
An Empirical Study on Developer Interactions in
StackOverflow

Shaowei Wang, David Lo, Lingxiao Jiang
Singapore Management University

{shaoweiwang.2010,davidlo,lxjiang}@smu.edu.sg

ABSTRACT
StackOverflow provides a popular platform where developers
post and answer questions. Recently, Treude et al. manu-
ally label 385 questions in StackOverflow and group them
into 10 categories based on their contents. They also ana-
lyze how tags are used in StackOverflow. In this study, we
extend their work to obtain a deeper understanding on how
developers interact with one another on such a question and
answer web site. First, we analyze the distributions of de-
velopers who ask and answer questions. We also investigate
if there is a segregation of the StackOverflow community in-
to questioners and answerers. We also perform automated
text mining to find the various kinds of topics asked by de-
velopers. We use Latent Dirichlet Allocation (LDA), a well
known topic modeling approach, to analyze the contents of
tens of thousands of questions and answers, and produce five
topics. Our topic modeling strategy provides an alternative
perspective different from that of Treude et al. for catego-
rizing StackOverflow questions. Each question can now be
categorized into several topics with different probabilities,
and the learned topic model could automatically assign a
new question to several categories with varying probabili-
ties. Last but not least, we show the distributions of ques-
tions and developers belonging to various topics generated
by LDA.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management; J.4 [Social
And Behavioral Sciences]: Sociology

General Terms
Management; Human Factors

Keywords
Developer Interaction Mining; Developer Forum Mining; La-
tent Dirichlet Allocation (LDA)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$15.00.

1. INTRODUCTION
Software development and maintenance are complex ac-

tivities that often involve many concepts and reference doc-
uments. Many aspects of the software, such as the interface
defined, APIs used, bugs fixed, and even architectural de-
signs, may be changed over time. In order to work with
so many aspects and details involved in a software project,
developers often need helps from one another. A widely
used way is for developers to ask questions and/or answer
them in various online forums. StackOverflow is one of the
most popular question and answer sites [1] for developers.
Millions of questions are posted there, and many of these
questions are answered by various developers [16].

Understanding how a question and answer site in general
and StackOverflow in particular is used by developers could
help us in better improving developer experience in using
these sites. It would also help us to better understand how
information within StackOverflow could be useful to vari-
ous software development activities, and the community of
knowledge is formed to benefit individual developers.

To better understand StackOverflow, Treude et al. man-
ually analyze 385 questions and assign them to 10 cate-
gories [16]. While the previous study is useful to aid the
understanding of StackOverflow, there are questions that re-
quire more investigation and we would like to answer some
of these questions in this paper. Also, Treude et al. employ
a manual process to analyze the content of questions. In this
work, we would like to automate the process by using a text
mining solution that could automatically assign categories
to questions.

In this work, we propose a framework which takes da-
ta from StackOverflow as input and eventually answers a
number of research questions. We first investigate the dis-
tribution of questioners and answerers. We also dive deeper
into the behaviors of questioners and answerers. For exam-
ple, we investigate if developers tend to reciprocate favors
received from other developers, and whether the questioner-
s and answerers on StackOverflow are two different sets of
people. Finally, we investigate tens of thousands of ques-
tions from StackOverflow and infer the different topics that
developers ask by using topic modeling. The topic model
could be used to assign topics to new questions whose topic
labels are unknown.

To achieve the above we perform both text and graph
analysis. We first create a graph that links developers based
on the questions that they ask and those that they answer.
We then analyze the links (or edges) in the graph to in-
vestigate the behaviors of questioners and answerers. Aside

from graph analysis, we also perform text analysis on the
content of the questions. Every question could contain two
parts: normal text and code snippet. We need to perform
a separate processing for the normal text and for the code
snippet. For the code snippets, we extract identifier names
from them. The processed word tokens are then send to
a topic modeling tool, namely Latent Dirichlet Allocation
(LDA), which would report the different topics (or groups
of words with possibly similar semantics) that exist in the
questions and their answers.

