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Internal exits from loops represent a critically important
control structure that should be taught in the introductory
CS1 curriculum.  Without access to those facilities, students
are often incapable of solving simple programming
problems that occur frequently in applications.  This paper
reviews the existing evidence in support of such facilities
and argues that it is important to reconsider our traditional
pedagogical approach as we adopt new languages of
instruction.

1. INTRODUCTION
Twenty-five years ago, a fierce debate raged within the
computer science community over the issue of structured
programming.  At its essence, structured programming
represents a disciplined approach to software development
based on abstraction, stepwise refinement, and a formal
approach to program correctness [Dahl72].  Unfortunately,
as the debate progressed, attention was focused less on the
general issues raised by structured programming than on a
relatively small detail: whether or not it is ever appropriate
to use the goto statement in a well-structured program.
Launched by a letter from Edsger Dijkstra in 1968
[Dijkstra68], the goto controversy raged back and forth
over the next several years, often resembling a religious
war in emotional intensity.  In the late 1970s, the debate
died down, and a period of relative peace ensued.

The underlying controversy, however, has not gone
away, and the question of which control structures are
acceptable remains a source of passionate concern.  The
intensity of that concern has been demonstrated by some of
the reactions I have received to the new CS1/CS2
curriculum at Stanford and to my textbook, The Art and
Science of C: A Library-Based Approach [Roberts95],
which reflects the curricular revisions we have undertaken
at Stanford.  When we converted the curriculum from
Pascal to C [Roberts93], I decided—on the basis of many
years of classroom experience—that we should move
beyond the limited control structures available in Pascal
and allow students to exit from the interior of a loop in the
following two cases:

1. When the structure of a loop requires some preparation
(such as reading an input value) before making the test
for termination, I encourage students to use the break
statement to force explicit exit from the interior of a
loop.  This strategy, which is discussed in Section 3,
allows students to solve what Dijkstra calls the loop-
and-a-half problem in a way that appeals to the
student’s intuition and avoids duplication of code.

2. In the context of a function, I encourage students to use
the return  statement as soon as the value of the
function becomes known, even if that return statement
would force an early exit from a loop within the
function.  Allowing return to be used in this way
makes it much easier for students to solve a variety of
problems, as illustrated in Section 4.

Although the response to my text has been quite favorable,
the decision to allow internal loop exits in these restricted
cases has elicited some negative response.  One reviewer,
for example, wrote that using break “is akin to using the
proverbial goto.”  Another charged that my approach
violates the basic tenets of structured programming.  A
third declared that my use of break to exit from a while
loop is simply “unacceptable,” ruling out any further
consideration.

The negative reactions expressed in such reviews
underscore the continued existence of controversy over
what control structures are acceptable for academic use.
This paper summarizes the evidence supporting the use of
internal loop exits and embedded return statements, and
examines the dangers associated with restricting students to
a more tightly constrained control model.

For many years, it was easy to discount the evidence in
favor of internal loop exits.  As long as Pascal was
overwhelmingly accepted as the best language for teaching
introductory programming, the issue had little practical
relevance.  In Pascal, internal loop exits are simply not
available, and those who adhere to the standard version of
the language are therefore forced to accept the control
structures that Pascal provides.

In the last few years, however, many schools have
abandoned Pascal for more modern languages.  For the
most part, the new languages—even those that follow
directly in the Pascal tradition such as Modula-2 and Ada—
include both a structured mechanism for exiting from the
interior of a loop and an active return statement.  The
availability of these facilities gives new relevance to the
underlying pedagogical question of how to teach control



structures at the introductory level.  It is time to reopen the
debate.

