 2009.

Evans, Eric. Domain-Driven Design: Tackling Complexity in the Heart of Software. New York:
Addison-Wesley, 2004.

Farkas, Shawn. “CLR Inside Out: Digging into IDisposable.” MSDN Magazine, July
2007.

Feathers, Michael. Working Effectively with Legacy Code. New York: Prentice Hall, 2004.
Fowler, Martin, et al. Patterns of Enterprise Application Architecture. New York: Addison-

Wesley, 2003.
———. Refactoring: Improving the Design of Existing Code. New York: Addison-Wesley, 1999.
Gamma, Erich, et al. Design Patterns. Elements of Reusable Object-Oriented Software. New

York: Addison-Wesley, 1994.
Howard, Michael, and David LeBlanc. Writing Secure Code, 2nd ed. New York: Microsoft

Press, 2003.
Martin, Robert C. Clean Code: A Handbook of Agile Software Craftmanship. New York:

Prentice Hall, 2008.
526

RESOURCES 527
Martin, Robert C., et al. Pattern Languages of Program Design 3. New York: Addison-
Wesley, 1998.

Meszaros, Gerard. xUnit Test Patterns: Refactoring Test Code. New York: Addison-Wesley,
2007.

Miller, Jeremy. “Patterns in Practice: Convention Over Configuration.” MSDN Maga-
zine, February 2009.

———. “Patterns in Practice: Functional Programming for Everyday .NET Develop-
ment.” MSDN Magazine, October 2009.

———. “Patterns in Practice: Internal Domain Specific Languages.” MSDN Magazine,
January 2010.

———. “Patterns in Practice: The Open Closed Principle.” MSDN Magazine, June
2008.

———. “Patterns in Practice: The Unit Of Work Pattern And Persistence Ignorance.”
MSDN Magazine, June 2009.

Nygard, Michael T. Release It! Design and Deploy Production-Ready Software. Cambridge,
Massachusetts: Pragmatic Bookshelf, 2007.

Osherove, Roy. The Art of Unit Testing with Examples in .NET. Shelter Island, New York:
Manning Publications, 2009.

Poppendieck, Mary, and Tom Poppendieck. Implementing Lean Software Development:
From Concept to Cash. New York: Addison-Wesley, 2007.

Seemann, Mark. “Unit Testing: Exploring The Continuum Of Test Doubles.” MSDN
Magazine, September 2007.

Skeet, Jon. C# in Depth. Shelter Island, New York: Manning Publications, 2008.
Smith, Josh. “Patterns: WPF Apps With The Model-View-ViewModel Design Pattern.”

MSDN Magazine, February 2009.

Online
Abdullin, Rinat. CQRS Starting Page.

http://abdullin.com/cqrs
Block, Glenn. Managed Extensibility Framework: Building Composable Apps in .NET 4 with

the Managed Extensibility Framework. 2010.
http://msdn.microsoft.com/en-us/magazine/ee291628.aspx

———. PrismShouldNotReferenceUnity. 2008.
http://blogs.msdn.com/gblock/archive/2008/05/05/prismshouldnotreference-
unity.aspx

———. Should I use MEF for my general IoC needs? 2009.
http://blogs.msdn.com/b/gblock/archive/2009/08/16/should-i-use-mef-for-my-
general-ioc-needs.aspx

Blumhardt, Nicholas. Container-Managed Application Design, Prelude: Where does the Con-
tainer Belong? 2008.
http://blogs.msdn.com/b/nblumhardt/archive/2008/12/27/container-managed-
application-design-prelude-where-does-the-container-belong.aspx

http://abdullin.com/cqrs
http://msdn.microsoft.com/en-us/magazine/ee291628.aspx
http://blogs.msdn.com/gblock/archive/2008/05/05/prismshouldnotreferenceunity.aspx
http://blogs.msdn.com/b/gblock/archive/2009/08/16/should-i-use-mef-for-my-general-ioc-needs.aspx
http://blogs.msdn.com/b/nblumhardt/archive/2008/12/27/container-managed-application-design-prelude-where-does-the-container-belong.aspx
http://blogs.msdn.com/b/nblumhardt/archive/2008/12/27/container-managed-application-design-prelude-where-does-the-container-belong.aspx

RESOURCES528
———. The Relationship Zoo. 2010.
http://nblumhardt.com/2010/01/the-relationship-zoo/

Cazzulino, Daniel. What is all the fuzz about the new common IServiceLocator. 2008.
http://www.clariusconsulting.net/blogs/kzu/archive/2008/10/03/
WhatisallthefuzzaboutthenewcommonIServiceLocator.aspx

Dahan, Udi. Domain Models: Employing the Domain Model Pattern. 2009.
http://msdn.microsoft.com/en-us/magazine/ee236415.aspx

Farkas, Shawn. CLR Inside Out: Digging into IDisposable. 2007.
http://msdn.microsoft.com/en-us/magazine/cc163392.aspx

Ferquel, Simon. [Xaml] IoC-enabled Xaml parser. 2010.
http://www.simonferquel.net/blog/archive/2010/02/19/xaml-ioc-enabled-xaml-
parser.aspx

Fowler, Martin. AnemicDomainModel. 2003.
http://www.martinfowler.com/bliki/AnemicDomainModel.html

———. Event Sourcing. 2005.
http://www.martinfowler.com/eaaDev/EventSourcing.html

———. InversionOfControl. 2005.
http://martinfowler.com/bliki/InversionOfControl.html

———. Inversion of Control Containers and the Dependency Injection pattern. 2004.
http://martinfowler.com/articles/injection.html

Hadlow, Mike. The MVC 3.0 IDependencyResolver interface is broken. Don’t use it with Wind-
sor. 2011.
http://mikehadlow.blogspot.com/2011/02/mvc-30-idependencyresolver-interface-
is.html

Howard, Rob. Provider Model Design Pattern and Specification, Part 1. 2004.
http://msdn.microsoft.com/en-us/library/ms972319.aspx

Koźmic, Krzysztof. How I use Inversion of Control containers. 2010.
http://kozmic.pl/2010/06/20/how-i-use-inversion-of-control-containers/

Lippert, Eric. Immutability in C# Part One: Kinds of Immutability. 2007.
http://blogs.msdn.com/ericlippert/archive/2007/11/13/immutability-in-c-part-
one-kinds-of-immutability.aspx

Martin, Robert C. The Principles of OOD. 2003.
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Miller, Jeremy. Patterns in Practice: Convention Over Configuration. 2009.
http://msdn.microsoft.com/en-us/magazine/dd419655.aspx

———. Patterns in Practice: Functional Programming for Everyday .NET Development. 2009.
http://msdn.microsoft.com/en-us/magazine/ee309512.aspx

———. Patterns in Practice: Internal Domain Specific Languages. 2010.
http://msdn.microsoft.com/en-us/magazine/ee291514.aspx

———. Patterns in Practice: The Open Closed Principle. 2009.
http://msdn.microsoft.com/en-us/magazine/cc546578.aspx

http://www.clariusconsulting.net/blogs/kzu/archive/2008/10/03/WhatisallthefuzzaboutthenewcommonIServiceLocator.aspx
http://www.simonferquel.net/blog/archive/2010/02/19/xaml-ioc-enabled-xaml-parser.aspx
http://www.martinfowler.com/bliki/AnemicDomainModel.html
http://www.martinfowler.com/eaaDev/EventSourcing.html
http://nblumhardt.com/2010/01/the-relationship-zoo/
http://msdn.microsoft.com/en-us/magazine/ee236415.aspx
http://msdn.microsoft.com/en-us/magazine/cc163392.aspx
http://martinfowler.com/bliki/InversionOfControl.html
http://martinfowler.com/articles/injection.html
http://mikehadlow.blogspot.com/2011/02/mvc-30-idependencyresolver-interface-is.html
http://msdn.microsoft.com/en-us/library/ms972319.aspx
http://kozmic.pl/2010/06/20/how-i-use-inversion-of-control-containers/
http://blogs.msdn.com/ericlippert/archive/2007/11/13/immutability-in-c-part-one-kinds-of-immutability.aspx
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://msdn.microsoft.com/en-us/magazine/dd419655.aspx
http://msdn.microsoft.com/en-us/magazine/ee309512.aspx
http://msdn.microsoft.com/en-us/magazine/ee291514.aspx
http://msdn.microsoft.com/en-us/magazine/cc546578.aspx

RESOURCES 529
———. Patterns in Practice: The Unit Of Work Pattern And Persistence Ignorance. 2009.
http://msdn.microsoft.com/en-us/magazine/dd882510.aspx

Munsch, John, et al. How to explain Dependency Injection to a 5-year old. 2009.
http://stackoverflow.com/questions/1638919/how-to-explain-dependency-injection-
to-a-5-year-old

Ottinger, Tim. Code is a Liability. 2007.
http://blog.objectmentor.com/articles/2007/04/16/code-is-a-liability

Palermo, Jeffrey. Constructor over-injection smell—follow up. 2010.
http://jeffreypalermo.com/blog/constructor-over-injection-smell-ndash-follow-up/

Pryce, Nat. “Dependency Injection” Considered Harmful. 2011.
http://www.natpryce.com/articles/000783.html

Rahien, Ayende: Reviewing NerdDinner. 2009.
http://ayende.com/Blog/archive/2009/07/30/reviewing-nerddinner.aspx

Seemann, Mark. Ambient Context. 2007.
http://blogs.msdn.com/ploeh/archive/2007/07/23/AmbientContext.aspx

———. Compose object graphs with confidence. 2011.
http://blog.ploeh.dk/2011/03/04/ComposeObjectGraphsWithConfidence.aspx

———. Interfaces are not abstractions. 2010.
http://blog.ploeh.dk/2010/12/02/InterfacesAreNotAbstractions.aspx

———. Pattern Recognition: Abstract Factory or Service Locator? 2010.
http://blog.ploeh.dk/2010/11/01/PatternRecognitionAbstractFactoryOrService-
Locator.aspx

———. Rebuttal: Constructor over-injection anti-pattern. 2010.
http://blog.ploeh.dk/2010/01/20/RebuttalConstructorOverinjectionAntipat-
tern.aspx

———. The Register Resolve Release pattern. 2010.
http://blog.ploeh.dk/2010/09/29/TheRegisterResolveReleasePattern.aspx

———. Service Locator is an Anti-Pattern. 2010.
http://blog.ploeh.dk/2010/02/03/ServiceLocatorIsAnAntiPattern.aspx

———. Unit Testing: Exploring The Continuum Of Test Doubles. 2007.
http://msdn.microsoft.com/msdnmag/issues/07/09/MockTesting/default.aspx

Smith, Josh. Patterns: WPF Apps With The Model-View-ViewModel Design Pattern. 2009.
http://msdn.microsoft.com/en-us/magazine/dd419663.aspx

