

April 29, 2014

IBM POWER8

Erik Rex

rex@dk.ibm.com

Power S814 Power S822 Power S824 Power S822L

> S = ScaleOut 8 = POWER8 x = Nbr of Sockets x = Nbr of Rack-U's L = Linux only

Power Systems: Innovation to put data to work

POWER8 Signature Innovation Processor and Memory

- · Up to 12-core POWER8 processor card
- Simultaneous Multithread Thread (SMT) 8 per core
- · Transactional Memory
- Java[™] Code Optimization w/HW Assist

I/O Improvement

- PCle Gen 3
- Coherent Accelerator Processor Interface

RAS

- RAID 0, 5, 6, 10 in the base, JBOD storage
- · Concurrent maintance PCIe Gen3 slots

Power Systems S824L

- ·2-socket, 4U
- Up to 24 cores
- ·Linux
- ·2H14

Power Systems S822L

- **Power Systems** ·2-socket, 2U
 - POWER8 processor
 - •Up to 24 cores
 - ·Linux only
- •Up to 12 cores

•1-socket, 2U

S812L

POWER8 processor

- ·Linux only
- ·2H14

Power Systems

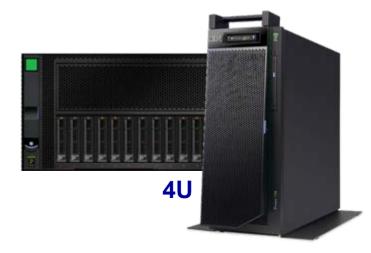
S822

·2-socket, 2U

Power Systems S824

·2-socket, 4U Power Systems Up to 24 cores AIX, IBM i, Linux S814

- ·1-socket, 4U
- Up to 8 cores ·AIX. IBM i. Linux



Announce / Availability Plans

	Annc	eConfig	GA
Power S814	28 Apr	28 Apr	10 Jun
Power S822	28 Apr	28 Apr	10 Jun
Power S824	28 Apr	28 Apr	10 Jun
Power S822L	28 Apr	28 Apr	10 Jun
Add'l storage backplane option	28 Apr	17 July	Sept
SFF-3 146/139GB 15k & 300/283GB 10k HDD	28 Apr	27 May	25 July

Scale Out Systems - DCMs and POWER8 Chips

1S & 2S servers use DCM (Dual Chip Module)

- 1 DCM fills 1 socket Similar to POWER7+ 750 / 760
- 1 DCM has two Scale Out POWER8 chips
- 1 DCM can provide 6-core, 8-core, 10-core or 12-core sockets

6-core Processor Chip

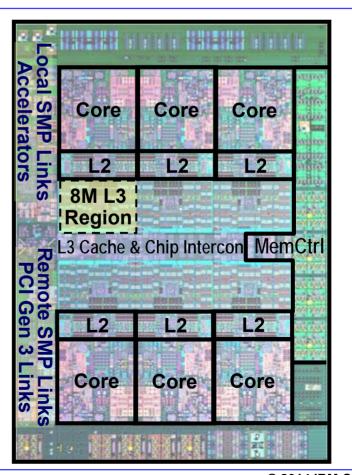
- 362 mm2
- 22nm SOI w/ eDRAM

Strengthen Cores

8 Threads per Core

Caches

D Cache: 64KB


■ L2: 512KB

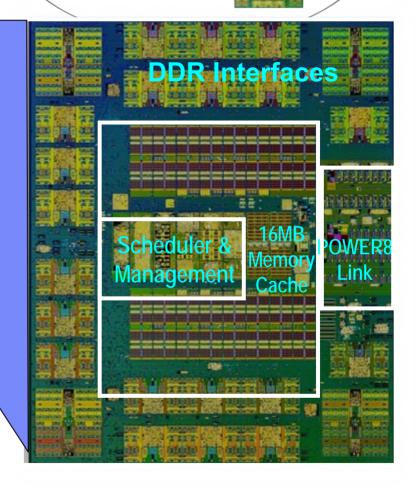
■ L3: 8 MB per Region Total: 48MB

Fine Grained Power Management

On Chip power management

Excellent I/O bandwidth per socket

POWER8 Memory Buffer Chip

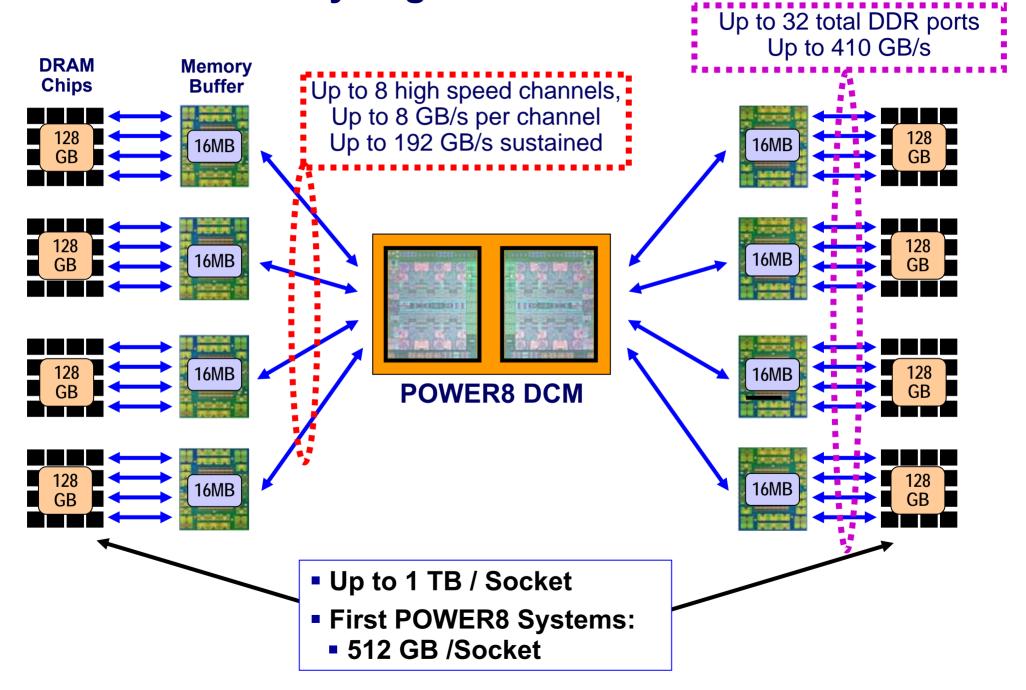

- Scheduling logic, caching structures
- Energy Mgmt, RAS decision point
 - Formerly on Processor
 - Moved to Memory Buffer

Processor Interface

- 9.6 GB/s high speed interface
- More robust RAS
- •" On-the-fly" lane isolation/repair

Performance Value

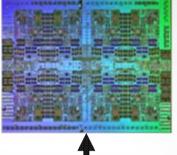
- End-to-end fastpath and data retry (latency)
- Cache → latency/bandwidth, partial updates
- Cache → write scheduling, prefetch, energy