2. SUFFICIENCY VERSUS PRACTICAL UTILITY
Before exploring the accumulated evidence that supports
the use of internal loop exits, it is important to acknowledge
that the control structures provided by Pascal have a sound
theoretical basis.  In their 1966 paper, Böhm and Jacopini
proved that it is possible to code any flowchart program
using four control structures: atomic actions, sequential
composition, if-then-else, and while-do.  These
structures became known as D structures, after Edsger
Dijkstra, and were soon extended to form a larger set of
control primitives called D′ structures [Ledgard75] that
also includes the if-then , repeat-until, and case
statements, as they exist in Standard Pascal.  Thus, the
statements provided by Pascal indeed constitute a sufficient
set of control primitives, in the theoretical sense.

The key point, however, is that theoretical sufficiency is
not in itself the principal criterion for program language
design.  After all, the arithmetic if and goto statements
provided by Fortran II also constitute a sufficient set by this
definition, but no one would seriously advocate using those
statements as the basis for control structures in this day and
age.  The discipline encouraged by the use of D structures
leads empirically to more reliable and more easily
maintained programs than Fortran’s primitives support.
Thus, although the evolution of D structures represented an
important practical advance for programming language
design, theoretical sufficiency was not the primary reason
for its success.  If it were, language designers would have
seen no need to augment the set of D structures with the
extremely useful D′ forms.

A similar illustration can be drawn from the standard set
of Boolean operators.  Most languages define and, or, and
not as the primitive operations on Boolean data.  If one’s
primary concern is linguistic economy, this set could easily
be considered wasteful, because the single operator nand
(or, equivalently, the operator nor) would be sufficient in
theoretical terms.  This theoretical result is critical for
hardware designers, who are able to exploit the sufficiency
of a single operator to achieve greater regularity in the
design of integrated circuits.  For programmers, on the
other hand, the fact that nand is by itself sufficient has little
practical relevance.  The average applications programmer
has no intuition regarding the behavior of nand  and
therefore would not know how to use it effectively.
Programming problems tend to be phrased in terms of the
traditional logical connectives, and it is for this reason—the
admittedly subjective criterion of “naturalness” in the sense
of being consistent with intuition—that and, or, and not
form the basis of Boolean calculation.

The question of what set of control structures is
appropriate is therefore larger than the question of whether
a particular set of primitives is sufficient.  It is also
important to consider whether the control structures are
suitable for the problems that tend to arise in practical
programming, or, perhaps more importantly, whether the
structures suit the ways in which programmers conceive of
those problems.  If they do not, and if empirical evidence

indicates that transforming a conceptual image of a problem
into an approved control framework tends to introduce error
or unnecessary complexity, it is important to examine that
framework to determine whether extensions are required.

3. THE LOOP-AND-A-HALF PROBLEM
The fact that some loop structures seem to have a natural
exit in the middle has long been recognized.  In his 1974
comments on the goto controversy [Knuth74], Don Knuth
outlined his own perspective, as follows:

The iteration statements most often proposed as
alternatives to goto statements have been “while B do
S” and “repeat S until B”.  However, in practice the
iterations I encounter very often have the form

A:  S;
    if B then goto Z fi;
    T;
    goto A
Z:

where S and T both represent reasonably long sequences
of code.  If S is empty, we have a while loop, and if T
is empty we have a repeat loop, but in the general
case it is a nuisance to avoid the goto statements.

A typical example of such an iteration occurs when S
is the code to acquire or generate a new piece of data, B
is the test for end of data, and T is the processing of that
data.

Loops of this sort, in which some processing must precede
the test, come up quite often in programming and constitute
what Dijkstra has called the loop-and-a-half problem.  The
canonical example of the loop-and-a-half problem is
precisely the one that Knuth describes: reading a set of
input values until some sentinel value appears.  If the basic
strategy is expressed in pseudocode, the problem has the
following solution:

loop
  read in a value;
  if value = Sentinel then exit;
  process the value
endloop;

In this example, the loop/exit/endloop statement is an
extension to the Pascal repertoire and represents a loop that
is terminated only by the execution of the exit statement in
the interior of the loop body.  The loop/exit/endloop
extension makes it possible to express the algorithm so that
the input value is read in from the user, tested against the
sentinel, and then processed as necessary.