Sturm, Oliver. Poll Results: IoC containers for .NET. 2010.
http://www.sturmnet.org/blog/2010/03/04/poll-results-ioc-containers-for-net

Sych, Oleg. How to use T4 to generate Decorator classes. 2007.
http://www.olegsych.com/2007/12/how-to-use-t4-to-generate-decorator-classes/

http://www.natpryce.com/articles/000783.html
http://www.sturmnet.org/blog/2010/03/04/poll-results-ioc-containers-for-net
http://www.olegsych.com/2007/12/how-to-use-t4-to-generate-decorator-classes/
http://msdn.microsoft.com/en-us/magazine/dd882510.aspx
http://stackoverflow.com/questions/1638919/how-to-explain-dependency-injection-to-a-5-year-old
http://blog.objectmentor.com/articles/2007/04/16/code-is-a-liability
http://jeffreypalermo.com/blog/constructor-over-injection-smell-ndash-follow-up/
http://ayende.com/Blog/archive/2009/07/30/reviewing-nerddinner.aspx
http://blogs.msdn.com/ploeh/archive/2007/07/23/AmbientContext.aspx
http://blog.ploeh.dk/2011/03/04/ComposeObjectGraphsWithConfidence.aspx
http://blog.ploeh.dk/2010/12/02/InterfacesAreNotAbstractions.aspx
http://blog.ploeh.dk/2010/11/01/PatternRecognitionAbstractFactoryOrServiceLocator.aspx
http://blog.ploeh.dk/2010/01/20/RebuttalConstructorOverinjectionAntipattern.aspx
http://blog.ploeh.dk/2010/09/29/TheRegisterResolveReleasePattern.aspx
http://blog.ploeh.dk/2010/02/03/ServiceLocatorIsAnAntiPattern.aspx
http://msdn.microsoft.com/msdnmag/issues/07/09/MockTesting/default.aspx
http://msdn.microsoft.com/en-us/magazine/dd419663.aspx

RESOURCES530
Other resources
Autofac

http://code.google.com/p/autofac/
Castle Windsor

http://www.castleproject.org/
Common Service Locator

http://commonservicelocator.codeplex.com/
FxCop

http://code.msdn.microsoft.com/codeanalysis
MEF Contrib

http://mefcontrib.codeplex.com/
MVC Contrib

http://www.codeplex.com/MVCContrib/
Moq

http://code.google.com/p/moq/
NDepend

http://ndepend.com
Ninject

http://ninject.org/
PostSharp

http://www.sharpcrafters.com/postsharp
Spring.NET

http://www.springframework.net/
StructureMap

http://structuremap.github.com/structuremap/
Unity

http://unity.codeplex.com/
Unity Auto Registration

http://autoregistration.codeplex.com/
WorldWide Telescope

http://www.worldwidetelescope.org

http://www.castleproject.org/
http://www.codeplex.com/MVCContrib/
http://www.sharpcrafters.com/postsharp
http://www.springframework.net/
http://www.worldwidetelescope.org
http://code.google.com/p/autofac/
http://commonservicelocator.codeplex.com/
http://code.msdn.microsoft.com/codeanalysis
http://mefcontrib.codeplex.com/
http://code.google.com/p/moq/
http://ndepend.com
http://ninject.org/
http://structuremap.github.com/structuremap/
http://unity.codeplex.com/
http://autoregistration.codeplex.com/

glossary
Here are brief definitions of selected terms, patterns, and other concepts dis-
cussed in this book. Each definition includes a reference to the chapter where the
term is discussed in greater detail.

ABSTRACTION

A unifying term that encompasses both interfaces and (abstract) base classes. See
chapter 2.

AMBIENT CONTEXT

A DI pattern that makes a strongly typed DEPENDENCY implicitly available via a con-
text which is always present. See chapter 4.

ASPECT-ORIENTED PROGRAMMING (AOP)
An approach to software that addresses Separation of Concerns by composing
CROSS-CUTTING CONCERNS in a declarative manner. See chapter 9.

AUTO-WIRING

The ability to automatically compose an object graph once mappings from
ABSTRACTIONS to concrete types are known. See chapter 3.

AUTO-REGISTRATION

Use of conventions to configure a DI CONTAINER instead of using explicit registra-
tions of each component. See chapter 3.

BASTARD INJECTION

A DI anti-pattern. See chapter 5.

CODE AS CONFIGURATION

Use of imperative code to configure a module or application instead of using an
external configuration mechanism, such as a configuration file. See chapter 3.
531

GLOSSARY532
COMPOSER

A unifying term that encompasses any object or method that composes DEPENDEN-
CIES. See chapter 8.

COMPOSITION ROOT

A central place in an application where the entire application is composed from
its constituent modules. See chapter 3.

CONSTRAINED CONSTRUCTION

A DI anti-pattern. See chapter 5.

CONSTRUCTOR INJECTION

A DI pattern where DEPENDENCIES are injected into the consumer as constructor
arguments. See chapter 4.

CONTROL FREAK

The opposite of INVERSION OF CONTROL. A DI anti-pattern. See chapter 5.

CONVENTION-BASED CONFIGURATION

Another term for AUTO-REGISTRATION.

CROSS-CUTTING CONCERN

A concern that spans multiple modules or entire applications. Typical examples
include logging, auditing, access control, and validation. See chapter 9.

DEPENDENCY

In principle, any reference that a module holds to another module. When a mod-
ule references another module, it depends on it. Informally, the term Dependency is
often used instead of the more formal VOLATILE DEPENDENCY. See chapter 1.

DI CONTAINER

A library or framework that provides reusable DI functionality. See chapter 3.

DTO
Data Transfer Object. See chapter 7.

ENTITY

A Domain Object with an inherent, long-term identity. See chapter 7.

FOREIGN DEFAULT

A default implementation of an ABSTRACTION that’s defined in a different assembly
than the consumer. See chapter 5.

HUMBLE OBJECT

An object that contains little-to-no behavior itself and that instead delegates all its
operations to other objects. See chapter 2.

INTERCEPTION

The act of modifying a DEPEDENCY before it’s passed to its consumer. See chapter 9.

GLOSSARY 533
INVERSION OF CONTROL

Letting a framework control the lifetime of objects instead of directly controlling
them. See chapter 2.

LEAKY ABSTRACTION

Even though an ABSTRACTION is defined, the implementation details show through
and thus lock the ABSTRACTION to the implementation. See chapter 6.

LIFETIME MANAGEMENT

See OBJECT LIFETIME.

LISKOV SUBSTITUTION PRINCIPLE

A software design principle that states that a consumer should be able to use any
implementation of an ABSTRACTION without changing the correctness of the system.
The L in SOLID. See chapter 8. See also SOLID.

LOCAL DEFAULT

A default implementation of an ABSTRACTION that’s defined in the same assembly as
the consumer. See chapter 4.

METHOD INJECTION

A DI pattern where DEPENDENCIES are injected into the consumer as method param-
eters. See chapter 4.

OBJECT COMPOSITION

The concept of composing applications from disparate modules. See chapter 7.

OBJECT LIFETIME

Generally speaking, this term covers how any object is created and deallocated. In
DI context, this term covers the lifetime of DEPENDENCIES. See chapter 8.

OPEN/CLOSED PRINCIPLE

This principle states that classes should be open for extensibility, but closed for
modification. The O in SOLID. See also SOLID.

PER GRAPH LIFESTYLE

A DEPENDENCY lifecycle scope where we reuse a single instance across several differ-
ent consumers inside the same object graph, but use separate instances in different
object graphs. See chapter 8.

POOLED LIFESTYLE

A DEPENDENCY lifecycle scope where we reuse a pool of prepared instances. See
chapter 8.

POOR MAN’S DI
DI without the use of a DI CONTAINER. See part 3.

GLOSSARY534
PROPERTY INJECTION

A DI pattern where DEPENDENCIES are injected into the consumer via writable prop-
erties. See chapter 4.

REGISTER RESOLVE RELEASE

A pattern that describes how a DI CONTAINER should be used. See chapter 3.

SEAM

A place in application code where ABSTRACTIONS are used to separate modules. See
chapter 1.

SERVICE LOCATOR

A DI anti-pattern. See chapter 5.

SINGLE RESPONSIBILITY PRINCIPLE

This principle states that a class should only have a single responsibility. The S in
SOLID. See also SOLID.

SINGLETON LIFESTYLE

A DEPENDENCY lifecycle scope where a single instance is reused for all consumers.
See chapter 8.

SOLID
An acronym which stands for five fundamental design principles: SINGLE RESPONSI-
BILITY PRINCIPLE, OPEN/CLOSED PRINCIPLE, LISKOV SUBSTITUTION PRINCIPLE, Interface Seg-
regation Principle, and Dependency Inversion Principle. See chapter 9.

STABLE DEPENDENCY

A DEPENDENCY that can be referenced without any detrimental effects. The oppo-
site of a VOLATILE DEPENDENCY. See chapter 1.

TESTABILITY

The degree to which an application is susceptible to automated unit tests. See
chapter 1.

TRANSIENT LIFESTYLE

A DEPENDENCY lifecycle scope where all consumers get their own instance of a
DEPENDENCY. See chapter 8.

VOLATILE DEPENDENCY

A DEPENDENCY that involves side effects that may be undesirable at times. This may
include modules that don’t yet exist, or that have adverse requirements on its
runtime environment. These are the DEPENDENCIES that are addressed by DI. See
chapter 1.