The contributions of this work are as follows:

1. We investigate the distribution of questioners and an-
swerers and investigate their behaviors.

2. We analyze the role bias of people in StackOverflow:
whether most people are predominantly questioners or
answerers.

3. We employ topic modeling to assign topics to tens of
thousands of questions from StackOverflow.

The structure of this paper is as follows. In Section 2, we
describe preliminary information on StackOverflow and top-
ic modeling (Latent Dirichlet Allocation). In Section 3, we
describe the methodology we use in this paper. Section 4 de-
scribes our empirical evaluation. We describe related work
in Section 5. Finally, we conclude with future work in Sec-
tion 6.

2. PRELIMINARIES
In this section, we introduce StackOverflow and topic mod-

eling.

2.1 StackOverflow
StackOverflow allows users to register, post questions, and

answer posted questions. Since users are registered, one
could track the questions he or she posts, and answers he or
she makes.

For each posted question, a user can include textual de-
scription of the problem. The user can also include code
snippets. Code snippets are often separated from other nor-
mal texts. Other users can answer the posted question.
Multiple answers could be given by various people. The
one posting question could then either post a comment or
indicate one of the answers as correct. Other people could
also rate whether they like either the questions and/or the
answers. A snapshot of the StackOveflow page showing a
question and its corresponding answer is shown in Figure 1.

2.2 Topic Modeling
Topic modeling is a way to unsupervisedly group a pool of

words into groups. It is unsupervised as there is no need for
users to provide a labeled training data containing words as-
signed to predefined labels. Typically the number of groups
is decided by the user. The topic modeling approach would
then generate at most the specified number of topics. Each
topic is simply a set of words. A topic model would assign a
topic to each word in a document. A document would then
be represented as a distribution of topics.

There are various topic modeling approaches, such as La-
tent Dirichlet Allocation (LDA) [5], hierarchical LDA [4],
Locally-consistent Topic Modeling [8], Discriminative Topic
Modeling [11], etc. All of these approaches build a statistical

Figure 1: A Sample Question (Top) and Answer
(Bottom) on StackOverflow

model which is used to group related words together. In this
study we use LDA as it is a popular one and has been shown
to be effective to solve software engineering problems [14, 2,
19], and an implementation is available1.

3. METHODOLOGY
The framework for our empirical study is shown in Fig-

ure 2. The framework takes as input data from StackOver-
flow and eventually answers a number of research questions
that we have. It has two processing components: data pro-
cessor and text mining. We describe the input of our frame-
work, and the two processing components in the following
paragraphs.

Help Network

Content

StackOverflow

Data

Text

U1 U2 U3
Code

Statistics

Data

Processing

Text

Mining
Topics

Research

Questions

Figure 2: Empirical Study Framework

We take in a set of questions posted in StackOverflow and
their answers. For every question we know the content of
the question as well as the developer that posts the question.
For questions which are answered, we also have the list of
answers and for each answer we have the information of the
developer who answers it. This data is the input to our
framework.

Our first processing component, data processor, analyzes
the input and generates three kinds of outputs. First, we

1http://jgibblda.sourceforge.net/

generate some statistics. These include the number of times
each developer answers questions, posts questions, and the
proportion of a developer’s posts that are questions. Second,
we build what we refer to as a help graph. A help graph is
a directed graph. Each node in the graph is a developer. A
directed edge from developer D1 to D2 in the graph denotes
that developer D1 helps developer D2 (i.e., D1 answers D2’s
questions). Third, we also extract the contents of the ques-
tions. Each question contains two kinds of content: normal
text and code. We can separate normal text from code con-
tents since StackOverflow clearly separates text and code
using a special notation.

