Intel” Xeon Phi Coprocessor Instruction
Set Architecture Reference Manual

September 7, 2012

Reference Number: 327364-001

(intel

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EX-
PRESS ORIMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT
OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application” is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUB-
CONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT
OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING
IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRAC-
TOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS
PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must
notrely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.

The products described in this document may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Intel, the Intel® logo, Intel® Xeon Phi”, Intel® Pentium®, Intel® Xeon®, Intel® Pentium® 4 Processor, Intel®
Core” Duo, Intel® Core™ 2 Duo, MMX™, Intel® Streaming SIMD Extensions (Intel® SSE), Intel® Advanced Vector
Extensions (Intel® AVX) are trademarks or registered trademarks of Intel® Corporation or its subsidiaries in the
United States and other countries. *Other names and brands may be claimed as the property of others.

Copyright 2012 Intel® Corporation. All rights reserved.

2 Reference Number: 327364-001

5
~r
(‘L

CONTENTS
Contents

1 Introduction 20
2 Instructions Terminology and State 21
2.1 Overview of the Intel® Xeon Phi" Coprocessor Instruction Set Architecture Extensions 21
2.1.1 Whatare vectors? o e e e 21
2.1.2 Vectormaskregisters. o e 21
2.1.2.1 VectormaskkO. e 22
2.1.2.2 Exampleofuse. e e 22
2.1.3 Understanding Intel® Xeon Phi" Coprocessor Instruction Set Architecture 23
2.1.3.1 Intel® Xeon Phi" Coprocessor Instruction Set Architecture Vector Instructions . . 24

2.1.3.2 Intel® Xeon Phi" Coprocessor Instruction Set Architecture Vector Memory In-
structions: 25
2.1.3.3 Intel® Xeon Phi" Coprocessor Instruction Set Architecture vector mask Instructions 26
2.1.3.4 Intel® Xeon Phi" Coprocessor Instruction Set Architecture New Scalar Instructions 27
2.2 Intel® Xeon Phi" Coprocessor Instruction Set Architecture Swizzles and Converts 27
2.21 Load-Op Swizzle/Convert e 29
222 Load Up-CONVert. i e e e e e e e 30
223 Down-Conversion i e 33
2.3 StaticRoundingMode e e 35
2.4 Intel® Xeon Phi" coprocessor Execution Environments 36
3 Intel® Xeon Phi" Coprocessor Instruction Set Architecture Format 40
3.1 OVEIVIEW . . o o o e e 40

Reference Number: 327364-001 3

intel.
CONTENTS L—/

3.2 InstructionFormats 41
3.21 MVEX/VEXandthe LOCKprefix 41

3.2.2 MVEX/VEX and the 66H, F2H,and F3H prefixes 41

3.23 MVEX/VEXandthe REXprefix 41

3.3 The MVEXPrefix e 42
3.3.1 Vector SIB (VSIB) Memory Addressing it 44

34 TheVEXPrefix o e 44
3.5 Intel® Xeon Phi" Coprocessor Instruction Set Architecture Assembly Syntax 46
3.6 Notation e 46
3.6.1 Operand Notation e e 46

3.6.2 TheDisplacementBytes 47

3.6.3 Memory size and disp8*N calculation 49

3.7 EHhint. 51
3.8 Functionsand TablesUsed 52
3.81 MemLoadand MemStore e 52

3.8.2 SwizzUpConvLoad, UpConvLoad and DownConvStore 52

3.8.3 Other Functions/Identifiers e 52

4 Floating-Point Environment, Memory Addressing, and Processor State 55
4.1 OVEIVIEW . . . o o e e e e e e 55
4.1.1 Suppress All Exceptions Attribute (SAE) 55

4.1.2 SIMD Floating-Point Exceptions 56
4.1.3 SIMD Floating-Point Exception Conditions 56
4.1.3.1 Invalid Operation Exception (#I), 57

4.1.3.2 Divide-By-Zero Exception (#Z) 57

4.1.3.3 Denormal Operand Exception (#D) 57

4.1.3.4 Numeric Overflow Exception (#0) 58

4.1.3.5 Numeric Underflow Exception (#U) 59

4.1.3.6 Inexact Result (Precision) Exception (#P) 59

4.2 Denormal Flushing Control e 59

4 Reference Number: 327364-001

CONTENTS

4.2.1 Denormal control in up-conversions and down-conversions 59
4.2.1.1 Up-CONVEISIONS . .« v v v v v v e vt e et e e e e e e e e 59

4.2.1.2 DOWN-CONVEISIONS . . . v v v oot it e e e e e e e e e e e e 60

4.3 Extended Addressing Displacements 60
4.4 Swizzle/up-conversion exceptions e 61
4.5 Accessinguncacheablememory 62
45.1 Memoryread Operations v v i e e e e 62

4.5.2 vloadunpackh*/vloadunpackl* 62

453 wvgatherd® 62
454 MemOTy StOTES . . . o o v it e e e e e e e e e e e e 62

4.6 Floating-point Notes e e 63
4.6.1 RoundingModes e e 63
4.6.1.1 Swizzle-explicitroundingmodes oo 63

4.6.1.2 Definition and propagationof NaNs 63

4.6.1.3 SignedZeros 64

4.6.2 REX prefix and Intel® Xeon Phi" Coprocessor Instruction Set Architecture interactions . . . 66

4.7 Intel® Xeon Phi"” Coprocessor Instruction Set Architecture StateSave 66
4.8 Intel® Xeon Phi” Coprocessor Instruction Set Architecture Processor State After Reset 66
Instruction Set Reference 68
5.1 Interpreting Instruction ReferencePages. 68
5.1.1 Instruction Format 68

5.1.2 Opcode Notations for MVEX Encoded Instructions 68

5.1.3 Opcode Notations for VEX Encoded Instructions 69
Instruction Descriptions 71
6.1 Vector MaskInstructions e 72
JKNZD - Jump near if maskisnotzero 73
JKZD - Jump near if maskiszero 76
KAND - AND Vector Mask o e 79
Reference Number: 327364-001 5

intel.
CONTENTS L—/

KANDN - AND NOT Vector Masko e e e e e e 81
KANDNR - Reverse AND NOT Vector Mask i 83
KCONCATH - Pack and Move High VectorMask 85
KCONCATL - Packand Move Low Vector Mask 87
KEXTRACT - Extract Vector Mask From Register 89
KMERGE2L1H - Swap and Merge High Element Portion and Low Portion of Vector Masks 91
KMERGEZ2L1L - Move Low Element Portion into High Portion of Vector Mask 93
KMOV - Move Vector Mask e 95
KNOT - NotVector Mask o e e e e e e e 97
KOR-ORVector Masks e e e 99
KORTEST - OR Vector Mask And Set EFLAGS e 101
KXNOR-XNORVector Masks e e e e e e e e e 103
KXOR-XORVector Masks o i e e e e 105
6.2 VectorInstructions. e e e 107
VADDNPD - Add and Negate Float64 Vectors. i ittt 108
VADDNPS - Add and Negate Float32 Vectors i i 111
VADDPD - Add Float64 Vectors o o e e e e 114
VADDPS - Add Float32 Vectors o i e e e e e 117
VADDSETSPS - Add Float32 Vectors and Set Maskto Sign 120
VALIGND - Align Doubleword Vectors 124
VBLENDMPD - Blend Float64 Vectors using the InstructionMask 126
VBLENDMPS - Blend Float32 Vectors using the InstructionMask 129
VBROADCASTF32X4 - Broadcast 4xFloat32 Vector 132
VBROADCASTF64X4 - Broadcast 4xFloat64 Vector 134
VBROADCASTI32X4 - Broadcast4xInt32 Vector i i 136
VBROADCASTI64X4 - Broadcast4xInt64 Vector oo it it it e e 138
VBROADCASTSD - Broadcast Float64 Vector i 140
VBROADCASTSS - Broadcast Float32 Vector i 142
VCMPPD - Compare Float64 Vectors and Set VectorMask 144

6 Reference Number: 327364-001

5
~r
(‘L

CONTENTS
VCMPPS - Compare Float32 Vectors and Set VectorMask 149
VCVTDQ2PD - Convert Int32 Vector to Float64 Vectoro.... 154
VCVTFXPNTDQ2PS - Convert Fixed Point Int32 Vector to Float32 Vector 157
VCVTFXPNTPD2DQ - Convert Float64 Vector to Fixed Point Int32 Vector 161
VCVTFXPNTPD2UDQ - Convert Float64 Vector to Fixed Point Uint32 Vector 165
VCVTFXPNTPS2DQ - Convert Float32 Vector to Fixed Point Int32 Vector 169
VCVTFXPNTPS2UDQ - Convert Float32 Vector to Fixed Point Uint32 Vector 173
VCVTEFXPNTUDQ2PS - Convert Fixed Point Uint32 Vector to Float32 Vector 177
VCVTPDZ2PS - Convert Float64 Vector to Float32 Vector 180
VCVTPS2PD - Convert Float32 Vector to Float64 Vector 184
VCVTUDQ2PD - Convert Uint32 Vector to Float64 Vector 187
VEXP223PS - Base-2 Exponential Calculation of Float32 Vector 190
VFIXUPNANPD - Fix Up Special Float64 Vector Numbers With NaN Passthrough 193
VFIXUPNANPS - Fix Up Special Float32 Vector Numbers With NaN Passthrough 197

VFMADD132PD - Multiply Destination By Second Source and Add To First Source Float64 Vectors 201
VFMADD132PS - Multiply Destination By Second Source and Add To First Source Float32 Vectors 205
VFMADD213PD - Multiply First Source By Destination and Add Second Source Float64 Vectors . 208
VFMADD213PS - Multiply First Source By Destination and Add Second Source Float32 Vectors . . 212
VFMADD231PD - Multiply First Source By Second Source and Add To Destination Float64 Vectors 216
VFMADD231PS - Multiply First Source By Second Source and Add To Destination Float32 Vectors 220

VFMADD233PS - Multiply First Source By Specially Swizzled Second Source and Add To Second
Source Float32 Vectors o o i e e e 224

VFMSUB132PD - Multiply Destination By Second Source and Subtract First Source Float64 Vectors228
VFMSUB132PS - Multiply Destination By Second Source and Subtract First Source Float32 Vectors232
VFMSUB213PD - Multiply First Source By Destination and Subtract Second Source Float64 Vectors235
VFMSUB213PS - Multiply First Source By Destination and Subtract Second Source Float32 Vectors239
VFMSUB231PD - Multiply First Source By Second Source and Subtract Destination Float64 Vectors242
VFMSUB231PS - Multiply First Source By Second Source and Subtract Destination Float32 Vectors246

VFNMADD132PD - Multiply Destination By Second Source and Subtract From First Source
Float64 Vectors o o e e e e e 249

Reference Number: 327364-001 7

intel
CONTENTS L—/

VFNMADD132PS - Multiply Destination By Second Source and Subtract From First Source

Float32 Vectors o o e e e e e e e e 253
VFNMADD213PD - Multiply First Source By Destination and Subtract From Second Source
Floatb4 Vectors o o e e e e e e e 257
VFNMADD213PS - Multiply First Source By Destination and Subtract From Second Source
Float32 Vectors o e e e e e e e 261
VFNMADD231PD - Multiply First Source By Second Source and Subtract From Destination
Float64 Vectors o o o e e e e e e e 265
VFNMADD231PS - Multiply First Source By Second Source and Subtract From Destination
Float32 Vectors o o e e e e 269
VFNMSUB132PD - Multiply Destination By Second Source, Negate, and Subtract First Source
Float64 Vectors o o o e e e e e e e 273
VFNMSUB132PS - Multiply Destination By Second Source, Negate, and Subtract First Source
Float32 Vectors o o o e e e 277
VFNMSUB213PD - Multiply First Source By Destination, Negate, and Subtract Second Source
Float64 Vectors o . o i e e e e e e e 281
VFNMSUB213PS - Multiply First Source By Destination, Negate, and Subtract Second Source
Float32 Vectors o o o e e e e e e 285
VFNMSUB231PD - Multiply First Source By Second Source, Negate, and Subtract Destination
Float64 Vectors o o o e e e e e e e 289
VFNMSUB231PS - Multiply First Source By Second Source, Negate, and Subtract Destination
Float32Z Vectors o o o e e e 293
VGATHERDPD - Gather Float64 Vector With Signed Dword Indices 297
VGATHERDPS - Gather Float32 Vector With Signed Dword Indices 300
VGATHERPFODPS - Gather Prefetch Float32 Vector With Signed Dword Indices IntoL1 303
VGATHERPFOHINTDPD - Gather Prefetch Float64 Vector Hint With Signed Dword Indices 306
VGATHERPFOHINTDPS - Gather Prefetch Float32 Vector Hint With Signed Dword Indices 308
VGATHERPF1DPS - Gather Prefetch Float32 Vector With Signed Dword Indices IntoL2 310
VGETEXPPD - Extract Float64 Vector of Exponents from Float64 Vector 313
VGETEXPPS - Extract Float32 Vector of Exponents from Float32 Vector 316
VGETMANTPD - Extract Float64 Vector of Normalized Mantissas from Float64 Vector 319
VGETMANTPS - Extract Float32 Vector of Normalized Mantissas from Float32 Vector 324
VGMAXABSPS - Absolute Maximum of Float32 Vectors 329
VGMAXPD - Maximum of Float64 Vectors it 333

8 Reference Number: 327364-001

5
~r
(‘L

CONTENTS
VGMAXPS - Maximum of Float32 Vectors i 337
VGMINPD - Minimum of Float64 Vectors e 341
VGMINPS - Minimum of Float32 Vectors i 345
VLOADUNPACKHD - Load Unaligned High And Unpack To Doubleword Vector 349
VLOADUNPACKHPD - Load Unaligned High And Unpack To Float64 Vector 352
VLOADUNPACKHPS - Load Unaligned High And Unpack To Float32 Vector 355
VLOADUNPACKHQ - Load Unaligned High And Unpack To Int64 Vector 358
VLOADUNPACKLD - Load Unaligned Low And Unpack To Doubleword Vector 361
VLOADUNPACKLPD - Load Unaligned Low And Unpack To Float64 Vector 364
VLOADUNPACKLPS - Load Unaligned Low And Unpack To Float32 Vector 367
VLOADUNPACKLQ - Load Unaligned Low And Unpack To Int64 Vector 370
VLOG2PS - Vector Logarithm Base-2 of Float32 Vector 373
VMOVAPD - Move Aligned Float64 Vector 376
VMOVAPS - Move Aligned Float32 Vector e 379
VMOVDQA32 - Move Aligned Int32 Vector i i 382
VMOVDQAG64 - Move Aligned Int64 Vector 385
VMOVNRAPD - Store Aligned Float64 Vector With No-Read Hint 388
VMOVNRAPS - Store Aligned Float32 Vector With No-Read Hint 390
VMOVNRNGOAPD - Non-globally Ordered Store Aligned Float64 Vector With No-Read Hint 393
VMOVNRNGOAPS - Non-globally Ordered Store Aligned Float32 Vector With No-Read Hint 396
VMULPD - Multiply Float64 Vectors 0 e e e 399
VMULPS - Multiply Float32 Vectors 402
VPACKSTOREHD - Pack And Store Unaligned High From Int32 Vector 405
VPACKSTOREHPD - Pack And Store Unaligned High From Float64 Vector 408
VPACKSTOREHPS - Pack And Store Unaligned High From Float32 Vector 411
VPACKSTOREHQ - Pack And Store Unaligned High From Int64 Vector 414
VPACKSTORELD - Pack and Store Unaligned Low From Int32 Vector 417
VPACKSTORELPD - Pack and Store Unaligned Low From Float64 Vector 420
VPACKSTORELPS - Pack and Store Unaligned Low From Float32 Vector 423

Reference Number: 327364-001 9

intel.
CONTENTS L—/

VPACKSTORELQ - Pack and Store Unaligned Low From Int64 Vector 426
VPADCD - Add Int32 Vectorswith Carry 429
VPADDD - Add Int32 Vectors o o v i i e e e e e e 432
VPADDSETCD - Add Int32 Vectors and Set MasktoCarry 435
VPADDSETSD - Add Int32 Vectors and Set Maskto Sign 438
VPANDD - Bitwise AND Int32 Vectors e 441
VPANDND - Bitwise AND NOT Int32 Vectorsot e e e 444
VPANDNQ - Bitwise AND NOT Int64 Vectors o i i i i it i et e e e e e e e e e 447
VPANDQ - Bitwise AND Int64 Vectors i it i 450
VPBLENDMD - Blend Int32 Vectors using the InstructionMask 453
VPBLENDMQ - Blend Int64 Vectors using the InstructionMask 456
VPBROADCASTD - BroadcastInt32 Vector it 459
VPBROADCASTQ - Broadcast Int64 Vector i i i i e e e e i e 461
VPCMPD - Compare Int32 Vectors and Set VectorMask 463
VPCMPEQD - Compare Equal Int32 Vectors and Set VectorMask 467
VPCMPGTD - Compare Greater Than Int32 Vectors and Set Vector Mask 470
VPCMPLTD - Compare Less Than Int32 Vectors and Set Vector Mask 473
VPCMPUD - Compare Uint32 Vectors and Set VectorMask. 476
VPERMD - Permutes Int32 Vectors e 480
VPERMF32X4 - Shuffle Vector Dgwords 482
VPGATHERDD - Gather Int32 Vector With Signed Dword Indices 484
VPGATHERDQ - Gather Int64 Vector With Signed Dword Indices 487

VPMADD231D - Multiply First Source By Second Source and Add To Destination Int32 Vectors . . 490

VPMADD233D - Multiply First Source By Specially Swizzled Second Source and Add To Second

Source Int32 Vectors o e e e e 493
VPMAXSD - Maximum of Int32 Vectors o i e 497
VPMAXUD - Maximum of Uint32 Vectors i e 500
VPMINSD - Minimum of Int32 Vectors 503
VPMINUD - Minimum of Uint32 Vectors i e 506
VPMULHD - Multiply Int32 Vectors And Store HighResult. 509

10 Reference Number: 327364-001

5
~r
(‘L

CONTENTS
VPMULHUD - Multiply Uint32 Vectors And Store HighResult 512
VPMULLD - Multiply Int32 Vectors And Store LowResult 515
VPORD - Bitwise ORInt32 Vectors 0 e e e 518
VPORQ - Bitwise ORInt64 Vectors o o i i i e e e e e e e e e e e e e e e e 521
VPSBBD - Subtract Int32 Vectors with Borrow 524
VPSBBRD - Reverse Subtract Int32 Vectors with Borrow 527
VPSCATTERDD - Scatter Int32 Vector With Signed Dword Indices 530
VPSCATTERDQ - Scatter Int64 Vector With Signed Dword Indices 533
VPSHUEFD - Shuffle Vector Doublewords 536
VPSLLD - Shift Int32 Vector Immediate Left Logical 538
VPSLLVD - Shift Int32 Vector Left Logical 541
VPSRAD - Shift Int32 Vector Immediate Right Arithmetic 544
VPSRAVD - Shift Int32 Vector Right Arithmetic 547
VPSRLD - Shift Int32 Vector Immediate Right Logical 550
VPSRLVD - Shift Int32 Vector Right Logical 553
VPSUBD - Subtract Int32 Vectors i e 556
VPSUBRD - Reverse Subtract Int32 Vectors 559
VPSUBRSETBD - Reverse Subtract Int32 Vectors and Set Borrow 562
VPSUBSETBD - Subtract Int32 Vectors and Set Borrow 565
VPTESTMD - Logical AND Int32 Vectors and Set VectorMask 568
VPXORD - Bitwise XOR Int32 Vectors o o i i e e e e e 571
VPXORQ - Bitwise XOR Int64 Vectors o i i i i e e e e e e e e e 574
VRCP23PS - Reciprocal of Float32 Vector e 577
VRNDFXPNTPD - Round Float64 Vector 580
VRNDFXPNTPS - Round Float32 Vector e e e 584
VRSQRT23PS - Vector Reciprocal Square Root of Float32 Vector 588
VSCALEPS - Scale Float32 Vectors o e e e e e e e 591
VSCATTERDPD - Scatter Float64 Vector With Signed Dword Indices 595
VSCATTERDPS - Scatter Float32 Vector With Signed Dword Indices 598

Reference Number: 327364-001 11

intel
CONTENTS L—/

VSCATTERPFODPS - Scatter Prefetch Float32 Vector With Signed Dword Indices IntoL1 601
VSCATTERPFOHINTDPD - Scatter Prefetch Float64 Vector Hint With Signed Dword Indices 604
VSCATTERPFOHINTDPS - Scatter Prefetch Float32 Vector Hint With Signed Dword Indices 606
VSCATTERPF1DPS - Scatter Prefetch Float32 Vector With Signed Dword Indices Into L2 608
VSUBPD - Subtract Float64 Vectors o it e e 611
VSUBPS - Subtract Float32 Vectors 614
VSUBRPD - Reverse Subtract Float64 Vectors 617
VSUBRPS - Reverse Subtract Float32 Vectors 620

A Scalar Instruction Descriptions 623
CLEVICTO-EvictL1line e e e 624
CLEVICT1-EvictL21ine o i e e e e e e e e e e 626
DELAY -Stall Thread 628
LZCNT - Leading Zero Count o i i e e e e e e e e e 630
POPCNT - Return the Count of Number of BitsSetto1 632
SPFLT - Set performance monitor filteringmask 634
TZCNT - Trailing Zero Count e e e 637
TZCNTI - Initialized Trailing Zero Count e 639
VPREFETCHO - Prefetch memory lineusing TOhint 641
VPREFETCH1 - Prefetch memory line using T1 hint 643
VPREFETCH2 - Prefetch memory line using T2 hint 645
VPREFETCHEDO - Prefetch memory line using TO hint, with intenttowrite 647
VPREFETCHE1 - Prefetch memory line using T1 hint, with intenttowrite 649
VPREFETCHE?2 - Prefetch memory line using T2 hint, with intenttowrite 651
VPREFETCHENTA - Prefetch memory line using NTA hint, with intenttowrite 653
VPREFETCHNTA - Prefetch memory line using NTAhint 655

B Intel® Xeon Phi” coprocessor 64 bit Mode Scalar Instruction Support 657
B.1 64 bit Mode General-Purpose and X87 Instructions 657
B.2 Intel® Xeon Phi" coprocessor 64 bit Mode Limitations 659

12 Reference Number: 327364-001

(ntel
CONTENTS
B.3 LDMXCSR-Load MXCSRRegister e e 660
B.4 FXRSTOR - Restore x87 FPUand MXCSRStateo ittt 662
B.5 FXSAVE-Save x87 FPUand MXCSRState o i e 665
B.6 RDPMC - Read Performance-Monitoring Counters 667
B.7 STMXCSR - Store MXCSR Register e e e e e e 670
B.8 CPUID - CPUID Identification o e e e e e e 671
C Floating-Point Exception Summary 683
C.1 Instruction floating-point exception summary o 683
C.2 Conversion floating-point exception summary i 685
C.3 Denormal behavior e 686
D Instruction Attributes and Categories 691
D.1 Conversion Instruction Families 692
D.1.1 Dygg Family of Instructions 692
D.1.2 Dyggq Family of Instructions L 692
D.1.3 D;sz Family of Instructions 692
D.1.4 Djgq Family of Instructions e 692
D.1.5 Sygo Family of Instructions o o oo 692
D.1.6 Syeq Family of Instructions 692
D.1.7 S;3o Family of Instructions L 693
D.1.8 Sjs4 Family of Instructions L 693
D.1.9 Upygsp Family of Instructions 693
D.1.10 Ujggq Family of Instructions 693
D.1.11 U;3o Family of Instructions e 693
D.1.12 U4 Family of Instructions 693
E Non-faulting Undefined Opcodes 694
F General Templates 696
F1 MaskOperation Templates o e e 697

Reference Number: 327364-001

intel.
CONTENTS L—/

MaskmO - Templateo e e e 698
Maskml-Template e e e 699
Maskm2 - Template o e e 700
Maskm3 -Template 701
Maskm4 - Template e 702
Maskm5-Template e 703
F2 Vector Operation Templates 704
Vector vO - Template o i e 705
Vector vl - Template e e 707
Vector v10-Template o o e e e e 708
Vectorvll-Template e 710
Vector vZ - Template e e 711
Vector v3-Template e 713
Vector v4 - Template e e 714
Vector v - Template o e 716
Vector vb - Template e e 718
Vector v7 - Template o e e e 719
Vector vB - Template e 720
Vector vo - Template oo e e e e 722
F3 Scalar Operation Templates e 723
ScalarsO-Template e e e e 724
Scalarsl-Template 725

14 Reference Number: 327364-001

5
~r
(‘L

LIST OF TABLES

List of Tables

2.1

2.2

2.3

2.4

2.5

EH attribute syntax. 0o e e e e e

32 bit Register SwizzUpConv swizzle primitives. Notation: dcba denotes the 32 bit elements
that form one 128-bit block in the source (with 'a’ least significant and 'd' most significant), so
aaaa means that the least significant element of the 128-bit block in the source is replicated to all
four elements of the same 128-bit block in the destination; the depicted pattern is then repeated
for all four 128-bit blocks in the source and destination. We use 'ponm Ikji hgfe dcba' to denote a
full Intel® Xeon Phi" Coprocessor Instruction Set Architecture source register, where 'a' is the least
significant element and 'p' is the most significant element. However, since each 128-bit block
performs the same permutation for register swizzles, we only show the least significant block
here. Note that in this table as well as in subsequent ones from this chapter 52515 are bits 6-4
from MVEX prefix encoding (see Figure 3.3

64 bit Register SwizzUpConv swizzle primitives. Notation: dcba denotes the 64 bit elements
that form one 256-bit block in the source (with 'a’ least significant and 'd' most significant), so
aaaa means that the least significant element of the 256-bit block in the source is replicated to all
four elements of the same 256-bit block in the destination; the depicted pattern is then repeated
for the two 256-bit blocks in the source and destination. We use 'hgfe dcba' to denote a full Intel®
Xeon Phi” Coprocessor Instruction Set Architecture source register, where 'a' is the least significant
element and 'h' is the most significant element. However, since each 256-bit block performs the
same permutation for register swizzles, we only show the least significant block here.

32 bit Floating-point Load-op SwizzUpConv 3, swizzle/conversion primitives. We use 'ponm
1kji hgfe dcba' to denote a full Intel® Xeon Phi" Coprocessor Instruction Set Architecture source
register, with each letter referring to a 32 bit element, where 'a’ is the least significant element
and 'p' is the most significant element. So, for example, 'dcba dcba dcba dcba' shows that the
source elements are copied to the destination by replicating the lower 128 bits of the source (the
four least significant elements) to each 128-bit block of the destination.

32 bit Integer Load-op SwizzUpConv,3; (Doubleword) swizzle/conversion primitives. We use
'ponm IKji hgfe dcba' to denote a full Intel® Xeon Phi" Coprocessor Instruction Set Architecture
source register, with each letter referring to a 32 bit element, where 'a’ is the least significant
element and 'p' is the most significant element. So, for example, 'dcba dcba dcba dcba' shows
that the source elements are copied to the destination by replicating the lower 128 bits of the
source (the four least significant elements) to each 128-bit block of the destination.

Reference Number: 327364-001

28

30

31

15

intel
LIST OF TABLES L—/

2.6 64 bit Floating-point Load-op SwizzUpConv s, swizzle/conversion primitives. We use 'hgfe
dcba' to denote a full Intel® Xeon Phi"™ Coprocessor Instruction Set Architecture source register,
with each letter referring to a 64 bit element, where 'a’ is the least significant element and 'h'
is the most significant element. So, for example, 'dcba dcba' shows that the source elements are
copied to the destination by replicating the lower 256 bits of the source (the four least significant
elements) to each 256-bit block of the destination. 31

2.7 64 bit Integer Load-op SwizzUpConv,s, (Quadword) swizzle/conversion primitives. We use
'hgfe dcba' to denote a full Intel® Xeon Phi” Coprocessor Instruction Set Architecture source regis-
ter, with each letter referring to a 64 bit element, where 'a’ is the least significant element and 'h’
is the most significant element. So, for example, 'dcba dcba' shows that the source elements are
copied to the destination by replicating the lower 256 bits of the source (the four least significant
elements) to each 256-bit block of the destination. 31

2.8 32 bit Load UpConv load/broadcast instructions per datatype. Elements may be 1, 2, or 4 bytes
in memory prior to data conversion, after which they are always 4 bytes. We use '‘ponm Ikji hgfe
dcba' to denote a full Intel® Xeon Phi” Coprocessor Instruction Set Architecture source register,
with each letter referring to a 32 bit element, where 'a’' is the least significant element and 'p’
is the most significant element. So, for example, 'dcba dcba dcba dcba' shows that the source
elements are copied to the destination by replicating the lower 128 bits of the source (the four
least significant elements) to each 128-bit block of the destination. 32

2.9 32 bitLoad UpConv conversion primitives. 33

2.10 64 bitLoad UpConv load/broadcast instructions per datatype. Elements are always 8 bytes. We
use 'hgfe dcba' to denote a full Intel® Xeon Phi” Coprocessor Instruction Set Architecture source
register, with each letter referring to a 64 bit element, where 'a' is the least significant element and
'h'is the most significant element. So, for example, 'dcba dcba' shows that the source elements are
copied to the destination by replicating the lower 256 bits of the source (the four least significant
elements) to each 256-bit block of the destination. 33

2.11 64 bit Load UpConv conversion primitives. 34

2.12 32 bit DownConv conversion primitives. Unless otherwise noted, all conversions from floating-

pointuse MXCSR.RC e e 34
2.13 64 bit DownConv conversion primitives. 35
2.14 Static Rounding-Mode Swizzle available modes plus SAE. 36
2.15 MXCSR bit layout. Note: MXCSR bit 20 is reserved, however it is not reported as Reserved by

MXCSR_MASK. Setting this bit will result in undefined behavior 39
3.1 Operand Notation e e 48
3.2 Vector Operand Value Notation ittt 48
3.3 Size of vector or element accessed in memory for up-conversion. 49
3.3 Size of vector or element accessed in memory for up-conversion. 50
3.4 Size of vector or element accessed in memory for down-conversion 50
3.5 Prefetch behavior based on the EH (cache-line eviction hint) 51

16 Reference Number: 327364-001

.6 Load/load-op behavior basedonthe EHbit. 51

.7 Store behavior basedonthe EHbit. e 52

(ntel
LIST OF TABLES

3

3

3

.8 SwizzUpConv, UpConv and DownConv function conventions 53

4.1 Masked Responses of Intel® Xeon Phi" Coprocessor Instruction Set Architecture to Invalid Arith-

metic Operations e e e e 58
4.2 Summary of legal and illegal swizzle/conversion primitives for special instructions. 61
4.3 Rules for handling NaNs for unary and binary operations. 64
4.4 Rules for handling NaNs for fused multiply and add/sub operations (ternary). 65
4.5 Processor State Following Power-up, Reset,or INIT. 67

6.1 VADDN outcome when adding zeros depending on rounding-mode. See Signed Zeros in Sec-
tion 4.6.1.3 for other cases witharesultofzero.. 108

6.2 VADDN outcome when adding zeros depending on rounding-mode. See Signed Zeros in Sec-

tion 4.6.1.3 for other cases with aresultofzero.. 111
6.3 VCMPPDbehavior 144
6.4 VCMPPSbehavior 149
6.5 Converting to integer special floating-point values behavior 161
6.6 Converting to integer special floating-point values behavior 165
6.7 Converting to integer special floating-point values behavior 169
6.8 Converting to integer special floating-point values behavior 173
6.9 Converting float64 to float32 special values behavior 180
6.10 vexp2_lulp() special intvaluesbehavior 190
6.11 VFNMSUB outcome when adding zeros depending on rounding-mode 273
6.12 VFNMSUB outcome when adding zeros depending on rounding-mode 277
6.13 VFNMSUB outcome when adding zeros depending on rounding-mode 281
6.14 VFNMSUB outcome when adding zeros depending on rounding-mode 285
6.15 VFMADDN outcome when adding zeros depending on rounding-mode 289
6.16 VFMADDN outcome when adding zeros depending on rounding-mode 293
6.17 GetExp() special floating-point values behavior 313
6.18 GetExp() special floating-point values behavior 316
6.19 GetMant() special floating-point valuesbehavior 319

Reference Number: 327364-001 17

intel.
LIST OF TABLES L—/

6.20 GetMant() special floating-point values behavior 324
6.21 Max exception flags priority 333
6.22 Max exception flags priority 337
6.23 Min exception flags priority 341
6.24 Min exception flags priority 345
6.25 vlog2_DX() special floating-point values behavior. 373
6.26 recip_lulp() special floating-point valuesbehavior 577
6.27 RoundTolnt() special floating-point values behavior 580
6.28 RoundTolnt() special floating-point values behavior 584
6.29 rsqrt_lulp() special floating-point values behavior 588
B.3 Highest CPUID Source Operand for [A-32 Processors it i v 672
B.4 Information Returned by CPUID Instruction 673
B.5 Information Returned by CPUID Instruction (Contd.) 674
B.6 Information Returned by CPUID Instruction. 8000000xH leafs. 675
B.7 Information Returned by CPUID Instruction. 8000000xH leafs. (Contd.) 676
B.8 Feature Information Returned in the EDX Register (CPUID.EAX[01h].EDX) 680
B.9 Feature Information Returned in the EDX Register (CPUID.EAX[01h].EDX) (Contd.) 681
B.10 Feature Information Returned in the ECX Register (CPUID.EAX[0O1h].ECX) 682
C.3 Float-to-integer Max/MinValidRange 689
C.4 Float-to-float Max/Min ValidRange 690

18 Reference Number: 327364-001

5
D

LIST OF FIGURES
2.1 64 bit Execution Environment 37
2.2 Vector and Vector Mask Registers 38
3.1 New Instruction Encoding Format with MVEX Prefix 41
3.2 New Instruction Encoding Format with VEX Prefix 41
3.3 MVEXbitfields 43
3.4 VEXbitfields 45
4.1 MXCSR Control/Status Register e 56

Reference Number: 327364-001 19

5
~r
(‘L

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

This document describes new vector instructions for the Intel® Xeon Phi” coprocessor.

The major features of the new vector instructions described herein are:

A high performance 64 bit execution environment The Intel® Xeon Phi” coprocessor provides a 64 bit ex-
ecution environment (see Figure 2.1) similar to that found in the Intel64® Intel® Architecture Software
Developer's Manual. Additionally, Intel® Xeon Phi” Coprocessor Instruction Set Architecture provides basic
support for float64 and int64 logical operations.

32 new vector registers The Intel® Xeon Phi” coprocessor's 64 bit environment offers 32 512-bit wide vector
SIMD registers tailored to boost the performance of high performance computing applications. The 512-
bit vector SIMD instruction extensions provide comprehensive, native support to handle 32 bit and 64 bit
floating-point and integer data, including a rich set of conversions for native data types.

Ternary instructions Most instructions are ternary, with two sources and a different destination. Multi-
ply&add instructions are ternary with three sources, one of which is also the destination.

Vector mask support Intel® Xeon Phi” Coprocessor Instruction Set Architecture introduces 8 vector mask regis-
ters thatallow for conditional execution over the 16 (or 8) elements in a vector instruction, and merging of
the results into the destination. Masks allow vectorizing loops that contain conditional statements. Addi-
tionally, Intel® Xeon Phi” Coprocessor Instruction Set Architecture provides support for updating the value
of the vector masks with special vector instructions such as vempmps.

Coherent memory model The Intel® Xeon Phi” Coprocessor Instruction Set Architecture operates in a memory
address space that follows the standard defined by the Intel® 64 achitecture. This feature eases the process
of developing vector code.

Gather/Scatter support The Intel® Xeon Phi" Coprocessor Instruction Set Architecture features specific gather/scatter
instructions that allow manipulation of irregular data patterns of memory (by fetching sparse locations of
memory into a dense vector register or vice-versa) thus enabling vectorization of algorithms with complex
data structures.

20 Reference Number: 327364-001

5
D

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

Chapter 2

Instructions Terminology and State

The vector streaming SIMD instruction extensions are designed to enhance the performance of Intel® 64 pro-
cessors for scientific and engineering applications.

This chapter introduces Intel® Xeon Phi" Coprocessor Instruction Set Architecture terminology and relevant pro-
cessor state.

2.1 Overview of the Intel’ Xeon Phi” Coprocessor Instruction Set Archi-
tecture Extensions

2.1.1 What are vectors?

The vector is the basic working unit of the Intel® Xeon Phi" Coprocessor Instruction Set Architecture. Most instruc-
tions use at least one vector. A vector is defined as a sequence of packed data elements. For Intel® Xeon Phi" Co-
processor Instruction Set Architecture the size of a vector is 64 bytes. As the support data types are float32, int32,
float64 and int64, then a vector consists on either 16 doubleword-size elements or alternatively, 8 quadword-
size elements. Only doubleword and quadword elements are supported in Intel® Xeon Phi" Coprocessor Instruc-
tion Set Architecture.

The number of Intel® Xeon Phi" Coprocessor Instruction Set Architecture registers is 32.

Additionally, Intel® Xeon Phi” Coprocessor Instruction Set Architecture features vector masks. Vector masks allow
any set of elements in the destination to be protected from updates during the execution of any operation. A
subset of this functionality is the ability to control the vector length of the operation being performed (that is,
the span of elements being modified, from the first to the last one); however, it is not necessary that the elements
that are modified be consecutive.

2.1.2 Vector mask registers

Most Intel® Xeon Phi” Coprocessor Instruction Set Architecture vector instructions use a special extra source,
known as the write-mask, sourced from a set of 8 registers called vector mask registers. These registers contain

Reference Number: 327364-001 21

(lntel
CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

one bit for each element that can be held by a regular Intel® Xeon Phi” Coprocessor Instruction Set Architecture
vector register.

Elements are always either float32, int32, float64 or int64 and the vector size is set to 64 bytes. Therefore, a
vector register holds either 8 or 16 elements; accordingly, the length of a vector mask register is 16 bits. For 64
bit datatype instructions, only the 8 least significant bits of the vector mask register are used.

Avector maskregister affects an instruction for which it is the write-mask operand at element granularity (either
32 or 64 bits). That means that every element-sized operation and element-sized destination update by a vector
instruction is predicated on the corresponding bit of the vector mask register used as the write-mask operand.
That has two implications:

e Theinstruction's operation is not performed for an element if the corresponding write-mask bit is not
set. This implies that no exception or violation can be caused by an operation on a masked-off element.

e A destination element is not updated if the corresponding write-mask bit is not set. Thus, the mask
in effect provides a merging behavior for Intel® Xeon Phi" Coprocessor Instruction Set Architecture vector
register destinations, thereby potentially converting destinations into implicit sources, whenever a write-
mask containing any 0-bits is used.

This merging behavior, and the associated performance hazards, can also occur when writing a vector to
memory via a vector store. Vectors are written on a per element basis, based on the vector mask regis-
ter used as a write-mask. Therefore, no exception or violation can be caused by a write to a masked-off
element of a destination vector operand.

The sticky bits implemented in the MXCSR to indicate that floating-point exceptions occurred, are set based
soley upon operations on non-masked vector elements.

The value of a given mask register can be set up as a direct result of a vector comparison instruction, transferred
from a GP register, or calculated as a direct result of a logical operation between two masks.

Vector mask registers can be used for purposes other than write-masking. For example, they can be used to to
set the EFLAGS based on the 0/0xFFFF/other status of the OR of two vector mask registers. A number of the
Intel® Xeon Phi” Coprocessor Instruction Set Architecture are provided to support such uses of the vector mask
register.

2.1.2.1 Vector mask k0

The only exception to the vector mask rules described above is mask k0. Mask k0 cannot be selected as the write-
mask for a vector operation; the encoding that would be expected to select mask k0 instead selects an implicit
mask of OxFFFF, thereby effectively disabling masking. Vector mask k0 can still be used as any non-write-mask
operand for any instruction that takes vector mask operands; it just can't ever be selected as a write-mask.

2.1.2.2 Example of use

Here's an example of a masked vector operation.
The initial state of vector registers zmmO0, zmm1, and zmm?2 is:

MSB LSB
zmmO = [0x00000003 0x00000002 0x00000001 0x00000000 1] (bytes 15 through 0)

22 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

[0x00000007 0x00000006 0x00000005 0x00000004] (bytes 31 through 16)
[0x0000000B 0x0000000A 0x00000009 0x00000008] (bytes 47 through 32)
[0x0000000F 0x0000000E 0x0000000D 0x0000000C] (bytes 63 through 48)
zmml = [0x0000000F 0x0000000F 0x0000000F 0x0000000F] (bytes 15 through 0)
[0x0000000F 0x0000000F 0x0000000F 0x0000000F] (bytes 31 through 16)
[0x0000000F 0x0000000F 0x0000000F 0x0000000F] (bytes 47 through 32)
[0x0000000F 0x0000000F 0x0000000F 0x0000000F] (bytes 63 through 48)
zmm2 = [OxAAAAAAAA OxAAAAAAAA OxAAAAAAAA OxAAAAAAAA 1] (bytes 15 through 0)
[0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB] (bytes 31 through 16)
[0xCCCCCCCC 0xCCCCCCCC 0xCCCCCCCC 0xCCCCCCCC] (bytes 47 through 32)
[0xDDDDDDDD 0xDDDDDDDD 0xDDDDDDDD 0xDDDDDDDD] (bytes 63 through 48)
k3 = 0x8F03 (1000 1111 0000 0011)

Given this state, we will execute the following instruction:

vpaddd zmm2 {k3}, zmmO, zmml

The vpaddd instruction adds vector elements of 32 bit integers. Since elements are not operated upon when the
corresponding bit of the mask is not set, the temporary result would be:

[kxskoksoksrknk sokkkxkkkkx 0x00000010 0x0000000F] (bytes 15 through O0)
[sokskskokskokokskok skokskokokskokskskok koksokskskokskokk skokskokskokkkokk | (bytes 31 through 16)
[0x0000001A 0x00000019 0x00000018 0x00000017] (bytes 47 through 32)
[Ox0000001E skkskokskskskskosksk skokskoskskskokskokk skokskokskokkskkk | (bytes 63 through 48)

where "*RxRRRERE indicates that no operation is performed.

This temporary result is then written into the destination vector register, zmm2, using vector mask register k3
as the write-mask, producing the following final result:

zmm2 = [OxAAAAAAAA OxAAAAAAAA 0x00000010 0x0000000F 1]
[0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB]
[0x0000001A 0x00000019 0x00000018 0x00000017]
[0x0000001E 0xDDDDDDDD 0xDDDDDDDD 0xDDDDDDDD]

(bytes 15 through 0)
(bytes 31 through 16)
(bytes 47 through 32)
(bytes 63 through 48)

Note that for a 64 bit instruction (say vaddpd), only the 8 LSB of mask k3 (0x03) would be used to identify the
write-mask operation on each one of the 8 elements of the source/destination vectors.

2.1.3 Understanding Intel’ Xeon Phi" Coprocessor Instruction Set Architecture

Intel® Xeon Phi" Coprocessor Instruction Set Architecture can be classified depending on the nature of their

Reference Number: 327364-001 23

(lntel
CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

operands. The majority of the Intel® Xeon Phi" Coprocessor Instruction Set Architecture operate on vector regis-
ters, with a vector mask register serving as a write-mask. However, in most cases these instructions may have
one of the vector source operands stored in either memory or a vector register, and may additionally have one
or more non-vector (scalar) operands, such as a Intel® 64 general purpose register or an immediate value. Ad-
ditionally, some instructions use vector mask registers as destinations and/or explicit sources. Finally, Intel®
Xeon Phi” Coprocessor Instruction Set Architecture adds some new scalar instructions.

From the point of view of instruction formats, there are four main types of Intel® Xeon Phi" Coprocessor Instruc-
tion Set Architecture:

e Vector Instructions

e Vector Memory Instructions

Vector Mask Instructions

e New Scalar Instructions

2.1.3.1 Intel Xeon Phi" Coprocessor Instruction Set Architecture Vector Instructions

Vector instructions operate on vectors that are sourced from either registers or memory and that can be modified
prior to the operation via predefined swizzle and convert functions. The destination is usually a vector register,
though some vector instructions may have a vector mask register as either a second destination or the primary
destination.

All these instructions work in an element-wise manner: the first element of the first source vector is operated
on together with the first element of the second source vector, and the result is stored in the first element of the
destination vector; and so on for the remaining 15 (or 7) elements.

As described above, the vector mask() register that serves as the write-mask for a vector instruction determines
which element locations are actually operated upon; the mask can disable the operation and update for any
combination of element locations.

Most vector instructions have three different vector operands (typically, two sources and one destination) ex-
cept those instructions that have a single source and thus use only two operands. Additionally, most vector
instructions feature an extra operand in the form of the vector mask() register that serves as the write-mask.
Thus, we can categorize Intel® Xeon Phi" Coprocessor Instruction Set Architecture vector instructions based on
the number of vector sources they use:

Vector-Converted Vector/Memory. Vector-converted vector/memory instructions, such as vaddps (which
adds two vectors), are ternary operations that take two different sources, a vector register and a converted
vector/memory operand, and a separate destination vector register, as follows:

zmm0 <= OP(zmml, S(zmm2, m))

where zmm1 is a vector operand that is used as the first source for the instruction, S(zmm2,m) is a con-
verted vector/memory operand that is used as the second source for the instruction, and the result of
performing operation OP on the two source operands is written to vector destination register zmmo0.

A converted vector/memory operand is a source vector operand that it is obtained through the process of
applying a swizzle/conversion function to either a Intel® Xeon Phi" Coprocessor Instruction Set Architecture
vector or a memory operand. The details of the swizzle/conversion function are found in section 2.2;

24 Reference Number: 327364-001

(intel‘

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

note that its behavior varies depending on whether the operand is a register or a memory location, and,
for memory operands, on whether the instruction performs a floating-point or integer operation. Each
source memory operand must have an address that is aligned to the number of bytes of memory actually
accessed by the operand (that is, before the swizzle/convert is performed); otherwise, a #GP fault will
result.

Converted Vector/Memory. Converted vector/memory instructions, such as vcvtpu2ps (which converts a vec-

tor of unsigned integers to a vector of floats), are binary operations that take a single vector source, as
follows:

zmmO <= OP(S(zmml, m))

Vector-Vector-Converted Vector/Memory. Vector-vector-converted vector/memory instructions, of which

vfmadd*ps (multiply-add of three vectors) is a good example, are similar to the vector-converted vec-
tor/memory family of instructions; here, however, the destination vector register is used as a third source
as well:

zmm0O <= 0P(zmmO, zmml, S(zmm2, m))

2.1.3.2 Intel Xeon Phi" Coprocessor Instruction Set Architecture Vector Memory Instructions:

Vector Memory Instructions perform vector loads from and vector stores to memory, with extended conversion
support.

As with regular vector instructions, vector memory instructions transfer data from/to memory in an element-
wise fashion, with the elements that are actually transferred dictated by the contents of the vector mask that is
selected as the write-mask.

There are two basic groups of Intel® Xeon Phi” Coprocessor Instruction Set Architecture vector memory instruc-
tions, vector loads/broadcasts and vector stores.

Vector Loads/Broadcasts. A vector load/broadcast reads a memory source, performs a predefined load con-

version function, and replicates the result (in the case of broadcasts) to form a 64-byte 16-element vector
(or 8-element for 64 bit datatypes). This vector is then conditionally written element-wise to the vector
destination register, with the writes enabled or disabled according to the corresponding bits of the vector
mask register selected as the write-mask.

The size of the memory operand is a function of the type of conversion and the number of replications
to be performed on the memory operand. We call this special memory operand an up-converted memory
operand. Each source memory operand must have an address that is aligned to the number of bytes of
memory actually accessed by the operand (that is, before the swizzle/convert is performed); otherwise, a
#GP fault will result.

A Vector Load operates as follows:

zmmO <= U(m)

where U (m) is an up-converted memory operand whose contents are replicated and written to destination
register zmm0. The mnemonic dictates the degree of replication and the conversion table.

Reference Number: 327364-001 25

(lntel
CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

A special sub-case of these instructions are Vector Gathers. Vector Gathers are a special form of vector
loads where, instead of a consecutive chunks of memory, we load a sparse set of memory operands (as
many as the vector elements of the destination). Every one of those memory operands must obey the
alignment rules; otherwise, a #GP fault will result if the related write-mask bit is not disabled (set to 0).

A Vector Gather operates as follows:
zmmO <= U(mv)

where U(mwv) is a set of up-converted memory operands described by a base address, a vector of indices
and an immediate scale to apply for each index. Every one of those operands is conditionally written to
destination vector zmm0 (based on the value of the write-mask).

Vector Stores. A vector store reads a vector register source, performs a predefined store conversion function,
and writes the result to the destination memory location on a per-element basis, with the writes enabled
or disabled according to the corresponding bits of the vector mask register selected as the write-mask.

The size of the memory destination is a function of the type of conversion associated with the mnemonic.
We call this special memory operand a down-converted memory operand. Each memory destination
operand must have an address that is aligned to the number of bytes of memory accessed by the operand
(pre-conversion, if conversion is performed); otherwise, a #GP fault will result.

A Vector Store operates as follows:
m <= D(zmmO)

where zmm0 is the vector register source whose full contents are down-converted (denoted by D()), and
written to memory.

A special sub-case of these instructions are Vector Scatters. Vector Scatters are a special form of vector
stores where, instead of writing the source vector into a consecutive chuck of memory, we store each
vector element into a different memory location. Every one of those memory destinations must obey the
alignment rules; otherwise, a #GP fault will result if the related write-mask bit is not disabled (set to 0).

A Vector Scatter operates as follows:
mv <= D(zmmO)

where zmm0 is the vector register source whose full or partial contents are down-converted (denoted
by D()), and written to the set of memory locations mw, specified by a base address, a vector of indices
and an immediate scale which is applied to every index. Every one of those down-converted elements are
conditionally stored in the memory locations based on the value of the write-mask.

2.1.3.3 Intel Xeon Phi" Coprocessor Instruction Set Architecture vector mask Instructions

Vector mask instructions allow programmers to set, copy, or operate on the contents of a given vector mask.

There are three types of vector mask instructions:

e Maskread/write instructions: These instruction move data between a general-purpose integer register
and a vector mask register, or between two vector mask registers.

26 Reference Number: 327364-001

intel
Q—/ CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

« Flag instructions: This category, consisting of instructions that modify EFLAGS based on vector mask
registers, actually contains only one instruction, kortest.

e Mask logical instructions: These instructions perform standard bitwise logical operations between vec-
tor mask registers.

2.1.3.4 Intel Xeon Phi" Coprocessor Instruction Set Architecture New Scalar Instructions

In addition to vector, vector memory, and vector mask instructions, Intel® Xeon Phi" Coprocessor Instruction Set
Architecture adds a few scalar instructions as well. These instructions are useful for increasing the performance
of some critical algorithms; for example, any code that suffers reduced performance due to cache-miss latency
can benefit from the new prefetch instructions.

2.2 Intel’ Xeon Phi" Coprocessor Instruction Set Architecture Swizzles
and Converts

Data transformation, in the form of certain data conversions or element rearrangements (for loads, both at once)
of one operand, can be performed for free as part of most Intel® Xeon Phi" Coprocessor Instruction Set Architec-
ture vector instructions.

Three sorts of data transformations are available:

e Data Conversions: Sources from memory can be converted to either 32 bit signed or unsigned integer or
32 bit floating-point before being used. Supported data types in memory are float16, sint8, uint8, sint16,
and uint16 for load-op instructions

e Broadcast: If the source memory operand contains fewer than the total number of elements, it can be
broadcast (repeated) to form the full number of elements of the effective source operand (16 for 32 bit
instructions, 8 for 64 bit instructions). Broadcast can be combined with load-type conversions only; load-
op instructions can do one or the other: either broadcast, or swizzle and/or up-conversion. There are two
broadcast granularities:

- 1-element granularity where the 1 element of the source memory operand are broadcast 16 times
to form a full 16-element effective source operand (for 32 bit instructions), or 8 times to form a full
8-element effective source operand (for 64 bit instructions).

- 4-element granularity where the 4 elements of the source memory operand is broadcast 4 times
to form a full 16-element effective source operand (for 32 bit instructions), or 2 times to form a full
8-element effective source operand (for 64 bit instructions).

Broadcast is very useful for instructions that mix vector and scalar sources, where one of the sources is
common across the different operations.

e Swizzles: Sources from registers can undergo swizzle transformations (that is, they can be permuted),
although only 8 swizzles are available, all of which are limited to permuting within 4-element sets (either
of 32 bits or 64 bits each).

Intel® Xeon Phi” Coprocessor Instruction Set Architecture also introduces the concept of Rounding Mode Over-
ride or Static (per instruction) Rounding Mode, which efficiently supports the feature of determining the

Reference Number: 327364-001 27

(lntel
CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

rounding mode for arithmetic operations on a per-instruction basis. Thus one can choose the rounding mode
without having to perform costly MXCSR save-modify-restore operations.

The Intel® Xeon Phi” coprocessor extends the swizzle functionality for register-register operands in order to
provide rounding mode override capabilities for the Intel® Xeon Phi" coprocessor floating-point instructions
instead of obeying the MXCSR.RC bits. All four rounding modes are available via swizzle attribute: Round-
up, Round-down, Round-toward-zero and Round-to-nearest. The option is not available for instructions with
memory operands. On top of these options, the Intel® Xeon Phi” coprocessor introduces the SAE (suppress-
all-exceptions) attribute feature. An instruction with SAE set will not raise any kind of floating-point exception
flags, independent of the inputs.

In addition to those transformations, all Intel® Xeon Phi" Coprocessor Instruction Set Architecture memory
operands may have a special attribute, called the EH hint (eviction hint), that indicates to the processor that
the data is non-temporal - that is, it is unlikely to be reused soon enough to benefit from caching in the 1st-level
cache and should be given priority for eviction. This is, however, a hint, and the processor may implement it in
any way it chooses, including ignoring the hint entirely.

Table 2.1 shows the assembly language syntax used to indicate the presence or absence of the EH hint.

Bl Function Usage Comment

0 [eax] (no effect) regular memory operand

1 EH [eax]{eh} memory operand with Non-Temporal (Evic-
tion) hint

Table 2.1: EH attribute syntax.

Data transformations can only be performed on one source operand at most; for instructions that take two
or three source operands, the other operands are always used unmodified, exactly as they're stored in their
source registers. In no case do any of the Intel® Xeon Phi" Coprocessor Instruction Set Architecture allow using
data conversion and swizzling at the same time. Broadcasts, on the other hand, can be combined with data
conversions when performing vector loads.

Not all instructions can use all of the different data transformations. Load-op instructions (such as vector arith-
metic instructions), vector loads, and vector stores have different data transformation capabilities. We can cat-
egorize these transformation capabilities into three families:

¢ Load-Op SwizzUpConv: For aregister source, swizzle; for amemory operand, either: (a) broadcast, or (b)
convert to 32 bit floats or 32 bit signed or unsigned integers. This is used by vector arithmetic instructions
and other load-op instructions. There are two versions, one for 32 bit floating-point instructions and
another for 32 bit integer instructions; in addition, the available data transformations differ for register
and memory operands.

¢ Load UpConv: Convert from a memory operand to 32 bit floats or 32 bit signed or unsigned integers; used
by vector loads and broadcast instructions. For 32 bit floats, there are three different conversion tables
based on three different input types. See Section 2.2.2, Load UpConvert.
There is no load conversion support for 64 bit datatypes.

e DownConv: Convert from 32 bit floats or 32 bit signed or unsigned integers to a memory operand; used by
vector stores. For 32 bit floats, there are three different conversion tables based on three different output
types. See Section 2.2.3, Down-Conversion.

There is no store conversion support for 64 bit datatypes.

28 Reference Number: 327364-001

intel
L./ CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE
2.2.1 Load-Op Swizzle/Convert

Vector load-op instructions can swizzle, broadcast, or convert one of the sources; we will refer to this as the
swizzle/convert source, and we will use SwizzUpConv to describe the swizzle/convert function itself. The avail-
able SwizzUpConv transformations vary depending on whether the operand is memory or a register, and also
in the case of conversions from memory depending on whether the vector instruction is 32 bit integer, 32 bit
floating-point, 64 bit integer or 64 bit floating-point. 3 bits are used to select among the different options, so
eight options are available in each case.

When the swizzle/convert source is a register, SwizzUpConv allows the choice of one of eight swizzle primitives
(one of the eight being the identity swizzle). These swizzle functions work on either 4-byte or 8-byte elements
within 16-byte/32-byte boundaries. For 32 bit instructions, that means certain permutations of each set of four
elements (16 bytes) are supported, replicated across the four sets of four elements. When the swizzle/convert
source is a register, the functionality is the same for both integer and floating-point 32 bit instructions. Table 2.2
shows the available register-source swizzle primitives.

555150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element across 4-element packets | zmmO {aaaa}

101 broadcast b element across 4-element packets | zmmO {bbbb}

110 broadcast c element across 4-element packets | zmmO {cccc}

111 broadcast d element across 4-element packets | zmmO {dddd}

Table 2.2: 32 bit Register SwizzUpConv swizzle primitives. Notation: dcba denotes the 32 bit elements that
form one 128-bit block in the source (with 'a’ least significant and 'd' most significant), so aaaa means that the
least significant element of the 128-bit block in the source is replicated to all four elements of the same 128-
bit block in the destination; the depicted pattern is then repeated for all four 128-bit blocks in the source and
destination. We use 'ponm Ikji hgfe dcba' to denote a full Intel® Xeon Phi” Coprocessor Instruction Set Architecture
source register, where 'a’ is the least significant element and 'p' is the most significant element. However, since
each 128-bit block performs the same permutation for register swizzles, we only show the least significant block
here. Note that in this table as well as in subsequent ones from this chapter S5.51 Sy are bits 6-4 from MVEX prefix
encoding (see Figure 3.3

For 64 bit instructions, that means certain permutations of each set of four elements (32 bytes) are supported,
replicated across the two sets of four elements. When the swizzle/convert source is a register, the functionality
is the same for both integer and floating-point 64 bit instructions. Table 2.3 shows the available register-source
swizzle primitives.

When the source is a memory location, load-op swizzle/convert can perform either no transformation, 2 differ-
ent broadcasts, or four data conversions. Vector load-op instructions cannot both broadcast and perform data
conversion at the same time. The conversions available differ depending on whether the associated vector in-
struction is integer or floating-point, and whether the natural data type is 32 bit or 64 bit. (Note however that
there are no load conversions for 64 bit destination data types.)

Source memory operands may have sizes smaller than 64 bytes, expanding to the full 64 bytes of a vector source
by means of either broadcasting (replication) or data conversion.

Each source memory operand must have an address that is aligned to the number of bytes of memory actually
accessed by the operand (that is, before conversion or broadcast is performed); otherwise, a #GP fault will result.
Thus, for SwizzUpConv, any of 4-byte, 16-byte, 32-byte, or 64-byte alignment may be required.

Reference Number: 327364-001 29

5
~r
(‘L

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

555150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element across 4-element packets | zmmO {aaaa}

101 broadcast b element across 4-element packets | zmmO {bbbb}

110 broadcast c element across 4-element packets | zmmO {cccc}

111 broadcast d element across 4-element packets | zmmO {dddd}

Table 2.3: 64 bit Register SwizzUpConv swizzle primitives. Notation: dcba denotes the 64 bit elements that
form one 256-bit block in the source (with 'a’ least significant and 'd' most significant), so aaaa means that the
least significant element of the 256-bit block in the source is replicated to all four elements of the same 256-
bit block in the destination; the depicted pattern is then repeated for the two 256-bit blocks in the source and
destination. We use 'hgfe dcba' to denote a full Intel® Xeon Phi" Coprocessor Instruction Set Architecture source
register, where 'a’ is the least significant element and 'h' is the most significant element. However, since each
256-bit block performs the same permutation for register swizzles, we only show the least significant block here.

59515y || Function: Usage

000 no conversion [rax]

001 broadcast 1 element (x16) | [rax] {1to16}
010 broadcast 4 elements (x4) | [rax] {4to16}
011 float16 to float32 [rax] {float16}
100 uint8 to float32 [rax] {uint8}
101 reserved N/A

110 uint16 to float32 [rax] {uint16}
111 sint16 to float32 [rax] {sint16 }

Table 2.4: 32 bit Floating-point Load-op SwizzUpConv 3, swizzle/conversion primitives. We use 'ponm Ikji
hgfe dcba' to denote a full Intel® Xeon Phi” Coprocessor Instruction Set Architecture source register, with each
letter referring to a 32 bit element, where 'a’ is the least significant element and 'p' is the most significant el-
ement. So, for example, 'dcba dcba dcba dcba' shows that the source elements are copied to the destination
by replicating the lower 128 bits of the source (the four least significant elements) to each 128-bit block of the
destination.

Table 2.4 shows the available 32 bit floating-point swizzle primitives.

SwizzUpConv conversions to float32s are exact.

Table 2.5 shows the available 32 bit integer swizzle primitives.

Table 2.6 shows the available 64 bit floating-point swizzle primitives.

Finally, Table 2.7 shows the available 64 bit integer swizzle primitives.

2.2.2 Load Up-convert

Vector load/broadcast instructions can perform a wide array of data conversions on the data being read from
memory, and can additionally broadcast (replicate) that data across the elements of the destination vector reg-
ister depending on the instructions. The type of broadcast depends on the opcode/mnemonic being used. We

30 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

55515y || Function: Usage

000 no conversion [rax] {16t016} or [rax]
001 broadcast 1 element (x16) | [rax] {1to16}

010 broadcast 4 elements (x4) | [rax] {4to16}

011 reserved N/A

100 uint8 to uint32 [rax] {uint8}

101 sint8 to sint32 [rax] {sint8}

110 uint16 to uint32 [rax] {uint16}

111 sint16 to sint32 [rax] {sint16 }

Table 2.5: 32 bit Integer Load-op SwizzUpConv;s; (Doubleword) swizzle/conversion primitives. We use
'ponm Ikji hgfe dcba' to denote a full Intel® Xeon Phi” Coprocessor Instruction Set Architecture source register,
with each letter referring to a 32 bit element, where 'a' is the least significant element and 'p' is the most signif-
icant element. So, for example, 'dcba dcba dcba dcba’ shows that the source elements are copied to the destina-
tion by replicating the lower 128 bits of the source (the four least significant elements) to each 128-bit block of
the destination.

55515y || Function: Usage

000 no conversion [rax] {8to8} or [rax]
001 broadcast 1 element (x8) [rax] {1to8}

010 broadcast 4 elements (x2) | [rax] {4to8}

011 reserved N/A

100 reserved N/A

101 reserved N/A

110 reserved N/A

111 reserved N/A

Table 2.6: 64 bit Floating-point Load-op SwizzUpConv ;¢4 swizzle/conversion primitives. We use 'hgfe dcba'
to denote a full Intel® Xeon Phi” Coprocessor Instruction Set Architecture source register, with each letter referring
to a 64 bit element, where 'a’ is the least significant element and 'h’ is the most significant element. So, for
example, 'dcba dcba' shows that the source elements are copied to the destination by replicating the lower 256
bits of the source (the four least significant elements) to each 256-bit block of the destination.

55515y || Function: Usage

000 no conversion [rax] {8to8} or [rax]
001 broadcast 1 element (x8) [rax] {1to8}

010 broadcast 4 elements (x2) | [rax] {4to8}

011 reserved N/A

100 reserved N/A

101 reserved N/A

110 reserved N/A

111 reserved N/A

Table 2.7: 64 bit Integer Load-op SwizzUpConv,s, (Quadword) swizzle/conversion primitives. We use 'hgfe
dcba' to denote a full Intel® Xeon Phi™ Coprocessor Instruction Set Architecture source register, with each letter
referring to a 64 bit element, where 'a’ is the least significant element and 'h' is the most significant element. So,
for example, 'dcba dcba' shows that the source elements are copied to the destination by replicating the lower
256 bits of the source (the four least significant elements) to each 256-bit block of the destination.

will refer to this conversion process as up-conversion, and we will use UpConv to describe the load conversion
function itself.

Reference Number: 327364-001 31

(lntel
CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

Based on that, load instructions could be divided into the following categories:

e regular loads: load 16 elements (32 bits) or 8 elements (64 bits), convert them and write into the destina-
tion vector

e broadcast 4-elements: load 4 elements, convert them (possible only for 32 bit data types), replicate them
four times (32 bits) or two times (64 bits) and write into the destination vector

e broadcast 1-element: load 1 element, convert it (possible only for 32 bit data types), replicate it 16 times
(32 bits) or 8 times (64 bits) and write into the destination vector

Therefore, unlike load-op swizzle/conversion, Load UpConv can perform both data conversion and broadcast
simultaneously. We will refer to this process as up-conversion, and we will use Load UpConv to describe the load
conversion function itself.

When a broadcast 1-element is selected, the memory data, after data conversion, has a size of 4 bytes, and is
broadcast 16 times across all 16 elements of the destination vector register. In other words, one vector element
is fetched from memory, converted to a 32 bit float or integer, and replicated to all 16 elements of the destination
register. Using the notation where the contents of the source register are denoted {ponm lkji hgfe dcba}, with
each letter referring to a 32 bit element ('a’ being the least significant element and 'p' being the most significant
element), the source elements map to the destination register as follows:

{aaaa aaaa aaaa aaaa}

When broadcast 4-element is selected, the memory data, after data conversion, has a size of 16 bytes, and is
broadcast 4 times across the four 128-bit sets of the destination vector register. In other words, four vector
elements are fetched from memory, converted to four 32 bit floats or integers, and replicated to all four 4-element
setsinthe destination register. For this broadcast, the source elements map to the destination register as follows:

{dcba dcba dcba dcba}

Table 2.8 shows the different 32 bit Load up-conversion instructions in function of the broadcast function and
the conversion datatype. Similarly, Table 2.10 shows the different 64 bit Load up-conversion instructions in
function of the broadcast function and datatype.

Datatype Load (16-element) Broadcast 4-element Broadcast 1-element
INT32 (d) VMOVDQA32 VBROADCASTI32X4 VPBROADCASTD
FP32 (ps) VMOVAPS VBROADCASTF32X4 VBROADCASTSS

Table 2.8: 32 bit Load UpConv load/broadcast instructions per datatype. Elements may be 1, 2, or 4 bytes in
memory prior to data conversion, after which they are always 4 bytes. We use 'ponm Ikji hgfe dcba' to denote a
full Intel® Xeon Phi" Coprocessor Instruction Set Architecture source register, with each letter referring to a 32 bit
element, where 'a’ is the least significant element and 'p' is the most significant element. So, for example, 'dcba
dcba dcba dcba' shows that the source elements are copied to the destination by replicating the lower 128 bits
of the source (the four least significant elements) to each 128-bit block of the destination.