WEB REQUEST CONTEXT LIFESTYLE

A DEPENDENCY lifecycle scope where a single instance is reused within a single web
request. See chapter 8.

index
A

Abstract class 65
abstract ComposablePartCatalog class 504
abstract factories 113, 139–140
Abstract Factory, misconceptions about DI 7
ABSTRACTIONS 106, 380

closing connections through 170–173
configuring multiple implementations of

same 400–401
mapping runtime values to 163–170

CurrencyProvider example 168–170
design considerations 166
selecting routing algorithm example 166–168

mapping to concrete types 316–317, 421–422,
497–498

AbstractLifestyleManager class 328–329, 332
[AcceptVerbs] attribute 298
AccountController class 147
Activator class 150
Activator.CreateInstance 151–153
Adapter design 12
adapters, exporting 501–503
AddAllTypesOf method 355
AddExtension method 459
addIns field 112
AddNewExtension method 459, 485
AddRegistry method 360
AddService 108
ADO.NET Data Services 38
AggregateCatalog 507–509
AllowDefault property 523
AllTypes class 320
AMBIENT CONTEXT pattern 118–132

caching currency 123–130
CachingCurrency class 126–128

modifying time 128–130
TimeProvider 125–126

challenges
of implementation 122–123
with ASP.NET framework 123

description of 118–120
example of 123
implicitness 122
related patterns 130–132
when to use 120–121

anti-patterns 133–161
BASTARD INJECTION 144–149

analysis of 146–149
example of 144–146

CONSTRAINED CONSTRUCTION 149–154
analysis of 151–154
example of 149–151

CONTROL FREAK 136–144
analysis of 143–144
examples of 136–142

SERVICE LOCATOR 154–161
analysis of 157–161
example of 156–157

AnyConcreteTypeNotAlreadyRegisteredSource
420–421

AOP (ASPECT-ORIENTED PROGRAMMING) 277,
296

APIs (Application Programming Interfaces)
configuring difficult

parts with non-public constructors 522–523
primitive DEPENDENCIES 341–343, 412–413,

486–487
primitive parts 521–522
registering components with code

blocks 343–344, 381–382, 487–489
static factories 413–414
535

INDEX536
APIs (continued)
wiring with PROPERTY INJECTION pattern 344–

346, 382–414, 489–491, 523–525
lifestyle 327–328, 365
LifetimeManager 464–465
registering difficult 442–447

configuring primitive DEPENDENCIES 443
objects with code blocks 444–445
wiring with PROPERTY INJECTION design

pattern 445–447
App.xaml file 77
AppDomain 303
application configuration files, loading XML

using 394–395
Application Programming Interfaces. See APIs
Application_Start event 77
Application_Start method 79–80, 85
ArgumentNullExceptions 101, 108
ArrayEnumerable<T> class 403, 405, 412
arrays, configuring 337–338
ASP.NET applications, OBJECT COMPOSITION

for 224–230
ASP.NET framework, challenges of AMBIENT

CONTEXT pattern with 123
ASP.NET MVC applications, OBJECT COMPOSITION

in 206–210
CommerceControllerFactory example 208–210
with custom Controller Factory 206–208

ASP.NET MVC Controllers 73
aspect attribute 296
ASPECT-ORIENTED PROGRAMMING. See AOP
aspects, declaring using attributes 296–300

disadvantages of 298–300
modifying compilation 296–297
using custom host 297–298

assembly catalogs 506
Assembly instance 355
AssemblyCatalog class 506
AssemblyContainingType method 355
AssemblyNames 193
AssemblyResources 393, 395
auditing aspect 285
AuditingProductRepository class 278–281, 284
autodetect value 392
autofac configuration 427
Autofac DI Container 312, 417–447

introduction to 418–429
configuring ContainerBuilder 422–427
resolving objects 420–422

managing DEPENDENCIES with 245–247
managing lifetime 429–433
multiple components 433–442

selecting among multiple candidates
434–438

wiring 438–442

registering difficult APIs 442–447
configuring primitive DEPENDENCIES 443
objects with code blocks 444–445
wiring with PROPERTY INJECTION design

pattern 445–447
Autofac.Configuration assembly 426
Autofac.IContainer 422
AUTO-REGISTRATION 67–68, 73, 355–357, 424–426
autowire attribute 392
AUTO-WIRING

containers 64–67
DEPENDENCIES 392–393
sequences 374–375, 402–404, 438, 476–477,

516–517
with PROPERTY INJECTION pattern 415–416

Azure Table Data Access library 39
Azure Table Storage Service 38
AzureProductRepository 141–142

B

Base Class Library. See BCL
Basket class, converting 114–117
basket feature, for complex example 54–57
Basket instance 115
BasketContainer class 208–209, 233–234
BasketController class 62, 65, 108–110
BasketController example 65–67
BasketController’s Index method 108, 110
BasketDiscountPolicy 55–57, 234, 262
BasketManager class 233–234
BasketPowerShell library 233
BasketPowerShellLogic 232
BasketRepository class 55, 66, 234
BasketService class 55, 57, 70, 75
BASTARD INJECTION anti-pattern 144–149

analysis of 146–149
impact 147–148
refactoring toward DI 148–149

example of 144–146
BCL (Base Class Library) 22, 37, 100, 107, 113
BCL modules 194
BeginLifetimeScope method 431–432
benefits, of DI 15–21

extensibility 17–18
late binding 15–17
maintainability 19–20
parallel development 19
TESTABILITY 19–20
unit testing 21

boundary behavior option 267
Breading class 406, 440, 479, 519–520
Breading constructor 441–442
Breading instance 377, 379, 406, 441
Breading object 406

INDEX 537
BuilderStrategies 471–472
BuilderStrategy class 469–471
BVT (Build Verification Test) 194

C

CacheLifecycle class 367, 369
CacheLifestyleManager class 329–332
CacheLifetimeManager class 466–468, 470–472
CacheLifetimeStrategyExtension 470, 472
caching

currency 123–130
CachingCurrency class 126–128
modifying time 128–130
TimeProvider 125–126

custom lifestyles 328–331, 366–369
caching aspect 285
caching lifestyles, developing 465–467
CachingCurrency class 126–128
CachingCurrencyProvider 126
CaesarSalad class 382–383, 445–446, 489–490
CampaignContainer 226
CampaignDataSource class 227–229
CampaignPresenter class 227–229
CampaignPresenter example 225–230
CampaignRepository class 229
Castle Windsor container 313–346

configuring difficult APIs 341–346
primitive DEPENDENCIES 341–343
registering components with code

blocks 343–344
wiring with PROPERTY INJECTION pattern

344–346
introduction to 314–323

configuring container 317–322
packaging configuration 322–323
resolving objects 315–317

managing lifetime 323–333
multiple components 333–341

selecting among multiple candidates 333–336
wiring 336–341

Castle.MicroKernel.Registration.Component 316,
318

catalogs 504–509
aggregate 507
assembly 506
directory 506–507
filtering 507–509
type 505–506
with containers 504–505

Certified Microsoft Partner 31
cheap hotel example, purpose of DI 8–13
CheckLease method 369
chicken component 490
chicken instance 383

ChiliConCarne class 382, 413, 443–444, 487–488
CI (Continuous Integration) 194
Circuit Breaker Interceptor 305–306, 409–410,

483–484
Circuit Breaker pattern 286–291, 303
[CircuitBreaker] attribute 296, 299, 307
CircuitBreaker class 290, 486
CircuitBreakerInteceptionBehavior 484–485
CircuitBreakerInterceptor class 306, 308, 409–411
CircuitBreakerProductManagementAgent

class 288, 291, 300
Close method 171, 249
cmdlet 230
coarse-grained ABSTRACTIONS 184
code

as configuration 352–354, 423–424, 454–455
configuring containers with 70–72
configuring instance scope with 430
configuring lifestyles with 324, 362–363
managing lifetimes with 460–461

code blocks
configuring objects with 381–382
registering components with 343–344, 487–489
registering objects with 444–445

Code Query Language. See CQL
CodeConfig 397
CollectionResolver 339
CommerceControllerFactory example 208–210
CommerceDomain module 145
CommerceInstanceProvider 216–217
CommerceIntegrationTest project 192
CommerceObjectContext class 33, 36, 40, 43, 49
CommerceService 279
CommerceServiceContainer class 216, 243
CommerceServiceHost class 215
CommerceServiceHostFactory class 215, 218
CommerceSqlDataAccess module 145
CommerceWindsorInstaller class 79, 85–86
Community Technical Preview. See CTP
Component class 320
ComponentNotRegisteredException 420
components

concrete 480
configuring with custom lifestyles 332–333,

369–370
multiple

Interceptors 407–412, 481–486
selecting among multiple candidates 333–

336, 371–374, 400–402
wiring 336–339, 402–405, 438–442, 476–480,

516–521
named 479–480
picking from larger set 438–440, 477–479
registering multiple implementations of

same 473–475

INDEX538
components (continued)
registering with code blocks 343–344, 487–489
releasing 325, 431–433, 461–464
with custom lifetimes

registering 467
releasing 467–469

components element 427
ComposablePartCatalog class 504–505, 508
ComposablePartDefinitions 508
COMPOSER internal 230
composing

difficult APIs 521–525
parts with non-public constructors 522–523
primitive parts 521–522
wiring with PROPERTY INJECTION design

pattern 523–525
Window example 178–181

Composite pattern 11, 106
CompositeNotificationService 188
COMPOSITION ROOT 53, 78, 81, 200, 203–204
COMPOSITION ROOT pattern, for containers 75–81
CompositionContainer 498, 504–505
conceptual problem 41
concrete components 480
concrete contracts, Decorator design pattern

with 519–521
concrete types, mapping ABSTRACTIONS to 316–

317, 421–422, 497–498
ConcreteA 175
ConcreteC 175
.config file 153
ConfigSectionResource 393
configuration

code as 318–319, 352–354, 423–424, 454–455
files, loading XML using 394–395
packaging 322–323, 358–361, 427–429,

458–459
ConfigurationExpression class 72, 351, 353, 355,

359, 363
ConfigurationInstaller 321
configurationLocations parameter 396
ConfigurationManager API 456
ConfigurationSettingsReader 426
Configure method 353–355, 358–360
configure parameter 353
configured instances, picking from larger set

375–377
configuring, containers 67–75

by convention 72–75
with code 70–72
with XML 68–70

connectionString 246
ConnectionStringConverter 70
connectionStrings element 151
connString parameter 66, 74

console applications, OBJECT COMPOSITION
for 202–205

ConsoleMessageWriter class 14–16, 18, 22
ConsoleMessageWriter instance 27
CONSTRAINED CONSTRUCTION anti-pattern 135,

149–154
analysis of 151–154

impact 151–152
refactoring toward DI 152–154

example of, late-binding ProductRepository
class 149–151

constructor arg elements 392, 406, 413
CONSTRUCTOR INJECTION 64, 77, 81, 96–97, 206,

216
CONSTRUCTOR INJECTION pattern 98–103

description of 98–99
examples of 100–101
related patterns 103
when to use 99–100

Constructor Over-injection, refactorings for
182–188

OrderService example 185–188
refactoring to Facade Services 183–184

constructor-arg elements 392, 402, 414
constructors, non-public 522–523
Consumer class 155
Container class 349, 359
Container Controlled 460
container instance 85
Container methods 81
container.GetInstance<IIngredient>()

method 371
container.Resolve<IIngredient>() method 333,

434
container.ResolveAll<ICourse>() method 477
ContainerBuilder API 428
ContainerBuilder class 419–420, 424, 426, 429–430
ContainerBuilder instance 421, 428
ContainerBuilder, configuring 422–427

AUTO-REGISTRATION 424–426
CODE AS CONFIGURATION 423–424
packaging configuration 427–429
XML configuration 426–427