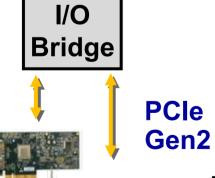


DRAM

Chips

POWER8 Memory Organization



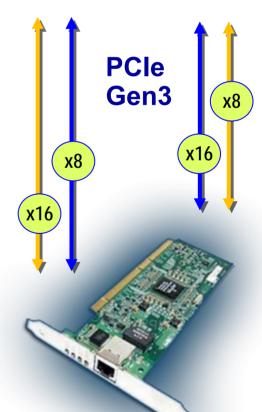

POWER8 Integrated PCI Gen 3

POWER8

POWER7

GX Bus

PCI Devices


Native PCIe Gen 3 Support

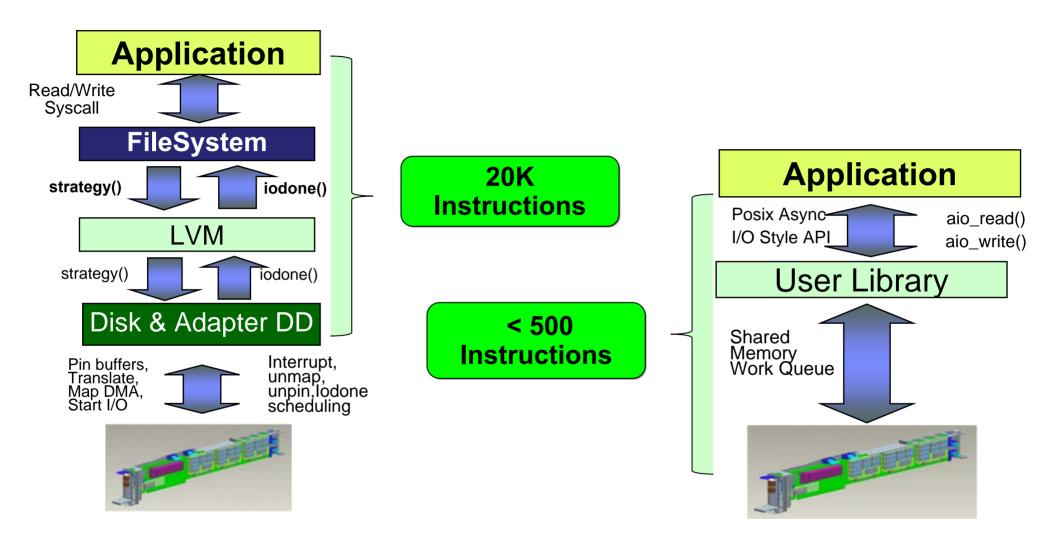
- Direct processor integration
- Replaces proprietary GX/Bridge
- Low latency
- Gen3 x16 bandwidth (32 GB/s)

Transport Layer for CAPI Protocol

- Coherently Attach Devices connect to processor via PCIe
- Protocol encapsulated in PCIe

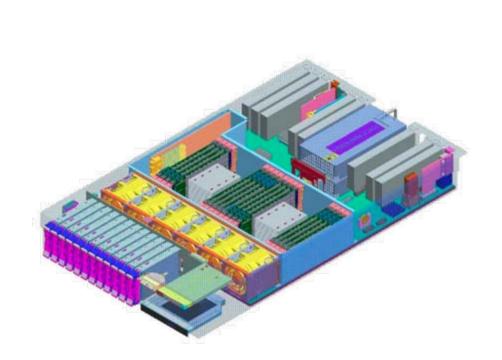
PCI Devices

CAPI


Coherent Accelerator Processor Interface

Stmt of Direction

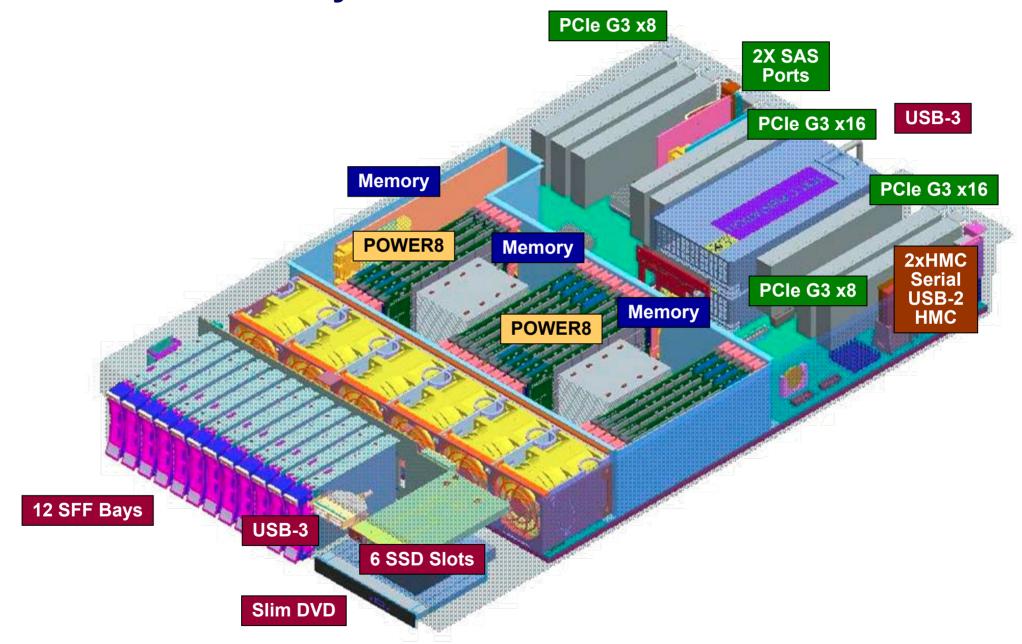
Possible Example: CAPI Attached Flash Optimization


Attach flash memory to POWER8 via CAPI coherent Attach


Issues Read/Write Commands from applications to eliminate 97% of instruction path length

CAPI Flash controller Operates in User Space

Saves 10 Cores per 1M IOPs



2U Server

POWER8 2S2U Layout

POWER8 2S2U Scale-Out System

Power S822

Single Socket populated

Cores: 6 or 10

Memory: Up to 512 GB

PCle Slots: 6 PCle Gen3 LP (Hotplug)

Both Sockets populated

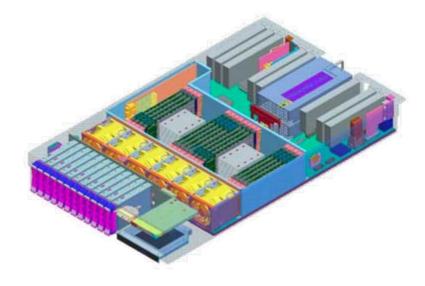
• Cores: 12 or 20

Memory: Up to 1 TB

PCle Slots: 9 PCle Gen3 LP (Hotplug)

Integrated ports: USB (4), Serial (2), HMC (2)