As with SwizzUpConv, UpConv may have source memory operands with sizes smaller than 64-bytes, which are
expanded to a full 64-byte vector by means of broadcast and/or data conversion. Each source memory operand
must have an address that is aligned to the number of bytes of memory actually accessed by the operand (that
is, before conversion or broadcast is performed); otherwise, a #GP fault will result. Thus, any of 1-byte, 2-byte,
4-byte, 8-byte, 16-byte, 32-byte, or 64-byte alignment may be required.

32 Reference Number: 327364-001

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

UpConv;ss (INT32)

59515y || Function: Usage

000 no conversion [rax]

001 reserved N/A

010 reserved N/A

011 reserved N/A

100 uint8 to uint32 [rax] {uint8}

101 sint8 to sint32 [rax] {sint8}

110 uint16 to uint32 [rax] {uint16}

111 sint16 to sint32 [rax] {sint16 }

UpConvss (FP32)

59515y || Function: Usage

000 no conversion [rax]

001 reserved N/A

010 reserved N/A

011 float16 to float32 [rax] {float16}

100 uint8 to float32 [rax] {uint8}

101 sint8 to float32 [rax] {sint8}

110 uint16 to float32 [rax] {uint16}

111 sint16 to float32 [rax] {sint16 }

Table 2.9: 32 bit Load UpConv conversion primitives.

Datatype Load Broadcast 4-element Broadcast 1-element
INT64 (q) VMOVDQA64 VBROADCASTI64X4 VPBROADCASTQ
FP64 (pd) VMOVAPD VBROADCASTF64X4 VBROADCASTSD

Table 2.10: 64 bit Load UpConv load/broadcast instructions per datatype. Elements are always 8 bytes. We
use 'hgfe dcba' to denote a full Intel® Xeon Phi” Coprocessor Instruction Set Architecture source register, with
each letter referring to a 64 bit element, where 'a’ is the least significant element and 'h' is the most significant
element. So, for example, 'dcba dcba' shows that the source elements are copied to the destination by replicating
the lower 256 bits of the source (the four least significant elements) to each 256-bit block of the destination.

Table 2.9 shows the available data conversion primitives for 32 bit Load UpConv and for the different datatypes
supported.

Table 2.11 shows the 64 bit counterpart of Load UpConv. As shown, no 64 bit conversions are available but the
pure "no-conversion" option.

2.2.3 Down-Conversion

Vector store instructions can perform a wide variety of data conversions to the data on the way to memory.
We will refer to this process as down-conversion, and we will use DownConv to describe the store conversion
function itself.

DownConv may have destination memory operands with sizes smaller than 64 bytes, as a result of data conver-
sion. Each destination memory operand must have an address that is aligned to the number of bytes of memory

Reference Number: 327364-001 33

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

5
~r
(‘L

UpConv;g4 (INT64)

55515y || Function: Usage

000 no conversion [rax] {8to8} or [rax]
001 reserved N/A

010 reserved N/A

011 reserved N/A

100 reserved N/A

101 reserved N/A

110 reserved N/A

111 reserved N/A

UpConv e4 (FP64)

55515y || Function: Usage

000 no conversion [rax] {8to8} or [rax]
001 reserved N/A

010 reserved N/A

011 reserved N/A

100 reserved N/A

101 reserved N/A

110 reserved N/A

111 reserved N/A

Table 2.11: 64 bit Load UpConv conversion primitives.

DownConv;ss (INT32)

595150 || Function: Usage

000 no conversion zmm1

001 reserved N/A

010 reserved N/A

011 reserved N/A

100 uint32 to uint8 zmm1 {uint8}
101 sint32 to sint8 zmm1 {sint8}
110 uint32 to uintl6 zmm1 {uint16}
111 sint32 to sint16 zmm1 {sint16 }

DownConv 3, (FP32)

S9515p || Function: Usage

000 no conversion zmm1

001 reserved N/A

010 reserved N/A

011 float32 to float16 zmm1 {float16}
100 float32 to uint8 zmm1 {uint8}
101 float32 to sint8 zmm1 {sint8}
110 float32 to uint16 zmm1 {uint16}
111 float32 to sint16 zmm1 {sint16 }

Table 2.12: 32 bit DownConv conversion primitives. Unless otherwise noted, all conversions from floating-
point use MXCSR.RC

34

Reference Number: 327364-001

5
~r
(‘L

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

DownConv;g4 (INT64)

59515y || Function: Usage
000 no conversion zmm1
001 reserved N/A
010 reserved N/A
011 reserved N/A
100 reserved N/A
101 reserved N/A
110 reserved N/A
111 reserved N/A

DownConv ss4 (FP64)

59515y || Function: Usage
000 no conversion zmm1
001 reserved N/A
010 reserved N/A
011 reserved N/A
100 reserved N/A
101 reserved N/A
110 reserved N/A
111 reserved N/A

Table 2.13: 64 bit DownConv conversion primitives.

actually accessed by the operand (that is, after data conversion is performed); otherwise, a #GP fault will result.
Thus, any of 1-byte, 2-byte, 4-byte, 8-byte, 16-byte, 32-byte, or 64-byte alignment may be required.

Table 2.12 shows the available data conversion primitives for 32 bit DownConv and for the different supported
datatypes.

Table 2.13 shows the 64 bit counterpart of DownConv. As shown, no 64 bit conversions are available but the
pure "no-conversion” option.

2.3 Static Rounding Mode

As described before, the Intel® Xeon Phi” coprocessor introduces a new instruction attribute on top of the nor-
mal register swizzles called Static (per instruction) Rounding Mode or Rounding Mode override. This attribute
allows statically applying a specific arithmetic rounding mode ignoring the value of RM bits in MXCSR.

Static Rounding Mode can be enabled in the encoding of the instruction by setting the EH bit to 1 in a register-
register vector instruction. Table 2.14 shows the available rounding modes and their encoding. On top of the
rounding-mode, the Intel® Xeon Phi” coprocessor also allows to set the SAE ("suppress-all-exceptions") at-
tribute, to disable reporting any floating-point exception flag on MXCSR. This option is available, even if the
instruction does not perform any kind of rounding.

Note that some instructions already allow to specify the rounding mode statically via immediate bits. In such
case, the immediate bits take precedence over the swizzle-specified rounding mode (in the same way that they
take precedence over the MXCSR.RC setting).

Reference Number: 327364-001 35

5
~r
(‘L

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

525150 || Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}
1xx SAE , {sae}

Table 2.14: Static Rounding-Mode Swizzle available modes plus SAE.
2.4 Intel’ Xeon Phi" coprocessor Execution Environments

The Intel® Xeon Phi” coprocessor’s support for 32 bit and 64 bit execution environments are similar to those
found in the Intel64® Intel® Architecture Software Developer's Manual. The 64 bit execution environment of the
Intel® Xeon Phi” coprocessor is shown in Figure 2.1. The layout of 512-bit vector registers and vector mask reg-
isters are shown in Figure 2.2. This section describes new features associated with the 512-bit vector registers
and the 16 bit vector mask registers.

Intel® Xeon Phi” Coprocessor Instruction Set Architecture defines two new sets of registers that hold the new
vector state. The Intel® Xeon Phi” Coprocessor Instruction Set Architecture extension uses the vector registers,
the vector mask registers and/or the x86 64 general purpose registers.

Intel® Xeon Phi” Coprocessor Instruction Set Architecture Vector Registers. The 32 registers each store store
16 doubleword/single precision floating-point entries (or 8 quadword/double precision floating-point
entries), and serve as source and destination operands for vector packed floating point and integer opera-
tions. Additionally, they may also contain memory pointer offsets used to gather and scatter data from/to
memory. These registers are referenced as zmmoO through zmm31.

Vector Mask Registers. These registers specify which vector elements are operated on and written for Intel®
Xeon Phi” Coprocessor Instruction Set Architecture vector instructions. If the Nth bit of a vector mask reg-
ister is set, then the Nth element of the destination vector is overridden with the result of the operation;
otherwise, the element remains unchanged. A vector mask register can be set using vector compare in-
structions, instructions to move contents from a GP register, or a special subset of vector mask arithmetic
instructions.

The Intel® Xeon Phi” Coprocessor Instruction Set Architecture vector instructions are able to report ex-
ceptions via MXCSR flags but never cause traps as all SIMD floating-point exceptions are always masked
(unlike Intel® SSE/Intel® AVX instructions in other processors, that may trap if floating-point exceptions
are unmasked, depending on the value of the OM/UM/IM/PM/DM/ZM bits). The reason is that the Intel®
Xeon Phi” coprocessor forces the new DUE bit (Disable Unmasked Exceptions) in the MXCSR (bit21) to be
setto 1.

On the Intel® Xeon Phi” coprocessor, both single precision and double precision floating-point instructions
use MXCSR.DAZ and MXCSR.FZ to decide whether to treat input denormals as zeros or to flush tiny results
to zero (the latter are in most cases - but not always - denormal results which are flushed to zero when
MXCSR.FZ is set to 1; see the IEEE Standard 754-2008, section 7.5, for a definition of tiny floating-point
results).

Table 2.15 shows the bit layout of the MXCSR control register.

36 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

Basic Program Execution Registers Address Space
Sixteen 64 bit 2AE4-1
Registers General-Purpose Registers
Six 1_5 bit Segment Registers
Registers
64 bits RFLAGS Register
64 hits RIP {Instruction Pointer Register)
. 0
FPU Registers
Eight 80 bit
Registers Floating-Point Data Registers
16 hits Control Register
16 bits Status Register
16 hits Tag Register
Opcode Register (11 bits)
64 bits FPU Instruction Pointer Register
64 bits FPU Data (Operand) Pointer Register

Vector Registers

Thirty-two 512 bit
Vector Registers

Reference Number: 327364-001

Registers
Fight 16 bit Wector Mask Registers
Registers
32 hits MXC5R Register

Figure 2.1: 64 bit Execution Environment

5
~r
(‘L

CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

=]
[*2)
= =
E2lalo o e T Y I o T = L i TR v O e
rd A b S A b B4 A
] .
—f T ™
oty £y
1| e &1 | s
= | = -
[T W] Ty
w | @ £
= | - f | in
el
o | e e
(=20 = on
=1 k=] o
Y S
—f T ‘_ﬁ
oy | o o
olm oy
— | —
=|= =
] ™ ~—
ul | uwy | —
——f ™
-
EE ¢
Bl =

Figure 2.2: Vector and Vector Mask Registers

38 Reference Number: 327364-001

(lntel
CHAPTER 2. INSTRUCTIONS TERMINOLOGY AND STATE

MXCSR bit 20 is reserved, however it is not reported as Reserved by MXCSR_MASK. Setting this bit will
result in undefined behavior

General-purpose registers. The sixteen general-purpose registers are available in the Intel® Xeon Phi" copro-
cessor's 64 bit mode execution environment. These registers are identical to those available in the 64 bit
execution environment described in the Intel64® Intel® Architecture Software Developer's Manual.

EFLAGS register. R/EFLAGS are updated by instructions according to the Intel64® Intel® Architecture Soft-
ware Developer's Manual. Additionally, it is also updated by the Intel® Xeon Phi” coprocessor's KORTEST
instruction.

FCW and FSW registers. Used by x87 instruction set extensions to set rounding modes, exception masks and
flags in the case of the FCW, and to keep track of exceptions in the case of the FSW.

x87 stack. An eight-element stack used to perform floating-point operations on 32/64/80-bit floating-point
data using the x87 instruction set.

Bit fields Field Description
31-22 Reserved | Reserved bits
21 DUE Disable Unmasked Exceptions (always set to 1)
20-16 Reserved | Reserved bits
15 FZ Flush To Zero
14-13 RC Rounding Control
12-7 Reserved | Reserved bits (IM/DM/ZM/OM/UM/PM in other proliferations)
6 DAZ Denormals Are Zeros
5 PE Precision Flag
4 UE Underflow Flag
3 OE Overflow Flag
2 ZE Divide-by-Zero Flag
1 DE Denormal Operation Flag
0 IE Invalid Operation Flag

Table 2.15: MXCSR bit layout. Note: MXCSR bit 20 is reserved, however it is not reported as Reserved by
MXCSR_MASK. Setting this bit will result in undefined behavior

Reference Number: 327364-001 39

5
D

CHAPTER 3. INTEL XEON PHI" COPROCESSOR INSTRUCTION SET ARCHITECTURE FORMAT

Chapter 3

Intel” Xeon Phi Coprocessor Instruction
Set Architecture Format

This chapter describes the instruction encoding format and assembly instruction syntax of new instructions
supported by the Intel® Xeon Phi" coprocessor.

3.1 Overview

The Intel® Xeon Phi™ coprocessor introduces 512-bit vector instructions operating on 512-bit vector registers
(zmmO0-zmm31), and offers vector mask registers (k0-k7) to support arich set of conditional operations on data
elements within the zmm registers. Vector instructions operating on zmm registers are encoded using a multi-
byte prefix encoding scheme, with 62H being the 1st of the multi-byte prefix. This multi-byte prefix is referred
to as MVEX in this document.

Instructions operating on the vector mask registers are encoded using another multi-byte prefix, with C4H or
C5H being the 1st of the multi-byte prefix. This multi-byte prefix is similar to the VEX prefix that is defined in
the "Intel® Architecture Instruction Set Architecture Programming Reference". We will refer to the C4H/C5H
based VEX-like prefix as "VEX" in this document. Additionally, the Intel® Xeon Phi” coprocessor also provides a
handful of new instructions operating on general-purpose registers but are encoded using VEX. In some cases,
new scalar instructions supported by the Intel® Xeon Phi” coprocessor can be encoded with either MVEX or
VEX.

40 Reference Number: 327364-001

intel
L/ CHAPTER 3. INTEL XEON PHI" COPROCESSOR INSTRUCTION SET ARCHITECTURE FORMAT

Bytes 4 1 1 0.1 0.1.24 0.1
||_'PI'Eﬂ:!{EE] MVEX OPCODE | ModR/MM [SIB] [DISP] [N
Figure 3.1: New Instruction Encoding Format with MVEX Prefix
Bytes 23 1 1 0.1 0.1.24 0.1
[Prefixes] VEX OPCODE| pPModR/MM [5IB] [DISE] [IWNd]

Figure 3.2: New Instruction Encoding Format with VEX Prefix

3.2 Instruction Formats

Instructions encoded by MVEX have the format shown in Figure 3.1.

Instructions encoded by VEX have the format shown in Figure 3.2.

3.2.1 MVEX/VEX and the LOCK prefix

Any MVEX-encoded or VEX-encoded instruction with a LOCK prefix preceding the multi-byte prefix will generate

an invalid opcode exception (#UD).

3.2.2 MVEX/VEX and the 66H, F2H, and F3H prefixes

Any MVEX-encoded or VEX-encoded instruction with a 66H, F2H, or F3H prefix preceding the multi-byte prefix
will generate an invalid opcode exception (#UD).

3.2.3 MVEX/VEX and the REX prefix

Any MVEX-encoded or VEX-encoded instruction with a REX prefix preceding the multi-byte prefix will generate

an invalid opcode exception (#UD).

Reference Number: 327364-001

41

intel
CHAPTER 3. INTEL XEON PHI" COPROCESSOR INSTRUCTION SET ARCHITECTURE FORMAT L—/

3.3 The MVEX Prefix

The MVEX prefix consists of four bytes that must lead with byte 62H. An MVEX-encoded instruction supports
up to three operands in its syntax and is operating on vectors in vector registers or memory using a vector mask
register to control the conditional processing of individual data elements in a vector. Swizzling, conversion and
other operations on data elements within a vector can be encoded with bit fields in the MVEX prefix, as shown
in Figure 3.3. The functionality of these bit fields is summarized below:

¢ 64 bit mode register specifier encoding (R, X, B, R', W, V') for memory and vector register operands (en-
coded in 1's complement form).

- Avector register as source or destination operand is encoded by combining the R'R bits with the reg
field, or the XB bits with the r/m field of the modR/M byte.

- The base of a memory operand is a general purpose register encoded by combining the B bit with the
r/m field. The index of a memory operand is a general purpose register encoded by combining the X
bit with the SIB.index field.

- The vector index operand in the gather/scatter instruction family is a vector register, encoded by
combining the VX bits with the SIB.index field. MVEX.vvvv is not used in the gather/scatter instruc-
tion family.

e Non-destructive source register specifier (applicable to the three operand syntax): This is the first source
operand in the three-operand instruction syntax. It is represented by the notation, MVEX.vvvv. It can
encode any of the lower 16 zmm vector registers, or using the low 3 bits to encode a vector mask register
as a source operand. It can be combined with V to encode any of the 32 zmm vector registers

e Vector mask register and masking control: The MVEX.aaa field encodes a vector mask register that is
used in controlling the conditional processing operation on the data elements of a 512-bit vector instruc-
tion. The MVEX.aaa field does not encode a source or a destination operand. When the encoded value of
MVEX.aaa is 000D, this corresponds to "no vector mask register will act as conditional mask for the vector
instruction".

¢ Non-temporal/eviction hint. The MVEX.E field can encode a hint to the processor on a memory referencing
instruction that the data is non-temporal and can be prioritized for eviction. When an instruction encoding
does not reference any memory operand, this bit may also be used to control the function of the MVEX.SSS
field.

e Compaction of legacy prefixes (66H, F2H, F3H): This is encoded in the MVEX.pp field.
e Compaction of two-byte and three-byte opcode: This is encoded in the MVEX.mmmm field.

e Register swizzle/memory conversion operations (broadcast/up-convert/down-convert)/static-rounding
override: This is encoded in the MVEX.SSS field.

- Swizzle operation is supported only for register-register syntax of 512-bit vector instruction, and re-
quires MVEX.E = 0, the encoding of MVEX.SSS determines the exact swizzle operation - see Section 2.2

- Static rounding override only applies to register-register syntax of vector floating-point instructions,
and requires MVEX.E = 1.

The MVEX prefix is required to be the last prefix and immediately precedes the opcode bytes.

42 Reference Number: 327364-001

CHAPTER 3. INTEL XEON PHI" COPROCESSOR INSTRUCTION SET ARCHITECTURE FORMAT

Byte 0 Byte 1 Byte 2 Byte 3
76 5 4 3 0 7654 3 2 0 7 6 43 210
62H RXBR' | mmmm W WV ol pp| |E |SSS |V kkk

RXBR’: 64-bit mode register specifier associated with reg and r'm encoding m 1’s
complement form.
rmm:

0000: may be used to encode scalar mask instructions
0001: mplied OF leading opcode byte
0010: implied OF 38 leading opcode bytes
0011: mplied OF 3A leading opcode bytes
0100-1111: Reserved for future use (will #UD)
W: Opcode extension or 64-bit osize (operand size) promotion.
Vvwvwv: A non-destructive register specifier (m 1°s complement form) or 11111 if unused.

pp: Compaction of 66/F2F3 prefix
00: None
01: 66
10: F3
11: F2

E: Non-temporal'eviction hmt.
S8S: Swizzle/broadeast/up-convert' down-convert/static-roundmg controls.
aaa: Vector mask register for masking control.

Figure 3.3: MVEX bitfields

Reference Number: 327364-001 43

intel
CHAPTER 3. INTEL XEON PHI" COPROCESSOR INSTRUCTION SET ARCHITECTURE FORMAT L—/

3.3.1 Vector SIB (VSIB) Memory Addressing

In the gather/scatter instruction family, an SIB byte that follows the ModR/M byte can support VSIB memory
addressing to an array of linear addresses. VSIB memory addressing is supported only with the MVEX prefix.

In VSIB memory addressing, the SIB byte consists of:

e The scale field (bit 7:6), which specifies the scale factor.

e The index field (bits 5:3), which is prepended with the 2-bit logical value of the MVEX.V'X bits to specify
the vector register number of the vector index operand; each element in the vector register specifies an
index.

e The base field (bits 2:0) is prepended with the logical value of MVEX.B field to specify the register number
of the base register.

3.4 The VEX Prefix

The VEX prefix is encoded in either the two-byte form (the first byte must be C5H) or in the three-byte form (the
first byte must be C4H). Beyond the first byte, the VEX prefix consists of a number of bit fields providing specific
capability; they are shown in Figure 3.4.

The functionality of the bit fields is summarized below:

e 64 bit mode register specifier encoding (R, X, B, W): The R/X/B bit field is combined with the lower three
bits or register operand encoding in the modR/M byte to access the upper half of the 16 registers available
in 64 bit mode. The VEX.R, VEX.X, VEX.B fields replace the functionality of REX.R, REX.X, REX.B bit fields.
The W bit either replaces the functionality of REX.W or serves as an opcode extension bit. The usage of the
VEX.WRXB bits is explained in detail in section 2.2.1.2 of the Intel® 64 and 1A-32 Architectures Software
developer's manual, Volume 2A. This bit is stored in 1's complement form (bit inverted format).

e Non-destructive source register specifier (applicable to three operand syntax): this is the first source
operand in the instruction syntax. It is represented by the notation, VEX.vvvv. It can encode any general-
purpose register, or using only 3 bits it can encode vector mask registers. This field is encoded using 1's
complement form (bit inverted form), i.e. RAX/KO is encoded as 1111B, and R15 is encoded as 0000B.

e Compaction of legacy prefixes (66H, F2H, F3H): This is encoded in the VEX.pp field.

e Compaction of two-byte and three-byte opcode: This is encoded in the VEX.mmmmm field.

The VEX prefix is required to be the last prefix and immediately precedes the opcode bytes. It must follow any
other prefixes. If the VEX prefix is present a REX prefix is not supported.

44 Reference Number: 327364-001

CHAPTER 3. INTEL XEON PHI" COPROCESSOR INSTRUCTION SET ARCHITECTURE FORMAT

Byte 0 Byte 1 Byte 2
(Bit Position) 7 0 7 65 4 0 7 6 3210
3-byte VEX 11000100 RXB| mmmmm w| ww |0] pp
7 0 7 6 3 210
2-byte VEX 11000101 R| ww [0]pp

RXB: 64-bit mode register specifier associated with reg and r/'m operand encoding.
=TT

00000: Reserved for future use (will #UD)

00001: mmplied OF leading opcode byte

00010: mmphed OF 38 leading opcode bytes

00011: mplied OF 3A leading opcode bytes

00100-11111: Reserved for future use (will #UD)

W: Opcode extension or 64-bit osize (operand size) promotion.
vwwv: A non-destructive register specifier (in 1's complement form) or 1111 f unused.

pp: Compaction of 66/F2F3 prefix
00: None
01: 66
10: F3
11: F2

Figure 3.4: VEX bitfields

Reference Number: 327364-001 45

CHAPTER 3. INTEL XEON PHI" COPROCESSOR INSTRUCTION SET ARCHITECTURE FORMAT

3.5 Intel’ Xeon Phi" Coprocessor Instruction Set Architecture Assembly
Syntax

Intel® Xeon Phi" Coprocessor Instruction Set Architecture supports up to three operands. The rich encoding fields
for swizzle/broadcast/convert/rounding, masking control, and non-temporal hint are expressed as modifier
expressions to the respective operands in the assembly syntax. A few common forms for the Intel® Xeon Phi"
coprocessor assembly instruction syntax are expressed in the general form:

mnemonic vreg{masking modifier}, sourcel, transform_modifier(vreg/mem)
mnemonic vreg{masking modifier}, sourcel, transform_modifier(vreg/mem), imm
mnemonic mem{masking modifier}, transform_modifier (vreg)

The specific forms to express assembly syntax operands, modifiers, and transformations are listed in Table 3.1.

3.6 Notation

The notation used to describe the operation of each instruction is given as a sequence of control and assignment
statements in C-like syntax. This document only contains the notation specifically needed for vector instructions.
Standard Intel® 64 notation may be found at IA-32 Intel® Architecture Software Developer's Manual: Volume 2
for convenience.

When instructions are represented symbolically, the following notations are used:
label: mnemonic argument1 {write-mask}, argument2, argument3, argument4, ...

where:

* A mnemonic is a reserved name for a class of instruction opcodes which have the same function.

e The operands argument1, argument2, argument3, argument4, and so on are optional. There may be from
one to three register operands, depending on the opcode. The leftmost operand is always the destina-
tion; for certain instructions, such as vfmadd231ps, it may be a source as well. When the second leftmost
operand is a vector mask register, it may in certain cases be a destination as well, as for example with the
vpsubrsetbd instruction. All other register operands are sources. There may also be additional arguments
in the form of immediate operands; for example, the vcvtfxpntdq2ps instructions has a 3-bit immediate
field that specifies the exponent adjustment to be performed, if any. The write-mask operand specifies the
vector mask mask register used to control the selective updating of elements in the destination register or
registers.

3.6.1 Operand Notation

In this manual we will consider vector registers from several perspectives. One perspective is is as an array of
64 bytes. Another is as an array of 16 doubleword elements. Another is an array of 8 quadword elements. Yet
another is as an array of 512 bits. In the mnemonic operation description pseudo-code, registers will be ad-
dressed using bit ranges, such as:

46 Reference Number: 327364-001

intel
L—/ CHAPTER 3. INTEL XEON PHI" COPROCESSOR INSTRUCTION SET ARCHITECTURE FORMAT

i = n*x32
zmml [i+31:1]

This example refers to the 32 bits of the n-th doubleword element of vector register zmm1.

We will use a similar bit-oriented notation to describe access to vector mask registers. In the case of vector mask
registers, we will usually specify a single bit, rather than a range of bits, because vector mask registers are used
for predication, carry, borrow, and comparison results, and a single bit per element is enough for any of those
purposes.

Using this notation, it is for example possible to test the value of the 12" bit in k1 as follows:

if (k1[11] ==1) { ... code here ... }

Tables 3.1 and 3.2 summarize the notation used for instruction operands and their values.

In Intel® Xeon Phi™ Coprocessor Instruction Set Architecture, the contents of vector registers are variously inter-
preted as floating-point values (either 32 or 64 bits), integer values, or simply doubleword values of no particular
data type, depending on the instruction semantics.

3.6.2 The Displacement Bytes

The Intel® Xeon Phi” coprocessor introduces a brand new displacement representation that allows for a more
compact encoding in unrolled code: compressed displacement of 8-bits, or disp8*N. Such compressed displace-
ment is based on the assumption that the effective displacement is a multiple of the granularity of the memory
access, and hence we do not need to encode the redundant low-order bits of the address offset.

Intel® Xeon Phi” Coprocessor Instruction Set Architecture using the MVEX prefix (i.e. using encoding 62) have the
following displacement options:

* No displacement

e 32 bit displacement: this displacement works exactly the same as the legacy 32 bit displacement and
works at byte granularity

e Compressed 8 bit displacement (disp8*N): this displacement format substitutes the legacy 8-bit displace-
mentin Intel® Xeon Phi” Coprocessor Instruction Set Architecture using map 62. This displacement assumes
the same granularity as the memory operand size (which is dependent on the instructions and the memory
conversion function being used). Redundant low-order bits are ignored and hence, 8-bit displacements
are reinterpreted so that they are multiplied by the memory operands total size in order to generate the
final displacement to be used in calculating the effective address.

Note that the displacements in the MVEX vector instruction prefix are encoded in exactly the same way as regular
displacements (so there are no changes in the ModRM/SIB encoding rules), with the only exception that disp8 is
overloaded to disp8*N. In other words there are no changes in the encoding rules or encoding lengths, but only
in the interpretation of the displacement value by hardware (which needs to scale the displacement by the size
of the memory operand to obtain a byte-wise address offset).

Reference Number: 327364-001 47

CHAPTER 3. INTEL’ XEON PHI" COPROCESSOR INSTRUCTION SET ARCHITECTURE FORMAT

(lntel‘

Notation Meaning

zmm1 A vector register operand in the argument1 field of the instruction. The 64 byte
vector registers are: zmmO through zmm31

zmm?2 A vector register operand in the argument2 field of the instruction. The 64 byte
vector registers are: zmmO through zmm31

zmm3 A vector register operand in the argument3 field of the instruction. The 64 byte
vector registers are: zmmO through zmm31

S¢32(zmm/m) A vector floating-point 32 bit swizzle/conversion. Refer to Table 2.2 for register
sources and Table 2.4 for memory conversions.

St64(zmm/m) A vector floating-point 64 bit swizzle/conversion. Refer to Table 2.3 for register
sources and Table 2.6 for memory conversions.

Sis2(zmm/m) A vector integer 32 bit swizzle/conversion. Refer to Table 2.2 for register sources
and Table 2.5 for memory conversions.

Siea(zmm/m) A vector integer 64 bit swizzle/conversion. Refer to Table 2.3 for register sources
and Table 2.7 for memory conversions.

Uysz(m) A floating-point 32 bit load Up-conversion. Refer to Table 2.9 for the memory
conversions available for all the different datatypes.

U,32(m) An integer 32 bit load Up-conversion. Refer to Table 2.9 for the memory conver-
sions available for all the different datatypes.

Uyea(m) A floating-point 64 bit load Up-conversion. Refer to Table 2.11 for the memory
conversions available for all the different datatypes.

Uiga(m) An integer 64 bit load Up-conversion. Refer to Table 2.11 for the memory conver-
sions available for all the different datatypes.

D ¢35(zmm) Afloating-point 32 bit store Down-conversion. Refer to Table 2.12 for the memory
conversions available for all the different datatypes.

D;32(zmm) An integer 32 bit store Down-conversion. Refer to Table 2.12 for the memory
conversions available for all the different datatypes.

D ¢64(zmm) A floating-point 64 bit store Down-conversion. Refer to Table 2.13 for the memory
conversions available for all the different datatypes.

D;g4(zmm) An integer 64 bit store Down-conversion. Refer to Table 2.13 for the memory
conversions available for all the different datatypes.

m A memory operand.

my A memory operand that may have an EH hint attribute.

muy A vector memory operand that may have an EH hint attribute. This memory

effective_address

operand is encoded using ModRM and VSIB bytes. It can be seen as a set of point-
ers where each pointer is equal to BASE + VINDEX]|i] x SCALE
Used to denote the full effective address when dealing with a memory operand.

imm8 An immediate byte value.

SRC[a-b] A bit-field from an operand ranging from LSB b to MSB a.
Table 3.1: Operand Notation

Notation Meaning

zmm1[i+31:i]
zmm2[i+31:i]

k1[i]

The value of the element located between bit ¢ and bit ¢ + 31 of the argument1
vector operand.

The value of the element located between bit ¢ and bit < + 31 of the argument2
vector operand.

Specifies the i-th bit in the vector mask register k1.

48

Table 3.2: Vector Operand Value Notation

Reference Number: 327364-001

intel
L/ CHAPTER 3. INTEL' XEON PHI" COPROCESSOR INSTRUCTION SET ARCHITECTURE FORMAT
3.6.3 Memory size and disp8*N calculation

Table 3.3 and Table 3.4 show the size of the vector (or element) being accessed in memory, which is equal to the
scaling factor for compressed displacement (disp8*N). Note that some instructions work at element granularity
instead of full vector granularity at memory level, and hence should use the "element level" column in Table 3.3
and Table 3.4 (namely VLOADUNPACK, VPACKSTORE, VGATHER, and VSCATTER instructions).

Table 3.3: Size of vector or element accessed in memory for up-

conversion
| Function || Usage \ Memory accessed / Disp8*N |

U/St32 No broadcast 4tol6 broadcast 1tol16 broadcast

or element level
000 [rax] {16t016} or [rax] 64 16 4
001 [rax] {1to16} 4 NA NA
010 [rax] {4tol16} 16 NA NA
011 [rax] {float16} 32 8 2
100 [rax] {uint8} 16 4 1
101 [rax] {sint8} 16 4 1
110 [rax] {uint16} 32 8 2
111 [rax] {sint16} 32 8 2
U/Sis2 No broadcast 4tol6 broadcast 1to16 broadcast

or element level
000 [rax] {16t016} or [rax] 64 16 4
001 [rax] {1to16} 4 NA NA
010 [rax] {4tol6} 16 NA NA
011 N/A NA NA NA
100 [rax] {uint8} 16 4 1
101 [rax] {sint8} 16 4 1
110 [rax] {uint16} 32 8 2
111 [rax] {sint16} 32 8 2
U/Ss64 No broadcast ~ 4to8 broadcast ~ 1to8 broadcast

or element level
000 [rax] {8to8} or [rax] 64 32 8
001 [rax] {1to8} 8 NA NA
010 [rax] {4to8} 32 NA NA
011 N/A NA NA NA
100 N/A NA NA NA
101 N/A NA NA NA
110 N/A NA NA NA
111 N/A NA NA NA
U/Si64 No broadcast 4t08 broadcast 1to8 broadcast

or element level
000 [rax] {8to8} or [rax] 64 32 8
001 [rax] {1to8} 8 NA NA
010 [rax] {4to8} 32 NA NA
011 N/A NA NA NA

Reference Number: 327364-001 49

intel
CHAPTER 3. INTEL XEON PHI" COPROCESSOR INSTRUCTION SET ARCHITECTURE FORMAT L/

Table 3.3: Size of vector or element accessed in memory for up-
conversion

Function || Usage Memory accessed / Disp8*N

100 N/A NA NA NA
101 N/A NA NA NA
110 N/A NA NA NA
111 N/A NA NA NA

Table 3.4: Size of vector or element accessed in memory for down-
conversion

| Function || Usage | Memory accessed / Disp8*N ||
D32 Regular store Element level
000 zmml 64 4
001 N/A NA NA
010 N/A NA NA
011 zmml1 {float16} 32 2
100 zmm1 {uint8} 16 1
101 zmm1 {sint8} 16 1
110 zmm1 {uint16} 32 2
111 zmm1 {sint16} 32 2
D64 Regular store Element level
000 zmm1 64 8
001 N/A NA NA
010 N/A NA NA
011 N/A NA NA
100 N/A NA NA
101 N/A NA NA
110 N/A NA NA
111 N/A NA NA
D;6a Regular store Element level
000 zmm1 64 8
001 N/A NA NA
010 N/A NA NA
011 N/A NA NA
100 N/A NA NA
101 N/A NA NA
110 N/A NA NA
111 N/A NA NA

50 Reference Number: 327364-001

intel
L—/ CHAPTER 3. INTEL XEON PHI" COPROCESSOR INSTRUCTION SET ARCHITECTURE FORMAT

3.7 EH hint

All vector instructions that access memory provide the option of specifying a cache-line eviction hint, EH.

EH is a performance hint, and may operate in different ways or even be completely ignored in different hardware
implementations. The Intel® Xeon Phi™ coprocessor is designed to provide support for cache-efficient access
to memory locations that have either low temporal locality of access or bursts of a few very closely bunched
accesses.

There are two distinct modes of EH hint operation, one for prefetching and one for loads, stores, and load-op
instructions.

The interaction of the EH hint with prefetching is summarized in Table 3.5.

EH value Hit behavior Miss behavior
EH not set | Make data MRU | Fetch data and make it MRU

EH set Make data MRU | Fetch data into way #N, where N is the
thread number, and make it MRU

Table 3.5: Prefetch behavior based on the EH (cache-line eviction hint)

The above table describes the effect of the EH bit on gather/scatter prefetches into the targeted cache (e.g. L1
for vgatherpfOdps, L2 for vgatherpfldps). If vgatherpfOdps misses both L1 and L2, the resulting prefetch into L1
is a non-temporal prefetch into way #N of L1, but the prefetch into L2 is a normal prefetch, not a non-temporal
prefetch. If you want the data to be non-temporally fetched into L2, you must use vgatherpfldps with the EH bit
set.

The operation of the EH hint with prefetching is designed to limit the cache impact of streaming data.

Note that regular prefetch instructions (like vprefetch0) do not have an embedded EH hint. Instead, the non-
temporal hint is given by the opcode/mnemonic (see VPREFETCHNTA/0/1/2 descriptions for details). The
same rules described in Table 3.5 still apply.

Table 3.6 summarizes the interaction of the EH hint with load and load-op instructions.

EH value L1 hit behavior | L1 miss behavior
EH not set | Make data MRU | Fetch data and make it MRU
EH set Make data LRU | Fetch data and make it MRU

Table 3.6: Load/load-op behavior based on the EH bit.

The EH bit, when used with load and load-op instructions, affects only the L1 cache behavior. Any resulting L2
misses are handled normally, regardless of the setting of the EH bit.

Table 3.7 summarizes the interaction of the EH hint with store instructions. Note that stores that write a full
cache-line (no mask, no down-conversion) evict the line from L1 (invalidation) while updating the contents
directly into the L2 cache. In any other case, a store with an EH hint works as a load with an EH hint.

The EH bit, when used with load and load-op instructions, affects only the L1 cache behavior. Any resulting L2
misses are handled normally, regardless of the setting of the EH bit.

Reference Number: 327364-001 51

5
~r
(‘L

CHAPTER 3. INTEL XEON PHI" COPROCESSOR INSTRUCTION SET ARCHITECTURE FORMAT

EH value Store type L1 hit behavior L1 miss behavior
EH not set Make data MRU Fetch data and make it MRU
EH set No mask, no downconv. | Invalidate L1 - Update L2 | Fetch data and make it MRU
EH set Mask or downconv. Make data LRU Fetch data and make it MRU

Table 3.7: Store behavior based on the EH bit.
3.8 Functions and Tables Used

Some mnemonic definitions use auxiliary tables and functions to ease the process of describing the operations of
the instruction. The following section describes those tables and functions that do not have an obvious meaning,.

3.8.1 Memload and MemStore

This document uses two functions, Mem-Load and MemStore, to describe in pseudo-code memory transfers that
involve no conversions or broadcasts:

e MemLoad: Given an address pointer, this function returns the associated data from memory. Size is de-
fined by the explicit destination size in the pseudo-code (see for example LDMXCSR in Appendix B)

e MemStore: Given an address pointer, this function stores the associated data to memory. Size is defined
by the explicit source data size in the pseudo-code.

3.8.2 SwizzUpConvLoad, UpConvlLoad and DownConvStore

In this document, the detailed discussions of memory-accessing instructions that support datatype conversion
and/or broadcast (as defined by the UpConv, SwizzUpConv, and DownConv tables in section 2.2) use the func-
tions shown in Table 3.8 in their Operation sections (the instruction pseudo-code). These functions are used
to describe any swizzle, broadcast, and/or conversion that can be performed by the instruction, as well as the
actual load in the case of SwizzUpConv and UpConv. Note that zmm/m means that the source may be either a
vector operand or a memory operand, depending on the ModR/M encoding.

The Operation section may use UpConvSizeOf, which returns the final size (in bytes) of an up-converted memory
element given a specified up-conversion mode. A specific subset of a memory stream may be used as a parameter
for UpConv; Size of the subset is inferred by the size of destination together with the up-conversion mode.

Additionally, the Operation section may also use DownConvStoreSizeOf, which returns the final size (in bytes) of
a downcoverted vector element given a specified down-conversion mode. A specific subset of a vector register

may be used as a parameter for DownConvStore; for example, DownConvStore(zmm2[31:0]) specifies that the
low 32 bits of zmm2 form the parameter for DownConv.

3.8.3 Other Functions/ldentifiers

The following identifiers are used in the algorithmic descriptions:

52 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 3. INTEL XEON PHI" COPROCESSOR INSTRUCTION SET ARCHITECTURE FORMAT

Swizzle/conversion used

Function used in operation description

Sys2(zmm/m) SwizzUpConvLoadfsz(zmm/m)
Stea(zmm/m) SwizzUpConvLoad ¢64(zmm/m)
Sise(zmm/m) SwizzUpConvLoad;s2(zmm/m)
Si¢a(zmm/m) SwizzUpConvLoad;s4(zmm/m)
Ufs2(m) UpConvLoad yz2(m)
Uigg [m) UpConVLoadigg (m)
Ugsa(m) UpConvLoad fe4(m)
Uis4(m) UpConvLoad;ss(m)
Dy3o(zmm) DownConvStore 32 (zmm) or DownConvStore y35 (zmm[xx:yy])
D;32(zmm) DownConvStore;s2(zmm) or DownConvStore;ss(zmm[xx:yy])
Dy¢gs(zmm) DownConvStore ss4(zmm) or DownConvStore s54 (zmm[xx:yy])
Djgs(zmm) DownConvStore;ss(zmm) or DownConvStore;ss (zmm[xx:yy])

Table 3.8: SwizzUpConv, UpConv and DownConv function conventions

e Carry - The carry bit from an addition.

e FpMaxAbs - The greater of the absolute values of two floating-point numbers. See the description of the
VGMAXABSPS instruction for further details.

e FpMax - The greater of two floating-point numbers. See the description of the VGMAXPS instruction for
further details.

e FpMin - The lesser of two floating-point numbers. See the description of the VGMINPS instruction for
further details.

e Abs - The absolute value of a number.

e IMax - The greater of two signed integer numbers.

e UMax - The greater of two unsigned integer numbers.

¢ IMin - The lesser of two signed integer numbers.

e UMin - The lesser of two unsigned integer numbers.

e CvtInt32ToFloat32 - Convert a signed 32 bit integer number to a 32 bit floating-point number.
e CvtInt32ToFloat64 - Convert a signed 32 bit integer number to a 64 bit floating-point number.

e CvtFloat32ToInt32 - Convert a 32 bit floating-point number to a 32 bit signed integer number using the
specified rounding mode.

¢ CvtFloat64TolInt32 - Convert a 64 bit floating-point number to a 32 bit signed integer number using the
specified rounding mode.

e CvtFloat32ToUint32 - Convert a 32 bit floating-point number to a 32 bit unsigned integer number using
the specified rounding mode.

o CvtFloat64ToUint32 - Convert a 64 bit floating-point number to a 32 bit unsigned integer number using
the specified rounding mode.

e CvtFloat32ToFloat64 - Convert a 32 bit floating-point number to a 64 bit floating-point number.

Reference Number: 327364-001 53

intel
CHAPTER 3. INTEL XEON PHI" COPROCESSOR INSTRUCTION SET ARCHITECTURE FORMAT L—/

e CvtFloat64ToFloat32 - Convert a 64 bit floating-point number to a 32 bit floating-point number using
the specified rounding mode.

e CvtUint32ToFloat32 - Convert an unsigned 32 bit integer number to a 32 bit floating-point number.
e CvtUint32ToFloat64 - Convert an unsigned 32 bit integer number to a 64 bit floating-point number.

¢ GetExp - Obtains the (un-biased) exponent of a given floating-point number, returned in the form of a 32
bit floating-point number. See the description of the VGETEXPPS instruction for further details.

¢ RoundTolnt - Rounds a floating-point number to the nearest integer, using the specified rounding mode.
The result is a floating-point representation of the rounded integer value.

e Borrow - The borrow bit from a subtraction.
e ZeroExtend - Returns a value zero-extended to the operand-size attribute of the instruction.
e FlushL1CacheLine - Flushes the cache line containing the specified memory address from L1.

 InvalidateCacheLine - Invalidate the cache line containing the specified memory address from the whole
memory cache hierarchy.

e FetchL1CacheLine - Prefetches the cache line containing the specified memory address into L1. See the
description of the VPREFETCH1 instruction for further details.

e FetchL2CacheLine - Prefetches the cache line containing the specified memory address into L2. See the
description of the VPREFETCH?2 instruction for further details.

54 Reference Number: 327364-001

intel
L/ CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE

Chapter 4

Floating-Point Environment, Memory Ad-
dressing, and Processor State

This chapter describes the Intel® Xeon Phi™ coprocessor vector floating-point instruction exception behavior
and interactions related to system programming.

4.1 Overview

The Intel® Xeon Phi” coprocessor 512-bit vector instructions that operate on floating-point data may signal
exceptions related to arithmetic processing. When SIMD floating-point exceptions occur, the Intel® Xeon Phi”
coprocessor supports exception reporting using exception flags in the MXCSR register, but traps (unmasked ex-
ceptions) are not supported.

Exceptions caused by memory accesses apply to vector floating-point, vector integer, and scalar instructions.

The MXCSR register (see Figure 4.1) in the Intel® Xeon Phi™ coprocessor provides:

e Exception flags to indicate SIMD floating-point exceptions signaled by floating-point instructions operat-
ing on zmm registers. The flags are: IE, DE, ZE, OE, UE, PE.
¢ Rounding behavior and control: DAZ, FZ and RC.

e Exception Suppression: DUE (always 1)

4.1.1 Suppress All Exceptions Attribute (SAE)

Intel® Xeon Phi” Coprocessor Instruction Set Architecture that process floating-point data support a specific fea-
ture to disable floating-point exception signaling, called SAE ("suppress all exceptions"). The SAE mode is en-
abled via a specific bit in the register swizzle field of the MVEX prefix (by setting the EH bit to 1). When SAE is
enabled in the instruction encoding, that instruction does not report any SIMD floating-point exception in the

Reference Number: 327364-001 55

intel
CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE L—/

31 21 16151413 1211109 8 7 6 5 4 3 2 1 D
R d FIR Reserved E PIUio|Z oyl
Reserved esenve 7| c Z E|E|E|E|E|E

i Disable Unmasked Exceptions J ‘
{Flush to Zero

{ Rounding Control
Denormals Are Zeros
Precision Flag
{ Underflow Flag
i Overflow Flag
i Divide-by-Zero Flag
i Denormal Flag
 Invalid Operation Flag

Figure 4.1: MXCSR Control/Status Register

MXCSR register. This feature is only available to the register-register format of the instructions and in combina-
tion with static rounding-mode.

4.1.2 SIMD Floating-Point Exceptions

SIMD floating-point exceptions are those exceptions that can be generated by Intel® Xeon Phi™ Coprocessor In-
struction Set Architecture that operate on floating-point data in zmm operands. Six classes of SIMD floating-point
exception flags can be signaled:

Invalid operation (#I)

Divide-by-zero (#Z)

Numeric overflow (#0)

Numeric underflow (#U)

Inexact result (Precision) (#P)

Denormal operand (#D)

4.1.3 SIMD Floating-Point Exception Conditions

The following sections describe the conditions that cause SIMD floating-point exceptions to be signaled, and the
masked response of the processor when these conditions are detected.

When more than one exception is encountered, then the following precedence rules are applied’.

INote that the Intel® Xeon Phi" coprocessor has no support for unmasked exceptions, so in this case the exception precedence rules
have no effect. All concurrently-encountered exceptions will be reported simultaneously.

56 Reference Number: 327364-001

@ CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE
1. Invalid-operation exception caused by sNaN operand
2. Any other invalid exception condition different from sNaN input operand
3. Denormal operand exception
4. A divide-by-zero exception
5. Overflow/underflow exception
6

. Inexact result

All Intel® Xeon Phi” Coprocessor Instruction Set Architecture floating-point exceptions are precise and are re-
ported as soon as the instruction completes execution. The status flags from the MXCSR register set by each
instruction will be the logical OR of the flags set by each of the up to 16 (or 8) individual operations. The status
flags are sticky and can be cleared only via a LDMXCSR instruction.

4.1.3.1 Invalid Operation Exception (#l)

The floating-point invalid-operation exception (#I) occurs in response to an invalid arithmetic operand. The flag
(IE) and mask (IM) bits for the invalid operation exception are bits 0 and 7, respectively, in the MXCSR register.

Intel® Xeon Phi” Coprocessor Instruction Set Architecture forces all floating-point exceptions, including invalid-
operation exceptions, to be masked. Thus, for the #I exception the value returned in the destination register
is a QNaN, QNaN Indefinite, Integer Indefinite, or one of the source operands. When a value is returned to the
destination operand, it overwrites the destination register specified by the instruction. Table 4.1 lists the invalid-
arithmetic operations that the processor detects for instructions and the masked responses to these operations.

Normally, when one or more of the source operands are QNaNs (and neither is an SNaN or in an unsupported
format), an invalid-operation exception is not generated. For VCMPPS and VCMPPD when the predicate is one
of It, le, nlt, or nle, a QNaN source operand does generate an invalid-operation exception.

Note that divide-by-zero exceptions (like all other floating-point exceptions) are always masked in the Intel®
Xeon Phi” coprocessor.

4.1.3.2 Divide-By-Zero Exception (#Z)

The processor reports a divide-by-zero exception when a VRCP23PS instruction has a 0 operand.

Note that divide-by-zero exceptions (like all other floating-point exceptions) are always masked in the Intel®
Xeon Phi" coprocessor.

4.1.3.3 Denormal Operand Exception (#D)

The processor reports a denormal operand exception when an arithmetic instruction attempts to operate on a
denormal operand and the DAZ bit in the MXCSR (the "Denormals Are Zero" bit) is not set to 0 (so that denormal
operands are not treated as zeros).

Note that denormal exceptions (like all other floating-point exceptions) are always masked in the Intel® Xeon
Phi” coprocessor.

Reference Number: 327364-001 57

CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE

Condition

(intel
Masked Response

VADDNPD, VADDNPS, VADDPD, VADDPS, VADDSETSPS, VMULPD,
VMULPS, VRCP23PS, VRSQRT32PS, VLOG2PS, VSCALEPS, VSUBPD,
VSUBPS, VSUBRPD or an VSUBRPS instruction with an SNaN
operand

Return the SNaN converted to a QNaN.
For more detailed information refer to
Table 4.3

VCMPPD or VCMPPS with QNaN or SNaN operand

Return O (except for the predicates not-
equal, unordered, not-less-than, or not-
less- than-or-equal, which return a 1)

VCVTPDZ2PS, or VCVTPS2PD instruction with an SNaN operand

Return the SNaN converted to a QNaN.

VCVTFXPNTPD2DQ, VCVTFXPNTPD2UDQ, VCVTFXPNTPS2DQ, or
VCVTFXPNTPS2DQ instruction with an NaN operand

Return a 0.

VGATHERD, VMOVAPS, VLOADUNPACKHPS, VLOADUNPACKLPS, or
VBROADCATSS instruction with SNaN operand and selected Up-
Conv32 that converts from floating-point to another floating-point
data type

Return the SNaN converted to a QNaN.

VPACKSTOREHPS, VPACKSTORELPS, VSCATTERDPS, or VMOVAPS
instruction with SNaN operand and selected a DownConv32 that
converts from float to another float datatype

Return the SNaN converted to a QNaN.

VFMADD132PD, VFMADD132PS, VFMADD213PD, VFMADD213PS,
VFMADD231PD, VFMADD233PS, VFNMSUB132PD, VFNM-
SUB132PS, VFNMSUB213PD, VFNMSUB213PS, VFNMSUB231PD,
VNMSUB231PS, VFMSUB132PD, VFMSUB132PS, VFMSUB213PD,
VFMSUB213PS, VFMSUB231PD, VFMSUB231PS, VFNMADD132PD,
VFNMADD132PS, VFNMADD213PD, VFNMADD213PS, VFN-
MADD231PD, or VFENMADD231PS instruction with an SNaN
operand.

Follow rules described in Table 4.4.

VGMAXPD, VGMAXPS, VGMINPD or VGMINPS instruction with SNaN
operand

Returns non NaN operand. If both
operands are NaN, return first source
NaN.

VGMAXABSPS instruction with SNaN operand.

Returns non NaN operand. If both
operands are NaN, return first source
NaN with its sign bit cleared.

Multiplication of infinity by zero

Return the QNaN floating-point Indefi-
nite.

VGETEXPPS, VRCP23PS, VRSQRT23PS or VRNDFXPNTPS instruc-
tion with SNaN operand

Return the SNaN converted to a QNaN.

VRSQRT23PS instruction with NaN or negative value

Return the QNaN floating-point Indefi-
nite.

Addition of opposite signed infinities or subtraction of like-signed
infinities

Return the QNaN floating-point Indefi-
nite

Table 4.1: Masked Responses of Intel® Xeon Phi” Coprocessor Instruction Set Architecture to Invalid Arithmetic

Operations

4.1.3.4 Numeric Overflow Exception (#0)

The processor reports a numeric overflow exception whenever the rounded result of an arithmetic instruction
exceeds the largest allowable finite value that fits in the destination operand.

Note that overflow exceptions (like all other floating-point exceptions) are always masked in the Intel® Xeon

58

Reference Number: 327364-001

intel
L/ CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE

Phi" coprocessor.

4.1.3.5 Numeric Underflow Exception (#U)

The processor signals an underflow exception whenever (a) the rounded result of an arithmetic instruction,
calculated assuming unbounded exponent, is less than the smallest possible normalized finite value that will fit
in the destination operand (the resultis tiny), and (b) the final rounded result, calculated with bounded exponent
determined by the destination format, is inexact.

Note that underflow exceptions (like all other floating-point exceptions) are always masked in the Intel® Xeon
Phi" coprocessor.

The flush-to-zero control bit provides an additional option for handling numeric underflow exceptions in the
Intel® Xeon Phi” coprocessor. If set (FZ = 1), tiny results (these are usually, but not always, denormal values) are
replaced by zeros of the same sign. If not set (FZ=0) then tiny results will be rounded to 0, a denormalized value,
or the smallest normalized floating-point number in the destination format, with the sign of the exact result.

4.1.3.6 Inexact Result (Precision) Exception (#P)

The inexact-result exception (also called the precision exception) occursif the result of an operation is not exactly
representable in the destination format. For example, the fraction 1/3 cannot be precisely represented in binary
form. This exception occurs frequently and indicates that some (normally acceptable) accuracy has been lost.
The exception is supported for applications that need to perform exact arithmetic only. In flush-to-zero mode,
the inexact result exception is signaled for any tiny result. (By definition, tiny results are not zero, and are flushed
to zero when MXCSR.FZ = 1 for all instructions that support this mode.)

Note that inexact exceptions (like all other floating-point exceptions) are always masked in the Intel® Xeon Phi”
COProcessor.

4.2 Denormal Flushing Control

4.2.1 Denormal control in up-conversions and down-conversions

Instruction up-conversions and down-conversions follow specific denormal flushing rules, i.e. for treating input
denormals as zeros and for flushing tiny results to zero:

4.2.1.1 Up-conversions

e Up-conversions from float16 to float32 ignore the MXCSR.DAZ setting and this never treat input denormals
as zeros. Denormal exceptions are never signaled (the MXCSR.DE flag is never set by these operations).

¢ Up-conversions from any small floating-point number (namely, float16) to float32 can never generate a
float32 output denormal

Reference Number: 327364-001 59

intel
CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE L—/

4.2.1.2 Down-conversions

e Down-conversions from float32 to float16 follow the MXCSR.DAZ setting to decide whether to treat input
denormals as zeros or not. For input denormals, the MXCSR.DE flag is set only if MXCSR.DAZ is not set,
otherwise it is left unchanged.

e Down-conversions from float32 to any integer format follow the MXCSR.DAZ setting to decide whether to
treat input denormals as zeros or not (this may matter only in directed rounding modes). The MXCSR.DE
status flag is never set.

e Down-conversions from float32 to any small floating-point number ignore MXCSR.FZ and always preserve
output denormals.

4.3 Extended Addressing Displacements

Address displacements used by memory operands to the Intel® Xeon Phi” Coprocessor Instruction Set Architec-
ture vector instructions, as well as MVEX-encoded versions of VPREFETCH and CLEVICT, operate differently than
do normal x86 displacements. Intel® Xeon Phi" Coprocessor Instruction Set Architecture 8-bit displacements (i.e.
when MOD.mod=01) are reinterpreted so that they are multiplied by the memory operand's total size in order
to generate the final displacement to be used in calculating the effective address (32 bit displacements, which
vector instructions may also use, operate normally, in the same way as for normal x86 instructions). Note that
extended 8-bit displacements are still signed integer numbers and need to be sign extended.

A given vector instruction's 8-bit displacement is always multiplied by the total number of bytes of memory
the instruction accesses, which can mean multiplication by 64, 32, 16, 8, 4, 2 or 1, depending on any broadcast
and/or data conversion in effect. Thus when reading a 64-byte (no conversion, no broadcast) source operand,
for example via

vmovaps zmmO, [rsi]

the encoded 8-bit displacement is first multiplied by 64 (shifted left by 6) before being used in the effective
address calculation. For

vbroadcastss zmmO, [rsi]{uinti16} // {1tol6} broadcast of {uintl16} data

however, the encoded displacement would be multiplied by 2. Note that for MVEX versions of VPREFETCH and
CLEVICT, we always use disp8*64; for VEX versions we use the standard x86 disp8 displacement.

The use of disp8*N makes it possible to avoid using 32 bit displacements with vector instructions most of the
time, thereby reducing code size and shrinking the required size of the paired-instruction decode window by
3 bytes. Disp8*N overcomes disp8 limitations, as it is simply too small to access enough vector operands to
be useful (only 4 64-byte operands). Moreover, although disp8*N can only generate displacements that are
multiples of N, that's not a significant limitation, since Intel® Xeon Phi" Coprocessor Instruction Set Architecture
memory operands must already be aligned to the total number of bytes of memory the instruction accesses in
order to avoid raising a #GP fault, and that alignment is exactly what disp8*N results in, given aligned base+index
addressing.

60 Reference Number: 327364-001

intel
L/ CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE
4.4 Swizzle/up-conversion exceptions

There is a set of the Intel® Xeon Phi” Coprocessor Instruction Set Architecture that do not accept all regular forms
of memory up-conversion/register swizzling and raise a #UD fault for illegal combinations. The instructions
are:

« VALIGND
« VCVTDQ2PD

« VCVTPS2PD

« VCVTUDQ2PD
« VEXP223PS

« VFMADD233PS
« VLOG2PS

« VPERMD

« VPERMF32X4
« VPMADD233D
« VPSHUFD

« VRCP23PS

« VRSQRT23PS

Table 4.2 summarizes which up-conversion/swizzling primitives are allowed for every one of those instructions:

Register Memory
Mnemonic None | {1to16} | {4to16} | swizzles | Conversions
VALIGND yes no no no no
VCVTDQ2PD yes yes yes yes no
VCVTPS2PD yes yes yes yes no
VCVTUDQZ2PD yes yes yes yes no
VEX223PS yes no no no no
VFMADD233PS yes no yes no no
VLOG2PS yes no no no no
VPERMD yes no no no no
VPERMF32X4 yes no no no no
VPMADD233D yes no yes no no
VPSHUFD yes no no no no
VRCP23PS yes no no no no
VRSQRT23PS yes no no no no

Table 4.2: Summary of legal and illegal swizzle/conversion primitives for special instructions.

Reference Number: 327364-001 61

intel
CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE L/

4.5 Accessing uncacheable memory

When accessing non cacheable memory, it's important to define the amount of data that is really accessed when
using Intel® Xeon Phi"™ Coprocessor Instruction Set Architecture (mainly when Intel® Xeon Phi" Coprocessor In-
struction Set Architecture instructions are used to access to memory mapped I/0 regions). Depending on the
memory region accessed, an access may cause that a mapped device behave differently.

Intel® Xeon Phi™ Coprocessor Instruction Set Architecture, when accessing to uncacheable memory access, can be
categorized in four different groups:

e regular memory read operations

» vloadunpackh*/vloadunpackl*

e vgatherd*

e memory store operations

4.5.1 Memory read operations

Any Intel® Xeon Phi” Coprocessor Instruction Set Architecture that read from memory, apart from vloadun-
packh*/vloadunpackl* and vgatherd, access as many consecutive bytes as dictated by the combination of mem-
ory SwizzUpConv modifiers.

4.5.2 vloadunpackh*/vlioadunpackl*

vloadunpackh#*/vloadunpackl* instructions are exceptions to the general rule. Those two instructions will
always access 64 bytes of memory. The memory region accessed is between effective_address & (0x3F) and
(effective_address & (0x3F)) + 63 in both cases.

4.5.3 vgatherd*

vgatherd instructions are able to gather to up to 16 32 bit elements. The amount of elements accessed is deter-
mined by the number of bits set in the vector mask provided as source. Vgatherd* instruction will access up to 16
different 64-byte memory regions when gathering the elements. Note that, depending on the implementation,
only one 64-byte memory access is performed for a variable number of vector elements located in that region.

Each accessed regions will be between element _effective_address & (0x3F) and (element effective_address &
(0x3F)) + 63.

4.5.4 Memory stores

All Intel® Xeon Phi” Coprocessor Instruction Set Architecture that perform memory store operations, update those
memory positions determined by the vector mask operand. Vector mask specifies which elements will be actu-
ally stored in memory. DownConv* determine the number of bytes per element that will be modified in memory.

62 Reference Number: 327364-001

intel
Q—/ CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE
4.6 Floating-point Notes

4.6.1 Rounding Modes

VRNDFXPNTPS and conversion instructions with float32 sources, such as VCVTFXPNTPS2DQ, support four se-
lectable rounding modes: round to nearest (even), round toward negative infinity (round down), round toward
positive infinity (round up), and round toward zero, These are the standard IEEE rounding modes; see I4-32
Intel® Architecture Software Developer's Manual: Volume 1, Section 4.8.4, for details.

The Intel® Xeon Phi” coprocessor introduces general support for all four rounding-modes mandated for binary
floating-point arithmetic by the IEEE Standard 754-2008.

4.6.1.1 Swizzle-explicit rounding modes

The Intel® Xeon Phi” coprocessor introduces the option of specifying the rounding-mode per instruction via a
specific register swizzle mode (by setting the EH bit to 1). This specific rounding-mode takes precedence over
whatever MXCSR.RC specifies.

For those instructions (like VRNDFXPNTPS) where an explicit rounding-mode is specified via immediate, this
immediate takes precedence over a swizzle-explicit rounding-mode embedded into the encoding of the instruc-
tion.

The priority of the rounding-modes of an instruction hence becomes (from highest to lowest):

1. Rounding mode specified in the instruction immediate (if any)
2. Rounding mode specified is the instruction swizzle attribute

3. Rounding mode specified in RC bits of the MXCSR

4.6.1.2 Definition and propagation of NaNs

The 1A-32 architecture defines two classes of NaNs: quiet NaNs (QNaNs) and signaling NaNs (SNaNs). Quiet
NaNs have 1 as their first fraction bit, SNaNs have 0 as their first fraction bit. An SNaN is quieted by setting its
first first fraction bit to 1. The class of a NaN (quiet or signaling) is preserved when converting between different
precisions.

The processor never generates an SNaN as a result of a floating-point operation with no SNaN operands, so
SNaNs must be present in the input data or have to be inserted by the software.

QNaNs are allowed to propagate through most arithmetic operations without signaling an exception. Note also
that Intel® Xeon Phi” Coprocessor Instruction Set Architecture instructions do not trap for arithmetic exceptions,
as floating-point exceptions are always masked.

If any operation has one or more NaN operands then the result, in most cases, is a QNaN that is one of the input
NaNs, quieted if it is an SNaN. This is chosen as the first NaN encountered when scanning the operands from left
to right, as presented in the instruction descriptions from Chapter 6.

If any floating-point operation with operands that are not NaNs leads to an indefinite result (e.g. 0/0,0 x oo, or
00 — 00), the result will be QNaN Indefinite: 0OxFFC00000 for 32 bit operations and 0xFFF8000000000000 for

Reference Number: 327364-001 63

intel
CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE L—/

64 bit operations.

When operating on NaNs, if the instruction does not define any other behavior, Table 4.3 describes the NaN
behavior for unary and binary instructions. Table 4.4 shows the NaN behavior for ternary fused multiply and
add/sub operations. This table can be derived by considering the operation as a concatenation of two binary op-
erations. The first binary operation, the multiply, produces the product. The second operation uses the product
as the first operand for the addition.

Source operands Result

SNaN SNaN source operand, converted into a QNaN

QNaN QNaN source operand

SNaN and QNaN First operand (if this operand is an SNaN, it is con-
verted to a QNaN)

Two SNaNs First operand converted to a QNaN

Two QNaNs First operand

SNaN and a floating-point value SNaN source operand, converted into a QNaN

QNaN and a floating-point value QNaN source operand

Table 4.3: Rules for handling NaNs for unary and binary operations.

4.6.1.3 Signed Zeros

Zero can be represented as a +-0 or a —0 depending on the sign bit. Both encodings are equal in value. The sign
of a zero result depends on the operation being performed and the rounding mode being used.

Intel® Xeon Phi” Coprocessor Instruction Set Architecture introduces the fused "multiply and add" and "multiply
and sub' operations. These consist of a multiplication (whose sign is possibly negated) followed by an addition
or subtraction, all calculated with just one rounding error.

The sign of the multiplication result is the exclusive-or of the signs of the multiplier and multiplicand, regardless
of the rounding mode (a positive number has a sign bit of 0, and a negative one, a sign bit of 1).

The sign of the addition (or subtraction) result is in general that of the exact result. However, when this result
is exactly zero, special rules apply: when the sum of two operands with opposite signs (or the difference of two
operands with like signs) is exactly zero, the sign of that sum (or difference) is +0 in all rounding modes, except
round down; in that case, the sign of an exact zero sum (or difference) is —0. This is true even if the operands
are zeros, or denormals treated as zeros because MXCSR.DAZ is set to 1. Note that x + = = — (—x) retains the
same sign as x even when x is zero; in particular, (+0) + (+0) = 40, and (—0) + (—0) = —0, in all rounding
modes.

When (a x b) + cis exactly zero, the sign of fused multiply-add/subtract shall be determined by the rules above
for a sum of operands. When the exact result of £(a x b) £ ¢ is non-zero yet the final result is zero because of
rounding, the zero result takes the sign of the exact result.

The result for "fused multiply and add" follows by applying the following algorithm:

* (24,Yd, 2z4) =DAZ applied to (Srcl, Src2, Src3) (denormal operands, if any, are treated as zeros of the same
sign as the operand; other operands are not changed)

e Resulty = x4 X yq + zq computed exactly then rounded to the destination precision.

64 Reference Number: 327364-001

CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE

intel.