ContainerControlledLifetimeManager 460–461
containers 58–92

and Microsoft 89–92
AUTO-WIRING 64–67
catalogs with 504–505
configuring

.NET types in XML 390–391
AUTO-REGISTRATION 319–320, 355–357,

455–456
by convention 72–75
CODE AS CONFIGURATION 318–319, 352–354,

454–455

INDEX 539
containers (continued)
DEPENDENCIES 391–393
with code 70–72
XML 68–70, 321–322, 357–358, 456–458

disposing 512–513
history of 89–92
managing DEPENDENCIES with 242–247

using Autofac 245–247
using specialized container 243–244

misconceptions about DI 7–8
patterns for 75–87

COMPOSITION ROOT pattern 75–81
REGISTER RESOLVE RELEASE pattern 81–87

resolving controllers with various 62–63
resolving object graphs with 63–64
selecting 87–89

Contains method 376
ContentWindow 179
context field 389
context parameter 113
Continuous Integration. See CI
ContractMapper 243, 245–246
contracts, Decorator design pattern with 519–521
CONTROL FREAK anti-pattern 136–144

analysis of 143–144
examples of

factories 137–142
newing up DEPENDENCIES 136–137

Controller Factory, custom 206–208
creating 207–208
registering 208

controller instance 87
ControllerBuilder 208
controllerFactory instance 208
controllerName 207
controllerType 209, 352, 389, 422, 453, 498
Convention method 356
conventions

configuring containers by 72–75
resolving named components by 437–438

ConvertTo method 115–117
CordonBleu class 403, 405, 438, 515, 519
correct type attribute 406
Cotoletta 440
coupling, monitoring 188–196

integration-testing coupling 191–193
unit-testing coupling 189–191
using NDepend 193

Course object 415
courses constructor 337
courses, refactoring sequences to better 337
CQL (Code Query Language) 194
Create method 181, 343, 381
CreateChild method 178, 180
CreateChildContainer method 463

CreateController 51, 207
CreateDefaultRepository method 146
CreateInstance method 150
CreateServiceHost method 218
creation policies

declaring 509–511
exporting 510
importing 510–511

importing with requirements of 510–511
CreationPolicy enum 509
CreationPolicy.Any 510
CROSS-CUTTING CONCERNS 118, 276, 285–295, 308

adding security 293–295
Circuit Breaker design pattern 286–291
handling exceptions 292–293

Ctor method 72, 373, 378
Ctor/Is method 378
Ctor<spiciness>() method 381
Ctor<T> method 378–381, 383
CTP (Community Technical Preview) 91
currency

caching 123–130
CachingCurrency class 126–128
modifying time 128–130
TimeProvider 125–126

implementing 116–117
injecting 115–116
providers, adding to shopping basket 101–103

Currency class 101, 123, 202, 204
Currency instance 114, 168, 205
Currency type 168
CurrencyContainer class 203–204
CurrencyParser class 203–205
CurrencyProfileService 102, 108–109, 169
CurrencyProvider class 101–103, 126, 139, 204, 208
CurrencyProvider example 168–170
CurrencyUpdateCommand 204–205
current field 125
Current property 119
Cutlet object 406
cutlet variable 377

D

Data Access Layer, complex example 37
right way 49–50
wrong way 32

data binding 221
Data Transfer Object. See DTO
DataContext property 178, 180–181, 220–222
DataContract 213
DateTime 124, 129
DateTime members 120
DateTime.Now 128, 332
DateTime.UtcNow 124–125

INDEX540
DDOS (Distributed Denial of Service) 286
Decorator design pattern

concrete component 480
named component 479–480
wiring

explicitly 339–340
implicitly 340–341

with concrete contracts 519–521
with delegates 378–380, 441–442
with inline objects 406–407
with instance references 377–378
with named instances 378
with named objects 406
with WithParameter method 440–441

defaultAssembly attribute 427
default-autowire attribute 392
DefaultContext 119
DefaultControllerFactory class 207–209, 389, 422,

498
DefaultControllerFactory.GetControllerInstance

209
DefaultCurrencyProfileService 108
DefaultProductDiscountPolicy 56
DefaultTimeProvider class 126
DefaultWorkflowLoaderService 108
DefaultWorkflowSchedulerService class 108
delegates, Decorator design pattern with 378–380,

441–442
DeleteProduct method 250, 301
DEPENDENCIES 24–26, 37, 136–137, 143, 149, 151,

216, 338, 496
configuring

AUTO-WIRING 392–393
explicitly 391–392
named 372–373, 401–402, 475–476

cyclic 175–181
breaking cycle with PROPERTY INJECTION

177–178
composing Window example 178–181

lifetime for 239–247
disposable 247–255
managing with container 242–247

primitive 341–343, 380–381, 412–413
registering 335–336, 435–437
short-lived 170–175

Dependency Injection. See DI
Dependency Inversion Principle. See DIP
DEPENDENCY LIFETIME MANAGEMENT 238–239
DependsOn method 342–343, 345
Design Patterns 96
DesiredService 273
DI (Dependency Injection) 3–28

benefits of 15–21
extensibility 17–18
late binding 15–17

maintainability 19–20
parallel development 19
TESTABILITY 19–20
unit testing 21

Hello World example 13–21
misconceptions about 5–8

is Abstract Factory 7
only for late binding 6
only for unit testing 6
requires container 7–8

purpose of 8–13
refactoring toward

BASTARD INJECTION anti-pattern 148–149
CONSTRAINED CONSTRUCTION anti-

pattern 152–154
CONTROL FREAK anti-pattern 143–144
SERVICE LOCATOR anti-pattern 159–161

scope of 24–28
INTERCEPTION 26–27
OBJECT COMPOSITION 25–26
OBJECT LIFETIME 26
three dimensions of 27–28

SEAMS 22
STABLE DEPENDENCIES 23
VOLATILE DEPENDENCIES 23–24

DI CONTAINERs 88–89, 198, 202–203, 239
DI patterns 225
different route-calculation algorithms 166
DIP (Dependency Inversion Principle) 285
DirectoryCatalog class 506–507
disadvantages, of declaring aspects using

attributes 298–300
DiscountCampaign 241, 259, 261–262
DiscountedProduct class 46
discountPolicy 66
DiscountRepository class 98, 164, 259, 262–263
DiscountRepository instance 241
DispatchRuntime 217
disposable DEPENDENCIES, lifetime for 247–255

consuming 248–251
managing 251–255

Dispose method 171, 249, 432, 465
disposing containers 512–513
Distributed Denial of Service. See DDOS
Domain Model Layer, for complex example

right way 45–49
wrong way 32–34

Domain Object Product 213
Domain-Driven Design 122, 214
DomainModel library 153
DomainModel module 190
DoStuff method 112
DTO (Data Transfer Object) 213–214
dynamic INTERCEPTION 300–303, 308
dynamic structure, for containers 84–85

INDEX 541
E

EggYolk class 64
EggYolk elements 391, 393
EggYolkAdapter 503
embedded resources, loading XML using 395
EndRequest event 264
EnrichWith method 379
EnsureInitialize method 181
Entity Data Model Wizard 32
EntityClient provider 36
EntityDataAccess library 153
entrée1 variable 376
EnumerableOf method 376
EnumerableOf/Contains method 376
error handling 285
ErrorHandlingInterceptionBehavior class 482,

485
ErrorHandlingInterceptor class 305, 408, 410–411
ErrorHandlingProductManagementAgent

class 292–293, 298–299, 304
examples, complex 29–57

extending application 53–57
architecture 53–54
basket feature 54–57

right way 41–53
analyzing loosely coupled

implementation 51–53
Data Access layer 49–50
Domain Model Layer 45–49
User Interface Layer 43–45

wrong way 30–41
analyzing issues 39–41
Data Access Layer 32
Domain Model Layer 32–34
evaluating application 37–39
User Interface layer 34–36

Except method 425
exception handling Interceptor 303–305, 407–

408, 481–483
exceptions, CROSS-CUTTING CONCERNS 292–293
ExpensiveService 272
[Export] attributes 497–498, 500–503, 519
[Export] overload 500
[Export] property 502
exporting, with creation policies 510
ExportProviders 505
exports, adapters 499–503

multiple implementations of same 514–515
named, importing 515–516
picking from larger set 517–519
releasing 512
types 500–501

extensibility, benefits of DI 17–18
Extensible Markup Language. See XML

Extent<EvaluatedProduct> 55
Externally Controlled 460
Extra property 382–383, 445

F

Facade Services, refactoring to 183–184
factories 137–142

abstract 139–140
static 140–142, 413–414

factory-method 414
fault tolerance 285
FeaturedProductsViewModel 44, 46, 52
files, loading XML using 394–395
FileSystemResource 393–394
FillAllPropertiesOfType method 383
filtering catalogs 507–509
FindCache method 365, 367
FirstOrDefault 400
Fluent Registration API 319
For method 319
For/Use method 374, 381
For/Use statement 382
foreach loops 96, 190
FOREIGN DEFAULT, ProductService class with

144–146
FromAppConfig method 321
FromAssemblyContaining generic method 320
full-fledged DI CONTAINER 91
Func<IMeal> 381
Func<IUnityContainer> 488
Future objects, lifetime for 272
FutureService 273

G

Get method 366, 368
GetAllInstances 371
GetBasketCmdlet class 232, 234
GetBasketCmdlet example 231–235
GetControllerInstance method 80, 86–87, 209,

351, 389
GetCurrencyCode method 108, 169
GetExchangeRateFor method 114, 116, 123, 127,

129, 168
GetExport method 497, 500, 512
GetExportedValues methods 497–498, 500, 515
GetExports method 498
GetFeaturedProducts method 40, 46, 48, 52, 137
GetInstance methods 211, 217, 351–352, 361,

372
GetInstance<T> method 350
GetMessage method 122
getNext method 482

INDEX542
getNext parameter 482
GetObject method 388, 397, 400
GetObjectsOfType method 389, 400–401, 414
GetRequiredInterfaces method 482
GetRoute method 167
GetService method 108, 156
GetService<T> method 159
GetValue method 465, 467
Global.asax 51, 77, 79
GridView control 226, 228

H

[HandleError] attribute 296, 298
HasExcessCapacity property 269
HasInterceptors method 307
Hello World example 13–21
HierarchicalLifetimeManager 463, 468–469, 471
history, of containers 89–92
HomeController class 46–48, 69–70, 208–209
HomeController, with request-shared repository

example 262–265
HttpContext 33, 123, 207, 361, 364
HttpContext.Current 228, 263–264
HttpContext.Current.Items 364
HttpRequestBase 166
HttpSession 361
Hybrid 361
HybridHttpSession 361

I

IActivatingEventArgs<T> interface 446
IApplicationContexts 398–399
IAssemblyScanner instance 355
IAssemblyScanner interface 363
IAuditor interface 278–279, 284
IBasketService class 116, 233–234
IBasketService interface 56, 66, 70, 72, 75
IBillingSystem 185
IBuilderPolicy instances 464
ICircuitBreaker DEPENDENCY 300, 305–306,