Internal Storage

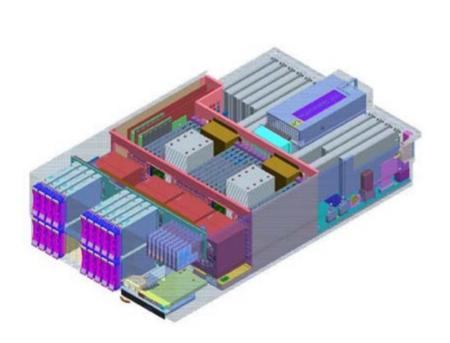

DVD

12 SFF Bays -- Split Backplane: 6 + 6

or 8 SFF Bays & 6 1.8" SSD Bays with Easy Tier with 7GB write cache

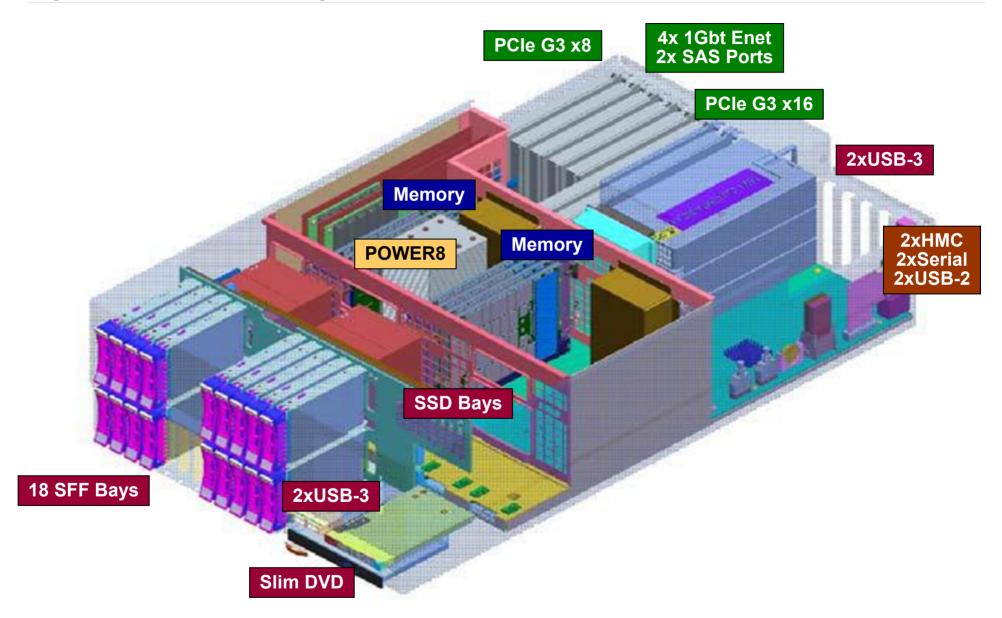
Hypervisor: PowerVM

OS: AIX, Linux (not IBM i)


3 Yr Warranty

POWER8 4U Scale-out Comparison – S814

	Power 720	Power System S814	
Processor	POWER7+	POWER8	
Sockets	1	1	
Cores	4/6/8	6 / 8	
Maximum Memory	512 @ 1066 MHz	512 GB @ 1600 MHz	
Memory Cache	No	Yes	
Memory Bandwidth	136 GB/sec	192 GB/sec	
Memory DRAM Spare	No	Yes	
System unit PCIe slots	6 PCIe Gen2 FH Opt 4 PCIe Gen2 LP	7 PCIe Gen3 FH	
CAPI (Capable slots)	N/A	One	
PCIe Hot Plug Support	No	Yes	
IO bandwidth	40 GB/sec	96 GB/sec	
Ethernet ports	Quad 1 Gbt (x4 slot)	Quad 1 Gbt (x8 Slot)	
SAS bays in system unit	6 or 8 SFF-1 bays	12 SFF-3 bays Or 18 SFF-3 bays	
Integrated write cache	Optional 175 MB	Optional effectively 7GB	
Easy Tier Support (- IBMi)	No	Yes	
Integrated split backplane	Yes (3+3)	Yes (6+6)	
Service Processor	Generation 1	Generation 2	



4U Servers

System 1S4U Layout

POWER8 2S4U Scale-Out System

Power S824

Single Socket populated

• Cores: 6 or 8

Memory: Up to 512 GB

Slots: 7 PCle Gen3 full-high (Hotplug)

Both Sockets populated

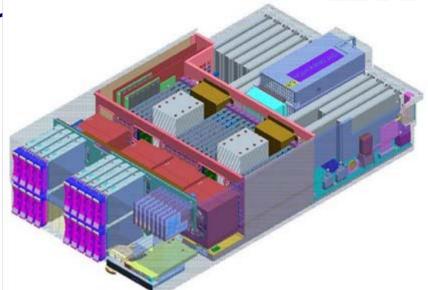
Cores: 12, 16, or 24Memory: Up to 1 TB

Slots: 11 PCle Gen3 full-high (Hotplug)

Ethernet: Quad 1 Gbt / (x8 slot)

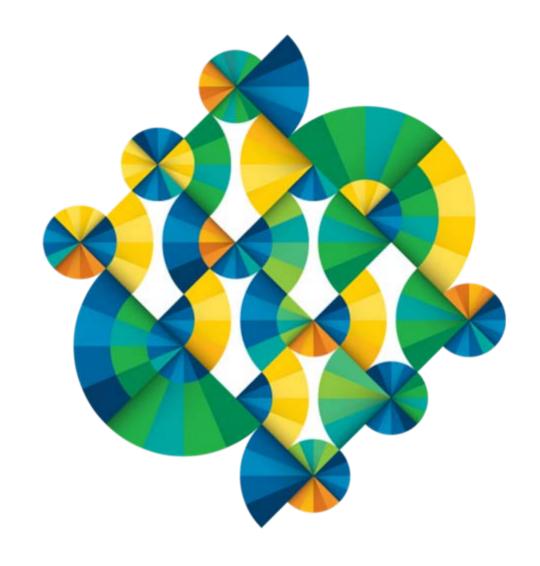
Integrated ports: USB (4/5), Serial (2), HMC (2)