Our second processing component analyzes the content of
the questions. We have two sub-steps: content pre-processing
and topic modeling. The content pre-processing step takes
in both normal text and code, performs tokenization, stop
word removal, and stemming. Tokenization breaks a para-
graph into word tokens. Stop word removal removes com-
monly used words like: is, are, I, you, etc. Stemming reduces
a word to its root form, e.g., reading to read, etc. For the
code, we remove reserved keywords such as: if, while, etc.,
curly brackets, etc, and extract identifiers and comments.
These are then subjected to tokenization, stemming, and
stop word removal too.

After the contents have been pre-processed, we employ
Latent Dirichlet Allocation (LDA), to do topic modeling.
Topic modeling analyzes a set of documents (i.e., the ques-
tions) and produces a set of topics. Each topic is a set of
words. For each topic, LDA also returns the set of most
representative words.

The outputs of the data processor and text mining com-
ponents are used to answer the various research questions
that we describe in the next section.

4. EMPIRICAL EVALUATION
In this section, we first present our dataset and the set of

research questions we address. Next, we present our findings
that provide answers to the research questions. We also
present some threats to validity.

4.1 Dataset
We extract the first 100,000 questions using StackOverflow

API2. For each day, we can download from an IP address
at most 30,000 questions. For every call, the API would re-
turn 100 randomly (or pseudo-randomly) selected questions.
Thus, some of the 100,000 returned questions are duplicates
of another (they have the same question identifier). We ap-
ply a filter to remove duplicates and have in total 63,863
unique questions. We use these questions and their answers
in our study.

4.2 Research Questions
In this study we are interested in the following research

questions:

2https://api.stackexchange.com/2.0/questions

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 24 27 30 34

N
um

be
r o

f d
ev

el
op

er
s

Number of posted questions

Figure 3: Histogram of Questioners

RQ1 What are the distributions of developers that
post questions?

RQ2 What are the distributions of developers that an-
swer questions?

RQ3 Do developers that ask questions answer ques-
tions too?

RQ4 Do developers receiving help returns the favor?
RQ5 What topics do developers ask about and what

are the distributions of the topics?

4.3 RQ1: Distribution of Questioners
We plot the histogram of questioners in Figure 3. The

graph shows the number of developers that ask a given num-
ber of questions, and its y-axis is in log-scale. From the
graph, we notice that most developers (33,907 out of 44,087
developers) only ask one question. Only about 23.1% of
the developers ask two or more questions. The number of
developers that ask questions reduces exponentially as we
consider a higher number of posted questions. Only 1.6% of
the developers ask more than 5 questions.

The result shows that there are few “regular” questioners
on StackOverflow. This is possibly because many questions
have already been asked before and users could find answers
to them by just looking into the various pages on StackOver-
flow or other question and answer sites via search engines.

4.4 RQ2: Distribution of Answerers
We plot the histogram of answerers in Figure 3. The graph

shows the number of developers that answer a given num-
ber of questions and its y-axis is also in log-scale. From the
graph, we notice that most developers (28,578 out of 44,087
developers) only answer one question. About one thousand
developers (2.3%) do not answer any questions. Only about
35.2% of the developers answer two or more questions. The
number of developers that answer questions reduces expo-
nentially as we consider a higher number of answers. On-
ly 7.8% of the developers answer more than 5 questions.
The highest number of questions a developer answers in our
dataset is 178. There is only one developer that answers this
many questions.

Compared with the distribution of questioners, the distri-
bution of answers is different. The number of developers that
answer a substantial number of questions (> 5) is more than
the number of developers that ask a substantial number of
questions (> 5)—3,424 (7.8%) versus 701 (1.6%). This may
imply that many developers on StackOverflow are interested

1

10

100

1000

10000

100000

0 10 20 30 40 50 61 74 89 107

N
um

be
r o

f d
ev

el
op

er
s

Number of posted answers

Figure 4: Distribution of Answerers

0

10000

20000

30000

40000

10
0%

90
%
-9
9%

80
%
-8
9%

70
%
-7
9%

60
%
-6
9%

50
%
-5
9%

40
%
-4
9%

30
%
-3
9%

20
%
-2
9%

10
%
-1
9%

1%
-9
% 0%

N
um

be
r o

f d
ev

el
op

er
s

Percentage of posts that are answers

Figure 5: Post Proportion

in contributing to the community and are not solely inter-
ested in getting his or her questions answered.