65

‘[z€:€9]€21S Yaim pajerdosse

ale ENEN pue uwnjod €215 ayl Alreqiuais “[0:7€]£21S YaIm pajerdosse ale INeN pue UwWN[od 21§ ay3} 919 "UONINIISUI SIY3 J10j JuatayIp ARySIs ST sad1nos ay3 jJo uonelaidrajul sy,

‘(Areu1ay) suonesado qns/ppe pue Al[dinw pasnj .10y sNeN Suljpuey 10y sa[ny 4 a[qelL

ENeND ENeNb eENeNb eNeND ENEN ‘O[nea ‘onfea
etNeNDb tNeNDb ZNeNb eNeNb anjea ‘°NeN ‘onfea
INeND INeND INeND INeND anjea ‘anfea ‘INeN
cNeNb cNeNb eNeNDb tNeNb ENEN ‘CNEN ‘onfea
ENeND INEND INEND eNeND ENEN ‘Onfea ‘INeN
tNeND tNeNb INEND eNeNDb anea ‘°NeN ‘INeN
tNeNb tNeNb INeNb tNeNb ENEN ‘°NeN ‘INeN
pderzppewuyja pdzeTppewuya €218 2218 1218
pderzansuga pdzerqnsuya pdigzppewuja
pdgrzgnswuya pdzerqnswiuya pdygzqnsuya
pdgrzppewa pdzgrppewa pdygzgnswuja
sdgrzppewuja sdzgrppewuja pdygzppewa
sdg1zqnsuya sdzerqnswya sdyszppewuja
sdetzgqnswuja sdzepqnswuja sdygzqnsuja
psdgezppeuya sdgyzppeuya sdzeyppeuya sdygzppeuya

Reference Number: 327364-001

intel
CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE L/

e Result = FTZ applied to Resulty (tiny results are replaced by zeros of the same sign; other results are not
changed).

4.6.2 REX prefix and Intel’ Xeon Phi" Coprocessor Instruction Set Architecture inter-
actions

The REX prefix is illegal in combination with Intel® Xeon Phi" Coprocessor Instruction Set Architecture vector
instructions, or with mask and scalar instructions allocated using VEX and MVEX prefixes.

Following the Intel® 64 behavior, if the REX prefix is followed with any legacy prefix and not located just before
the opcode escape, it will be ignored.

4.7 Intel’ Xeon Phi" Coprocessor Instruction Set Architecture State
Save

The Intel® Xeon Phi™ coprocessor does not include any explicit instruction to perform context save and restore
of the Intel® Xeon Phi” coprocessor state. To perform a context save and restore we may use:

¢ Vector loads and stores for vector registers
e A combination of kmov plus scalar loads and stores for mask registers

e LDMXCSR/STMXCSR for the MXCSR state register

Note also that vector instructions raise a device-not-available (#NM) exceptions when CRO.TS is set. This allows
to perform selective lazy save and restore of state.

4.8 Intel Xeon Phi" Coprocessor Instruction Set Architecture Processor
State After Reset

Table 4.5 shows the state of the flags and other registers following power-up for the Intel® Xeon Phi” coproces-
Sor.

66 Reference Number: 327364-001

intel
L—/ CHAPTER 4. FLOATING-POINT ENVIRONMENT, MEMORY ADDRESSING, AND PROCESSOR STATE

Register Intel® Xeon Phi" coprocessor
EFLAGS 00000002H

EIP 0000FFFOH

CRO 60000010H2

CR2, CR3, CR4 00000000H

CS Selector = FOOOH; Base = FFFFO0O00H

Limit = FFFFH
AR = Present, R/W, Accessed

SS, DS, ES, FS, GS

Selector = 0000H; Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

EDX 000005xxH

EAX 04

EBX, ECX, ES], EDI, EBP, ESP 00000000H

STO through ST7 Pwr up or Reset: +0.0

FINIT/FNINIT: Unchanged

x87 FPU Control Word

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

x87 FPU Status Word

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Tag Word

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

x87 FPU Data Operand and CS
Seg. Selectors

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Data Operand and
Inst. Pointers

Pwr up or Reset: 00000000H
FINIT/FNINIT: 00000000H

MMO through MM7 NA

XMMO through XMM?7 NA

kO through k7 0000H

zmmO through zmm31 0 (64 bytes)

MXCSR 0020_0000H

GDTR, IDTR Base = 00000000H, Limit = FFFFH

AR =Present, R/W

LDTR, Task Register

Selector = 0000H, Base = 00000000H
Limit = FFFFH
AR =Present, R/W

DRO, DR1, DRZ, DR3 00000000H
DR6 FFFFOFFOH
DR7 00000400H

Time-Stamp Counter

Power up or Reset: OH
INIT: Unchanged

Perf. Counters and Event Select

Power up or Reset: O0H
INIT: Unchanged

All Other MSRs

Power up or Reset: Undefined
INIT: Unchanged

Data and Code Cache, TLBs

Invalid

MTRRs, Machine-Check

Not Implemented

APIC

Pwr up or Reset: Enabled
INIT: Unchanged

Table 4.5: Processor State Following Power-up, Reset, or INIT.

Reference Number: 327364-001

67

5
D

CHAPTER 5. INSTRUCTION SET REFERENCE

Chapter 5

Instruction Set Reference

Intel® Xeon Phi" Coprocessor Instruction Set Architecture that are described in this document follow the general
documentation convention established in this chapter.

5.1 Interpreting Instruction Reference Pages

This section describes the format of information contained in the instruction reference pages in this chapter. It
explains notational conventions and abbreviations used in these sections

5.1.1 Instruction Format

The following is an example of the format used for each instruction description in this chapter.

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W1 50 /r vaddnpd zmm1 k1, zmm2, S¢¢4(zmm3/m;) Add float64 vector
zmm?2 and float64 vector
Sf64(zmm3/mt), negate
the sum, and store the
result in zmm1, under
write-mask.

VEX.OFWO0 41 /r kand k1, k2 Perform a bitwise AND
between k1 and k2, store
resultin k1

5.1.2 Opcode Notations for MVEX Encoded Instructions

In the Instruction Summary Table, the Opcode column presents the details of each instruction byte encoding
using notations described in this section. For MVEX encoded instructions, the notations are expressed in the
following form (including the modR/M byte if applicable, and the immediate byte if applicable):

68 Reference Number: 327364-001

(lntel
CHAPTER 5. INSTRUCTION SET REFERENCE

MVEX. [NDS,NDD] . [512] . [66,F2,F3] .OF/OF3A/0F38. [WO,W1] opcode [/r] [/ib]

e MVEX: indicates the presence of the MVEX prefix is required. The MVEX prefix consists of 4 bytes with the
leading byte 62H.
The encoding of various sub-fields of the MVEX prefix is described using the following notations:

- NDS,NDD: specifies that MVEX.vvvv field is valid for the encoding of a register operand:

* MVEX.NDS: MVEX.vvvv encodes the first source register in an instruction syntax where the con-
tent of source registers will be preserved. To encode a vector register in the range zmm16-
zmm31, the MVEX.vvvv field is pre-pended with MVEX.V'.

* MVEX.NDD: MVEX.vvvv encodes the destination register that cannot be encoded by ModR/M:reg
field. To encode a vector register in the range zmm16-zmm31, the MVEX.vvvv field is pre-pended
with MVEX.V".

* If none of NDS, NDD is present, MVEX.vvvv must be 1111b (i.e. MVEX.vvvv does not encode an
operand).

- 66,F2,F3: The presence or absence of these value maps to the MVEX.pp field encodings. If absent,
this corresponds to MVEX.pp=00B. If present, the corresponding MVEX.pp value affects the "opcode”
byte in the same way as if a SIMD prefix (66H, F2H or F3H) does to the ensuing opcode byte. Thus a
non-zero encoding of MVEX.pp may be considered as an implied 66H/F2H/F3H prefix.

- OEOF3A,0F38: The presence of these values maps to a valid encoding of the MVEX.mmmm field. Only
three encoded values of MVEX.mmmm are defined as valid, corresponding to the escape byte se-
quence of OFH, OF3AH and 0F38H.

- W0: MVEX.W=0

- W1: MVEX.W=1

- The presence of WO/W1 in the opcode column applies to two situations: (a) it is treated as an ex-
tended opcode bit, (b) the instruction semantics support an operand size promotion to 64 bit of a
general-purpose register operand or a 32 bit memory operand.

¢ opcode: Instruction opcode.
e /r: Indicates that the ModR/M byte of the instruction contains a register operand and an r/m operand.
e /vsib: Indicates the memory addressing uses the vector SIB byte.

e ib: A 1-byte immediate operand to the instruction that follows the opcode, ModR /M bytes or scale/indexing
bytes.

In general, the encoding of the MVEX.R, MVEX.X, MVEX.B, and MVEX.V' fields are not shown explicitly in the
opcode column. The encoding scheme of MVEX.R, MVEX.X, MVEX.B, and MVEX.V' fields must follow the rules
defined in Chapter 3.

5.1.3 Opcode Notations for VEX Encoded Instructions

In the Instruction Summary Table, the Opcode column presents the details of each instruction byte encoding
using notations described in this section. For VEX encoded instructions, the notations are expressed in the fol-
lowing form (including the modR/M byte if applicable, the immediate byte if applicable):

VEX. [NDS,NDD] . [66,F2,F3] .0F/0F3A/0F38. [WO,W1] opcode [/r] [/ib]

Reference Number: 327364-001 69

(lntel
CHAPTER 5. INSTRUCTION SET REFERENCE

70

VEX: indicates the presence of the VEX prefix is required. The VEX prefix can be encoded using the
three-byte form (the first byte is C4H), or using the two-byte form (the first byte is C5H). The two-byte
form of VEX only applies to those instructions that do not require the following fields to be encoded:
VEX.mmmmm, VEX.W, VEX.X, VEX.B. Refer to Chapter 3 for more details on the VEX prefix.

The encoding of various sub-fields of the VEX prefix is described using the following notations:

- NDS,NDD: specifies that VEX.vvvv field is valid for the encoding of a register operand:

* VEX.NDS: VEX.vvvv encodes the first source register in an instruction syntax where the content
of source registers will be preserved.

* VEX.NDD: VEX.vvvv encodes the destination register that cannot be encoded by ModR/M:reg
field.

* If none of NDS, NDD is present, VEX.vvvv must be 1111b (i.e. VEX.vvvv does not encode an
operand). The VEX.vvvv field can be encoded using either the 2-byte or 3-byte form of the VEX
prefix.

- 66,F2,F3: The presence or absence of these value maps to the VEX.pp field encodings. If absent, this
corresponds to VEX.pp=00B. If present, the corresponding VEX.pp value affects the "opcode" byte in
the same way as if a SIMD prefix (66H, F2H or F3H) does to the ensuing opcode byte. Thus a non-zero
encoding of VEX.pp may be considered as an implied 66H/F2H/F3H prefix. The VEX.pp field may be
encoded using either the 2-byte or 3-byte form of the VEX prefix.

- OEOF3A,0F38: The presence of these values maps to a valid encoding of the VEX.mmmmm field. Only
three encoded values of VEX.mmmmm are defined as valid, corresponding to the escape byte se-
quence of 0FH, OF3AH and 0F38H. The effect of a valid VEX.mmmmm encoding on the ensuing opcode
byte is same as if the corresponding escape byte sequence on the ensuing opcode byte for non-VEX
encoded instructions. Thus a valid encoding of VEX.mmmmm may be consider as an implies escape
byte sequence of either OFH, OF3AH or 0F38H. The VEX.mmmmm field must be encoded using the
3-byte form of VEX prefix.

- OEOF3A,0F38 and 2-byte/3-byte VEX: The presence of 0F3A and 0F38 in the opcode column implies
that opcode can only be encoded by the three-byte form of VEX. The presence of OF in the opcode
column does not preclude the opcode to be encoded by the two-byte of VEX if the semantics of the
opcode does not require any subfield of VEX not present in the two-byte form of the VEX prefix.

- WO0: VEX.W=0
- W1: VEXW=1

- The presence of WO/W1 in the opcode column applies to two situations: (a) it is treated as an ex-
tended opcode bit, (b) the instruction semantics support an operand size promotion to 64 bit of a
general-purpose register operand or a 32 bit memory operand. The presence of W1 in the opcode
column implies the opcode must be encoded using the 3-byte form of the VEX prefix. The presence
of WO in the opcode column does not preclude the opcode to be encoded using the C5H form of the
VEX prefix, if the semantics of the opcode does not require other VEX subfields not present in the
two-byte form of the VEX prefix.

opcode: Instruction opcode.
/r: Indicates that the ModR/M byte of the instruction contains a register operand and an r/m operand.

ib: A 1-byte immediate operand to the instruction that follows the opcode, ModR/M bytes or scale /indexing
bytes.

In general, the encoding of the VEX.R, VEX X, and VEX.B fields are not shown explicitly in the opcode col-
umn. The encoding scheme of VEX.R, VEX.X, and VEX.B fields must follow the rules defined in Chapter
3.

Reference Number: 327364-001

=
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Chapter 6

Instruction Descriptions

This Chapter defines all of the Intel® Xeon Phi" Coprocessor Instruction Set Architecture vector instructions. Note:
Some instruction descriptions refer to the 5SS or 5251 Sy, which are bits 6-4 from the MVEX prefix encoding.

See Table 2.14 for more details

Reference Number: 327364-001 71

CHAPTER 6. INSTRUCTION DESCRIPTIONS

6.1

72

Vector Mask Instructions

Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

JKNZD - Jump near if mask is not zero

Opcode Instruction Description

VEX.NDS.128.0FWO0 85 id jknzd k1, rel32 Jump near if mask is not zero.

VEX.NDS.128.W0 75 ib jknzd k1, rel8 Jump near if mask is not zero.
Description

Checks the value of source mask, and if not all mask bits are set to 0, performs a jump to
the target instruction specified by the destination operand. If the condition is not satis-
fied, the jump is not performed and execution continues with the instruction following
the instruction.

The target instruction is specified with a relative offset (a signed offset relative to the
current value of the instruction pointer in the EIP register). A relative offset (rel8, rel16,
or rel32) is generally specified as a label in assembly code, but at the machine code level,
itis encoded as a signed, 8-bit or 32 bitimmediate value, which is added to the instruction
pointer. Instruction coding is most efficient for offsets of -128 to +127. If the operand-size
attribute is 16, the upper two bytes of the EIP register are cleared, resulting in a maximum
instruction pointer size of 16 bits.

The instruction does not support far jumps (jumps to other code segments). When the
target for the conditional jump is in a different segment, use the opposite condition from
the condition being tested for the JKNZD instruction, and then access the target with an
unconditional far jump (JMP instruction) to the other segment. For example, the following
conditional far jump is illegal:

JKNZD FARLABEL;
To accomplish this far jump, use the following two instructions:

JKZD BEYOND;
JMP FARLABEL;
BEYOND:

This conditional jump is converted to code fetch of one or two cache lines, regardless of
jump address or cacheability.

In 64 bit mode, operand size (OSIZE) is fixed at 64 bits. JMP Short is RIP = RIP + 8-bit
offset sign extended to 64 bits. JMP Near is RIP = RIP + 32 bit offset sign extended to 64
bits.

Reference Number: 327364-001 73

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

if (k1[15:0]!=0)
{
tempEIP = EIP + SignExtend(DEST);

if (OSIZE == 16)
{

tempEIP = tempEIP & OOOOFFFFH;
}

if (*tempEIP is not within code segment limit*)

{

#GP (0) ;
}
else

{
EIP = tempEIP
by

Flags Affected

None.

Intel” C/C++ Compiler Intrinsic Equivalent

None.

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

74 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

#GP(0) If the memory address is in a non-canonical form.
#NM If CRO.TS[bit 3]=1.
If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001 75

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

JKZD - Jump near if mask is zero

Opcode Instruction Description

VEX.NDS.128.0FWO0 84 id jkzd k1, rel32 Jump near if mask is zero.

VEX.NDS.128.W0 74 ib jkzd k1, rel8 Jump near if mask is zero.
Description

Checks the value of source mask, and if all mask bits are set to 0, performs a jump to the
target instruction specified by the destination operand. If the condition is not satisfied,
the jump is not performed and execution continues with the instruction following the in-
struction.

The target instruction is specified with a relative offset (a signed offset relative to the
current value of the instruction pointer in the EIP register). A relative offset (rel8, rel16,
or rel32) is generally specified as a label in assembly code, but at the machine code level,
itis encoded as a signed, 8-bit or 32 bitimmediate value, which is added to the instruction
pointer. Instruction coding is most efficient for offsets of -128 to +127. If the operand-size
attribute is 16, the upper two bytes of the EIP register are cleared, resulting in a maximum
instruction pointer size of 16 bits.

The instruction does not support far jumps (jumps to other code segments). When the
target for the conditional jump is in a different segment, use the opposite condition from
the condition being tested for the JKNZD instruction, and then access the target with an
unconditional far jump (JMP instruction) to the other segment. For example, the following
conditional far jump is illegal:

JKZD FARLABEL;
To accomplish this far jump, use the following two instructions:

JKNZD BEYOND;
JMP FARLABEL;
BEYOND:

This conditional jump is converted to code fetch of one or two cache lines, regardless of
jump address or cacheability.

In 64 bit mode, operand size (OSIZE) is fixed at 64 bits. JMP Short is RIP = RIP + 8-bit
offset sign extended to 64 bits. JMP Near is RIP = RIP + 32 bit offset sign extended to 64
bits.

76 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

if (k1[15:0]==0)
{
tempEIP = EIP + SignExtend(DEST);

if (OSIZE == 16)
{

tempEIP = tempEIP & OOOOFFFFH;
}

if (*tempEIP is not within code segment limit*)

{

#GP (0) ;
}
else

{
EIP = tempEIP
by

Flags Affected

None.

Intel” C/C++ Compiler Intrinsic Equivalent

None.

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

Reference Number: 327364-001 77

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#GP(0) If the memory address is in a non-canonical form.
#NM If CRO.TS[bit 3]=1.
If preceded by any REX, FO, F2, F3, or 66 prefixes.

78 Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KAND - AND Vector Mask

Opcode Instruction Description
VEX.128.0EWO0 41 /r kand k1, k2 Perform a bitwise AND between vector masks
k1 and k2 and store the result in vector mask
k1.
Description

Performs a bitwise AND between the vector masks k2 and the vector mask k1, and writes
the result into vector mask k1.

Operation

for (n = 0; n < 16; n++) {
ki[n] = k1[n] & k2[n]
}

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

_mmaskl6 _mmb512_kand (_mmask16, _mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001 79

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#NM If CRO.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 prefixes.

80 Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KANDN - AND NOT Vector Mask

Opcode Instruction Description

VEX.128.0EWO0 42 /r kandn k1, k2 Perform a bitwise AND between NOT (vector
mask k1) and vector mask k2 and store the re-
sult in vector mask k1.

Description

Performs a bitwise AND between vector mask k2, and the NOT (bitwise logical negation)
of vector mask k1, and writes the result into vector mask k1.

Operation

for (n = 0; n < 16; n++) {
ki[n] = (~(k1[n])) & k2[n]
}

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

_mmaskl6 _mm512_kandn (_mmask16, _mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001 81

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#NM If CRO.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 prefixes.

82 Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KANDNR - Reverse AND NOT Vector Mask

Opcode Instruction Description

VEX.128.0EWO0 43 /r kandnr k1, k2 Perform a bitwise AND between NOT (vector
mask k2) and vector mask k1 and store the re-
sult in vector mask k1.

Description

Performs a bitwise AND between the NOT (bitwise logical negation) of vector mask k2,
and the vector mask k1, and writes the result into vector mask k1.

Operation

for (n = 0; n < 16; n++) {
ki[n] = ~(k2[n]) & k1[n]
}

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

_mmaskl6 _mm512_kandnr (_mmask16, _mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001 83

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#NM If CRO.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 prefixes.

84 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

KCONCATH - Pack and Move High Vector Mask

Opcode Instruction Description
VEX.NDS.128.0EW0 95 /r kconcath r64,k1,k2 Concatenate vector masks k1 and k2 into the high part
of register r64.

Description

Packs vector masks k1 and k2 and moves the result to the high 32 bits of destination reg-
ister r64. The rest of the destination register is zeroed.

Operation

TMP[15:0] = k2[15:0]
TMP[31:16] = k1[15:0]
r64[31:0] = 0
r64(63:32] = TMP

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

_int64 _mmb512_kconcathi_64(_mmask16, _mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001 85

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If destination is a memory operand.

86 Reference Number: 327364-001

(intel”

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KCONCATL - Pack and Move Low Vector Mask

Opcode
VEX.NDS.128.0EW0 97 /r

Instruction
kconcatl r64, k1, k2

Description
Concatenate vector masks k1 and k2 into the low part of
register r64.

Description

Packs vector masks k1 and k2 and moves the result to the low 32 bits of destination reg-
ister r64. The rest of the destination register is zeroed.

Operation

TMP[15:0] = k2[15:0]

TMP[31:16] = k1[15:0]

r64[31:0] = TMP
r64[63:32] = 0

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

_int64 _mmb512_kconcatlo_64(_mmask16,__mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

Reference Number: 327364-001

Instruction not available in these modes

87

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If destination is a memory operand.

88 Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KEXTRACT - Extract Vector Mask From Register

Opcode Instruction Description
VEX.128.66.0F3A.W0 3E /rib kextractkl, r64,imm8 Extract field from general purpose register r64
into vector mask k1 using imm8.

Description

Extract the 16-bit field selected by imm8[1:0] from general purpose register r64 and write
the result into destination mask register k1.

Operation
index = imm8([1:0] * 16

k1[15:0] = r64[index+15:index]

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

_mmaskl6 _mmb512_kextract_64(__int64, const in);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001 89

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If source is a memory operand.

90 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

KMERGEZ2L1H - Swap and Merge High Element Portion and Low Portion of
Vector Masks

Opcode Instruction Description
VEX.128.0FEW0 48 /r kmerge2l1h k1,k2 Concatenate the low half of vector mask k2 and the high half of
vector mask k1 and store the result in the vector mask k1.

Description

Move high element from vector mask register k1 into low element of vector mask register
k1, and insert low element of k2 into the high portion of vector mask register k1.

Operation

tmp = k1[15:8]
k1[15:8] = k2[7:0]
k1[7:0] = tmp

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent
_mmaskl6 _mmb512_kmerge2l1lh (_mmask16, _mmask16 k2);
Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001 91

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#NM If CRO.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 prefixes.

92 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

KMERGEZL1L - Move Low Element Portion into High Portion of Vector
Mask

Opcode Instruction Description
VEX.128.0FEW0 49 /r kmerge2l11kl, k2 Movelow half of vector mask k2 into the high half of vector mask
k1.
Description

Insertlow element from vector mask register k2 into high element of vector mask register
k1. Low element of k1 remains unchanged.

Operation
k1[15:8] = k2[7:0]

*k1[7:0] remains unchangedsx

Flags Affected

None.

Intel” C/C++ Compiler Intrinsic Equivalent

_mmaskl6 _mmb512_kmerge2l1l (_mmask16, _mmask16 k2);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001 93

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#NM If CRO.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 prefixes.

94 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KMOV - Move Vector Mask

Opcode Instruction Description

VEX.128.0EW090 /r kmov k1, k2 Move vector mask k2 and store the result in k1.
VEX.128.0FEW093 /r kmovr32,k2 Move vector mask k2 to general purpose register r32.
VEX.128.0EW092 /r kmovkl,r32 Move general purpose register r32 to vector mask k1.

Description

Either the vector mask register k2 or the general purpose register r32 is read, and its
contents written into destination general purpose register r32 or vector mask register k1;
however, general purpose register to general purpose register copies are not supported.
When the destination is a general purpose register, the 16 bit value that is copied is zero-
extended to the maximum operand size in the current mode.

Operation

if (DEST is a general purpose register) {
DEST[63:16] = 0
DEST[15:0] = k2[15:0]
} else if(DEST is vector mask and SRC is a general purpose register) {
k1[15:0] = SRC[15:0]
} else {
k1[15:0] = k2[15:0]

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

_mmaskl6 _mmb512_kmov (_mmask16);
_mmaskl6 _mmb512_int2mask (int);
int _mmb512_mask2int (_mmask16);

Reference Number: 327364-001 95

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If source/destination is a memory operand.

96 Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KNOT - Not Vector Mask

Opcode Instruction Description
VEX.128.0FEWO0 44 /r knot k1, k2 Perform a bitwise NOT on vector mask k2 and
store the result in k1.

Description

Performs the bitwise NOT of the vector mask k2, and writes the result into vector mask
k1.

Operation

for (n = 0; n < 16; n++) {
ki[n] = ~ k2[n]
}

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

_mmaskl6 _mmb512_knot(_mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001 97

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#NM If CRO.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 prefixes.

98 Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KOR - OR Vector Masks

Opcode Instruction Description
VEX.128.0EWO0 45 /r kor k1, k2 vector masks k1 and k2 and store the result in
vector mask k1.

Description

Performs a bitwise OR between the vector mask k2, and the vector mask k1, and writes
the result into vector mask k1.

Operation

for (n = 0; n < 16; n++) {
ki[n] = k1[n] | k2[n]
}

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

_mmaskl6 _mmb512_kor(_mmask16, _mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001 99

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#NM If CRO.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 prefixes.

100 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
D

KORTEST - OR Vector Mask And Set EFLAGS

Opcode Instruction Description
VEX.128.0FEWO0 98 /r kortest k1, k2 vector masks k1 and k2 and update ZF and CF
EFLAGS accordingly.
Description

Performs a bitwise OR between the vector mask register k2, and the vector mask register
k1, and sets CF and ZF based on the operation result.

ZF flag is set if both sources are 0x0. CF is set if, after the OR operation is done, the oper-
ation resultisall 1's.

Operation
CF = 1
ZF =1

for (n = 0; n < 16; n++) {
tmp = (ki[n] | k2[n])
ZF &= (tmp == 0x0)
CF &= (tmp == 0x1)

}

Flags Affected

o The ZF flag is set if the result of OR-ing both sources is all 0s
e The CF flag is set if the result of OR-ing both sources is all 1s
e The OF, SF, AF, and PF flags are set to 0.

Intel’ C/C++ Compiler Intrinsic Equivalent

int _mmb512_kortestz (_mmask16, _mmask16);
int _mmb512_kortestc (_mmask16, _mmask16);

Reference Number: 327364-001 101

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

102 Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KXNOR - XNOR Vector Masks

Opcode Instruction Description

vector mask k1.

VEX.128.0EWO0 46 /r kxnor k1, k2 vector masks k1 and k2 and store the result in

Description

Performs a bitwise XNOR between the vector mask k1 and the vector mask k2, and the
result is written into vector mask k1.

The primary purpose of this instruction is to provide a way to set a vector mask register
to OxFFFF in a single clock; this is accomplished by selecting the source and destination to
be the same mask register. In this case the result will be 0OxFFFF regardless of the original
contents of the register.

Operation

for (n = 0; n < 16; n++) {
ki[n] = ~(k1[n] ~ k2[n])
}

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

_mmaskl6 _mmb512_kxnor (_mmask16, _mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

Reference Number: 327364-001

103

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#UD Instruction not available in these modes
64 bit Mode
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

104 Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

KXOR - XOR Vector Masks

Opcode Instruction Description
VEX.128.0EW0 47 /r kxor k1, k2 vector masks k1 and k2 and store the result in
vector mask k1.
Description

Performs a bitwise XOR between the vector mask k2, and the vector mask k1, and writes

the result into vector mask k1.

Operation

for (n = 0; n < 16; n++) {
ki[n] = k1[n] ~ k2[n]
}

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

_mmaskl6 _mmb512_kxor (_mmask16, _mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001

105

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#NM If CRO.TS[bit 3]=1.
If preceded by any REX, F0, F2, F3, or 66 prefixes.

106 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

6.2 Vector Instructions

Reference Number: 327364-001 107

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel‘

VADDNPD - Add and Negate Float64 Vectors

Opcode Instruction

50 /r St64(zmm3/m;)

Description

MVEX.NDS.512.66.0F38.W1 vaddnpd zmm1 {kl1}, zmm2, Add float64 vector zmm2 and float64 vector

St64(zmm3/m;), negate the sum, and store the
result in zmm1, under write-mask.

Description

Performs an element-by-element addition between float64 vector zmm2 and the float64
vector result of the swizzle/broadcast/conversion process on memory or float64 vector
zmm3, then negates the result. The final result is written into float64 vector zmm1.

Note that all the operations must be performed before rounding.

Xy RN/RU/RZ

+0 +0 || (-0) +(-0) =-0 | (-0)
+0 -0 || (0) +(+0) =+0 | (-0)
-0 +0 || (+0) +(-0) =+0 | (+0)
0 -0] (+0) +(+0) =+0 | (+0)

RD
+(-0) =-0
+(+0) =-0
+(-0) =-0
+(+0) =+0

Table 6.1: VADDN outcome when adding zeros depending on rounding-mode. See Signed Zeros in Section 4.6.1.3

for other cases with a result of zero.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm?1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvload fe4 (zmm3/7m;)
}

for (n = 0; n < 8; n++) {
if(k1[n] !'= 0) {
i = 64*n
// float64 operation

zmml [i+63:i] = (-zmm2[i+63:i]) + (-tmpSrc3[i+63:1])

}

108

Reference Number: 327364-001

(intel”

CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Intel” C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_addn_pd(_m512d, _m512d);

_m512d _mmb512_mask _addn_pd(_m512d, _mmask8, _m512d, _m512d);

Memory Up-conversion: Sy,

59515y || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001

109

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

110

Register Swizzle: S,

MVEX.EH=0
555150 || Function: 4 x 64 bits Usage
000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1
59515y || Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}
Exceptions
Real-Address Mode and Virtual-8086
#UD Instruction not available in these modes
Protected and Compatibility Mode
#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VADDNPS - Add and Negate Float32 Vectors

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W0 vaddnps zmm1l {k1}, zmm2, Add float32 vector zmm2 and float32 vector

50 /r S¢32(zmm3/m;) S¢32(zmm3/m;), negate the sum, and store the
result in zmm1, under write-mask.

Description

Performs an element-by-element addition between float32 vector zmm2 and the float32
vector result of the swizzle/broadcast/conversion process on memory or float32 vector
zmm3, then negates the result. The final result is written into float32 vector zmm1.

Note that all the operations must be performed before rounding.

X y RN/RU/RZ RD

+0 +0|| (-0) +(0) =-0 | (-0) +(0) =-0
+0 -0 || (-0) +(+0) =+0 | (-0) +(+0) =-0
-0 40| (+0) +(-0) =+0 | (+0) +(-0) =-0
-0 -0 (+0) +(+0) =40 | (+0) +(+0) =+0

Table 6.2: VADDN outcome when adding zeros depending on rounding-mode. See Signed Zeros in Section 4.6.1.3
for other cases with a result of zero.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm?1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {

if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvload y3p (zmm3/m;)
}

for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {
i = 32*n
// float32 operation
zmml [i+31:i] = (-zmm2[i+31:i]) + (~tmpSrc3[i+31:i])
}

Reference Number: 327364-001 111

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
D

}

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_addn_ps (_m512, _m512);

_m512 _mmb512_mask_addn_ps (_m512, _mmask16, _m512, _m512);

Memory Up-conversion: S¢;,

55515y || Function: Usage disp8*N
000 no conversion [rax] {16t016} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 float16 to float32 [rax] {float16} 32

100 uint8 to float32 [rax] {uint8} 16

110 uint16 to float32 [rax] {uint16} 32

111 sint16 to float32 [rax] {sint16} 32

112

Reference Number: 327364-001

(intel‘

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sy,
MVEX.EH=0
555150 || Function: 4 x 32 bits Usage
000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1
59515y || Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}
Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

Instruction not available in these modes

64 bit Mode

#55(0)

#GP(0)

If a memory address referencing the SS segment is
in a non-canonical form.
If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.

#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001

113

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel‘“

VADDPD - Add Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0EW1 vaddpd zmml {kl1}, zmm2, Add float64 vector zmm2 and float64 vector
58 /r Stea(zmm3/m,) St64(zmm3/m;) and store the result in zmm1,
under write-mask.
Description

Performs an element-by-element addition between float64 vector zmm2 and the float64
vector result of the swizzle/broadcast/conversion process on memory or float64 vector

zmma3. The result is written into float64 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm?1 with

the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {

if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvload fe4 (zmm3/7m;)
}

for (n = 0; n < 8; n++) {
if(k1[n] !'= 0) {
i = 64*n
// float64 operation
zmml [i+63:i] = zmm2[i+63:1i] + tmpSrc3[i+63:1]
}
}

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

114

Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling
Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_add_pd(_m512d, _m512d);

_m512d _mmb512_mask_add_pd(_m512d, _mmask8, _m512d, _m512d);

Memory Up-conversion: S g,

525150 || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001

115

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

116

Register Swizzle: S,

MVEX.EH=0
555150 || Function: 4 x 64 bits Usage
000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1
59515y || Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}
Exceptions
Real-Address Mode and Virtual-8086
#UD Instruction not available in these modes
Protected and Compatibility Mode
#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VADDPS - Add Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.0FW058 /r vaddps zmml {k1}, zmm2, Add float32 vector zmm2 and float32 vector
S¢32(zmm3/my) S t32(zmm3/m;) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element addition between float32 vector zmm2 and the float32
vector result of the swizzle/broadcast/conversion process on memory or float32 vector
zmma3. The result is written into float32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm?1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {

if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvload y3p (zmm3/m;)
}

for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {
i = 32*n
// float32 operation
zmml [i+31:i] = zmm2[i+31:i] + tmpSrc3[i+31:i]
}
}

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Reference Number: 327364-001 117

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
D

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb512
_mb12

Memory Up-conversion: S¢;,

_mmb512_add_ps (_m512, _m512);
_mmb512_mask_add_ps (_m512, _mmask16, _m512, _m512);

525150

Function:

Usage

disp8*N

000
001
010
011
100
110
111

no conversion

broadcast 1 element (x16)
broadcast 4 elements (x4)
float16 to float32

uint8 to float32

uint16 to float32

sint16 to float32

[rax] {16to16} or [rax]
[rax] {1to16}
[rax] {4to16}
[rax] {float16}
[rax] {uint8}
[rax] {uint16}
[rax] {sint16}

64

16
32
16
32
32

118

Reference Number: 327364-001

(intel‘

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sy,
MVEX.EH=0
555150 || Function: 4 x 32 bits Usage
000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1
59515y || Rounding Mode Override Usage
000 Round To Nearest (even) , {rn}
001 Round Down (-INF) , {rd}
010 Round Up (+INF) , {ru}
011 Round Toward Zero , {rz}
100 Round To Nearest (even) with SAE , {rn-sae}
101 Round Down (-INF) with SAE , {rd-sae}
110 Round Up (+INF) with SAE , {ru-sae}
111 Round Toward Zero with SAE , {rz-sae}
Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

Instruction not available in these modes

64 bit Mode

#55(0)

#GP(0)

If a memory address referencing the SS segment is
in a non-canonical form.
If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.

#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001

119

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel‘

VADDSETSPS - Add Float32 Vectors and Set Mask to Sign

Opcode Instruction

MVEX.NDS.512.66.0F38.W0 CC /r vaddsetsps zmm1 {k1}, zmm2, S¢32(zmm3/m;)

Description

Add float32 vec-
tor zmm2 and
float32 vector
Syz2(zmm3/my)
and store the sum in
zmm1 and the sign
from the sum in k1,
under write-mask.

Description

Performs an element-by-element addition between float32 vector zmm2 and the float32
vector result of the swizzle /broadcast/conversion process on memory or float32 vector

zmm3. The result is written into float32 vector zmmJ1.

In addition, the sign of the result for the n-th element is written into the n-th bit of vector

mask k1.

It is the sign bit of the final result that gets copied to the destination, as opposed to the

result of comparison with zero.

This instruction is write-masked, so only those elements with the corresponding bit set in
vector mask register k1 are computed and stored into zmm1 and k1. Elements in zmm1

and k1 with the corresponding bit clear in k1 register retain their previous value.

Operation

if (source is a register operand and MVEX.EH bit is 1) {

if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvLoad y3p (zmm3/m;)
}

for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {
i = 32*n
// float32 operation
zmml [i+31:i] = zmm2[i+31:1] + tmpSrc3[i+31:i]
k1[n] = zmml[i+31]

120

Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_addsets_ps (_m512, _m512, _mmask16*);
_m512 _mmb512_mask addsets_ps (_mb512, _mmaskl6, _m512 , _m512,
__mmask16*);

Memory Up-conversion: Sys;

525150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 float16 to float32 [rax] {float16} 32

100 uint8 to float32 [rax] {uint8} 16

110 uint16 to float32 [rax] {uint16} 32

111 sint16 to float32 [rax] {sint16} 32

Reference Number: 327364-001 121

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

122

Register Swizzle: Sy,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_addsets_ps (_m512, _m512, _mmask16*);
_m512 _mmb512_mask addsets_ps (_m512, _ mmaskl6, _m512
_mmask16*);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is

)

_mb12,

Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If no write mask is provided or selected write-mask is kO.

Reference Number: 327364-001 123

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VALIGND - Align Doubleword Vectors

124

Opcode Instruction Description
MVEX.NDS.512.66.0F3A.W0 valignd zmm1l {k1}, zmm2, Shift right and merge vectors zmm2 and
03 /rib zmm3/m;, offset zmm3/m; with doubleword granularity using

offset as number of elements to shift, and store
the final result in zmm1, under write-mask.

Description

Concatenates and shifts right doubleword elements from vector zmm2 and memory/vector
zmma3. The result is written into vector zmm1.

No swizzle, broadcast, or conversion is performed by this instruction.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

src[511:0] = zmm3/m;

// Concatenate sources
tmp[511:0] = src[511:0]
tmp[1023:512] = zmm2[511:0]

// Shift right doubleword elements
SHIFT = imm8[3:0]
tmp[1023:0] = tmp[1023:0] >> (32*SHIFT)

// Apply write-mask
for (n = 0; n < 16; n++) {
if (x1[n] !'= 0) {
i = 32%n
zmml [i+31:i] = tmp[i+31:i]
}
}

Reference Number: 327364-001

(intel“

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_alignr_epi32 (_m512i,__mb512i, const int);
_m512i _mmb512_mask_ alignr_epi32 (_m512i, _mmask16, _m512i, _m512i, const int);

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode
#SS(0)
#GP(0)

#PF (fault-code)
#NM

Reference Number: 327364-001

Instruction not available in these modes

If a memory address referencing the SS segment is

in a non-canonical form.

If the memory address is in a non-canonical form.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

This instruction does not support any

SwizzUpConv different from the default value (no broadcast,
no conversion). If SwizzUpConv function is set to any value
different than "no action”, then an Invalid Opcode fault is
raised. This includes register swizzles.

125

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VBLENDMPD - Blend Float64 Vectors using the Instruction Mask

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W1 vblendmpd zmm1 {k1}, zmm2, Blend float64 vector zmm2 and float64 vector

65 /r Stea(zmm3/my) St64(zmm3/m;) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element blending between float64 vector zmm2 and the float64
vector result of the swizzle /broadcast/conversion process on memory or float64 vector
zmm3, using the instruction mask as selector. The result is written into float64 vector
zmm1.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector: every element of the destination is conditionally selected between first
source or second source using the value of the related mask bit (0 for first source, 1 for
second source).

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = tmpSrc3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoades (tmpSrc3/m;)

}

for (n = 0; n < 8; n++) {
if(k1[n]==1 or *no write-mask*) {
zmml [i+63:1] = tmpSrc3[i+63:i]
} else {
zmml [1+63:i] = zmm2[i+63:1i]

}

SIMD Floating-Point Exceptions

None.

126 Reference Number: 327364-001

(intel“

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :

NO

Flush Tiny Results To Zero :

NO

Memory Up-conversion: Sy,

S951S5p || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Sy,

MVEX.EH=0

559515y || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb512d

_mmb512_mask_blend_pd (_mmask8, _m512d, _m512d);

Reference Number: 327364-001

127

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

128 Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VBLENDMPS - Blend Float32 Vectors using the Instruction Mask

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W0 vblendmps zmm1 {kl1}, zmm2, Blend float32 vector zmm2 and float32 vector

65 /r S¢32(zmm3/my) St32(zmm3/m;) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element blending between float32 vector zmm?2 and the float32
vector result of the swizzle/broadcast/conversion process on memory or float32 vector
zmm3, using the instruction mask as selector. The result is written into float32 vector
zmml.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector: every element of the destination is conditionally selected between first
source or second source using the value of the related mask bit (0 for first source, 1 for
second source).

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = tmpSrc3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad e (tmpSrc3/m;)

}

for (n = 0; n < 16; n++) {
if(k1[n]==1 or *no write-mask*) {
zmml [i+31:i] = tmpSrc3[i+31:i]
} else {
zmml [i+31:i] = zmm2[i+31:i]

}

SIMD Floating-Point Exceptions

Invalid.

Reference Number: 327364-001 129

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘l

Denormal Handling

Treat Input Denormals As Zeros :

NO

Flush Tiny Results To Zero :

NO

Memory Up-conversion: Sys;

525150

Function:

Usage

disp8*N

000
001
010
011
100
110
111

no conversion

broadcast 1 element (x16)
broadcast 4 elements (x4)
float16 to float32

uint8 to float32

uint16 to float32

sint16 to float32

rax] {16to16} or [rax]
rax| {1to16}
rax| {4to16}

rax] {uint8}
rax] {uint16}
rax] {sint16}

[rax]
[rax]
[rax]
[rax] {float16}
[rax]
[rax]
[rax]

64

16
32
16
32
32

Register Swizzle: S¢s,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmm0 {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb512

Exceptions

Real-Address Mode and Virtual-8086

#UD

130

Instruction not available in these modes

_mmb512_mask_blend_ps (_mmask16, _m512, _m512);

Reference Number: 327364-001

(intel‘“

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Protected and Compatibility Mode

#UD

64 bit Mode
#SS(0)

#GP(0)

#PF(fault-code)
#NM

Reference Number: 327364-001

Instruction not available in these modes

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

131

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel“

VBROADCASTF32X4 - Broadcast 4xFloat32 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W0 1A vbroadcastf32x4 zmml {k1}, Broadcast 4xfloat32 vector Ussz(m;) into vec-
/r Uygsa(my) tor zmm1, under write-mask.

Description

The 4, 8 or 16 bytes (depending on the conversion and broadcast in effect) at memory
address m; are broadcast and/or converted to a float32 vector. The result is written into

float32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with

the corresponding bit clear in k1 retain their previous values.

Operation

// {4to16}

tmpSrc2[127:0] = UpConvLoad f33 (1)

for (n = 0; n < 16; n++) {
if (ki[n] !'= 0) {
i = 32*n
j =i & OxTF

zmml [i+31:1] = tmpSrc2[j+31:3j])

}
}

Flags Affected

Invalid.

Memory Up-conversion: Uy s,

S95150 || Function: Usage disp8*N
000 no conversion [rax] 16

001 reserved N/A N/A
010 reserved N/A N/A
011 float16 to float32 [rax] {float16} 8

100 uint8 to float32 [rax] {uint8} 4

101 sint8 to float32 [rax] {sint8} 4

110 uint16 to float32 [rax] {uint16} 8

111 sint16 to float32 [rax] {sint16} 8

132

Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_extload_ps (void const*,_ MM_UPCONV_PS_ENUM,
_MM_BROADCAST32_ENUM, int);
_m512 _mmb512_mask_extload_ps (_mb512, __mmask16, void

const*, MM_UPCONV_PS_ENUM, _MM_BROADCAST32_ENUM, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001 133

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VBROADCASTF64X4 - Broadcast 4xFloat64 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W1 1B vbroadcastf64x4 zmml {kl}, Broadcast 4xfloat64 vector Uyess(m;) into vec-
/r Ugea(my) tor zmm1, under write-mask.

Description

The 32 bytes at memory address m; are broadcast to a float64 vector. The resultis written

into float64 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set

in vector mask register k1

are computed and stored into zmm1. Elements in zmm1 with

the corresponding bit clear in k1 retain their previous values.

Operation

// {4to8%}

tmpSrc2[255:0] = UpConvLoad fe4 (1m4)
for (n = 0; n < 8; n++) {

if (ki[n] !'= 0) {

zmml [i+63:1] = tmpSrc2[j+63:j])

i = 64*n
j = i & OxFF
}
}
Flags Affected
None.

Memory Up-conversion: Uy,

59515y || Function: Usage disp8*N
000 no conversion [rax] 32

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

134

Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_extload_pd (void const*,_MM_UPCONV_PD_ENUM,
_MM_BROADCAST64_ENUM, int);
_m512d _mmb512_mask_extload_pd (_mb512, __mmasks, void const*,

_MM_UPCONV_PD_ENUM, _MM_BROADCAST64_ENUM, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001 135

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel“

VBROADCASTI32X4 - Broadcast 4xInt32 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W0 5A vbroadcasti32x4 zmm1l {kl1}, Broadcast 4xint32 vector U;33(m.) into vector
/r Uiz2(my) zmm1, under write-mask.

Description

The 4, 8 or 16 bytes (depending on the conversion and broadcast in effect) at memory
address m; are broadcast and/or converted to a int32 vector. The result is written into

int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with

the corresponding bit clear in k1 retain their previous values.

Operation

// {4to16}
tmpSrc2[127:0] = UpConvLoad;3s (m;)
for (n = 0; n < 16; n++) {
if (k1[n] '= 0) {
i = 32*n
j =i & Ox7TF
zmml [i+31:i] =
}
}

tmpSrc2[j+31:3])

Flags Affected

None.

Memory Up-conversion: U;s,

S95150 || Function: Usage disp8*N
000 no conversion [rax] 16

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 4

101 sint8 to sint32 [rax] {sint8} 4

110 uint16 to uint32 [rax] {uint16} 8

111 sint16 to sint32 [rax] {sint16} 8

136

Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_extload_epi32 (void const*,_ MM_UPCONV_EPI32_ENUM,
_MM_BROADCAST32_ENUM, int);
_m512i _mmb512_mask_extload_epi32 (_m512i, __mmask16, void const*,

_MM_UPCONV_EPI32_ENUM, _MM_BROADCAST32_ENUM, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001 137

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VBROADCASTI64X4 - Broadcast 4xInt64 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W1 5B vbroadcasti64x4 zmm1l {kl1}, Broadcast 4xint64 vector U;s4(m;) into vector
/r Uisa(ms) zmm1, under write-mask.

Description

The 32 bytes at memory address m; are broadcast to a int64 vector. The result is written

into int64 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set

in vector mask register k1

are computed and stored into zmm1. Elements in zmm1 with

the corresponding bit clear in k1 retain their previous values.

Operation

// {4to8%}

tmpSrc2[265:0] = UpConvLoad;gs (1)
for (n = 0; n < 8; n++) {

if (ki[n] !'= 0) {

zmml [i+63:1] = tmpSrc2[j+63:j])

i = 64*n
j = i & OxFF
}
}
Flags Affected
None.

Memory Up-conversion: U,

59515y || Function: Usage disp8*N
000 no conversion [rax] 32

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

138

Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_extload_epi64 (void const*,_ MM_UPCONV_EPI64_ENUM,
_MM_BROADCAST64_ENUM, int);
_m512i _mmb512_mask_extload_epi64 (_m512i, __mmasks, void const*,

_MM_UPCONV_EPI64_ENUM, _MM_BROADCAST64_ENUM, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001 139

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VBROADCASTSD - Broadcast Float64 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W1 19 vbroadcastsd zmm1 {k1}, Broadcast float64 vector Uys4(m;) into vector
/r Ugsa(my) zmm1, under write-mask.

Description

The 8 bytes at memory address m; are broadcast to a float64 vector. The result is written
into float64 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

// {1to8%}
tmpSrc2[63:0] = UpConvLoad e (1)
for (n = 0; n < 8; n++) {
if (ki[n] !'= 0) {
i = 64*n
zmml [i+63:1] = tmpSrc2[63:0]
}
}

Flags Affected

None.

Memory Up-conversion: Uy,

59515y || Function: Usage disp8*N
000 no conversion [rax] 8

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

140 Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_extload_pd (void const*,_MM_UPCONV_PD_ENUM,
_MM_BROADCAST64_ENUM, int);
_m512d _mmb512_mask_extload_pd (_mb512, __mmasks, void const*,

_MM_UPCONV_PD_ENUM, _MM_BROADCAST64_ENUM, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001 141

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VBROADCASTSS - Broadcast Float32 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W0 18 vbroadcastss zmm1 {k1}, Broadcast float32 vector Uyss(m;) into vector
/r Ugsa(my) zmm1, under write-mask.

Description

The 1, 2, or 4 bytes (depending on the conversion and broadcast in effect) at memory
address m, are broadcast and/or converted to a float32 vector. The result is written into
float32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

// {1to16}
tmpSrc2[31:0] = UpConvLoad gz (my)
for (n = 0; n < 16; n++) {
if (xi[n] '=0) {
i = 32*n
zmml [i+31:i] = tmpSrc2[31:0]
}
}

Flags Affected

Invalid.

Memory Up-conversion: Uys,

S95150 || Function: Usage disp8*N
000 no conversion [rax] 4

001 reserved N/A N/A
010 reserved N/A N/A
011 float16 to float32 [rax] {float16} 2

100 uint8 to float32 [rax] {uint8} 1

101 sint8 to float32 [rax] {sint8} 1

110 uint16 to float32 [rax] {uint16} 2

111 sint16 to float32 [rax] {sint16} 2

142 Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_extload_ps (void const*,_ MM_UPCONV_PS_ENUM,
_MM_BROADCAST32_ENUM, int);
_m512 _mmb512_mask_extload_ps (_mb512, __mmask16, void const¥,

_MM_UPCONV_PS_ENUM, "MM_BROADCAST32_ENUM, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001 143

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel‘

VCMPPD - Compare Float64 Vectors and Set Vector Mask

Opcode
MVEX.NDS.512.66.0EW1 C2 /rib

Instruction

vemppd k2 {k1}, zmm1, S¢¢4(zmm2/m;), imm8

Description
Compare between
float64 vector zmm1
and float64 vector
Sf64 (meZ/mt)

and store the re-
sult in k2, under
write-mask.

Description

Performs an element-by-element comparison between float64 vector zmm1 and the
float64 vector result of the swizzle /broadcast/conversion from memory or float64 vector
zmm2. The result is written into vector mask k2.

Note: If DAZ=1, denormals are treated as zeros in the comparison (original source regis-
ters untouched). untouched). +0 equals —0. Comparison with NaN returns false.

Infinity of like signs, are considered equals. Infinity values of either signs are considered

ordered values.

Table 6.3 summarizes VCMPPD behavior, in particular showing how various NaN results
can be produced.

Predicate | Imm8 enc | Description Emulation If NaN | QNaN operand signals invalid
{eq} 000 A=B False No
{It} 001 A<B False Yes
{le} 010 A<=B False Yes
{gt} A>B Swap operands, use LT False Yes
{ge} A>=B Swap operands, use LE False Yes
{unord} 011 Unordered True No
{neq} 100 NOT(A =B) True No
{nlt} 101 NOT(A < B) True Yes
{nle} 110 NOT(A <=B) True Yes
{ngt} NOT(A > B) Swap operands, use NLT | True Yes
{nge} NOT(A >=B) | Swap operands, use NLE | True Yes
{ord} 111 Ordered False No

144

Table 6.3: VCMPPD behavior

The write-mask does not perform the normal write-masking function for this instruction.
While it does enable/disable comparisons, it does not block updating of the destination;
instead, if a write-mask bit is 0, the corresponding destination bit is set to 0. Nonethe-
less, the operation is similar enough so that it makes sense to use the usual write-mask
notation. This mode of operation is desirable because the result will be used directly as a

Reference Number: 327364-001

(intel‘

CHAPTER 6. INSTRUCTION DESCRIPTIONS

write-mask, rather than the normal case where the result is used with a separate write-

mask that keeps the masked elements inactive.

Immediate Format

Comparison Type I, I Iy

eq Equal 0 0 0
It Less than 0 0 1
le Less than or Equal 0 1 0
unord | Unordered 0 1 1
neq | NotEqual 1 0 0
nlt Not Less than 1 0 1
nle Not LessthanorEqual | 1 1 0
ord Ordered 1 1 1

Operation

switch (IMM8[2:0]
case 0: 0P <+
case 1: 0P
case 2: 0P ¢
case 3: 0P <
case 4: 0P «
case b5: 0P <+
case 6: 0P <
case 7: OP ¢

}

if (source is a register operand and MVEX.EH bit is 1) {

) {
EQ; break;
LT; break;
LE; break;
UNORD; break;
NEQ; break;
NLT; break;
NLE; break;
ORD; break;

if (8SS[2]==1) Supress_Exception_Flags() // SAE

tmpSrc2([511:0]

= zmm2[511:0]

tmpSrc2[511:0] = SwizzUpConvload fe4 (zmm2/m;)

{

} else {
}
for (n = 0; n < 8; n++) {
k2[n] =0
if(k1[n] !'= 0)
i = 64%*n

// float64 operation

k2[n] = (zmm1[i+63:i] OP tmpSrc2[i+63:i]) 7 1 :

}
}

k2[15:8] = 0

Reference Number: 327364-001

0

145

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

Instruction Pseudo-ops

Compilers and assemblers may implement the following pseudo-ops in addition to the
standard instruction op:

Pseudo-Op

Implementation

vempeqpd k2 {k1}, zmm1, Sy(zmm?2 /m;)

vemppd k2 {k1}, zmm1, Sy(zmm?2/m;), {eq}

vempltpd k2 {k1}, zmm1, Sy(zmm2/m,)

vemppd k2 {k1}, zmm1, S;(zmm2/m,), {It}

vemplepd k2 {k1}, zmm1, S;(zmm2/m;)

vemppd k2 {k1}, zmm1, S;(zmm2/m,), {le}

vempunordpd k2 {k1}, zmm1, Sy(zmm2/m,)

vemppd k2 {k1}, zmm1, S;(zmm2/m;), {unord}

vempneqpd k2 {k1}, zmm1, S;(zmm2/m;)

vemppd k2 {k1}, zmm1, S;(zmm2/m,), {neq}

vempnltpd k2 {k1}, zmm1, Sy(zmm2/m,)

vemppd k2 {k1}, zmm1, S;(zmm2/m;), {nlt}

vempnlepd k2 {k1}, zmm1, S;(zmm2/m;)

vemppd k2 {k1}, zmm1, S;(zmm?2/m;), {nle}

vempordpd k2 {k1}, zmm1, S;(zmm2/m;)

vemppd k2 {k1}, zmm1, S4(zmm2/m;), {ord}

SIMD Floating-Point Exceptions

Invalid, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :

(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
Not Applicable

Memory Up-conversion: S g,

525150

Function:

Usage

disp8*N

000
001
010
011
100
101
110
111

no conversion

broadcast 1 element (x8)
broadcast 4 elements (x2)
reserved

reserved

reserved

reserved

reserved

[rax] {8t08} or [rax]
[rax] {1to8}

[rax] {4to8}

N/A

N/A

N/A

N/A

N/A

64

32
N/A
N/A
N/A
N/A
N/A

146

Reference Number: 327364-001

(intel‘

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: S,

MVEX.EH=0

595150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

525150 || Rounding Mode Override Usage

1xx SAE (Supress-All-Exceptions) , {sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mmask8 _mm512_cmpeq_pd_mask (_m512d,_m512d);

_mmask8 _mmb512_mask_cmpeq_pd_mask(_mmask8, _m512d, _m512d);

_mmask8 _mmb51_cmplt_pd_mask(_m512d,__m512d);

_mmask8 _mmb512_mask _cmplt_pd_mask(_mmask8, _m512d, _m512d);

_mmask8 _mmb512_cmple_pd_mask(_m512d, _m512d);

_mmask8 _mmb512_mask cmple_pd_mask(_mmask8, _m512d, _m512d);

_mmask8 _mm512_cmpunord_pd_mask(_m512d, _m512d);

_mmask8 _mmb512_mask_cmpunord_pd_mask(_mmask8, _m512d, _m512d);

_mmask8 _mm512_cmpneq_pd_mask(_m512d, _m512d);

_mmask8 _mmb512_mask cmpneq_pd_mask(_mmask8, _m512d, _m512d);

_mmask8 _mmb512_cmpnlt_pd_mask(_m512d,_m512d);

_mmask8 _mmb512_mask_cmpnlt_pd_mask(_mmask8, _m512d, _m512d);

_mmask8 _mmb512_cmpnle_pd_mask(_m512d, _m512d);

_mmask8 _mmb512_mask _cmpnle_pd_mask(_mmask8, _m512d, _m512d);

_mmask8 _mmb512_cmpord_pd_mask(_m512d, _m512d);

_mmask8 _mmb512_mask cmpord_pd_mask(_mmask8, _m512d, _m512d);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001

147

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

148 Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VCMPPS - Compare Float32 Vectors and Set Vector Mask

Instruction
vempps k2 {k1}, zmm1, Sy32(zmm2/m;), imm8

Opcode
MVEX.NDS.512.0EWO0 C2 /rib

Description

Compare between
float32 vector zmm1l
and float32 vector
Sf3a(zmm2/m;) and
store the result in k2,
under write-mask.

Description

Performs an element-by-element comparison between float32 vector zmm1 and the
float32 vector result of the swizzle /broadcast/conversion from memory or float32 vector
zmm?2. The result is written into vector mask k2.

Note: If DAZ=1, denormals are treated as zeros in the comparison (original source regis-
ters untouched). untouched). +0 equals —0. Comparison with NaN returns false.

Infinity of like signs, are considered equals. Infinity values of either signs are considered
ordered values.

Table 6.4 summarizes VCMPPS behavior, in particular showing how various NaN results
can be produced.

Predicate | Imm8 enc | Description Emulation If NaN | QNaN operand signals invalid
{eq} 000 A=B False No
{It} 001 A<B False Yes
{le} 010 A<=B False Yes
{gt} A>B Swap operands, use LT False Yes
{ge} A>=B Swap operands, use LE False Yes
{unord} 011 Unordered True No
{neq} 100 NOT(A =B) True No
{nlt} 101 NOT(A < B) True Yes
{nle} 110 NOT(A <=B) True Yes
{ngt} NOT(A > B) Swap operands, use NLT | True Yes
{nge} NOT(A >=B) | Swap operands, use NLE | True Yes
{ord} 111 Ordered False No

Table 6.4: VCMPPS behavior

The write-mask does not perform the normal write-masking function for this instruction.
While it does enable/disable comparisons, it does not block updating of the destination;
instead, if a write-mask bit is 0, the corresponding destination bit is set to 0. Nonethe-
less, the operation is similar enough so that it makes sense to use the usual write-mask
notation. This mode of operation is desirable because the result will be used directly as a
write-mask, rather than the normal case where the result is used with a separate write-
mask that keeps the masked elements inactive.

Reference Number: 327364-001

149

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

150

Immediate Format

Operation

switch (IMMS[2:
0:

}

if (source is a register operand and MVEX.EH bit is 1) {

}

case
case
case
case
case
case
case
case

~N O O WN -

oP
oP
OoP
oP
oP
oP
0]
OoP

Comparison Type I, I Iy

eq Equal 0 0 0
It Less than 0 0 1
le Less than or Equal 0 1 0
unord | Unordered 0 1 1
neq | NotEqual 1 0 0
nlt Not Less than 1 0 1
nle Not LessthanorEqual | 1 1 0
ord | Ordered 1 1 1

01 {

EQ; break;
LT; break;
LE; break;
UNORD; break;
NEQ; break;
NLT; break;
NLE; break;
ORD; break;

TTTTTTTT

if (SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc2[511:0] = zmm2[511:0]
} else {
tmpSrc2[511:0] = SwizzUpConvload y3p (zmm2/m;)

for (n =

}

k2[n] =0

0; n < 16; n++) {

if (k1[n]
i = 32*n
// float32 operation

}

k2[n] = (zmm1[i+31:i] OP tmpSrc2[i+31:i]) 7 1 :

1= 0) {

0

Reference Number: 327364-001

o

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Instruction Pseudo-ops

Compilers and assemblers may implement the following pseudo-ops in addition to the

standard instruction op:

Pseudo-Op

Implementation

vempeqps k2 {k1}, zmm1, Sy (zmm2/m,)

vempps k2 {k1}, zmm1, S¢(zmm2/m;), {eq}

vempltps k2 {k1}, zmm1, S¢(zmm2/m;)

vempps k2 {k1}, zmm1, S¢(zmm2/m;,), {It}

vempleps k2 {k1}, zmm1, S;(zmm2/m;)

vempps k2 {k1}, zmm1, S¢(zmm2/m;), {le}

vempunordps k2 {k1}, zmm1, S¢(zmm2 /m;)

vempps k2 {k1}, zmm1, S¢(zmm2/m.), {unord}

vempneqps k2 {k1}, zmm1, Sy(zmm2/m;)

vempps k2 {k1}, zmm1, Sy(zmm2/m,), {neq}

vempnltps k2 {k1}, zmm1, S¢(zmm2/m;)

vempps k2 {k1}, zmm1, S¢(zmm2/m.), {nlt}

vempnleps k2 {k1}, zmm1, S;(zmm2/m,)

vempps k2 {k1}, zmm1, Sy(zmm2/m,), {nle}

vempordps k2 {k1}, zmm1, S¢(zmm2/m;)

vempps k2 {k1}, zmm1, S¢(zmm2/m,), {ord}

SIMD Floating-Point Exceptions

Invalid, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
Not Applicable

Memory Up-conversion: Sys,

595150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 float16 to float32 [rax] {float16} 32

100 uint8 to float32 [rax] {uint8} 16

110 uint16 to float32 [rax] {uint16} 32

111 sint16 to float32 [rax] {sint16} 32

Reference Number: 327364-001

151

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

152

Register Swizzle: Sy,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

525150 || Rounding Mode Override Usage

1xx SAE (Supress-All-Exceptions) , {sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mmb512_mask_cmpunord_ps_mask (_mmask16, _m512, _m512);
_mmb512_mask_cmpneq_ps_mask (_mmask16, _m512, _m512);
_mmb512_mask_cmpnlt_ps_mask (_mmask16, _m512, _m512);
_mmb512_mask_cmpnle_ps_mask (_mmask16, _m512, _m512);

_mm512_mask_cmpord_ps_mask (_mmask16, _m512, _m512);

_mmaskl6 _mmb512_cmpeq_ps_mask (_m512, _m512);
_mmaskl6 _mmb512_mask _cmpeq_ps_mask (_mmask16, _m512, _m512);
_mmaskl6 _mmb51_cmplt ps_mask (_m512, _m512);
_mmaskl6 _mmb512_mask _cmplt_ps_mask (_mmask16, _m512,__m512);
_mmaskl6 _mmb512_cmple_ps_mask (_m512, _m512);
_mmaskl6 _mmb512_mask _cmple_ps_mask (_mmask16, _m512, _m512);
_mmaskl6 _mmb512_cmpunord_ps_mask (_m512, _m512);
__mmask16
_mmaskl6 _mmb512_cmpneq_ps_mask (_m512, _m512);
__mmask16
_mmaskl6 _mmb512_cmpnlt_ps_mask (_m512,_m512);
_mmask16
_mmaskl6 _mmb512_cmpnle_ps_mask (_m512, _mb512);
__mmask16
_mmaskl6 _mmb512_cmpord_ps_mask (_m512, _m512);
__mmask16
Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode
#SS(0)

#GP(0)

#PF(fault-code)
#NM

Reference Number: 327364-001

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

153

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VCVTDQZ2PD - Convert Int32 Vector to Float64 Vector

Opcode Instruction Description

MVEX.512.F3.0EWO0 E6 /r vcvtdg2pd zmm1 {k1}, S;32(zmm2/m;) Convert int32 vector
Siza(zmm2/m;) to float64, and
store the result in zmm1, under
write-mask.

Description

Performs an element-by-element conversion from the int32 vector result of the swiz-
zle/broadcast/conversion from memory or int32 vector zmm?2 to a float64 vector . The
result is written into float64 vector zmm1. The int32 source is read from either the lower
half of the source operand (int32 vector zmm?2), full memory source (8 elements, i.e. 256-
bits) or the broadcast memory source.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc2[255:0] = zmm2[255:0]

} else {
tmpSrc2[255:0] = SwizzUpConvLoad;so (zmm2/m;)

}

for (n = 0; n < 8; n++) {
if(k1[n] !'= 0) {
i = 64x*n
j = 32%n
zmml [i+63:1i] =
CvtInt32ToFloat64 (tmpSrc2[j+31:3j])

SIMD Floating-Point Exceptions

None.

154 Reference Number: 327364-001

(intel‘“

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :
Not Applicable

Flush Tiny Results To Zero :
Not Applicable

Memory Up-conversion: S;s,

59515 || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 32

001 broadcast 1 element (x8) [rax] {1to8} 4

010 broadcast 4 elements (x4) | [rax] {4to8} 16

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: S;;,

MVEX.EH=0

59515y || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb512d
_m512d

_mmb512_cvtepi32lo_pd (_m512i);
_mmb512_mask_cvtepi32lo_pd (_m512d, _mmask8, _mb512i);

Reference Number: 327364-001

155

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to 4, 16 or 32-byte (depending on the swizzle broadcast).
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
If preceded by any REX, FO, F2, F3, or 66 prefixes.
This instruction does not support any
SwizzUpConv involving data conversion.
If SwizzUpConvMem function from memory is set to any
value different than "no action", {1t08} or{4to8}
then an Invalid Opcode fault is raised. Note
that this rule only applies to memory conversions
(register swizzles are allowed).

156 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VCVTFXPNTDQZ2PS - Convert Fixed Point Int32 Vector to Float32 Vector

Opcode

MVEX.512.0F3A.W0 CB /rib

Instruction

vevtfxpntdq2ps zmm1 {k1}, S;32(zmm2/m;), imm8

Description

Convert int32 vector
Sigg(meZ/mt) to
float32, and store
the result in zmml,
using ¢mm8, under
write-mask.

Description

Performs an element-by-element conversion from the int32 vector result of the swiz-
zle/broadcast/conversion from memory or int32 vector zmm?2 to a float32 vector, then
performs an optional adjustment to the exponent.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Immediate Format

Exponent Adjustment | value I; Is Iy 14
0 29 (32.0 - no exponentadjustment) | 0 0 0 0
4 27 (28.4) 0 0 0 1
5 2° (27.5) 0 0 1 o0
8 28 (24.8) 0o 0 1 1
16 216 (16.16) 0 1 0 O
24 227 (8.24) 0 1 0 1
31 231 (1.31) 0 1 1 o0
32 232 (0.32) 0 1 1 1
reserved *must UD* 1 x X X
Operation

expadj = IMMB[6:4]

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table 2.14

RoundingMode = SSS[1:0]
tmpSrc2([511:0] = zmm2[511:0]

} else {

RoundingMode =
tmpSrc2[511:0]

Reference Number: 327364-001

MXCSR.RC
= SwizzUpConvLoad;3o (zmm2/m;)

157

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
D

for (n = 0; n < 16; n++) {
if(ki[n] !'= 0) {
i = 32*n
zmml [i+31:i] =

CvtInt32ToFloat32(tmpSrc2[i+31:i], RoundingMode) / EXPADJ_TABLE [expadj]

}
}

SIMD Floating-Point Exceptions

Precision.

