
Thread models Semantics: Solaris and Linux M:N to 1:1 thread model

Ahmad Mohsin1, Syed Irfan Raza2, Syda Fatima3

1, 2, 3
Department of Computer Science and Engineering, Air University Multan Pakistan

{ahmadspm, irfanrazanaqvi9, silenteyes36 }@gmail.com

Abstract. Multithreading has got significance with increasing demand for performance, speed and efficiency. As the hardware
resources are becoming more powerful in terms of performance there is immense pressure on system software development
side to optimize the hardware. Effective use of multithreading needs some mechanism to implement. Thread models have
greater impact on application execution time, and I/O operations. Work has been done on Multithread models like M:1, 1:1
and M:N. Earlier M: N was considered best among all because of its performance benchmarks. Currently the Linux and So-
laris have shifted from M: N to 1:1 thread model despite of the advantages of M:N. Our emphasis will be on 1:1 Model seman-
tics for shifting. This paper gives a thorough review of operating system thread models. We have researched factors which
compelled different OS platforms to shift to 1: 1 Model. Pros and cons of hybrid model and 1:1 are provided, later perform-
ance evaluation is provided. At the end of the paper some semantics are presented for preferred thread model o justify our
support for 1:1 Model.

Keywords: multithreading, hybrid threading, 1:1 Thread Models kernel threading, multithreading models.

1 Introduction

Multithreading is important feature for any operating system and its importance has been increased since the emergence of
multicore processors and optimized system memory architectures. A thread of execution is the smallest series of pro-
grammed instructions that can be managed independently. There are multiple threads which may exist within the same pro-
cess that share memory and other resources of the process [8]. Three models are commonly used for mapping. The first
methodology, M: 1 implements all threads in user space where all application software execute and appear to the kernel as
single-threaded process. One of the greater drawbacks however is that it cannot get advantage from multi-
processor computers also no more than one thread is scheduled at the same time [3].

In contrast to M:N , 1:1 model which means that threads created by the user are in 1-1 mapping with threads in the
kernel level. Initially Win32 API used this method. Linux platform uses C library to implement this model. The same ap-
proach is used by Solaris, NetBSD and FreeBSD. But this approach is dependent on underlying kernel [3] [8]. M:N is a hy-
brid model and simply a compromise between kernel-level ("1:1") and user-level ("N:1") threading. This methodology also
provides significant performance when threads in an application are synchronizing with each other. As M:N provides many
advantage over other two models but still it is not a feasible solution [12]. Finally, the costs for maintaining the additional
code necessary for an M-on-N implementation cannot be deserted [4].

Section II will cover multithreading background, and architectures, Section III discuss all three multithreading models,
Section IV will see some pros and cons of M:N and 1:1 thread models. In Section V we will focus semantics. Finally Sec-
tion VI will cover performance evaluation; Section VII mentions covers Conclusion.

2 Multithreading Background and Architecture

Multithreading refers to the ability of an Operating System to support multiple and concurrent paths of execution within a
process [13]. To discriminate processes from threads, the unit of scheduling and dispatching is called a thread or LWP (light-
weight process) LWP is seen as virtual processor by thread library, while the unit having assigned all resources referred to as a
process (or task). In a multithreaded environment, a process is defined as the unit of resource allocation and a unit of protection
[9] [10].

 In multithreaded environment, there is still a single PCB (process control block) and user address space for each process but
there are separate stacks for each thread and also a separate control block for each thread containing register values, priority,

First International Conference on Modern Communication & Computing Technologies (MCCT'14) (Short Paper / WiP)

26-28 February, 2014, NawabShah, Pakistan

and other thread-related information [9] [10]. The multithreading architecture of solaris is depicted in figure 1. Process in figure
represents a 1:1 scheduling model.

Fig. 1. Solaris Multithreading model

3 Multithreading Models

The multithreading techniques are divided into three main categories: user-threads, kernel-threads and hybrid threading
models. Table 2.0 given below shows a matrix for Models, important factors and the operating system.

Table 1. Important Factors for Thread Models [2] [6] [7] [10] [11]

Model Important factors OS

1:N Many user level threads to one kernel thread.

Fast context switching.

More efficient.

Only one user-thread in a kernel-thread

can be running at a time. Blocking call

will block all user threads.

Netscape and Java achieve.

