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About This Book

The primary objective of the IBM PowerPC® 970FX RISC Microprocessor User’s Manual is to define the 
functionality of the PowerPC 970FX microprocessor for software and hardware developers. 

The information in this book is subject to change without notice, as described in the disclaimers on the title 
page. As with any technical documentation, it is the readers’ responsibility to be sure they are using the most 
recent version of the documentation. To locate any published errata or updates for this document, go to 
www-01.ibm.com/chips/techlib.

Note:  Soft copies of many of the latest versions of the manuals and documents referred to in this manual that 
are produced by IBM can be accessed on the Web at www-01.ibm.com/chips/techlib.

Audience

This manual is intended for system software and hardware developers and application programmers who 
want to develop products for the 970FX microprocessor. It is assumed that the reader understands operating 
systems, microprocessor system design, basic principles of reduced instruction set computer (RISC) 
processing, and details of the PowerPC Architecture™.

Organization

For ease in reference, the arrangement of topics in this book is similar to that of the PowerPC Microprocessor 
Family: The Programming Environments Manual for 64-Bit Microprocessors and the PowerPC Micropro-
cessor Family: Vector/SIMD Multimedia Extension Technology Programming Environments Manual (see 
Related Documents on page 18). Topics build upon one another, beginning with a description and summary 
of 970FX-specific registers and instructions and progressing to more specialized topics such as 970FX-
specific details regarding the cache, exception, memory management models, and power management. 
Thus, chapters might include information from multiple levels of the architecture. For example, the discussion 
of the cache model uses information from both the virtual environment architecture (VEA) and the operating 
environment architecture (OEA).

A summary and a brief description of the major sections of this manual follows:

• Chapter 1 PowerPC 970FX Overview is useful for readers who want a general understanding of the fea-
tures and functions of the PowerPC Architecture and the 970FX microprocessor. This chapter describes 
the flexible nature of the PowerPC Architecture definition, and provides an overview of how the PowerPC 
Architecture defines the register set, operand conventions, addressing modes, instruction set, cache 
model, exception model, and memory management model.

• Chapter 2 Programming Model is useful for software engineers who need to understand the 970FX-spe-
cific registers, operand conventions, and details regarding how the PowerPC instructions are imple-
mented on the 970FX microprocessor. Instructions are organized by function.

• Chapter 3 Storage Subsystem discusses the storage subsystem as implemented on the 970FX micropro-
cessor. The storage subsystem includes the core interface logic, the non-cacheable unit, the L2 cache 
and controls, and the bus interface unit. 

• Chapter 4 Exceptions describes the exception model defined in the PowerPC OEA and the specific 
exception model implemented on the 970FX microprocessor.

http://ibm.com/chips/techlib
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• Chapter 5 Memory Management describes the 970FX implementation of the memory management unit 
specifications provided by the PowerPC OEA for PowerPC processors.

• Chapter 6 Software Optimization Guidelines describes key design characteristics of the 970FX micropro-
cessor. 

• Chapter 7 Signal Description describes the individual signals of the 970FX microprocessor.

• Chapter 8 Processor Interconnect Bus describes the processor interconnect (PI) which is a bus architec-
ture providing high-speed, high-performance interconnections for processors, I/O devices, memory sub-
systems, and bridge chips. 

• Chapter 9 Power and Thermal Management provides information about power saving and thermal man-
agement modes for the 970FX microprocessor.

• Chapter 10 970FX Performance Monitor describes the operation of the performance monitor diagnostic 
tool incorporated in the 970FX microprocessor and provides detailed event information.

• Chapter 11 System Design describes system-related features such as power-on reset, the I2C bus, the 
scan communication (SCOM) facility that is used to access processor debug and diagnostic facilities, and 
reliability, availability, serviceability (RAS) considerations.

• Chapter 12 Vector Processing Unit provides a general understanding of the features and functions of the 
vector processing unit (VPU) used on the 970FX microprocessor.

Related Documents

Companion Manuals

This manual is intended as a companion to the following reference manuals: 

• PowerPC Architecture1 books:

Note:  The PowerPC Architecture books supersede the PowerPC Programming Environments Manual 
for the 970FX implementation. However, not all features available in the PowerPC Architecture are sup-
ported in the 970FX microprocessor (such as, logical partitioning).

– PowerPC User Set Architecture (Book I, Version 2.01). Covers the base user instruction set architec-
ture (UISA), user-level registers, data types, memory conventions, memory and programming mod-
els, and related facilities available to the application programmer.

– PowerPC Virtual Environment Architecture (Book II, Version 2.01). Defines the storage model and 
related instructions and facilities available to the programmer, and the time-keeping facilities avail-
able to the application programmer. The VEA, which is the smallest component of the PowerPC 
Architecture, defines additional user-level functionality that falls outside typical user-level software 
requirements. The VEA describes the memory model for an environment in which multiple proces-
sors or other devices can access external memory and define aspects of the cache model and cache 
control instructions from a user-level perspective. The resources defined by the VEA are particularly 
useful for optimizing memory accesses and for managing resources in an environment in which other 
processors and other devices can access external memory.

Implementations that conform to the PowerPC VEA also conform to the PowerPC UISA, but might 
not necessarily adhere to the operating environment architecture (OEA).

1. PowerPC Architecture refers to the instructions and facilities described in Books I, II, and III. 
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– PowerPC Operating Environment Architecture (Book III, Version 2.01). Defines the system (privi-
leged) instructions and related facilities. The OEA defines supervisor-level resources typically 
required by an operating system. The OEA defines the PowerPC memory management model, 
supervisor-level registers, and the exception model. 

Implementations that conform to the PowerPC OEA also conform to the PowerPC UISA and VEA.

• PowerPC Microprocessor Family: Programming Environments Manual for 64-Bit Microprocessors 
(referred to as the Programming Environments Manual). Provides information about resources defined by 
the PowerPC Architecture that are common to PowerPC processors. This manual describes the function-
ality of the 64-bit architecture model.

• PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology Programming Environ-
ments Manual. Describes how the vector/SIMD technology relates to both the 64-bit and the 32-bit por-
tions of the PowerPC Architecture.

• The PowerPC Architecture: A Specification for a New Family of RISC Processors by C. May, E. Silha, R. 
Simpson, and H. Warren, Morgan Kaufman, May 1994. Defines the architecture from the perspective of 
the three programming environments and remains the defining document for the PowerPC Architecture. 

Because the PowerPC Architecture is designed to be flexible in order to support a broad range of processors, 
these documents provide a general description of features that are common to PowerPC processors and indi-
cate those features that are optional or that might be implemented differently in the design of each processor. 

It is important to note that some resources are defined more generally at one level in the architecture and 
more specifically at another. For example, conditions that cause a floating-point unavailable exception are 
defined by the UISA, while the exception mechanism itself is defined by the OEA.

Additional Documentation

Some additional PowerPC documentation is available at ibm.com/chips/techlib through IBM Customer 
Connect at http://ibm.com/technologyconnect.

• IBM PowerPC 970FX RISC Microprocessor Datasheet. This datasheet provides specific data about bus 
timing, signal behavior, and ac, dc, and thermal characteristics, as well as other design considerations for 
the 970FX implementation. 

• PowerPC 970FX Power On Reset Application Note. This document contains information about required 
power-on-reset design and initialization.

• PowerPC Microprocessor Family: The Programmer’s Reference Guide (MPRPPCPRG-01). This is a con-
cise reference that includes the register summary, memory control model, exception vectors, and the 
PowerPC instruction set.

• PowerPC Microprocessor Family: The Programmer’s Pocket Reference Guide (SA14-2093-00). This fold-
out card provides an overview of the PowerPC registers, instructions, and exceptions for 32-bit implemen-
tations.

• Application notes. These short documents contain useful information about specific design issues useful 
to programmers and engineers working with PowerPC processors.

http://www.ibm.com/chips/techlib
http://ibm.com/technologyconnect
http://ibm.com/technologyconnect
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General Information

The following documentation provides useful information about the PowerPC Architecture and computer 
architecture in general:

Conventions

This document uses the following notational conventions: 

Ferraiolo, F., E. Cordero, D. Dreps, M. Floyd, “Power4: Synchronous Wave-Pipelined Interface.” Hot Chips 
1999, Stanford, CA.

Hennessy, John L. and David A. Patterson. Computer Architecture: A Quantitative Approach. 2nd ed.

I2C-Bus Specification. Version 2.1. Philips Semiconductors, 2000.

IEEE Standard Test Access Port and Boundary-Scan Architecture, IEEE Std. 1149.1a-1993.

McClanahan, Kip. PowerPC Programming for Intel Programmers. Foster City, CA: IDG Books Worldwide, Inc.

Shanley, Tom. PowerPC System Architecture. Richardson, TX: Mindshare, Inc. 

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example, bcctrx. Book titles in text are 
set in italics. 

0x0 Prefix to denote hexadecimal number.

0b0 Prefix to denote binary number.

rA, rB Instruction syntax used to identify a source GPR.

rD Instruction syntax used to identify a destination GPR.

frA, frB, frC Instruction syntax used to identify a source FPR.

frD Instruction syntax used to identify a destination FPR.

crfS Instruction syntax used to identify a source CR field.

crfD Instruction syntax used to identify a destination CR field.

REG[FIELD] Abbreviations or acronyms for registers are shown in uppercase text. Specific bits, fields, 
or ranges appear in brackets. For example, MSR[POW] refers to the power management 
bit in the machine state register.

vA, vB, vC Instruction syntax used to identify a source VR.

vD Instruction syntax used to identify a destination VR.

x In certain contexts, such as a signal encoding, this indicates a don’t care.

n Used to express an undefined numerical value.
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Acronyms and Abbreviations

Table i contains acronyms and abbreviations that are used in this document.

¬ NOT logical operator.

& AND logical operator.

| OR logical operator.

Indicates reserved bits or bit fields in a register. Although these bits may be written to as 
either ones or zeros, they are always read as zeros.

Table i. Acronyms and Abbreviated Terms 

Term Meaning

ALU Arithmetic logic unit.

ASI Active source identifier.

ASR Address space register.

AUE Special UE to indicate altered UE. 

BCM Balanced coding method.

BIST Built-in self test.

BHT Branch history table.

BIU Bus interface unit.

BPU Branch processing unit.

BSDL Boundary-scan description language.

CAM Content-addressible memory.

CDF Critical data forward.

CIU Core interface unit.

CMOS Complementary metal-oxide semiconductor.

COP Common on-chip processor.

CR Condition register.

CRA Custom register array.

CQ Completion queue.

CSI Context synchronizing instruction.

CTR Count register.

DABR Data address breakpoint register.

DAR Data address register.

DCMP Data TLB compare.

DEC Decrementer register.

DMISS Data TLB miss address.

DPM Dynamic power management.

0 0 0 0
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DSISR Register used for determining the source of a DSI exception.

DTLB Data translation lookaside buffer.

EA Effective address.

EAR External access register.

ECC Error checking and correction.

ERAT Effective to real address translation cache.

FIFO First-in-first-out.

FIR Fault isolation register.

FPECR Floating-point exception cause register.

FPR Floating-point register.

FPSCR Floating-point status and control register.

FPU Floating-point unit.

GPIO General purpose I/O pins.

GPR General purpose register.

HIDn Hardware implementation-dependent register.

IABR Instruction address breakpoint register.

IAP Initial alignment pattern.

IEEE ® Institute for Electrical and Electronics Engineers.

IQ Instruction queue.

ITLB Instruction translation lookaside buffer.

JTAG Joint Test Action Group.

L2 Secondary cache (Level 2 cache).

L2C L2 cache controller.

LHR Load hit reload. A load presented through a load/store port to the LMQ matches an existing entry which has 
already initiated a request to L2.

LHS

Load-Hit-Store. A load presented through a load/store port to the store reorder queue (SRQ) matches an existing 
entry. Store forwarding may be attempted. If the store contains all the data required by the load, store forwarding 
can occur. If the store does not contain all the data required by the load, store forwarding cannot occur and the 
load is rejected or flushed.

LIFO Last-in-first-out.

LMQ Load miss queue. An 8-entry queue which tracks loads that miss the L1 and are awaiting data from 970FX stor-
age subsystem (STS). Each entry can handle two loads associated with a cache line.

LR Link register.

LRU Least recently used.

LSB Least-significant byte.

lsb Least-significant bit.

LSU Load/store unit. The unit in the microprocessor which executes load and store instructions.

MERSI Modified/exclusive/recent/shared/invalid—cache coherency protocol.

MMCRn Monitor mode control registers.

Table i. Acronyms and Abbreviated Terms 

Term Meaning
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MMU Memory management unit.

MRU Most recently used.

MSB Most-significant byte.

msb Most-significant bit.

MSR Machine state register.

NaN Not a number.

NCU Non-cacheable unit.

NIA Next instruction address.

No-op No operation.

NSA Next sequential address.

NTC Next to complete.

OEA Operating environment architecture.

PID Processor identification tag.

PFQ Data Prefetch Filter Queue. Filter queue of 12 entries which detect data streams for prefetching.

PLL Phase-locked loop.

PMCn Performance monitor counter registers.

POR Power-on reset.

POWER Performance Optimized with Enhanced Reduced Instruction Set Computing (RISC) architecture.

PRQ Data Prefetch Request Queue. A prefetch queue of eight streams which will be prefetched. 

PTE Page table entry.

PTEG Page table entry group.

PVR Processor version register.

RAW Read-after-write.

RISC Reduced instruction set computing.

RLM Random logic macro.

RMCI Real mode cache inhibited.

RTL Register transfer language.

RWITM Read with intent to modify.

RWNITM Read with no intent to modify.

SCOM Scan Communication (internal chip bus).

SDA Sampled data address register.

SDQ Store data queue.

SDR1 Register that specifies the page table base address for virtual-to-physical address translation.

SHL Store-Hit-Load.

SHR Store-Hit-Reload. A committed store ready to write to the L1 data cache (D-cache) line that matches an existing 
LMQ entry. The store is stalled until the reload is complete.

SIA Sampled instruction address register.

Table i. Acronyms and Abbreviated Terms 

Term Meaning
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SIMM Signed immediate value.

SLB Segment lookaside buffer.

SPR Special-purpose register.

SPU Service processor unit.

SRn Segment register.

SRC System reference code.

SRQ Store Reorder Queue. A 32-entry queue that tracks all stores active in the LSU.

SRR0 Machine status save/restore register 0.

SRR1 Machine status save/restore register 1.

SSB Source synchronous bus.

STE Segment table entry.

STS 970FX storage subsystem which includes core interface logic, non-cacheable unit, L2 cache and controls, and 
the bus interface unit. 

SUE Special UE to indicate a passed error.

TB Timebase facility.

TBL Timebase lower register.

TBU Timebase upper register.

THRM n Thermal management registers.

TLB Translation lookaside buffer.

UE Uncorrectable memory error.

UIMM Unsigned immediate value.

UISA User instruction set architecture.

UMMCRn User monitor mode control registers.

UPMCn User performance monitor counter registers.

USIA User sampled instruction address register.

VA Virtual address.

VALU VPU arithmetic logic unit (ALU).

VEA Virtual environment architecture.

VPU Vector processing unit within the core. 

VR Vector register.

WAR Write-after-read.

WAW Write-after-write.

WIMG Write-through/caching-inhibited/memory-coherency enforced/guarded bits.

XER Integer exception register used for indicating conditions such as carries and overflows for integer operations.

Table i. Acronyms and Abbreviated Terms 

Term Meaning
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Terminology Conventions

Table ii describes terminology conventions used in this manual and the equivalent terminology used in the 
PowerPC Architecture specification.

Table iii describes instruction field notation used in this manual.

Table ii. Terminology Conventions 

Architecture Specification Current Manual

Data storage interrupt (DSI) DSI exception

Extended mnemonics Simplified mnemonics

Fixed-point unit (FXU) Integer unit (IU)

Instruction storage interrupt (ISI) ISI exception

Interrupt Exception

Privileged mode (or privileged state) Supervisor-level privilege

Problem mode (or problem state) User-level privilege

Real address Physical address

Relocation Translation

Storage (locations) Memory

Storage (the act of) Access

Store in Write back

Store through Write through

Swizzling Double-word swap

Table iii. Instruction Field Conventions 

Architecture Specification Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)

BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

VA, VB, VT, VS vA, vB, vD, vS (respectively)

VEC VPU

/, //, /// 0...0 (shaded)



User’s Manual
 
IBM PowerPC 970FX RISC Microprocessor  

About This Book

Page 26 of 360
Version 1.7

March 14, 2008



User’s Manual

 IBM PowerPC 970FX RISC Microprocessor

Version 1.7
March 14, 2008  
 

PowerPC 970FX Overview

Page 27 of 360

1. PowerPC 970FX Overview

The IBM PowerPC 970FX reduced instruction set computer (RISC) microprocessor is an implementation of 
the PowerPC Architecture. This chapter provides an overview of the features of the 970FX microprocessor 
and includes a block diagram showing the major functional components. 

Note:  In this document the IBM PowerPC 970FX RISC Microprocessor is abbreviated as PowerPC 970FX or 
970FX microprocessor. 

1.1 PowerPC 970FX Microprocessor Overview

The 970FX is a 64-bit PowerPC RISC microprocessor with vector technology extensions–the single-instruc-
tion, multiple-data (SIMD) operations that accelerate data intensive processing tasks. This processor is 
designed to support multiple system configurations ranging from desktop and low-end server applications for 
uniprocessor up through 4-way symmetric multiprocessor (SMP) configurations. 

The PowerPC 970FX RISC Microprocessor consists of three main components:

• The core which includes the vector processing execution units (VPU)

• The storage subsystem (STS), which includes the core interface logic, non-cacheable unit, L2 cache and 
controls, and the bus interface unit

• Pervasive functions

The block diagram in Figure 1-1 on page 28 shows the major functional units comprising the core and storage 
subsystem. In the core, these units include instruction fetch, decode and dispatch units, plus the register files 
and execution units. The storage subsystem includes the second level (L2) cache and interface units.
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Figure 1-1. 970FX Block Diagram 
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1.2 PowerPC 970FX Functional Units

1.2.1 Introduction

This section provides an overview of the 970FX microprocessor core, VPU, storage, and bus interface units. 
It includes a summary and details of key design fundamentals.

1.2.1.1 Key Design Fundamentals of the Microprocessor Core

• 64-bit implementation of the PowerPC®  Architecture (version 2.01)

• Binary compatibility with all PowerPC application level code (problem state)

• Support for 32-bit operating system (O/S) bridge facility

• Vector/SIMD multimedia extension

• Layered implementation strategy for very high frequency operation

• Deeply pipelined design
– 16 stages for most fixed-point register-to-register operations
– 18 stages for most load and store operations (assuming an L1 D-cache hit)
– 21 stages for most floating-point operations
– 19 stages for fixed-point, 22 stages for complex-fixed, and 25 stages for floating-point operations 

in the vector arithmetic logic unit (VALU)
– 19 stages for vector permute operations

• Dynamic instruction cracking1 for some instructions allows for simpler inner core dataflow
– Dedicated dataflow for cracking one instruction into two internal operations
– Microcoded templates for longer emulation sequences

• Speculative superscalar inner core organization

• Aggressive branch prediction
– Prediction for up to two branches per cycle
– Support for up to 16 predicted branches in flight
– Prediction support for branch direction and branch addresses

• In-order dispatch of up to five operations into the distributed issue queue structure

• Out-of-order issue of up to 10 operations into 10 execution pipelines
– Two load or store operations
– Two fixed-point register-register operations
– Two floating-point operations
– One branch operation
– One Condition Register operation
– One vector permute operation
– One vector ALU operation

• Register renaming on General Purpose Registers (GPRs), Floating-Point Registers (FPRs), Vector 
Registers (VRs), Condition Register (CR) fields, two bits of the Integer Exception Register (XER), 
Floating-Point Status and Control Register (FPSCR), Vector Save/Restore Register (VRSAVE), Vec-
tor Status and Control Register (VSCR), Link Register (LR), and Count Register (CTR)

• Large number of instructions in flight (theoretical maximum of 215 instructions)

1. Process by which some complex instructions are broken into two simpler, more RISC-like instructions. 
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• Up to 16 instructions in the instruction fetch unit (fetch buffer and overflow buffer)

• Up to 32 instructions in the instruction fetch buffer in the instruction decode unit

• Up to 35 instructions in three decode pipe stages and four dispatch buffers

• Up to 100 instructions in the inner-core (after dispatch)

• Up to 32 stores queued in the store queue (STQ) (available for forwarding)

• Fast, selective flush of incorrect speculative instructions and results

• Specific focus on storage latency management

• Out-of-order and speculative issue of load operations

• Support for up to eight outstanding L1 cache line misses

• Hardware-initiated instruction prefetching from L2 cache

• Software-initiated data stream prefetching with support for up to eight active streams

• Critical word forwarding–critical sector first

• New branch processing–prediction hints on branch instructions

• Power management

• Static power management
– Software initiated doze and nap low-power modes

• Dynamic power management
– Parts of the design stop their clocks when not in use under hardware control

• Power tuning through frequency scaling
– Software initiated slow down of the processor; selectable to half of the nominal operating fre-

quency
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1.2.1.2 Detailed Features of the Microprocessor Core

• Instruction fetching and branch prediction

• 64 KB, direct-mapped instruction cache (I-cache)
– 128-byte lines (broken into four 32-byte sectors)
– Dedicated 32-byte read/write interface from L2 cache with a critical sector first reload policy
– Effective-address index, real address tags
– Cache supports one read or one write per cycle
– Five additional predecode bits per word to aid in fast decoding and group formation
– Parity protected with a force invalidate and reload on parity error

• 128 total entries in the effective-to-real-address translation (ERAT) cache, 2-way set associative
– Organization is 64 entries by two ways
– Each entry translates 4 KB (no large page support; large pages take multiple entries)

• 4-entry, 128-byte, instruction prefetch queue above the I-cache; hardware-initiated prefetches

• Fetch a 32-byte aligned block of eight instructions per cycle

• Branch prediction:
– Scan all eight fetched instructions for branches each cycle
– Predict up to two branches per cycle
– Three-table prediction structure - global / local / selector (16K entries x 1-bit each)
– 16-entry link stack for address prediction (with stack recovery)
– 32-entry count cache for address prediction (indexed by the address of Branch Conditional to 

Count Register (bcctr) instructions)

• Instruction decode and preprocessing

• 3-cycle pipeline to decode and preprocess instructions
– Dedicated dataflow for cracking one instruction into two internal operations
– Microcoded templates for longer emulation sequences of internal operations
– All internal operations expanded into 86-bit internal form to simplify subsequent processing and 

explicitly expose register dependencies for all register pools
– Dispatch groups (up to five instructions) formulated along with inter-instruction dependence 

masks

• Cracked and microcoded instructions have access to four renamed emulation GPRs (eGPRs), one 
renamed emulation FPR (eFPR), and one renamed emulation CR (eCR) field (in addition to archi-
tected facilities)

• 8-entry (16 bytes per entry) instruction fetch buffer (up to eight instructions in and five instructions out 
during each cycle)

• Microcode patch facility allows most instructions other than branches to trap to microcode, which can 
be programmed to either emulate the effects of the instruction or cause an interrupt.

• Instruction dispatch, sequencing, and completion control
– Four dispatch buffers, which can hold up to four dispatch groups when the global completion table 

(GCT) is full

• 20-entry global completion table
– Group-oriented tracking associates a 5-operation dispatch group with a single GCT entry
– Tracks internal operations from dispatch to completion for up to 100 operations
– Capable of restoring the machine state for any of the instructions in flight

— Very fast restoration for instructions on group boundaries (that is, branches)
— Slower for instructions contained within a group 
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• Supports precise exceptions (including machine check exceptions)

• Register renaming resources
– 80-entry GPR rename mapper (32 architected GPRs plus four eGPRs and VRSAVE)
– 80-entry FPR rename mapper (32 architected FPRs plus one eFPR)
– 80-entry Vector Register file (VRF) rename mapper (32 architected VRFs)
– 24-entry XER rename mapper (the XER is broken into mappable and non-mappable fields)

— Two mappable fields: ov and ca
— Non-mappable field: string-count

– 16-entry LR/CTR rename mapper (one architected LR and one architected CTR)
– 32-entry CR rename mapper (eight architected CR fields plus one eCR field)
– 20-entry FPSCR rename mapper
– VRSAVE
– VSCR 

• Instruction queuing resources:
– Two 18-entry issue queues for fixed-point and load/store instructions
– Two 10-entry issue queues for floating-point instructions
– 12-entry issue queue for branch instructions
– 10-entry issue queue for CR-logical instructions
– 16-entry issue queue for vector permute instructions
– 20-entry issue queue for vector ALU instructions and vector stores

• Fixed-point execution pipelines

• Two fixed-point execution pipelines
- Both capable of basic arithmetic, logical, and shifting operations
- Both capable of multiplies
- One capable of divides; the other capable of SPR operations

• Out-of-order issue with bias towards oldest operations first 

• Symmetric forwarding between fixed-point and load/store execution pipelines

• Load/store execution pipelines

• Two 6-stage load/store execution pipelines

• Out-of-order issue with bias towards oldest operations first 
- Stores issue twice–an address generation operation (load/store), and a data steering operation 

(FXU/FPU/VPU)

• 32 KB, 2-way, set-associative D-cache
– Triple ported to support two reads and one write every cycle (no banking)
– 2-cycle load-use penalty for FXU loads 
– 4-cycle load-use penalty for FPU loads
– 3-cycle load-use penalty for loads to vector permute unit (VPERM)
- 4-cycle load-use penalty for loads to VALU
- Store-through policy; no allocation on store misses
- 128-byte cache line 
- Least recently used (LRU) replacement policy 
- Dedicated 32-byte reload interface from L2 cache
- Effective-address index, real address tags (hardware fix up on alias cases)
- Parity protected; precise machine check interrupt on parity error; software fix if 

HID5[50] equals ‘1’. Otherwise, recovery is done by hardware (default).
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• 128-entry total ERAT translation cache, 2-way, set-associative
- Organization is 64 entries by two ways
- Each entry translates 4 KB (no large page support; large pages take multiple entries)

• 32-entry store queue logically above the D-cache (real address based; content-addressable memory 
[CAM] structure)

- Store addresses and store data can be supplied on different cycles
- Stores wait in this queue until they are completed; then they write the cache
- Supports store forwarding to inclusive subsequent loads (even if both are speculative)

• 32-entry load reorder queue (real address based; CAM structure)
- Keeps track of out-of-order loads and watches for hazards

– Previous store to the same address that gets executed after the load causes a flush
– Previous load from the same address when a cross-invalidate has occurred causes a flush

• 8-entry load miss queue (LMQ) (real address based)
- Keeps track of loads that have missed in the L1 D-cache
- Allows a second load from the same cache line to merge onto a single entry

• Branch and Condition Register execution pipelines

• One branch execution pipeline
- Computes actual branch address and branch direction for comparison with prediction
- Redirects instruction fetching if either prediction was incorrect
- Assists in training/maintaining the branch table predictors, the link stack, and the count cache

• One Condition Register logical pipeline
- Executes CR logical instructions and the CR movement operations
- Executes some Move to Special Purpose Register (mtspr) and Move from Special Purpose Reg-

ister (mfspr) instructions also

• Out-of-order issue with bias towards oldest operations first 

• Floating-point execution pipelines

• Two 9-stage floating-point execution pipelines (6-stage execution)
- Both capable of the full set of floating-point instructions
- All data formats supported in hardware (no floating-point assist interrupts)

• Out-of-order issue with a bias towards oldest operations first 

• Symmetric forwarding between the floating-point pipelines

• No support for the non-IEEE mode

• VPU execution pipelines

• Two dispatchable units: 
- VALU contains three subunits:

– Vector simple fixed: 1-stage execution 
– Vector complex fixed: 4-stage execution 
– Vector floating-point: 7-stage execution 

- VPERM: 1-stage execution 

• Out-of-order issue with bias towards oldest operations first

• Symmetric forwarding between the permute and VALU pipelines
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• Unified second-level memory management (address translation)

• 1024-entry, 4-way, set-associative translation lookaside buffer (TLB)
- Supports new large page architecture (16 MB large pages supported)
- Hardware-based reload (from the L2 cache interface - no L1 D-cache impact)
- Hardware-based update of the referenced (R) bit and the changed (C) bit
- Parity protected; precise machine check interrupt on parity error (software fix-up)

• 64-entry fully associative segment lookaside buffer (SLB)
- SLB miss results in an interrupt and the software reload of the SLB
- SLB can also be loaded using the 32-bit PowerPC Segment Register instructions

• Supports a 65-bit virtual address and a 42-bit real address

• Data stream prefetch

• Eight (modeable) data prefetch streams supported in hardware. Eight hardware streams are only 
available if vector prefetch instructions are disabled. 

• Four vector prefetch streams supported using four of the eight hardware streams. The vector prefetch 
mapping algorithm supports the most commonly used forms of vector prefetch instructions. 
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2. Programming Model

This chapter describes the 970FX programming model, emphasizing those features specific to the 970FX 
processor and summarizing those that are common to PowerPC processors. It consists of two major 
sections, which describe the following:

• Registers implemented in the 970FX
• 970FX instruction set

2.1 970FX Processor Register Set 

This section describes the registers implemented in the 970FX. It includes an overview of registers defined by 
the PowerPC Architecture, highlighting differences in how these registers are implemented in the 970FX, and 
a detailed description of 970FX-specific registers.

Registers are defined at all three levels of the PowerPC Architecture—user instruction set architecture 
(UISA), virtual environment architecture (VEA), and operating environment architecture (OEA). The PowerPC 
Architecture defines register-to-register operations for all computational instructions. Source data for these 
instructions are accessed from the on-chip registers or are provided as immediate values embedded in the 
opcode. The three-register instruction format allows specification of a target register distinct from the two 
source registers, thus preserving the original data for use by other instructions and reducing the number of 
instructions required for certain operations. Data is transferred between memory and registers with explicit 
load and store instructions only.

2.1.1 Register Set

PowerPC processors have two levels of privilege—supervisor mode of operation (typically used by the oper-
ating system) and user mode of operation (used by the application software, it is also called problem state). 
The programming models incorporate 32 GPRs, 32 FPRs, 32 VRs, special-purpose registers (SPRs), and 
several miscellaneous registers. Each PowerPC microprocessor also has its own unique set of hardware 
implementation-dependent (HID) registers.

While running in supervisor mode the operating system is able to execute all instructions and access all regis-
ters defined in the PowerPC Architecture. In this mode the operating system establishes all address transla-
tions and protection mechanisms, loads all processor state registers, and sets up all other control 
mechanisms defined on the 970FX processor. While running in user mode (problem state) many of these 
registers and facilities are not accessible and any attempt to read or write to these registers results in a 
program exception.

The registers implemented on the 970FX are shown in Figure 2-1. PowerPC 970FX Microprocessor 
Programming Model—Registers. The number to the right of the special-purpose registers (SPRs) indicates 
the number that is used in the syntax of the instruction operands to access the register (for example, the 
number used to access the integer exception register (XER) is SPR 1). These registers can be accessed 
using the mtspr and mfspr instructions. The inclusion of the VPU involves additional registers, and affects bit 
settings in some of the PowerPC registers (including MSR, SRR1, and CR) when the VPU is in use.
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Figure 2-1. PowerPC 970FX Microprocessor Programming Model—Registers 
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The PowerPC UISA registers are user-level. General-purpose registers (GPRs), floating-point registers 
(FPRs), and vector registers (VRs) are accessed through instruction operands. Access to registers can be 
explicit (by using instructions for that purpose such as Move to Special Purpose register (mtspr) and Move 
from Special-Purpose register (mfspr) instructions) or implicit as part of the execution of an instruction. Some 
registers are accessed both explicitly and implicitly. 

Implementation Note—The 970FX fully decodes the SPR field of the instruction. If the SPR specified is 
undefined, the illegal instruction program exception occurs. The PowerPC’s user-level registers are described 
as follows. 

• User-level registers (UISA)—The user-level registers can be accessed by all software with either user or 
supervisor privileges. They include the following registers.

– General Purpose Registers (GPRs). The 32 GPRs (GPR0–GPR31) serve as data source or destina-
tion registers for fixed-point instructions and provide data for generating addresses. 

– Floating-Point Registers (FPRs). The 32 FPRs (FPR0–FPR31) serve as the data source or destina-
tion for all floating-point instructions. 

– Condition Register (CR). The 32-bit CR consists of eight 4-bit fields, CR0–CR7, that reflect results of 
certain arithmetic operations and provide a mechanism for testing and branching. 

– Floating-Point Status and Control Register (FPSCR). The FPSCR contains all floating-point excep-
tion signal bits, exception summary bits, exception enable bits, and rounding control bits needed for 
compliance with the IEEE 754 standard. 

– Vector Registers (VRs). The vector register file consists of 32 VRs (VR0-VR31). The VRs serve as 
vector source and vector destination registers for all vector instructions. 

– Vector Status and Control Register (VSCR). The VSCR contains the non-Java control bit and the sat-
uration status bit associated with vector operations. 

The remaining user-level registers are SPRs. Note that the PowerPC Architecture provides a separate 
mechanism for accessing SPRs (the mtspr and mfspr instructions). These instructions are commonly 
used to explicitly access certain registers, while other SPRs may be more typically accessed as the side 
effect of executing other instructions. 

– Integer Exception Register (XER). The XER indicates overflow and carries for integer operations and 
the number of bytes to be transferred by the load/store string indexed instructions. 
Implementation Note—The architecture defines XER[44:56] as reserved. 

– Link Register (LR). The LR provides the branch target address for the Branch Conditional to Link 
Register (bclrx) instruction, and can be used to hold the logical address of the instruction that follows 
a branch and link instruction, typically used for linking to subroutines. 

– Count Register (CTR). The CTR holds a loop count that can be decremented during execution of 
appropriately coded branch instructions. The CTR can also provide the branch target address for the 
Branch Conditional to Count Register (bcctrx) instruction. 

– Vector Save/Restore Register (VRSAVE). The VRSAVE assists the application and operating system 
software in saving and restoring the vector register architectural state across context-switching 
events. 

– User Performance Monitor Counter Registers (UPMC1-UPMC8). The UPMC1-UPMC8 provide user-
level read access to PMC1-PMC8. 

– User Monitor Mode Control Registers (UMMCR0, UMMCR1, UMMCRA). These registers provide 
user-level read access to the MMCR0, MMCR1, MMCRA. 
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– User Instruction Match CAM registers (UIMC). The UIMC provides user-level read access to the IMC.

– User Sampled Instruction Address Register (USIAR). The USIAR provides user-level read access to 
the SIAR.

– User Sampled Data Address Register (USDAR). The USDAR provides user-level read access to the 
SDAR. 

– User Software Use Special Purpose Registers (USPRG3). The USPRG3 provide an optional 
user-level read access to the SPRG3.

• User-level registers (VEA)—The PowerPC VEA defines the time base facility (TB), which consists of two 
32-bit registers—time base upper (TBU) and time base lower (TBL). The time base registers can be writ-
ten to only by supervisor-level instructions, but can be read by both user and supervisor-level software. 

• Supervisor-level registers (OEA)—The OEA defines the registers that an operating system uses for 
memory management, configuration, exception handling, and other operating system functions. The OEA 
defines the following supervisor-level registers:

– Configuration registers

• Machine State Register (MSR). The MSR defines the state of the processor. The MSR can be 
modified by the Move to Machine State Register (mtmsr[d]), System Call (sc), and Return from 
Exception (rfid) instructions. It can be read by the Move from Machine State Register (mfmsr) 
instruction. When an exception is taken, the contents of the MSR are saved to the machine status 
save/restore register 1 (SRR1). See Section 2.1.2.1. MSR Register (MSR) for more information. 

• Processor Version Register (PVR). This is a read-only register that identifies the version (model) 
and revision level of the PowerPC processor. See the IBM PowerPC 970FX RISC Microprocessor 
Datasheet for details of the PVR.

– Memory management registers

• Address Space Register (ASR). In the 970FX, the address space register is supported. Due to 
the software reload of the SLBs on the 970FX, this register does not actually participate in any 
other specific hardware functions on the chip. It has been included as a convenience (and perfor-
mance enhancement) for the SLB reload software. 

• Storage Description Register (SDR1). The SDR1 register specifies the page table base address 
used in virtual-to-physical address translation. 

– Exception-handling registers

• Data Address Register (DAR). After a DSI or an alignment exception, DAR is set to the effective 
address (EA) generated by the faulting instruction. 

• Software Use Special Purpose Registers (SPRG0–SPRG3). The SPRG0–SPRG3 registers are 
provided for operating system use. 

• Data Storage Interrupt Status Register (DSISR). The DSISR register defines the cause of DSI 
and alignment exceptions. 

• Machine Status Save/Restore Register 0 (SRR0). The SRR0 register is used to save the address 
of the instruction at which execution continues when rfid executes at the end of an exception 
handler routine. See Section 2.1.2.2. Machine Status Save/Restore Register (SRR1) for more 
information.

• Machine Status Save/Restore Register 1 (SRR1). The SRR1 is a 64-bit register used to save 
machine status on exceptions and restore machine status register when an rfid instruction is 
executed. See Section 2.1.2.2. Machine Status Save/Restore Register (SRR1) for more informa-
tion.
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Note:  For information on how specific exceptions affect SRR1, see Section 4.5. Exception Defi-
nitions.

– Miscellaneous registers

• Time Base (TB). This register is a 64-bit structure provided for maintaining the time of day and 
operating interval timers. The TB consists of two 32-bit registers—time base upper (TBU) and 
time base lower (TBL). The time base registers can be written to only by supervisor-level soft-
ware, but can be read by both user and supervisor-level software. See Section 2.1.2.3. Time 
Base and Decrementer (TB, DEC) for more information. 

Implementation Note—In the 970FX, the time base register is incremented once every eight full 
frequency processor clocks. Alternatively, when HID0[19] is set to ‘1’, the time base register is 
incremented at the timebase enable input pin (TBEN) input frequency.

• Decrementer Register (DEC). This register is a 32-bit decrementing counter that provides a 
mechanism for causing a decrementer exception after a programmable delay. See 
Section 2.1.2.3. Time Base and Decrementer (TB, DEC) for more information.

Implementation Note—In the 970FX, the decrementer register is decremented once every eight 
full frequency processor clocks. Alternatively, when HID0[19] is set to ‘1’, the decrementer regis-
ter is decremented at the TBEN input frequency.

• Processor ID Register (PIR). The PIR register is used to differentiate between individual proces-
sors in a multiprocessor environment. See Section 2.1.2.4. Processor ID Register (PIR) for more 
information.

– Performance Monitor Registers. The following registers are used to define and count events for use 
by the performance monitor:

• The Performance Monitor Counter Registers (PMC1–PMC8) are used to record the number of 
times a certain event has occurred. See Section 2.1.3.6. Performance Monitor Registers 
(MMCR0, MMCR1, MMCRA, PMC1-8) for more information.

• The Monitor Mode Control Registers (MMCR0, MMCR1, MMCRA) are used to identify what 
events will be monitored and to enable various performance monitor interrupt functions. See 
Section 2.1.3.6. Performance Monitor Registers (MMCR0, MMCR1, MMCRA, PMC1-8) for more 
information.

• The Sampled Instruction Address Register (SIAR) contains the effective address of an instruction 
executing at or around the time that the processor signals the performance monitor interrupt con-
dition. See Section 2.1.3.7. Sampled Instruction Address and Sampled Data Address Registers 
(SIAR, SDAR) for more information.

• The Sampled Data Address Register (SDAR) contains the effective address of the storage 
access instruction executing at or around the time that the processor signals the performance 
monitor interrupt condition. See Section 2.1.3.7. Sampled Instruction Address and Sampled Data 
Address Registers (SIAR, SDAR) for more information. 
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• 970FX-specific registers—The PowerPC Architecture allows implementation-specific SPRs. The follow-
ing are incorporated in the 970FX: 

Note:  In the 970FX, these registers are all supervisor-level registers.

– Hardware Implementation-Dependent Register 0 (HID0). This register controls various functions, 
such as enabling checkstop conditions, locking, enabling, invalidating the instruction and data 
caches, power modes, and others. See Section 2.1.3.2. HID Registers (HID0, HID1, HID4, and HID5) 
for more information.

– Hardware Implementation-Dependent Register 1 (HID1). The HID1 register contains additional mode 
bits that are related to the instruction fetch and instruction decode functions in the 970FX. See 
Section 2.1.3.2. HID Registers (HID0, HID1, HID4, and HID5) for more information.

– Hardware Implementation-Dependent Register 4 (HID4).The HID4 register contains bits related to 
the load-store function in the 970FX. See Section 2.1.3.2. HID Registers (HID0, HID1, HID4, and 
HID5) for more information.

– Hardware Implementation-Dependent Register 5 (HID5).The HID5 register contains bits related to 
the load-store function in the 970FX. See Section 2.1.3.2. HID Registers (HID0, HID1, HID4, and 
HID5) for more information.

– Data Address Breakpoint Register (DABR) and the data address breakpoint register extension 
(DABRX). The DABR controls the data address breakpoint mechanism, which provides a means of 
detecting load and store accesses to a designated doubleword. See Section 2.1.3.3. Data Address 
Breakpoint Register (DABRX) for more information.

– Scan Communications Register (SCOMC). The SCOMC register is a control register that includes a 
command field, a destination field, and a set of status bits. See Section 2.1.3.8. Scan Communication 
Registers (SCOMC and SCOMD) for more information. 

– Scan Communications Register (SCOMD). The SCOMD register is an associated data register that 
acts as either a source of data or as a destination for data depending on the command placed into the 
SCOMC register. See Section 2.1.3.8. Scan Communication Registers (SCOMC and SCOMD) for 
more information. 

– Instruction Match Cam Registers (IMC). The IMC SPRs are used to access the IMC array which con-
tains the mask values used for instruction matching. The Move To/From IMC (mt/fimc) instructions 
can be executed only in supervisor mode. See Section 2.1.3.5. Instruction Match CAM Array Access 
Register (IMC) for more information. 

– Trigger Registers (TRIG0-TRIG2). Writes to the trigger registers, named TRIG0, TRIG1, and TRIG2, 
can be inserted in the instruction stream to cause triggers to the on-chip trace array debug logic. 
These are intended to be used for debug and bring-up only and architecturally behave as a no-op. 
See Section 2.1.3.9. Trigger Registers (TRIG0, TRIG1, TRIG2) for more information. 

– Hardware Interrupt Offset Register (HIOR). The HIOR is used for interrupt vector relocation. See 
Section 2.1.4.2. Hardware Interrupt Offset Register (HIOR) for more information.

Note:  While it is not guaranteed that the implementation of 970FX-specific registers is consistent among 
PowerPC processors, other processors may implement similar or identical registers.
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2.1.2 Architected Registers in the 970FX Implementation

Several architected registers are implemented in the 970FX in a way that varies from, or extends, the defini-
tion in the PowerPC Architecture.

2.1.2.1 MSR Register (MSR)

The PowerPC Architecture describes the MSR bits [2], [4:47], [57], [60] and [63] as either optional or 
reserved. In the 970FX, bit [38] is used as the “VPU Available” enable and bit [45] is used as the power 
management (POW) enable; the other bits are not implemented and will return the value ‘0’ when read.

Note:  Little-endian mode is not supported (MSR[LE] and MSR[ILE] are treated as reserved).

Implementation Note—Table 2-1 describes MSR bits that the 970FX implements which deviate from the 
PowerPC Architecture.

The MSR bits [HV, PR] determine the privledge level of the processor. Bit [3] is the HV state and bit [49] is the 
problem state. The following table describes the allowed processor states.

Table 2-1. MSR Bits 

Bit Name Description

3 HV

Hypervisor state. 
0 The processor is not in hypervisor state.
1 If MSR[PR] = ‘0’ the processor is in hypervisor state; otherwise the processor is not in 

hypervisor state.

38 VP

Vector processor available. 
0 The processor prevents execution of all vector instructions, including loads, stores, 

and moves. If such execution is attempted, a VPU unavailable exception is raised. 
1 The processor can execute all vector instructions.
The VRSAVE register is not protected by MSR[VP]. The data streaming family of instructions 
(dst, dstt, dstst, dststt, dss, and dssall) are not affected by the MSR[VP].

45 POW Activates power management. The 970FX will clear the POW bit when it leaves a power saving 
mode. See Chapter 9, Power and Thermal Management for more information.

47 — Reserved. The ILE bit is not implemented in the 970FX.

48 EE

External interrupt enable 
0 The processor delays recognition of external interrupts and decrementer exception 

conditions. 
1 The processor is enabled to take an external interrupt or the decrementer exception.
Note:  Setting MSR[EE] masks not only the architecture-defined external interrupt and decre-
menter exceptions, but also the 970FX-specific instrumentation, debug, performance monitor, 
and thermal exceptions. 

49 PR
Problem state.
0 The processor is in privileged state.
1 The processor is in problem state.

63 — Reserved. The LE bit is not implemented in the 970FX.
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MSR[HV] can be set to ‘1’ only by the System Call instruction (sc) and some interrupts. It can be set to ‘0’ 
only by the rfid instruction and by some interrupts.

2.1.2.2 Machine Status Save/Restore Register (SRR1)

This register is used to save machine status during interrupts. In the 970FX, SRR1 bits [1:2], [4:32], [37], 
[39:41], [47], [56:57], [60], and [63] are treated as reserved. These bits are not implemented and will return 
the value ‘0’ when read. See Section 4.3.2. Machine Status Save/Restore Register 1 (SRR1) for additional 
information. 

2.1.2.3 Time Base and Decrementer (TB, DEC)

The time base counter and the decrementer are clocked at 1/8 (one-eighth) of the full frequency processor. 
The 970FX supports two modes of operation (controlled by HID0[19] and the time base enable input pin) for 
updating the time base and decrementer. When HID0[19] is zero, then the counters constantly update as long 
as the timebase_enable input pin (TBEN) is high (traditional mode of operation). When HID0[19] is one, the 
counters update only on the rising edge of the TBEN input pin.

When the processor is “stopped” (due to various breakpoint, debug and support processor functions), an 
additional mode bit (HID0[18]) determines whether or not the time base and the decrementer continue 
counting. Note that some support processor operations require the use of an alternate clocking mode for 
scan, and in these cases, the time base and the decrementer will not continue counting.

2.1.2.4 Processor ID Register (PIR)

The processor identification register (PIR) is a 32-bit register that holds a processor identification tag (PID). In 
the 970FX, this tag is in the three least significant bits (29:31). This tag is used to tag bus transactions and to 
differentiate processors in multiprocessor systems. The format of the register is as follows: 

Table 2-2. Processor Allow States 

HV PR Processor State

0 0 Priviledged

0 1 Problem

1 0 hypervisor

1 1 Problem

Table 2-3. Additional SRR1 Bit 

Bit Function

33 SIAR and SDAR contents synchronized. 

Figure 2-2. Processor Identification Register 

31280

0’s PID

29
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The PIR is a read only register. During power-on reset, PID is set to a unique value for each processor in a 
multi-processor system. For more information about the power-on reset configuration process, see 
Chapter 11, System Design. 

2.1.3 PowerPC 970FX-Specific Registers

This section describes registers that are defined for the 970FX, but are not included in the PowerPC Architec-
ture. 

2.1.3.1 Move To/From System Register Instructions

The 970FX defines several new implementation specific system registers. Note that some of these registers 
are also user-mode readable through a second set of SPR encodings; and that some of these registers have 
special software synchronization requirements. 

The encoded SPR values for these implementation specific registers are shown in Table 2-5 on page 43. 
Note that the SPR is encoded in the mfspr and mtspr instructions such that bits 5:9 of the SPR field repre-
sent the five high-order bits of the SPR number, and bits 0:4 of the SPR field represent the five low-order bits 
of the SPR number.

Table 2-4. PIR Register 

Bits Name Description

0:28 – Reserved (read as zeros)

29:31 PID 3-bit processor ID value

Table 2-5. Implementation-Specific SPRs  (Page 1 of 2)

SPR

Register Name R/W

Synchronization Requirements

Decimal 
(supervisor)

Decimal 
(user) SPR(5:9) SPR(0:4) Before Reads After Writes Before Writes

1023 11111 11111 PIR R none N/A N/A

1013 11111 10101 DABR R/W none CSI sync

1015 11111 10111 DABRX R/W

1008 11111 10000 HID0 R/W none Note 1 Note 1

1009 11111 10001 HID1 R/W none Note 2 Note 2

1012 11111 10100 HID4 R/W none Note 3 Note 3

1014 11111 10110 HID5 R/W none Note 4 Note 4

795 779 11000 n1011 MMCR0 R/W none Note 5 Note 5

798 782 11000 n1110 MMCR1 R/W none Note 5 Note 5

786 770 11000 n0010 MMCRA R/W none Note 5 Note 5

787 771 11000 n0011 PMC1 R/W sync none none

788 772 11000 n0100 PMC2 R/W sync none none

789 773 11000 n0101 PMC3 R/W sync none none

Note:  For mtspr, n must be ‘1’. For mfspr, reading the SPR is privileged if and only if n = ‘1’.
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Notes:  (for Table 2-5. Implementation-Specific SPRs)

1. The following sequence must be used when modifying HID0:
sync
mtspr HID0,Rx
isync

2. The following sequence must be used when modifying HID1:
mtspr HID1,Rx
mtspr HID1,Rx
isync
Executing two mtspr instructions is necessary to ensure that updates to all portions of HID1 will be com-
plete before the isync instruction completes.

3. The following sequence must be used when modifying HID4:
sync
mtspr HID4,Rx
isync
When HID4[23] is changed, the above sequence should be preceded by a mtsr and sync which will 
cause the ERATs to be flushed.

790 774 11000 n0110 PMC4 R/W sync none none

791 775 11000 n0111 PMC5 R/W sync none none

792 776 11000 n1000 PMC6 R/W sync none none

793 777 11000 n1001 PMC7 R/W sync none none

794 778 11000 n1010 PMC8 R/W sync none none

276 01000 10100 SCOMC R/W none CSI none

277 01000 10101 SCOMD R/W none CSI none

796 780 11000 n1100 SIAR R/W sync none none

797 781 11000 n1101 SDAR R/W sync none none

799 783 11000 n1111 IMC R/W none CSI none

976 11110 10000 TRIG0 W N/A none none

977 11110 10001 TRIG1 W N/A none none

978 11110 10010 TRIG2 W N/A none none

256 01000 00000 VRSAVE R/W N/A none none

304 01001 10000 HSPRG0 R/W none none none

305 01001 10001 HSPRG1 R/W none none none

311 01001 10111 HIOR R/W none none none

314 01001 11010 HSRR0 R/W none none none

315 01001 11011 HSRR1 R/W none none none

Table 2-5. Implementation-Specific SPRs  (Page 2 of 2)

SPR

Register Name R/W

Synchronization Requirements

Decimal 
(supervisor)

Decimal 
(user) SPR(5:9) SPR(0:4) Before Reads After Writes Before Writes

Note:  For mtspr, n must be ‘1’. For mfspr, reading the SPR is privileged if and only if n = ‘1’.
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4. The following sequence must be used when modifying HID5:
sync
mtspr HID5,Rx
isync
Whenever HID5[56] or HID5[57] is changed, the entire instruction cache must be flushed to insure that 
any succeeding dcbz is executed in the context of the new HID5 bit settings.

5. Although it is not necessary to use synchronizing instructions when modifying the MMCR(0,1,A) regis-
ters, it is recommended that the following sequence be used:
sync
mtspr MMCRz,Rx
isync

Table 2-6 describes the 970FX’s behavior for the mtspr and mfspr instructions.

Table 2-6. Move To / Move From SPR Behavior 

Condition

Resulting ActionSPR MSR[PR
] R/W

SPR(0) Register

1 Any invalid SPR encoding 0 mfspr No-op (target register is unchanged)

1 Any invalid SPR encoding 0 mtspr No action (write is inhibited)

1

ACCR, ASR, CTRL, DABR, DAR, DEC, DSISR, 
HID0, HID1, HID4, HID5, IMC, SCOMC, SCOMD, 
SDR1, SDAR, SIAR, SRR0, SRR1, SPRG0, 
SPRG1, SPRG2, SPRG3, TBL, TBU, Performance 
Monitor Registers

0 mfspr Returns value to GPR

0 mtspr Target SPR is updated

1 TRIG0, TRIG1, TRIG2
0 mfspr Causes an illegal instruction type resulting in a 

program interrupt

0 mtspr Causes a trigger to trace array debug logic

1 PIR

0 mfspr Returns value to GPR

0 mtspr Causes an illegal instruction type resulting in a 
program interrupt

1 Any SPR encoding (with SPR(0) = ‘1’) 1 mtspr
mfspr

Causes a privileged instruction type resulting in a 
program interrupt

0

Any invalid SPR encoding except:
SPR(0:9) = 00000 00000
SPR(0:9) = 00100 00000
SPR(0:9) = 00101 00000
SPR(0:9) = 00110 00000

X mfspr No-op (target register is unchanged)

X mtspr No action (write is inhibited)

0

SPR(0:9) = 00000 00000
SPR(0:9) = 00100 00000
SPR(0:9) = 00101 00000
SPR(0:9) = 00110 00000

X mtspr
mfspr

Causes an illegal instruction type resulting in a 
program interrupt
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2.1.3.2 HID Registers (HID0, HID1, HID4, and HID5)

The 970FX includes many implementation dependent mode bits that allow various features of the chip to be 
enabled and disabled. These bits are included in the Hardware Implementation Dependent registers (HID0, 
HID1, HID4, and HID5). In general, HID0 attempts to line up the 970FX’s modes with the relevant ones from 
earlier PowerPC implementations and then adds a few new ones. The HID1 register contains additional 
mode bits that are related to the instruction fetch and instruction decode functions in the 970FX. The HID4 
and HID5 registers contain bits related to the load/store function in the 970FX. All of these registers are 
supervisor resources.

The state of each of the HID registers after a normal scan-based POR is all zeroes. The preferred state of 
these registers for optimal performance and function is also all zeroes, except where indicated.

Table 2-7. HID0 Bit Functions 

Bits Bit Name Description

0 one_ppc “One PowerPC instruction per dispatch group” mode (an instruction may span more than one 
group)

1 do_single
“Single group completion” mode 
Flush and refetch after the completion of each group or the completion of each microcoded 
instruction, if the instruction spans multiple groups.

2 isync_sc Disable “isync scoreboard” optimization

3 ser-gp Serialize Group Dispatch (next group not dispatched until previous group completes)

4:8 – Reserved

9 nap Nap

10 – Reserved

11 dpm Enable dynamic power management 

12 – Reserved

13 tg Performance monitor threshold granularity control

14 hang_dis Disable processor hang detection mechanism

15 nhr “Not Hard Reset” (check after SRI to see if hard or soft)

16 inorder “Serialized group issue” mode. The next group is not issued until the previous group com-
pletes. Does not include branch or CR-logical instructions.

17 – Reserved

18 tb_ctrl Enable time base counting when processor is “stopped”

19 ext_tb_en
External time base enable
0: Use TBEN input as enable (TB clocked at 1/8 full processor frequency)
1: Use TBEN input to clock time base (external clock)

20:21 – Reserved

22 ciabr_en Enable CIABR (Completion Instruction Address Breakpoint Register)

23 hdice_en Enable hypervisor decrementer interrupt conditionally (HDICE). The initial reset value must be 
‘0’ and disables hypervisor interrupts. 

24 en_therm Enable external thermal interrupts

25:30 – Reserved

31 en_attn Enable support processor attention instruction

32 en_mck Enable external machine check interrupts (preferred state = ‘1’)

33:63 – Reserved
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Table 2-8. HID1 Bit Functions  

Bits Bit Name Description

0:2 bht_pm

Branch history table (BHT) prediction mode
000 Static prediction
001 Unused (same as 000)
010 Global BHT prediction only
011 Global prediction with history compression
100 Local BHT prediction only
101 Unused (same as 100)
110 Full global/local prediction with global selection (gsel)
111 Full global/local prediction with gsel and history compression (preferred state)

3 en_ls Enable link stack (preferred state = 0b1)

4 en_cc Enable count cache (preferred state = 0b1)

5 en_ic Enable instruction cache (preferred state = 0b1)

6 – Reserved

7:8 pf_mode

Prefetch mode:
00 No instruction prefetch
01 Select next sequential address (NSA) instruction prefetch
10 Select NSA and NSA+1 instruction prefetch (preferred state)
11 Disable prefetch buffer

9 en_icbi Enable “forced icbi match” mode

10 en_if_cach

Enable instruction fetch cacheability control
0 All instruction fetch accesses are treated as cache inhibited (regardless of the state of 

the page table I-bit).
1 Instruction fetch cacheability is controlled by the state of the page table I-bit. 

(preferred state)

11 en_ic_rec Enable I-cache parity error recovery (preferred state = 0b1)

12 en_id_rec Enable I-directory parity error recovery (preferred state = 0b1)

13 en_er_rec Enable I-ERAT parity error recovery (preferred state = 0b1)

14 ic_pe Force instruction cache parity error (error inject)

15 icd0_pe Force instruction cache directory 0 parity error (error inject)

16 – Reserved

17 ier_pe Force I-ERAT parity error (error inject)

18 en_sp_itw Enable speculative tablewalks. The ERAT is never loaded using a PTE if PTE[G]  = ‘1’.
(preferred state = ‘1’)

19:63 – Reserved
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Table 2-9. HID4 Bit Functions  (Page 1 of 2)

Bits Bit Name Description

0 lpes1

LPAR environment selector bit [0]. LPES[0:1] are located in HID4[57, 0].
LPES[0:1] determine how MSR[HV] is set using interrupts and how memory access is per-
formed when not in hypervisor mode. This is described in the PowerPC Architecture version 
2.01. 

1:2 rmlr(1:2) LPAR real mode limit register (see HID4[58] for bit [0]).

3:6 lpid(2:5) LPAR partition identity bits [2:5] (see also bits [62:63] for lpid(0:1)).

7:22 rmor(0:15) LPAR real mode offset register [0:15]. 

23 rm_ci

The real mode caching inhibited bit can be used to permit a control register on an I/O device to 
be accessed without permitting the corresponding storage location to be copied into the 
caches. The bit should normally contain ‘0’. Software would set the bit to ‘1’ just before access-
ing the control register, access the control register as needed, and then set the bit back to ‘0’. 

24 force_ai Force alignment interrupt instead of microcode on unaligned operations 

25 dis_pref Disables data prefetching.

26 res_pref
Setting HID4[26] = ‘1’ resets the data prefetch mechanism, suppressing subsequent prefetch 
requests and clearing the stream detection logic so that stream detection will not be affected 
by accesses performed prior to setting the bit back to ‘0’.

27 en_sp_dtw Enable speculative load tablewalk.

28 l1dc_flsh
L1 data cache flash invalidate 
0 Normal operation
1 All sectors set to invalid and held invalid 

29:30 dis_derpc Disable D-ERAT parity checking [disable parity checking in one or more ways of the 4-way set 
associative TLB (one bit per way)]

31 dis_derpg Disable D-ERAT parity generation (force parity to ‘0’ on EA[0:45] only) 

32:33 dis_derat Disable D-ERAT [disable parity checking in one or more ways of the 4-way set associative TLB 
(one bit per way)]; valid states 00,01,10

34:35 dis_dctpc Disable data cache tag parity checking [disable parity checking in one or more ways of the 4-
way set associative TLB (one bit per way)]

36 dis_dctpg Disable data cache tag parity generation

37:38 dis_dcset Disable data cache set [disable parity checking in one or more ways of the 4-way set associa-
tive TLB (one bit per way)]

39:40 dis_dcpc Disable data cache parity checking [disable parity checking in one or more ways of the 4-way 
set associative TLB (one bit per way)]

41 dis_dcpg Disable data cache parity generation

42:43 dis_dcrtpc Disable data cache real address tag parity checking

44:47 dis_tlbpc Disable TLB parity checking [disable parity checking in one or more ways of the 4-way set 
associative TLB (one bit per way)]

48 dis_tlbpg Disable TLB parity generation 

49:52 dis_tlbset Disable TLB set [disable parity checking in one or more ways of the 4-way set associative TLB 
(one bit per way)]; valid states X‘0’,X‘7’,X‘B’,X‘D’,X‘E’

53 dis_slbpc Disable SLB parity checking.

54 dis_slbpg Disable SLB parity generation.

55 mck_inj Machine check error inject enable

56 dis_stfwd Disable store forwarding (cause reject)
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57 lpes0

LPAR environment selector bit. LPES[0:1] are located in HID4[57, 0].
LPES[0:1] determine how MSR[HV] is set using interrupts and how memory access is per-
formed when not in hypervisor mode. This is described in the PowerPC Architecture version 
2.01. 

58 rmlr0

HID4 bits [58, 1:2] are real mode limit register bits [0:2].
011 64 MB
111 128 MB
100 256 MB
x10 1 GB
x01 16 GB
000 256 GB

59 – Reserved

60 dis_splarx Disable speculative lwarx, ldarx

61 lg_pg_dis Disable large page support; Large page (L) bit input to the SLB will be forced to zero (software 
will read a zero L-bit)

62:63 lpid(0:1) LPAR partition identity bits [0:1]. HID4[62:63, 3:6] are LPID[0:5] respectively. 

Table 2-10. HID5 Bit Functions (Page 1 of 2) 

Bits Bit Name Description

0:31 – Reserved

32:47 hrmor(0:15) LPAR hypervisor real mode offset register

48:49 – Reserved

50 DC_mck Machine check enabled for data cache and data cache tag parity errors (software recovery 
enabled). 

51 dis_pwrsave L1 data cache, L1 D-cache Tag, D-ERAT power savings disable

52 force_G Force guarded (G = ‘1’) load

53 DC_repl
Data cache replacement algorithm:
0 default - Least Recently Used (LRU)
1 FIFO

54 hwr_stms
Number of available hardware prefetch streams: 
0 4 hardware streams and 4 vector streams
1 8 hardware streams (HID5[55] must also be 0b1)

55 dst_noop
Data StreamTouch (DST) instructions no-op
0 DST’s are enabled
1 DST’s are a no-op and discarded in the Load Store Unit (LSU)

56 DCBZ_size Makes dcbz a 32-byte store when dcbz instruction bit [10] = ‘0’

57 DCBZ32_ill Makes a dcbz instruction with bit [10] = ‘0’ an illegal instruction 

58 tlb_map

TLB Mapping: 
0 4 way set associative
1 direct mapped
Note:  When setting HID5[58] to setup the TLB to be direct mapped, HID4[49:52] (TLB set dis-
able bits) must be cleared, otherwise translation will not work.

Table 2-9. HID4 Bit Functions  (Page 2 of 2)

Bits Bit Name Description
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2.1.3.3 Data Address Breakpoint Register (DABRX)

The data address breakpoint facility provides a means of detecting load and store accesses to a designated 
doubleword. The address comparison is done on an effective address. The data address breakpoint facility is 
controlled by the architected data address breakpoint register (DABR) and the 970FX specific data address 
breakpoint register extension (DABRX). 

Data Address Compare

The 970FX supports the address compare control facility and the Address Compare Control Register (ACCR) 
as defined in the architecture. In addition, the 970FX includes support for the optional Data Address Break-
point facility and associated DABR register described in the architecture. In either case, upon taking the data 
storage interrupt, the 970FX will set the DAR correctly.

The architecture allows some flexibility on whether or not an ACCR match and/or a DABR match actually 
occurs for certain conditions. More specifically, in the 970FX, store conditional instructions that are executed 
but not successful (that is, the store does not actually occur) will cause either an ACCR match or a DABR 
match if the appropriate match conditions are met. String instructions with zero length will not cause ACCR or 
DABR matches. The dcbz instruction will cause a DABR match if the appropriate match conditions are met.

59 lmq_port
Demand miss (LMQ to STS)
0 permit two per cycle
1 permit only one per cycle

60 lmq_size(0)

Number of outstanding requests to STS (970FX storage subsystem)
HID5[60, 63] - maximum outstanding requests
00  8
01  1
10  2
11  4

61 – Reserved

62 tch_nop Make dcbt and dcbtst act like no-ops 

63 lmq_size(1) See description of HID5[60]

Table 2-11. Data Address Breakpoint Register Extension (DABRX) 

Bits Name Description

0:59 – Reserved

60 BTI Breakpoint translation ignore

61 HYP Hypervisor state

62 PNH Privileged but non-hypervisor state

63 PRO Problem state (user mode)

Note:  Bits [61:63] are termed the privileged mask (PRIVM).

Table 2-10. HID5 Bit Functions (Page 2 of 2) 

Bits Bit Name Description
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As an alternative to causing an interrupt, a DABR match can be made to cause various forms of “hard stops” 
or “soft stops” for use as a debug aid (these controls are available through special SCOM commands). In 
general, this capability is not recommended for use in normal system operation since it may require the pres-
ence of an engineering support processor to restart the CPU.

2.1.3.4 Instruction Address Breakpoint Register (IABR)

The Instruction Address Breakpoint Register (IABR), shown in Figure 2-3, can be used as a debug tool to 
trigger an event upon the fetch of a particular instruction address. The address in the IABR is compared to the 
Instruction Fetch Address Register (IFAR), which will also contain addresses of speculative instruction 
fetches. The IABR is set up as described in the PowerPC Microprocessor Family: The Programming Environ-
ments manual, except in the 970FX, the IABR is only available as a trigger to the debug logic. This trigger can 
be programmed to perform functions such as quiesce or checkstop. If the word specified in the IABR is 
fetched, the instruction breakpoint handler is invoked. The instruction that triggers the breakpoint does not 
execute before the handler is invoked. 

CIABR can be enabled by either HID0[22] (software accessible) or scan/scom override. 

The IABR uses the IFU fetch address, not the CIA (current instruction address that is executing). An IABR 
match occurs on the fetch of an instruction, even speculative.

Note:  There can be multiple IABR matches for a single instruction before it is actually executed (or com-
pleted). 

The IABR bits are described in Table 2-12. Instruction Address Breakpoint Register Bit Settings. During 
power-on reset all bits are reset to ‘0’.

2.1.3.5 Instruction Match CAM Array Access Register (IMC)

The Instruction Match Cam (IMC) array facility is used for performance monitoring instrumentation . The array 
has privileged write access and user-level read access through this SPR. Writes to the register array are 
used to configure the IMC, and reads return information about the availability of registers within the facility. 

Figure 2-3. Instruction Address Breakpoint Register 

Table 2-12. Instruction Address Breakpoint Register Bit Settings 

Bits Name Description

0:61 Address Word address to be compared

62 BE Breakpoint enabled. (Address match causes trigger to debug logic.) 

63 TE Translation enabled. An IABR match is signaled if this bit matches MSR[IR].

0 61 62 63

Address BE TE
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2.1.3.6 Performance Monitor Registers (MMCR0, MMCR1, MMCRA, PMC1-8)

The performance monitor counter registers (PMC1 - PMC8), the performance monitor control registers 
(MMCR0, MMCR1, MMCRA), and the sampled address registers (SIAR, SDAR) are supported in the 970FX. 

The performance monitor control registers MMCR0, MMCR1, and MMCRA are used in conjunction with the 
MSR and other SPRs to set up the performance monitor enable states, interrupt conditions, threshold values, 
match criteria, and selection of the events counted in each of the counter registers PMC1 - PMC8. 

The MMCRx register bit assignments are shown in Table 10-2. Performance Monitor Control Register 
MMCR0; Table 10-3. Performance Monitor Control Register MMCR1; and Table 10-4. Performance Monitor 
Control Register MMCRA. All of the MMCRx and PMCx registers flush to zero unless otherwise noted in the 
MMCRx and PMCx tables. 

The MSR bits that relate to performance monitor functions are shown in Table 4-5. MSR Bit Settings on 
page 93. The value of the SRR1 registers when a performance monitor interrupt is taken is shown in 
Chapter 10, 970FX Performance Monitor. 

2.1.3.7 Sampled Instruction Address and Sampled Data Address Registers (SIAR, SDAR)

The Sampled Instruction Address register (SIAR) and the Sampled Data Address register (SDAR) are used, 
respectively, to save the effective address of a sampled instruction and the effective address of a storage 
operand for a sampled instruction when the processor is in either trace-marking mode or performance-
marking mode. The terms ‘sampled’ and ‘marked’ are used interchangeably in this manual. 

Table 2-13. Performance Monitor Count Registers (PMC1 - 8) 

Bits Bit Name Bit Description

0 CTR_NEG Counter negative bit

1:31 CTRDATA Count data

Table 2-14. Sampled Instruction Address Register (SIAR) Performance Monitor Related  

Bits Bit Name Bit Description

0:63 – Sampled Instruction Address

Table 2-15. Sampled Data Address Register (SDAR) Performance Monitor Related Bits  

Bits Bit Name Bit Description

0:63 – Sampled Data Address
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2.1.3.8 Scan Communication Registers (SCOMC and SCOMD)

The 970FX includes a pair of registers to aid in communicating with the Scan Communications facility 
(SCOM). The SCOMC register is a control register that includes a command field, a destination field, and a 
set of status bits. The SCOMD register is an associated data register that acts as either a source of data or as 
a destination for data depending on the command placed into the SCOMC register. 

The SCOM facility contains an arbiter which serializes use of the facility among the bus masters (processor 
cores and core service processor), however there are very specific programming conventions associated with 
the use of this facility. 

A detailed description of the SCOM facility can be found in Section 11.6. SCOM Facility. 

2.1.3.9 Trigger Registers (TRIG0, TRIG1, TRIG2)

Writes to the trigger registers, named TRIG0, TRIG1, and TRIG2, can be inserted in the instruction stream to 
cause triggers to the on-chip trace array debug logic. These are intended to be used for lab debug and bring-
up only and architecturally behave as a no-op. 

2.1.4 Logical Partitioning Function Registers

2.1.4.1 Hypervisor Decrementer Interrupt Register (HDEC)

The Hypervisor Decrementer (HDEC) is a 32-bit decrementing counter that provides a mechanism for 
causing a Hypervisor Decrementer interrupt after a programmable delay.

The Hypervisor Decrementer is driven by the same frequency as the Time Base, in the same manner as the 
Decrementer. The Hypervisor Decrementer counts down, causing an interrupt and is implemented in SPR 
310.

2.1.4.2 Hardware Interrupt Offset Register (HIOR) 

The Hardware Interrupt Offset register, HIOR should be scanned (the HIOR is on the mode ring) to the 
system’s starting address during initialization. Subsequently HIOR should be set to zero. 

The real address of the interrupt vector is found using HIOR[22:43] combined with the 20-bit vector offset for 
the particular exception.

Table 2-16. Hardware Interrupt Offset Register (HIOR) 

Bits Bit Description

0:21 Reserved

22:43 Offset

44:63 Reserved
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2.1.4.3 Hypervisor Real Mode Offset Register (HRMOR)

The Hypervisor Real Mode Offset Register (HRMOR) is implemented in HID5[32:47]. It is a hypervisor 
resource, which is used to relocate effective addresses in hypervisor real addressing mode. If MSR[HV] = ‘1’ 
and the effective address is ‘0’, the contents of HRMOR and the effective address are logically OR’d to form 
the address.

2.1.4.4 Hypervisor Decrementer Interrupt Conditionally Enable (HDICE)

The HDICE is located in HID0[23]. The value of zero must be the initial reset value and disables hypervisor 
interrupts. 

2.1.4.5 Real Memory Limit Register (RMLR)

The Real Memory Limit Register, RMLR, is implemented in HID4[58,1:2]. The RMLR defines the memory 
limit for the logical partition above the offset defined by the RMOR. Table 2-17 lists the supported limit values.

Note:  If MSR[HV] = ‘0’ and LPES1 = ‘1’, the access is controlled by the contents of the Real Mode Limit Reg-
ister and Real Mode Offset Register. 

2.1.4.6 Real Mode Offset Register (RMOR)

The Real Mode Offset Register (RMOR) is implemented in HID4[7:22]. If the access is permitted by the 
RMLR, the effective address for the access is ORed with the offset represented by the contents of the RMOR 
and the low-order bits of the result are used as the real address for the access. 

Note:  If MSR[HV] = ‘0’ and LPES1 = ‘1’, the access is controlled by the contents of the Real Mode Limit Reg-
ister and Real Mode Offset Register. 

2.1.4.7 Hypervisor Save/Restore Register (HSRRO, HSRR1)

The hypervisor machine status save/restore registers (HSRR0, HSRR1) are located in SPR 314 and 315 
respectively. When a hypervisor decrementer interrupt occurs, the state of the machine is saved in the hyper-
visor machine status save/restore registers (HSRR0 and HSRR1). The effective address is storedin HSRR0 
and the MSR in HSRR1. The contents of these registers is used to restore machine state when a hrfid 
instruction is executed. 

Table 2-17. Memory Limits (HID4[58,1:2]) 

Memory Limit Value

64 MB ‘011’

128 MB ‘111’

256 MB ‘100’

1 GB ‘x10’

16 GB ‘x01’

256 GB ‘000’
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2.1.4.8 Hypervisor SPRGs (HSPRG0, HSPRG1)

HSPRG0 and HSPRG1 are 64-bit registers provided for use by hypervisor programs at SPRs 304 and 305 
respectively. 

Note:  Neither the contents of the HSPRGs, nor accessing them using mtspr or mfspr, has a side effect on 
the operation of the processor. One of more of the registers is likely to be needed by hypervisor interrupt han-
dler programs (e.g., as scratch registers and/or pointers to processor save areas).

2.1.4.9 Logical Partitioning Identification Register (LPIDR)

The Logical Partition Identity Register (LPID) is implemented in LPID[0:5]. This register contains a value that 
identifies the partition to which the processor is assigned. The LPIDR is located in HID4[62,63,3,4,5,6]. 

For the 970FX implementation, moving a processor from the partition identified by the current contents of the 
LPIDR to a new partition (for example, altering the contents of the LPIDR) requires ensuring that no tlbie or 
tlbsync instruction sequences are being executed in either the current partition or the destination partition.

2.1.4.10 Real Mode Cache Inhibit Bit, RM_CI

The Real Mode Caching Inhibited bit can be used to permit a control register on an I/O device to be accessed 
without permitting the corresponding memory location to be copied into the cache. The bit should normally 
contain ‘0’. Software would set the bit to ‘1’ just before accessing the control register, access the control 
register as needed, and then set the bit back to ‘0’. RM_CI is implemented in HID4[23].

2.1.4.11 Logical Partitioning Environment Selector Bits, LPES [0:1]

Logical Partitioning Environment Selector (LPES) bits [0:1] are located in HID4 bits [57,0]. These bits deter-
mine how MSR[HV] is set via interrupts and how memory access is performed when not in hypervisor mode. 
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2.2 Instruction Set Summary

This section describes instructions and addressing modes defined for the 970FX. These instructions are 
divided into the following execution unit categories: 

• Fixed-Point Processor

• Floating-Point Processor

• Vector Processor

• Load and Store Processor

• Branch and Flow Control 

• Storage Control 

• Memory Synchronization

Fixed-point instructions operate on byte, half-word, word, and double-word operands. Floating-point instruc-
tions operate on single-precision and double-precision floating-point operands. The PowerPC Architecture 
uses instructions that are four bytes long and word-aligned. It provides for byte, half-word, word and double-
word operand loads and stores between memory and a set of 32 general-purpose registers (GPRs). It 
provides for word and double-word operand loads and stores between memory and a set of 32 floating-point 
registers (FPRs). The vector processing unit extends the PowerPC Architecture and provides for quad-word 
operand loads and stores between memory and a set of 32 vector registers.

Arithmetic and logical instructions do not read or modify memory. To use the contents of a memory location in 
a computation and then modify the same or another memory location, the memory contents must be loaded 
into a register, modified, and then written to the target location using load and store instructions. 

2.2.1 Classes of Instructions

The 970FX instructions belong to one of the following three classes.

• Defined
• Illegal
• Reserved 

Note:  While the definitions of these terms are consistent among the PowerPC processors, the assignment of 
these classifications is not.

The class is determined by examining the primary opcode and the extended opcode, if any. If the opcode, or 
combination of opcode and extended opcode, is not that of a defined instruction or of a reserved instruction, 
then the instruction is illegal. Instruction encodings that are now illegal may become assigned to instructions 
in the architecture or may be reserved by being assigned to processor-specific instructions. 
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2.2.1.1 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bits in the reserved fields, the results of execution can be said 
to be boundedly undefined. If a user-level program executes the incorrectly coded instruction, the resulting 
undefined results are bounded in that a spurious change from user to supervisor state is not allowed, and the 
level of privilege exercised by the program in relation to memory access and other system resources cannot 
be exceeded. Boundedly-undefined results for a given instruction may vary between implementations, and 
between execution attempts in the same implementation.

2.2.1.2 Defined Instructions

The 970FX provides support for the following optional instructions:
• fsqrt - Floating-point square root
• fsqrts - Floating-point square root single
• fres - Floating-point reciprocal estimate single
• frsqrte - Floating-point reciprocal square root estimate A-form
• fsel - Floating-point select
• mfsr - Move from segment register
• mfsrin - Move from segment register indirect
• mtmsr - Move to machine state register (32-bit) 
• mtsr - Move to segment register
• mtsrin - Move to segment register indirect
• slbie - SLB invalidate entry
• slbia - SLB invalidate all
• tlbie - TLB invalidate entry
• tlbsync - TLB synchronize

The 970FX does not provide support for the following optional or obsolete instructions (or instruction forms). 
Attempted use of these will result in an illegal instruction type program interrupt. 

• bccbr - Branch conditional to CBR (obsolete)
• dcba - Data cache block allocate (obsolete)
• dcbi - Data cache block invalidate (obsolete)
• eciwx - External control in word indexed
• ecowx - External control out word indexed
• mcrxr - Move to condition register from XER register (obsolete)
• mtsrd - Move to segment register doubleword (obsolete)
• mtsrdin - Move to segment register doubleword indirect (obsolete)
• rfi - Return from interrupt (obsolete)
• tlbia - TLB invalidate all
• tlbiex - TLB invalidate entry by index (obsolete)
• slbiex - SLB invalidate entry by index (obsolete)
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2.2.1.3 Illegal Instructions

Illegal instructions can be grouped into the following categories:

• Instructions not defined in the PowerPC Architecture.The following primary opcodes are defined as ille-
gal, but may be used in future extensions to the architecture: 1, 4, 5, 6, 56, 57, 60, 61

• Instructions defined in the PowerPC Architecture but not implemented in a specific PowerPC implementa-
tion. For example, instructions that can be executed on 64-bit PowerPC processors are considered illegal 
by 32-bit processors.
The following opcodes are illegal in 32-bit implementations (such as the PowerPC 750), however they will 
be executed in 32-bit mode on a 64-bit processor such as the 970FX:
2, 30, 58, 62

• All unused extended opcodes for instructions are illegal. Notice that extended opcodes for instructions 
defined only for 64-bit implementations are illegal in 32-bit implementations. The following primary 
opcodes have unused extended opcodes: 19, 30, 31, 56, 57, 59, 60, 61, 62, 63 (Primary opcodes 30 and 
62 are illegal for 32-bit implementations, but as 64-bit opcodes they have some unused extended 
opcodes.)

• An instruction consisting entirely of zeros is illegal, and is guaranteed to be an illegal instruction. This 
increases the probability that an attempt to execute data or uninitialized memory invokes the system ille-
gal instruction error handler (a program exception).

See Section 4.5.9 Program Exception on page 101 for additional information about illegal and invalid instruc-
tion exceptions. Except for an instruction consisting of binary zeros, illegal instructions are available for addi-
tions to the PowerPC Architecture.

2.2.1.4 Reserved Instructions

The PowerPC Architecture breaks the reserved instruction class down into several categories. The 970FX 
behaves in the following manner with respect to categorizing the following reserved instructions. 