Denormal Handling

Treat Input Denormals As Zeros :
Not Applicable

Flush Tiny Results To Zero :
Not Applicable

Memory Up-conversion: S;s,

S25150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16

101 sint8 to sint32 [rax] {sint8} 16

110 uint16 to uint32 [rax] {uint16} 32

111 sint16 to sint32 [rax] {sint16} 32

158

Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: S;3,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

1xx SAE (Supress-All-Exceptions) , {sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_cvtfxpnt_round_adjustepi32_ps(_mb512i, int, MM_EXP_AD]J_ENUM);
_m512 _mmb512_mask_cvtfxpnt_round_adjustepi32_ps(_m512, _mmask1l6, _m512i,
int, _MM_EXP_ADJ_ENUM);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

Reference Number: 327364-001 159

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

If preceded by any REX, F0, F2, F3, or 66 prefixes.

160 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VCVTFXPNTPD2DQ - Convert Float64 Vector to Fixed Point Int32 Vector

Opcode
MVEX.512.F2.0F3A.W1 E6 /rib

Instruction

vevtfxpntpd2dq zmm1 {k1}, Stes(zmm2/my), imms8

Description
Convert

float64 vector
S o4 (zmm2/my)
to int32, and
store the result
in zmm1l, using

imms, under
write-mask.
Description
Performs an element-by-element conversion and rounding from the float64 vector result
of the swizzle /broadcast/conversion from memory or float64 vector zmm?2 to a int32 vec-
tor . The int32 result is written into the lower half of the destination register zmm1; the
other half of the destination is set to zero.
Out-of-range values are converted to the nearest representable value and that NaNs con-
vert to 0, because this makes the calculation of Exp2 more efficient (avoiding problems
with converting very large values to integers, where undetected incorrect values could
otherwise result from overflow). Table 6.5 describes what should be the result when deal-
ing with floating-point special number.
Input | Result
NaN |0
+00 INT_MAX
+0 0
-0 0
—oo | INT_MIN
Table 6.5: Converting to integer special floating-point values behavior
This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.
Immediate Format
Rounding Mode L Iy
rn | Round to Nearest (even) 0 0
rd | Round Down (Round toward Negative Infinity) | 0 1
ru | Round Up (Round toward Positive Infinity) 1 0
rz | Round toward Zero 1 1
Reference Number: 327364-001 161

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘1

Operation

RoundingMode = IMM8[1:0]

if (source is a register operand and MVEX.EH bit is 1) {

if (SSS[2]==1) Supress_Exception_Flags() // SAE

tmpSr
} else {

c2[5611:0] = zmm2[511:0]

tmpSrc2[511:0] = SwizzUpConvLoad tes (zZmm2/m;)

}

for (n =
if(k1[
i =
j=
zmm1

}
}

zmm1 [511

0; n < 8; n++) {
n] '=0) {
64*n
32*n
[j+31:7] =

CvtFloat64ToInt32(tmpSrc2[i+63:i], RoundingMode)

:256] = 0

SIMD Floating-Point Exceptions

Invalid, Precision.

Denormal H

andling

Treat Input Denormals As Zeros :

(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :

Not

Applicable

Memory Up-conversion: Sy,

59515y || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

162

Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: S,

MVEX.EH=0

555150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

1xx SAE (Supress-All-Exceptions) , {sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb512i _mmb512_cvtfxpnt_roundpd_epi32lo(_m512d, int);
_m512i _mmb512_mask_cvtfxpnt_roundpd_epi32lo(_m512i, _mmask8, _m512d, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001 163

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

164 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VCVTFXPNTPD2UDQ - Convert Float64 Vector to Fixed Point Uint32 Vec-
tor

Opcode Instruction Description

MVEX.512.F2.0F3AW1 CA /rib vcvtfxpntpdZudq zmm1 {k1}, Ste4(zmm2/m;), imm8 Convert
float64 vector
Stea(zmm2/my)
to uint32, and
store the result
in zmm1, using
mmms, under
write-mask.

Description

Performs an element-by-element conversion and rounding from the float64 vector result
of the swizzle/broadcast/conversion from memory or float64 vector zmm?2 to a uint32
vector . The uint32 result is written into the lower half of the destination register zmm1;
the other half of the destination is set to zero.

Out-of-range values are converted to the nearest representable value and that NaNs con-
vert to 0, because this makes the calculation of Exp2 more efficient (avoiding problems
with converting very large values to integers, where undetected incorrect values could
otherwise result from overflow). Table 6.6 describes what should be the result when deal-
ing with floating-point special number.

Input | Result

NaN 0
400 INT_MAX
+0 0
-0 0

—00 INT_MIN

Table 6.6: Converting to integer special floating-point values behavior
This instruction is write-masked, so only those elements with the corresponding bit set

in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Immediate Format

Rounding Mode

rn | Round to Nearest (even)

rd | Round Down (Round toward Negative Infinity)
ru | Round Up (Round toward Positive Infinity)

rz | Round toward Zero

~
iy

k=)
= o m| oS

Reference Number: 327364-001 165

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘1

Operation

RoundingMode = IMM8[1:0]

if (source is a register operand and MVEX.EH bit is 1) {

if (SSS[2]==1) Supress_Exception_Flags() // SAE

tmpSr
} else {

c2[5611:0] = zmm2[511:0]

tmpSrc2[511:0] = SwizzUpConvLoad tes (zZmm2/m;)

}

for (n =
if(k1[
i =
j=
zmm1

}
}

zmm1 [511

0; n < 8; n++) {
n] '=0) {
64*n
32*n
[j+31:7] =

CvtFloat64ToUint32(tmpSrc2[i+63:1], RoundingMode)

:256] = 0

SIMD Floating-Point Exceptions

Invalid, Precision.

Denormal H

andling

Treat Input Denormals As Zeros :

(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :

Not

Applicable

Memory Up-conversion: Sy,

59515y || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

166

Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: S,

MVEX.EH=0

555150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

1xx SAE (Supress-All-Exceptions) , {sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb512i _mmb512_cvtfxpnt_roundpd_epi32lo(_m512d, int);
_m512i _mmb512_mask_cvtfxpnt_roundpd_epi32lo(_m512i, _mmask8, _m512d, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001 167

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

168 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VCVTFXPNTPS2DQ - Convert Float32 Vector to Fixed Point Int32 Vector

Opcode Instruction Description
MVEX.512.66.0F3A.W0 CB /rib vcvtfxpntps2dq zmm1 {k1}, S¢32(zmm2/m;), imm8 Convert
float32 vector
Sy3a(zmm2/my)

to int32, and
store the result
in zmm1l, using
mmms, under
write-mask.

Description

Performs an element-by-element conversion and rounding from the float32 vector result
of the swizzle/broadcast/conversion from memory or float32 vector zmm?2 to a int32 vec-
tor, with an optional exponent adjustment before the conversion.

Out-of-range values are converted to the nearest representable value and that NaNs con-
vert to 0, because this makes the calculation of Exp2 more efficient (avoiding problems
with converting very large values to integers, where undetected incorrect values could
otherwise result from overflow). Table 6.7 describes what should be the result when deal-
ing with floating-point special number.

Input | Result

NaN 0
400 INT_ MAX
+0 0
-0 0

—00 INT_MIN

Table 6.7: Converting to integer special floating-point values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Immediate Format

Rounding Mode L Iy
rn | Round to Nearest (even) 0 0
rd | Round Down (Round toward Negative Infinity) | 0 1
ru | Round Up (Round toward Positive Infinity) 1 0
rz | Round toward Zero 1 1

Reference Number: 327364-001 169

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘l

170

Exponent Adjustment | value I; Is Is 14
0 20 (32.0 - no exponentadjustment) [0 0 0 O
4 2% (28.4) 0 0 0 1
5 2% (27.5) 0 0 1 o0
8 28 (24.8) 0 0 1 1
16 216 (16.16) 0 1 0 O
24 221 (8.24) 0 1 0 1
31 231 (1.31) 0 1 1 o0
32 232(0.32) 0 1 1 1
reserved *must UD* 1 X X X
Operation

RoundingMode = IMM8[1:0]
expadj = IMM8[6:4]

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc2[511:0] = zmm2[511:0]

} else {

tmpSrc2[511:0] = SwizzUpConvLoad yzp (zmm2/m;)

}

for (n = 0; n < 16; n++) {

if(k1[n] !'= 0) {
i = 32*n
zmml [i+31:i] =

CvtFloat32ToInt32(tmpSrc2[i+31:i] * EXPADJ_TABLE[expadj], RoundingMode)

SIMD Floating-Point Exceptions

Invalid, Precision.

Denormal Handling

Treat Input Denormals As Zeros :

(MXCSR.DAZ)? YES :

Flush Tiny Results To Zero :
Not Applicable

NO

Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S¢;,

S951S5p || Function: Usage disp8*N
000 no conversion [rax] {16t016} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 float16 to float32 [rax] {float16} 32

100 uint8 to float32 [rax] {uint8} 16

110 uint16 to float32 [rax] {uint16} 32

111 sint16 to float32 [rax] {sint16} 32

Register Swizzle: S¢s,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

525150 || Rounding Mode Override Usage

1xx SAE (Supress-All-Exceptions) , {sae}

Intel” C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_cvtfxpnt_round_adjustps_epi32(_m512, int, MM_EXP_ADJ_ENUM);
_m512i _mmb512_mask_cvtfxpnt_round_adjustps_epi32(_m512i, _mmask16, _m512,
int, MM_EXP_ADJ_ENUM);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode
#UD Instruction not available in these modes

Reference Number: 327364-001 171

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

172 Reference Number: 327364-001

(intel‘“

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VCVTFXPNTPS2UDQ - Convert Float32 Vector to Fixed Point Uint32 Vec-

tor

Opcode

MVEX.512.66.0F3A.W0 CA /rib

Instruction

vevtfxpntps2udq zmm1 {k1}, Sf32(zmm2/my), imm8

Description
Convert

float32 vector
Sta2(zmm2/my)
to uint32, and
store the result
in zmml, using
immgs, under
write-mask.

Description

Performs an element-by-element conversion and rounding from the float32 vector result
of the swizzle/broadcast/conversion from memory or float32 vector zmm?2 to a uint32
vector , with an optional exponent adjustment before the conversion.

Out-of-range values are converted to the nearest representable value and that NaNs con-
vert to 0, because this makes the calculation of Exp2 more efficient (avoiding problems
with converting very large values to integers, where undetected incorrect values could
otherwise result from overflow). Table 6.8 describes what should be the result when deal-
ing with floating-point special number.

Table 6.8: Converting to integer special floating-point values behavior

Input | Result

NaN 0

400 | INT_MAX
+0 0

-0 0

—00 INT_MIN

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Immediate Format

Rounding Mode L Iy
rn | Round to Nearest (even) 0 0
rd | Round Down (Round toward Negative Infinity) | 0 1
ru | Round Up (Round toward Positive Infinity) 1 0
rz | Round toward Zero 1 1

Reference Number: 327364-001

173

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘l

174

Exponent Adjustment | value I; Is Is 14
0 20 (32.0 - no exponentadjustment) [0 0 0 O
4 2% (28.4) 0 0 0 1
5 2% (27.5) 0 0 1 o0
8 28 (24.8) 0 0 1 1
16 216 (16.16) 0 1 0 O
24 221 (8.24) 0 1 0 1
31 231 (1.31) 0 1 1 o0
32 232(0.32) 0 1 1 1
reserved *must UD* 1 X X X
Operation

RoundingMode = IMM8[1:0]
expadj = IMM8[6:4]

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc2[511:0] = zmm2[511:0]

} else {

tmpSrc2[511:0] = SwizzUpConvLoad yzp (zmm2/m;)

}

for (n = 0; n < 16; n++) {

if(k1[n] !'= 0) {
i = 32*n
zmml [i+31:i] =

CvtFloat32ToUint32(tmpSrc2[i+31:1i] * EXPADJ_TABLE[expadj], RoundingMode)

SIMD Floating-Point Exceptions

Invalid, Precision.

Denormal Handling

Treat Input Denormals As Zeros :

(MXCSR.DAZ)? YES :

Flush Tiny Results To Zero :
Not Applicable

NO

Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S¢;,

S951S5p || Function: Usage disp8*N
000 no conversion [rax] {16t016} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 float16 to float32 [rax] {float16} 32

100 uint8 to float32 [rax] {uint8} 16

110 uint16 to float32 [rax] {uint16} 32

111 sint16 to float32 [rax] {sint16} 32

Register Swizzle: S¢s,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

525150 || Rounding Mode Override Usage

1xx SAE (Supress-All-Exceptions) , {sae}

Intel” C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_cvtfxpnt_round_adjustps_epi32(_m512, int, MM_EXP_ADJ_ENUM);
_m512i _mmb512_mask_cvtfxpnt_round_adjustps_epi32(_m512i, _mmask16, _m512,
int, MM_EXP_ADJ_ENUM);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode
#UD Instruction not available in these modes

Reference Number: 327364-001 175

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

176 Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VCVTFXPNTUDQZPS - Convert Fixed Point Uint32 Vector to Float32 Vec-
tor

Opcode Instruction Description

MVEX.512.0F3A.W0 CA /rib vcvtfxpntudq2ps zmm1 {k1}, S;32(zmm2/m;), imm8 Convert uint32 vec-
tor S;3o(zmm2/my)
to float32, and store
the result in zmm1,
using imm8, under
write-mask.

Description

Performs an element-by-element conversion from the uint32 vector result of the swiz-
zle/broadcast/conversion from memory or uint32 vector zmm?2 to a float32 vector, then
performs an optional adjustment to the exponent.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Immediate Format

Exponent Adjustment | value I; Is Iy 14
0 20 (32.0 - no exponentadjustment) [0 0 0 O
4 2% (28.4) 0 0 0 1
5 2° (27.5) 0 0 1 o0
8 28 (24.8) 0 0 1 1
16 216 (16.16) 0 1 0 O
24 221 (8.24) 0 1 0 1
31 231 (1.31) 0 1 1 o0
32 232 (0.32) 0 1 1 1
reserved *must UD* 1 x x X
Operation

expadj = IMM8[6:4]
if (source is a register operand and MVEX.EH bit is 1) {

if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc2[511:0] = zmm2[511:0]
} else {

RoundingMode = MXCSR.RC

Reference Number: 327364-001 177

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘1

tmpSrc2[511:0] = SwizzUpConvLoad,3o (zmm2/m;)

}
for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {
i = 32*n

zmml [i+31:1i] =
CvtUint32ToFloat32(tmpSrc2[i+31:1], RoundingMode) / EXPADJ_TABLE [expadj]

}
}

SIMD Floating-Point Exceptions

Precision.

Denormal Handling

Treat Input Denormals As Zeros :
Not Applicable

Flush Tiny Results To Zero :
Not Applicable

Memory Up-conversion: S;s,

595155y || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16

101 sint8 to sint32 [rax] {sint8} 16

110 uint16 to uint32 [rax] {uint16} 32

111 sint16 to sint32 [rax] {sint16} 32

178

Reference Number: 327364-001

(intel‘

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: S;s,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

525150 || Rounding Mode Override Usage

1xx SAE (Supress-All-Exceptions) , {sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001

179

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VCVTPDZPS - Convert Float64 Vector to Float32 Vector

Opcode Instruction Description

MVEX.512.66.0FW1 5A /r vcvtpd2ps zmml1 {k1}, S¢ea(zmm2/m,) Convert float64 vector
Stea(zmm2/m;) to float32, and
store the result in zmm1, under
write-mask.

Description

Performs an element-by-element conversion and rounding from the float64 vector result
of the swizzle/broadcast/conversion from memory or float64 vector zmm?2 to a float32
vector . The result is written into float32 vector zmm1. The float32 result is written into
the lower half of the destination register zmm1; the other half of the destination is set to
Zero.

Input | Result
NaN | Quietized NaN. Copy leading bits of float64 significand

+o0o +o0o
+0 +0
-0 -0
—00 —00

Table 6.9: Converting float64 to float32 special values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table 2.14
RoundingMode = SSS[1:0]
tmpSrc2([511:0] = zmm2[511:0]
} else {
RoundingMode

= MXCSR.RC
tmpSrc2[511:0] =

SwizzUpConvLoad fg4 (zmm2/m;)

}

for (n = 0; n < 8; n++) {
if(k1[n] !'= 0) {
i = 64*n
j = 32%n
zmml [j+31:j]

180 Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

CvtFloat64ToFloat32(tmpSrc2[i+63:1i], RoundingMode)

¥
}

zmm1 [511:256] = 0

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: S g,

S95150 || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001

181

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

182

Register Swizzle: S,

MVEX.EH=0

595150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

525150 || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb512
_mb512

Exceptions

_mmb512_cvtpd_pslo (_m512d);

_mmb512_mask_cvtpd_pslo (_m512d, _mmask8, _m512d);

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

Instruction not available in these modes

64 bit Mode

#55(0)

#GP(0)

If a memory address referencing the SS segment is
in a non-canonical form.
If the memory address is in a non-canonical form.

Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#PF(fault-code)
#NM

Reference Number: 327364-001

If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 prefixes.

183

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VCVTPS2PD - Convert Float32 Vector to Float64 Vector

Opcode Instruction Description

MVEX.512.0FEWO0 5A /r vevtps2pd zmml1 {k1}, Sf3o(zmm2/m,;) Convert float32 vector
St32(zmm2/m,) to float64, and store
the result in zmm1, under write-mask.

Description

Performs an element-by-element conversion and rounding from the float32 vector result
of the swizzle/broadcast/conversion from memory or float32 vector zmm?2 to a float64
vector . The result is written into float64 vector zmm1. The float32 source is read from
either the lower half of the source operand (float32 vector zmm?2), full memory source (8
elements, i.e. 256-bits) or the broadcast memory source.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc2[255:0] = zmm2[255:0]

} else {
tmpSrc2[255:0] = SwizzUpConvLoad ¢zs (zmm2/m;)

}

for (n = 0; n < 8; n++) {
if(k1[n] !'= 0) {
i = 64*n
j = 32%n
zmml [i+63:i] =
CvtFloat32ToFloat64 (tmpSrc2[j+31:3])

SIMD Floating-Point Exceptions

Invalid, Denormal.

184 Reference Number: 327364-001

(intel‘

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
Not Applicable

Memory Up-conversion: Sys;

59515y || Function: Usage disp8*N

000 no conversion [rax] {8to8} or [rax] 32

001 broadcast 1 element (x8) [rax] {1to8} 4

010 broadcast 4 elements (x4) | [rax] {4to8} 16

011 reserved N/A N/A

100 reserved N/A N/A

101 reserved N/A N/A

110 reserved N/A N/A

111 reserved N/A N/A
Register Swizzle: S¢s,

MVEX.EH=0

525150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}

001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

MVEX.EH=1

525150 || Rounding Mode Override Usage

1xx SAE (Supress-All-Exceptions) , {sae}

Intel” C/C++ Compiler Intrinsic Equivalent

_mb512d
~m512d

_mmb512_cvtpslo_pd (_m512);
_mmb512_mask_cvtpslo_pd (_m512d, _mmask8, _m512);

Reference Number: 327364-001

185

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to 4, 16 or 32-byte (depending on the swizzle broadcast).
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
If preceded by any REX, FO, F2, F3, or 66 prefixes.
This instruction does not support any
SwizzUpConv involving data conversion.
If SwizzUpConvMem function from memory is set to any
value different than "no action", {1t08} or{4to8}
then an Invalid Opcode fault is raised. Note
that this rule only applies to memory conversions
(register swizzles are allowed).

186 Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VCVTUDQZ2PD - Convert Uint32 Vector to Float64 Vector

Opcode Instruction Description
MVEX.512.F3.0EW0 7A /r vcvtudq2pd zmm1 {k1}, S;32(zmm2/m;) Convert uint32

write-mask.

vector

Siz2(zmm2/m;) to float64, and
store the result in zmm1, under

Description

Performs an element-by-element conversion from the uint32 vector result of the swiz-
zle/broadcast/conversion from memory or uint32 vector zmm?2 to a float64 vector . The
resultis written into float64 vector zmm1. The uint32 source is read from either the lower
half of the source operand (uint32 vector zmm?2), full memory source (8 elements, i.e.
256-bits) or the broadcast memory source.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc2[255:0] = zmm2[255:0]

} else {
tmpSrc2[255:0] = SwizzUpConvLoad;so (zmm2/m;)

}

for (n = 0; n < 8; n++) {
if(k1[n] !'= 0) {
i = 64x*n
j = 32%n
zmml [i+63:1i] =
CvtUint32ToFloat64 (tmpSrc2[j+31:3])

SIMD Floating-Point Exceptions

None.

Reference Number: 327364-001

187

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :
Not Applicable

Flush Tiny Results To Zero :
Not Applicable

Memory Up-conversion: S;s,

59515 || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 32

001 broadcast 1 element (x8) [rax] {1to8} 4

010 broadcast 4 elements (x4) | [rax] {4to8} 16

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: S;;,

MVEX.EH=0

59515y || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_cvtepu32lo_pd (_m512i);
_m512d _mmb512_mask_cvtepu32lo_pd (_m512d, _mmask8, _m512i);

188 Reference Number: 327364-001

(intel‘

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode
#SS(0)

#GP(0)

#PF(fault-code)
#NM

Reference Number: 327364-001

Instruction not available in these modes

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned

to 4, 16 or 32-byte (depending on the swizzle broadcast).

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

This instruction does not support any

SwizzUpConv involving data conversion.

If SwizzUpConvMem function from memory is set to any
value different than "no action", {1t08} or{4to8}

then an Invalid Opcode fault is raised. Note

that this rule only applies to memory conversions
(register swizzles are allowed).

189

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VEXP223PS - Base-2 Exponential Calculation of Float32 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W0 C8 vexp223pszmml {k1},zmm2/m; Calculate the approx. exp2 from int32 vector
/r zmm?2/m; and store the result in zmm1, under
write-mask.
Description

Computes the element-by-element base-2 exponential computation of the int32 vector
on memory or int32 vector zmm2 with 0.99ULP (relative error). Input int32 values are
considered as fixed point numbers with a fraction offset of 24 bits (i.e. 8 MSBs correspond
to sign and integer part; 24 LSBs correspond to fractional part). The result is written into
float32 vector zmm1.

exp2 of a FP input value is computed as a two-instruction sequence:

1. vevtfxpntps2dq (with exponent adjustment, so that destination format is 32b, with
8b for integer part and 24b for fractional part)

2. vexp223ps

All overflows are captured by the combination of the saturating behavior of vcvtfxp-
ntps2dq instruction and the detection of MAX_INT/MIN_INT by the vexp223ps instruc-
tion. Tiny input numbers are quietly flushed to the fixed-point value 0 by the vcvtfxp-
ntps2dq instruction, which produces an overall output exp2(0) = 1.0f.

The overall behavior of the two-instruction sequence is the following:

e —ooreturns +0.0f

e +0.0f returns 1.0 f (exact result)

e +o0 returns +oo (#0verflow)

e NaN returns 1.0f (#Invalid)

e n, where n is an integral value returns 2" (exact result)

Input Result | Comments
MIN_INT | +0.0f
MAX_INT | 400 Raise #0 flag

Table 6.10: vexp2_1lulp() special int values behavior
This instruction is write-masked, so only those elements with the corresponding bit set

in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

190 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

tmpSrc2([511:0] = zmm2/my

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
}

for (n = 0; n < 16; n++) {
if (ki[n] !'=0) {
i = 32*n
zmml [1+31:1i] = exp2_1lulp(tmpSrc2[i+31:i])
}
}

SIMD Floating-Point Exceptions

Overflow.

Denormal Handling

Treat Input Denormals As Zeros :
Not Applicable

Flush Tiny Results To Zero :
YES

Register Swizzle

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage
000 no swizzle zmmO or zmmO {dcba}
001 reserved N/A
010 reserved N/A
011 reserved N/A
100 reserved N/A
101 reserved N/A
110 reserved N/A
111 reserved N/A
MVEX.EH=1

595150 || Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Reference Number: 327364-001 191

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_exp223_ps (_mb512i);
_m512 _mmb512_mask_exp223_ps (_m512, _mmask16, _m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

This instruction does not support any

SwizzUpConv different from the default value (no broadcast,
no conversion). If SwizzUpConv function is set to any value
different than "no action", then an Invalid Opcode fault is
raised. This includes register swizzles.

192 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFIXUPNANPD - Fix Up Special Float64 Vector Numbers With NaN Passthrough

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W1 55 /r vfixupnanpd zmm1 {k1}, zmm2, S;s4(zmm3/m;) Fix up, with NaN
passthrough, spe-
cial numbers in
float64 vector
zmml, float64
vector zmm?2
and int64 vector
Sie4(zmm3/m)
and store the result
in zmml1, wunder
write-mask.

Description

Performs an element-by-element fix-up of various real and special number types in
the float64 vector zmm?2 using the 21-bit table values from the result of the swiz-
zle/broadcast/conversion process on memory or int64 vector zmm3. The result is
merged into float64 vector zmm1. Unlike in vfixuppd, source NaN values are passed-
through as quietized values. Note that, also unlike in vfixup, this quietization translates
into a #IE exception flag being reported for input SNaNs.

This instruction is specifically intended for use in fixing up the results of arithmetic cal-
culations involving one source, although it is generally useful for fixing up the results of
multiple-instruction sequences to reflect special-number inputs. For example, consider
rcp(0). Input 0 to rcp, and you should get inf. However, evaluating rcp via 2z — ax?
(Newton-Raphson), where x = approz(1/0) = oo, incorrectly yields NaN. To deal with
this, vfixupps can be used after the N-R reciprocal sequence to set the result to co when
the inputis 0.

Denormal inputs must be treated as zeros of the same sign if DAZ is enabled.

Note that NO_CHANGE_TOKEN leaves the destination (output) unchanged. This means
that if the destination is a denormal, its value is not flushed to 0.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

enum TOKEN_TYPE

{
NO_CHANGE_TOKEN = O,

Reference Number: 327364-001 193

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

NEG_INF_TOKEN
NEG_ZERO_TOKEN
POS_ZERO_TOKEN
POS_INF_TOKEN
NAN_TOKEN
MAX_DOUBLE_TOKEN
MIN_DOUBLE_TOKEN

1
~N O oW -

-

}

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
tmpzmm3[511:0] = zmm3[511:0]

} else {
tmpzmm3[511:0] = SwizzUpConvLoad;gq (zmm3/m;)

}

for (n = 0; n < 8; n+t+) {
if (ki[n] '= 0) {
i = 64*n
tsrc[63:0] = zmm2[i+63:1]

if (IsNaN(tsrc[63:0])

{
zmml [i+63:i] = QNaN(zmm2[i+63:i])

}

else

{
// tmp is an int value
if (tsrc[63:0] == -inf) tmp = 0
else if (tsrc[63:0] < 0) tmp = 1
else if (tsrc[63:0] == -0) +tmp = 2
else if (tsrc[63:0] == +0) tmp = 3
else if (tsrc[63:0] == inf) tmp = 5
else /* tsrc[63:0] > 0 */ tmp = 4

table[20:0] = tmpzmm3[i+63:i]

token = table[(tmp*3)+2: tmp*3] // table is viewed as one 21-bit
// little-endian value.
// token is an int value
// the Tth entry is unused

// float64 result
if (token == NEG_INF_TOKEN) zmml [i+63:i] = -inf
else if (token == NEG_ZERO_TOKEN) zmml [i+63:i] = -0
else if (token == POS_ZERO_TOKEN) zmml [i+63:i] = +0
else if (token == POS_INF_TOKEN) zmml [i+63:i] = +inf
else if (token == NAN_TOKEN) zmm1 [i+63:i] = QNaN_indefinite
else if (token == MAX_DOUBLE_TOKEN) zmml[i+63:i] = NMAX
else if (token == MIN_DOUBLE_TOKEN) zmml[i+63:i] = -NMAX
else if (token == NO_CHANGE_TOKEN) { /* zmm1[i+63:i] remains unchanged */ }
}
}

194 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

Invalid.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
NO

Memory Up-conversion: S,

S95150 || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: S;4,

MVEX.EH=0

595150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

525150 || Rounding Mode Override Usage

1xx SAE (Supress-All-Exceptions) , {sae}

Reference Number: 327364-001 195

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘1

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_fixupnan_pd (_m512d, _m512d, _m512i);
_m512d _mmb512_mask fixupnan_pd (_m512d, _mmask8, _m512d, _m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode
#SS(0)

#GP(0)

#PF (fault-code)
#NM

196

Instruction not available in these modes

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFIXUPNANPS - Fix Up Special Float32 Vector Numbers With NaN Passthrough

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W0 55 /r vfixupnanps zmm1 {k1}, zmm2, S;32(zmm3/m,) Fix up, with NaN
passthrough, spe-
cial numbers in
float32 vector
zmml, float32
vector zmm?2
and int32 vector
Siza(zmm3/my)
and store the result
in zmm1l, under
write-mask.

Description

Performs an element-by-element fix-up of various real and special number types in
the float32 vector zmm?2 using the 21-bit table values from the result of the swiz-
zle/broadcast/conversion process on memory or int32 vector zmm3. The result is
merged into float32 vector zmm1. Unlike in vfixupps, source NaN values are passed-
through as quietized values. Note that, also unlike in vfixup, this quietization translates
into a #IE exception flag being reported for input SNaNs.

This instruction is specifically intended for use in fixing up the results of arithmetic cal-
culations involving one source, although it is generally useful for fixing up the results of
multiple-instruction sequences to reflect special-number inputs. For example, consider
rcp(0). Input 0 to rcp, and you should get inf. However, evaluating rcp via 2z — ax?
(Newton-Raphson), where x = approz(1/0) = oo, incorrectly yields NaN. To deal with
this, vfixupps can be used after the N-R reciprocal sequence to set the result to co when
the inputis 0.

Denormal inputs must be treated as zeros of the same sign if DAZ is enabled.

Note that NO_CHANGE_TOKEN leaves the destination (output) unchanged. This means
that if the destination is a denormal, its value is not flushed to 0.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

enum TOKEN_TYPE

{
NO_CHANGE_TOKEN = O,

Reference Number: 327364-001 197

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

NEG_INF_TOKEN
NEG_ZERO_TOKEN
POS_ZERO_TOKEN
POS_INF_TOKEN
NAN_TOKEN
MAX_FLOAT_TOKEN
MIN_FLOAT TOKEN

1
~N O oW -

-

}

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
tmpzmm3[511:0] = zmm3[511:0]

} else {
tmpzmm3[511:0] = SwizzUpConvLoad;3o (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if (ki[n] '= 0) {
i = 32*n
tsrc[31:0] = zmm2[i+31:1i]

if (IsNaN(tsrc[31:0])

{
zmml [i+31:i] = QNaN(zmm2[i+31:i])

}

else

{
// tmp is an int value
if (tsrc[31:0] == -inf) tmp = 0
else if (tsrc[31:0] < 0) tmp = 1
else if (tsrc[31:0] == -0) +tmp = 2
else if (tsrc[31:0] == +0) tmp = 3
else if (tsrc[31:0] == inf) tmp = 5
else /* tsrc[31:0] > 0 */ tmp = 4

table[20:0] = tmpzmm3[i+31:i]

token = table[(tmp*3)+2: tmp*3] // table is viewed as one 21-bit
// little-endian value.
// token is an int value
// the Tth entry is unused

// float32 result
if (token == NEG_INF_TOKEN) zmml [i+31:i] = -inf
else if (token == NEG_ZERO_TOKEN) zmml [i+31:i] = -0
else if (token == POS_ZERO_TOKEN) zmml [i+31:i] = +0
else if (token == POS_INF_TOKEN) zmml [i+31:i] = +inf
else if (token == NAN_TOKEN) zmm1[i+31:i] = QNaN_indefinite
else if (token == MAX_FLOAT_TOKEN) zmml[i+31:i] = NMAX
else if (token == MIN_FLOAT_TOKEN) zmml[i+31:i] = -NMAX
else if (token == NO_CHANGE_TOKEN) { /* zmm1[i+31:i] remains unchanged */ }
}
}

198 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

Invalid.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
NO

Memory Up-conversion: S;s,

S95150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16

101 sint8 to sint32 [rax] {sint8} 16

110 uint16 to uint32 [rax] {uint16} 32

111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: S;3,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

525150 || Rounding Mode Override Usage

1xx SAE (Supress-All-Exceptions) , {sae}

Reference Number: 327364-001 199

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘1

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_fixupnan_ps (_m512, _m512, _m512i);
_m512 _mmb512_mask_fixupnan_ps (_m512, _mmask16, _m512, _m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode
#SS(0)

#GP(0)

#PF(fault-code)
#NM

200

Instruction not available in these modes

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFMADD132PD - Multiply Destination By Second Source and Add To First
Source Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1 vfmadd132pd zmm1 {k1}, zmm2, Multiply float64 vector zmm1 and float64 vec-
98 /r Stea(zmm3/my) tor S¢e4(zmm3/m,), add the result to float64

vector zmm2, and store the final result in
zmm1, under write-mask.

Description

Performs an element-by-element multiplication between float64 vector zmm1 and the
float64 vector result of the swizzle /broadcast/conversion process on memory or vector
float64 zmm3, then adds the result to float64 vector zmm2. The final sum is written into
float64 vector zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {

if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvload fe4 (zmm3/m;)
}

for (n = 0; n < 8; n++) {
if(k1[n] '=0) {
i = 64*n
// float64 operation
zmml [1+63:1i] = zmm1[i+63:1] * tmpSrc3[i+63:i] + zmm2[i+63:i]
}
}

Reference Number: 327364-001 201

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
D

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :

(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :

(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sy,

525150

Function:

Usage

disp8*N

000
001
010
011
100
101
110
111

no conversion

broadcast 1 element (x8)
broadcast 4 elements (x2)
reserved

reserved

reserved

reserved

reserved

[rax] {8t08} or [rax]
[rax] {1to8}

[rax] {4to8}

N/A

N/A

N/A

N/A

N/A

64

32
N/A
N/A
N/A
N/A
N/A

202

Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: S,

MVEX.EH=0

555150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_fmadd_pd (_m512d, _m512d,_m512d);
_m512d _mmb512_mask_fmadd_pd (_m512d, _mmask8, _m512d, _m512d);
_m512d _mmb512_mask3_fmadd_pd (_m512d, _m512d, _m512d, _mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is

Reference Number: 327364-001 203

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

204 Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFMADD132PS - Multiply Destination By Second Source and Add To First
Source Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 vfmadd132ps zmm1 {k1}, zmm2, Multiply float32 vector zmm1 and float32 vec-
98 /r S¢32(zmm3/my) tor S¢z2(zmm3/m,), add the result to float32

vector zmm2, and store the final result in
zmm1, under write-mask.

Description

Performs an element-by-element multiplication between float32 vector zmm1 and the
float32 vector result of the swizzle /broadcast/conversion process on memory or vector
float32 zmma3, then adds the result to float32 vector zmm2. The final sum is written into
float32 vector zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {

if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvLoad y3p (zmm3/m;)
}

for (n = 0; n < 16; n++) {
if(k1[n] '=0) {
i = 32*n
// float32 operation
zmml [1+31:1i] = zmm1[i+31:i] * tmpSrc3[i+31:i] + zmm2[i+31:i]
}
}

Reference Number: 327364-001 205

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sys;

S25150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 float16 to float32 [rax] {float16} 32
100 uint8 to float32 [rax] {uint8} 16
110 uint16 to float32 [rax] {uint16} 32
111 sint16 to float32 [rax] {sint16} 32
Register Swizzle: S;3,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}
MVEX.EH=1

525150 || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

206 Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_fmadd_ps (_m512,_m512, _m512);
_m512 _mmb512_mask fmadd_ps (_m512, _mmask16, _m512, _m512);
_m512 _mmb512_mask3_fmadd_ps (_m512, _m512, _m512, _mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001 207

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel“

VFMADD213PD - Multiply First Source By Destination and Add Second

Source Float64 Vectors

Opcode Instruction

MVEX.NDS.512.66.0F38.W1 A8 /r vfmadd213pd zmm1 {k1}, zmm2, Sy¢4(zmm3/m;)

Description

Multiply float64
vector zmm?2
and float64
vector zmm1,
add the result to
float64 vector
Sf64(zmm3/mt),
and store the
final result in
zmml, under
write-mask.

Description

Performs an element-by-element multiplication between float64 vector zmm?2 and float64

vector zmm1 and then adds the result to the float64 vector result of the swizzle /broadcast/conversion

process on memory or vector float64 zmma3. The final sum is written into float64 vector
zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table 2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode

= MXCSR.RC
tmpSrc3[511:0] =

SwizzUpConvLoad fg4 (zmm3/m;)

3

for (n = 0; n < 8; n++) {
if(k1[n] !'=0) {
i = 64x*n
// float64 operation
zmml [i+63:1i] = zmm2[i+63:1] * zmml[i+63:i] + tmpSrc3[i+63:i]

Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: S g,

595150 || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001

209

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

210

Register Swizzle: S,

MVEX.EH=0

555150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_fmadd_pd (_m512d, _m512d,_m512d);
_m512d _mmb512_mask_fmadd_pd (_m512d, _mmask8, _m512d, _m512d);
_m512d _mmb512_mask3_fmadd_pd (_m512d, _m512d, _m512d, _mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is

Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001 211

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel“

VFMADDZ213PS - Multiply First Source By Destination and Add Second

Source Float32 Vectors

Opcode Instruction

MVEX.NDS.512.66.0F38.W0 A8 /r vfmadd213ps zmm1 {k1}, zmm2, Sf32(zmm3/m;)

Description

Multiply float32
vector zmm?2
and float32 vec-
tor zmml1, add
the result to
float32 vector
ngg[meS/mt),
and store the
final result in
zmml, under
write-mask.

Description

Performs an element-by-element multiplication between float32 vector zmm?2 and float32

vector zmm1 and then adds the result to the float32 vector result of the swizzle /broadcast/conversion

process on memory or vector float32 zmm3. The final sum is written into float32 vector
zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table 2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode

= MXCSR.RC
tmpSrc3[511:0] =

SwizzUpConvLoad y3p (zmm3/m;)

3

for (n = 0; n < 16; n++) {
if(k1[n] !'=0) {
i = 32*n
// float32 operation
zmml [i+31:i] = zmm2[i+31:i] * zmm1[i+31:i] + tmpSrc3[i+31:i]

Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sys;

559515y || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 float16 to float32 [rax] {float16} 32

100 uint8 to float32 [rax] {uint8} 16

110 uint16 to float32 [rax] {uint16} 32

111 sint16 to float32 [rax] {sint16} 32

Reference Number: 327364-001 213

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

214

Register Swizzle: Sy,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb512
_mb12
_mb12

Exceptions

_mmb512_fmadd_ps (_m512,_m512, _m512);
_mmb512_mask_fmadd_ps (_m512, _mmask16, _m512, _m512);
_mmb512_mask3_fmadd_ps (_m512, _m512, _m512, _mmask16);

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

Instruction not available in these modes

64 bit Mode

#55(0)

If a memory address referencing the SS segment is
in a non-canonical form.

Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#GP(0)

#PF (fault-code)
#NM

Reference Number: 327364-001

If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

215

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel“

VFMADDZ231PD - Multiply First Source By Second Source and Add To Des-

tination Float64 Vectors

Opcode Instruction

MVEX.NDS.512.66.0F38.W1 B8 /r vfmadd231pd zmm1 {k1}, zmm2, Sy¢4(zmm3/m;)

Description

Multiply float64
vector zmm?2 and
float64 vector
Syea(zmm3/my),
add the result to
floatb4 vector
zmm1, and store
the final result
in zmm1, under
write-mask.

Description

216

Performs an element-by-element multiplication between float64 vector zmm?2 and the
float64 vector result of the swizzle/broadcast/conversion process on memory or vector
float64 zmm3, then adds the result to float64 vector zmm1. The final sum is written into
float64 vector zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvload fe4 (zmm3/7m;)
}

for (n = 0; n < 8; n++) {
if(k1[n] !'= 0) {
i = 64*n
// float64 operation
zmml [i+63:i] = zmm2[i+63:1i] * tmpSrc3[i+63:i] + zmml1[i+63:i]
}

Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: S g,

55515 || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001

217

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

218

Register Swizzle: S,

MVEX.EH=0

555150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_fmadd_pd (_m512d, _m512d,_m512d);
_m512d _mmb512_mask_fmadd_pd (_m512d, _mmask8, _m512d, _m512d);
_m512d _mmb512_mask3_fmadd_pd (_m512d, _m512d, _m512d, _mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is

Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001 219

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel“

VFMADDZ231PS - Multiply First Source By Second Source and Add To Des-

tination Float32 Vectors

Opcode Instruction

MVEX.NDS.512.66.0F38.W0 B8 /r vfmadd231ps zmm1 {k1}, zmm2, Sy3»(zmm3/m,)

Description

Multiply float32
vector zmm2 and
float32 vector
Sy32(zmm3/my),
add the result to
float32 vector
zmm1, and store
the final result
in zmm1, under
write-mask.

Description

220

Performs an element-by-element multiplication between float32 vector zmm2 and the
float32 vector result of the swizzle/broadcast/conversion process on memory or vector
float32 zmm3, then adds the result to float32 vector zmm1. The final sum is written into
float32 vector zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvload y3p (zmm3/m;)
}

for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {
i = 32*n
// float32 operation
zmml [i+31:i] = zmm2[i+31:i] * tmpSrc3[i+31:i] + zmml1[i+31:i]
}

Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
D

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: S¢;,

595150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 float16 to float32 [rax] {float16} 32

100 uint8 to float32 [rax] {uint8} 16

110 uint16 to float32 [rax] {uint16} 32

111 sint16 to float32 [rax] {sint16} 32

Reference Number: 327364-001 221

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

222

Register Swizzle: Sy,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb512
_mb12
_mb12

Exceptions

_mmb512_fmadd_ps (_m512,_m512, _m512);
_mmb512_mask_fmadd_ps (_m512, _mmask16, _m512, _m512);
_mmb512_mask3_fmadd_ps (_m512, _m512, _m512, _mmask16);

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

Instruction not available in these modes

64 bit Mode

#55(0)

If a memory address referencing the SS segment is
in a non-canonical form.

Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#GP(0)

#PF (fault-code)
#NM

Reference Number: 327364-001

If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

223

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel‘“

VFMADDZ233PS - Multiply First Source By Specially Swizzled Second Source
and Add To Second Source Float32 Vectors

224

Opcode
MVEX.NDS.512.66.0F38.W0 A4 /r

Instruction
vfmadd233ps zmm1 {k1}, zmm2, Sy32(zmm3/m;)

Description

Multiply float32
vector zmm2 by
certain elements
of float32 vector
Syaa(zmm3/my),
add the re-
sult to certain
elements of
Sys2(zmm3/m,),
and store the
final result in
zmm1, under
write-mask.

Description

This instruction is built around the concept of 4-element sets, of which there are four:
elements 0-3,4-7,8-11, and 12-15. If we refer to the float32 vector result of the broadcast
(no conversion is supported) process on memory or the float32 vector zmm3 (no swizzle
is supported) as t3, then:

Each element 0-3 of float32 vector zmm2 is multiplied by element 1 of t3, the result is
added to element 0 of t3, and the final sum is written into the corresponding element 0-3
of float32 vector zmm1.

Each element 4-7 of float32 vector zmm?2 is multiplied by element 5 of t3, the result is
added to element 4 of t3, and the final sum is written into the corresponding element 4-7
of float32 vector zmm1.

Each element 8-11 of float32 vector zmm?2 is multiplied by element 9 of t3, the result is
added to element 8 of t3, and the final sum is written into the corresponding element 8-11
of float32 vector zmm1.

Each element 12-15 of float32 vector zmm?2 is multiplied by element 13 of t3, the result
is added to element 12 of t3, and the final sum is written into the corresponding element
12-15 of float32 vector zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.

This instruction makes it possible to perform scale and bias in a single instruction without
needing to have either scale or bias already loaded in a register. This saves one vector load
for each interpolant, representing around ten percent of shader instructions.

For structure-of-arrays (SOA) operation, this instruction is intended to be used with the
{4to16} broadcast on src2, allowing all 16 scale and biases to be identical. For array-of-

Reference Number: 327364-001

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

structures (AOS) vec4 operations, no broadcast is used, allowing four different scales and
biases, one for each vec4.

No conversion or swizzling is supported for this instruction. However, all broadcasts ex-
cept {1to16} are supported (i.e. 16to16 and 4to16).

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode

= MXCSR.RC
tmpSrc3[511:0] =

SwizzUpConvLoad y3p (zmm3/m;)

3

for (n = 0; n < 16; n++) {
if (ki[n] !'= 0) {
i = 32*n
base = (n & ~0x03) * 32
scale[31:0] = tmpSrc3[base+63:base+32]
bias[31:0] = tmpSrc3[base+31:base]
// float32 operation
zmml [i+31:1] = zmm2[i+31:1i] * scale[31:0] + bias[31:0]

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Reference Number: 327364-001 225

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

226

Memory Up-conversion: S¢;,

55515 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 reserved N/A N/A
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A
Register Swizzle: S¢3,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 reserved N/A

010 reserved N/A

011 reserved N/A

100 reserved N/A

101 reserved N/A

110 reserved N/A

111 reserved N/A
MVEX.EH=1

52515y || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb512
_mb12

mmb512_fmadd233_ps (_m512, _m512);

_mmb512_mask_fmadd233_ps (_m512, _mmask16, _m512, _m512);

Reference Number: 327364-001

(intel‘

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode
#SS(0)

#GP(0)

#PF(fault-code)
#NM

Reference Number: 327364-001

Instruction not available in these modes

If a memory address referencing the SS segment is

in a non-canonical form.

If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned

to 16 or 64-byte (depending on the swizzle broadcast).
For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

This instruction does not support any

SwizzUpConv involving data conversion, register swizzling or
{1t016} broadcast. If SwizzUpConv function is set to any
value different than "no action" or {4016} then

an Invalid Opcode fault is raised

227

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFMSUB132PD - Multiply Destination By Second Source and Subtract
First Source Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1 vfmsub132pd zmm1 {k1}, zmm2, Multiply float64 vector zmm1 and float64 vec-
9A /r St64(zmm3/m;) tor Syes(zmm3/m,), subtract float64 vector

zmm?2 from the result, and store the final result
in zmm1, under write-mask.

Description

Performs an element-by-element multiplication of float64 vector zmm1 and the float64
vector result of the swizzle/broadcast/conversion process on memory or vector float64
zmm3, then subtracts float64 vector zmm2 from the result. The final result is written into
float64 vector zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.
All operations must be performed previous to final rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {

if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvLoad fe4 (zZmm3/m;)
}

for (n = 0; n < 8; n++) {
if(k1[n] '= 0) {
i = 64*n
// float64 operation
zmml [i+63:1i] = zmm1[i+63:1] * tmpSrc3[i+63:i] - zmm2[i+63:i]
}
}

228 Reference Number: 327364-001

(intel”

CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sy,

555155 || Function: Usage disp8*N
000 no conversion [rax] {8t08} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001

229

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

230

Register Swizzle: S,

MVEX.EH=0

555150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_fmsub_pd (_m512d, _m512d, _m512d);
_m512d _mmb512_mask_fmsub_pd (_m512d, _mmask8, _m512d, _m512d);
_m512d _mmb512_mask3_fmsub_pd (_m512d, _m512d, _m512d, _mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is

Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001 231

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFMSUB132PS - Multiply Destination By Second Source and Subtract First
Source Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 vfmsub132ps zmm1 {k1}, zmm2, Multiply float32 vector zmm1 and float32 vec-
9A /r Sys2(zmm3/m;) tor Sys»(zmm3/m,), subtract float32 vector

zmm?2 from the result, and store the final result
in zmm1, under write-mask.

Description

Performs an element-by-element multiplication of float32 vector zmm1 and the float32
vector result of the swizzle/broadcast/conversion process on memory or vector float32
zmm3, then subtracts float32 vector zmm2 from the result. The final result is written into
float32 vector zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.
All operations must be performed previous to final rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {

if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvLoad y3p (zmm3/m;)
}

for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {
i = 32*n
// float32 operation
zmml [i+31:i] = zmm1[i+31:i] * tmpSrc3[i+31:i] - zmm2[i+31:i]
}
}

232 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sys;

S25150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 float16 to float32 [rax] {float16} 32

100 uint8 to float32 [rax] {uint8} 16

110 uint16 to float32 [rax] {uint16} 32

111 sint16 to float32 [rax] {sint16} 32

Register Swizzle: S;3,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

525150 || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Reference Number: 327364-001 233

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘1

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_fmsub_ps (_m512,_m512, _m512);
_m512 _mmb512_mask fmsub_ps (_mb512, _mmask16,_m512, _m512);
_m512 _mmb512_mask3_fmsub_ps (_m512, _m512, _m512, _mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode
#SS(0)

#GP(0)

#PF (fault-code)
#NM

234

Instruction not available in these modes

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFMSUB213PD - Multiply First Source By Destination and Subtract Sec-
ond Source Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1 vfmsub213pd zmm1 {k1}, zmm2, Multiply float64 vector zmm2 and float64
AA /r St64(zmm3/m;) vector zmml, subtract float64 vector

Stea(zmm3/m;) from the result, and store
the final result in zmm1, under write-mask.

Description

Performs an element-by-element multiplication of float64 vector zmm?2 and float64 vec-
tor zmm1, then subtracts the float64 vector result of the swizzle/broadcast/conversion
process on memory or vector float64 zmm3 from the result. The final result is written
into float64 vector zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.
All operations must be performed previous to final rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {

if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvLoad fe4 (zZmm3/m;)
}

for (n = 0; n < 8; n++) {
if(k1[n] '= 0) {
i = 64*n
// float64 operation
zmml [i+63:1i] = zmm2[i+63:1] * zmml[i+63:i] - tmpSrc3[i+63:i]
}
}

Reference Number: 327364-001 235

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
D

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :

(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :

(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sy,

525150

Function:

Usage

disp8*N

000
001
010
011
100
101
110
111

no conversion

broadcast 1 element (x8)
broadcast 4 elements (x2)
reserved

reserved

reserved

reserved

reserved

[rax] {8t08} or [rax]
[rax] {1to8}

[rax] {4to8}

N/A

N/A

N/A

N/A

N/A

64

32
N/A
N/A
N/A
N/A
N/A

236

Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: S,

MVEX.EH=0

555150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_fmsub_pd (_m512d, _m512d, _m512d);
_m512d _mmb512_mask_fmsub_pd (_m512d, _mmask8, _m512d, _m512d);
_m512d _mmb512_mask3_fmsub_pd (_m512d, _m512d, _m512d, _mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is

Reference Number: 327364-001 237

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

238 Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFMSUB21 3PS - Multiply First Source By Destination and Subtract Second
Source Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 vfmsub213ps zmm1 {k1}, zmm2, Multiply float32 vector zmm2 and float32
AA /r Sys2(zmm3/m;) vector zmml, subtract float32 vector

Sys2(zmm3/m;) from the result, and store
the final result in zmm1, under write-mask.

Description

Performs an element-by-element multiplication of float32 vector zmm?2 and float32 vec-
tor zmm1, then subtracts the float32 vector result of the swizzle/broadcast/conversion
process on memory or vector float32 zmm3 from the result. The final result is written
into float32 vector zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.
All operations must be performed previous to final rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {

if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvLoad y3p (zmm3/m;)
}

for (n = 0; n < 16; n++) {
if(k1[n] '= 0) {
i = 32*n
// float32 operation
zmml [i+31:i] = zmm2[i+31:1i] * zmml[i+31:i] - tmpSrc3[i+31:i]
}
}

Reference Number: 327364-001 239

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sys;

S25150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 float16 to float32 [rax] {float16} 32
100 uint8 to float32 [rax] {uint8} 16
110 uint16 to float32 [rax] {uint16} 32
111 sint16 to float32 [rax] {sint16} 32
Register Swizzle: S;3,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}
MVEX.EH=1

525150 || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

240 Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_fmsub_ps (_m512,_m512, _m512);
_m512 _mmb512_mask fmsub_ps (_mb512, _mmask16,_m512, _m512);
_m512 _mmb512_mask3_fmsub_ps (_m512, _m512, _m512, _mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001 241

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFMSUB231PD - Multiply First Source By Second Source and Subtract
Destination Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1 vfmsub231pd zmm1 {k1}, zmm2, Multiply float64 vector zmm2 and float64 vec-
BA /r St64(zmm3/m;) tor Syes(zmm3/m,), subtract float64 vector

zmm1 from the result, and store the final result
in zmm1, under write-mask.

Description

Performs an element-by-element multiplication of float32 vector zmm2 and the float32
vector result of the swizzle/broadcast/conversion process on memory or vector float32
zmm3, then subtracts float32 vector zmm1 from the result. The final result is written into
float32 vector zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.
All operations must be performed previous to final rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {

if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvLoad fe4 (zZmm3/m;)
}

for (n = 0; n < 8; n++) {
if(k1[n] '= 0) {
i = 64*n
// float64 operation
zmml [i+63:1i] = zmm2[i+63:1] * tmpSrc3[i+63:i] - zmml[i+63:i]
}
}

242 Reference Number: 327364-001

(intel”

CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sy,

555155 || Function: Usage disp8*N
000 no conversion [rax] {8t08} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001

243

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

244

Register Swizzle: S,

MVEX.EH=0

555150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_fmsub_pd (_m512d, _m512d, _m512d);
_m512d _mmb512_mask_fmsub_pd (_m512d, _mmask8, _m512d, _m512d);
_m512d _mmb512_mask3_fmsub_pd (_m512d, _m512d, _m512d, _mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is

Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001 245

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFMSUB231PS - Multiply First Source By Second Source and Subtract Des-
tination Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 vfmsub231ps zmm1 {k1}, zmm2, Multiply float32 vector zmm2 and float32 vec-
BA /r Sys2(zmm3/m;) tor Sys»(zmm3/m,), subtract float32 vector

zmm1 from the result, and store the final result
in zmm1, under write-mask.

Description

Performs an element-by-element multiplication of float32 vector zmm2 and the float32
vector result of the swizzle/broadcast/conversion process on memory or vector float32
zmm3, then subtracts float32 vector zmm1 from the result. The final result is written into
float32 vector zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.
All operations must be performed previous to final rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {

if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvLoad y3p (zmm3/m;)
}

for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {
i = 32*n
// float32 operation
zmml [i+31:i] = zmm2[i+31:1i] * tmpSrc3[i+31:i] - zmml[i+31:i]
}
}

246 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sys;

S25150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 float16 to float32 [rax] {float16} 32

100 uint8 to float32 [rax] {uint8} 16

110 uint16 to float32 [rax] {uint16} 32

111 sint16 to float32 [rax] {sint16} 32

Register Swizzle: S;3,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

525150 || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Reference Number: 327364-001 247

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘1

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_fmsub_ps (_m512,_m512, _m512);
_m512 _mmb512_mask fmsub_ps (_mb512, _mmask16,_m512, _m512);
_m512 _mmb512_mask3_fmsub_ps (_m512, _m512, _m512, _mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode
#SS(0)

#GP(0)

#PF (fault-code)
#NM

248

Instruction not available in these modes

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMADD132PD - Multiply Destination By Second Source and Subtract

From First Source Float64 Vectors

Opcode Instruction
MVEX.NDS.512.66.0F38.W1 9C /r vfnmadd132pd zmm1 {k1}, zmm2, Sys4(zmm3/m;)

Description
Multiply
float64 vec-
tor zmm1 and
float64 vector
Stea(zmm3/my),
negate, and add
the result to
float64 vector
zmm?2, and
store the fi-
nal result in
zmml1, under
write-mask.

Description

Performs an element-by-element multiplication of float64 vector zmm?2 and the float64
vector result of the swizzle/broadcast/conversion process on memory or vector float64
zmma3, then subtracts the result from float64 vector zmm1. The final result is written into

float64 vector zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.

All operations must be performed previous to final rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with

the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvLoad fe4 (zZmm3/m;)
}

for (n = 0; n < 8; n++) {
if(k1[n] !'= 0) {

Reference Number: 327364-001

249

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
D

250

i = 64*n
// float64 operation
zmml [i+63:i] = -(zmm1[i+63:i] * tmpSrc3[i+63:i]) + zmm2[i+63:1i]

}
}

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :

(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :

(MXCSR.FZ)? YES : NO

Memory Up-conversion: S g,
S95150 || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) | [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: S,

MVEX.EH=0

555150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_famadd_pd (_m512d, _m512d,_m512d);
_m512d _mmb512_mask_fnmadd_pd (_m512d, _mmask8, _m512d, _m512d);
_m512d _mmb512_mask3_fnmadd_pd (_m512d, _m512d, _m512d, _mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is

Reference Number: 327364-001 251

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

252 Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMADD132PS - Multiply Destination By Second Source and Subtract

From First Source Float32 Vectors

Opcode Instruction
MVEX.NDS.512.66.0F38.W0 9C /r vfnmadd132ps zmm1 {k1}, zmm2, Sy3,(zmm3/m;)

Description
Multiply
float32 vec-
tor zmm1l and
float32 vector
Sta2(zmm3/my),
negate, and add
the result to
float32 vector
zmma2, and
store the fi-
nal result in
zmml1, under
write-mask.

Description

Performs an element-by-element multiplication of float32 vector zmm?2 and the float32
vector result of the swizzle/broadcast/conversion process on memory or vector float32
zmma3, then subtracts the result from float32 vector zmm1. The final result is written into

float32 vector zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.

All operations must be performed previous to final rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with

the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvLoad y3p (zmm3/m;)
}

for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {

Reference Number: 327364-001

253

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
D

i = 32*n
// float32 operation
zmml [i+31:i] = -(zmm1[i+31:i] * tmpSrc3[i+31:i]) + zmm2[i+31:i]

}
}

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sys;

525150

Function:

Usage

disp8*N

000
001
010
011
100
110
111

no conversion

broadcast 1 element (x16)
broadcast 4 elements (x4)
float16 to float32

uint8 to float32

uint16 to float32

sint16 to float32

[rax] {16to16} or [rax]
[rax] {1to16}
[rax] {4to16}
[rax] {float16}
[rax] {uint8}
[rax] {uint16}
[rax] {sint16}

64

16
32
16
32
32

254

Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sy,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_famadd_ps (_m512,_m512, _m512);
_m512 _mmb512_mask_fnmadd_ps (_m512, _mmask16, _m512, _m512);
_m512 _mmb512_mask3_fnmadd_ps (_m512, _m512, _m512, _mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is

in a non-canonical form.

Reference Number: 327364-001 255

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

256 Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMADDZ213PD - Multiply First Source By Destination and Subtract From

Second Source Float64 Vectors

Opcode Instruction
MVEX.NDS.512.66.0F38.W1 AC /r vfnmadd213pd zmm1 {k1}, zmm2, Sy¢4(zmm3/m;)

Description

Multiply float64
vector zmm?2
and float64
vector zmml,
negate, and add
the result to
float64 vector
Sf64(zmm3/mt),
and store the
final result in
zmm1, under
write-mask.

Description

Performs an element-by-element multiplication of float64 vector zmm1 and the float64
vector result of the swizzle /broadcast/conversion process on memory or vector float64
zmma3, then subtracts the result from float64 vector zmm?2. The final result is written into

float64 vector zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.

All operations must be performed previous to final rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with

the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvLoad fe4 (zZmm3/m;)
}

for (n = 0; n < 8; n++) {
if(k1[n] !'= 0) {

i = 64%*n

Reference Number: 327364-001

257

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

// float64 operation
zmml [1+63:1i] = -(zmm2[i+63:1i] * zmml1[i+63:i]) + tmpSrc3[i+63:i]
}

}

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: S g,

55515 || Function: Usage disp8*N
000 no conversion [rax] {8t08} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

258 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: S,

MVEX.EH=0

555150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_famadd_pd (_m512d, _m512d,_m512d);
_m512d _mmb512_mask_fnmadd_pd (_m512d, _mmask8, _m512d, _m512d);
_m512d _mmb512_mask3_fnmadd_pd (_m512d, _m512d, _m512d, _mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is

Reference Number: 327364-001 259

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

260 Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMADDZ213PS - Multiply First Source By Destination and Subtract From

Second Source Float32 Vectors

Opcode Instruction
MVEX.NDS.512.66.0F38.W0 AC /r vfnmadd213ps zmm1 {k1}, zmm2, S3>(zmm3/m;)

Description

Multiply float32
vector zmm?2
and float32
vector zmml,
negate, and
add the result
to float32 vector
ngg(me3/mt),
and store the
final result in
zmml1, under
write-mask.

Description

Performs an element-by-element multiplication of float32 vector zmm1 and the float32
vector result of the swizzle /broadcast/conversion process on memory or vector float32
zmma3, then subtracts the result from float32 vector zmm?2. The final result is written into

float32 vector zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.

All operations must be performed previous to final rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with

the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvLoad fzp (zmm3/m;)
}

for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {

i = 32*n

Reference Number: 327364-001

261

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
D

// float32 operation
zmml [1+31:1i] = -(zmm2[i+31:i] * zmml1[i+31:i]) + tmpSrc3[i+31:i]

}
}

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sys;

525150

Function:

Usage

disp8*N

000
001
010
011
100
110
111

no conversion

broadcast 1 element (x16)
broadcast 4 elements (x4)
float16 to float32

uint8 to float32

uint16 to float32

sint16 to float32

[rax] {16t016} or [rax]
[rax] {1to16}
[rax] {4to16}
[rax] {float16}
[rax] {uint8}
[rax] {uint16}
[rax] {sint16}

64

16
32
16
32
32

262

Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sy,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_famadd_ps (_m512,_m512, _m512);
_m512 _mmb512_mask_fnmadd_ps (_m512, _mmask16, _m512, _m512);
_m512 _mmb512_mask3_fnmadd_ps (_m512, _m512, _m512, _mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is

in a non-canonical form.

Reference Number: 327364-001 263

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

264 Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMADDZ231PD - Multiply First Source By Second Source and Subtract

From Destination Float64 Vectors

Opcode Instruction
MVEX.NDS.512.66.0F38.W1 BC /r vfnmadd231pd zmm1 {k1}, zmm2, S;¢4(zmm3/m;)

Description
Multiply
float64 vec-
tor zmm2 and
float64 vector
Stea(zmm3/my),
negate, and add
the result to
float64 vector
zmml, and
store the fi-
nal result in
zmm1, under
write-mask.

Description

Performs an element-by-element multiplication of float64 vector zmm?2 and float64 vec-
torzmm1, then subtracts the result from the float64 vector result of the swizzle /broadcast/conversion
process on memory or vector float64 zmma3. The final result is written into float64 vector

zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.

All operations must be performed previous to final rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with

the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvLoad fe4 (zZmm3/m;)
}

for (n = 0; n < 8; n++) {
if(k1[n] !'= 0) {

Reference Number: 327364-001

265

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
D

266

i = 64*n
// float64 operation
zmml [i+63:i] = -(zmm2[i+63:1i] * tmpSrc3[i+63:i]) + zmml[i+63:i]

}
}

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :

(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :

(MXCSR.FZ)? YES : NO

Memory Up-conversion: S g,
S95150 || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) | [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: S,

MVEX.EH=0

555150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_famadd_pd (_m512d, _m512d,_m512d);
_m512d _mmb512_mask_fnmadd_pd (_m512d, _mmask8, _m512d, _m512d);
_m512d _mmb512_mask3_fnmadd_pd (_m512d, _m512d, _m512d, _mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is

Reference Number: 327364-001 267

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

268 Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMADDZ231PS - Multiply First Source By Second Source and Subtract
From Destination Float32 Vectors

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W0 BC /r vfnmadd231ps zmm1 {k1},zmm2, Sy32(zmm3/m;) Multiply
float32 vec-
tor zmm2 and
float32 vector
St3a(zmm3/my),
negate, and add
the result to
float32 vector
zmml, and
store the fi-
nal result in
zmm1, under
write-mask.

Description

Performs an element-by-element multiplication of float32 vector zmm?2 and float32 vec-

torzmm1, then subtracts the result from the float32 vector result of the swizzle /broadcast/conversion
process on memory or vector float32 zmm3. The final result is written into float32 vector

zmml.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.
All operations must be performed previous to final rounding.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {

if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvLoad y3p (zmm3/m;)
}

for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {

Reference Number: 327364-001 269

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
D

i = 32*n
// float32 operation
zmml [i+31:i] = -(zmm2[i+31:i] * tmpSrc3[i+31:i]) + zmml[i+31:i]

}
}

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sys;

525150

Function:

Usage

disp8*N

000
001
010
011
100
110
111

no conversion

broadcast 1 element (x16)
broadcast 4 elements (x4)
float16 to float32

uint8 to float32

uint16 to float32

sint16 to float32

[rax] {16to16} or [rax]
[rax] {1to16}
[rax] {4to16}
[rax] {float16}
[rax] {uint8}
[rax] {uint16}
[rax] {sint16}

64

16
32
16
32
32

270

Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sy,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_famadd_ps (_m512,_m512, _m512);
_m512 _mmb512_mask_fnmadd_ps (_m512, _mmask16, _m512, _m512);
_m512 _mmb512_mask3_fnmadd_ps (_m512, _m512, _m512, _mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is

in a non-canonical form.

Reference Number: 327364-001 271

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

272 Reference Number: 327364-001

(intel“

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMSUB132PD - Multiply Destination By Second Source, Negate, and
Subtract First Source Float64 Vectors

Opcode

MVEX.NDS.512.66.0F38.W1 9E /r

Instruction
vinmsub132pd zmm1 {k1}, zmm2, S¢¢4(zmm3/m,)

Description
Multiply
float64 vec-
tor zmm1l and
float64 vector
Sf64(zmm3/mt),
negate, and sub-
tract float64
vector zmm?2
from the result,
and store the
final result in
zmml1, under
write-mask.