MRI Ruby 1.8.7 has green threads of

Solaris.

M:N Many user level threads to many kernel level threads.

Allows creating sufficient number of kernel

threads.Cheap creation, execution, and cleanup.

Need scheduler in user land and kernel to

work with each other. Scheduling over-

head increases.

IRIX, HP-UX, and Tru64 UNIX use this

model, as did Solaris prior to Solaris

9.Solaris 8 and earlier.

1:1 There is one-to-one correspondence between user threads

and kernel threads.

Can exploit parallelism, blocking system calls.

Less response time.

Set individual thread affinity.

Single Process ID ,Inter-thread synchronization

Thread creation involves LWP (Light

weight Process) creation.

Each thread takes kernel resources.

Limiting the number of threads.

More context switch cost

Solaris

Linux.

OS/2, Windows 2000, Windows NT.

Linux and Windows from 95 to XP im-

plemented the one-to-one model for multi-

threading.

4 M:N thread model vs. 1:1 thread model

This section will cover these two models comprehensively with pros and cons of both threading models M:N (hybrid thread-
ing) and 1:1(kernel threading) [2] [5] [6] [7] [8]. There are many advantage and disadvantages of 1:1 and M:N thread models.
While M:N model offers many advantages over 1:1 and M:1 model, it’s not an entirely satisfactory solution[12].

Table 2. M:N thread model vs. 1:1 thread model

M:N model: Pros and Cons 1:1 model: Pros and Cons

Need for multiple schedulers: Scheduler Activation: In
case of hybrid threading two schedulers are at work.
Scheduler activation is implemented in kernel. So we have
concluded that scheduler activation helps but not a com-
plete solution [1] [5] [6].

Simplicity: This is simple to implement at the library level, but it’s
expensive in terms of kernel resources. But this method depends on
underlying kernel thread model...

First International Conference on Modern Communication & Computing Technologies (MCCT'14) (Short Paper / WiP)

26-28 February, 2014, NawabShah, Pakistan

Number of kernel threads: How to determine the best
number of kernel threads?
 User specified
 OS dynamically adjusts number depending on system

load

Kernel routines can be multithreaded: The underlying kernel can
be multithreaded and can simultaneously schedule many threads of
the process on many processors. Blocking is done on a thread level.

Context switch cost: Context switching cost is less than
1:1 as there are two schedulers in work.

Context switch cost: Context switching cost is a little bit higher
because the kernel must do the switching. For example, running a
user code, time-slice expires, change to kernel mode to perform
thread scheduling.

Priority issue: Priority is another reason that hybrid mod-
els are considered substandard. Kernel thread having high
priority mapped on a low-priority user-thread would run in
preference to a low-priority kernel-thread mapped on a
high-priority user-thread.

Single Process ID: Many problems of both functionality and per-
formance are solved by collapsing the kernel identification of all
threads to a single Process ID (PID). Resource usage is attached to
this single PID, making the system view of a multithreaded applica-
tion accurate [15].

CPU Affinity: The thread need to execute on same pro-
cessor as main process. Main process is an actual task for
which threads are working. We can set the affinity but not
individual thread affinity [14].

CPU Affinity: Operating systems that support 1:1 model has its
own CPU affinity settings. Individual threads are assigned to differ-
ent CPUs [14].

Duplication of scheduling supports: One of the other
problems is that all scheduling supports always exist in
kernel scheduler. Therefore to get the scheduling done at
user-level these supports have to be duplicated at user-
level

Handling number of threads: Operating System must scale well
with increasing number of threads to use this methodology effec-
tively. Windows and Linux tackle this difficulty well.

No true parallelism: There is no true parallelism because
many user level threads are scheduled on many kernel
threads

True parallelism: When one thread blocks the kernel simply de-
schedule it and pick another thread of the kernel level run queue.

Signal handling: It is done by either dedicated signal
thread or upcall mechanism which is an overhead.

Signal handling in kernel: Signal handling is now performed with-
in the kernel for the process, which solves the problems with
POSIX signal handling.