• Primary opcode equals zero. The 970FX will take an illegal instruction type of program interrupt for all 
cases except the Support Processor Attention (attn) instruction when HID0[31] is set to ‘1’.

• POWER Architecture instructions not in the PowerPC Architecture. The 970FX will take an illegal instruc-
tion type of program interrupt.

• Implementation specific instructions used to conform to the architecture. No action taken.

• Other instructions. The 970FX supports the implementation specific instruction tlbiel, (the processor local 
form of the TLB Invalidate entry used for managing TLB parity errors).

In addition, there are several implementation specific registers available for access through the mtspr and 
mfspr instructions. These are described in Section 2.1.3.1 Move To/From System Register Instructions on 
page 43.

2.2.2 Instruction Set Overview

The following sections provide a brief overview of the PowerPC instructions implemented in the 970FX micro-
processor and highlight how a 970FX microprocessor implements a particular instruction. Note that the cate-
gories used in this section correspond to those used in Chapter 4, “Addressing Modes and Instruction Set 
Summary” in the PowerPC Microprocessor Family: The Programming Environments manual. These categori-
zations are somewhat arbitrary and are provided for the convenience of the programmer and do not neces-
sarily reflect the PowerPC Architecture specification.
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Note that some instructions have the following optional features:

• CR Update—The dot (.) suffix on the mnemonic enables the update of the CR.
• Overflow option—The o suffix indicates that the overflow bit in the XER is enabled.

2.2.3 Fixed-Point Processor

2.2.3.1 Fixed-Point Arithmetic and Compare Instructions

The architecture states that instructions that have the overflow exception [OE] bit set, or instructions that can 
set the carry [CA] bit, may execute more slowly than instructions that do not. In the 970FX the [SO] bit in the 
XER is not renamed. For instructions with the [OE] set, it is initially assumed that no overflow will occur and 
that the SO bit does not need to be changed. In the event that the instruction does cause an overflow and the 
SO bit was not set before the instruction executed (and therefore needs to be set), the machine will flush this 
instruction and those beyond this instruction, set the non-renamed [SO] bit, and then refetch and re-execute 
the instructions that follow. In general, if no overflow occurs or the [SO] bit has already been set, then this 
strategy will not have an adverse effect on performance. 

On the other hand, most instructions that set and use the [CA] bit do not have any particular performance 
considerations. This field of the XER is renamed, and many of the common dependence hazards are mini-
mized. 

2.2.3.2 Fixed-Point Logical, Rotate, and Shift Instructions

The architecture defines the preferred no-op to be OR Immediate (ori) 0,0,0. In the 970FX microprocessor, 
this no-op form is recognized by the hardware and allowed to complete without taking any execution 
resources. This makes the instruction valuable for padding other instructions to achieve better alignment or 
better separation. 

2.2.3.3 Move to and Move from System Register Instructions

The mtspr and mfspr instructions provide access to system registers using a GPR as the source or destina-
tion register, respectively. Table 2-5. Implementation-Specific SPRs lists the SPR numbers for both user-level 
and supervisor-level access to 970FX-specific registers.

2.2.3.4 Move to and Move from Machine State Register

The 970FX microprocessor supports both the 32-bit mtmsr instruction and the 64-bit mtmsrd instruction. 
The 970FX works to optimize the mtmsr instruction to help speed up the cases where little or no synchroni-
zation is required (for example, updates to the MSR[EE] bit).

2.2.3.5 Fixed-Point Invalid Forms and Undefined Conditions

The results of executing an invalid form of a fixed-point instruction or an instance of a fixed-point instruction 
for which the architecture specifies that some results are undefined are described below for the cases in 
which executing an instruction does not cause an exception. Only results that differ from those specified by 
the architecture are described in the following list.
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• Instruction with Reserved Fields
Bits in reserved fields are ignored; the results of executing an instruction in which one or more reserved 
bits are ‘1’ is the same as if the bits were ‘0’.

• divw, divwo, divwu, and divwuo Instructions
rD[0:31] is set to x‘00000000’.

• mulhw and mulhwu Instructions
Instruction target register, rD bits [0:31], contains the same result as rD[32:63].

• Divide Instructions (divide by zero)
If the divisor is ‘0’, rD is set to zero. If, in addition, the record bit (Rc) in the vector instruction field is ‘1’, 
then CR0 is set to ‘0010’.

• Move to and Move from Special Purpose Register Instructions
Table 2-6 on page 45 describes the results of specifying a SPR value that is not defined for 
the implementation. 

• Move From Time Base Instruction 
The mftb instruction is treated as an alias for the mfspr instruction; the results are the same as for exe-
cuting an mfspr instruction.

• Move From Condition Register Instruction (bit [11] = ‘1’)
One CR Field is copied into the associated bits of rD and the remaining bits of rD are set to zeros.

• Move From Condition Register Instruction (bit [11] = ‘1’ and multiple bits of CRM set to ‘1’)
Source is CR(n), where n is the CR field specified by the bit in CRM that is set and has the smallest index 
value. If no bit in CRM is set to ‘1’, the results will be the same as if CRM was set to ‘00000001’.

• Move To Condition Register Fields Instruction (bit [11] = ‘1’ and multiple bits of CRM set to ‘1’)
CR(n) is updated where n is the CR Field specified by the bit in CRM that is set and has the smallest 
index value. If no bit in CRM is set to ‘1’, executing the instruction does not modify the CR.

2.2.4 Floating-Point Processor

The 970FX contains two double precision floating-point units. Each of these units is optimized for fully 
pipelined double precision multiply-add functionality. In addition, each unit is capable of performing the 
floating-point divide and square root instructions. 

The optional floating-point instructions (fsqrt, fsqrts, fres, frsqrte, and fsel) defined in the PowerPC Micro-
processor Family: The Programming Environments manual are implemented. 

Note:  The 970FX does not support the non-IEEE mode that was defined in earlier versions of the architec-
ture.

2.2.4.1 Floating-Point Arithmetic Instructions

The architecture requires operands to single-precision floating-point arithmetic instructions to be represent-
able in single-precision format, and if they are not, then the results of the single-precision arithmetic instruc-
tions are undefined. In the 970FX, for most cases, a double precision operation will be performed but with the 
result rounded to single-precision. This will update the instruction target register (frD), FPSCR and cr1 field of 
the CR accordingly. For the single-precision divide and square-root instructions, fdivs and fsqrts, single-
precision algorithms are executed on the double-precision data with the final results rounded to single-preci-
sion. 
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2.2.4.2 Floating-Point Invalid Forms and Undefined Conditions

The results of executing an invalid form of a floating-point instruction or an instance of a floating-point instruc-
tion for which the architecture specifies that some results are undefined are described below for the cases in 
which executing an instruction does not cause an exception. Only results that differ from those specified by 
the architecture are described in the following list. 

• Instruction with Reserved Fields
Bits in reserved fields are ignored; the results of executing an instruction in which one or more reserved 
bits are ‘1’ is the same as if the bits were ‘0’.

• Floating-Point Convert to Integer Word Instructions (fctiw or fctiwz) 
frD(0:31) is set to x‘FFF8 0000’. 

• Floating-Point Convert to Fixed-point Instructions (fctiw, fctiwz, fctid, and fctidz) 
The contents of FPSCR(FPRF) are set to ‘00000’.

• Move from FPSCR Instruction
frD(0:31) is set to x‘FFF8 0000’.

2.2.5 Vector Processor

The 970FX contains two vector units, the vector arithmetic logical unit (VALU) and the vector permute unit 
(VPERM). The vector instructions and their implementation are described in Chapter 12, Vector Processing 
Unit. 

2.2.6 Load Store Processor 

2.2.6.1 Floating-Point Load and Store Instructions

Most forms of unaligned floating-point storage accesses are executed entirely in hardware (see 
Section 3.4.2.1 Storage Access Alignment Support on page 75).

2.2.6.2 Fixed-Point Load Instructions

Most forms of unaligned load operations are executed entirely in hardware. If a basic load operation crosses 
a page boundary, and either page translation signals an exception condition, then when the interrupt occurs, 
it will appear as though none of the load instructions have executed - this is not always the case for load 
multiple or load string instructions. For more information, see Section 2.2.6.4. Fixed-Point Load and Store 
Multiple Instructions and Section 2.2.6.5. Fixed-Point Load and Store String Instructions.

The Load Algebraic, Load with Byte Reversal, and Load with Update instructions may have greater latency 
than other load instructions. These instructions are implemented as a sequence of internal operations. Due to 
the dynamic scheduling and out-of-order execution capability of the processor, these effects are somewhat 
minimized. It should also be noted that although these instructions are broken up in this manner, the effects 
are never visible from a programming model perspective. 

Any load from storage marked cache-inhibited that is not aligned will cause an alignment interrupt.
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2.2.6.3 Fixed-Point Store Instructions

Most forms of unaligned store operations are executed entirely in hardware. If a store operation crosses a 
page boundary, and the second page translation signals an exception condition, then after the interrupt is 
taken, it will appear as though none of the storage updates have occurred to either page (this is not always 
the case for store multiple or store string instructions - see Section 2.2.6.4. Fixed-Point Load and Store 
Multiple Instructions and Section 2.2.6.5. Fixed-Point Load and Store String Instructions for more informa-
tion).

Any store to storage marked cache-inhibited that is not aligned will cause an alignment interrupt.

2.2.6.4 Fixed-Point Load and Store Multiple Instructions

The Load Multiple Word (lmw) instruction is executed in a manner such that up to two registers are loaded 
each cycle. Similarly, the Store Multiple Word (stmw) instruction is executed in a manner such that up to two 
registers are stored each cycle. The 32-entry store queue can accept up to two 8-byte stores per cycle; the 
cache can accept one 8-byte store per cycle. Because these instructions are emulated through the use of 
microcoded templates, after a small start-up penalty, they are processed at a rate of up to two registers per 
cycle.

Most forms of lmw and stmw instructions, even those that cross page and segment boundaries, are 
executed entirely in hardware. These instructions and the individual storage accesses associated with the 
instructions are not atomic. If a stmw crosses a page boundary, and the second page translation signals an 
exception condition, then after the interrupt is taken, it will appear as though none, some, or all of the 
accesses to the first page have occurred. It will also appear as though none of the accesses to the second 
page have occurred. On the other hand, for the lmw instruction that cross a page boundary where the second 
page translation signals an exception condition, all of the target registers will have an undefined value.

An attempt to execute a non-word aligned lmw or stmw will cause an alignment interrupt. An attempt to 
execute an lmw or stmw to storage marked cache-inhibited will cause an alignment interrupt.

The architecture allows these instructions to be interrupted by certain types of asynchronous interrupts 
(external interrupts, decrementer interrupts, machine check interrupts, and system reset interrupts). In these 
cases, for the load multiple instructions, all of the registers that were to be updated will have an undefined 
value, and the instruction must be completely restarted to achieve the full effect (that is, no partial restart 
capability is supported). For the store multiple instructions, some of the storage locations referenced by the 
instruction may have been updated. However, to guarantee full completion of the store multiple instruction, 
they must also be completely restarted.

2.2.6.5 Fixed-Point Load and Store String Instructions

The Load String Word (lsw) instruction is executed in a manner such that up to two registers are loaded each 
cycle. Similarly, the Store String Word (stsw) instruction is executed in a manner such that up to two registers 
are stored each cycle. The 32-entry store queue can accept up to two 8-byte stores per cycle; the cache itself 
can only accept one 8-byte store per cycle.

Because the immediate forms of these instructions are implemented using microcoded templates  they incur 
a small start-up penalty, The X-form of the instructions contain a dependency on bits in the fixed-point XER 
register. Therefore, depending on when the last update to these bits has occurred, the instruction may be 
subject to a more expensive run-time flush and emulate sequence. 
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Most Load String and Store String instructions that cross page or segment boundaries are executed entirely 
in hardware. If a “store string” crosses a page boundary, and the second page translation signals an excep-
tion condition, then after the interrupt is taken, it will appear as though none, some or all of the accesses to 
the first page have completed. It will also appear as though none of the accesses to the second page have 
occurred. On the other hand, for “load string” instructions that cross a page boundary where the second page 
translation signals an exception condition, all of the target registers will have an undefined value.

If the storage operand of a Load String Word Immediate (lswi) is word aligned, then the accesses are 
performed in an optimal manner. If the operands are so aligned, the accesses are performed in an optimal 
manner if the operand resides entirely within a 64-byte block that is resident in the L1 D-cache or resides 
entirely within a 32-byte block. Although other “unaligned” string operations are supported in hardware, they 
may cause machine flushes and require long sequences of microcode. As a result, these types of “unaligned” 
string instructions may have significantly longer latencies.

An attempt to execute a lswi, lswx, stswi, or stswx instruction to storage marked cache-inhibited will cause 
an alignment interrupt.

The architecture allows these instructions to be interrupted by certain types of asynchronous interrupts 
(external interrupts, decrementer interrupts, machine check interrupts, and system reset interrupts). In these 
cases, for the load string instructions, all of the registers that were to be updated will have an undefined 
value, and the instruction must be completely restarted to achieve the full effect (i.e., no partial restart capa-
bility is supported). For the store string instructions, some of the storage locations referenced by the instruc-
tion may have been updated.

The architecture describes some preferred forms for the use of load and store string instructions. In the 
970FX, these preferred forms have no effect on the performance of the instructions.

2.2.6.6 Load Store Invalid Forms and Undefined Conditions

The results of executing an invalid form of a load/store instruction for which the architecture specifies that 
some results are undefined are described below for the cases in which executing an instruction does not 
cause an exception. Only results that differ from those specified by the architecture are described in the 
following list. 

• Load with Update Instructions (rA = ‘0’)
Effective address is placed into general purpose register 0 (R0).

• Load with Update Instructions (rA=rD)
Effective address is placed into rD. The storage operand addressed by EA is accessed, but the data 
returned by the load is discarded.

• Load Multiple Instructions (rA in the range of registers to be loaded)
If an exception (for example, data storage or external exception) causes the execution of the instruction to 
be interrupted, the instruction is restarted, rA has been altered by the previous partial execution of the 
instruction, and rA≠∋0’, the new contents of rA are used to compute EA.

• Load Multiple Instructions (causing a misaligned access)
For a Load Multiple Word instruction, if the storage operand specified by EA is not a multiple of four, an 
alignment exception is taken. For a Load Multiple Doubleword instruction, if the storage operand specified 
by EA is not a multiple of eight, an alignment exception is taken. 

• Load String Instructions (zero length string)
rD is not altered.
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• Load String Instructions (rA and/or rB in the range of registers to be loaded)
If rA and/or rB is in the range of registers to be loaded, the results are as follows: 

Indexed Form: If rA = ‘0’ let Rx be rB; otherwise let Rx be the register specified by the smaller of the two 
values in instruction fields rA and rB. If rD=Rx no registers are loaded; otherwise registers rD through 
RX-1 are loaded as specified in the architecture (for example, only part of the storage operand is loaded).

Immediate Form: If rA = ‘0’, the instruction is executed as if it were a valid form. If rA=rD no registers are 
loaded; otherwise registers rD through rA-1 are loaded as if the instruction was a valid form but specify-
ing a shorter operand length.

• Store with Update Instructions (rA = ‘0’)
Effective address is placed into general purpose register 0 (R0).

• Load or Store Floating-Point with Update Instructions (rA = ‘0’)
Effective address is placed into general purpose register 0 (R0).

• Floating-Point Store Single Instructions (exponent less than 874 and frS[09:31] not equal to ‘0’)
The value placed in storage is a ‘0’ with the same sign as the value in the register.

2.2.7 Branch Processor 

2.2.7.1 Branch Processor Instructions 

Support Processor Attention Instruction

The 970FX supports a special, implementation dependent instruction for signalling an attention to the support 
processor.

The immediate field (I) has no effect on the operation of this instruction in the 970FX microprocessor. If the 
support processor attention enable bit is set (HID0[31] = ‘1’), this instruction will cause all preceding instruc-
tions to run to completion, the machine to quiesce, and the assertion of the support processor attention 
signal. If the support processor attention enable is not set (HID0[31] = ‘0’), this instruction will cause an illegal 
instruction type of program interrupt.

Figure 2-4. Processor Attention Instruction 
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2.2.7.2 Branch Processor Instructions with Undefined Results

The results of executing an invalid form of a branch instruction or an instance of a branch instruction for which 
the architecture specifies that some results are undefined are described below. Only results that differ from 
those specified by the architecture are described in the following list:

• Instructions with Reserved Fields
Bits in reserved fields are ignored; the results of executing an instruction in which one or more of these 
bits are ‘1’ is the same as if the bits were ‘0’.

• bcctr and bcctrl Instructions
If branch-options (BO[2]) is set to ‘0’, the contents of CTR, before any update, are used as the target 
address and for the test of the contents of the of CTR to resolve the branch. The contents of the CTR are 
then decremented and written back to the CTR.

• System Call Instructions (opcode 17) 

2.2.7.3 Move to Condition Register Fields Instruction (mtcrf)

The architecture warns that updating a subset of the CR fields on a mtcrf instruction may have worse perfor-
mance than updating all of the fields. In the 970FX, both the mtcrf instruction and the mfcr instruction will be 
emulated through the use of microcode templates. For best performance, software should use the new 
single-field variants of these instructions as described in the architecture.

The 970FX supports the optional architecture extension that defines slight variations to the mtcrf and mfcr 
instructions to indicate that the movement of a single field of the condition register is desired. Since the 
performance of these instructions is better than their multiple field counterparts, use of these instructions is 
encouraged.

Bits [30:31] Description

‘00’ sc instruction

‘01’ illegal instruction exception

‘10’ sc instruction

‘11’ sc instruction
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2.2.8 Storage Control Instructions

2.2.8.1 Overview of Key Aspects of Storage Control Instructions

In the 970FX, all cache control instructions operate on aligned 128-byte sections of storage. The following 
table summarizes many of the key aspects of the storage control instructions: 

2.2.8.2 Instruction Cache Block Invalidate (icbi)

The instruction cache block size for icbi on the 970FX is 128 bytes.

Execution of this instruction occurs in multiple phases. First, the effective address is computed and translated 
by the load/store execution pipeline. Next, the resulting real address is passed to the 970FX STS logic which 
broadcasts it onto the system bus. When the 970FX STS snoops this type of command on the system bus, it 
presents the command to the upstream instruction caches. As these invalidates are presented to the instruc-
tion cache, the associated real addresses are checked against all 16 possible locations in the effective 
addressed I-cache that could contain the particular real address. Only entries that actually match the real 
address will be invalidated. In addition, all entries in the instruction prefetch queue will be invalidated (inde-
pendent of the address). As an aid for quickly flushing the entire contents of the I-cache, a special mode bit is 
provided (HID1[9]) that forces each of these 16 entries to be invalidated on an icbi (even if their address does 
not match the invalidate address).

The icbi instruction has no effect on the L2 cache.

To insure that the storage access caused by an icbi instruction has been performed with respect to the 
processor executing the icbi instruction, an isync instruction must be executed on that processor.

Table 2-18. Storage Control Instructions 

Aspect
Cache Instructions

icbi dcbt dcbtst dcbz dcbst dcbf

Granularity 128 bytes 128 bytes 128 bytes 32 or 128 bytes 128 bytes 128 bytes

Semantic 
checking

Load (DSI on 
storage 
exception)

Load (no-op on 
storage 
exception)

Load (no-op on 
storage 
exception)

Store (DSI on 
storage 
exception)

Load (DSI on 
storage 
exception)

Load (DSI on 
storage 
exception)

“r” bit update Yes Yes Yes Yes Yes Yes

“c” bit update No No No Yes No No

L1 I-cache effect L1 I-cache and 
prefetch buffer None None None None None

L1 D-cache effect None
See 
Section 2.2.8.4 on 
page 67

See 
Section 2.2.8.4 on 
page 67

Invalidate No-op Invalidate

L2 Cache effect None
See 
Section 2.2.8.4 on 
page 67

See 
Section 2.2.8.4 on 
page 67

See 
Section 2.2.8.5 on 
page 67

See 
Section 2.2.8.6 on 
page 68

See 
Section 2.2.8.7 on 
page 68

TLB effect Reload as 
required

Reload as 
required

Reload as 
required

Reload as 
required

Reload as 
required

Reload as 
required

SLB effect Reload as 
required

None (no-op if 
miss)

None (no-op is 
miss)

Reload as 
required

Reload as 
required

Reload as 
required
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2.2.8.3 Instruction Cache Synchronize (isync)

As a performance optimization, the 970FX internally tracks and updates a scoreboard bit for instructions that 
change instruction-cache-oriented context that are required to be synchronized by the isync instruction. 
When the isync instruction is executed, this scoreboard bit is checked to see whether or not the machine 
must flush and refetch the instructions following the isync. In addition, the isync instruction is often used as a 
load barrier to prevent any subsequent load (or store) instructions from executing before previous load 
instruction have been completed. In these cases, the scoreboard bit will usually not be set, and the isync can 
complete without causing the flush.

2.2.8.4 Data Cache Block Touch (dcbt and dcbtst)

The data cache block size for dcbt and dcbtst on the 970FX is 128 bytes.

These instructions act as a touch for the D-cache hierarchy and the TLB. If data translation is enabled 
(MSR[DR] = 1), and an SLB miss results, then the instruction will be treated as a no-op. If a TLB miss results, 
then the instruction will reload the TLB (and set the reference bit). Once past translation, if the page protec-
tion attributes prohibit access, or the page is marked cache-inhibited, or the page is marked guarded, or the 
processors’ D-cache is disabled (using the bits in the HID4 register), then the instruction will be finished as a 
no-op and will not reload the cache. Otherwise, the instruction will check the state of the L1 D-cache and if the 
block is not present, then it will initiate a reload. Note that this may also reload the L2 cache with the 
addressed block if it is not already present. If the cache block is already present in the L1 D-cache, the cache 
content is not altered. Note that if the dcbt or dcbtst instruction does reload cache blocks, it will affect the 
state of the cache replacement algorithm bits.

The 970FX does implement the optional extension to the dcbt instruction that allows software to directly 
engage a data stream prefetch from a particular address. 

2.2.8.5 Data Cache Block Zero (dcbz)

The data cache block size for dcbz on the 970FX is 128 bytes. Support is also provided for a dcbz of 
32 bytes in order to accommodate coding which assumed a 32-byte block size. The dcbz actions are listed in 
Table 2-19. 

Note:  The entire instruction cache must be flushed whenever HID5[56] or HID5[57] are changed.

The function of dcbz is performed in the L2 cache. As a result, if the block addressed by the dcbz is present 
in the L1 D-cache, then the block will be invalidated before the operation is sent to the L2 cache logic for 
execution. The L2 cache will gain exclusive access to the block (without actually reading the old data), and 
will perform the zeroing function. For the 32-byte dcbz, the L2 cache may be required to read the line and 
then zero the 32 bytes.

Table 2-19. dcbz Actions 

HID5[57] HID5[56] dcbz Instruction Bit [10] Action

1 X 0 Illegal instruction

X X 1 Cache block (128 bytes) zeroed

0 0 0 Cache block (128 bytes) zeroed

0 1 0 32 byte block zeroed



User’s Manual
 
IBM PowerPC 970FX RISC Microprocessor  

Programming Model

Page 68 of 360
Version 1.7

March 14, 2008

If the cache block specified by the dcbz instruction contains an error, even one that is not correctable with 
error correction code (ECC), the contents of all locations within the block are set to zeros in the L2 Cache. If 
the specified block in the L2 Cache does not contain a hard fault, a subsequent load from any location within 
the cache block will return zeros and not cause a Machine Check interrupt. 

If the block addressed by the dcbz instruction is in a memory region marked cache-inhibited, or if the L1 
D-cache or L2 cache is disabled (using the bits in the HID registers), then the instruction will cause an align-
ment interrupt to occur.

Implementation Note–In order to emulate the behavior of the obsolete dcba instruction, a mode bit is 
provided that changes the behavior of dcbz as follows. When the mode bit is set to ‘1’, if the block addressed 
by the dcbz instruction is in a memory region marked cache-inhibited, the instruction is treated as a no-op. 
The dcba instruction was defined such that the referenced and changed bits need not be updated in this 
case. However, the 970FX will update these bits.

2.2.8.6 Data Cache Block Store (dcbst)

The data cache block size for dcbst on the 970FX is 128 bytes.

The dcbst instruction forces all preceding stores to the referenced block to become committed to the cache 
hierarchy, and then forces a clean operation in the L2 cache.

The dcbst instruction has no direct effect on the L1 D-cache (since it is store-through, it never contains modi-
fied data). The L2 cache updates and processor interconnect bus operations are performed as shown in 
Table 3-5. 970FX L2 Cache Transitions Due to Processor Instructions and Table 3-6. 970FX L2 Cache State 
Transitions Due to Bus Operations on page 82.

2.2.8.7 Data Cache Block Flush (dcbf)

The data cache block size for dcbf on the 970FX is 128 bytes.

The dcbf instruction forces all preceding stores to the referenced block to become committed to the cache 
hierarchy, and then acts like an invalidate to the L1 D-cache (since it is store-through, it never contains modi-
fied data). The L2 cache updates and processor interconnect bus operations are performed as shown in 
Table 3-5. 970FX L2 Cache Transitions Due to Processor Instructions and Table 3-6. 970FX L2 Cache State 
Transitions Due to Bus Operations.

Implementation Note–The dcbf will flush the 970FX L2 cache and/or any other CPU’s L2 cache in the 
system. 

2.2.8.8 Load and Reserve and Store Conditional Instructions (lwarx/ldarx, stwcx/stdcx)

The reservation granularity for the 970FX is 128 bytes. The lwarx and ldarx instructions are sometimes 
executed speculatively. An attempt to execute a non-word aligned lwarx or stwcx, or a non-doubleword 
aligned ldarx or stdcx will cause an alignment interrupt. An attempt to execute a lwarx, ldarx, stwcx, or a 
stdcx instruction to storage marked cache-inhibited will cause a data storage interrupt.
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2.2.9 Memory Synchronization Instructions 

The 970FX design achieves high performance by exploiting speculative out-of-order instruction execution. 
The sync instruction, as defined in the architecture, acts as a serious barrier to this type of aggressive execu-
tion and therefore can have a dramatic effect on performance. Although the 970FX has optimized the perfor-
mance of sync to some degree, care should be exercised in the use of this instruction. As a performance 
consideration, software should attempt to use the lightweight version of sync (lwsync) whenever possible.

The 970FX also supports the architected ptesync instruction for use in synchronizing page table updates. 
The 970FX implements eieio as described in the PowerPC Virtual Environment Architecture (Book II).

In the 970FX storage subsystem logic, the store queues above the L2 cache attempt to gather both cache-
able and cache inhibited store operations sequentially to improve bandwidth. A mode bit exists in the STS 
mode register (SCOM address x‘043000’) to disable store gathering of cache inhibited stores. Alternatively, if 
store gathering is not desired, software must insert between successive stores, either an eieio (preferable for 
performance) or a sync to prevent it. The eieio instruction is broadcast onto the system bus to allow ordering 
to be properly enforced throughout cache hierarchy and memory system (when detected on the system bus, 
these transactions have no direct effect on the processor).

2.2.10 Recommended Simplified Mnemonics

To simplify assembly language coding, a set of alternative mnemonics is provided for some frequently used 
operations (such as no-op, load immediate, load address, move register, and complement register). 
Programs written to be portable across the various assemblers for the PowerPC Architecture should not 
assume the existence of mnemonics not described in this manual. 

For a complete list of simplified mnemonics, see the PowerPC Architecture Books. 
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3. Storage Subsystem

The 970FX storage subsystem (STS) encompasses the core interface unit (CIU), non-cacheable unit (NCU), 
the L2 cache control and L2 cache, and the bus interface unit (BIU).

This section provides an overview and a high-level block diagram of the storage subsystem. It summarizes 
key design fundamentals and the storage hierarchy. The functional units are described in detail.

The following key features are fundamental to the design:

• Store-through L1 D-cache.
• No castouts or snoop pushes by the core.
• Non-blocking snoop invalidates to the core (both instruction and data invalidates).
• Integrated L2 Controller.
• L2 controller handling of cacheable instruction fetches, loads and stores, and dcbz instructions.
• Non-cacheable unit handling of other storage type instructions.

3.1 Storage Hierarchy

Table 3-1. Storage Hierarchy Characteristics 

Characteristic L1 Instruction Cache L1 Data Cache L2 Cache

Data type Instructions only Data only Instructions and data

Size 64 KB 32 KB 512 KB

Associativity 
(replacement policy) Direct map 2-way set associative (LRU) 8-way set associative (LRU)

Line size (sector) 128 bytes (4 * 32-bytes) 128 bytes 128 bytes

Operation granularity 128 bytes 128 bytes 128 bytes

Index Effective address Effective address Physical address

Tags Physical address Physical address Physical address

Number of ports 1Read or 1Write 
(directory has 2Read or 1Write) 2Read and 1Write 1Read or 1Write 

Inclusiveness N/A N/A Inclusive of L1 D-cache
not inclusive of L1 I-cache

Hardware coherency No Yes Yes
separate snoop ports

Store policy N/A Store-through
no allocate on store miss

Store back
allocate on store miss

Enable bit Yes Yes No

Reliability, availability, service-
ability (RAS)

Parity with invalidate on error for 
data and tags

Parity with invalidate on error for 
data and tags

ECC on data; parity on tags 
(recoverable with redundant 
tags)
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3.2 Caches

The 970FX contains two levels of cache hierarchy: L1 and L2. The coherence block size for the 970FX is 128 
bytes. For more information about 970FX cache characteristics, see Table 3-1 Storage Hierarchy Character-
istics on page 71. For more information about the relative performance of these caches.

The 970FX automatically maintains the coherency of all data cached in these caches. Since some levels of 
the cache hierarchy contain both instructions and data, when the L2 cache services an instruction cache 
reload request, it does so in a coherent manner. This avoids the scenario where a line is reloaded into the L2 
cache on behalf of a non-coherent instruction fetch, but then accessed by a load or store instruction with an 
aliased address that calls for correct coherency. However, the processor does not maintain instruction 
storage consistent with data storage and, as described in PowerPC Architecture, synchronization code is 
required to make the two consistent.

The L1 I-cache is indexed with an effective address. As a result, multiple copies of a particular physical block 
of memory can reside in multiple positions in the L1 I-cache (up to sixteen since four bits of the effective 
address are used in indexing the cache). The tag comparison associated with lookups in this cache is done 
using physical addresses, so there are no ‘synonym’ or ‘alias’ hazards that must be explicitly handled by the 
system software. 

The L1 D-cache is indexed with an effective address. Only one copy of a particular real address block is kept 
in the cache at a time. On each access, a tag comparison is done with the physical address. On a cache 
miss, the cache reload mechanism searches the other three related sets to determine if the required real 
address block is located elsewhere in the cache. If so, it will appropriately eliminate these copies. 

In addition to maintaining caches, the 970FX also includes several types of queues that act as logical prede-
cessors and extensions to the caches. In particular, the machine contains store queues for holding store data 
“above the caches,” cast-out queues for holding modified data that has been pushed out of the caches (by 
the replacement algorithm, cache control instructions, and/or snoop requests), and others. Hardware keeps 
all of these queues coherent, and in general neither software nor system hardware should be able to observe 
their presence.

3.2.1 Store Gathering

The 970FX performs gathering of cacheable stores in order to reduce the store traffic into the L2 cache. The 
gathering occurs in L2 store queues that sit above the L2 cache. The store queue is comprised of eight, 64-
byte wide, fully-associative entries. Stores can be gathered while architecturally permitted (that is, there is no 
intervening barrier operation) and the matching address is valid in the store queue. The conditions for 
pushing the store queue data into the L2 cache are not visible to the programmer.

Gathering of cache-inhibited stores is also supported and can be disabled with a mode bit in the Non-
Cacheable Unit (NCU) Configuration Register.



User’s Manual

 IBM PowerPC 970FX RISC Microprocessor

Version 1.7
March 14, 2008  
 

Storage Subsystem

Page 73 of 360

3.3 Cache Management

3.3.1 Flushing the L1 I-Cache

To help flush the entire contents of the I-cache efficiently, the 970FX implements a special mode of operation 
for the icbi instruction. This mode can be selected using a bit in the HID1 register. In this mode, all directory 
lookups on behalf of an icbi act as though there was a real address match. Therefore all lines looked at by 
the icbi will in fact be invalidated. As a result, the entire L1 I-cache can be invalidated by issuing a series of 
icbi instruction that step through each congruence class of the I-cache.

Note:  Another way to clear the I-cache is to actually fill it with a set of known values by executing a piece of 
code that effectively touches each line of the cache. One way to write this code is to have a series of 512 
branches to branches whose effective addresses are sequentially separated by 128 bytes (the line size of the 
I-cache). Many other possible code sequences can achieve the same effect.

3.3.2 Flushing the L1 D-Cache

The L1 D-cache is a store-through design, so it never holds modified data. As a result, to perform a flush of 
the L1 D-cache, the only instruction required is a sync. The sync instruction forces any pending stores in the 
store queue above the L1 cache to become globally coherent before the sync is allowed to complete.

To completely invalidate the L1 D-cache, use the l1dc_flsh mode bit located in the HID4 register to cause a 
flash invalidate of the D-cache. Software simply needs to set this bit and follow it with a sync instruction.

3.3.3 L2 Cache Disabling and Enabling

The L2 cache cannot be disabled.

3.3.4 L2 Cache Flush in Direct-Mapped Mode

The STS Mode Register (at SCOM address x‘043000’) is set to x‘0000 0000 0000 8000’ to enter direct-
mapped mode. In direct-mapped mode, victims are selected based on a simple address decode. Table 3-2 
shows the decode. The three tag address bits used for the mapping are real address bits [42:44]. 

Table 3-2. Simple Address Decode 

Real Address (Bits [42:44]) Selected Victim 

000 A

001 B

010 C

011 D

100 E

101 F

110 G

111 H
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3.3.4.1 L2 Cache Flush Algorithm

The following sequence will flush the entire L2 cache to memory via software:

1. Disable interrupts. 

2. Disable data address translation by setting MSR[DR] to ‘0’. 

3. Disable instruction cache (I-cache) prefetch by setting HID1[7:8] to ‘00’.

4. Disable data cache (D-cache) prefetch by setting HID4[25] to ‘1’.

5. Flash invalidate the D-cache by setting HID4[28] to ‘1’.

6. Execute a sync instruction.

7. Disable the D-cache (set HID4[37:38] to ’11’). This will guarantee that all loads are visible to the L2.

8. Set the L2 to direct mapped mode. This may be done by the service processor or through the SCOM con-
trol (SCOMC) and SCOM data (SCOMD) SPR interface. 

9. Execute a sync instruction.

10. Initialize a register with the starting address of a 4 MB cacheable region of memory that is aligned on a 
4 MB boundary (that is, bits [42:63] are all zeros).

11. Execute eight load instructions, incrementing the direct map field (bits [42:44]) of the load address 
between each load. 

12. Increment the congruence address field (bits [48:56]) of the load address, and repeat step 9.

13. Repeat step 10 for all 1024 congruence address values.

To power down after performing this sequence, the processor executes an attn instruction to enter the quies-
cent state. To return to normal processing, set the L2 cache to set-associative mode. Enable the D-cache,  
prefetching, data address translation and interrupts, as desired.

Figure 3-1. L2 Address Map 

128BCongruence
Address

Direct Map
Bits

Hold
Constant Cache Line

Hold
Constant

 22 ... 41 42 44 45 47 48 56 6357... ... ... ...
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3.4 Storage Model

3.4.1 Atomicity

The 970FX is fully compliant with the architectural requirement for single-copy atomicity on naturally aligned 
storage accesses. 

3.4.2 Storage Access Ordering

The architecture defines a weakly ordered storage model for most types of storage access scenarios. For 
these cases, the 970FX takes advantage of this relaxed requirement to achieve better performance through 
out-of-order instruction execution and out-of-order bus transactions. As a result, if strongly ordered storage 
accesses are required, software must use the appropriate synchronizing instruction (sync, ptesync, eieio or 
lwsync) to enforce order explicitly, or perform these accesses to regions marked with attributes that require 
the hardware to enforce strong ordering (for example, stores to storage marked cache-inhibited and guarded, 
are required to occur in-order).

The 970FX performs load operations out-of-order internally to the processor; however, it also keeps track of 
these loads in a way that lets it know when an external request for exclusivity may lead to the appearance of 
non-sequential execution. For these cases, the 970FX has the capability to flush potentially bad results, and 
re-execute the code starting from the suspect load instruction.

3.4.2.1 Storage Access Alignment Support 

Most storage accesses are performed without software intervention (that is, without an alignment interrupt). 
The relative performance of these accesses depends to some degree on their alignment. In many cases, 
unaligned storage accesses are handled with a performance equivalent to aligned accesses; however, in 
some cases the 970FX is forced to break unaligned accesses into multiple internal operations. Further, since 
effective address alignment for storage references cannot be determined until execution time, and 970FX’s 
dataflow-oriented execution pipelines do not support iteration, some unaligned storage accesses actually 
cause a pipeline flush to allow a microcoded emulation of the instruction. For more information on the perfor-
mance aspects of unaligned storage accesses.

The following list summarizes the cases in which the 970FX will engage a microcoded emulation of unaligned 
storage references:

• Any fixed-point load operation that crosses a 64-byte boundary (note 1)

• Any fixed-point load operation that misses in the L1 D-cache and crosses a 32-byte boundary (note 1)

• Any fixed-point store operation that crosses a 4 KB boundary (note 2)

• Any floating-point load double operation that is word aligned and crosses a 64-byte boundary (note 1)

• Any floating-point load double operation that is word aligned, misses in the L1 D-cache, and crosses a
32-byte boundary (note 1)

• Any floating-point store operation that is word aligned and crosses a 4 KB boundary (see note 1)

Notes:  

1. If the instruction is not a multiple or string instruction, the access crosses a page boundary, and the 
access to either page causes an exception, appearing as though the load instruction has not been exe-
cuted (i.e., frD or rD is not modified).
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2. If the access to the first page causes an exception, storage is not modified. Otherwise storage in the first 
page is updated even if the access to the second page causes an exception.

As an aid for software identification of these cases, the 970FX supports a debug-only mode, controlled by 
HID4[24], that will force an alignment interrupt in these scenarios. See Section 4.5.8 Alignment Exception on 
page 101 for a summary of cases in which the 970FX will take an alignment interrupt.

3.4.3 Atomic Updates and Reservations

The coherency granule size in the 970FX is 128 bytes.

The following events will affect the state of the reservation register:

• Execution of a lwarx or ldarx instruction (sets new reservation)

• Execution of a stwcx or stdcx instruction (successful or not, address match or not, the reservation is 
cleared)

• Snooped-RWITM bus operation that matches reservation address (clears the reservation)

• Snooped-DCLAIM bus operation that matches reservation address (clears the reservation)

• Snooped-Write w/ FLUSH bus operation that matches reservation address (clears the reservation)

• Snooped-Write w/ KILL bus operation that matches reservation address (clears the reservation)

When performing bus snooping, the 970FX will check the state of the internal caches and the state of the 
reservation register to formulate a snoop response. If a particular coherency block is not in any of the caches 
but the address is valid in the reservation register, then the processor/STS will act as though the coherency 
block is in the shared state for the snoop response (this will prevent another processor from taking the block 
as exclusive on a simple READ bus transaction).
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3.5 Functional Units

Table 3-3 lists the functional units within the storage subsystem and Figure 3-2 shows how they interact. The 
noncacheable unit (NCU) handles all communications to and from the core that are not handled by the L2 
cache. The core interface unit (CIU) and L2 cache controller are described in detail in the following sections. 

Table 3-3. Storage Subsystem Functional Units 

Unit Mnemonic

Core Interface Unit CIU

L2 Cache Controller L2C

Non-Cacheable Unit NCU

Bus Interface Unit BIU

Figure 3-2. 970FX Storage Subsystem High-Level Diagram 

Bus Interface Unit (BIU)

Non-Cacheable Unit L2 Cache Controller

Core Interface Unit (CIU)

512K L2 Cache

970FX Core

(NCU) (L2C)
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3.5.1 Core Interface Unit 

The core interface unit (CIU) is the interface block between the 970FX core and the rest of the storage 
subsystem. It contains the necessary pipeline buffers and queues to maintain the required transfer rates to 
and from the 970FX core.

The interfaces to the 970FX core include one instruction fetch unit (IFU) port, two load/store unit (LSU) ports, 
and one data prefetch and translate port. The CIU performs request arbitration, queueing, and flow control. It 
also maintains load/store ordering and provides prefetch support. In addition, the 970FX core interfaces 
include one store interface with the LSU. The CIU performs request queueing and flow control for this inter-
face. It maintains store ordering and supports a 16-byte data path.

The CIU provides request flow control for the L2 cache interface. It dispatches operations to the L2 cache 
interface based on storage mode and operation type. The CIU also provides request flow control for the NCU 
interface. It dispatches operations to the NCU based on storage mode and operation type. It maintains cache-
inhibited store ordering.

The reload/invalidate address interfaces include one IFU port, one LSU port, and one translate port. The CIU 
provides support for L1 cache invalidates. It also requests arbitration and flow control. The reload data bus is 
a 32-byte data path running at the CPU speed (1:1).

3.5.2 L2 Cache Controller

As shown in Figure 3-2. 970FX Storage Subsystem High-Level Diagram, the L2 cache controller (L2C) 
resides between the CIU and the BIU and also interfaces with the NCU. See Table 3-1 for additional details of 
the L2 cache features.

L2 Cache Features
• 512 KB size, 8-way set associative
• Fully inclusive of the L1 data cache
• Unified L2 cache controller (combines entities such as instructions, data, and PTEs)
• Store-in L2 cache (store-through L1 cache)
• Fully integrated cache, tags, and controller
• Five-state modified/exclusive/recent/shared/invalid (MERSI) coherency protocol

L2 Cache Controller Features
• Runs at core frequency (1:1)
• Handles all cacheable loads/stores (including lwarx/stcwx)
• Critical 32-byte forwarding on data loads
• Critical 32-byte forwarding in instruction fetches
• Six read/claim queues (RCQs)
• Eight (64-byte wide) store queues 
• Store gathering supported 
• Non-blocking L1 D-cache invalidates
• Recoverable single-bit directory errors (through redundant directory)

L2 Cache Snooper Features
• Separate directory for all system bus snoops
• Four snoop/intervention/push queues
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L2 Controller Block Diagram

Figure 3-3 shows the dataflow of the L2 Cache Controller including the data queues. 

Figure 3-3. 512 KB L2 Data Flow 
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3.5.2.1 Cache-Coherency 

The cache-coherency protocol used in the L2 cache is standard MERSI as defined in Table 3-4.

3.5.2.2 Cache-Coherency Paradoxes

In the 970FX, some parts of cache-inhibited operations are handled by a special section of logic that does not 
access the caches as part of its normal operation. As a result, if data associated with cache-inhibited opera-
tions are present in the caches (causing a cache-coherency paradox), the 970FX will bypass some of the 
caches. This introduces the possibility of observing stale data is opened (more specifically, the 970FX will 
read from and write to the L1 D-cache if it hits, but it will bypass the L2 cache completely).

3.5.2.3 Cache State Transition Tables

Table 3-5 and Table 3-6 show the cache state transitions that occur as a result of processor operations and 
snooped bus operations. 

Table 3-4. Cache-Coherency Protocol 

Status Bit Name Meaning

M Modified The cache block is modified with respect to the rest of the memory subsystem.

E Exclusive The cache block is not cached in any other cache.

R1 Recent The cache block is shared and this processor is the most recent reader of the cache block.

S Shared The cache block was (and still may be) cached by multiple processors.

I Invalid The cache block is invalid.

1. Implementation Note – The 970FX supports a cache-coherency mode in which the R state is not used. R is replaced with shared-
last (SL). 
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Table 3-5. 970FX L2 Cache Transitions Due to Processor Instructions 

# Instruction Storage Mode Coherency State Bus Operation A Resp In Comment

1 ld, dcb Ca M, E, S, R

2 larx Ca M, E, S, R

3 ld, dcbt, larx Ca I → S*, E Read Cache Line S, Null Atomic if LARX

4 ld, larx, NonCa Read Noncache Line Atomic if LARX

5 dcbt NonCa No-op

6 st, dcbtst, stcx Ca M → M

7 st, stcx Ca E → M

8 dcbtst Ca E → E

9 st, dcbtst, stcx Ca S, R → M DClaim Atomic if STCX

10 st, dcbtst, stcx Ca I → M RWITM RTY Atomic if STCX

11 st, stcx NonCa Write with Flush Atomic if STCX

12 Deallocate Ca M → I Write with Kill Copyback, W = ‘0’, M = ‘0’

13 Deallocate Ca E, S, I → I

14 dcbf Ca M → I Write with Kill W = ‘1’, M = ‘0’

15 dcbf Ca E → I

16 dcbf Ca I, S, R → I Flush Block

17 dcbst Ca M→S, E Write with Clean Cache > E 

18 dcbst Ca E, R, S→ E, R, S → E, R 

19 dcbst Ca I Clean

20 dcbz Ca E, M → M

21 dcbz Ca I, S → M DClaim

22 dcbz-32byte Ca 32 bytes, treated as store

23 icbi IKill

Note:  Ca = cacheable, I = ‘0’; NonCa is I = ‘1’, S* means R if enabled. 
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Table 3-6. 970FX L2 Cache State Transitions Due to Bus Operations 

Number Bus Operation Snooper 
State

Rsrv 
State

AResp 
Out

AResp
In Comments

1

Read Burst

N = ‘1’, S = ‘0’ M →S M M Causes C →M → C data-only 
operation. (Intervention)2 N = ‘1’, S = ‘1’ M → E M M

3 N = ‘1’, S = ‘0’ E,R → S ShrI ShrI Causes C → C intervention

4 N = ‘1’, S = ‘1’ E,R → E,R ShrI ShrI Causes C → C intervention

5

Read Non Burst

N = ‘0’, S = ‘0’ M → S Retry Retry Causes Write with Clean (Push)

6 N = ‘0, S = ‘1’ M → E Retry Retry Causes Write with Clean (Push)

7 N = ‘0’, S = ‘0’ E,R → S S S Reader may go R

8 N = ‘0’, S = ‘1’ E,R → E,R S S Reader will go S

9

Any Read

S S S

10 I
R = ‘0’

R = ‘1’ S

11

RWITM

N = ‘1’ M → I M M Causes C -> C intervention

N = ‘1’ E,R → I ShdI ShdI Causes C -> C intervention

12 N = ‘0’ M → I Retry Retry Causes Write w/Kill (Push)

13 N = ‘0’ E,R → I Null N says don’t intervene

14 IS → I

15 Write-With-Kill, DKill, DClaim IESM → I

16
Write-With-Flush

M →I Retry Retry Causes Write w/Kill (Push)

17 ISE → I

18
Flush

M → I M Causes Write w/Kill (Push)

19 ISER → I

20 Clean M →S,E M
Causes Write with Clean M = ‘0’
Cache → E 

21 Clean E,R,S → 
E,R,S S → E,R

22 Clean I → I Null

23 sync, tlbsync Retry 
Null Retry until done. Null when done.
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3.5.3 Managing the Data Prefetch Hardware

Software can manage the data prefetch hardware by using special forms of the data cache block touch (dcbt) 
instruction. Two forms of dcbt variants are implemented in the 970FX, as described below. 

3.5.3.1 Optional dcbt Variant

The architecture describes the first dcbt variant as optional. This version of the instruction includes a 2-bit 
Touch Hint (TH) field (instruction bits [9:10]), which permits a program to provide a hint regarding a sequence 
of data cache blocks. Such a sequence is called a “data stream”. A dcbt instruction in which TH[0:1] does not 
equal ‘00’ is called a “data stream variant” of dcbt. 

Figure 3-4 shows the instruction format and interpretation of the TH field for this dcbt variant.

Figure 3-4. Data Cache Block Touch X-Form (Optional Variant) 

dcbt      rA,rB,TH

Let the effective address (EA) be the sum (rA|0) + (rB).

TH Description

00 The program will probably soon load from the block containing the byte addressed by EA.

01 The program will probably soon load from the data stream consisting of the block containing the 
byte addressed by EA and an unlimited number of sequentially following blocks (i.e., consisting 
of the blocks containing the bytes addressed by EA + n x block_size; where n = 0, 1, 2,...).

10 Reserved

11 The program will probably soon load from the data stream consisting of the block containing the 
byte addressed by EA and an unlimited number of sequentially preceding blocks (i.e., consisting 
of the blocks containing the bytes addressed by EA - n x block_size; where n = 0, 1, 2,...).

Restrictions

For the data stream variant cases (TH equals ‘01’ or TH equals ‘11’), prefetching of the stream will start 
even if the first block of the stream is already in the L1 data cache.

 31
0
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3.5.4 Enhanced DCBT Variant 

An additional variant of the dcbt instruction is implemented in the 970FX. In this version, the TH field is 
extended to four bits (instruction bits [7:10]) to provide the additional variant of dcbt. Note that the 2-bit 
optional variant of the software touch is a subset of the 4-bit extended version. A brief description of this 
variant is shown in Figure 3-5.

Figure 3-5. Data Cache Block Touch X-form (Enhanced Variant) 

dcbt      rA,rB,TH

Let the effective address (EA) be the sum (rA|0) + (rB).

TH Description

0000 The program will probably soon load from the block containing the byte addressed by EA.

0001 The program will probably soon load from the data stream consisting of the block containing the 
byte addressed by EA and an unlimited number of sequentially following blocks (that is, consisting 
of the blocks containing the bytes addressed by EA + n x block_size, where n = 0, 1, 2,...).

0011 The program will probably soon load from the data stream consisting of the block containing the 
byte addressed by EA and an unlimited number of sequentially preceding blocks (that is, 
consisting of the blocks containing the bytes addressed by EA - n x block_size, where n = 0, 1, 
2,...).

1000 The dcbt instruction provides a hint that describes certain attributes of a data stream, and option-
ally indicates that the program will probably soon load from the stream. The EA in this case, is 
interpreted as follows:

Note:  All other TH decodes are reserved. 
Restrictions – The TH = ‘1000’ version of the dcbt instruction is not recognized when MSR[DR]  = ‘0’. 
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0 6059 63

EA_TRUNC

585756

D UG ID

Bits Name Description

0:56 EA_TRUNC High-order 57 bits of the effective address of the first unit of the data stream. The low order seven 
bits of that effective address are zero.

57 D
Direction
0 Subsequent units are the sequentially following units.
1 Subsequent units are the sequentially preceeding units. 

58 UG

0 No information is provided by the UG field.
1 The number of units in the data stream is unlimited, the program’s need for each block of 

the stream is not likely to be transient, and the program will probably soon load from the 
stream. 

59 – Reserved

60:63 ID Stream ID to use for tihs data stream.
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Implementation Note— The extended dcbt variant implemented in the 970FX is a partial implementation of 
a more complete extension to be implemented on future PowerPC processors. In this partial implementation, 
the stream ID field selects which hardware prefetcher the stream is assigned to, but is otherwise unused. 
Unless the UG field is set to 1 by software – which initiates prefetch of an unlimited stream – the TH = 1000 
form of the dcbt does nothing.
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4. Exceptions

The operating environment architecture (OEA) portion of the PowerPC Architecture defines the mechanism 
by which PowerPC processors implement exceptions (referred to as interrupts in the architecture specifica-
tion). Exception conditions may be defined at other levels of the architecture. For example, the user instruc-
tion set architecture (UISA) defines conditions that may cause floating-point exceptions; the OEA defines the 
mechanism by which the exception is taken. 

The PowerPC exception mechanism allows the processor to change to supervisor state as a result of unusual 
conditions arising in the execution of instructions and from external signals, bus errors, or various internal 
conditions. When exceptions occur, information about the state of the processor is saved to certain registers 
and the processor begins execution at an address (exception vector) predetermined for each exception. 
Processing of exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, often a more specific condition 
can be determined by examining a register associated with the exception—for example, the DSISR and the 
Floating-Point Status and Control Register (FPSCR). The high-order bits of the Machine State Register 
(MSR) are also set for some exceptions. Software can explicitly enable or disable some exception conditions. 

The PowerPC Architecture requires that exceptions be taken in program order. Therefore, although a partic-
ular implementation may recognize exception conditions out-of-order, they are handled strictly in-order with 
respect to the instruction stream. When an instruction-caused exception is recognized, any unexecuted 
instructions that appear earlier in the instruction stream, including any that have not yet entered the execute 
state, are required to complete before the exception is taken. For example, if a single instruction encounters 
multiple exception conditions, those exceptions are taken and handled based on the priority of the exception. 
Likewise, exceptions that are asynchronous and precise are recognized when they occur, but are not handled 
until all instructions currently in the execute stage successfully complete execution and report their results.

To prevent loss of state information, exception handlers must save the information stored in the Machine 
Status Save/Restore Registers, SRR0 and SRR1, soon after the exception is taken to prevent this informa-
tion from being lost due to another exception being taken. Because exceptions can occur while an exception 
handler routine is executing, multiple exceptions can become nested. It is up to the exception handler to save 
the necessary state information if control is to return to the excepting program.

In many cases, after the exception handler returns, there is an attempt to execute the instruction that caused 
the exception (such as a page fault). Instruction execution continues until the next exception condition is 
encountered. Recognizing and handling exception conditions sequentially guarantees that the machine state 
is recoverable and processing can resume without losing instruction results.

In this book, the following terms are used to describe the stages of exception processing. 

Recognition Exception recognition occurs when the condition that can cause an exception is identified by 
the processor. 

Taken An exception is said to be taken when control of instruction execution is passed to the excep-
tion handler. That is, the context is saved and the instruction at the appropriate vector offset 
is fetched and the exception handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the appropriate vector offset. 
Exception handling is begun in supervisor mode (referred to as privileged state in the archi-
tecture specification).
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Note:  The PowerPC Architecture documentation refers to exceptions as interrupts. In this book, the term 
‘interrupt’ is reserved to refer to asynchronous exceptions and sometimes to the event that causes the excep-
tion. The PowerPC Architecture also uses the word ‘exception’ to refer to IEEE-defined floating-point excep-
tion conditions that may cause a program exception to be taken, (see the PowerPC Microprocessor Family: 
The Programming Environments manual for more information). The occurrence of these IEEE exceptions 
may not cause an exception to be taken. IEEE-defined exceptions are referred to as IEEE floating-point 
exceptions or floating-point exceptions.

Note:  Previous PowerPC microprocessors supported specifying the base real address by using the excep-
tion prefix field, MSR[IP]. The 970FX does not support this.

4.1 970FX Microprocessor Exceptions

As specified by the PowerPC Architecture, exceptions can be either precise or imprecise and either synchro-
nous or asynchronous. Asynchronous exceptions are caused by events external to the processor’s execu-
tion; synchronous exceptions are caused by instructions. The types of exceptions are shown in Table 4-1. 

Note:  All exceptions except for the maintenance exception, thermal exception, and performance monitor 
exception are defined, at least to some extent, by the PowerPC Architecture. 
 

These classifications are discussed in greater detail in Section 4.2. For a better understanding of precise 
exceptions, see Chapter 6, “Exceptions” of the PowerPC Microprocessor Family: The Programming Environ-
ments manual. Exceptions implemented in the 970FX, and conditions that cause them, are listed in Table 4-2 
Exceptions and Conditions.

Table 4-1. PowerPC 970FX Microprocessor Exception Classifications  

Synchronous/Asynchronous Precise/Imprecise Exception Types

Asynchronous, nonmaskable Imprecise Machine check, system reset

Asynchronous, maskable Precise External interrupt, decrementer, maintenance exception, performance 
monitor exception, thermal exception

Synchronous Precise Instruction-caused exceptions
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Table 4-2. Exceptions and Conditions  

Exception Type Vector Offset
(hex) Causing Conditions

System reset 00100 Assertion of either soft reset input pin or by SCOM command sequence for “soft reset.” 
See Section 4.5.1 System Reset Exception. 

Machine check 00200 There are many causes of a machine check exception, see Section 4.5.2 Machine Check 
Exceptions.

Data storage 00300 As specified in the PowerPC Architecture, if a page fault occurs. See Section 4.5.3 Data 
Storage Exception. 

Data segment 00380 Data segment fault, as defined in the PowerPC Architecture. See Section 4.5.4 Data Seg-
ment Exception. 

Instruction storage 00400 As defined by the PowerPC Architecture, if a page fault occurs. See Section 4.5.5 Instruc-
tion Storage Exception. 

Instruction segment 00480 Instruction segment fault, as defined in the PowerPC Architecture. See Section 4.5.6 
Instruction Segment Exception. 

External interrupt 00500 An external interrupt is signaled by the assertion of the external interrupt input signal. See 
Section 4.5.7 External Interrupt Exception.

Alignment 00600 There are many causes of the alignment exception. See Section 4.5.8 Alignment Excep-
tion.

Program 00700 As defined by the PowerPC Architecture (e.g., instruction opcode error). See 
Section 4.5.9 Program Exception.

Floating-point 
unavailable 00800 As defined by the PowerPC Architecture. See Section 4.5.10 Floating-Point Unavailable 

Exception.

Decrementer 00900
As defined by the PowerPC Architecture, when the most-significant bit of the DEC regis-
ter changes is ‘1’ and MSR[EE] = ‘1’. It is the responsibility of the decrementer exception 
service routine to clear DEC[0]. See Section 4.5.11 Decrementer Exception.

Hypervisor 
Decrementer 00980

The Hypervisor Decrementer is similar to the decrementer and is used to return control to 
the hypervisor. This interrupt is activated when no higher priority interrupt is active and 
MSR[EE] = ‘1’ or MSR[HV] = ‘0’ and the Hypervisor Decrementer is negative (HDEC[0] = 
‘1’. This is a level sensitive interrupt and as such it is the responsibility of the interrupt ser-
vice routine to clear HDEC[0].

System call 00C00 Execution of the System Call (sc) instruction. See Section 4.5.12 System Call Exception.

Trace 00D00 MSR[SE]  = ‘1’ or MSR[BE]  = ‘1’ and a trace-marked instruction successfully completes. 
See Section 4.5.13 Trace Exception. 

Performance monitor 00F00

The performance monitor exception is signaled when the MSR[EE] bit is set, the 
MMCR0[PMXE] bit is set, and any of the performance monitor counters overflow. The 
performance monitor exception may also be triggered by the ‘0’ to ‘1’ transition of a partic-
ular time base bit. See Section 4.5.14 Performance Monitor Exception.

VPU unavailable 00F20
A VPU unavailable exception occurs when no higher priority exception exists, an attempt 
is made to execute an vector instruction, and MSR[VP] = ‘0’. See Section 4.5.15 VPU 
Unavailable Exception.

Instruction address 
breakpoint 01300

PowerPC 970FX does not support a visible form of the instruction address breakpoint 
facility. The instruction address breakpoint feature is accessible through the support pro-
cessor interface. See Section 4.5.16 Instruction Address Breakpoint Exception.

Maintenance 01600 This exception can be signaled by a number of internal events, as well as by explicit com-
mands from the support processor. See Section 4.5.17 Maintenance Exception.

VPU assist 01700 This exception occurs when operating in Java mode and the input operands or the result 
of an operation is denormalized. See Section 4.5.18 VPU Assist Exception.

Thermal 01800 A thermal exception is signaled by the assertion of the thermal interrupt input signal. See 
Section 4.5.19 Thermal Exception.
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4.2 Exception Recognition and Priorities

Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions have priority over all other exceptions. These are system reset 
and machine check exceptions. These exceptions cannot be delayed and do not wait for completion of 
any precise exception handling. (However, the machine check exception condition can be disabled so the 
condition causes the processor to go directly into the checkstop1 state). 

2. Synchronous, precise exceptions are caused by instructions and are taken in strict program order. 

3. Imprecise exceptions (imprecise mode floating-point enabled exceptions) are caused by instructions and 
they are delayed until higher priority exceptions are taken. 

Note:  Note that the 970FX does not implement an exception of this type.

4. Maskable asynchronous exceptions (external, decrementer, thermal, maintenance, performance monitor, 
and exceptions) are delayed if higher priority exceptions are taken. 

The following list of exception categories describes how the 970FX handles exceptions up to the point of 
signalling the appropriate interrupt to occur. Note that a recoverable state is reached if the completed store 
queue is empty (drained, not cancelled) and any instruction that is next in program order and has been 
signaled to complete has completed. If MSR[RI] = 0, the 970FX is in a nonrecoverable state. Also, instruction 
completion is defined as updating all architectural registers associated with that instruction, and then 
removing that instruction from the completion buffer.

4.2.1 Exception Priorities

The following is a summary of the exception priorities for 970FX:

1. System reset exception

2. Machine check exception

3. Instruction dependent (as follows)

• Fixed-point loads and stores
– Mode dependent loads and stores

(1) Illegal instruction type program exception
(2) Privileged type program exception (ex: MSR[PR] = ‘1’)

– Data segment exception
– Data storage exception
– Alignment exception
– Trace exception

• Floating-point loads and stores
– Floating-point unavailable exception
– Data segment exception
– Data storage exception (DSI)
– Alignment exception
– Trace exception

• Other floating-point instructions
– Floating-point unavailable exception

1. Hardware has detected a condition that it cannot resolve, and which prevents normal operation. It stops executing instruc-
tions, responding to interrupts, and so on.
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– Precise-mode floating-point enabled exceptions type program exception
– Trace exception

• Vector instructions
– VPU unavailable exception
– Trace exception

• rfid, mtmsr[d] 
– Precise-mode FP enabled exceptions type program interrupt
– Trace exception (for mtmsr[d] only)

• Other instructions
– Exceptions that are mutually exclusive and the same priority:

(1) Trap type program exception
(2) System call
(3) Privileged instruction type program exception
(4) Illegal instruction type program exception

– Trace exception
– VPU assist exception

• Instruction segment exception

• Instruction storage exception

4. Maintenance exception

5. External interrupt

6. Performance monitor exception

7. Decrementer exception

8. Thermal exception
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4.3 Exception Processing

When an exception is taken, the processor uses SRR0 and SRR1 to save the contents of the MSR for the 
current context, and to identify where instruction execution should resume after the exception is handled.

4.3.1 Machine Status Save/Restore Register 0 (SRR0)

When an exception occurs, the address saved in SRR0 determines where instruction processing should 
resume when the exception handler returns control to the interrupted process. Depending on the exception, 
this may be the address in SRR0 or at the next address in the program flow. All instructions in the program 
flow preceding this one will have completed execution and no subsequent instruction will have begun execu-
tion. This may be the address of the instruction that caused the exception or the next one (as in the case of a 
system call, trace, or trap exception). The SRR0 register is shown in Figure 4-1.

4.3.2 Machine Status Save/Restore Register 1 (SRR1)

SRR1 is used to save machine status (selected MSR bits and possibly other status bits as well) on excep-
tions and to restore those values when an rfid instruction is executed. SRR1 is shown in Figure 4-2.

Note:  The function of the SRR1 is to save the current state of the machine (that is, the MSR) before a tempo-
rary state is invoked to service exceptions. After the servicing of the exception, the contents of SRR1 are 
returned to the MSR and the code stream can continue.

Figure 4-1. Machine Status Save/Restore Register 0 (SRR0) 

Table 4-3. SRR0 Bit Settings 

Bit Name Description

0:61 Holds the effective address for the instruction in the interrupted program flow. 

62:63 – Reserved. Returns a zero when read. 

Figure 4-2. Machine Status Save/Restore Register 1 (SRR1) 

Table 4-4. SRR1 Bit Settings 

Bit Name Description

0:63 SRR1

Exception-specific information and MSR bit values.
For most exceptions, bits [33:36] and [42:47] of SRR1 are loaded with exception-specific information. 
Bits [0:32], [37:41], and [48:63] of SRR1 are loaded with a copy of the corresponding bits of the MSR (prior to taking 
the exception).

SRR0 (Holds EA for Instruction in Interrupted Program Flow)

0 636261

0 0

SRR1 (Exception-Specific Information and MSR Bit Values)

0 63
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4.3.3 Machine State Register (MSR)

The 970FX’s MSR is shown in Figure 4-3. 

The MSR bits are defined in Table 4-5.

Figure 4-3. Machine State Register (MSR) 

Table 4-5. MSR Bit Settings  

Bit Name Description

0 SF
Sixty-four bit mode. 
0 Processor runs in 32-bit mode.
1 Default mode. Processor runs in 64-bit mode.

1:2 – Reserved. 

3 HV
Hypervisor mode. Set when running on a non-partitioned system or when “hypervisor code” is executing on a parti-
tioned system. MSR[HV] can be set to ‘1’ only by the system call instruction and some interrupts. It can be set to ‘0’ 
only by the rfid and hrfid instructions. 

4:37 – Reserved. 

38 VPU

VPU available. 
0 The processor prevents execution of all vector instructions, including loads, stores, and moves. If such 

execution is attempted, a VPU unavailable exception is raised. 
1 The processor can execute all vector instructions.
The VRSAVE register is not protected by MSR [VP]. The data streaming family of instructions (dst, dstt, dstst, 
dststt, dss, and dssall) are not affected by the MSR[VP].

39:44 – Reserved. 

45 POW
Power management enable.
0 Power management disabled (normal operation mode).
1 Power management enabled (reduced power mode).

46:47 – Reserved. 

48 EE

External exception enable. 
0 The processor delays recognition of external exceptions and decrementer exception conditions. 
1 The processor is enabled to take an external exception or the decrementer exception.
Note:  Setting MSR[EE] masks not only the architecture-defined external exception and decrementer exceptions, 
but also the 970FX-specific debug, performance monitor, and thermal exceptions. 

49 PR
Problem state. 
0 The processor is privileged to execute any instruction.
1 The processor can only execute non-privileged instructions.

50 FP

Floating-point available. 
0 The processor prevents dispatch of floating-point instructions, including floating-point loads, stores, and 

moves.
1 The processor can execute floating-point instructions and can take floating-point enabled program excep-

tions.

EE PR SEFE0 BE IR

0 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

PMM0

Reserved

RIDRFE1MEFP0POW0 0000... 0000 000SF

1 2 3

000 0000 0

4 38 39

VP 0 0HV
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The 970FX provides precise floating-point exceptions whenever either of the floating-point enabled exception 
mode bits (MSR[FE0] and MSR[FE1]) are set. In all cases, the 970FX aggressively executes the floating-
point instructions (even out-of-order as required), and sorts out any resulting exceptions at completion time. 
In some cases, due to the group-oriented instruction tracking scheme used by the 970FX, when an exception 
is detected, the hardware will flush the pipeline and re-dispatch the instructions individually in order to provide 
the precise exception. Since this only happens if an exception is to be taken, it does not represent a measur-
able decrease in performance.

51 ME

Machine check enable. 
0 Machine check exceptions are disabled. If one occurs system enters checkstop.
1 Machine check exceptions are enabled.
Only rfid instructions can alter MSR[ME]. 

52 FE0 IEEE floating-point exception mode 0.

53 SE

Single-step trace enable.
0 The processor executes instructions normally. 
1 The processor generates a single-step trace exception upon the successful execution of every instruction 

except rfid, isync, and sc. Successful execution means that the instruction caused no other exception.

54 BE
Branch trace enable.
0 The processor executes branch instructions normally. 
1 The processor generates a branch type trace exception when a branch instruction executes successfully. 

55 FE1 IEEE floating-point exception mode 1.

56:57 — Reserved.

58 IR
Instruction address translation. 
0 Instruction address translation is disabled. 
1 Instruction address translation is enabled.

59 DR

Data address translation. 
0 Data address translation is disabled. If data stream touch (dst) and data stream touch for store (dstst) 

instructions are executed when DR = ‘0’, the results are boundedly undefined.
1 Data address translation is enabled. Data stream touch (dst) and data stream touch for store (dstst) 

instructions are supported when DR = ‘1’. 

60 — Reserved.

61 PMM Performance monitor mode. This register bit is used to enable/disable performance monitor activity controlled by 
the process mark bit.

62 RI 

Indicates whether system reset or machine check exception is recoverable.
0 Exception is not recoverable. 
1 Exception is recoverable.
The RI bit indicates whether from the perspective of the processor, it is safe to continue (that is, processor state 
data such as that saved to SRR0 is valid), but it does not guarantee that the interrupted process is recoverable. 
Exception handlers must look at SRR1[RI] for determination.

63 – Reserved. 

Table 4-5. MSR Bit Settings (Continued) 

Bit Name Description
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4.3.4 Enabling and Disabling Exceptions

When a condition exists that may cause an exception to be generated, it must be determined whether the 
exception is enabled for that condition. 

• IEEE floating-point enabled exceptions (a type of program exception) are ignored when both MSR[FE0] 
and MSR[FE1] are cleared. If either bit is set, all IEEE enabled floating-point exceptions are taken and 
cause a program exception. 

• Asynchronous, maskable exceptions (external, decrementer, performance monitor, thermal, and mainte-
nance exceptions) are enabled by setting MSR[EE]. When MSR[EE] = ‘0’, recognition of these exception 
conditions is delayed. MSR[EE] is cleared automatically when an exception is taken to delay recognition 
of conditions causing those exceptions.

• A machine check exception can occur only if the machine check enable bit, MSR[ME], is set. If MSR[ME] 
is cleared, the processor goes directly into checkstop state when a machine check exception condition 
occurs.

• System reset exceptions cannot be masked. 

4.3.5 Exception Processing Steps

After it is determined that the exception can be taken (by confirming that any instruction-caused exceptions 
occurring earlier in the instruction stream have been handled, and by confirming that the exception is enabled 
for the exception condition), the processor does the following: 

1. Loads the SRR0 with an instruction address that depends on the type of exception. Normally, this is the 
instruction that would have completed next had the exception not been taken. See the individual excep-
tion description for details about how this register is used for specific exceptions.

2. Loads SRR1[33:36, 42:47] with information specific to the exception type.

3. Loads SRR1[0:32, 37:41, 48:63] with a copy of the corresponding MSR bits (prior to the exception). 

4. Sets the MSR as described in Section 4.5 Exception Definitions. The new values take effect as the first 
instruction of the exception-handler routine is fetched. 

Note:  MSR[IR] and MSR[DR] are cleared for all exception types. Therefore, address translation is dis-
abled for both instruction fetches and data accesses beginning with the first instruction of the exception-
handler routine. 

Instruction fetch and execution resumes, using the new MSR value, at a location specific to the exception 
type. The location is determined by adding the exception’s vector offset (see Table 4-2) to the value in the 
Hardware Interrupt Offset Register (HIOR). For a machine check exception that occurs when MSR[ME] = ‘0’ 
(machine check exceptions are disabled), the checkstop state is entered (the machine stops executing 
instructions). 

Table 4-6. IEEE Floating-Point Exception Mode Bits  

FE0 FE1 Mode

0 0 Floating-point exceptions disabled.

0 1 Imprecise nonrecoverable. For this setting, the 970FX operates in floating-point precise mode. 

1 0 Imprecise recoverable. For this setting, the 970FX operates in floating-point precise mode. 

1 1 Floating-point precise mode.
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4.3.6 Setting the Recoverable Exception in the MSR

The recoverable exception (RI) bit in the MSR was designed to indicate to the exception handler whether the 
exception is recoverable. When an exception occurs, the RI bit is copied from the MSR to SRR1 and cleared 
in the MSR. All exceptions are disabled except machine check. If a machine check exception occurs while 
MSR[RI] is clear, a ‘0’ value is found in SRR1[RI] to indicate that the machine state is definitely not recover-
able. When MSR[RI] = ‘1’, the exception is recoverable as far as the current state of the machine and all 
programs concerned including noncritical machine checks. Thus, in all exceptions, if SRR1[RI] is cleared, the 
machine state is not recoverable. If it is set, the exception is recoverable with respect to the processor and all 
programs. An operating system can handle MSR[RI] as follows:

• Use the Special Purpose Registers (SPRG0-SPRG3) to aid in saving the machine state. IBM suggests 
pointing SPRG0 to a stack save area in memory and saving three General Purpose Registers (GPRs) in 
SPRG1-3. Move SPRG0 into one of the GPRs that was saved. This GPR now points to the save area in 
memory. Move the GPRs, SRR0, SRR1, SPRG1-3, and other registers to be used by the exception rou-
tine into the stack save area. Update SPGR0 to point to a new save area. Set MSR[RI] to indicate that 
machine state has been saved. Also set MSR[EE] if you want to re-enable external exceptions. 

• When exception processing is complete, clear MSR[EE] and MSR[RI]. Adjust SPRG0 to point to the stack 
saved area, restore the GPRs, SRR0 and SRR1, and any other register that you may have saved, exe-
cute rfid. This returns the processor to the interrupted program.

4.3.7 Returning from an Exception Handler

The Return from Interrupt Doubleword (rfid) instruction performs context synchronization by allowing previ-
ously-issued instructions to complete before returning to the interrupted process. In general, execution of the 
rfid instruction ensures the following:

• All previous instructions have completed to a point where they can no longer cause an exception.

• Previous instructions complete execution in the context (privilege, protection, and address translation) 
under which they were issued.

• The rfid instruction copies SRR1 bits back into the MSR and resets the MSR[POW] bit. 

• Instructions fetched after this instruction execute in the context established by this instruction.

• Program execution resumes at the instruction indicated by SRR0.

For a complete description of context synchronization, see Chapter 6, “Exceptions” of the PowerPC Micropro-
cessor Family: The Programming Environments manual.
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4.4 Process Switching

The following instructions are useful for restoring proper context during process switching: 

• The Synchronize (sync) instruction orders the effects of instruction execution. All instructions previously 
initiated appear to have completed before the sync instruction completes, and no subsequent instruc-
tions appear to be initiated until the sync instruction completes. 

• The Instruction Synchronize (isync) instruction waits for all previous instructions to complete and then 
discards any fetched instructions, causing subsequent instructions to be fetched (or refetched) from 
memory and to execute in the context (privilege, translation, and protection) established by the previous 
instructions. 

• The stwcx./stdcx. instruction clears any outstanding reservations, ensuring that an lwarx/ldarx instruc-
tion in an old process is not paired with an stwcx./stdcx. instruction in a new one.

• The Store Word Conditional Indexed/Store Doubleword Conditional Indexed (stwcx./stdcx.) instruction 
clears any outstanding reservations, ensuring that a Load Word and Reserve Indexed/Load Double Word 
and Reserve Indexed (lwarx/ldarx) instruction in an old process is not paired with an stwcx./stdcx. 
instruction in a new one.

The operating system should set MSR[RI] as described in Section 4.3.6 Setting the Recoverable Exception in 
the MSR.

4.5 Exception Definitions

When an exception/interrupt is taken, all bits in the MSR are set to 0, with the following exceptions:

• Exceptions always set MSR[SF] to 1. 

• Only the machine check exception sets MSR[ME] to 0. All other exceptions leave MSR[ME] unchanged. 

The following sections describe the implementation dependent aspects of the exceptions.

Note:  If a description is not provided, the 970FX behaves as described in the PowerPC Architecture Books.

4.5.1 System Reset Exception

The system reset exception is a non-maskable, asynchronous exception that is caused by the assertion of 
either the soft reset input pin, or by the SCOM command sequence for soft reset. 

The Not Hard Reset bit in HID0[15] can be used to help software distinguish between a hard reset and a soft 
reset. To use this capability, software should initially set this bit to a ‘1’. Later, when a system reset exception 
is taken, software can check the state of this bit to determine which type of reset occurred. If the bit is still set, 
then the reset was a soft reset, and if the bit is a zero, the reset was a hard reset.
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4.5.2 Machine Check Exceptions

The are several possible causes of machine check exceptions in the 970FX, some of which are generally 
recoverable, and some of which are non-recoverable. 

The following causes of machine check exceptions are precise and synchronous with the instruction that 
caused the operation that encountered the error (that is, SRR0 contains the address of the instruction that 
caused the operation).

1. The detection of a parity error in the L1 D-cache, the L1 D-cache Tag, the D-ERAT, the TLB, or the SLB 
during the execution of a load or store instruction. If the exception is caused by a soft error, then execut-
ing the appropriate sequence of instructions in the machine check handler program will clear the error 
condition without causing any loss of state, permitting the interrupted program to resume if MSR[RI] was 
a ‘1’ when the instruction that encountered the error was executed. 

Note:  The L1 D-cache and the L1 D-cache tag parity errors are recovered by hardware in the 970FX 
(default mode), without a machine check interrupt.

2. The detection of an uncorrectable error checking and correction (ECC) error in the L2 cache when a load 
instruction is executed.

3. The detection of an uncorrectable ECC error in the L2 cache while the page table is being searched in the 
process of translating an address.

4. The detection of erroneous data that is being returned to satisfy a load instruction for which the effective 
address specified a location in caching inhibited memory.

For hard errors, these characteristics cannot be reliably provided on a machine check, because it is likely that 
the failure will prevent reliable execution. Additionally, a machine check exception that occurs when 
MSR[ME] = ‘0’ results in a checkstop. 

In addition, there are a few possible sources for asynchronous machine check exceptions. A machine check 
exception is taken when the machine check input pin is asserted, (if enabled by setting HID0[32] = ‘1’). The 
Fault Isolation Register (FIR), debug logic, and hang recovery logic can also be programmed to induce 
machine check exceptions for various error conditions. Since these signals are asynchronous with respect to 
the executing program, asynchronous machine checks may or may not be recoverable. Software can use the 
MSR[RI] bit to help identify the cases where the machine check exception is recoverable.

Information about the suspected source of the error condition is logged into either the SRR1 register, the 
DSISR register, or both as defined in Table 4-7 for synchronous machine checks. 
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Note:  As mentioned above, the machine check exception handler is expected to help hardware recover from 
certain types of D-cache, D-cache directory, D-ERAT, and TLB errors detected by the hardware. In general 
terms, the exception handler should:

• Check whether or not the machine check exception is recoverable by looking at the state of the RI bit in 
SRR1

• Determine the type of error that caused the machine check by looking at the state of the SRR1 and 
DSISR Registers

Table 4-7. Register Settings for Machine Check Exception 

Register Bits Setting

SRR0 0:63

Effective address of the next instruction that would have executed if the machine check exception was 
not taken. When this is a recoverable machine check due to a load that has surfaced an error, this will be 
the address of the load instruction itself (the 970FX allows the instruction to execute to surface the error, 
but inhibits the commitment of the results). When this is a recoverable machine check due to an instruc-
tion fetch surfacing an error, this will be the address of an instruction that initiated the memory/cache 
access.

SRR1

0:41 Loaded from MSR.

42 Exception caused by Instruction Fetch Unit (IFU) detection of a hardware uncorrectable error (UE).

43 Exception caused by load/store detection of error (see DSISR below).

44:45

Exception cause indicated by the following encoding:
00 No error encoded.
01 Exception caused by an SLB parity error detected while translating an instruction fetch address.
10 Exception caused by a TLB parity error detected while translating an instruction fetch address.
11 Exception caused by a hardware uncorrectable error (UE) detected while doing a reload of an 

instruction-fetch TLB tablewalk.

46:61 Loaded from MSR.

62 Loaded from MSR[62] if recoverable. Otherwise, set to zero.

63 Loaded from MSR.

DSISR

0:15 All zeros.

16) Exception caused by a UE deferred error (DAR is undefined).

17) Exception caused by a UE deferred error during a tablewalk (D-side).

18 Exception was caused by a software recoverable parity error in the L1 D-cache.

19 Exception was caused by a software recoverable parity error in the L1 D-cache tag.

20 Exception was caused by a software recoverable parity error in the D-ERAT.

21 Exception was caused by a software recoverable parity error in the TLB.

22 Zero.

23 Exception was caused by an SLB parity error (may not be recoverable). This condition could occur if the 
effective segment ID (ESID) fields of two or more SLB entries contain the same value.

24:31 All zeros.