4.5 RQ3: Segregation of StackOverflow Com-
munity

To answer this research question, we investigate the pro-
portion of posts that various developers make that are an-
swers to some questions. We show this in Figure 5. We
notice that a majority of developers only ask questions but
do not answers them (83.2%, 36,672 developers). Thus, we
could divide the StackOverflow community into two groups:
people that only ask questions, and those that answer one
or more questions. The first group is the majority.

We also note another peak in Figure 5: These are de-
velopers (2,956 of 44,087 developers), with 50-59% of posts
being answers. These correspond to ideal developers that
contribute answers to the community as much as requesting
answers from the community.

Table 1: Reciprocity in StackOverflow
Helper Helpee that Reciprocate in the Future
429349 934123
243225 1259881
15055 9530
1077364 744859
1077364 544504

18 Other Pairs

4.6 RQ4: Reciprocity in StackOverflow
To answer the fourth research question, we investigate the

help graph. A help graph is a directed graph, where each
developer is a node, and the node corresponding to a de-
veloper D1 is linked to that of D2 if D1 answers a question
posted by D2. We would like to investigate how often two
developers D1 and D2 are connected by two edges, one from
D1 to D2 and the other from D2 to D1. We find that there
are only a few of such developers (23 pairs). We highlight
a few in Table 1. The table contains the identifiers of the
helpers and helpees that reciprocate. From the result, we
hypothesize that developers tend to help anyone no matter
if they have helped him or her before and StackOverflow
tends to benefit the community as a whole.

4.7 RQ5: Topics Developers Ask About
To answer this research question, we run a topic modeling

technique—LDA on the text and code contents of the ques-
tions that developers ask. We set the number of topics to
be 5, and after LDA completes running, it outputs 5 topics:
each topic is a set of words sorted in terms of their likelihood
of belonging to the topic. LDA does not generate a mean-
ingful label for each topic; We manually study the words in
each topic and related questions, and assign a label to the
topic.

Based on the above analysis, Table 2 shows the five top-
ics with our manually assigned labels, some representative
words in each topic, and the identifier of an example question
that has a high probability of belonging to the topic. The
five topics are: user interface, stack trace, large code snip-
pet, web document, and miscellaneous. User interface topic
is characterized by words such as view, image, button, etc.
Many questions strongly related to this topic ask questions
on how to render an image or fix a bug in a user interface.
Questions strongly related to the stack trace topic typical-
ly contain a stack trace which is provided by developers to
explain these questions clearly. A stack trace is often associ-
ated with words: error, java, org, server, etc. The words java
and org are often repeated many times in the stack trace.
Questions belonging to the large code snippet topic typically
contain a large code snippet. A large code snippet contains
keywords such as string, new, class, etc. The web document
topic contain words related to the various web documents,
e.g., HTML, etc. Many questions strongly related to this
topic contain HTML snippets. The miscellaneous category
contains many different kinds of questions.

Also, we plot the proportions of questions that belong to
each category. We plot the proportions in two approach-
es. In the first approach, we assign only one topic with the
highest probability to a question based on the topic probabil-
ities assigned by LDA to the question and count how many
questions belong to each topic. In the second approach, we

Table 2: Topics, Related Words, and Questions
Topic Words Question
User Interface view, image, button, etc. 10934198
Stack Trace java, error, org, server, etc. 2521468
Large Code code, string, new, object, 10934762
Snippet class, etc.
Web Document href, page, html, php, etc. 10930491
Miscellaneous us, can, strong, like, would 10881333

etc.