The loop/exit/endloop approach, however, offends the
sensibilities of many computer science instructors, who
have learned through their experience with Pascal to
“unwind” the loop so that the test appears at the top of the
while loop, as follows:

read in a value;
while value != Sentinel do begin
  process the value;
  read in a value
end;



Unfortunately, this approach has two serious drawbacks.
First, it requires two copies of the statements required to
read the input value.  Duplication of code presents a serious
maintenance problem, because subsequent edits to one set
of statements may not always be made to the other.  The
second drawback is that the order of operations in the loop
is not the one that most people expect.  In any English
explanation of the solution strategy, the first step is to read
in a number, and the second is to process it by adding it to
the total.  The traditional Pascal approach reverses the order
of the statements within the loop and turns a read/process
strategy into a process/read strategy.  As the rest of this
section indicates, there is strong evidence to suggest that
the read/process strategy is more intuitive, in the sense that
it corresponds more closely to the cognitive structures
programmers use to solve such problems.

The problem of code duplication is in some sense
objective.  The statements that read in an input value do in
fact appear twice in the program, and it is easy to imagine
that an edit in one copy might not be made symmetrically
in the other.  The second problem, however, is inherently
more subjective because it hinges on the question of which
loop order is more “intuitive.”  What is intuitive for some
may not be intuitive for others, and it may be that a
preference for one strategy over another represents nothing
more than an individual bias.  For that reason, it is
important to rely on empirical measurement of the success
that students have in using the different strategies.

The best known study of this form was conducted by
Elliot Soloway, Jeffrey Bonar, and Kate Ehrlich at Yale
University in the early 1980s.  In their experiments, student
programmers with varying levels of experience were
divided into experimental and control groups.  The students
in each group were then asked to write a program to
average a list of integers terminated by a sentinel value.
Those in the control group were instructed to solve the
problem using Standard Pascal.  Those in the experimental
group were asked to use a variant of Pascal (Pascal L) in
which the standard looping statements while and repeat
were replaced by a new loop  construct having the
following form:

loop
  statements
  if condition leave;
  statements
again

The loop statement allows for a structured exit from the
interior of the loop and therefore permits the use of a
read/process strategy.  The results of the experiment appear
in the abstract of the paper published in Communications of
the ACM  [Soloway83]:

Subjects overwhelmingly preferred a read/process
strategy over a process/read strategy.  When writing a
simple looping program, those using the loop  . . .
leave . . . again construct were more often correct
than were those using the standard Pascal loop
constructs.

The correctness argument is particularly compelling.  At all
levels of experience, students using Pascal L were more

likely to write correct programs than were their
counterparts in the control group.  The outcome is all the
more significant because the students in the experimental
group had little chance to become familiar with the new
loop construct, as indicated by the following passage from
the paper:

Given that students were exposed to the loop . . .
leave . . . again construct of Pascal for only a few
minutes, and given that they had much more familiarity
and experience with Pascal’s standard loop constructs,
we were quite impressed with the high performance of
the Pascal L users.  Thus, these data support the claim
that people will write correct programs more often if
they use the language that facilitates their preferred
strategy.

I have looked for other studies that might contradict the
findings of the Soloway report.  Although I have found
authors who assert that the use of internal loop exits is
wrong, I have encountered none that support their claims
with objective evidence.

It is also possible to use standard Pascal texts as
evidence that the read/process strategy in fact corresponds
to student intuition.  An examination of at the approach
used to solve the read-until-sentinel problem in the five
best-selling Pascal textbooks [Cooper92, Dale92,
Koffman91, Leestma87, Savitch91] reveals that:
• In each of the textbooks, the problem is solved by

unwinding the loop so that the read phase of the
operation occurs twice: once prior to the loop and once
at the end of the loop body.

