
1

Lecture 18:

Tree Traversals

PIC 10B

Todd Wittman

Tree Traversals

� It's unclear how we should print a tree.

� Top to bottom? Left to right?

� A tree traversal is a specific order in which to trace

the nodes of a tree.

� There are 3 common tree traversals.

1. in-order: left, root, right

2. pre-order: root, left, right

3. post-order: left, right, root

� This order is applied recursively.

� So for in-order, we must print each subtree's left
branch before we print its root.

� Note "pre" and "post" refer to when we visit the root.

2

Tree Traversal Example

� Let's do an example first...

15

5 16

3 12

7

20

18 231310

6

� in-order: (left, root, right)

3, 5, 6, 7, 10, 12, 13,

15, 16, 18, 20, 23

� pre-order: (root, left, right)

15, 5, 3, 12, 10, 6, 7,

13, 16, 20, 18, 23

� post-order: (left, right, root)

3, 7, 6, 10, 13, 12, 5,

18, 23, 20, 16, 15

In-Order Traversal

� The in-order traversal is probably the easiest to see,

because it sorts the values from smallest to largest.

template <typename T>

void Tree<T> :: printInOrder (std::ostream& out, TreeNode<T>* rootNode)

{

if (rootNode != NULL) {

printInOrder (out, rootNode->left);

out << (rootNode->data) << "\n";

printInOrder (out, rootNode->right);

}

return;

}

� Example call in main: myTree.printInOrder (cout, myTree.getRoot());

2

31

In-order: 1 2 3

ostream is a name in std

namespace.

The std:: means that we dont

have to use the std

namespace to use this class.

3

Pre-Order Traversal

� Pre-order traversal prints in order: root, left, right.

template <typename T>

void Tree<T>::printPreOrder(std::ostream& out, TreeNode<T>* rootNode) {

if (rootNode != NULL) {

out << (rootNode->data) << "\n";

printPreOrder (out, rootNode->left);

printPreOrder (out, rootNode->right);

}

return;

} 2

31

Pre-order: 2 1 3

Post-Order Traversal

� Post-order traversal prints in order: left, right, root.

� It is also called a depth-first search.

template <typename T>

void Tree<T>::printPostOrder(std::ostream& out, TreeNode<T>* rootNode) {

if (rootNode != NULL) {

printPostOrder (out, rootNode->left);

printPostOrder (out, rootNode->right);

out << (rootNode->data) << "\n";

}

return;

} 2

31

Post-order: 1 3 2

4

Sorting Values Using In-Order

� The in-order traversal always prints the
values in sorted order from smallest to
largest.

� One application of the in-order traversal is
sorting a list.

� How long would it take to sort a list?

� Each insert operation takes O(h) time.

� So doing N inserts would take O(Nh) time.

� The in-order traversal is O(N), so building a
tree and printing its values in sorted order
takes: O(Nh) + O(N) = O(Nh) time.

Storing Trees Using Pre-Order

� Suppose we want to transmit our tree across the

country to another programmer.

� Sending the in-order list would tell them the values,

but would not communicate how the tree is built.

� Trees are usually stored with the pre-order traversal.

� Ex All of the tree below have the in-order walk: 1 2 3.

But only one of the trees below has the pre-order
walk 1 2 3.

2

31
2

3

1

2

3

12

3

1

2

3

1

Pre-order: 2 1 3 1 2 3 1 3 2 3 2 1 3 1 2

5

Storing Trees Using Pre-Order

� Ex Can you recover the binary tree from its
pre-order traversal?

15, 5, 3, 12, 10, 6, 7, 13, 16, 20, 18, 23

15

5 16

3 12

7

20

18 231310

6

Tree Traversal Example

� Given a tree, you are expected to know how
to do the in-, pre-, and post-order traversals.

� Ex Write the 3 traversals of the given tree.

Luke

Han Vader

Leia YodaObi

Lando

Chewbacca

In-order: Chewbacca, Han, Lando, Leia, Luke, Obi, Vader, Yoda

Pre-order: Luke, Han, Chewbacca, Leia, Lando, Vader, Obi, Yoda

Post-order: Chewbacca, Lando, Leia, Han, Obi, Yoda, Vader, Luke

6

Summary of Trees

� Compared to vectors and linked lists, trees
have a running time somewhere in between
the best and worst.

� But what is h in terms of N?

O(h)O(N)O(N)Finding an Element

O(h)O(N)O(1)Indexing

(look up element)

O(h)O(1)O(N)Insert / Erase

(at known position)

Binary TreeLinked ListVector

Best & Worst Height

� In the worst case, the tree is completely unbalanced.

� The height h = N-1 = O(N).

� In the best case, the tree is perfectly balanced.

� Fact: A completely full tree with height h has N = 2h+1-1 nodes.

� Solving for h gives h = log(N+1)-1 = O(logN).

� What's the average height?

7

Average Height

� Let's look at a randomly built tree: a tree built
from random numbers inserted in random
order.

� Theorem The average height h of an
randomly built tree with N nodes satisfies

where solves the equation

� So on average, h = O(logN).

� So tree operations are on average O(logN).

2
2

1
1

)1(2
1

+







−








+≤ ∑

= Ni
h

N

i

β

2)1(ln =− ββ

3191366.4≈β