5 Semantics of Linux and Solaris from M:N to 1:1 Model

Solaris now uses a 1:1 (user-kernel) thread model in preference to the historic M:N implementation. By simplifying the
underlying thread implementation, existing applications now without requiring recompilation can see remarkable perform-
ance and stability improvements [5]. Based on performance studies and extensive workload analyses done for large enter-
prise customer workloads with very large numbers of processors, the M:N model was replaced with a 1:1 model starting
with Solaris 9 [5].Solaris has a well-off range of process scheduling features, and some of this is reflected in the threading
model. (For example, Solaris Pthreads has a priority attribute).

5.1 Signal handling

Final signal delivery at user level has many drawbacks. The signal should not be delivered to a thread that is not ex-
pecting to receive signal [4].To stop unwanted results from system calls, the system call wrappers have to be extended but it
will create extra overhead. There are two ways for the signal delivery:

Dedicated signal handler thread

Signals are delivered to dedicated thread with no extra code. The drawbacks include the signal serialization and costs
for the extra thread. All signals have to be direct through dedicated thread in any way even if it handles signals to other
threads. This is different from the intention of the POSIX signal model which allows parallel signal handling [4].

Up-call mechanism

The other way of delivering signal at user level is by using up-call mechanism. This is what used in scheduler activation
solution. This increase cost and complexity because a second signal delivery mechanism have to be implement and some
support at user level is needed [4]. The alternative of all these ways is POSIX signal handling that can be done in kernel.
Kernel will solve all issues related to signal handling and implementation will be simple and straightforward. Signal will be
sent only to unblocked thread so there will be no unnecessary interruptions due to signals. The kernel can also select best

First International Conference on Modern Communication & Computing Technologies (MCCT'14) (Short Paper / WiP)

26-28 February, 2014, NawabShah, Pakistan

thread to deliver signal. This all can be possible with 1:1 thread model. The TLS patch facilitates the implementation of the
1:1 threading model without limiting the number of threads. The previous method had limits the number of threads per
process to 8192[4].

5.2 POSIX Compatibility

Compatibility with the latest POSIX standard and to achieve source code compatibility with other platforms was the major
reason of this shift.

5.3 Efficient use of Symmetric Multiprocessing(SMP)

One of the basic goals of using 1:1 thread model is to provide means to use the capabilities of multi-processor systems. Split-
ting the work in as many parts as there are processors can increase speedup linearly.

5.4 Low thread creation cost

Creating new thread even for small piece of work becomes low cost. Clone () call to optimized thread creation. With use of
this it is no more a heavyweight task.

5.5 Hardware/Software scalability

Increasing number of processors will not increase administrative cost and thread implementation will run sufficiently on
large number of processors. Similarly there will be no limit on number of threads and it will solve problem of user application
to run in separate execution context.

5.6 Maintenance of extra code cost

The cost of maintaining extra code for M:N thread model cannot be ignored at all. Especially for highly complicated
code and there is lot of work needed for better implementation and code of M:N model.

5.7 Thread ID compatibility issue

With M:N thread model compatibility issue arises with other POSIX thread implementations because of each thread having a
different process ID. This is really a debateable point since signals can't be used well. But using 1:1 model solves many per-
formance and functionality issues by assigning single process ID to all threads.

Now it is easy to guess that performance can be achieved if there are same numbers of user and kernel level threads [2]
[6] [8].

6 Performance Evaluation

We have tested the performance evaluation parameters on the given pseudo code by using Ubuntu 12.04 and kernel version
3.10 in POSIX thread library. These parameters are Single Process ID, CPU Affinity, Number of kernel threads and True paral-
lelism [2][16][17]. Here results show that 1:1 Model is much better in terms of performance as compared to M:N Model

 Table 3. Performance evaluation

Pseudocode Tested for performance under POSIX for LINUX using 1:1 Threading Model

Begin
Enter choice for calculator
If choice == 1
 pthread_attr_init (&attr)
pthread_create(&tid,&attr,add,choice)
pthread_join (tid, NULL)

Else if choice == 2
pthread_create(&tid,&attr,sub,choice

Else if choice == 3
pthread_create(&tid,&attr,mul,choice)

 print result
Else if choice == 4
pthread_create(&tid,&attr,div,choice)

Else
Print choice is invlaid

End

First International Conference on Modern Communication & Computing Technologies (MCCT'14) (Short Paper / WiP)

26-28 February, 2014, NawabShah, Pakistan

Table 4 below is summarizing important and distinct benefits of implementing 1:1 multithreading model.