User

Interface

10%

User

Interface

10%

Stack Trace

11%

User

Interface

10%

Stack Trace

11%

Large Code

Miscellaneous

42%

User

Interface

10%

Stack Trace

11%

Large Code

Snippet

18%

Miscellaneous

42%

User

Interface

10%

Stack Trace

11%

Large Code

Snippet

18%

Web Document

19%

Miscellaneous

42%

User

Interface

10%

Stack Trace

11%

Large Code

Snippet

18%

Web Document

19%

Miscellaneous

42%

User

Interface

10%

Stack Trace

11%

Large Code

Snippet

18%

Web Document

19%

Miscellaneous

42%

Figure 6: Document Distribution (Approach 1: Top-
1)

assign multiple topics to a question: If a question has 0.2
probability of belonging to topic 1 as decided by LDA, we
increment the counter for topic 1 by 0.2. The pie charts
in Figures 6 & 7 show the distribution of documents into
various topics by following the first and second approaches
respectively. In Figure 7, we notice that each topic has sim-
ilar number of questions. The miscellaneous topic has the
most number of questions followed by web document, large
code snippet, stack trace, and user interface.

In addition, we show the distribution of developers in-
volved in each topic category. We count the number of u-
nique developers involved in all questions in each topic cat-
egory and plot the histogram in Figure 8 and 9 by follow-
ing the two approaches used above to assign one topic or
multiple topics to a question. Following the first approach,
the most popular topic category is miscellaneous, followed
by web document, large code snippet, stack trace and user
interface in Figure 8. Following the second approach, mis-
cellaneous is the most popular topic, followed by large code
snippet, web document, stack trace and user interface.

4.8 Threats to Validity
Threat to internal validity often refers to experimenter

biases. In this study, most of our process is automated. The
only manual process is the assignment of labels to the 5
topics that LDA returns. We assign the labels based on the
top-50 words and most similar questions for each topic. A
similar strategy is performed in other studies that use topic
modeling techniques too, e.g., [19].

Threat to construct validity often refers to the appropri-
ateness of the metrics used. In this paper, we only study
the five high-level categories for the StackOverflow question-
s. When we assign topics differently to the questions, our
analysis results may vary. In future work, we will investigate

User InterfaceUser Interface

15%
Miscellaneous

User Interface

15%

Stack Trace

17%

Miscellaneous

28%

User Interface

15%

Stack Trace

17%

Large Code

Snippet

Web Document

20%

Miscellaneous

28%

User Interface

15%

Stack Trace

17%

Large Code

Snippet

20%

Web Document

20%

Miscellaneous

28%

User Interface

15%

Stack Trace

17%

Large Code

Snippet

20%

Web Document

20%

Miscellaneous

28%

User Interface

15%

Stack Trace

17%

Large Code

Snippet

20%

Web Document

20%

Miscellaneous

28%

Figure 7: Document Distribution (Approach 2:
Weighted)

50000

40000

45000

50000

rs

30000

35000

40000

45000

50000

e
v
e
lo
p
e
rs

15000

20000

25000

30000

35000

40000

45000

50000

u
m
b
e
r
o
f
d
e
v
e
lo
p
e
rs

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

N
u
m
b
e
r
o
f
d
e
v
e
lo
p
e
rs

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

User Interface Stack Trace Large Code

S i

Web Documents Miscellaneous

N
u
m
b
e
r
o
f
d
e
v
e
lo
p
e
rs

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

User Interface Stack Trace Large Code

Snippet

Web Documents Miscellaneous

N
u
m
b
e
r
o
f
d
e
v
e
lo
p
e
rs

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

User Interface Stack Trace Large Code

Snippet

Web Documents Miscellaneous

N
u
m
b
e
r
o
f
d
e
v
e
lo
p
e
rs

Figure 8: Histogram of Developers Per Topic Cate-
gory (Approach 1: Top-1)

the effects of various topic modeling techniques and various
topic settings on our results.

