Lecture 18:
Tree Traversals

PIC 10B
Todd Wittman

Tree Traversals

It's unclear how we should print a tree.
Top to bottom? Left to right?

A tree traversal is a specific order in which to trace
the nodes of a tree.

There are 3 common tree traversals.
1. in-order: left, root, right

2. pre-order: root, left, right

3. post-order: left, right, root

This order is applied recursively.

So for in-order, we must print each subtree's left
branch before we print its root.

Note "pre" and "post" refer to when we visit the root.

Tree Traversal Example

Let's do an example first...

in-order: (left, root, right)
3,5,6,7,10,12, 13,
15, 16, 18, 20, 23

pre-order: (root, left, right)
15,5, 3,12, 10, 6, 7,
13, 16, 20, 18, 23

post-order: (left, right, root)
3,7,6,10,13,12, 5,
18, 23, 20, 16, 15

In-Order Traversal

The in-order traversal is probably the easiest to see,
because it sorts the values from smallest to largest.
template <typename T>

void Tree<T> :: printinOrder (std::ostream& out, TreeNode<T>* rootNode)

{

if (rootNode != NULL) { ostream is a name in std
.) . namespace.
printinOrder (out, rootNode->left); The std: means that we dont
out << (rootNode->data) << "\n"; have to use the std
printinOrder (out, rootNode->right); namespace to use this class.

}

return;
} In-order: 123

Example call in main: myTree.printinOrder (cout, myTree.getRoot());

Pre-Order Traversal

Pre-order traversal prints in order: root, left, right.

template <typename T>
void Tree<T>::printPreOrder(std::ostream& out, TreeNode<T>" rootNode) {
if (rootNode != NULL) {
out << (rootNode->data) << "\n";
printPreOrder (out, rootNode->left);
printPreOrder (out, rootNode->right);
}

return;

}
Pre-order: 21 3

Post-Order Traversal

Post-order traversal prints in order: left, right, root.
It is also called a depth-first search.

template <typename T>
void Tree<T>::printPostOrder(std::ostream& out, TreeNode<T>* rootNode) {
if (rootNode != NULL) {
printPostOrder (out, rootNode->left);
printPostOrder (out, rootNode->right);
out << (rootNode->data) << "\n";

}

return;

} /)\ Post-order: 1 3 2

Sorting Values Using In-Order

The in-order traversal always prints the
values in sorted order from smallest to
largest.

One application of the in-order traversal is
sorting a list.

How long would it take to sort a list?
Each insert operation takes O(h) time.
So doing N inserts would take O(Nh) time.

The in-order traversal is O(N), so building a
tree and printing its values in sorted order
takes: O(Nh) + O(N) = O(Nh) time.

Storing Trees Using Pre-Order

Suppose we want to transmit our tree across the
country to another programmer.

Sending the in-order list would tell them the values,
but would not communicate how the tree is built.
Trees are usually stored with the pre-order traversal.

Ex All of the tree below have the in-order walk: 1 2 3.
But only one of the trees below has the pre-order
walk 1 2 3.

APl

Pre-order: 2 1 3 1

Storing Trees Using Pre-Order

Ex Can you recover the binary tree from its
pre-order traversal?
15,5, 3,12,10, 6, 7,13, 16, 20, 18, 23

Tree Traversal Example

Given a tree, you are expected to know how
to do the in-, pre-, and post-order traversals.

Ex Write the 3 traversals of the given tree.

Yoda

Chewbacca
Lando

In-order: Chewbacca, Han, Lando, Leia, Luke, Obi, Vader, Yoda
Pre-order: Luke, Han, Chewbacca, Leia, Lando, Vader, Obi, Yoda
Post-order: Chewbacca, Lando, Leia, Han, Obi, Yoda, Vader, Luke

Summary of Trees

Compared to vectors and linked lists, trees
have a running time somewhere in between
the best and worst.

Vector | Linked List | Binary Tree
Insert / Erase O(N) o) O(h)
(at known position)
Indexing O(1) O(N) O(h)
(look up element)
Finding an Element O(N) O(N) O(h)

But what is h in terms of N?

Best & Worst Height

In the worst case, the tree is completely unbalanced.

The height h = N-1 = O(N).
In the best case, the tree is perfectly balanced.

i,

Fact: A completely full tree with height h has N = 2+'-1 nodes.
Solving for h gives h = log(N+1)-1 = O(logN).
What's the average height?

Average Height

Let's look at a randomly built tree: a tree built
from random numbers inserted in random
order.

Theorem The average height h of an
randomly built tree with N nodes satisfies

h£2(ﬁ+l)(ﬁ:l)(l—%j+2

i=1 !

where [=4.3191366 solves the equation
(Inf-DB=2
So on average, h = O(logN).
So tree operations are on average O(logN).