DAR 0:63

Effective address computed by a load or store instruction that caused the operation which encountered a 
parity error in the D-ERAT, TLB, or SLB, or that encountered an uncorrectable error (UE) while attempt-
ing to reload a TLB entry. Effective address computed by the load instruction that caused the operation 
that encountered a parity error in the L1 D-cache or L1 D-cache TAG arrays. For all other types of 
machine check exceptions, the DAR is undefined (including the case where the operand of the load 
instruction contains a UE).
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• Flush the contents of the array that reported the detected error (this process is slightly different for each 
of the possible arrays)

• Return to the interrupted process. 

If no error is encoded in SRR1[44:45], then the exception is likely caused by an asynchronous machine 
check, in which case the exception handler should access the Asynchronous Machine Check Register 
through the SCOMC facility. 

4.5.3 Data Storage Exception

The 970FX implements the data storage exception as described in the PowerPC Architecture (OEA). A DSI 
exception occurs when no higher priority exception exists and an error condition related to a data memory 
access occurs. In case of a TLB miss for a load, store, or cache operation, a DSI exception is taken if the 
resulting hardware table search causes a page fault.

When this exception is taken, execution resumes at effective address x‘00300’. 

4.5.4 Data Segment Exception

The 970FX implements the data segment exception as described in the PowerPC Architecture (OEA). A data 
segment exception occurs when no higher priority exception exists and a data access cannot be performed 
because data address translation is enabled (MSR[DR] = ‘1’) and the effective address of any byte of the 
storage location specified by a Load, Store, icbi, dcbz, dcbst, dcbf, eciwx, or ecowx instruction cannot be 
translated to a virtual address. 

When this exception is taken, execution resumes at effective address x‘00380’. 

4.5.5 Instruction Storage Exception

The 970FX implements the instruction storage exception as described in the PowerPC Architecture (OEA). 
An ISI exception occurs when no higher priority exception exists and an attempt to fetch the next instruction 
fails. 

When this exception is taken, execution resumes at effective address x‘00400’. 

4.5.6 Instruction Segment Exception

The 970FX implements the instruction segment exception as described in the PowerPC Architecture (OEA). 
An instruction segment exception occurs when no higher priority exception exists and next instruction to be 
executed cannot be fetched because instruction address translation is enabled (MSR[IR] = ‘1’) and the effec-
tive address cannot be translated to a virtual address. 

When this exception is taken, execution resumes at effective address x‘00480’. 

4.5.7 External Interrupt Exception

In the 970FX, an external interrupt is signaled by the assertion of the external interrupt input signal. The 
external interrupt signal is expected to remain asserted until the processor has actually taken the interrupt 
(failure to meet this requirement may lead the processor to not recognize the interrupt request).



User’s Manual

 IBM PowerPC 970FX RISC Microprocessor

Version 1.7
March 14, 2008  
 

Exceptions

Page 101 of 360

4.5.8 Alignment Exception

An alignment exception is taken if any of the following conditions are detected:

• lwarx, stwcx, lmw, stmw instructions with non-word aligned addresses

• ldarx and stdcx instructions with non-doubleword aligned addresses

• lmw and stmw instructions to storage marked cache-inhibited

• lswi, lswx, stswi, and stswx instructions to storage marked cache-inhibited

• dcbz to storage marked cache-inhibited (a dcbz to cache-inhibited space is treated as a no-op instead of 
causing an alignment interrupt if the dcbz_ieq1_align bit in the mode ring is set to a 0)

• Any load or store to storage marked cache-inhibited that is not naturally aligned

• Floating-point load single instructions that are not word aligned and cross a 32-byte boundary

• Floating-point store instructions that are not word aligned and cross a 4 KB boundary

• When HID4[24] is set, some forms of unaligned storage accesses that are normally handled by the hard-
ware are forced to take an alignment exception (to assist in debugging).

4.5.9 Program Exception

The 970FX implements the program exception as it is defined by the PowerPC Architecture (OEA). A 
program exception occurs when no higher priority exception exists and one or more of the exception condi-
tions defined in the OEA occur. 

The 970FX invokes the program exception for a system illegal instruction when it detects any instruction from 
the illegal instruction class. The 970FX fully decodes the SPR field of the instruction. If an undefined SPR is 
specified, a program exception is taken. 

When this exception is taken, execution resumes at effective address x‘00700’.

4.5.10 Floating-Point Unavailable Exception

The floating-point unavailable exception is implemented as defined in the PowerPC Architecture. When a 
floating-point unavailable exception is taken, instruction fetching resumes at the location determined by 
adding the offset x‘00800’ to the HIOR value.

Table 4-8. Register Settings for Alignment Exception 

Register Bits Setting

DSISR (0:31) Unchanged

DAR (0:63)
Set to the effective address computed by the load or store instruction that caused the alignment 
exception. When the exception is caused by an unsupported access to cache-inhibited space, the 
DAR will be set to the effective address of the first access into the cache-inhibited space.
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4.5.11 Decrementer Exception

The decrementer exception is implemented as defined in the PowerPC Architecture. A decrementer excep-
tion occurs when no higher priority exception exists, the decrementer is negative (DEC[0] = ‘1’), and MSR[EE] 
= ‘1’. The decrementer exception is level sensitive. It is the responsibility of the interrupt service routine to 
clear DEC[0].

When this exception is taken, execution resumes at effective address x‘0000_0000_0000_0900’.

4.5.12 System Call Exception

The 970FX implements the system call exception as described in the PowerPC Architecture (OEA). A system 
call exception occurs when a system call (sc) instruction is executed.

When this exception is taken, execution resumes at effective address x‘00C00’. 

4.5.13 Trace Exception

The trace exception is taken when the single-step trace enable bit (MSR[SE]) or the branch trace enable bit 
(MSR[BE]) is set and an instruction successfully completes. After a trace exception is taken, SRR0, SRR1, 
SIAR, and SDAR are set as shown in Table 4-9.

If either MSR bits SE or BE is set to ‘1’ by a Return from Interrupt or Move to MSR instruction, the contents of 
SIAR and SDAR are undefined until a trace interrupt occurs.

Table 4-9. Register Settings for Trace Exception 

Register Bits Setting

SRR0 0:63 Set as specified in the architecture.

SRR1

0:32 Loaded from the MSR

33:34 ‘10’

35 Set for a load instruction, otherwise cleared. Not set for a zero length lswx.

36 Set for a store instruction, otherwise cleared. Not set for a zero length stswx.

37:41 Loaded from the MSR

42 Set for a lwarx/ldarx or stwcx/stdcx instruction; otherwise cleared

43 Set to a ‘1’.

44 Set to a ‘0’.

45:47 Set to a ‘0’.

48:63 Loaded from the MSR.

SIAR 0:63 Set to the effective address of the traced instruction.

SDAR 0:63
If the instruction that took the trace interrupt was a storage access instruction, the SDAR is set to the 
effective address of the storage access. SDAR is not set if an X-form Load String or Store String 
instruction specifies an operand length of zero.
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4.5.14 Performance Monitor Exception

The performance monitor exception is signalled when the MSR[EE] bit is set, and a performance monitor 
exception condition occurs. See Chapter 10. 970FX Performance Monitor for a description of performance 
monitor exception conditions.

The following registers are set when a performance monitor exception occurs. 

4.5.15 VPU Unavailable Exception 

This exception occurs if there is an attempt to execute any vector instruction, including a vector load or store, 
with MSR[VP] negated. After this interrupt, execution resumes at offset x‘0000_0000_0000_0F20’. The 
register settings for this interrupt are shown in Table 4-11.

Note:  A mtspr or mfspr instruction that references the VRSAVE register will not cause this interrupt.

Table 4-10. Register Settings for the Performance Monitor Exception 

Register Bits Setting

SRR0 0:63 Set to the effective address of the instruction that the processor would have attempted to execute next 
if no exception conditions were present. 

SRR1

0:32 Loaded from the MSR.

33 Set to ‘1’ if the contents of the SDAR and the SIAR registers are associated with the same instruction.

34:63 Loaded from the MSR.

SIAR 0:63

Set to the effective address of the marked instruction, where the marked instruction is an instruction 
that was executing, possibly out-of-order, at or around the time that the performance monitor excep-
tion occurred. The contents of the SIAR may be altered by the processor if and only if MMCR0[PMEE] 
= ‘1’. Thus, after a performance monitor exception occurs, the contents of SIAR are not altered by the 
processor until software sets MMCR0[PMEE] = ‘1’. After software sets MMCR0[PMEE] = ‘1’, the con-
tents of SIAR are undefined until the next performance monitor exception occurs.

SDAR 0:63

Set to the effective address of the storage operand of an instruction that was executing, possibly out-
of-order, at or around the time that the performance monitor exception occurred. This storage operand 
is called the marked data and may be, but need not be, the storage operand (if any) of the marked 
instruction. If the performance monitor exception causes a performance monitor interrupt, SRR1 indi-
cates whether the marked data is in fact the storage operand of the marked instruction. The contents 
of the SDAR may be altered by the processor if and only if MMCR0[PMEE] = ‘1’. Thus, after a perfor-
mance monitor exception occurs, the contents of SDAR are not altered by the processor until software 
sets MMCR0[PMEE] = ‘1’. After software sets MMCR0[PMEE] = ‘1’, the contents of SDAR are unde-
fined until the next performance monitor exception occurs.

Table 4-11. Register Settings for VPU Unavailable Interrupt 

Register Bits Setting

SRR0 0:63 Set to the effective address of the instruction that caused the interrupt.

SRR1

0:32 Loaded from the MSR.

33:36 Set to ‘0’.

37:41 Loaded from the MSR.

42:47 Set to ‘0’.

48:63 Loaded from the MSR.
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4.5.16 Instruction Address Breakpoint Exception

The PowerPC 970FX does not support a visible form of the instruction address breakpoint facility. The 
instruction address breakpoint feature is accessible through the support processor interface.

When this exception is taken, execution resumes at the effective address x‘01300’. 

4.5.17 Maintenance Exception 

The 970FX provides support for an implementation-dependent maintenance exception. This exception can 
be signaled by a number of internal events, as well as by explicit commands from the support processor. 

When this exception is taken, execution resumes at the effective address x‘0000_0000_0000_1600’. 

This exception is controlled by the MSR[EE] bit (in a manner similar to external interrupts). The register 
settings for this exception are shown in Table 4-12.

4.5.18 VPU Assist Exception

This exception occurs when operating in Java mode and the input operands or the result of an operation are 
denormalized. 

The register settings for this exception are shown in Table 4-13.

When this exception is taken, execution resumes at offset x‘0000_0000_0000_1700’.

Table 4-12. Register Settings for Maintenance Exception  

Register Bits Setting

SRR0 0:63 Set to the effective address of the next instruction that would have executed had the exception 
not been taken.

SRR1

0:32 Loaded from the MSR.

33:36 Set to ‘0’.

37:41 Loaded from the MSR.

42:47 Set to ‘0’ (may be used later to distinguish various causes of exception).

48:63 Loaded from the MSR.

Table 4-13. Register Settings for VPU Assist Exception 

Register Bits Setting

SRR0 0:63 Set to the effective address of the instruction that caused the exception.

SRR1

0:32 Loaded from the MSR.

33:36 Set to ‘0’.

37:41 Loaded from the MSR.

42:47 Set to ‘0’.

48:63 Loaded from the MSR.
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4.5.19 Thermal Exception

In the 970FX, a thermal exception is signaled by the assertion of the thermal interrupt input signal. 

The register settings for this exception are shown in Table 4-14.

When this exception is taken, execution resumes at offset x‘0000_0000_0000_1800’. 

Table 4-14. Register Settings for Thermal Exception 

Register Bits Setting

SRR0 0:63 Set to the effective address of the next instruction that would have executed had the excep-
tion not been taken. 

SRR1

0:32 Loaded from the MSR.

33:36 Set to ‘0’.

37:41 Loaded from the MSR.

42:47 Set to ‘0’.

48:63 Loaded from the MSR.
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5. Memory Management

This chapter describes the 970FX microprocessor’s implementation of the memory management unit (MMU) 
specifications provided by the operating environment architecture (OEA) for PowerPC processors. The 
primary function of the MMU in a PowerPC processor is the translation of logical (effective) addresses to 
physical addresses (referred to as real addresses in the architecture specification) for memory accesses and 
I/O accesses (I/O accesses are assumed to be memory-mapped). In addition, the MMU provides access 
protection on a segment or page basis. This chapter describes the specific hardware used to implement the 
MMU model of the OEA in the 970FX. See the PowerPC Operating Environment Architecture (Book III) for a 
conceptual overview of the memory management model. 

Two general types of memory accesses generated by PowerPC processors require address translation—
instruction accesses and data accesses that are generated by load and store instructions. Generally, the 
address translation mechanism is defined in terms of the segment descriptors and page tables that the 
PowerPC processors use to locate the effective-to-physical address mapping for memory accesses. The 
segment information translates the effective address to an interim virtual address, and the page table infor-
mation translates the interim virtual address to a physical address. 

The segment descriptors, used to generate the interim virtual addresses, reside as segment table entries 
(STEs) in memory. The 970FX uses a segment lookaside buffer (SLB) on-chip that caches recently used 
segment table entries. In addition, a translation lookaside buffer (TLB) is implemented on the 970FX to keep 
recently-used page address translations on-chip. 

The MMU, together with the exception processing mechanism, provides the necessary support for the oper-
ating system to implement a paged virtual memory environment and to enforce protection of designated 
memory areas. Exception processing is described in Chapter 4 Exceptions. Specifically, Section 4.3 Excep-
tion Processing describes the MSR, which controls some of the critical functionality of the MMUs.
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5.1 MMU Overview

The 970FX implements the memory management specification of the PowerPC operating environment archi-
tecture for 64-bit implementations. The 970FX supports a 65-bit virtual address and a 42-bit physical (real) 
address.

Basic features of the MMU implementation in 970FX as defined by the OEA are:

• Support for real addressing mode—Effective-to-physical address translation can be disabled separately 
for data and instruction accesses.

• Segmented address translation—The 64-bit effective address is translated to a 65-bit virtual address. 
This 65-bit virtual address space is divided into 4 KB or 16 MB pages, each of which can be mapped to a 
physical page. 

The 970FX also provides the following features that are not required by the PowerPC Architecture:

• Unified translation lookaside buffer (TLB)—The 1024-entry, 4-way set-associative TLB supports:

– A new large page architecture (16 MB large pages supported).
– Hardware-based reload (from the L2 cache interface in order to ensure no L1 D-cache impact).
– Hardware-based update of the reference (R) and change (C) bits in a page table entry (PTE).
– Parity protection; precise machine check interrupt on parity error (software fix-up). 
– Recently-used page address translations cached on-chip.

• Segment lookaside buffer (SLB)–The 64-entry, fully associative SLB supports:
– Software reload of the SLB. An SLB miss results in an interrupt.
– 32-bit PowerPC segment register instructions load the SLB.

• TLB invalidation:
The 970FX implements the optional TLB Invalidate Entry (tlbie) and TLB Synchronize (tlbsync) instruc-
tions, which can be used to invalidate TLB entries. 

• Little endian mode is not supported. 

Figure 5-1 summarizes the 970FX MMU features, including those defined by the PowerPC Architecture 
(OEA) for 64-bit processors and those specific to the 970FX. 

Table 5-1. MMU Feature Summary  

Feature Category Architecturally Defined/
970FX-Specific Feature

Address ranges

Architecturally defined 264 bytes of effective address

970FX-specific
265 bytes of virtual address

242 bytes of physical address

Page size
Architecturally defined 4 KB

970FX-specific 16 MB

Segment size Architecturally defined 256 MB

Memory protection Architecturally defined
Segments selectable as no-execute

Pages selectable as user/supervisor and read-only or guarded 

Page history Architecturally defined Referenced and changed bits defined and maintained

Page address translation Architecturally defined
Translations stored as PTEs in hashed page tables in memory

Page table size determined by mask in SDR1 register
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5.1.1 Speculative Storage Accesses

The 970FX is capable of executing load instructions to non-guarded, cacheable storage speculatively. This 
can occur when a load instruction is encountered on a predicted branch path, or when a logically preceding 
instruction causes an interrupt. As a result, it is possible for a speculative load that misses in the on-chip 
cache hierarchy to initiate an external storage request, even if that load instruction is not actually executed as 
part of the true instruction stream. 

5.1.2 Storage Protection

When address translation is enabled, the protection mechanism is controlled by the following:

• MSR[PR] which distinguishes between supervisor (privileged) state and user (problem) state.

• KS and KP, the supervisor (privileged) state and the user (problem) state storage key bits in the SLB entry 
used to translate the effective address. 

• For instruction fetches only:
– the N (no-execute) value used for the access
– the G (guarded) bit in the page table entry used to translate the effective address. 

Thus, for an instruction fetch, access is not permitted if the N value is ‘1’, or if G equals ‘1’.

TLB

Architecturally defined Instructions for maintaining TLBs (tlbie and tlbsync instructions in the 
970FX)

970FX-specific 1024-entry, 4-way, set-associative TLB (combined for both instruction and 
data).

Page table search support 970FX-specific The 970FX performs the table search operation in hardware.

Segment descriptors
Architecturally defined Stored as STEs in hashed segment tables in memory

970FX-specific 64-entry fully associative SLB

Segment table search 
support 970FX-specific The 970FX provides support for software reload of the SLB. 

Table 5-1. MMU Feature Summary (Continued) 

Feature Category Architecturally Defined/
970FX-Specific Feature
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5.1.3 Storage Access Modes (WIMG Bits) 

Storage access modes are controlled by the write-through/caching-inhibited/memory-coherency 
enforced/guarded bits (WIMG) bits. The 970FX does not support the optional W bit or the optional M bit. All 
accesses are treated as though W = ‘0’ and M = ‘1’ independent of the value of these bits in the page table. 
Furthermore, when the hardware is performing a change bit update, it will write the W and M bits as ‘0’ and 
‘1’, respectively.

Table 5-2 summarizes the treatment of the WIMG bits in the 970FX:

5.1.4 Support for 32-Bit Operating Systems

The 970FX supports most of the optional bridge facilities and instructions for 64-bit implementations.

The bridge facility can be used to ease the transition to the PowerPC software-managed segment lookaside 
buffer (SLB) architecture, from either the segment register architecture provided by the 32-bit PowerPC 
implementation or the hardware-accessed segment table architecture provided by the 64-bit PowerPC imple-
mentations. The bridge facility permits the operating system to continue to use the 32-bit PowerPC imple-
mentation’s segment register manipulation instructions and to continue to use the address space register 
(ASR). 

Associated with this support, the following optional instructions are supported:

• mtsr - Move to segment register
• mtsrin - Move to segment register indirect
• mfsr - Move from segment register
• mfsrin - Move from segment register indirect
• mtmsr - Move to machine state register (32-bit)

These instructions allow software to associate effective segments 0 through 15 with any of the virtual 
segments 0 through 237-1. SLB entries 0:15 serve as virtual segment registers, with SLB entry i used to 
emulate segment register i. The mtsr and mtsrin instructions move 32 bits from a selected GPR to a 
selected SLB entry. The mfsr and mfsrin instructions move 32 bits from a selected SLB entry to a selected 
GPR. 

Table 5-2. Treatment of WIMG Bits in the 970FX 

WIMG Description

x1xx
Treated as WIMG = ‘0111’, for loads

Treated as WIMG = ‘011x,’ for stores

x0x1 Treated as WIMG = ‘0011’

x0x0 Treated as WIMG = ‘0010’
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5.2 Real Addressing Mode 

If address translation is disabled (MSR[IR] = ‘0 ‘or MSR[DR] = ‘0’) for a particular access, the effective 
address is treated as the physical address and is passed directly to the memory subsystem. These MSR bits 
are forced to '1' when running in user mode.

The WIMG bits for storage access in real addressing mode are determined as follows. The W and M bits are 
not supported in the 970FX, and are considered to always have values of W = ‘0’ and M = ‘1’. The G-bit is 
always asserted in real addressing mode. For data accesses, HID4[23] determines the value of the I bit in 
real addressing mode. For instruction accesses, HID1[10] can be used to force the value of the I bit to '1', 
although this value applies to address translation mode, as well as to real addressing mode.
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6. Software Optimization Guidelines

This section highlights some 970FX microprocessor characteristics and conditions that should be considered 
when developing software. 

6.1 Design Characteristics 

The 970FX microprocessor has long pipelines with the following characteristics:

• There are six cycles from the instruction fetch to dispatch (dispatch is the sixth cycle).

• Complex instructions are broken down into sequences of simple internal operations.

• Some instructions stall in dispatch until certain interlocks are released.

– The primary interlock is called the “non-rename scoreboard” bit.

– Only one scoreboard bit exists for all scoreboarded resources.

– Instructions that write a non-renamed resource set the non-rename scoreboard bit when dispatched 
and reset this bit when complete.

– All SPRs are scoreboarded except: LR, CTR, and the following bits in XER: CA, OV.

– Instructions that use or read from the non-renamed registers stall in the dispatch unit until the flag 
clears. 

• Instructions that set the scoreboard also typically end a dispatch group and are completion serialized 
(wait until next-to-complete before eligible for execution).

• Dispatch receives groups, which are a unit of tracking.

– Up to 20 groups active after dispatch (80 - 100 PowerPC instructions).

– Four to seven cycles from dispatch to finish.

The 970FX microprocessor has multiple execution units:

• Two load/store units (LSU)

• Two floating-point units (FPU)

• Two fixed-point units (FXU) (that are symmetric except that FX1 does divides and FX0 does SPR access)

• One branch unit (BRU)

• One condition register unit (CRU)

The 970FX microprocessor utilizes out-of-order execution:

• Execution is in-order until dispatch has placed instructions into issue queues.

• Instructions issued from queues to execution units are out-of-order.

• Instructions complete in order.
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The 970FX microprocessor has the following load/store unit characteristics:

• Complicated loads and stores are broken up by decode unit.

– lmw and stmw are converted to a stream of single-register loads and stores. String instructions gen-
erate a similar stream, except that X-form string instructions cause generation of internal operations 
to read the byte count field from the XER, causing a dispatch stall if the XER setting instruction has 
not executed.

• Problems are handled by flush, refetch group, or dispatch as single-instruction groups.

• Loads that are dependent on a store in the same group cause a flush if forwarding is not possible. This is 
because the load must wait until the store has updated the cache, but the cache update must be non-
speculative and can only be done after the store completes. Completion is done on a group basis, and 
can only be done when all internal operations (IOPs) in the group have finished. Therefore, the entire 
group is flushed. When decoded, the load is forced into a separate group.

• Any load with data that crosses a 64-byte boundary (32-byte boundary if a load misses in the L1 cache) 
causes flush and microcode expansion. If the offending load is an IOP generated by the microcode 
expansion of a string instruction, the entire PowerPC  instruction is flushed and re-expanded such that 
each register’s data is processed by two loads/stores and a merge.

• Loads dependent upon a store, but executed early (load executes before store), cause a flush.

• Flush and refetch costs about 20 cycles. Misaligned loads usually are flushed twice; once to get the load 
isolated in a dispatch group, and the second time to generate the microcoded sequence of IOPs to fetch 
the data and splice it together.

• The data prefetch engine can prefetch eight active streams. 

The 970FX microprocessor uses the following memory hierarchy for data:

• The L1 data cache is a 32 Kb, 128-byte line with a 2-cycle latency.

– The L1 D-cache is store-through.

– A store miss in the L1 data cache does not establish a line in the L1 D-cache.

– Cache reloads are 32 bytes per cycle.

• The L2 cache is a 1 Mb, 128-byte line.

The 970FX microprocessor decode unit has the following features:

• Processes a stream of PowerPC instructions and forms dispatch groups.

– Branches always force an end of current group. 

– Some instructions are forced to be first in a group. For example: divw, CR logical.

• Cracking generates two IOPs from one PowerPC instruction. For example:

– All update forms (load/store + add(i) to update register)

– X-form fixed-point stores (add + store)

– Load algebraic (load + extend sign)

– Many record forms (basic arithmetic + compare immediate)

– Fixed-point divides

– All CR-logicals except destructive forms (rD = rB)
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– Both IOPs of the cracked instruction must be in the same group. This forces the cracked pair to start 
a new group if the original instruction was last in the previous group (and there was no room for the 
second IOP).

• Microcode: generate three or more IOPs from a single PowerPC instruction.

– Microcoded instructions generate one or more groups, thus forcing an end of the previous group. 
For example:

• lmw and lswi (all multiples and string instructions)

• mtcrf (more than one target field)

• mtxer and mfxer

• Some instructions are forced to be first in a group. For example:

– Fixed-point divide (also cracked)

– addc/subfc (also cracked)

– mtspr/mfspr (to satisfy FX0/LSU0/CRU execution requirement)

– CR-logicals (can also be cracked)

The instruction fetch unit (IFU) has the following characteristics:

• Fetches are aligned on 8-word blocks

• It takes three cycles to redirect a fetch from Next-Sequential. For example, there are two dead cycles 
between the last fetch of a block containing a branch and fetching the branch target.

• The fetcher cannot handle a new fetch block until all branches in the current block have been recorded in 
the branch instruction queue (BIQ) for future resolution. Only branches between the branch target 
address and the end of the block are significant. These branches are recorded two per cycle, so the max-
imum time required is four cycles.

Branch prediction has the following characteristics:

• Predicts both direction (conditional) and address (to Link or Count).

• Highly accurate (95%) for most codes.

• Accuracy can be improved with hint bits.

• About 11 cycles are needed to correct a wrong guess.

• Replacing conditional branches with alternative code is likely to be a win (some fixed-point maximum, 
minimum, select).

Dispatch, issue, and issue queues have the following characteristics:

• Dispatch performs register renaming (mapping), scoreboard dependency checking, and distribution to 
correct the issue queue.

• Six instruction queues

– FPQ0 (10 IOPs) feeding FPU0
– FPQ1 (10 IOPs) feeding FPU1
– FXQ0 (18 IOPs) feeding FXU0 and LSU0
– FXQ1 (18 IOPs) feeding FXU1 and LSU1
– BRQ (12 IOPs)
– CRQ (10 IOPs)
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• There is a fixed relationship between the dispatch group slot and the target instruction queue.

– Slot 0: FPQ0, FXQ0, CRQ
– Slot 1: FPQ1, FXQ1, CRQ
– Slot 2: FPQ1, FXQ1
– Slot 3: FPQ0, FXQ0
– Slot 4: BRQ

• In addition, the FX, FP, and CR queues are subdivided into even and odd subqueues. The attached exe-
cution units can obtain IOPs from either subqueue, but IOPs always stay in the subqueue to which they 
were initially dispatched. Each subqueue has half the total capacity of the queue. Thus:

– Slot 0: FXQ0-O or FPQ0-O or CRQ-O 
– Slot 1: FXQ1-O or FPQ1-O or CRQ-E
– Slot 2: FXQ1-E or FPQ1-E
– Slot 3: FXQ0-E or FPQ0-E

• IOPs are issued from the queues when all operands are ready, and there is an execution unit available; 
IOPs can be issued the next cycle after dispatch.

• Dependent IOPs cannot be issued back-to-back. That is, dependent instructions can be issued only 
every other cycle (assuming that they execute in one cycle)

• IOPs can be artificially serialized by being dispatched to the same FX queue. Thus, suboptimal schedul-
ing might cause underutilization of one of two symmetric execution units.

6.2 Software Considerations for the 970FX Microprocessor

Software for the 970FX microprocessor needs to consider the following conditions:

• XER has non-renamed fields.

• X-form string instructions are slowed down; therefore, it is best to avoid these instructions.

• mtxer drains the functional units. 

• SPRs are not renamed except for CTR, LR, and some XER fields. Referencing non-renamed SPRs 
causes pipeline drain.

• There is a scoreboard interlock between an mtspr and the next subsequent mfspr such that the mfspr is 
held in the dispatch until the scoreboard goes off (when the last mtspr completes).

• The mtsr instruction is not recommended, because it is scoreboarded and forces execution serialization.

• The L1 data cache is write-through, and stores the miss in the L1 cache that does not establish the line in 
the L1 cache, but establishes only the line in the L2 cache.

• Loads dependent upon previous stores can be slow, and can trigger a flush and refetch. They should be 
scheduled, so that they are dispatched in separate groups.

• Store forwarding: If the store data is in the store-reorder queue (SRQ), then the data can be forwarded to 
the load (as if the load hit the L1 cache).

This is possible only when the data loaded is completely contained in the data from the store. 
For example: 

– lw following an stw to the same address

– lh following an stw to the same address
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– lbz from any byte in the word stored by an stw

– lw from one of the words stored by an stfd

If the bytes loaded overlap the bytes stored, then no forwarding can be done, and the load appears to 
stall until the store data has been written to the cache. For example: 

– lfd following an stw

– lw following an sth to the same address

If the store and load are in the same dispatch group, then a flush and refetch is done so that they will be 
in different groups to permit completion of the store.

If the load executes before the store address is computed, a flush and refetch occurs. The first 
re-executed instruction is the “load/next” after the store. To prevent this, schedule the dependent load 
four instructions (or more) after the store.

• Because instructions are tracked internally in groups, dependent instructions must be arranged so that 
they are in separate groups. This minimizes the length of time the individual instructions are in the execu-
tion section of the machine.

• Use instructions that minimize cracking or microcode expansion. This maximizes utilization of the dis-
patch buffer. For example:

– Use update forms, which are always cracked, if the cracked pair does not cause early group termina-
tion. Using update forms helps to reduce the code footprint in the instruction cache.

– Do not use X-form fixed-point stores (always cracked and sometimes microcoded)

• The granularity of reservations (lwarx/stwcx.) is the data cache line, which is 128 bytes.

– Any store by another processor to the same cache line causes the reservation to be lost.

– Atomically updated variables should be carefully placed, because the atomic-update sequences treat 
the variable as a reservation cell.

– Lock cells and atomically updated variables must be the sole occupant of a cache line. Read-only 
data in same line is refetched from other L2 if any datum has been modified.

• Instructions are fetched from the I-cache in aligned 8-word blocks.

– Branch targets must be aligned on 8-word (32-byte) boundaries, where feasible. At a minimum, they 
must be aligned on a 4-word (16-byte) boundary, to maximize fetch and decode efficiency.

• Use mfspr(sprg0) as a high performance method to validate privileged mode. 
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7. Signal Description

This chapter describes the external signals of the 970FX microprocessor. It contains a concise description of 
individual signals, showing behavior when the signal is asserted and negated and when the signal is an input 
and an output. 

Note:  A bar over a signal name indicates that the signal is active low. For example, CHKSTOP_B (checkstop 
in/out) and BYPASS_B (PLL bypass). Active-low signals are referred to as asserted (active) when they are 
low and negated when they are high. Signals that are not active low, such as ADIN[0:43] (address bus sig-
nals) are referred to as asserted when they are high and negated when they are low.

The 970FX microprocessor’s signals are grouped as follows:

• Processor interface – These signals are used to transfer address, data, and control information between 
the 970FX and a companion chip to provide coherent access to memory and access to memory-mapped 
I/O.

• Processor status and control – These signals are used to monitor and provide external control of various 
processor facilities, including the external bus and power management.

• Clock control – These signals determine the system clock frequency. They can also be used to synchro-
nize multiprocessor systems.

• Interrupts/resets – These signals include the external interrupt signal, checkstop1 signals, and both soft 
reset and hard reset signals. They are used to interrupt and to reset the processor under various condi-
tions. 

• Debug/test interface – The debug/test interface provides a serial interface to the system for performing 
debug, bring-up, and manufacturing tests. The JTAG (IEEE 1149.1a-1993) interface and the I2C interface 
provide a serial interface to the system for performing board-level boundary-scan interconnect tests.

1. Hardware has detected a condition that it cannot resolve and which prevents normal operation. It stops executing instruc-
tions, responding to interrupts, and so on.



User’s Manual
 
IBM PowerPC 970FX RISC Microprocessor  

Signal Description

Page 120 of 360
Version 1.7

March 14, 2008

7.1 Signal Configuration

Figure 7-1 illustrates the configuration of the 970FX microprocessor signals, showing how the signals are 
grouped. A pinout showing pin numbers is included in the IBM PowerPC 970FX RISC Microprocessor 
Datasheet. 

Figure 7-1. 970FX Signal Groups 
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7.2 Signal Descriptions

This section describes individual signals on the 970FX, which are grouped as shown Figure 7-1 970FX Signal 
Groups. In the following section, “cycle” or “clock” refers to a single bus clock period, which may correspond 
to one or more internal processor clocks depending on the clock mode programmed for the 970FX.

Note:  In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly, the PLL is dis-
abled, and the bus mode is set for 1:1 mode operation. This mode is intended for factory use only. 

7.2.1 Processor Interface

The processor interface provides a high-speed, source synchronous, point-to-point connection between the 
970FX and a companion chip. It consists of two unidirectional sets of signals, one to carry outgoing informa-
tion from the 970FX, the other to carry incoming information to the 970FX. Each of these two sets of signals 
consists of a 44-bit bus to transfer logical data with redundancy, a differential clock (2 signals), and a 2-bit 
differential snoop response (4 signals). 

Chapter 8 provides detailed information on the format and timing of these signals as they are used in the 
Processor Interconnect protocol implemented in the 970FX.

7.2.1.1 Address/Data In (ADIN[0:43])–Input

The address/data input signals carry address, data, and control information from the companion chip to the 
970FX. The 44 bits of ADIN carry 36 bits of address/data (AD) and transfer handshake (TH) information plus 
8 bits of redundancy. 

There are two defined formats for encoding the 36 AD and THI signal lines onto the 44 source synchronous 
bus (SSB) signal lines, see Figure 7-2 Encoding and Selection Logic for the Drive Side of a 970FX Processor 
Interconnect SSB. The first format exploits a balanced coding method (BCM) to maintain an equal number of 
zeros and ones on the signal lines. During any valid state of the bus, exactly 22 of the signals lines are high 
and 22 are low. The BCM advantage is that it dramatically improves the signal-to-noise robustness of the bus 
for high-speed operation at the cost of a few extra signal lines. The BCM can inherently detect a single bit 
error from any of the 44 signal lines. 

The second mode uses 36 of the 44 SSB signal lines for the data transfer. The remaining eight SSB signal 
lines are used to encode an 8-bit parity value that has sufficient redundancy to detect up to two bit errors 
across any of the 44 SSB signal lines and correctly identify the bit position of any single bit error. 
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Timing: The processor interface is source synchronous, meaning that the same clock that launches data on 
the sending end is transferred with the data and used at the receiving end to capture the data. The interface 
is run in double data rate (DDR) fashion, with a data transfer on every rising and falling edge of the clock. 
Since there is no arbitration on this interface, valid data can be transferred on any clock edge. ADIN uses 
CLKIN as its reference.

7.2.1.2 Snoop Response In (SRIN[0:1], SRIN_B[0:1])–Input

The snoop response input signals carry a 2-bit code from the companion chip to the 970FX, indicating the 
coherency response of the system to an earlier command sent on the ADOUT bus. SRIN and SRIN_B repre-
sent a differential pair, such that SRIN carries the snoop response in an asserted high signal level at the 
same time that SRIN_B carries the same snoop response in an asserted low signal level.

Timing: Same as ADIN.

7.2.1.3 Clock In (CLKIN/CLKIN_B)–Input 

The CLKIN signal originates in the companion chip and is sent synchronously with the data (ADIN and SRIN) 
for use in data capture at the receivers in the 970FX. This clock is transmitted as a differential pair.

Timing: The clock in signal is derived from the on-chip PLL on the companion chip and synchronized to the 
PSYNC signal which provides a periodic global reference event. During the initial alignment procedure (IAP) 
for the processor interface, a rising edge of the clock in signal is identified as corresponding to time zero. 
Every other rising edge thereafter is a time zero, delimiting the basic unit of time on the bus, in which four 
beats of data can be transferred.

Figure 7-2. Encoding and Selection Logic for the Drive Side of a 970FX Processor Interconnect SSB  

In BCM mode, the 36 inputs are partitioned between two 18-bit balanced code (BC) encoders. In the alternate mode, the 36 
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7.2.1.4 Address Data Out (ADOUT[0:43])–Output

The address/data output signals carry address, data, and control information from the 970FX to the 
companion chip. The 44 bits of ADOUT carry 36 bits of address/data (AD) and transfer handshake (TH) infor-
mation plus 8 bits of redundancy, similarly to ADIN.

Timing: Same as ADIN, except that ADOUT uses CLKOUT as its reference.

7.2.1.5 Snoop Response Out (SROUT[0:1], SROUT_B[0:1])–Output

The snoop response output signals carry a 2-bit code from the 970FX to the companion chip, indicating the 
coherency response of the processor to an earlier reflected command sent on the ADIN bus. SROUT and 
SROUT_B represent a differential pair, such that SROUT carries the snoop response in an asserted high 
signal level at the same time that SROUT_B carries the same snoop response in an asserted low signal level.

Timing: Same as ADOUT.

7.2.1.6 Clock Out (CLKOUT/CLKOUT_B)–Output

The clock out signal originates in the 970FX and is sent synchronously with the data (ADOUT and SROUT) 
for use in data capture at the receivers in the companion chip. This clock is transmitted as a differential pair.

Timing: The clock out signal is derived from the on-chip PLL on the 970FX and synchronized to the PSYNC 
signal which provides a periodic global reference event. During the initial alignment procedure (IAP) for the 
processor interface, a rising edge of the clock out signal is identified as corresponding to time zero. Every 
other rising edge thereafter is a time zero, delimiting the basic unit of time on the bus, in which four beats of 
data can be transferred. 

7.2.2 Processor Status and Control

7.2.2.1 Quiescent Request (QREQ_B)–Input

The QREQ_B signal, along with QACK_B, is used for power management on the 970FX. It has two distinct 
uses. When a power tuning frequency shift procedure is not in progress, assertion of QREQ_B indicates that 
the 970FX has entered Doze mode, and is prepared to go into Nap mode. This signal remains asserted until 
the 970FX returns to Run mode. 

When a power tuning frequency shift procedure is in progress, assertion of QREQ_B indicates that the 970FX 
is prepared to perform the frequency shift itself. This signal remains asserted until the 970FX has completed 
the frequency shift procedure. See Chapter 9 for more information on power tuning frequency shifting.

Timing : The QREQ_B signal may be asserted or negated by the processor at any time.
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7.2.2.2 Quiescent Acknowledge (QACK_B)–Input 

The QACK_B signal, along with QREQ_B, is used for power management on the 970FX. It has two distinct 
uses. When a power tuning frequency shift procedure is not in progress, assertion of QACK_B indicates that 
all bus activity that requires snooping has stopped and that the 970FX may enter Nap mode. This signal must 
be negated whenever bus activity requiring snooping is resumed, or the 970FX negates QREQ_B.

When a power tuning frequency shift procedure is in progress, assertion of QACK_B indicates that the rest of 
the system is prepared to perform the frequency shift itself. This signal remains asserted until the companion 
chip has completed the frequency shift procedure. See Chapter 9 for more information on power tuning 
frequency shifting.

Timing: The QACK_B signal is asserted in response to assertion of the QREQ_B signal by the 970FX. It may 
be asserted any time QREQ_B is asserted, and may be negated at any time.

7.2.2.3 Time Base Enable (TBEN)–Input 

The TBEN input signal can be used in one of two ways, as determined by the value of HID0[19]. When 
HID0[19] = ‘0’, the time base register is incremented, and the decrementer register is decremented, at 1/8th 
the full processor frequency, whenever TBEN is asserted. These two timer registers maintain their value 
when TBEN is negated in this mode.

When HID0[19] = ‘1’, the time base register is incremented, and the decrementer register decremented, on 
every rising edge of the TBEN input signal. In this externally clocked mode, the TBEN frequency must not 
exceed 1/16th the full processor frequency in order to guarantee sufficient sampling of this external signal.

Timing: The TBEN input is asynchronous to the SYSCLK and processor clocks, and may change at any time, 
subject to the previously stated frequency restriction.

7.2.2.4 Processor Id (PROCID[0:2])–Input

The 3-bit processor ID input is used to assign a unique ID to this 970FX in a multiprocessor system that can 
have up to eight processors. The PROCID signals are sampled during power-on-reset and the 3-bit value is 
placed in the low order bits of the PIR register.

Timing: These signals should be permanently tied to VDD or GND, as appropriate for the desired ID value.

7.2.2.5 Bus Configuration Select (BUSCFG[0:2])–Input

The 3-bit BUSCFG input encodes the processor clock to bus clock ratio. It is used to select the appropriate 
clock dividers in the 970FX in order to generate the desired bus clock frequency. The interpretation of the 
BUSCFG values can be found in the IBM PowerPC 970FX RISC Microprocessor Datasheet.

Timing: These signals should be permanently tied to VDD or GND, as appropriate for the desired bus configu-
ration value. 

7.2.2.6 PLL Locked (PLL_LOCK)–Output

The PLL_LOCK signal is asserted when the PLL has achieved lock, or when running in bypass mode. The 
signal is negated otherwise. 
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Timing: The PLL_LOCK signal can change at any time. The initial maximum latency for the PLL to achieve 
lock is specified in the IBM PowerPC 970FX RISC Microprocessor Datasheet. 

7.2.2.7 Clock Receiver Termination (CKTERM_DIS)–Input 

The CKTERM_DIS signal allows the internal termination on the CLKIN and CLKIN_B signals to be disabled. 
When CKTERM_DIS is negated, the clock in signals are terminated. When the CKTERM_DIS signal is 
asserted, the termination of the clock in signals is removed from the receiver circuit.

Timing: This signal should be permanently tied to VDD or GND, as appropriate for the desired clock configura-
tion.

7.2.3 Clock Control

7.2.3.1 System Clock (SYSCLK/SYSCLK_B)–Input

The SYSCLK inputs provide the reference clock from which the on-chip PLL develops the processor mesh 
clock, as well as the bus clock. The system clock is provided to the processor as a differential pair. The mesh 
clock frequency is determined by this reference clock and the value of the PLL_MULT input. The bus clock 
frequency is determined by the mesh clock frequency and the value of the BUSCFG input. See the IBM 
PowerPC 970FX RISC Microprocessor Datasheet for the correspondence between these inputs and the 
clock frequency ratios.

Timing: See the IBM PowerPC 970FX RISC Microprocessor Datasheet for clock specifications.

7.2.3.2 Phase Synchronization (PSYNC)–Input

The PSYNC signal provides a synchronization pulse to all processors and companion chips in the system, 
providing the basis for identifying a periodic time zero event in each chip. 

Timing: See the IBM PowerPC 970FX RISC Microprocessor Datasheet for clock specifications.

7.2.3.3 PLL Bypass (BYPASS_B)–Input

The BYPASS_B signal indicates to the processor that the system clock input should be fed directly to the PLL 
output, bypassing the PLL. This mode of clocking the processor can be used for debugging, as well as during 
initial power-on.

Timing: To bypass during debug, this signal should be tied to GND.

7.2.3.4 PLL Multiplier (PLL_MULT)–Input

The PLL_MULT signal is used to specify the ratio of the full processor mesh frequency to the system clock 
frequency. See the IBM PowerPC 970FX RISC Microprocessor Datasheet for the correspondence between 
the value of this signal and the clock ratio.

Timing: This signal should be permanently tied to VDD or GND, as appropriate for the desired clock configura-
tion. 
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7.2.3.5 PLL Range Select (PLL_RANGE[0:1])–Input

The PLL_RANGE signal is used to identify the desired frequency range of the processor mesh clock. See the 
IBM PowerPC 970FX RISC Microprocessor Datasheet for the correspondence between the value of this 
signal and the desired frequency range.

Timing: This signal should be permanently tied to VDD or GND, as appropriate for the desired clock configura-
tion. 

7.2.4 Interrupts and Resets

Most system status signals are input signals that indicate when exceptions are received, when checkstop 
conditions have occurred, and when the 970FX must be reset. 

7.2.4.1 Interrupt (INT_B)–Input 

The INT_B signal provides a means for raising an external interrupt. This exception can be masked by the 
MSR[EE] bit. When MSR[EE] = ‘0’, the processor will not respond to the assertion of INT_B.

7.2.4.2 Machine Check Interrupt (MCP_B)–Input 

The MCP_B signal provides a means for raising a machine check exception. This exception can be masked 
by two control bits. If HID0[32] = ‘0’, the assertion of MCP_B is ignored. If HID0[32] = ‘1’, and MSR[ME] = ‘1’, 
machine checks are enabled, and the assertion of MCP_B will result in a machine check exception being 
taken. If HID0[32] = ‘1’, and MSR[ME] = ‘0’, machine checks are disabled, and the assertion of MCP_B will 
cause the processor to enter checkstop state.

Timing: This signal can be asserted at any time, asynchronously to the system clock. Once asserted, the 
MCP_B signal must remain asserted for at least two bus clock cycles to insure that it is recognized.

7.2.4.3 Thermal Interrupt (THERM_INT_B)–Input 

The THERM_INT_B signal provides an external means for raising a thermal management interrupt. This 
exception can be masked by the MSR[EE] bit. When MSR[EE] = ‘0’, the processor will not respond to the 
assertion of THERM_INT_B.

Timing: This signal can be asserted at any time, asynchronously to the system clock. 

7.2.4.4 Checkstop (CHKSTOP_B) –Bidirectional

The checkstop signal is both an input and an output signal on the 970FX.

Checkstop (CHKSTOP_B) –Input

The Checkstop input signal provides a means for external initiation of a checkstop. 

Timing: This signal can be asserted at any time, asynchronously to the system clock. 
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Checkstop (CHKSTOP_B) –Output

The Checkstop output signal indicates that the processor has entered the checkstop state.

Timing: Might be asserted at any time.

7.2.4.5 Hard Reset (HRESET_B)–Input 

The HRESET_B signal provides a means for resetting the processor and initiating the power-on-reset 
sequence.

Timing: May be asserted at any time, asynchronously to the system clock. 

7.2.4.6 Soft Reset (SRESET_B)–Input 

The SRESET_B signal provides a means for external initiation of the soft (or warm) reset. When this signal is 
asserted, the processor responds by taking a system reset exception. 

Timing: May be asserted at any time, asynchronously to the system clock. 

7.2.5 Debug/Test Interface

7.2.5.1 Phase Synchronization Out (PSYNC_OUT)–Output

The PSYNC_OUT signal allows monitoring of the internal psync phase during bring-up/debug.

7.2.5.2 Attention (ATTENTION)–Output

ATTENTION is an output signal from the 970FX to the JTAG debugger, used in debug mode. When Attention 
is active, only primitive test access port (TAP) commands will be acknowledged with the standard I2C ACK 
pulse.

7.2.5.3 Procesor Interface Disable (EI_DISABLE)–Input

Turns off elasticity in the processor interface bus. 

7.2.5.4 Trigger In (TRIGGERIN)–Input

TRIGGERIN is an input signal that initiates a trace collection from outside.

7.2.5.5 Trigger Out (TRIGGEROUT)–Output

TRIGGEROUT is an output signal used to indicate that an internal trace collection has begun. 
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7.2.5.6 JTAG Signals

The IEEE 1149.1 defines a five-wire interface called a test access port (TAP) for communicating with the 
boundary scan architecture. The five JTAG signals are: TDI, TDO, TMS, TCK, TRST_B. 

Test Clock (TCK)–Input

TCK is a JTAG test clock which is separate from the system mesh clock. The TCK controls all test access 
port functions. The rising edge causes TMS and TDI to be sampled by Access. 

Test Data In (TDI)–Input

TDI is a JTAG serial input used to feed test data and test access port instructions. 

Test Data Out (TDO)–Output

TDO is a JTAG serial output used to extract data from the chip under test control. 

Test Mode Select (TMS)–Input

TMS is a JTAG select signal used to control the operation of the JTAG state machine. The value of TMS 
during a rising edge of TCK causes a state transition in the TAP controller. 

Test Logic Reset (TRST_B)–Input

Test reset (TRST_B) is an asynchronous JTAG signal used to reset the JTAG state machine. The TRST_B 
signal ensures that the JTAG logic does not interfere with the normal operation of the chip, and must be 
asserted and deasserted coincident with the assertion of the HRESET_B signal.

7.2.5.7 I2C Signals

The 970FX I2C bus conforms to the standard-mode timing specification and does not support the high-speed 
(Hs-mode) or fast-mode timing. The 970FX has the following I2C signals:

• I2C Signal Clock (I2CCK_B)–I2C signal clock is both an input and output signal pin.

• I2C Interface Data (I2CDT_B)–I2C interface data is both an input and output signal pin.

• I2C Interface Go (I2CGO)–I2CGO is an asynchronous open drain output signal used to prevent access 
collisions between JTAG and I2C. If the level of the interface is low, only JTAG should access the 970FX. 
I2C can make use of the interface if the level is high. 

7.2.6 Voltage and Ground

The 970FX provides the following connections for power and ground:

• OVDD—The OVDD signal provides the supply voltage connection for the system interface drivers.

• AVDD—AVDD is a power signal which drives the analog sections of the PLL. See the IBM PowerPC 
970FX RISC Microprocessor Datasheet for information on how to use this signal.

• VDD—The VDD signal provides the supply voltage connection for the processor core. 
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8. Processor Interconnect Bus

The IBM PowerPC 970FX RISC Microprocessor Processor Interconnect is a bus architecture providing high-
speed, high performance interconnections for processors, I/O devices, memory subsystems, and bridge 
chips. This bus architecture provides a forward-looking, general-use, yet cost-effective solution for designing 
high performance IBM PowerPC systems.

At the heart of the processor interconnect (PI) bus is a set of unidirectional, point-to-point bus segments, a 
new design selected to achieve maximum data transfer rates. The bus segments include two 35-bit 
address/data segments (one in each direction), two 1-bit transfer handshake segments, and two 2-bit snoop 
response segments. New features include: 

• Pipelined transactions for reading and writing data and maintaining cache coherency
• Packet protocols for data sharing, data synchronization, and cache snooping
• True split transactions, enabling the master and slave to simultaneously conduct different transactions 

with each other
• Wave pipelining to exploit maximum data bandwidth at the electrical interface 

The unidirectional segments are the basis for supporting the features above. These buses are point-to-point 
connections, carry their own local clock signal (source synchronous), and require no arbitration. Error detec-
tion mechanisms exist for all bus segments. 

There are many possible configurations that incorporate different numbers of processors, I/O interfaces, 
memory bandwidth, different speed, cost and power requirements. Figure 8-1 shows an example of a two 
processor configuration. 

The remainder of this section specifies the processor interconnect architecture, targeting a dual processor, 
dual-ported North Bridge configuration, as shown in Figure 8-1. Using two PI ports on the North Bridge 
enables direct connection of two processors. 

Figure 8-1. PI Two-Processor Configurations 

CPU1 CPU2

North Bridge

PI #1 PI #2
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8.1 Overview

The processor interconnect bus consists of a set of unidirectional, point-to-point bus segments for maximum 
data transfer rates. No bus-level arbitration is required. An Address/Data (AD) bus segment, a Transfer 
Handshake (TH) bus segment, and a Snoop Response (SR) bus segment exist in each direction, outbound 
and inbound. Figure 8-2 shows two processors connected to a North Bridge using two PI buses.

This section frequently uses the terms: packet, beat, master, and slave. The usage conventions of these 
terms are as follows:

• Data is transferred across a bus in beats from master to slave. A beat is a timing event relative to the ris-
ing or falling edge of the clock signal. Nominally there are two beats per clock cycle (one for the rising 
edge and one for the falling edge). 

• A packet is the fundamental protocol data unit for the PI bus. A non-null packet consists of an even num-
ber of data elements that are sequentially transferred across a source-synchronous bus at the rate of one 
element per bus beat. The number of bits in each data element equals the width of the bus. Packets are 
used for sending commands, reading and writing data, maintaining distributed cache coherency, and 
transfer-protocol handshaking.

• A sender or source of packets for a bus segment is called a master and a receiver or recipient is called a 
slave. For example, on an outbound processor bus segment, the North Bridge is the slave and the pro-
cessor is the master. On an inbound processor bus segment, the North Bridge is the master and the pro-
cessor is the slave.

Figure 8-2. Logical Representation of Two Processors Connected to a North Bridge 
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8.1.1 Packets

Four basic packet types are defined: null packets, command packets, data packets, and transfer-handshake 
packets. Non-null packet lengths are always an even number of beats.

Null packets are sent across the address/data bus. For the null packet all bits are zero. Null packets are 
ignored by slave devices. 

Command packets are sent across the address/data bus. There are three types of command packets: read-
command packets, write-command packets, and coherency-control packets. 

Data packets are also sent across the address/data bus. There are two types of data packets: read-data 
packets and write-data packets. A write-data packet immediately follows a write-command packet. A read-
data packet is sent in response to a read-command packet or a cache-coherency snoop operation. A data 
read header contains the address of the command, the command type, and transfer details. 

Transfer-handshake packets are sent across the transfer-handshake bus. This packet is issued to confirm 
receipt and indicate the condition of the received command packet or data packet. Condition encoding 
includes Acknowledgement, Retry, Parity Error, or Null/Idle. A transfer-handshake packet is two beats in 
length. 

See Section 8.2 Packet Transfer Protocol for a detailed description of these four packet types. 

8.1.2 Bus Segments

An AD bus segment, a TH bus segment, and a SR bus segment exist in each direction, outbound and 
inbound. Table 8-1 and the following subsections further describe these signals. 

8.1.2.1 Address/Data Bus Segment

The address/data bus is used to transfer both command packets (containing control information) and data 
packets (containing the data to be transferred). The address/data bus consists of one 35-bit outbound 
address/data (ADO) bus segment and one 35-bit inbound address/data (ADI) bus segment. 

Commands are issued to the bus as 2-beat packets. A read-data packet consists of a 2-beat header followed 
by the data payload. The number of beats issued with a data transfer depends on the size of the total 
transfer. Data payload is issued to the bus in even multiples of 4-byte wide data beats. Included in the packet 
is a bit for special system support and a data error bit.   

Table 8-1. PI Signal Description  

Signal Names Signal Lines Mnemonic Description

Address/Data Out 35 ADO Address or data and control information

Transfer-Handshake Out 1 THO Acknowledgment packet for command and data packets received on the 
address/data in bus

Snoop Response Out 2 SRO Snoop coherency response from the processor

Address/Data In 35 ADI Address or data and control information

Transfer-Handshake In 1 THI Acknowledgment packet for command and data packets received on the 
address/data out bus

Snoop Response In 2 SRI Accumulated snoop coherency response from the North Bridge
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8.1.2.2 Transfer-Handshake Bus Segment

The transfer-handshake bus sends transfer-handshake packets which confirm command or data packets 
were received on the address/data bus. The transfer-handshake bus consists of one 1-bit outbound bus 
segment (THO) and one 1-bit inbound bus segment (THI). Every device issuing a command packet, data 
packet, or reflected command packet to the Address/Data bus receives a transfer-handshake packet through 
the transfer-handshake bus some fixed number of beats after issuing the command or data packet. 

Each transfer-handshake bus segment sends transfer packets for command and data packets transferred in 
the opposite direction. That is, the outbound transfer-handshake bus sends acknowledgment packets for the 
command and data packets received on the inbound AD bus. There is no dependency or relationship 
between packets on the outbound address/data bus and the outbound transfer-handshake bus. 

A transfer-handshake packet might result in a command packet being reissued to the bus because a data 
buffer in the command queue is full. IBM suggests that the North Bridge implement queues that are deep 
enough to minimize the impact of command packet retries on system performance.

A transaction remains active until it has passed all response windows. For write transactions, this includes the 
last beat of the data payload. Since commands might be retried for queue or buffer full conditions, transac-
tions that must be ordered cannot be simultaneously in the active state. 

A write transaction issued by the processor can be retried. The slave issues two transfer-handshake packets 
for a write transaction. The first packet is for the write-command packet and the second for the write-data 
packet.

For read transactions, the processor will not retry inbound (memory to processor) transfers. Reflected 
commands (that is, snoop requests inbound from the North Bridge to the processor) cannot be retried. This is 
necessary to ensure a fixed snoop window is maintained.

8.1.2.3 Snoop Response Bus Segment

The Snoop Response bus supports global snooping activities to maintain cache coherency. This bus is used 
by a processor to respond to a reflected command packet received on the ADI bus. The Snoop Response 
bus consists of one 2-bit outbound snoop response (SRO) bus segment and one 2-bit inbound snoop 
response (SRI) bus segment. The bus segments can detect single bit errors. 

A snoop response begins when a processor receives a reflected command packet on the ADI bus. The 
processor provides a snoop response reporting the coherency status of the request received on the ADI bus 
segment. The North Bridge gathers snoop responses from all processors and sends the accumulated snoop 
response on the SRI bus segments concurrently to all processors.

8.1.3 Transactions

Three transaction types are defined: read, write, and command-only. Section 8.4 Bus Transactions describes 
the transactions in detail. The following subsections show the sequence of operations for these transaction 
types. 
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8.1.3.1 Read Transaction 

Figure 8-3 shows the sequence of operations for a read transaction. 

1. The master (requesting processor) issues a read-command packet on the ADO bus segment to request a 
full or partial cache line of data from the slave (North Bridge).

2. The slave sends a transfer-handshake packet to the master on the THI bus segment.

3. For cache-coherency purposes, the slave reflects the read-command packet on the ADI bus segment to 
all processors.

4. Each processor sends a transfer-handshake packet on the THO bus segment to the slave in response to 
the reflected read-command packet.

5. The slave sends the read-data packet on the ADI bus segment to the master.

6. The master sends a transfer-handshake packet on the THO bus segment to the North Bridge in response 
to the read-data packet.

The read-data packet transfer ranges from 4 to 34 beats. The first two beats transferred are a header 
containing the master’s tag and data packet size. The data payload portion must be transmitted in sequence 
with the critical word first. A command packet might then be interjected into the data payload portion on an 
even-beat boundary. 

Figure 8-3. Read Transaction Timing Diagram 
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8.1.3.2 Write Transaction 

A processor initiates a write transaction to store either a full or partial cache line of data to memory or to an 
I/O device. A write transaction consists of a command packet immediately followed by a data packet on the 
master’s ADO bus segment. The data must be issued to the address/data bus segment in consecutive beats, 
but can be paused on an even beat to issue a command packet for a read operation. A write-command 
packet cannot be interjected into a write-data packet transfer. Figure 8-4 shows the sequence of operations 
for a write transaction. 

1. The master (requesting processor) issues a write-command packet on the ADO bus segment to write a 
full or partial cache line of data. The write-command packet is immediately followed by a write-data 
packet. 

2. The slave (North Bridge) sends a transfer-handshake packet on the THI bus segment in response to the 
write-command packet.

3. For cache-coherency purposes, the slave reflects the write-command packet on the ADI bus segment to 
all processors.

4. Each processor sends a transfer-handshake packet on the THO bus segment to the slave in response to 
the reflected write-command packet.

5. The slave sends an acknowledgment packet on the THI bus segment to the master in response to the 
write-data packet.

Figure 8-4. Write Transaction Timing Diagram 

Address/Data Bus Out

Transfer Handshake Bus Out

Address/Data Bus In

Transfer Handshake Bus In

Write Command Packet

Cmd ACK

Up to128-Byte Write Data Packet

Note 1: Time from the outbound write-command packet to the inbound transfer-handshake packet response is system-dependent and 

Note 1

Data ACK

A A D D D D D D D D D D D D D D D D D

Reflected Write Command Packet

A A

Cmd ACK

1

2

3

4

5

Beat 1 2 3 4 5 60 8 9 10 11 12 137 14 15 16 17 18 19 20 21 22 23 24 25 26

might be different than shown.



User’s Manual

 IBM PowerPC 970FX RISC Microprocessor

Version 1.7
March 14, 2008  
 

Processor Interconnect Bus

Page 135 of 360

8.1.3.3 Command-Only Transaction

Figure 8-5 shows the sequence of operations for a command-only transaction. 

1. The master (requesting processor) issues a command packet to the slave (North Bridge) on the ADO bus 
segment. 

2. The slave sends a transfer-handshake packet to the master on the THI bus segment in response to the 
command packet.

3. For cache-coherency purposes, the slave reflects the command packet on the THI bus segment to all 
processors.

4. Each processor sends a transfer-handshake packet on the THO bus segment in response to the reflected 
command packet.

Figure 8-5. Command-Only Transaction Timing Diagram 
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8.1.4 Memory and Cache Coherency

8.1.4.1 Physical Memory Size

The PowerPC Architecture supports a maximum physical address bus of 64 bits. The PI specification limits 
the memory addressing to 42 bits. This allows for a maximum address space of 4 terabytes (TBytes).

8.1.4.2 Coherency Protocol

Coherency is maintained using global snoops of all command packets by reflecting command packets from 
the North Bridge to the processor. The snoop response bus is used exclusively for this purpose. This bus 
consists of two unidirectional 2-bit bus segments per processor port, and is used to source response out and 
receive response in. Responses are sourced at a configurable time after the global snoop. The response in is 
sampled at a later time, also configurable. The snooping protocol is detailed in Section 8.3.

8.1.4.3 Coherency Block Size 

The cache line is the smallest increment of memory over which coherency information is maintained. This bus 
can support 32-byte, 64-byte, and 128-byte coherency block sizes. The coherency block size is determined 
by the target processor. All bus attachments must support this coherency block size for uniform operation. 
The I/O must be capable of transferring less than or equal to, but not greater than, the coherency block size 
during DMA transfers to and from coherent memory.
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8.2 Packet Transfer Protocol

This section defines packet protocols for data sharing, data synchronization, and cache snooping. The PI 
defines four basic packet types: null packets, command packets, data packets, and transfer-handshake 
packets.

8.2.1 Command Packet Definition

The command packet transfer protocol specifies how addresses are passed between bus devices. Due to the 
narrow width of the bus, this transfer takes two bus beats to complete, thereby allowing one command packet 
every two beats.

The command packet consists of a memory address, command type, command size, and command tag. The 
command packet is identified on the Address/Data bus by the detection of the packet start signal and a 
packet-type encoding for a command packet. Table 8-2 shows the bit definitions for the Address/Data bus 
during a command-packet transfer.

8.2.1.1 Address Modifiers

Bits [16:17] of beat one, bit [2] and bits [27:29] of beat two of a command packet contain the address modifier 
bits. These bits further describe the type of command packet. In some cases they must be decoded along 
with the Transfer Type bits to determine the operation.

Table 8-3 shows when these bits are used to modify transactions, what the modification is, and what the 
values are when they are hard coded. Under certain conditions some bits might be sourced from the page 
table WIM bits (“W” stands for write through, “I” for cache inhibit, “M” for memory coherence).

Table 8-2. Command Packet Description  

Beat Bits Description

1 0:1 ‘10’ (Address valid decode)

1 2:6 Transfer Type (0:4)

1 7:15 Transfer Tag (0:8)

1 16:17 Address Modifiers I/S,M (1:2)

1 18:34 Address (42:58) 17 bits of the 42-bit address.

2 0:1 ‘10’ (Address valid decode)

2 2 Address Modifier W/N (0)

2 3:6 Transfer Size (0:3)

2 7:26 Address (22:41) most significant 20 bits of the 42 address bits

2 27:29 Address Modifiers G,R,P (3:5)

2 30:34 Address (59:63) least significant 5 bits of the 42 address bits

Note:  

W: write through, M: memory coherent, N: intervention, A: atomic, R: rerunning, I: cache-inhibited, S: noncacheing coherent read, 
P: pipelined snoops, G: guarded read.
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Address Modifier[0]

The AM[0] bit, when indicated as a W, means that write through is desired. When the bit is ‘1’, it means the 
data for a write transaction is to be forwarded all the way to system memory or a memory-mapped device. 
When the bit is ‘0’, the data must be forwarded at least one cache level toward memory. This bit is normally, 
but not always, sourced from the page table. 

On a read operation when indicated as an N, this bit indicates whether the master can support intervention on 
this request. If intervention is enabled (N = ‘1’), then the transfer size must be the coherency block size. (A 
snooper might not intervene if this bit is reset, and might intervene if it is asserted.) 

Address Modifier[1]

The AM[1] bit, when indicated as an I, means Cache-Inhibit status. If the bit is ‘1’ in a write-command packet, 
it means that the data should not be cached downstream from this processor. When indicated as an S and 
the bit is a ‘1’ in a read-command packet, it means that the requesting processor will not cache the data when 
received, and memory (or an intervening cache) might still retain the current coherency status. 

Address Modifier[2]

The AM[2] bit, when indicated as an M, is always used as the memory coherent indicator or snoop request 
signal. If this bit is ‘0’, the horizontal coherency snoopers ignore this transaction, meaning memory is not 
coherent or this is a transaction that snoopers do not need to look at (vertical caches need to snoop all snoop 
response (SResp) enabled transactions regardless of the M-bit). 

Note:  This bit should be defined consistently for future transactions that might be architected, as snoopers 
will not see any transaction where M = ‘0’. This bit is frequently sourced from the page table WIM bits when 
indicated as an M, but at other times it is hard coded so snoopers see the transaction, for example, it might be 
set by an I/O adapter for coherent I/O.

Address Modifier[3]

The AM[3] bit is used to further define operations. For example, it is used to indicate a write-with-kill versus a 
write-with-clean. When indicated as a G, it is used to indicate a guarded read.

Address Modifier[4] 

The AM[4] bit, when indicated as an R, means that this transaction has already been issued to the bus once, 
and is now being reissued. 

Implementation Note – The bit should be set to zero in current implementations of the architecture, to 
remain compatible with potential architecture extensions.

Address Modifier[5] 

The AM[5] bit when indicated as P, means that this transaction can be pipelined for snoop requests and 
responses. If P is ‘0’ then command packets are reflected one at a time after the snoop response for previous 
command packets are seen by all processors.
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8.2.1.2 Transfer Type Field

The transfer type (TType) field indicates the type of command packet that was issued to the bus. The valid 
transfer types defined by the PI bus are shown in Table 8-3. Both the processor and the North Bridge must 
support all commands listed in Table 8-3. I/O devices support only a limited subset of the commands.

Address Field

The address field contains the address associated with the command packet. This field is defined to be 
42-bits wide. 

Table 8-3. Transfer Type Encoding 

Address 
Modifiers

(WIMGRP)

TType
Binary      Hex Bus Operation Code Address

Format
Data 

Payload Comments

XXMXRP 00000 00 Clean CL Mem N M = ‘1’ normally

WIMXRP 00010 02 Write with Flush WNB Mem Y M = ‘1’ normally

XXMXRP 00100 04 Flush FL Mem N M = ‘1’ normally

WXM0RP 00110 06 Write with Kill WBK Mem Y W = X if from a I/O bridge

WXM1RP 00110 06 Write with Clean WBC Mem Y W = ‘1’, I = X, M  = ‘0’

XXMXRP 01000 08 SYNC SY Tag N

NSMGRP A1010 0A,1A Read RD Mem N S = ‘1’ means RWNITC

XXMXRP 01100 0C DKill DK Mem N M  = ‘1’

NXMXRP A1110 0E,1E RWITM RWITM Mem N I = X, normally M = ‘1’

XXMX0P 10000 10 EIEIO EI Tag N M = ‘0’

XXMXXX 10100 14 Reserved M = ‘0’

XXMX0P 11000 18 TLBIE TI Tag N M = ‘0’, P = ‘0’

XXMXXX 11100 1C Reserved M = ‘0’

XXMXRP 00001 01 LARX-Reserve LR Mem N M = ‘0’

XXMXRP A0011 03,13 DClaim DC Mem N M = ‘1’

XXMXXX 001X1 05,07 Reserved M = ‘0’

XXMXRP 01001 09 TLBSYNC TS Tag N M = ‘0’

XXMXXX 01X11 0B,0F Reserved M = ‘0’

XXMX0P 01101 0D IKill IK Mem N M = ‘1’ normally, P = ‘0’

XXMXXX 10001 11 Reserved A M = ‘0’

XXMXXX 10010 12 Reserved N M = ‘0’

XXMXRP 10101 15 Deallocate Dir Tag DDT Mem A M = ‘0’ 

XXMXXX 1011X 16,17 Reserved for customers M = ‘0’

XXMXXX 110X1 19,1B Reserved M = ‘0’

XXMX0P 11111 1F Null NUL None N M = ‘0’

Note:  

W = write through, M = memory coherent, N = intervention, A = Atomic, R = ReRunning, I = Cache-inhibited, S = Non Caching coherent 
read, P= Pipelined Snoops, G = Guarded Read, X = drive ‘0’ when driving signal and don’t care when receiving the signal.
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Transfer Size Field

The transfer size field indicates the size of the data packet associated with the command packet. For 
command packets that do not have a data packet associated with them, this field is undefined. Table 8-4 
defines the encoding for the transfer size field for the commands that require a data packet. 

Transfer Tag

Command packets contain a 9-bit transfer tag used to link a command with data. This field is valid for all 
transactions to the bus and contains a number (generated by the processor) to identify the read-data packet 
on a read transaction and the write-data packet for a write transaction. Explicit tagging of command and data 
packets allows a bus device to have multiple concurrent outstanding transactions that require a data packet. 
This means that read-data packets can appear out-of-order on the bus so that transactions can complete 
when data is available as opposed to returning all data packets in the order the commands were issued. In 
addition the tag can be used to reference the response back to a command in an internal queue of a bus 
device. There must only be one outstanding transaction referred to by a tag at any time.

Tag Deallocation For Read Operations 

Read transactions use the tag field to identify incoming read data packets that are associated with the trans-
action. Once a tag is assigned to a read transaction it cannot be reissued until all the read data has been 
received.

Table 8-4. Transfer Size Encoding  

Transfer Size Description Number of Data Beats

0000 8 Bytes 2

0001 1 Byte 2

0010 2 Bytes 2

0011 3 Bytes 2

0100 4 Bytes 2

0101 5 Bytes 2

0110 6 Bytes 2

0111 7 Bytes 2

1000 128 Bytes 32

1001 16 Bytes 4

1010 32 Bytes 8

1011 Reserved  

1100 64 Bytes 16

1101 Reserved

1110 Reserved

1111 Reserved
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Tag Deallocation For Store, Castout, and Push Operations 

Address/data command tags remain active until a clean global snoop response is received.

8.2.1.3 Tag Definition

Table 8-5 defines the 9-bit tag that is sent with a command or read-data packet.

Interjecting Command Packets

Data transfers on the bus are either write-data packets issued with a write-command packet, or read-data 
packets. These transfers consist of multiple data beats. When a transfer contains multiple beats of data 
payload transfer, a command packet might be interjected on an even-beat boundary. This feature allows new 
transactions to be started without having to wait for a long multi-beat data transfer to complete. This protocol 
allows read-command packets and coherency-control packets to be interjected. Write, castout, push, partial 
write operations, or other data packets cannot be interjected into a multiple-beat data transfer.

8.2.1.4 Command Pacing

It is possible for the processor to issue command packets at a rate faster than the slave can accept. The 
slave must then retry the packets so the commands are not lost. This is undesirable because of the additional 
bus bandwidth consumed for the retried commands. The North Bridge should implement queues that are 
sufficiently deep to minimize the impact of command packet retries on system performance. This scenario 
assumes the slaves can handle consecutive data packets, which requires the data buffering to be run at least 
at the bus clock speed. To avoid this situation, a command pipeline delay parameter, COMPACE, is defined 
for the bus.

The command pipeline delay parameter is a 4-bit field that is programmed into each bus master to indicate 
the number of bus beats of delay that must be placed between each command packet on the bus. The delay 
is in bus beats (assumed to be even). Table 8-6 list the allowable range of values for COMPACE and related 
processor delay parameters along with North Bridge delay parameters and typical values that these parame-
ters might take on. See Section 11.3.2 Configurable Parameters for additional information on these config-
urable delay parameters. 

Note:  This does not restrict the use of intervening bus beats for data packets. 

Table 8-5. Tag Definition 

Bits Field Description

0:3 Master number Master number (one must be reserved for the North Bridge)

4:8 Master tag Tag (one of 32) assigned to the master’s requesting resource
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8.2.2 Data Packet Definition

The data packet transfer protocol specifies how data is passed between bus devices. A data packet is 
defined as an even numbered beat transfer on the address/data bus. A write-data packet immediately follows 
a write-command packet. It is identified on the bus by the data valid decode. A read-data packet has a 2-beat 
header that includes the tag and the data size. Typically, read data packets are sent from the North Bridge to 
a processor. However, during intervention, a processor can send a read-data packet to the North Bridge. 

A data packet of minimum size consists of 8 bytes of data and the data error signal (DERR) to validate the 
data. Up to 16 pairs of data beats are used to transfer a cache line. Table 8-7 shows the bit definitions for the 
read-data packet header on the address/data bus. Table 8-8 shows the bit definitions for the address/data 
bus during a data transfer. 

Table 8-6. Programmable Delay Parameters  

Parameter Processor North 
Bridge

Range in Bus Beats
                       Description

Minimum Typical Maximum

COMPACE Y N 4 14 Command pipeline delay. (See Section 8.2.1.4)

STATLAT Y N 4 24 Transfer handshake response latency. 
(See Section 8.2.3 and Section 8.4.2) 

STATLAT N Y 22

SNOOPWIN N Y 4 Snoop window pacing. 
(See Section 8.3.1 and Section 8.4.2)

SNOOPLAT N Y 25 North Bridge Snoop Latency. (See Section 8.3.1)

PAAMWIN N Y 23

SNOOPLAT Y N 5 15 Processor snoop latency. (See Section 8.3.1)

SNOOPACC Y N 0 15 North Bridge snoop accumulation delay. 
(See Section 8.3.1 and Section 8.4.2.3)

Table 8-7. Read-Data Packet Header Description 

Beat Bits Description

1 0:1 ‘11’ (Data and address valid decode)

1 2:6 Reserved 

1 7:15 Transfer Tag (0:8)

1 16:18 Reserved

1 19:22 Responder or Intervener ID

1 23:34 Reserved 

2 0:1 ‘11’ (Data and address valid decode)

2 2 Reserved 

2 3:6 Transfer Size (0:3)

2 7:34 Reserved 
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8.2.2.1 Two-Beat Transfers

The PI supports data transfers of varying lengths. Since the payload portion of all data packets must be at 
least two beats, a transfer of less than 8 bytes must be padded with additional data to fill the 8-byte minimum 
transfer size. The data on the bus must be address aligned so a request must be separated into two requests 
if an 8-byte address boundary is crossed. A master can transfer from 1 to 8 bytes of data during this opera-
tion. Data is returned in the original memory order. Table 8-9 shows the address restrictions for transfers of 
1 - 8 bytes. 

8.2.2.2 Multi-Beat Transfers

The PI supports multiple-beat data transfers that are 16, 32, 64, and 128 bytes in length. All such requests for 
writes and reads that are less than a full coherency block (128 bytes) must be aligned to an address 
boundary equal to the size of the transfer. For read data transfers that are a full coherency block, data is 
returned with the critical 16 bytes first, followed by the remaining data in an interleaved burst order. The 
resulting data transfer is a block of data that is aligned to the size of the request.

Data Transfer Format for 128 Byte Transfers

On read data packet transfers that are a full coherency block, the order of the returned data words depends 
on the address that was specified inside the command packet. Each block of the read data packet is trans-
ferred in a sequence of 32-byte data beats. Data ordering is based on the block size. Within a word, data is 
always transferred in-order starting with the most significant byte and ending with the least significant byte. 

Table 8-8. Data Beat Description  

Beat Bits Description

1 0:1 ‘01’ (Data valid decode)

1 2:33 Next consecutive four bytes of the data packet

1 34 Data error signal (DERR) indicates an off-bus data error, full data transfer is invalid

2 0:1 ‘01’ (Data valid decode)

2 2:33 Next consecutive four bytes of the data packet

2 34 Reserved

Table 8-9. Two-Beat Data Transfers 

Starting 
Address[61:63]

Byte Lanes
Data Size

00 01 02 03 04 05 06 07

000 – 111 X X X X X X X X 1 Byte

000, 010, 100, 110 X X X X 2 Byte

000 X 3 Byte

000, 100 X X 4 Byte

000 X 8 Byte

Note:  

1. ‘X’ is a valid starting position.
2. The operand may not cross a doubleword boundary. 
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Partial write commands with transfer sizes less than 8 bytes cannot cross an 8-byte boundary. All write 
commands (including write, castout, push, and partial write) with transfer sizes of 8 bytes or more must be 
aligned on an address boundary equal to the size of the transfer.

Interjecting Command Packets

Data transfers on the bus are either write-data packets issued with a write-command packet, or read-data 
packets. These transfers consist of multiple data beats. When a transfer contains multiple beats of data 
payload, a command packet can be interjected on an even-beat boundary. This feature allows new transac-
tions to be started without having to wait for a long multi-beat data transfer to complete. This specification 
allows read-command packets and coherency-control packets to be interjected. Write, castout, push, and 
partial write operations, or other data packets cannot be interjected into a multiple-beat data transfer.

8.2.3 Transfer-Handshake Packets

The transfer-handshake bus is used to acknowledge command or data packets that were received on the 
inbound bus. Every command and data packet that is received on the inbound bus is acknowledged by a 
transfer-handshake packet on the associated outbound transfer-handshake bus. The transfer-handshake 
packet occurs a fixed number of beats later. Each transfer-handshake packet is two beats in length. 
Table 8-11 shows the handshake encoding for the bus. 

The slave sends this acknowledge packet to the bus n beats after receipt of the last beat of the command or 
data packet, (n is the minimum number of beats necessary for the slave to receive the data from the bus, 
check the command and address, and generate the response). This time is implementation-dependent and 
may vary from one device to the next. The master samples the response STATLAT beats after the last beat 
of the command or data packet. STATLAT is the number of bus beats between the last beat of the command 

Table 8-10. Packet Ordering for 128-Byte Interleaved Packets on 32-Byte Boundaries 

Address (57:59) 128-Byte Packet Order Viewed at 
16-byte Read Data Transfer

Packet Order Viewed at 
32-byte Read Data Transfer

000 0 1 2 3 4 5 6 7 0 1 2 3 

001 (Not Valid) 1 0 3 2 5 4 7 6

010 2 3 0 1 6 7 4 5 1 0 32

011 (Not Valid) 3 2 1 0 7 6 5 4

100 4 5 6 7 0 1 2 3 2 3 0 1

101 (Not Valid)  5 4 7 6 1 0 3 2

110 6 7 4 5 2 3 0 1 3 2 1 0

111 (Not Valid) 7 6 5 4 3 2 1 0

Table 8-11. Transfer-Handshake Definition  

Response 
Beat 0, Beat 1 Description

0      0 Null/Idle

1      0 Acknowledge (command/data accepted)

0      1 Retry (command/data rejected, reissue command)

1      1 Parity error (parity error detected on bus)
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or data packet and the first beat of the acknowledge packet. For example, if the last beat of a command 
packet was on beat j and the first beat of the acknowledge packet occurred on beat k, then the value for 
STATLAT would be k-j-1 (see Figure 11-11). The STATLAT beat count includes the time required by the 
slave to generate the response plus the time that it takes for the packet to be sent and the acknowledge to be 
returned. For consistency in design of the processors that attach to this bus, an upper limit is defined for the 
time between the master issuing the last beat of the command or data packet to the bus to when it receives 
the first beat of the acknowledge packet (see Table 8-6 and the IBM PowerPC 970FX RISC Microprocessor 
Datasheet). This time should be minimized to eliminate unnecessary delays on commands in the pipeline that 
have ordering requirements with the current command. The STATLAT parameter is configured by the I2C 
interface during the bus initialization phase. 

8.2.3.1 Null Transfer Handshake

The null transfer handshake is the default response from a slave device. If the slave does not drive the 
transfer handshake with either an acknowledge, retry, or parity error, then the response is, by default, null. 
The null response can occur due to a slave device timeout or a terminated transaction under certain, special 
conditions defined below.