Internal Storage


DVD

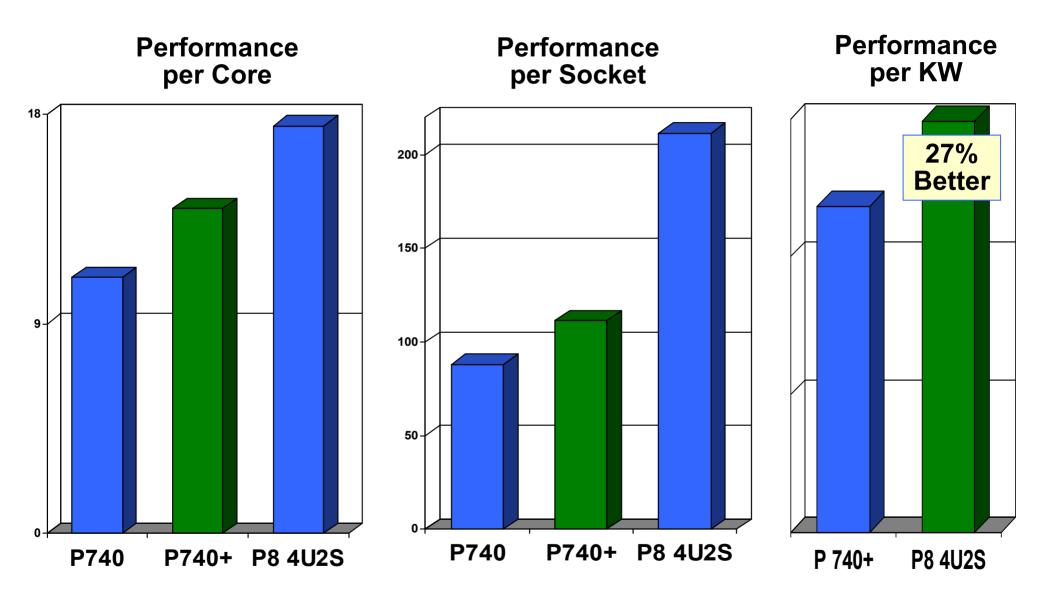
12 SFF Bays -- Split Backplane: 6 + 6

or 18 SFF bays & 8 SSD bays with Easy Tier with 7GB write cache

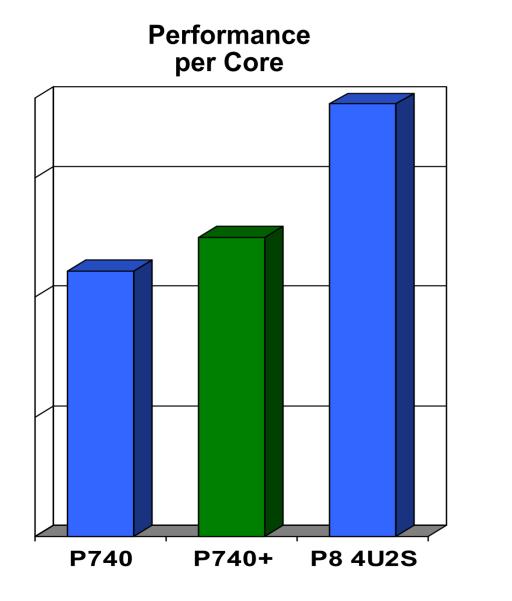

Hypervisor: PowerVM

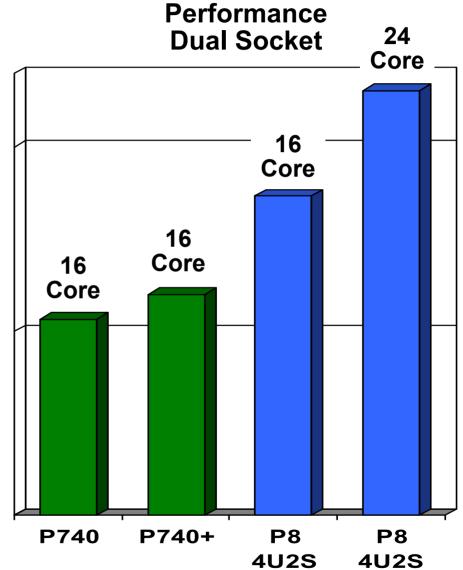
• OS: AIX, IBM i, Linux

3 Yr Warranty



Performance




Power 740+ / POWER8 S824 rPerf Comparisons

Power 740 / POWER8 S824 CPW Comparisons

IBM i - CPW

720 POWER7+ (1 socket)

- **4**-core 3.6 GHz 28,400
- 6-core 3.6 GHz 42,400
- **8**-core 3.6 GHz 56,300

S814 (1 socket)

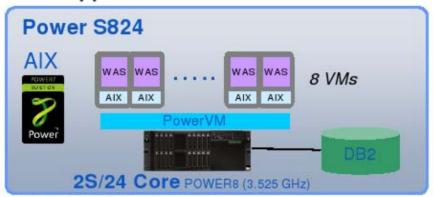
- 4-core xxxxx xxxxx
- 6-core 3.0 GHz 59,500
- **8**-core 3.7 GHz 85,500

740 POWER7+ (1 or 2 socket)

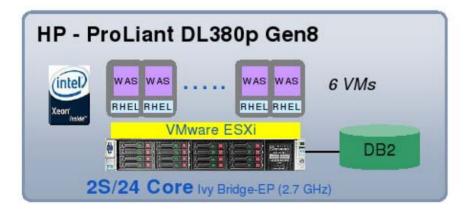

- 6-core 4.2 GHz 49,000
- **12-core** 4.2 GHz 91,700
- **8**-core 3.6 GHz 56,300
- 16-core 3.6 GHz 106,500
- **8**-core 4.2 GHz 64,500
- 16-core 4.2 GHz 120,000

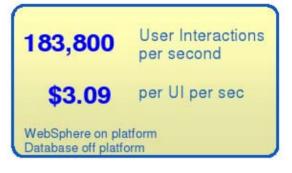
\$824 (1 or 2 socket)

- 6-core 3.8 GHz 72,000
- 12-core 3.8 GHz 130,000
- **8**-core 4.1 GHz 94,500
- 16-core 4.1 GHz 173,500
- 12-core 1-socket not offered
- **24-core** 3.5 GHz 230,500



Power 750+ vs POWER8 4U2S




POWER8 Delivers Over TWICE the Throughput Compared To Ivy Bridge-EP at 47% Lower Cost

Web Application

Online Banking Workload v3.6

Both Servers configured to achieve maximum throughput


```
85,939 User Interactions per second
$5.84 per UI per sec

WebSphere on platform
Database off platform
```

This is an BM internal study designed to replicate a typical BM customer workload usage in the marketplace. The results were obtained under laboratory conditions, and not in an actual customer environment. IBM's internal workload studies are not benchmark applications, nor are they based on any benchmark standard. As such, customer applications, differences in the stack deployed, and other systems variations or testing conditions may produce different results and may vary based on actual configuration, applications, specific queries and other variables in a production environment. Prices, where applicable, are based on published US list prices for both BM and competitor, and the cost calculation compares the cost per request for the 3yr life of the machine. 3 year total cost of acquisition comparisons are based on similar expected hardware, software, service & support offerings

DB2 BLU on POWER8 is 2.7x Faster than Oracle DB on Exadata and 80% Lower Cost

OLTP (Brokerage) Workload

Power S824 with 24 cores AIX 7.1, 64-bit

FlashSystem 840

System Cost 3 year TCA \$2,094,115 1,543

Trade Completions per second (TPS)

\$1,357

per TPS

2.7x

Faster

80%

Lower cost per Trade per second

Exadata X3-2 Quarter Rack

Intel-based Processors

1/4 Rack

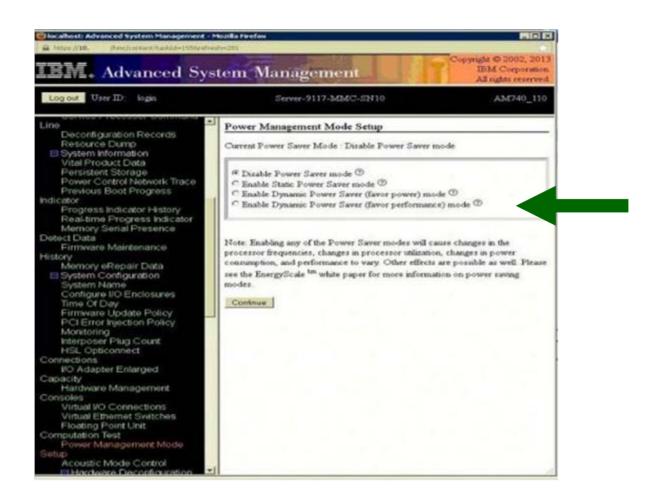
32 database cores

2 Server Nodes

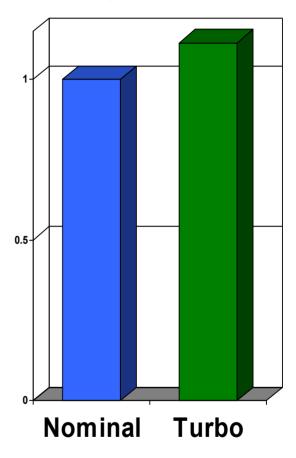
3 Storage Nodes

System Cost 3 year TCA \$3,835,481 561

Trade Completions per second (TPS)


\$6,837

per TPS


Based on IBM internal tests comparing the IBM system with a comparably priced, comparably tuned competitor configuration (version available as of 01/01/2013) executing a materially identical online transaction processing workload in a controlled laboratory environment. Tests measured Trade Completion throughput rates to execute identical SQL query workloads. More Trade Completions is indicated by higher Trade Completions/second. Competitor configuration: '4' Unit (usable uncompressed capacity = 9.5TB) including competitor recommended software options and features. Results may not be typical and will vary based on actual workload, configuration, applications, queries and other variables in a production environment. Users of this document should verify the applicable data for their specific environment.