409–411
ICircuitBreaker instance 409
ICircuitBreaker interface 290–291, 301, 483–485
IClientContractMapper 222
ICollection interface 400
ICommand 205
ICommerceServiceContainer 256, 268
ICommunicationObject 267
IComponentActivator 328, 330
IComponentContext 422, 436–437, 440–441, 446
IContractBehavior 216–217
IContractMapper 213, 218

IController instance 317
IControllerFactory interface 56–57, 206–209
IControllers 62, 73, 86–87
ICourse

contract 500, 518
DEPENDENCIES 401–402, 438, 454, 489–490
implementations 402
instances 358, 369–370, 374, 376, 438
interface 319, 338, 345, 500
mappings 335, 372, 435, 475
objects 403
registrations 477

ICourse components 424, 438, 440, 444–446
IDependencyResolver 207
IDesigner 113
IDesignerHost implementations 113
IDictionary 336
IDisposable interface 239–240, 247–249, 272
IDisposable pattern 171–172, 174–175
IEnumerable<ICourse> 376, 402, 404, 440, 517
IEnumerable<ICourse> DEPENDENCY 476–477
IEnumerable<ICourse> instance 337–338
IEnumerable<INotificationService> 188
IEnumerable<T> 338–339, 403, 434, 476, 501
IFoo implementation 165
IFoo instances 165
IFooFactory 165, 173
IHttpModule 264
IIngredient

components 434
constructor parameter 377
exports 514
implementations 424, 428, 455
instance 455, 467, 479–480, 489
interface 318–319, 500–501, 519–520
objects 401, 415
properties 383
services 425, 441
type 383, 455

IInstanceExpression<ICourse> 373
IInstanceProvider 211, 213, 215–217, 253
IInterceptionBehavior interface 481–482
IInterceptor interface 303–306
IInventoryManagement 185–186
IInvocation interface 304
IKernel instance 328
ILease

instance 367, 466
interface 466
member 368

ILifecycle interface 365–367
ILifestyleManager 328–329
ILifetimePolicy instance 365, 465, 470
IList<IIngredient> 371
IList<T> 476

INDEX 543
IListableObjectFactory interface 389
ILocationService 185–186
IMainWindowViewModelFactory 223
IMeal configuration 376
IMeal services 337, 339, 343
IMessageService 185
IMessageWriter interface 14–15, 17–18, 21–22
IMessageWriter.Write method 21
IMethodInterceptor interface 407–408
IMethodInvocation interface 408
IMethodReturn 484
IModelBinder interface 114
IModelInterceptorsSelector interface 307, 411
IModule interface 428
ImplementedBy method 316, 319
ImplementedContracts 216
implicitness, of AMBIENT CONTEXT pattern 122
[Import] attribute 504–505, 510, 515
Import.Any 511
Import.NonShared 511
Import.Shared 511
importing

named exports 515–516
with creation policy requirements 510–511

[ImportingConstructor] attributes 503–504, 510,
515–516, 521

[ImportMany] attribute 517–519
imports 499–500, 503–504
Include method 356
Index method 46, 103
Index View 36
ingredient constructor parameter 341
ingredient variable 512
IngredientExtension class 458
IngredientInstaller 322
IngredientModule 428
ingredients dictionary 401
Init method 328–330
Initialize method 113, 458
InjectionConstructor class 477–480, 487, 489
InjectionFactory 488
InjectionMember 475, 485, 489–490
InjectionProperty class 489
inline objects, Decorator design pattern with

406–407
innerAgent 289
INotificationService interface 187–188
InputStreamResource 393, 396
InsertProduct methods 293–294, 301, 304
Install method 322
instance references

Decorator design pattern with 377–378
wiring 373–374

instance scope, configuring 430–433
releasing components 431–433

with code 430
with XML 431

Instance variables 376
InstanceContextMode 211
InstancePerDependency methods 433
InstancePerLifetimeScope method 433
integration-test project 191
integration-testing coupling 191–193
Intention-Revealing Interfaces 122
Intercept method 304
INTERCEPTION 275–309

AuditingProductRepository example 277–281
CROSS-CUTTING CONCERNS 285–295

adding security 293–295
Circuit Breaker design pattern 286–291
handling exceptions 292–293

declaring aspects 295–309
dynamic 300–303
patterns for 281–285
scope of DI 26–27
Windsor example 303–309

activating Interceptors 306–309
Circuit Breaker Interceptor 305–306
exception handling Interceptor 303–305

Interceptor<InterfaceInterceptor> 485
Interceptors 481–486

Circuit Breaker 409–410, 483–484
configuring 410–412, 484–486
exception handling 407–408, 481–483

interface 9, 65
Interface Segregation Principle. See ISP
InvalidOperationException 484
Inversion of Control. See IoC
Invoke method 408
IObjectCache interface 365–368, 465
IObjectFactory interface 388–389
IoC (Inversion of Control) 42
IOrderFulfillment interface 186
IPresentationMapper interface 229
IPrincipal interface 48, 295
IProduct 53
IProductChannelFactory 250
IProductManagementAgent interface 249–250,

288–289, 298–300
IProductManagementAgent object 410
IProductManagementService 213, 243, 246, 254,

256, 258
IProductManagementServiceChannel 250
IRegistration 318
IRegistrationConvention interface 356, 363
IRegistrationSource 420–421
IResource instance 396
IResource interface 172, 396
IRouteAlgorithmFactory 167–168
Is method 378

INDEX544
isCustomerPreferred parameter 34
IService DEPENDENCY 272–273
IService interface 155
IService.SelectItem() 272
ISomeInterface 104–105, 111
ISomeRepository 153
ISomeService interface 152–153
ISomeServiceFactory 152–153
ISP (Interface Segregation Principle) 284
IsPreferredCustomer property 33
ITypeDescriptorContext 113
IUnityContainer class 452–453, 461, 463
IWindow 178–180, 221, 223
IWindsorContainer 305
IWindsorInstaller interface 322

J

JunkFood class 343, 381–382, 413, 444, 488
JunkFood object 414
JunkFoodAdapter class 523
JunkFoodFactory class 343, 381, 413, 444, 522
JunkFoodFactory.Create method 444, 523

K

KeyNotFoundException 156

L

late binding 16
benefits of DI 15–17
misconceptions about DI 6
ProductRepository class 149–151

late-bound services 320
Lazy objects, lifetime for 271
Lazy<IIngredient> 512
LazyService 255, 272
Lease property 330
LeasedObjectCache class 367
LeasedObjectCache constructor 368
leases, implementing 331–332
LifecycleIs method 362
lifestyle API 365
Lifestyle property 324
lifestyles

advanced 325–327
PerWebRequest lifestyle 327
Pooled lifestyle 325–327

caching, developing 465–467
configuring 324–325, 362–364

releasing components 325
with code 324, 362–363
with XML 324–325, 363–364

custom 327–333, 364–370
caching 328–331
caching lifestyle 366–369
configuring components with 332–333,

369–370
implementing lease 331–332
lifestyle API 327–328, 365

preventing memory leaks 364
lifetime

for DEPENDENCIES 239–247
disposable 247–255
managing with container 242–247

for Future objects 272
for Lazy objects 271
for PER GRAPH objects 259–261

sharing repository within graph
example 260–261

when to use 260
for POOLED objects 266–271

reusing expensive repositories example
268–271

when to use 267
for SINGLETON objects 255–258

thread-safe in-memory repository
example 256–258

when to use 256
for TRANSIENT objects 258–259

resolving multiple repositories example
258–259

when to use 258
for WEB REQUEST CONTEXT objects 261–266

and Session Request Context objects 265
and Thread Context objects 265–266
HomeController with request-shared reposi-

tory example 262–265
when to use 261–262

LIFETIME MANAGEMENT 27, 198
lifetime scope 431
LifetimeManager API 464–465
LifetimeManager class 460–461, 463–467
lifetimes, managing 361–370

configuring 460–464
configuring instance scope 430–433
configuring object scopes 398–399
declaring creation policy 509–511
developing custom 464–473
lifestyles 324–333, 362–364
releasing objects 511–513

LifetimeStrategy class 469–471
LISKOV SUBSTITUTION PRINCIPLE. See LSP
LoadConfiguration method 70, 456
LobsterBisque class 376, 405, 518–519
Locator class 156, 158
Locator.Reset() method 159
logging aspect 285

INDEX 545
loosely coupled model 9
LSP (LISKOV SUBSTITUTION PRINCIPLE) 281, 284

M

Main method 14, 202–203, 205, 251
MainObjectCache 367–368
maintainability 16, 19–20
MainViewModel 249
MainWindow 221, 223–224
mainWindow variable 180–181
MainWindowAdapter 181, 222–224
MainWindowViewModel class 174, 180, 221–222
MainWindowViewModelFactory 222–223
Managed Extensibility Framework. See MEF
mapping, ABSTRACTIONS to concrete types 316–

317, 421–422, 497–498
maximum size option 267
MaxSize property 269
MayonnaiseAdapter 503, 506
MEF (Managed Extensibility Framework) 88, 91,

492–525
composing difficult APIs 521–525

parts with non-public constructors 522–523
primitive parts 521–522
wiring with PROPERTY INJECTION design

pattern 523–525
introduction to 495–509

catalogs 504–509
defining imports and exports 499–504
resolving objects 496–499

managing lifetime 509–513
declaring creation policy 509–511
releasing objects 511–513

multiple components 513–521
selecting among multiple candidates 513–516
wiring 516–521

MEF Contrib open source project 505
MEF DI CONTAINER 312
MefOliveOil class 502
memory, preventing leaks of 364, 398–399
MenuRegistry class 360
MessageBox.Show method 293
messageWriter application 17
METHOD INJECTION pattern 111–117

description of 111–112
examples of 113–117
related patterns 117
when to use 112–113

MethodInfo instance 446
Microsoft Solutions Framework. See MSF
Microsoft, and containers 89–92
Microsoft.Practices.Unity.Configuration 456
Microsoft.Practices.Unity.InterceptionExtension

assembly 485

minimum size option 267
misconceptions 5–8

is Abstract Factory 7
only for late binding 6
only for unit testing 6
requires container 7–8

Model View ViewModel (MVVM) 178, 221
Module class 428
Money class 115
MoneyContract 213
MousseAuChocolat 335, 372, 403, 405, 515, 519
MSF (Microsoft Solutions Framework) 90

N

Name property 44, 46
named components 437–438, 479–480

configuring 372–373, 401–402, 475–476
Decorator design pattern with 378, 406
registering 335–336, 435–437

named exports, importing 515–516
NamedParameter 443
natural clusters 183
NDepend, monitoring coupling using 193
NeedyClass 98
.NET 4.0 88
.NET Base Class Library 123
.NET DI CONTAINERS 59
.NET types, in XML 390–391
new keyword 230
newing up, DEPENDENCIES 136–137
non-public constructors, parts with 522–523
NonShared 510
Null Object 10, 106
NullReferenceExceptions 10, 105, 121–122, 289,