Description

Performs an element-by-element multiplication between float64 vector zmm1 and the
float64 vector result of the swizzle/broadcast/conversion process on memory or vector
float64 zmm3, negates, and subtracts float64 vector zmm?2. The final result is written into

float64 vector zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.
All operations must be performed previous to final rounding.

x*y z RN/RU/RZ RD

+0 +0 4 (0) +(-00 =-0|(-0) +(0) =-0
+0 -0 | (-0) +(+0) =+0] (-0) +(+0) =-0
0 40| (+0) +(-0) =+0] (+0) +(-0) =-0
-0 -0 (+0) +(+0) =+0| (+0) +(+0) =+0

Table 6.11: VFNMSUB outcome when adding zeros depending on rounding-mode

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Reference Number: 327364-001

273

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]
} else {
RoundingMode

= MXCSR.RC
tmpSrc3[511:0] =

SwizzUpConvLoad fg4 (zmm3/m;)

3

for (n = 0; n < 8; n++) {
if(k1[n] !'= 0) {
i = 64*n
// float64 operation
zmml [i+63:i] = (-(zmm1[i+63:i] * tmpSrc3[i+63:i]) - zmm2[i+63:i])
}
}

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: S g,

59515y || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

274 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: S,

MVEX.EH=0

555150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_famsub_pd (_m512d, _m512d, _m512d);
_m512d _mmb512_mask_fnmsub_pd (_m512d, _mmask8, _m512d, _m512d);
_m512d _mmb512_mask3_fnmsub_pd (_m512d, _m512d, _m512d, _mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is

Reference Number: 327364-001 275

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

276 Reference Number: 327364-001

(intel“

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMSUB132PS - Multiply Destination By Second Source, Negate, and
Subtract First Source Float32 Vectors

Opcode

MVEX.NDS.512.66.0F38.W0 9E /r

Instruction
vinmsub132ps zmm1 {k1}, zmm2, S¢32(zmm3/m;)

Description
Multiply
float32 vec-
tor zmm1l and
float32 vector
ngg(zmm3/mt),
negate, and sub-
tract float32
vector zmm?2
from the result,
and store the
final result in
zmml1, under
write-mask.

Description

Performs an element-by-element multiplication between float32 vector zmm1 and the
float32 vector result of the swizzle/broadcast/conversion process on memory or vector
float32 zmm3, negates, and subtracts float32 vector zmm?2. The final result is written into

float32 vector zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.
All operations must be performed previous to final rounding.

x*y z RN/RU/RZ RD

+0 +0 4 (0) +(-00 =-0|(-0) +(0) =-0
+0 -0 | (-0) +(+0) =+0] (-0) +(+0) =-0
0 40| (+0) +(-0) =+0] (+0) +(-0) =-0
-0 -0 (+0) +(+0) =+0| (+0) +(+0) =+0

Table 6.12: VFNMSUB outcome when adding zeros depending on rounding-mode

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Reference Number: 327364-001

277

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel‘“

Operation

if (source is a register operand and MVEX.EH bit is 1) {
if (8SS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode

= MXCSR.RC
tmpSrc3([511:0] =

SwizzUpConvLoad ¢33 (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if (k1[n] '= 0) {
i = 32*n
// float32 operation
zmml [i+31:i] = (-(zmm1[i+31:i] * tmpSrc3[i+31:i]) - zmm2[i+31:i])
}
}

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sys;

525150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 float16 to float32 [rax] {float16} 32

100 uint8 to float32 [rax] {uint8} 16

110 uint16 to float32 [rax] {uint16} 32

111 sint16 to float32 [rax] {sint16} 32

278 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sy,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_famsub_ps (_m512, _m512, _m512);
_m512 _mmb512_mask_fnmsub_ps (_m512, _mmask16, _m512, _m512);
_m512 _mmb512_mask3_fnmsub_ps (_m512, _m512, _m512, _mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is

in a non-canonical form.

Reference Number: 327364-001 279

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

280 Reference Number: 327364-001

(intel“

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMSUBZ213PD - Multiply First Source By Destination, Negate, and Sub-
tract Second Source Float64 Vectors

Opcode Instruction
MVEX.NDS.512.66.0F38.W1 AE /r vfnmsub213pd zmm1 {k1}, zmm2, Sfe4(zmm3/m;)

Description
Multiply float64
vector zmm?2
and float64
vector zmml,
negate, and
subtract
float64 vector
S o1 (zmm3/my)
from the result,
and store the
final result in
zmml1, under
write-mask.

Description

Performs an element-by-element multiplication between float64 vector zmm?2 and float64
vector zmm1, negates, and subtracts the float64 vector result of the swizzle /broadcast/conversion
process on memory or vector float64 zmm3. The final sum is written into float64 vector

zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.
All operations must be performed previous to final rounding.

x*y z RN/RU/RZ RD

+0 +0 4 (0) +(-00 =-0|(-0) +(0) =-0
+0 -0 | (-0) +(+0) =+0] (-0) +(+0) =-0
0 40| (+0) +(-0) =+0] (+0) +(-0) =-0
-0 -0 (+0) +(+0) =+0| (+0) +(+0) =+0

Table 6.13: VFNMSUB outcome when adding zeros depending on rounding-mode

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Reference Number: 327364-001

281

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]
} else {
RoundingMode

= MXCSR.RC
tmpSrc3[511:0] =

SwizzUpConvLoad fg4 (zmm3/m;)

3

for (n = 0; n < 8; n++) {
if(k1[n] !'= 0) {
i = 64*n
// float64 operation
zmml [i+63:i] = (-(zmm2[i+63:i] * zmml[i+63:i]) - tmpSrc3[i+63:1i])
}
}

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: S g,

59515y || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

282 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: S,

MVEX.EH=0

555150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_famsub_pd (_m512d, _m512d, _m512d);
_m512d _mmb512_mask_fnmsub_pd (_m512d, _mmask8, _m512d, _m512d);
_m512d _mmb512_mask3_fnmsub_pd (_m512d, _m512d, _m512d, _mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is

Reference Number: 327364-001 283

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

284 Reference Number: 327364-001

(intel“

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMSUBZ213PS - Multiply First Source By Destination, Negate, and Sub-
tract Second Source Float32 Vectors

Opcode Instruction
MVEX.NDS.512.66.0F38.W0 AE /r vfnmsub213ps zmm1 {k1}, zmm2, S¢32(zmm3/m,)

Description
Multiply
float32 vec-
tor zmm2 and
float32 vector
zmml1, negate,
and subtract
float32 vector
Sya2(zmm3/my)
from the result,
and store the
final result in
zmml, under
write-mask.

Description

Performs an element-by-element multiplication between float32 vector zmm2 and float32
vector zmm1, negates, and subtracts the float32 vector result of the swizzle /broadcast/conversion
process on memory or vector float32 zmm3. The final sum is written into float32 vector

zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.
All operations must be performed previous to final rounding.

x*y z RN/RU/RZ RD

+0 +0 4 (0) +(-00 =-0|(-0) +(0) =-0
+0 -0 | (-0) +(+0) =+0] (-0) +(+0) =-0
0 40| (+0) +(-0) =+0] (+0) +(-0) =-0
-0 -0 (+0) +(+0) =+0| (+0) +(+0) =+0

Table 6.14: VFNMSUB outcome when adding zeros depending on rounding-mode

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Reference Number: 327364-001

285

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel‘“

Operation

if (source is a register operand and MVEX.EH bit is 1) {
if (8SS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode

= MXCSR.RC
tmpSrc3([511:0] =

SwizzUpConvLoad ¢33 (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if (k1[n] '= 0) {
i = 32*n
// float32 operation
zmml [i+31:i] = (-(zmm2[i+31:i] * zmml[i+31:i]) - tmpSrc3[i+31:i])
}
}

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sys;

525150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 float16 to float32 [rax] {float16} 32

100 uint8 to float32 [rax] {uint8} 16

110 uint16 to float32 [rax] {uint16} 32

111 sint16 to float32 [rax] {sint16} 32

286 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sy,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_famsub_ps (_m512, _m512, _m512);
_m512 _mmb512_mask_fnmsub_ps (_m512, _mmask16, _m512, _m512);
_m512 _mmb512_mask3_fnmsub_ps (_m512, _m512, _m512, _mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is

in a non-canonical form.

Reference Number: 327364-001 287

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

288 Reference Number: 327364-001

(intel“

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMSUBZ231PD - Multiply First Source By Second Source, Negate, and
Subtract Destination Float64 Vectors

Opcode

MVEX.NDS.512.66.0F38.W1 BE /r

Instruction

vinmsub231pd zmm1 {k1}, zmm2, Ste4(zmm3/m;)

Description
Multiply
float64 vec-
tor zmm2 and
float64 vector
Sf64[zmm3/mt),
negate, and
subtract float64
vector zmml
from the result,
and store the
final result in
zmml1, under
write-mask.

Description

Performs an element-by-element multiplication between float64 vector zmmz2 and the
float64 vector result of the swizzle/broadcast/conversion process on memory or vector
float64 zmm3, negates, and subtracts float64 vector zmm1. The final result is written into

float64 vector zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.
All operations must be performed previous to final rounding.

x*y z RN/RU/RZ RD

+0 +0 4 (0) +(-00 =-0|(-0) +(0) =-0
+0 -0 | (-0) +(+0) =+0] (-0) +(+0) =-0
0 40| (+0) +(-0) =+0] (+0) +(-0) =-0
-0 -0 (+0) +(+0) =+0| (+0) +(+0) =+0

Table 6.15: VFMADDN outcome when adding zeros depending on rounding-mode

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Reference Number: 327364-001

289

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]
} else {
RoundingMode

= MXCSR.RC
tmpSrc3[511:0] =

SwizzUpConvLoad fg4 (zmm3/m;)

3

for (n = 0; n < 8; n++) {
if(k1[n] !'= 0) {
i = 64*n
// float64 operation
zmml [i+63:i] = (-(zmm2[i+63:i] * tmpSrc3[i+63:i]) - zmm1[i+63:i])
}
}

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: S g,

59515y || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

290 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: S,

MVEX.EH=0

555150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_famsub_pd (_m512d, _m512d, _m512d);
_m512d _mmb512_mask_fnmsub_pd (_m512d, _mmask8, _m512d, _m512d);
_m512d _mmb512_mask3_fnmsub_pd (_m512d, _m512d, _m512d, _mmask8);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is

Reference Number: 327364-001 291

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

292 Reference Number: 327364-001

(intel“

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VFNMSUB231PS - Multiply First Source By Second Source, Negate, and
Subtract Destination Float32 Vectors

Opcode Instruction
MVEX.NDS.512.66.0F38.W0 BE /r vfnmsub231ps zmm1 {k1}, zmm2, S¢32(zmm3/m;)

Description
Multiply
float32 vec-
tor zmm2 and
float32 vector
ngg(zmm3/mt),
negate, and sub-
tract float32
vector zmml
from the result,
and store the
final result in
zmm1, under
write-mask.

Description

Performs an element-by-element multiplication between float32 vector zmmz2 and the
float32 vector result of the swizzle/broadcast/conversion process on memory or vector
float32 zmm3, negates, and subtracts float32 vector zmm1. The final result is written into

float32 vector zmm1.

Intermediate values are calculated to infinite precision, and are not truncated or rounded.
All operations must be performed previous to final rounding.

x*y z RN/RU/RZ RD

+0 +0 4 (0) +(-00 =-0|(-0) +(0) =-0
+0 -0 | (-0) +(+0) =+0] (-0) +(+0) =-0
0 40| (+0) +(-0) =+0] (+0) +(-0) =-0
-0 -0 (+0) +(+0) =+0| (+0) +(+0) =+0

Table 6.16: VFMADDN outcome when adding zeros depending on rounding-mode

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Reference Number: 327364-001

293

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel‘“

Operation

if (source is a register operand and MVEX.EH bit is 1) {
if (8SS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode

= MXCSR.RC
tmpSrc3([511:0] =

SwizzUpConvLoad ¢33 (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if (k1[n] '= 0) {
i = 32*n
// float32 operation
zmml [i+31:i] = (-(zmm2[i+31:i] * tmpSrc3[i+31:i]) - zmml[i+31:i])
}
}

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: Sys;

525150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 float16 to float32 [rax] {float16} 32

100 uint8 to float32 [rax] {uint8} 16

110 uint16 to float32 [rax] {uint16} 32

111 sint16 to float32 [rax] {sint16} 32

294 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sy,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_famsub_ps (_m512, _m512, _m512);
_m512 _mmb512_mask_fnmsub_ps (_m512, _mmask16, _m512, _m512);
_m512 _mmb512_mask3_fnmsub_ps (_m512, _m512, _m512, _mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is

in a non-canonical form.

Reference Number: 327364-001 295

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

296 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGATHERDPD - Gather Float64 Vector With Signed Dword Indices

Opcode Instruction Description

MVEX.512.66.0F38.W1 92 vgatherdpd zmm1 {k1}, Gather float64 vector Usss(mv;) into float64

/r /vsib Utea(muy) vector zmm1 using doubleword indices and k1
as completion mask.

Description

A set of 8 memory locations pointed by base address BASE_ADDR and doubleword
index vector VIN DFE X with scale SCALE are converted to a float64 vector. The result
is written into float64 vector zmm1.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT_SUBSET). There are only
two guarantees about the function: (a) the destination mask is a subset of the source mask
(identity is included), and (b) on a given invocation of the instruction, atleast one element
(the least significant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
gather/scatter sequence have been loaded/stored and hence, the write-mask bits all are
zero).

Note that accessed element by will always access 64 bytes of memory. The memory region
accessed by each element will always be between elemen_linear_address & (~0x3F) and
(element_linear_address & (~0x3F)) + 63 boundaries.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully loaded.

The instruction will #GP fault if the destination vector zmm1 is the same as index vector
VINDEX.

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET (k1)

// Use mv; as vector memory operand (VSIB)
for (n = 0; n < 8; n++) {

if (ktemp[n] '= 0) {

Reference Number: 327364-001 297

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

i = 64*n
j = 32%n
// mw;[n] = BASE_ADDR + SignExtend (VINDEX[j+31:j] * SCALE)
pointer[63:0] = muvy[n]
zmm1 [i+63:1] = UpConvLoadfss (pointer)
ki[n] =0
}
}
k1[15:8] = 0

SIMD Floating-Point Exceptions

None.

Memory Up-conversion: Uyg,

595155y || Function: Usage disp8*N
000 no conversion [rax] 8

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb512d _mmb512_i32logather_pd (_m512i, void const*, int);
_m512d _mmb512_mask_i32logather_pd (_m512d, _mmask8, _mb512i, void const*, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

298 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode
#SS(0)

#GP(0)

#PF(fault-code)

#NM

Reference Number: 327364-001

If a memory address referencing the SS segment is

in a non-canonical form, and corresponding write-mask bit is not zero.
If a memory address is in a non-canonical form,

and corresponding write-mask bit is not zero.

If a memory operand linear address is not aligned

to element-wise data granularity dictated by the UpConv

and corresponding write-mask bit is not zero.

If the destination vector is the same as the index vector [see

If a memory operand linear address produces a page fault
and corresponding write-mask bit is not zero.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

If using a 16 bit effective address.

If ModRM.rm is different than 100b.

If no write mask is provided or selected write-mask is k0.

299

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGATHERDPS - Gather Float32 Vector With Signed Dword Indices

300

Opcode Instruction Description
MVEX.512.66.0F38.W0 92 vgatherdpszmm1 {k1}, Ursa(mv;) Gather float32 vector Ugsa(mu;) into float32
/r /vsib vector zmm1 using doubleword indices and k1

as completion mask.

Description

A set of 16 memory locations pointed by base address BASE_ADDR and doubleword
index vector VIN DFE X with scale SCALE are converted to a float32 vector. The result
is written into float32 vector zmm1.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT_SUBSET). There are only
two guarantees about the function: (a) the destination mask is a subset of the source mask
(identity is included), and (b) on a given invocation of the instruction, atleast one element
(the least significant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
gather/scatter sequence have been loaded/stored and hence, the write-mask bits all are
zero).

Note that accessed element by will always access 64 bytes of memory. The memory region
accessed by each element will always be between elemen_linear_address & (~0x3F) and
(element_linear_address & (~0x3F)) + 63 boundaries.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully loaded.

The instruction will #GP fault if the destination vector zmm1 is the same as index vector
VINDEX.

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET (k1)

// Use mv; as vector memory operand (VSIB)
for (n = 0; n < 16; n++) {

if (ktemp[n] '= 0) {

Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

i = 32*n

// muvy[n] = BASE_ADDR + SignExtend(VINDEX[i+31:i] * SCALE)
pointer[63:0] = muvy[n]

zmm1[i+31:1] = UpConvLoadys, (pointer)

ki[n] =0

SIMD Floating-Point Exceptions

Invalid.

Memory Up-conversion: Uy s,

S95150 || Function: Usage disp8*N
000 no conversion [rax] 4

001 reserved N/A N/A
010 reserved N/A N/A
011 float16 to float32 [rax] {float16} 2

100 uint8 to float32 [rax] {uint8} 1

101 sint8 to float32 [rax] {sint8} 1

110 uint16 to float32 [rax] {uint16} 2

111 sint16 to float32 [rax] {sint16} 2

Intel” C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_i32gather_ps (_m512i, void const*, int);

_m512 _mmb512_mask_i32gather_ps (_m512, _mmask16, _m512i, void const¥, int);

_m512 _mmb512_i32extgather_ps (_m512i, void const*, _MM_UPCONV_PS_ENUM, int,
int);

_m512 _mmb512_mask i32extgather_ps (_m512, _mmaskl6, _m512i, void const¥*,
_MM_UPCONV_PS_ENUM, int, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

Reference Number: 327364-001 301

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form, and corresponding write-mask bit is not zero.
#GP(0) If a memory address is in a non-canonical form,

and corresponding write-mask bit is not zero.

If a memory operand linear address is not aligned

to element-wise data granularity dictated by the UpConv
and corresponding write-mask bit is not zero.

If the destination vector is the same as the index vector [see

#PF(fault-code) If a memory operand linear address produces a page fault
and corresponding write-mask bit is not zero.
#NM If CRO.TS[bit 3]=1.
If preceded by any REX, FO, F2, F3, or 66 prefixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.
If no write mask is provided or selected write-mask is kO.

302 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGATHERPFODPS - Gather Prefetch Float32 Vector With Signed Dword
Indices Into L1

Opcode Instruction Description
MVEX.512.66.0F38.W0 C6 vgatherpfOdps Uysz(muvy) {k1} Gather Prefetch float32 vector U3, (mv,), using
/1 /vsib doubleword indices with TO hint, under write-
mask.
Description

A setof 16 float32 memory locations pointed by base address BASE_AD DR and double-
word index vector VIN D E X with scale SCALF are prefetched from memory to L1 level
of cache. If any memory access causes any type of memory exception, the memory access
will be considered as completed (destination mask updated) and the exception ignored.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT_SUBSET). There are only
two guarantees about the function: (a) the destination mask is a subset of the source mask
(identity is included), and (b) on a given invocation of the instruction, atleast one element
(the least significant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
prefetch sequence have been prefetched and hence, the write-mask bits all are zero).

Note that accessed element by will always access 64 bytes of memory. The memory region
accessed by each element will always be between elemen_linear_address & (~0x3F) and
(element _linear_address & (~0x3F)) + 63 boundaries.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully loaded.

Note that both gather and scatter prefetches set the access bit (A) in the related TLB page
entry. Scatter prefetches (which prefetch data with RFO) do not set the dirty bit (D).

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET (k1)

exclusive = 0
evicthintpre = MVEX.EH

Reference Number: 327364-001 303

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘1

// Use muv; as vector memory operand (VSIB)
for (n = 0; n < 16; n++) {
if (ktemp[n] !'= 0) {
i = 32*n
// mu;[n] = BASE_ADDR + SignExtend(VINDEX[i+31:i] * SCALE)
pointer[63:0] = muvy[n]
FetchLlcachelLine(pointer, exclusive, evicthintpre)
ki[n] =0

SIMD Floating-Point Exceptions

None.

Memory Up-conversion: U3,

55515y || Function: Usage disp8*N
000 no conversion [rax] 4

001 reserved N/A N/A
010 reserved N/A N/A
011 float16 to float32 [rax] {float16} 2

100 uint8 to float32 [rax] {uint8} 1

101 sint8 to float32 [rax] {sint8} 1

110 uint16 to float32 [rax] {uint16} 2

111 sint16 to float32 [rax] {sint16} 2

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mmb512_prefetch_i32gather_ps (_m512i, void const*, int, int);

void _mmb512_mask_prefetch_i32gather_ps (_mb512i, _mmask16, void const*, int,
int);

void _mmb512_prefetch_i32extgather_ps (_m512j, void const*,
_MM_UPCONV_PS_ENUM, int, int);

void _mmb512_mask_prefetch_i32extgather_ps (_m512i, _mmask16, void const*,
_MM_UPCONV_PS_ENUM, int, int);

304 Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

If using a 16 bit effective address.

If ModRM.rm is different than 100b.

If no write mask is provided or selected write-mask is kO.

Reference Number: 327364-001 305

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGATHERPFOHINTDPD - Gather Prefetch Float64 Vector Hint With Signed
Dword Indices

Opcode Instruction Description
MVEX.512.66.0F38.W1 C6 vgatherpfOhintdpd Ugsa(mvy) Gather Prefetch float64 vector Uyes (muy), using
/0 /vsib {k1} doubleword indices with TO hint, under write-
mask.
Description

The instruction specifies a set of 8 float64 memory locations pointed by base address
BASE_ADDR and doubleword index vector VIN DE X with scale SCALF as a perfor-
mance hint that a real gather instruction with the same set of sources will be invoked. A
programmer may execute this instruction before a real gather instruction to improve its
performance.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresses without causing problems or memory related faults. This instructions does not
modify any kind of architectural state (including the write-mask).

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Operation

// Use muv; as vector memory operand (VSIB)
for (n =0; n < 8; n++) {
if (x1[n] '=0) {
i = 64*n
j = 32¥n
// muv,[n] = BASE_ADDR + SignExtend(VINDEX[j+31:j] * SCALE)
pointer[63:0] = muvy[n]
HintPointer (pointer)

SIMD Floating-Point Exceptions

None.

306 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Uy,

59515 || Function: Usage disp8*N
000 no conversion [rax] 8

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel’ C/C++ Compiler Intrinsic Equivalent

None

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode

#NM
#UD

Reference Number: 327364-001

Instruction not available in these modes

If CRO.TS[bit 3]=1.

If processor model does not implement the specific instruction.
If preceded by any REX, FO, F2, F3, or 66 prefixes.

If using a 16 bit effective address.

If ModRM.rm is different than 100b.

If no write mask is provided or selected write-mask is kO.

307

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGATHERPFOHINTDPS - Gather Prefetch Float32 Vector Hint With Signed
Dword Indices

Opcode Instruction Description
MVEX.512.66.0F38.W0 C6 vgatherpfOhintdps Ugsa(muvy) Gather Prefetch float32 vector Ussa (mvy), using
/0 /vsib {k1} doubleword indices with TO hint, under write-
mask.
Description

The instruction specifies a set of 16 float32 memory locations pointed by base address
BASFE_ADDR and doubleword index vector VIN DE X with scale SCALFE as a perfor-
mance hint that a real gather instruction with the same set of sources will be invoked. A
programmer may execute this instruction before a real gather instruction to improve its
performance.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresses without causing problems or memory related faults. This instructions does not
modify any kind of architectural state (including the write-mask).

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Operation

// Use muv, as vector memory operand (VSIB)
for (n = 0; n < 16; n++) {
if (kt[n] '=0) {
i = 32*%n
// muy[n] = BASE_ADDR + SignExtend(VINDEX[i+31:i] * SCALE)
pointer[63:0] = muvy[n]
HintPointer (pointer)
}
}

SIMD Floating-Point Exceptions

None.

308 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6.

INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Uys,

S95150 || Function: Usage disp8*N
000 no conversion [rax] 4

001 reserved N/A N/A
010 reserved N/A N/A
011 float16 to float32 [rax] {float16} 2

100 uint8 to float32 [rax] {uint8} 1

101 sint8 to float32 [rax] {sint8} 1

110 uint16 to float32 [rax] {uint16} 2

111 sint16 to float32 [rax] {sint16} 2

None

Exceptions

#UD

#UD

64 bit Mode

#NM
#UD

Real-Address Mode and Virtual-8086

Intel’ C/C++ Compiler Intrinsic Equivalent

Instruction not available in these modes

Protected and Compatibility Mode

Instruction not available in these modes

If CRO.TS[bit 3]=1.

If processor model does not implement the specific instruction.

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.

If no write mask is provided or selected write-mask is kO.

Reference Number: 327364-001

309

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGATHERPF1DPS - Gather Prefetch Float32 Vector With Signed Dword
Indices Into L2

310

Opcode Instruction Description
MVEX.512.66.0F38.W0 C6 vgatherpfldps Uysz(muvy) {k1} Gather Prefetch float32 vector U3, (mv,), using
/2 [vsib doubleword indices with T1 hint, under write-
mask.
Description

A setof 16 float32 memory locations pointed by base address BASE_AD DR and double-
word index vector VIN D E X with scale SCALF are prefetched from memory to L2 level
of cache. If any memory access causes any type of memory exception, the memory access
will be considered as completed (destination mask updated) and the exception ignored.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT_SUBSET). There are only
two guarantees about the function: (a) the destination mask is a subset of the source mask
(identity is included), and (b) on a given invocation of the instruction, atleast one element
(the least significant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
prefetch sequence have been prefetched and hence, the write-mask bits all are zero).

Note that accessed element by will always access 64 bytes of memory. The memory region
accessed by each element will always be between elemen_linear_address & (~0x3F) and
(element _linear_address & (~0x3F)) + 63 boundaries.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully loaded.

Note that both gather and scatter prefetches set the access bit (A) in the related TLB page
entry. Scatter prefetches (which prefetch data with RFO) do not set the dirty bit (D).

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET (k1)

exclusive = 0
evicthintpre = MVEX.EH

Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

// Use muv; as vector memory operand (VSIB)
for (n = 0; n < 16; n++) {
if (ktemp[n] !'= 0) {
i = 32*n
// mu;[n] = BASE_ADDR + SignExtend(VINDEX[i+31:i] * SCALE)
pointer[63:0] = muvy[n]
FetchL2cacheline(pointer, exclusive, evicthintpre)
ki[n] =0

SIMD Floating-Point Exceptions

None.

Memory Up-conversion: U3,

55515y || Function: Usage disp8*N
000 no conversion [rax] 4

001 reserved N/A N/A
010 reserved N/A N/A
011 float16 to float32 [rax] {float16} 2

100 uint8 to float32 [rax] {uint8} 1

101 sint8 to float32 [rax] {sint8} 1

110 uint16 to float32 [rax] {uint16} 2

111 sint16 to float32 [rax] {sint16} 2

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mmb512_prefetch_i32gather_ps (_m512i, void const*, int, int);

void _mmb512_mask_prefetch_i32gather_ps (_mb512i, _mmask16, void const*, int,
int);

void _mmb512_prefetch_i32extgather_ps (_m512j, void const*,
_MM_UPCONV_PS_ENUM, int, int);

void _mmb512_mask_prefetch_i32extgather_ps (_m512i, _mmask16, void const*,
_MM_UPCONV_PS_ENUM, int, int);

Reference Number: 327364-001 311

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

If using a 16 bit effective address.

If ModRM.rm is different than 100b.

If no write mask is provided or selected write-mask is kO.

312 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGETEXPPD - Extract Float64 Vector of Exponents from Float64 Vector

Opcode Instruction Description

MVEX.512.66.0F38.W1 42 vgetexppd zmm1 {k1}, Extractfloat64 vector of exponents from vector

/r Stea(zmm2/my) Stea(zmm2/m;) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element exponent extraction from the Float64 vector result of
the swizzle/broadcast/conversion process on memory or Float64 vector zmm2. The re-
sult is written into Float64 vector zmm1.

GetExp() returns the (un-biased) exponent n in floating-point format. That is, when X =
1/16, GetExp() returns the value —4, represented as C0800000 in IEEE single precision
(for the single-precision version of the instruction). If the source is denormal, VGETEXP
will normalize it prior to exponent extraction (unless DAZ=1).

GetExp() function follows Table 6.17 when dealing with floating-point special number.

Input | Result
NaN | quietized input NaN

+o0o +oo
+0 —00
-0 —00
—00 +00

Table 6.17: GetExp() special floating-point values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoad feq (zZmm2/my)

}

for (n =0; n < 8; n+t+) {
if(k1[n] !'= 0) {
i = 64*n
zmml [i+63:1i]

GetExp (tmpSrc2[i+63:1])

Reference Number: 327364-001 313

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

}
}

SIMD Floating-Point Exceptions

Invalid, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
Not Applicable

Memory Up-conversion: Sy,

S95150 || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Sy,

MVEX.EH=0

595150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

525150 || Rounding Mode Override Usage

1xx SAE (Supress-All-Exceptions) , {sae}

314 Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mm512_getexp_pd (_mb512d);
_m512d _mmb512_mask_getexp_pd (_m512d, _mmask8, _m512d);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001 315

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGETEXPPS - Extract Float32 Vector of Exponents from Float32 Vector

Opcode Instruction Description

MVEX.512.66.0F38.W0 42 vgetexpps zmm1 {k1}, Extractfloat32 vector of exponents from vector

/r S¢32(zmm2/my) St32(zmm2/m;) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element exponent extraction from the Float32 vector result of
the swizzle/broadcast/conversion process on memory or Float32 vector zmm2. The re-
sult is written into Float32 vector zmm1.

GetExp() returns the (un-biased) exponent n in floating-point format. That is, when X =
1/16, GetExp() returns the value —4, represented as C0800000 in IEEE single precision
(for the single-precision version of the instruction). If the source is denormal, VGETEXP
will normalize it prior to exponent extraction (unless DAZ=1).

GetExp() function follows Table 6.18 when dealing with floating-point special number.

Input | Result
NaN | quietized input NaN

+o0o +oo
+0 —00
-0 —00
—00 +00

Table 6.18: GetExp() special floating-point values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoad ¢zs (zmm2/m;)

}

for (n = 0; n < 16; n++) {
if(k1[n] '= 0) {
i = 32*n
zmml [i+31:i] = GetExp(tmpSrc2[i+31:i])

316 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

Invalid, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
Not Applicable

Memory Up-conversion: S;s;

55515 || Function: Usage disp8*N
000 no conversion [rax] {16t016} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 float16 to float32 [rax] {float16} 32

100 uint8 to float32 [rax] {uint8} 16

110 uint16 to float32 [rax] {uint16} 32

111 sint16 to float32 [rax] {sint16} 32

Register Swizzle: Sy,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

525150 || Rounding Mode Override Usage

1xx SAE (Supress-All-Exceptions) , {sae}

Reference Number: 327364-001 317

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘1

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_getexp_ps (_m512);
_m512 _mmb512_mask_getexp_ps (_m512, _mmask16, _m512);

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode
#SS(0)

#GP(0)

#PF(fault-code)
#NM

318

Instruction not available in these modes

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGETMANTPD - Extract Float64 Vector of Normalized Mantissas from
Float64 Vector

Opcode Instruction Description
MVEX.512.66.0F3A.W1 26 vgetmantpd zmm1 {k1}, Get Normalized Mantissa from float64 vector
/rib Stea(zmm2/my), imm8 St64(zmm2/m;) and store the result in zmm1,

using imm8 for sign control and mantissa inter-
val normalization, under write-mask.

Description

Performs an element-by-element conversion of the Float64 vector result of the swiz-
zle/broadcast/conversion process on memory or Float64 vector zmm?2 to Float64 values
with the mantissa normalized to the interval specified by interv and sign dictated by the
sign control parameter sc. The result is written into Float64 vector zmm1. Denormal val-
ues are explicitly normalized.

The formula for the operation is:
GetMant(x) = £2%|z.signi ficand|
where:

1 <= |z.significand| < 2

Exponent k is dependent on the interval range defined by interv and whether the expo-
nent of the source is even or odd. The sign of the final result is determined by sc and the
source sign.

GetMant() function follows Table 6.19 when dealing with floating-point special numbers.

Input | Result Exceptions/comments

NaN | QNaN(SRC) Raises #I if sNaN

400 400 ignore interv

+0 +0.0 ignore interv

-0 (SC[0])? +0.0 : —0.0 | ignore interv, set NaN/raise #1I if SC[1]=1
—00 (SC[0])? +0 : —o0 ignore interv, set NaN/raise #1 if SC[1]=1
<0 set NaN/raise #1 if SC[1]=1

Table 6.19: GetMant() special floating-point values behavior
This instruction is write-masked, so only those elements with the corresponding bit set

in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Reference Number: 327364-001 319

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Immediate Format

Normalization Interval I Iy
[1,2) 0 O
[1/2,2) 0 1
[1/2,1) 1 0
[3/4,3/2) 1 1
Sign Control Is I
sign = sign(SRC) 0 O
sign=0 0 1
DEST = NaN (#]) ifsign(SRC)=1 | 1 x

Operation

GetNormalizedMantissa(SRC , SignCtrl, Interv)
{
// Extracting the SRC sign, exponent and mantissa fields
SIGN = (SignCtrl[0])? O : SRC[63];
EXP SRC[63:52];
FRACT = (DAZ && (EXP == 0))7 O : SRC[51:0];

// Check for NaN operand

if (IsNaN(SRC)) {
if (IsSNaN(SRC)) *set I flagk
return QNaN(SRC)

}

// If SignCtrl[1] is set to 1, return NaN and set

// exception flag if the operand is negative.

// Note that -0.0 is included

if(SignCtrl[1] && (SRC[63] == 1)) {
set I flag
return QNaN_Indefinite

}

// Check for +/-INF and +/-0
if((EXP == 0x7FF && FRACTION == 0)
|| (EXP == 0 &% FRACTION == 0)) {
DEST[63:0] = (SIGN << 63) | (EXP[11:0] << 52) | FRACT[51:0];
return DEST
}

// Normalize denormal operands

// note that denormal operands are treated as zero if

// DAZ is set to 1

if ((EXP == 0) && (FRACTION !=0) {
// JBIT is the hidden integral bit
JBIT = 0; // Zero in case of denormal operands
EXP = O3FFh; // Set exponent to BIAS

320 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

While(JBIT == 0) {

JBIT = FRACT[51]; // Obtain fraction MSB
FRACT = FRACT << 1; // Normalize mantissa
EXP--; // and adjust exponent
}
set D flag
}
// Apply normalization intervals
UNBIASED_EXP = EXP - 03FFh; // get exponent in unbiased form
IS_ODD_EXP = UNBIASED_EXP[0]; // if the unbiased exponent odd?

if ((Interv == 10b)
[l ((Interv == 01b) && IS_ODD_EXP)
|| ((Interv == 11b) && (FRACT[51]==1))) {

EXP = 03FEh; // Set exponent to -1 (unbiased)
}
else {

EXP = 03FFh; // Set exponent to O (unbiased)
}

// form the final destination
DEST[63:0] = (SIGN << 63) | (EXP[11:0] << 52) | FRACT[51:0];
return DEST

sc = IMM8[3:2]
interv = IMM8[1:0]

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoad fes (zZmm2/m4)

}

for (n = 0; n < 8; n+t+) {
if(ki[n] !'= 0) {
i = 64*n
// float64 operation
zmml [i+63:i] = GetNormalizedMantissa(tmpSrc2[i+63:i], sc, interv)
}
}

Reference Number: 327364-001

321

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

SIMD Floating-Point Exceptions

Invalid, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
Not Applicable

Memory Up-conversion: S g,

55515 || Function: Usage disp8*N
000 no conversion [rax] {8t08} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) | [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A
Register Swizzle: Sy,

MVEX.EH=0

595150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

1xx SAE (Supress-All-Exceptions) , {sae}

322

Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_getmant_pd (_mb512d, _MM_MANTISSA_NORM_ENUM,
_MM_MANTISSA_SIGN_ENUM);
_m512d _mmb512_mask_getmant_pd (_mb512d, __mmasks, _mb512d,

_MM_MANTISSA_NORM_ENUM, MM_MANTISSA_SIGN_ENUM);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001 323

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel‘

VGETMANTPS - Extract Float32 Vector of Normalized Mantissas from
Float32 Vector

324

Opcode

Instruction

MVEX.512.66.0F3A.W0 26 vgetmantps

zmm1 {k1},

Description
Get Normalized Mantissa from float32 vector

/rib S¢s2(zmm2/my), imm8 S¢32(zmm2/m;) and store the result in zmm1,
using imm8 for sign control and mantissa inter-
val normalization, under write-mask.

Description

Performs an element-by-element conversion of the Float32 vector result of the swiz-
zle/broadcast/conversion process on memory or Float32 vector zmm?2 to Float32 values
with the mantissa normalized to the interval specified by interv and sign dictated by the
sign control parameter sc. The result is written into Float32 vector zmm1. Denormal val-
ues are explicitly normalized.

The formula for the operation is:

GetMant(x)

where:

= +2F|x.signi ficand|

1 <= |z.significand| < 2

Exponent k is dependent on the interval range defined by interv and whether the expo-
nent of the source is even or odd. The sign of the final result is determined by sc and the

source sign.

GetMant() function follows Table 6.20 when dealing with floating-point special numbers.

Input | Result Exceptions/comments

NaN | QNaN(SRC) Raises #I if sNaN

400 400 ignore interv

+0 +0.0 ignore interv

-0 (SC[0])? +0.0 : —0.0 | ignore interv, set NaN/raise #1I if SC[1]=1
—00 (SC[0])? +0 : —o0 ignore interv, set NaN/raise #1 if SC[1]=1
<0 set NaN/raise #1 if SC[1]=1

Table 6.20: GetMant() special floating-point values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Immediate Format

Normalization Interval I Iy
[1,2) 0 O
[1/2,2) 0 1
[1/2,1) 1 0
[3/4,3/2) 1 1
Sign Control Is I
sign = sign(SRC) 0 O
sign=0 0 1
DEST = NaN (#]) ifsign(SRC)=1 | 1 x

Operation

GetNormalizedMantissa(SRC , SignCtrl, Interv)

{

// Extracting the SRC sign, exponent and mantissa fields
SIGN = (SignCtrl[0])? O : SRC[31];

EXP SRC[30:23];

FRACT = (DAZ &% (EXP == 0))7 0 : SRC[22:0];

// Check for NaN operand

if (IsNaN(SRC)) {
if (IsSNaN(SRC)) *set I flagk
return QNaN(SRC)

}

// If SignCtrl[1] is set to 1, return NaN and set
// exception flag if the operand is negative.
// Note that -0.0 is included
if(SignCtrl[1] && (SRC[31] == 1))
set I flag
return QNaN_Indefinite

}

// Check for +/-INF and +/-0

if((EXP == OxFF && FRACTION == 0)
|| (EXP == 0 && FRACTION == 0)) {
DEST[31:0] = (SIGN << 31) | (EXP[7:0] << 23) | FRACT[22:0];

return DEST
}

// Apply normalization intervals
UNBIASED_EXP
IS_0DD_EXP

if ((Interv == 10b)
|| ¢ (Interv == 01b) && IS_ODD_EXP)
|| ((Interv == 11b) && (FRACT[22]==1))) {

Reference Number: 327364-001

EXP - O7Fh; // get exponent in unbiased form
UNBIASED_EXP[0]; // if the unbiased exponent odd?

325

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

EXP = 07Eh; // Set exponent to -1 (unbiased)
}
else {

EXP = 07Fh; // Set exponent to 0 (unbiased)
}

// form the final destination
DEST[31:0] = (SIGN << 31) | (EXP[7:0] << 23) | FRACT[22:0];
return DEST

sc = IMM8[3:2]
interv = IMM8[1:0]

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoad fzp (zmm2/m;)

}

for (n = 0; n < 16; n++) {
if(ki[n] !'= 0) {
i = 32*n
// float32 operation
zmml[i+31:i] = GetNormalizedMantissa(tmpSrc2[i+31:i], sc, interv)
}
}

SIMD Floating-Point Exceptions

Invalid, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
Not Applicable

326 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S¢;,

S951S5p || Function: Usage disp8*N
000 no conversion [rax] {16t016} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 float16 to float32 [rax] {float16} 32

100 uint8 to float32 [rax] {uint8} 16

110 uint16 to float32 [rax] {uint16} 32

111 sint16 to float32 [rax] {sint16} 32

Register Swizzle: S¢s,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

525150 || Rounding Mode Override Usage

1xx SAE (Supress-All-Exceptions) , {sae}

Intel” C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_getmant_ps (_mb512, _MM_MANTISSA_NORM_ENUM,
_MM_MANTISSA_SIGN_ENUM);
_m512 _mmb512_mask_getmant_ps (_mb512, __mmask16, _mb512,

_MM_MANTISSA_NORM_ENUM, MM_MANTISSA_SIGN_ENUM);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode
#UD Instruction not available in these modes

Reference Number: 327364-001 327

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

328 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGMAXABSPS - Absolute Maximum of Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 vgmaxabsps zmm1 {k1}, zmm2, Determine the maximum of the absolute val-
51 /r Sys2(zmm3/m;) ues of float32 vector zmm?2 and float32 vector

S¢32(zmm3/m;) and store the result in zmm1,
under write-mask.

Description

Determines the maximum of the absolute values of each pair of corresponding elements
in float32 vector zmm?2 and the float32 vector result of the swizzle /broadcast/conversion
process on memory or float32 vector zmm3. The result is written into float32 vector
zmm1.

Abs() returns the absolute value of one float32 argument. FpMax() returns the bigger
of the two float32 arguments, following IEEE in general. NaN has special handling: If
one source operand is NaN, then the other source operand is returned (choice made per-
component). If both are NaN, then the unchanged NaN from the first source (here zmm?2)
is returned. Please note that if first source is a SNaN it won't be quietized, it will be re-
turned without any modification. This differs from the new IEEE 754-08 rules, which
states that in case of an input SNaN, its quietized version should be returned instead of
the other value.

Another new IEEE 754-08 rule is that max(-0,+0) == max(+0,-0) == +0, which honors the
sign, in contrast to the comparison rules for signed zero (stated above). D3D10.0 recom-
mends the IEEE 754-08 behavior here, but it will not be enforced; it is permissible for the
result of comparing zeros to be dependent on the order of parameters, using a comparison
that ignores the signs.

This instruction treats input denormals as zeros according to the DAZ control bit, but it
does not flush tiny results to zero.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

FpMaxAbs (A,B)
{
if ((A == NaN) && (B == NaN))
return Abs(A);
else if (A == NaN)
return Abs(B);
else if (B == NaN)

Reference Number: 327364-001 329

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘l

return Abs(A);

else if

((Abs(A) == +inf) ||

return +inf;

else if

(Abs(A) >= Abs(B))

return Abs(A);

else

return Abs(B);

}

if (source is a register operand and MVEX.EH bit is 1) {

(Abs(B) == +inf))

if (SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc3[511:0] = zmm3[511:0]

} else {

tmpSrc3[511:0] = SwizzUpConvLoad fzs (zmm3/m;)

}

for (n = 0; n < 16; n++) {

if (k1[n]

1= 0) {

i = 32*n
// float32 operation
zmml [i+31:i] = FpMaxAbs(zmm2[i+31:i] , tmpSrc3[i+31:i])

}
}

SIMD Floating-Point Exceptions

Invalid, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :

NO

Memory Up-conversion: Sys;

525150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 float16 to float32 [rax] {float16} 32

100 uint8 to float32 [rax] {uint8} 16

110 uint16 to float32 [rax] {uint16} 32

111 sint16 to float32 [rax] {sint16} 32

330

Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: Sy,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

525150 || Rounding Mode Override Usage

1xx SAE (Supress-All-Exceptions) , {sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_gmaxabs_ps (_m512, _m512);
_m512 _mmb512_mask gmaxabs_p s(_m512, _mmask16, _m512, _mb512);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
#UD If processor model does not implement the specific instruction.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001 331

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

332 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGMAXPD - Maximum of Float64 Vectors

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W1 vgmaxpd zmml {kl}, zmm2, Determine the maximum of float64 vector

53 /r Stea(zmm3/m;) zmm?2 and float64 vector S¢¢4(zmm3/m,) and
store the result in zmm1, under write-mask.

Description

Determines the maximum value of each pair of corresponding elements in float64 vec-
tor zmm?2 and the float64 vector result of the swizzle/broadcast/conversion process on
memory or float64 vector zmm3. The result is written into float64 vector zmm1.

FpMax() returns the bigger of the two float32 arguments, following IEEE in general. NaN
has special handling: If one source operand is NaN, then the other source operand is re-
turned (choice made per-component). If both are NaN, then the unchanged NaN from the
first source (here zmm?2) is returned. Please note that if first source is a SNaN it won't be
quietized, it will be returned without any modification. This differs from the new IEEE
754-08 rules, which states that in case of an input SNaN, its quietized version should be
returned instead of the other value.

Another new IEEE 754-08 rule is that max(-0,+0) == max(+0,-0) == +0, which honors the
sign, in contrast to the comparison rules for signed zero (stated above). D3D10.0 recom-
mends the IEEE 754-08 behavior here, but it will not be enforced; it is permissible for the
result of comparing zeros to be dependent on the order of parameters, using a comparison
that ignores the signs.

This instruction treats input denormals as zeros according to the DAZ control bit, but it
does not flush tiny results to zero.

The following table describes exception flags priority:

Input 1 Input 2 Flags Comments

SNAN denormal #1 #] priority over #D
denormal SNAN #1 #] priority over #D

QNAN denormal | none QNaN rule priority over #D
denormal QNAN none QNaN rule priority over #D
normal denormal | #D onlyif DAZ=0

denormal normal #D only if DAZ=0

denormal denormal | #D onlyif DAZ=0

Table 6.21: Max exception flags priority

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Reference Number: 327364-001 333

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

FpMax (A,B)

{
if ((A == -0.0) && (B == +0.0)) return B;
if ((A == +0.0) && (B == -0.0)) return A;
if ((A == NaN) && (B == NaN)) return A;
if (A == NalN) return B;
if (B == NalN) return A;
if (A == -inf) return B;
if (B == -inf) return A;
if (A == +inf) return A;
if (B == +inf) return B;
if (A >= B) return A;
return B;

}

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad tes (zZmm3/m;)

}

for (n = 0; n < 8; n++) {
if(k1[n] !'= 0) {
i = 64*n
// float64 operation
zmml [i+63:1i] = FpMax(zmm2[i+63:i] , tmpSrc3[i+63:i])
}
}

SIMD Floating-Point Exceptions

Invalid, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
NO

334 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS
Memory Up-conversion: Sy,
S551Sp || Function: Usage disp8*N
000 no conversion [rax] {8t08} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) | [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A
Register Swizzle: Sy,

MVEX.EH=0

S95150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}
MVEX.EH=1

595150 || Rounding Mode Override Usage

1xx SAE (Supress-All-Exceptions) , {sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb512d
_mb512d

Exceptions

_mmb512_gmax_pd (_m512d, _mb512d);
_mmb512_mask_gmax_pd (_m512d, _mmask8, _m512d, _m512d);

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

Instruction not available in these modes

Reference Number: 327364-001

335

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
#UD If processor model does not implement the specific instruction.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

336 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGMAXPS - Maximum of Float32 Vectors

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W0 vgmaxps zmml {kl1l}, zmm2, Determine the maximum of float32 vector

53 /r S¢32(zmm3/m,) zmm?2 and float32 vector S¢32(zmm3/m,) and
store the result in zmm1, under write-mask.

Description

Determines the maximum value of each pair of corresponding elements in float32 vec-
tor zmm?2 and the float32 vector result of the swizzle /broadcast/conversion process on
memory or float32 vector zmm3. The result is written into float32 vector zmm1.

FpMax() returns the bigger of the two float32 arguments, following IEEE in general. NaN
has special handling: If one source operand is NaN, then the other source operand is re-
turned (choice made per-component). If both are NaN, then the unchanged NaN from the
first source (here zmm?2) is returned. Please note that if first source is a SNaN it won't be
quietized, it will be returned without any modification. This differs from the new IEEE
754-08 rules, which states that in case of an input SNaN, its quietized version should be
returned instead of the other value.

Another new IEEE 754-08 rule is that max(-0,+0) == max(+0,-0) == +0, which honors the
sign, in contrast to the comparison rules for signed zero (stated above). D3D10.0 recom-
mends the IEEE 754-08 behavior here, but it will not be enforced; it is permissible for the
result of comparing zeros to be dependent on the order of parameters, using a comparison
that ignores the signs.

This instruction treats input denormals as zeros according to the DAZ control bit, but it
does not flush tiny results to zero.

The following table describes exception flags priority:

Input 1 Input 2 Flags Comments

SNAN denormal #1 #] priority over #D
denormal SNAN #1 #] priority over #D

QNAN denormal | none QNaN rule priority over #D
denormal QNAN none QNaN rule priority over #D
normal denormal | #D onlyif DAZ=0

denormal normal #D only if DAZ=0

denormal denormal | #D onlyif DAZ=0

Table 6.22: Max exception flags priority

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Reference Number: 327364-001 337

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

FpMax (A,B)

{
if ((A == -0.0) && (B == +0.0)) return B;
if ((A == +0.0) && (B == -0.0)) return A;
if ((A == NaN) && (B == NaN)) return A;
if (A == NalN) return B;
if (B == NalN) return A;
if (A == -inf) return B;
if (B == -inf) return A;
if (A == +inf) return A;
if (B == +inf) return B;
if (A >= B) return A;
return B;

}

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad ¢zs (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {
i = 32*n
// float32 operation
zmml [i+31:i] = FpMax(zmm2[i+31:i] , tmpSrc3[i+31:i])
}
}

SIMD Floating-Point Exceptions

Invalid, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
NO

338 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6.

INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S¢;,

525150

Function:

Usage

disp8*N

000
001
010
011
100
110
111

no conversion

broadcast 1 element (x16)
broadcast 4 elements (x4)
float16 to float32

uint8 to float32

uint16 to float32

sint16 to float32

rax] {16to16} or [rax]
rax] {1to16}
rax| {4to16}

rax] {uint8}
rax] {uint16}
rax] {sint16}

[rax]
[rax]
[rax]
[rax] {float16}
[rax]
[rax]
[rax]

64

16
32
16
32
32

Register Swizzle: S¢3,

MVEX.EH=0
59515y || Function: 4 x 32 bits Usage
000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1
525150 || Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Intel” C/C++ Compiler Intrinsic Equivalent

_mb512
_mb512

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

Instruction not available in these modes

Reference Number: 327364-001

_mmb512_gmax_ps (_m512, _m512);
_mmb512_mask_gmax_ps (_mb512, _mmask16, _m512, _m512);

339

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
#UD If processor model does not implement the specific instruction.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

340 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGMINPD - Minimum of Float64 Vectors

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W1 vgminpd zmml {kl1}, zmm2, Determine the minimum of float64 vector

52 /r Stea(zmm3/m;) zmm?2 and float64 vector S¢¢4(zmm3/m,) and
store the result in zmm1, under write-mask.

Description

Determines the minimum value of each pair of corresponding elements in float64 vec-
tor zmm?2 and the float64 vector result of the swizzle/broadcast/conversion process on
memory or float64 vector zmm3. The result is written into float64 vector zmm1.

FpMin() returns the smaller of the two float32 arguments, following IEEE in general. NaN
has special handling: If one source operand is NaN, then the other source operand is re-
turned (choice made per-component). If both are NaN, then the unchanged NaN from the
first source (here zmm?2) is returned. Please note that if first source is a SNaN it won't be
quietized, it will be returned without any modification. This differs from the new IEEE
754-08 rules, which states that in case of an input SNaN, its quietized version should be
returned instead of the other value.

Another new IEEE 754-08 rule is that min(-0,+0) == min(+0,-0) == -0, which honors the
sign, in contrast to the comparison rules for signed zero (stated above). D3D10.0 recom-
mends the IEEE 754-08 behavior here, but it will not be enforced; it is permissible for the
result of comparing zeros to be dependent on the order of parameters, using a comparison
that ignores the signs.

This instruction treats input denormals as zeros according to the DAZ control bit, but it
does not flush tiny results to zero.

The following table describes exception flags priority:

Input 1 Input 2 Flags Comments

SNAN denormal #1 #] priority over #D
denormal SNAN #1 #] priority over #D

QNAN denormal | none QNaN rule priority over #D
denormal QNAN none QNaN rule priority over #D
normal denormal | #D onlyif DAZ=0

denormal normal #D only if DAZ=0

denormal denormal | #D onlyif DAZ=0

Table 6.23: Min exception flags priority

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Reference Number: 327364-001 341

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

FpMin(4,B)

{
if ((A == -0.0) && (B == +0.0)) return A;
if ((A == +0.0) && (B == -0.0)) return B;
if ((A == NaN) && (B == NaN)) return A;
if (A == NalN) return B;
if (B == NalN) return A;
if (A == -inf) return A;
if (B == -inf) return B;
if (A == +inf) return B;
if (B == +inf) return A;
if (A < B) return A;
return B;

}

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad tes (zZmm3/m;)

}

for (n = 0; n < 8; n++) {
if(k1[n] !'= 0) {
i = 64*n
// float64 operation
zmml [i+63:1i] = FpMin(zmm2[i+63:i] , tmpSrc3[i+63:i])
}
}

SIMD Floating-Point Exceptions

Invalid, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
NO

342 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS
Memory Up-conversion: Sy,
S551Sp || Function: Usage disp8*N
000 no conversion [rax] {8t08} or [rax] 64
001 broadcast 1 element (x8) [rax] {1to8} 8
010 broadcast 4 elements (x2) | [rax] {4to8} 32
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A
Register Swizzle: Sy,

MVEX.EH=0

S95150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}
MVEX.EH=1

595150 || Rounding Mode Override Usage

1xx SAE (Supress-All-Exceptions) , {sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb512d
_mb512d

Exceptions

_mm512_gmin_pd (_mb512d, _m512d);
_mmb512_mask_gmin_pd (_m512d, _mmask8, _m512d, _m512d);

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

Instruction not available in these modes

Reference Number: 327364-001

343

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
#UD If processor model does not implement the specific instruction.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

344 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VGMINPS - Minimum of Float32 Vectors

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W0 vgminps zmml {k1l}, zmm2, Determine the minimum of float32 vector

52 /r S¢32(zmm3/m,) zmm?2 and float32 vector S¢32(zmm3/m,) and
store the result in zmm1, under write-mask.

Description

Determines the minimum value of each pair of corresponding elements in float32 vec-
tor zmm?2 and the float32 vector result of the swizzle /broadcast/conversion process on
memory or float32 vector zmm3. The result is written into float32 vector zmm1.

FpMin() returns the smaller of the two float32 arguments, following IEEE in general. NaN
has special handling: If one source operand is NaN, then the other source operand is re-
turned (choice made per-component). If both are NaN, then the unchanged NaN from the
first source (here zmm?2) is returned. Please note that if first source is a SNaN it won't be
quietized, it will be returned without any modification. This differs from the new IEEE
754-08 rules, which states that in case of an input SNaN, its quietized version should be
returned instead of the other value.

Another new IEEE 754-08 rule is that min(-0,+0) == min(+0,-0) == -0, which honors the
sign, in contrast to the comparison rules for signed zero (stated above). D3D10.0 recom-
mends the IEEE 754-08 behavior here, but it will not be enforced; it is permissible for the
result of comparing zeros to be dependent on the order of parameters, using a comparison
that ignores the signs.

This instruction treats input denormals as zeros according to the DAZ control bit, but it
does not flush tiny results to zero.

The following table describes exception flags priority:

Input 1 Input 2 Flags Comments

SNAN denormal #1 #] priority over #D
denormal SNAN #1 #] priority over #D

QNAN denormal | none QNaN rule priority over #D
denormal QNAN none QNaN rule priority over #D
normal denormal | #D onlyif DAZ=0

denormal normal #D only if DAZ=0

denormal denormal | #D onlyif DAZ=0

Table 6.24: Min exception flags priority

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Reference Number: 327364-001 345

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

FpMin(4,B)

{
if ((A == -0.0) && (B == +0.0)) return A;
if ((A == +0.0) && (B == -0.0)) return B;
if ((A == NaN) && (B == NaN)) return A;
if (A == NalN) return B;
if (B == NalN) return A;
if (A == -inf) return A;
if (B == -inf) return B;
if (A == +inf) return B;
if (B == +inf) return A;
if (A < B) return A;
return B;

}

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad ¢zs (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {
i = 32*n
// float32 operation
zmml [i+31:i] = FpMin(zmm2[i+31:i] , tmpSrc3[i+31:i])
}
}

SIMD Floating-Point Exceptions

Invalid, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
NO

346 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6.

INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S¢;,

525150

Function:

Usage

disp8*N

000
001
010
011
100
110
111

no conversion

broadcast 1 element (x16)
broadcast 4 elements (x4)
float16 to float32

uint8 to float32

uint16 to float32

sint16 to float32

[rax] {16to16} or [rax]
[rax] {1to16}

[rax] {4to16}

[rax] {float16}

[rax] {uint8}

[rax] {uint16}

[rax] {sint16}

64

16
32
16
32
32

Register Swizzle: S¢3,

MVEX.EH=0
59515y || Function: 4 x 32 bits Usage
000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1
525150 || Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Intel” C/C++ Compiler Intrinsic Equivalent

_mb512
_mb512

Exceptions

Real-Address Mode and Virtual-8086

#UD

_mmb512_gmin_ps(_m512, _m512);
_mmb512_mask_gmin_ps(_m512, _mmask16, _m512, _m512);

Instruction not available in these modes

Protected and Compatibility Mode

#UD

Instruction not available in these modes

Reference Number: 327364-001

347

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
#UD If processor model does not implement the specific instruction.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

348 Reference Number: 327364-001

(intel‘

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VLOADUNPACKHD - Load Unaligned High And Unpack To Doubleword Vec-

tor

The high-64-byte portion of the byte/word/doubleword stream starting at the element-
aligned address (m; —64) is loaded, converted and expanded into the write-mask-enabled
elements of doubleword vector zmm1. The number of set bits in the write-mask deter-
mines the length of the converted doubleword stream, as each converted doubleword is
mapped to exactly one of the doubleword elements in zmm1, skipping over write-masked
elements of zmm1.

This instruction only transfers those converted doublewords (if any) in the stream that
occur at or after the first 64-byte-aligned address following (m; — 64) (that s, in the high
cache line of the memory stream for the current implementation). Elements in zmm1
that don't map to those stream doublewords are left unchanged. The vloadunpackld in-
struction is used to load the part of the stream before the first 64-byte-aligned address
preceding my.

In conjunction with vloadunpackld, this instruction is useful for re-expanding data that
was packed into a queue. Also in conjunction with vloadunpackld, it allows unaligned
vector loads (that is, vector loads that are only element-wise, not vector-wise, aligned);
use a mask of OxFFFF or no write-mask for this purpose. The typical instruction sequence
to perform an unaligned vector load would be:

// assume memory location is pointed by register rax
vloadunpackld vO0 {k1}, [rax]
vloadunpackhd vO0 {k1}, [rax+64]

This instruction does not have broadcast support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note that this instruction will always access 64 bytes of memory. The memory region
accessed will always be between linear_address & (~0x3F) and (linear_address & (~0x3F))
+ 63 boundaries.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand. The instruction will not produce any #GP or

Reference Number: 327364-001

Opcode Instruction Description
MVEX.512.0F38.W0 D4 /r vloadunpackhd zmm1 {k1}, Load high 64-byte-aligned portion of unaligned
Uis2(my) doubleword stream U;sz(m; - 64), unpack
mask-enabled elements that fall in that portion,
and store those elements in doubleword vector
zmm1, under write-mask.
Description

349

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

#SS fault due to address canonicity nor #PF fault if the address is aligned to a 64-byte

boundary. Additionally, A/D bits in the page table will not be updated.

This instruction is write-masked, so only those elements with the corresponding bit set in
vector mask register k1 are modified in zmm1. Elements in zmm1 with the corresponding
bit clear in vector mask1 retain their previous values. However, see above for unusual

aspects of the write-mask's operation with this instruction.

Operation

loadOffset = 0
upSize = UpConvLoadSize0f;35(SSS[2:0])
foundNext64BytesBoundary = false

pointer = m; - 64
for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {
if (foundNext64BytesBoundary == false) {

if ((((pointer + (loadOffset+1)*upSize) ¥ 64) == 0) {

foundNext64BytesBoundary = true

}
} else {
i = 32*n
zmml [i+31:i] = UpConvLoad;ss (pointer + upSizexloadOffset)
}
loadOffset++
}
}
Flags Affected
None.

Memory Up-conversion: U;s,

S95150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 4

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 1

101 sint8 to sint32 [rax] {sint8} 1

110 uint16 to uint32 [rax] {uint16} 2

111 sint16 to sint32 [rax] {sint16} 2

350

Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_extloadunpackhi_epi32 (_mb512i, void const*,
_MM_UPCONV_EPI32_ENUM, int);

_m512i _mmb512_mask_extloadunpackhi_epi32 (_m512i, _mmaskl6, void const*,
_MM_UPCONV_EPI32_ENUM, int);

_m512i _mmb512_loadunpackhi_epi32 (_m512i, void const*);

_m512i _mmb512_mask_loadunpackhi_epi32 (_m512i, _mmask16, void const*);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to element-wise data granularity dictated by the UpConv.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
#UD If processor model does not implement the specific instruction.
If preceded by any REX, FO, F2, F3, or 66 prefixes.
If the second operand is not a memory location.

Reference Number: 327364-001 351

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VLOADUNPACKHPD - Load Unaligned High And Unpack To Float64 Vector

352

Opcode Instruction Description
MVEX.512.0F38.W1D5 /r vloadunpackhpd zmm1l {k1}, Load high 64-byte-aligned portion of unaligned
Uygea(my) float64 stream Uygs(m; - 64), unpack mask-

enabled elements that fall in that portion, and
store those elements in float64 vector zmm1,
under write-mask.

Description

The high-64-byte portion of the quadword stream starting at the element-aligned address
(my — 64) is loaded, converted and expanded into the write-mask-enabled elements of
quadword vector zmm1. The number of set bits in the write-mask determines the length
of the converted quadword stream, as each converted quadword is mapped to exactly one
of the quadword elements in zmm1, skipping over write-masked elements of zmm1.

This instruction only transfers those converted quadwords (if any) in the stream that oc-
cur at or after the first 64-byte-aligned address following (m; — 64) (that is, in the high
cache line of the memory stream for the current implementation). Elements in zmm1
that don't map to those stream quadwords are left unchanged. The vloadunpacklpd in-
struction is used to load the part of the stream before the first 64-byte-aligned address
preceding m.

In conjunction with vloadunpacklpd, this instruction is useful for re-expanding data that
was packed into a queue. Also in conjunction with vloadunpacklpd, it allows unaligned
vector loads (that is, vector loads that are only element-wise, not vector-wise, aligned);
use a mask of 0XFF or no write-mask for this purpose. The typical instruction sequence
to perform an unaligned vector load would be:

// assume memory location is pointed by register rax
vloadunpacklpd vO {k1}, [rax]
vloadunpackhpd vO {k1}, [rax+64]

This instruction does not have broadcast support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note that this instruction will always access 64 bytes of memory. The memory region
accessed will always be between linear_address & (~0x3F) and (linear_address & (~0x3F))
+ 63 boundaries.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand. The instruction will not produce any #GP or
#SS fault due to address canonicity nor #PF fault if the address is aligned to a 64-byte

Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

boundary. Additionally, A/D bits in the page table will not be updated.

This instruction is write-masked, so only those elements with the corresponding bit setin
vector mask register k1 are modified in zmm1. Elements in zmm1 with the corresponding
bit clear in vector mask1 retain their previous values. However, see above for unusual
aspects of the write-mask's operation with this instruction.

Operation

loadOffset = 0
upSize = UpConvLoadSizeOf y¢4 (8SS[2:0])
foundNext64BytesBoundary = false

pointer = m; - 64
for (n =0; n < 8; n+t+) {
if(k1[n] '=0) {
if (foundNext64BytesBoundary == false) {
if ((((pointer + (loadOffset+1)*upSize) % 64) == 0) {
foundNext64BytesBoundary = true
}
} else {
i = 64*n
zmm1 [i+63:1] = UpConvLoadfss (pointer + upSize*loadOffset)
}
loadOffset++

SIMD Floating-Point Exceptions

None.

Memory Up-conversion: Uy,

59515y || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 8

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001

353

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_extloadunpackhi_pd (_m512d, void const*, _MM_UPCONV_PD_ENUM,
int);

_m512d _mmb512_mask_extloadunpackhi_pd (_m512d, _mmask8, void const¥,
_MM_UPCONV_PD_ENUM, int);

_m512d _mmb512_loadunpackhi_pd (_m512d, void const*);

_m512d _mmb512_mask_loadunpackhi_pd (_m512d, _mmask8, void const*);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to element-wise data granularity dictated by the UpConv.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
#UD If processor model does not implement the specific instruction.
If preceded by any REX, FO, F2, F3, or 66 prefixes.
If the second operand is not a memory location.

354 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VLOADUNPACKHPS - Load Unaligned High And Unpack To Float32 Vector

Opcode Instruction Description
MVEX.512.0F38.W0D5 /r vloadunpackhps zmm1 {k1}, Load high 64-byte-aligned portion of unaligned
Uygsa(my) float32 stream Uysa(m; - 64), unpack mask-

enabled elements that fall in that portion, and
store those elements in float32 vector zmm1,
under write-mask.

Description

The high-64-byte portion of the byte/word/doubleword stream starting at the element-
aligned address (m; —64) is loaded, converted and expanded into the write-mask-enabled
elements of doubleword vector zmm1. The number of set bits in the write-mask deter-
mines the length of the converted doubleword stream, as each converted doubleword is
mapped to exactly one of the doubleword elements in zmm1, skipping over write-masked
elements of zmm1.

This instruction only transfers those converted doublewords (if any) in the stream that
occur at or after the first 64-byte-aligned address following (m; — 64) (that s, in the high
cache line of the memory stream for the current implementation). Elements in zmm1
that don't map to those stream doublewords are left unchanged. The vloadunpacklps in-
struction is used to load the part of the stream before the first 64-byte-aligned address
preceding my.

In conjunction with vloadunpacklps, this instruction is useful for re-expanding data that
was packed into a queue. Also in conjunction with vloadunpacklps, it allows unaligned
vector loads (that is, vector loads that are only element-wise, not vector-wise, aligned);
use a mask of OxFFFF or no write-mask for this purpose. The typical instruction sequence
to perform an unaligned vector load would be:

// assume memory location is pointed by register rax
vloadunpacklps vO {k1}, [rax]
vloadunpackhps vO {k1}, [rax+64]

This instruction does not have broadcast support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note that this instruction will always access 64 bytes of memory. The memory region
accessed will always be between linear_address & (~0x3F) and (linear_address & (~0x3F))
+ 63 boundaries.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand. The instruction will not produce any #GP or

Reference Number: 327364-001 355

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS fault due to address canonicity nor #PF fault if the address is aligned to a 64-byte
boundary. Additionally, A/D bits in the page table will not be updated.