POWER8 Turbo

12 Core Sockets

- Configure via ASMI menu
- Potential increase in processor frequency: ~ 11+%
- Requires firmware 810 (POWER8 support)
- CPW & rPerf measured using nominal

PCle Adapter

PCIe Slots - High Level

	4U		2U	
	1S 4U	2S 4U	1S 2U	2S 2U
Total PCIe slots (all hot swap)	7	11	6	9
Required* LAN adapter (available for client use)	1	1	1	1
PCIe slots after required* LAN adapter	6	10	5	8
However if use high performance, expanded function backplane	-1	-1	-1	-1
PCIe slots after required* LAN and if using high performance backplane	5	9	4	7

- PCle slots are all Gen3 slots
- 2U are all low profile and 4U are all full high
- There is no PCI expansion drawer announced. There is an SOD.

^{*} required for IBM Manufacturing

Storage Backplanes

Storage Backplanes

2U server example 12 SAS bays base & split

Backplanes provide

- High performance integrated SAS controller(s) built on IBM industry leading PCIe Gen3 SAS adapter technology
 - ❖ All include RAID 0, 1, 5, 6, 10. Plus hot spare capability
 - Split backplane option with zero-write cache controllers
 - Easy Tier® function*
- 8-18** SAS bays for 2.5-inch (SFF) HDD or SSD
- 6-8 SAS bays for 1.8-inch SSD*
- One DVD bay
- Option for attaching one EXP24S drawer of HDD or SSD*

 ^{*} With dual IOA, expanded function backplane with write cache (not IBM i)
 ** number varies based on 2U/4U and backplane option selected

POWER8 4U Storage Backplane Options

Must select one → #EJ0N #EJ0N+EJ0S #EJ0P *

12 SFF SAS bays 1 SAS controller No write cache DVD bay

Staged availability

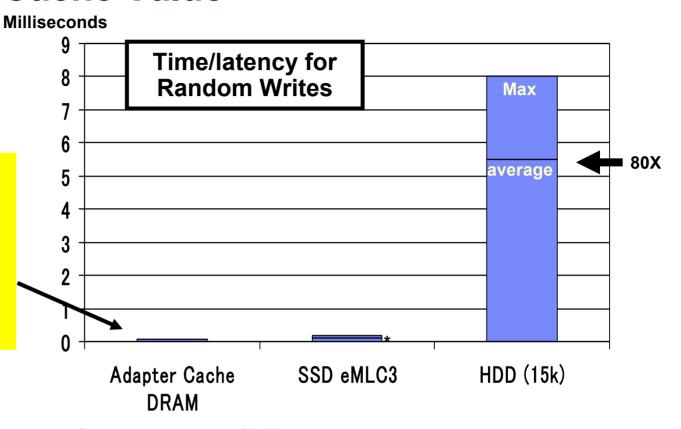
6+6 SFF SAS bays 2 SAS controllers No write cache DVD bay 18 SFF SAS bays
Dual SAS controllers
7.2**GB cache
DVD bay
8-bay SSD cage***
External SAS ports

Note that no HH tape bay is provided – different than POWER7 720/740

AIX / IBM i / Linux	yes	yes	yes
Easy Tier Function	no	no	yes
JBOD	yes	yes	no
RAID 0	yes	yes	yes
RAID 10	yes	Yes	yes
RAID 5/6	Yes	Yes	yes
Split backplane	no	yes	no

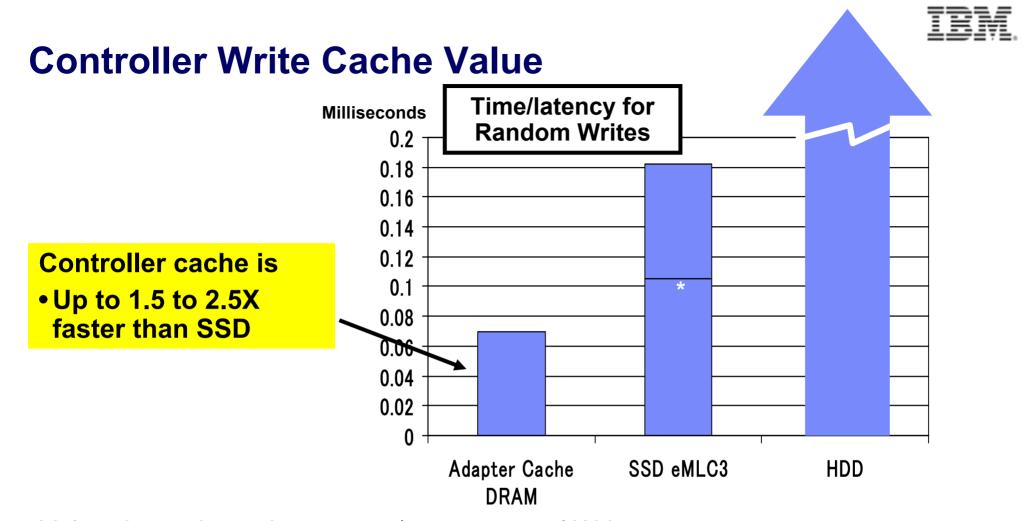
^{*} Uses one x8 PCle slot (space taken up by #EJ0Z SAS ports/cabling – EJ0Z is mandatory with EJ0P)

^{** 1.8}GB physical write cache provides up to 7.2GB effectively with compression


^{*** 8-}bay 1.8-inch SSD cage #EJTM NOTE: Not available on mdl 41A, Required on mdl 42A with #EJ0P

Controller Write Cache Value

- Up to 1.5 to 2.5X faster than SSD
- Up to 80X faster than HDD average



Value depends on the amount/percentage of Writes

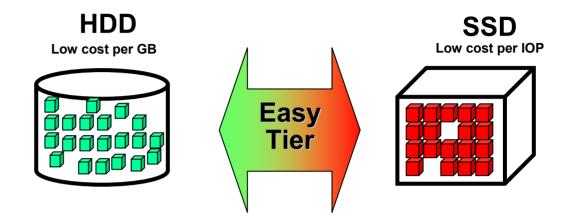
Valuable for SSD, even more valuable for HDD

Can even improve "reads" if application using recently written data still sitting in cache

Graph is a simplification. All performance discussions start with the words "it depends". HDD 15k Max ms shows typical maximum rotational delay and arm movement. 10k HDD is about 1 ms slower. Non-random work will have better HDD measurements. Actual HDD performance varies from HDD to HDD. Adapter write cache can also speed reads, but value of write cache for reads is highly application dependent. The bottom line (*) of the SSD is obtained when the DRAM write cache integrated into SSD can handle the write and with a low queue depth. The higher SSD value is with a higher queue depth and/or when the SSD write cache is not able to keep up with a stream of writes and the write is occurring to the NAND flash memory.