408
NullService 273

O

Object Builder module 91
OBJECT COMPOSITION 199–235

for ASP.NET applications 224–230
for ASP.NET MVC applications 206–210

CommerceControllerFactory example
208–210

with custom Controller Factory 206–208
for console applications 202–205
for PowerShell 230–235
for WCF applications 210–219

extensibility for 211–212
ProductManagementService example

212–219
for WPF applications 219–224

INDEX546
object element 387, 406
object graph, per request 78
OBJECT LIFETIME 27, 239
Object property 21
object scopes, configuring 398–399
objectCache field 368
ObjectContext class 32, 116, 151
ObjectDataSource control 226, 228
ObjectFactory class 349, 357
objects

composition of 25–26
lifetime of 26

ObservableCollections 221
OCP (OPEN/CLOSED PRINCIPLE) 106,

283–284
OfType method 400
OfType<T> filter 400
OliveOil DEPENDENCY 391, 393
OliveOil property 502, 505
OliveOilAdapter class 502–503
OnActivating event 446
OnActivating method 446
OnStartup method 220, 223–224
OPEN/CLOSED PRINCIPLE. See OCP
[OperationContract] attribute 213, 298
OrderAdded method 187
OrderRepository class 187–188, 248
OrderService class 185–188, 248
OrderService example 185–188
outside-in technique 43

P

p&p (patterns & practices) 90
packaging, configuration 322–323, 358–361,

427–429
Page class 225
Page objects 225
parallel development 16, 19
Parameter class 446
Parameter Objects 183
ParameterInfo object 437
params array 426
[PartCreationPolicy] attribute 509–510
Parts property 508
parts, importing 503–504
patterns 95–132

AMBIENT CONTEXT 118–132
caching currency 123–130
challenges 122–123
description of 118–120
example of 123
implicitness 122
related patterns 130–132
when to use 120–121

CONSTRUCTOR INJECTION 98–103
description of 98–99
examples of 100–103
related patterns 103
when to use 99–100

for containers 75–87
COMPOSITION ROOT pattern 75–81
REGISTER RESOLVE RELEASE pattern 81–87

for INTERCEPTION 281–285
METHOD INJECTION 111–117

description of 111–112
examples of 113–117
related patterns 117
when to use 112–113

PROPERTY INJECTION 104–110
description of 104–105
examples of 107–110
related patterns 110
when to use 105–107

patterns & practices. See p&p
Per Dependency 429
PER GRAPH

objects, lifetime for 259–261
sharing repository within graph example

260–261
when to use 260

Per Lifetime Scope 429
performance monitoring 285
PerRequest 361
PerResolveLifetimeManager 472
PerWebRequest 324–325, 327
Plain Old CLR Objects. See POCOs
Ploeh.Samples.MenuModel namespace 457
plug-ins, configuring multiple implementations of

same 371–372
POCOs (Plain Old CLR Objects) 44
Pointcut 411
policySource 470
pool cleanup option 267
pool preparation option 267
POOLED lifestyle 325–327

lifetime for 266–271
reusing expensive repositories example

268–271
when to use 267

PooledWithSize method 326
PostSharp SDK 297
PostTearDown method 471
PowerShell, OBJECT COMPOSITION for 230–235
PreBuildUp method 470–471
PresentationLogic library 190, 193, 220
PresentationLogicUnitTest 190–191
PresentationModel 191
primitive DEPENDENCIES 341–343, 380–381,

412–413

INDEX 547
primitive parts 521–522
[PrincipalPermission] attribute 295–296
PrincipalPermission class 295
PrincipalPermission demand 295
Proceed method 306, 408–409
Process method 356, 363
Product class 40–41, 46, 49–50
Product entity 32
ProductChannelFactory 222
ProductContract 213
ProductManagementAgent class 290
ProductManagementClient 220–224, 299
ProductManagementClientContainer 224
ProductManagementClientInterceptorSelector

class 308
ProductManagementService class 215, 217–218
ProductManagementService example 212–219
ProductManager roles 294–295
ProductRepository class 47–49, 149–151, 212–213,

256–257, 279–281
ProductRepositoryFactory 137–139, 141
ProductService class 33–35, 40, 43, 46, 51, 137–139

using SERVICE LOCATOR anti-pattern 156–157
with FOREIGN DEFAULT 144–146

ProductViewModel 44, 46
ProductWcfAgent library 250, 298–299
Program class 203
programming to interfaces 15
PropertiesAutowired method 445
property element 415
PROPERTY INJECTION 103, 105, 149, 177–178, 383,

416
PROPERTY INJECTION pattern 104–110

description of 104–105
examples of 107–110
related patterns 110
when to use 105–107
wiring with 344–346, 382–384, 445–447, 489–

491, 523–525
AUTO-WIRING 415–416
explicitly 415

providers, currency 101–103
PublicKeyToken 391
purpose, of DI 8–13

R

readonly keyword 107, 244, 258
refactoring 162–196

for Constructor Over-injection 182–188
OrderService example 185–188
refactoring to Facade Services 183–184

for short-lived DEPENDENCIES 170–175
mapping runtime values to ABSTRACTIONS

163–170

CurrencyProvider example 168–170
design considerations 166
selecting routing algorithm example 166–168

monitoring coupling 188–196
integration-testing coupling 191–193
unit-testing coupling 189–191
using NDepend 193

resolving cyclic DEPENDENCIES 175–181
breaking cycle with PROPERTY INJECTION

177–178
composing Window example 178–181

sequences to better course 337
toward DI

BASTARD INJECTION anti-pattern 148–149
CONSTRAINED CONSTRUCTION anti-

pattern 152–154
CONTROL FREAK anti-pattern 143–144
SERVICE LOCATOR anti-pattern 159–161

ReferenceMatchesDefinition method 193
references, instance

Decorator design pattern with 377–378
wiring 373–374

register element 457
Register method 81, 83, 318–319, 442, 444
Register phase 82
REGISTER RESOLVE RELEASE pattern, for

containers 81–87
dynamic structure for 84–85
static structure for 82–83

RegisterAssemblyTypes method 74, 425–426
registering

components
with code blocks 343–344, 487–489
with custom lifetimes 467

difficult APIs 442–447
configuring primitive DEPENDENCIES 443
registering objects with code blocks

444–445
wiring with PROPERTY INJECTION design

pattern 445–447
multiple implementations of same service 333–

334, 473–475
named DEPENDENCIES 335–336, 435–437
objects with code blocks 444–445

RegisterModule overloads 428
RegisterType method 421–424, 426, 454–455,

459–460
RegisterType overload 460
registration, automatic 355–357, 424–426,

455–456
Registry class 353, 358
RegularExpressionMethodPointcut 411
Release method 81–82, 86–87, 207, 243
Release phase 82
ReleaseController method 86–87, 206, 208

INDEX548
ReleaseExport method 512
ReleaseInstance 211
releasing

components 431–433, 461–464, 467–469
parts 511–513

disposing container 512–513
exports 512

Remove-Basket cmdlet 232
RemoveValue method 465, 467, 472
repository DEPENDENCY 242, 258
repository member 136, 248
RepositoryBasketDiscountPolicy class 164, 240–

241, 259, 261
repositoryForCampaign 241
repositoryForPolicy 241
RequestContext 207
requests, resolving 389
RequiredCreationPolicy property 511
Resolve method 317, 324, 328, 330, 332, 459
Resolve phase 82
ResolveAll method 334, 339, 474, 477
ResolvedArrayParameter<ICourse> instance

478
ResolveDiscountRepository method 264
ResolvedParameter class 436–437, 443, 446, 476,

490
ResolveHomeController method 260–261
ResolveLease method 330
ResolveNamed method 435
ResolvePresenter method 229
ResolveProductManagementService method 218,

243, 270
resolving

multiple repositories example 258–259
named components by convention 437–438
objects 387–389, 420–422, 451–453

mapping ABSTRACTIONS to concrete
types 316–317, 421–422, 497–498

resolving weakly typed services 351–352, 452–
453, 498–499

type requests 389
weakly typed services 317

sequences 339
weakly typed services 317, 351–352, 422

resources
embedded, loading XML using 395
XML, combining 396–397

result variable 409
reusing expensive repositories example 268–271
Rillettes 336, 403, 405, 515, 519
RouteController 167
RouteSpecification 168
RouteType 167
RRR. See REGISTER RESOLVE RELEASE
run-time INTERCEPTION 198

runtime values, mapping to ABSTRACTIONS
163–170

CurrencyProvider example 168–170
design considerations 166
selecting routing algorithm example 166–168

S

Salutation class 14–15, 18, 22, 27
sample Commerce application example, configur-

ing containers for
by convention 73–75
with code 71–72
with XML 69–70

SauceBéarnaise class 316, 318, 320, 496–498
SauceBéarnaise instance 388
SauceCatalog 508
SauceConvention class 356
save the order action 185
Scan method 355–356
Scope attribute 364
scope, of DI 24–28

INTERCEPTION 26–27
OBJECT COMPOSITION 25–26
OBJECT LIFETIME 26
three dimensions of 27–28

SEAMS 22
SecureMessageWriter class 18, 27
SecureProductRepository Decorator 294
security aspect 285
security, CROSS-CUTTING CONCERNS 293–295
SelectAllProducts method 289
selecting

among multiple candidates
configuring named DEPENDENCIES 372–373,

401–402, 475–476
importing named exports 515–516
of same ABSTRACTION 400–401
of same component 473–475
of same export 514–515
of same plug-in 371–372
of same service 333–334, 434–435
registering named dependencies 335–336,

435–437
resolving named components by

convention 437–438
wiring instance references 373–374

configuring multiple implementations of same
abstraction 371–372, 400–401, 434–435

routing algorithm example 166–168
SelectInterceptors method 307
SelectProduct method 279
sequences 336–339, 374–377, 402–405

AUTO-WIRING 374–375, 402–404
configuring arrays 337–338

INDEX 549
sequences (continued)
picking exports from larger set 517–519
picking objects from larger set 404–405
refactoring to better course 337
resolving 339
wiring 438–440, 476–479, 516–519