This instruction is write-masked, so only those elements with the corresponding bit set in
vector mask register k1 are modified in zmm1. Elements in zmm1 with the corresponding
bit clear in vector mask1 retain their previous values. However, see above for unusual
aspects of the write-mask's operation with this instruction.

Operation

loadOffset = 0
upSize = UpConvLoadSizeOf f32 (SSS[2:0])
foundNext64BytesBoundary = false

pointer = m; - 64
for (n = 0; n < 16; n++) {
if (k1[n] '= 0) {
if (foundNext64BytesBoundary == false) {
if ((((pointer + (loadOffset+1)*upSize) % 64) == 0) {
foundNext64BytesBoundary = true
}
} else {
i = 32*n
zmm1[i+31:1] = UpConvLoadfs,(pointer + upSize*loadOffset)
}
loadOffset++

SIMD Floating-Point Exceptions

Invalid.

Memory Up-conversion: Uy s,

S95150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 4

001 reserved N/A N/A
010 reserved N/A N/A
011 float16 to float32 [rax] {float16} 2

100 uint8 to float32 [rax] {uint8} 1

101 sint8 to float32 [rax] {sint8} 1

110 uint16 to float32 [rax] {uint16} 2

111 sint16 to float32 [rax] {sint16} 2

356 Reference Number: 327364-001

(intel‘

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_extloadunpackhi_ps (_m512, void const*, _MM_UPCONV_PS_ENUM,

int);

_m512 _mmb512_mask_extloadunpackhi_ps (_m512, _ mmaskl6, void const¥,
_MM_UPCONV_PS_ENUM, int);

_m512 _mmb512_loadunpackhi_ps (_m512, void const*);

_m512 _mmb512_mask_loadunpackhi_ps (_m512, _mmask16, void const*);

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode
#SS(0)
#GP(0)
#PF (fault-code)

#NM
#UD

Reference Number: 327364-001

Instruction not available in these modes

If a memory address referencing the SS segment is

in a non-canonical form.

If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned

to element-wise data granularity dictated by the UpConv.

For a page fault.

If CRO.TS[bit 3]=1.

If processor model does not implement the specific instruction.
If preceded by any REX, FO, F2, F3, or 66 prefixes.

If the second operand is not a memory location.

357

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VLOADUNPACKHQ - Load Unaligned High And Unpack To Int64 Vector

358

Opcode Instruction Description
MVEX.512.0F38.W1 D4 /r vloadunpackhq zmm1 {kl1}, Load high 64-byte-aligned portion of unaligned
Uisa(my) int64 stream U,y(m;: - 64), unpack mask-

enabled elements that fall in that portion, and
store those elements in int64 vector zmm1, un-

der write-mask.

Description

The high-64-byte portion of the quadword stream starting at the element-aligned address
(my — 64) is loaded, converted and expanded into the write-mask-enabled elements of
quadword vector zmm1. The number of set bits in the write-mask determines the length
of the converted quadword stream, as each converted quadword is mapped to exactly one
of the quadword elements in zmm1, skipping over write-masked elements of zmm1.

This instruction only transfers those converted quadwords (if any) in the stream that oc-
cur at or after the first 64-byte-aligned address following (m; — 64) (that is, in the high
cache line of the memory stream for the current implementation). Elements in zmm1 that
don't map to those stream quadwords are left unchanged. The vloadunpacklq instruction
is used to load the part of the stream before the first 64-byte-aligned address preceding
mg.

In conjunction with vloadunpacklgq, this instruction is useful for re-expanding data that
was packed into a queue. Also in conjunction with vloadunpacklg, it allows unaligned
vector loads (that is, vector loads that are only element-wise, not vector-wise, aligned);
use a mask of 0XFF or no write-mask for this purpose. The typical instruction sequence
to perform an unaligned vector load would be:

// assume memory location is pointed by register rax
vloadunpacklqg vO0 {k1}, [rax]
vloadunpackhq vO0 {k1}, [rax+64]

This instruction does not have broadcast support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note that this instruction will always access 64 bytes of memory. The memory region
accessed will always be between linear_address & (~0x3F) and (linear_address & (~0x3F))
+ 63 boundaries.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand. The instruction will not produce any #GP or
#SS fault due to address canonicity nor #PF fault if the address is aligned to a 64-byte
boundary. Additionally, A/D bits in the page table will not be updated.

Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

This instruction is write-masked, so only those elements with the corresponding bit setin
vector mask register k1 are modified in zmm1. Elements in zmm?1 with the corresponding
bit clear in vector mask1 retain their previous values. However, see above for unusual
aspects of the write-mask's operation with this instruction.

Operation

loadOffset = 0
upSize = UpConvLoadSizeOf;s4 (SSS[2:0])
foundNext64BytesBoundary = false

pointer = m; - 64
for (n = 0; n < 8; n++) {
if(k1[n] '= 0) {
if (foundNext64BytesBoundary == false) {
if ((((pointer + (loadOffset+1)*upSize) % 64) == 0) {
foundNext64BytesBoundary = true

}
} else {
i = 64*n
zmml [i+63:i] = UpConvLoad;ss (pointer + upSizexloadOffset)
}
loadOffset++
}
}
Flags Affected
None.

Memory Up-conversion: U;g,

59515y || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 8

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001 359

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_extloadunpackhi_epi64 (_mb512i, void const*,
_MM_UPCONV_EPI64_ENUM, int);
_m512i _mmb512_mask_extloadunpackhi_epi64 (_m512i, _mmask8, void const*

_MM_UPCONV_EPI64_ENUM, int);
_m512i _mmb512_loadunpackhi_epi64 (_m512i, void const*);
_m512i _mmb512_mask_loadunpackhi_epi64 (_m512i, _mmask8, void const*);

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode
#SS(0)
#GP(0)
#PF (fault-code)

#NM
#UD

360

Instruction not available in these modes

If a memory address referencing the SS segment is

in a non-canonical form.

If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned

to element-wise data granularity dictated by the UpConv.

For a page fault.

If CRO.TS[bit 3]=1.

If processor model does not implement the specific instruction.
If preceded by any REX, FO, F2, F3, or 66 prefixes.

If the second operand is not a memory location.

Reference Number: 327364-001

(intel‘

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VLOADUNPACKLD - Load Unaligned Low And Unpack To Doubleword Vec-

tor

The low-64-byte portion of the byte/word/doubleword stream starting at the element-
aligned address m; is loaded, converted and expanded into the write-mask-enabled el-
ements of doubleword vector zmm1. The number of set bits in the write-mask deter-
mines the length of the converted doubleword stream, as each converted doubleword is
mapped to exactly one of the doubleword elements in zmm1, skipping over write-masked
elements of zmm1.

This instruction only transfers those converted doublewords (if any) in the stream that
occur before the first 64-byte-aligned address following m; (thatis, in the low cache line of
the memory stream in the current implementation). Elements in zmm1 that don't map to
those converted stream doublewords are left unchanged. The vloadunpackhd instruction
isused toload the part of the stream at or after the first 64-byte-aligned address preceding
™.

In conjunction with vloadunpackhd, this instruction is useful for re-expanding data that
was packed into a queue. Also in conjunction with vloadunpackhd, it allows unaligned
vector loads (that is, vector loads that are only element-wise, not vector-wise, aligned);
use a mask of OxFFFF or no write-mask for this purpose. The typical instruction sequence
to perform an unaligned vector load would be:

// assume memory location is pointed by register rax
vloadunpackld vO0 {k1}, [rax]
vloadunpackhd vO0 {k1}, [rax+64]

This instruction does not have broadcast support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note that this instruction will always access 64 bytes of memory. The memory region
accessed will always be between linear_address & (~0x3F) and (linear_address & (~0x3F))
+ 63 boundaries.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand.

Reference Number: 327364-001

Opcode Instruction Description
MVEX.512.0F38.W0 DO /r vloadunpackld zmm1l {k1}, Load low 64-byte-aligned portion of unaligned
Uis2(my) doubleword stream U;sz(m:), unpack mask-
enabled elements that fall in that portion, and
store those elements in doubleword vector
zmm1, under write-mask.
Description

361

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

This instruction is write-masked, so only those elements with the corresponding bit setin
vector mask register k1 are modified in zmm1. Elements in zmm?1 with the corresponding
bit clear in vector mask1 retain their previous values. However, see above for unusual
aspects of the write-mask's operation with this instruction.

Operation

loadOffset = 0
upSize = UpConvLoadSize0f;35(SSS[2:0])

for(n = 0 ;n < 16; n++) {
i = 32*n
if (k1[n] '= 0) {
zmml [i+31:i] = UpConvLoad;ss (m;+upSize*load0ffset)
loadOffset++
if (((m; + upSizexloadOffset) % 64) == 0) {
break
}
}
}

Flags Affected

None.

Memory Up-conversion: U;s;

S9515p || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 4

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 1

101 sint8 to sint32 [rax] {sint8} 1

110 uint16 to uint32 [rax] {uint16} 2

111 sint16 to sint32 [rax] {sint16} 2

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_extloadunpacklo_epi32 (_mb512ij, void const*,
_MM_UPCONV_EPI32_ENUM, int);

_m512i _mmb512_mask_extloadunpacklo_epi32 (_m512i, _mmaskl6, void const*,
_MM_UPCONV_EPI32_ENUM, int);

_m512i _mmb512_loadunpacklo_epi32 (_m512i, void const*);

_m512i _mmb512_mask_loadunpacklo_epi32 (_m512i, _mmask16, void const*);

362 Reference Number: 327364-001

(intel‘

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode
#SS(0)
#GP(0)
#PF(fault-code)

#NM
#UD

Reference Number: 327364-001

Instruction not available in these modes

If a memory address referencing the SS segment is

in a non-canonical form.

If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned

to element-wise data granularity dictated by the UpConw.
For a page fault.

If CRO.TS[bit 3]=1.

If processor model does not implement the specific instruction.

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If the second operand is not a memory location.

363

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VLOADUNPACKLPD - Load Unaligned Low And Unpack To Float64 Vector

364

Opcode Instruction Description
MVEX.512.0F38.W1 D1 /r vloadunpacklpd zmm1 {k1}, Load low 64-byte-aligned portion of unaligned
Uyea(my) float64 stream U g4 (m¢), unpack mask-enabled

elements that fall in that portion, and store
those elements in float64 vector zmm1, under
write-mask.

Description

The low-64-byte portion of the quadword stream starting at the element-aligned address
my isloaded, converted and expanded into the write-mask-enabled elements of quadword
vector zmm1. The number of set bits in the write-mask determines the length of the con-
verted quadword stream, as each converted quadword is mapped to exactly one of the
quadword elements in zmm1, skipping over write-masked elements of zmm1.

This instruction only transfers those converted quadwords (if any) in the stream that oc-
cur before the first 64-byte-aligned address following m; (that is, in the low cache line of
the memory stream in the current implementation). Elements in zmm1 that don't map to
those converted stream quadwords are left unchanged. The vloadunpackhq instruction is
used to load the part of the stream at or after the first 64-byte-aligned address preceding
my.

In conjunction with vloadunpackhpd, this instruction is useful for re-expanding data that
was packed into a queue. Also in conjunction with vloadunpackhpd, it allows unaligned
vector loads (that is, vector loads that are only element-wise, not vector-wise, aligned);
use a mask of OxFF or no write-mask for this purpose. The typical instruction sequence
to perform an unaligned vector load would be:

// assume memory location is pointed by register rax
vloadunpacklpd vO {k1}, [rax]
vloadunpackhpd vO {k1}, [rax+64]

This instruction does not have broadcast support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note that this instruction will always access 64 bytes of memory. The memory region
accessed will always be between linear_address & (~0x3F) and (linear_address & (~0x3F))
+ 63 boundaries.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand.

This instruction is write-masked, so only those elements with the corresponding bit set in
vector mask register k1 are modified in zmm1. Elements in zmm1 with the corresponding

Reference Number: 327364-001

(intel“

CHAPTER 6. INSTRUCTION DESCRIPTIONS

bit clear in vector mask1 retain their previous values. However, see above for unusual

aspects of the write-mask's operation with this instruction.

Operation

loadOffset

=0

upSize = UpConvLoadSizeOf ss4 (SSS[2:0])

for(n = 0 ;n < 8; n++) {

i = 64%n
if (k1[n] '= 0) {

zmm1 [i+63:1] = UpConvLoadfgs (m;+upSize*loadOffset)

loadOffset++
if (((m; + upSizexloadOffset) % 64) == 0) {
break

¥
¥
}

SIMD Floating-Point Exceptions

None.

Memory Up-conversion: Uy,

S9515p || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 8

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb12d
_mb512d

_mb12d
_mb12d

_mmb512_extloadunpacklo_pd (_m512d, void const*, _MM_UPCONV_PD_ENUM,

int);

_mmb512_mask_extloadunpacklo_pd (_mb512d,

_MM_UPCONV_PD_ENUM, int);

_mmb512_loadunpacklo_pd (_m512d, void const*);
_mmb512_mask_loadunpacklo_pd (_m512d, _mmask8, void const*);

Reference Number: 327364-001

__mmasks,

void

365

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to element-wise data granularity dictated by the UpConw.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
#UD If processor model does not implement the specific instruction.
If preceded by any REX, FO, F2, F3, or 66 prefixes.
If the second operand is not a memory location.

366 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VLOADUNPACKLPS - Load Unaligned Low And Unpack To Float32 Vector

Opcode Instruction Description
MVEX.512.0F38.W0 D1 /r vloadunpacklps zmm1l {k1}, Load low 64-byte-aligned portion of unaligned
Uygsa(my) float32 stream U35 (m¢), unpack mask-enabled

elements that fall in that portion, and store
those elements in float32 vector zmm1, under
write-mask.

Description

The low-64-byte portion of the byte/word/doubleword stream starting at the element-
aligned address m; is loaded, converted and expanded into the write-mask-enabled el-
ements of doubleword vector zmm1. The number of set bits in the write-mask deter-
mines the length of the converted doubleword stream, as each converted doubleword is
mapped to exactly one of the doubleword elements in zmm1, skipping over write-masked
elements of zmm1.

This instruction only transfers those converted doublewords (if any) in the stream that
occur before the first 64-byte-aligned address following m;, (thatis, in the low cache line of
the memory stream in the current implementation). Elements in zmm1 that don't map to
those converted stream doublewords are left unchanged. The vloadunpackhd instruction
isused to load the part of the stream at or after the first 64-byte-aligned address preceding
myg.

In conjunction with vloadunpackhps, this instruction is useful for re-expanding data that
was packed into a queue. Also in conjunction with vloadunpackhps, it allows unaligned
vector loads (that is, vector loads that are only element-wise, not vector-wise, aligned);
use a mask of OxFFFF or no write-mask for this purpose. The typical instruction sequence
to perform an unaligned vector load would be:

// assume memory location is pointed by register rax
vloadunpacklps vO0 {k1}, [rax]
vloadunpackhps vO {k1}, [rax+64]

This instruction does not have broadcast support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note that this instruction will always access 64 bytes of memory. The memory region
accessed will always be between linear_address & (~0x3F) and (linear_address & (~0x3F))
+ 63 boundaries.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand.

This instruction is write-masked, so only those elements with the corresponding bit setin

Reference Number: 327364-001 367

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘l

vector mask register k1 are modified in zmm1. Elements in zmm?1 with the corresponding
bit clear in vector mask1 retain their previous values. However, see above for unusual

aspects of the write-mask's operation with this instruction.

Operation

loadOffset = 0
upSize = UpConvLoadSizeOf f32 (SSS[2:0])

for(n = 0 ;n < 16; n++) {
i = 32*n
if (ki[n] !'= 0) {

zmm1 [i+31:1] = UpConvLoad s, (m;+upSize*loadOffset)

loadOffset++
if (((my + upSizexloadOffset) % 64) == 0) {
break
}
}
}

SIMD Floating-Point Exceptions

Invalid.

Memory Up-conversion: U3,

55515 || Function: Usage disp8*N
000 no conversion [rax] {16t016} or [rax] 4

001 reserved N/A N/A
010 reserved N/A N/A
011 float16 to float32 [rax] {float16} 2

100 uint8 to float32 [rax] {uint8} 1

101 sint8 to float32 [rax] {sint8} 1

110 uint16 to float32 [rax] {uint16} 2

111 sint16 to float32 [rax] {sint16} 2

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_extloadunpacklo_ps (_m512, void const*, _MM_UPCONV_PS_ENUM,

int);

_m512 _mmb512_mask_extloadunpacklo_ps (_m512, _ mmaskl6, void const¥,

_MM_UPCONV_PS_ENUM, int);
_m512 _mmb512_loadunpacklo_ps (_m512, void const*);

_m512 _mmb512_mask_loadunpacklo_ps (_m512, _mmask16, void const*);

368

Reference Number: 327364-001

(intel‘

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode
#SS(0)
#GP(0)
#PF(fault-code)

#NM
#UD

Reference Number: 327364-001

Instruction not available in these modes

If a memory address referencing the SS segment is

in a non-canonical form.

If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned

to element-wise data granularity dictated by the UpConw.
For a page fault.

If CRO.TS[bit 3]=1.

If processor model does not implement the specific instruction.

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If the second operand is not a memory location.

369

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VLOADUNPACKLQ - Load Unaligned Low And Unpack To Int64 Vector

370

Opcode Instruction Description
MVEX.512.0F38.W1DO0 /r vloadunpacklq = zmml {k1}, Load low 64-byte-aligned portion of unaligned
Uiga(my) int64 stream Ujg4(m;), unpack mask-enabled

elements that fall in that portion, and store
those elements in int64 vector zmm1, under
write-mask.

Description

The low-64-byte portion of the quadword stream starting at the element-aligned address
my isloaded, converted and expanded into the write-mask-enabled elements of quadword
vector zmm1. The number of set bits in the write-mask determines the length of the con-
verted quadword stream, as each converted quadword is mapped to exactly one of the
quadword elements in zmm1, skipping over write-masked elements of zmm1.

This instruction only transfers those converted quadwords (if any) in the stream that oc-
cur before the first 64-byte-aligned address following m; (that is, in the low cache line of
the memory stream in the current implementation). Elements in zmm1 that don't map to
those converted stream quadwords are left unchanged. The vloadunpackhq instruction is
used to load the part of the stream at or after the first 64-byte-aligned address preceding
my.

In conjunction with vloadunpackhg, this instruction is useful for re-expanding data that
was packed into a queue. Also in conjunction with vloadunpackhgq, it allows unaligned
vector loads (that is, vector loads that are only element-wise, not vector-wise, aligned);
use a mask of OxFF or no write-mask for this purpose. The typical instruction sequence
to perform an unaligned vector load would be:

// assume memory location is pointed by register rax
vloadunpacklq vO0 {k1}, [rax]
vloadunpackhq v0 {ki1}, [rax+64]

This instruction does not have broadcast support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note that this instruction will always access 64 bytes of memory. The memory region
accessed will always be between linear_address & (~0x3F) and (linear_address & (~0x3F))
+ 63 boundaries.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand.

This instruction is write-masked, so only those elements with the corresponding bit set in
vector mask register k1 are modified in zmm1. Elements in zmm1 with the corresponding

Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

bit clear in vector mask1 retain their previous values. However, see above for unusual
aspects of the write-mask's operation with this instruction.

Operation

loadOffset = 0
upSize = UpConvLoadSizeOf;g4 (SSS[2:0])

for(n = 0 ;n < 8; n++) {
i = 64*n
if (ki[n] !'= 0) {
zmml [i+63:i] = UpConvLoad;gq (mi+upSizexloadOffset)
loadOffset++
if (((m; + upSizexloadOffset) % 64) == 0) {
break
}
3
}

Flags Affected

None.

Memory Up-conversion: U;q,

S9515p || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 8

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_extloadunpacklo_epi64 (_mb512ij, void const*,
_MM_UPCONV_EPI64_ENUM, int);
_m512i _mmb512_mask_extloadunpacklo_epi64 (_mb512i, _mmask8, void const*,

_MM_UPCONV_EPI64_ENUM, int);
_m512i _mmb512_loadunpacklo_epi64 (_m512i, void const*);
_m512i _mmb512_mask_loadunpacklo_epi64 (_m512i, _mmask8, void const*);

Reference Number: 327364-001 371

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to element-wise data granularity dictated by the UpConw.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
#UD If processor model does not implement the specific instruction.
If preceded by any REX, FO, F2, F3, or 66 prefixes.
If the second operand is not a memory location.

372 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VLOG2PS - Vector Logarithm Base-2 of Float32 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W0 C9 vlog2pszmm1 {k1}, zmm2/m, Calculate logarithm from float32 vector
/r zmm?2 /m; and store the result in zmm1, under
write-mask.
Description

Computes the element-by-element logarithm base-2 of the float32 vector on memory or
float32 vector zmm?2. The result is written into float32 vector zmm1.

1. 4ulp of relative error when the source value is within the intervals (0, 0.5) or (2, o]
2. absolute error less than 272! within the interval [0.5, 2]

For an input value of +/ — 0 the instruction returns —oco and sets the Divide-By-Zero
flag (#Z). Negative numbers (including —oo) should return the canonical NaN and set the
Invalid flag (#I). Note however that this instruction treats input denormals as zeros of
the same sign, so for denormal negative inputs it returns —oo and sets the Divide-By-Zero
status flag. If any source element is NaN, the quietized NaN source value is returned for
that element (and #I is raised for input sNaNs).

Current implementation of this instruction does not support any SwizzUpConv setting
other than "no broadcast and no conversion"; any other SwizzUpConv setting will result
in an Invalid Opcode exception.

log2_DX() function follows Table 6.25 when dealing with floating-point special numbers.

Input | Result Comments

NaN | inputgNaN | Raise #I flag if sNaN
+00 +00

+0 —00 Raise #Z flag

-0 —00 Raise #Z flag

<0 NaN Raise #I flag

—00 NaN Raise #I flag

2n n Exact integral result

Table 6.25: vlog2_DX() special floating-point values behavior
This instruction is write-masked, so only those elements with the corresponding bit set

in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Reference Number: 327364-001 373

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

tmpSrc2[511:0] = zmm2/my

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
}
for (n = 0; n < 16; n++) {
if (ki[n] !'= 0) {
i = 32*n
zmml [1+31:i] = vlog2_ DX(tmpSrc2[i+31:i])

}
}

SIMD Floating-Point Exceptions

Invalid, Zero.

Denormal Handling

Treat Input Denormals As Zeros :
YES

Flush Tiny Results To Zero :
YES

Register Swizzle

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage
000 no swizzle zmmO or zmmO {dcba}
001 reserved N/A
010 reserved N/A
011 reserved N/A
100 reserved N/A
101 reserved N/A
110 reserved N/A
111 reserved N/A
MVEX.EH=1

595150 || Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

374 Reference Number: 327364-001

(intel“

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_log2_ps (_m512);
_m512 _mmb512_mask log2_ps (_m512, _mmask16, _mb512);

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode
#SS(0)
#GP(0)

#PF (fault-code)
#NM

Reference Number: 327364-001

Instruction not available in these modes

If a memory address referencing the SS segment is

in a non-canonical form.

If the memory address is in a non-canonical form.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 prefixes.

This instruction does not support any

SwizzUpConv different from the default value (no broadcast,
no conversion). If SwizzUpConv function is set to any value
different than "no action”, then an Invalid Opcode fault is
raised. This includes register swizzles.

375

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel‘

VMOVAPD - Move Aligned Float64 Vector

Opcode Instruction

MVEX.512.66.0EW1 28 /r vmovapd zmm1 {k1}, Uea(m+)
MVEX.512.66.0FW1 28 /r vmovapd zmm1 {k1}, St¢4(zmm2)

MVEX.512.66.0FEW1 29 /r vmovapd m; {k1}, Ds4(zmm1)

Description

Move float64 vector Uggs(m:) into vector
zmm1, under write-mask.

Move float64 vector Syss(zmm2) into vector
zmm1, under write-mask.

Move float64 vector D ¢4(zmm1) into m,, un-
der write-mask.

Description

Moves float64 vector result of the swizzle/broadcast/conversion process on memory or
float64 vector zmm?2 into float64 vector zmm1 or down-converts and stores float64 vector

zmm?2 into destination memory:.

This instruction is write-masked, so only those elements with the corresponding bit(s) set
in the vector mask (k1) register are computed and stored into register/memory. Elements
in register/memory with the corresponding bit(s) clear in the vector mask register are

maintained with the previous value.

Operation

DESTINATION IS A VECTOR OPERAND

if (source is a register operand) {
if (MVEX.EH==1) {
tmpSrc2[511:0]

} else {
tmpSrc2[511:0]

zmm2 [511:0]

}
} else {

tmpSrc2[511:0] = UpConvLoad g4 (1)
}

for (n = 0; n < 8; n++) {
if (ki[n] !'=0) {
i = 64*n
zmml [i+63:1] = tmpSrc2[i+63:i])
}
}

DESTINATION IS A MEMORY OPERAND

downSize = DownConvStoreSizeOf ¢4 (SSS[2:0])

for(n = 0 ;n < 8; n++) {

376

SwizzUpConvLoad fe4 (zmm2)

Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

if (k1[n] '= 0) {
i = 64*n
tmp = DownConvStoreyfss (zmml[i+63:1i], SSS[2:0])
if (downSize == 8) {
MemStore (m+8%n) = tmp[63:0]
}

}
}

SIMD Floating-Point Exceptions

DESTINATION IS A VECTOR OPERAND: None.
DESTINATION IS A MEMORY OPERAND: None.

Memory Up-conversion: Uy,

S9515p || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Sy,

MVEX.EH=0

595150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Reference Number: 327364-001 377

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘1

Memory Down-conversion: Dy,

59515 || Function: Usage disp8*N
000 no conversion zmm1 64

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb12d

Exceptions

_mmb512_mask_mov_pd (_m512d, _mmask8, _m512d);

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode

#55(0)

#GP(0)

#PF (fault-code)

#NM

378

Instruction not available in these modes

If a memory address referencing the SS segment is

in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
For a page fault.
If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VMOVAPS - Move Aligned Float32 Vector

Opcode Instruction Description

MVEX.512.0EWO0 28 /r vmovaps zmm1 {k1}, Uysa(m:) Move float32 vector Ugsa(m:) into vector
zmm1, under write-mask.

MVEX.512.0EWO0 28 /r vmovaps zmm1 {k1}, Sy32(zmm2) Move float32 vector Sys32(zmm2) into vector
zmm1, under write-mask.

MVEX.512.0EW0 29 /r vmovaps my {k1}, D y32(zmm1) Move float32 vector D y3(zmm1) into my, un-
der write-mask.

Description

Moves float32 vector result of the swizzle/broadcast/conversion process on memory or
float32 vector zmm?2 into float32 vector zmm?1 or down-converts and stores float32 vector

zmm?2 into destination memory:.

This instruction is write-masked, so only those elements with the corresponding bit(s) set
in the vector mask (k1) register are computed and stored into register/memory. Elements
in register/memory with the corresponding bit(s) clear in the vector mask register are

maintained with the previous value.

Operation

DESTINATION IS A VECTOR OPERAND

if (source is a register operand) {
if (MVEX.EH==1) {
tmpSrc2[511:0]

} else {
tmpSrc2[511:0]

zmm2 [511:0]

SwizzUpConvLoad f3p (zmm2)

}
} else {

tmpSrc2[511:0] = UpConvLoad 3z (M)
}

for (n = 0; n < 16; n++) {
if (ki[n] != 0) {
i = 32*n
zmml [i+31:i] = tmpSrc2[i+31:i])

}
}

DESTINATION IS A MEMORY OPERAND

downSize = DownConvStoreSizeOf ;35 (S3S[2:0])
for(n = 0 ;n < 16; n++) {

Reference Number: 327364-001

379

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

if (k1[n] '= 0) {
i = 32*n
tmp = DownConvStoreyfss (zmml[i+31:i], SSS[2:0])
if (downSize == 4) {
MemStore (my+4*n) = tmp[31:0]
} else if(downSize == 2) {
MemStore (m;+2*n) = tmp[15:0]
} else if(downSize == 1) {
MemStore (m;+n) = tmp[7:0]

SIMD Floating-Point Exceptions

DESTINATION IS A VECTOR OPERAND: Invalid.

DESTINATION IS A MEMORY OPERAND: Overflow, Underflow, Invalid, Precision, Denor-
mal.

Memory Up-conversion: U3,

525150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 reserved N/A N/A
010 reserved N/A N/A
011 float16 to float32 [rax] {float16} 32
100 uint8 to float32 [rax] {uint8} 16
101 sint8 to float32 [rax] {sint8} 16
110 uint16 to float32 [rax] {uint16} 32
111 sint16 to float32 [rax] {sint16} 32
Register Swizzle: Sy,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

380

Reference Number: 327364-001

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Down-conversion: D3,

S95150 || Function: Usage disp8*N
000 no conversion zmm1 64

001 reserved N/A N/A
010 reserved N/A N/A
011 float32 to floatl6 zmml1 {float16} 32

100 float32 to uint8 zmm1 {uint8} 16

101 float32 to sint8 zmm1 {sint8} 16

110 float32 to uint16 zmm1 {uint16} 32

111 float32 to sint16 zmm1 {sint16} 32

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_mask_mov_ps (_mb512, _mmask16, _m512);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001 381

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel‘

VMOVDQA32 - Move Aligned Int32 Vector

Opcode Instruction Description

MVEX.512.66.0EWO0 6F /r vmovdqa32 zmm1 {k1}, U;32(m:) Move int32 vector U;32(m;) into vector zmm1,
under write-mask.

MVEX.512.66.0FEW0 6F /r vmovdqa32 zmml {k1}, Move int32 vector S;32(zmm?2) into vector

Siz2(zmm?2) zmm1, under write-mask.

MVEX.512.66.0EW0 7F /r vmovdqa32 m, {k1}, D;32(zmm1) Move int32 vector D;32(zmm1) into m;, under

write-mask.
Description

Moves int32 vector result of the swizzle/broadcast/conversion process on memory or
int32 vector zmm?2 into int32 vector zmm1 or down-converts and stores int32 vector

zmm?2 into destination memory:.

This instruction is write-masked, so only those elements with the corresponding bit(s) set
in the vector mask (k1) register are computed and stored into register/memory. Elements
in register/memory with the corresponding bit(s) clear in the vector mask register are

maintained with the previous value.

Operation
DESTINATION IS A VECTOR OPERAND

if (source is a register operand) {
if (MVEX.EH==1) {
tmpSrc2[511:0]

} else {
tmpSrc2[511:0]

zmm2[511:0]

¥
} else {

tmpSrc2[511:0] = UpConvLoad;ss (1)
}

for (n = 0; n < 16; n++) {
if (ki[n] '= 0) {
i = 32*n
zmml [i+31:i] = tmpSrc2[i+31:i])
}
}

DESTINATION IS A MEMORY OPERAND

downSize = DownConvStoreSizeOf;3,(SSS[2:0])

382

SwizzUpConvLoad;ss (zmm2)

Reference Number: 327364-001

(intel‘

CHAPTER 6. INSTRUCTION DESCRIPTIONS

for(n = 0 ;n < 16; n++) {
if (ki[n] !'= 0) {
i = 32*n
tmp = DownConvStore;ss (zmml[i+31:i], SSS[2:0])
if (downSize == 4) {
MemStore (my+4*n) = tmp[31:0]
} else if(downSize == 2) {
MemStore (m;+2*n) = tmp[15:0]
} else if(downSize == 1) {
MemStore (m+n) = tmp[7:0]

Flags Affected

DESTINATION IS A VECTOR OPERAND: None.
DESTINATION IS A MEMORY OPERAND: None.

Memory Up-conversion: U;s,

55515 || Function: Usage disp8*N
000 no conversion [rax] {16t016} or [rax] 64
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;;,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Reference Number: 327364-001

383

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘l

Memory Down-conversion: D;3,

S95150 || Function: Usage disp8*N
000 no conversion zmm1 64

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 uint32 to uint8 zmm1 {uint8} 16

101 sint32 to sint8 zmm1 {sint8} 16

110 uint32 to uint16 zmm1 {uint16} 32

111 sint32 to sint16 zmm1 {sint16} 32

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i

Exceptions

_mmb512_mask_mov_epi32 (_m512i, _mmask16, _m512i);

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode

#55(0)

#GP(0)

#PF (fault-code)

#NM

384

Instruction not available in these modes

If a memory address referencing the SS segment is

in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
For a page fault.
If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VMOVDQAG64 - Move Aligned Int64 Vector

Opcode Instruction
MVEX.512.66.0EW1 6F /r vmovdqa64 zmm1 {k1}, U;g4(m¢)

Sie4(zmm2)
MVEX.512.66.0EW1 7F /r vmovdqa64 m, {k1}, D;s4(zmm1)

MVEX.512.66.0EW1 6F /r vmovdqa64 zmm1 {k1},

Description

Move int64 vector Us4(m;) into vector zmm1,
under write-mask.

Move int64 vector S;e4(zmm?2) into vector
zmm1, under write-mask.

Move int64 vector D;g4(zmm1) into m;, under
write-mask.

Description

Moves int64 vector result of the swizzle/broadcast/conversion process on memory or
int64 vector zmm?2 into int64 vector zmm1 or down-converts and stores int64 vector

zmm?2 into destination memory:.

This instruction is write-masked, so only those elements with the corresponding bit(s) set
in the vector mask (k1) register are computed and stored into register/memory. Elements
in register/memory with the corresponding bit(s) clear in the vector mask register are

maintained with the previous value.

Operation
DESTINATION IS A VECTOR OPERAND

if (source is a register operand) {
if (MVEX.EH==1) {
tmpSrc2[511:0]

} else {
tmpSrc2[511:0]

zmm2[511:0]

SwizzUpConvLload;s4 (zmm2)

¥
} else {

tmpSrc2[511:0] = UpConvLoad;gq (1)
}

for (n = 0; n < 8; n++) {
if (x1[n] '= 0) {
i = 64*n
zmml [i+63:1] = tmpSrc2[i+63:i])
}
}

DESTINATION IS A MEMORY OPERAND

downSize = DownConvStoreSizeOf;q, (SSS[2:0])

Reference Number: 327364-001

385

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

for(n

=0 ;n < 8; n+t+) {

if (k1[n] !'= 0) {

i

= 64%*n

tmp = DownConvStore;gq (zmml[i+63:1i], SSS[2:0])
if (downSize == 8) {

}
}
}

MemStore (m;+8*n) =

Flags Affected

tmp [63:0]

DESTINATION IS A VECTOR OPERAND: None.
DESTINATION IS A MEMORY OPERAND: None.

Memory Up-conversion: U,

59515y || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A
Register Swizzle: S;s4

MVEX.EH=0

59515y || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

386

Reference Number: 327364-001

5
~r
(‘1

INSTRUCTION DESCRIPTIONS

Memory Down-conversion: D;g4

59515 || Function: Usage disp8*N
000 no conversion zmm1 64

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i

Exceptions

_mmb512_mask_mov_epi64 (_m512i, _mmask8, _m512i);

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode

#55(0)

#GP(0)

#PF (fault-code)

#NM

Reference Number: 327364-001

Instruction not available in these modes

If a memory address referencing the SS segment is

in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
For a page fault.
If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

387

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VMOVNRAPD - Store Aligned Float64 Vector With No-Read Hint

Opcode Instruction Description

MVEX.512.F3.0FW1.EHO vmovnrapd m {k1}, D¢g4(zmm1) Store with No-Read hint float64 vector

29 /r D ¢64(zmm1) into m, under write-mask.
Description

Stores float64 vector zmm1 (or a down-converted version of it) into destination memory
with a No-Read hint for the case the whole vector is going to be written into memory. This
instruction is intended to speed up the case of stores in streaming kernels where we want
to avoid wasting memory bandwidth by being forced to read the original content of entire
cache lines from memory when we overwrite their whole contents completely.

In Intel® Xeon Phi” coprocessor, this instruction is able to optimize memory bandwidth
in case of a cache miss and avoid reading the original contents of the memory destination
operand if the following conditions hold true:

e The instruction does not use a write-mask (MVEX.aaa=000).
¢ The instruction does not perform any kind of down-conversion (MVEX.SSS=000).

Note that this instruction is encoded by forcing MVEX.EH bit to 0. The Eviction Hint does
not have any effect on this instruction.

The No-Read directive is intended as a performance hint and could be ignored by a given
processor implementation.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are stored to memory. Elements in the destination memory
vector with the corresponding bit clear in k1 register retain their previous value.

Operation
DESTINATION IS A MEMORY OPERAND

downSize = DownConvStoreSizeOf ¢4 (SSS[2:0])

for(n = 0 ;n < 8; n++) {
if (k1[n] '= 0) {
i = 64*n
tmp = DownConvStoreyfss (zmml[i+63:1i], SSS[2:0])
if (downSize == 8) {
MemStore (m+8%n) = tmp[63:0]
}
}
}

388 Reference Number: 327364-001

(intel“

CHAPTER 6. INSTRUCTION DESCRIPTIONS

SIMD Floating-Point Exceptions

None.

Memory Down-conversion: D,

55515 || Function: Usage disp8*N
000 no conversion zmm1 64

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mmb512_storenr_pd(void*, _m512d);

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode

#55(0)

#GP(0)

#PF(fault-code)

#NM

Reference Number: 327364-001

Instruction not available in these modes

If a memory address referencing the SS segment is

in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
For a page fault.
If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

389

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VMOVNRAPS - Store Aligned Float32 Vector With No-Read Hint

390

Opcode Instruction Description

MVEX.512.F2.0FW0.EHO vmovnraps m {k1}, D ¢32(zmm1) Store with No-Read hint float32 vector

29 /r D ¢32(zmm1) into m, under write-mask.
Description

Stores float32 vector zmm1 (or a down-converted version of it) into destination memory
with a No-Read hint for the case the whole vector is going to be written into memory. This
instruction is intended to speed up the case of stores in streaming kernels where we want
to avoid wasting memory bandwidth by being forced to read the original content of entire
cache lines from memory when we overwrite their whole contents completely.

In Intel® Xeon Phi” coprocessor, this instruction is able to optimize memory bandwidth
in case of a cache miss and avoid reading the original contents of the memory destination
operand if the following conditions hold true:

e The instruction does not use a write-mask (MVEX.aaa=000).
e The instruction does not perform any kind of down-conversion (MVEX.SSS=000).

Note that this instruction is encoded by forcing MVEX.EH bit to 0. The Eviction Hint does
not have any effect on this instruction.

The No-Read directive is intended as a performance hint and could be ignored by a given
processor implementation.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are stored to memory. Elements in the destination memory
vector with the corresponding bit clear in k1 register retain their previous value.

Operation

DESTINATION IS A MEMORY OPERAND

downSize = DownConvStoreSizeOf ;3;(SSS[2:0])

for(n = 0 ;n < 16; n++) {
if (ki[n] '= 0) {
i = 32*n
tmp = DownConvStoreysss (zmmi[i+31:1i], SSS[2:0])
if (downSize == 4) {
MemStore (my+4*n) = tmp[31:0]
} else if(downSize == 2) {
MemStore (m;+2*n) = tmp[15:0]
} else if(downSize == 1) {

Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

MemStore (my+n) = tmp[7:0]
}
}
}

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Memory Down-conversion: D s,

525150 || Function: Usage disp8*N
000 no conversion zmm1 64

001 reserved N/A N/A
010 reserved N/A N/A
011 float32 to float16 zmml1 {float16} 32

100 float32 to uint8 zmm1 {uint8} 16

101 float32 to sint8 zmm1 {sint8} 16

110 float32 to uint16 zmm1 {uint16} 32

111 float32 to sint16 zmm1 {sint16} 32

Intel” C/C++ Compiler Intrinsic Equivalent

void _mmb512_storenr_ps(void*, _m512);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

Reference Number: 327364-001 391

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 prefixes.

392 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VMOVNRNGOAPD - Non-globally Ordered Store Aligned Float64 Vector
With No-Read Hint

Opcode Instruction Description

MVEX.512.F3.0EW1.EH1 vmovnrngoapd m {k1}, Non-ordered Store with No-Read hint float64

29 /r D¢64(zmm1) vector D fg4(zmm1) into m, under write-mask.
Description

Stores float64 vector zmm1 (or a down-converted version of it) into destination memory
with a No-Read hint for the case the whole vector is going to be written into memory,
using a weakly-ordered memory consistency model (i.e. stores performed with these in-
struction are not globally ordered, and subsequent stores from the same thread can be
observed before them).

This instruction is intended to speed up the case of stores in streaming kernels where we
want to avoid wasting memory bandwidth by being forced to read the original content of
entire cache lines from memory when we overwrite their whole contents completely. This
instruction takes advantage of the weakly-ordered memory consistency model to increase
the throughput at which this type of write operations can be performed. Due to the same
reason, a fencing operation should be used in conjunction with this instruction if multiple
threads are reading/writing the memory operand location. Though CPUID can be used as
the fencing operation, better options are "LOCK ADD [RSP],0" (a dummy atomic add) or
XCHG (which combines a store and a fence).

In the Intel® Xeon Phi" coprocessor, this instruction is able to optimize memory band-
width in case of a cache miss and avoid reading the original contents of the memory des-
tination operand if the following conditions hold true:

e The instruction does not use a write-mask (MVEX.aaa=000).
e The instruction does not perform any kind of down-conversion (MVEX.SSS=000).

Note that this instruction is encoded by forcing MVEX.EH bit to 1. The Eviction Hint does
not have any effect on this instruction.

The No-Read directive is intended as a performance hint and could be ignored by a given
processor implementation.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are stored to memory. Elements in the destination memory
vector with the corresponding bit clear in k1 register retain their previous value.

Reference Number: 327364-001 393

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation
DESTINATION IS A MEMORY OPERAND

downSize = DownConvStoreSizeOf ;¢4 (SSS[2:0])

for(n = 0 ;n < 8; n++) {
if (ki[n] != 0) {
i = 64*n
tmp = DownConvStorejsgs (zmm1[i+63:1i], SSS[2:0])
if (downSize == 8) {
MemStore (m;+8*n) = tmp[63:0]
}
}
}

SIMD Floating-Point Exceptions

None.

Memory Down-conversion: D,

595150 || Function: Usage disp8*N
000 no conversion zmm1 64

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mmb512_storenrngo_pd(void*, _mb512d);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

394 Reference Number: 327364-001

(intel‘“

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Protected and Compatibility Mode

#UD

64 bit Mode
#SS(0)

#GP(0)

#PF(fault-code)
#NM

Reference Number: 327364-001

Instruction not available in these modes

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

395

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VMOVNRNGOAPS - Non-globally Ordered Store Aligned Float32 Vector
With No-Read Hint

Opcode Instruction Description

MVEX.512.F2.0EW0.EH1 vmovnrngoaps m {k1}, Non-ordered Store with No-Read hint float32

29 /r D¢32(zmm1) vector Df35(zmm1) into m, under write-mask.
Description

Stores float32 vector zmm1 (or a down-converted version of it) into destination memory
with a No-Read hint for the case the whole vector is going to be written into memory,
using a weakly-ordered memory consistency model (i.e. stores performed with these in-
struction are not globally ordered, and subsequent stores from the same thread can be
observed before them).

This instruction is intended to speed up the case of stores in streaming kernels where we
want to avoid wasting memory bandwidth by being forced to read the original content of
entire cache lines from memory when we overwrite their whole contents completely. This
instruction takes advantage of the weakly-ordered memory consistency model to increase
the throughput at which this type of write operations can be performed. Due to the same
reason, a fencing operation should be used in conjunction with this instruction if multiple
threads are reading/writing the memory operand location. Though CPUID can be used as
the fencing operation, better options are "LOCK ADD [RSP],0" (a dummy atomic add) or
XCHG (which combines a store and a fence).

In the Intel® Xeon Phi" coprocessor, this instruction is able to optimize memory band-
width in case of a cache miss and avoid reading the original contents of the memory des-
tination operand if the following conditions hold true:

e The instruction does not use a write-mask (MVEX.aaa=000).
e The instruction does not perform any kind of down-conversion (MVEX.SSS=000).

Note that this instruction is encoded by forcing MVEX.EH bit to 1. The Eviction Hint does
not have any effect on this instruction.

The No-Read directive is intended as a performance hint and could be ignored by a given
processor implementation.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are stored to memory. Elements in the destination memory
vector with the corresponding bit clear in k1 register retain their previous value.

396 Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

DESTINATION IS A MEMORY OPERAND

downSize = DownConvStoreSizeOf ;3;(SSS[2:0])

for(n = 0 ;n < 16; n++) {
if (k1[n] '= 0) {
i = 32*n
tmp = DownConvStorejsss (zmmi[i+31:1i], SSS[2:0])
if (downSize == 4) {
MemStore (m;+4*n) = tmp[31:0]
} else if(downSize == 2) {
MemStore (m;+2*n) = tmp[15:0]
} else if(downSize == 1) {
MemStore (my+n) = tmp[7:0]

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Memory Down-conversion: D s,

595150 || Function: Usage disp8*N
000 no conversion zmml 64

001 reserved N/A N/A
010 reserved N/A N/A
011 float32 to floatl6 zmm1 {float16} 32

100 float32 to uint8 zmm1 {uint8} 16

101 float32 to sint8 zmm1 {sint8} 16

110 float32 to uint16 zmm1 {uint16} 32

111 float32 to sint16 zmm1 {sint16} 32

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mmb512_storenrngo_ps(void*, _m512);

Reference Number: 327364-001 397

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

398 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VMULPD - Multiply Float64 Vectors

Opcode Instruction Description

MVEX.NDS.512.66.0EW1 vmulpd zmm1l {k1}, zmm2, Multiply float64 vector zmm2 and float64 vec-

59 /r Stea(zmm3/m,) tor S¢es(zmm3/m;) and store the result in
zmm1, under write-mask.

Description

Performs an element-by-element multiplication between float64 vector zmmz2 and the
float64 vector result of the swizzle/broadcast/conversion process on memory or float64
vector zmm3. The result is written into float64 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm?1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {

if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvload fe4 (zmm3/7m;)
}

for (n = 0; n < 8; n++) {
if(k1[n] !'= 0) {
i = 64*n
// float64 operation
zmml [i+63:i] = zmm2[i+63:1] * tmpSrc3[i+63:1]
}
}

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Reference Number: 327364-001 399

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: S g,

S951S5p || Function: Usage disp8*N
000 no conversion [rax] {8t08} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Sy,

MVEX.EH=0

595150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

52515 || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero ,{rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

400 Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_mul_pd (_m512d, _m512d);
_m512d _mmb512_mask mul_pd (_m512d, _mmask8, _m512d, _m512d);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001 401

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VMULPS - Multiply Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.0EW059 /r vmulps zmml {k1}, zmm2, Multiply float32 vector zmm2 and float32 vec-
S¢32(zmm3/my) tor S¢sa(zmm3/m;) and store the result in
zmm1, under write-mask.

Description

Performs an element-by-element multiplication between float32 vector zmm?2 and the
float32 vector result of the swizzle /broadcast/conversion process on memory or float32
vector zmm3. The result is written into float32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm?1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {

if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvload y3p (zmm3/m;)
}

for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {
i = 32*n
// float32 operation
zmml [i+31:i] = zmm2[i+31:1i] * tmpSrc3[i+31:i]
}
}

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

402 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: S¢;,

595150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 float16 to float32 [rax] {float16} 32

100 uint8 to float32 [rax] {uint8} 16

110 uint16 to float32 [rax] {uint16} 32

111 sint16 to float32 [rax] {sint16} 32

Register Swizzle: S,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

525150 || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero ,{rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Reference Number: 327364-001 403

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_mul_ps (_m512, _mb512);
_m512 _mmb512_mask mul_ps (_m512, _mmask16,_m512, _m512);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

404 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPACKSTOREHD - Pack And Store Unaligned High From Int32 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W0 D4 vpackstorehd my {k1}, Pack mask-enabled elements of int32 vector
/r D;32(zmm1) zmml to form an unaligned int32 stream,

down-convert it and logically map the stream
starting at m; — 64, and store that portion
of the stream that maps to the high 64-byte-
aligned portion of the memory destination, un-
der write-mask.

Description

Packs and down-converts the mask-enabled elements of int32 vector zmm1 into a byte/word/doubleword
stream logically mapped starting at element-aligned address (m; — 64), and stores the

high-64-byte elements of that stream (those elements of the stream that map at or after

the first 64-byte-aligned address following (m; — 64), the high cache line in the current
implementation). The length of the stream depends on the number of enabled masks, as

elements disabled by the mask are not added to the stream.

The vpackstoreld instruction is used to store the part of the stream before the first 64-
byte-aligned address preceding m;.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector, choosing which elements are added to the stream. The one similarity
to a write-mask as used in the rest of this document is that the no-write-mask option
(encoding 0) is available to select a mask of OxFFFF for this instruction. For that reason,
the notation and encoding are the same as for a write-mask.

In conjunction with vpackstoreld, this instruction is useful for packing data into a queue.
Also in conjunction with vpackstoreld, it allows unaligned vector stores (that is, vector
stores that are only element-wise , not vector-wise, aligned); just use a mask of OxFFFF or
no write-mask for this purpose. The typical instruction sequence to perform an unaligned
vector store would be:

// assume memory location is pointed by register rax
vpackstoreld [rax] {k1}, vO
vpackstorehd [rax+64] {ki}, vO

This instruction does not have subset support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand. The instruction will not produce any #GP or
#SS fault due to address canonicity nor #PF fault if the address is aligned to a 64-byte
boundary. Additionally, A/D bits in the page table will not be updated.

Reference Number: 327364-001 405

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

Operation

storeOffse

t 0

downSize = DownConvStoreSizeOf;3>(SSS[2:0])
foundNext64BytesBoundary = false

pointer = m; - 64
for (n = 0; n < 16; n++) {
if(ki[n] !'=0) {

if (foundNext64BytesBoundary == false) {
if (((pointer + (storeOffset+1)*downSize) % 64) == 0) {
foundNext64BytesBoundary = true

}
} el
i

tmp = DownConvStore;ss (zmml [i+31:1i],
if (downSize == 4) {

3

}

¥
}

stor

se {
= 32*n

MemStore (pointer
else if (downSize
MemStore (pointer
else if(downSize
MemStore (pointer

eOffset++

Flags Affected

None.

Memory Down-conversion: D;3,

+ storeOffset*4)
== 2) {
+ storeOffset*2)
== 1) {
+ storeOffset) =

Sss[2:01)

tmp [31:0]

tmp [15:0]

tmp [7:0]

595150 || Function: Usage disp8*N
000 no conversion zmm1 4

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 uint32 to uint8 zmm1 {uint8} 1

101 sint32 to sint8 zmm1 {sint8} 1

110 uint32 to uint16 zmm1 {uint16} 2

111 sint32 to sint16 zmm1 {sint16} 2

406

Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mmb512_extpackstorehi_epi32 (void*, _mb512i,
_MM_DOWNCONV_EPI32_ENUM, int);
void _mmb512_mask_extpackstorehi_epi32 (void*, __mmask16, _mb512j,

_MM_DOWNCONV_EPI32_ENUM, int);
void _mmb512_packstorehi_epi32 (void*, _m512i);
void _mmb512_mask_packstorehi_epi32 (void*, _mmask16, _m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to element-wise data granularity dictated by the DownConv.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
#UD If processor model does not implement the specific instruction.
If preceded by any REX, FO, F2, F3, or 66 prefixes.
If the fist operand is not a memory location.

Reference Number: 327364-001 407

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPACKSTOREHPD - Pack And Store Unaligned High From Float64 Vector

408

Opcode Instruction Description
MVEX.512.66.0F38.W1 D5 vpackstorehpd my {k1}, Pack mask-enabled elements of float64 vector
/r Dg4(zmm1) zmm1l to form an unaligned float64 stream,

down-convert it and logically map the stream
starting at m; — 64, and store that portion
of the stream that maps to the high 64-byte-
aligned portion of the memory destination, un-
der write-mask.

Description

Packs and down-converts the mask-enabled elements of float64 vector zmm1l into a
float64 stream logically mapped starting at element-aligned address (m; —64), and stores
the high-64-byte elements of that stream (those elements of the stream that map at or af-
ter the first 64-byte-aligned address following (m; — 64), the high cache line in the current
implementation). The length of the stream depends on the number of enabled masks, as
elements disabled by the mask are not added to the stream.

The vpackstorelpd instruction is used to store the part of the stream before the first 64-
byte-aligned address preceding m;.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector, choosing which elements are added to the stream. The one similarity
to a write-mask as used in the rest of this document is that the no-write-mask option
(encoding 0) is available to select a mask of OxFF for this instruction. For that reason, the
notation and encoding are the same as for a write-mask.

In conjunction with vpackstorelpd, this instruction is useful for packing data into a queue.
Also in conjunction with vpackstorelpd, it allows unaligned vector stores (that is, vector
stores that are only element-wise , not vector-wise, aligned); just use a mask of 0xFF or
no write-mask for this purpose. The typical instruction sequence to perform an unaligned
vector store would be:

// assume memory location is pointed by register rax
vpackstorelpd [rax] {k1}, vO
vpackstorehpd [rax+64] {k1}, vO

This instruction does not have subset support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand. The instruction will not produce any #GP or
#SS fault due to address canonicity nor #PF fault if the address is aligned to a 64-byte
boundary. Additionally, A/D bits in the page table will not be updated.

Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

storeOffset = 0
downSize = DownConvStoreSizeOf ;4 (SSS[2:0])
foundNext64BytesBoundary = false

pointer = m; - 64
for (n = 0; n < 8; n++) {
if(k1[n] !'= 0) {
if (foundNext64BytesBoundary == false) {

if (((pointer + (storeOffset+1)*downSize) % 64) == 0) {

foundNext64BytesBoundary = true

}
} else {
i = 64*n

tmp = DownConvStorejss (zmml[i+63:i], SSS[2:0])
if (downSize == 8) {
MemStore(pointer + storeOffset*8) = tmp[63:0]
}
}

storeOffset++

SIMD Floating-Point Exceptions

None.

Memory Down-conversion: D,

59515y || Function: Usage disp8*N
000 no conversion zmm1 8

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001

409

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mmb512_extpackstorehi_pd (void*, _m512d, _MM_DOWNCONV_PD_ENUM, int);

void _mmb512_mask_extpackstorehi_pd (void*, __mmasks, _mb512d,
_MM_DOWNCONV_PD_ENUM, int);

void _mmb512_packstorehi_pd (void*, _m512d);

void _mmb512_mask_packstorehi_pd (void*, _mmask8, _mb512d);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to element-wise data granularity dictated by the DownConv.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
#UD If processor model does not implement the specific instruction.
If preceded by any REX, FO, F2, F3, or 66 prefixes.
If the fist operand is not a memory location.

410 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPACKSTOREHPS - Pack And Store Unaligned High From Float32 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W0 D5 vpackstorehps my {k1}, Pack mask-enabled elements of float32 vector
/r Dy35(zmm1) zmm1l to form an unaligned float32 stream,

down-convert it and logically map the stream
starting at m; — 64, and store that portion
of the stream that maps to the high 64-byte-
aligned portion of the memory destination, un-
der write-mask.

Description

Packs and down-converts the mask-enabled elements of float32 vector zmm1 into a
byte/word/doubleword stream logically mapped starting at element-aligned address
(m¢ — 64), and stores the high-64-byte elements of that stream (those elements of the
stream that map at or after the first 64-byte-aligned address following (m; — 64), the high
cache line in the current implementation). The length of the stream depends on the num-
ber of enabled masks, as elements disabled by the mask are not added to the stream.

The vpackstorelps instruction is used to store the part of the stream before the first 64-
byte-aligned address preceding m;.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector, choosing which elements are added to the stream. The one similarity
to a write-mask as used in the rest of this document is that the no-write-mask option
(encoding 0) is available to select a mask of OxFFFF for this instruction. For that reason,
the notation and encoding are the same as for a write-mask.

In conjunction with vpackstorelps, this instruction is useful for packing data into a queue.
Also in conjunction with vpackstorelps, it allows unaligned vector stores (that is, vector
stores that are only element-wise , not vector-wise, aligned); just use a mask of OxFFFF or
no write-mask for this purpose. The typical instruction sequence to perform an unaligned
vector store would be:

// assume memory location is pointed by register rax
vpackstorelps [rax] {k1}, vO
vpackstorehps [rax+64] {k1}, vO

This instruction does not have subset support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand. The instruction will not produce any #GP or
#SS fault due to address canonicity nor #PF fault if the address is aligned to a 64-byte
boundary. Additionally, A/D bits in the page table will not be updated.

Reference Number: 327364-001 411

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘l

Operation

storeOffset = 0
downSize = DownConvStoreSizeOf ;35 (8SS[2:0])
foundNext64BytesBoundary = false

pointer = m; - 64
for (n = 0; n < 16; n++) {
if(k1[n] '= 0) {
if (foundNext64BytesBoundary == false) {

if (((pointer + (storeOffset+1)*downSize) % 64) == 0) {

foundNext64BytesBoundary = true

}
} else {
i = 32*n

tmp = DownConvStorejyss (zmmi[i+31:i], SSS[2:0])
if (downSize == 4) {

MemStore(pointer + storeOffset*4) = tmp[31:0]
} else if(downSize == 2) {
MemStore(pointer + storeOffset*2) = tmp[15:0]

} else if(downSize == 1) {
MemStore(pointer + storeOffset) = tmp[7:0]
}
}

storeOffset++

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Memory Down-conversion: D s,

595155y || Function: Usage disp8*N
000 no conversion zmm1 4

001 reserved N/A N/A
010 reserved N/A N/A
011 float32 to float16 zmm1 {float16} 2

100 float32 to uint8 zmm1 {uint8} 1

101 float32 to sint8 zmm1 {sint8} 1

110 float32 to uint16 zmm1 {uint16} 2

111 float32 to sint16 zmm1 {sint16} 2

412

Reference Number: 327364-001

(intel‘

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mmb512_extpackstorehi_ps (void*, _m512, _MM_DOWNCONV_PS_ENUM, int);

void _mmb512_mask_extpackstorehi_ps (void*, __mmask16, _mb512,
_MM_DOWNCONV_PS_ENUM, int);

void _mmb512_packstorehi_ps (void*, _m512);

void _mmb512_mask_packstorehi_ps (void*, _mmask16, _m512);

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode
#SS(0)
#GP(0)
#PF (fault-code)

#NM
#UD

Reference Number: 327364-001

Instruction not available in these modes

If a memory address referencing the SS segment is

in a non-canonical form.

If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned

to element-wise data granularity dictated by the DownConv.
For a page fault.

If CRO.TS[bit 3]=1.

If processor model does not implement the specific instruction.
If preceded by any REX, FO, F2, F3, or 66 prefixes.

If the fist operand is not a memory location.

413

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPACKSTOREHQ - Pack And Store Unaligned High From Int64 Vector

414

Opcode Instruction Description
MVEX.512.66.0F38.W1 D4 vpackstorehq my {k1}, Pack mask-enabled elements of int64 vector
/r Djgs(zmm1) zmml to form an unaligned int64 stream,

down-convert it and logically map the stream
starting at m; — 64, and store that portion
of the stream that maps to the high 64-byte-
aligned portion of the memory destination, un-
der write-mask.

Description

Packs and down-converts the mask-enabled elements of int64 vector zmm1 into a int64
stream logically mapped starting at element-aligned address (m; — 64), and stores the
high-64-byte elements of that stream (those elements of the stream that map at or after
the first 64-byte-aligned address following (m; — 64), the high cache line in the current
implementation). The length of the stream depends on the number of enabled masks, as
elements disabled by the mask are not added to the stream.

The vpackstorelq instruction is used to store the part of the stream before the first 64-
byte-aligned address preceding m;.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector, choosing which elements are added to the stream. The one similarity
to a write-mask as used in the rest of this document is that the no-write-mask option
(encoding 0) is available to select a mask of OxFF for this instruction. For that reason, the
notation and encoding are the same as for a write-mask.

In conjunction with vpackstorelq, this instruction is useful for packing data into a queue.
Also in conjunction with vpackstorelq, it allows unaligned vector stores (that is, vector
stores that are only element-wise , not vector-wise, aligned); just use a mask of 0xFF or
no write-mask for this purpose. The typical instruction sequence to perform an unaligned
vector store would be:

// assume memory location is pointed by register rax
vpackstorelq [rax] {k1}, vO
vpackstorehq [rax+64] {ki}, vO

This instruction does not have subset support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand. The instruction will not produce any #GP or
#SS fault due to address canonicity nor #PF fault if the address is aligned to a 64-byte
boundary. Additionally, A/D bits in the page table will not be updated.

Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

storeOffset = 0
downSize = DownConvStoreSizeOf;sq (SSS[2:0])
foundNext64BytesBoundary = false

pointer = m; - 64
for (n = 0; n < 8; n++) {
if(k1[n] !'= 0) {
if (foundNext64BytesBoundary == false) {
if (((pointer + (storeOffset+1)*downSize) % 64) == 0) {
foundNext64BytesBoundary = true

}
} else {
i = 64*n

tmp = DownConvStore;ss (zmm1[i+63:1], SSS[2:0])
if (downSize == 8) {
MemStore(pointer + storeOffset*8) = tmp[63:0]
}
}

storeOffset++

Flags Affected

None.

Memory Down-conversion: Ds,

59515y || Function: Usage disp8*N
000 no conversion zmm1 8

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001 415

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mmb512_extpackstorehi_epi64 (void*, _mb512i,
_MM_DOWNCONV_EPI64_ENUM, int);
void _mmb512_mask_extpackstorehi_epi64 (void*, __mmasks, _mb512j,

_MM_DOWNCONV_EPI64_ENUM, int);
void _mmb512_packstorehi_epi64 (void*, _m512i);
void _mmb512_mask_packstorehi_epi64 (void*, __mmask8, _m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to element-wise data granularity dictated by the DownConv.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
#UD If processor model does not implement the specific instruction.
If preceded by any REX, FO, F2, F3, or 66 prefixes.
If the fist operand is not a memory location.

416 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPACKSTORELD - Pack and Store Unaligned Low From Int32 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W0 DO vpackstoreld my {k1}, Pack mask-enabled elements of int32 vector
/r D;32(zmm1) zmml to form an unaligned int32 stream,

down-convert it and logically map the stream
starting at my, and store that portion of the
stream that maps to the low 64-byte-aligned
portion of the memory destination, under
write-mask.

Description

Packs and down-converts the mask-enabled elements of int32 vector zmm1 into a byte /word/doubleword
stream logically mapped starting at element-aligned address m;, and stores the low-64-

byte elements of that stream (those elements of the stream that map before the first 64-

byte-aligned address following m,, the low cache line in the current implementation). The

length of the stream depends on the number of enabled masks, as elements disabled by

the mask are not added to the stream.

The vpackstorehd instruction is used to store the part of the stream at or after the first
64-byte-aligned address preceding m;.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector, choosing which elements are added to the stream. The one similarity
to a write-mask as used in the rest of this document is that the no-write-mask option
(encoding 0) is available to select a mask of OXFFFF for this instruction. For that reason,
the notation and encoding are the same as for a write-mask.

In conjunction with vpackstorehd, this instruction is useful for packing data into into a
queue. Also in conjunction with vpackstorehd, it allows unaligned vector stores (that is,
vector stores that are only element-wise, not vector-wise, aligned); just use a mask of
OxFFFF or no write-mask for this purpose. The typical instruction sequence to perform
an unaligned vector store would be:

// assume memory location is pointed by register rax
vpackstoreld [rax] {k1}, vO
vpackstorehd [rax+64] {ki1}, vO

This instruction does not have subset support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand.

Reference Number: 327364-001 417

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

storeOffset = 0
downSize = DownConvStoreSizeOf;35(SSS[2:0])

for(n = 0 ;n < 16; n++) {
if (ki[n] '= 0) {
i = 32*n
tmp = DownConvStore;ss (zmm1[i+31:1], SSS[2:0])
if (downSize == 4) {

MemStore (m;+4*store0ffset) = tmp[31:0]
} else if(downSize == 2) {
MemStore (m;+2*store0ffset) = tmp[15:0]

} else if(downSize == 1) {
MemStore (m;+store0ffset) = tmp[7:0]

}

storeOffset++

if (((m; + downSizex*storeOffset) % 64) == 0) {
break

}

}
}

Flags Affected

None.

Memory Down-conversion: D;s,

S95150 || Function: Usage disp8*N
000 no conversion zmm1 4

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 uint32 to uint8 zmm1 {uint8} 1

101 sint32 to sint8 zmm1 {sint8} 1

110 uint32 to uint16 zmm1 {uint16} 2

111 sint32 to sint16 zmm1 {sint16} 2

418 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mmb512_extpackstorelo_epi32 (void*, _mb512i,
_MM_DOWNCONV_EPI32_ENUM, int);
void _mmb512_mask_extpackstorelo_epi32 (void*, __mmask16, _mb512j,

_MM_DOWNCONV_EPI32_ENUM, int);
void _mmb512_packstorelo_epi32 (void*, _mb512i);
void _mmb512_mask_packstorelo_epi32 (void*, _mmask16, _m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to element-wise data granularity dictated by the DownConv.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
#UD If processor model does not implement the specific instruction.
If preceded by any REX, FO, F2, F3, or 66 prefixes.
If the fist operand is not a memory location.

Reference Number: 327364-001 419

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPACKSTORELPD - Pack and Store Unaligned Low From Float64 Vector

420

Opcode Instruction Description
MVEX.512.66.0F38.W1 D1 vpackstorelpd my {k1}, Pack mask-enabled elements of float64 vector
/r D¢64(zmm1) zmml to form an unaligned float64 stream,

down-convert it and logically map the stream
starting at my, and store that portion of the
stream that maps to the low 64-byte-aligned
portion of the memory destination, under
write-mask.

Description

Packs and down-converts the mask-enabled elements of float64 vector zmm1 into a
float64 stream logically mapped starting at element-aligned address m;, and stores the
low-64-byte elements of that stream (those elements of the stream that map before the
first 64-byte-aligned address following my, the low cache line in the current implemen-
tation). The length of the stream depends on the number of enabled masks, as elements
disabled by the mask are not added to the stream.

The vpackstorehpd instruction is used to store the part of the stream at or after the first
64-byte-aligned address preceding m;.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector, choosing which elements are added to the stream. The one similarity
to a write-mask as used in the rest of this document is that the no-write-mask option
(encoding 0) is available to select a mask of OXFF for this instruction. For that reason, the
notation and encoding are the same as for a write-mask.