Threat to external validity refers to the generalizability of
our findings. We analyze tens of thousands of questions and
answers. StackOverflow API returns questions and answers
from different time in a single response. Thus we have in-
jected an amount of randomness in our data which depends
on how random the returned sets of StackOverflow question-
s are. Having a sizable randomly picked sample questions
reduces our threat to external validity. Still in the future,
we would like to extend this study to include more questions
and answers from both StackOverflow and other web sites
to reduce the threat even further.

60000

50000

60000

s

40000

50000

60000

d
e
v
lo
p
e
rs

20000

30000

40000

50000

60000

u
m
b
e
r
o
f
d
e
v
lo
p
e
rs

10000

20000

30000

40000

50000

60000

N
u
m
b
e
r
o
f
d
e
v
lo
p
e
rs

0

10000

20000

30000

40000

50000

60000

User Interface Stack Trace Large Code

S i

Web Documents Miscellaneous

N
u
m
b
e
r
o
f
d
e
v
lo
p
e
rs

0

10000

20000

30000

40000

50000

60000

User Interface Stack Trace Large Code

Snippet

Web Documents Miscellaneous

N
u
m
b
e
r
o
f
d
e
v
lo
p
e
rs

0

10000

20000

30000

40000

50000

60000

User Interface Stack Trace Large Code

Snippet

Web Documents Miscellaneous

N
u
m
b
e
r
o
f
d
e
v
lo
p
e
rs

Figure 9: Histogram of Developers Per Topic Cate-
gory (Approach 2: Weighted)

5. RELATED WORK
Treude et al. is the first to analyze StackOverflow ques-

tion and answer site [16]. In their study, they manually
investigate a few hundred questions and assign them into
10 categories. They also investigate how tags are used in
StackOverflow—what tags are common and how to group
tags into categories. Treude et al. also investigate the distri-
bution of questions that receive zero or more answers. They
also look into what kinds of questions receive more answers.
In this study, we extend the work of Treude et al. by in-
vestigating additional research questions. We look into the
distribution of questioners and answerers. We employ La-
tent Dirichlet Allocation, a state-of-the-art and well-known
topic modeling technique, to semi-automatically infer topics
from questions and assign a question to several topics with
some probabilities.

There are other studies that analyze the use of social me-
dia for software engineering. Some others propose tools that
could help users to leverage social media for software devel-
opment. Bachelli et al. develop an Eclipse plugin which al-
lows users to get information from StackOverflow seamlessly
and integrate information from StackOverflow with code in
Eclipse [3]. Pagano and Maalej investigate how software
developers blog [13]. Bougie et al. and Tian et al. investi-
gate the micro-blogging site Twitter and see how it is used
to distribute microblogs related to software engineering [6,
15]. Dabbish et al. analyze the social coding site GitHub
and investigate its impact on developers by conducting a
number of interviews [10]. Monperrus and Menzini provide
an approach to semi-automatically extract frequently asked
questions from various sources during software developmen-
t, such as email lists and discussion forums, to provide ref-
erence documents for developers [12]. Breu et al. analyze
questions asked in Mozilla and Eclipse bug reports to pro-
pose some ways to improve bug tracking systems [7].

There are a number of software engineering studies that
employ topic modeling. Asuncion et al. use LDA for soft-
ware traceability [2]. Wang et al. investigate the effective-
ness of many topic modeling approaches for concern loca-
tion [18]. Chen et al. use topic modeling to find defect
prone topics from Mozilla Firefox, Eclipse, and Mylyn [9].