AUTO-WIRING 438, 476–477, 516–517
picking exports from larger set 517–519

[Serializable] attribute 265
SERVICE LOCATOR 7, 77, 135, 154–161, 216, 226

analysis of 157–161
impact 157–159
refactoring toward DI 159–161

example of, ProductService class 156–157
ServiceActivationException 210
[ServiceContract] attribute 213, 298
ServiceHost 212–213, 215, 298
ServiceHostFactory 77, 212–215
ServiceOverrides method 335–336, 338–342, 345
Session Request Context objects, lifetime for 265
Set method 368
Setter<T> method 383
SetValue method 465, 467
Shared value 510
sharing repository within graph example 260–261
shopping baskets, adding currency providers

to 101–103
ShowDialog method 181
single extension method 499
SINGLE RESPONSIBILITY PRINCIPLE. See SRP
SingleInstance method 246, 429–430, 433
SINGLETON LIFESTYLE 242, 255–256
Singleton method 361–362
Singleton objects, lifetime for 255–258

thread-safe in-memory repository example
256–258

when to use 256
SingletonConvention 363
Site property 107
SlidingLease class 331–332, 370
SmartInstance<T> class 374, 379, 381
SmartInstance<VealCutlet> 379
SOLID principles 283
SomeAspect.tt 302
SomeAspectDecorator.cs 302
SomeClass 104, 111
SomeLifetimeManager 464
SomeService class 153
SomeServiceFactory class 153
spiciness parameter 342, 380, 413, 443
Spiciness.Hot 342, 381, 390, 413
Spring.NET DI CONTAINER 312, 385–416

configuring difficult APIs 412–416
primitive DEPENDENCIES 412–413
static factories 413–414

wiring with PROPERTY INJECTION design
pattern 414

introduction to 386–397
configuring container 389–393
loading XML 393–397
resolving objects 387–389

managing lifetime 397–399
multiple components 399–412

INTERCEPTORS 407–412
selecting among multiple candidates 400–402
wiring 402–407

SQL Server Management Studio 32
SQL Server-based data access 72
SqlAuditor 284
SqlBasketRepository 66
SqlCampaignRepository 229
SqlCurrencyProvider 204
SqlDataAccess library 191
SqlDiscountRepository instance 241, 260
SqlOrderRepository 248
SqlProductRepository class 137–140, 243–246
sqlRepository 280
SRP (SINGLE RESPONSIBILITY PRINCIPLE) 99, 183–

184, 284
srvc variable 254
stability pattern 286
STABLE DEPENDENCIES 23
StartupUri attribute 219, 223
static factories 140–142, 413–414
static keyword 230
static structure, for RRR pattern 82–83
Steak class 427
StreamReader 101
streams, loading XML using 395–396
StreamWriter 101
StructureMap DI CONTAINER 71, 73, 90, 312, 347–

384, 422
configuring difficult APIs 380–384

objects with code blocks 381–382
primitive DEPENDENCIES 380–381
wiring with PROPERTY INJECTION design

pattern 382–384
introduction to 348–361

configuring container 352–358
packaging configuration 358–361
resolving objects 350–352

managing lifetime 361–370
multiple components 370–380

selecting among multiple candidates 371–374
wiring 377

StructureMap.IContainer interface 352
SupplierReorderPolicy 248
SUT (System Under Test) 19, 128, 146
System.Attribute 296
System.ComponentModel namespace 113

INDEX550
System.ComponentModel.Component 316, 318
System.ComponentModel.Design.IDesigner 113
System.ComponentModel.IComponent 107
System.DateTime.Now 24
System.IO.StreamReader 100
System.IO.StreamWriter 100
System.Object 63, 317
System.Random 24
System.Runtime.Remoting.Lifetime.ILease 330
System.Security.Cryptography.RandomNumber-

Generator 24
System.Security.Permissions.PrincipalPermission

class 294
System.Security.Principal.IPrincipal interface 123
System.ServiceModel.ChannelFactory<TChannel>

175
System.Web.HttpContext 166
System.Web.Mvc.ViewPage 44
System.Web.Mvc.ViewPage<FeaturedProducts-

ViewModel> 44
System.Windows.Window 179

T

TDD (Test-Driven Development) 6, 20, 43, 90,
124, 190

Teardown method 462, 471–473
technical problem 41
TESTABILITY 16, 19–20
testable 19
Test-Driven Development. See TDD
Third-party Connect 76
this.agent 174
this.container 352, 422
Thread Context objects, lifetime for 265–266
Thread.CurrentPrincipal 123, 294–295, 299
Thread.CurrentUICulture 123
Thread.Sleep 240
ThreadLocal 361
thread-safe in-memory repository example

256–258
thread-safety 80
Three Calls Pattern 82
ThreeCourseMeal class 335–336, 372–374,

515–516
ThreeCourseMeal constructor 436
ThreeCourseMeal objects 401–402
three-layer application diagram 30
tightly coupled code 9
time, modifying 128–130
TimeProvider class 120, 125–126, 128–129, 332
TimeProvider parameter 120
TimeProvider Stub 129
TimeSpan 151, 412
Total property 232

Trace class 123
Trace.Listeners property 123
Trace.Write method 123
TRANSIENT objects, lifetime for 258–259

resolving multiple repositories example
258–259

when to use 258
TransientLifetimeManager 472
type catalogs 505–506
Type instance 156, 389
type requests, resolving 351–352, 389, 452–453,

498–499
TypeCatalog 504–506
TypeConverter class 113
typeof(BasketController) 65
types, exporting 500–501
type-safe approach 447

U

UI-neutral 221
Uniform Resource Identifiers. See URIs
Uninterrupted Power Supply. See UPS
Unique lifestyle 361, 382
unit testing

benefits of DI 21
misconceptions about DI 6

UnitPrice property 44, 46
unit-testing coupling 189–191
Unity DI CONTAINER 312, 448–491

configuring difficult APIs 486–491
primitive DEPENDENCIES 486–487
registering components with code

blocks 487–489
wiring with PROPERTY INJECTION design

pattern 489–491
introduction to 450–459

configuring container 453–458
packaging configuration 458–459
resolving objects 451–453

managing lifetime 459–473
configuring 460–464
developing custom 464–473

multiple components 473–486
INTERCEPTORS 481–486
selecting among multiple candidates 473–476
wiring 476–480

UnityContainer class 62, 451
UnityContainer instance 467
UnityContainerExtension class 458
UpdateCurrency program example 202–205
UpdateCurrencyCode method 108
UpdateProduct method 279
UPS (Uninterrupted Power Supply) 11
UriResource 393

INDEX 551
URIs (Uniform Resource Identifiers) 395
Use method 382
User Interface layer, for complex example

right way 43–45
wrong way 34–36

using scope 432
UsingFactoryMethod 343–345

V

Value property 497
valueAccessor 437
VealCutlet

class 341
component 440–442
instance 377, 379, 441
object 406
type 406, 441

Verify method 21
ViewModels 179–181, 220
ViewResult instance 35, 52
vmFactory 181
VOLATILE DEPENDENCIES 23–24, 136

W

WCF applications 210–219
extensibility for 211–212
ProductManagementService example 212–219

wcfAgent variable 290
WcfProductManagementAgent class 222–223,

292–293, 298–299
weakly typed services, resolving 351–352, 452–453,

498–499
WEB REQUEST CONTEXT objects, lifetime for

261–266
and Session Request Context objects 265
and Thread Context objects 265–266
HomeController with request-shared repository

example 262–265
when to use 261–262

web.config 51, 70
WillExecute property 482
WindowAdapter 179
Windows Azure Table Storage Service 150
Windows Communication Foundation. See WCF
Windows Complication Foundation 210
Windows Presentation Foundation. See WPF
Windsor example 303–309

activating Interceptors 306–309
Circuit Breaker Interceptor 305–306
exception handling Interceptor 303–305

WindsorContainer 63, 315, 318, 323, 341
WindsorControllerFactory 80, 86

wiring
automatic

DEPENDENCIES 392–393
sequences 402–404, 438, 516–517

AUTO-WIRING sequences 374–375
Decorator design pattern 339–341, 440–442,

479–480, 519–521
concrete component 480
named component 479–480
with concrete contracts 519–521
with delegates 441–442
with WithParameter method 440–441

explicitly, Decorator design pattern 339–340
implicitly, Decorator design pattern 340–341
instance references 373–374
picking components from larger set 438–440,

477–479
sequences 336–339, 438–440, 476–479, 516–519

AUTO-WIRING 438, 476–477, 516–517
configuring arrays 337–338
picking exports from larger set 517–519
refactoring to better course 337
resolving 339

with PROPERTY INJECTION pattern 344–346, 382–
384, 445–447, 489–491, 523–525
AUTO-WIRING 415–416
explicitly wiring 415

WithParameter method 436–437, 439–443, 445
WithProperty method 445–446
WithService property 320
WorkflowRuntime 107–108
WorkflowSchedulerService 108
WPF (Windows Presentation Foundation) 38, 173,

219–224
wpfWindow field 179
WpfWindow property 181
Write method 18, 21
writer instance 13
writerMock 21

X

XamlSchemaContext 222
XferProductRepository class 268–270
XML (Extensible Markup Language)

.NET types in 390–391
configuration of 357–358, 426–427, 456–458
configuring 321–322
configuring containers with 68–70
configuring instance scope with 431
configuring lifestyles with 324–325, 363–364
loading 393–397

combining XML resources 396–397
from URIs 395
using application configuration files 394–395

INDEX552
XML (continued)
using embedded resources 395
using streams 395–396
using XML files 394

managing lifetimes with 461

XML style 68
XmlApplicationContext class 388, 396–398
XmlObjectFactory 396, 398
XmlProductRepository 151
XmlReader 151

DI CONTAINER FEATURE COMPARISON CHART

LIFESTYLE COMPARISON CHART

Feature Castle
Windsor

Structure-
Map

Spring
.NET

Autofac Unity MEF

CODE AS
CONFIGURATION

X X X X

AUTO-
REGISTRATION

X X X

XML
configuration

X X X X X

Modular
configuration

X X X X X X

Custom lifetimes X X (X) X

Decommissioning X X (X) X

INTERCEPTION X X X

(X) = partial support

Lifestyle Castle
Windsor

Structure-
Map

Spring
.NET

Autofac Unity MEF

SINGLETON X X X X X X

TRANSIENT X X X X X X

PER GRAPH X X

WEB REQUEST

CONTEXT
X X (X) (X)

Thread Context X X X

Session Context X (X)

POOLED X

Scoped X X

Custom X X X

(X) = partial support

Mark Seemann

D
ependency Injection is a great way to reduce tight coupling
between soft ware components. Instead of hard-coding
dependencies, such as specifying a database driver, you

inject a list of services that a component may need. Th e services
are then connected by a third party. Th is technique enables you
to better manage future changes and other complexity in your
soft ware.

Dependency Injection in .NET introduces DI and provides a practi-
cal guide for applying it in .NET applications. Th e book presents
the core patterns in plain C#, so you’ll fully understand how DI
works. Th en you’ll learn to integrate DI with standard Microsoft
technologies like ASP.NET MVC, and to use DI frameworks like
StructureMap, Castle Windsor, and Unity. By the end of the
book, you’ll be comfortable applying this powerful technique in
your everyday .NET development.