Value depends on the amount/percentage of Writes

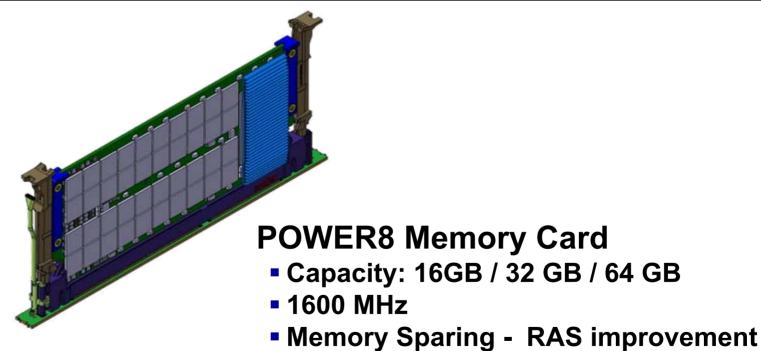
Valuable for SSD, even more valuable for HDD


Can even improve "reads" if application using recently written data still sitting in cache

Graph is a simplification. All performance discussions start with the words "it depends". HDD 15k Max ms shows typical maximum rotational delay and arm movement. 10k HDD is about 1 ms slower. Non-random work will have better HDD measurements. Actual HDD performance varies from HDD to HDD. Adapter write cache can also speed reads, but value of write cache for reads is highly application dependent. The bottom line (*) of the SSD is obtained when the DRAM write cache integrated into SSD can handle the write and with a low queue depth. The higher SSD value is with a higher queue depth and/or when the SSD write cache is not able to keep up with a stream of writes and the write is occurring to the NAND flash memory.

Easy Tier Function Advantage

Optional function with expanded-function, high-performance storage backplane



- Automatically moves high activity (hot) data to SSD and low activity (cold) data to HDD
- Function handled totally by POWER8 integrated SAS controllers.
 No application coding. No SAN, just internal SAS drives.
- For AIX/Linux/VIOS. Just configure as a new type RAID array
- IBM i essentially already has same kind of hot/cold function in OS for all SAS adapters, but could this function via VIOS

POWER8 Memory Card

	4U		2U	
	1S 4U	2S 4U	1S 2U	2S 2U
Max number DIMMs	8	16	8	16
Min number DIMMs	1	2	1	2
Max GB memory	512GB	1TB	512GB	1TB

Low Profile

8 Cards per socket (Scale-Out Systems)

Power System Software

Power VM

Power KVM

Power VC

Power VP

Power **HA**

Power SC

ibm.com/systems/software

PowerKVM Open Virtualization for POWER8 Linux Scale-out Servers

Kernel-Based Virtual Machine(KVM) virtualization targets new Linux workloads

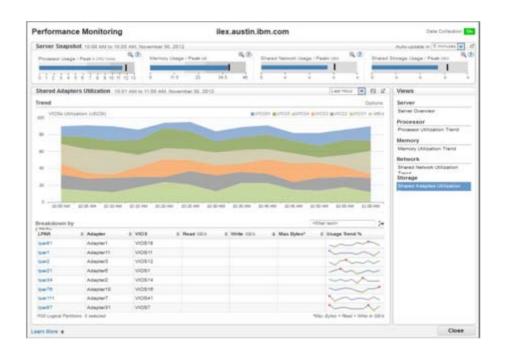
Provides simplicity and familiarity for VMware and KVM Intel Linux admins

Accelerates adoption of Power Linux with Linux oriented virtualization offering

Allows cloud providers to integrate Power Linux into OpenStack environments

Managed by PowerVC or open source tools such as Kimchi

Exploits POWER8 micro-threading and supports NFS and iSCSI



PowerVM Virtualization without Limits

- Major enhancements to user experience simplify administration and management through HMC
- No touch management and one touch deployment simplifies administration and accelerates deployment of VIOS
- System and partition templates follow best practices for repeatable deployments with low risk
- New performance monitoring and helps to simplify performance and capacity management
- Support for latest POWER8 capabilities
- SRIOV NIC support for enhanced network virtualization

Power VM

PowerVP Virtualization Performance Intelligence

Provides performance information to help optimize virtualized systems

Understand the mapping of virtualized workloads to physical hardware

Accelerates identifying system performance bottlenecks

Improved memory affinity information allows optimization for virtualized workloads

Improved shared processor affinity Information allows optimization of shared processor configurations

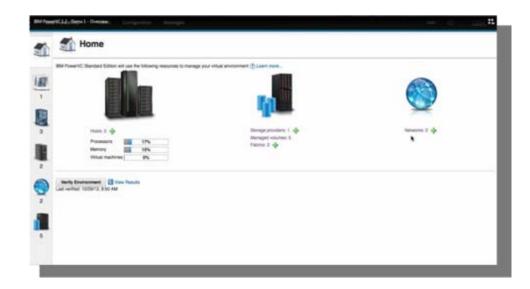
Included in PowerVM Enterprise Edition

IBM Systems Director Roadmap

PowerVC Virtualization Center

Leadership solution for managing PowerVM and PowerKVM

Virtual Image management and deployment


Resource pooling and dynamic VM placement

New support for **PowerKVM**

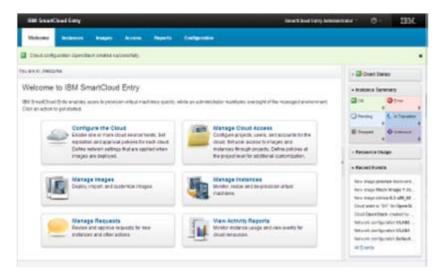
New Shared Storage Pool support enables support for a broader set of storage and clients with EMC and Hitachi

Leverage the performance of new POWER8 hardware

Expanded scale to manage larger enterprise environments

SmartCloud Entry

Use self-service interface for simpler cloud delivery


Build on community supported OpenStack for maximum flexibility

Accelerate infrastructure delivery and improve quality with automation

Enforce resource consumption oversight and accountability

Save time and resources on manual tasks with process automation

Support hypervisors across Power. x86 and z

Support for PowerVC enhancements

Simpler installation with Chef scripts

Expanded OpenStack driver support with components such as Cinder

VM placement policies such as packing, striping, load balance

More hypervisor choices, including PowerKVM and z/VM

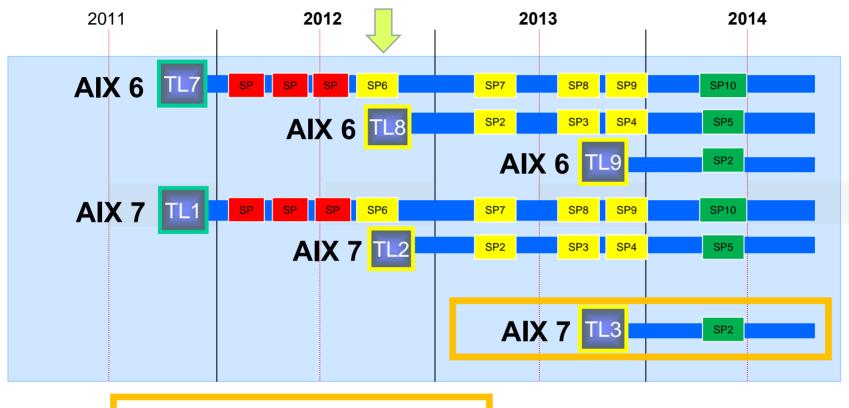
Simplified UNIX Client Transition to POWER8