Master:
For the master this transfer-handshake response from the slave indicates that the command or data packet 
that the master sent was not accepted by the slave. Based on the address/data packet type, the master 
actions are as follows:

Command packet: The processor responds by going into checkstop.1 If the command was a write 
command and the master detects this response before it has completed the full data transfer of the 
write-data packet, it can either complete the full data transfer or discard the remaining even-num-
bered data beats for the transfer.

Read-data packet: The processor responds by going into checkstop. A master always transmits full 
packets on the bus. The handshake is received after the end of the read-data packet (see 
Figure 8-3). Note the error might also result from a time-out waiting for data or an incorrect transfer 
size by the slave.

Write-data packet: The processor responds by going into checkstop, if the write-command packet 
associated with this packet had received an acknowledge transfer handshake from the slave. Other-
wise the null response is ignored. If the write command is retried by the slave, then the null response 
is the correct response for the data packet associated with that write command.

Slave:
The slave issues the null transfer handshake response for the non-error condition: Data packet for a write 
command that was retried. The command or data packet is discarded and status is logged in the slave for the 
error case.

1. Hardware has detected a condition that it cannot resolve, and which prevents normal operation. It stops executing instruc-
tions, responding to interrupts, and so on.
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8.2.3.2 Transfer Handshake Acknowledgment

The acknowledge response indicates that the addressed slave accepted this command or data packet. If a 
bus agent1 accepts (acknowledges) a command packet to send to a remote bus, it is responsible for 
completing the transaction back to the bus master for the case where the remote bus does not accept the 
command packet. For a read transaction this implies returning data to the master with the data error signal 
activated. The data error is signalled by asserting the 35th bit (DERR signal) of the even data beats. For 
writes the command and data packets are discarded. The device must also have a mechanism to signal a 
machine check that the error occurred.

Master:
For the master, the acknowledge response indicates that the command or data packet was accepted and that 
it might complete execution of the packet transfer. Based on the packet type, the master acts as follows:

Command packet: For a command packet that results in data being returned by the slave, the 
acknowledge response indicates that the command has been accepted and need not be reissued to 
the bus. Inbound data packets to complete the transaction may be received starting in the beat fol-
lowing the response. For a write-data packet, the acknowledge response indicates that the command 
has been accepted. The slave may not retry the data packet after it accepts the command. That is an 
acknowledge response for the command packet indicates that the slave has set aside buffer space 
for the write data packet. For command packets, this response indicates that the command is com-
plete.

Data packets: This response indicates to the master that the data being sent was accepted by the 
slave without errors. 

Slave:
The slave issues this acknowledge response when:

• The slave received the command packet with a valid transfer type, transfer size, and address.

• For write transactions, there is queue space for the command and data.

The slave stores command packets in a command queue and stores data packets in data buffers.

8.2.3.3 Transfer Handshake Retry

A handshake retry may be issued to flow control the command packets for cases where the slave does not 
have space for the command packet or the data packet associated with the command. Any command packet 
may be retried by the slave, except for reflected command packets. Data packets may not be retried.

Master:
For the master the retry response indicates that the command was rejected by the slave for lack of space in 
the command queue or the data buffers. Based on the packet type the master acts as follows:

Command packet: When the master receives a retry response for a command packet it reissues the 
packet to the AD bus. If the command was a write command and the master detects this response 
before it has completed the full data transfer, then it can either complete the full data transfer, or dis-
card the remaining even-numbered data beats for the transfer before reissuing the command packet.

Data packet: Retry responses are not valid for write data packets and read data packets. 

1. Bus agents are devices such as the North Bridge, but not switches that might be used to relay command and data packets.
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Slave:
The slave issues this response when:

• The slave received the command packet but the command queue was full.

• If the packet was a write command packet, there is no space for the command or the data. 

To properly detect termination of a partial write-data packet, the slave must examine the Address Valid 
decode bits (see Table 8-2 Command Packet Description) on a per even-beat basis. 

Note:  The retry transfer handshake cannot be issued for write data packets.

8.2.3.4 Transfer Handshake Parity Error

This response is optionally issued whenever a single bit error is detected during any bus beat. It is an unre-
coverable error that results in a machine check to the processor with all command and data packets in the 
pipeline being discarded.

Master:
For the master, the response is a hard error indicating that the bus is no longer functional. The processor 
responds by going into checkstop.

Command packet: When the master receives a parity error response for a command packet, it 
reports the failure back to the system. The bus must be reinitialized before it can be used again.

Data packet: Same as command packet errors.

Slave:
If the slave issues this response (optional), it should be within the normal packet response timings. (This 
packet error may make this timing determination imprecise.) For the slave, this condition is a hard error and 
the bus is no longer functional. The slave logs the error and reports it to the system. The error reporting 
mechanism is system-dependent.
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8.3 Snoop Responses 

Cache coherency is maintained using a global snoop method, where a memory controller device (the North 
Bridge) reflects command packets to all processors at the same time. Snooping is supported by dedicated 
snoop response bus segments, consisting of one 2-bit SRO and one 2-bit SRI.

A snoop response begins when a processor receives a reflected command packet on the ADI bus. The 
processor starts a programmable timing chain that determines when the processor’s SRO is driven and when 
the processor’s SRI will be sampled. 

The snoop response from each processor is transmitted on the SRO response bus in two beats (see 
Table 8-12). The North Bridge gathers the snoop responses from all processors and performs a logical-OR 
operation on the accumulated responses. The North Bridge sends the logical-OR of the snoop response back 
to all processors on the SRI bus. 

Table 8-12. Snoop Response Bit Definition 

Beat Bits Description

1 SR[0] Intervention

1 SR[1] Modified

2 SR[0] Retry

2 SR[1] Shared

Table 8-13. Allowed Snoop Responses  

Retry Intervention Modified Shared Description

0 0 0 0 Null (exclusive for reads)

0 0 0 1 Shared 

0 0 1 x Modified

0 1 0 0 Invalid 

0 1 0 1 Shared intervention 

0 1 1 x Modified intervention 

1 x x x Retry 
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8.3.1 Snoop Response Bus Implementation

Each snoop response bus is controlled by two configurable parameters: SNOOPLAT and SNOOPACC. For 
all parameters, time is measured in bus beats from the final locally clocked flip-flop or latch output to the first 
locally clocked input.

The processor SNOOPLAT parameter defines the number of bus beats between receiving the last beat of the 
reflected command packet and driving the first beat of the snoop response. SNOOPLAT does not need to be 
programmed for the processors, since the processors are assumed to be identical. The North Bridge 
SNOOPLAT value is the sum of the transfer time of the reflected command packet from the North Bridge to 
the processor, the processor SNOOPLAT value, and the transfer time of the snoop response bus from the 
processor to the North Bridge (see Figure 11-12 North Bridge Configurable Timing Parameters on page 287). 

On the North Bridge, the SNOOPACC parameter defines the delay between the time a processor sends the 
last beat of an individual snoop response to the time it receives the first beat of the accumulated snoop 
response from the North Bridge (see Figure 11-13 Processor Configurable Timing Parameters on page 287). 
SNOOPACC includes the time required by the North Bridge to gather the responses from all of the proces-
sors. The North Bridge reflects all incoming command packets at a pace determined by the SNOOPWIN 
parameter. SNOOPWIN sets the snoop window, which is the minimum distance between two consecutive 
snoop requests (see Figure 11-13). 

An address collision occurs if the current address is the same as a previously received snoop requested 
address. If this occurs the current snoop request is delayed until the conflicting previous request is concluded. 
This condition is called Previous Adjacent Address Match (PAAM). The PAAMWIN parameter indicates the 
number of bus beats a request is active during which a conflicting snoop request cannot be issued. An unre-
lated snoop request can be sent during the PAAM window. Figure 11-12. North Bridge Configurable Timing 
Parameters shows the timing of the PAAMWIN parameter.

For a snoop request to be issued, the following conditions must be satisfied: 

1. At least SNOOPWIN beats have transpired since the previous snoop request was issued.
2. There is at least one non-active PAAM address slot available. 
3. No active PAAM address conflicts with the request.

The number of PAAM address slots on the North Bridge is implementation-dependent, but ranges from 2 to 4. 
A snoop request activates a PAAM address slot when it is issued. After PAAMWIN beats the slot is deacti-
vated and can be reassigned to another request. The number of address bits used to detect conflict is also 
implementation-dependent.

There is no requirement that all snoop requests fall in exact modulo SNOOPWIN beats. Even-numbered idle 
bus beats can be used beyond SNOOPWIN between two subsequent snoop requests. The PAAMWIN value 
is not required to be a multiple of the SNOOPWIN value. 

The I2C interface is used to program all programmable delay parameters (see Section 11.2 I2C Interface on 
page 278). 
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8.3.2 Snoop Response Descriptions

8.3.2.1 SResp Retry Response Code (Priority 1 - highest)

SResp Retry is issued for the following reasons:

• Lost reservation: A master that has a reservation will retry an atomic write/flush itself if the reservation 
has been lost since the write was issued. 

• Push condition: A snooper will retry a transaction if a push is needed for a read or write-with-flush.

• Resource conflict: A snooper will retry a transaction due to collision with a resource that has ownership of 
the line.

• Memory and intervention buffer full: A North Bridge can retry a read transaction that might cause inter-
vention, if it determines it temporarily cannot receive the intervention data. It is typically more efficient to 
use the transfer handshake retry on the intervening data packet for this case. 

SResp Retry ramifications:

• Master: May reissue this operation use a different tag, or may reissue a different operation instead of or 
before the operation is reissued. Any data transfer aborted by this retry may be terminated prior to the 
data packet completion. 

• Target: Any operation that has completed a SResp Retry may take a variable amount of time to clean up 
resources and therefore may cause future retries due to resources being tied up by this operation. 
Guarded cache-inhibited write operations need to be ordered with respect to each other. The processor 
cannot proceed and cannot issue the next operation until the SResp window with the null response has 
passed.

• Snooper: Any operation that has completed a SResp Retry is aborted by the snooper and leaves the 
cache state unmodified, except when Intervention is disabled on a read request and the snooper has 
modified data. The snooper will then push the data back to memory and clean or invalidate the line.

8.3.2.2 SResp Modified - Intervention Response Code (Priority 2)

The Modified coding is activated when a snooper detects the address of a cache line on a read operation that 
is contained in its own cache and is modified (dirty). The snooper then provides the data by using interven-
tion.

SResp Modified-Intervention is asserted if a snooper asserts SResp Modified-Intervention on a Read or 
RWITM when bus intervention is enabled (N = ‘1’), snooping is enabled (M = ‘1’) and a cache line is snooped 
modified. If SResp Retry is sampled instead of SResp Modified-Intervention, then the snooper can either 
push the block to memory or leave the cache state unmodified.

The ramifications of a SResp Modified - Intervention for bus devices are:

• Master and Read or RWITM: 
This tells the master that its request is satisfied by the cache holding the modified data.

• Memory and Read or RWITM: 
This tells the North Bridge to cancel its read request. If the command was read, the North Bridge looks for 
the tagged data and copies the block to memory. 
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8.3.2.3 SResp Shared - Intervention Response Code (Priority 3)

The Shared-Intervention coding is activated when a snooper detects the address of a cache line on a 
reflected read command packet that is contained in the snooper’s own cache and is the owner (most recent 
recipient) of the data. This signal can only be asserted by one bus device, since there is only one owner of 
data. Since SResp Retry is a higher priority than SResp Shared, the snooper must wait until the snoop 
response is received before beginning the intervention push. 

A snooper using this code must accommodate the option on burst reads whereby the requestor indicates 
intervention is not desired. In these cases, the response must be SResp Shared.

The ramifications of a SResp Shared - Intervention are:

• A master receiving this SResp code looks for intervention data.

• The North Bridge treats SResp Shared - Intervention as SRespRetry.

8.3.2.4 SResp Modified Response Code (Priority 4) 

SResp Modified is asserted for the following reasons:

• A snooper asserts SResp Modified on a Read or RWITM when bus intervention is not enabled (N = ‘0’), 
snooping is enabled (M = ‘1’) and a cache line is snooped modified. If SResp Retry is sampled instead of 
SResp Modified, then the snooper can either push the block to memory or leave the cache state unmodi-
fied.

• A snooper asserts SResp Modified for the flush or clean bus operations if the addressed block is modi-
fied. If SResp Modified is sampled in this case, then the snooper pushes the block to memory and marks 
the cache Invalid (flush), or Shared/Exclusive (clean). If SResp Retry is sampled instead of SResp Modi-
fied then the snooper can either push the block to memory or leave the cache state unchanged.

8.3.2.5 SResp Shared Response Code (Priority 5) 

Snooper: 
The Shared response is encoded when a snooper inspects the address of a cache line on a read transaction 
that is contained in its own cache and has not been modified, marking the block shared if the block was 
marked exclusive. This signal can be asserted by more than one snooper, and the snooper will retain a copy 
of the block.

I/O Snooper: 
I/O devices that do not cache data Exclusive or Modified (shared only) are allowed to assert without having 
the block cached (for example, they might snoop at a larger granularity than the block address).

Master: 
This tells the bus master that the data on a read, when returned, must be marked shared and not exclusive.
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8.3.2.6 SResp Null or Clean Response Code (Priority 6 - lowest)

The null or clean response is encoded to indicate one of the following:

1. There is no local (or remote) device presently caching this line.

2. A synchronize type transaction has been completed by all snoopers (for example, sync, tlbsync).

3. The line is cached, but the null response is allowed (for example, the null for a clean transaction that hits 
on an exclusive line).

8.4 Bus Transactions

This section provides details of the following processor interconnect bus transactions:

• Memory read transactions (general)

• Memory write transactions (general)

• Command only transactions

8.4.1 Terms

Each of the transactions in this section uses the following terms to define the parameters of the transaction. 

Reservation A reservation is an address location held by the processor. It is used for emulating 
atomic operations using the PowerPC larx and stcx type instructions. A processor 
has at most one reservation at any time. A reservation is established by executing 
a lwarx or ldarx instruction. It is normally lost when the corresponding stwcx. or 
stdcx. instruction is performed. A reservation might also be lost if the data at the 
address is modified by another processor or bus device.

Snooper A bus device that inspects inbound reflected command packets and uses the 
Snoop Response bus to keep cached data coherent with other system caches. A 
bus adapter or I/O bridge might contain a cache and if so will act like a snooper.

Memory The bus device that responds to a memory read or write, and handles positive 
acknowledgment for coherent operations. If some portion of memory is attached to 
a remote bus then the bus adapter also acts like memory for memory accesses to 
that remote memory space. 

I/O Bridge An I/O bridge device is a gateway to an I/O bus that cannot cache data in the 
Exclusive or Modified state. The bridge does not forward snoops to the I/O bus. If 
an I/O device has shared cache data, it is necessary to implement a directory for 
the cached data in the shared state. 
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8.4.2 Memory Read Transactions (General)

A master (processor) reads I/O or memory data by sending a read command to the memory controller of the 
North Bridge. The processor drives the ADO bus provided it was not in the midst of sending another 
command packet, and there was no higher priority transaction ready to be sent. After a programmable 
number of beats (STATLAT), the master reads the transfer handshake from the THI bus to ascertain the 
status of the transfer. The slave (North Bridge) sends a positive acknowledge on the THI bus if no parity error 
was detected and there was a slot to queue the read request. If no queuing space is available, a retry status 
is returned. 

The North Bridge dequeues the request after internal arbitration and decodes the command packet. It issues 
a read request to the North Bridge for the indicated block size and reflects the command packet to all proces-
sors for snooping purposes. The North Bridge paces new snoop requests based on the programmable 
parameter, SNOOPWIN. The North Bridge will detect address collisions (transactions to the same cache line) 
and will delay the second conflicting transaction until PAAMWIN bus beats have transpired since the original 
conflicting transaction was issued for snooping. In addition, processors can request that transactions be 
handled one at a time, by setting the pipelined snoop (P) address modifier bit low. 

Each processor drives their outbound SRO bus during the snoop window that is seen by all processors and 
the North Bridge at the same time. The processor may request that the transaction be retried with a retry 
snoop response. Otherwise, if a processor has a clean copy in its cache, the shared response code is 
returned. If the requested cache line is modified inside a processor cache, that processor signals the inter-
vention snoop response, which is a promise to send to the North Bridge the modified copy in the form of a 
processor-to-memory read-data packet. The North Bridge accumulates the combined (logical-OR) snoop 
responses from all of the attached processors. Depending upon the combined response the North Bridge 
may abort, delay, or send the memory data or the intervened data to the original requester. The intervened 
data is also written to memory for regular read transactions (no intention to modify).

When the North Bridge responds with the read data it sends a read-data packet, which consists of a 2-beat 
header and 2 to 32 beats of payload data. The header contains the original tag and the data size. The 
payload data is sent immediately after the header. The DERR bit is asserted if the data contains an error.

8.4.2.1 Read Transaction

A read command is issued to get data that is not immediately going to be modified. The modifier bits that are 
valid are N (intervention) and S (non-caching). The M and I modifiers are sourced from the page table entry, 
hardwired, or set by the I/O.

Master:
A read burst is issued by the processor to satisfy a load, tablewalk access, dcbt or other data prefetch, or 
I-fetch to a cacheable page that misses the cache. A read non-burst is caused by a non-cacheable load or 
I-fetch.

Atomic: 
The Atomic modifier (TType <0>) is set along with the M-bit when the read is to satisfy a lwarx or ldarx. 

S-Bit: 
The S-bit is set along with the M-bit when the master will not cache the data but wants the latest copy. If S is 
set, a snooper is allowed to clean up dirty data in its cache by pushing it to memory, but keeping it marked 
exclusive afterwards. 
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N-Bit:
The N-bit is set when the master and memory are capable of intervention, intervention is desired, and the 
read data size is the coherency block size for the system. All non-block size reads must have the N-bit set to 
zero. In addition, the processor is capable of setting N = ‘0’ for all reads in case it is attached to memory that 
does not support intervention. 

G-Bit: 
The G-bit is set when the read is the result of a load to cache-inhibited guarded storage. When set, the 
system implementation knows this read might only complete once. 

P-Bit: 
The P-bit is set when snoop pipelining is allowed (default for reads). This bit can be cleared for reads if the 
processor requires the transaction snoop response be resolved before another independent transaction is 
issued. When an address collision is detected, the North Bridge automatically delays the colliding transaction 
until the previous transaction is resolved.

Snooper:
If the address contained in the reflected command packet is in the cache and marked Modified, the snooper 
performs a push or intervention.

Memory:
Memory can provide the addressed data no earlier than the end of the snoop window for that transaction. The 
North Bridge examines the Snoop Response bus and if it was SResp Retry or SResp Intervention, the North 
Bridge will terminate the operation and deallocate the tag. If the SResp response is Modified and because the 
North Bridge supports intervention, the North Bridge captures the line as it is transferred to the requestor and 
stores the line to memory.

I/O Bridge:
If the G-bit is set, an I/O bridge cannot issue the read to any memory mapped I/O devices more than once. 
This means waiting until the previous guarded read is committed (no retry from the transfer handshake) 
before sending the next request.

8.4.2.2 Read with No Intent to Cache Transaction

Read with no Intent to Cache (RWNITC) is another name for a read transaction with the S-bit and M-bit set 
(see above). It is a coherent read; that is, the master wants the latest data, but does not cache it, therefore 
the snooper can keep caching the data as Exclusive after it provides the data through a push or an interven-
tion.
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8.4.2.3 Read with Intent to Modify Burst Transaction

Master:
The read with intent to modify (RWITM) transaction is issued by a master to bring an entire block into a cache 
for the purpose of writing to it. It is always a block sized read. It is triggered by a store, stwcx., stdcx., or 
dcbtst to a cacheable page that misses in the cache. The master should mark its cache Exclusive if the 
SResp is not Retry.

Snooper:
The snooper invalidates any line cached at the same physical block address and asserts SResp Null if 
marked Invalid, Shared, or Exclusive. If the request hits its cache, and it is marked Modified, the snooper per-
forms either a push or an intervention. If the system supports Shared-Intervention and the request was 
marked N = ‘1’, then the snooper can respond Shared-Intervention and push the data.

Memory:
The memory can provide the addressed data no earlier than after SNOOPACC. The North Bridge must 
examine the snoop response code, and if it was Retry or Intervention, the North Bridge should terminate the 
operation and deallocate the tag.

Atomic: 
The Atomic modifier (TType <0>) is set along with the M-bit when the read is to satisfy a cacheable copy-
back stwcx. or stdcx..The master SResp retries its own RWITM-A if the reservation is subsequently cleared 
after issuing the RWITM but before SResp and does not reissue the RWITM-A. If a processor does not sup-
port any cache levels below it (for example, it sees all the system coherency traffic, then the A-bit need not be 
set on RWITM). 

N-Bit: 
The N-bit is set when the master and memory are capable of intervention, intervention is desired, and the 
read data size is the coherency block size for the system. All non-block size reads must have the N-bit set to 
zero. In addition, the processor is capable of setting N = ‘0’ for all reads, in case the memory does not support 
intervention. 

G and S-Bits: 
These bits are not defined for RWITM.

8.4.2.4 LARX-Reserve Transaction

Master:
The LARX-Reserve transaction is an address-only transaction that sets the reservation for every cache level 
below the level serviced by a read atomic operation. If the reservation at one level is already set to the same 
address as the LARX or a LARX-Reserve being propagated, then it should not be propagated further 
because this causes a bus operation each time the LARX is executed and might be part of a program loop.

Snooper:
Does not see the LARX-Reserve for M = ‘0’.

Memory:
Ignores this operation.
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8.4.3 Memory Write Transactions (General)

A master sends a write command to write data to memory or to an I/O device. The write-command packet is 
immediately followed by a write-data packet. The slave (North Bridge) checks the command to see if there is 
buffer space to store the write-data packet. The slave responds with a retry transfer-handshake packet if 
there is insufficient buffer space. The master can then terminate sending the write-data packet on an even 
beat. It may then try again to send the write-command packet and write-data packet at a later time. 

The North Bridge reflects every command packet to all processors. The snoopers ignore the reflected 
command packet if M = ‘0’. Only the original processor needs to see the address inside the command packet 
to deallocate the tag after the transaction is completed. At that time, the North Bridge takes responsibility of 
snooping for the pushed (castout) data. The transaction must be propagated all the way to memory if the 
W-bit is asserted. 

8.4.3.1 Write-With-Kill Transaction

Master:
The write-with-kill transaction is a burst operation used to tell all snoopers to invalidate any copies of this line 
in their caches, while also storing the line to memory.

Snooper:
If M = ‘0’ the snooper ignores this operation. If M = ‘1’ the snooper treats this operation as a Data Line Kill 
(DKill) to the same address block, marking it Invalid (this includes any store buffers) and the operation is 
passed to any higher level cache.

Memory:
Memory must not update storage if the transfer-handshake packet indicates Retry or the SResp value (if 
applicable) is Retry. 

Table 8-14. Write-With-Kill Types Supported 

WIM Bits for Write-With-Kill W-Bit M-Bit

Copyback due to load, store, or dcbz 0 0

I/O Write1 0 or 1 1

Flush due to dcbf 1 0

Push due to snoop 1 0

1. An I/O write is a full cache line write from a memory address.
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8.4.3.2 Write-With-Clean Transaction

Master:
A write-with-clean transaction is a burst operation caused by a processor executing a dcbst instruction or a 
bus snoop read or clean to a modified block. It is used to tell all lower level caches that a copy still remains in 
this level, while updating memory (or I/O). Since no snooper has the line, it sets M = ‘0’ so horizontal snoop-
ing is avoided. The block is written all the way to memory.

Snooper:
Snoopers should not see this operation since M = ‘0’.

Memory:
Memory must not update storage if the SResp is Retry.

8.4.3.3 Write-With-Flush Transaction

Master:
A write-with-flush transaction is a partial-block write to memory and can be a sub-block burst operation from 
the I/O. It is used for cache-inhibited, or write through writes from a processor (sub-block writes). The proces-
sor sources the M-bit from the page table entry. I/O masters can also use this for DMA writes to a cache block 
without getting ownership first. The processor will set M = ‘1’ for this transaction.

Snooper:
If M = ‘1’ and the line is cached Modified, this operation is SResp Retried. The line is pushed back to memory 
with a write-with-kill, then invalidated (this includes any store back buffers [SBBs]). The only appropriate 
SResp response is Retry by a snooper (other than SResp Null, which is the default response).

Memory:
Memory must not update storage if the transfer-handshake indicates retry or the SResp value (if applicable) 
is Retry. A bus agent cannot pass a write-with-flush to an I/O bus that might contain memory mapped devices 
or memory that can be reserved without first successfully passing the response window on the PI bus.

8.4.4 Command-Only Transactions

8.4.4.1 DClaim Transaction (Invalidate others)

Master:
A master issues a Data Line Claim (DClaim) to service a dcbtst, dcbz, or store instruction. The DClaim is 
used to attempt to take a coherent block from the shared (or with dcbz invalid) state to the modified state and 
all other horizontal caches to the invalid state. It differs from DKill in that the DClaim does not invalidate the 
master’s copy in a lower level (higher number) cache.

Snooper:
Snoopers must invalidate their data cache blocks if there is a hit on this address.

Memory:
Ignores this operation. 
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8.4.4.2 Flush Transaction

Master:
A flush transaction is caused by a dcbf that hits on a memory coherent cache block and is marked shared or 
invalid. It is sent to other snoopers that might have a copy of the line.

Snooper:
If M = ‘1’ snoopers snoop their caches, and if the line is cached, it is marked invalid. If the line was marked as 
modified, it is pushed back to memory. A snooper might respond modified, or might respond Null. A SResp 
Retry response should only be used if the command cannot be accepted or a pipeline address collision 
occurs.

Memory:
Memory might ignore this operation, even if a snooper responds SResp Modified, since intervention is not 
supported on the flush operation itself. The flushed data is sent to memory on a separate write-with-kill oper-
ation.

8.4.4.3 Clean Transaction

Master:
A clean transaction is caused by a dcbst that hits on a memory coherent cache block and is marked shared 
or invalid. It is sent to other snoopers that might have a modified copy of the line.

Snooper:
If the line is cached, then it is marked shared (or exclusive if it is the lowest cache in the hierarchy). If it was 
marked modified, the line is pushed back to memory. A snooper might respond modified, or might respond 
Null. A SResp Retry response should only be used if the command cannot be accepted or a pipeline address 
collision occurs.

Memory:
Memory might ignore this operation, even if a snooper responds SResp Modified, since intervention is not 
supported on the clean operation itself. The cleaned data is sent to memory on a separate write-with-clean 
operation.

8.4.4.4 IKill Transaction

Master:
The intent of the Instruction Line Kill (IKill) transaction is to invalidate entries in any instruction-only caches in 
the system. Data only or combined caches are invalidated with other coherency operations. An IKill block is 
caused by an icbi instruction that hits on an instruction cache block that is marked as memory coherent. In 
order to prevent bus livelocks, this command should be issued with the P-bit set to 0.

Snooper:
Snoopers must invalidate their instruction cache blocks if there is a hit on this address. Any unified data or 
data only cache does not need to be snooped. A snooper might respond Retry, or might respond Null. A 
SResp Retry response should only be used if the command cannot be accepted due to resource conflicts.

Memory:
Memory can ignore this operation.
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8.4.4.5 TLBIE Transaction

Master:
TLBIE is caused by a processor executing a tlbie instruction. 

Snooper:
Snoopers accept this transaction regardless of the M-bit and invalidate any TLBs in the congruence class. 

Memory:
Memory might ignore this operation.

8.4.4.6 TLBSYNC Transaction

The intent of the TLBSYNC transaction is to act as a barrier that forces all previous operations using invali-
dated TLBs to complete before the TLBSYNC completes.

Master:
The master issues the TLBSYNC transaction in response to a processor tblsync instruction. 

Snooper:
Snoopers must SResp Retry the TLBSYNC until all previous loads or stores and I-fetches that used any TLBs 
have been flushed or performed and any snooped TLBIEs are completed. A snooped TLBSYNC has the 
same effect on a processor that a sync would have if it were executed on that processor.

Memory:
Memory can ignore this operation.

8.4.4.7 SYNC Transaction

Master
A master issues a SYNC transaction when a processor executes a sync instruction. The master stops pro-
cessing all future instructions until all previous instructions have been completed. Then the SYNC transaction 
is issued to the bus, and the sync instruction is not completed until the SYNC transaction completes on the 
bus. SResp Retry will cause the operation to be repeated, SResp Null signals completion. To prevent bus 
livelocks, this command should be issued with the P-bit set to ‘0’, if the snooper implementation would cause 
resource conflict retries. 

Snooper:
A snooper drives SResp Retry if there are any snoop operations pending, or cache pushes or snoop opera-
tions pending from previously snooped bus operations. Otherwise it responds SResp Null. 

Memory:
Memory signals SResp Retry until stores are performed if they can be reordered within the memory.Other-
wise responds SResp Null. Memory can also respond SResp Null. The SYNC is used as a store barrier. 
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8.4.4.8 EIEIO Transaction

Master:
The intent of the EIEIO transaction is to act as a barrier for all non-cacheable loads or stores that follow it. It 
forces all previous non-cacheable operations to complete before any non-cacheable operation issued after 
the EIEIO. EIEIO is caused by a processor executing an eieio instruction.

Snooper or Memory:
Ignore this operation.

I/O Bridge or Bus Adapter:
Accept and propagate toward memory-mapped I/O storage and do not allow any cache-inhibited storage 
access to bypass (if they can be reordered).

8.4.4.9 Null Transaction

Master:
A Null transaction is used by the processor to break cyclic deadlocks or prescheduled transactions that are 
no longer needed. 

Snooper, Bus Adapter, or Memory:
Ignore.
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9. Power and Thermal Management 

The PowerPC 970FX power management design is optimized to achieve high performance whenever it is 
needed, while minimizing the operating power during both active and idle periods. 

9.1 Definitions

9.1.1 Full Power Mode

Full Power (Full Run mode) is the default power mode of the processor. After initialization or reset, the 
processor will always be in this mode. All internal units are clocked at full clock speed and are fully opera-
tional.

9.1.2 Doze Mode 

This mode is entered from full power mode after the processing core has been quiesced, and instruction fetch 
and data prefetch have ceased. This mode is a power saving mode, since only the circuitry needed to provide 
bus snooping capability and maintain memory coherency is active. An interrupt condition such as external 
interrupts, decrementer, hreset, sreset, thermal management, or machine check is required to return to full 
power.

9.1.3 Nap Mode

Nap mode provides additional power savings beyond Doze mode. In general clocks to all internal units are 
switched off. Only the timer/decrementer facility, the I/O circuitry, and part of the pervasive unit are clocked 
and operating. The phase-locked loop (PLL) is running and stays locked to the global system clock 
(SYSCLK). The clock mesh is operating, as is the bus clock.

To enter Nap mode, the HID0[NAP] and then MSR[POW] must be set. The processor will then gate its core 
clocks and enter Doze mode. In Doze mode, the processor will continue to snoop, but will assert its QREQ 
signal, to indicate to the chipset that it is prepared to go into Nap mode if snooping is not required. If the 
chipset determines that there is no memory activity requiring the processor to snoop, it asserts QACK. Once 
the processor detects the assertion of QACK, it transitions to Nap mode. While in Nap mode, QACK is moni-
tored constantly. If it is dropped, the processor transitions back to Doze mode. 

If the processor has to act upon an incoming snoop, the BIU becomes active and QREQ is deasserted. 
However the processor stays in Doze mode waiting for the BIU to become idle again. As soon as the BIU is 
idle, QREQ is issued again. QACK can be reactivated when snoop is completed (after snoop response time). 
The processor switches back to Nap mode after QACK is received. 

If QACK is received without QREQ being sent (for example, the BIU is not idle), the processor enters an error 
state. If QACK is deactivated while the processor is switching to Nap mode, the transfer to Nap mode 
completes before the processor is brought back to Doze mode. Any external interrupt, reset, or check condi-
tion transfers from Nap mode back to full power mode.
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9.1.4 North Bridge Considerations

The PI participates in the system power management through two asynchronous control signals called QREQ 
and QACK. QREQ is a processor output signal that is asynchronously sampled by the local clock of the North 
Bridge. QACK is a North Bridge output signal that is asynchronously sampled by the local clock of the 
processor and other bus masters.

Figure 9-1 is a flowchart of the sequence of steps for the processor to enter Doze or Nap mode. Figure 9-2 is 
a flowchart of the sequence of complementary steps taken by the North Bridge in response to the assertion or 
negation of QREQ by the processor. In Doze mode, the processor must be capable of snooping all reflected 
command packets from the North Bridge. In Nap mode, the processor is not required to snoop transactions, 
although it must be capable of returning to Doze mode for the purpose of snooping if QACK is negated.

In the normal (or desired) sequence of events, the processor and North Bridge observe a 4-phase handshake 
for QREQ and QACK. The processor first asserts QREQ after the processor has quiesced, the snoopers are 
idle, and all outstanding PI bus transactions have completed. The processor then waits for the North Bridge to 
assert QACK. While the processor is waiting for the assertion of QACK, it is in an intermediate mode called 
Doze. Once the North Bridge asserts QACK the processor enters Nap mode. To exit Nap mode the 
processor negates QREQ and then waits for the North Bridge to negate QACK before returning to the Run 
state.

There are a few scenarios in which the four-phase handshake is preempted:

1. While in Doze mode the North Bridge reflects command packet snooping. The action taken by the pro-
cessor is to negate QREQ while snooping the reflected command packet while staying in Doze mode.

2. While in Doze mode the processor receives an interrupt. The action taken by the processor is to negate 
QREQ and return to the Run state.

3. While in Nap mode the North Bridge negates QACK while the processor has QREQ asserted. The pro-
cessor must then return to Doze mode within 64 bus clocks so that it can return to snooping reflecting 
command packets from the North Bridge.

As shown in Figure 9-2, the North Bridge normally negates QACK when QREQ is negated by any of the 
attached processors. However, it might also negate QACK if there is bus activity from any of the other 
attached bus devices that can be a bus master.
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Figure 9-1. Processor Sequence to Enter Doze or Nap Mode 
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Figure 9-2. North Bridge QREQ/QACK Signalling 
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9.2 Power Management Support

System software manages power dissipation in a variety of ways, using a number of hardware facilities. 

9.2.1 Power Management Control Bits

Dynamic power management (DPM) refers to the cycle-by-cycle control of clocks as hardware facilities are 
used for computation, and then go idle for some cycles. This gating of clocks while circuits are idle saves 
power with no reduction in performance. In normal operation, DPM should be enabled. It can be disabled, 
however, by negating HID0[DPM]. To enter Nap mode, software must first set a bit HID0[NAP] and then set 
MSR[POW] to trigger the transition to that mode. The power management control bits are summarized in 
Table 9-1. 

9.2.2 Interrupts

The only way to get from a power saving mode back into the full power mode is by asserting one of the 
following interrupts:

• External interrupt
• Thermal management interrupt 
• Decrementer interrupt.

Before entering a power saving mode, the MSR[EE] bit must be set to enable these interrupts. When an inter-
rupt is taken, it automatically resets the MSR[POW] bit, so software must set it once again to reenter a power 
saving mode. 

9.2.3 Bus Snooping

After the HID0[NAP] bit is set and then the MSR[POW] bit is set, the processor enters Doze mode and 
asserts its QREQ signal. In this mode, core clocks are gated to reduce power, but clocks in the STS are still 
active to support bus snooping. The PLL, timers, and interrupt logic are also active in all the idle modes. The 
processor must remain in this Doze mode for as long as the system determines that snooping is required. 
The assertion of QREQ indicates to the system the processor's readiness to go into Nap mode. Once the 
system determines that snooping is not currently required, it can assert QACK. When the processor receives 
this signal, it will complete the transition to Nap mode.

If snooping is required again, the system can negate QACK, signalling to the processor that it must transition 
back to Doze mode and begin snooping the bus. After a sufficient delay, activity can be initiated on the bus. If 
this bus activity once again ceases, the system can assert QACK and the processor will go back into Nap 
mode. 

Table 9-1. Power Saving Mode 

Bit Name Power Saving Mode

HID0[9] NAP Nap

HID0[11] DPM Dynamic Power Management (enable)

MSR[45] POW POW bit
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9.2.4 Bus States while in Power Saving Modes 

When serving snoops, the BIU is active and drives the outputs as required. When in Nap mode, there is no 
snooping. 

• Data Out Bus, Transfer Handshake Out and,Coherence Response are driven to an idle mode.
• Clock Out is always be driven with the proper clock signal.
• Clock In expects to receive a clock signal.

9.3 Software Considerations for Power Management

9.3.1 Entering Power Saving Mode

The following code sequence should be used to enter a power save mode. 

.......

.......
mthid0 (NAP)
.......
.......
.......
.......
loop: dssall  (VPU prefetching stop)
sync 
mtmsr (POW)
isync
br   loop
.......
.......

The Data Stream Stop All (dssall) instruction is needed to stop the prefetch engines started in behalf of the 
VPU prefetches. Only the above sequence will bring the processor into the power save mode. Switching the 
Move to HID0 (mthid0) and the Move to Machine Status Register (mtmsr) in the above sequence does not 
result in a switch to a power saving mode. When an interrupt is taken, it resets the MSR[POW] bit. 

9.3.2 External Interrupt Enable

Only an external interrupt or timer interrupt will bring the processor back from the power save mode. There-
fore note that MSR[EE] must be set before entering the above loop. Failing to set MSR[EE] and applying an 
external interrupt or a timer interrupt will result in unpredictable behavior by the processor. 
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9.4 Power Tuning Overview

Power tuning allows for operation of the PowerPC 970FX at a reduced power level. This is accomplished by 
frequency control of the on-chip (core) and off-chip clock frequencies. Presently, the power tune functionality 
provides for reduction from the maximum frequency to 1/2 of the maximum.

In the system, all processor units (PUs) and the PU interfaces in the North Bridge change the power tuning 
mode concurrently. Any processor unit can request the mode change. This information is then transmitted to 
the North Bridge via the PI bus as a special request. The North Bridge grants the requests and mirrors this 
special request to all PUs and waits for all PUs to signal that they have quiesced the bus and are ready to 
switch mode. The North Bridge then triggers the mode switch for the supported bus ratios of 2:1 and 3:1. 

The frequency scaling on the PI bus requires changing of the RoundTripDelay and the TargetTime parame-
ters. Since the I/O voltage is not changed, an initial alignment procedure (IAP) is not required. The new 
parameters are sent along with the power tuning command; they overwrite the old parameters when the 
frequency switch occurs. No parameter change is required for the power save frequency, since no bus 
activity is active in this mode.

When switching power tuning modes consideration must be given to the following items:

• Switching from high to low frequency will result in a loss of accuracy and resolution of the decrementer 
counter and will slow reaction on interrupts. The operating system has to set the decrementer counter in 
order to prevent event and interrupt misses or queue overflow on external devices. 

• Some interfaces must be running at a constant speed and voltage independent of the internal frequency 
and voltage (for example, I2C interface, SDRAM interface, and PCI interface). 

Table 9-2. Power Management Modes  

Static Power Management Modes Frequency Scaling

Full, Doze, Nap f

Full, Doze, Nap f/2

Note:  

1. See the IBM PowerPC 970FX RISC Microprocessor Datasheet Supplement for actual power dissipation specifications. 
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9.4.1 Power Tuning Definitions

Bus clock (Bclk) The external bus clock has half the frequency of the data clock due to the double 
data rate transmission mode on the PI.

Data clock (Dclk) The bus data clock has a frequency of 1/n-th of the mesh clock, where n is the 
bus ratio. Valid values for the bus ratio are 2 and 3; with 8 and 16 supported only 
for test purposes.

Local clock (lclk) Full frequency clock as delivered by the PLL, but with the same analog delay as 
the mesh. Every rising edge on mclk has a concurrent rising edge on lclk with a 
small skew.

Mesh clock (mclk) Logic behind the PLL generates full, half, or quarter frequency of the PLL clock 
and sends it on the mesh. The PLL also guarantees that some rising edge of the 
mesh clock at a latch is aligned to some rising edge of the SYSCLK when using 
full frequency.

PI Processor interconnect bus (processor interface). 

PLL/Full frequency clock Frequency is either 8 or 12 times the SYSCLK.

PSYNC A signal provided by the North Bridge which is active for one rising edge of 
SYSCLK every 24 SYSCLK cycles. 

PSYNC edge A special mesh clock rising edge, aligned with a rising edge of the SYSCLK 
while the external PSYNC is active.

SYSCLK This is the system clock as provided on the board.

Time0 Time0 mark. A special rising edge on the bus clock, which is either concurrent to 
the PSYNC edge or 4 x bus clocks edges (i.e., two external bus clock phases) 
away.

Note:  Not all bus ratios are valid for all frequency modes, when taking the fol-
lowing into consideration: the external PSYNC is a 24:1 SYSCLK signal, the PLL 
multiplication factors, and the Time0 definition.
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9.4.2 Power Modes 

Figure 9-3 is a state diagram showing the various power modes supported in the 970FX and the transitions 
between them. Table 9-3 identifies the power states in that diagram, and Table 9-4 identifies the transitions 
labeled in the diagram.

There are 5 transitions that lower power dissipation, indicated as Lx, corresponding to left to right or top to 
bottom transitions in the diagram. Each of these has a reciprocal transition that raises power dissipation, indi-
cated as Rx. In addition, there are 2 transitions which raise power (R3 and R7) and do not have reciprocal 
transtions. 

Figure 9-3. 970FX microprocessor Power Modes 
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The two Full Run modes, (S1, S4), one each for high and low speed, correspond to all operating processor 
functions. The two Doze modes, (S2, S5), involve limited functionality, which include bus snooping, but not 
instruction execution. The timers (decrementer and time base) continue to run during Doze modes, as does 
the logic for responding to interrupts. The two Nap modes, (S3, S6), correspond to a level of functionality 
below Doze, in which snooping is not supported, but timer and interrupt logic is still active.

The state transitions between Run, Doze, and Nap at a given frequency are triggered as in the prior PowerPC 
970. For full frequency, these are transitions L1, R1, L2, R2, R3; and for low frequency L5, R5, L6, R6, R7. 

The transition from a Full Run mode to a corresponding Doze mode is initiated by the software setting the 
MSR[POW] bit to a ‘1’, when the HID0[NAP] bit is a ‘1’. This will trigger the normal idle mode sequence that 
causes I-fetch to quiesce, the BIU to quiesce, the clocks to the core to be gated, and QREQ to be asserted. 
At this point, the processor is in Doze mode. If or when QACK is asserted, the clocks driving the snoop logic 
are gated, and the processor enters Nap mode. Once in Nap mode, if QACK is negated, the snoop logic is 
reactivated and the processor returns to Doze mode. From either Doze mode or Nap mode, an interrupt 
(External, Decrementer, System Management, Performance Monitor, or Reset) will reactivate all the clocks, 
returning the processor to Full Run mode, where it will execute instructions starting at the corresponding 
interrupt vector. This brief description of the transitions among corresponding Full Run, Doze, and Nap 
modes applies to both processing speeds (high and low). 

Table 9-3. Power Mode States 

State Description

S1 Full Run, High Speed

S2 Doze, High Speed

S3 Nap, High Speed

S4 Full Run, Low Speed

S5 Doze, Low Speed

S6 Nap, Low Speed

Table 9-4. Transitions between Power Modes 

Transition From To Trigger

L1 Run, High Doze, High MSR[POW] with HID0[NAP] = ‘1’

R1 Doze, High Run, High Interrupt

L2 Doze, High Nap, High QACK asserted

R2 Nap, High Doze, High QACK negated

R3 Nap, High Run, High Interrupt

L4 Run, High Run, Low Power tuning command

R4 Run, Low Run, High Power tuning command

L5 Run, Low Doze, Low MSR[POW] with HID0[NAP] = ‘1’

R5 Doze, Low Run, Low Interrupt

L6 Doze, Low Nap, Low QACK asserted

R6 Nap, Low Doze, Low QACK negated

R7 Nap, Low Run, Low Interrupt



User’s Manual

 IBM PowerPC 970FX RISC Microprocessor

Version 1.7
March 14, 2008  
 

Power and Thermal Management

Page 171 of 360

The power tuning transitions are initiated by one processor writing to the Power Control Register (PCR), but 
are then mediated by a special bus transaction to the North Bridge, which reflects that transaction to all 
processors in the system. Power tuning transitions involve changing the mesh frequency while in Run mode. 
These transitions are initiated by software changing the Power Control Register (PCR) in one of the proces-
sors, which causes a special bus transaction to the North Bridge. This transaction is reflected by the North 
Bridge to all processors in the system, which causes those processors to begin the transition process. 
Processors indicate their readiness to make the frequency switch itself by asserting QREQ to the North 
Bridge, and the North Bridge responds when it is ready and after it has received all the QREQs from the 
processors by asserting QACK to all processors. The time it takes to get to this point in the procedure varies. 
It depends on activity levels in the processors and North Bridge. 

9.5 PLL Design

The PLL is designed to support the frequency scaling capability of the 970FX microprocessor. Both the 
processor clock and the bus clock are derived from the reference clock input to the chip in the PowerPC 
970FX design. For frequency scaling it is assumed that the reference clock, SYSCLK , and the related 
synchronizing clock, Psync run at a constant frequency.

The PLL uses a fixed divider in the feedback path, but a variable, seamlessly switched divider in the forward 
path. The fixed feedback path allows the PLL to constantly run at a fixed frequency, avoiding the need to 
relock when switching frequencies. The processor clock (mclk) and bus clock (Bclk) frequencies can be 
changed seamlessly, while maintaining the ratio between these two clocks at a fixed value. Figure 9-4 shows 
this design. Note that the processor interface (PI) supports a double data rate bus. Therefore, the data rate 
clock (Dclk) is twice the Bclk frequency, and is constrained by the processor design to be no more than half 
the mclk frequency.

Figure 9-4. PLL Design 
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The PLL is designed to allow a feedback divider value ranging from 1 to 12, in series with an additional divide 
by 2 to 8 in the feedback path. The forward divider is also in series with the divide by 2 to 8. To generate mclk 
from the PLL output frequency, it has selectable values of 1, 2, 4, and divide by 64 mode. The forward divider 
can then generate the data rate clock from mclk with selectable values of 2, 3, 4, 6, and 12 (values of 8 and 
16 are also available for debug, but are not supported on the processor interface bus, nor by the frequency 
scaling facility). Despite these many possible configurations, one constraint that limits the combinations of 
frequencies that can be used in the PowerPC 970FX is imposed by the psync counter.

Note:  The seamless divider currently supports values of 1 and 2.

The psync counter in the PowerPC 970FX continuously counts 24 mclks and then resets to zero, except 
when Dclk values of 4 and 12 are used. In these cases, the counter will count to 48. This psync counter is 
used to generate PI control signals that are synchronized with the North Bridge (NB) drivers and receivers, as 
mediated by the Psync signal. Whenever a Psync pulse is detected, the psync counter value is checked to be 
sure that synchronization is maintained. Since the Psync pulse occurs once every 24 SYSCLK cycles, the 
mclk frequency is constrained to be a multiple of the SYSCLK frequency (an even multiple in the case of a 
Dclk divider of 4 or 12). The frequency scaling capability on the PowerPC 970FX further constrains the clock 
configuration values, since this psync counter constraint applies to the reduced frequency, as well as the high 
frequency clock rates. 

To meet the psync counter constraint the allowable divider values in the feedback path are multiples of four. 
With a feedback value of eight, for example, using a forward divider value of ‘1’ yields the high frequency mclk 
that is eight times the SYSCLK. Using a divider value of ‘2’ then yields the medium frequency mclk that is four 
times the SYSCLK, and using a divider value of ‘4’ yields the low frequency mclk that is two times the 
SYSCLK. 

There are several constraints on frequency configurations for the PowerPC 970FX besides that imposed by 
the psync counter. See the IBM PowerPC 970FX RISC Microprocessor Datasheet for information on the 
allowed frequency range of the processor. 

9.6 Time Base and Decrementer

The time base and decrementer registers will run at a constant frequency, independent of changes to the 
processor and bus frequencies. The default operation of these timers is to run at 1/8 the full processor 
frequency, even when the processor itself is running at a lower frequency. When TBEN is configured to clock 
these timers (HID0[NAP] = ‘1’), the timers will run at the TBEN frequency. When the external clock input 
mode is used, the TBEN input frequency must not exceed the value specified in the IBM PowerPC 970FX 
RISC Microprocessor Datasheet. 

Since the mesh clock frequency can be lowered to 1/64th of the full-speed, the time base and decrementer 
might be increased or decreased by more than one at a time. Therefore testing that the decrementer has 
reached the value of zero in order to generate an internal interrupt is not sufficient. The logic detects that the 
counter has wrapped around. Additionally, the time resolution of the counters cannot exceed the mesh clock 
frequency.

9.7 I2C Bus Interface

The I2C bus interface operates at a constant speed independent of the current processor frequency. 
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9.8 Frequency Scaling 

Whenever an application requires less than the maximum performance available from the processor, active 
power can be reduced linearly by reducing the processor clock frequency. Frequency scaling on the 
PowerPC 970FX involves changing the bus frequency along with the processor frequency, due to the high 
speed of the PI bus, and the constraint that the processor frequency be at least twice the bit rate of the bus. 
In order to support frequency scaling in a multiprocessor system, the North Bridge must be involved in initi-
ating the sequence. That sequence is summarized as follows:

1. The operating system, running on one of the processors, detects a change in idle time, or predicts a 
change in processing requirements.

2. That processor writes a configuration value to the power control register (PCR). The write to this register 
initiates a bus transaction which has high priority in the STS, and goes out with a newly defined transac-
tion type (0x05). The configuration value written to the register is used as the address of the bus transac-
tion. See Section 9.8.4 Power Adjust Bus Transaction.

3. The North Bridge responds by negating QACK to any napping processors and reflecting the special 
transaction and address to all processors.

4. Each processor snoops this bus transaction, captures the address, and negates its QREQ signal if it is in 
DOZE mode. Once it acknowledges the bus transaction, the processor sets a bit in the power status reg-
ister (PSR) and starts its frequency change state machine.

5. When the North Bridge receives the command acknowledgement, it waits at least 12 bus beats to insure 
that all QREQs associated with NAP/DOZE have been negated, then kicks off its frequency change state 
machine. 

6. Each state machine oversees the process of achieving a quiescent bus state that is sufficient to allow the 
frequency change. This quiescent state corresponds to completing currently active transactions to the 
point where no timing constraints exist on the bus between what has been sent, and what will be sent 
next.

7. When each processor has its bus in a quiescent state (sending null transactions, acknowledging received 
transactions, accepting incoming data), it asserts QREQ. 

8. When the North Bridge has its bus in a quiescent state (sending null transactions, acknowledging 
received transactions), and all QREQs from all processors are now asserted, it no longer has to accept or 
respond to incoming transactions, and so it will assert QACK to all processors. 

9. In response to this QACK, each processor can now stop responding to incoming transactions and so will 
stop its bus clocks at the beginning of the next time0 cycle. Meanwhile, the North Bridge is executing its 
frequency change.

10. After stopping its bus clocks, each processor executes the frequency change, by changing the forward 
divider on the PLL. At this time, the PI configuration values are also changed.

11. After the frequency has been changed, each processor updates its (core speed) psync counter from its 
full-speed psync counter.

12. At the beginning of the next time0 cycle, each processor starts its bus clocks.

13. Each processor then negates QREQ, indicating it is ready to accept incoming transactions.

14. When the North Bridge has detected that all QREQs are negated, and the North Bridge has finished its 
frequency change sequence, it negates QACK, indicating to the processors that they can commence out-
going bus activity.
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15. In each processor, the status bit in the PSR indicating a frequency switch in progress is reset. The state 
machine goes idle and the frequency switch is complete.

9.8.1 Initiating a Frequency Change

Software initiates a frequency change by writing to the PCR. The value written to the PCR frequency field 
determines the target frequency being switched to. The values in the parameter fields must correspond to this 
new frequency. Similarly, if the voltage field is used, the voltage requested must correspond to the frequency 
requested. The North Bridge is responsible for changing the voltage before the frequency change when 
raising voltage, and after the frequency change when lowering the voltage.

The QREQ and QACK signals have been overloaded to provide handshaking during the frequency change 
procedure. Therefore, these signals are not available for their normal use (handshaking for Nap mode) during 
the procedure. System hardware or software must enforce the negation of these signals at the beginning of 
the procedure. If a processor puts itself into Nap mode during the frequency change procedure, the processor 
blocks assertion of the QREQ signal for Nap signalling until after the frequency change is complete.

The waveforms in Figure 9-5 show the ordering of events on the CPU to North Bridge interface during a 
frequency change in which the clocks are slowed to half speed. The time shown at the bottom of the figure is 
in CPU processor clocks at the original frequency. However, this figure is intended to show the ordering of 
events, and not actual latencies between events. Latencies are discussed in Section 9.8.6 Frequency Scaling 
Latencies. 

The sequence in Figure 9-5 starts at the point after a CPU has sent the change request to the North Bridge 
and the North Bridge has reflected that request to all the processors. Each CPU then completes any bus 
transactions in progress, and reaches a quiescent state. The CPU quiesce signal shown in Figure 9-5 is 
intended to indicate that the quiescent state is reached at cycle 6. Two cycles later, the CPU asserts its 
internal sts_stop signal. At this point, the core no longer has access to the L2 cache or bus. Two cycles later, 
the CPU asserts QREQ. During this time, the North Bridge has also been progressing toward a quiescent 
state. The North Bridge quiesce signal indicates that this state is reached at cycle 12, though it might occur 
before QREQ is asserted. 

The combination of QREQ asserted and North Bridge quiescent causes the North Bridge to stop its bus 
clocks on a Time0 boundary, which occurs at cycle 16. The North Bridge may instead continue to run its bus 
clock, as long as it drives null transactions during the period that the bus clocks would otherwise be stopped. 
This is followed by the North Bridge asserting QACK, shown at cycle 18. Once QACK is asserted, the CPU 
stops its bus clocks on the next internal psync boundary (psyncnt), shown at cycle 24. With its bus clocks 
stopped, the CPU changes the frequency of its processor (and therefore bus) clock, shown at cycle 38. Once 
the frequency change occurs, the CPU starts its bus clocks on the next psync boundary, shown at cycle 48. 
After starting its bus clocks, the CPU negates QREQ, shown at cycle 56. The North Bridge then starts its bus 
clocks on a Time0 boundary (cycle 64) after which it negates QACK (cycle 68). Internal to the CPU, the nega-
tion of QACK leads to the negation of sts_stop (cycle 76) allowing core access to the L2 cache and activity to 
proceed on the bus.
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Figure 9-5. Frequency Scaling Event Ordering 
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9.8.2 Power Control Register

Software writes to the PCR bits to indicate that a frequency change is desired, and to pass the information 
corresponding to that frequency change to all the processors in the system. Writing to the PCR initiates the 
frequency change process, by generating a special bus transaction that is sent to the North Bridge and even-
tually reflected to all the processors. The address bits of this special transaction are copied from 
PCRH[22:31] and PCR[0:31], as described in the following section. 

Note:  The special bus transaction is generated when the PCR register is written, so the Power Control Reg-
ister High (PCRH) must be updated as needed prior to writing the PCR.

The PCR is implemented as a SCOM register at address 0x0AA001. The PCRH is implemented as a SCOM 
register, at the same address as the PCR. The high order bit in the register is used to indicate which register 
is being written (PCR high order bit = ‘1’, PCRH high order bit = ‘0’). The 32-bit PCR and PCRH registers are 
written using mtspr instructions that target the SCOMD and SCOMC SPRs, such that the low order 32 bits 
(bits [32:63]) of the source register are moved to the target PCR or PCRH. 

For example, before initiating a frequency change set the following

• Appropriate values in the low order bits of GPR3 to indicate the desired settings for the PCR, (including 
bit [32] = ‘1’)

• Appropriate values for PCRH in GPR4 (including bit [32] = ‘0’)

• The SCOM address placed in GPR5 (64-bit value of x‘00000000 0AA00100’) 

The following sequence initiates a frequency change:

.set SCOMD 277    # SPRN for SCOMD

.set SCOMC 276   # SPRN for SCOMC
mtspr SCOMD, GPR4
isync
mtspr SCOMC, GPR5
isync
mtspr SCOMD, GPR3
isync
mtspr SCOMC, GPR5

Note:  For the PowerPC 970FX, each frequency change should be preceded by a write to the PCR in which 
Gd contains all ‘0’s. Not clearing the PCR will prevent further frequency scale commands from being issued 
by the bus, even though the instruction sequence will complete within the processor.
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Table 9-5 describes the bits in the Power Control Register.

The Power Control Register High (PCRH) contains the high order address field, as described in Table 9-6.
 

Table 9-5. Power Control Register (PCR)  

Bit Description

0 Must be ‘1’

1:7 Reserved

8:12 Spare field

13:14

Frequency field
00 full frequency
01 half frequency
10 quarter frequency (not supported) 
11 illegal

15 Frequency request valid

16 Reserved

17:18 Target time

19:23 STATLAT is the number of bus beats between the last beat of the address/data (AD) packet and the first beat of the 
transfer-handshake (TH) packet.

24:27 SNOOPLAT is the number of bus beats between the last beat of a reflected command packet to the first beat of the 
individual snoop responses from each of the processors received at the North Bridge.

28:31 SNOOPACC is the number of bus beats between the last beat of the individual snoop response sent from a proces-
sor to the first beat of the accumulated snoop response received from the North Bridge.

Table 9-6. Power Control Register High (PCRH) 

Bit Description

0 Must be 0

1:21 Reserved

22:31 High order address field
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9.8.3 Power Status Register

The status of the power tuning facility is available in the Power Status register (PSR). This register consists of 
read-only bits, indicating the current voltage (if supported by software) and the current frequency.

When the power adjust special transaction reflected from the North Bridge is received by the processor, it 
sets PSR[2] to indicate that a frequency change is in progress. Shortly after the North Bridge has asserted 
QACK to start the frequency scale, the new frequency field is reflected in PSR[6:7]. Once the frequency 
scaling has completed PSR[3] is also set to ‘1’.

A SCOM read of the PSR once bit [2] and [3] are set will automatically clear both bits. The PSR is imple-
mented as a SCOM register at address 0x408001 as described in Table 9-7.

Table 9-7. Power Status Register (PSR) 

Bit Description

0:1 Reserved

2 Power tuning command has been received

3 Power tuning command has completed

4:5 Reserved

6:7 Current frequency

8:63 Reserved
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9.8.4 Power Adjust Bus Transaction

The processor sends a power adjust transaction to the North Bridge to initiate the frequency and voltage 
scaling sequence in the system. This is a command-only transaction that contains information encoded in a 
subset of the address bits to indicate the desired target frequency, and the corresponding parameter informa-
tion. The transaction type and related bus signals for this transaction are as follows:

The encoding of the address bits for this transaction is as follows: 

These 42 low order address bits are copied from the corresponding fields in the Power Control Register. Soft-
ware can set bits [22 to 31] to any desired value to make the address fall within some desired range. 

The North Bridge uses the frequency field to determine what new frequency is being requested. Only the 
maximum rated or full frequency and one-half of full frequency are currently supported. The frequency 
request valid bit must be asserted if a frequency change is being requested. The presence of this bit allows 
the option of a voltage change only request. If the frequency request valid bit is negated, the North Bridge will 
not reflect this transaction to the processors. If the frequency request bit is asserted, the North Bridge has the 
option of reflecting the transaction to the processors in cases where the frequency field itself does not corre-
spond to a valid change. This includes the cases where the frequency field value indicates no change, 
change to the current value, or change to a value that is not allowed from the current value. 

Table 9-8. Power Adjust Transaction 

Bus Operation Power Adjust

Transaction type 00101  (0x05)

Address modifiers (WIMGRP)1 001000

Tag field 11011

1. W = write through, I = cache inhibited, M = memory coherent, G = guarded read, R = rerunning, P = pipelined snoop. 

Table 9-9. Power Adjust Transaction  

Bit Description

0:21 Not implemented

22:31 High order address bits

32:39 Reserved

40:44 Spare field

45:46 Frequency field

47 Frequency request valid

48 Reserved

49:50 Target time

51:55 STATLAT is the number of bus beats between the last beat of the address/data (AD) packet and the first beat of the 
transfer-handshake (TH) packet.

56:59 SNOOPLAT is the number of bus beats between the last beat of a reflected command packet to the first beat of the 
individual snoop responses from each of the processors received at the North Bridge.

60:63 SNOOPACC is the number of bus beats between the last beat of the individual snoop response sent from a proces-
sor to the first beat of the accumulated snoop response received from the North Bridge.



User’s Manual
 
IBM PowerPC 970FX RISC Microprocessor  

Power and Thermal Management

Page 180 of 360
Version 1.7

March 14, 2008

Once the transaction is reflected to the processors, each processor responds as follows: 

• If the frequency field indicates no change, the processor does nothing. 

• If the frequency field indicates a change to the current frequency, or a change to a new frequency, then 
the processor must execute the frequency change procedure.

In addition to the four parameters passed in the power adjust transaction, the PI also depends on the values 
of the programmable bit line and clock delays that are determined during the IAP at power-on. To support 
frequency scaling, this IAP must be run at the high frequency, high voltage setting for the processor. Then, 
the effect of running at lower frequencies is to widen the signal eye, while the effect of lowering the core 
voltage (the I/O voltage remains constant) is to increase all the bit and clock delays. 

9.8.5 Clock Dithering

Input current to the processor can change significantly during transitions of the power tuning frequency. 
These current changes must be controlled to avoid over and under-voltages that a high di/dt might cause due 
to inductance in the power distribution network. A clock dithering mechanism included in the the power tuning 
facility enables gradually transitioning between frequencies.

The power tuning facility supports frequency scaling with a constant-frequency PLL that feeds multiple 
frequency dividers. The outputs of these dividers are fed to a frequency multiplexer, from which one divider 
output is selected as the processor mesh clock at any given time. Toggling this multiplexer-selection signal 
during a transition from frequency A to frequency B accomplishes clock dithering. Thus, most clocks are at 
frequency A at the beginning of the transition. Gradually, more and more frequency-B clocks are introduced in 
the dithering pattern.
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Figure 9-6 shows the components controlling the dithering of the clock. Two, 24-bit dithering patterns are 
provided in the mode ring. They support distinct dithering patterns for transitions between the high and 
medium frequencies and the transitions between the medium and low frequencies. When a frequency shift is 
initiated, the appropriate mode ring pattern is selected using a multiplexer for transfer to a 24-bit shift register. 
At the same time, the multiplexer select pattern for the previous frequency is saved in the muxsel_prev latch, 
while the new frequency is loaded into the muxsel latch.

Clock dithering involves a 2-level multiplexer selection process. The shift register is clocked at the lower of 
the previous and new frequencies. Starting on the rising edge of the mclk/4, it shifts the pattern one bit to the 
right every cycle, and applies the right most bit to the dithering mux to select a multiplexer select pattern. That 
pattern is then applied to the frequency multiplexer to select the mesh clock frequency. A '1' bit in the shift 
pattern selects the new frequency, a '0' bit selects the old frequency. At the end of the shift pattern, a '1' bit is 
forced, to continuously select the new frequency. A separate mode ring bit can be used to disable clock dith-
ering, by forcing this control bit to always be a '1' via the OR circuit shown in Figure 9-6.

As an example of a shift pattern for achieving a gradual transition from high to medium frequency might be 
'1110 1011 0110 1010 0100 1000' (see Figure 9-7). These bits are shifted at the medium frequency. Each '1' 
corresponds to one cycle of medium frequency. Each '0' corresponds to two cycles of high frequency (since 
the shift register is clocked at medium frequency). Thus reading the pattern from right to left, the pattern spec-
ifies six fast clocks, followed by one medium clock, followed by four fast clocks, followed by one medium 
clock, and so on, as indicated in the Figure 9-7. 

Figure 9-6. Clock Dithering Block Diagram 
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9.8.6 Frequency Scaling Latencies 

The sequence for raising the frequency has a latency, (from the time the operating system writes the configu-
ration value in the PCR to the time when the status bit in the PSR indicates that the change is complete), that 
has the following components:

• Time to signal North Bridge

• Time to signal processors

• Time for North Bridge and processors to quiesce

• Time for North Bridge and processors to handshake

• Time for one psync (1:24) cycle

• Time to handshake and reset the status bit

While the processor signals the frequency change to the North Bridge and until the North Bridge reflects the 
power adjust command back to the processor, it proceeds normally. Once the processor begins to quiesce 
the bus, the processor core will no longer be able to access data and instructions from the L2 or bus interface. 
As long as the processor is able to execute with data and instructions in the L1 caches, it can continue to run. 
In the best case, the processor will only stall for about a cycle when the mesh clock frequency itself is 
switched. More specifically, the processor will be unable to respond to interrupts while the bus interface is in 
a quiescent state, unless the instructions and data needed to handle the interrupt are in the L1 caches prior to 
the frequency change. This means the interrupt response might be delayed due to a frequency switch. See 
the IBM PowerPC 970FX RISC Microprocessor Datasheet for latency values. 

9.8.6.1 Reducing Clock Mesh Power

There are two power saving modes defined for the PowerPC 970FX, Nap and Doze. In Nap mode, the clocks 
to the core are turned off, while the timers, PLL, and part of the pervasive unit continue to operate. Doze 
mode is similar, except that snoop logic is also active. Doze mode is entered from full power mode by setting 
HID0[NAP], and then the MSR[POW] bit. This also causes the QREQ_B signal to be asserted, requesting 
that the North Bridge put the bus in a quiescent state. When the North Bridge complies, it asserts QACK_B, 
causing the processor to transition into Nap mode. Whenever QACK_B is negated, the processor must return 
to Doze mode to process snoop transactions.

Figure 9-8 shows the event ordering for frequency scaling. The minimum requirements for the delays noted in 
the figure are shown in the Table 9-10 and Table 9-11.

Figure 9-7. Sample Shift Pattern 
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Table 9-10 provides the minimum QACKassert_snoop_delay required for two different bus ratios and two 
different mesh clock frequencies. 

Table 9-11 provides the minimum QACKnegate_snoop_delay required for two different bus ratios and two 
different mesh clock frequencies. 

Figure 9-8. Frequency Scaling Event Ordering 
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9.9 Additional Dynamic Power Management 

The PowerPC 970FX implements dynamic power management (DPM) – the gain of clocks to idle circuits 
while in an operational mode – in a number of functional units, including the VPU, IDU, STS, and RAS. For 
example, there are two levels of clock control for the VPU, a coarse level and a fine level. The coarse control 
is essentially a static form of clock gating control, making use of the VPU available bit (MSR[VP]). When this 
bit is a zero, the latches in all VPU stages from issue to writeback are gated off. The fine level control is much 
more dynamic. It occurs on a stage by stage basis within each execution pipeline, starting with the latches 
following the RF2 stage. When this fine level of control is enabled, all clocks in all of the VPU stages from the 
register access to the writeback stages are gated off at all times, except for the cycles when that stage has an 
active instruction in it.

Dynamic power management can be disabled in the RAS units by asserting bit[0] in the JTAG register with 
modifier address 0x000800. DPM in the rest of the processor can be disabled by negating HID0[DPM].
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10. 970FX Performance Monitor

The 970FX microprocessor has a complex, speculative, out-of-order execution core coupled with an equally 
complex multilevel storage hierarchy. Users concerned with performance analysis and system optimization 
have access to performance monitoring features, which support a wide range of tasks including the following:

• Profiling memory hierarchy behavior and tuning system algorithms to optimize scheduling, partitioning, 
and structuring for tasks and data

• Tuning applications for the target system

• Debugging, analyzing, and optimizing processor architecture features

The performance monitor facility provides information for a wide variety of activities and is part of the facilities 
that are collectively referred to as instrumentation facilities. Instrumentation facilities include 
matching/sampling, tracing, and thresholding.

Note:  The 970FX performance monitor should only be used as a debug facility until characterization of its 
features and functions is complete. 

10.1 Performance Monitoring Facilities Overview

The 970FX performance monitoring facility is an extension to that of earlier PowerPC processors. There are 
eight Performance Monitor Counter Registers (PMC1-8). They can count a variety of events, many of which 
are relevant to performance analysis. As before, the counters support user or supervisor and marked or 
unmarked filtering of events. A marked instruction is one that is eligible for sampling as determined by the 
instruction fetch unit (IFU) and instruction dispatch unit (IDU) instruction matching facilities. 

The most-significant change introduced by the 970FX performance monitor is the concept of indirect events. 
A subset of the normally selected direct Performance Monitor Counter (PMC) events are multiplexed so that 
there is a larger number of total available events. Unlike event selection on previous PowerPC processors 
(which had only direct events), indirect events cannot be configured entirely independently (setting a multi-
plexer affects the indirect events on more than one PMC). Some indirect events can also be summed 
together by the hardware. This feature is most often used to sum the performance event counts of a func-
tional unit pair (for example, floating-point unit 0 [FPU0] and floating-point unit 1 [FPU1]).

10.1.1 Performance Monitor Facilities 

The instrumentation performance monitor (perfmon) on the 970FX microprocessor includes the following 
functions:

• Counts up to eight concurrent software selected events in individual 32-bit counters. The counting of 
events can be enabled by software under several conditions such as user (problem) or supervisor 
(privileged) state, and Run or Wait state.

• Generates a maskable exception when an event counter overflows (triggering).

• Freezes the contents of the event counters until a selected trigger occurs and then begin counting 
(triggering).

• Increments the event counters until a selected trigger occurs and then freezes counting (triggering).

• Monitors classes of instructions selected by the instruction matching facility.
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• Randomly chooses an instruction for detailed monitoring (sampling).

• Counts start/stop event pairs that exceed a selected timeout value (thresholding). 

10.1.2 Performance Monitor Event Selection

One event per counter can be selected for monitoring at a given time. The event to be monitored is selected 
by setting the appropriate value in the Monitor Mode Control Register (MMCR) bit field for that counter. The 
events counted might be the number of cycles that the event occurs or the number of occurrences of the 
event depending on the particular event selected. 

10.1.3 Machine States and Enabling the Performance Monitor Counters 

Performance monitor counting can be enabled or disabled under several machine states, which are selected 
using the counting control bit fields in the MMCRs and the state bits in other Special Purpose Registers 
(SPRs).

10.1.4 Trigger Events and Enabling the Performance Monitor Counters

Certain kinds of conditions and events, called trigger events, can be used to control performance monitor 
activities such as starting or stopping the counters and causing performance monitor exceptions. These 
scenarios are selected using the condition/event enable bits fields and the exception enable bits of the 
MMCRs in conjunction with control bits in other SPRs. 

10.1.5 Performance Monitor Exceptions

Trigger events can cause performance monitor exceptions to occur based on the values of the exception 
enable bits in the MMCRs. An enabled exception might cause a performance monitor exception to occur if the 
exception is enabled in other SPRs.

10.1.6 Sampling

The 970FX microprocessor can be configured to sample instructions for detailed monitoring. The 970FX 
microprocessor instrumentation facilities support setting mask values for matching particular instructions or 
kinds of instructions that are then eligible to be sampled (that is, they are marked for sampling). The perfor-
mance monitor includes events for counting marked instructions at each stage of the pipeline and in certain 
other situations. Instruction sampling is a useful facility for gathering both detailed and statistical information 
for particular instructions.

Note:  Instruction marking is entirely separate from thread marking with the performance monitor mode bit in 
the Machine State Register (MSR[PMM]).The state of the MSR[PMM] bit is only relevant for event counting in 
order to determine when counters should be frozen (MMCR0[FCM1, FCM0] fields).

10.1.7 Thresholding

Unlike previous PowerPC processors, which implemented thresholding only on load instructions, the 970FX 
processing unit monitors the pipeline stage progression of sampled instructions and can detect when the 
stage-to-stage cycle count for a selected start/stop pair of pipeline stages exceeds a specified threshold 
value. 
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10.1.8 Trace Support Facilities 

The 970FX microprocessor supports both the single step and the branch trace modes as defined by the 
PowerPC Architecture.

10.2 Instruction Sampling Facilities 

10.2.1 Special Purpose Registers and Fields Associated with Instrumentation

The 970FX microprocessor instrumentation facilities and associated 970FX microprocessor components 
include several SPRs used for or associated with performance monitoring, matching, sampling, and tracing. 
Unless otherwise noted, the Special Purpose Registers described below and listed in Table 10-1 on page 189 
can be read in user (problem) and supervisor (privileged) state and written in supervisor state by using the 
Move From Special Purpose Register (mfspr) and Move To Special Purpose Register (mtspr) instructions, 
respectively. The MSR Register is read and written by the Move From Machine State Register (mfmsr) and 
Move To Machine State Register (mtmsr) instructions.

The 970FX microprocessor instrumentation facilities include the following Special Purpose Registers and 
register bit fields (also listed in Table 10-1 on page 189):

• Performance Monitor Mode Control Registers (MMCRx)
These registers include both counting control and event select bit fields.

• Performance Monitor Counter Registers (PMCx)
These registers increment each time (or cycle, depending on the selected event) that an event occurs 
while the counter is enabled. These registers also have the control function for the counter overflow con-
dition. 

• Machine State Register [EE] (MSR[EE])
This register bit is used to enable or disable external interrupts. The performance monitor exception is 
considered an external interrupt. 

• Machine State Register [PMM] (MSR[PMM])
This register bit is used to enable or disable performance monitor activity controlled by the process 
mark bit.

• Machine State Register [PR] (MSR[PR])
This register bit is used to establish user (problem) or supervisor (privileged) mode and the performance 
monitor counting activity controlled by this bit.

• Machine State Register [SE] (MSR[SE])
This register bit is used to enable or disable the trace exception after each instruction is completed. 

• Machine State Register [BE] (MSR[BE])
This register bit is used to enable or disable the branch trace exception and after a branch instruction is 
completed.

• Hardware Implementation-Dependent Register0[13] (HID0[TG])
This register bit is used to determine the granularity the thresholder uses for counting cycles. 

• Control Register[31] (CNTL[31])
This register bit is used to determine the Wait or Run state and the performance monitor activity con-
trolled by this bit. 
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• Scan Communication Register x‘240’ [0:15] (SCOM x‘240’ [0:15])
These register bits are used to establish the timeout and resume delays used by the performance monitor 
to coordinate the matching and sampling facility. 

• Scan Communication Register x‘340’ [11:12] (SCOM x‘340’ [11:12])
These register bits are used to establish the matching and sampling filter mode used by the matching and 
sampling facility to produce marked instructions that can be counted by the performance monitor. 

• Instruction Match Content-Addressable Memory (CAM) Registers (IMC)
The IMC SPRs are used to access the IMC array that contains the mask values used for instruction 
matching. The Move To IMC (mtimc) and Move From IMC (mfimc) instructions can be executed only in 
supervisor mode. 

• Time-Base Register [47, 51, 55, 63] (TB[47, 51, 55, 63])
These register bits are used to enable or disable the time-base events that can be used to enable or dis-
able performance monitor counting. 

• Sample Address Registers (SxAR)
The Sampled Instruction Address Register (SIAR) and Sampled Data Address Register (SDAR) contain 
the address and data, respectively, relating to a marked instruction. The registers can be read in supervi-
sor (privileged) or user (problem) state, but are modified only by the hardware. The values written to 
these registers by the hardware depend on the processing state and on the kind of instruction that is 
being marked for sampling. 

• Machine Status Save/Restore Register (SRRO, SRR1)
These registers are used to save machine status during exception handling. In addition, SRR1[33] is 
used to determine when the contents of the SIAR and SDAR registers are synchronized, so that they 
refer to the same marked instruction.
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Table 10-1. 970FX Performance Monitor and Trace-Related Special Purpose Registers 

Register Name
SPR Address Bits1

Function
5:9 0:42

MMCR0 ‘11000’ ‘n1011’ Performance Monitor Mode Control Register 0

MMCR1 ‘11000’ ‘n1110’ Performance Monitor Mode Control Register 1

MMCRA ‘11000’ ‘n0010’ Performance Monitor Mode Control Register A

PMC1 ‘11000’ ‘n0011’ Performance Monitor Counter Register 1

PMC2 ‘11000’ ‘n0100’ Performance Monitor Counter Register 2

PMC3 ‘11000’ ‘n0101’ Performance Monitor Counter Register 3

PMC4 ‘11000’ ‘n0110’ Performance Monitor Counter Register 4

PMC5 ‘11000’ ‘n0111’ Performance Monitor Counter Register 5

PMC6 ‘11000’ ‘n1000’ Performance Monitor Counter Register 6

PMC7 ‘11000’ ‘n1001’ Performance Monitor Counter Register 7

PMC8 ‘11000’ ‘n1010’ Performance Monitor Counter Register 8

MSR[61]

Use mtmsr, mfmsr 
instructions 

(supervisor [privileged] mode 
only)

Machine State Register [Performance Monitor Mark]

MSR[48] Machine State Register [External Interrupt]

MSR[49] Machine State Register [User (Problem)/Supervisor (Privileged) State]

MSR[53] Machine State Register [Single-Step Trace Enable]

MSR[54] Machine State Register [Branch Trace Enable]

HID0[13] ‘11111’ ‘10000’ Hardware Implementation-Dependent Register 0 [Threshold Granularity]

CTRL[31] ‘00100 ‘n1000 Control Register [Run Bit]

SCOMC Use mtscomc/d and 
mfscomc/d instructions 

Scan Communication Control 

SCOMD Scan Communication Data 

IMC

Use mtimc, mfimc 
instructions (supervisor mode 

write, user and supervisor 
mode read)

Instruction Match CAM Register

TBL [47,51,55,63] ‘01000 ‘n1100 Time-base bits used for performance monitor time-base events

SIAR ‘11000’ ‘n1100’ Sampled Instruction Address Register

SDAR ‘11000’ ‘n1101 Sampled Data Address Register

SRR1 ‘00000’ ‘n1011’ Machine Status Save/Restore Register 1

Note:  

1. In a mtspr/mfspr instruction, the instruction SPR field of bits [11:15] hold SPR address bits [0:4] and bits [16:20] hold SPR field 
bits [5:9].

2. When n is set to ‘1’, it indicates an SPR address value for a supervisor mode mtspr or mfspr instruction.
When n is set to ‘0’, it indicates an SPR address value for a user mode mfspr instructions. 
For mfspr, the instruction is supervisor mode if and only if SPR[0] is set to ‘1’.
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10.3 Performance Monitor Components

A schematic overview of the components that make up the 970FX performance monitor is shown in 
Figure 10-1. These components and their use are described in the following sections.

Figure 10-1. Performance Monitor Architecture 
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10.4 Performance Monitor Control Registers

The Performance Monitor Control Registers, MMCR0, MMCR1, and MMCRA, are used in conjunction with 
the MSR and other SPRs to set up the performance monitor enable states, exception conditions, threshold 
values, match criteria, and selection of the events counted in each of the Counter Registers, PMC1 - PMC8. 

The MMCRx Register bit assignments are shown in Section 10.4.1 Performance Monitor Control Register 
MMCR0 on page 191, Section 10.4.2 Performance Monitor Control Register MMCR1 on page 194, and 
Section 10.4.3 Performance Monitor Control Register MMCRA on page 197. The MSR bits that relate to 
performance monitor functions are shown in Table 10.4.5 Performance Monitor and Trace Related Bits in the 
Machine State Register (MSR) on page 200. 

For all of the Performance Monitor Control Register fields, it is always understood that the counter is incre-
mented if that action is not prohibited by some other control condition. All of the MMCRx and PMCx Registers 
flush to zero unless otherwise noted in the following MMCRx and PMCx tables.

10.4.1 Performance Monitor Control Register MMCR0

Figure 10-2. Performance Monitor Control Register MMCR0 

Table 10-2. Performance Monitor Control Register MMCR0 

Bits Field Name Description

0:31 — Reserved.