• In every text except Leestma and Nyhoff, the authors
derive their solution by first presenting the read/process
strategy and subsequently modifying it to fit the
process/read form required by Pascal’s control
structures.

To me, the approach these authors take suggests that they
themselves accept that students find the read/process
strategy more intuitive.  To encourage students to write
programs that fit Pascal’s restrictions, these texts teach
them—often at great length—to abandon their initial
strategy in favor of one that reverses the order of the
operations within the loop.  My own classroom experience
certainly supports this conclusion.  By introducing loop
exits and using the read/process strategy, I find that I can
save almost an entire day’s lecture.

The concern, of course, about introducing an internal
loop exit form is that students will end up abusing it, since
it is certainly possible to do so.  Our experience at Stanford,
however, suggests that this problem does not in fact arise.
Students tend to write code based on the models they are
given, using internal loop exits only in the disciplined way
outlined in the class examples.  In the last three years, over
2500 students have completed CS1 at Stanford, and the
teaching assistants have reported no problems with overuse
of the break construct.  This finding is consistent with the
results of a study by Sheppard, which demonstrated that
internal loop exits do not in fact compromise program
readability [Sheppard79].



4. RETURNING FROM INSIDE A LOOP
In addition to encouraging the use of an internal loop exit to
solve the loop-and-a-half problem, I also teach students that
it is appropriate to use a return statement at any point in a
function where the result value becomes known, even if the
return statement is nested in such a way that it acts as a
nonstandard exit from an enclosing control structure.  The
paradigmatic example that underscores the value of this
technique is the sequential search problem.

In essence, the sequential search problem consists of
writing an implementation for the following function
header line:

function Search(var list: IntList;
                n, key: integer) : integer;

The parameter list is an array of integers that conforms to
the Pascal type definition

type
  IntList = array [1..MaxList] of integer;

where MaxList is some constant upper bound on the list
size.  The actual number of elements actively stored in the
array is typically smaller and is given by the parameter
value n.  The problem is to implement Search in such a
way that it returns the least index i for which list[i] is
equal to key; if the value key does not appear in list, the
function Search should return 0.  Functions that have this
basic structure come up frequently in programming, even at
the introductory level.

If the language includes an active return statement,
such as the one provided by C, Modula-2, or Ada, the
Search function has the following concise and natural
implementation:

function Search(var list: IntList;
                n, key: integer) : integer;
var
  i: integer;
begin
  for i := 1 to n do
    if list[i] = key then return i;
  return 0
end;

If students are restricted to the facilities available in
Standard Pascal, the Search function, as simple and as
fundamental as it is, turns out to be extremely hard to
code—so difficult in fact that many students are incapable
of developing a correct solution.  If you haven’t
encountered this problem, it is worth spending a few
minutes to write the code on your own.

The difficulty of coding the sequential search algorithm
was described in 1980 in an insightful paper by Henry
Shapiro that never received the attention it deserved.  The
statistics he reports are far more conclusive than those in
the Soloway study of internal loop exits.  Of the students in
his study who attempted to use the for loop strategy, all of
them managed to solve the problem correctly, even though
they were forced to use a goto statement to achieve the
effect of the return statement in the preceding example.

In fact, Shapiro notes that

I have yet to find a single person who attempted a
program using [this style] who produced an incorrect
solution.

Students who attempted to solve the problem without
using an explicit return from the for loop fared much less
well: only seven of the 42 students attempting this strategy
managed to generate correct solutions.  That figure
represents a success rate of less than 20% [Shapiro80].

That students would have difficulty in developing a
general solution to this problem is not really surprising.
When they are limited to Pascal’s control structures, the
answer is quite complicated.  To see just how complicated
the solutions can get, it is again useful to consider how the
leading Pascal texts handle the problem.