- Goal: NO AIX UPDATE REQUIRED to live relocate to a POWER8 system with Virtual I/O only in P7, P6+ or P6 mode
- 3 flexible options for AIX clients migrating to POWER8

1. Simply relocate to POWER8 with LPM and Virtual I/O

- AIX 6.1 or AIX 7.1 with supported AIX TL and Service Pack
- LPAR is Live Partition Mobility using virtual I/O

2. Leverage full I/O support on POWER8

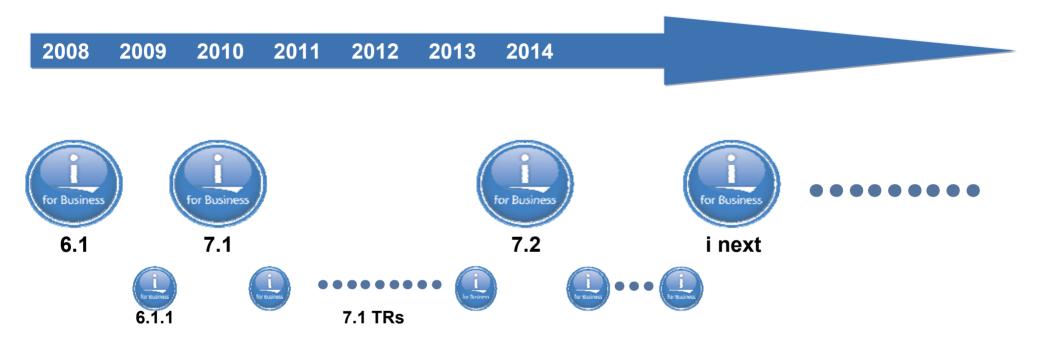

- AIX 6.1 or 7.1 supported TL and latest Service Pack
- Exploits POWER6/6+ or POWER7 modes

3. Fully exploit latest POWER8 mode capabilities

- AIX 7.1 with TL 3 and SP2
- Leverages latest POWER8 enhancements such as increased threads

Planned POWER8 support built into current AIX TLs

- Full I/O support on POWER8
- SPX Can live relocate to POWER8 with Virtual I/O
- Not supported on POWER8


Linux Plans

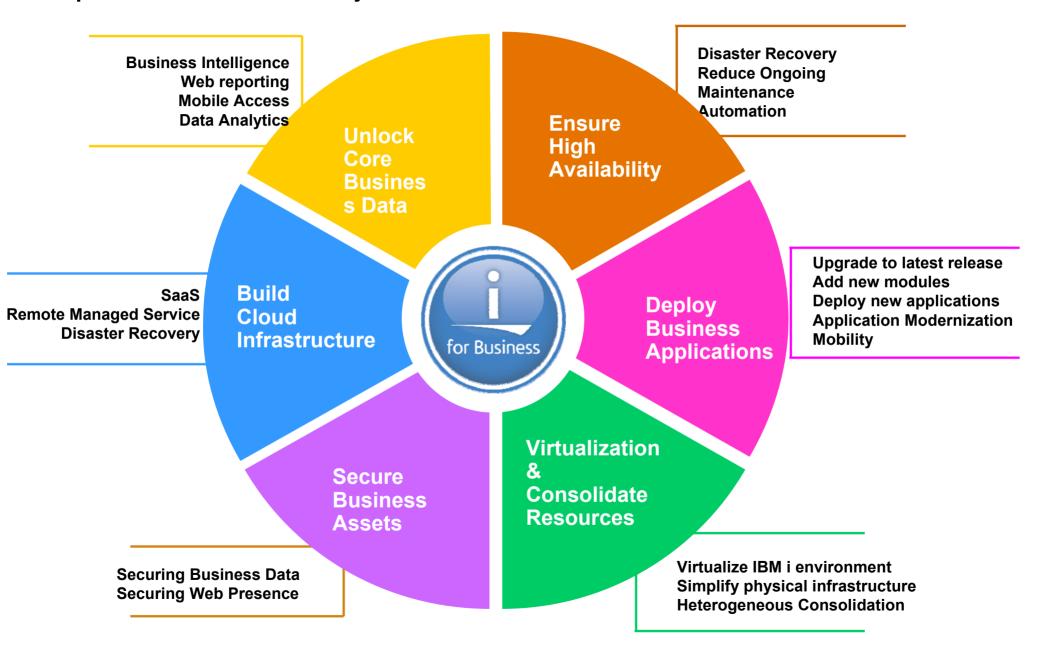
43

	1H / 2014	2H / 2014
RHEL6	RHEL 6.5 P7 Mode in P8	RHEL 6.6 P7 mode in P8
RHEL 7	RHEL 7.0 POWER8 Support	
SLES 11	SLES 11 + SP3 P7 Mode in P8	
SLES 12		SLES 12 (LE) POWER8 Support
Ubuntu (LE)	14.04.00/01 P8 Support	14.04.00/02
Debian	LE Introduction POWER8 Support	LE Update
PowerVM	2.2.3.3	2.2.3.X

IBM i Roadmap

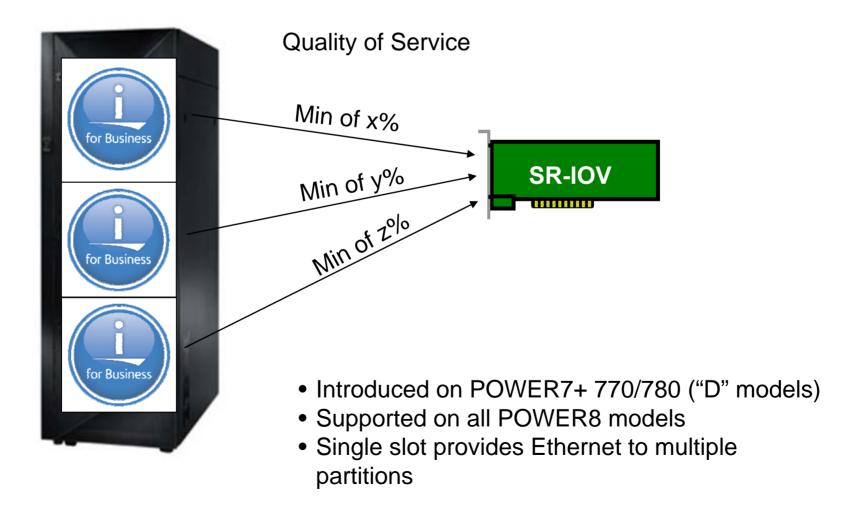
^{**} All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

IBM i System Support


http://www-947.ibm.com/systems/support/i/planning/upgrade/osmapping.html

Servers	IBM i 5.41	IBM i 6.1	IBM i 7.1	IBM i 7.2
POWER8			√ ₃	✓
POWER7/7+ PS700/701/702/730/704, Power 710, 720, 730, 740, 750, 760, 770, 780, 795, Pureflex p260/460		√ 2	√	✓
POWER6 JS12, 22, 23/43, 550* 560		√	√	4
POWER6 520, 550*, 570, 595	✓	√	√	
POWER5/5+ 515, 520, 525, 550, 570, 595	√	√	√	
800, 810, 825, 870, 890	√	$\overline{\hspace{1cm}}$		
270, 820, 830, 840	✓			