32 FC

Freeze counters.
0 The PMCs are incremented.
1 The PMCs are not incremented.
The processor sets this bit to ‘1’ when an enabled condition or event occurs and the “freeze counters on 
enabled condition or event” bit is ‘1’ (MMCR0[FCECE] = ‘1’).

33 FCS
Freeze counters when in supervisor state.
0 The PMCs are incremented.
1 The PMCs are not incremented in supervisor state (MSR[PR] = ‘0’).

34 FCP
Freeze counters when in user (problem) state.
0 The PMCs are incremented.
1 The PMCs are not incremented in user (problem) state (MSR[PR] =‘1’).

35 FCM1
Freeze counters when performance monitor mark bit (MSR[PMM]) is set to ‘1’.
0 The PMCs are incremented.
1 The PMCs are not incremented when the MSR mark bit is ‘1’ (MSR[PMM] = ‘1’).
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36 FCM0
Freeze counters when performance monitor mark bit (MSR[PMM]) is set to ‘0’.
0 The PMCs are incremented.
1 The PMCs are not incremented when the MSR mark bit is ‘0’ (MSR[PMM = ‘0’).

37 PMXE

Performance monitor exception enable.
0 Performance monitor exceptions are disabled.
1 Performance monitor exceptions are enabled until a performance monitor exception occurs, at 

which time the hardware disables the performance monitor exception (MMRC0[PXME] is set to 
‘0’). 

For implementations that do not provide a performance monitor exception, software can set PXME to ‘1’ 
and then poll the bit to determine whether an enabled condition or event has occurred. 

38 FCECE

Freeze counters on enabled condition or event.
0 The PMCs are incremented.
1 The PMCs are incremented until detection of an enabled counter negative condition or detection 

of an enabled time-base transition event occurs and the trigger bit enables the detected event 
(MMCR0[TRIGGER] equals ‘0’). At that time the counters are frozen (MMCR0[FC] is set to ‘1’) 
until the condition is reset by software. 

If the enabled condition or event occurs when MMCR0[TRIGGER] equals ‘1’, then the FCECE bit is 
treated as if it were ‘0’.

39:40 TBSEL

Time-base selector.
00 Time-base bit 63 is selected.
01 Time-base bit 55 is selected.
10 Time-base bit 51 is selected.
11 Time-base bit 47 is selected.
When the selected time base transitions from ‘0’ to ‘1’ and the time-base event is enabled 
(MMCR0[TBEE] equals ‘1’) and the performance monitor exception is enabled, a performance monitor 
exception occurs and the performance monitor exception is disabled (MMRC0[PXME] is set to ‘0’).
In multiprocessor systems with the Time-Base Registers synchronized among the processors, time-base 
transition events can be used to correlate the performance monitor data obtained by the several proces-
sors provided that software has specified the same TBSEL value for all of the processors in the system. 
The frequency of the time base is implementation dependent, and a system service routine should be 
invoked to obtain the frequency before a value for TBSEL is chosen.

41 TBEE
Time-base exception enable.
0 Disable time-base transition events.
1 Enable time-base transition events.

42:47 THRESHOLD
Threshold value. 
When a threshold event is selected, counting occurs only for those of the selected event occurrences 
whose duration in number of cycles exceeds the value in the THRESHOLD field. 

48 PMC1CE

PMC1 count enable.
This bit determines whether the counter negative condition due to a negative value in PMC1 is enabled.
0 Disable PMC1 counter negative condition.
1 Enable PMC1 counter negative condition. 

49 PMCjCE

PMCj count enable (where j represents any counter from 2 to 8).
This bit determines whether the counter negative condition due to a negative value in PMCj (2 ≤ j ≤ 8) is 
enabled.
0 Disable PMCj (2 ≤ j ≤ 8) counter negative condition.
1 Enable PMCj (2 ≤ j ≤ 8) counter negative condition.

50 TRIGGER

Trigger enable.
0 The PMCs are incremented. 
1 PMC1 is incremented. The PMCjs (2 ≤ j ≤ 8) are not incremented until PMC1 is negative or an 

enabled condition or event occurs. At that time, the PMCj counters (2 ≤ j ≤ 8) resume counting 
and the trigger is disabled (MMCR0[TRIGGER] set equal to ‘0’).

Table 10-2. Performance Monitor Control Register MMCR0 

Bits Field Name Description
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51:55 PMC1SEL
PMC1 event selector.
The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC1.

56 — Reserved.

57 — Reserved.

58:62 PMC2SEL
PMC2 event selector.
The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC2. 

63 FCH Freeze counters in hypervisor mode. 

Table 10-2. Performance Monitor Control Register MMCR0 

Bits Field Name Description
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10.4.2 Performance Monitor Control Register MMCR1

Figure 10-3. Performance Monitor Control Register MMCR1 

Table 10-3. Performance Monitor Control Register MMCR1 

Bits Field Name Description

0:1 TTM0SEL

FPU/ISU/IFU/VPU unit select.
00 FPU
01 Instruction sequencer unit (ISU)
10 IFU
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IDU/ISU/STS unit select.
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01 Undefined
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11 Storage subsystem (STS)

5 TTC1SEL Reserved.

6:7 TTM2SEL Reserved.

8 TTC2SEL Reserved.
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Load/store unit 1 (LSU1) select.
0x Lane 2 is LSU1 upper.
1x Lane 2 is LSU1 lower.
x0 Lane 3 is LSU1 upper.
x1 Lane 3 is LSU1 lower.

11 TTC3SEL Reserved.
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12:13 TD_CP_DBG0SEL

Byte lane 0 unit select.
00 Unit from TTM0.
01 Unit from TTM1.
10 LSU0, byte 0.
11 LSU1, byte 0.

14:15 TD_CP_DBG1SEL

Byte lane 1 unit select.
00 Unit from TTM0.
01 Unit from TTM1.
10 LSU0, byte 1.
11 LSU1, byte 1.

16:17 TD_CP_DBG2SEL

Byte lane 2 unit select.
00 Unit from TTM0.
01 Unit from TTM1.
10 LSU0, byte 2.
11 LSU1, byte 2 or byte 6 (controlled by TTM3SEL[0]).

18:19 TD_CP_DBG3SEL

Byte lane 3 unit select.
00 Unit from TTM0.
01 Unit from TTM1.
10 LSU0, byte 3.
11 LSU1, byte 3 or byte 7 (controlled by TTM3SEL[1]).

20:23 — Reserved.

24 PMC1_ADDER 
_SELECT

PMC1 event adder lane select.
0 Byte lane 0: Add 0 + 4.
1 Byte lane 2: Add 0 + 4.

25 PMC2_ADDER 
_SELECT

PMC2 event adder lane select.
0 Byte lane 0: Add 1 + 5.
1 Byte lane 2: Add 1 + 5.

26 PMC6_ADDER 
_SELECT

PMC6 event adder lane select.
0 Byte lane 0: Add 2 + 6.
1 Byte lane 2: Add 2 + 6.

27 PMC5_ADDER 
_SELECT

PMC5 event adder lane select.
0 Byte lane 0: Add 3 + 7.
1 Byte lane 2: Add 3 + 7.

28 PMC8_ADDER 
_SELECT

PMC8 event adder lane select.
0 Byte lane 1: Add 0 + 4.
1 Byte lane 3: Add 0 + 4.

29 PMC7_ADDER 
_SELECT

PMC7 event adder lane select.
0 Byte lane 1: Add 1 + 5.
1 Byte lane 3: Add 1 + 5.

30 PMC3_ADDER 
_SELECT

PMC3 event adder lane select.
0 Byte lane 1: Add 2 + 6.
1 Byte lane 3: Add 2 + 6.

31 PMC4_ADDER 
_SELECT

PMC4 event adder lane select.
0 Byte lane 1: Add 3 + 7.
1 Byte lane 3: Add 3 + 7.

32:36 PMC3SEL
PMC3 event selector.
The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC3.

Table 10-3. Performance Monitor Control Register MMCR1 

Bits Field Name Description
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37:41 PMC4SEL
PMC4 event selector.
The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC4.

42:46 PMC5SEL
PMC5 event selector.
The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC5.

47:51 PMC6SEL
PMC6 event selector.
The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC6.

52:56 PMC7SEL
PMC7 event selector.
The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC7.

57:61 PMC8SEL
PMC8 event selector.
The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC8.

62:63 SPCSEL

Speculative count event selector.
00 Reserved
01 Event A1x
10 Event A2x
11 Event A3x
See Table 10-20 on page 213 for definitions of the events. 

Table 10-3. Performance Monitor Control Register MMCR1 

Bits Field Name Description
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10.4.3 Performance Monitor Control Register MMCRA

Figure 10-4. Performance Monitor Control Register MMCRA 

Table 10-4. Performance Monitor Control Register MMCRA 

Bits Field Name Description

0:31 — Reserved.

32 — Reserved.

33 FC1-4
Freeze counters 1 - 4.
0 PMC1 - 4 are incremented.
1 PMC1 - 4 are not incremented.

34 FC5-8
Freeze counters 5 - 8.
0 PMC5 - 8 are incremented.
1 PMC5 - 8 are not incremented.

35 — Reserved.

36 — Reserved.

37:39 — Reserved.

40:42 THRSTRT Threshold start event.

43:45 THREND Threshold end event.

46:48 — Reserved.

49 IMRSEL

Instruction mark (IMR) select.
IMR select interacts with IMR mark to determine stage 1 eligibility as described in Section 10.11 IDU 
Instruction Sampling Facility on page 234. 
0 Stage 1 eligible instructions are determined through predecode bits from the IFU combined with 

the IMRMATCH and IMRMASK fields as described in Section 10.11 on page 234. This is useful 
if the IMR mark equals ‘00’.

1 The instruction mark bit (IMR bit) from the IFU IMC match array is used to determine Stage 1 eli-
gibility.
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50:51 IMRMARK

IMR Mark.
Chooses the mark mode for which instructions are Stage 2 eligible.
00 All Stage 1 eligible internal operations (IOPs)
01 Only Stage 1 eligible IOPs that resulted from microcode expansion
10 Only one IOP per eligible PowerPC instruction
11 First IOP that goes to the LSU for every eligible PowerPC load/store (ld/st) instruction 

52:55 IMRMASK
IMR Mask.
A mask ANDed with the predecode bits before using the IMRMATCH field.

56:59 IMRMATCH

IMR Match.
The value that the result of the IMRMASK ANDed with the predecode bits must match to be Stage 2 eligi-
ble. All 4 bits of the result must match the IMRMATCH exactly. 
To match ALL IOPs (that is, the match will always succeed) set IMRSEL equals ‘0’, IMRMASK equals 
‘0000’, and IMRMATCH equals ‘0000’. 

60 FCTI
Freeze Counters.
0 The PMCs are incremented.
1 The PMCs are not incremented.

61 — Reserved

62 FCWAIT
Freeze Counters in Wait State (implies that CNTL[31] equals ‘0’). 
0 The PMCs are incremented.
1 The PMCs (except those counting cycles) are not incremented when CNTL[31] equals ‘0’.

63 SAMPLE_ 
ENABLE

0 Sampling is disabled
1 Sampling is enabled

Table 10-4. Performance Monitor Control Register MMCRA 

Bits Field Name Description
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10.4.4 Performance Monitor Count Registers PMC1 - 8 

Figure 10-5. Performance Monitor Count Registers PMC1 - 8 

Table 10-5. Performance Monitor Count Registers PMC1 - 8 

Bits Field Name Description

0 CTR_NEG Counter negative bit.

1:31 CTRDATA Count data.
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10.4.5 Performance Monitor and Trace Related Bits in the Machine State Register (MSR) 

Figure 10-6. Performance Monitor and Trace Related Bits in the MSR 

Table 10-6. Performance Monitor and Trace Related Bits in the MSR 

Bits Field Name Description

0:47 N/A Not applicable.

48 EE
External interrupt enable.
0 The processor is disabled for external, decrementer, and performance monitor exceptions.
1 The processor is enabled for external, decrementer, and performance monitor exceptions.

49 PR
Problem (user) state.
0 The processor is privileged to execute any instruction. 
1 The processor can execute only non-privileged instructions. 

50:52 N/A Not applicable.

53 SE

Single step trace enable.
0 The processor does not generate a trace exception after instruction completion. 
1 The processor generates a trace exception after successfully completing the execution of the 

next instruction unless that instruction is an Return from Exception Doubleword (rfid), which is 
never traced. 

54 BE

Branch trace enable.
0 The processor does not generate a trace exception after branch instruction completion. 
1 The processor generates a trace exception after successfully completing the execution of a 

branch instruction whether or not the branch is taken.

55:60 N/A Not applicable.

61 PMM

Performance monitor mode enable.
0 The currently executing process is not marked. 
1 The currently executing process is marked.
This bit is used to mark a process for the performance monitor. Several performance monitor MMCR0 
control bits can then be set to enable counting based on the value of the PMM bit.
When an exception occurs, this bit is saved, set to ‘0’ for the duration of the exception processing, and 
then restored when the rfid instruction is executed. 
If this bit is changed with an mtmsr or Move to Machine State Register Doubleword (mtmsrd) instruction, 
the change is not guaranteed to have taken effect until after a subsequent context-synchronizing instruc-
tion has completed execution. 

62:63 N/A Not applicable.

N/A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/A EE PR N/A SE BE N/A P
M

M

N/A
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10.4.6 Performance Monitor Related Bits in Hardware Implementation-Dependent Register 0 (HID0) 

10.4.7 Performance Monitor Related Bits in the Control Register (CTRL) 

Figure 10-7. Performance Monitor Related Bits in HID0 

Table 10-7. Performance Monitor Related Bits in HID0 

Bits Field Name Description

0:12 N/A Not applicable.

13 TG
Performance monitor threshold granularity.
0 The thresholder counts every processor cycle. 
1 The thresholder counts every 32 processor cycles. 

14:63 N/A Not applicable.

Figure 10-8. Performance Monitor Related Bits in the CTRL 

Table 10-8. Performance Monitor Related Bits in the CTRL 

Bits Field Name Description

0:30 N/A Not applicable.

31 RUN Wait state bit.

32:63 N/A Not applicable.

N/A TG N/A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/A
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10.4.8 Performance Monitor Related Bits in the SCOM0240, 1240 Register (SCOM x‘240’) 

Figure 10-9. Performance Monitor Related Bits in the SCOM x‘240’ Register 

Table 10-9. Performance Monitor Related Bits in the SCOM x‘240’ Register 

Bits Field Name Description

0:7 IDLE Sampling logic idle delay.

8:15 COMPLN Sampling logic completion delay.

16:63 N/A Not applicable.

IDLE COMPLN N/A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/A
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10.4.9 Performance Monitor Related Bits in the SCOM0360,1360 Register (SCOM x‘360’) 

Figure 10-10. Performance Monitor Related Bits in the SCOM x‘360’ 

Table 10-10. Performance Monitor Related Bits in the SCOM x‘360’ 

Bits Field Name Description

0 imr_select Same as MMCRA[imr_sel].

1:2 imr_mark Same as MMCRA[imr_mark] and overrides MMCRA if bit 13 equals ‘1’.

3:6 imr_mask Same as MMCRA[imr_mask] and overrides MMCRA if bit 13 equals ‘1’.

7:10 imr_match Same as MMCRA[imr_match] and overrides MMCRA if bit 13 equals ‘1’.

11:12 FILTER

IMR filter random/all and first/all.
These two bits form a 2-step filtering operation on the eligible bits associated with the instructions in the 
group. 
Bit 11 first determines whether instruction eligibility bits pass the first filter step based on either a random 
pass/nopass (bit 11 equals ‘1’) choice or an all pass (bit 11 equals ‘0’) choice for each instruction. 
Bit 12 determines how microcoded instructions are sampled (and has no effect on non-microcoded 
instructions):
00 No filtering (OR)
01 No filtering (AND)
10 Use Good_Address mode of sampling microcode expansions.
11 Use More_Hits mode of sampling microcode expansions.
In Good_Address mode, there is at most one IOP in any microcode expansion that is eligible for sam-
pling. This is (a) the first load/store IOP if there are any load/store IOPs in the expansion, or (b) the first 
IOP in the final group of the expansion. If the random filter suppresses marking this IOP, then no IOP will 
be marked for the microcode expansion.
In More_Hits mode, multiple IOPs in a microcode expansion are eligible for sampling. These are (a) the 
first load/store IOP in any group, or (b) the first IOP of the final group. If the random filter suppresses 
marking the first of these IOPs, a subsequent one might still be sampled. (However, at most one will be 
marked in a single microcode expansion.)

13 scom_imr_enable
0 Performance monitor fields are used for mark, mask, match.
1 SCOM fields are used for mark, mask, match.

14 sample_override
0 Performance monitor “ok_to_sample” indication is used.
1 Overrides performance monitor “ok_to_sample” indication.

15:63 — Reserved.
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10.4.10 Performance Monitor Related Bits in the IMC Array (IMC) 

10.4.11 Performance Monitor Related Bits in the Sampled Instruction Address Register (SIAR) 

Figure 10-11. Performance Monitor Related Bits in the IMC 

Table 10-11. Performance Monitor Related Bits in the IMC 

Bits Field Name Bit Description

0:39 Match Row 0 Opcode/extended opcode match.

0:39 Match Row 1 Opcode/extended opcode match.

0:39 Match Row 2 Opcode/extended opcode match.

0:39 Match Row 3 Opcode/extended opcode match.

0:39 Match Row 4 Opcode/extended opcode match.

0:39 Match Row 5 Opcode/extended opcode match.

0:63 Match Row 76 Full instruction match. 

Figure 10-12. Performance Monitor Related Bits in the SIAR 

Table 10-12. Performance Monitor Related Bits in the SIAR 

Bits Field Name Description

0:63 SampIA Sampled instruction address.

Match Row 0:5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Match Row 0:5 Match Row 76

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
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10.4.12 Performance Monitor Related Bits in the Sampled Data Address Register (SDAR) 

10.4.13 Performance Monitor Related Bits in the SRR1 (SRR1) 

Figure 10-13. Performance Monitor Related Bits in the SDAR 

Table 10-13. Performance Monitor Related Bits in the SDAR 

Bits Field Name Description

0:63 SampDA Sampled Data Address

Figure 10-14. Performance Monitor Related Bits in the SRR1 

Table 10-14. Performance Monitor Related Bits in the SRR1 

Bits Field Name Description

0:32 N/A Not applicable.

33 SIAR/SDAR_Sync SIAR and SDAR contents synchronized.

34:63 N/A Not applicable.

SampDA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SampDA

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

N/A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N
/A

S
IA

R
/S

D
A

R
_S

yn
c

N/A

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63



User’s Manual
 
IBM PowerPC 970FX RISC Microprocessor  

970FX Performance Monitor

Page 206 of 360
Version 1.7

March 14, 2008

10.4.14 Performance Monitor Related Bits in the Time-Base Register (TB) 

Figure 10-15. Performance Monitor Related Bits in the TB Register 

Table 10-15. Performance Monitor Related Bits in the TB Register 

Bits Field Name Description

0:46 N/A Not applicable.

47 TB_47 Time-Base Register bit [47].

48:50 N/A Not applicable.

51 TB_51 Time-Base Register bit [51].

52:54 N/A Not applicable.

55 TB_55 Time-Base Register bit [55].

56:62 N/A Not applicable.

63 TB_63 Time-Base Register bit [63].

N/A
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10.5 Performance Monitor Event Selection

Event signals are routed from the functional units through the processor performance monitor buses. These 
signals are multiplexed and divided into byte lanes 0 - 3. A smaller number of events are routed directly to the 
performance monitor unit (PMU); these events are referred to as direct events. Each PMC can be configured 
to count a subset of the direct events or one of two possible byte lanes. Counters 1, 2, 5, and 6 can be config-
ured to count events on byte lane 0 or 2, counters 3, 4, 7, and 8 can be configured to count events on byte 
lane 1 or 3. The selection of event source (direct, byte lane) is controlled by the PMCxSEL field in MMCR1 
(where x is the PMC number). Figure 10-16 shows this selection. Table 10-16 shows how the PMCxSEL field 
is used to select which events are monitored.

Performance monitor events fall into three categories:

• Direct: All the information is hardwired to the PMU.
• Bus: All the information is routed over the hierarchical event bus.
• Combined: Some information comes from the event bus; the PMU does additional processing on it.

Figure 10-16. Event Selection 

Table 10-16. Performance Monitor Internal Multiplexer PMCxSEL[0:4] Bit Values  

PMCSEL[0:1] PMCSEL[2:4] Counted Event

00 000-111 Direct Events

10 000 None. When count_en is ‘0’, turn off 
counter.

10 111 Cycles

01 000-111 Direct Events

10 000-111 Select smaller byte lane

11 000-111 Select larger byte lane

01

10

11

Upper Lane (0 or 1)

Lower Lane (2 or 3)

Direct
Events

PMCx

3:1 static

8:1 pass 

PMCSEL(0:1) PMCSEL(2:4)

8
8

8

8

gate mux

logic mux

8
00
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10.5.1 Direct Events

As shown in Table 10-16, direct events are selected with PMCxSEL[0:1] set to ‘0x’. When PMCxSEL[0:1] 
equals ‘10’ and PMCxSEL[2:4] equals ‘111’, the counter is configured to count cycles. When PMCxSEL[0:1] 
equals ‘10’ and PMCxSEL[2:4] is ‘000’, the counter is off (counts nothing). The direct events that can be 
counted are shown in Table 10-19 on page 210.

Some direct events, such as events that add two other events or interpret the memory source encodes for 
data or instruction fetches, also require data from the performance monitor events. Although they are listed in 
Table 10-19 Direct Events, they rely on a meaningful configuration of the performance monitor event selec-
tions to produce meaningful results. 

10.5.1.1 Combined Events

Each PMC can add similar events to produce a single, combined count. For example, each load store unit 
provides a data-cache miss event, which can be added to produce the total data-cache miss count. The 
added events are considered direct events, but they rely on the performance monitor bus being configured 
properly to produce meaningful results. Since each PMC can receive event signals from two byte lanes on 
the performance monitor bus, the added events can be configured to add events on one of the two byte 
lanes. Events cannot be added from different byte lanes. The PMCx_ADDER_SELECT fields in MMCR1 
control which byte lanes are used.

10.5.1.2 Source-Encoded Events

Source-encoded events (direct event 7 [PMCxSEL equals ‘00111’] for data and event 6 [SEL equals ‘00110’] 
for instructions) are combined events that count events from a specific source as shown in Table 10-17 and 
Table 10-18 on page 209.

Note:  Intervention event sources are only meaningful on multiprocessor systems.

To count data source-encoded events, the performance monitor event bus must be configured as follows:

1. Route LSU1 byte 3 data to the PMU (the “L1 reload data source” LSU1 indirect event) by setting the 
TD_CP_DBG3SEL field in MMCR1 to ‘11’.

2. Select the direct event that decodes the desired data source. To count L1 data reloads from the L2, for 
example, PMC1, direct event 7 (the PMC1SEL field in MMCR0 set to ‘00111’) should be used.

Table 10-17. Event Data Source Encodings  

Encoding (0:3) Event Source

0000 L2 cache

0010 Memory

1000 Shared Intervention (another L2 cache)

1010 Modified Intervention (another L2 cache)

All Others Reserved
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To count instruction source-encoded events, the performance monitor event bus should be similarly config-
ured:

1. Route IFU byte 2 data to the PMU (the “iL1 cache data source” IFU indirect event) by setting the 
TD_CP_DBG2SEL field in MMCR1 to ‘00’ and TTM0SEL to ‘10’.

2. Select the direct event that decodes the desired data source. To count L1 instruction reloads from mem-
ory, for example, PMC3, direct event 6 (the PMC3SEL field in MMCR0 set to ‘00110’) should be used.

10.5.1.3 Instruction Counts

Two types of instruction and IOP counting are available with the 970FX performance monitor:

• Direct event 1 (SEL equals ‘00001’) on PMC1, PMC4, PMC6, PMC7, and PMC8 counts instructions 
according to the IMRMARK field of the MMCRA Register:

– 00 All stage 1 eligible IOPs
– 01 Stage 1 eligible IOPs from microcode expansion
– 10 One IOP per eligible PowerPC instruction
– 11 First IOP to LSU per eligible PowerPC load/store instruction 

• Direct event 9 (SEL equals ‘01001’) on PMC1 - PMC8 always counts PowerPC instructions independent 
of the IMRMARK field of the MMCRA Register (see Table 10-19 on page 210).

Table 10-18. Event Instruction Source Encodings 

Encoding (0:3) Event Source

1001 I-cache

1010 Prefetch buffer

0000 L2 cache

0001 Memory

1111 or 1011 No instructions on bus
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Table 10-19. Direct Events   (Page 1 of 2)

SEL(0:4) PMC1 PMC2 PMC3 PMC4 PMC5 PMC6 PMC7 PMC8

00 000 plus Add 0 + 4 Add 1 + 5 Add 2 + 6 Add 3 + 7 Add 3 + 7 Add 2 + 6 Add 1 + 5 Add 0 + 4

 MMCR1(24:31) 
= ‘0’, ‘1’

MMCR1[24] = ‘0’
byte lane 0 

MMCR1[25] = ‘0’
byte lane 0 

 MMCR1[30] = ‘0’
byte lane 1 

 MMCR1[31] = ‘0’
byte lane 1 

MMCR1[27] = ‘0’
byte lane 0 

MMCR1[26] = ‘0’
byte lane 0 

MMCR1[29] = ‘0’
byte lane 1 

MMCR1[28] = ‘0’
byte lane 1 

 MMCR1[24] = ‘1’
byte lane 2 

MMCR1[25] = ‘1’
byte lane 2 

 MMCR1[30] = ‘1’
byte lane 3 

 MMCR1[31] = ‘1’
byte lane 3 

MMCR1[27] = ‘1’
byte lane 2 

MMCR1[26] = ‘1’
byte lane 2 

MMCR1[29] = ‘1’
byte lane 3 

MMCR1[28] = ‘1’
byte lane 3 

00 001 number of instruc-
tions complete work held stop completion number of instruc-

tions complete dispatch_success number of instruc-
tions complete

number of instruc-
tions complete

number of instruc-
tions complete

00 010 marked group 
dispatch

LSU empty (load 
miss queue [LMQ] 
and store reorder 

queue [SRQ] 
empty)

LSU empty (LMQ 
and SRQ empty)

Fixed-point unit 0 
(FXU0) idle and 

FXU1 busy

FXU0 idle and 
FXU1 idle

FXU0 busy and 
FXU1 busy

FXU0 busy and 
FXU1 idle external interrupt

00 011  marked store 
complete

threshold timeout 
event

marked store with 
interrupt complete SRQ empty

one or more 
PowerPC instruc-
tions completed

marked store sent 
to STS group completed group

dispatch reject

00 100 global completion 
table (GCT) empty group dispatch cycles in 

supervisor mode
marked group 

complete
group marked in 

IDU
FXU marked instr 

finish
FPU marked instr 

finish
LSU marked instr 

finish

00 101
run_cycles; that is, 

# cycles when 
CNTL[31] = ‘1’

branch unit (BRU) 
marked instr finish

VPU marked instr 
finish

condition register 
unit (CRU) marked 
instr finish

marked group 
complete time out

marked group 
issued

marked instr fin-
ish any unit time base event

00 110 Inst src encode 
0000

Inst src encode
0001

Inst src encode
0010

Inst src encode
0011

Inst src encode
0100

Inst src encode
0101

Inst src encode
0110

Inst src encode
0111

00 111 Data src encode
0000

Data src encode
0001

Data src encode
0010

Data src encode
0011

Data src encode
0100

Data src encode
0101

Data src encode
0110

Data src encode
0111

01 000 Counter OFF Counter OFF Counter OFF Counter OFF Counter OFF Counter OFF Counter OFF Counter OFF

01 001 number of instruc-
tions complete

number of instruc-
tions complete

number of instruc-
tions complete

number of instruc-
tions complete

number of instruc-
tions complete

number of instruc-
tions complete)

number of instruc-
tions complete

number of instruc-
tions complete

01 010 Overflow from 
counter 8

Overflow from 
counter 1

Overflow from 
counter 2

Overflow from 
counter 3

Overflow from 
counter 4

Overflow from 
counter 5

Overflow from 
counter 6

Overflow from 
counter 7

01 011 reserved GCT empty by 
SRQ full reserved reserved

—/A1a/A2a/A3a 
(*1) (See 

Table 10-20 on 
page 213)

reserved

—/A1b/A2b/A3b 
(*1) (See 

Table 10-20 on 
page 213)

reserved

01 100 reserved reserved reserved reserved
—/A1c/A2c/— (*1) 
(See Table 10-20 

on page 213)
reserved

—/A1d/A2d/—(*1) 
(See Table 10-20 

on page 213)
reserved
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01 101 Instruction source 
decode 1000

Instruction source 
encode 1001

Instruction source 
encode 1010

Instruction source 
encode 1011

Instruction source 
encode 1100

Instruction source 
encode 1101

Instruction source 
encode 1110

Instruction source 
encode 1111

01 110 Byte 3 decode 
1000

Data source 
encode 1001

Data source 
encode 1010

Data source 
encode 1011

Data source 
encode 1100

Data source 
encode 1101

Data source 
encode 1110

Data source 
encode 1111

01 111 Cycles Cycles Cycles Cycles Cycles Cycles Cycles Cycles

Table 10-19. Direct Events   (Page 2 of 2)

SEL(0:4) PMC1 PMC2 PMC3 PMC4 PMC5 PMC6 PMC7 PMC8
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10.5.2 Over 32-Bit Count 

The 970FX PMU can chain together multiple 32-bit PMCs to create up to a 256-bit wide PMC register when 
used in conjunction with overflow counting. This is useful for performance measurement on high clock-rate 
machines. The maximum count value depends on the following settings: 

• PMCn can count over 32-bits when PMCn+1SEL(0:4)(where n is 1 - 7) is set to ‘01010’. 

• PMC8 can count over 32-bits when PMC1SEL(0:4) is set to ‘01010’. 

• When PMCn + 1 uses this overflow counting function, PMCn is prohibited from asserting an exception 
signal when a negative condition occurs (PMC1CE(PMCjCE) equals ‘1’ and PMCn[0] is ‘1’). 

10.5.2.1 Examples of Over Bit Count

Example 1

When PMC1 is set to ‘00100’ (GCT empty) and PMC2 is set to ‘01010’ (overflow function), then PMC2 works 
as the upper 32 bits of PMC1. In this case, the overflow exception is only asserted by PMC2 (never by PMC1) 
when PMCjCE equals ‘1’ (don't care PMC1CE) and PMC2[0] is '1'.

Example 2

When PMC8 is set to ‘00001’ (number of instructions complete) and PMC1 are set to ‘01010’ (overflow func-
tion), then PMC1 functions as the upper 32 bits of PMC8. In this case, the overflow exception is only asserted 
by PMC1 (never by PMC8) when PMC1CE equals ‘1’ (don't care PMCjCE) and PMC1[0] is '1'.

Example 3

When PMC1 is set to ‘00100’ (GCT empty) and PMC2, PMC3, and PMC4 is set to ‘01010’ (overflow function), 
then PMC4, PMC3, and PMC2 function as the upper 96 bits of PMC1. In this case, the overflow exception is 
only asserted by PMC4 (never by PMC1, PMC2, or PMC3) when PMCjCE equals ‘1’ (don't care PMC1CE) 
and PMC4[0] is '1'.

10.5.3 Speculative Count 

PMC5 and PMC7 support the speculative count function with a backup register. This is enabled when 
MMCR1[62:63] is set to ‘01’, ‘10’, or ‘11’ and a speculative event is selected (PMC[5,7]SEL equals ‘01011’ or 
‘01100’). The PMC starts counting speculatively whenever a next-to-complete (NTC) group completion stops 
(or GCT empty happens). The PMC then stores the counts to itself and its backup register if the last finished 
event matches what the PMC initially set up. If there is no match, the PMC restores the old count value from 
the backup register. This allows the PMU to establish a cycles per instruction (CPI) breakdown for various 
categories (CPI contribution due to an instruction-cache [I-cache] miss, data-cache [D-cache] miss, LSU, 
FXU, FPU, and so on).

A negative condition exception only occurs when the count value is not speculative and a negative condition 
occurs. (When PMC1CE[PMCjCE] is set to ‘1’ and the backup register’s negative bit is ‘1’.)

Table 10-20 lists the speculative count events.
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Speculative events are also able to count in the over 32-bit count mode. In this case, the overflow value is 
carried to the upper PMC only when the counting value is not speculative. For this reason, the upper PMC 
does not require a backup register to copy and restore the count value.

10.6 Configuring the Performance Monitor Bus

The 970FX performance monitor bus is configured through a series of hierarchal multiplexers, as shown in 
Figure 10-17 on page 214. This diagram also shows that all unit event buses are 32 bits, except for the LSU1 
that sources an extra 16 bits, denoted as LSU1[48:63]. The LSU0 and LSU1 event buses are multiplexed into 
a single 32-bit LSU event bus, using the multiplexers shown at the left of Figure 10-17. Basically, the multi-
plexers, on a byte basis, select either the LSU0 or the LSU1 events. The extra LSU1 events are selected 
using MMCR1[9:10], the TTM3SEL select signals. 

Table 10-20. Speculative Count Events 

PMC Number SEL(0:4)
MMCR1 Condition

Count Events See 
Notebit 62 bit 63

5, 7 01011 0 0 Reserved

A1a 5 01011 0 1 Completion stall by LSU instruction

A2a 5 01011 1 0 Completion stall by FXU instruction

A3a 5 01011 1 1 Completion stall by D-cache miss

A1b 7 01011 0 1 Completion stall by FPU instruction

A2b 7 01011 1 0 Completion stall by FXU long instruction

A3b 7 01011 1 1 Completion stall by reject

5, 7 01100 0 0 Reserved

A1c 5 01100 0 1 Completion stall by FPU long instruction

A2c 5 01100 1 0 GCT empty by I-cache miss 1

A1d 7 01100 0 1 Completion stall by reject (ERAT miss)

A2d 7 01100 1 0 GCT empty by branch miss predict 1

5, 7 01100 1 1 Reserved

Note:  

1. This count event also requires MMCR1 bits. They should be set as follows:

Bit 1 = ‘1’ and bits 0, 16, and 17 = ‘0’
or

Bits 3 and 17 = ‘1’ and bits 4 and 16 = ‘0’
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Figure 10-17. 970FX Performance Monitor Bus Configuration 
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The rest of the first level of selection is controlled by the TTM0 and TTM1 multiplexers. These control from 
which unit the non-LSU event signals are selected. The ISU can be selected by more than one multiplexer 
(TTM0 and TTM1). The TTM multiplexers are controlled by the TTMxSEL fields in MMCR1. MMCR1[0:1] 
control TTM0 and MMCR1[3:4] control TTM1. 

The three 32-bit outputs of the LSU, TTM0, and TTM1 multiplexers are sent to the TM_DEBUG multiplexers, 
which are controlled by the 2-bit TD_CP_DBGxSEL fields in the MMCR1; bits [12:13] control TM_DEBUG0, 
bits [14:15] control TM_DEBUG1, bits [16:17] control TM_DEBUG2, and bits [18:19] control TM_DEBUG3.

After the performance monitor bus is configured, individual events can be selected, as described at the begin-
ning of this section. Table 10-21 shows the events available through the performance monitor bus and the 
TTM and TM_DEBUG multiplexer used to select them. 

Table 10-21. Performance Monitor Bus Assignments   (Page 1 of 8)

Bits 
[0:31]

Byte 
Lane Bits [0:7] Event Description

FPU: TTM0 = ‘00’, TD_CP_DBGxSEL = ‘00’

0 0 0 FPU0 divide

1 0 1 FPU0 mult-add

2 0 2 FPU0 square root

3 0 3 FPU0 add, mult, sub, compare, fsel

4 0 4 FPU1 divide

5 0 5 FPU1 mult-add

6 0 6 FPU1 square root

7 0 7 FPU1 add, mult, sub, compare, fsel

8 1 0 FPU0 move, estimate

9 1 1 FPU0 round, convert

10 1 2 FPU0 estimate

11 1 3 FPU0 finished and produced a result

12 1 4 FPU1 move, estimate

13 1 5 FPU1 round, convert

14 1 6 FPU1 estimate

15 1 7 FPU1 finished and produced a result
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16 2 0 FPU0 denormalized operand

17 2 1 FPU0 stall 3

18 2 2 FPU0 store 

19 2 3 FPU0 single precision

20 2 4 FPU1 denormalized operand

21 2 5 FPU1 stall 3

22 2 6 FPU1 store 

23 2 7 FPU1 single precision

24 3 0 Floating-Point Status and Control Register (FPSCR)

25 3 1 FPU0 multiply

26 3 2 FPU0 compare

27 3 3 FPU0 select

28 3 4 FPU1 multiply

29 3 5 FPU1 compare

30 3 6 FPU1 select 

31 3 7 Floating-point stall store

IFU: TTM0 = ‘10’, TD_CP_DBGxSEL = ‘00’

0:15 0:1 0:7 Nothing

16:19 2 0:3 L1 I-cache data source

20 2 4 Valid instruction available

21 2 5 Cycles IFU is held by pipeline hold

22 2 6 Instruction prefetch installed in prefetch buffer

23 2 7 L2 prefetch request

24 3 0 I-ERAT write

25 3 1 Branch execution issue valid

26 3 2 Branch miss predict due to Condition Register (CR) value

27 3 3 Branch miss predict due to target address predict

28 3 4 Cycles L1 I-cache write active

29:31 3 5:7 Nothing

Table 10-21. Performance Monitor Bus Assignments   (Page 2 of 8)

Bits 
[0:31]

Byte 
Lane Bits [0:7] Event Description
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IDU: TTM1 = ‘00’, TD_CP_DBGxSEL = ‘01’

0 0 0 Instruction queue has three slots full

1 0 1 Instruction queue has one slots full

2 0 2 Instruction queue has six slots full

3 0 3 Instruction queue has zero slots full

4 0 4 Instruction queue has four slots full

5 0 5 Instruction queue has two slots full

6 0 6 Instruction queue has seven slots full

7 0 7 Instruction queue has eight slots full

8 1 0 Instruction queue has five slots full

9:15 1 1:7 Instruction queue full

16:31 2:3 0:7 Nothing

LSU0: (See Figure 10-17 970FX Performance Monitor Bus Configuration on page 214) TD_CP_DBGxSEL = ‘1x’

0 0 0 Instruction translation lookaside buffer (TLB) miss

1 0 1 Instruction segment lookaside buffer (SLB) miss

2 0 2 Data ERAT (D-ERAT) miss side 0

3 0 3 Snoop TLB Invalidate Entry (tlbie)

4 0 4 Data TLB miss

5 0 5 Data SLB miss

6 0 6 D-ERAT miss side 1

7 0 7 Tablewalk duration

8 1 0 Marked flush unaligned load side 0

9 1 1 Marked flush unaligned store side 0

10 1 2 Marked flush from load reorder queue (LRQ) store-hit-load (SHL), load-hit-load (LHL) side 0

11 1 3 Marked flush SRQ load-hit-store (LHS) side 0

12 1 4 Marked flush unaligned load side 1

13 1 5 Marked flush unaligned store side 1

14 1 6 Marked flush from LRQ store-hit-load (shl), load-hit-load (lhl) side 1

15 1 7 Marked flush SRQ LHS side 1

Table 10-21. Performance Monitor Bus Assignments   (Page 3 of 8)

Bits 
[0:31]

Byte 
Lane Bits [0:7] Event Description
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16 2 0 Marked L1 D-cache load miss side 0

17 2 1 Store conditional (stcx) failed

18 2 2 Marked IMR reload

19 2 3 Marked L1 D-cache store miss

20 2 4 Marked L1 D-cache load miss side 1

21 2 5 stcx passed

22 2 6 Marked stcx fail

23 2 7 Load and reserve indexed (larx) executed 0

24 3 0 Floating-point load side 0

25 3 1 L1 cache prefetch request

26 3 2 Out of streams

27 3 3 L2 cache prefetch

28 3 4 Floating-point load side 1

29 3 5 VPU type L2 prefetch

30 3 6 Data stream touch (DST) stream start

31 3 7 New stream allocated

LSU1: (See Figure 10-17 970FX Performance Monitor Bus Configuration on page 214) TD_CP_DBGxSEL = ‘1x’

0 0 0 Flush unaligned load side 0

1 0 1 Flush unaligned store side 0

2 0 2 Flush from LRQ SHL, LHL side 0

3 0 3 Flush SRQ LHS side 0

4 0 4 Flush unaligned load side 1

5 0 5 Flush unaligned store side 1

6 0 6 Flush from LRQ SHL, LHL side 1

7 0 7 Flush SRQ LHS side 1

8 1 0 L1 D-cache load side 0

9 1 1 L1 D-cache store side 0

10 1 2 L1 D-cache load miss side 0

11 1 3 L1 D-cache store miss

12 1 4 L1 D-cache load side 1

13 1 5 L1 D-cache store side 1

14 1 6 L1 D-cache load miss side 1

15 1 7 L1 D-cache entries invalidated from L2

Table 10-21. Performance Monitor Bus Assignments   (Page 4 of 8)

Bits 
[0:31]

Byte 
Lane Bits [0:7] Event Description
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16 2 0 SRQ store forwarding side 0

17 2 1 SRQ slot 0 valid

18 2 2 LRQ slot 0 valid

19 2 3 LSU0 reject

20 2 4 SRQ store forwarding side 1

21 2 5 SRQ slot 0 allocated

22 2 6 LRQ slot 0 allocated

23 2 7 LSU1 reject

24:27 3 0:3 L1 cache reload data source

28 3 4 L1 cache reload data valid

29 3 5 LMQ slot 0 valid

30 3 6 LMQ slot 0 allocated

31 3 7 LMQ full

32:47 0:1 0:7 Nothing

48 2 0 SRQ reject 0 - load hit store

49 2 1 LMQ reject 0 - LMQ full or missed data coming

50 2 2 LSU0 reject - reload critical data forward (CDF) or tag update collision

51 2 3 LSU0 reject - ERAT miss

52 2 4 SRQ reject 1- load hit store

53 2 5 LMQ reject 1- LMQ full or missed data coming

54 2 6 LSU1 reject - reload CDF or tag update collision

55 2 7 LSU1 reject - ERAT miss

56:58 3 0:3 L1 cache reload data source

60 3 4 Marked L1 cache reload data source valid

61 3 5 LMQ load-hit-reload merge

62 3 6 Marked SRQ valid

63 3 7 Nothing

Table 10-21. Performance Monitor Bus Assignments   (Page 5 of 8)

Bits 
[0:31]

Byte 
Lane Bits [0:7] Event Description
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ISU: TTM0 = ‘01’, TD_CP_DBGxSEL = ‘00’
TTM1 = ‘10’, TD_CP_DBGxSEL = ‘01’

0 0 0 Completion table full

1 0 1 Floating-Point Register (FPR) mapper full

2 0 2 Integer Exception Register (XER) mapper full

3 0 3 FPU0 issue queue full

4 0 4 CR mapper full

5 0 5 BR issue queue full

6 0 6 Link Register/ Counter Register (LR/CTR) mapper full

7 0 7 FPU1 issue queue full

8 1 0 FXU0/LSU0 issue queue full

9 1 1 CR issue queue full

10 1 2 LRQ full

11 1 3 SRQ full

12 1 4 FXU1/LSU1 issue queue full

13 1 5 Flush originated by LSU

14 1 6 Flush originated by branch miss predict

15 1 7 Flush (includes LSU, branch miss predict)

16:18 2 0:2 Instructions dispatched count

19 2 3 Dispatch valid

20 2 4 Dispatch reject

21 2 5 Nothing

22 2 6 Group experienced a branch redirect

23 2 7 Group experienced a branch miss predict

24 3 0 Nothing

25 3 1 Dispatch blocked by scoreboard

26 3 2 FXU0 produced a result

27 3 3 Duration of the external interrupt enable in the Machine State Register (MSR[EE] = ‘0’)

28 3 4 Nothing

29 3 5 General Purpose Register (GPR) mapper full

30 3 6 FXU1 produced a result

31 3 7 MSR(EE) equals ‘0’ and interrupt pending

Table 10-21. Performance Monitor Bus Assignments   (Page 6 of 8)

Bits 
[0:31]

Byte 
Lane Bits [0:7] Event Description
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Vector: TTM0 = ‘11’, TD_CP_DBGxSEL = ‘01’

0 0 0 Arithmetic logic unit (ALU) issue queue full

1 0 1 VPERM issue queue full 

2 0 2 ALU issue marked instruction

3 0 3 VPERM issue marked instruction

4 0 4 Saturation zero to one

5 0 5 VPU mapper full

6 0 6 Store issue marked instruction

7 0 7 Nothing

8:15 below selected by OVMA.USADEC2.CHICKEN1.IO.L2(7) = ‘0’ (default)

8 1 0 Finish with IMR

9 1 1 Generic forward

10 1 2 Vector ALU issue count

11 1 3 Denormalized traps

12 1 4 Saturation bit set

13 1 5 Finish contention cycle

14 1 6 Nothing

15 1 7 Nothing 

16:19 below selected by OVMP.RPRPM.MODE_PMON_MISC.IO.L2 = ‘0’ (default)

16 2 0 Instruction finish with IMR

17 2 1 Forwarding occurred from PERM or ALU or load

17 2 2 Issue valid

19 2 3 Saturation count for valid instruction

STS: TTM1 = ‘11’, TD_CP_DBGxSEL = ‘01’

0 0 0 L2 cache access collision with L2 prefetch (Data Stream Touch [DST])

1 0 1 L2 cache access collision with L2 prefetch (non-DST)

2 0 2 L2 cache access for store

3 0 3 L2 cache miss on store access (recent [R], shared [S], or invalid [I])

4 0 4 L2 cache miss; bus response is modified intervention

5 0 5 L2 cache miss; bus response is shared intervention

6 0 6 I = ‘1’ store operation (before gathering)

7 0 7 I = ‘1’ store operation completed on bus

Table 10-21. Performance Monitor Bus Assignments   (Page 7 of 8)

Bits 
[0:31]

Byte 
Lane Bits [0:7] Event Description
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8 1 0 I = ‘1’ load operation completed on bus

9 1 1 Cacheable store operation (before gathering)

10 1 2 Master bus transactions completed

11 1 3 Master bus transactions retried

12 1 4 Master L2 cache store transaction on bus was retried

13 1 5 Master L2 cache read transaction on bus was retried

14 1 6 Master SYNC operation competed

15 1 7 Master SYNC operation retried

16 2 0 Load or store dispatch retries due to castout (CO) conflicts

17 2 1 Load or store dispatch retries due to snoop conflicts

17 2 2 Load or store dispatch retries 

19 2 3 All read/claim state machines busy

20 2 4 All CO state machines busy

21 2 5 All snoop state machines busy

22 2 6 Cacheable store queue full

23 2 7 I = ‘1’ store queue full

24 3 0 Snoop (external)

25 3 1 Snoop state machine dispatched

26 3 2 Snoop retried due to any conflict

27 3 3 Snoop retried due to all snoop state machines busy

28 3 4 Snoop caused cache transition from modified (M) to exclusive (E) or shared (S)

29 3 5 Snoop caused cache transition from E to S

30 3 6 Snoop caused cache transition from E or S to recent (R) or invalid (I)

31 3 7 Snoop caused cache transition from M to I

Table 10-21. Performance Monitor Bus Assignments   (Page 8 of 8)

Bits 
[0:31]

Byte 
Lane Bits [0:7] Event Description
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10.7 Enabling the Performance Monitor Counters

10.7.1 Machine States 

The eight counters in the 970FX performance monitor can be enabled to count events as a result of a number 
of machine state conditions and triggering events. The machine state conditions and triggering events are 
enabled by the settings of the MMCR0, MMCR1, and MMCRA register control fields, combined with the 
values of the performance monitor-related bits in the MSR and other SPRs. While machine states and trig-
gering events are closely related in their effect on performance monitor behavior, it is easier to understand 
them if the two are first considered separately, as described in this section for the machine states and in 
Section 10.7.2 on page 224 for the triggering events. 

The term machine state condition as it is used here includes: 

• Supervisor versus user (problem) state (MSR[PR], MMCR0[FCS, FCP])

• Marked versus unmarked process state (MSR[PMM], MMCR0[FCM1, FCM0])

• Conditional versus unconditional counting state (MMCR0[FC], MMCRA[FC1:4], FC5:8], CTRL[31], 
MMCRA[FCWAIT])

• Wait state versus non-wait state (CTRL[31], MMCRA[FCWAIT])

By combining the state of the machine with the events selected for counting, many different aspects of perfor-
mance can be obtained for a given program. 

For example, a programmer might want to gather statistics on only a particular process. This can be done by 
doing the following:

1. Set the appropriate bits in MMCR0 that enable counting only for a marked process.

2. Before each run of the selected process begins, set the performance monitor mode bit in the Machine 
State Register (MSR[PMM]) to the value that marks that process. 

3. After each run of the selected process ends, set the performance monitor mode bit to the value that 
unmarks that process. 

Another example follows: 

The performance monitor can be set up to count only when the machine is in the supervisor state by ensuring 
that the MMCR0 bits that specify counting are enabled only when the machine is in the supervisor (privileged) 
state and are disabled when the machine is in the user (problem) state. 

Table 10-22 on page 224 illustrates several different counting scenarios.
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10.7.2 Trigger Events 

Machine states that determine counter activity have been presented in Section 10.7.1 on page 223. Several 
examples of states and their corresponding counter behaviors were shown in order to illustrate some of the 
more common uses. In addition to counting enable/disable for various machine states, there are certain kinds 
of performance monitor conditions and events that can affect performance monitor counting activity. The 
occurrence of these conditions and events, which together are called trigger events, combined with the 
controls that enable the trigger events, can be used together with machine states to further control perfor-
mance monitor activity. 

The term trigger event as it is used for the 970FX performance monitor includes the following: 

• The time-base transition event can occur when a selected time-base bit changes from ‘0’ to ‘1’. The time-
base event setup uses the following fields: TB_REG[47, 51, 55, 63], HID0[13], and MMCR0[TBSEL]. The 
time-base event enable uses the following field: MMCR0[TBEE]. The possibility of side effects when an 
enabled time-base event occurs uses the following fields: MMCR0[FCECE, TRIGGER].

• The counter negative condition for PMC1 can occur when the value in PMC1 is negative. The PMC1 
counter negative condition setup uses the following field: PMC1[0]. The PMC1 counter negative condition 
enable uses the following field: MMCR0[PMC1CE]. The possibility of side effects when the PMC1 counter 
negative condition occurs uses the following fields: MMCR0[FCECE,TRIGGER].

• The counter negative condition for PMCj (2 ≤ j ≤ 8) occurs when the value in any PMCj is negative. The 
PMCj counter negative condition setup uses the following field: PMCj[0]. The PMCj counter negative con-

Table 10-22. Examples of Event Counter Enabling States  

Counting State MMCR0[Bit] = Value MSR[Bit] = Value 

Disable all counting FC = ‘1’ Does not count for all values of PR, 
PMM

Enable all counting FC = ‘0’ Counts1 for all values of PR, PMM

Enable counting in supervisor state only FCP = ‘1’, FCS = ‘0’ Counts when PR = ‘0’

Disable counting in supervisor state only FCS = ‘1’, FCP = ‘0’ Counts when PR = ‘1’

Enable counting in user (problem) state only FCS = ‘1’, FCP = ‘0’ Counts when PR = ‘1’

Disable counting in user (problem) state only FCS = ‘0’, FCP = ‘1’ Counts when PR = ‘0’

Enable counting for marked processes only FCM0 = ‘1’, FCM1 = ‘0’ Counts when PMM = ‘1’

Disable counting for marked processes only FCM0 = ‘0’, FCM1 = ‘1’ Does not count when PMM = ‘1’

Enable counting for unmarked processes only FCM0 = ‘0’, FCM1 = ‘1’ Counts when PMM = ‘0’

Disable counting for unmarked processes only FCM0 = ‘1’, FCM1 = ‘0’ Does not count when PMM = ‘0’

Enable counting for marked processes in supervi-
sor state only 

FCP = ‘1’, FCS = ‘0’, FCM0 = ‘1’, 
FCM1 = ‘0’ Counts when PR = ‘0’ and PMM = ‘1’

Enable counting for unmarked processes in super-
visor state only 

FCP = ‘1’, FCS = ‘0’, FCM0 = ‘0’, 
FCM1 = ‘1’ Counts when PR = ‘0’ and PMM = ‘0’

Enable counting for marked processes in user 
(problem) state only 

FCP =‘0’, FCS = ‘1’, FCM0 = ‘1’, 
FCM1 = ‘0’ Counts when PR = ‘1’ and PMM = ‘1’

Enable counting for unmarked processes in user 
(problem) state only 

FCP = ‘0’, FCS = ‘1’, FCM0 = ‘0’, 
FCM1 = ‘1’ Counts when PR = ‘1’ and PMM = ‘0’

Note:  

1. All enables are based on whether the other MMCRx and/or MSR bits permit this action.
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dition enable uses the following field: MMCR0[PMCjCE]. The possibility of side effects when the PMCj 
counter negative condition occurs uses the following fields: MMCR0[FCECE, TRIGGER]. 

Note:  The three kinds of trigger events can occur independently of each other and independently of whether 
the condition or event is enabled. For example, a counter can go negative regardless of whether the counter 
negative condition for that counter is enabled. However, the side effects of that counter going negative will be 
seen only if the counter goes negative, the counter negative condition for that counter is enabled, and the 
side effects are also enabled.

By combining the trigger events and their respective enables with the time-related values obtained in the 
counters, performance profiles of different kinds of events can be obtained for a given program.

10.7.2.1 Time-Base Transition Events

Time-base events occur when the selected time-base bit (TB_REG[47, 51, 55, 63], HID0[13], 
MMCR0[TBSEL]) changes value from ‘0’ to ‘1’. If the time-base transition event is enabled (MMCR0[TBEE]), 
then any performance monitor action that is started by the occurrence of a trigger event (MMCR0[TRIGGER]) 
will be initiated. Any performance monitor action that is stopped by the occurrence of a trigger event 
(MMCR0[FCECE]) will be terminated. In multiprocessor systems with the Time-Base Registers synchronized 
among the processors, time-base transition events can be used to correlate the performance monitor data 
obtained by the several processors provided that software has specified the same TBSEL value for all of the 
processors in the system. 

The frequency of the time base is implementation dependent, and a system service routine should be invoked 
to obtain the frequency before a value for TBSEL is chosen.

10.7.2.2 PMC1 Counter Negative Condition Events

The PMC1 counter negative condition occurs when PMC1[0] equals ‘1’, which can occur either through 
counting from ‘0’, counting from a positive value greater than ‘0’, or through setting the PMC1[0] bit to ‘1’ in an 
interrupt or service routine. If the PMC1 negative count condition is enabled (MMCR0[PMC1CE]), any perfor-
mance monitor action that is started by the occurrence of a trigger event (MMCR0[TRIGGER]) will be initi-
ated, and any performance monitor action that is stopped by the occurrence of a trigger event 
(MMCR0[FCECE]) will be terminated when PMC1[0] becomes negative.

For example, if the PMC1 negative count condition is to be used to start the other PMCj counters after a 
designated number of cycles has elapsed, the set up would be as follows: 

1. PMC1 is set to the value (x‘8000 0000’ - <number of cycles>).

2. PMC1SEL is set up to count cycles.

3. MMCR0[PMC1CE] is set to enable the PMC1 negative counter condition.

4. TRIGGER is enabled. 

In this case, it is not necessary to enable the PMC1 counter negative condition because the TRIGGER uses 
either PMC1 negative or an enabled trigger event to start the enabled PMCjs counting.
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10.7.2.3 PMCj (2 ≤ j ≤ 8) Counter Negative Condition Events

The PMCj (2 ≤ j ≤ 8) counter negative condition event occurs when PMCj[0] equals ‘1’ (2 ≤ j ≤ 8), which can 
occur through counting from ‘0’, counting from a positive value greater than ‘0’, or through setting the PMCj[0] 
(2 ≤ j ≤ 8) bit to ‘1’ in an interrupt or service routine. If the PMCj (2 ≤ j ≤ 8) counter negative condition event is 
enabled (MMCR0[PMCjCE]), any performance monitor action that is started by the occurrence of a trigger 
event (MMCR0[TRIGGER]) will be initiated, and any performance monitor action that is stopped by the occur-
rence of a trigger event (MMCR0[FCECE]) will be terminated, when any of the PMCj (2 ≤ j ≤ 8) counters 
become negative.

10.7.3 Method for Enabling or Disabling Performance Monitor Counting

This section describes the fundamental mechanism that should be used to place the selected values into the 
Performance Monitor Registers and other SPRs to initiate and terminate counting.

Once all of the control and event selection choices have been made, there are 32-bit and 64-bit values that 
must be placed into each of the registers associated with performance monitor counting. These values are 
placed in the registers with the mtspr instruction, which may be executed only in supervisor mode.

Note:  If the Performance Monitor Counter Register values are changed while the performance monitor is 
enabled for counting, then the resulting performance monitor state is undefined.

The basic steps for enabling the performance monitor counting activity are as follows:

1. Enter supervisor mode.

2. Execute a synchronizing instruction.

3. Execute all mtspr instructions that place values to enable counting into the performance monitor and 
other Special Purpose Registers except for MMCR0.

4. Execute all mtspr instructions to initialize the performance monitor counters to the appropriate values.

5. Execute the mtspr instructions that place the value to enable counting into MMCR0.

6. Execute a synchronizing instruction.

7. Exit supervisor mode. 

8. Start the program for which counting is to be done.

When the program being counted completes, the following steps are used to disable performance 
monitor counting:

1. Enter supervisor mode.

2. Execute a synchronizing instruction.

3. Execute the mtspr instructions that places the value to disable counting into MMCR0.

4. Execute all mfspr instructions to read the values from the performance monitor counters.

5. Execute a synchronizing instruction.

6. Exit supervisor mode.

The performance monitor counters contain either the number of times the selected event has occurred or the 
number of cycles during which the monitored event occurred after the performance monitor was enabled for 
counting. 
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Note:  In either case, any counted events that occur after the performance monitor counting is enabled in 
supervisor mode, but before the program under study is entered, will be included in the overall count value. In 
the same way, any counter events that occur after the program under study is exited, but before the perfor-
mance monitor counting is disabled, will also be included in the overall count value.

10.8 Performance Monitor Exceptions

The three trigger events described in Section 10.7.2 beginning on page 224 can cause a performance 
monitor exception to occur and the subsequent performance monitor exception to be generated if the 
following sequence of actions occurs:

1. The trigger event occurs.

2. The trigger event is enabled.

3. The performance monitor exception is enabled.

4. External interrupts are enabled.

Note:  This is the highest priority interrupt. 

A performance monitor exception can be disabled for a given trigger event by disabling that trigger event 
(MMCR0[TBEE, PMC1CE, PMCjCE]). Performance monitor exceptions can be disabled for all of the trigger 
events collectively by disabling the performance monitor exception (MMCR0[PMXE]). The performance 
monitor exception, which is classified as an external interrupt, can be disabled either by disabling the perfor-
mance monitor exception (MMCR0[PMXE]) or by disabling the external interrupts (MSR[EE]). 

When an enabled condition or event occurs and a performance monitor exception is taken, the performance 
monitor exception is disabled by the hardware so that the SIAR and SDAR will contain the address and data 
information for an instruction that was executing at or around the time of the exception. Because the contents 
of the SIAR and SDAR can be altered if and only if MMCR0[PMXE] equals ‘1’, the contents of those registers 
can change only if software re-enables the performance monitor exception. If such a re-enable is done and 
multiple performance monitor exceptions occur before the performance monitor exception is taken, then the 
exception reflects the most recently occurring such exception. Data from the previous exceptions are lost.

If a performance monitor exception is pending and the value of MSR[EE] is changed from ‘0’ to ‘1’, then the 
performance monitor exception will occur before the next instruction is executed provided no higher priority 
exception exists. The occurrence of the performance monitor exception cancels the performance monitor 
exception.

In summary, the following registers are set when a performance monitor exception occurs:

• SRR0[0:63] is set to the effective address of the instruction that the processor would have attempted to 
execute next if no interrupt conditions were present.

• SRR1[33] is set to ‘1’ if the contents of the SDAR and the SIAR are associated with the same instruction.

• Other SRR0 and SRR1 bits are set as described in Chapter 4 Exceptions.

• SIAR is set to the effective address of the marked instruction, where the marked instruction is an instruc-
tion that was executing, possibly out-of-order, at or around the time that the performance monitor excep-
tion occurred. The contents of the SIAR may be altered by the processor if and only if MMCR0[PMEE] is 
set to ‘1’. Thus, after a performance monitor exception occurs, the contents of the SIAR is not altered by 
the processor until software sets MMCR0[PMEE] to ‘1’. After software sets MMCR0[PMEE] to ‘1’, the 
contents of SIAR is undefined until the next performance monitor exception occurs.
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• SDAR is set to the effective address of the storage operand of an instruction that was executing, possibly 
out-of-order, at or around the time that the performance monitor exception occurred. This storage oper-
and is called the marked data and may be, but need not be, the storage operand (if any) of the marked 
instruction. If the performance monitor causes a performance monitor exception, the SRR1 indicates 
whether the marked data is in fact the storage operand of the marked instruction. The contents of the 
SDAR may be altered by the processor if and only if MMCR0[PMEE] is set to ‘1’. Thus, after a perfor-
mance monitor exception occurs, the contents of the SDAR is not altered by the processor until software 
sets MMCR0[PMEE] to ‘1’. After software sets MMCR0[PMEE] to ‘1’, the contents of SDAR are undefined 
until the next performance monitor exception occurs.

• MSR is set the same as for other external interrupts.

10.9 Instruction Matching and Sampling

The 970FX performance monitor provides a facility for the detailed analysis of instruction flow by sampling 
particular instructions or classes of instructions. Instructions must pass through three stages of eligibility to be 
marked for sampling. The contents of the SIAR/SDAR reflect the marked instruction that is currently 
executing.

10.9.1 Stage 1 Eligibility

There are two instruction marking facilities for stage 1:

• IFU - Uses the IMC array to either set or clear the mark (imr) bit associated with any matching instruction. 
This imr bit, along with the branch (B), first (F), split (S), and last (L) predecode bits, are retained in the L1 
instruction cache along with each instruction. All instructions with the imr bit set are eligible for stage 2 of 
marking. 

• IDU - Uses the BFSL predecode bits (set independent of any instruction matching in the IMC array) along 
with the imr_match and imr_mask fields in the MMCRA. All instructions with predecode bits (BFSL) 
matching imr_match when ANDed with imr_mask are eligible for stage 2 of marking.

Which facility is used depends on the MMCRA imr_select field. If imr_select equals ‘0’, the IDU facility will be 
used. Otherwise, if imr_select equals ‘1’, the IFU facility will be used.

10.9.2 Stage 2 Eligibility

Any eligible instructions from stage 1 are further filtered by the imr_mark field in the MMCRA:

‘00’: All IOPs
‘01’: Only IOPs resulting from microcode expansion
‘10’: Only one IOP per PowerPC instruction
‘11’: First IOP to go to the LSU for every PowerPC load/store instruction

10.9.3 Stage 3 Eligibility

Any eligible instructions from stage 2 are marked if the internal ok_to_sample performance monitor signal is 
asserted. This results in at most one marked instruction in the pipeline at a time. Another eligible instruction 
will be marked after a marked instruction completes or the previous marking cycle has timed out (set by the 
SCOM x‘240’ IDLE field). 



User’s Manual

 IBM PowerPC 970FX RISC Microprocessor

Version 1.7
March 14, 2008  
 

970FX Performance Monitor

Page 229 of 360

10.10 IFU Instruction Matching Facility

The PowerPC instruction matching by opcode or extended opcode is performed by the IFU Instruction 
Matching facility implemented in hardware through the use of an instruction match CAM (IMC) array. When a 
PowerPC instruction is fetched from memory, the IFU instruction matching facility compares the instruction 
with the opcode/extended opcode mask values in each of the IMC array rows. If a PowerPC instruction 
matches one or more IMC array row masks, the IFU predecode bits associated with the marked instruction 
are set based on the value of the IMC function bit in each of the matched IMC array rows. The IMC function 
bits and descriptions of the subsequent processing for the PowerPC instruction matched for each function bit 
are as follows:

• Force only (fo) forces the IDU to place the PowerPC instruction in a group by itself by setting the prede-
code bits for the instruction as ‘first’ and ‘last’ in the group. The IMC fo function bit is used for hardware 
debug and workaround. It is only accessible by using scan.

• Instruction marking (imr), which is used for performance monitor instruction marking, causes the IDU to 
recognize that the instruction is IFU-eligible for marking. The IMC imr function bit is used by the perfor-
mance monitor for marked instruction events and threshold event counts. It is accessible to the user by 
using the supervisor mode mtimc/mfimc instruction.

In addition to the IFU predecode bits associated with the IMC function bits, other IFU predecode bits—based 
on the instruction type—are bundled with each instruction in the IFU instruction cache.

Note:  As long as an instruction resides in the Level 1 Instruction cache, its match bit will remain unchanged. 
If the match condition for an instruction changes, then the Level 1 Instruction cache should be flushed to 
ensure proper setting of the match bits for all instructions. 

10.10.1 Overview of the IFU Instruction Matching Facility 

Each processor core includes an IFU instruction matching facility, implemented as the IMC array, which is 
used to maintain the kinds of IFU instruction matching requests and the mask values used for each IFU 
matching request. The method of reserving an IMC array row differs depending on whether the row is being 
requested for use by the hardware debug facility (using scan only) or for the performance monitor marked 
instruction or threshold event facility (using the supervisor mtimc and supervisor or user mfimc instructions). 
All IMC array rows required for hardware debug operations (fo reservations) are reserved during the 970FX 
power-on reset (POR) scan sequence. Any IMC array rows that have not been fo-reserved during system 
initial program load (IPL) may be requested by an executing program for use by the performance monitor. 

Before an executing program requests an IMC array row, the program must determine which IMC array rows 
are available to software; that is, which rows are not fo-reserved. This information is available by reading the 
IMC Special Purpose Register (SPR) with the mfimc instruction, which may be executed only in supervisor 
mode. An executing program may request any IMC array rows that are not fo-reserved by writing the IMC 
SPR with the mtimc instruction, which can be executed only in supervisor mode. 
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10.10.2 IMC Array

The IMC array, which is contained in the IFU, consists of eight row entries as follows:

• Six rows (0 through 5) support a 17-bit partial instruction match of the opcode and extended opcode 
fields in instruction bits [0:5] and instruction bits [21:31], respectively. 

• Two rows (6 and 7) combined support a full 32-bit instruction match of all the instruction fields in instruc-
tion bits [0:31].

Each IMC array row includes fields for:

• The imr function bit (bit [60], called the Mark bit) that determines the predecode tag value sent to the IDU. 
The imr bit is programmable through the Instruction Match facility. 

• The two mask values that together encode the instruction match criteria (called v0 and v1). 

• The machine configuration this match applies to (PR, FP Available, VPU Available). Note that the PR bit 
in the MSR determines the Privileged state if a ‘0’ and the Problem state if a ‘1’.

• Optional replacement field for the BFSL (predecode) bits to replace for a matched instruction (SPR can-
not access theses fields).

The programmer’s model view of the IMC array is shown in Table 10-23 and Table 10-24.
 

Table 10-23. Partial Match Rows in the IMC Array  

0:16 17 18 19 20 21:37 38 39 40 41 42:52 53:58 59 60 61:63

v0(17) N/A MSR
[PR]

MSR
[FP]

MSR
[VPU] v1(17) N/A MSR
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[VPU] N/A
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Table 10-24. Complete Match Rows in the IMC Array  

0:31 32 33 34 35 36:52 53:58 59 60 61:63

v0 (Row 6) / v1 (Row 7) N/A MSR
[PR]

MSR
[FP]

MSR
[VPU] N/A
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The following are some rules and general facts about the IMC array features and use:

• The IMC array row with full 32-bit v0 and v1 masks can be used to match the opcode, the extended 
opcode, and all other fields for any PowerPC instruction. 

• The IMC array rows with 17-bit mask values cannot be used to match branch instructions. 

• The 17-bit v0 and v1 mask values can be used to match only those bits of a PowerPC instruction (but not 
branch instructions) that represent the opcode and extended opcode bit fields of that instruction and can-
not be used to match any other instruction bit fields such as the register fields, shift fields, mask fields, 
reserved fields, immediate fields, or the rc bit. 

• The bits of v0 and v1 that correspond to any fields other than the opcode and extended opcode bit fields 
of instruction bits [21:31] should be set to the ‘don’t care’ v0 and v1 value as is explained in 
Section 10.10.5 The v0 and v1 Mask Criteria on page 233. 

• The 17-bit v0 and v1 bits [0:5] and v0 and v1 bits [6:16] correspond to instruction bits [0:5] and instruction 
bits [21:31].

• The 3 mode bits (PR, FP, VP) correspond to MSR[PR], MSR[FP], and MSR[VP]

10.10.3 Reading the IMC SPR with the mfimc Instruction 

The IMC SPR is read in order to determine which IMC array rows are fo-reserved. The image of the IMC SPR 
that is obtained by executing the mfimc instruction (which can be executed in supervisor and user mode) is 
referred to as the patch map. The programmer’s model view of the patch map is shown in Figure 10-18. 

A patch map status bit value of ‘1’ indicates that the associated IMC array row is fo-reserved and cannot be 
altered by the executing program. If the status bit value is ‘1’, an mtimc to the associated IMC array row is 
treated as a no-op.

The facts summarized below emphasize what information is and is not available from the patch map:

• The only information that the patch map provides about the IMC array rows is whether or not a row is fo-
reserved. 

• The patch map provides no information about reservations made by the performance monitor IMR facility. 

• An IMC array row that is reserved by the performance monitor IMR facility will not show a patch map sta-
tus bit of ‘1’ if the patch map is read with the mfimc instruction. 

• There is no mfimc-like instruction that will help an executing program determine what v0 and v1 values 
were used when a performance monitor IMR facility request was made.

• All information about IMC array use must be maintained by the executing program. 

• If an IMR reservation is made for an available IMC array row and the v0, v1 mask used for the IMR reser-
vation is the same as a v0,v1 mask that is already being used for an fo reservation, the instruction 
selected by the v0, v1 mask will be correctly processed for both the imr request and the fo request.

Figure 10-18. Patch Map  

Patch Map Bit Number (IMC Array Row Address)

0:55 56 (0) 57 (1) 58 (2) 59 (3) 60 (4) 61 (5) 62 (6) 63 (N/A)

Reserved1 Reserved

1. The designation ‘reserved’ is used both to indicate bits in the patch map that are not used for this implementation, as well as to 
identify the fields that are not accessible when using the mfimc instruction.
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10.10.4 Writing the IMC SPR with the mtimc Instruction

After an executing program determines which IMC array rows are fo-reserved (by doing a mfimc and seeing 
which patch map bits are set to ‘1’), the program should initialize an IMC_reservation data structure, which it 
should then use to track all fo/imr-reservations.

The program can make an IMR reservation of any available IMC array row through use of the mtimc instruc-
tion (which can be executed only in supervisor mode). The mtimc instruction is used to select the IMC array 
row, provide the v0 and v1 mask values, and set the imr bit. After a performance monitor IMR request is 
successfully completed, the requesting program should update its IMC_reservation data structure to record 
the reservation and the v0, v1 mask values. 

A performance monitor IMR request remains in effect on a processor until it is:

• Canceled by an mtimc instruction that sets the imr bit to ‘0’, 

• Changed by an mtimc instruction that changes the IMC array row fields v0, v1 and writes the imr bit to ‘1’,

• Cleared or replaced by a system reboot, or

• Overwritten by the service processor using scan or SCOM.

When an existing performance monitor IMR request is changed or canceled by a subsequent mtimc instruc-
tion, the executing program must update its IMC reservation data structure and invalidate the I-cache in order 
to reset the match bits set by a previous IMR reservation. Otherwise, stale instruction marks from the 
previous IMC setup might make the performance measurements unreliable, meaning old marks might still be 
encountered and new marks might not always occur depending on the state of the I-cache.

The programmer’s model of the IMC SPR for the mtimc instruction differs slightly for requests of the 32-bit 
and the 17-bit instruction match IMC array rows. The IMC array rows for 17-bit matches, which are at IMC 
array row addresses 0 - 5, are written with a single mtimc instruction. It specifies the IMC array row address, 
the 17-bit opcode and extended opcode instruction mask values for v0 and v1, the machine mode mask 
values for v0 and v1, and it sets the imr bit to ‘1’. The image of the IMC SPR that is used when executing the 
mtimc instruction for IMC array row addresses 0 - 5 is shown in Table 10-25 on page 232. 

The IMC array row for 32-bit matches, which is at IMC array row address 6 and 7, is written with two mtimc 
instructions. Each specifies an IMC array row address, a 32-bit instruction mask value, and an imr bit value as 
follows:

• The first mtimc instruction sets the IMC SPR bits [61:63] = ‘110’, the IMC SPR bits [0:31] = 
v0instruction[0-31], the IMC SPR bits [33:35) = v0PR,FP,VP, and the IMC SPR bit [60] = ‘0’.

• The second mtimc instruction sets the IMC SPR bits [61:63] = ‘111’, the IMC SPR bits [0:31] = 
v1instruction[0-31], the IMC SPR bits [33:35] = v1PR,FP,VP, and the IMC SPR bit [58] = ‘1’. 

Table 10-25. IMC SPR for a 17-Bit Match 

IMC Row Bit Numbers (IMC Array Row Fields)

0:16 17 18:20 21:37 38 39:41 42:59 60 61:63

v0[0-5,21-31] Res V0PR,FP,VP v1[0-5,21-31] Res v1PR,FP,VP Reserved1 IMR1 IMC Row 
Address

1. The designation ‘reserved’ is used both to indicate bits in the IMC SPR that are not used for this implementation as well as to iden-
tify the fields that are not accessible when using the mtimc instruction.
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The image of the IMC SPR that is used when executing the first mtimc instruction (for IMC array row 
address 6) is shown in Table 10-25 and the image of the IMC SPR that is used when executing the second 
mtimc instruction (for IMC array row address 7) is shown in Table 10-26.

10.10.5 The v0 and v1 Mask Criteria

The mask criteria used for matching the values in the instruction bit fields and the machine state are based on 
the values in the v0 and v1 fields. Each pair of bits, v0(n) and v1(n); where n is 0 − 16, or n is 0 − 31, or n 
equals PR, FP; is interpreted as an encoded 4-value criterion. It determines how the corresponding instruc-
tion bit (m) is to be matched, where either m is 0 - 31 for a full instruction match or m is 0 - 5, 21 - 31 for an 
opcode/extended opcode match. Bit correspondences between v0, v1 bit numbers and instruction numbers 
depend on whether v0,v1 is a 17-bit or a 32-bit mask and are as follows: 

• 17-bit mask opcode bits: 
v0,v1 (0:5) corresponds to instruction bits[0:5]

• 17-bit mask extended opcode bits: 
v0,v1(6:16) corresponds to instruction bits[21:31]

• 32-bit mask full instruction bits: 
v0.v1(0:31) corresponds to instruction bits[0:31]

The bit match criteria established by the four values of v0(n), v1(n) are shown in Table 10-27 on page 233. 
 

10.10.6 Instruction Matching Examples

17-bit match using only instruction opcode (bits [0:5])
Load Doubleword: opcode = 58, extended opcode = N/A (don’t care); PR=0; FP=1, VP=0/1
v0 = 0b00010111111111111 1101
v1 = 0b11101011111111111 1011

17 bit match using instruction opcode and extended opcode
Load Word and Zero Indexed: opcode = 31, extended opcode = 23; PR=1; FP=0/1, VP=0/1
v0 = 0b10000011111010001 1011
v1 = 0b01111100000101110 1111

Table 10-26. IMC SPR Used when Writing the Second mtimc Instruction for a 32-Bit Match  

IMC Row Bit Numbers (IMC Array Row Fields)

0:31 32 33:35 36:59 60
imr

61:63
IMC Row Address

v1[0-31] Reserved v1PR,FP,VP Reserved 1 1 1 1

Table 10-27. Encoding Bits v0 and v1 of the IMC Array Mask 

v0 Value v1 Value Meaning

0 0 Never match (disable all)

0 1 Match a one (1)

1 0 Match a zero (0)

1 1 Always match (don’t care)
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10.11 IDU Instruction Sampling Facility

Another level of sampling activity—performed in the IDU—includes further processing for the imr and fo reser-
vations made using the IFU Instruction Matching facility. Because of the way an instruction is processed 
through the two IDU selection stages, it is possible that the IDU instruction sampling processing can override 
previous IFU IMR marking. 

The IDU instruction sampling facility that produces marked instructions for the instruction pipeline consists of 
two independent selection stages. In each of the two selection stages, the selection criteria for that stage 
determines which instructions pass out of that IDU selection stage as eligible to be marked. Because an 
instruction passes through each of the two IDU selection stages after it is processed for IFU IMR marking, it is 
possible that the IDU instruction sampling eligibility criteria can override previous IFU IMR marking. It is also 
possible that the IDU stage 2 processing can override IDU stage 1 processing if the criteria for each of the 
two selection stages are not set up correctly.

An eligible instruction that is marked by the IDU is referred to as a marked (sampled) instruction. 

10.11.1 Overview of the IDU Instruction Sampling Facility

The IDU instruction sampling facility uses the IFU imr and predecode bits from the instruction cache, together 
with PMU/SCOM data and control fields, to determine which instructions are eligible to be marked (sampled) 
and when an instruction can actually be marked (sampled). 

Operation of the IDU instruction sampling facility to determine which instructions are eligible for marking 
occurs continuously when performance monitor mode sampling is enabled (MMCRA[63] equals ‘1’). The 
choice of which instructions are eligible to be marked is based on the values of the IFU imr and predecode 
bits combined with the values of the select, mask, match, mark, and filter fields. The IDU continuously desig-
nates instructions as eligible to be marked based on the above fields, but the IDU only marks instructions 
when sampling is enabled and the performance monitor signals the IDU that it is ok_to_sample. Only one 
marked group flows through the instruction pipeline at a time.

IDU processing of an instruction based on the fo IMC function bits is independent of IDU processing based on 
the IFU imr function bit, so a given instruction might be processed by the IDU for any or all of the fo, and imr 
functions.

The IDU eligibility stages continuously produce eligible instructions. The sample_enable field combined with 
the performance monitor signal ok_to_sample control final marking as outlined below. The information in 
parenthesis corresponds to the annotations on the left in Figure 10-19 on page 239.

• The imr_select field (MMCRA[49]) determines the method used for stage 1 instruction eligibility (eligibility 
stage 1 - method).

• Depending on the imr_select field value, the imr_mask field (MMCRA[52:55]) and the imr_match field 
(MMCRA[56:59]) can be used to determine the type of the stage 1 eligible instructions that pass through 
to stage 2 (eligibility stage 1 - type).

• The imr_mark field (MMCRA[50:51]) determines what type of stage 1 eligible instructions are to be con-
sidered for stage 2 eligibility (eligibility stage 2 - type).

• The imr_filter field (SCOM x‘34’ [11:12]) determines which and how many of the stage 2 eligible instruc-
tions actually become marked instructions in the pipeline (eligibility stage 2 - method).

• The performance monitor signal ok_to_sample determines whether marking is blocked or might resume 
(mark/no mark stage). 
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The IFU matching and the IDU instruction sampling activities occur continuously regardless of whether 
instructions are being marked by the IDU. The IDU can mark an instruction only when the performance 
monitor signals that marking is enabled. After an instruction is marked by the IDU, the performance monitor 
disables marking until either a marked instruction completes, the instruction is a store that is sent to the STS, 
or the performance monitor completion delay timer indicates that the marked instruction has been flushed. 