The following code, adapted from the solution given on
page 300 of Leestma and Nyhoff [Leestma87], illustrates
that a correct solution is indeed possible:

function Search(var list: IntList;
                n, key: integer) : integer;
var
  i: integer;
  found: boolean;
begin
  i := 1;
  found := FALSE;
  while (i <= n) and not found do
    if list[i] = key then
      found := TRUE
    else
      i := i + 1;
  if found then
    Search := i
  else
    Search := 0
end;

This solution introduces a Boolean variable and uses 11
lines of code to do the work accomplished by three in the
solution based on the return statement.  It does, however,
return the correct result.  The Dale and Weems text
[Dale92] uses a slight variation of this strategy that also
returns the correct result.

The other leading Pascal texts adopt a different
approach.  The code suggested independently by Cooper,
Koffman, and Savitch [Cooper92, Koffman91, Savitch91]
has the following general form:

function Search(var list: IntList;
                n, key: integer) : integer;
var
  i: integer;
begin
  i := 1;
  while (i < n) and (list[i] <> key) do
    i := i + 1;
  if list[i] = key then
    Search := i
  else
    Search := 0
end;



These authors have taken great pains to avoid some of
Pascal’s pitfalls.  The bounds test for the while loop
specifies continuation only if i < n, even though the test
i <=  n  might seem more natural in this context.  The
problem with the test i <= n is that Pascal’s handling of the
and operator can generate a subscript violation if n is equal
to MaxList.  On the last cycle, Pascal evaluates both halves
of the condition and therefore evaluates list[i] even if it
has already determined that i > n.  Fixing this problem also
requires that the test in the if statement check the element
value and not the value of the index.  Unfortunately, this
change in the final test introduces a new problem: the
function can fail if n is 0.  As written, the implementation
tests the first element in the array against the key even if the
array has no active elements.

In fairness to the authors, it is important to point out that
the original examples are not in fact buggy in the strictest
sense.  Koffman specifically rules out the possibility that n
is 0 in the preconditions of the function, although this
relationship is not tested within the implementation.  In
both Cooper and Savitch, the upper bound is a constant
rather than a variable.  Since the constant is not declared to
be zero, the problem does not actually arise.  Even so, the
important point is that the coding from these texts cannot be
considered as an appropriate model for a general-purpose
search function.  A student trying to solve the general case
might well do exactly what I did: go through the functions
and replace the constant bound with the corresponding
variable.  At that point, the implementation fails in the n =
0 case.

The conclusion that the sequential search problem is
difficult for students who use the Pascal strategy is strongly
supported by our experience at Stanford.  When we taught
the introductory course in Pascal, we worked hard to
present the sequential search algorithm in a careful and
rigorous way that would ensure correct operation in special-
case situations.  Despite that care, we discovered that even
our best students had trouble regenerating the solution after
taking the course.  The situation is entirely different now
that we use a return statement to implement the sequential
search algorithm.  Students who manage to understand
arrays at all understand the sequential search algorithm
immediately; it no longer represents a source of difficulty.

5. CONCLUSIONS
When students are limited to the control structures available
in Pascal, they tend to have significant difficulty solving
certain programming problems that come up frequently in
practical applications.  Allowing students to use control
forms that provide a structured mechanism for loop exit
increases their comprehension along with their ability to
write correctly functioning code.  Although these facilities
are absent from Pascal, they are widely available in modern
programming languages and should be introduced when
those languages are used in an instructional setting.

To a significant extent, the discipline that Pascal
encouraged has had a positive effect on the computer
science curriculum.  As we move to new programming
languages, however, it is crucial to analyze our experience
to determine what aspects of traditional practice are

predicated more on the particular nature of Pascal than on
some more general principle.  If our programming
methodology can be defended on its own merits, we should
continue to support it.  On the other hand, if our students
are unable to write correct code using the existing
paradigms, we must reevaluate them.  As Dijkstra
observed, “the tools we use have a profound (and devious!)
influence on our thinking habits, and, therefore, on our
thinking abilities” [Dijkstra82].  As we adopt new tools, we
must be ready to think in new ways.
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