In conjunction with vpackstorehpd, this instruction is useful for packing data into into a
queue. Also in conjunction with vpackstorehpd, it allows unaligned vector stores (that
is, vector stores that are only element-wise, not vector-wise, aligned); just use a mask of
OxFF or no write-mask for this purpose. The typical instruction sequence to perform an
unaligned vector store would be:

// assume memory location is pointed by register rax
vpackstorelpd [rax] {k1}, vO
vpackstorehpd [rax+64] {k1}, vO

This instruction does not have subset support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand.

Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

storeOffset = 0
downSize = DownConvStoreSizeOf ¢4 (8SS[2:0])

for(n = 0 ;n < 8; n++) {
if (ki[n] '= 0) {
i = 64*n
tmp = DownConvStore g (zmml [i+63:1], SSS[2:0])
if (downSize == 8) {
MemStore (m;+8*store0ffset) = tmp[63:0]
}
store0ffset++
if (((m; + downSize*storeOffset) % 64) == 0) {
break
}
}
}

SIMD Floating-Point Exceptions

None.

Memory Down-conversion: D,

59515y || Function: Usage disp8*N
000 no conversion zmm1 8

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel” C/C++ Compiler Intrinsic Equivalent

void _mmb512_extpackstorelo_pd (void*, _m512d, _MM_DOWNCONV_PD_ENUM, int);

void _mmb512_mask_extpackstorelo_pd (void*, _mmasks3, _mb512d,
_MM_DOWNCONV_PD_ENUM, int);

void _mmb512_packstorelo_pd (void*, _m512d);

void _mmb512_mask_packstorelo_pd (void*, _mmask8, _m512d);

Reference Number: 327364-001 421

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to element-wise data granularity dictated by the DownConv.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
#UD If processor model does not implement the specific instruction.
If preceded by any REX, FO, F2, F3, or 66 prefixes.
If the fist operand is not a memory location.

422 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPACKSTORELPS - Pack and Store Unaligned Low From Float32 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W0 D1 vpackstorelps my {k1}, Pack mask-enabled elements of float32 vector
/r D¢32(zmm1) zmml to form an unaligned float32 stream,

down-convert it and logically map the stream
starting at my, and store that portion of the
stream that maps to the low 64-byte-aligned
portion of the memory destination, under
write-mask.

Description

Packs and down-converts the mask-enabled elements of float32 vector zmm1 into a
byte/word/doubleword stream logically mapped starting at element-aligned address m;,
and stores the low-64-byte elements of that stream (those elements of the stream that
map before the first 64-byte-aligned address following m,, the low cache line in the cur-
rentimplementation). The length of the stream depends on the number of enabled masks,
as elements disabled by the mask are not added to the stream.

The vpackstorehps instruction is used to store the part of the stream at or after the first
64-byte-aligned address preceding m;.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector, choosing which elements are added to the stream. The one similarity
to a write-mask as used in the rest of this document is that the no-write-mask option
(encoding 0) is available to select a mask of OXFFFF for this instruction. For that reason,
the notation and encoding are the same as for a write-mask.

In conjunction with vpackstorehps, this instruction is useful for packing data into into a
queue. Also in conjunction with vpackstorehps, it allows unaligned vector stores (that
is, vector stores that are only element-wise, not vector-wise, aligned); just use a mask of
OxFFFF or no write-mask for this purpose. The typical instruction sequence to perform
an unaligned vector store would be:

// assume memory location is pointed by register rax
vpackstorelps [rax] {k1}, vO
vpackstorehps [rax+64] {k1}, vO

This instruction does not have subset support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand.

Reference Number: 327364-001 423

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘1

424

Operation

storeOffset = 0

downSize = DownConvStoreSize0f y3» (8SS[2:0])

for(n = 0 ;n < 16; n++) {

if (ki[n] !'= 0) {
i = 32*n

tmp = DownConvStoreyzs (zmml [i+31:i], SSS[2:0])

if (downSize == 4) {

MemStore (m;+4*store0ffset)
} else if(downSize == 2) {

MemStore (m;+2*xstoreO0ffset)
} else if(downSize ==

MemStore (m;+storeOffset) =

3

storeOffset++

if (((m; + downSizexstoreOffset) % 64) == 0) {

break
}
}
}

SIMD Floating-Point Exceptions

= tmp[31:0]

tmp [15:0]

tmp [7:0]

Overflow, Underflow, Invalid, Precision, Denormal.

Memory Down-conversion: D s,

S25150 || Function: Usage disp8*N
000 no conversion zmm1 4

001 reserved N/A N/A
010 reserved N/A N/A
011 float32 to floatl6 zmml1 {float16} 2

100 float32 to uint8 zmm1 {uint8} 1

101 float32 to sint8 zmm1 {sint8} 1

110 float32 to uint16 zmm1 {uint16} 2

111 float32 to sint16 zmm1 {sint16} 2

Intel” C/C++ Compiler Intrinsic Equivalent

void _mmb512_extpackstorelo_ps (void*, _m512, MM_DOWNCONV_PS_ENUM, int);

void _mmb512_mask_extpackstorelo_ps (void*,
_MM_DOWNCONV_PS_ENUM, int);

void _mmb512_packstorelo_ps (void*, _m512);

void _mmb512_mask_packstorelo_ps (void*, __mmask16, _m512);

__mmask16, _mb512,

Reference Number: 327364-001

(intel‘

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode
#SS(0)
#GP(0)
#PF(fault-code)

#NM
#UD

Reference Number: 327364-001

Instruction not available in these modes

If a memory address referencing the SS segment is

in a non-canonical form.

If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned

to element-wise data granularity dictated by the DownConv.
For a page fault.

If CRO.TS[bit 3]=1.

If processor model does not implement the specific instruction.

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If the fist operand is not a memory location.

425

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPACKSTORELQ - Pack and Store Unaligned Low From Int64 Vector

426

Opcode Instruction Description
MVEX.512.66.0F38.W1 DO vpackstorelq my {k1}, Pack mask-enabled elements of int64 vector
/r D;gs(zmm1) zmml to form an unaligned int64 stream,

down-convert it and logically map the stream
starting at my, and store that portion of the
stream that maps to the low 64-byte-aligned
portion of the memory destination, under
write-mask.

Description

Packs and down-converts the mask-enabled elements of int64 vector zmm1 into a int64
stream logically mapped starting at element-aligned address m;, and stores the low-64-
byte elements of that stream (those elements of the stream that map before the first 64-
byte-aligned address following m,, the low cache line in the current implementation). The
length of the stream depends on the number of enabled masks, as elements disabled by
the mask are not added to the stream.

The vpackstorehq instruction is used to store the part of the stream at or after the first
64-byte-aligned address preceding m;.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector, choosing which elements are added to the stream. The one similarity
to a write-mask as used in the rest of this document is that the no-write-mask option
(encoding 0) is available to select a mask of OXFF for this instruction. For that reason, the
notation and encoding are the same as for a write-mask.

In conjunction with vpackstorehg, this instruction is useful for packing data into into a
queue. Also in conjunction with vpackstorehg, it allows unaligned vector stores (that is,
vector stores that are only element-wise, not vector-wise, aligned); just use a mask of
OxFF or no write-mask for this purpose. The typical instruction sequence to perform an
unaligned vector store would be:

// assume memory location is pointed by register rax
vpackstorelq [rax] {k1}, vO
vpackstorehq [rax+64] {ki1}, vO

This instruction does not have subset support.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note that the address reported by a page fault is the beggining of the 64-byte cache line
boundary containing the memory operand.

Reference Number: 327364-001

(intel“

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

storeOffset = 0

downSize = DownConvStoreSize0f;ss (SSS[2:0])

for(n =

0 ;n < 8; nt+) {

if (k1[n] !'= 0) {

i =

64*n

tmp = DownConvStore;ss (zmml [i+63:1], SSS[2:0])

if (downSize == 8) {
MemStore (m;+8*store0ffset) = tmp[63:0]

3

store0ffset++
if (((m; + downSizex*storeOffset) % 64) == 0) {
break

¥
3
}

Flags Affected

None.

Memory Down-conversion: D;q,

595150 || Function: Usage disp8*N
000 no conversion zmm1 8
001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A
Intel” C/C++ Compiler Intrinsic Equivalent
void _mmb512_extpackstorelo_epi64 (void*, _mb512i,
_MM_DOWNCONV_EPI64_ENUM, int);
void _mmb512_mask_extpackstorelo_epi64 (void*, __mmasks, _mb512ij,

_MM_DOWNCONV_EPI64_ENUV, int);

void _mmb512_packstorelo_epi64 (void*, _m512i);

void _mmb512_mask_packstorelo_epi64 (void*, _mmask8, _mb512i);

Reference Number: 327364-001

427

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to element-wise data granularity dictated by the DownConv.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
#UD If processor model does not implement the specific instruction.
If preceded by any REX, FO, F2, F3, or 66 prefixes.
If the fist operand is not a memory location.

428 Reference Number: 327364-001

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPADCD - Add Int32 Vectors with Carry

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 vpaded zmml {k1}, k2, Add int32 vector S;32(zmm3/m.), vector mask
5C/r Sis2(zmm3/m;) register k2 and int32 vector zmm1 and store

the result in zmm1, and the carry of the sum in
k2, under write-mask.

Description

Performs an element-by-element three-input addition between int32 vector zmm1, the
int32 vector result of the swizzle /broadcast/conversion process on memory or int32 vec-
tor zmm3, and the corresponding bit of k2. The result is written into int32 vector zmm1.

In addition, the carry from the sum for the n-th element is written into the n-th bit of
vector mask k2.

This instruction is write-masked, so only those elements with the corresponding bit set in
vector mask register k1 are computed and stored into zmm1 and k2. Elements in zmm1
and k2 with the corresponding bit clear in k1 retain their previous value.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3([511:0] = SwizzUpConvLoad;3o (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {
i = 32*n
// integer operation
tmpCarry = Carry(zmml[i+31:i] + k2[n] + tmpSrc3[i+31:i])
zmml [i+31:i] = zmm1[i+31:i] + k2[n] + tmpSrc3[i+31:i]
k2[n] = tmpCarry

Flags Affected

None.

Reference Number: 327364-001 429

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

Memory Up-conversion: S;s,

525150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;3;

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel” C/C++ Compiler Intrinsic Equivalent

_m512i
_m512i

Exceptions

_mmb512_adc_epi32(_m512i, _mmask16, _m512i, _mmask16*);

_mmb512_mask_adc_epi32(_m512i,

_mmask16*);

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

430

Instruction not available in these modes

__mmask16,

__mmaskl16,

_mb512j,

Reference Number: 327364-001

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode
#SS(0)

#GP(0)

#PF(fault-code)
#NM
#UD

Reference Number: 327364-001

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If processor model does not implement the specific instruction.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

431

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPADDD - Add Int32 Vectors

Opcode Instruction Description

under write-mask.

MVEX.NDS.512.66.0EW0 vpaddd zmml {k1}, zmm2, Add int32 vector zmm2 and int32 vector
FE /r Siz2(zmm3/my) Siz2(zmm3/m;) and store the result in zmm1,

Description

Performs an element-by-element addition between int32 vector zmm?2 and the int32 vec-
tor result of the swizzle/broadcast/conversion process on memory or int32 vector zmm3.
The result is written into int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad;3o (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {
i = 32*n
// integer operation
zmml [i+31:i] = zmm2[i+31:i] + tmpSrc3[i+31:i]
}
}

Flags Affected

None.

432 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6.

INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S;s,

595150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;;,

MVEX.EH=0

555150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb512i
_mb512i

Exceptions

Real-Address Mode and Virtual-8086

#UD

Protected and Compatibility Mode

#UD

64 bit Mode

Reference Number: 327364-001

_mmb512_add_epi32 (_m512i, _mb512i);
_mmb512_mask_add_epi32 (_m512i, _mmask16,__m512i, _m512i);

Instruction not available in these modes

Instruction not available in these modes

433

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

434 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPADDSETCD - Add Int32 Vectors and Set Mask to Carry

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 vpaddsetcd zmm1l {k1}, k2, Add int32 vector zmml and int32 vector
5D /r Siz2(zmm3/my) Siz2(zmm3/m;) and store the sum in zmml
and the carry from the sum in k2, under write-
mask.
Description

Performs an element-by-element addition between int32 vector zmm1 and the int32 vec-
tor result of the swizzle/broadcast/conversion process on memory or int32 vector zmm3.
The result is written into int32 vector zmm1.

In addition, the carry from the sum for the n-th element is written into the n-th bit of
vector mask k2.

This instruction is write-masked, so only those elements with the corresponding bit setin
vector mask register k1 are computed and stored into zmm1 and k2. Elements in zmm1
and k2 with the corresponding bit clear in k1 retain their previous value.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad,3o (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if(k1[n] '= 0) {
i = 32*n
// integer operation
k2[n] = Carry(zmmi1[i+31:i] + tmpSrc3[i+31:i])
zmml [1+31:1i] = zmm1[i+31:i] + tmpSrc3[i+31:i]

Flags Affected

None.

Reference Number: 327364-001 435

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

Memory Up-conversion: S;s,

525150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;3;

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel” C/C++ Compiler Intrinsic Equivalent

_m512i
_m512i

Exceptions

_mmb512_addsetc_epi32 (_m512i, _m512i, _mmask16*);
_mmb512_mask_addsetc_epi32 (_mb512i,

_mmask16*);

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

436

Instruction not available in these modes

__mmask16,_mmask16,

_m512j,

Reference Number: 327364-001

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode
#SS(0)

#GP(0)

#PF(fault-code)
#NM
#UD

Reference Number: 327364-001

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If processor model does not implement the specific instruction.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

437

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel“

VPADDSETSD - Add Int32 Vectors and Set Mask to Sign

Opcode
MVEX.NDS.512.66.0F38.W0 CD /r

Instruction
vpaddsetsd zmm1 {k1}, zmm2, S;32(zmm3/m;)

Description

Add int32 vec-
tor zmm2 and
int32 vector
Siz2(zmm3/m;)
and store the sum in
zmm1 and the sign
from the sum in k1,
under write-mask.

Description

Performs an element-by-element addition between int32 vector zmm?2 and the int32 vec-
tor result of the swizzle/broadcast/conversion process on memory or int32 vector zmm3.
The result is written into int32 vector zmm1.

In addition, the sign of the result for the n-th element is written into the n-th bit of vector

mask k1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {

tmpSrc3[511:0] = SwizzUpConvLoad;3o (zmm3/my)

}

for (n = 0; n < 16; n++) {

if(k1i[n] !'= 0) {
i = 32%n

// signed integer operation
zmml [1+31:1i] = zmm2[i+31:i] + tmpSrc3[i+31:i]

k1[n] = zmml[i+31]

438

Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Flags Affected

None.

Memory Up-conversion: S;s,

525150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;;,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_addsets_epi32 (_m512i, _m512i, _mmask16*);
_m512i _mmb512_mask_addsets_epi32 (_mb512i, _mmaskl6, _m512i, _ m512j,
_mmask16*);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Reference Number: 327364-001 439

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If any memory operand linear address is not aligned to 4-byte
data granularity.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
If preceded by any REX, FO, F2, F3, or 66 prefixes.
If no write mask is provided or selected write-mask is kO.

440 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPANDD - Bitwise AND Int32 Vectors

Opcode Instruction Description

MVEX.NDS.512.66.0EW0 vpandd zmml {kl1}, zmm2, Perform a bitwise AND between int32 vector

DB /r Sige(zmm3/m;) zmm?2 and int32 vector S;32(zmm3/m;) and
store the result in zmm1, under write-mask.

Description

Performs an element-by-element bitwise AND between int32 vector zmm?2 and the int32
vector result of the swizzle/broadcast/conversion process on memory or int32 vector
zmma3. The result is written into int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad;3o (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if(k1[n] '= 0) {
i = 32%n
zmml [i+31:i] = zmm2[i+31:1i] & tmpSrc3[i+31:i]
¥
}

Flags Affected

None.

Reference Number: 327364-001 441

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S;s,

59515 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16

101 sint8 to sint32 [rax] {sint8} 16

110 uint16 to uint32 [rax] {uint16} 32

111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: S;3,

MVEX.EH=0

59515y || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_and_epi32(_m512i, _m512i);
_m512i _mmb512_mask_and_epi32(_m512i, _mmask16,_m512i,_m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

442 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#55(0)

#GP(0)

#PF(fault-code)
#NM

Reference Number: 327364-001

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

443

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPANDND - Bitwise AND NOT Int32 Vectors

444

Opcode Instruction Description
MVEX.NDS.512.66.0EW0 vpandnd zmm1l {k1}, zmm2, Perform abitwise AND between NOT int32 vec-
DF /r Sige(zmm3/m;) torzmm?2 and int32 vector S;32(zmm3/m,) and

store the result in zmm1, under write-mask.

Description

Performs an element-by-element bitwise AND between NOT int32 vector zmm2 and the
int32 vector result of the swizzle /broadcast/conversion process on memory or int32 vec-
tor zmm3. The result is written into int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad;3o (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if(ki[n] !'= 0) {
i = 32%n
zmml [i+31:i] = (~(zmm2[i+31:i])) & tmpSrc3[i+31:1i]
}
}

Flags Affected

None.

Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6.

INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S;s,

59515 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;3,

MVEX.EH=0

59515y || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i
_mb512i

Exceptions

Real-Address Mode and Virtual-8086

#UD

Protected and Compatibility Mode

#UD

64 bit Mode

Reference Number: 327364-001

_mmb512_andnot_epi32 (_m512i, _m512i);
_mmb512_mask_andnot_epi32 (_m512i, _mmask16, _m512i, _mb512i);

Instruction not available in these modes

Instruction not available in these modes

445

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

446 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPANDNQ - Bitwise AND NOT Int64 Vectors

Opcode Instruction Description

MVEX.NDS.512.66.0EW1 vpandnq zmml {k1}, zmm2, Perform abitwise AND between NOT int64 vec-

DF /r Siea(zmm3/m) torzmm?2 and int64 vector S;g4(zmm3/m,) and
store the result in zmm1, under write-mask.

Description

Performs an element-by-element bitwise AND between NOT int64 vector zmm2 and the
int64 vector result of the swizzle /broadcast/conversion process on memory or int64 vec-
tor zmm3. The result is written into int64 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad,gq (zmm3/m;)

}

for (n = 0; n < 8; n+t+) {
if(ki[n] !'= 0) {
i = 64*n
zmml [i+63:1i] = (~(zmm2[i+63:i])) & tmpSrc3[i+63:1i]
}
}

Flags Affected

None.

Reference Number: 327364-001 447

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S,

595150 || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: S,

MVEX.EH=0

555150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_andnot_epi64(_m512i, _m512i);
_m512i _mmb512_mask_andnot_epi64(_m512i, _mmask8, _m512i, _mb512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

448 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#55(0)

#GP(0)

#PF(fault-code)
#NM

Reference Number: 327364-001

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

449

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPANDQ - Bitwise AND Int64 Vectors

450

Opcode Instruction Description
MVEX.NDS.512.66.0EW1 vpandq zmml {kl1}, zmm2, Perform a bitwise AND between int64 vector
DB /r Siea(zmm3/m) zmm?2 and int64 vector S;g4(zmm3/m;) and

store the result in zmm1, under write-mask.

Description

Performs an element-by-element bitwise AND between int64 vector zmm?2 and the int64
vector result of the swizzle/broadcast/conversion process on memory or int64 vector
zmma3. The result is written into int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad,gq (zmm3/m;)

}

for (n = 0; n < 8; n++) {
if (k1[n] '=0) {
i = 64*n
zmml [i+63:1i] = zmm2[i+63:1] & tmpSrc3[i+63:i]
}
}

Flags Affected

None.

Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

Memory Up-conversion: S,

595150 || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: S,

MVEX.EH=0

555150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_and_epi64(_mb512i, _m512i);
_m512i _mmb512_mask _and_epi64(_m512i, _mmask8, _m512i, _mb512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

Reference Number: 327364-001 451

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

452 Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPBLENDMD - Blend Int32 Vectors using the Instruction Mask

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W0 vpblendmd zmm1 {k1}, zmm2, Blend int32 vector zmm2 and int32 vector

64 /r Siz2(zmm3/m;) S;32(zmm3/m;) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element blending between int32 vector zmm?2 and the int32 vec-
tor result of the swizzle/broadcast/conversion process on memory or int32 vector zmm3,
using the instruction mask as selector. The result is written into int32 vector zmm1.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector: every element of the destination is conditionally selected between first
source or second source using the value of the related mask bit (0 for first source, 1 for
second source).

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = tmpSrc3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad;se (tmpSrc3/my)

}

for (n = 0; n < 16; n++) {
if(k1[n]==1 or *no write-mask*) {
zmml [i+31:i] = tmpSrc3[i+31:i]
} else {
zmml [i+31:i] = zmm2[i+31:i]

}

Flags Affected

None.

Reference Number: 327364-001 453

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S;s,

555155y || Function: Usage disp8*N
000 no conversion [rax] {16t016} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;s,

MVEX.EH=0

59515y || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_mask_blend_epi32 (_mmask16, _m512i, _m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

454 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#55(0)

#GP(0)

#PF(fault-code)
#NM

Reference Number: 327364-001

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

455

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPBLENDMQ - Blend Int64 Vectors using the Instruction Mask

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W1 vpblendmq zmm1 {k1}, zmm2, Blend int64 vector zmm2 and int64 vector

64 /r Siea(zmm3/m;) Si64(zmm3/m;) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element blending between int64 vector zmm?2 and the int64 vec-
tor result of the swizzle/broadcast/conversion process on memory or int64 vector zmm3,
using the instruction mask as selector. The result is written into int64 vector zmm1.

The mask is not used as a write-mask for this instruction. Instead, the mask is used as an
element selector: every element of the destination is conditionally selected between first
source or second source using the value of the related mask bit (0 for first source, 1 for
second source).

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = tmpSrc3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad;ss (tmpSrc3/my)

}

for (n = 0; n < 8; n++) {
if(k1[n]==1 or *no write-mask*) {
zmml [i+63:1] = tmpSrc3[i+63:i]
} else {
zmml [1i+63:i] = zmm2[i+63:1i]

}

Flags Affected

None.

456 Reference Number: 327364-001

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S,

555155y || Function: Usage disp8*N
000 no conversion [rax] {8t08} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Sy,

MVEX.EH=0

59515y || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_mask_blend_epi64 (_mmask8, _m512i, _m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

Reference Number: 327364-001

457

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

458 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPBROADCASTD - Broadcast Int32 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W0 58 vpbroadcastd zmm1 {k1}, Broadcast int32 vector U,;32(m;) into vector
/r Uiz2(my) zmm1, under write-mask.

Description

The 1, 2, or 4 bytes (depending on the conversion and broadcast in effect) at memory
address m; are broadcast and/or converted to a int32 vector. The result is written into
int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

// {1tol6}
tmpSrc2[31:0] = UpConvLoad,3 (1m;)
for (n = 0; n < 16; n++) {
if (ki[n] !'= 0) {
i = 32*n
zmml [i+31:1i] = tmpSrc2[31:0]
}
}

Flags Affected

None.

Memory Up-conversion: U;s;

S95150 || Function: Usage disp8*N
000 no conversion [rax] 4

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 1

101 sint8 to sint32 [rax] {sint8} 1

110 uint16 to uint32 [rax] {uint16} 2

111 sint16 to sint32 [rax] {sint16} 2

Reference Number: 327364-001 459

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb512i _mmb512_extload_epi32(void const*,_ MM_UPCONV_EPI32_ENUM,
_MM_BROADCAST32_ENUM, int);
_m512i _mmb512_mask_extload_epi32(_m512i, __mmask16, void

const*,_MM_UPCONV_EPI32_ENUM, _MM_BROADCAST32_ENUM, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

460 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPBROADCASTQ - Broadcast Int64 Vector

Opcode Instruction Description
MVEX.512.66.0F38.W1 59 vpbroadcastq zmm1 {k1}, Broadcast int64 vector U;s4(m;) into vector
/r Uiga(my) zmm1, under write-mask.

Description

The 8 bytes at memory address m; are broadcast to a int64 vector. The result is written

into int64 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

// {1to8%}
tmpSrc2[63:0] = UpConvLoad,gq (1m4)
for (n = 0; n < 8; n++) {
if (ki[n] !'= 0) {
i = 64*n
zmml [i+63:1] = tmpSrc2[63:0]
}
}

Flags Affected

None.

Memory Up-conversion: U,

59515y || Function: Usage disp8*N
000 no conversion [rax] 8

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Reference Number: 327364-001

461

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb512i _mmb512_extload_epi64(void const*,_ MM_UPCONV_EPI64_ENUM,
_MM_BROADCAST64_ENUM, int);
_m512i _mmb512_mask_extload_epi64(_m512i, __mmask16, void

const*,_MM_UPCONV_EPI64_ENUM, _MM_BROADCAST64_ENUM, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

462 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPCMPD - Compare Int32 Vectors and Set Vector Mask

Opcode
MVEX.NDS.512.66.0F3A.WO0 1F /rib

Instruction

vpcmpd k2 {k1}, zmm1, S;32(zmm2/m;), imm8

Description
Compare be-
tween int32
vector zmm1
and int32 vector
Siz2(zmm2/m;)
and store the re-
sult in k2, under
write-mask.

Description

Performs an element-by-element comparison between int32 vector zmm1 and the int32
vector result of the swizzle/broadcast/conversion from memory or int32 vector zmm?2.
The result is written into vector mask k2.

The write-mask does not perform the normal write-masking function for this instruction.
While it does enable/disable comparisons, it does not block updating of the destination;
instead, if a write-mask bit is 0, the corresponding destination bit is set to 0. Nonethe-
less, the operation is similar enough so that it makes sense to use the usual write-mask
notation. This mode of operation is desirable because the result will be used directly as a
write-mask, rather than the normal case where the result is used with a separate write-
mask that keeps the masked elements inactive.

Immediate Format

Operation

switch (IMM8[2:

case 0: OP
case 1: OP
case 2: 0P
case 4: 0P
case b: 0P

Reference Number: 327364-001

Comparison Type I, I Iy

eq | Equal 0 0 O
It | Lessthan 0 0 1

le | Lessthan or Equal 0 1 o0

neq | NotEqual 1 0 0
nlt | Not Less than 1 0 1
nle | NotLessthanorEqual | 1 1 0

o1 A

EQ; break;
LT; break;

NEQ; break;
NLT; break;

(_
(_
< LE; break;
%
(_

463

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

case 6: OP < NLE; break;
default: Reserved; break;

}

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc2([511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoad;3o (zmm2/m;)

}
for (n = 0; n < 16; n++) {
k2[n] =0
if(k1[n] '= 0) {
i = 32*n

// signed integer operation
k2[n] = (zmm1[i+31:i] OP tmpSrc2[i+31:i]) ? 1 : O
}
}

Instruction Pseudo-ops

Compilers and assemblers may implement the following pseudo-ops in addition to the
standard instruction op:

Pseudo-Op Implementation

vpcmpeqd k2 {k1}, zmm1, S;(zmm2/m;) vempd k2 {k1}, zmm1, S;(zmm2/m;), {eq}

vpempltd k2 {k1}, zmm1, S;(zmm2/m,) vempd k2 {k1}, zmm1, S;(zmm2 /m,), {It}

vpcmpled k2 {k1}, zmm1, S;(zmm2/m) vempd k2 {k1}, zmm1, S;(zmm2/m;), {le}

vpcmpneqd k2 {k1}, zmm1, S;(zmm2/m;) vempd k2 {k1}, zmm1, S;(zmm2/m.), {neq}

vpcmpnltd k2 {k1}, zmm1, S;(zmm2/m,) vempd k2 {k1}, zmm1, S;(zmm2 /m;), {nlt}

vpcmpnled k2 {k1}, zmm1, S;(zmm2/m;) vempd k2 {k1}, zmm1, S;(zmm2/m;), {nle}
Flags Affected

None.

464 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S;s,

525150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;3;

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel” C/C++ Compiler Intrinsic Equivalent

_mmaskl6 _mmb512_cmp_epi32_mask(_m512i, _m512i, const_MM_CMPINT_ENUM);
_mmaskl6 _mmb512_mask_cmp_epi32_mask(_mmask16, _mb12ij, _mb12ij, const
_MM_CMPINT_ENUM);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001 465

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

466 Reference Number: 327364-001

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPCMPEQD - Compare Equal Int32 Vectors and Set Vector Mask

Opcode
MVEX.NDS.512.66.0EW0 76 /r

Instruction
vpcmpeqd k2 {k1}, zmm1, S;32(zmm2/m;)

Description
Compare Equal be-
tween int32 vector

zmml and int32 vector
Sigg[meZ/mt), and set
vector mask k2 to reflect
the zero/non-zero status of
each element of the result,
under write-mask.

Description

Performs an element-by-element compare for equality between int32 vector zmm1 and
the int32 vector result of the swizzle/broadcast/conversion from memory or int32 vector
zmm2. The result is written into vector mask k2.

The write-mask does not perform the normal write-masking function for this instruction.
While it does enable/disable comparisons, it does not block updating of the destination;
instead, if a write-mask bit is 0, the corresponding destination bit is set to 0. Nonethe-
less, the operation is similar enough so that it makes sense to use the usual write-mask
notation. This mode of operation is desirable because the result will be used directly as a
write-mask, rather than the normal case where the result is used with a separate write-
mask that keeps the masked elements inactive.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc2[511:0] = zmm2[511:0]

tmpSrc2[511:0] = SwizzUpConvLoad,3o (zmm2/m;)

} else {
T
for (n = 0; n < 16; n++) {
k2[n] =0
if(k1[n] !'= 0) {
i = 32*n

// signed integer operation
k2[n] = (zmm1[i+31:i] == tmpSrc2[i+31:i]) ? 1 : O

}
}

Reference Number: 327364-001

467

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘l

Flags Affected

None.

Memory Up-conversion: S;s,

55515 || Function: Usage disp8*N
000 no conversion [rax] {16t016} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16

101 sint8 to sint32 [rax] {sint8} 16

110 uint16 to uint32 [rax] {uint16} 32

111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: S;3,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mmaskl6 _mmb512_cmpeq_epi32_mask (_m512i, _mb512i);
_mmaskl6 _mmb512_mask_cmpeq_epi32_mask (_mmask16, _m512i, _m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

468 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#UD

64 bit Mode
#SS(0)

#GP(0)

#PF (fault-code)
#NM

Reference Number: 327364-001

Instruction not available in these modes

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 prefixes.

469

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPCMPGTD - Compare Greater Than Int32 Vectors and Set Vector Mask

470

Opcode Instruction Description

MVEX.NDS.512.66.0EW0 66 /r vpcmpgtd k2 {k1}, zmm1, S;32(zmm2/m,) Compare Greater between
int32 vector zmm1 and int32
vector S;32(zmm2/m;), and
set vector mask k2 to reflect
the zero/non-zero status of
each element of the result,
under write-mask.

Description

Performs an element-by-element compare for the greater value of int32 vector zmm1 and
the int32 vector result of the swizzle/broadcast/conversion from memory or int32 vector
zmmZ2. The result is written into vector mask k2.

The write-mask does not perform the normal write-masking function for this instruction.
While it does enable/disable comparisons, it does not block updating of the destination;
instead, if a write-mask bit is 0, the corresponding destination bit is set to 0. Nonethe-
less, the operation is similar enough so that it makes sense to use the usual write-mask
notation. This mode of operation is desirable because the result will be used directly as a
write-mask, rather than the normal case where the result is used with a separate write-
mask that keeps the masked elements inactive.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc2([511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoad,3o (zmm2/m;)

}
for (n = 0; n < 16; n++) {
k2[n] =0
if(k1[n] '= 0) {
i = 32*n

// signed integer operation
k2[n] = (zmm1[i+31:i] > tmpSrc2[i+31:i]) 7 1 : O
}
}

Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Flags Affected

None.

Memory Up-conversion: S;s,

55515 || Function: Usage disp8*N
000 no conversion [rax] {16t016} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16

101 sint8 to sint32 [rax] {sint8} 16

110 uint16 to uint32 [rax] {uint16} 32

111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: S;3,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mmaskl6 _mmb512_cmpgt_epi32_mask (_m512i, _m512i);
_mmaskl6 _mmb512_mask cmpgt epi32_mask (_mmask16, _m512i, _m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

Reference Number: 327364-001 471

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

472 Reference Number: 327364-001

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPCMPLTD - Compare Less Than Int32 Vectors and Set Vector Mask

Opcode
MVEX.NDS.512.66.0F38.W0 74 /r

Instruction
vpcempltd k2 {k1}, zmm1, S;32(zmm2/m;)

Description

Compare Less be-
tween int32 vector
zmm1l and int32 vector
Sigg(meZ/mt), and set
vector mask k2 to reflect
the zero/non-zero status
of each element of the
result, under write-mask.

Description

Performs an element-by-element compare for the lesser value of int32 vector zmm1 and
the int32 vector result of the swizzle/broadcast/conversion from memory or int32 vector
zmm2. The result is written into vector mask k2.

The write-mask does not perform the normal write-masking function for this instruction.
While it does enable/disable comparisons, it does not block updating of the destination;
instead, if a write-mask bit is 0, the corresponding destination bit is set to 0. Nonethe-
less, the operation is similar enough so that it makes sense to use the usual write-mask
notation. This mode of operation is desirable because the result will be used directly as a
write-mask, rather than the normal case where the result is used with a separate write-
mask that keeps the masked elements inactive.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc2[511:0] = zmm2[511:0]

tmpSrc2[511:0] = SwizzUpConvLoad,3o (zmm2/m;)

} else {
T
for (n = 0; n < 16; n++) {
k2[n] =0
if(k1[n] !'= 0) {
i = 32*n

// signed integer operation
k2[n] = (zmm1[i+31:i] < tmpSrc2[i+31:i]) 7?7 1 : O

}
}

Reference Number: 327364-001

473

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘l

Flags Affected

None.

Memory Up-conversion: S;s,

55515 || Function: Usage disp8*N
000 no conversion [rax] {16t016} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16

101 sint8 to sint32 [rax] {sint8} 16

110 uint16 to uint32 [rax] {uint16} 32

111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: S;3,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mmaskl6 _mmb512_cmplt_epi32_mask (_m512i, _m512i);
_mmaskl6 _mmb512_mask_cmplt_epi32_mask (_mmask16,__m512i, _m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

474 Reference Number: 327364-001

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#UD

64 bit Mode
#SS(0)

#GP(0)

#PF (fault-code)
#NM
#UD

Reference Number: 327364-001

Instruction not available in these modes

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If processor model does not implement the specific instruction.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

475

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel‘“

VPCMPUD - Compare Uint32 Vectors and Set Vector Mask

476

Opcode

MVEX.NDS.512.66.0F3A.WO0 1E /rib

Instruction

Description

vpcmpud k2 {k1}, zmm1, S;32(zmm2/m,),imm8 Compare

between

uint32 vec-
tor zmml and
uint32 vector
Siz2(zmm2/my)
and store the re-
sult in k2, under
write-mask.

Description

Performs an element-by-element comparison between uint32 vector zmm1 and the
uint32 vector result of the swizzle/broadcast/conversion from memory or uint32 vector
zmm2. The result is written into vector mask k2.

The write-mask does not perform the normal write-masking function for this instruction.
While it does enable/disable comparisons, it does not block updating of the destination;
instead, if a write-mask bit is 0, the corresponding destination bit is set to 0. Nonethe-
less, the operation is similar enough so that it makes sense to use the usual write-mask
notation. This mode of operation is desirable because the result will be used directly as a
write-mask, rather than the normal case where the result is used with a separate write-
mask that keeps the masked elements inactive.

Immediate Format

Operation

switch (IMM8[2:
0:
1: OP
2:

4: 0P

case
case
case
case

oP

oP

Comparison Type L, I I

eq | Equal 0 0 O
It Less than 0 0 1
le | Lessthan or Equal 0 1 o0
neq | Not Equal 1 0 0
nlt | Not Less than 1 0 1
nle | NotLessthanorEqual | 1 1 0

01 {

< EQ; break;

< LT; break;

< LE; break;

< NEQ; break;

Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

case 5: OP < NLT; break;
case 6: OP < NLE; break;
default: Reserved; break;

}

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2([511:0] = SwizzUpConvLoad;3o (zmm2/m;)

}
for (n = 0; n < 16; n++) {
k2[n] =0
if(ki[n] !'= 0) {
i = 32*n

// unsigned integer operation
k2[n] = (zmm1[i+31:i] OP tmpSrc2[i+31:i]) ? 1 : O
}
}

Instruction Pseudo-ops

Compilers and assemblers may implement the following pseudo-ops in addition to the
standard instruction op:

Pseudo-Op Implementation

vpcmpequd k2 {k1}, zmm1, S;(zmm2 /m;) vempud k2 {k1}, zmm1, S;(zmm2/m,), {eq}

vpcempltud k2 {k1}, zmm1, S, (zmm2/m;) vempud k2 {k1}, zmm1, S;(zmm2/m,), {It}

vpcmpleud k2 {k1}, zmm1, S;(zmm2/m) vempud k2 {k1}, zmm1, S;(zmm2/m;), {le}

vpcmpnequd k2 {k1}, zmm1, S;(zmm2/m;) vempud k2 {k1}, zmm1, S;(zmm2/m;), {neq}

vpcmpnltud k2 {k1}, zmm1, S;(zmm2/m,) vempud k2 {k1}, zmm1, S;(zmm2 /m;), {nlt}

vpcmpnleud k2 {k1}, zmm1, S;(zmm2 /m;) vempud k2 {k1}, zmm1, S;(zmm2/m;), {nle}
Flags Affected

None.

Reference Number: 327364-001 477

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

Memory Up-conversion: S;s,

525150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;3;

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel” C/C++ Compiler Intrinsic Equivalent

__mmask16
_mmaskl6 _mmb512_mask_cmp_epi32_mask(_mmask16,
_MM_CMPINT_ENUM);
Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

478

Instruction not available in these modes

_mm512_cmp_epi32_mask(_m512i, _m512i, const_MM_CMPINT_ENUM);
_mb512i,

_mb512j,

const

Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode
#SS(0)

#GP(0)

#PF(fault-code)
#NM

Reference Number: 327364-001

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

479

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel“

VPERMD - Permutes Int32 Vectors

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W0 vpermd zmml {k1}, zmm2, Element permute vector zmm3/mt using vec-

36 /r zmm3/mt tor zmm?2 as indices and store the final result in
zmm1, under write-mask.

Description

Performs an element permutation of elements from int32 vector read from memory or
vector zmm3, using int32 vector zmm?2 element as source indices. The result of the per-
mutation is written into int32 vector zmm1. Note that index values may be repeated so
that the same vector source element can be replicated across many vector destination

elements.

No swizzle, broadcast, or conversion is performed by this instruction.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with

the corresponding bit clear in k1 retain their previous values.

Operation

src[511:0] = zmm3/m;

for (n = 0; n < 16; n++) {
if (ki[n] '= 0) {
i = 32*n
j = zmm2[i+3:1]%32
zmml [i+31:i] = src[j+31:]j]
}
}

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_permutevar_epi32 (_m512i, _mb512i);

_m512i _mmb512_mask_permutevar_epi32 (_m512i, _mmask16, _m512i, _mb512i);

480

Reference Number: 327364-001

(intel‘

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode
#SS(0)
#GP(0)

#PF (fault-code)
#NM

Reference Number: 327364-001

Instruction not available in these modes

If a memory address referencing the SS segment is

in a non-canonical form.

If the memory address is in a non-canonical form.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

This instruction does not support any

SwizzUpConv different from the default value (no broadcast,
no conversion). If SwizzUpConv function is set to any value
different than "no action”, then an Invalid Opcode fault is
raised. This includes register swizzles.

481

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPERMF32X4 - Shuffle Vector Dqwords

Opcode Instruction Description

MVEX.512.66.0F3A.W0 07 /rib vpermf32x4 zmm1 {k1}, zmm2/m;, imm8 4xFloat32 shuffle element
vector zmmz2/m; and store
the result in zmm1, using
imm8, under write-mask.

Description

Shuffles 128-bit blocks of the vector read from memory or vector zmm?2 /mem using index
bits in immediate. The result of the shuffle is written into vector zmm1.

No swizzle, broadcast, or conversion is performed by this instruction.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Immediate Format

| imm8 | 128-bit level permutation vector {3210} [I Is [I; L [Is L [L o

Operation

src[511:0] = zmm2/m;

// Inter-lane shuffle

for (n = 0; n < 16/4; n++) {
i = 128%n
j = 128x((perm128 >> 2#n) & 0x3)
tmp [1+127:1] = src[j+127:j]

}

// Writemasking
for (n = 0; n < 16; n++) {
if (x1[n] '= 0) {
zmml [1+31:1i] = tmp[i+31:i]
}
}

482 Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_permute4f128_epi32 (_mb512i,_MM_PERM_ENUM);

_m512i _mmb512_mask_permute4f128_epi32 (_mb512i, __mmask16, _mb512i,
_MM_PERM_ENUM);

_m512 _mm512_permute4f128_ps (_m512, MM_PERM_ENUM);

_m512 _mmb512_mask_permute4f128_ps (_mb512, __mmask16, _mb512,
_MM_PERM_ENUM);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

This instruction does not support any

SwizzUpConv different from the default value (no broadcast,
no conversion). If SwizzUpConv function is set to any value
different than "no action”, then an Invalid Opcode fault is
raised. This includes register swizzles.

Reference Number: 327364-001 483

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPGATHERDD - Gather Int32 Vector With Signed Dword Indices

484

Opcode Instruction Description
MVEX.512.66.0F38.W0 90 vpgatherdd zmm1 {k1}, U;s2(mwv:) Gather int32 vector U;32(muv,) into int32 vec-
/r /vsib tor zmm1 using doubleword indices and k1 as

completion mask.

Description

A set of 16 memory locations pointed by base address BASE_ADDR and doubleword
index vector VIN DE X with scale SCALE are converted to a int32 vector. The result is
written into int32 vector zmm1.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT_SUBSET). There are only
two guarantees about the function: (a) the destination mask is a subset of the source mask
(identity is included), and (b) on a given invocation of the instruction, atleast one element
(the least significant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
gather/scatter sequence have been loaded/stored and hence, the write-mask bits all are
zero).

Note that accessed element by will always access 64 bytes of memory. The memory region
accessed by each element will always be between elemen_linear_address & (~0x3F) and
(element_linear_address & (~0x3F)) + 63 boundaries.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully loaded.

The instruction will #GP fault if the destination vector zmm1 is the same as index vector
VINDEX.

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET (k1)

// Use mv; as vector memory operand (VSIB)
for (n = 0; n < 16; n++) {

if (ktemp[n] '= 0) {

Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

i = 32*n

// muvy[n] = BASE_ADDR + SignExtend(VINDEX[i+31:i] * SCALE)
pointer[63:0] = muvy[n]

zmml[i+31:i] = UpConvLoad;ss (pointer)

ki[n] =0

Flags Affected

None.

Memory Up-conversion: U;s;

59515y || Function: Usage disp8*N
000 no conversion [rax] 4

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 1

101 sint8 to sint32 [rax] {sint8} 1

110 uint16 to uint32 [rax] {uint16} 2

111 sint16 to sint32 [rax] {sint16} 2

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_i32gather_epi32 (_mb512i, void const*, int);

_m512i _mmb512_mask_i32gather_epi32 (_mb512i, _mmask16, _m512i, void const*,
int);

_m512i _mmb512_i32extgather_epi32 (_m512i, void const*,_MM_UPCONV_EPI32_ENUM,
int, int);

_m512i _mmb512_mask_i32extgather_epi32 (_m512i, _mmask16, _m512i, void const*,
_MM_UPCONV_EPI32_ENUM, int, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

Reference Number: 327364-001 485

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form, and corresponding write-mask bit is not zero.
#GP(0) If a memory address is in a non-canonical form,

and corresponding write-mask bit is not zero.

If a memory operand linear address is not aligned

to element-wise data granularity dictated by the UpConv
and corresponding write-mask bit is not zero.

If the destination vector is the same as the index vector [see

#PF (fault-code) If a memory operand linear address produces a page fault
and corresponding write-mask bit is not zero.
#NM If CRO.TS[bit 3]=1.
If preceded by any REX, FO, F2, F3, or 66 prefixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.
If no write mask is provided or selected write-mask is kO.

486 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPGATHERDQ - Gather Int64 Vector With Signed Dword Indices

Opcode Instruction Description

MVEX.512.66.0F38.W1 90 vpgatherdqzmml {k1}, U;s4(mv:) Gather int64 vector U;g4(mv,) into int64 vec-

/r /vsib tor zmm1 using doubleword indices and k1 as
completion mask.

Description

A set of 8 memory locations pointed by base address BASE_ADDR and doubleword
index vector VIN DE X with scale SCALFE are converted to a int64 vector. The result is
written into int64 vector zmmJ1.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT_SUBSET). There are only
two guarantees about the function: (a) the destination mask is a subset of the source mask
(identity is included), and (b) on a given invocation of the instruction, atleast one element
(the least significant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
gather/scatter sequence have been loaded/stored and hence, the write-mask bits all are
zero).

Note that accessed element by will always access 64 bytes of memory. The memory region
accessed by each element will always be between elemen_linear_address & (~0x3F) and
(element_linear_address & (~0x3F)) + 63 boundaries.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully loaded.

The instruction will #GP fault if the destination vector zmm1 is the same as index vector
VINDEX.

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET (k1)

// Use mv; as vector memory operand (VSIB)
for (n = 0; n < 8; n++) {

if (ktemp[n] '= 0) {

Reference Number: 327364-001 487

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

i = 64*n
j = 32%n
// muv;[n] = BASE_ADDR + SignExtend(VINDEX[j+31:j] * SCALE)
pointer[63:0] = muvy[n]
zmml1 [i+63:i] = UpConvLoad;s4 (pointer)
ki[n] =0
}

b
k1[15:8] = 0

Flags Affected

None.

Memory Up-conversion: U,

59515y || Function: Usage disp8*N
000 no conversion [rax] 8

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_i32logather_epi64 (_m512i, void const*, int);

_m512i _mmb512_mask_i32logather_epi64 (_mb512i, _mmask8, _m512i, void const*,
int);

_m512i _mmb512_i32loextgather_epi64 (_m512j, void const*,
_MM_UPCONV_EPI64_ENUM, int, int);

_m512i _mmb512_mask_i32loextgather_epi64 (_m512i, _mmask8, _m512i, void const*,
_MM_UPCONV_EPI64_ENUM, int, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

488 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form, and corresponding write-mask bit is not zero.
#GP(0) If a memory address is in a non-canonical form,

and corresponding write-mask bit is not zero.

If a memory operand linear address is not aligned

to element-wise data granularity dictated by the UpConv
and corresponding write-mask bit is not zero.

If the destination vector is the same as the index vector [see

#PF (fault-code) If a memory operand linear address produces a page fault
and corresponding write-mask bit is not zero.
#NM If CRO.TS[bit 3]=1.
If preceded by any REX, FO, F2, F3, or 66 prefixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100Db.
If no write mask is provided or selected write-mask is k0.

Reference Number: 327364-001 489

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPMADDZ231D - Multiply First Source By Second Source and Add To Des-
tination Int32 Vectors

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W0 B5 /r vpmadd231d zmm1 {k1}, zmm?2, S;30(zmm3/m;) Multiply int32
vector zmm?2
and int32 vector
Sise(zmm3/m,),

add the result
to int32 vector
zmm1, and store
the final result
in zmm1, under
write-mask.

Description

Performs an element-by-element multiplication between int32 vector zmm2 and the
int32 vector result of the swizzle/broadcast/conversion process on memory or vector
int32 zmm3, then adds the result to int32 vector zmm1. The final sum is written into
int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad,3o (zmm3/my)

}

for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {
i = 32*n
// integer operation
zmml [i+31:i] = zmm2[i+31:i] * tmpSrc3[i+31:i] + zmm1[i+31:i]
}
}

490 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Flags Affected

None.

Memory Up-conversion: S;s,

525150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;;,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_fmadd_epi32 (_m512i,_m512i, _m512i);
_mb512i _mmb512_mask _fmadd_epi32 (_m512i, _mmask16, _m512i, _mb512i);
_m512i _mmb512_mask3_fmadd_epi32 (_m512i, _m512i,_m512i, _mmask16);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Reference Number: 327364-001 491

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

492 Reference Number: 327364-001

(intel‘“

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPMADDZ233D - Multiply First Source By Specially Swizzled Second Source
and Add To Second Source Int32 Vectors

Opcode
MVEX.NDS.512.66.0F38.W0 B4 /r

Instruction
vpmadd233d zmm1 {k1}, zmm?2, S;32(zmm3/m;)

Description
Multiply int32
vector zmm2 by
certain elements
of int32 vector
Sizz(zmm3/my),
add the re-
sult to certain
elements of
Siz2(zmm3/m,),
and store the final
result in zmml,
under write-mask.

Description

This instruction is built around the concept of 4-element sets, of which there are four:
elements 0-3, 4-7, 8-11, and 12-15. If we refer to the int32 vector result of the broadcast
(no conversion is supported) process on memory or the int32 vector zmm3 (no swizzle
is supported) as t3, then:

Each element 0-3 of int32 vector zmm?2 is multiplied by element 1 of t3, the resultis added
to element 0 of t3, and the final sum is written into the corresponding element 0-3 of int32
vector zmm1.

Each element 4-7 of int32 vector zmm2 is multiplied by element 5 of t3, the resultis added
to element 4 of t3, and the final sum is written into the corresponding element 4-7 of int32
vector zmm1.

Each element 8-11 of int32 vector zmm?2 is multiplied by element 9 of t3, the result is
added to element 8 of t3, and the final sum is written into the corresponding element
8-11 of int32 vector zmm1.

Each element 12-15 of int32 vector zmm2 is multiplied by element 13 of t3, the result is
added to element 12 of t3, and the final sum is written into the corresponding element
12-15 of int32 vector zmm1.

This instruction makes it possible to perform scale and bias in a single instruction without
needing to have either scale or bias already loaded in a register. This saves one vector load
for each interpolant, representing around ten percent of shader instructions.

For structure-of-arrays (SOA) operation, this instruction is intended to be used with the
{4t016} broadcast on src2, allowing all 16 scale and biases to be identical. For array-of-
structures (AOS) vec4 operations, no broadcast is used, allowing four different scales and
biases, one for each vec4.

Reference Number: 327364-001

493

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

No conversion or swizzling is supported for this instruction. However, all broadcasts ex-
cept {1to16} are supported (i.e. 16to16 and 4to16).

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad,3o (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if (k1[n] !'= 0) {
i = 32*n
base = (n & ~0x03) * 32
scale[31:0] = tmpSrc3[base+63:base+32]
bias[31:0] = tmpSrc3[base+31:base]
// integer operation
zmml [i+31:i] = zmm2[i+31:i] * scale[31:0] + bias[31:0]

Flags Affected

None.

Memory Up-conversion: S;s,

55515 || Function: Usage disp8*N
000 no conversion [rax] {16t016} or [rax] 64

001 reserved N/A N/A
010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

494 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: S;3,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 reserved N/A

010 reserved N/A

011 reserved N/A

100 reserved N/A

101 reserved N/A

110 reserved N/A

111 reserved N/A

Intel” C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_fmadd233_epi32 (_m512i, _m512i);
_m512i _mmb512_mask_fmadd233_epi32 (_m512i, _mmask16, _m512i, _mb512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to 16 or 64-byte (depending on the swizzle broadcast).
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
If preceded by any REX, FO, F2, F3, or 66 prefixes.
This instruction does not support any
SwizzUpConv involving data conversion, register swizzling or
{1t016} broadcast. If SwizzUpConv function is set to any
value different than "no action" or {4t016} then

Reference Number: 327364-001 495

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

an Invalid Opcode fault is raised

496 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPMAXSD - Maximum of Int32 Vectors

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W0 vpmaxsd zmml {k1}, zmm2, Determine the maximum ofint32 vector zmm?2

3D /r Size(zmm3/m,) and int32 vector S;32(zmm3/m;) and store the
result in zmm1, under write-mask.

Description

Determines the maximum value of each pair of corresponding elements in int32 vector
zmm?2 and the int32 vector result of the swizzle /broadcast/conversion process on mem-
ory or int32 vector zmm3. The result is written into int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3([511:0] = SwizzUpConvLoad,3o (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if(ki[n] '=0) {
i = 32%n
// signed integer operation
zmml [i+31:i] = IMax(zmm2[i+31:i] , tmpSrc3[i+31:i])
}
}

Flags Affected

None.

Reference Number: 327364-001 497

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

Memory Up-conversion: S;s,

595150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;;,

MVEX.EH=0

555150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_max_epi32 (_m512i, _m512i);
_m512i _mmb512_mask_max_epi32 (_m512i, _mmask16, _m512i, _mb512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

498 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#55(0)

#GP(0)

#PF(fault-code)
#NM

Reference Number: 327364-001

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

499

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPMAXUD - Maximum of Uint32 Vectors

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W0 vpmaxud zmml {kl1}, zmm2, Determine the maximum of uint32 vector

3F /r Size(zmm3/m,) zmm?2 and uint32 vector S;32(zmm3/m;) and
store the result in zmm1, under write-mask.

Description

Determines the maximum value of each pair of corresponding elements in uint32 vec-
tor zmm?2 and the uint32 vector result of the swizzle/broadcast/conversion process on
memory or uint32 vector zmma3. The result is written into uint32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3([511:0] = SwizzUpConvLoad,3o (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if(ki[n] '=0) {
i = 32%n
// unsigned integer operation
zmml [i+31:i] = UMax(zmm2[i+31:i] , tmpSrc3[i+31:i])
}
}

Flags Affected

None.

500 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6.

INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S;s,

595150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;;,

MVEX.EH=0

555150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb512i
_mb512i

Exceptions

_mmb512_max_epu32 (_m512i,_mb512i);
_mmb512_mask _max_epu32 (_m512i, _mmask16, _m512i,_m512i);

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode

Reference Number: 327364-

Instruction not available in these modes

001

501

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

502 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPMINSD - Minimum of Int32 Vectors

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W0 vpminsd zmml {kl1}, zmm2, Determine the minimum of int32 vector zmm?2

39 /r Siz2(zmm3/m;) and int32 vector S;32(zmm3/m;) and store the
result in zmm1, under write-mask.

Description

Determines the minimum value of each pair of corresponding elements in int32 vector
zmm?2 and the int32 vector result of the swizzle /broadcast/conversion process on mem-
ory or int32 vector zmm3. The result is written into int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad;3o (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if(k1[n] '=0) {
i = 32*n
// signed integer operation
zmml [i+31:i] = (zmm2[i+31:i] < tmpSrc3[i+31:i]) 7
zmm2[i+31:1] : tmpSrc3[i+31:i]

Flags Affected

None.

Reference Number: 327364-001 503

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

Memory Up-conversion: S;s,

595150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;;,

MVEX.EH=0

555150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_min_epi32 (_m512i, _mb512i);
_m512i _mmb512_mask_min_epi32 (_m512i, _mmask16,__m512i, _m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

504 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#55(0)

#GP(0)

#PF(fault-code)
#NM

Reference Number: 327364-001

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

505

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPMINUD - Minimum of Uint32 Vectors

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W0 vpminud zmm1l <{k1}, zmm2, Determine the minimum of uint32 vector

3B /r Size(zmm3/m,) zmm?2 and uint32 vector S;32(zmm3/m;) and
store the result in zmm1, under write-mask.

Description

Determines the minimum value of each pair of corresponding elements in uint32 vector
zmm?2 and the uint32 vector result of the swizzle /broadcast/conversion process on mem-
ory or uint32 vector zmm3. The result is written into uint32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3([511:0] = SwizzUpConvLoad,3o (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if(ki[n] '=0) {
i = 32%n
// unsigned integer operation
zmml [i+31:i] = UMin(zmm2[i+31:i] , tmpSrc3[i+31:i])
}
}

Flags Affected

None.

506 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6.

INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S;s,

595150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;;,

MVEX.EH=0

555150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb512i
_mb512i

Exceptions

_mm512_min_epu32 (_m512i, _m512i);
_mmb512_mask _min_epu32 (_m512i, _mmask16, _m512i, _m512i);

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode

Reference Number: 327364-

Instruction not available in these modes

001

507

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

508 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPMULHD - Multiply Int32 Vectors And Store High Result

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W0 vpmulhd zmm1 {k1}, zmm2, Multiply int32 vector zmm2 and int32 vector

87 /r Siz2(zmm3/m;) S;32(zmm3/m;) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element multiplication between int32 vector zmm2 and the
int32 vector result of the swizzle /broadcast/conversion process on memory or int32 vec-
tor zmm3. The high 32 bits of the result are written into int32 zmm1 vector.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad,3o (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if(k1i[n] !'= 0) {
i = 32*n
// signed integer operation
tmp[63:0] = zmm2[i+31:1i] * tmpSrc3[i+31:i]
zmml [i+31:i] = tmp[63:32]

Flags Affected

None.

Reference Number: 327364-001 509

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S;s,

595150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;;,

MVEX.EH=0

555150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_mulhi_epi32 (_m512i, _m512i);
_m512i _mmb512_mask mulhi_epi32 (_m512i, _mmask16, _m512i, _mb512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

510 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#55(0)

#GP(0)

#PF(fault-code)
#NM

Reference Number: 327364-001

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

511

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPMULHUD - Multiply Uint32 Vectors And Store High Result

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W0 vpmulhud zmm1 {k1}, zmm2, Multiplyuint32 vectorzmm?2 and uint32 vector

86 /r Siz2(zmm3/m;) S;32(zmm3/m;) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element multiplication between uint32 vector zmm2 and the
uint32 vector result of the swizzle/broadcast/conversion process on memory or uint32
vector zmma3. The high 32 bits of the result are written into uint32 zmm1 vector.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad,3o (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if(k1i[n] !'= 0) {
i = 32*%n
// unsigned integer operation
tmp[63:0] = zmm2[i+31:1i] * tmpSrc3[i+31:i]
zmml [i+31:i] = tmp[63:32]

Flags Affected

None.

512 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6.

INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S;s,

595150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;;,

MVEX.EH=0

555150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb512i
_mb512i

Exceptions

_mm512_mulhi_epu32 (_mb512i, _m512i);
_mmb512_mask_mulhi_epu32 (_m512i, _mmask16, _m512i, _m512i);

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode

Reference Number: 327364-

Instruction not available in these modes

001

513

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

514 Reference Number: 327364-001

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPMULLD - Multiply Int32 Vectors And Store Low Result

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W0 vpmulld zmm1 {k1}, zmm2, Multiply int32 vector zmm2 and int32 vector

40 /r Siz2(zmm3/my) Siz2(zmm3/m;) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element multiplication between int32 vector zmm2 and the
int32 vector result of the swizzle/broadcast/conversion process on memory or int32 vec-
tor zmma3, and the low 32 bits of the result are written into int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad;3o (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if(k1[n] '=0) {
i = 32*n
// signed integer operation
zmml [i+31:i] = zmm2[i+31:1i] * tmpSrc3[i+31:i]
}
}

Flags Affected

None.

Reference Number: 327364-001 515

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S;s,

595150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;;,

MVEX.EH=0

555150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_mullo_epi32 (_m512i, _m512i);
_m512i _mmb512_mask _mullo_epi32 (_m512i, _mmask16, _m512i, _m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

516 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#55(0)

#GP(0)

#PF(fault-code)
#NM

Reference Number: 327364-001

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

517

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPORD - Bitwise OR Int32 Vectors

518

Opcode Instruction Description
MVEX.NDS.512.66.0EW0 vpord zmml {k1}, zmm2, Perform a bitwise OR between int32 vector
EB /r Sige(zmm3/m;) zmm?2 and int32 vector S;32(zmm3/m;) and

store the result in zmm1, under write-mask.

Description

Performs an element-by-element bitwise OR between int32 vector zmm?2 and the int32
vector result of the swizzle/broadcast/conversion process on memory or int32 vector
zmma3. The result is written into int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad;3o (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if(k1[n] '= 0) {
i = 32%n
zmml [i+31:i] = zmm2[i+31:1i] | tmpSrc3[i+31:i]
¥
}

Flags Affected

None.

Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6.

INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S;s,

59515 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16

101 sint8 to sint32 [rax] {sint8} 16

110 uint16 to uint32 [rax] {uint16} 32

111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: S;3,

MVEX.EH=0

59515y || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i
_mb512i

Exceptions

_mmb512_or_epi32 (_m512i, _m512i);
_mmb512_mask_or_epi32 (_m512i, _mmask16, _m512i, _m512i);

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode

Reference Number: 327364-

Instruction not available in these modes

001

519

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

520 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPORQ - Bitwise OR Int64 Vectors

Opcode Instruction Description

MVEX.NDS.512.66.0EW1 vporq zmml {k1}, zmm2, Perform a bitwise OR between int64 vector

EB /r Siea(zmm3/m) zmm?2 and int64 vector S;g4(zmm3/m;) and
store the result in zmm1, under write-mask.

Description

Performs an element-by-element bitwise OR between int64 vector zmm2 and the int64
vector result of the swizzle/broadcast/conversion process on memory or int64 vector
zmma3. The result is written into int64 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad,gq (zmm3/m;)

}

for (n = 0; n < 8; n++) {
if (k1[n] '=0) {
i = 64*n
zmml [i+63:1i] = zmm2[i+63:1] | tmpSrc3[i+63:i]
}
}

Flags Affected

None.

Reference Number: 327364-001 521

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S,

59515 || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Sy,

MVEX.EH=0

59515y || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_or_epi64 (_m512i, _m512i);
_m512i _mmb512_mask_or_epi64 (_mb512i, _mmask8, _m512i, _m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

522 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#55(0)

#GP(0)

#PF(fault-code)
#NM

Reference Number: 327364-001

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

523

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSBBD - Subtract Int32 Vectors with Borrow

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 vpsbbd zmml {k1}, k2, Subtract int32 vector S;32(zmm3/m,) and vec-
5E /r Siz2(zmm3/m;) tor mask register k2 from int32 vector zmm1

and store the result in zmm1, and the borrow
of the subtraction in k2, under write-mask.

Description

Performs an element-by-element three-input subtraction of the int32 vector result of the
swizzle/broadcast/conversion process on memory or int32 vector zmm3, as well as the
corresponding bit of k2, from int32 vector zmm1. The result is written into int32 vector
zmm1.

In addition, the borrow from the subtraction difference for the n-th element is written
into the n-th bit of vector mask k2.

This instruction is write-masked, so only those elements with the corresponding bit setin
vector mask register k1 are computed and stored into zmm1 and k2. Elements in zmm1
and k2 with the corresponding bit clear in k1 retain their previous value.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3([511:0] = SwizzUpConvLoad;3o (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {
i = 32*n
// integer operation
tmpBorrow = Borrow(zmml[i+31:i] - k2[n] - tmpSrc3[i+31:i])
zmml [i+31:i] = zmm1[i+31:i] - k2[n] - tmpSrc3[i+31:i]
k2[n] = tmpBorrow

524 Reference Number: 327364-001

(intel‘“

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Flags Affected

None.

Memory Up-conversion: S;s,

525150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;;,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i
_mb512i

Exceptions

_mmb512_sbb_epi32 (_m512i, _mmask16, _m512i, _mmask16*);
_mmb512_mask_sbb_epi32 (_m512i, _ mmask16,

_mmask16*);

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Reference Number: 327364-001

__mmask16,

525

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
#UD If processor model does not implement the specific instruction.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

526 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS
VPSBBRD - Reverse Subtract Int32 Vectors with Borrow

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 vpsbbrd zmm1 {k1}, k2, Subtract int32 vector zmm1 and vector mask
6E /r Siz2(zmm3/m;) register k2 from int32 vector S;32(zmm3/m,),

and store the result in zmm1, and the borrow
of the subtraction in k2, under write-mask.

Description

Performs an element-by-element three-input subtraction of int32 vector zmm1, as well as
the corresponding bit ofk2, from the int32 vector result of the swizzle /broadcast/conversion
process on memory or int32 vector zmma3. The result is written into int32 vector zmm1.

In addition, the borrow from the subtraction for the n-th element is written into the n-th
bit of vector mask k2.

This instruction is write-masked, so only those elements with the corresponding bit set in
vector mask register k1 are computed and stored into zmm1 and k2. Elements in zmm1
and k2 with the corresponding bit clear in k1 retain their previous value.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3([511:0] = SwizzUpConvLoad;3o (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {
i = 32*n
// integer operation
tmpBorrow = Borrow(tmpSrc3[i+31:i] - k2[n] - zmmi[i+31:i])
zmml [i+31:i] = tmpSrc3[i+31:i] - k2[n] - zmm1[i+31:i]
k2[n] = tmpBorrow

Flags Affected

None.

Reference Number: 327364-001 527

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

Memory Up-conversion: S;s,

S9515p || Function: disp8*N
000 no conversion rax| {16to16} or [rax] 64
001 broadcast 1 element (x16) {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved A N/A
100 uint8 to uint32 uint8} 16
101 sint8 to sint32 sint8} 16
110 uint16 to uint32 uint16} 32
111 sint16 to sint32 sint16} 32
Register Swizzle: S;3;

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel” C/C++ Compiler Intrinsic Equivalent

_m512i
_m512i

Exceptions

_mmb512_sbbr_epi32 (_m512i, _mmask16, _m512i, _mmask16%*);
_mmb512_mask_sbbr_epi32 (_m512i,

_mmask16*);

Real-Address Mode and Virtual-8086

#UD

__mmask16,

Instruction not available in these modes

Protected and Compatibility Mode

#UD

528

Instruction not available in these modes

__mmask16,

_mb512j,

Reference Number: 327364-001

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode
#SS(0)

#GP(0)

#PF(fault-code)
#NM
#UD

Reference Number: 327364-001

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If processor model does not implement the specific instruction.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

529

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSCATTERDD - Scatter Int32 Vector With Signed Dword Indices

530

Opcode Instruction Description
MVEX.512.66.0F38.W0 A0 vpscatterdd muy {k1}, Scatter int32 vector D;32(zmm1l) to vector
/1 /vsib D;32(zmm1) memory locations mwv; using doubleword in-

dices and k1 as completion mask.