Note:  As long as an instruction resides in the Level 1 Instruction cache, its match bit will remain unchanged. 
If the match condition for an instruction changes, the Level 1 Instruction cache should be flushed to ensure 
proper setting of the match bits for all instructions. 

10.11.2 Stage 1 Eligibility 

The IDU uses the IFU predecode bits for branch, first, split, and last (shown in Table 10-28 on page 236) and 
the imr bit stored with an instruction in the instruction cache to establish eligibility for marking. 

Note:  As long as an instruction resides in the Level 1 Instruction cache, its imr match bit will remain 
unchanged. If the match condition for an instruction changes, the Level 1 Instruction cache should be flushed 
to ensure proper setting of the imr match bits for all instructions. 

The method used to choose IDU stage 1 eligible instructions is based on the value of the imr_select field 
(MMCRA[49]). Depending on the value of the imr_select field, a second decision point may be required to 
choose the type of stage 1 eligible instructions using the imr_mask field (MMCRA[52:55]) and the imr_match 
field (MMCRA[56:59]). These two scenarios, based on the value of the imr_select field value, are as follows: 

• imr_select equals ‘1’: 
The IFU imr bit is used to determine stage 1 eligibility. All instructions with the IFU imr bit set are passed 
through to stage 2 as eligible for marking. 

• imr_select equals ‘0’: 
The IFU BFSL predecode bits are used to determine stage 1 eligibility. 

If imr_select equals ‘1’, so that the IFU imr bit determines stage 1 eligibility, it is possible to choose values for 
imr_mark (IDU eligibility stage 2 - type) that will cancel the IMR eligibility created in stage 1. 

If imr_select equals ‘0’ and the IFU BFSL predecode bits are used to determine stage 1 eligibility, there are 
two further stages of processing to establish the type of instructions that are eligible: 

1. The BFSL predecode bits for the instruction are ANDed with the imr_mask field to produce a 4-bit inter-
mediate result, and 

2. The 4-bit intermediate result is compared with the imr_match field. All instructions with an exact 4-bit 
match between the intermediate result and the imr_match field are passed through to stage 2 as eligible 
for marking. 

To match all instructions, and thus pass all instructions through to stage 2 as eligible for marking, set the 
following values for the stage 1 method/type decision variables:

• imr_select: ‘0’
• imr_mask: ‘0000’
• imr_match: ‘0000’

The IFU BFSL predecode will be used, the mask will result in all zeros for the intermediate result, and the 
match will always succeed. The eligibility method chosen at stage 1 can determine what kind of instruction is 
counted for the performance monitor count event called “number of instructions completed,” depending on 
how the eligibility criteria is set up in stage 2.
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:

Table 10-28. IFU BSFL Predecode Bit Definitions 

B(ranch) S(plit) F(irst) L(ast) Classification Description

0 0 0 0 Simple One IOP formed from one instruction with restrictions.

0 0 0 1 Simple-Last IOP formed will be the last in the resultant dispatch group.

0 0 1 0 Simple-First IOP formed will be the first in the resultant dispatch group.

0 0 1 1 Simple-Only IOP formed will be the only in the resultant dispatch group.

0 1 0 0 Split Two IOPs formed from one instruction; both must be in the same 
dispatch group.

0 1 0 1 Split-Last Two IOPs formed from one instruction; the second IOP must be the 
last IOP in the resultant group.

0 1 1 0 Split-First Two IOPs formed from one instruction; the first IOP must be the first 
IOP in the resultant dispatch group.

0 1 1 1 Split-Only Two IOPs formed from one instruction; no other IOPs are present in 
the resultant dispatch group.

1 0 0 0 Branch - Conditional IOP formed from a conditional branch instruction.

1 0 0 1 Branch - Unconditional IOP formed from an unconditional branch instruction.

1 0 1 0 Illegal Opcode Not a valid instruction.

1 0 1 1 Reserved

1 1 0 0 Microcode - Hard A nonprogrammable microcode sequence must be generated.

1 1 0 1 Reserved

1 1 1 0 Microcode - Conditional 
(otherwise: Split-Last)

A nonprogrammable microcode sequence must be generated if 
certain conditions are not met.

1 1 1 1 Microcode - Conditional 
(otherwise: Split-Only)

A non-programmable microcode sequence must be generated if 
certain conditions are not met (for example, the FXM1 field is not 
singular). 

1. Field mask used to identify the CR fields to be updated by the mtcrf instructions.
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10.11.3 Stage 2 Eligibility 

The imr_mark field (MMCRA[50:51]) value and then the imr_filter field (SCOM x‘340’[11:12]) are used by the 
IDU to establish stage 2 eligibility for marking. The first decision point for IDU stage 2 eligibility is the type of 
stage 1 eligible instructions that can be stage 2 eligible; this determines final stage 2 eligibility. The second 
decision point for IDU stage 2 eligibility is the method of passing the eligible information to the mark/no mark 
stage; this determines what eligible instructions actually get marked.

The type of stage 1 eligible instructions that will be stage 2 eligible is based on the value of the imr_mark field 
(MMCRA[50:51]). The imr_mark field value determines stage 2 eligibility of instructions as follows: 

The stage 1 eligibility method combined with the stage 2 eligibility type determines what kind of instruction is 
counted for the performance monitor count event called “number of instructions completed” as shown in 
Section 10.11.6 Examples of Instruction Sampling Scenarios on page 242.

After the type of stage 2 eligible instructions is established, the method of passing the stage 2 eligibility infor-
mation to the mark/no mark stage is determined in two steps using the imf_filter[11] bit value and then using 
the imr_filter[12] bit value, which have the following functions:

imr_filter[11:12]

Bit [12] selects one of two behaviors in sampling from microcode expansions (and has no effect on sampling 
from non-microcode groups):

In Good_Address mode, there is at most one IOP in any microcode expansion that is eligible for sampling. 
This is either the first load/store IOP if there are any load/store IOPs in the expansion, or the first IOP in the 
final group of the expansion. If the random filter suppresses marking this IOP, then no IOP will be marked for 
the microcode expansion. 

In More_Hits mode, multiple IOPs in a microcode expansion are eligible for sampling: the first load/store IOP 
in any group, or the first IOP of the final group. If the random filter suppresses marking the first of these IOPs, 
a subsequent one might still be sampled. (However, at most one will be marked in a single microcode expan-
sion.)

The suggested mode for imr_filter[11:12] is ‘10’.

00 All stage 1 eligible IOPs are stage 2 eligible for marking.

01 Only stage 1 eligible IOPs that resulted from microcode expansion are stage 2 eligible for 
marking.

10 Only one IOP per stage 1 eligible PowerPC instruction is stage 2 eligible for marking (use 
this mode to make all PowerPC instructions eligible).

11 For every stage 1 eligible PowerPC instruction, the first IOP that goes to the LSU is stage 2 
eligible for marking (use this mode to make all load/store instructions eligible).

0x No filtering

1x Randomly sample eligible IOPs

10 Use the Good_Address mode of sampling microcode expansions

11 Use the More_Hits mode of sampling microcode expansions
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10.11.4 Stage 3 Mark/No Mark 

The sample_enable field (MMCRA[63]) value and the ok_to_sample signal state are used by the IDU to 
complete the mark/no mark stage for instruction sampling. If marking is disabled with the sample_enable bit 
(MMCRA[63] equals ‘0’), then no group is marked by the IDU regardless of stage 2 eligibility. If marking is 
enabled with the sample_enable bit (MMCRA[63] equals ‘1’), then marking depends on the state of the hand-
shake protocol between the IDU and the performance monitor signal ok_to_sample. The ok_to_sample 
signal is sent by the performance monitor to the IDU when the performance monitor determines that the 
previous marking cycle has completed successfully or has timed out. The handshake and synchronization 
mechanism are explained in Section 10.11.5 Complete Masking, Matching, and Marking Cycle on page 240.
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Figure 10-19. IFU and IDU Instruction Sampling Flow 
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10.11.5 Complete Masking, Matching, and Marking Cycle

Instruction marking is set up by initializing the MMCRx[imr_xxx] fields, the SCOMyy[imr_filter] fields, and 
possibly the SCOMxx[xx_delay] for the kind of marking to be done. Section 10.11.7 Enabling and Disabling 
Marking on page 244 describes the procedure for initializing these registers plus any other registers to 
support performance monitor counted events. There are several examples at the end of this section that 
show the values of the imr_xxx fields for common marking and counting scenarios.

Once the instruction marking cycle is set up and enabled, instructions are continuously processed for eligi-
bility as is described in Section 10.11.2 Stage 1 Eligibility on page 235, and in Section 10.11.3 Stage 2 Eligi-
bility on page 237. The actual marking of a group described in Section 10.11.4 Stage 3 Mark/No Mark on 
page 238. The steps that occur from when the performance monitor ok_to_sample signal initiates marking 
until the next ok_to_sample signal initiates the next marking cycle are described in this section.

The overall timing of the marking cycle is driven by two performance monitor timers called the 
completion_delay counter and the idle_delay counter. The completion_delay counter is first initialized at the 
start of a marking cycle from the value in the sampling logic completion delay field (SCOM x‘240’ [COMPLN]). 
The idle_delay counter is initialized at the end of a marking cycle from the value in DELAY field (SCOM 
x‘240’ [DELAY]). 

The purpose of the completion_delay counter is to predict the situation that the marked instruction has been 
flushed from the instruction pipeline before it can complete. The purpose of the idle_delay counter is to intro-
duce a period of time between the end of a marking cycle (through either instruction completion or flush) and 
the start of the next marking cycle. The completion_delay and the idle_delay values must be greater than 
zero whenever matching or marking is enabled. Otherwise, the processor activity will be undefined.

A marking cycle begins when the performance monitor asserts the ok_to_sample signal for one cycle. The 
assertion of this signal (assuming that sample_enable equals ‘1’) causes the IDU to mark the next group that 
enters stage 3 if it has passed all the stage 2 eligibility tests. After a group is marked in the IDU (this is a 
performance monitor count event), the IDU continues to process instructions for eligibility but does not mark 
another group until the next ok_to_sample signal is received from the PMU. 

When the signal indicating that the group is marked in the IDU is sent from the IDU to the performance 
monitor (this is also a performance monitor count event), the performance monitor begins decrementing the 
completion_delay counter by one each cycle that the signal group_completed is asserted. If 
group_completed is not asserted, the completion_delay counter is not decremented. 

This use of the completion_delay counter is intended to model a marked_group_flushed situation. The under-
lying assumption of this model and the default value of COMPLN equals 20 is as follows: if no marked group 
event occurs in any functional unit during a full wrap of the 20-entry completion buffer, then the marked group 
has been flushed. The completion_delay value must be greater than zero whenever instruction sampling is 
enabled or processor activity will be undefined. 

If the completion_delay counter does not time out between when the signal indicating that the group is 
marked in the IDU is received by the performance monitor and when the next marked event signal is received 
by the performance monitor, the completion_delay timer is reset to the value in COMPLN. It resumes decre-
menting for each cycle that group_completed is asserted. At each stage of the marking cycle, the 
completion_delay counter is initialized, counts down whenever the signal group_completed is asserted, and 
either times out or is re-initialized when the next marked event occurs. Thus, at each stage of the marking 
cycle, the marked group is allowed the COMPLN number of cycles while groups are completing from the 
completion buffer before the marked group is considered flushed.
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The sequence of events for a complete marking cycle, where a marked group moves through all of the 
instruction pipeline stages without being flushed, is as follows:

1. The performance monitor signal ok_to_sample is asserted for one cycle.

2. A group is marked when the IDU transfers the group to the ISU (performance monitor count event 
direct5[4]). The completion_delay counter is initialized to the value COMPLN and begins to decrement on 
each cycle that group_completed is asserted.

3.  A marked group is dispatched (performance monitor count event direct1[2]). The completion_delay 
counter is reinitialized to the value COMPLN and begins to decrement on each cycle that 
group_completed is asserted. 

4. A marked group is issued (performance monitor count event direct6[5]). The completion_delay counter is 
reinitialized to the value COMPLN and begins to decrement on each cycle that group_completed is 
asserted. 

5. A marked group finishes (FPU: performance monitor count event direct7[4], FXU: performance monitor 
count event direct6[4], CRU: performance monitor count event direct4[5], BRU: performance monitor 
count event direct2[5], LSU: performance monitor count event direct8[4], any unit: performance monitor 
count event direct7[5]). The completion_delay counter is reinitialized to the value COMPLN and begins to 
decrement on each cycle that group_completed is asserted.

6. A marked group completes (performance monitor count event direct4[4]).

7. The idle_delay counter is initialized to the value DELAY and is then decremented to ‘0’.

8. The ok_to_sample signal is asserted for one cycle and the marking cycle begins again at step 2.

When the completion_delay counter times out (performance monitor count event direct5[5]), the performance 
monitor enters the marking cycle state where the idle_delay counter is set to the value DELAY and is then 
decremented to ‘0’ (step 7 above). When the idle_delay counter times out, the performance monitor asserts 
the ok_to_sample signal for one cycle, and the marking cycle begins again.

The default idle_delay value is set to four. The idle_delay value must be greater than zero whenever 
matching/marking is enabled or processor activity will be undefined. 

If a marked store is sent to the STS (performance monitor count event direct6[3]), the event called “marked 
store sent to STS” stops the marking cycle described above and causes the performance monitor to enter the 
idle state. The performance monitor stays in the idle state until one of the signals “sampled store complete” 
(performance monitor count event direct1[3]) or “sampled store complete with intervention” (performance 
monitor count event direct3[3]) is received. At that time, the performance monitor resumes the marking cycle 
at marking cycle step 7 above.

When sampling_enable is set to zero, the performance monitor enters the idle state of the marking cycle until 
sampling is enabled again.
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10.11.6 Examples of Instruction Sampling Scenarios

Follow the procedure in Section 10.11.7 Enabling and Disabling Marking on page 244 to place the values for 
instruction sampling into the appropriate Special Purpose Register fields. Section 10.4 Performance Monitor 
Control Registers on page 191 describes the performance monitor related registers and fields. To count 
marked events, the appropriate PMCxSEL fields should also be set up and the enable counting bit must be 
set to the enabled value. In each of the examples below, only the values of the Instruction Sampling Register 
fields are shown.

Example 1: Set up the instruction sampling facility to count PowerPC instructions as the performance 
monitor count event called “number instructions completed.”

The values given here are those that set up the instruction sampling stages so that the performance monitor 
count event called “number instructions completed” will be the count for PowerPC instructions completed. If 
sampling is enabled, instructions will be randomly sampled. This is the recommended setting. The required 
field values are as follows: 

Example 2: Set up the instruction sampling facility to count IOP instructions as the performance monitor 
count event called “number instructions completed.”

The values given here are those that set up the instruction sampling stages so that the performance monitor 
count event called “number instructions completed” will be the count for IOP instructions completed. The 
required field values are as follows: 

Example 3: Set up the instruction sampling facility to count load/store instructions as the performance 
monitor count event called “number instructions completed.”

The values given here are those that set up the instruction sampling stages so that the performance monitor 
count event called “number instructions completed” will be the count for load/store instructions completed. 
The required field values are as follows: 

imr_mark ‘10’ Only one IOP per PowerPC instruction is stage 2 eligible for marking.

imr_select ‘0’

imr_mask ‘0000’

imr_match ‘0000’

imr_filter[11:12] ‘10’ If sampling is enabled, randomly sample.

imr_mark ‘00’ All stage 1 eligible IOPs are stage 2 eligible for marking.

imr_select ‘0’

imr_mask ‘0000’

imr_match ‘0000’

imr_mark ‘11’ For every PowerPC load/store instruction, the first IOP that goes to the 
LSU is stage 2 eligible for marking.

imr_select ‘0’

imr_mask ‘0000’

imr_match 0000
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Example 4: Set up the instruction sampling facility to match or mask all PowerPC instructions that are BFSL-
Split, and then sample eligible instructions that get through the random filter.

The values given here are those that set up the instruction sampling stages so that the performance monitor 
count event called “number instructions completed” will be the count for PowerPC BFSL-Split instructions 
completed. The required field values are as follows: 

Example 5: Set up the instruction sampling facility to match or mask all PowerPC instructions that are BFSL-
Hard microcoded, and then sample all eligible instructions.

The values given here are those that set up the instruction sampling stages so that the performance monitor 
count event called “number instructions completed” will be the count for PowerPC BSFL-Hard microcoded 
instructions completed. The required field values are as follows: 

Example 6: Set up the instruction sampling facility to IFU IMR match or mask all PowerPC add instructions, 
and then sample all eligible instructions.

The values given here are those that set up the instruction sampling stages so that the performance monitor 
count event called “number instructions completed” will be the count for IMC-marked PowerPC instructions 
completed. The required field values are as follows: 

imr_mark ‘00’ All stage 1 eligible IOPs are stage 2 eligible for marking.

imr_select ‘0’

imr_mask ‘0100’

imr_match ‘0100’

imr_filter[11:12] ‘10’ If sampling is enabled, randomly sample.

imr_mark ‘00’ All stage 1 eligible IOPs are stage 2 eligible for marking.

imr_select ‘0’

imr_mask ‘1100’

imr_match ‘1100’

imr_filter[11:12] ‘00’ Pass all stage 1 eligible bits in the group.

imr_mark  ‘10’

imr_select  ‘1’

imr_mask  ‘0000’

imr_match  ‘0000’

imr_filter[11:12]  ‘00’ If sampling is enabled, randomly sample.
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10.11.7 Enabling and Disabling Marking

The processor comes out of reset with instruction marking disabled (MMCRA[63] equals ‘0’) and with all of 
the MMCRA/SCOM[imr_xxx] fields set to zero. To set up the performance monitor for marking, follow these 
steps: 

1. Enter supervisor mode.

2. Execute a synchronizing instruction or wait for any previous activity to complete.

3. Execute all mtspr instructions that place values to set up for marking (and counting if that is to be done) 
into the Performance Monitor Registers except for the counting enable in MMCR0 and the sample_enable 
in MMCRA.

4. Wait for all previous mtspr instructions to complete, and then execute the mtspr instruction to enable 
counting in MMCR0.

5. Wait for the previous mtspr instruction to complete, and then execute the mtspr instruction that enables 
marking in MMCRA.

6. Execute a synchronizing instruction or wait for the last mtspr instruction to complete.

7. Exit supervisor mode. 

8. Start the program for which marking (and counting) is to be done.

Note:  Any marked or counted events that occur after the performance monitor counting is enabled in super-
visor mode, but before the program under study is entered, will be included in the overall mark or count activ-
ity. In the same way, any counter events that occur after the program under study is exited, but before the 
performance monitor marking or counting is disabled, will also be included in the overall mark/count activity.

When the program being marked or counted completes, the following steps disable performance monitor 
marking or counting:

1. Enter supervisor mode.

2. Wait for the previous mtspr instructions to complete, and then execute the mtspr instruction that disables 
marking in MMCRA.

3. Wait for the previous mtspr instruction to complete, and then execute the mtspr instruction to disable 
counting in MMCR0.

4. Execute a synchronizing instruction or wait for the last mtspr instruction to complete.

5. Wait for the counting operations that are in flight to complete and then execute the mfspr instructions to 
read the values from the performance monitor counters.

6. Execute a synchronizing instruction or wait for the last mfspr instruction to complete.

7. Exit supervisor mode.

Notes:  

If marking is disabled while a marked instruction is still active, the performance monitor will finish that 
marking operation in the usual way. The marking state machine for the performance monitor will then go 
to idle until marking is again enabled.

Instruction marking is disabled while in Single Step or Branch trace mode.
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10.12 SIAR and SDAR Registers

The Sampled Instruction Address Register (SIAR) and the Sampled Data Address Register (SDAR) are used, 
respectively, to save the effective address of a sampled instruction and the effective address of a storage 
operand for a sampled instruction when the processor is in either trace-marking mode or instruction-sampling 
mode. The terms “sampled” and “marked” are use interchangeably. 

The processor is in instruction-sampling mode whenever MMCRA[63] equals ‘1’ and MSR[SE] and MSR[BE] 
equal ‘0’. The processor is in a well-defined trace-marking mode whenever MMCRA[63] equals ‘0’ and either 
MSR[SE] equals ‘1’ or MSR[BE] equals ‘1’, or MSR[SE] and MSR[BE] equal ‘1’. 

Note:  If instruction sampling is not disabled during trace-marking by setting MMCRA[63] to ‘0’, results are 
undefined. 

The contents of the SIAR and SDAR depend on the marking modes that the processor is in, as explained in 
the following sections.

10.12.1 Instruction Sampling 

When the processor is not in trace-marking mode and instruction-sampling mode is enabled, instruction-
sampling mode is active regardless of whether the performance monitor is enabled for any counting activity. 
In instruction-sampling mode, the performance monitor interacts with the IDU to initiate the instruction-
sampling cycle. It then monitors the progress of the sampled instruction as it moves through the instruction 
pipeline. Each instruction-sampling cycle ends either when the marked instruction completes or when the 
performance monitor determines that the marked instruction has been flushed from the pipeline. 

10.12.1.1 Performance Monitor Exceptions

Performance monitor exceptions occur when a performance monitor counter becomes negative and the 
counter negative exception is enabled, or when a time-base event occurs and the time-base exception is 
enabled. When a performance monitor exception occurs, SIAR and SDAR have the following values:

• The SIAR contains the effective address of the last sampled instruction.

• The SDAR is set to the effective address of the storage operand of the last sampled instruction issued to 
the LSU. 

• The effective address of the storage operand contained in the SDAR might be, but need not be, associ-
ated with the SIAR instruction as explained above.

• If single step or branch trace (SE/BE) tracing is inactive, the contents of the SIAR and the SDAR are fro-
zen when a performance monitor exception is raised, at which time the hardware sets MMCR0[PMXE] to 
‘0’ (locking the SIAR and SDAR). 

• If SE/BE tracing is active, the contents of the SIAR, the SDAR, and SRR1[33] as used by the perfor-
mance monitor exception facility are undefined and can change even when performance monitor excep-
tions are disabled (MMCR0[PMXE] equals ‘0’).

• If SE/BE tracing is inactive, the contents of SIAR and SDAR remain frozen until software sets 
MMCR0[PMXE] to ‘1’. The contents of SIAR and SDAR can be altered by the processor if and only if 
MMCR0[PMXE] equals ‘1’ provided SE/BE tracing is inactive.

• If the performance monitor exception is enabled and MSR[EE] equals ‘1’, the performance monitor excep-
tion condition causes a performance monitor exception to be taken and the value of SRR1[33] indicates 
whether the contents of the SIAR and SDAR refer to the same instruction. 
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• If SRR1[33] equals ‘1’, and SE/BE tracing is inactive, and there was only one sampled instruction in the 
machine, the SDAR and SIAR contents are associated with the same instruction. 

• If SE/BE tracing is inactive, when SRR1[33] equals ‘0’ it indicates either that the SIAR and SDAR con-
tents are not associated with the same instruction or that the SIAR instruction had no storage operand.

• After software sets MMCR0[PMXE] to ‘1’ and if SE/BE tracing is inactive, the contents of SIAR and SDAR 
are undefined with respect to performance monitor exception processing until the next performance mon-
itor exception occurs.

• After software sets MMCR0[PMXE] to ‘1’ and if SE/BE tracing is inactive, the contents of SIAR and SDAR 
are again available for use by the performance monitor instruction-sampling facility as described above. 

10.12.2  Single Step and Branch Trace Marking Mode

When the processor is in SE or BE trace mode, instruction-sampling activity on the performance monitor is 
disabled, but all other performance monitor activities (except sampling) can be active. In particular, perfor-
mance monitor count events for marked instructions will still be processed if counting is enabled. The marked 
events counted when trace mode is active will be for trace-marked events, not for sampled events. 

In BE mode, the performance monitor count event called “number of instructions completed” is not accurate 
because of the way the BE mode trace facility marks instructions to force SIAR updates. It is possible for soft-
ware to calculate the number of instructions in a basic block by capturing the starting address of the basic 
block from the SRR0 value of the previous branch and using it together with the ending address of the basic 
block from the SIAR value.

10.12.2.1 Single Step Trace Mode

If MSR[SE] equals ‘1’, the processor is in single step trace mode. Every instruction is trace-marked. The 
processor is forced into single instruction mode regardless of the value of the IFU predecode bits. An instruc-
tion is trace-marked when it is transferred from the IDU to the ISU and SRR1[33] is reset to zero. If the 
PowerPC instruction spans multiple groups, the first load/store IOP or the first IOP in the last group is the one 
marked. 

The SIAR is updated at dispatch to contain the address for the trace-marked instruction. The SDAR is 
updated by the LSU if the PowerPC instruction includes one or more load/store operation. If the SDAR is 
updated by the LSU, it contains the address of the storage operand for the first load/store IOP. If the SDAR is 
updated by the LSU, the LSU also causes SRR1[33] to be set to ‘1’ to indicate that the contents of the SIAR 
and the SDAR are associated with the same trace-marked instruction. 

When the trace-marked instruction completes, the processor generates a trace exception. During trace 
exception processing, the SIAR value is that for the trace-marked instruction that has just successfully 
completed. During trace exception processing, the SDAR value—if it was updated for this instruction—is that 
of the first load/store operation of the trace-marked instruction that has just successfully completed. A global 
flush is performed after the return from trace exception processing.

In the interval between the rfid for the trace exception processing for the last completed instruction and the 
dispatch of the next instruction, the SIAR and SDAR contents represent the last instruction completed and not 
the instruction that is moving through the IFU to the IDU for dispatch. The next instruction that will be 
dispatched after the global flush is trace-marked when it is transferred from the IDU to the ISU, SRR1[33] is 
reset to zero (‘0’), and the SIAR value is set for that next marked instruction. The single instruction trace-
marking cycle continues as described above. 
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10.12.2.2 Branch Trace Mode

If MSR[BE] equals ‘1’, the processor is in branch trace mode. Every branch instruction is trace-marked. A 
branch instruction is trace-marked when it is transferred from the IDU to the ISU.

The SIAR is updated at dispatch to contain the address for the trace-marked branch instruction. The SDAR 
contents are undefined. When the trace-marked branch instruction completes, the processor generates a 
trace exception. During trace exception processing, the SIAR value represents the trace-marked branch 
instruction that has just completed successfully. A global flush is performed after the return from trace excep-
tion processing.

In the interval between the rfid for the trace exception processing for the last completed branch instruction 
and the dispatch of the next branch instruction, the SIAR contents represent the last branch instruction 
completed. The next branch instruction decoded by the IDU after the global flush is trace-marked when it is 
transferred from the IDU to the ISU and the SIAR value is set for that next marked branch instruction. The 
branch trace-marking cycle continues as described above. 

10.12.3 Comparison to Previous PowerPC Processors

According to the PowerPC Architecture, the SIAR contains the effective address of an instruction that was 
executing around the time of a performance monitor exception. On previous processors that had relatively 
short pipelines and few instructions in flight, the sampled instruction was at most 20 or so instructions away 
from the instruction that caused the exception. On the 970FX microprocessor, with the potential for over a 
hundred instructions in flight, that distance grows. The theoretical maximum is once every 200 - 250 instruc-
tions, while the likely distance is 50 - 75 instructions.

Performance profiling tools that use performance monitor events to determine when the SIAR and SDAR are 
read (for example, read SIAR every 100 L1 D-cache misses) can profile based on any performance monitor 
event. To assure accuracy, however, only sampled events should be profiled. These are a subset of all 
events that are caused by sampled instructions. The SIAR is set by a sampled instruction, so you can be 
fairly sure that when an exception caused by a sampled event (a counter overflowing for example), the SIAR 
is pointing to the exact instruction that caused it. In this case, the 970FX microprocessor is more accurate 
than previous processors. If you profile on non-sampled events, you cannot be sure that the exception was 
caused by the instruction (group actually) pointed to by the SIAR. The offending instruction was executing 
around the sampled instruction, depending on the event, probably within 50 - 100 instructions.
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10.13 Thresholding

Thresholding can be used to obtain counts of the number of marked instructions for which the execution time 
between a designated start/end pipeline event pair exceeds a specified threshold value. Only one marked 
instruction is active in the 970FX processing unit pipeline at a time, and only one threshold value can be used 
for comparison with the selected start/end event pair. The start and end events that can be used for thresh-
olding are shown in Figure 10-20 Performance Monitor Threshold Logic on page 249. The values of the 
respective threshold start/end bit fields in MMCRA[THRSTRT,THREND] are shown in Table 10-29 Start and 
End Event Select Bits and the Performance Monitor Threshold Logic on page 250. The threshold value is 
specified in the MMCR1[THRSHOLD] field. The threshold value can be further scaled by HID0[13]. If 
HID0[13] equals ‘0’, it causes the thresholder to count every processor cycle. If HID0[13] equals ‘1’, it causes 
the thresholder to count every 32 processor cycles. For a marked instruction moving through the 970FX 
processing unit pipeline, the events that can be used for threshold start/end measurement occur in the 
following order: marked in IDU, dispatch, issue, finish, complete. 

Once a pair of start/end threshold events is selected and the start event occurs, the threshold facility begins 
decrementing from the threshold value and continues to decrement until either the decrementer times out or 
the end event occurs. If the decrementer times out and if the threshold logic event is selected for counting, 
the threshold logic event counter is incremented. Both the thresholder time out and the occurrence of the end 
event cause the threshold decrementer to be reset to the threshold value. The thresholder begins decre-
menting when the next start event occurs.

Threshold start/end pairs must be selected in a manner that represents a reasonable scenario. For example, 
a start event that is the same as the end event will not provide useful threshold event count information 
regardless of the threshold value selected. A start event that occurs later in the pipeline than the end event 
will not give a useful measure of the transit time of a marked instruction through the pipeline. The results of 
unreasonable threshold start/end event selections may produce undefined results. 



User’s Manual

 IBM PowerPC 970FX RISC Microprocessor

Version 1.7
March 14, 2008  
 

970FX Performance Monitor

Page 249 of 360

Figure 10-20. Performance Monitor Threshold Logic 
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Table 10-29. Start and End Event Select Bits and the Performance Monitor Threshold Logic 

MMCR1
[THRSTRT] Value Threshold Start Event Selected MMCR1

[THREND] Value Threshold End Event Selected 

000 No start event 000 No end event

001 Group marked in IDU 001 No end event

010 Marked group dispatched 010 Marked group dispatched

011 Marked group issued 011 Marked group issued 

100 Marked group finish1 100 Marked group finish 

101 Marked group complete1 101 Marked group complete 

110 No start event 110 No end event

111 No start event 111 No end event

1. An instruction that has finished but not completed has gone all the way through the pipeline, and the renamed registers have been 
updated with new values. However, it is still sitting in the completion queue. When an instruction completes, the architected regis-
ters are updated with the values from the renamed registers. 
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10.14 Detailed Event Information

Table 10-30. Detailed Event Descriptions   (Page 1 of 8)

Event Description  Detailed Description

CLB has x where x is 0 to 8
The cache line buffer (CLB) is a 4-instruction wide by 8-instruction deep buffer between the 
fetch unit and the dispatch unit. This signal indicates how many entries, each of which is 4-
instructions wide, are occupied at any given time. 

Valid instructions available, but IFU 
held by BIQ or IDU

This signal is asserted each time either the IDU is full or the branch instruction queue (BIQ) is 
full.

Branch execution issue valid This signal is asserted each time the ISU issues a branch instruction. 

Branch miss predict due to CR value
This signal is asserted when the branch execution unit detects a branch mispredict because the 
CR value is the opposite of the predicted value. This signal is asserted after a branch issue 
event and results in a branch redirect flush if not overridden by a flush of an older instruction.

Branch miss predict due to target 
address prediction

This signal is asserted each time the branch execution unit detects an incorrect target address 
prediction. This signal is asserted after a valid branch execution unit issue and causes a branch 
mispredict flush unless a flush is detected from an older instruction.

CR mapper full

The ISU sends a signal indicating that the CR mapper cannot accept any more groups. Dis-
patch is stopped. 
Note:  This condition indicates that a pool of the mapper is full but the entire mapper may not 
be.

Tablewalk duration This signal is asserted every cycle when a tablewalk is active. While a tablewalk is active, any 
request attempting to access the TLB is rejected and retried.

L1 D-cache entries invalidated from L2 A D-cache invalidated was received from the L2 because a line in L2 was castout.

Out of streams A new prefetch stream was detected, but no more stream entries were available.

D-SLB miss

An SLB miss for a data request occurred. When there is a miss in the SLB, the operating sys-
tem must reload the buffer with the information needed for a hit so that the transaction can pro-
ceed. Therefore, an SLB miss causes an interrupt (trap) to indicate to the operating system that 
it needs to resolve the problem. 

D-TLB miss
A TLB miss for a data request occurred. Requests that miss the TLB may be retried until the 
instruction is in the next-to-complete group (unless HID4 is set to allow speculative tablewalks). 
This may result in multiple TLB misses for the same instruction.

Duration MSR[EE] equals ‘0’ The ISU sends the MSR[EE} bit to the PMU. It is up to the performance monitor to count the 
cycles while this bit is ‘0’.

MSR[EE] equals ‘0’ and interrupt 
pending

The ISU sends the MSR[EE] bit and a signal indicating that an interrupt is pending to the PMU. 
It is up to the performance monitor to count the cycles while MSR[EE] equals ‘0’ and the inter-
rupt is pending. 

FPR mapper full
The ISU sends a signal indicating that the FPR mapper cannot accept any more groups. Dis-
patch is stopped. 
Note:  This condition indicates that a pool of mappers is full but the entire mapper may not be.

FPU0 add, mult, sub, compare, fsel This signal is active for one cycle when FPU0 is executing an add, mult, sub, compare, or fsel 
kind of instruction. The instruction could be fadd*, fmul*, fsub*, fcmp**, or fsel.

FPU0 denormalized operand This signal is active for one cycle when one of the operands is denormalized.

FPU0 divide This signal is active for one cycle at the end of the microcode executed when FPU0 is executing 
a divide instruction. The instruction could be ffdiv, fdivs, fdiv., or fdivs.

FPU0 estimate This signal is active for one cycle when FPU0 is executing one of the estimate instructions. The 
instruction could be fres* or frsqrte* where xyz* means xyz or xyz. 

FPU0 finished and produced a result This signal only indicates finish, not completion. 

FPU0 mult-add
This signal is active for one cycle when FPU0 is executing a multiply-add kind of instruction. The 
instruction could be fmadd*, fnmadd*, fmsub*, or fnmsub* where xyz* means xyz, xyzs, xyz., 
xyzs.
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FPU0 move, estimate
This signal is active for one cycle when FPU0 is executing a move kind of instruction or one of 
the estimate instructions. The instruction could be fmr*, fneg*, fabs*, fnabs*, fres*, or frsqrte* 
where xyz* means xyz or xyz.. 

FPU0 FPSCR
This signal is active for one cycle when FPU0 is executing an FPSCR move-related instruction. 
The instruction could be mtfsfi*, mtfsb0*, mtfsb1*, mffs*, mtfsf*, or mcrsf* where xyz* means 
xyz, xyzs, xyz., or xyzs.. 

FPU0 round, convert This signal is active for one cycle when FPU0 is executing frsp or a convert kind of instruction. 
The instruction could be frsp*, fcfid*, or fcti* where xyz* means xyz, xyzs, xyz., or xyzs.. 

FPU0 square root
This signal is active for one cycle at the end of the microcode executed when FPU0 is executing 
a square root instruction. The instruction could be fsqrt* where xyz* means xyz, xyzs, xyz., 
xyzs.. 

FPU0 issue queue full The issue queue for FPU 0 cannot accept any more instructions. Issue is stopped.

FPU0 single precision This signal is active for one cycle when FPU0 is executing a single-precision instruction.

FPU0 stall 3
This signal indicates that FPU0 has generated a stall in pipe 3 due to overflow, underflow, mas-
sive cancel, convert to integer (sometimes), or convert from integer (always). This signal is 
active during the entire duration of the stall. 

FPU0 store This signal is active for one cycle when FPU0 is executing a store instruction.

FPU1 add, mult, sub, compare, fsel
This signal is active for one cycle when FPU1 is executing an add, mult, sub, compare, or fsel 
kind of instruction. The instruction could be fadd*, fmul*, fsub*, fcmp**, or fsel where xyz* 
means xyz, xyzs, xyz., xyzs. and xyz** means xyzu and xyzo.

FPU1 denormalized operand This signal is active for one cycle when one of the operands is denormalized.

FPU1 divide This signal is active for one cycle at the end of the microcode executed when FPU1 is executing 
a divide instruction. The instruction could be fdiv, fdivs, fdiv., or fdivs.

FPU1 estimate This signal is active for one cycle when FPU1 is executing one of the estimate instructions. The 
instruction could be fres* or frsqrte* where xyz* means xyz or xyz. . 

FPU1 finished and produced a result This signal only indicates finish, not completion. 

FPU1 mult-add
This signal is active for one cycle when FPU1 is executing a multiply-add kind of instruction. The 
instruction could be fmadd*, fnmadd*, fmsub*, or fnmsub* where xyz* means xyz, xyzs, xyz., 
and xyzs.. 

FPU1 move, estimate
This signal is active for one cycle when FPU1 is executing a move kind of instruction or one of 
the estimate instructions. The instruction could be fmr*, fneg*, fabs*, fnabs*, fres*, or frsqrte* 
where xyz* means xyz or xyz.. 

FPU1 round, convert This signal is active for one cycle when FPU1 is executing frsp or convert kind of instruction. 
The instruction could be frsp*, fcfid*, or fcti* where xyz* means xyz, xyzs, xyz., xyzs.. 

FPU1 square root
This signal is active for one cycle at the end of the microcode executed when FPU1 is executing 
a square root instruction. The instruction could be fsqrt* where xyz* means xyz, xyzs, xyz., 
xyzs.. 

FPU1 issue queue full The issue queue for FPU 1 cannot accept any more instructions. Issue is stopped. 

FPU1 single precision This signal is active for one cycle when FPU1 is executing a single-precision instruction.

FPU1 stall 3
This signal indicates that FPU1 has generated a stall in pipe 3 due to overflow, underflow, mas-
sive cancel, convert to integer (sometimes), or convert from integer (always). This signal is 
active during the entire duration of the stall. 

FPU1 store This signal is active for one cycle when FPU1 is executing a store instruction.

FXU0/LSU0 issue queue full The issue queue for FXU/LSU unit 0 cannot accept any more instructions. Issue is stopped.

FXU1/LSU1 issue queue full The issue queue for FXU/LSU 1 cannot accept any more instructions. Issue is stopped.

FXU0 produced a result The FXU0 finished an instruction and produced a result.

Table 10-30. Detailed Event Descriptions   (Page 2 of 8)
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FXU1 produced a result The FXU1 finished an instruction and produced a result.

GPR mapper full
The ISU sends a signal indicating that the GPR mapper cannot accept any more groups. Dis-
patch is stopped. 
Note:  This condition indicates that a pool of mapper is full but the entire mapper may not be.

Dispatch blocked by scoreboard The ISU sends a signal indicating that dispatch is blocked by the scoreboard.

Dispatch reject Dispatch successful equals dispatch_valid and one cycle later ~dispatch_reject.

Dispatch valid The ISU sends dispatch_valid and dispatch_reject signals to the PMU. It is up to the perfor-
mance monitor to look at these signals to count the number of dispatch groups.

Instruction prefetch installed in 
prefetch buffer

This signal is asserted when a prefetch buffer entry (line) is allocated but the request is not a 
demand fetch.

Instruction prefetch request Asserted when a non-canceled prefetch is made to the CIU.

Translation written to I-ERAT

This signal is asserted each time the I-ERAT is written. This indicates that an ERAT miss has 
been serviced. ERAT misses will initiate a sequence resulting in the ERAT being written. ERAT 
misses that are later ignored will not be counted unless the ERAT is written before the instruc-
tion stream is changed, This should be a fairly accurate count of ERAT missed (best available).

Instructions dispatched count The ISU sends the number of instructions dispatched.

Valid instruction available Asserted each cycle when the IFU sends at least one instruction to the IDU. 

I-SLB miss An SLB miss for an instruction fetch has occurred.

I-TLB miss A TLB miss for an Instruction fetch has occurred.

L1 reload data source valid The data source information is valid.

L1 prefetches A request to prefetch data into the L1 was made.

L2 Prefetch A request to prefetch data into the L2 was made.

larx executed side 0 An larx (lwarx or ldarx) was executed on side 0 (there is no corresponding unit 1 event since 
larx instructions can only execute on unit 0).

L1 D-cache load miss side 0 A load, executing on unit 0, missed the D-cache.

L1 D-cache store side 1 A store executed on unit 1.

L1 D-cache load miss side 1 A load, executing on unit 1, missed the D-cache.

L1 D-cache load side 0 A load executed on unit 0.

LR/CTR mapper full

The ISU sends a signal indicating that the LR/CTR mapper cannot accept any more groups. 
Dispatch is stopped. 
Note:  This condition indicates that a pool of the mapper is full but the entire mapper may not 
be.

LMQ full The LMQ was full.

LMQ LHR merge A D-cache miss occurred for the same real cache line address as an earlier request already in 
the load miss queue and was merged into the LMQ entry.

LMQ slot 0 allocated The first entry in the LMQ was allocated.

LMQ slot 0 valid This signal is asserted every cycle when the first entry in the LMQ is valid. The LMQ has eight 
entries that are allocated on a FIFO basis.

LRQ full The ISU sends this signal when the LRQ is full.

LRQ slot 0 allocated LRQ slot zero was allocated.

LRQ slot 0 valid This signal is asserted every cycle that slot zero of the store request queue is valid. The SRQ is 
32 entries long and is allocated on a round-robin basis.

Table 10-30. Detailed Event Descriptions   (Page 3 of 8)
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SRQ full The ISU sends this signal when the SRQ is full.

SRQ slot 0 allocated SRQ slot zero was allocated.

SRQ slot 0 valid This signal is asserted every cycle that slot zero of the store request queue is valid. The SRQ is 
32 entries long and is allocated round-robin.

SRQ sync duration This signal is asserted every cycle when a sync is in the SRQ.

LSU busy side 0 LSU 0 is busy rejecting instructions.

D-ERAT miss side 0
A data request (load or store) from LSU 0 missed the ERAT. Requests that miss the D-ERAT 
are rejected and retried until the request hits in the ERAT. This may result in multiple ERAT 
misses for the same instruction.

Flush from LRQ SHL, LHL side 0
A load was flushed by unit 1 because a a younger load executed before an older store executed 
and they had overlapping data. Alternatively, two loads executed out-of-order, they had byte 
overlap, and there was a snoop in between to an overlapped byte.

Flush SRQ LHS side 0 A store was flushed because a younger load hits an older store that is already in the SRQ or in 
the same group.

Flush unaligned load side 0 A load was flushed from unit 1 because it was unaligned (crossed a 64-byte boundary, or a 
32-byte boundary if it missed the L1).

Flush unaligned store side 0 A store was flushed from unit 1 because it was unaligned.

Floating-point load side 0 A floating-point load was executed from LSU unit 0.

SRQ store forwarding side 0 Data from a store instruction was forwarded to a load on unit 0.

LSU busy side 1 LSU 0 is busy rejecting instructions.

D-ERAT miss side 1
A data request (load or store) from LSU 1 missed the ERAT. Requests that miss the D-ERAT 
are rejected and retried until the request hits in the ERAT. This may result in multiple ERAT 
misses for the same instruction. 

Flush from LRQ SHL, LHL side 1
A load was flushed by unit 1 because a a younger load executed before an older store executed 
and they had overlapping data. Alternatively, two loads executed out-of-order, they had byte 
overlap, and there was a snoop in between to an overlapped byte.

Flush SRQ LHS side 1 A store was flushed because younger load hits an older store that is already in the SRQ or in the 
same group. 

Flush unaligned load side 1 A load was flushed from unit 1 because it was unaligned (crossed a 64-byte boundary, or a 
32-byte boundary if it missed the L1).

Flush unaligned store side 1 A store was flushed from unit 1 because it was unaligned (crossed a 4KB boundary). 

Floating-point load side 1 A floating-point load was executed from LSU 1.

Marked IMR reload A Data L1 cache reload occurred due to marked load. 

Marked L1 reload data source valid The source information is valid and is for a marked load.

Marked L1 D-cache load miss side 0 A marked load, executing on unit 0, missed the D-cache.

Marked L1 D-cache load miss side 1 A marked load, executing on unit 1, missed the D-cache.

Marked SRQ valid This signal is asserted every cycle when a marked request is resident in the store request 
queue.

Marked flush from LRQ SHL, LHL side 
0

A marked load was flushed by unit 0 because a a younger load executed before an older store 
executed and they had overlapping data. Alternatively, two loads executed out-of-order, they 
have byte overlap, and there was a snoop in between to an overlapped byte.

Marked flush SRQ LHS side 0 A marked store was flushed because a younger load hits an older store that is already in the 
SRQ or in the same group.

Marked flush unaligned store side 0 A marked store was flushed from unit 0 because it was unaligned.

Table 10-30. Detailed Event Descriptions   (Page 4 of 8)
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Marked flush unaligned load side 0 A marked load was flushed from unit 0 because it was unaligned (crossed a 64-byte boundary, 
or a 32-byte boundary if it missed the L1).

LSU side 0 finished IMR LSU unit 0 finished a marked instruction.

Marked flush from LRQ SHL, 
LHL side 1

A marked load was flushed by unit 1 because a a younger load executed before an older store 
executed and they had overlapping data. Alternatively, two loads executed out-of-order, they 
had byte overlap, and there was a snoop in between to an overlapped byte.

Marked flush SRQ LHS side 1
A marked load was flushed by unit 1 because a a younger load executed before an older store 
executed and they had overlapping data. Alternatively, two loads executed out-of-order, they 
had byte overlap, and there was a snoop in between to an overlapped byte.

Marked flush unaligned load side 1 A marked load was flushed from unit 1 because it was unaligned (crossed a 64-byte boundary, 
or a 32-byte boundary if it missed the L1).

Marked flush unaligned store side 1 A marked store was flushed from unit 1 because it was unaligned (crossed a 4K page bound-
ary).

LSU side 1 finished IMR LSU unit 1 finished a marked instruction.

Marked L1 D-cache store miss A marked store missed the D-cache.

Marked stcx fail A marked stcx (stwcx or stdcx) failed.

Snoop tlbie A tlbie was snooped from another processor.

L1 D-cache store miss A store missed the D-cache.

L1 D-cache store miss A store missed the D-cache.

L1 D-cache store side 0 A store executed on unit 0.

L1 D-cache load side 1 A load executed on unit 1.

stcx failed An stcx (stwcx or stdcx) failed.

stcx passed An stcx (stwcx or stdcx) instruction was successful.

XER mapper full

The ISU sends a signal indicating that the XER mapper cannot accept any more groups. Dis-
patch is stopped. 
Note:  This condition indicates that a pool of the mapper is full but the entire mapper may not 
be.

No instructions fetched No instructions were fetched this cycle (due to IFU hold, redirect, or I-cache miss).

One or more PowerPC instruction 
completed

A group containing at least one PowerPC instruction completed. For microcoded instructions 
that span multiple groups, this will only occur once.

BR issue queue full The ISU sends a signal indicating that the issue queue that feeds the IFU BR unit cannot accept 
any more groups (the queue is full of groups).

CR issue queue full The ISU sends a signal indicating that the issue queue that feeds the IFU CR unit cannot accept 
any more groups (the queue is full of groups).

Processor cycles Processor cycles.

Data loaded from L2 Data L1 cache was reloaded from the local L2 due to a demand load.

Data loaded from memory Data L1 cachewas reloaded from memory due to a demand load.

New stream allocated A new prefetch stream was allocated.

External interrupts An external interrupt occurred.

FPU executed add
This signal is active for one cycle when FPU0 is executing an add, mult, sub, compare, or fsel 
kind of instruction. The instruction could be fadd*, fmul*, fsub*, fcmp**, or fsel where xyz* 
means xyz, xyzs, xyz., xyzs. and xyz** means xyzu and xyzo. Combined Unit 0 + Unit 1.
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FPU received denormalized data This signal is active for one cycle when one of the operands is denormalized. Combined Unit 0 
+ Unit 1.

FPU executed FDIV instruction This signal is active for one cycle at the end of the microcode executed when FPU0 is executing 
a divide instruction. The instruction could be fdiv, fdivs, fdiv. fdivs. Combined Unit 0 + Unit 1.

FPU executed FEST instruction This signal is active for one cycle when executing one of the estimate instructions. The instruc-
tion could be fres* or frsqrte* where xyz* means xyz or xyz. Combined Unit 0 + Unit 1.

FPU produced a result FPU finished and produced a result. This only indicates finish, not completion. Combined Unit 0 
+ Unit 1.

FPU executed multiply-add instruction
This signal is active for one cycle when FPU0 is executing a multiply-add kind of instruction. The 
instruction could be fmadd*, fnmadd*, fmsub*, or fnmsub* where xyz* means xyz, xyzs, xyz., 
xyzs.. Combined Unit 0 + Unit 1.

FPU executing FMOV or FEST instruc-
tions

This signal is active for one cycle when executing a move kind of instruction or one of the esti-
mate instructions. The instruction could be fmr*, fneg*, fabs*, fnabs*, fres*, or frsqrte* where 
xyz* means xyz or xyz.. Combined Unit 0 + Unit 1.

FPU executed FRSP or FCONV 
instructions

This signal is active for one cycle when executing frsp or a convert kind of instruction. The 
instruction could be frsp*, fcfid*, fcti* where xyz* means xyz, xyzs, xyz., xyzs.. Combined Unit 
0 + Unit 1.

FPU executed FSQRT instruction
This signal is active for one cycle at the end of the microcode executed when FPU0 is executing 
a square root instruction. The instruction could be fsqrt* where xyz* means xyz, xyzs, xyz., 
xyzs.. Combined Unit 0 + Unit 1.

Cycles FPU issue queue full Cycles when one or both FPU issue queues are full.

FPU executed single-precision instruc-
tion FPU is executing a single-precision instruction. Combined Unit 0 + Unit 1.

FPU stalled in pipe 3
FPU has generated a stall in pipe 3 due to overflow, underflow, massive cancel, convert to inte-
ger (sometimes), or convert from integer (always). This signal is active during the entire duration 
of the stall. Combined Unit 0 + Unit 1.

FPU executed store instruction FPU is executing a store instruction. Combined Unit 0 + Unit 1.

Cycles FXLS queue is full Cycles when one or both FXU/LSU issue queues are full.

FXU busy FXU0 and FXU1 are both busy.

FXU produced a result The fixed-point unit (Unit 0 + Unit 1) finished a marked instruction. Instructions that finish may 
not necessarily complete. 

FXU idle FXU0 and FXU1 are both busy.

FXU0 busy FXU1 idle FXU0 is busy while FXU1 is idle.

FXU1 busy FXU0 idle FXU0 is idle while FXU1 is busy.

Cycles GCT empty The global completion table is completely empty.

Completion table full The ISU sends a signal indicating that the GCT is full. 

Group completed A group completed. Microcoded instructions that span multiple groups will generate this event 
once per group.

Group dispatches A group was dispatched.

Group dispatch rejected A group that previously attempted dispatch was rejected.

Group dispatch success Number of groups successfully dispatched (not rejected).

Group marked in IDU A group was sampled (marked).

Instructions completed Number of eligible instructions that completed.

Table 10-30. Detailed Event Descriptions   (Page 6 of 8)

Event Description  Detailed Description



User’s Manual

 IBM PowerPC 970FX RISC Microprocessor

Version 1.7
March 14, 2008  
 

970FX Performance Monitor

Page 257 of 360

Instructions fetched from L1 An instruction fetch group was fetched from L1. Fetch groups can contain up to eight instruc-
tions.

Instructions fetched from L2 An instruction fetch group was fetched from L2. Fetch groups can contain up to eight instruc-
tions.

Instructions fetched from memory An instruction fetch group was fetched from memory. Fetch groups can contain up to eight 
instructions.

Instructions fetched from prefetch An instruction fetch group was fetched from the prefetch buffer. Fetch groups can contain up to 
eight instructions.

Cycles is L1 write active This signal is asserted each cycle a cache write is active.

larx executed An larx (lwarx or ldarx) was executed. This is the combined count from LSU0 + LSU1, but 
these instructions only execute on LSU0.

L1 D-cache load misses Total Data L1 cache load references that miss the Data L1 cache.

L1 D-cache load references Total Data L1 cache load references.

LSU busy LSU (unit 0 + unit 1) is busy rejecting instructions.

D-ERAT misses
Total D-ERAT misses (Unit 0 + Unit 1). Requests that miss the D-ERAT are rejected and retried 
until the request hits in the ERAT. This may result in multiple ERAT misses for the same instruc-
tion.

LRQ flushes
A load was flushed because a younger load executed before an older store executed and they 
had overlapping data. Alternatively, two loads executed out-of-order, they had byte overlap, and 
there was a snoop in between to an overlapped byte.

SRQ flushes A store was flushed because a younger load hits an older store that is already in the SRQ or in 
the same group.

LRQ unaligned load flushes A load was flushed because it was unaligned (crossed a 64-byte boundary, or a 32-byte bound-
ary if it missed the L1).

SRQ unaligned store flushes A store was flushed because it was unaligned.

LSU executed floating-point load 
instruction

Cycles LMQ and SRQ empty Cycles when both the LMQ and SRQ are empty (LSU is idle).

Cycles SRQ empty The store request queue is empty.

SRQ store forwarding side 1 Data from a store instruction was forwarded to a load on unit 1.

Marked instruction BRU processing 
finished

The branch unit finished a marked instruction. Instructions that finish may not necessarily com-
plete.

Marked instruction CRU processing 
finished

The condition register unit finished a marked instruction. Instructions that finish may not neces-
sarily complete.

Marked data loaded from L2 Data L1 cache was reloaded with modified (M) data from the L2 of a chip on this MCM due to a 
marked load.

Marked data loaded from memory Data L1 cache was reloaded with modified (M) data from the L2 of another MCM due to a 
marked load. 

Marked instruction FPU processing fin-
ished

One of the floating-point units finished a marked instruction. Instructions that finish may not nec-
essarily complete.

Marked instruction FXU processing fin-
ished

One of the fixed-point units finished a marked instruction. Instructions that finish may not neces-
sarily complete. 

Marked group completed A group containing a sampled instruction completed. Microcoded instructions that span multiple 
groups will generate this event once per group.

Marked group dispatched A group containing a sampled instruction was dispatched.
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Marked group issued A sampled instruction was issued.

Marked group completion timeout The sampling timeout expired indicating that the previously sampled instruction is no longer in 
the processor.

Marked instruction finished One of the execution units finished a marked instruction. Instructions that finish may not neces-
sarily complete.

Marked L1 D-cache load misses

Marked instruction LSU processing fin-
ished

One of the load/store units finished a marked instruction. Instructions that finish may not neces-
sarily complete. 

Marked LRQ flushes
A marked load was flushed because a younger load executed before an older store executed 
and they had overlapping data. Alternatively, two loads executed out-of-order, they have byte 
overlap, and there was a snoop in between to an overlapped byte.

Marked SRQ flushes A marked store was flushed because a younger load hits an older store that is already in the 
SRQ or in the same group.

Marked unaligned load flushes A marked load was flushed because it was unaligned (crossed a 64-byte boundary, or a 32-byte 
boundary if it missed the L1).

Marked unaligned store flushes A marked store was flushed because it was unaligned.

Marked store instruction completed A sampled store has completed (data home).

Marked store completed with interven-
tion

A marked store previously sent to the memory subsystem completed (data home) after requiring 
intervention.

Marked store sent to storage sub-
system A sampled store has been sent to the memory subsystem.

Run cycles Processor cycles gated by the run latch.

L1 D-cache store references Total Data L1 cache store references.

Completion stopped The RAS unit has signaled completion to stop.

Time-base bit transition Occurs when the selected time-base bit (as specified in MMCR0[TBSEL]) transitions from ‘0’ to 
‘1’.

Threshold timeout The threshold timer expired.

Work held The RAS unit has signaled completion to stop and there are groups waiting to complete.

Table 10-30. Detailed Event Descriptions   (Page 8 of 8)

Event Description  Detailed Description
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11. System Design

11.1 Power-On Reset 

The 970FX requires a more complicated power-on reset sequence than earlier PowerPC processors. The 
processor initialization is handled by the pervasive logic which is controlled either by the I2C or JTAG from an 
external service processor. This service processor, usually a microcontroller, must initiate and monitor on-
chip initialization and test sequences to ensure proper operation.

The power-on reset (POR) unit was developed to allow a power-on reset of the 970FX processor with almost 
no external support. This procedure is called automatic power-on reset (aPOR). After power ramping and 
PLL synchronization a predefined set of instructions initializes the processor, runs the array tests, sets up the 
configuration switches, and synchronizes the PI interfaces. Progress through the aPOR sequence is saved in 
the POR Status Register accessible by the service element (SE) controlling the power-on reset.

For more detailed information, see the IBM PowerPC 970FX Power-On Reset Application Note. 

11.1.1 Overview

The power-on reset of a 970FX system goes through seven separate phases, numbered IPL0-6 as shown in 
Figure 11-1. The sequence actually begins with the ramping of power and clocks prior to IPL0. Once power 
supplies and clocks are stable, HRESET_B and BYPASS_B should be asserted to reset the on-chip logic and 
PLL respectively. 

In addition to the initialization of the 970FX, the service processor (SPU) handles other functions via the I2C. 
Initialization/configuration of the North Bridge, DIMMS, etc. must all be handled as part of the system power-
on reset sequence, however initialization of these devices is beyond the scope of this section. 

The sequence shown inTable 11-1 assumes the automatic or “normal” mode of power-on reset. In this mode 
each step in the sequence is preprogrammed and only minimal intervention by the service processor is 
required to move the sequence along. 

There is also a “debug” mode available that is initiated by asserting “GPULDBG” high (see Table 11-3). In this 
mode, the GPUL will not automatically step through the preprogrammed sequence, but instead will pause 
after each step to allow service procesor or JTAG intervention. In this mode, the service processor must 
initiate a continue after each power-on reset step to continue the sequence.

Most developers will choose to use the debug mode to develop the code for their Service Processing Unit. It 
requires a few more milliseconds to send each continue command, but provides greater visibility to the 
machine state from the Service Processor.

11.1.2 Power-On Reset SPU Hardware Considerations

It is assumed that 970FX systems will include a service processor (SPU) which generally consists of a low 
cost microcontroller. This microcontroller is responsible for hardware initialization of the 970FX and the North 
Bridge and can also be used to manage and supervise other system functions, like fans. 

At a minimum, the SPU needs to be able to assert HRESET_B and BYPASS_B on the 970FX and should 
also have either a dedicated I2C bus master to initialize the system, or general purpose I/O pins (GPIO) that 
can be used to implement an I2C bus master. 
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Most system bring-up and debug processes should allow the SPU to control the GPULDBG pin to allow the 
power-on reset sequence to run in debug mode. An alternative would be to provide a jumper to allow that pin 
to be strapped in debug mode during bring-up. 

11.1.2.1 I2C Bus Speed

The 970FX bus speed on I2C will be limited to approximately 50Khz unless the service processor can write 
the value 0x0083F000.00000000 to the SCOM address 0x600400 (Clock Ratio Register). 

Note:  This SCOM write must occur after the second continue is sent during power-on reset. Until this SCOM 
write occurs, the I2C bus speed will be limited to 50KHz. Once the SCOM has been written the I2C bus speed 
may be increased to 100KHz.

11.1.2.2 Service Processor Firmware Bring-up and Development

During early bring-up and firmware development, use of an I2C controller/emulator is recommended. These 
tools are available from multiple sources and convert a PC’s RS232 port or USB port to I2C. Software on the 
PC can be used to communicate with the I2C bus in the system in order to develop and debug the power-on 
reset sequence. Once the system has been brought up using the I2C interface, this information can be used 
to develop firmware for the service processor. 

The SPU firmware development will be easier if the system design provides some mechanism for easily 
modifying the firmware in the system. 
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Figure 11-1. 970FX Power-On Reset General Overview 
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Table 11-1. Power-On Reset Procedure in Normal Mode 

APC IPL Step 970FX North Bridge SPU

sync PLL drop hreset_b, bypass_b

IPL reset POR, high-Z I2CGO reset NB sample I2CGO, raise bypass_b

raise hreset_b

-1 state PORWAIT

00 IPL0 RSTFRL

01 [FULL] SCAN0

02 RASINIT SAMPLEFUSE

03 IPL1 SCABISTINIT

04 SCAN0

05 DABISTINITL1

06 DABISTINITL2 init NB wait 150us (970FX)

07 CHIPINIT SCAN0

08 DABISTINITL2

09 SCAN0

10 WAIT

IPL2 start WIAP, start phase send mode data

CHIPCFG send continue

11 DRIVEIOS

12 IPL3 SYNCPHASE

13 CHIPSYNC STARTZIOCLK

14 TOGGLEWIAP

15 SYNCRIAP

16 IPL4 WAIT wait for 970FX PI synced

IOSYNC start NB PI sync

sync RIAP

only
in PI-mode stop WIAP

check EIs, set EIs params, stop 
NB WIAP., send cont.

17 TOGGLEWIAP

18 STARTCORECLK

19 INITSTS final init wait for 1us

20 IPL5 INITCORE

21 COREINIT WAIT

final system init. send cont.

22 STARTGUSCLK

23 IPL6 INITSTS

24 FETCHINIT SRESET

<fetch @ 0x100>
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11.1.2.3 Interface Description

The interfaces of the Power-On Reset unit are shown in Figure 11-2.

The POR unit can be accessed through both the JTAG and the I2C. The I2C macro used in the 970FX is only 
an I2C to JTAG protocol converter. Both JTAG Test Access Ports (TAPs) are muxed to a single TAP 
connected to the JTAG macro (Access) and therefore should not be used concurrently. An open drain pin 
I2CGO is used to arbitrate between both interfaces. The HRESET_B input pin initializes the power-on reset, 
and the GPULDBG input pin is used to indicate to the 970FX operation in debug mode.

Figure 11-2. Power-On Reset Interfaces 
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Table 11-2. External Power-On Reset Related I/O Pins 

Pin Name Polarity Description

AVP_RESET_B low Initiates power-on reset for functional pattern testing. 

BYPASS_B low Used to bypass the PLL.

HRESET_B low

(Power-on reset) Asserted after power supply and system clock have stabilized for 10ms to ini-
tialize power-on reset. After invalidation of this signal the power-on reset process will start. It 
requires some interaction with an external service element controlling the other chips of the 
motherboard.

GPULDBG high (Power-on reset debug mode) Used to bring the POR machine to a WAIT state directly after 
power-on reset process start, allowing to change to the POR sequence b.

I2CGO low
(I2C Go Token pin) This pin is connected to a JTAG register and can be set by a JTAG com-
mand. It is used to arbitrate between I2C and JTAG access to single step though the POR 
sequence.

SYSCLK
SYSCLK_B

– (Reference clock) This pin feeds the PLL input. The PLL deliver a x6/x8 clock which is distrib-
uted internally through the clock mesh: mclk

PSYNC – (Phase Sync In) This pin is driven by the North Bridge and identifies a time-zero mclk clock 
edge every 48.

PSYNC_OUT – (Phase Sync Out) This signal should match the Phase Sync In signal and is used to check 
phase alignment while debugging.

PROCID(0:2) – (Processor ID) Used to set the processor ID in a multi-processor environment. This is also 
used to obtain a unique I2C address for the 970FX.

I2CDT_B – I2C serial data

I2CCK_B – I2C serial clock

TCK – JTAG test clock

TMS – JTAG test mode select

TDI – JTAG test data in

TDO – JTAG test data out

TRST_B low JTAG test reset
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11.1.3 Power-On Reset Unit Description

The POR unit can be divided into three main parts: The POR state machine that runs through the power-on 
reset sequence and decodes the power-on reset instructions; the auxiliary state machines that execute one 
particular instruction each and interface with the other chip units; and the status register that keeps track of 
the current processor and POR state.

11.1.3.1 Power-On Reset State Machine

The POR state machine consists of a POR Sequence Register containing 32 instructions, an instruction 
decoder, a program counter, and a control state machine that starts the execution of each instruction by auxil-
iary state machines and waits for them to complete. 

After HRESET_B is raised, the program counter (APC) is cleared and the POR state machine first enters the 
PORWAIT state. In debug mode, the POR state machine will not advance until a continue is sent from the 
SPU. In normal (non-debug) mode the state machine will advance to the next cycle without a continue. The 
state machine then starts fetching the instruction from the POR sequence register pointed to by APC (latch 
state), decodes it (decode state) and starts the execution of the corresponding auxiliary state machine (go 
state). The state machine then waits until the auxiliary machine signals completion or a continue command is 
received through the JTAG or I2C. The POR program counter is then incremented and the state machine 
loops to the latch state. 

Figure 11-3. State Diagram 
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11.1.3.2 Continue Command

To move the POR state machine from step to step, the service processor issues a “continue” command. The 
continue command is triggered by writing any 64 bit value (for example, all ‘0’s ) to the Power-On Reset 
Continue Register (SCOM address 0x400101). 

Note:  The first continue command written to the 970FX after HRESET will not generate an I2C acknowledge. 
The second and all subsequent continue commands will receive the normal I2C acknowledge. This issue is 
included in the IBM PowerPC 970FX RISC Microprocessor Errata List.

11.1.3.3 POR Status Register

The POR Status Register is located at SCOM address 0x400000 and indicates the current POR program 
counter and whether or not the current instruction has completed. 

11.1.3.4 Mode Ring

The mode ring is a bitstream that initializes critical mode latches in the processor cores. Most applications 
can use the recommended default settings, but some must be configured based on system design details. 
The Hypervisor Interrupt Offset Register (HIOR), which selects the physical base address of the reset vector 
and other interrupt vectors might need to be modified.

Most systems will use mode rings set to the default values provided in Table 11-4, however, some systems 
will need to customize the mode ring to use the correct HIOR value. This register provides the base address 
for the first fetch at the end of the POR sequence. The HIOR value, usually the base address of the 970FX 
boot ROM, plus the reset vector (0x100) should equal the physical address of the first instruction to be 
executed by the 970FX. 

Note:  The reset vector offset of 0x100 can not be changed.

Initializing the mode ring is handled by the following procedure, also described in more detail in 
Section 11.1.5.4 IPL2. There are 3 basic steps:

1. Initializing the Phase Synchronization Control Register (SCOM register 0x800006) with the value 
0x0000.02F2.8000.0000.

2. A sequence of writes to the TAP controller. First the Instruction Register (IR), then the Data Register (DR) 
is loaded with the bits of the mode ring. Using I2C, you can send up to 8 bytes at a time.

3. Then a TAP Reset is sent to write the mode ring from the TAP controller.

Note:  See the IBM PowerPC 970FX Power-On Reset Application Note for additional details on initializing the 
Mode Ring. 
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11.1.4 Debugging Support

Figure 11-4 shows the system environment with the additional debugging environment for bring-up in red. 
The GPULDBG pin is driven high and the JTAG debugger (for example, the IBM RISCWatch) bring-up 
vehicle is connected to each 970FX via dedicated JTAG busses.

In debug mode the POR state machine will always pause after the execution of each POR instruction as if a 
WAIT instruction has been inserted after each instruction. A continue command must then be issued to 
proceed to the next instruction. This also applies to the WAIT instruction such that a total of two continue 
commands must be issued to proceed in debug mode. This allows the SPU power-on reset procedure to 
remain unchanged and the JTAG debugger to access the 970FX after each POR step.

11.1.5 Power-On Reset Procedure in Debug Mode (Detail View)

This description of the 970FX power-on reset sequence will assume the “debug” mode (GPULDBG pin held 
high) to show each individual step in the POR state machine sequence. This mode would typically be used 
during system bring up, but once the power-on reset sequence has been correctly developed and debugged, 
the firmware would probably be modified to use the automatic mode. 

The POR procedure in debug mode is listed inTable 11-3 POR Procedure in Detail, Debug Mode. The JTAG 
debugger should be able to single step the POR sequence in order to be able to check the 970FX state and 
make changes to the logic. This is necessary in the debugging environment, at least to correctly setup copies 
of the unblown fuses, run LBIST, or change the initial value of the latches/mode ring without changing the 
SPU code or iterating the 970FX hardware.

Figure 11-4. System Environment with Debugging Environment 
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Table 11-3. POR Procedure in Detail, Debug Mode  (GPULDBG pin pulled high)

APC IPL Step 970FX North Bridge SPU

sync PLL drop hreset_b, bypass_b

IPL reset POR, High Z i2cgo reset North Bidge sample i2cgo, raise bypass_b

raise hreset_b

-1 state PORWAIT

00 IPL0 RSTFRL send continue

01 [ FULL ] SCAN0 send continue

02 RASINIT SAMPLEFUSE send continue

03 IPL1 SCABISTINIT

initialize North Bidge

send continue

04 SCAN0 send continue

05 DABISTINITL1 send continue

06 DABISTINITL2 wait 1us, send continue

07 SCAN0 send continue

08 CHIPINIT DABISTINITL2 send continue

09 SCAN0 send continue

10 IPL2 WAIT send continue

start WIAP, start phase send mode data

CHIPCFG send continue

11 DRIVEIOS send continue

12 IPL3 SYNCPHASE send continue

13 STARTZIOCLK send continue

14 IPL4 TOGGLEWIAP send continue

15 SYNCRIAP send continue

16 IO SYNC WAIT Wait for 970FX PI synced

start North Bridge PI sync

sync RIAP

only in PI 
mode stop WIAP

check PIs, set PIs parameters, 
stop North Bridge WIAP., 

send continue

17 TOGGLEWIAP send continue

18 IPL5 STARTCORECLK final init send continue

19 INITSTS send continue

20 INITCORE send continue

21 COREINIT WAIT send continue

final system init, send continue
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11.1.5.1 Power and Clock Ramping for the 970FX

In the 970FX the SRESET_B pin should be held high around the release of HRESET_B as shown in 
Figure 11-5. Failing to conform to this specification will result in asynchronous clocks on the 970FX bus when 
doing frequency switching using power tuning.

When the PLL is in bypass-mode, where the BYPASS_B pin is held low, the SRESET_B should also be held 
low instead of high around the release of HRESET_B. This prevents the initial clock alignment procedure 
(CAP).

On bring-up boards, the polarity of the SRESET_B around the release of HRESET_B should be selectable to 
allow CAP skipping in the event of hardware problems.

Once the power supply is stable and the clock generator is running, the service processor should assert 
BYPASS_B for tD microseconds, while also asserting HRESET_B for tC milliseconds. This will reset the PLL 
and allow it to lock during the remaining time tE required for HRESET_B to complete. After HRESET_B goes 
high the automatic power-on sequence begins with IPL0. (See the IBM PowerPC 970FX RISC Micropro-
cessor Datasheet for timing values.) 

22 IPL6 STARTGUSCLK send continue

23 INITSTS send continue

24 FETCHINIT SRESET send continue

<fetch @ 0x100>

Figure 11-5. HRESET_B, SRESET_B, BYPASS_B Timing for the 970FX 
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11.1.5.2 IPL0

Release HRESET_B

Once HRESET_B is released and the first contiue command is issued to the 970FX microprocessor, IPL0 
starts. During IPL0 al the free running logic is initialized by scanning ‘0’s into all of the RAS latches. This 
corresponds to Step 0 (RSTFRL) in Table 11-3. 

In debug mode, issuing a continue command will move the instruction pointer to step 1, which will begin scan-
ning ‘0’s into all the rings. This corresponds to Step 1 ([FULL] SCAN0) in Table 11-3. 

Note:  The first continue command written to the 970FX after HRESET will not generate an I2C acknowledge. 
Subsequent continue commands will get the normal I2C acknowledge. This issue is included in the IBM Pow-
erPC 970FX RISC Microprocessor Errata List.

Scanning of Boundary Scan Latches

One of the rings initalized by Step 1 is the boundary scan latches. During this step, some of the 970FX micro-
processor output pins may be toggled as the boundary scan ring is initialized. System logic should ignore 
these output pin toggles. At this stage of the system intialization, most of the North Bridge logic is still being 
intialized, so this should not pose a problem. 

It is important to note that one of the pins that might become active is QREQ_B. This pin is used to indicate a 
request to sleep. The SPU should avoid creating a situation where the potential toggling of QREQ_B or other 
output pins might put the North Bridge logic into an undesired state. Since the scanning of the boundary scan 
latches depends on their uninitialized state at power up, this behavior is impossible to predict. 

After another continue command is issued, the fuses are copied into their latches. This corresponds to step 2 
in Table 11-3. Once the fuses are copied, the POR sequence automatically moves to IPL1.

Increasing I2C Clock Speed

At this point in the POR sequence, you may (optionally) write to the Clock Ratio Register (SCOM 0x600400) 
with the value 0x0083F000.0000000 to increase I2C speed to 100KHz. Without this SCOM initialization the 
I2C bus speed will be limited to 50KHz. 

Note:  All I2C accesses including this one, must use a 50KHz I2C clock rate. The I2C clock speed may only 
be increased after this SCOM write is complete. Using a higher I2C clock rate may cause unreliable I2C oper-
ation.
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11.1.5.3 IPL1

Chip Initialization

IPL1 begins by initializing the arrays. This is done using the ABIST engine to intialize the Core, VPU, STS, 
and Pervasive Array. Finally the latches are initialized. As a result of the latch initialization, the fence between 
the core and the storage subsystem and between the storage subsystem and the processor interfaces are 
raised. The core is initialized.

From debug mode the SPU should issue 8 more continue commands to complete all the steps in IPL1. This 
should leave the POR program counter at instruction 10 (WAIT). During this phase the service processor can 
also begin intializing the North Bridge and getting it ready to start the IAP after the mode rings have been 
scanned in.

Verifying Chip Initialization in IPL1 is Complete

The SPU can check the status of IPL1 by reading the POR status register (SCOM 0x400000). When bits 
[24:28] of this register (the POR APC) contains the value 0x0A, the 970FX is ready to start IPL2.

11.1.5.4 IPL2

Initialization of the Phase Sync Control Register

Before the mode ring can be loaded you must first initialize the Phase Sync Control Register (SCOM register 
0x800006) by writing the value 0x0000.02F2.8000.0000.

Note:  This register must be initialized with this value before loading the mode ring, otherwise the mode ring 
load will fail.

Load Mode Ring

Now that the processor has been initialized in IPL1, configuration can begin. The POR state machine enters 
the WAIT instruction until the mode ring has been loaded. The mode ring contents are documented in 
Table 11-4. 
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Table 11-4. Sample Mode-Ring Content (for I2C chip address of 0x40) 

Content (Hexadecimal)

08 40 52 DF 00  
DE 40 52 00 80 C0 0F 
02 40 52 03  
BE 40 52 00 00 00 00 00 00 00 02  
BE 40 52 00 00 00 00 00 02 00 00  
BE 40 52 00 00 05 01 00 00 C3 01  
BE 40 52 00 08 00 08 00 DE B0 21  
BE 40 52 00 00 04 00 00 00 01 00  
BE 40 52 00 00 00 00 00 00 00 00  
BE 40 52 00 p0 p1 p2 p3 00 00 00  
BE 40 52 00 00 00 00 00 00 00 00  
BE 40 52 00 00 00 00 00 00 00 00  
BE 40 52 00 00 00 C0 07 00 00 00  
BE 40 52 00 00 00 00 00 00 00 00  
BE 40 52 00 00 00 00 00 00 00 00  
BE 40 52 00 00 00 00 00 00 00 00  
BE 40 52 00 01 00 00 00 80 04 00  
BE 40 52 h1 h2 h3 h4 00 00 00 00  
BE 40 52 00 00 00 00 00 00 00 00  
BE 40 52 00 00 00 00 00 00 00 00  
BE 40 52 00 00 40 00 00 00 00 00  
BE 40 52 00 00 c0 70 00 50 C8 10  
BE 40 52 00 00 00 01 00 00 00 00  
BE 40 52 14 00 00 00 00 00 00 a0  
BE 40 52 7E 00 00 00 00 00 00 00  
BE 40 52 00 00 18 00 00 00 00 00  
BE 40 52 00 00 00 00 00 00 08 40  
BE 40 52 00 10 00 00 00 20 00 7B 
BE 40 52 03 00 00 00 00 00 00 00  
BE 40 52 00 00 00 00 00 00 00 00  
BE 40 52 00 00 00 00 1C FC 00 00  
DE 40 52 00 00 00 00 00 3B 00 00  
03 40 52 1F 

Notes:  

1. Bytes Indicated by p0-p3 should be replaced per Table 11-5 according to Bus Ratio and PLL Settings.
2. Bytes indicated by h1-h4 should be replaced per Section Mode Ring Customization for HIOR according to desired HIOR.

Table 11-5. Mode Ring Content Dependent on the Bus Ratio and PLL Settings 

Bus Ratio PLL x8 PLL x 12

2:1 0x98, 0xB0, 0x00, 0x00 Not Recommended

3:1 Not Recommended 0x90, 0x0F, 0x83, 0x00

Note:  The combinations of Bus Ratio and PLL Mode shown as Not Recommended are likely to cause performance degradation caused 
by internal synchronization delays. For best performance use only the combinations shown.
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Mode Ring Customization for HIOR

Certain fields in the mode ring may need to be customized for the application. The HIOR register is a 64-bit 
register that defines the base physical address for the interrupt vectors, including the reset vector. The 
processor will begin executing code at the physical address of the HIOR register plus the reset vector, 0x100. 
For example, if the HIOR is initialized to 0x0000.0000.FFF0.0000 in the mode ring, the first fetch will be made 
at the physical address 0x0000.0000.FFF0.0100.

The HIOR register is included in the mode ring shown in Table 11-4 Sample Mode-Ring Content (for I2C chip 
address of 0x40). The bytes to be replaced by the desired HIOR value are indicated by h1-h4. In this 
example, h1 = HIOR[43] * 128; h2 = HIOR[35:42]; h3 = HIOR[27:34]; h4 = HIOR[22:26]. 

Mode Ring Customization for PLL Multiplier and Bus Ratio

The mode ring must also be modified to match the system bus ratio and PLL Mode. Use Table 11-5 to deter-
mine the correct byte sequence to insert into the mode ring. The bytes in Table 11-5 replace the p1-p5 bytes 
in Table 11-4.

Note:  These mode ring settings do not affect or override the PLL multiplier or bus ratio settings. They are 
used to support correct frequency scaling for the power tuning features. Incorrect configuration of these bytes 
will not affect full frequency operation, but will cause bus errors during the power tuning operation.

TAP Commands to Start Mode Ring Scans

The mode ring is written by a series of TAP commands. TAP commands provide a way to emulate JTAG 
functionality via a series of I2C writes. 

Writing the mode ring begins by setting the JTAG logic to SHIFT-IR mode. This is accomplished by writing the 
I2C byte sequence 0x08, 0x40, 0x52, 0xDF, 0x00. 

The next TAP command sets the ring address of the mode ring, for 970FX this is 0xC08000. This is accom-
plished by writing the I2C bytes 0xDE, 0x40, 0x52, 0x00, 0x80, 0xC0, 0x0F. The next TAP command sets up 
the SHIFT-DR, this is handled by the I2C byte sequence 0x02, 0x40, 0x52, 0x03. 

Writing Mode Ring Data

The mode ring data is then written in a series of 64-bit bursts using the TAP controller via I2C. Each 64-bit 
write begins with the preamble 0xBE, 0x40, 0x52, followed by 8 bytes of mode ring data. 

The mode ring contents are listed in sequential byte order in Table 11-4. This table contains the bytes to be 
sent via I2C.