What’s Inside
Many C#-based examples
A catalog of DI patterns and anti-patterns
Using both Microsoft and open source DI frameworks

Th is book is written for C# developers. No previous experience
with DI or DI frameworks is required.

Mark Seemann is a soft ware architect living in Copenhagen.
Previously a developer and architect at Microsoft , Mark is
now an independent consultant.

For access to the book’s forum and a free ebook for owners of this
book, go to manning.com/DependencyInjectionin.NET

$49.99 / Can $52.99 [INCLUDING eBOOK]

Dependency Injection in .NET

.NET/C#

M A N N I N G

SEE INSERT

“Realistic examples keep
 the big picture in focus...
 A real treat.” —From the Foreword by
 Glenn Block, Senior Program
 Manager, Microsoft

“Well-written, thoughtful, easy
 to follow, and ... timeless.”
 —David Barkol, Neudesic, LLC

“Fills a huge need for
 .NET designers.”
 —Paul Grebenc
 PCA Services, Inc.

“Takes the mystery out of
 a mystifying topic.”
 —Rama Krishna, 3C Soft ware

“All you need to know ...
 and more!”
 —Jonas Bandi, TechTalk

	Content
	Front cover
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book?
	Roadmap
	Code conventions and downloads
	Author Online
	About the author

	about the cover illustration
	Part 1—Putting Dependency Injection on the map
	A Dependency Injection tasting menu
	1.1 Writing maintainable code
	1.1.1 Unlearning DI
	1.1.2 Understanding the purpose of DI

	1.2 Hello DI
	1.2.1 Hello DI code
	1.2.2 Benefits of DI

	1.3 What to inject and what not to inject
	1.3.1 Seams
	1.3.2 Stable Dependencies
	1.3.3 Volatile Dependencies

	1.4 DI scope
	1.4.1 Object Composition
	1.4.2 Object Lifetime
	1.4.3 Interception
	1.4.4 DI in three dimensions

	1.5 Summary

	A comprehensive example
	2.1 Doing it wrong
	2.1.1 Building a tightly coupled application
	2.1.2 Smoke test
	2.1.3 Evaluation
	2.1.4 Analysis

	2.2 Doing it right
	2.2.1 Rebuilding the commerce application
	2.2.2 Analyzing the loosely coupled implementation

	2.3 Expanding the sample application
	2.3.1 Architecture
	2.3.2 Basket feature

	2.4 Summary

	DI Containers
	3.1 Introducing DI Containers
	3.1.1 Hello container
	3.1.2 Auto-wiring

	3.2 Configuring DI Containers
	3.2.1 Configuring containers with XML
	3.2.2 Configuring containers with code
	3.2.3 Configuring containers by convention

	3.3 DI Container patterns
	3.3.1 Composition Root
	3.3.2 Register Resolve Release

	3.4 DI Container landscape
	3.4.1 Selecting a DI Container
	3.4.2 Microsoft and DI

	3.5 Summary

	Part 2—DI catalog
	DI patterns
	4.1 Constructor Injection
	4.1.1 How it works
	4.1.2 When to use it
	4.1.3 Known use
	4.1.4 Example: Adding a currency provider to the shopping basket
	4.1.5 Related patterns

	4.2 Property Injection
	4.2.1 How it works
	4.2.2 When to use it
	4.2.3 Known use
	4.2.4 Example: Defining a currency profile service for the BasketController
	4.2.5 Related patterns

	4.3 Method Injection
	4.3.1 How it works
	4.3.2 When to use it
	4.3.3 Known use
	4.3.4 Example: Converting baskets
	4.3.5 Related patterns

	4.4 Ambient Context
	4.4.1 How it works
	4.4.2 When to use it
	4.4.3 Known use
	4.4.4 Example: Caching Currency
	4.4.5 Related patterns

	4.5 Summary

	DI anti-patterns
	5.1 Control Freak
	5.1.1 Example: newing up Dependencies
	5.1.2 Example: Factory
	5.1.3 Analysis

	5.2 Bastard Injection
	5.2.1 Example: ProductService with Foreign Default
	5.2.2 Analysis

	5.3 Constrained Construction
	5.3.1 Example: late-binding ProductRepository
	5.3.2 Analysis

	5.4 Service Locator
	5.4.1 Example: ProductService using a Service Locator
	5.4.2 Analysis

	5.5 Summary

	DI refactorings
	6.1 Mapping runtime values to Abstractions
	6.1.1 Abstractions with runtime Dependencies
	6.1.2 Example: selecting a routing algorithm
	6.1.3 Example: using a CurrencyProvider

	6.2 Working with short-lived Dependencies
	6.2.1 Closing connections through Abstractions
	6.2.2 Example: invoking a product-management service

	6.3 Resolving cyclic Dependencies
	6.3.1 Addressing Dependency cycles
	6.3.2 Example: composing a window

	6.4 Dealing with Constructor Over-injection
	6.4.1 Recognizing and addressing Constructor Over-injection
	6.4.2 Example: refactoring order reception

	6.5 Monitoring coupling
	6.5.1 Unit-testing coupling
	6.5.2 Integration-testing coupling
	6.5.3 Using NDepend to monitor coupling

	6.6 Summary

	Part 3—DIY DI
	Object Composition
	7.1 Composing console applications
	7.1.1 Example: updating currencies

	7.2 Composing ASP.NET MVC applications
	7.2.1 ASP.NET MVC extensibility
	7.2.2 Example: implementing CommerceControllerFactory

	7.3 Composing WCF applications
	7.3.1 WCF extensibility
	7.3.2 Example: wiring up a product-management service

	7.4 Composing WPF applications
	7.4.1 WPF Composition
	7.4.2 Example: wiring up a product-management rich client

	7.5 Composing ASP.NET applications
	7.5.1 ASP.NET composition
	7.5.2 Example: wiring up a CampaignPresenter

	7.6 Composing PowerShell cmdlets
	7.6.1 Example: composing basket-management cmdlets

	7.7 Summary

	Object Lifetime
	8.1 Managing Dependency Lifetime
	8.1.1 Introducing Lifetime Management
	8.1.2 Managing lifetime with a container

	8.2 Working with disposable Dependencies
	8.2.1 Consuming disposable Dependencies
	8.2.2 Managing disposable Dependencies

	8.3 Lifestyle catalog
	8.3.1 Singleton
	8.3.2 Transient
	8.3.3 Per Graph
	8.3.4 Web Request Context
	8.3.5 Pooled
	8.3.6 Other lifestyles

	8.4 Summary

	Interception
	9.1 Introducing Interception
	9.1.1 Example: implementing auditing
	9.1.2 Patterns and principles for Interception

	9.2 Implementing Cross-Cutting Concerns
	9.2.1 Intercepting with a Circuit Breaker
	9.2.2 Handling exceptions
	9.2.3 Adding security

	9.3 Declaring aspects
	9.3.1 Using attributes to declare aspects
	9.3.2 Applying dynamic Interception
	9.3.3 Example: intercepting with Windsor

	9.4 Summary

	Part 4—DI Containers
	Castle Windsor
	10.1 Introducing Castle Windsor
	10.1.1 Resolving objects
	10.1.2 Configuring the container
	10.1.3 Packaging configuration

	10.2 Managing lifetime
	10.2.1 Configuring lifestyle
	10.2.2 Using advanced lifestyles
	10.2.3 Developing a custom lifestyle

	10.3 Working with multiple components
	10.3.1 Selecting among multiple candidates
	10.3.2 Wiring sequences
	10.3.3 Wiring Decorators

	10.4 Configuring difficult APIs
	10.4.1 Configuring primitive Dependencies
	10.4.2 Registering components with code blocks
	10.4.3 Wiring with Property Injection

	10.5 Summary

	StructureMap
	11.1 Introducing StructureMap
	11.1.1 Resolving objects
	11.1.2 Configuring the container
	11.1.3 Packaging configuration

	11.2 Managing lifetime
	11.2.1 Configuring lifestyles
	11.2.2 Developing a custom lifestyle

	11.3 Working with multiple components
	11.3.1 Selecting among multiple candidates
	11.3.2 Wiring sequences
	11.3.3 Wiring Decorators

	11.4 Configuring difficult APIs
	11.4.1 Configuring primitive Dependencies
	11.4.2 Creating objects with code blocks
	11.4.3 Wiring with Property Injection

	11.5 Summary

	Spring.NET
	12.1 Introducing Spring.NET
	12.1.1 Resolving objects
	12.1.2 Configuring the container
	12.1.3 Loading XML

	12.2 Managing lifetime
	12.2.1 Configuring object scopes

	12.3 Working with multiple components
	12.3.1 Selecting among multiple candidates
	12.3.2 Wiring sequences
	12.3.3 Wiring Decorators
	12.3.4 Creating Interceptors

	12.4 Configuring difficult APIs
	12.4.1 Configuring primitive Dependencies
	12.4.2 Configuring static factories
	12.4.3 Wiring with Property Injection

	12.5 Summary

	Autofac
	13.1 Introducing Autofac
	13.1.1 Resolving objects
	13.1.2 Configuring the ContainerBuilder
	13.1.3 Packaging configuration

	13.2 Managing lifetime
	13.2.1 Configuring instance scope

	13.3 Working with multiple components
	13.3.1 Selecting among multiple candidates
	13.3.2 Wiring sequences
	13.3.3 Wiring Decorators

	13.4 Registering difficult APIs
	13.4.1 Configuring primitive Dependencies
	13.4.2 Registering objects with code blocks
	13.4.3 Wiring with Property Injection

	13.5 Summary

	Unity
	14.1 Introducing Unity
	14.1.1 Resolving objects
	14.1.2 Configuring the container
	14.1.3 Packaging configuration

	14.2 Managing lifetime
	14.2.1 Configuring lifetime
	14.2.2 Developing a custom lifetime

	14.3 Working with multiple components
	14.3.1 Selecting among multiple candidates
	14.3.2 Wiring sequences
	14.3.3 Wiring Decorators
	14.3.4 Creating Interceptors

	14.4 Configuring difficult APIs
	14.4.1 Configuring primitive Dependencies
	14.4.2 Registering components with code blocks
	14.4.3 Wiring with Property Injection

	14.5 Summary

	MEF
	15.1 Introducing MEF
	15.1.1 Resolving objects
	15.1.2 Defining imports and exports
	15.1.3 Working with catalogs

	15.2 Managing lifetime
	15.2.1 Declaring creation policy
	15.2.2 Releasing objects

	15.3 Working with multiple components
	15.3.1 Selecting among multiple candidates
	15.3.2 Wiring sequences
	15.3.3 Wiring Decorators

	15.4 Composing difficult APIs
	15.4.1 Compositing primitive parts
	15.4.2 Composing parts with non-public constructors
	15.4.3 Wiring with Property Injection

	15.5 Summary

	resources
	In print
	Online
	Other resources

	glossary
	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	Back cover