Table 4. Important Points for Justifying 1:1 Thread Model Table 5.Performannce Evaluation Table for Code in Table 3.

7 Conclusion and Future Work

This paper focuses the multithreading models in detail. Key factors of both models have been analyzed we have given rea-
sons why Solaris and Linux shifted to 1:1 implementation and retired the historical M:N thread model.

Solaris and Linux have many reasons of this semantics mainly discussed in this paper are scheduler activation, signal han-
dling, number of threads, CPU, Affinity settings, inter-thread synchronization, Single Process ID, scalability and performance
improvement without recompilation. 1:1 thread model is proven best in later versions of Solaris and Linux as there is no per-
formance penalty.

In future more work can be done to simulate the idea with some implementation in a controlled environment. For this pur-
pose Linux thread API and JAVA threads could be used. Further it can be worked out how 1:1 Model data structures impact on
multicore processor’s performance.

References
1. Neil Brown “A Many-to-Many Threading Model for Multi-core Architectures” Communicating Process Architectures 2007 Alistair A.

McEwan, Steve Schneider, Wilson I fill, and Peter Welch, IOS Press, (2007)
2. A technical white paper ©2002 Sun Microsystems, Inc. “Multithreading in the Solarisª Operating Environment”.
3. Dave McCracken, Ottawa Linux Symposium 2002 “POSIX Threads and the Linux Kernel” IBM® Linux® Technology Center Austin,

TX.(2002)

4. Drepper, U., & Molnar, I., “THE NATIVE POSIX THREAD LIBRARY FOR LINUX.” Red Hat.(2003)
5. An Oracle Technical White Paper ,“Red Hat Enterprise Linux to Oracle Solaris Porting Guide” ,(2012)
6. Xiao-Feng Li “On runtime technology and programming languages”, http://xiao-feng.blogspot.com/2008/08/thread-mapping-11-vs-

mn.html
7. Tei-Wei Kuo “Chapter 4: Multithreading”, National Taiwan University, (2005)
8. “Threads” , http://en.wikipedia.org/ wiki/ Thread_ (computing).
9. Kevin Haghighat, “Multithreading”, (2008)

10. W. Stalling, Operating Systems: Internals and Design Principles, 7th edition, Prentice-Hall, (2012)
11. Silberschatz, A. and Galvin, P. B., Operating System Concepts, 8th edition, Addison-Wesley, (2012)
12. Bryan M. Cantrill “Runtime performance analysis of M-to-N scheduling model”, Department of Computer Science, Brown University,

(1996)
13. A.Frank-P.Weisber, “Operating System – Threads Implementation”, BIU, (1999)
14. Mike Anderson “Understanding and Using SMP/Multi-core processors”, The PTR Group, Inc. (2008)
15. L. Blunt Jackson, “NPTL: The New Implementation of Threads for Linux” (2005)
16. Edward A. Lee, “The problem with Threads”, Electrical Engineering and Computer Sciences University of California at Berkeley, (2006)
17. Anupam Chanda, Khaled Elmeleegy, Romer Gil, Sumit Mittal, Alan L. Cox, and Willy Zwaenepoel, “An Efficient Threading Model to

Boost Server Performance”, Rice University, Dept. of Computer Science, Switzerland.

Points to prefer 1:1 thread model
 Simplicity
 Kernel routines can be multi threaded.
 True Parallelism
 Inter-Thread synchronization
 Thread Creation is less costly
 Signal handling in kernel
 CPU Affinity cab be set by assigning different

thread different CPUs.
 Single Process ID solves many problems of per-

formance and functionality.
 Compatible with latest POSIX and other plat-

forms.
 Efficient Use of SMP

Results for Selected parameters

N
o

of

P
ro

ce
ss

es

N
o.

 o
f

T

hr
ea

ds

N
o.

 o
f

K
er

ne
l

T
hr

ea
ds

P
ro

ce
ss

ID C
P

U

A
ff

in
ity

01
04
(02)
threads
per
core

04 for
each
thread

4516 sched_setaffinity (pid_t
pid, size_t cpusetsize,
const cpu_set_t
*cpuset)

This method is
used by 1:1 model
for setting affinity

First International Conference on Modern Communication & Computing Technologies (MCCT'14) (Short Paper / WiP)

26-28 February, 2014, NawabShah, Pakistan