- 1 IBM i V5R4 is no longer marketed or supported other than through extended service contracts
- 2 POWER7+ 750/760 do not support native I/O. 6.1 in PureFlex must be client of 7.1 or later
- 3 Requires Technology Refresh 8
- 4 no IOP or HSL support


Top IBM i Client Projects

SRIOV (Single Root I/O Virtualization) for Ethernet

- Simple virtualization with or without VIOS
- With quality of service controls to specify minimum bandwidth per partition

IBM i 7.2 - DB2 for i enhancements

Security enhancements

- Row and Column Access Control
- FieldProc Masking (PTFed to 7.1)
- Multiple-action Triggers (PTFed to 7.1)
- TRANSFER OWNERSHIP
- Grant to GROUP and USER syntax

SQL enhancements

- SQE for Query/400 and OPNQRYF
- TRUNCATE
- Autonomous procedures
- Expressions in PREPARE and EXECUTE IMMEDIATE

Query enhancements

- XMLTABLE (PTFed to 7.1)
- CONNECT BY (PTFed to 7.1)

IBM Navigator for i – new functions

Performance & Usability

- New browsers
- My Favorites

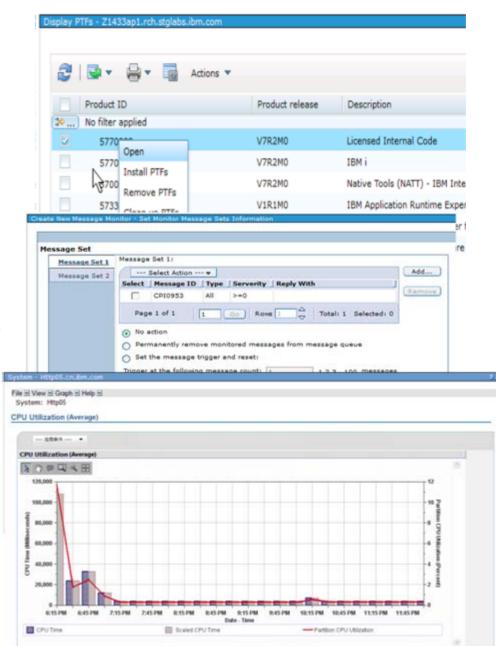
PTF management

- Installed PTF Navigation
- Load/apply PTF on single or group systems

Message Queue monitor

- Based on the same CIM infrastructure
- Filter messages based on rules
- Trigger action to handle messages automatically

System monitor


User defined IBM i OS metrics monitor

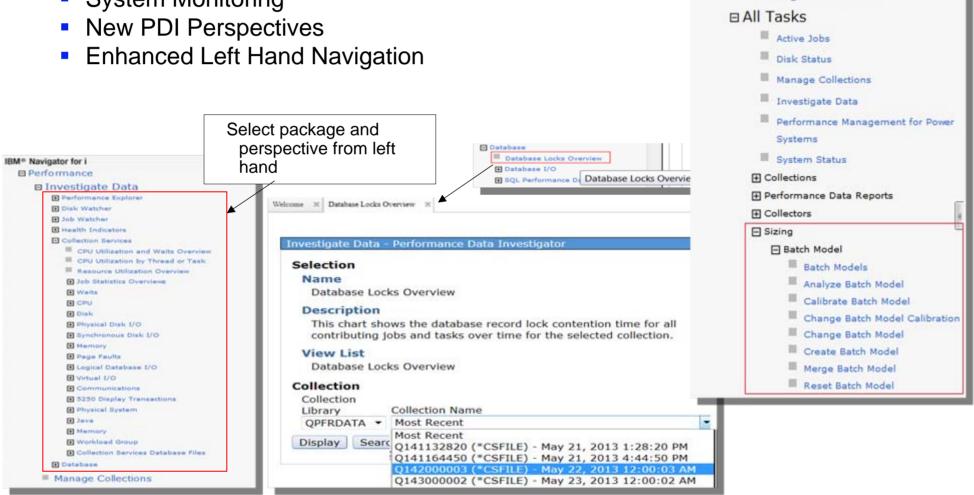
Graphical displays of performance trend

User defined event automation

Database

- Create new function and procedure
- DB Performance Metrics

IBM® Navigator for i


F Performance

■ Investigate Data
■ Manage Collections

Collection Services & Performance Data Investigator – 7.2

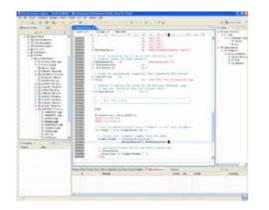
Significant enhancements to PDi

- New Collection Services Metrics
- Batch Model
- System Monitoring

RPG Significantly Enhanced October 2013

New Free Format RPG

- New Syntax; new style
- Modern behavior

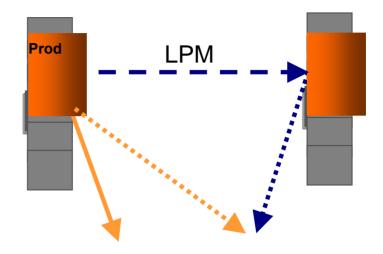

Conversion tool changes old RPG to RPG Free Format

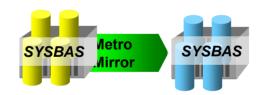
- Arcad Converter
- Linoma Software

Rational Developer for i provided support in December 2013.


```
ctl-opt bnddir('ACCRCV');
dcl-f custfile usage(*update);
dcl-ds custDs likerec(custRec);
dcl-f report printer;
read custfile custDs;
dow not %eof;
   if dueDate > %date(); // overdue?
      sendOverdueNotice();
      write reportFmt;
      exec sql insert :name, :duedate into
             mylib/myfile;
   endif:
   read custfile custDs:
enddo:
*inlr = '1';
dcl-proc sendOverdueNotice;
   sendInvoice (custDs : %date());
  end-proc;
```


IBM i Application Development Strategy





PowerHA SystemMirror for i Express Edition – Hyperswap

- Provides ability to 'instantly' switch access from production IBM i DS8000 instance to remote DS8000
- Switch can happen automatically in case of DS8000 failure
- Switch can be manually triggered for planned maintenance
- Affinity can be defined so an LPM switch triggers a DS8000 switch
- DS8000 storage servers only
- IASP based replication not yet supported

PowerHA 7.2 Enhancements

SYSBAS Replication Enhancements

- Object Authority and Ownership can now be replicated with Administrative Domain
- Increase the 25,000 Administrative Domain monitored resource entry (MRE) limit to 45,000 MREs

Reduced Downtime

- DSPASPSTS improvements for monitoring vary-on time
- Reduce downtime by shortening UID/GID processing time during vary-on

Management Improvements

Independent ASP Assignment

- Enables use of one partition to save multiple production cluster environments
- Allows attachment of an IASP to a partition not in the cluster device domain
- Only one IASP can be attached to the partition at a time

IBM has the technology you need <u>Today</u>

Power Systems

IBM is built for your future and **Beyond**

The End...