Send the mode ring data to the core by writing the preamble bytes above, (0xFE, 0x40, 0x52) followed by 8 
bytes from Table 11-4. Continue sending these 64-bit bursts of data until you have sent every byte in the 
mode ring. Then send the TAP Reset as described in Return TAP Controller to Idle State.

Return TAP Controller to Idle State

A TAP reset is sent to write the mode ring from the TAP controller by writing the I2C sequence 0x03, 0x40, 
0x52, 0x1F. Once this reset has been issued, the entire mode ring has been transferred into the 970FX.



User’s Manual
 
IBM PowerPC 970FX RISC Microprocessor  

System Design

Page 274 of 360
Version 1.7

March 14, 2008

PSYNC Requirement for 970FX DD3.X 

Note:  See the IBM PowerPC 970FX Power-On Reset Application Note for details on the resynchronization of 
the PSYNC input to the internal “Time 0” signal (also known as Clock Alignment Procedure) on some DD3.X 
hardware. 

Start IAP and Phase

Once the mode ring has been loaded, the North Bridge should begin sending the WIAP pattern. At this point 
the North Bridge starts sending the synchronization pattern to the 970FX.

11.1.5.5 IPL3

Synchronization of all PowerPC 970FX RISC Microprocessors to PSYNC

In this phase the 970FX begins synchronizing to the external PSYNC signal driven by the system to indicate 
the correct “time zero” reference for bus operation and snooping. 

Send Continues

At this point the service processor sends four “continue” commands to the 970FX to start IPL4. The continue 
command is triggered by writing any 64-bit value (for example, all ‘0’s) to Power-on Reset Continue Register 
(SCOM address 0x400101). At this point the POR Status Register bits[ 24:28] should read a value of 0x10, 
indicating instruction 16.

11.1.5.6 IPL4

Wait for IAP to Complete

The 970FX starts driving the elastic interface alignment pattern (TOGGLEWIAP) and proceeds to the 
synchronization of the PI receivers (SYNCRIAP). The North Bridge can then start synchronization of its PI 
receivers. 

Verify IAP Complete without Errors

The SPU finally checks correct synchronization of all chips in the system. The PI error condition registers can 
be checked at this point to determine if IAP was able to complete without error. 

Initialize PI Parameters

Once the IAP has successfully completed, the service processor will initialize the PI bus for correct operation 
by configuring the STATLAT, SNOOPLAT, SNOOPACC, and APSEL parameters. The target cycles should 
also be configured for the North Bridge. 
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Stop IAP Pattern

With the processor interface bus initalized and ready for operation, another SCOM write to the Processor 
Interface Mode Register (SCOM address 0x046A00) will halt the IAP pattern and quiesce the bus. This 
should also be done for the North Bridge.

Send Continue

At this point the service processor sends 3 “continue” command to the 970FX to start IPL5. 

11.1.5.7 IPL5

Start Core Clock

The Core Init step (IPL5) finishes the Core initialization. The core clock is started, the array fences are 
dropped (GUSINIT without STS clocks), the Core CAM arrays are set up, and the Core quiesced. The SPU 
then finishes the system initialization and sends 7 more continue commands to the 970FX microprocessor.

Some system implementations will also need to make the boot ROM available to the processor’s memory 
map. This can be done by initializing a South Bridge, or may require copying the contents of a service 
processor ROM into the system DRAM.

Once this final initialization is complete, 3 more continues will take the 970FX to IPL6. 

11.1.5.8 IPL6

Start STS Clock

The last step Fetch Init (IPL6) starts the STS clock, resets the storage interface of the 970FX, and starts 
fetching instructions at address HIOR + 0x100. 0x100. The first continue command will start the GUSCLK. 
This continue must be completed before setting the PI parameters. 

Initialize PI Parameters

Once the IAP has been completed successfully, the service processor must initialize the PI bus for correct 
operation by configuring the STATLAT, SNOOPLAT, SNOOPACC, and APSEL parameters. These parame-
ters are documented inSection 11.3 Bus Initialization, Configuration, Power Management, and Test.

STS Init and SRESET

Once the PI parameters have been set, one more continue command will initiate the SRESET and cause the 
processor to begin fetching instructions.

11.1.6 Processor Initialization

The processor will begin executing code at the physical address of the HIOR Register plus the reset vector, 
0x100. For example, if the HIOR is initialized to 0x0000.0000.FFF0.0000 in the mode ring, the first fetch will 
be made at the physical address 0x0000.0000.FFF0.0100. 
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The processor starts execution with memory translation off (real address mode, effective address = physical 
address), and with the caches disabled. Some system configurations will also need other prefetching or 
superscalar features disabled to allow correct operation. 

11.1.6.1 Automatic Array Recovery

The 970FX microprocessor has built in recovery mechanisms to protect array reliability. An array soft error 
would normally cause a checkstop condition that requires service processor intervention. Enabling the 
recovery modes in Table 11-6 and Table 11-7 allows the 970FX microprocessor to recover from array soft 
errors automatically.

Note:  The checkstop enables for the L2 Uncorrectable Error (UE) and Logic UE should be set to ‘1’ 
(Enabled). In the rare event either of these errors occur, no automatic recovery is possible and the 970FX 
microprocessor should be set to checkstop.

Table 11-6. Enabling Automatic Array Recovery Modes, by Array 

Array/Error Source HID Register Setting Error Mask Register
(SCOM 0x030400)

Machine Check Register
(SCOM 0x030901)

Checkstop Register
(SCOM 0x030800)

I-Cache / ITAG HID1[11:12] = ‘11’ 0x030400[0:2] = ‘000’ 0x030901[0:2] = ‘000’ 0x030800[0:2] = ‘000’

I-ERAT HID1[13] = ‘1’ 0x030400[3] = ‘0’ 0x030901[3] = ‘0’ 0x030800[3] = ‘0’

L2 UE N/A 0x030400[4] = ‘0’ 0x030901[4] = ‘0’ 0x030800[4] = ‘1’

Logic UE N/A 0x030400[5] = ‘0’ 0x030901[5] = ‘0’ 0x030800[5] = ‘1’

D-Cache HID5[50] = ‘0’
HID4[39:41] = ‘000’ 0x030400[6] = ‘0’ 0x030901[6] = ‘0’ 0x030800[6] = ‘0’

DTAG HID4[34:36] = ‘000’ 0x030400[7] = ‘0’ 0x030901[7] = ‘0’ 0x030800[7] = ‘0’

D-ERAT HID4[29:31] = ‘000’ 0x030400[8] = ‘0’ 0x030901[8] = ‘0’ 0x030800[8] = ‘0’

LSU-TLB HID4[44:48] = ‘00000’ 0x030400[9] = ‘0’ 0x030901[9] = ‘0’ 0x030800[9] = ‘0’

LSU-SLB HID4[53:54] = ‘00’ 0x030400[10] = ‘0’ 0x030901[10] = ‘0’ 0x030800[10] = ‘0’

Table 11-7. L2 Array Recovery Details 

L2 Error STS Mode Register
(SCOM 0x043000)

Error Mask Register
(SCOM 0x040401)

Checkstop Register 
(SCOM 0x040801) Notes

L2 CE 0x43000[50] = ‘0’ 0x040401[42] = ‘0’ 0x040801[42] = ‘0’

L2 UE 0x43000[50] = ‘0’ 0x040401[43] = ‘0’ 0x040801[43] = ‘1’ Uncorrectable Error

L2 Special UE 0x040401[44] = ‘0’ 0x040801[44] = ‘1’ Error outside L2, but 
detected in L2

L2Dir 0x040401[45] = ‘0’ 0x040801[45] = ‘0’

L2Dir Checkstop 0x040401[46] = ‘0’ 0x040801[46] = ‘1’

L2 Hang Detect 0x040401[47] = ‘1’ 0x040801[47] = ‘X’

L2 STQ 0x040401[48] = ‘0’ 0x040801[48] = ‘1’ Store queue error

Logic UE 0x040401[49:51] = ‘0’ 0x040801[49:51] = ‘1’

L2$ Quad CE Threshold 0x040401[52:56] = ‘00000’ 0x040801[52:56] = ‘00000’

L2Dir multiple errors 
within 2 hang pulses 0x040401[57] = ‘0’ 0x040801[57] = ‘0’
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11.1.7 Debugging Tips

11.1.7.1 Verifying I2C Operation

Some microcontrollers used as SPUs for 970FX will require level shifters to avoid levels on the 970FX pins 
beyond OVDD. 

Note:  I2C pins should never exceed voltages beyond the OVDD tolerances provided in the IBM PowerPC 
970FX RISC Microprocessor Datasheet. Devices might be permanently damaged if inputs exceed allowable 
maximum voltages.

Most problems with I2C communications are caused by incorrect pullup resistor values, or I2C clock 
frequency. Note that 970FX I2C clock frequency should not exceed 50KHz unless the SPU code implements 
the SCOM initialization described in I2C Bus Speed on page 260 andIncreasing I2C Clock Speed on 
page 270.

11.1.7.2 SCOM Access to Uninitilized Units

If an SCOM access is attempted to units before clocking is enabled, the SCOM engine will fail and the SCOM 
state machine will hang. Before attempting any SCOM access, ensure completion of the required IPL step to 
enable clocks to that unit (for example, STS SCOMs cannot be accessed until POR step 22, which actually 
enables the STS clocks). 

Notes:  If the SCOM hardware is disabled by attempting access to a unit that is not yet clocked, the only 
recovery is to start over from HRESET.

11.1.7.3 Use of SRESET 

A POR sequence that causes an error is likely to require a complete restart from HRESET and BYPASS. 
Unlike earlier PowerPC processors, the 970FX usually cannot be restarted via SRESET. The SRESET_B 
signal can only be used in limited circumstances, where the core can be quiesced before it will be recognized. 
Errors in POR initialization may make quiescing the core impossible. For this reason, it is usually easier to 
just begin the entire sequence over rather to attempt to quiesce the core and restart from the fetch at 0x100.

However, once a system is running it should be able to restart via assertion of the SRESET_B. For example, 
recovery should be possible from most software crashes or kernel panics by asserting SRESET_B, provided 
the boot code is still intact in memory. 

11.1.7.4 Diagnosing IAP Errors

Errors and warnings during IAP are recorded in the Processor Interface Status Register (Section 11.6.8.18 on 
page 318). Note that bit [36] does not indicate that IAP was successful, only that the IAP state machine ran to 
completion. The IAP state machine will not complete if any fatal error occurs (bits [39, 42, or 45]). See the 
IBM PowerPC 970FX Power-On Reset Application Note for interpretation of the other bits.
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11.2 I2C Interface

11.2.1 I2C Purpose

I2C (Interconnect for Integrated Circuits) is a standard bus developed by Philips Electronics.1 The I2C Slave 
described in this manual converts data sent across an I2C bus into native JTAG commands. The I2C slave 
can be used as a test access port (TAP) controller that interfaces with the Access macro or with other IEEE 
1149.1 compatible devices in order to read, write, and scan registers within a chip.

Figure 11-6 shows the basic concept of merging the off-chip I2C and JTAG busses.

The I2C slave has two basic functions: 

• SCOM reads and writes: The I2C slave can translate data sent across the I2C bus in order to read or write 
registers using native JTAG commands and then return the on the I2C bus if requested. The I2C slave has 
a 12-byte buffer that holds data sent from the master to the slave, as well as data retrieved from registers 
during a read sequence. All data is 8-byte aligned due to the implementation of the TAP controller.

• Native JTAG function: The I2C slave can also be used to interpret I2C data and send native JTAG com-
mands to a TAP controller. The I2C slave monitors the Attention signal sent from the TAP and optionally 
uses this as part of the decision to acknowledge data or as the slave address depending upon the 
read/write bit of the I2C address. This can be enabled or disabled for testability and lab functions to make 
communication easier.

Through the use of primitive decodes the I2C slave returns the data in its 12-byte register without performing 
any JTAG activity or compromising the previous data from capturing test-data output (TDO).

1. I2C standard (IIC) for a serial bus. For more info see: http://www-us2.semiconductors.philips.com/i2c/.

Figure 11-6. Merged JTAG and I2C Interfaces 
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11.2.1.1 I2CGO Pin

The I2CGO open collector pin is used to prevent access collisions between the JTAG and I2C. If the level of 
the pin is low, only JTAG should access the 970FX. The I2C can make use of the interface if the level is high. 

The I2CGO can be set by either the JTAG or I2C through SCOM write commands. When set by an SCOM 
write, the pin will hold its old value until the TAP controller enters either the RESET or the IDLE state. 

11.2.1.2 I2C Protocol 

The I2C protocol, as defined, supports only register read and write operations. This manual only deals with 
the 7-bit slave addressing mode, allowing 27 slaves to be directly addressed. The protocol, illustrated in 
Figure 11-7, implies that an addressed slave responds to a read or a write by addressing successive bytes 
serially, starting in memory where it is defined by the particular slave. 

Implementation note – The I2C-to-JTAG slave implementation extends direct-addressing to 223, operating 
on 8-byte aligned registers. In addition, operations other than register reads and writes that are supported by 
the access implementation of JTAG are available.

11.2.1.3 I2C Bus Operation

As shown in Figure 11-8, the I2C bus consists of two wires: SDA (serial data) and SCL (serial clock). These 
rest at ‘1’ while the bus is quiescent. Any bus master can initiate a message transfer with a start bit (SDA tran-
sitions from ‘1’ to ‘0’ while SCL equals ‘1’). The I2C operates on packets, each one-byte wide, each is 
followed by an acknowledgment bit (0 indicates a good ACK). When the message begins, the master owns 
driving both SCL and SDA until the ACK bit is received; then the slave owns driving the SDA (on writes only, 
see the I2C Bus Specification from Phillips Semiconductors for further details). Each SDA data/ACK bit must 
remain stable at ‘1’ or ‘0’ while the SCL clocks transition from ‘0’ to ‘1’ to ‘0’. That is, the SDA is set up prior to 
the SCL rising edge, held after the falling edge, and transitions while SCL is low. 

The slave can temporarily pace the operation by holding the SCL low following the ACK bit. The SCL clock 
rate slows to the speed of the slowest master/slave attached. 

Packet bits are transmitted with the most significant bit (MSb, bit [1]) first. Bits [1:7] of the start byte address a 
particular slave chip. Bit [8] of the start byte is a read/write bit. The least significant byte is always transmitted 
first, followed by successively more significant bytes (this applies whether the byte is interpreted as address 
or data information). Writes progress with the master sending bytes and the slave acknowledging. A read 

Figure 11-7. I2C Protocol 
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begins as the master writes the start byte, but the dataflow reverses after the slave acknowledges the start 
byte. Now the slave is sending packets and the master is acknowledging. The slave continues to send until 
the master ACK equals ‘1’. All transmissions end with a stop bit (SCL equals ‘1’ while SDA transitions from ‘0’ 
to ‘1’). The bus is quiescent again following the stop bit.

11.2.1.4 Deviations from the I2C Standard

These are deviations, not limitations, of the current design.

• Does not support 10-bit addressing mode.

• Does not support general call address.

• Does not support auto-increment of slave byte address. The power-on reset (POR) default byte address 
is x‘000000’ (an SCOM address, as implemented by Access).

11.2.1.5 JTAG Overview

The Boundary Scan/JTAG formerly known as IEEE standard 1149.1, is a set of design rules that facilitate 
testing, device programming,and debug at the processor, board, and system levels. IEEE 1149.1 defines a 
5-wire interface called a Test Access Port (TAP) for communicating with boundary scan architecture. The 
wires in the interface are: 

Figure 11-8. I2C Bus Operation 

Test Clock (TCK) The rising edge causes TMS and TDI to be sampled by Access macro. 

Test Mode Select (TMS) The value of TMS during the rising edge of TCK causes a state transition in the 
TAP controller.

Test Data In (TDI) TDI is the serial data input to Access. 

Test Data Out (TDO) TDO is the serial data input to Access. 

Test Logic Reset (TRST) TRST causes an asynchronous reset of the test logic (TAP transitions to 
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11.2.1.6 TAP Controller

Figure 11-9 on page 282 illustrates the operation of the TAP controller and the Access macro, which is a 
specific implementation of the IEEE specification. TMS and TCK control the TAP controller. It is necessary to 
understand ShiftIR and ShiftDR states for this discussion.

• ShiftIR: The instruction register (IR) inside the Access macro is serially connected between TDI and TDO. 
While TMS is held ‘0’, each test clock (TCK) causes another bit to be shifted into the Instruction Register 
from TDI and the IR Status to be shifted out to TDO.

• ShiftDR: One of many test data registers (TDRs) is serially connected between TDI and TDO. While TMS 
is held ‘0’, each TCK causes another bit to be shifted into the register from TDI and (old) data to be 
shifted out TDO.

The contents of the Instruction Register determine the specific TDR addressed or nonregister operation to be 
performed.
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Figure 11-9. IEEE/Access TAP Controller 
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11.2.2 Slave Implementation 

Figure 11-10 outlines the major registers involved in data and control flow. 

11.2.2.1 Slave Data Flow Overview

The physical interface handles I2C protocol and timing. It provides a one-byte wide data interface along with 
associated handshaking signals. SDA is the bi-directional serial data signal defined by the I2C. SCL is the 
serial clock signal defined by the I2C. 

The I/O Buffer (IOBUF) buffers successive bytes to be transferred to or from the chip addressed as the slave 
chip by the I2C start byte. Data in the IOBUF is transferred in parallel one byte at a time to or from the phys-
ical interface. The entire start byte is held in the IOBUF, but only the read/write bit is further used by the slave 
logic. During write operations, dataflow is from the I2C to the TDI. During read operations the dataflow is from 
TDO to I2C.

The Serial Shift Register (SSR) can receive or supply up to 8 bytes in parallel from or to the IOBUF. This data 
is then serially shifted to or from the JTAG following IEEE 1149.1 protocol. Test Data In (TDI) is the serial 
data in to JTAG. Test Data Out (TDO) is the serial data out of JTAG. 

Figure 11-10. Major Registers Involved in Data and Control Flow 
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11.2.3 Programming

11.2.3.1 Considerations for Concurrent Resource Use by I2C and JTAG

When the on-chip scan resource (Access) will be shared by the I2C and the chip-level JTAG I/O, special 
considerations are required to prevent either from interfering with the other:

• There is only one copy of the scan resource, the semaphore pin I2CGO is needed to quiesce the off-chip 
JTAG or I2C slave while the other is active.

• Neither I2C nor JTAG have the concept of “atomic” streams of commands, some operations might fail if 
the command stream is interlaced.

• The JTAGINPROG output from the I2C slave logic which is used to drive the on-chip JTAG MUX gives 
priority to the I2C and can lock-out JTAG in certain circumstances if the “Enable Attention” TAP command 
is not used.

11.2.3.2 SCOM Register Read/Write

Table 11-8 describes the command format that will perform a 64-bit SCOM read/write.

An SCOM operation begins with the start byte address (I2C slave base address), optionally followed by up to 
3 bytes of the SCOM address (LSByte, high-order bit first).1 Note that the SCOM addresses must be byte 
aligned.2 If a stop bit is received at this point ,only the portion of the address written will be altered; no other 
activity is initiated.

Write: Data for a write operation follows, starting with the fourth byte (LSByte, high-order bit first). A stop or 
overflow condition following one or more data bytes kicks off the SCOM operation.3 The SCOM address is 
not auto-incremented. Writing more than 8 bytes of data will result in the data at the same SCOM address 
being overwritten.4 Writing less than 8 bytes of data will result in the SCOM address being written with a full 8 
bytes, the most significant bytes of data will be written with whatever was left in the SCOM data I/O buffer 
from the previous operation. 

Table 11-8. SCOM Register Read/Write  (bit numbering, LSb = ‘0’)

Start Byte SCOM Address SCOM Data (I/O buffer)

I2C Slave Addr ess 
(7 bits) R/W LSByte Mid MSByte 8 bytes (LSByte,MSbit first)

7..4 970FX base address
3..1 Proc ID

‘0’ 7..0
bit 0=odd Parity 15..8 23..16

7..0 63..56

‘1’

1. A write must start with all 3 bytes of the SCOM address; a read may use a previously written address or modify one, two, or all three 
bytes of the address before the restart/read byte.

2. The I2C slave implements a 24-bit SCOM address (23 down to 0, 0=LSb). Access/JTAG defines the LSb as a parity bit. The remain-
ing 23 bits (23 down to 1) represent a byte-aligned address. The SCOM transfers are always 8-bytes wide, but each chip usually 
architects registers of varying widths that might not necessarily be aligned on 8-byte boundaries. The specific alignment of data 
within the I2C SCOM read/write data field is chip implementation dependent.

3. An overflow or underflow occurs when more than 8 bytes of data are written/read.
4. SCOM data (IOBUF) contents are unpredictable prior to the first read/write operation. If the same address is written successively, 

the data remains in the buffer–modified only by the data byte(s) rewritten.
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Read: For an SCOM read operation, a restart (a stop followed by a start) is then issued on the I2C interface 
with the R/W bit set to ‘1’. This triggers the initialization of an SCOM read within the I2C hardware. The data-
flow then reverses and the slave returns one data byte for each acknowledgment (LSByte first). The SCOM 
address is not auto-incremented. If greater than 8 bytes are read, the data will be repeated starting with the 
least signficant byte. 

Note:  See the IBM PowerPC 970FX Power-On Reset Application Note for additional information on I2C pro-
gramming examples. 

11.2.3.3 Power-on Reset and Processor Interconnect SCOM Registers 

Table 11-9 lists the registers available as interface to the power-on reset (POR) unit along with their access 
mode and functionality. 

Table 11-10 lists the registers containing the status and configuration of the Processor Interconnect Bus and 
of the BUS unit (PI protocol layer). The processor interconnect (PI) registers are logically part of the pervasive 
unit. 

Table 11-9. POR Unit SCOM Registers 

Name SCOM Address Mode Functionality Page

STATUS 0x400000 R/W Status register of POR unit (write access clears register) 322

CONT 0x400101 Write Continue command to POR fsm 323

I2CGO 0x400201 Write Assert I2CGO pin 323

PSEQ0 0x401400 Write aPOR sequence register. 12 first entries (60 LSB) 325

PSEQ1 0x402400 Write aPOR sequence register. 12 next entries (60 LSB) 325

PSEQ2 0x404400 Write aPOR sequence register 8 last entries (40 LSB) 325

RSV 0x40xxxx R/W Reserved –

Table 11-10. PI and STS SCOM Registers 

Name SCOM Address Mode Functionality Page 

PISTAT x046B01 Read PI inbound status register 318

PICONF x046A01 Write PI inbound configuration register (delay) 317

BUSCONF x0A8000 Write STS bus unit configuration register 321
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11.3 Bus Initialization, Configuration, Power Management, and Test

11.3.1 Bus Initialization

The bus devices use a physical layer initialization sequence to initialize the bus. A specific pattern is sent 
across the bus, which initializes the processor interconnect in slave devices. This sequence is described in 
Section 11.4.1 Initialization at Power-On Reset. 

11.3.2 Configurable Parameters

The Processor Interconnect (PI) defines multiple configurable parameters for efficient operation of the bus. 
The values that can be programmed into these parameter registers are technology and implementation-
dependent. During the initialization process at system start-up, the service processor unit (SPU) identifies the 
system configuration and programs the individual devices attached to the bus (that is, the North Bridge and 
the processors) with the appropriate values using the I2C device interfaces. All values are in bus beats. For 
parameters that cross the processor interconnect, the values are from the final locally clocked flip-flop or latch 
output to the first locally clocked flip-flop or latch input, after deskewing has taken place through the 
processor interconnect.

Figure 11-11 shows the configurable timing parameters COMPACE and STATLAT. COMPACE is the 
minimum number of bus beats between command packets issued from the processor. STATLAT is the 
number of bus beats between the last beat of the address/data (AD) packet and the first beat of the transfer-
handshake (TH) packet.

Figure 11-12 shows the North Bridge configurable timing parameters SNOOPWIN, SNOOPLAT, and 
PAAMWIN. SNOOPWIN is the minimum number of idle bus beats between reflected command packets. 
PAAMWIN is the minimum number of bus beats between command packets reflected from the North Bridge 
to the processors when there is an address collision (shown as A0 in Figure 11-12 North Bridge Configurable 
Timing Parameters). SNOOPLAT is the number of bus beats between the last beat of a reflected command 
packet to the first beat of the individual snoop responses from each of the processors received at the North 
Bridge. SNOOPLAT includes the time of flight across the interface and any switch devices interposed 
between the North Bridge and a processor. 

Figure 11-11. Configurable Timing Parameters 
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Figure 11-13 shows the processor configurable timing parameters SNOOPLAT and SNOOPACC. 
SNOOPLAT is defined above. SNOOPACC is the number of bus beats between the last beat of the individual 
snoop response sent from a processor to the first beat of the accumulated snoop response received from the 
North Bridge. SNOOPACC includes the time of flight across the interface and any switch devices interposed 
between a processor and North Bridge. 

Figure 11-12. North Bridge Configurable Timing Parameters 

Figure 11-13. Processor Configurable Timing Parameters 
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11.3.3 Configuration Interface (I2C Interface)

An I2C interface is used to program the processor interconnect bus parameters. The interface complies with 
the I2C Bus Specification.

The I2C Interface consists of two bi-directional signals, I2CCK_B and I2CDT_B. Both signals use open-drain 
drivers that require external pull-up resistors. Multiple devices can be connected to the same signals. The 
PROCID[0:1] inputs are used to address a specific processor.

11.3.4 Reliability, Availability, and Serviceability (RAS) Requirement

All devices attached to the Processor Interconnect (PI) bus must implement three registers that capture 
errors and assist in the isolation of failures. RAS circuitry ensures a PI implementation which targets a partic-
ular processor will remain stable across various target processors.

A Fault Isolation register (FIR), a Fault Isolation Capture register (FICR), and a Fault Isolation Mask register 
(FIMR) must be implemented. The FIR captures all failures that occur. The register is not frozen on the first 
error, but continues to accumulate all detected errors. The FICR is used to log the first detected error. This 
register is a masked copy of the FIR register (output of the FIR is masked with the FIMR) and is frozen once 
the first error is detected. 

Table 11-11. I2C Interface Signals  

Signal Polarity Name

I2CCK_B Active Low I2C interface clock input

I2CDT_B Active Low I2C interface data input/output

PROCID[0:1] Active High Processor identification input

Table 11-12. I2C Registers used by the 970FX Processor Interconnect Bus 

Name Mode Address Description

PI STATUS REG Read x046B01 PI inbound status register. 
See Section 11.6.8.18 Processor Interconnect Status Register on page 318.

PI MODE REG Read/Write x046A00 PI inbound configuration register (delay). 
See Section 11.6.8.17 Processor Interconnect Mode Register on page 317. 

BUSCONF Read/Write x0A8000 Configurable timing delay parameters. 
See Section 11.6.8.22 Bus Configuration Register on page 321. 
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11.4 Processor Interconnect Electrical Interface

The processor interconnect uses high-speed source-synchronous buses (SSBs) to transfer data between the 
PowerPC and North Bridge chips, and to support the cache-coherency “snooping” protocols for multipro-
cessor configurations. The SSBs are unidirectional point-to-point connections between a drive side (D) and a 
receive side (R). SSBs are put into pairs to form a bidirectional channel between a PowerPC and a North 
Bridge chip as shown in Figure 11-14.

Source synchronous bus (SSB) data is transferred on every bus clock edge, that is, double the data rate 
(DDR) of the bus-clock frequency. There are 50 signal lines per SSB. Two lines are used for the differential 
bus clock lines, 44 signal lines are used to communicate 36 bits of logical data, and four signal lines are used 
for the differential Snoop Response bus. The 36 data bits consist of 35 bits of the address/data (AD) channel 
and a single bit for the Transfer Handshake bus (TH). 

The SSBs achieve high-speed operation using low-cost packaging solutions by exploiting four features:

1. Source synchronous signalling. The differential bus clocks are bundled with the single-ended data sig-
nals. 

2. Far-end (parallel) termination. The single-ended data signals use parallel termination at the far end of 
the signal line to absorb signal reflections and maintain a quasi-constant current loading for each data 
signal line.

3. Balanced coding. The application of balanced coding to the SSB maintains a quasi-constant current 
loading across the entire SSB interface. Within the SSB there is no net current flow across the power 
planes. This dramatically reduces noise problems due to power-supply rail collapse (i.e., Ldi/dt noise) and 
current voltage offsets between the chips.

4. Point-to-point unidirectional signalling. Restricting the signal fan-out to a single point and keeping the 
signal flow unidirectional mitigates problems associated with high-frequency signal attenuation.

Figure 11-14. Bus Diagram of a Dual-processor 970FX PI-Based System 
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11.4.1 Initialization at Power-On Reset 

The receive-side circuitry for the SSBs inside a PI system might require initialization at power-on to deskew 
data signal lines, align the bus clocks, and synchronize the receive-side FIFOs to the local clock domains of 
the ASICs and processors. Within a PI system there is the concept of “time zero” which is globally established 
across all the chips. In the processor interconnect, time zero is derived from the phase synchronization 
(PSync) and global system clock (SYSCLK) signals (see Section 11.4.2 Target Cycle).

The purpose of the initial alignment pattern (IAP) is to establish the settings for the delay lines of the per bit 
deskew circuitry and optimize the positioning of the sampling clocks on the receive side. During IAP each 
drive side transmits a bit pattern sequence across each SSB. This pattern is repeated by the drive side for as 
many bit times (for example, 500000) as needed by the initialization sequential circuitry on the receive side. 
The I2C interface controls the duration for how long the pattern is repeated. Upon IAP completion, the 
receive-side reports its status through the Processor Interconnect Status Register (PISTAT) which is acces-
sible from the I2C interface. An all-zero result stored in PISTAT indicates that the IAP completed without 
error. A non-zero pattern indicates that there was an error. The bit fields and their meaning are shown 
in Table 11-34 Processor Interconnect Status Register on page 318.

The sequence of the power-on reset steps is:

1. Stabilize and lock the clocks to the globally distributed SYSCLK. 

2. The drive side of each SSB begins transmission of the test patterns for receive-side calibration and opti-
mization. This step is initiated from the I2C interface by a sequence that is system dependent. 

3. Wait for a completion signal from each receive side SSB that the IAP has completed. The completion sig-
nal is registered and can be accessed from the I2C interface. The location of the register and how it is 
accessed through the I2C interface is implementation dependent. 

The transmission of the test patterns is terminated once the completion signal has been detected. The results 
of the initialization can be read out from the I2C interface and the bus is ready for general system use. 

In addition to the Processor Interconnect Status Register (PISTAT), there is also the Processor Interconnect 
Mode Register (PICONFIG) for configuring each SSB that can be accessed from the I2C interface. The 
register bit fields and their meanings are shown in Table 11-33 Processor Interconnect Mode Register on 
page 317.

11.4.2 Target Cycle

The flight time of a data signal from the drive side to the receive side of an SSB can extend beyond the period 
of a single bus clock. The principles of the processor interface allow data and clocks signals to take multiple 
bus clock cycles to travel from one side to the other. 

Furthermore, each receive side can be programmed to transfer SSB data across the time-domain boundary 
on the same “target beat” relative to time zero, which is the globally synchronized time domain for all of the 
processors in a processor interconnect system.

This synchronization can be accomplished using a FIFO type circuit such as the one in Figure 11-15. The 
four gate signals (Gate0 through Gate3) are derived from the incoming bus clock (bclk) of the SSB. These 
signals are half the frequency of the bus clock, have a 50% duty cycle, and are 90 degrees out of phase from 
each other (See Figure 11-16). During the IAP, the gate signals are shifted one bit time at a time until the “1” 
in the IAP pattern is aligned into the rightmost latch (data 0) and the “0” is captured in the leftmost latch 
(data 3). This alignment procedure occurs in the shaded box of Figure 11-15.
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The 4:1 multiplexor and the modulo 4 counter are used to cross the time domain from that of the SSB bus 
clock to the local clock (Lclk) of the chip. A static timing analysis determines the worst case aggregate latency 
from the drive side through the receive side up to the input point of the data out flip-flop (see Figure 11-15). 

The combination of the 4:1 multiplexer and modulo 4 counter establishes four possible target cycles for trans-
ferring data between the two time domains. The duration of each target cycle equals one bit time. Depending 
on the results of the worst case analysis, it might be determined that SSB input data cannot be clocked into 
the data out flip-flop in the same target cycle that it arrives. This will occur if the timing violates the set-up and 
hold time requirements of the data out flip-flop. In this case, one of the other three target cycles is selected. 
For example, the following cycle would allow the shortest safe latency, but later cycles would provide larger 
set-up times. The target cycle is programmed through the I2C interface by loading a 2-bit value into the Target 
Cycle register, which in turns initializes the modulo 4 counter relative to time zero.

Figure 11-15. Receive-Side FIFO Circuit 

Figure 11-16. Timing Diagram Showing Relationship Between Bclk and the Four Gate Signals 
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11.5 Processor Interconnect Bus Error Detection and Correction

11.5.1 Error Detection for Balanced Encoding

The PI bus protocol defines an encoding of each beat of information on the inbound address/data (ADI) and 
the outbound address/data (ADO) bus, so that half the signals carry a '1' bit and half the signals carry a '0' bit 
on each beat. This is done by converting the 36 bits of information on each bus to the 44-bit pattern that is 
transferred, in a scheme called “balanced coding.” This balanced coding scheme implicitly provides parity 
checking of the bus signals, in that an unequal number of '1's and '0's in any beat indicates an error. This 
balanced coding bus mode is selected by setting BUSCONF[49] to ‘0’. See Section 11.6.8.22 Bus Configura-
tion Register.

11.5.2 Error Detection for Alternative Encodings

The 970FX design supports two additional “unencoded” bus modes, in which bits [0:35] of the ADI and ADO 
bus carry the address and data information, while bits [36:43] carry checking information. 

11.5.2.1 Single-Error and Double-Error Detection

The first of these unencoded bus modes implements the following 10-input parity functions to generate the 
eight check bits:

b36 = P(  b0, b6, b7, b29, b30, b31, b32, b33, b34, b35 )
b37 = P(  b0, b1, b6, b23, b24, b25, b26, b27, b28, b35 )
b38 = P(  b0, b1, b2, b18, b19, b20, b21, b22, b28, b34 )
b39 = P(  b1, b2, b3, b14, b15, b16, b17, b22, b27, b33 )
b40 = P(  b2, b3, b4, b11, b12, b13, b17, b21, b26, b32 )
b41 = P(  b3, b4, b5, b9, b10, b13, b16, b20, b25, b31 )
b42 = P(  b4, b5, b7, b8, b10, b12, b15, b19, b24, b30 )
b43 = P(  b5, b6, b7, b8,   b9, b11, b14, b18, b23, b29 )

where P(0 to 7) computes even parity over its input signals. 

In the receiver, the error syndrome is computed by exclusive-ORing the received and generated check bits. A 
syndrome of 0x00 results when the received and generated check bits match, indicating that no error 
occurred. A non-zero syndrome indicates that an error occurred. This check bit implementation will detect any 
single or double bit error over the 44-bit pattern. This first unencoded bus mode is selected by setting 
BUSCONF[49, 56, 57] to ‘100’.

Note:  Single bit errors that occur using this bus mode yield syndromes that allow the failing bit to be identi-
fied. However, some double bit errors yield those same single-bit error syndromes. For this reason, this mode 
can be used to detect all single and double bit errors, but cannot be safely used to correct single bit errors.
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11.5.2.2 Single-Error Correct, Double-Error Detection

The second unencoded bus mode implements the following functions to generate the eight check bits:

b36 = P( b23, b24, b25, b26, b27, b28, b29, b30, b31, b32, b33, b34, b35)
b37 = P(  b9, b10, b11, b12, b13, b14, b15, b16, b17, b18, b19, b20, b21, b22)
b38 = P(  b3,   b4,   b5,   b6,   b7,   b8, b18, b19, b20, b21, b22, b33, b34, b35)
b39 = P(  b2,   b5,   b6,   b7,   b8, b15, b16, b17, b22, b29, b30, b31, b32)
b40 = P(  b1,   b3,   b4,   b8, b12, b13, b14, b17, b21, b26, b27, b28, b32, b35)
b41 = P(  b0,   b1,   b2,   b4,   b7, b10, b11, b14, b20, b24, b25, b28, b31)
b42 = P(  b0,   b1,   b3,   b6,   b9, b11, b13, b16, b19, b23, b25, b27, b30, b34)
b43 = P(  b0,   b2,   b5,   b9, b10, b12, b15, b18, b23, b24, b26, b29, b33)

In the receiver, the error syndrome is computed by exclusive-ORing the received and generated check bits. A 
syndrome of 0x00 results when the received and generated check bits match, indicating that no error 
occurred. A non-zero syndrome indicates that an error occurred. Table 11-13 lists the syndromes from all 
single-bit errors, along with which failing bit causes that syndrome.

All non-zero syndromes that are not listed in Table 11-13 indicate double-bit errors.

This check bit implementation can be used to correct any single-bit error and to detect any double-bit error 
over the 44-bit pattern. This second unencoded bus mode is selected by setting 
BUSCONF[49, 56, 57] to ‘101’. 

Table 11-13. Bit Error Position Identifier  

Syndrome Failing Bit Syndrome Failing Bit

0x07 0 0x70 22

0x0e 1 0x83 23

0x15 2 0x85 24

0x2a 3 0x86 25

0x2c 4 0x89 26

0x31 5 0x8a 27

0x32 6 0x8c 28

0x34 7 0x91 29

0x38 8 0x92 30

0x43 9 0x94 31

0x45 10 0x98 32

0x46 11 0xa1 33

0x49 12 0xa2 34

0x4a 13 0xa8 35

0x4c 14 0x80 36

0x51 15 0x40 37

0x52 16 0x20 38

0x58 17 0x10 39

0x61 18 0x08 40

0x62 19 0x04 41

0x64 20 0x02 42

0x68 21 0x01 43
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11.6 SCOM Facility

Scan communication (SCOM) is used to access vital chip debug and diagnostic facilities while the chip is 
running without stopping clocks. It is implemented as address and data serial rings running through the chip 
to limit the wiring. Each facility has a unique address on this ring, which is used to address it.

Figure 11-17 illustrates the SCOM topology. The serial ring is split into independent rings running in the clock 
domains, so that a clock stop in the one domain will not break the SCOM. A small number of facilities that 
control the SCOM configuration and the chip clocks are addressed directly without using the serial ring.

11.6.1 Processor Core SCOM SPR Access

Each processor (core) has two special purpose registers (SPRs) used to access the SCOM interface: 
SCOMC and SCOMD. SCOMC and SCOMD are both 64-bit read/write SPRs and are used for SCOM Control 
and SCOM Data respectively. The interface is implemented as a direct connection to the parallel-to-serial 
converter, which handles the arbitration between the core and service processor. 

11.6.2 Operating System Protocol to Access SCOM SPRs

In the PowerPC 970FX, SCOMC and SCOMD are complete operations. They do not require a software 
protocol in order to function properly except to disable external (asynchronous) interrupts. Software must 
check the error bits after performing an SCOMC to ensure that the command successfully completed. Table 
11-14 Operating System Code to Access SCOM outlines a general software protocol for using these regis-
ters.

Figure 11-17. Processor Unit SCOM Topology 

Table 11-14. Operating System Code to Access SCOM 
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MFSCOMD 
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if Error = ‘1’, branch to SCOM error routine
set MSR[EE] = ‘1’
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if Error = ‘1’ branch to SCOM error routine
set MSR[EE] = ‘1’
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Asynchronous interrupts must be disabled during these blocks. Otherwise, an interrupt could arrive and make 
the SCOM port busy. If that occurs between the ‘move from’ (MF) and ‘move to’ (MT) instructions that cause 
the reads and writes, then the SCOM interface out of the core could malfunction (or at least not perform as 
software intended). 

11.6.3 SCOMD Format

The SCOMD is simply a 64-bit register. The interpretation of the contents of this register is determined by the 
SCOMC Status and Control bits. It is the source for outgoing data during an SCOM write access 
(SCOMC[RW] = ‘1’ when mtscomc is issued). It is the destination for incoming data after an SCOMC read 
access (SCOMC[RW] = ‘0’ after mtscomc completes).

11.6.4 SCOMC Format

The SCOMC is divided into four 16-bit fields, as shown in Table 11-15 and Figure 11-18:

:

Figure 11-18. SCOMC SPR Format 
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Table 11-15. SCOMC SPR Format  

SCOMC Bits Type Usage Description

0:31 Unused Reserved Unused

32:47 Write-Only Control SCOM Address (0:15)

48 Write-Only Control
SCOM Read/Write Request Bit 
0 Write request
1 Read request

49:55 Unused Reserved Unused Control Bits

56 Read-Only Reserved Unused Status bit

57 Read-Only Status SCOM Protocol Error

58 Read-Only Status SCOM Address Error

59 Read-Only Status SCOM Interface Error

60 Read-Only Status SCOMC disabled by service processor

61 Read-Only Status Reserved (Zero)

62 Read-Only Status Reserved (Zero)

63 Read-Only Status Failure (SCOMC disabled or Interface Error [formerly Busy])
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The reserved fields should be written to zeros by the software on an mtscomc and return zeros on an 
mfscomc. The Address and Control fields are undefined while Failure equals ‘1’.

All SCOMC Status bits will be cleared by the hardware upon an mtscomc with the exception of Failure, which 
is set to indicate to the operating system that the SPR SCOM access is active. Additional status bits will be 
set depending on the status of the SCOM operation:

• Protocol Error: The SCOM hardware has violated a basic protocol, such as giving a grant when not 
asked or returning a data packet when expecting an address packet. This error bit is not cleared on the 
next mtscomc 

Note:  This bit will probably cause a checkstop to occur and sets a corresponding bit in the Fault Isolation 
Register (FIR).

This bit indicates a problem has occurred in the SCOM hardware, and this interface can no longer be 
trusted.

• Address Error: The SCOM address was not recognized by an SCOM satellite. This indicates that the 
write did not happen or that the read returned no data (depending on the R/W bit). This error bit is cleared 
on the next mtscomc. This indicates a probable software error.

• Interface Error: If the SCOM logic in the arbiter detects an error condition, such as a timeout on the 
SCOM interface, or if the core hang recovery engages while SCOMC is active, it sends a SCOM reset 
(screset). This causes the SCOMC operation to be terminated and the logic to record an error. The error 
bit is cleared on the next mtscomc and is recoverable (the command must be retried).

• SCOMC Disabled: The service processor has the ability to disable a core from becoming an SCOM 
master, causing the core to treat mtscomc as a no-op. MFSCOMC will set this bit, along with Failure and 
Interface Error to ensure the software realizes this condition.

• Failure: Summary indicating if there were any errors since the last mtscomc. Formerly the “Busy” bit, 
which indicated if the SCOMC interface was in use.

11.6.5 SCOM Address Allocation

The SCOM supports a 23-bit address with the 24th bit being a parity bit. This is the address that would be 
sent to the SCOM through the JTAG port. The internal SCOM bus, the part that is serialized, needs no more 
than 16 bits of addressing. So, to simplify the logic, addresses sent internally are truncated to16 bits. Thus, 
bits [0:15] are sent to the parallel SCOM controller and bits [16:22] must be zero for the processor SCOM 
addresses.

For the STS, each unit’s SCOM serial address and data are daisy chained together. For example, the STS 
SCOM address and SCOM data out connect to the SCOM address and SCOM data in of the L2 cache. The 
SCOM address and SCOM data out of the L2 cache connect to the SCOM address and SCOM data in of the 
bus. The SCOM address and SCOM data out of the bus connect to the SCOM address and SCOM data in of 
the storage subsystem (STS). 

Figure 11-19. SCOM Addressing 

23150 1687
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Inside the STS, the serial SCOM address bit [0] is the start bit. Bits [1:8] are the SCOM base address for STS 
SCOM registers. Bits [9:16] are the actual SCOM address for each register. Bit [17] is for SCOM read or write 
operations (‘1’ = READ, ‘0’ = WRITE) and bit [18] is the stop bit. For the internal serial SCOM data bus, each 
SCOM register in the STS is 32 bits wide. Bit [32] of the SCOM data bus is the stop bit.

11.6.6 SCOM Register Descriptions

Table 11-16 lists the subset of SCOM registers which are described in this section. 

Figure 11-20. Serial SCOM Address and SCOM Data Bus 

Table 11-16. Subset of SCOM Registers 

Modifier SCOM Address [9:16] Register Domain Page

x021001 Core RAS Control (Pulsed) Register Core 300

x021100 Core RAS Mode Register Core 301

x021200 Core RAS Status Register Core 304

x021301 Core Hang Recovery Control Register Core 307

x021400 Core Power Down and Idle Status Register Core 309

x022001 / x022100 / x022200 Service Processor Special Attention Register / And Mask / Or Mask) Core 311

x022601 / x022700 / x022800 Asynchronous Machine Check Source Register / And-Mask / Or-Mask Core 310

x023000 Instruction Address Breakpoint Register (IABR) Core 310

x023101 Hardware Implementation Dependent Register 0 (HID0). 
See Table 2-7 HID0 Bit Functions. Core 46

x023201 Hardware Implementation Dependent Register 1 (HID1). 
See Table 2-8 HID1 Bit Functions. Core 47

x030001 / x031000/ x032000 Core Fault Isolation Register / And-Mask / Or-Mask Core 312

x030400 / x031401 / x032401 Core Fault Isolation MASK Register / And-Mask / Or-Mask Core 313

x030800 Core Checkstop Enable Register Core 313

x030901 Core Machine Check Enable Register Core 313

x040000 / x041001 / x042001
x040801 L2 Fault Isolation Register / And-Mask / Or-Mask / Checkstop STS/BIU 314

x040401 / x041400 / x042400 L2 Error Mask Register / And Mask / Or Mask STS/BIU 314

x043000 STS Mode Register STS/BIU 316

x046A00 / x0F7A00 Processor Interconnect Mode Register STS/BIU 317

x046B01 Processor Interconnect Status Register STS/BIU 318

x0A0001 / x0A1000 / x0A2000 970FX Bus Fault Isolation Register / And Mask / Or Mask STS/BIU 318

1890 1681

BASE ADDRESS MODIFIER ADDRESS S

17

RS

320

DATA S

31
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x0A0400 970FX Bus Error Mask / And Mask / Or Mask STS/BIU 319

x0A0800 Checkstop Enable Register STS/BIU 320

x0A8000 Processor Configurable Timing Delay Parameter Register (BUSCONF) STS/BIU 321

x0A9000 970FX Bus Status Register STS/BIU 322

x400000 Power-On Reset Status Register ChipRAS 322

x400101 Power-On Reset Continue Register ChipRAS 323

x400201 Power-On Reset I2C/JTAG Arbitration Register ChipRAS 323

x400801 Power Management Control Register ChipRAS 324

x401400 Power-On Reset Sequence Register 0 ChipRAS 325

x402400 Power-On Reset Sequence Register 1 ChipRAS 325

x404400 Power-On Reset Sequence Register 2 ChipRAS 325

x408001 Power Tuning Status Register. 
See Table 9-7 Power Status Register (PSR). ChipRAS 178

x500001 Global Fault Isolation for Checkstop Conditions (Global FIR) ChipRAS 326

x500400 Error Enable Mask ChipRAS 327

x500601 Mode Register for Fault Isolation Registers ChipRAS 327

x500700 Debug Mode Register ChipRAS 328

x504101 Chip ID Register ChipRAS 330

x503001 Hang Pulse Generation ChipRAS 329

x600001 SCOM Mode Register ChipRAS 330

x600100 SCOM Controller Error Register ChipRAS 331

x600400 Clock Ratio Register ChipRAS 332

x800000 Clock Command Register Always available 333

x800003 Status Register Always available 334

x800006 Phase Synchronization Control Register Always available 335

x800009 Clock Command Control Register Always available 336

x80000A Energy Star Register Always available 338

x80000C Status Register Mask Always available 339

x80000F I/O Control Register Always available 340

x820004 ABIST Status Register Always available 340

x840002 LBIST Options Register Always available 341

x840008 LBIST Channel Length Register Always available 342

x84000B LBIST Test Length Register Always available 342

x84000D Clock Ramping Configuration Register Always available 343

Table 11-16. Subset of SCOM Registers 

Modifier SCOM Address [9:16] Register Domain Page
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11.6.7 Register Description Conventions

The following terms are used in the following SCOM register descriptions.

11.6.8 SCOM Error Handling

If an error occurs while servicing an SCOM command, the ANY_SCATTN bit in the Access Status register is 
raised. The engineering software should issue an SCOM reset using the instruction register (IR) opcode of 
x‘1B’, and then read the SCOM Control Error register (x‘600100’ ) to view the fault. To clear ANY_SCATTN, 
first write all zeroes to the SCOM Control Error register (SCOM register x600100 ), then write all zeroes to the 
JTAG SCOM Status register (x‘000080’). Finally write all zeroes to the JTAG Access Status register 
(x‘000002’).

The following error indications in the SCOM Controller Error register, (x‘600100’), bits [0:23], might be due to 
programming errors. Bits [24:47] contain the failing SCOM address.

Reserved Indicates that the latch might be implemented in the future. Engineering software should 
write zeros and expect unknown data.

Not Implemented Indicates that the latch is not implemented. Engineering software should write zeros 
and expect zeros.

Type SCOM request type

RW Read/Write

RO Read Only. Write requests to a Read Only SCOM register will be treated as a 
no-op and the data will be discarded. 

WO Write Only. Read requests to a Write Only SCOM register will result in an error 
condition. 

RWor Read/Write OR. The write operation is a special type that will OR into the spec-
ified bits in the register. An associated Write Only AND mask is provided to 
allow the engineering software to clear bits in this type of SCOM register. 

x‘010000’ Invalid address. Does not match any known address ranges.

x‘001041’ The address was decoded as a serial type and sent onto the SCOM serial ring, but no SCOM 
satellite accepted ownership of the address. This is most likely due to the use of an invalid 
address.

x‘001040’ The address was decoded as a serial type read, but no data was returned. This is most likely 
due to an invalid read request being sent on the serial SCOM bus. For example, this error will 
happen if the enineering software does a read to a write only register.
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11.6.8.1 Processor Core RAS Control (Pulsed) Register

Table 11-17. Core RAS Control (Pulsed) Register 

Address: x021001

Type: WO

Reset: N/A

Bit Description

0:39 Not implemented

40 Enter core power down mode (works without setting MSR[POW], see core RAS mode register bits [5:6])

41 Break hold on the IFU/LSU status after core hang detect due to external source (core RAS status register bits [59:63])

42 Cancel pending requests (quiesce, SRESET, machine check, core step) – and accept pending mode changes 

43 Force next machine check or SRESET (and all exceptions) to be marked non-recoverable

44 Force core quiesce manually (RAS logic override)

45 Force core maintenance mode (RAS logic override)

46 Force quiesce state machine to quiesce state (RAS logic override)

47 Force quiesce state machine to run state (RAS logic override)

48 Inject fetch hang for testing hang recovery logic

49 Inject force reject hang for testing hang recovery logic

50 Inject dispatch hang for testing hang recovery logic

51 Inject completion hang for testing hang recovery logic

52
Core running test – use to see if core is running (clears core RAS status register [15] until a group completes)
Note:  Do not do this if in Maintenance Single Step mode (Core RAS Status[54] MUST = ‘0’)

53 Inject NTC (Next To Complete, all instructions in the machine); flush manually without the before and after waits (do not 
attempt while running)

54 Inject NTC+1 (Next To Complete Plus One, all but the oldest instruction); flush manually without the before and after 
waits (do not attempt while running)

55 Clear instruction stop due to checkstop. Also clears hang detection, hang history, and miscellaneous status latches.

56 Not implemented

57 Not implemented

58
Inject SRESET manually (no auto quiesce); RAS logic override only 

• Do not attempt if processor is running
• ISU may OR 0x0100 with another interrupt vector (if they occur simultaneously)

59
Inject machine fheck manually (no auto quiesce); RAS logic override only

• Do not attempt if processor is running
• ISU may OR 0x0200 with another interrupt vector (if they occur simultaneously)

60

SRESET request
• This causes the core to first quiesce then vector to 0x0100 and start instructions
• If quiesce is unsuccessful, SRESET will not occur and a special attention will be sent to the Service Processor indi-

cating timeout on quiesce request (assuming hang pulses are activated)
• After request, verify core RAS status[15] = ‘1’ to ensure SRESET was successful (core has started)

Note:  Core RAS Status[15] will be cleared for [60:62] until a group completes.
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11.6.8.2 Core RAS Mode Register

61

Instruction Step  (core step) 
Note:  Core must be in maintenence mode (quiesced) – see Core RAS Status[12]
Single Group Completion mode is active, meaning a core flush and refetch occurs between each step. This allows the 
NIA to be changed (via scan) between steps if desired.
Behavior is determined by (Core RAS Mode[43] and not (Core RAS Mode[54] OR HID0[0]))

0: PowerPC instruction step (default)
Completes more than one group if the PowerPC instruction is a microcoded multi-group sequence

1: Group step (for debug); completes a single group or microcode group sequence
after request, verify that Core RAS Status[15] = ‘1’ to ensure step was successful (core has started)

62
Instruction Start (core resume) 
Note:  Core must be in maintenance mode (quiesced) – see Core RAS Status[12]

After request, verify that the Core RAS Status[15] = ‘1’ to ensure start was successful (core has started)

63 Instruction Stop (core stop); causes core quiesce and leaves core in maintenance mode

Table 11-18. Core RAS Mode Register 

Address: x021100

Type: RW

Reset: Reset to all ‘0’s during Power-On Reset

Bit Description

0:4

Debug Throttle Modes – periodically alter instruction flow based on Debug Throttle Control 
00000 : None
01xxx : Stop fetch (both IFU and LSU prefetch)
0x1xx : Stop dispatch
0xx1x : Stop completion
0xxx1 : Force LSU reject (stops issue from ISU to LSU)
11xxx : One PowerPC per group (might quiesce depending on bit [44])
1x1xx : Single group completion (will quiesce to change)
1xx1x : Serialized group issue (will quiesce to change)
1xxx1 : Serialized group dispatch (does NOT quiesce to change)

5
Power down Nap/Doze mode enable override (when set ignores HID0[9]), see bit [6] for mode select 
Note:  To enter power down, either software must set MSR[POW] or use Core RAS Control register[40]

6
Nap mode override selector
0: Force Nap mode when bit [5] is set
1: Force Doze mode when bit [5] is set

7

Inorder issue select
0: Serialized group execution when selected will serialize at dispatch. This is the most powerful form of serializa-

tion, only allowing one group in flight in the machine at a time. This includes branch and CR-logical instructions 
and also prevents groups from sharing ISU resources such as mappers and renames.

1: Serialized group execution when selected will serialize at issue. This does not include branches and CR-logi-
cals and does not completely serialize the ISU.

Table 11-17. Core RAS Control (Pulsed) Register 

Address: x021001

Type: WO

Reset: N/A

Bit Description

Note:  Core RAS Status[15] will be cleared for [60:62] until a group completes.
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8
Block machine check exception or maintenance exception injection based on debug triggers when one is already set in 
the Machine check source accumulation register. This will prevent multiple triggers from causing a checkstop with 
MSR[ME] = 0, allowing the interrupt handler to ignore spurious triggers until it has a chance to clear the source register.

8:11 Spare

12:19 Not implemented

20 Initialize the ISU global completion table

21 Initialize the ISU SB, SX, and SF Arrays

22 SCOMC disable. Disables core SCOM master accessible via core SPR bus. MTSCOMC in the core is treated as a no-
op by RAS logic

23 Performance inhibit (debug only)

24 Enable CIABR 

25
Programmable mtspr TRIG0 mode (SPR 976 mtspr_data(0:63) all zeroes always cause TRIG0)
0: SPR 976 mtspr_data is not used to form TRIG1 and TRIG2
1: SPR 976 mtspr_data(63) causes TRIG1 and mtspr_data(62) causes TRIG2

26
Do not stop fetch, dispatch, and completion on checkstop. Set this when the processor is set to clock stop on checkstop 
in order to prevent core scan rings from being altered when a checkstop occurs, since it takes several cycles to clock 
stop after checkstop occurs.

27
Do not attempt to quiesce then machine check or SRESET during core hang recovery 
Note:  This will cause checkstop if the first two attempts are unsuccessful

RAS trigger sources to debug logic

28:30

000: No internal trigger selected
001: External trigger causes internal trigger
010: Decrementer exception causes internal trigger
011: External exception causes internal trigger
100: Machine check exception causes internal trigger
101: Problem state hang detect causes internal trigger
110: Bad hang state detect causes internal trigger
111: Quiesce causes internal trigger

31 Internal trigger does not cause external trigger

32 Core debug trigger does not cause external trigger

RAS activities based on debug trigger

33 External trigger causes core quiesce. Bit [37] determines behavior after quiesce.

34:36

Core debug trigger causes:
000: No action selected
001: Core quiesce. (Bit [37] determines behavior after quiesce)
010: NTC flush (see Core Hang Recovery Control register bits [46:48])
011: NTC+1 flush (see Core Hang Recovery Control register bits [46:48])
100: Machine check exception (see bit [8] for mode to prevent checkstop)
101: Maintenance exception
110: Enter reduced execution mode for specified number of group completions 

(see Core Hang Recovery Control register bits [46:48])
111: Pause (quiesce and hold prefetch) until core idle

Table 11-18. Core RAS Mode Register 

Address: x021100

Type: RW

Reset: Reset to all ‘0’s during Power-On Reset

Bit Description
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37

Auto core resume on core quiesce due to debug trigger. 
When debug or external trigger causes quiesce, and this bit is:
0: Quiesce, set Special ATTN, and enter core maintenance mode.
1: Auto-start core immediately after the ISU completes the quiesce (implicitly causes a flush). Special ATTN is not 

set and core resumes normal instruction execution.

RAS control logic modes

38:39

00: No hang pulse induced random periods
10: Enter reduced execution mode for random period after every hang pulse 
01: Quiesce for random period after every hang pulse
11: Undefined

40 STS Toad mode enable
Throttles back core execution when the STS detects a memory subsystem hang

41 Return to good hang state immediately after meeting the completion criteria. Do not wait on hang pulse to leave reduced 
throughput mode

42

Use any group completed (instead of PowerPC) to debug logic (trace trigger and to indicate progress for hang detection 
logic
0: PowerPC group completed
1: Any group completed (including intermediate multi-group sequences)

43 Group step instead of PowerPC instruction step; causes instruction step not to enter one PowerPC mode automatically 
during maintenance mode

44 Do not quiesce when changing one PowerPC mode

45 Do not wait for SRQ empty before auto-restarting after a quiesce due to mode change, debug trigger, or when in 
single_group_completion mode.

46 Machine check on external checkstop 

47
Quiesce on external or FIR checkstop (default is hold completion). 
Note:  Causes Special Attention to service processor.

48:49

Action to perform for NTC Flush Hang Recovery when LSU is not in safe (LMQ not empty) 
00: Do not attempt flush (This still holds completion, dispatch, and force reject for the same time. It will eventually 

transition to the next hang recovery state if the LSU is not safe)
01: Stop dispatch and completion (sets Special Attention register)
10: Checkstop
11: Do flush anyway (Unsafe – debug only)

Use Unsafe NTC+1 Mode (Core Hang Recovery Control register [17]) for NTC+1 flushes.

Core toolbox – hooks for service processor

50 Manually force LSU reject

51 Manually hold fetch (both IFU and LSU)

52 Manually stop dispatch

53 Manually stop completion

Core toolbox – behavior mode controls
Note:  Must quiesce core before changing these (corresponding HID0 change invokes state machine to do automatic quiesce, mode 
change, and resume)

Table 11-18. Core RAS Mode Register 

Address: x021100

Type: RW

Reset: Reset to all ‘0’s during Power-On Reset

Bit Description
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11.6.8.3 Core RAS Status

54
One PowerPC per group mode; OR’d with HID0[0]. 
No more than one PowerPC instruction will be placed in a group. Some instructions get expanded into a multiple group 
microcoded sequence.

55

Single group completion mode; OR’d with HID0[1] which causes automatic group step.
Only one group (or microcoded group sequence) will be allowed to complete at a time. A core quiesce (involving an 
instruction flush and refetch) occurs between completion of each group. Subsequent groups of instructions will not be 
allowed to complete, but will be allowed to execute at the same time unless mode bit [56] = 1.

56

Serialized group execution mode (in-order dispatch OR issue of groups)
• OR’d with HID0[3] when inorder_issue_select = 0 
• OR’d with HID0[16] when inorder_issue_select = 1 

A group must be completed before the next one may be issued (OR dispatched), effectively serializing execution of the 
groups in the processor. Subsequent groups of instructions will not be allowed to execute at the same time. See 
inorder_issue_select, bit [7] of this register for more details.

Core maintenance modes

57
Run Decrementer/Timebase while instruction stepping (take ISU quiesced into account during maint_mode). Also allows 
DEC exceptions (only) while instruction stepping.
Note:  DEC/Timebase stopping only takes effect if HID0[18] = 0 

58 Keep asynchronous exceptions during quiesce or instruction stepping (decrementer, external, external machine check, 
and performance exceptions). If kept, present only after completion of maintenance activity.

59:60

Hang recovery logic test modes
00: None
01: Allow problem hang recovery to break test hang
10: Allow bad hang recovery to break test hang
11: Allow machine check hang recovery to break test hang

61:62

STS source core hang recovery modes
00: None (only attempt hang recovery if nothing is pending to the STS)
01: Special ATTN if ambiguous source or the IFU/LSU indicates STS pending transactions
10: Attempt core hang recovery if ambiguous source (there are possibly STS pending transactions)
11: Always attempt core hang recovery (even if ambiguous source or IFU/LSU indicates STS pending transactions)
Note:  To cause SP-ATTN for core source hang detect (no STS pending) use hang recovery control register bit [55].

63 Disable hang detection and recovery based on hang pulse

Table 11-19. Core RAS Status Register 

Address: x021200

Type: RO

Reset: All 0’s except bits 7, 12, 20, 26

Bit Description

0 Entire core is quiesced. (status[1] AND status[8:10])

1 ISU is quiesced for reasons listed below

2 Checkstop caused quiesce request

Table 11-18. Core RAS Mode Register 

Address: x021100

Type: RW

Reset: Reset to all ‘0’s during Power-On Reset

Bit Description
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3 Quiesce request was made to ISU by debug logic

4 ISU completed quiesce as requested (by service processor or debug logic)

5 ISU quiesced by ATTN instruction

6 ISU quiesced by LSU DABR debug mode (Note: will not be set by CIABR but set by SP-ATTN[2])

7 POR state (scan flush indicator); forces a stop dispatch. When set, it indicates a quiesce must be done first before start-
ing the core.

8 ISU GCT is empty (quiesce indication)

9 ISU SRQ is empty (quiesce indication)

10 LSU/IFU is not waiting for a STS transaction (NOR of unheld but masked status sourcing bits [59:63])

11

LSU is quiesced (and STS is idle)
• LMQ is idle (no outstanding load misses including speculative)
• SRQ has no stores past completion

Service processor should poll this bit to verify both STS and core are quiesced

12

Core is in maintenence mode (ISU is quiesced or being stepped) 
• Enter and stay in maintenance mode when the ISU quiesces (includes during instruction stepping) 
• Leave maintenance mode when the core resumes, SRESET, or external machine check occurs (See Core RAS 

Mode[59])

13 Completion is stopped by checkstop

14 Quiesce request pending

15 Instruction (or group) completed since last maintence operation (for example, instruction step, start, SRESET; for core 
running the test use Core RAS Control register (x021001) bit[55] first).

16 NTC flush not safe and caused a checkstop  (core hang) 

17 NTC not safe and caused stop (ATTN)

18 Hang detect/recovery caused a stop (ATTN) on problem, bad, or STS hang detect as programmed

19 Demand instruction fetch has been pending since last hang pulse

20:25 Hang state (Good || Problem || Bad || Quiesce/MCHK || Wait || Fail)

26:31 Hang state history (Good || Problem || Bad || Quiesce/Mchk || Wait || Fail)

32:39 Completion count LFSR (8 bits) – matched against completion count limit

40 Seen programmed number of groups complete after hang state (clears on return to good state) 

41 Fetch (both the IFU and LSU) is being held by core RAS logic

42 Dispatch is stopped by core RAS logic

43 Completion is stopped by core RAS logic

44 Instruction completion is being held due to core RAS debug throttle hooks

45 Performance exception is being held (pending completion of core maintenance operation)

46 Decrementer exception is set

47 External exception is set

Table 11-19. Core RAS Status Register 

Address: x021200

Type: RO

Reset: All 0’s except bits 7, 12, 20, 26

Bit Description
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48 Thermal exception is set

49:51 Quiesce state machine (Quiesced || Running || AsyncInt)

52:53 Quiesce state machine (Chmod || Pause)

54 Maintenance single stepping mode is in effect. The core is in serial dispatch mode (and automatically one PowerPC 
mode if Mode[43] = 0)

55 STS status [59:63] being held due to core-STS hang detect for debug/fault isolation

56 Instruction start (core resume) pending or instruction (or group) step pending

57 Mode change pending

58 Machine check pending

Note:  Bits [59, 60:63] can be masked by scan latches (TDR.IFU_STAT_DIS and TDR.LSU_STAT_DIS) and normally follow the 
masked IFU/LSU signals, but are held when a core-STS hang detect occurs to aid in debug/fault isolation (as indicated by bit [55]). Use 
Core RAS Control register bit [41] to break the hold after an STS hang detect occurs. Note that the hold is also broken during hang 
recovery as soon as a single group completes, but may take more than one group complete to deem hang recovery successful in which 
case if the processor is still hung these status indicators follow the current status.

59 ifu_demand_pend – IFU has outstanding demand instruction fetches to STS

60 lmq_not_empty – LSU has outstanding loads to STS (also indicates not safe to NTC flush)

61 srq_pend_busy – LSU has entries in SRQ being held due to STS busy on store port

62 srq_pend_ugly – LSU has outstanding ops to the STS waiting for response (icbi, stwcx, or sync is outstanding to STS)

63 xlate_pending – LSU has outstanding translation request to the STS

Table 11-19. Core RAS Status Register 

Address: x021200

Type: RO

Reset: All 0’s except bits 7, 12, 20, 26

Bit Description
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11.6.8.4 Core Hang Recovery Control Register

Table 11-20. Core Hang Recovery Control Register 

Address: x021301

Type: RW

Reset:

0:7 – Reset to 0x9F = 3 hang pulses 
8:15 – Reset to 0x2D = 100 hang pulses
16:17 – Reset to 00
18:27 – Reset to 0x1FF = 1*255 default
36:43 – Reset to 0xFE = 255 = max
44:63 – Reset to all ‘0’s during Power-On Reset except bit [52] and [60]

Bit Description

0:7

Core hang limit (8-bit LFSR match value)
• Number of hang pulses without a PowerPC instruction (or group) completion used to detect a core hang
• Used when lsu_safe indicates no outstanding load/store instructions to the STS
• This should be set to a minimum of 3 hang pulses (0x9F)

8:15

Core-STS Hang Limit (8-bit LFSR match value)
• Number of hang pulses without a PowerPC instruction (or group) completion used to detect a Core-STS hang
• Used when lsu_safe indicates outstanding load/store instructions to the STS
• Must be set to a value greater than the core hang limit

16
After flush control
0: Wait 255 cycles after attempting hang recovery flush
1: Use Before Flush Wait Time as the After Wait Time as well

17
Unsafe NTC+1 mode
0: Do not attempt NTC+1 flushes if not safe
1: Attempt NTC+1 even if LSU indicates not safe (LMQ is not empty)

18:27

Wait time (# * 255 cycles) before hang recovery flush (10-bit LFSR match value). Stops dispatch and completion (and 
LSU forces a reject for NTC) during this wait before attempting flush.
Note:  3FF (count of zero) is invalid and will cause undefined results.

1FF = 1*255 = 255 cycles minimum wait. 3FE = 1022 * 255 = 260610 cycles of maximum wait.

28 High resolution flush counter (before and after wait times are single cycle instead of having a 255 multiplier)

29 Spare

30:35 Not implemented

36:43 Completion count limit (8-bit LFSR match value); number of group completions to wait before returning to a good hang 
state after a hang recovery is attempted

Random pulse hang buster vontrols

44:45

Random buster controls (use before and after wait times specified above)
00: Random pulse has no effect (disabled)
01: Random pulse injects NTC+1 flush
10: Random pulse injects NTC flush (debug only, see note below) 
11: Random pulse stalls instruction dispatch and completion with no flush (only waits the before time)
Note:  Bit [17] of this register and bits [48:49] of the core RAS mode register determine the behavior of these flushes 
when the LSU indicates not safe. The recommended setting is to not flush when the LSU is not safe if using any of these 
random busters that are enabled.

Note:  Random NTC flush is a severe error recovery mechanism. Recovery may depend on actual error conditions. 

Degraded mode during random period (either random pulse or hang pulse induced)
Note:  

1. Core RAS Mode register [38] must be set in order to enter these random periods
2. These are also set until the programmed number of completions (above) have occurred after the flush on trigger
3. inorder_issue_select (bit [7] of Core RAS Mode register) affects the meaning of bit [46, 49] 
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46 Serialized group execution mode during random period (or after flush on trigger)

47 Single group completion mode during random period (or after flush on trigger)

48 One PowerPC per group mode during random period (or after flush on trigger)

Degraded mode during first level (problem) hang recovery (hang pulse based only)

49 Serialized group execution mode during problem hang recovery

50 Single group completion mode during problem hang recovery

51 One PowerPC per group mode during problem hang recovery

First level (problem) hang state recovery actions (hang pulse based only)

52 Attempt NTC+1 flush for first hang detect (problem hang state) – defaults to ‘1’

53 Perform SRESET instead of machine check for third level hang recovery, unless disabled via Core RAS Mode register 
bit [27]

54 Cause maintenance exception to be taken after problem hang recovery

55 Stop completion and cause Special Attn on first-level hang detect (sets SP-ATTN register)

Degraded mode during second level (“Bad”) hang recovery

56 Serialized group execution mode during bad hang recovery

57 Single group completion mode during bad hang recovery

58 One PowerPC Per group mode during bad hang recovery

Second level (“Bad”) hang state recovery actions

59
Stop completion and cause Special Attn on third level hang (sets SP-ATTN register)
Note:  Should also set bit [27] of core RAS mode register

60 Attempt NTC Flush on bad hang - defaults to ‘1’

61 Cause maintenance exception to be taken after bad hang recovery

62 Stop completion and cause Special Attn on bad hang (sets SP-ATTN register)

Non-recoverable machine check for hang recovery control

63 Make all hang recovery machine checks or SRESETs non-recoverable (only has effect if quiesce was successful)

Table 11-20. Core Hang Recovery Control Register 

Address: x021301

Type: RW

Reset:

0:7 – Reset to 0x9F = 3 hang pulses 
8:15 – Reset to 0x2D = 100 hang pulses
16:17 – Reset to 00
18:27 – Reset to 0x1FF = 1*255 default
36:43 – Reset to 0xFE = 255 = max
44:63 – Reset to all ‘0’s during Power-On Reset except bit [52] and [60]

Bit Description
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11.6.8.5 Core Power Down and Idle Status Register

Table 11-21. Core Power Down and Idle Status Register 

Address: x021400

Type: RO

Reset: N/A

Bit Description

0:6 Power Down State Machine (0:6)

7 IFU fetch and LSU prefetch stopped

8 Power down wait timer

9:15

Interrupt status
(Thermal exception active, external exception active, external machine check active/held OR machine check pending, 
external SRESET active/held OR SRESET pending, performance monitor exception held, decrementer exception 
active) 

16 Asynchronous interrupt pending in ISU

17 Core idle indication

18 Wait for idle from ISU

19 Idle count match

20:27 Idle LFSR value

28:63 Not implemented
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11.6.8.6 Asynchronous Machine Check Source Register / And-Mask / Or-Mask

11.6.8.7 Instruction Address Breakpoint Register

Table 11-22. Asynchronous Machine Check Source Register / And-Mask / Or-Mask 

Address: x022601 / x022700 / x022800

Type: RW / WO (and) / WO (or)

Reset: Reset to all ‘0’s during Power-on reset 

Bit Description

This Register indicates the source of all asynchronous machine check events. When any source occurs:
• quiesce, then vector to 0x0200 and restart instruction execution
• if quiesce is unsuccessful, machine check will NOT occur and a special attention will be sent to the Service Processor indicating 

timeout on quiesce request (assuming hang pulses are activated). Service Processor can then check Core RAS Status[58] to see 
that machine check was not accepted (still pending)

Note:  This is a history accumulation register and must be cleared after each interrupt to absolutely determine the new source. The AND 
mask should be used to clear bits in the register and the OR-mask should be used by software to set new bits in order to prevent an 
interrupt from another source from being missed.

0 External Machine Check (from chip C4 pin) 

1 FIR induced Machine Check – See FIR 

2 Hang Recovery Machine Check Interrupt Attempt

3 Debug Logic Trigger Machine Check Interrupt

4 Machine Check instead of external checkstop (see Core RAS mode register) 

5:7 Software/operating system programmable

8:63 Not implemented

Table 11-23. Instruction Address Breakpoint Register (IABR) 

Address: x023000

Type: WO

Reset: Reset to all ‘0’s during power-on reset 

Bit Description

Usage Note: This uses the IFU FETCH address, not the CIA (current instruction address that is executing)
IABR match occurs on fetch of the instruction, even speculative.
Note:  There can be multiple IABR matches for a single instruction before it is actually executed (or completed)

By default the IABR matches if the address is in the current fetch group equal to or AFTER the current IFAR.
There is an additional mode bit accessible through scan only that forces only exact matches which will occur only in the three cases 
enumerated above (GCP.PIFU.IFBC.ASSSCANONLYNEW(7)).
Writing this SCOM register sets latches in the IFU only (may also be set via scan): GCP.PIFU.IFBT.IABR.L2(0:63)

0:61 Word address to be compared

62 Breakpoint enabled. (Address match causes trigger to debug logic)

63 Translation Enabled. An IABR match is signaled only if MSR[IR] matches this bit.
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11.6.8.8 Service Processor Special Attention Register

11.6.8.9 Hardware Implementation Dependent Register 0 (HID0)

11.6.8.10 Hardware Implementation Dependent Register 1 (HID1)

Table 11-24. Service Processor Special Attention Register / And Mask / Or Mask) 

Address: x022001 / x022100 / x022200

Type: RW / WO (and) / WO (or)

Reset: Reset to all ‘0’s during Power-On Reset 

Bit Description

Any bit set in this register will drive Special Attention to the service processor. It may be used by the processor core to implement a mail-
box function to communicate to the service processor.
Note:  This is an accumulation register and each source must be cleared to deassert the the Special Attention.

The AND mask should be used to clear bits in the register and the OR-mask should be used by software to set new bits in order to pre-
vent an attention from another source from being missed.

0 Core to service processor special attention request

1 SP-ATTN instruction – ISU quiesced for maintenance due to software breakpoint

2 Debug DABR ‘softstop" (or ISU CIABR) caused core quiesce

3
Core hang detected – Core RAS help request to service processor – see Core RAS Status register

• Moded by Core RAS Mode register[41] and Core RAS Hang Recovery Mode register[55,62]
• Core dispatch and completion is stopped while this bit is set

4 RAS trigger caused core quiesce

5 Core FIR induced Special ATTN

6 Timeout on quiesce request (or pending change needing a quiesce) – two hang pulses and still pending

7:9 Software/operating system programmable

10:63 Not implemented

Table 11-25. Hardware Implementation Dependent Register 0 (HID0) 

Address: x023101

Type: RW

Reset: Reset to all ‘0’s during Power-On Reset 

Bit Description

0:63 See Table 2-7 HID0 Bit Functions on page 46 for bit definitions.

Table 11-26. Hardware Implementation Dependent Register 1 (HID1) 

Address: x023201

Type: RW

Reset: Reset to all ‘0’s during Power-On Reset 

Bit Description

0:63 See Table 2-8 HID1 Bit Functions on page 47 for bit definitions.



User’s Manual
 
IBM PowerPC 970FX RISC Microprocessor  

System Design

Page 312 of 360
Version 1.7

March 14, 2008

11.6.8.11 Core Fault Isolation Register / And-Mask / Or-Mask

Table 11-27. Core Fault Isolation Register / And-Mask / Or-Mask 

Address: x030001 / x031000 / x032000 

Type: RW / WO (and) / WO (or)

Reset: Reset to all ‘0’s during power-on reset

Bit Description

0 I-cache parity error

1:2 I-cache tag parity error

3 I-ERAT parity error 

4 IFU fetched an Uncorrected Error (UE) from L2 cache

5 IFU detected a checkstop condition 

6 D-cache parity error

7 D-cache tag parity error

8 D-ERAT parity error

9 LSU TLB parity error

10 LSU SLB parity error

11 LSU fetched an L2 UE

12 Load/Store unit  detected checkstop condition 

13 FP Unit 0 OR Unit 1 detected a checkstop condition

14 Checkstop on Trigger (debug only)

15 IDU detected a checkstop condition 

16 ISU detected a checkstop condition

17 Reserved 

18 FXU Unit 0 OR Unit 1 detected a checkstop condition 

Note:  For Processor Hang detects, reference Core RAS Status SCOM register x‘021200’ bits [26:31] to determine extent of hang 
recovery that was required. In addition, in the case of a Processor Hang with either an external or inknown source, the specific LSU and 
IFU status is available in the Core RAS Status SCOM register (x‘021200’ bits [59:63]).  Write to Core Ras Control register SCOM 
x‘021001’ bit [55] and bit [41] respectively when clearing these Processor Hang FIR bits in order to clear the recovery and status infor-
mation (if the hang was successfully recovered) for future diagnostics. Check Core RAS Mode register (SCOM x‘021100’ bits [61:63]) to 
see what types of hang recovery are enabled (these settings affect how the XStop Enable mask should be set for these bits).

19 Processor Hang Detected with unknown Source (could be either internal or external)

20 Processor Hang Detected due to Internal Source

21 Processor Hang Detected due to External Source

22 Processor Hung beyond repair

23 Machine check and MSR[ME] = ‘0’

24 Core SPR bus has violated protocol OR SCOMC arbiter error

25 SCOMC abend

26 Invalid software access to IMC 

27 Invalid SCOMC address

28 Reserved
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11.6.8.12 Core Fault Isolation Mask Register / And-Mask / Or-Mask

11.6.8.13 Core Checkstop Enable Register

11.6.8.14 Core Machine Check Enable Register

29 Service processor attempted an invalid debug throttle setting.

30 Reserved 

31 CIU detected checkstop condition

32:63 Not implemented

Table 11-28. Core Fault Isolation MASK Register / And-Mask / Or-Mask 

Address: x030400 / x031401 / x032401 

Type: RW / WO (and) / WO (or)

Reset: Reset to all ‘1’s during power-on reset

Bit Description

0:31 Mask (‘1’ means FIR bit masked OFF)

32:63 Not implemented

Table 11-29. Core Checkstop Enable Register 

Address: x030800 

Type: RW

Reset: Reset to all ‘0’s during power-on reset 

Bit Description

0:31 Causes checkstop to occur when corresponding FIR bit is set.

32:63 Not implemented

Table 11-30. Core Machine Check Enable Register 

Address: x030901 

Type: RW

Reset: Reset to all ‘0’s during power-on reset 

Bit Description

0:31 Causes machine check to occur when corresponding FIR bit is set.