6. CONCLUSION AND FUTURE WORK
In this work, we investigate developer interactions on S-

tackOverflow. Treude et al. recently analyze 385 questions
manually and label them into 10 categories [16]. They also
investigate the usage of tags in StackOverflow. In this work,
we investigate the nature of developer interactions on Stack-
Overflow. We find that most developers only answer or ask
one question. Few developers answer and ask many ques-
tions. There are around 8% of developers that answer more
than 5 questions. Most developers only ask questions but
never answer any. On the other hand, there are some devel-
opers who ask and answer a similar number of questions. We
notice that questions posted by developers could be grouped
into 5 categories based on the topic modeling technique that
we use: user interface, stack trace, large code snippets, web
documents, and miscellaneous. The topics are supported by
a similar numbers of questions.

In the future, we plan to extend this study by investi-
gating more questions from StackOverflow and from other
question and answer web sites. Our current study only in-
vestigates the 5 high-level topics. We plan to try various

numbers of topics and various topic modeling techniques,
and investigate lower level topics in future work. We also
plan to utilize or build a taxonomy (c.f. [17]) to further in-
vestigate the different questions posted by the developers in
StackOverflow.

7. REFERENCES
[1] http://stackoverflow.com/.
[2] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor.

Software traceability with topic modeling. In ICSE
(1), 2010.

[3] A. Bacchelli, L. Ponzanelli, and M. Lanza. Harnessing
stack overflow for the IDE. In In Proceedings of RSSE
2012: 3rd International Workshop on
Recommendation Systems for Software Engineering,
2012.

[4] D. M. Blei, T. L. Griffiths, and M. I. Jordan. The
nested chinese restaurant process and bayesian
nonparametric inference of topic hierarchies. J. ACM,
57(2), 2010.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. Journal of Machine Learning
Research, 3, 2003.

[6] G. Bougie, J. Starke, M.-A. Storey, and D. German.
Towards understanding twitter use in software
engineering: Preliminary findings ongoing challenges
and future questions. In International Workshop on
Web 2.0 for Software Engineering, 2011.

[7] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann.
Information needs in bug reports: improving
cooperation between developers and users. In
Proceedings of the 2010 ACM conference on Computer
supported cooperative work, CSCW ’10, pages 301–310,
New York, NY, USA, 2010. ACM.

[8] D. Cai, X. Wang, and X. He. Probabilistic dyadic data
analysis with local and global consistency. In ICML,
2009.

[9] T.-H. Chen, S. W. Thomas, M. Nagappan, and A. E.
Hassan. Explaining software defects using topic
models. In MSR, 2012.

[10] L. A. Dabbish, H. C. Stuart, J. Tsay, and J. D.
Herbsleb. Social coding in github: transparency and
collaboration in an open software repository. In
CSCW, 2012.

[11] S. Huh and S. E. Fienberg. Discriminative topic
modeling based on manifold learning. TKDD, 5(4),
2012.

[12] M. Monperrus and M. Mezini. Semi-automatically
extracting FAQs to improve accessibility of software
development knowledge. In ICSE, 2012.

[13] D. Pagano and W. Maalej. How do developers blog?:
an exploratory study. In MSR, pages 123–132, 2011.

[14] K. Somasundaram and G. C. Murphy. Automatic
categorization of bug reports using latent dirichlet
allocation. In ISEC, pages 125–130, 2012.

[15] Y. Tian, P. Achananuparp, I. N. Lubis, D. Lo, and
E.-P. Lim. What does software engineering community
microblog about? In MSR, 2012.

[16] C. Treude, O. Barzilay, and M.-A. D. Storey. How do
programmers ask and answer questions on the web?
In ICSE, pages 804–807, 2011.

[17] S. Wang, D. Lo, and L. Jiang. Inferring semantically
related software terms and their taxonomy by
leveraging collaborative tagging. In ICSM, 2013.

[18] S. Wang, D. Lo, Z. Xing, and L. Jiang. Concern
localization using information retrieval: An empirical
study on linux kernel. In WCRE, 2011.

[19] W. X. Zhao, J. Jiang, J. Weng, J. He, E.-P. Lim,
H. Yan, and X. Li. Comparing twitter and traditional
media using topic models. In ECIR, 2011.