32:63 Not implemented

Table 11-27. Core Fault Isolation Register / And-Mask / Or-Mask 

Address: x030001 / x031000 / x032000 

Type: RW / WO (and) / WO (or)

Reset: Reset to all ‘0’s during power-on reset

Bit Description
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11.6.8.15 L2 Fault Isolation Register / And-Mask / Or-Mask / Checkstop Enable

Table 11-31. L2 Fault Isolation Register / And-Mask / Or-Mask / Checkstop 

FIR Address: x040000 / x041001 / x042001 
Xstop Enable Address:

040801Error Mask 
Address: x040401 / x041400 / x042400 

Type: RW (FIR) / WO (and) / WO (or) / WR (Xstop)

Reset: Reset to all ‘0’s during power-on reset Default Mask Settings

Bit Description Action Error Mask Checkstop 
Enable

0:41 Not implemented 0 0

42 L2 Cache CE 

L2 correctable data error on processor request (I or D)
• Data is corrected before forwarding to the processor
• Corrected data is written back to the L2

L2 correctable data error on castout (flush, RWITM, or 
result of a replacement)

• Data is corrected before forwarding to the BUS unit
• (Threshold = 32)

0 0

43 L2 Cache UE

Uncorrectable error (UE) detected in L2 in response to 
processor load request.

• UE response is sent to requesting core
Store hits in the L2 line which contains a UE

• Store is merged into line (timing does not permit dis-
cardin the store) write AUE ECC to distinguish 
between passed error from other source and local 
UE that has been altered

Uncorrectable error (UE) detected in L2 in response to a 
cast out operation

• Special UE (SUE) sent to memory

0 1

44 L2 Cache Special UE Same as cache UE (PASSED ERROR) 1 0

45 L2 Directory parity error Failing directory is refreshed with content of the other 
directory (Threshold = 32) 0 0

46 L2 Directory checkstop L2 Directory parity error detected on both halfs of the 
directory. System Checkstop  0 1

47 L2 hang detect

No response to memory read request. The same action is 
take regardless of whether some other  component 
acknowledged the request and then never returned the 
data, or no component on the fabric acknowledged the 
request.
System checkstop 

0 1

48 L2 store queue parity error Any of the four store queues have a parity error. System 
Checkstop 0 1

49 RC machines data timeout error
RC machine timeout error
Internal control error. System checkstop.

0 1

50 Non-cachable control or RC 
machine data tag error

ncctl or rcfsm0-3 detected valid data tag match when they 
were not expecting data
Internal control error. System checkstop.

0 1

51 Store queue store error

A store command was interleaved between the 1st and 
2nd of a stqw (stqw_seq_err) or detected a store queue 
request when the 4-entry store queue was full 
(stq_overflow_err).

0 1
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52 Quadrant0 CE threshold Multiple cache CEs have been detected during a hang 
pulse  duration. 0 0

53 Quadrant1 CE threshold Multiple cache CEs have been detected during a hang 
pulse  duration. 0 0

54 Quadrant2 CE threshold Multiple cache CEs have been detected during a hang 
pulse  duration. 0 0

55 Quadrant3 CE Threshold Multiple cache CEs have been detected during a hang 
pulse  duration. 0 0

56 Multiple cache CEs Multiple cache CEs have been detected during a hang 
pulse  duration from more that one quadrant. 0 0

57 Multiple Directory Parity errors

Multiple directory parity errors were detected within a 
period of two hang pulses. This indicates that the array 
error is not an intermittent fault. Since the STS cannot 
make forward progress with a stuck fault in the directory 
the system will be checkstopped.

0 1

58 llegal CRESP seen in RCFSM RC machine detected a illegal cresp operation 0 1

59 Invalid MERSI detected RC Machine detected or wrote an invalid MERSI state in 
the directories. 0 1

60 NCU Snoop PAAM Error 
Checkstop

NCU snooper detects another icbi/tlbi request while the 
previous request is still active. For example, cresp has not 
returned yet. 
The illegal PAAM request will be lost since the snooper 
does not register it and hence NO snoop response

0 1

61
NCU snoop 
Cresp Error Checkstop

When NCU snooper detects illegal values on cresp(0:3) 
“0000”=good; “xxx1”=retry; other=illegal. Errors are regis-
tered and snooper will hang waiting for good or retry 
response. Secondary PAAM error may occur as a result.
A configuration switch cfg_snp_cresp_ckstp_en_b is pro-
vided to turn error detection off. In this case, the snooper 
will hang and the result is undermined

0 1

62 NCU CRESP Illegal Error
NCU receives from the BUS a cresp_valid with a 
cresp(0:3) value that is illegal based on the transaction 
sent.

0 1

63 NCU CRESP Timeout Error

Any of the state machines sourcing a transaction (store, 
load, or uop) to the bus times out while waiting for a valid 
and good cresp. Timeout occurs upon the second hang 
pulse seen while waiting for the good cresp.

0 1

Table 11-31. L2 Fault Isolation Register / And-Mask / Or-Mask / Checkstop 

FIR Address: x040000 / x041001 / x042001 
Xstop Enable Address:

040801Error Mask 
Address: x040401 / x041400 / x042400 

Type: RW (FIR) / WO (and) / WO (or) / WR (Xstop)

Reset: Reset to all ‘0’s during power-on reset Default Mask Settings

Bit Description Action Error Mask Checkstop 
Enable
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11.6.8.16 STS Mode Register

Table 11-32. STS Mode Register 

Address: x043000

Type: RW

Reset: Reset to all ‘0’s during Power-On Reset 

Bit Description

0:47 Not implemented.

48 When set to ‘1’, it puts the L2 cache into direct mapped mode such that the receipient selection is based on a straight 
decode of address bit [42:44].

49 Disables shared last state in C2 

50 Disables viewing of any ECC check error detection.

51 Forces intervention bit off.

52 Forces all E directory states to S.
0 Default allows E state

53 Reserved.

54 Enables livelock warning signal sent to cerrs where it can cause checkstop.

55 Reserved.

56 NCU store gather control disable.

57 Force g = ‘0’ st to go out to bus in order; hence, one has to complete with no retry before the other can go out.

58:60

Set the value for the time-out counter for the gather logic. The time-out count is made programmable for gather fine tun-
ing. By setting these bits to ‘0’s, it in effect discourages gathering, though not totally disabling it. Its value is (^bit0 and 
^bit1 and bit2 and 0 and 0). The timeout is set as default ‘11000’ pclk count when the latches are set to "000". Its range 
is (0-56 pclks, step by 4).

61 Turn off gather timer. No time out for gather.

62:63 Spare.
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11.6.8.17 Processor Interconnect Mode Register
 

Table 11-33. Processor Interconnect Mode Register 

Address: x046A00 (PI inputs - PII) 
x0F7A00 (PI outputs - PIO)

Type: RW 

Reset: Reset to ‘0’s by Power-On Reset

Bit Description

0:31 Not implemented.

32 WIAP (PIO, starts writing the IAP pattern on the output side)

33 PRECOMP_EN (PIO); enable = ‘1’

34
REFFORWARD (PII)
0: ½ OVDD
1: average of CLKIN/ CLKIN_B

35 HIGH_SKEW (PII)

36 RIAP (PII, starts reading the IAP pattern on the input side)

37
LO_OHM_MODE (PIO) 
0: 40 ohms
1: 20 ohms

38 Not implemented

39 FIAP(PII) (not supported) 

40:41 TARGET_TIME(0:1) (PII)

42 RESET (PII, controls the IAP state machine and associated logic)

43 BYPASS (PII, there is no differential clock)

44:48
WIND(0:4) ( PIO, PII, this is the windage for the clock) ; bit [0]=sign bit
00000 Clock is centered

49:52
VREF_WIND(0:3) (PII); bit[0] = sign bit; refers to REFFORWARD (bit [34])
0000: Centerpoint

53:55 DATA_WIND (PII, windage for data increments); adds delay

57
ESTMODE (PII,PIO)
0: PI controls are for IAP (default)
1: PI controls are for EST (not supported)

58
ESTONE (PII,PIO)
0: Drive and expect all zeroes, walk a one across the interface when ESTMODE = ‘1’ (default)
1: Drive and expect all ones, walk a zero across the interface when ESTMODE = ‘1’ (not supported)

59
RDTMODE(PII,PIO)
0: PI controls are for IAP or EST (default)
1: PI controls are for Random Data Test (RDT, also known as IOBIST) and RDTPASS (not supported)

60:63 Not implemented.
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11.6.8.18 Processor Interconnect Status Register

11.6.8.19 970FX Bus Fault Isolation Register / And Mask / Or Mask 

Table 11-34. Processor Interconnect Status Register 

Address: x046B01 (PI inputs PII)

Type: RO

Reset: Reset to ‘0’s by Power-On Reset

Bit Description

0:35 Not implemented

36 Reduced IAP (RIAP) done (0b1 = done; clears when RIAP is dropped); status only 

37 RESTPASS (valid when ESTMODE = ‘1’); status only

38 Clock period too large (greater than delay line); critical

39 No first valid ‘10’ found; fatal

40 No first valid ‘01’ found; critical

41 Data bit deskewed to maximum; warning

42 No valid flag – 0; fatal

43 No valid flag – 1; critical

44 No valid flag – 2; critical

45 Final values fail; fatal

46 Final delay value is negative; warning

47 Final delay value is too large; critical

48:55 Calculated clock period (8 bits; in delay elements); status only

56:63 Inserted I/O clock delay (8 bits; in delay elements); status only

Status indication key:
Warning – Indicates a possible system design problem. 
Critical – Reduced IAP was performed, meaning interface sampling point is suboptimal.
Fatal – Interface cannot perform even a reduced IAP

Table 11-35. 970FX Bus Fault Isolation Register / And Mask / Or Mask 

Address: x0A0001 / x0A1000 / x0A2000

Type: RW (FIR)/ WO (and) / WO (or)

Reset: Flushed to all ‘0’s during power-on reset

Bit Description Action Error Mask Checkstop 
Enable

0:31 Not implemented – – –

32:44 Spare – – –

45 Parity error for input from NCU Processor execution is halted. System checkstop is raised 
which will halt the rest of the processors in the complex 0 1

46 Parity error for input from L2 Processor execution is halted. System checkstop is raised 
which will halt the rest of the processors in the complex 0 1
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11.6.8.20 970FX Bus Error Mask / And Mask / Or Mask

47
Parity error for input from encoded 
data (both bits [47, 52] will be set 
for non-encoded errors)

Processor execution is halted. System checkstop is raised 
which will halt the rest of the processors in the complex. 0 1

48 BUS slave report parity error via 
transaction response

Processor execution is halted. System checkstop is raised 
which will halt the rest of the processors in the complex. 0 1

49 Transaction response return null Processor execution is halted. System checkstop is raised 
which will halt the rest of the processors in the complex. 0 1

50 Bus slave returns transaction 
response retry on a data packet

Processor execution is halted. System checkstop is raised 
which will halt the rest of the processors in the complex. 0 1

51

Bus slave returns intervention 
without share or mod or returns 
shared, modified, or intervention 
on castout

Processor execution is halted. System checkstop is raised 
which will halt the rest of the processors in the complex. 0 1

52 Error on bus input data in non-
encoded mode

Processor execution is halted. System checkstop is raised 
which will halt the rest of the processors in the complex 0 1

53 Command packet is odd number 
of beats

Processor execution is halted. System checkstop is raised 
which will halt the rest of the processors in the complex. 0 1

54 Data header packet is odd number 
of beats

Processor execution is halted. System checkstop is raised 
which will halt the rest of the processors in the complex. 0 1

55 Data packet is odd number of 
beats

Processor execution is halted. System checkstop is raised 
which will halt the rest of the processors in the complex. 0 1

56 Header packet appears inside 
data packet

Processor execution is halted. System checkstop is raised 
which will halt the rest of the processors in the complex. 0 1

57 Cresp PAAM Cresp PAAM win-
dow violationwindow violation

Processor execution is halted. System checkstop is raised 
which will halt the rest of the processors in the complex. 0 1

58 Spare – – –

59:63 Tag associated with transaction 
response in reported errors

Processor execution is halted. System checkstop is raised 
which will halt the rest of the processors in the complex. 0 1

Table 11-36. 970FX Bus Error Mask / And Mask / Or Mask 

Address: x0A0400 

Type: RW / WO (and) / WO (or)

Reset: Flushed to ‘1’s during power-on reset

Bit Description

0:44 Not Implemented

45:63 Mask (1 = FIR bit masked OFF)

Table 11-35. 970FX Bus Fault Isolation Register / And Mask / Or Mask 

Address: x0A0001 / x0A1000 / x0A2000

Type: RW (FIR)/ WO (and) / WO (or)

Reset: Flushed to all ‘0’s during power-on reset

Bit Description Action Error Mask Checkstop 
Enable
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11.6.8.21 Checkstop Enable Register

Table 11-37. Checkstop Enable Register 

Address: x0A0800

Type: RW

Reset: Flushed to ‘0’s during Power-On Reset

Bit Description

0:44 Not implemented

45:63 Mask (‘1’ = checkstop)
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11.6.8.22 Bus Configuration Register

Table 11-38. Processor Configurable Timing Delay Parameter Register (BUSCONF) 

Address: x0A8000

Type: RW

Reset: Reset to all ‘0’s during power-on reset 

Bits Bit Name Description

0:31 – Reserved

32:35 COMPACE Command Pipeline Delay

36:40 STATLAT Transfer Handshake Response Latency

41:44 SNOOPLAT Processor Snoop Latency

45:48 SNOOPACC Snoop Accumulation delay

49 APSEL Bus encode disable. (‘1’ = disable)

50 bcfg_en_rww_reg Enable commands during data writes. (‘0’ = enable)

51:52 bcfg_align_cmd

Align command
00 Command out on even or odd
01 Command out on even
10 Command out on odd

53 bcfg_cp_aresp_ena Disables wait for cresp for castouts and pushes. (‘1’ = disable) 

54 bcfg_en_cmpc_tms_8 Enables a longer wait period before “back-off”

55 bcg_en_cmpc_ajst Enables bus “back-off” of sending command

56 grs_bfb_mode_reg(24) Sets bus mode to no encode with single error correct some double error detect

57 grs_bfb_mode_reg(25) Set bus mode to no encode with single error correct and double error detect

58 grs_bfb_mode_reg(26) Power tuning facility disable

59:63 – Reserved
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11.6.8.23 Bus Status Register

11.6.8.24 Power-On Reset Status Register

Table 11-39. 970FX Bus Status Register 

Address: x0A9000 

Type: RW

Reset: Reset to all ‘0’s during power-on reset 

Bit Description

0:53 Not implemented

54 RC is active Op. (bfb_status_decode[0:3] = ‘0000’ or ‘1000’)

55 Co is active Op. (bfb_status_decode[0:3] = ‘0001’ or ‘1001’)

56 PSH is active Op. (bfb_status_decode[0:3]  = ‘ 0010’ or ‘1010’)

57 NCUST is active OP. (bfb_status_decode[0:3] = ‘0011’ or ‘1011’)

58 NCULD is active OP. (bfb_status_decode[0:3] = ‘0100’ or ‘1100’)

59 INT is active OP. (bfb_status_decode[0:3] = ‘0101’ or ‘1101’)

60 Snoop CMD is active Op. (bfb_status_decode[0:3] = ‘0110’ or ‘1110’)

61 Read Data is active Op. (bfb_status_decode[0:3] = ‘0111’ or (‘1000 ‘to ‘1110’))

62 STS core idle

63 STS snoop idle

Table 11-40. Power-On Reset Status Register 

Address: x400000

Type: RO / WO (clear entry marked with *)

Reset: Reset to inactive by Power-On Reset 0x000000000000000

Bit Description

0:1 Not implemented

2 * Status: Active after fuse copy completion

3 * Status: Active after DABISTINITL1 completion

4 Not implemented

5 * Status: Active after SCABISTINIT completion

6 Not implemented

7 * Status: Active after DABISTINITL2 completion

8:15 Not implemented

16 * Status: Active after phase synchronization completion

17 Status: Active while WIAP is driven by power-on reset

18 * Status: Active after successful PI synchronization

19 * Status: Active after INITCORE completion

20:23 Not implemented



User’s Manual

 IBM PowerPC 970FX RISC Microprocessor

Version 1.7
March 14, 2008  
 

System Design

Page 323 of 360

11.6.8.25 Power-On Reset Continue Register

11.6.8.26 Power-On Reset I2C/JTAG Arbitration Register

24:28 Status: Current POR program counter address

29 * Status: Active high

30 * Status: Active if continue was received while not in the WAIT state (active high)

31 Status: Active after an I2CGO command until the next CONT command

32 Status: Active when in POR state machine is in the WAIT state

33 Status: Active when in POR state machine is in the WAITDBG state

34 Status: Active when in POR state machine has reached the last instruction.

35:63 Not implemented

Table 11-41. Power-On Reset Continue Register 

Address: x400101

Type: WO

Reset: Reset to inactive by Power-On Reset

Bit Description

0 Command bit: Send continue command to the POR state machine. This command also invalidates the I2CGO pin next 
time the JTAG state machine enter the test-mode-reset or run-idle state.

1:63 Not implemented.

Table 11-42. Power-On Reset I2C/JTAG Arbitration Register 

Address: x400201

Type: WO

Reset: Reset to inactive by power-on reset

Bit Description

0 Command Bit: Assert and hold the I2CGO pin when the JTAG state machine enters the Test-Mode-Reset or Run-Idle 
state.

1:63 Not implemented.

Table 11-40. Power-On Reset Status Register  (Continued)

Address: x400000

Type: RO / WO (clear entry marked with *)

Reset: Reset to inactive by Power-On Reset 0x000000000000000

Bit Description
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11.6.8.27 Power Management Control Register

Table 11-43. Power Management Control Register 

Address: x400801

Type:
Bits 0:3, 24:26(RW)
Bits 4:22 (RO)

Reset: Reset to all ‘0’s by power-on reset

Bit Description

0
Real doze mode enable
Note:  Must be set to ‘1’ during power-on reset to enable doze.

1 Advance on QACK drop timeout enable

2 Reset power management control state

3 Pulse degate pending

Power management control status bits

4:7 State latches

8 Nap_ready received

9 Doze_ready received

10 Biu_snoop_idle received

11 QACK received

12 Interrupt_pending received

13 Clock_ramp_done received

14 Doze_ramp_done received

15 QREG sent

16 Stop_req_nap sent

17 Stop_req_doze sent

18 Degate_pending sent

Power management control error bits

19 State machine error (undefined state)

20 BIU Snoop Idle dropped while qack active

21 Timeout error on clock ramp done

22 Timeout error on qack not dropped

Miscellaneous

23 Inhibit power save frequency in NAP mode

24 Select PMC Tracing

25 Force time base enable

26 Force local clock backup mode for repsync and time base counter

27:63 Not implemented
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11.6.8.28 Power-on Reset Sequence Register 0

11.6.8.29 Power-On Reset Sequence Register 1

11.6.8.30 Power-On Reset Sequence Register 2

Table 11-44. Power-On Reset Sequence Register 0 

Address: x401400

Type: WO

Reset: Initialized by power-on reset. 

Bit Description

0:4 Data: POR Instruction #0 (first instruction)

5:54 Not implemented

55:59 Data: POR Instruction #11

60:63 Not implemented

Table 11-45. Power-On Reset Sequence Register 1 

Address: x402400

Type: WO

Reset: Initialized by power-on reset.

Bit Description

0:4 Data: POR Instruction #12

5:54 Not implemented

55:59 Data: POR Instruction #23

60:63 Not implemented

Table 11-46. Power-On Reset Sequence Register 2 

Address: x404400

Type: WO

Reset: Initialized by power-on reset. 

Bit Description

0:4 Data: POR instruction #24

5:34 Not implemented

35:39 Data: POR instruction #31 (last instruction)

40:63 Not implemented
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11.6.8.31 Power Tuning Status Register

11.6.8.32 Global Fault Isolation for Checkstop Conditions Register

Table 11-47. Power Tuning Status Register 

Address: x408001

Type: RW: 2-3, 7-8,16-19  WO: 15

Reset: Initialized by power-on reset to 0000000 00000000

Bit Description

0:63 See Table 9-7 Power Status Register (PSR). 

Table 11-48. Global Fault Isolation for Checkstop Conditions (Global FIR) 

Address: x500001 

Type: RO

Reset: Reset to all ‘0’s by power-on reset

Bit Description

0:31 Not implemented. 

32 Processor Core 

33 L2

34 BIU

35 Power management control

36 Synching error in TC_CCINTF

37 Checkstop pin

38 Radiation detection error

39 Checkstop on trigger 

40:63 Not implemented
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11.6.8.33 Error Enable Mask

11.6.8.34 Mode Register for Fault Isolation Registers

Table 11-49. Error Enable Mask 

Address: x500400 

Type: RW

Reset: Reset to all ‘0’s by power-on reset

Bit Description

0:31 Not implemented

32 Physical Core 

33 L2

34 BIU

35 Power management control

36 Synchronization error in TC_CCINTF

37 Checkstop pin

38:63 Not implemented

Table 11-50. Mode Register for Fault Isolation Registers 

Address: x500601

Type: RW

Reset: Reset to all ‘0’s by Power-On Reset 

Bit Description

0:31 Not implemented.

32 Hold recoverable fault isolation when error is detected. Behaves like the checkstop FIR.

33 Checkstop indications from checkstop pin or checkstop trigger will set the checktop attention.

34 Processor machine check will set recoverable attention.

35 Processor machine check will set special attention.

36 Processor machine check will set checkstop attention.

37 Global checkstop signal will signal checkstop to processor core.

38 Local checkstop signal will signal checkstop to processor core.

39:63 Not implemented.
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11.6.8.35 Debug Mode Register

Table 11-51. Debug Mode Register 

Address: x500700

Type: RW

Reset: Reset to all ‘0’s by Power-On Reset 

Bit Description

0:31 Not implemented.

Note:  When setting any of the bits [32:35], the core RAS mode bit [26] should also be set to prevent checkstop from altering core rings 
when checkstop holds fetch, dispatch, and completion before the clock stop has had time to take effect. 

32 Force phase aligned clockstop when global checkstop signal is active 

33 Force phase aligned clockstop when local checkstop signal is active 

34 Force immediate clockstop when global checkstop signal is active 

35 Force immediate clockstop when local checkstop signal is active 

36:37 Not implemented

38 Core Special Attention will cause checkstop

39 Increase hang pulse rate by 100x

40:47 Not implemented.

48 Disable STS hang pulses

49:51 Not implemented

52 Disable core hang pulses

53 Disable core and STS hang pulses when recoverable attention is set

54 Disable core and STS hang pulses when special attention is set

55 Disable core and STS hang pulses when checkstop attention is set

56 Disable early hang pulse to core

57:60 Not implemented

61 Disable early hang pulses when recoverable attention is set

62 Disable early hang pulses when special attention is set

63 Disable early hang pulses when checkstop attention is set



User’s Manual

 IBM PowerPC 970FX RISC Microprocessor

Version 1.7
March 14, 2008  
 

System Design

Page 329 of 360

11.6.8.36 Hang Pulse Generation Register

Table 11-52. Hang Pulse Generation 

Address: x503001 

Type: RW

Reset: Reset to all ‘0’s by power-on reset 

Bit Description

0:31 Not implemented

32:39

STS Hang Mask
x‘01’ - Hang Pulse generated every Counter x 2
x‘02’ - Hang Pulse generated every Counter x 4
x‘04’ - Hang Pulse generated every Counter x 8
x‘08’ - Hang Pulse generated every Counter x 16
x‘10’ - Hang Pulse generated every Counter x 32
x‘20’ - Hang Pulse generated every Counter x 64
x‘40’ - Hang Pulse generated every Counter x 128
x‘80’ - Hang Pulse generated every Counter x 256

40:47

Core Hang Mask
x‘01’ - Hang Pulse generated every Counter x 2
x‘02’ - Hang Pulse generated every Counter x 4
x‘04’ - Hang Pulse generated every Counter x 8
x‘08’ - Hang Pulse generated every Counter x 16
x‘10’ - Hang Pulse generated every Counter x 32
x‘20’ - Hang Pulse generated every Counter x 64
x‘40’ - Hang Pulse generated every Counter x 128
x‘80’ - Hang Pulse generated every Counter x 256

48:51 Not implemented

52:63

Hang Counter limit mask (12-bit LFSR)
x‘4FC’ = 100 Cycles
x‘CF0’ = 200 Cycles
x‘DAE’ = 300 Cycles
x‘E89’ = 400 Cycles
x‘D1A’ = 500 Cycles
x‘0A3’ = 600 Cycles
x‘F8C’ = 700 Cycles
x‘FAA’ = 800 Cycles
x‘8F3’ = 900 Cycles
x‘6C8’ = 1000 Cycles
x‘5D1’ = 2000 Cycles
x‘668’ = 3000 Cycles
x‘D3E’ = 4000 Cycles
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11.6.8.37 Chip ID Register

11.6.8.38 SCOM Mode Register

Table 11-53. Chip ID Register 

Address: x504101

Type: RW (Bit 35 is WO)

Reset: Reset to ‘0’s by power-on reset

Bit Description

0:31 Not implemented

32:34 Processor ID (0:2)

35 Capture values from PID primary C4 inputs (Work Only)

36:63 Not implemented

Table 11-54. SCOM Mode Register 

Address: x600001

Type: RW

Reset: Set to ‘00000FFE 00000000’ by Power-On Reset or SCRESET

Bit Description

0 Enable state machine error checking

1 Enable data wrap test

2 Enable address wrap check

3 Enable valid address checking

4 Enable SCOM global hang checking

5:6 Not implemented

7 Enable modifier parity checking

8 Enable valid clock SCOM address checking

9 Enable STS SCOM ring (set to ‘0’ before scanning STS)

10 Enable virtual core0 (enables SCOM ring and functional fences) (set to ‘0’ before scanning core)

11 Enable chip trace array SCOM ring (set to ‘0’ before scanning I/O)

12:17 Not implemented

18
Fence cores on checkstop 
Note:  Core checkstop is controlled by Mode register for fault isolation registers bits[44:45] (SCOM x500601)

Note:  Scan Communications Reset (SCRESET) resets all sequencers that communicate over the Scan Communications bus to an idle 
state. This terminates LBIST or ABIST if in progress, but will not halt BIST or functional clock sequences or clear the scan rings. If a 
BIST was running, software should also stop the system clocks and clear the scan rings. This instruction is intended to reset a “hung” 
sequence and re-establish JTAG control of the SCOM interface. 
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11.6.8.39 SCOM Controller Error Register

19
Raise Core and STS fences on clock stop.
Note:  Clock stop is seen by free-running logic several cycles before the clocks are actually stopped.

This bit should be set to ‘1’ by software by default, but must be set to ‘0’ before cycle stepping for debug.

20:31

SCOM hang detection delay match in processor clocks.
500: xD1A
1000: x6C8
2000: x5D1
3000: x668
4095: xFFE

32:63 Not implemented.

Table 11-55. SCOM Controller Error Register 

Address: x600100

Type: RO (Write zeros to clear after SCRESET)

Reset: Reset to all ‘0’s by Power-On Reset

Bit Description

0 Modifier parity error

1 Parity error in parallel SCOM state machine

2 Parity error in serial SCOM state machine

3 Parity error in main SCOM controller state machine

4 Parity error in SCOM arbiter state machine

5 Dataav and Useadr were both on 

6 Bad address in SCOM ring

7 SCOM address was not recognized

8 SCOM address for clock command was invalid

9 SCOM collision

10 Not implemented.

11 SCOM hang (See Active Source Indicator (ASI) in [15:23] to see what is pending)

12:14 Reserved 

15 (ASI) Waiting for the address to return

16 (ASI) Waiting for grant from arbiter

Table 11-54. SCOM Mode Register 

Address: x600001

Type: RW

Reset: Set to ‘00000FFE 00000000’ by Power-On Reset or SCRESET

Bit Description

Note:  Scan Communications Reset (SCRESET) resets all sequencers that communicate over the Scan Communications bus to an idle 
state. This terminates LBIST or ABIST if in progress, but will not halt BIST or functional clock sequences or clear the scan rings. If a 
BIST was running, software should also stop the system clocks and clear the scan rings. This instruction is intended to reset a “hung” 
sequence and re-establish JTAG control of the SCOM interface. 
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11.6.8.40 Clock Ratio Register

17 (ASI) Waiting for read data to return

18 (ASI) Parallel to serial state machine waiting for Useaddr (SCOM Read) to drop

19 (ASI) Parallel to serial state machine waiting for Dataav (SCOM Write) to drop

20 (ASI) Parallel to parallel state machine waiting for Useaddr to drop

21 (ASI) Parallel to parallel state machine waiting for Dataav to drop

22 (ASI) Waiting for read shifter to empty

23 (ASI) Address was returned and not accepted

24:47 SCOM address that was pending at the time of the error

48:63 Not implemented

Table 11-56. Clock Ratio Register  (N:1 phase hold control)

Address: x600400

Type: RW

Reset:
ratio: Reset to all ‘0’s by power-on reset
encode_iap: Reset to ‘1’ by power-on reset
count1us_factor: Reset to all ‘1’s by power-on reset

Bit Description

0 Not implemented

1:3

Bus clock ratio (for N:1 phase_hold generation) 
000: 2:1 (supported)
001: 3:1 (supported)
010: 4:1 (not curently supported)
011: 6:1 (not curently supported)
100: 8:1 (not curently supported)
101: 12:1 (not curently supported)
110: 16:1 (not curently supported)
111: 1:1 

4 Capture values from BUS_CFG primary C4 inputs (WO)

5:7

I2C clock ratio – This counter is asynchronous to the mod48 counter independent of powertuning. 
000: 1/16 the frequency of the core at full speed
001: Not supported
010: 1/8 the frequency of the core at full speed
011: Not supported
100: Not supported
101: Not supported
110: Not supported
111: 1:1
Note:  This clock rate is independent of th epowertuning frequency. 

Table 11-55. SCOM Controller Error Register 

Address: x600100

Type: RO (Write zeros to clear after SCRESET)

Reset: Reset to all ‘0’s by Power-On Reset

Bit Description
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11.6.8.41 Clock Command Register

8 Encode IAP pattern 

9:11 Reserved

12:19 Reset value for μs-counter in I2C macro.

20:63 Not implemented

Table 11-57. Clock Command Register 

Address: x800000

Type: RW

Reset: Set to ‘0000000 00000000’ by Power -On Reset 

Bit Description

0:10 Unused

11 SYNC clock sekect: must be programmed to logic level zero (‘0’)

12:15

Clock command (bits[14:15] are not implemented) 
x4: Pulse selected clocks
x8: Start selected clocks
xC: Stop selected clocks

Domain Select

16 Core 

17:18 Unused

19 STS

20 I/O

Array Clock Commands (applies for start, pulse, and stop)

21 Apply command to RAM C2 (not valid for I/O) 

22 Apply command to C2star clocks

23 Reserved

Latch Clock Commands (applies for start or pulse, and stop)

24 Apply command to C1

Free Running Clock Section

25 Domain select: Chipras

26:63 Not implemented

Table 11-56. Clock Ratio Register  (N:1 phase hold control)

Address: x600400

Type: RW

Reset:
ratio: Reset to all ‘0’s by power-on reset
encode_iap: Reset to ‘1’ by power-on reset
count1us_factor: Reset to all ‘1’s by power-on reset

Bit Description
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11.6.8.42 Status Register

Table 11-58. Status Register 

Address: x800003

Type: RW 2, 4, 7-9, 31. RO 20-21, 23-24

Reset: Set to ‘0000040 00000000’ by Power -On Reset 

Bit Description

0:1 Unused.

2 Invalid Read/Write Address Error.  An attempt was made to read or write to a clock interface address that does not exist.  
Raises SCATTN unless blocked.

3 Unused.

4 JTAG/BIST Collision Error. JTAG attempted to initiate a write to a valid register while Event Processor or ABIST was in 
progress. Raises SCATTN unless blocked.

5:6 Unused.

7
Register Write Error.  A write to options register with address x800009 while the core0, core1, or STS clocks are not all 
off; or a write to miscellaneous register with address x80000F while I/O clocks are running, will raises SCATTN unless 
blocked.

8 PLL_LOCK state.  If ‘1’, PLL unlock detected.  Raises SCATTN unless blocked.

9 Bad psync detected. The ccintf mod48 counter does not match the tpt mod48 counter.

10:19 Unused.

20:27

Clock state bits, CLK_STATE(0:7) These correspond one to one with the domains defined in the x‘800000’ register bits 
16 to 20. A value of 1 indicates the clocks (c1) are running. These bits are not writeable.
Bit [20] - Core 
Bit [21] - Free running
Bit [22] - Unused
Bit [23] - STS
Bit [24] - I/O
Bits [25:27] - Unused

28:30 Unused.

31 tcl_tc_ortho_clk_chk: Indicates that an attempt was made to scan a domain while the clocks were not stopped.

32:63 Not implemented.
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11.6.8.43 Phase Synchronization Control Register 

Table 11-59. Phase Synchronization Control Register 

Address: x800006

Type: RW: 0-2,16-17; WO: 22:27

Reset: Set to ‘00000000 00000000’ by Power -On Reset 

Bit Description

0
Mode bit: Allow Resync: If active will force resynchronization if an asynchronious psync is detected.
Note:  Debug use only.

1 Command bit: Run Phase-Synchronization.

2 Configuration bit: Do not Checkstop on bad_sync.

3:15 Not implemented.

16 Mask Clock Freeze:  When equal to ‘1’, the clock-freeze signal from ts_glob is ignored.

17 Enable Blank Clock Command: Used in conjunction with x‘80_00_00’ Pulse Clock Command causing BLANKING of one 
system clock for chip clocks selected by the domain selects in the command to the x‘80_00_00’ register.

18:21 Not implemented.

22:27 Psync initial load counter value (initial value: 0x0F) 

28:63 Not implemented.
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11.6.8.44 Clock Command Control Register

Table 11-60. Clock Command Control Register 

Address: x800009

Type: RW, writing this register while core or STS is running will raise an attention

Reset: Set to ‘0000000 0314001A’ by power-on reset

Bit Description

0:27

Event Register (Four Fields of Five Control Bits per Field)
21 - 27 First Event Field
14 - 20 Second Event Field
7 - 13 Third Event Field
0 - 6 Fourth Event Field 

Field Bit Definitions
Bit 0/7/14/21:  Run SYSTEM C1 Clock
Bit 1/8/15/22: Run SCAN  SC1 Clock
Bit 2/9/16/23: Run RAM_C2 Clock
Bit 3/10/17/24: Run C2STAR Clock
Bit 4/11/18/25: Ignored
Bit 5/12/19/26: Enable Clock-rate Divide Counter (slows down the application of clock events).
Bit 6/13/20/27: Enable Generic Counter (specifying the number of times to loop on event field).

Notes:  

1. System C2 clock is always running in functional mode.
2. Domain selects (bit [38:42]) only control the scope of the C1, RAM_C2, C2STAR.
3. Bit [52] initiates this sequence, which performs the events in order. Bits[55:57] control looping on these events. 

SCOM x‘84000B’ must be used to configure the TEST LENGTH count.
4. If SCAN SC1 is the only clock selected for an event, then the CHANNEL LENGTH count is used for that event. 

SCOM x‘840008’ must be used to configure the CHANNEL LENGTH count. If SC1 is selected in addition to either a 
SYSTEM or RAM clock, then only a single clock is given.

28:31 Generic Counter (0:3). 
Programmed Count Value: Down Counter

32:35
Lower-order Phase Hold Counter (for event processing.) 
Programmed Count Value: Up Counter - 0 to 11.
Note:  May not be used while the PSYNC POR instruction is active.

36:37

Upper-order Phase Hold Counter (for event processing). 
Programmed Count Value: Up Counter – 0 to 3.

Notes:  

1. May not be used while the PSYNC POR instruction is active.
2. This counter counts the carry out of the lower-order phase hold counter (for event processing). 

38 Cmd_reg(0):  CORE select.

39 Cmd_reg(2):  STS select.

40 Cmd_reg(3):  I/O select.

41 Cmd_reg(4)  Free running select.

42 Cmd_reg(5): Domain select for hard stop: Free running domain.

43
Cmd_reg(6)  Global Array Inhibit: This signal gets ORed with ABIST_EN and Local_Latch OR ESP_RAMSCAN and 
NOT Local_Lt  OR LSSD/GSD Scan-Active. If the scan 0 has not occurred through the scan-abist section the arrays will 
be enabled functionally when the Global Array Inhibit is inactive. Set by power-on reset. Need to clear by writing. 

44 Cmd_reg(7)  SCAN 0 command  (similar to the FLUSH 0 Access Command). Scan in 0 to all selected domains specified 
by Cmd_reg(0:3) except FUSE and NOT_BIST (timing chain) rings.
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45 Cmd_reg(8)  FULL SCAN 0 Command. Used in conjunction with the SCAN 0 Command, causes the FUSE  and  
NOT_BIST(timing chain) to also scan to 0. Power-on reset sets it to 1 (clean notbist chain).

46
Cmd_reg(9)  LBIST. Set for running LBIST, will cause LBIST ring-selects and MISR connections to be established and 
LBIST logic to be fenced out in the free running domain. No effect on EPS engine.
Bit [11] in x‘80000F’ will automatically be set to fence then I2C (not reset when resetting LBIST bit).

47 Cmd_reg(10)  CAM BIST. Set for testing CAMs with scanned ABIST.

48 Cmd_reg(11)  CENTRAL SCANNED ABIST CORE. Set to test core arrays covered by scanned ABIST.

49 Cmd_reg(12)  CENTRAL SCANNED ABIST NOT CORE. Set to test non-core arrays covered by scanned ABIST.

50 Cmd_reg(13)  Decentral ABIST. Set to test arrays covered by dedicated ABIST engines: L2 Cache, L2 Directory, L2 
LRU,  IFU Cache, IFU Directory, IFU BHT, L1 D-cache

51 Cmd_reg(14)  Decentral ABIST RAM_SELECT. 0 for first half of arrays, 1 for second half.

52 Cmd_reg(15)  Event Processing Command. Initiates a clock event process.

53 Cmd_reg(16)  Phase Load Control(0). Load the phase counter with programmed value at Event Processor State 2.

54
Cmd_reg(17)  Phase Load Control(1). Load the phase counter with programmed value with Event Complete.  Normally, 
for LBIST this bit would be set. By not programming this bit the capability to change the RUN_CLOCK pulse to 
PHASE_HOLD allignment is achieved.

55:57

Cmd_reg(18:20)  Runn_Command Control. Causes the Event Processor to loop back to different event fields. This pro-
vides the capability of an initialization setup. 
‘000’ loop on all events (branch is back to first event)
‘100’ loop on fourth event 
‘101’ branch back to second event
‘110’ branch back to third event

58 Cmd_reg(21)   Event Processing Override. Provides the means to interrupt an event process that is in progress.

59:61

Cmd_reg(22:25)  Domain Select for Hard Stop.
bit [22]: CORE 0 ACTIVE High 
bit [23]: Reserved
bit [24]: STS ACTIVE High
bit [25]: I/O ACTIVE High

62 Cmd_reg(26)    IO MESH CLOCK SELECT. The Processor Interconnect runs off an INPUT clock called the IO_CLOCK. 
For LBIST and Scanning of the I/O domain, this bit must first get set. Power-on reset sets it to ‘1’.

63 Cmd_reg(27) LBIST AC MODE. Cause 8:1 logic clocks off.

Table 11-60. Clock Command Control Register 

Address: x800009

Type: RW, writing this register while core or STS is running will raise an attention

Reset: Set to ‘0000000 0314001A’ by power-on reset

Bit Description
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11.6.8.45 Energy Star Register

Table 11-61. Energy Star Register 

Address: x80000A

Type: RW

Reset: Set to ‘xx000x20 00000000’ by power-on reset. Value marked as x are read only. At power-on reset these are initialized 
to ‘0’.

Bit Description

0:5
Clock Rate Divide Counter (0 to 5) Programmed Count Value:  Down Counter.
Note:  Moved from Clock Control Register to here due to space limitation.

6 Enable Trace Arrays / Debug Logic On. Initial value is ‘0’.

7 Fuse clock control (rcha_reg(14)). Initial value is ‘0’.

8:17 Not implemented.

18:23

Shadow Counter (Read-Only).
The master counter values at the time of the clock freeze on immediate stop are in the shadow counter. This shadow 
counter value can be read and then loaded into the master counter in x‘800009’ order to start the clocks using RUNN in 
the event processor.

24 Enter Energy Star Mode.

25 Exit Energy Star Mode.

26

Config. Shadow stop enable. Allow starting/pulsing clocks based on the saved value for the master phase hold 
counter. 
Note:  In order for this mode to work, this bit must be written while both STS and I/O clocks are running. From the POR 
state, the following sequence must be programmed: 

1. x‘80_00_00’ x‘0008_1800_0000_0000’ start BOTH STS AND I/O clocks.
2. x‘80_00_0A’ x‘0000_0020_0000_0000’ enable shadow stop.
3. x‘80_00_00’ x‘000C_1800_0000_0000’ stop EITHER STS OR I/O clocks.
4. x‘80_00_09’ x‘0000_0000_0F38_1002’ scan0.
5. x‘80_00_09’ x‘0000_0000_0000_0000’ clear array inhibit, receiver inhibit.
6. x‘80_00_00’x‘0004_D800_0000_0000’ pulse clocks (repeat as may be needed).
7. x‘80_00_00’ x‘0008_D800_0000_0000’ run clocks. Clocks resume at the next, subsequent phase_hold allignment 
after the last pulse clock.

27 UNCONDITIONAL IMMEDIATE EXIT from Energy Star Mode.

28 If ‘0’:  will stop ABIST clocks in Core and VPU.

29 If ‘0’:  will stop ABIST clocks in STS. 

30 If ‘0’:  will stop ABIST clocks in scanned ABIST machines and prevents scanning through the LCLK domain.

31:63 Not implemented.
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11.6.8.46 Status Register Mask

Table 11-62. Status Register Mask 

Address: x80000C

Type: RW

Reset: Set to ‘0080000 00000000’ by power-on reset 

Bit Description

0:1 Unused

2 Block Invalid Read/Write Address Error (BLKRWAERR)

3 Unused

4 Block JTAG/BIST Collision Error (BLKJBCERR) 

5:6 Unused

7 Block Options Register Write Error (BLKORWERR)

8 Block PLL Lock Error (BLKPLLERR)

9:30 Unused

31 Block clock orthoganility from generating attention

32:63 Not implemented
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11.6.8.47 I/O Control Register

11.6.8.48 ABIST Status Register

Table 11-63. I/O Control Register 

Address: x80000F 

Type: RW; writing this register while I/O is running will raise an attention

Reset: Set to ‘2200000 00000000’ by power-on reset 

Bit Description

Note:   The tristate control bits(0:6) determine whether or not drivers are placed in a high-impedance state. A bit value of ‘1’ places the 
appropriate drivers in the high-impedance state. These bits should be set prior to executing LBIST, and are flushed to all ‘1’s by a 
power-on reset.

0-1 Not implemented.

2 Drivers Inhibit.

3-5 Not implemented.

6 Receivers Inhibit. 

7 Not implemented.

8
KILL_DYN_CLK DISABLE. This bit if asserted stops the kill_dyn_clk. For example, it asserts the kill_dyn_clk signal.
This bit must be 0 at all times.

9

STOP_PIPE DISABLE. This bit disables the global “stop_pipe” signal, which is used to enabled the stop_ctl to dynamic 
logic. Stop_pipe is an asynchronous signal. This control turns on the clocks to the dynamic non-scan L1 latches in order 
to initialize them after SCAN 0 initialization. 
This bit must be 0 at all other times.

10 WrapIOCmd. Prevent Driver Inhibit during wrap IO test.

11
I2C Inhibit. If set the I2C outputs to the JTAG macro are fenced.
This bit will be set when bit [46] (LBIST) in SCOM x‘800009’ is set (not reset when reseting LBIST bit).

12:63 Not implemented.

Table 11-64. ABIST Status Register 

Address: x820004

Type:

RW, bits [21:26] are unspecified after a LBIST,SCAN0.SCAN and should be reinitialized before ABIST
         ABIST fail bits are only valid if the corresponding ABIST done bit is asserted.
Note:  Bits in this register are only updated during eps controlled operation. Turn ccintf_local_psav_dis if using ABIST 
with functional clocks.

Reset: Set to ‘0000000 00000000’ by power-on reset

Bit Description

0 EPS Running or Decentral Abist in progress (RO).

1
Any EventComplete. (Cleared with running an event. Set and held after the completion of the event processing.)
Cleared when bit [52] of x‘800009’ is zero.

2:19 Not implemented.

20 Physical Core0 (without VPU) ABIST done.

21 VPU scanned ABIST done.

22 STS scanned ABIST done.

23 STS dedicated ABIST done.
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11.6.8.49 LBIST Options Register

24
Physical Core ABIST Fail. ABIST OUT from the core evaluated whenTest DONE asserted, are conditions that must be 
met before this bit is cleared. Also evaluated if bit [26] of x‘840002’ is a ‘1’. Fail is held after being set. To clear with a 
SCOM write this register, the abist_out must be clear.

25 VPU scanned ABIST fail.

26 STS scanned ABIST fail.

27 STS dedicated ABIST fail.

28:63 Not implemented.

Table 11-65. LBIST Options Register 

Address: x840002

Type: RW

Reset: Set to ‘000E0005 00000000’ by power-on reset

Bit Description

0:11 Not implemented.

12 PHYSICAL CORE 0 ABIST DONE MASK: Mask ABIST DONE from CORE 0. (ABIST PASS is also a mask as a result of 
masking the done).

13 STS + VPU SCANNED ABIST DONE MASK.

14 STS ABIST DONE MASK: Mask ABIST DONE from STS. (ABIST PASS is also a mask as a result of masking the done).

15 Not implemented.

16:21 Not implemented.

22 CONTINUAL LBIST: Set this in order to override the TEST LENGTH register. Useful for power and noise measure-
ments. Continual LBIST is stopped with a write to the x‘800009’ register, eps_override bit.

23:25 Not implemented.

26

OVERRIDE ABIST DONE MASK. The abist pass bit is gated by not abist_done. If abist_done is not asserted then the 
abist pass status cannont be determined; however, by setting this OVERRIDE bit, you can observe the abist pass status. 

Notes:  

1. The ABIST_FAIL is ‘0’ until ABIST_DONE is set. Once ABIST_DONE is set, then ABIST_FAIL is alllowed to be set. 
2. This override affects all three domains: Core, Scanned ABIST not CORE, and STS.

PROGRAMMING NOTE: Because the gus_scan_abist requires x‘FFFFF’ + 1 number of tester loops to complete, where 
each tester loop is 131 times Scan_Clock_Rate number of mesh-clocks, only x‘4FFFF’ tester loops are run. Therefore 
the ABIST_DONE status bit will not be set, and the OVERRIDE ABIST DONE MASK should be set in order to validate 
the ABIST_FAIL status. The ABIST_DONE signal from the GUS_SCAN_ABIST engine (HTBC RLM) should be 
checked.

Table 11-64. ABIST Status Register 

Address: x820004

Type:

RW, bits [21:26] are unspecified after a LBIST,SCAN0.SCAN and should be reinitialized before ABIST
         ABIST fail bits are only valid if the corresponding ABIST done bit is asserted.
Note:  Bits in this register are only updated during eps controlled operation. Turn ccintf_local_psav_dis if using ABIST 
with functional clocks.

Reset: Set to ‘0000000 00000000’ by power-on reset

Bit Description
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11.6.8.50 LBIST Channel Length Register

11.6.8.51 LBIST Test Length Register

27

ENABLE TDO DURING RUN_TEST_IDLE (for ABIST real time fail observation). The bit fail mapping and array diagnos-
tics for debugging ABIST fails on the tester often have the need to observe the ABIST fail on a real time basis. Because 
the ABIST fail information is sent to ACCESS for status, it is conveniently routed to the TDO, typically a burnin pin as 
well. Special TDO_ENABLE is required in order to observe this signal. 
Note:  Normal IEEE JTAG Specification has the TDO in high-impedance during run-test-idle. This state is used then to 
enable the TDO_EN during abist operations when bit 27 is asserted.

28:31

SCAN CLOCK SPEED. Set to the divide-by value to limit scan clock frequency during scan events of the event proces-
sor, in order to accommodate relaxed timing on the scan paths. Typical applications are flush0, lbist, scanned abist. This 
has no effect on system scan ring access using the ‘0F’ access command, which occurs with TCK frequency when in the 
SHIFT_DR state. Bit [31] is the LSb. The nominal value is ’0101’ (for example, 1/6th of the system clock). A value of 
’0000’ is supported, and can be taken advantage of for increaed simulation throughput. 
Note:  The value x‘0001’ is invalid and must not be used. 

32:63 Not implemented.

Table 11-66. LBIST Channel Length Register 

Address: x840008

Type: RW

Reset: Set to ‘00000000 00000000’ by power-on reset 

Bit Description

0:15

CHANNEL LENGTH. Contains the ‘number of cycles minus on‘ the EVENT PROCESSOR is to loop on a particular 
event that has the SCAN_CTL bit asserted in the micro-coded instructions, except for the case when RAMSTOP_CTL is 
set coincident with SCAN_CTL. For this exception case, only one scan clock pulse / ramc2 clock pulse are generated 
together after a delay of the SCAN_SPEED value from the beginning of the event. 

16:63 Not implemented.

Table 11-67. LBIST Test Length Register 

Address: x84000B

Type: RW

Reset: Set to ‘4000000 00000000’ by power-on reset 

Bit Description

0:19

TEST LENGTH. Contains the ‘number of cycles minus one’ that the EVENT PROCESSOR is to loop on the micro-coded 
instructions. For LBIST, it would be the number of PRPG Loads/system clock loops to run. If loaded to all ‘0’s, then ONE 
cycle PRPG Load/System Clock cycle is run. MISR CLEAR has no overriding effect on the test length.
Note:  Do not attempt less than 2 loops in this register while doing a RUN_N using the last event due to logic implemen-
tation (pipelining).

Example: to loop 4 times, program 3 into this register (’00000000000000000011’).

20:63 Not implemented.

Table 11-65. LBIST Options Register 

Address: x840002

Type: RW

Reset: Set to ‘000E0005 00000000’ by power-on reset

Bit Description
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11.6.8.52 Clock Ramping Configuration Register

Table 11-68. Clock Ramping Configuration Register 

Address: x84000D

Type: RW

Reset: Set to ‘2D75E300 00000000’ by power-on reset 

Bit Description

0:5 Ramp up: mod48 counter value to start c2 clock on every other cycle

6:11 Ramp up: mod48 counter value to fully turn on c2 clock

12:17 Ramp down: mod48 counter value to start c2 clock on every other cycle

18:23 Ramp down: mod48 counter value to fully turn on c2 clock

24:63 Unused



User’s Manual
 
IBM PowerPC 970FX RISC Microprocessor  

System Design

Page 344 of 360
Version 1.7

March 14, 2008



User’s Manual

 IBM PowerPC 970FX RISC Microprocessor

Version 1.7
March 14, 2008  
 

Vector Processing Unit

Page 345 of 360

12. Vector Processing Unit

The Vector/SIMD technology, referred to in this document as the vector processing unit (VPU), provides a 
software model that accelerates the performance of various software applications and runs on reduced 
instruction set computing (RISC) microprocessors. This is a short vector parallel architecture that extends the 
instruction set architecture (ISA) of the PowerPC Architecture. It is based on separate vector/SIMD1-style 
execution units that have high data parallelism. This parallelism allows it to perform on multiple data elements 
in a single instruction. The term vector refers to the spatial parallel processing of short, fixed-length, one-
dimensional matrices performed by an execution unit. It should not be confused with the temporal parallel 
(pipelined) processing of long, variable-length vectors performed by classical vector machines. High degrees 
of parallelism are achievable with simple in-order instruction dispatch and low-instruction bandwidth. 
However, the ISA is designed so as not to impede additional parallelism through superscalar dispatch to 
multiple execution units or multithreaded execution unit pipelines.

12.1 970FX Vector/SIMD Multimedia Overview

The VPU expands the current PowerPC Architecture through the addition of a 128-bit vector execution unit, 
which operates concurrently with the existing scalar integer and floating-point units. This new engine provides 
for highly parallel operations, allowing for the simultaneous execution of up to four 32-bit floating operations 
or sixteen 8-bit fixed-point operations in one instruction. All VPU data paths and execution units are 128 bits 
wide and are fully pipelined.

12.1.1 VPU Implementation

The 970FX implements many aspects of a preferred implementation as described in the PowerPC Micropro-
cessor Family: Vector/SIMD Multimedia Extension Technology Programming Environments Manual. The key 
features of a preferred implementation include:

• All data paths and execution units are 128 bits wide

• Two independent vector processing sub-units, one for all arithmetic logic unit (ALU) instructions and one 
for permute operations

The VPU is divided into two dispatchable units: vector ALU and vector permute. The vector ALU unit is further 
subdivided into a vector floating-point unit, a vector simple-fixed unit, and a vector complex-fixed unit. The 
vector ALU and permute units receive predecoded instructions from the issue queue in the instruction 
sequencer unit for the VPU (ISV). Vector instructions are issued to the appropriate vector unit when all of the 
source operands are available. Vector loads, stores, and data stream touch (DST) instructions are executed 
in the load/store unit (LSU) pipes. There are two copies of the Vector Register files; one provides operands 
for the vector permute unit, and one provides operands for the vector ALU. Figure 12-1 provides a high-level 
view of the instruction sequencer unit (ISU) interaction with the VPUs.

1. Single instruction stream, multiple data streams
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12.1.2 Vector ALU

Conceptually, the vector unit ALU is capable of operating on three source vectors and producing a single 
result vector on each instruction. The ALU is an SIMD-style arithmetic unit, where an instruction performs the 
same operation on all the data elements that comprise each vector. The ALU is partitioned into four separate 
ALUs for 32-bit integers and for single-precision floating-point operands. For 16-bit integers, the ALU is parti-
tioned into 8 ALUs, and for 8-bit integers it is partitioned into 16 separate ALUs. No arithmetic is performed on 
elements larger than 32 bits. The largest adder in the vector ALU is 32 bits wide, and the largest multiplier 
array is 24 bits wide for the single-precision floating-point mantissa.

Figure 12-1. VPU Block Diagram 
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12.2 Vector Registers

12.2.1 VRSAVE Register

This 32-bit register is maintained and managed by software only. Each bit in the VRSAVE Register corre-
sponds to a Vector Register and indicates whether the corresponding register is currently being used by the 
executing process. Therefore, the operating system needs to save and restore only those Vector Registers 
(VRs) when an exception occurs. The register is handled as a renamed register within the General Purpose 
Register (GPR) file in the 970FX microprocessor. 

Note:  If this approach is taken, it must be applied rigorously. If a program fails to indicate that a given vector 
register is in use, software errors can occur that will be difficult to detect and correct because they are timing-
dependent. Some operating systems save and restore VRSAVE only for programs that also use other vector 
registers.

The VRSAVE Register can be accessed only by the Move From Special Purpose Register (mfspr) or Move 
To Special Purpose Register (mtspr) instructions. The mfspr instruction copies VRSAVE to the low-order 32 
bits of a GPR; the mtspr instruction copies the low-order 32 bits of a GPR to VRSAVE. 

12.2.2 Vector Status and Control Register (VSCR)

The Vector Status and Control Register is a special 32-bit register (not an SPR) that is read and written in a 
manner similar to the Floating-Point Status and Control Register (FPSCR) in the scalar floating-point unit. 
Two special instructions, Move From Vector Status and Control Register (mfvscr) and Move To Vector 
Status and Control Register (mtvscr), are provided to move the VSCR from and to a Vector Register. When 
moved to or from a Vector Register, the 32-bit VSCR is right justified in the 128-bit Vector Register. When 
moved to a Vector Register, the upper 96 bits (0:95) of the Vector Register are cleared (set to zeros). 

The VSCR has two defined bits, the non-Java mode (NJ) bit (VSCR[15]) and the saturation (SAT) bit 
(VSCR[31]). The remaining bits are reserved. VSCR bit settings are shown in Table 12-1. 

The VSCR bits, after being moved to a Vector Register, are shown in Figure 12-3.

Figure 12-2. VSCR Format 

Figure 12-3. VSCR Moved to a Vector Register 
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The mtvscr instruction is context synchronizing. This implies that all vector instructions logically preceding an 
mtvscr in the program flow will execute in the architectural context (NJ mode) that existed before completion 
of the mtvscr. It also implies that all instructions logically following the mtvscr will execute in the new context 
(NJ mode) established by the mtvscr.

After an mfvscr instruction executes, the result in the target Vector Register is architecturally precise. It 
reflects all updates to the SAT bit that could have been made by vector instructions logically preceding it in 
the program flow. Further, it will not reflect any SAT updates that can be made to it by vector instructions logi-
cally following it in the program flow. Reading the VSCR can be much slower than typical vector instructions, 
and therefore care must be taken in reading it to avoid performance problems.

Table 12-1. VSCR Field Descriptions  

Bits Name Description

0:14 — Reserved. 

15 NJ

Non-Java. A mode control bit that determines whether vector floating-point operations are performed in a 
mode that is compliant with Java, IEEE, and C9X or possibly in a faster noncompliant mode.
0 The Java-IEEE-C9X–compliant mode is selected. Denormalized values are handled as speci-

fied by the Java, IEEE, and C9X standard.
1 The non-Java/non-IEEE–compliant mode is selected. If an element in a source vector register 

contains a denormalized value, the value ‘0’ is used instead. If an instruction causes an under-
flow exception, the corresponding element in the target vector register (VR) is cleared to ‘0’. In 
both cases, the ‘0’ has the same sign as the denormalized or underflowing value.

16:30 — Reserved. 

31 SAT

Saturation. A sticky status bit indicating that some field in a saturating instruction became saturated since 
the last time SAT was cleared. In other words, when SAT is set to ‘1’, it remains set to ‘1’ until it is cleared 
to ‘0’ by a mtvscr instruction. 
0 Indicates no saturation has occurred since this bit was last cleared by a mtvscr instruction. 
1 The vector saturate instruction implicitly sets when saturation has occurred on the results of one 

of the vector instructions having saturate in its name. (See Table 12-4 on page 353.)
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12.3 Effects on Existing PowerPC Facilities

12.3.1 Control Flow

Vector instructions can be freely intermixed with existing PowerPC instructions to form a complete program. 
Vector instructions provide a vector compare and select mechanism to implement conditional execution as 
the preferred mechanism to control data flow in VPU programs. Vector compare instructions can update the 
Condition Register, thus providing the communication from the vector execution units to the PowerPC branch 
instructions necessary to modify program flow based on vector data.

12.3.1.1 Condition Register

The Condition Register (CR) is affected by the VPU architecture. The CR is a 32-bit register, divided into 
eight 4-bit fields, CR0-CR7 (see Figure 12-4), that reflect the results of certain arithmetic operations and 
provide a mechanism for testing and branching. For the VPU ISA, the CR6 field can optionally be used. If the 
record bit (Rc) of a vector instruction field is set in a vector compare instruction, then the CR6 field is updated 
according to Table 12-2. 

The Rc bit should be used sparingly. As for other PowerPC instructions, in some implementations, instruc-
tions with the Rc bit set to ‘1’ could have a longer latency or be more disruptive to the instruction pipeline flow 
than instructions with the Rc bit set to ‘0’. Therefore, techniques of accumulating results and testing infre-
quently are advised.

Figure 12-4. Condition Register (CR) 

Table 12-2. CR6 Field Bit Settings for Vector Compare Instructions  

Bits Description

Vector Compare

0
1 Comparison successful for all fields
0 Comparison failed for at least one field

1 Always zero

2
1 Comparison failed for all fields
0 Comparison successful for at least one field 

3 Always zero

Vector Compare Bounds (vcmpbfp)

0 Always zero

1 Always zero

2
1 All values within bounds
0 Not all values within bounds

3 Always zero
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12.3.1.2 Machine State Register 

Certain bits in the Machine State Register (MSR) affect instructions in the vector data stream. MSR[VP] indi-
cates whether the vector processor is available. Table 12-3 defines the VP, PR, and DR bits.
 

12.3.2 Machine Status Save/Restore Registers (SRR0, SRR1)

SRR0 holds the effective address (EA) for the instruction that caused the VPU unavailable exception, and 
SRR1 holds the machine state status as described in Chapter 4 Exceptions.

Table 12-3. MSR Bit Settings Affecting the VPU  

Bits Name Description

38 VP

VPU available
0 The processor prevents execution of all vector instructions, including loads, stores, and moves. If such 

execution is attempted, a VPU unavailable exception is raised. 
1 The processor can execute all vector instructions.
Note:  The VRSAVE Register is not protected by MSR[VP]. The data streaming family of instructions (dst, dstt, 
dstst, dststt, dss, and dssall) are not affected by the MSR[VP].

49 PR

Problem (user) state
0 The processor is privileged to execute any instruction.
1 The processor can only execute non-privileged instructions.
Note:  Care should be taken if data-stream prefetching is used in a supervisor (privileged) state (MSR[PR] = ‘0’). 
For each existing data stream, prefetching is enabled if (a) MSR[DR] is set to ‘1’ and (b) MSR[PR] has the value it 
had when the dst or dstst instruction that specified the data stream was executed. Otherwise, prefetching for the 
data stream is suspended.

59 DR

Data address translation
0 Data address translation is disabled. If data stream touch (dst) and data stream touch for store (dstst) 

instructions are executed when DR is set to ‘0’, the results are boundedly undefined.
1 Data address translation is enabled. Data stream touch (dst) and data stream touch for store (dstst) 

instructions are supported when DR is set to ‘1’. 

Figure 12-5. Machine Status Save/Restore Register 0 (SRR0) 
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12.4 Exceptions

There are three exceptions that can result from the execution of a vector instruction:

• VPU unavailable exception

• VPU assist exception

• Data storage exception 

12.4.1 VPU Unavailable Exception

This interrupt is described in Section 12.3.1.2 Machine State Register.

12.4.2 VPU Assist Exception

The VPU assist exception happens when operating in Java mode and either the input operands or the result 
of an operation are denormalized. After this exception, execution resumes at offset 
0x0000_0000_0000_1700. See Section 4.5.18 VPU Assist Exception on page 104 for more information. 

12.4.3 Data Storage Exception

Load vector indexed and store vector indexed instructions transfer quadword vectors between memory and 
vector registers. Load vector element indexed and store vector element indexed instructions transfer byte, 
halfword, and word scalar elements between memory and vector registers. All vector loads and vector stores 
use the index (rA|0 + rB) addressing mode to specify the target memory address. No update forms are 
provided. A load vector element indexed instruction transfers a scalar data element from memory into the 
destination vector register, leaving other elements in the vector with boundedly-undefined values. A store 
vector element indexed transfers a scalar data element from the source vector register to memory leaving 
other elements in the quadword unchanged. No data alignment occurs, that is, all scalar data elements are 
transferred directly on their natural memory byte-lanes to or from the corresponding element in the vector 
register. Quadword memory accesses made by load vector indexed and store vector indexed are not guaran-
teed to be atomic. 
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12.5 Optional Instructions

The 970FX microprocessor implements all vector instructions as listed in the PowerPC Microprocessor 
Family: Vector/SIMD Multimedia Extension Technology Programming Environments Manual. See Table 12-4 
Supported Vector Instructions. 

12.5.1 Java Mode Instruction Handling Implementation.

The 970FX VPU implementation handles certain instructions differently based on the Java mode setting in 
the VSCR register. Java compliance does require compliance with certain aspects of the IEEE Standard 
including:

• Support of denorms as inputs and results (gradual underflow) for arithmetic operations.

• Not a number (NaN) results for invalid operations.

• NaNs compare unordered with respect to everything, so that the result of any comparison of any NaN to 
any data type is always false.

• NaNs are handled the same way in both the Java or non-Java mode for the 970FX implementation.

For some instructions, denormalization produces the exact result without trapping. The 970FX implementa-
tion of the VPU handles most denorms by trapping at interrupt vector 0x0000_0000_0000_1700 (VPU assist 
interrupt).

12.5.2 Least Recently Used (LRU) Instructions 

The VPU architecture suggests that load vector indexed LRU (lvxl) and store vector indexed LRU (stvxl) are 
handled differently than the regular load/store instructions in that they leave cache entries in the least recently 
used (LRU) state instead of a most recently used (MRU) state. This supports efficient processing of data that 
is known to have little reuse and poor caching characteristics. 

The 970FX microprocessor will treat lvxl and stvxl as a regular load and store with respect to the replace-
ment algorithm. That is, the cache entry will be set as MRU.

12.5.3 Data Stream Instructions

Data stream (dst) instructions are broken up into two internal instructions (IOPs), one for the effective 
address and one for the prefetch information. They are marked serialized and are not executed until they are 
the next instruction to complete. 
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12.6 Vector Instruction Set

Table 12-4 lists the supported vector instructions.

Table 12-4. Supported Vector Instructions   (Page 1 of 6)

Number Mnemonic Operands Execution 
Unit Description

Load Vector Element Indexed

1 lvebx vD,rA,rB LOAD Load Vector Element Byte Indexed

2 lvehx vD,rA,rB LOAD Load Vector Element Halfword Indexed

3 lvewx vD,rA,rB LOAD Load Vector Element Word Indexed

4 lvx vD,rA,rB LOAD Load Vector Indexed

5 lvxl vD,rA,rB LOAD Load Vector Indexed LRU

Store Vector Element Indexed

6 stvebx vS,rA,rB STORE Store Vector Element Byte Indexed

7 stvehx vS,rA,rB STORE Store Vector Element Halfword Indexed

8 stvewx vS,rA,rB STORE Store Vector Element Word Indexed

9 stvx vS,rA,rB STORE Store Vector Indexed

10 stvxl vS,rA,rB STORE Store Vector Indexed LRU

Load Vector for Shift

11 lvsl vD,rA,rB LOAD Load Vector for Shift Left

12 lvsr vD,rA,rB LOAD Load Vector for Shift Right

Move To and Move From Vector Status and Control Register

13 mtvscr vB Simple Move To Vector Status and Control Register

14 mfvscr vD Simple Move From Vector Status and Control Register

Data Stream

15 dst rA,rB,tag LSU Data Stream Touch

16 dstt rA,rB,tag LSU Data Stream Touch Transient (treated as dst) 

17 dstst rA,rB,tag LSU Data Stream Touch for Store (treated as dst)

18 dststt rA,rB,tag LSU Data Stream Touch for Store Transient (treated as dst)

19 dss tag LSU Data Stream Stop

20 dssall LSU Data Stream Stop All

Vector Add

21 vaddubm vD,vA,vB Simple Vector Add Unsigned Byte Modulo

22 vaddubs vD,vA,vB Simple Vector Add Unsigned Byte Saturate

23 vaddsbs vD,vA,vB Simple Vector Add Signed Byte Saturate

24 vadduhm vD,vA,vB Simple Vector Add Unsigned Halfword Modulo

25 vadduhs vD,vA,vB Simple Vector Add Unsigned Halfword Saturate

26 vaddshs vD,vA,vB Simple Vector Add Signed Halfword Saturate

27 vadduwm vD,vA,vB Simple Vector Add Unsigned Word Modulo
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28 vadduws vD,vA,vB Simple Vector Add Unsigned Word Saturate

29 vaddsws vD,vA,vB Simple Vector Add Signed Word Saturate

30 vaddfp vD,vA,vB Float Vector Add Float

Vector Add and Write Carry-Out

31 vaddcuw vD,vA,vB Simple Vector Add and Write Carry-Out Unsigned Word

Vector Subtract

32 vsububm vD,vA,vB Simple Vector Subtract Unsigned Byte Modulo

33 vsububs vD,vA,vB Simple Vector Subtract Unsigned Byte Saturate

34 vsubsbs vD,vA,vB Simple Vector Subtract Signed Byte Saturate

35 vsubuhm vD,vA,vB Simple Vector Subtract Unsigned Halfword Modulo

36 vsubuhs vD,vA,vB Simple Vector Subtract Unsigned Halfword Saturate

37 vsubshs vD,vA,vB Simple Vector Subtract Signed Halfword Saturate

38 vsubuwm vD,vA,vB Simple Vector Subtract Unsigned Word Modulo

39 vsubuws vD,vA,vB Simple Vector Subtract Unsigned Word Saturate

40 vsubsws vD,vA,vB Simple Vector Subtract Signed Word Saturate

41 vsubfp vD,vA,vB Float Vector Subtract Float

Vector Subtract and Write Carry-Out

42 vsubcuw vD,vA,vB Simple Vector Subtract and Write Carry-Out Unsigned Word

Vector Multiply Odd Integer

43 vmuloub vD,vA,vB Complex Vector Multiply Odd Unsigned Byte

44 vmulosb vD,vA,vB Complex Vector Multiply Odd Signed Byte

45 vmulouh vD,vA,vB Complex Vector Multiply Odd Unsigned Halfword

46 vmulosh vD,vA,vB Complex Vector Multiply Odd Signed Halfword

Vector Multiply Even Integer

47 vmuleub vD,vA,vB Complex Vector Multiply Even Unsigned Byte

48 vmulesb vD,vA,vB Complex Vector Multiply Even Signed Byte

49 vmuleuh vD,vA,vB Complex Vector Multiply Even Unsigned Halfword

50 vmulesh vD,vA,vB Complex Vector Multiply Even Signed Halfword

Vector Multiply-Add

51 vmhaddshs vD,vA,vB,vC Complex Vector Multiply-High and Add Signed Halfword Saturate

52 vmhraddshs vD,vA,vB,vC Complex Vector Multiply-High Round and Add Signed Halfword Saturate

53 vmladduhm vD,vA,vB,vC Complex Vector Multiply-Low and Add Unsigned Halfword Modulo

54 vmaddfp vD,vA,vC,vB Float Vector Multiply-Add Float

Vector Multiply-Sum Integer

55 vmsumubm vD,vA,vB,vC Complex Vector Multiply-Sum Unsigned Byte Modulo

56 vmsummbm vD,vA,vB,vC Complex Vector Multiply-Sum Mixed-Sign Byte Modulo
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57 vmsumuhm vD,vA,vB,vC Complex Vector Multiply-Sum Unsigned Halfword Modulo

58 vmsumuhs vD,vA,vB,vC Complex Vector Multiply-Sum Unsigned Halfword Saturate

59 vmsumshm vD,vA,vB,vC Complex Vector Multiply-Sum Signed Halfword Modulo

60 vmsumshs vD,vA,vB,vC Complex Vector Multiply-Sum Signed Halfword Saturate

Vector Sum Across Signed Integer Saturate

61 vsumsws vD,vA,vB Complex Vector Sum Across Signed Word Saturate

Vector Sum Across Partial (1/2) Signed Integer Saturate

62 vsum2sws vD,vA,vB Complex Vector Sum Across Partial (1/2) Signed Word Saturate

Vector Sum Across Partial (1/4) Integer Saturate

63 vsum4ubs vD,vA,vB Complex Vector Sum Across Partial (1/4) Unsigned Byte Saturate

64 vsum4sbs vD,vA,vB Complex Vector Sum Across Partial (1/4) Signed Byte Saturate

65 vsum4shs vD,vA,vB Complex Vector Sum Across Partial (1/4) Signed Halfword Saturate

Vector Average Integer

66 vavgub vD,vA,vB Simple Vector Average Unsigned Byte

67 vavgsb vD,vA,vB Simple Vector Average Signed Byte

68 vavguh vD,vA,vB Simple Vector Average Unsigned Halfword

69 vavgsh vD,vA,vB Simple Vector Average Signed Halfword

70 vavguw vD,vA,vB Simple Vector Average Unsigned Word

71 vavgsw vD,vA,vB Simple Vector Average Signed Word

Vector Logical

72 vand vD,vA,vB Simple Vector Logical AND

73 vor vD,vA,vB Simple Vector Logical OR

74 vxor vD,vA,vB Simple Vector Logical XOR

75 vandc vD,vA,vB Simple Vector Logical AND with Complement

76 vnor vD,vA,vB Simple Vector Logical NOR

Vector Rotate Left Integer

77 vrlb vD,vA,vB Simple Vector Rotate Left Integer Byte

78 vrlh vD,vA,vB Simple Vector Rotate Left Integer Halfword

79 vrlw vD,vA,vB Simple Vector Rotate Left Integer Word

Vector Shift Left Integer

80 vslb vD,vA,vB Simple Vector Shift Left Integer Byte

81 vslh vD,vA,vB Simple Vector Shift Left Integer Halfword

82 vslw vD,vA,vB Simple Vector Shift Left Integer Word

83 vsl vD,vA,vB Simple Vector Shift Left
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Vector Shift Right Integer

84 vsrb vD,vA,vB Simple Vector Shift Right Byte 

85 vsrab vD,vA,vB Simple Vector Shift Right Algebraic Byte 

86 vsrh vD,vA,vB Simple Vector Shift Right Halfword 

87 vsrah vD,vA,vB Simple Vector Shift Right Algebraic Halfword 

88 vsrw vD,vA,vB Simple Vector Shift Right Word 

89 vsraw vD,vA,vB Simple Vector Shift Right Algebraic Word 

90 vsr vD,vA,vB Simple Vector Shift Right

Vector Compare Greater-Than

91 vcmpgtub[.] vD,vA,vB Simple Vector Compare Greater-Than Unsigned Byte [Record]

92 vcmpgtsb[.] vD,vA,vB Simple Vector Compare Greater-Than Signed Byte [Record]

93 vcmpgtuh[.] vD,vA,vB Simple Vector Compare Greater-Than Unsigned Halfword [Record]

94 vcmpgtsh[.] vD,vA,vB Simple Vector Compare Greater-Than Signed Halfword [Record]

95 vcmpgtuw[.] vD,vA,vB Simple Vector Compare Greater-Than Unsigned Word [Record]

96 vcmpgtsw[.] vD,vA,vB Simple Vector Compare Greater-Than Signed Word [Record]

97 vcmpgtfp[.] vD,vA,vB Simple Vector Compare Greater-Than Float [Record]

Vector Compare Equal-To

98 vcmpequb[.] vD,vA,vB Simple Vector Compare Equal-To Unsigned Byte [Record]

99 vcmpequh[.] vD,vA,vB Simple Vector Compare Equal-To Unsigned Halfword [Record]

100 vcmpequw[.] vD,vA,vB Simple Vector Compare Equal-To Unsigned Word [Record]

101 vcmpeqfp[.] vD,vA,vB Simple Vector Compare Equal-To Float [Record]

Vector Compare Greater-Than-or-Equal-To

102 vcmpgefp[.] vD,vA,vB Simple Vector Compare Greater-Than-or-Equal-To Float [Record]

Vector Compare Bounds Float

103 vcmpbfp[.] vD,vA,vB Simple Vector Compare Bounds Float [Record]

Vector Conditional Select

104 vsel vD,vA,vB,vC Simple Vector Conditional Select

Vector Pack

105 vpkuhum vD,vA,vB Permute Vector Pack Unsigned Halfword Unsigned Modulo

106 vpkuhus vD,vA,vB Permute Vector Pack Unsigned Halfword Unsigned Saturate

107 vpkshus vD,vA,vB Permute Vector Pack Signed Halfword Unsigned Saturate

108 vpkshss vD,vA,vB Permute Vector Pack Signed Halfword Signed Saturate

109 vpkuwum vD,vA,vB Permute Vector Pack Unsigned Word Unsigned Modulo

110 vpkuwus vD,vA,vB Permute Vector Pack Unsigned Word Unsigned Saturate

111 vpkswus vD,vA,vB Permute Vector Pack Signed Word Unsigned Saturate

112 vpkswss vD,vA,vB Permute Vector Pack Signed Word Signed Saturate
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113 vpkpx vD,vA,vB Permute Vector Pack Pixel32

Vector Unpack High

114 vupkhsb vD,vB Permute Vector Unpack High Signed Byte

115 vupkhsh vD,vB Permute Vector Unpack High Signed Halfword

116 vupkhpx vD,vB Permute Vector Unpack High Pixel16

Vector Unpack Low

117 vupklsb vD,vB Permute Vector Unpack Low Signed Byte

118 vupklsh vD,vB Permute Vector Unpack Low Signed Halfword

119 vupklpx vD,vB Permute Vector Unpack Low Pixel16

Vector Merge High

120 vmrghb vD,vA,vB Permute Vector Merge High Byte

121 vmrghh vD,vA,vB Permute Vector Merge High Halfword

122 vmrghw vD,vA,vB Permute Vector Merge High Word

Vector Merge Low

123 vmrglb vD,vA,vB Permute Vector Merge Low Byte

124 vmrglh vD,vA,vB Permute Vector Merge Low Halfword

125 vmrglw vD,vA,vB Permute Vector Merge Low Word

Vector Splat

126 vspltb vD,vB,UIM Permute Vector Splat Byte

127 vsplth vD,vB,UIM Permute Vector Splat Halfword

128 vspltw vD,vB,UIM Permute Vector Splat Word

Vector Splat Immediate Signed Integer

129 vspltisb vD,SIM Permute Vector Splat Immediate Signed Byte

130 vspltish vD,SIM Permute Vector Splat Immediate Signed Halfword

131 vspltisw vD,SIM Permute Vector Splat Immediate Signed Word

Vector Permute

132 vperm vD,vA,vB,vC Permute Vector Permute

Vector Shift Left Double by Octet Immediate

133 vsldoi vD,vA,vB,SH Permute Vector Shift Left Double by Octet Immediate 

Vector Shift by Octet

134 vslo vD,vA,vB Permute Vector Shift Left by Octet 

135 vsro vD,vA,vB Permute Vector Shift Right by Octet

Vector Maximum

136 vmaxub vD,vA,vB Simple Vector Maximum Unsigned Byte

137 vmaxsb vD,vA,vB Simple Vector Maximum Signed Byte

138 vmaxuh vD,vA,vB Simple Vector Maximum Unsigned Halfword
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139 vmaxsh vD,vA,vB Simple Vector Maximum Signed Halfword

140 vmaxuw vD,vA,vB Simple Vector Maximum Unsigned Word

141 vmaxsw vD,vA,vB Simple Vector Maximum Signed Word

142 vmaxfp vD,vA,vB Simple Vector Maximum Float

Vector Minimum

143 vminub vD,vA,vB Simple Vector Minimum Unsigned Byte

144 vminsb vD,vA,vB Simple Vector Minimum Signed Byte

145 vminuh vD,vA,vB Simple Vector Minimum Unsigned Halfword

146 vminsh vD,vA,vB Simple Vector Minimum Signed Halfword

147 vminuw vD,vA,vB Simple Vector Minimum Unsigned Word

148 vminsw vD,vA,vB Simple Vector Minimum Signed Word

149 vminfp vD,vA,vB Simple Vector Minimum Float

Vector Estimate Float

150 vrefp vD,vB Float Vector Reciprocal Estimate Float

151 vrsqrtefp vD,vB Float Vector Reciprocal Square Root Estimate Float 

152 vlogefp vD,vB Float Vector Log 2 Estimate Float

153 vexptefp vD,vB Float Vector 2 Raised to the Exponent Estimate Float

Vector Negative Multiply-Subtract Float

154 vnmsubfp vD,vA,vC,vB Float Vector Negative Multiply-Subtract Float

Vector Round to Floating-Point Integral Value

155 vrfin vD,vB Float Vector Round to Floating-Point Integer Nearest 

156 vrfiz vD,vB Float Vector Round to Floating-Point Integer toward Zero 

157 vrfip vD,vB Float Vector Round to Floating-Point Integer toward Positive Infinity 

158 vrfim vD,vB Float Vector Round to Floating-Point Integer toward Minus Infinity 

Vector Convert To Fixed-Point

159 vctuxs vD,vB,UIM Float Vector Convert to Unsigned Fixed-Point Word Saturate

160 vctsxs vD,vB,UIM Float Vector Convert to Signed Fixed-Point Word Saturate 

Vector Convert From Fixed-Point

161 vcfux vD,vB,UIM Float Vector Convert From Unsigned Fixed-Point Word 

162 vcfsx vD,vB,UIM Float Vector Convert From Signed Fixed-Point Word 
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