Description

Down-converts and stores all 16 elements in int32 vector UNDEF to the memory locations
pointed by base address BASE_ADDR and doubleword index vector VINDFE X, with
scale SCALE.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT_SUBSET). There are only
two guarantees about the function: (a) the destination mask is a subset of the source mask
(identity is included), and (b) on a given invocation of the instruction, atleast one element
(the least significant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
gather/scatter sequence have been loaded/stored and hence, the write-mask bits all are
Zero).

Writes to overlapping destination memory locations are guaranteed to be ordered with
respect to each other (from LSB to MSB of the source registers). Only writes to overlapping
vector indices are guaranteed to be ordered with respect to each other (from LSB to MSB
of the source registers). Writes that are not overlapped may happen in any order. Memory
ordering with other instructions follows the Intel-64 memory ordering model. Note that
this does not account for non-overlapping indices that map into the same physical address
locations.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully stored.

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET (k1)

// Use muv; as vector memory operand (VSIB)
for (n = 0; n < 16; n++) {

Reference Number: 327364-001

(intel“

CHAPTER 6. INSTRUCTION DESCRIPTIONS

if (ktemp[n] !'= 0) {
i = 32*n
// muvy[n] = BASE_ADDR + SignExtend(VINDEX[i+31:i] * SCALE)

pointer[63:0] = mu;[n]

tmp = DownConvStore;ss (UNDEF [i+31:i], SSS[2:0])
if (DownConvStoreSizelf;32(SSS[2:0]) == 4) {

MemStore(pointer) = tmp[31:0]
} else if (DownConvStoreSizeOf;35(SSS[2:0]) ==
MemStore (pointer) = tmp[15:0]
} else if (DownConvStoreSizeOf;35(SSS[2:0]) ==
MemStore (pointer)
}
ki[n] =0
}
}
Flags Affected
None.

Memory Down-conversion: D;s,

2) {

DA

S9515p || Function: Usage disp8*N
000 no conversion zmm1 4

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 uint32 to uint8 zmm1 {uint8} 1

101 sint32 to sint8 zmm1 {sint8} 1

110 uint32 to uint16 zmm1 {uint16} 2

111 sint32 to sint16 zmm1 {sint16} 2

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mmb512_i32scatter_epi32 (void*, _mb512i, _m512i, int);

void _mmb512_mask_i32scatter_epi32 (void*, _mmask16, _mb512i, _m512i, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Reference Number: 327364-001

531

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form, and corresponding write-mask bit is not zero.
#GP(0) If a memory address is in a non-canonical form,

and corresponding write-mask bit is not zero.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the DownConv
mode, and corresponding write-mask bit is not zero.
#PF (fault-code) If a memory operand linear address produces a page fault
and corresponding write-mask bit is not zero.
#NM If CRO.TS[bit 3]=1.
If preceded by any REX, FO, F2, F3, or 66 prefixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.
If no write mask is provided or selected write-mask is kO.

532 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSCATTERDQ - Scatter Int64 Vector With Signed Dword Indices

Opcode Instruction Description
MVEX.512.66.0F38.W1 A0 vpscatterdq muy {k1}, Scatter int64 vector D;s4(zmm1l) to vector
/1 /vsib Djgs(zmm1) memory locations mwv; using doubleword in-

dices and k1 as completion mask.

Description

Down-converts and stores all 8 elements in int64 vector UNDEF to the memory locations
pointed by base address BASE_ADDR and doubleword index vector VINDFE X, with
scale SCALE.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT_SUBSET). There are only
two guarantees about the function: (a) the destination mask is a subset of the source mask
(identity is included), and (b) on a given invocation of the instruction, atleast one element
(the least significant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
gather/scatter sequence have been loaded/stored and hence, the write-mask bits all are
Zero).

Writes to overlapping destination memory locations are guaranteed to be ordered with
respect to each other (from LSB to MSB of the source registers). Only writes to overlapping
vector indices are guaranteed to be ordered with respect to each other (from LSB to MSB
of the source registers). Writes that are not overlapped may happen in any order. Memory
ordering with other instructions follows the Intel-64 memory ordering model. Note that
this does not account for non-overlapping indices that map into the same physical address
locations.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully stored.

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET (k1)

// Use muv; as vector memory operand (VSIB)
for (n = 0; n < 8; n++) {

Reference Number: 327364-001

533

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
D

if (ktemp[n] !'= 0) {
i = 64*n
j = 32%n
// muv;[n] = BASE_ADDR + SignExtend (VINDEX[j+31:j] * SCALE)
pointer[63:0] = muvy[n]
tmp = DownConvStore;ss (UNDEF[i+63:1i], SSS[2:0])
if (DownConvStoreSizelf;qq (SSS[2:0]) == 8) {
MemStore (pointer) = tmp[63:0]
}
ki[n] =0
}
}
k1[15:8] = 0

Flags Affected

None.

Memory Down-conversion: D;s4

S25150 || Function: Usage disp8*N
000 no conversion zmm1 8

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mmb512_i32loscatter_epi64 (void*, _m512i, _m512i, int);
void _mmb512_mask_i32loscatter_epi64 (void*, __mmask8, _m512i, _mb512i, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

534 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form, and corresponding write-mask bit is not zero.
#GP(0) If a memory address is in a non-canonical form,

and corresponding write-mask bit is not zero.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the DownConv
mode, and corresponding write-mask bit is not zero.
#PF (fault-code) If a memory operand linear address produces a page fault
and corresponding write-mask bit is not zero.
#NM If CRO.TS[bit 3]=1.
If preceded by any REX, FO, F2, F3, or 66 prefixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.
If no write mask is provided or selected write-mask is kO.

Reference Number: 327364-001 535

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSHUFD - Shuffle Vector Doublewords

Opcode Instruction Description

MVEX.512.66.0EWO0 70 /rib vpshufd zmm1 {k1}, zmm2/m;, imm8 Dword shuffle int32 vector
zmm2/m; and store the result
in zmm1, using imm8 , under
write-mask.

Description

Shuftles 32 bit blocks of the vector read from memory or vector zmm2/mem using index
bits in immediate. The result of the shuffle is written into vector zmm1.

No swizzle, broadcast, or conversion is performed by this instruction.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Immediate Format

| imm8 | 32bitlevel permutationvector{dcba} | Iy Is [I; L |z L [L I

Operation

src[511:0] = zmm2/m;

// Intra-lane shuffle
for (n = 0; n < 16; n++) {
if (k1[n] !'= 0) {

i = 32*n
// offset within 128-bit chunk
j = 32*%((perm32 >> 2x(n & 0x3)) & 0x3)
// 128-bit level offset
j =3+ 128«x(n >> 2)
zmml [i+31:i] = src[j+31:j]

536 Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_shuffle_epi32 (_m512i, _MM_PERM_ENUM);
_m512i _mmb512_mask_shuffle_epi32 (_mb512i, __mmask16, _mb512j,
_MM_PERM_ENUM);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

This instruction does not support any

SwizzUpConv different from the default value (no broadcast,
no conversion). If SwizzUpConv function is set to any value
different than "no action", then an Invalid Opcode fault is
raised. This includes register swizzles.

Reference Number: 327364-001 537

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSLLD - Shift Int32 Vector Immediate Left Logical

Opcode Instruction Description
MVEX.NDD.512.66.0EW0 vpslld zmml {k1}, Shiftleftint32 vector S;32(zmm2/m;) and store
72 /61ib Sise(zmm2/m;), imm8 the result in zmm1, using ¢mmS8, under write-
mask.
Description

Performs an element-by-elementlogical left shift of the result of the swizzle /broadcast/conversion
process on memory or vector int32 zmm2, shifting by the number of bits specified in im-
mediate field. The result is stored in int32 vector zmm1.

If the value specified by the shift operand is greater than 31 then the destination operand
is set to all Os.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc2([511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoad,3o (zmm2/m;)

}

for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {
i = 32*n
// integer operation
zmml [i+31:i] = tmpSrc2[i+31:i] << IMM8[7:0]
}
}

Flags Affected

None.

538 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6.

INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S;s,

595150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;;,

MVEX.EH=0

555150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb512i
_mb512i

Exceptions

_mmb512_slli_epi32 (_m512i, unsigned int);
_mmb512_mask_slli_epi32 (_m512i, _mmask16, _mb512i, unsigned int);

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode

Reference Number: 327364-

Instruction not available in these modes

001

539

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

540 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSLLVD - Shift Int32 Vector Left Logical

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W0 vpsllvd zmm1 {k1}, zmm2, Shift left int32 vector zmm2 and int32 vector

47 /v Sise(zmm3/m;) Sis2(zmm3/m,) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element left shift of int32 vector zmm?2, shifting by the number
of bits specified by the int32 vector result of the swizzle /broadcast/conversion process
on memory or vector int32 zmm3. The result is stored in int32 vector zmm1.

If the value specified by the shift operand is greater than 31 then the destination operand
is set to all Os.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad;3o (zmm3/my)

}

for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {
i = 32*n
// signed integer operation
zmml [i+31:i] = zmm2[i+31:1i] << tmpSrc3[i+31:i]
}
}

Flags Affected

None.

Reference Number: 327364-001 541

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S;s,

595150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;;,

MVEX.EH=0

555150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_sllv_epi32 (_mb512i, _m512i);
_m512i _mmb512_mask_ sllv_epi32 (_m512i, _mmask16, _m512i,_m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

542 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#55(0)

#GP(0)

#PF(fault-code)
#NM

Reference Number: 327364-001

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

543

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSRAD - Shift Int32 Vector Immediate Right Arithmetic

Opcode Instruction Description

MVEX.NDD.512.66.0EW0 vpsrad zmm1 {k1}, Shift right arithmetic int32 vector

72 /4ib Siz2(zmm2/my), immS Si32(zmm2/m;) and store the result in zmm1,
using immg8, under write-mask.

Description

Performs an element-by-element arithmetic right shift of the result of the swizzle /broadcast/conversion
process on memory or vector int32 zmm2, shifting by the number of bits specified in im-
mediate field. The result is stored in int32 vector zmm1.

An arithmetic right shift leaves the sign bit unchanged after each shift count, so the final
result has the i+1 msbs set to the original sign bit, where i is the number of bits by which
to shift right.

If the value specified by the shift operand is greater than 31 each destination data element
is filled with the initial value of the sign bit of the element.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2([511:0] = SwizzUpConvLoad,3o (zmm2/m;)

}

for (n = 0; n < 16; n++) {
if(k1i[n] !'= 0) {
i = 32%n
// signed integer operation
zmml [i+31:i] = tmpSrc2[i+31:i] >> IMM8[7:0]
}
}

Flags Affected

None.

544 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6.

INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S;s,

595150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;;,

MVEX.EH=0

555150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb512i
_mb512i

Exceptions

_mmb512_srai_epi32 (_m512i, unsigned int);
_mmb512_mask_srai_epi32 (_m512i, _mmask16, _m512i, unsigned int);

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode

Reference Number: 327364-

Instruction not available in these modes

001

545

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

546 Reference Number: 327364-001

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSRAVD - Shift Int32 Vector Right Arithmetic

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W0 vpsravd zmm1l {k1}, zmm2, Shift right arithmetic int32 vector zmm2 and

46 /r Sige(zmm3/m,) int32 vector S;32(zmm3/m,) and store the re-
sult in zmm1, under write-mask.

Description

Performs an element-by-element arithmetic right shift of int32 vector zmm2, shifting by
the number of bits specified by the int32 vector result of the swizzle /broadcast/conversion
process on memory or vector int32 zmma3. The result is stored in int32 vector zmm1.

An arithmetic right shift leaves the sign bit unchanged after each shift count, so the final
result has the i+1 msbs set to the original sign bit, where i is the number of bits by which
to shift right.

If the value specified by the shift operand is greater than 31 each destination data element
is filled with the initial value of the sign bit of the element.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad,3o (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if(k1i[n] !'= 0) {
i = 32%n
// signed integer operation
zmml [i+31:i] = zmm2[i+31:i] >> tmpSrc3[i+31:i]
}
}

Flags Affected

None.

Reference Number: 327364-001 547

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

Memory Up-conversion: S;s,

595150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;;,

MVEX.EH=0

555150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_srav_epi32 (_m512i, _m512i);
_m512i _mmb512_mask_srav_epi32 (_m512i, _mmask16, _m512i, _mb512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

548 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#55(0)

#GP(0)

#PF(fault-code)
#NM

Reference Number: 327364-001

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

549

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSRLD - Shift Int32 Vector Inmediate Right Logical

550

Opcode Instruction Description
MVEX.NDD.512.66.0EW0 vpsrld zmm1 {k1}, Shift right logical int32 vector S;32(zmm2/m;)
72 /2 ib Size(zmm2/m;), imm8 and store the result in zmm1, using immS, un-

der write-mask.

Description

Performs an element-by-elementlogical right shift of the result of the swizzle /broadcast/conversion
process on memory or vector int32 zmm?2, shifting by the number of bits specified in im-
mediate field. The result is stored in int32 vector zmm1.

A logical right shift shifts a 0-bit into the msb for each shift count, so the final result has
the ¢ msbs set to 0, where 7 is the number of bits by which to shift right.

If the value specified by the shift operand is greater than 31 then the destination operand
is set to all Os.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoad;3o (zmm2/m;)

}

for (n = 0; n < 16; n++) {
if(kifn] t=0) {
i = 32*n
// signed integer operation
zmml [i+31:i] = tmpSrc2[i+31:i] >> IMM8[7:0]
}
}

Flags Affected

None.

Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6.

INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S;s,

595150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;;,

MVEX.EH=0

555150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb512i
_mb512i

Exceptions

_mmb512_srli_epi32 (_mb512i, unsigned int);
_mmb512_mask_srli_epi32 (_m512i, _mmask16, _m512i, unsigned int);

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode

Reference Number: 327364-

Instruction not available in these modes

001

551

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

552 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSRLVD - Shift Int32 Vector Right Logical

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W0 vpsrlvd zmm1l {k1}, zmm2, Shiftrightlogical int32 vector zmmz2 and int32

45 /r Size(zmm3/m;) vector S;32(zmm3/m,) and store the result in
zmm1, under write-mask.

Description

Performs an element-by-element logical right shift of int32 vector zmm?2, shifting by the
number of bits specified by the int32 vector result of the swizzle /broadcast/conversion
process on memory or vector int32 zmm3. The result is stored in int32 vector zmm1.

A logical right shift shifts a 0-bit into the msb for each shift count, so the final result has
the ¢ msbs set to 0, where 7 is the number of bits by which to shift right.

If the value specified by the shift operand is greater than 31 then the destination operand
is set to all Os.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad;3o (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if(kifn] t=0) {
i = 32*n
// signed integer operation
zmml [i+31:i] = zmm2[i+31:i] >> tmpSrc3[i+31:i]
}
}

Flags Affected

None.

Reference Number: 327364-001 553

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S;s,

595150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;;,

MVEX.EH=0

555150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_srlv_epi32 (_m512i, _mb512i);
_m512i _mmb512_mask_ srlv_epi32 (_mb512i, _mmask16, _m512i,_m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

554 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#55(0)

#GP(0)

#PF(fault-code)
#NM

Reference Number: 327364-001

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

555

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel“

VPSUBD - Subtract Int32 Vectors

556

Opcode Instruction Description

MVEX.NDS.512.66.0EW0 vpsubd zmm1l {k1}, zmm2, Subtract int32 vector S;32(zmm3/m;) from
int32 vector zmm2 and store the result in

FA /r Siz2(zmm3/my)
zmm1, under write-mask.

Description

Performs an element-by-element subtraction from int32 vector zmm2 of the int32 vector
result of the swizzle/broadcast/conversion process on memory or int32 vector zmma3.
The result is written into int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad;3o (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {
i = 32*n
// integer operation
zmml [i+31:i] = zmm2[i+31:i] - tmpSrc3[i+31:i]
}
}

Flags Affected

None.

Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6.

INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S;s,

595150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;;,

MVEX.EH=0

555150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mb512i
_mb512i

Exceptions

Real-Address Mode and Virtual-8086

#UD

Protected and Compatibility Mode

#UD

64 bit Mode

Reference Number: 327364-001

_mmb512_sub_epi32 (_m512i, _m512i);
_mmb512_mask_sub_epi32 (_m512i, _mmask16, _m512i, _m512i);

Instruction not available in these modes

Instruction not available in these modes

557

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

558 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSUBRD - Reverse Subtract Int32 Vectors

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W0 vpsubrd zmm1l {k1}, zmm2, Subtractint32 vector zmmz2 from int32 vector

6C /r Siz2(zmm3/my) Siz2(zmm3/m;) and store the result in zmm1,
under write-mask.

Description

Performs an element-by-element subtraction of int32 vector zmm2 from the int32 vector
result of the swizzle/broadcast/conversion process on memory or int32 vector zmma3.
The result is written into int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad;3o (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {
i = 32*n
// integer operation
zmml [i+31:i] = -zmm2[i+31:i] + tmpSrc3[i+31:i]
}
}

Flags Affected

None.

Reference Number: 327364-001 559

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

Memory Up-conversion: S;s,

595150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;;,

MVEX.EH=0

555150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_subr_epi32 (_mb512i, _m512i);
_m512i _mmb512_mask_subr_epi32 (_m512i, _mmask16, _m512i, _m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

560 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#55(0)

#GP(0)

#PF(fault-code)
#NM

Reference Number: 327364-001

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

561

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSUBRSETBD - Reverse Subtract Int32 Vectors and Set Borrow

562

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 vpsubrsetbd zmm1l {k1}, k2, Subtractint32 vector zmm1 from int32 vector
6F /r Siz2(zmm3/my) Siz2(zmm3/m;) and store the subtraction in

zmm1 and the borrow from the subtraction in
k2, under write-mask.

Description

Performs an element-by-element subtraction of int32 vector zmm1 from the int32 vector
result of the swizzle/broadcast/conversion process on memory or int32 vector zmm3.
The result is written into int32 vector zmm1.

In addition, the borrow from the subtraction for the n-th element is written into the n-th
bit of vector mask k2.

This instruction is write-masked, so only those elements with the corresponding bit setin
vector mask register k1 are computed and stored into zmm1 and k2. Elements in zmm1
and k2 with the corresponding bit clear in k1 retain their previous value.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad,3o (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if(k1[n] '= 0) {
i = 32*%n
// integer operation
k2[n] = Borrow(tmpSrc3[i+31:i] - zmm1[i+31:i])
zmml [1+31:i] = tmpSrc3[i+31:i] - zmm1[i+31:i]

Flags Affected

None.

Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S;s,

525150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;3;

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel” C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_subrsetb_epi32 (_m512i, _m512i, _mmask16*);
_m512i _mmb512_mask_subrsetb_epi32 (_m512i, _mmask16, _mmaskl6, _m512i,
_mmask16*);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001 563

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv
mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.
#UD If processor model does not implement the specific instruction.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

564 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPSUBSETBD - Subtract Int32 Vectors and Set Borrow

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 vpsubsetbd zmm1l {k1}, k2, Subtract int32 vector S;32(zmm3/m;) from
5F /r Siz2(zmm3/my) int32 vector zmm1 and store the subtraction in

zmm1 and the borrow from the subtraction in
k2, under write-mask.

Description

Performs an element-by-element subtraction of the int32 vector result of the swiz-
zle/broadcast/conversion process on memory or int32 vector zmm3 from int32 vector
zmm1. The result is written into int32 vector zmm1.

In addition, the borrow from the subtraction for the n-th element is written into the n-th
bit of vector mask k2.

This instruction is write-masked, so only those elements with the corresponding bit setin
vector mask register k1 are computed and stored into zmm1 and k2. Elements in zmm1
and k2 with the corresponding bit clear in k1 retain their previous value.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad,3o (zmm3/m;)

}

for (n = 0; n < 16; n++) {
if(k1[n] '= 0) {
i = 32*n
// integer operation
k2[n] = Borrow(zmml[i+31:i] - tmpSrc3[i+31:i])
zmml [1+31:1i] = zmm1[i+31:i] - tmpSrc3[i+31:i]

Flags Affected

None.

Reference Number: 327364-001 565

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

Memory Up-conversion: S;s,

525150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;3;

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel” C/C++ Compiler Intrinsic Equivalent

_m512i
_m512i

Exceptions

_mmb512_subsetb_epi32 (_mb512i, _m512i, _mmask16*);

_mmb512_mask_subsetb_epi32 (_mb512i, _mmaskl6, _mmaskl6, _m512i,

_mmask16*);

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

566

Instruction not available in these modes

Reference Number: 327364-001

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode
#SS(0)

#GP(0)

#PF(fault-code)
#NM
#UD

Reference Number: 327364-001

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If processor model does not implement the specific instruction.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

567

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPTESTMD - Logical AND Int32 Vectors and Set Vector Mask

568

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 vptestmd k2 {k1}, zmml, Perform a bitwise AND between int32 vector
27 /r Siz2(zmm?2/m;) zmm1 and int32 vector S;32(zmm2/m;), and

set vector mask k2 to reflect the zero/non-
zero status of each element of the result, under
write-mask.

Description

Performs an element-by-element bitwise AND between int32 vector zmm1 and the int32
vector result of the swizzle/broadcast/conversion process on memory or int32 vector
zmm?2, and uses the result to construct a 16 bit vector mask, with a 0-bit for each element
for which the result of the AND was 0, and a 1-bit where the result of the AND was not
zero. The final result is written into vector mask k2.

The write-mask does not perform the normal write-masking function for this instruction.
While it does enable/disable comparisons, it does not block updating of the destination;
instead, if a write-mask bit is 0, the corresponding destination bit is set to 0. Nonethe-
less, the operation is similar enough so that it makes sense to use the usual write-mask
notation. This mode of operation is desirable because the result will be used directly as a
write-mask, rather than the normal case where the result is used with a separate write-
mask that keeps the masked elements inactive.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc2([511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoad,3o (zmm2/m;)

}
for (n = 0; n < 16; n++) {
k2[n] =0
if(k1[n] '= 0) {
i = 32*n

// signed integer operation
if ((zmm1[i+31:i] & tmpSrc2[i+31:i]) != 0) {
k2[n] =1
}
}
}

Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Flags Affected

None.

Memory Up-conversion: S;s,

55515 || Function: Usage disp8*N
000 no conversion [rax] {16t016} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16

101 sint8 to sint32 [rax] {sint8} 16

110 uint16 to uint32 [rax] {uint16} 32

111 sint16 to sint32 [rax] {sint16} 32

Register Swizzle: S;3,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_mmaskl6 _mmb512_test_epi32_mask (_m512i, _m512i);
_mmaskl6 _mmb512_mask_test_epi32_mask (_mmask16, _m512i, _m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

Reference Number: 327364-001 569

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘1

#UD

64 bit Mode
#SS(0)

#GP(0)

#PF (fault-code)
#NM

570

Instruction not available in these modes

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 prefixes.

Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPXORD - Bitwise XOR Int32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0EW0 vpxord zmml {k1}, zmm2, Perform a bitwise XOR between int32 vector
EF /r Siz2(zmm3/my) zmm2 and int32 vector S;32(zmm3/m;) and
store the result in zmm1, under write-mask.
Description

Performs an element-by-element bitwise XOR between int32 vector zmm2 and the int32
vector result of the swizzle/broadcast/conversion process on memory or int32 vector
zmma3. The result is written into int32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {

tmpSrc3[511:0] = SwizzUpConvLoad;3o (zmm3/m;)

3

for (n = 0; n < 16; n++) {
if(k1[n] '=0) {
i = 32*n
// signed integer operation

zmml [i+31:i] = zmm2[i+31:1i] ~ tmpSrc3[i+31:i]

}
}

Flags Affected

None.

Reference Number: 327364-001

571

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: S;s,

595150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 reserved N/A N/A
100 uint8 to uint32 [rax] {uint8} 16
101 sint8 to sint32 [rax] {sint8} 16
110 uint16 to uint32 [rax] {uint16} 32
111 sint16 to sint32 [rax] {sint16} 32
Register Swizzle: S;;,

MVEX.EH=0

555150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_xor_epi32 (_m512i, _mb512i);
_m512i _mmb512_mask xor_epi32 (_mb512i, _mmask16,__m512i, _m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

572 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#55(0)

#GP(0)

#PF(fault-code)
#NM

Reference Number: 327364-001

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

573

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VPXORQ - Bitwise XOR Int64 Vectors

574

Opcode Instruction Description
MVEX.NDS.512.66.0EW1 vpxorq zmml {kl1}, zmm2, Perform a bitwise XOR between int64 vector
EF /r Siea(zmm3/m) zmm?2 and int64 vector S;g4(zmm3/m;) and

store the result in zmm1, under write-mask.

Description

Performs an element-by-element bitwise XOR between int64 vector zmm2 and the int64
vector result of the swizzle/broadcast/conversion process on memory or int64 vector
zmma3. The result is written into int64 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
tmpSrc3[511:0] = zmm3[511:0]

} else {
tmpSrc3[511:0] = SwizzUpConvLoad,gq (zmm3/m;)

}

for (n = 0; n < 8; n++) {
if (k1[n] '=0) {
i = 64*n
zmml [i+63:1i] = zmm2[i+63:1] ~ tmpSrc3[i+63:i]
}
}

Flags Affected

None.

Reference Number: 327364-001

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

Memory Up-conversion: S,

595150 || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: S,

MVEX.EH=0

555150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512i _mmb512_xor_epi64 (_m512i, _mb512i);
_m512i _mmb512_mask xor_epi64 (_mb512i, _mmask8, _m512i, _m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

Reference Number: 327364-001 575

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

576 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VRCP23PS - Reciprocal of Float32 Vector

/r

Opcode Instruction
MVEX.512.66.0F38.W0 CA vrcp23pszmml {k1}, zmm2/m; Compute the approximate reciprocals float32

Description

vector zmmz2/m; and store the result in zmm1,
under write-mask.

Description

Computes the element-by-element reciprocal approximation of the float32 vector on
memory or float32 vector zmm2 with 0.912ULP (relative error). The result is written

into float32 vector zmm1.

If any source element is NaN, the quietized NaN source value is returned for that element.
If any source element is +oc, 0.0 is returned for that element. Also, if any source element
is 0.0, =00 is returned for that element.

Current implementation of this instruction does not support any SwizzUpConv setting
other than "no broadcast and no conversion"; any other SwizzUpConv setting will result

in an Invalid Opcode exception.

recip_lulp() function follows Table 6.26 when dealing with floating-point special number.

Input

Result

Comment

NaN
+00
+0
-0
—00
2’ﬂ

input qNaN
+0

+0oo

—00

—0

277’7,

raise #I flag if sNaN

raise #Z flag
raise #Z flag

exact result

Table 6.26: recip_lulp() special floating-point values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

tmpSrc2[511:0] = zmm2/my

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags()

}

for (n = 0; n < 16; n++) {

Reference Number: 327364-001

// SAE

577

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

if (ki[n] !'= 0) {
i = 32*n
zmml [i+31:i] = recip_lulp(tmpSrc2[i+31:1i])
}
}

SIMD Floating-Point Exceptions

Invalid, Zero.

Denormal Handling

Treat Input Denormals As Zeros :
YES

Flush Tiny Results To Zero :
YES

Register Swizzle

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage
000 no swizzle zmmO or zmmO {dcba}
001 reserved N/A
010 reserved N/A
011 reserved N/A
100 reserved N/A
101 reserved N/A
110 reserved N/A
111 reserved N/A
MVEX.EH=1

59515y || Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_rcp23_ps (_m512);
_m512 _mmb512_mask_rcp23_ps (_m512, _mmask16, _m512);

578 Reference Number: 327364-001

(intel‘

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode
#SS(0)
#GP(0)

#PF (fault-code)
#NM

Reference Number: 327364-001

Instruction not available in these modes

If a memory address referencing the SS segment is

in a non-canonical form.

If the memory address is in a non-canonical form.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

This instruction does not support any

SwizzUpConv different from the default value (no broadcast,
no conversion). If SwizzUpConv function is set to any value
different than "no action”, then an Invalid Opcode fault is
raised. This includes register swizzles.

579

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VRNDFXPNTPD - Round Float64 Vector

Opcode Instruction Description

MVEX.512.66.0F3AW152 /rib vrndfxpntpd zmm1 {k1}, Sfe4(zmm2/m;), imm8 Round float64 vector
Sr64(zmm2/m;) and
store the result in
zmml, using imms8,
under write-mask.

Description

Performs an element-by-element rounding of the result of the swizzle /broadcast/conversion
from memory or float64 vector zmm?2. The rounding result for each element is a float64
containing an integer or fixed-point value, depending on the value of expadj; the direction

of rounding depends on the value of RC. The result is written into float64 vector zmm1.

This instruction doesn't actually convert the result to an int64; the results are float64s,
just like the input, but are float64s containing the integer or fixed-point values that result
from the specified rounding and scaling.

RoundTolnt() function follows Table 6.27 when dealing with floating-point special num-
ber.

Input | Result
NaN | quietized input NaN

“+00 “+00
+0 +0
-0 -0
—00 —00

Table 6.27: RoundTolnt() special floating-point values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

580 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Immediate Format

Rounding Mode

rn | Round to Nearest (even)

rd | Round Down (Round toward Negative Infinity)
ru | Round Up (Round toward Positive Infinity)

rz | Round toward Zero

~
iy

Rl oo
= ol | oS

Exponent Adjustment | value I; Is Iy 14
0 20 (64.0 - no exponentadjustment) [0 0 0 0
4 2% (60.4) 0 0 0 1
5 2° (59.5) 0 0 1 o0
8 28 (56.8) 0 0 1 1
16 216 (48.16) 0 1 0 O
24 221 (40.24) 0 1 0 1
31 231 (33.31) 0 1 1 o0
32 232 (32.32) 0o 1 1 1
reserved *must UD* 1 x x X
Operation

RoundingMode = IMM8[1:0]
expadj = IMM8[6:4]

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoad fe4 (zZmm2/m;)

}

for (n = 0; n < 8; n++t) {
if (k1[n] '= 0) {
i = 64*n
// float64 operation
zmml [i+63:1] =
RoundToInt (tmpSrc2[i+63:i] * EXPADJ_TABLE[expadj]l, RoundingMode) /
EXPADJ_TABLE [expadj]

SIMD Floating-Point Exceptions

Invalid, Precision.

Reference Number: 327364-001 581

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
NO

Memory Up-conversion: Sy,

595150 || Function: Usage disp8*N
000 no conversion [rax] {8to8} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Sy,

MVEX.EH=0
595150 || Function: 4 x 64 bits Usage
000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1
52515y || Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_roundfxpnt_adjust_pd (_m512d, int, _MM_EXP_AD]_ENUM);
_m512d _mmb512_mask roundfxpnt_adjust_pd (_m512d, _mmask8, _m512d, int ,
_MM_EXP_ADJ_ENUM);

582 Reference Number: 327364-001

(intel‘

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode
#SS(0)

#GP(0)

#PF(fault-code)
#NM
#UD

Reference Number: 327364-001

Instruction not available in these modes

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If processor model does not implement the specific instruction.

If preceded by any REX, F0, F2, F3, or 66 prefixes.

583

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel‘

VRNDFXPNTPS - Round Float32

Vector

Opcode Instruction
MVEX.512.66.0F3A.W0 52 /rib vrndfxpntps zmm1 {k1}, Sf32(zmm2/m;),imm8 Round float32 vector

Description

S¢s2(zmm2/m;) and
store the result in
zmm1l, using tmms§,
under write-mask.

Description

Performs an element-by-element rounding of the result of the swizzle /broadcast/conversion
from memory or float32 vector zmm?2. The rounding result for each element is a float32
containing an integer or fixed-point value, depending on the value of expadj; the direction

of rounding depends on the value of RC. The result is written into float32 vector zmm1.

This instruction doesn't actually convert the result to an int32; the results are float32s,
just like the input, but are float32s containing the integer or fixed-point values that result
from the specified rounding and scaling.

RoundTolnt() function follows Table 6.28 when dealing with floating-point special num-

ber.

This instruction treats input denormals as zeros according to the DAZ control bit, but does

not flush tiny results to zero.

Input

Result

NaN
+00
+0
-0
—00

quietized input NaN
+0o0o

+0

-0

—00

Table 6.28: RoundTolnt() special floating-point values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with

the corresponding bit clear in k1 retain their previous values.

Immediate Format

Rounding Mode L Iy
rn | Round to Nearest (even) 0 0
rd | Round Down (Round toward Negative Infinity) | 0 1
ru | Round Up (Round toward Positive Infinity) 1 0
rz | Round toward Zero 1 1

584

Reference Number: 327364-001

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exponent Adjustment | value I; Is Is 14
0 20 (32.0 - no exponentadjustment) [0 0 0 O
4 2% (28.4) 0 0 0 1
5 2% (27.5) 0 0 1 o0
8 28 (24.8) 0 0 1 1
16 216 (16.16) 0 1 0 O
24 221 (8.24) 0 1 0 1
31 231 (1.31) 0 1 1 o0
32 232(0.32) 0 1 1 1
reserved *must UD* 1 X X X
Operation

RoundingMode = IMM8[1:0]
expadj = IMM8[6:4]

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
tmpSrc2[511:0] = zmm2[511:0]

} else {
tmpSrc2[511:0] = SwizzUpConvLoad ¢zs (zmm2/m;)

}

for (n = 0; n < 16; n++) {
if(kt[n] '=0) {
i = 32*n
// float32 operation
zmml [i+31:1] =
RoundToInt (tmpSrc2[i+31:i] * EXPADJ_TABLE[expadj]l, RoundingMode) /
EXPADJ_TABLE [expadj]

SIMD Floating-Point Exceptions

Invalid, Precision.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
NO

Reference Number: 327364-001 585

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘L

Memory Up-conversion: S¢;,

S951S5p || Function: Usage disp8*N
000 no conversion [rax] {16t016} or [rax] 64
001 broadcast 1 element (x16) | [rax] {1to16} 4
010 broadcast 4 elements (x4) | [rax] {4to16} 16
011 float16 to float32 [rax] {float16} 32
100 uint8 to float32 [rax] {uint8} 16
110 uint16 to float32 [rax] {uint16} 32
111 sint16 to float32 [rax] {sint16} 32
Register Swizzle: S¢s,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}

010 swap with two-away zmmO {badc}

011 cross-product swizzle zmmO {dacb}

100 broadcast a element zmmO {aaaa}

101 broadcast b element zmmO {bbbb}

110 broadcast c element zmmO {cccc}

111 broadcast d element zmmO {dddd}
MVEX.EH=1

525150 || Rounding Mode Override Usage

1xx SAE (Supress-All-Exceptions) , {sae}

Intel” C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_roundfxpnt_adjust_ps (_m512, int, MM_EXP_AD]_ENUM);
_m512 _mmb512_mask_roundfxpnt_adjust_ps (_m512, _mmaskl6, _m512, int ,
_MM_EXP_AD]_ENUM);
Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

586 Reference Number: 327364-001

5
~r
(‘l

CHAPTER 6. INSTRUCTION DESCRIPTIONS

64 bit Mode
#SS(0)

#GP(0)

#PF(fault-code)
#NM
#UD

Reference Number: 327364-001

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If processor model does not implement the specific instruction.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

587

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel‘

VRSQRT23PS - Vector Reciprocal Square Root of Float32 Vector

588

Opcode Instruction Description

MVEX.512.66.0F38.W0 CB vrsqrt23ps zmm1 {k1},zmm2/m; Reciprocal square root

/r

float32

vector

zmm2/m; and store the result in zmml,

under write-mask.

Description

Computes the element-by-element reciprocal square root of the float32 vector on memory
or float32 vector zmm2 with a precision of 0.775ULP (relative error). The result is written
into float32 vector zmm1.

If any source element is NaN, the quietized NaN source value is returned for that element.
Negative source numbers, as well as —oo, return the canonical NaN and set the Invalid
Flag (#1).

Current implementation of this instruction does not support any SwizzUpConv setting
other than "no broadcast and no conversion"; any other SwizzUpConv setting will result
in an Invalid Opcode exception.

rsqrt_lulp() function follows Table 6.29 when dealing with floating-point special number.

For an input value of +/ — 0 the instruction returns —oo and sets the Divide-By-Zero flag
(#Z). Negative numbers should return NaN and set the Invalid flag (#1). Note however that
this instruction treats input denormals as zeros of the same sign, so for denormal negative
inputs it returns —oco and sets the Divide-By-Zero status flag.

Input | Result Comments

NaN | inputgNaN | Raise #I flag if sNaN
+00 +0

+0 +o00 Raise #Z flag

-0 —00 Raise #Z flag

<0 NaN Raise #I flag

—00 NaN Raise #I flag

22n 27" exact result

Table 6.29: rsqrt_1lulp() special floating-point values behavior

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Operation

tmpSrc2[511:0] = zmm2/my

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
}
for (n = 0; n < 16; n++) {
if (ki[n] !'= 0) {
i = 32*n
zmml [1+31:i] = rsqrt_lulp(tmpSrc2[i+31:i])

}
}

SIMD Floating-Point Exceptions

Invalid, Zero.

Denormal Handling

Treat Input Denormals As Zeros :
YES

Flush Tiny Results To Zero :
YES

Register Swizzle

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage
000 no swizzle zmmO or zmmO {dcba}
001 reserved N/A
010 reserved N/A
011 reserved N/A
100 reserved N/A
101 reserved N/A
110 reserved N/A
111 reserved N/A
MVEX.EH=1

595150 || Rounding Mode Override Usage
1xx SAE (Supress-All-Exceptions) , {sae}

Reference Number: 327364-001 589

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _ICL_INTRINCC _.mm512_rsqrt23_ps (_m512);
_m512 _ICL_INTRINCC -mmb512_mask_rsqrt23_ps (_m512, _mmask16, _m512);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, F0, F2, F3, or 66 prefixes.

This instruction does not support any

SwizzUpConv different from the default value (no broadcast,
no conversion). If SwizzUpConv function is set to any value
different than "no action”, then an Invalid Opcode fault is
raised. This includes register swizzles.

590 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VSCALEPS - Scale Float32 Vectors

Opcode Instruction Description

MVEX.NDS.512.66.0F38.W0 vscaleps zmm1l {k1}, zmm2, Multiplyfloat32 vectorzmm?2 by 2 raised to the

84 /r Siz2(zmm3/m;) int32 vector S;32(zmm3/m;) and store the re-
sult in zmm1, under write-mask.

Description

Performs an element-by-element scale of float32 vector zmm2 by multiplying it by 277,
where exp is the vector int32 result of the swizzle/broadcast/conversion process on
memory or vector int32 zmma3. The result is written into vector float32 zmm1.

This instruction is needed for scaling u and v coordinates according to the mipmap size,
which is 2mipmar_tevel and for the evaluation of Exp2.

Cases where the exponent would go out of range are handled as if multiplication (via
vmulps) of zmm2 by 223 had been performed.

If the result cannot be represented with a float32, then the properly signed oo (for positive
scaling operand) or 0 (for negative scaling operand) will be returned.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {
if (SSS[2]==1) Supress_Exception_Flags() // SAE
RoundingMode = SSS[1:0]
tmpSrc3[511:0] = zmm3[511:0]

} else {
RoundingMode

= MXCSR.RC
tmpSrc3[511:0] =

SwizzUpConvLoadI (zmm3/m;)
}

for (n = 0; n < 16; n++) {
if (x1[n] !'= 0) {
i = 32*n
exp[31:0] = tmpSrc3[i+31:i]
// signed int scale operation. float32 multiplication
zmm1[i+31:1i] = zmm2[i+31:i] * 2¢2P3L:0]

Reference Number: 327364-001 591

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
D

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: S;s,

525150

Function:

Usage

disp8*N

000
001
010
011
100
101
110
111

no conversion

broadcast 1 element (x16)
broadcast 4 elements (x4)
reserved

uint8 to uint32

sint8 to sint32

uint16 to uint32

sint16 to sint32

[rax] {16t016} or [rax]
[rax] {1to16}

[rax] {4to16}

N/A

[rax] {uint8}

[rax] {sint8}

[rax] {uint16}

[rax] {sint16}

64

16
N/A
16
16
32
32

592

Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Register Swizzle: S;3,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

59515y || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero , {rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_scale_ps (_m512, _mb512i);
_m512 _mmb512_mask_scale_ps (_m512, _mmask16, _m512, _m512i);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is

in a non-canonical form.

Reference Number: 327364-001 593

5
D

CHAPTER 6. INSTRUCTION DESCRIPTIONS

#GP(0) If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

594 Reference Number: 327364-001

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VSCATTERDPD - Scatter Float64 Vector With Signed Dword Indices

Opcode Instruction Description
MVEX.512.66.0F38.W1 A2 wvscatterdpd muy {k1}, Scatter float64 vector Dyg4(zmm1l) to vector
/1 /vsib D¢64(zmm1) memory locations mwv; using doubleword in-

dices and k1 as completion mask.

Description

Down-converts and stores all 8 elements in float64 vector zmm1 to the memory locations
pointed by base address BASE_ADDR and doubleword index vector VINDFE X, with
scale SCALE.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT_SUBSET). There are only
two guarantees about the function: (a) the destination mask is a subset of the source mask
(identity is included), and (b) on a given invocation of the instruction, atleast one element
(the least significant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
gather/scatter sequence have been loaded/stored and hence, the write-mask bits all are
Zero).

Writes to overlapping destination memory locations are guaranteed to be ordered with
respect to each other (from LSB to MSB of the source registers). Only writes to overlapping
vector indices are guaranteed to be ordered with respect to each other (from LSB to MSB
of the source registers). Writes that are not overlapped may happen in any order. Memory
ordering with other instructions follows the Intel-64 memory ordering model. Note that
this does not account for non-overlapping indices that map into the same physical address
locations.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully stored.

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET (k1)

// Use muv; as vector memory operand (VSIB)
for (n = 0; n < 8; n++) {

Reference Number: 327364-001

595

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘1

if (ktemp[n] !'= 0) {
i = 64*n
j = 32%n
// muv;[n] = BASE_ADDR + SignExtend (VINDEX[j+31:j] * SCALE)
pointer[63:0] = muvy[n]
tmp = DownConvStorejss (zmml[i+63:i], SSS[2:0])
if (DownConvStoreSize0f r¢4 (SSS[2:0]) == 8) {
MemStore (pointer) = tmp[63:0]
}
ki[n] =0
}
}
k1[15:8] = 0

SIMD Floating-Point Exceptions

None.

Memory Down-conversion: D,

595155y || Function: Usage disp8*N
000 no conversion zmm1 8

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mmb512_i32loextscatter_pd (void*, _mb512i, _mb512d,
_MM_DOWNCONV_PD_ENUM, int, int);

void _mmb512_mask_i32loextscatter_pd (void*, _mmask8, _ mb512i, _m512d,
_MM_DOWNCONV_PD_ENUW, int, int);

void _mmb512_i32loscatter_pd (void*, _m512i, _m512d, int);

void _mmb512_mask_i32loscatter_pd (void*, _mmask8, _m512i, _mb512d, int);

596 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form, and corresponding write-mask bit is not zero.
#GP(0) If a memory address is in a non-canonical form,

and corresponding write-mask bit is not zero.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the DownConv
mode, and corresponding write-mask bit is not zero.
#PF(fault-code) If a memory operand linear address produces a page fault
and corresponding write-mask bit is not zero.
#NM If CRO.TS[bit 3]=1.
If preceded by any REX, FO, F2, F3, or 66 prefixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.
If no write mask is provided or selected write-mask is kO.

Reference Number: 327364-001 597

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VSCATTERDPS - Scatter Float32 Vector With Signed Dword Indices

598

Opcode Instruction Description

MVEX.512.66.0F38.W0 A2 vscatterdps muy {k1}, Scatter float32 vector Dy3z(zmm1) to vector

/1 /vsib D¢35(zmm1) memory locations mwv; using doubleword in-
dices and k1 as completion mask.

Description

Down-converts and stores all 16 elements in float32 vector zmm1 to the memory loca-
tions pointed by base address BASE_AD DR and doubleword index vector VINDEX,
with scale SCALE.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT_SUBSET). There are only
two guarantees about the function: (a) the destination mask is a subset of the source mask
(identity is included), and (b) on a given invocation of the instruction, atleast one element
(the least significant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
gather/scatter sequence have been loaded/stored and hence, the write-mask bits all are
Zero).

Writes to overlapping destination memory locations are guaranteed to be ordered with
respect to each other (from LSB to MSB of the source registers). Only writes to overlapping
vector indices are guaranteed to be ordered with respect to each other (from LSB to MSB
of the source registers). Writes that are not overlapped may happen in any order. Memory
ordering with other instructions follows the Intel-64 memory ordering model. Note that
this does not account for non-overlapping indices that map into the same physical address
locations.

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully stored.

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET (k1)

// Use muv; as vector memory operand (VSIB)
for (n = 0; n < 16; n++) {

Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

if (ktemp[n] !'= 0) {

i = 32*n

// muvy[n] = BASE_ADDR + SignExtend(VINDEX[i+31:i] * SCALE)

pointer[63:0] = muvy[n]

tmp = DownConvStoreysy (zmmi[i+31:i], SSS[2:0])

if (DownConvStoreSize0f 35 (SSS[2:0]) == 4) {
MemStore(pointer) = tmp[31:0]

} else if (DownConvStoreSizeOf s32(SSS[2:0]) == 2) {
MemStore (pointer) = tmp[15:0]

} else if (DownConvStoreSizeOf s32(SSS[2:0]) == 1) {
MemStore(pointer) = tmp[7:0]

}

ki[n] =0

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Memory Down-conversion: D s,

59515y || Function: Usage disp8*N
000 no conversion zmm1 4

001 reserved N/A N/A
010 reserved N/A N/A
011 float32 to float16 zmm1 {float16} 2

100 float32 to uint8 zmm1 {uint8} 1

101 float32 to sint8 zmm1 {sint8} 1

110 float32 to uint16 zmm1 {uint16} 2

111 float32 to sint16 zmm1 {sint16} 2

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mmb512_i32extscatter_ps (void*, _mb512i, _mb12,
_MM_DOWNCONV_PS_ENUM, int, int);

void _mmb512_mask_i32extscatter_ps (void*, _mmaskl6, _m512i, _m512,
_MM_DOWNCONV_PS_ENUM, int, int);

void _mmb512_i32scatter_ps (void*, _m512i, _mb512, int);

void _mmb512_mask_i32scatter_ps (void*, _mmask16, _m512i, _m512, int);

Reference Number: 327364-001 599

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form, and corresponding write-mask bit is not zero.
#GP(0) If a memory address is in a non-canonical form,

and corresponding write-mask bit is not zero.
If a memory operand linear address is not aligned
to element-wise data granularity dictated by the DownConv
mode, and corresponding write-mask bit is not zero.
#PF(fault-code) If a memory operand linear address produces a page fault
and corresponding write-mask bit is not zero.
#NM If CRO.TS[bit 3]=1.
If preceded by any REX, FO, F2, F3, or 66 prefixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.
If no write mask is provided or selected write-mask is kO.

600 Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VSCATTERPFODPS - Scatter Prefetch Float32 Vector With Signed Dword
Indices Into L1

Opcode Instruction Description
MVEX.512.66.0F38.W0 C6 vscatterpfOdps Ugsz(muvy) {k1} Scatter Prefetch float32 vector Uysa(muy), us-
/5 /vsib ing doubleword indices with TO hint, under
write-mask.
Description

Prefetches into the L1 level of cache the memory locations pointed by base address
BASE_ADDR and doubleword index vector VINDEX, with scale SCALE, with re-
quest for ownership (exclusive). Up-conversion operand specifies the granularity used
by compilers to better encode the instruction if a displacement, using disp8*N feature, is
provided when specifying the address. If any memory access causes any type of mem-
ory exception, the memory access will be considered as completed (destination mask up-
dated) and the exception ignored. Up-conversion parameter is optional, and it is used to
correctly encode disp8*N.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT_SUBSET). There are only
two guarantees about the function: (a) the destination mask is a subset of the source mask
(identity is included), and (b) on a given invocation of the instruction, atleast one element
(the least significant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
prefetch sequence have been prefetched and hence, the write-mask bits all are zero).

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after up-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully stored.

Note that both gather and scatter prefetches set the access bit (A) in the related TLB page
entry. Scatter prefetches (which prefetch data with RFO) do not set the dirty bit (D).

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET (k1)

exclusive = 1
evicthintpre = MVEX.EH

Reference Number: 327364-001 601

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

// Use muv; as vector memory operand (VSIB)
for (n = 0; n < 16; n++) {
if (ktemp[n] !'= 0) {
i = 32*n
// mu;[n] = BASE_ADDR + SignExtend(VINDEX[i+31:i] * SCALE)
pointer[63:0] = muvy[n]
FetchLlcachelLine(pointer, exclusive, evicthintpre)
ki[n] =0

SIMD Floating-Point Exceptions

None.

Memory Up-conversion: Uy s,

595150 || Function: Usage disp8*N
000 no conversion [rax] 4

001 reserved N/A N/A
010 reserved N/A N/A
011 float16 to float32 [rax] {float16} 2

100 uint8 to float32 [rax] {uint8} 1

101 sint8 to float32 [rax] {sint8} 1

110 uint16 to float32 [rax] {uint16} 2

111 sint16 to float32 [rax] {sint16} 2

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mmb512_prefetch_i32extscatter_ps (void*, _m512i, _.MM_UPCONV_PS_ENUM,
int, int);

void _mmb512_mask_prefetch_i32extscatter_ps(void*, __mmask16, _mb512i,
_MM_UPCONV_PS_ENUM, int, int);

void _mmb512_prefetch_i32scatter_ps(void*, _m512i, int, int);

void _mmb512_mask_prefetch_i32scatter_ps(void*, _mmask16, _m512i, int, int);

602 Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

If using a 16 bit effective address.

If ModRM.rm is different than 100b.

If no write mask is provided or selected write-mask is kO.

Reference Number: 327364-001 603

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VSCATTERPFOHINTDPD - Scatter Prefetch Float64 Vector Hint With Signed
Dword Indices

Opcode Instruction Description
MVEX.512.66.0F38.W1 C6 vscatterpfOhintdpd Ugsa(mvy) Scatter Prefetch float64 vector Ujes(muvy), us-
/4 /vsib {k1} ing doubleword indices with TO hint, under
write-mask.
Description

The instruction specifies a set of 8 float64 memory locations pointed by base address
BASE_ADDR and doubleword index vector VIN DE X with scale SCALF as a perfor-
mance hint that a real scatter instruction with the same set of sources will be invoked. A
programmer may execute this instruction before a real scatter instruction to improve its
performance.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresses without causing problems or memory related faults. This instructions does not
modify any kind of architectural state (including the write-mask).

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Operation

// Use muv; as vector memory operand (VSIB)
for (n =0; n < 8; n++) {
if (x1[n] '=0) {
i = 64*n
j = 32¥n
// muv,[n] = BASE_ADDR + SignExtend(VINDEX[j+31:j] * SCALE)
pointer[63:0] = muvy[n]
HintPointer (pointer)

SIMD Floating-Point Exceptions

None.

604 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Uy,

59515 || Function: Usage disp8*N
000 no conversion [rax] 8

001 reserved N/A N/A
010 reserved N/A N/A
011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Intel’ C/C++ Compiler Intrinsic Equivalent

None

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode

#NM
#UD

Reference Number: 327364-001

Instruction not available in these modes

If CRO.TS[bit 3]=1.

If processor model does not implement the specific instruction.
If preceded by any REX, FO, F2, F3, or 66 prefixes.

If using a 16 bit effective address.

If ModRM.rm is different than 100b.

If no write mask is provided or selected write-mask is kO.

605

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VSCATTERPFOHINTDPS - Scatter Prefetch Float32 Vector Hint With Signed
Dword Indices

Opcode Instruction Description
MVEX.512.66.0F38.W0 C6 vscatterpfOhintdps Ugsa(muv) Scatter Prefetch float32 vector Uysa(muy), us-
/4 /vsib {k1} ing doubleword indices with TO hint, under
write-mask.
Description

The instruction specifies a set of 16 float32 memory locations pointed by base address
BASFE_ADDR and doubleword index vector VIN DE X with scale SCALFE as a perfor-
mance hint that a real scatter instruction with the same set of sources will be invoked. A
programmer may execute this instruction before a real scatter instruction to improve its
performance.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresses without causing problems or memory related faults. This instructions does not
modify any kind of architectural state (including the write-mask).

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element before up-conversion.

Operation

// Use muv, as vector memory operand (VSIB)
for (n = 0; n < 16; n++) {
if (kt[n] '=0) {
i = 32*%n
// muy[n] = BASE_ADDR + SignExtend(VINDEX[i+31:i] * SCALE)
pointer[63:0] = muvy[n]
HintPointer (pointer)
}
}

SIMD Floating-Point Exceptions

None.

606 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6.

INSTRUCTION DESCRIPTIONS

Memory Up-conversion: Uys,

S95150 || Function: Usage disp8*N
000 no conversion [rax] 4

001 reserved N/A N/A
010 reserved N/A N/A
011 float16 to float32 [rax] {float16} 2

100 uint8 to float32 [rax] {uint8} 1

101 sint8 to float32 [rax] {sint8} 1

110 uint16 to float32 [rax] {uint16} 2

111 sint16 to float32 [rax] {sint16} 2

None

Exceptions

#UD

#UD

64 bit Mode

#NM
#UD

Real-Address Mode and Virtual-8086

Intel’ C/C++ Compiler Intrinsic Equivalent

Instruction not available in these modes

Protected and Compatibility Mode

Instruction not available in these modes

If CRO.TS[bit 3]=1.

If processor model does not implement the specific instruction.

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If using a 16 bit effective address.
If ModRM.rm is different than 100b.

If no write mask is provided or selected write-mask is kO.

Reference Number: 327364-001

607

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

VSCATTERPF1DPS - Scatter Prefetch Float32 Vector With Signed Dword
Indices Into L2

608

Opcode Instruction Description
MVEX.512.66.0F38.W0 C6 vscatterpfldps Ugsz(muvy) {k1} Scatter Prefetch float32 vector Uysa(muy), us-
/6 /vsib ing doubleword indices with T1 hint, under
write-mask.
Description

Prefetches into the L2 level of cache the memory locations pointed by base address
BASE_ADDR and doubleword index vector VINDEX, with scale SCALE, with re-
quest for ownership (exclusive). Down-conversion operand specifies the granularity used
by compilers to better encode the instruction if a displacement, using disp8*N feature, is
provided when specifying the address. If any memory access causes any type of mem-
ory exception, the memory access will be considered as completed (destination mask up-
dated) and the exception ignored. Down-conversion parameter is optional, and it is used
to correctly encode disp8*N.

Note the special mask behavior as only a subset of the active elements of write mask k1
are actually operated on (as denoted by function SELECT_SUBSET). There are only
two guarantees about the function: (a) the destination mask is a subset of the source mask
(identity is included), and (b) on a given invocation of the instruction, atleast one element
(the least significant enabled mask bit) will be selected from the source mask.

Programmers should always enforce the execution of a gather/scatter instruction to be
re-executed (via a loop) until the full completion of the sequence (i.e. all elements of the
prefetch sequence have been prefetched and hence, the write-mask bits all are zero).

This instruction has special disp8*N and alignment rules. N is considered to be the size
of a single vector element after down-conversion.

Note also the special mask behavior as the corresponding bits in write mask k1 are reset
with each destination element being updated according to the subset of write mask k1.
This is useful to allow conditional re-trigger of the instruction until all the elements from
a given write mask have been successfully stored.

Note that both gather and scatter prefetches set the access bit (A) in the related TLB page
entry. Scatter prefetches (which prefetch data with RFO) do not set the dirty bit (D).

Operation

// instruction works over a subset of the write mask
ktemp = SELECT_SUBSET (k1)

exclusive = 1
evicthintpre = MVEX.EH

Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

// Use muv; as vector memory operand (VSIB)
for (n = 0; n < 16; n++) {
if (ktemp[n] !'= 0) {
i = 32*n
// mu;[n] = BASE_ADDR + SignExtend(VINDEX[i+31:i] * SCALE)
pointer[63:0] = muvy[n]
FetchL2cacheline(pointer, exclusive, evicthintpre)
ki[n] =0

SIMD Floating-Point Exceptions

None.

Memory Down-conversion: D s,

595150 || Function: Usage disp8*N
000 no conversion zmm1 4

001 reserved N/A N/A
010 reserved N/A N/A
011 float32 to float16 zmm1 {float16} 2

100 float32 to uint8 zmm1 {uint8} 1

101 float32 to sint8 zmm1 {sint8} 1

110 float32 to uint16 zmm1 {uint16} 2

111 float32 to sint16 zmm1 {sint16} 2

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mmb512_prefetch_i32extscatter_ps (void*, _m512i, _.MM_UPCONV_PS_ENUM,
int, int);

void _mmb512_mask_prefetch_i32extscatter_ps(void*, __mmask16, _mb512i,
_MM_UPCONV_PS_ENUM, int, int);

void _mmb512_prefetch_i32scatter_ps(void*, _m512i, int, int);

void _mmb512_mask_prefetch_i32scatter_ps(void*, _mmask16, _m512i, int, int);

Reference Number: 327364-001 609

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

If using a 16 bit effective address.

If ModRM.rm is different than 100b.

If no write mask is provided or selected write-mask is kO.

610 Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VSUBPD - Subtract Float64 Vectors

Opcode Instruction Description

MVEX.NDS.512.66.0FW1 vsubpd zmml {k1}, zmm2, Subtract float64 vector S¢es(zmm3/m,) from

5C/r Stea(zmm3/m,) float64 vector zmm2 and store the result in
zmm1, under write-mask.

Description

Performs an element-by-element subtraction from float64 vector zmm?2 of the float64
vector result of the swizzle/broadcast/conversion process on memory or float64 vector
zmma3. The result is written into float64 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm?1 with
the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {

if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvload fe4 (zmm3/7m;)
}

for (n = 0; n < 8; n++) {
if(k1[n] !'= 0) {
i = 64*n
// float64 operation
zmml [i+63:i] = zmm2[i+63:1i] - tmpSrc3[i+63:1]
}
}

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Reference Number: 327364-001 611

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: S g,

S951S5p || Function: Usage disp8*N
000 no conversion [rax] {8t08} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Sy,

MVEX.EH=0

595150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

52515 || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero ,{rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

612 Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_sub_pd (_m512d, _mb512d);
_m512d _mmb512_mask_sub_pd (_m512d, _mmask8, _m512d, _m512d);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001 613

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel“

VSUBPS - Subtract Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.0FWO05C/r wvsubps zmml {k1}, zmm2, Subtract float32 vector Sf32(zmm3/m;) from
S¢32(zmm3/my) float32 vector zmm2 and store the result in
zmm1, under write-mask.
Description

Performs an element-by-element subtraction from float32 vector zmm?2 of the float32
vector result of the swizzle/broadcast/conversion process on memory or float32 vector

zmma3. The result is written into float32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm?1 with

the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {

if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvload y3p (zmm3/m;)
}

for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {
i = 32*n
// float32 operation
zmml [i+31:i] = zmm2[i+31:1i] - tmpSrc3[i+31:i]
}
}

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

614

Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: S¢;,

595150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 float16 to float32 [rax] {float16} 32

100 uint8 to float32 [rax] {uint8} 16

110 uint16 to float32 [rax] {uint16} 32

111 sint16 to float32 [rax] {sint16} 32

Register Swizzle: S,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

525150 || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero ,{rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Reference Number: 327364-001 615

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘1

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_sub_ps (_m512,_m512);
_m512 _mmb512_mask_sub_ps (_m512, _mmask16, _m512, _m512);

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode
#SS(0)

#GP(0)

#PF (fault-code)
#NM

616

Instruction not available in these modes

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001

5
~r
(‘1

CHAPTER 6. INSTRUCTION DESCRIPTIONS

VSUBRPD - Reverse Subtract Float64 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W1 vsubrpd zmml {k1}, zmm2, Subtractfloat64 vector zmm?2 from float64 vec-
6D /r Stea(zmm3/m,) tor S¢es(zmm3/m;) and store the result in
zmm1, under write-mask.
Description

Performs an element-by-element subtraction of float64 vector zmm2 from the float64
vector result of the swizzle/broadcast/conversion process on memory or float64 vector

zmma3. The result is written into float64 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm?1 with

the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {

if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvload fe4 (zmm3/7m;)
}

for (n = 0; n < 8; n++) {
if(k1[n] !'= 0) {
i = 64*n
// float64 operation
zmml [i+63:i] = -zmm2[i+63:1i] + tmpSrc3[i+63:i]
}
}

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Reference Number: 327364-001

617

5
~r
(‘L

CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: S g,

S951S5p || Function: Usage disp8*N
000 no conversion [rax] {8t08} or [rax] 64

001 broadcast 1 element (x8) [rax] {1to8} 8

010 broadcast 4 elements (x2) | [rax] {4to8} 32

011 reserved N/A N/A
100 reserved N/A N/A
101 reserved N/A N/A
110 reserved N/A N/A
111 reserved N/A N/A

Register Swizzle: Sy,

MVEX.EH=0

595150 || Function: 4 x 64 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

52515 || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero ,{rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

618 Reference Number: 327364-001

(lntel‘
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512d _mmb512_subr_pd (_m512d, _m512d);
_m512d _mmb512_mask_subr_pd (_m512d, _mmask8, _m512d, _m512d);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes
64 bit Mode
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand linear address is not aligned
to the data size granularity dictated by SwizzUpConv

mode.
#PF (fault-code) For a page fault.
#NM If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001 619

CHAPTER 6. INSTRUCTION DESCRIPTIONS

(intel“

VSUBRPS - Reverse Subtract Float32 Vectors

Opcode Instruction Description
MVEX.NDS.512.66.0F38.W0 vsubrps zmml ({k1}, zmm2, Subtractfloat32 vector zmm?2 from float32 vec-
6D /r S¢32(zmm3/my) tor S¢sa(zmm3/m;) and store the result in
zmm1, under write-mask.
Description

Performs an element-by-element subtraction of float32 vector zmm?2 from the float32
vector result of the swizzle/broadcast/conversion process on memory or float32 vector

zmma3. The result is written into float32 vector zmm1.

This instruction is write-masked, so only those elements with the corresponding bit set
in vector mask register k1 are computed and stored into zmm1. Elements in zmm?1 with

the corresponding bit clear in k1 retain their previous values.

Operation

if (source is a register operand and MVEX.EH bit is 1) {

if (SSS[2]==1) Supress_Exception_Flags() // SAE

// SSS are bits 6-4 from the MVEX prefix encoding. For more details, see Table2.14

RoundingMode = SSS[1:0]

tmpSrc3[511:0] = zmm3[511:0]
} else {

RoundingMode = MXCSR.RC

tmpSrc3[511:0] = SwizzUpConvload y3p (zmm3/m;)
}

for (n = 0; n < 16; n++) {
if(k1[n] !'= 0) {
i = 32*n
// float32 operation
zmml [i+31:i] = -zmm2[i+31:i] + tmpSrc3[i+31:i]
}
}

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

620

Reference Number: 327364-001

(lntel
CHAPTER 6. INSTRUCTION DESCRIPTIONS

Denormal Handling

Treat Input Denormals As Zeros :
(MXCSR.DAZ)? YES : NO

Flush Tiny Results To Zero :
(MXCSR.FZ)? YES : NO

Memory Up-conversion: S¢;,

595150 || Function: Usage disp8*N
000 no conversion [rax] {16to16} or [rax] 64

001 broadcast 1 element (x16) | [rax] {1to16} 4

010 broadcast 4 elements (x4) | [rax] {4to16} 16

011 float16 to float32 [rax] {float16} 32

100 uint8 to float32 [rax] {uint8} 16

110 uint16 to float32 [rax] {uint16} 32

111 sint16 to float32 [rax] {sint16} 32

Register Swizzle: S,

MVEX.EH=0

595150 || Function: 4 x 32 bits Usage

000 no swizzle zmmO or zmmO {dcba}
001 swap (inner) pairs zmmO {cdab}
010 swap with two-away zmmO {badc}
011 cross-product swizzle zmmO {dacb}
100 broadcast a element zmmO {aaaa}
101 broadcast b element zmmO {bbbb}
110 broadcast c element zmmO {cccc}
111 broadcast d element zmmO {dddd}
MVEX.EH=1

525150 || Rounding Mode Override Usage

000 Round To Nearest (even) , {rn}

001 Round Down (-INF) , {rd}

010 Round Up (+INF) , {ru}

011 Round Toward Zero ,{rz}

100 Round To Nearest (even) with SAE , {rn-sae}

101 Round Down (-INF) with SAE , {rd-sae}

110 Round Up (+INF) with SAE , {ru-sae}

111 Round Toward Zero with SAE , {rz-sae}

Reference Number: 327364-001 621

CHAPTER 6. INSTRUCTION DESCRIPTIONS

5
~r
(‘1

Intel’ C/C++ Compiler Intrinsic Equivalent

_m512 _mmb512_subr_ps (_m512,_m512);
_m512 _mmb512_mask subr_ps (_m512, _mmask16,_m512, _m512);

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

64 bit Mode
#SS(0)

#GP(0)

#PF(fault-code)
#NM

622

Instruction not available in these modes

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
If a memory operand linear address is not aligned

to the data size granularity dictated by SwizzUpConv
mode.

For a page fault.

If CRO.TS[bit 3]=1.

If preceded by any REX, FO, F2, F3, or 66 prefixes.

Reference Number: 327364-001

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Appendix A

Scalar Instruction Descriptions

In this Chapter all the special scalar instructions introduced with the rbni are described.

Reference Number: 327364-001 623

5
~r
(‘1

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

CLEVICTO - Evict L1 line

Opcode Instruction Description
VEX.128.F2.0F AE /7 clevictO m8 Evict memory line from L1 in m8 using TO hint.
MVEX.512.F2.0F AE /7 clevictO m8 Evict memory line from L1 in m8 using TO hint.

Description

Invalidates from the first-level cache the cache line containing the specified linear address
(updating accordingly the cache hierarchy if the line is dirty). Note that, unlike CLFLUSH,
the invalidation is not broadcasted throughout the cache coherence domain.

The MVEX form of this instruction uses disp8*64 addressing. Displacements that would
normally be 8 bits according to the ModR/M byte are still 8 bits but scaled by 64 so that
they have cache-line granularity. VEX forms of this instruction uses regular disp8 address-
ing.

This instruction is a hint intended for performance and may be speculative, thus may be
dropped or specify invalid addresses without causing problems. The instruction does not
produce any type of memory-related fault.

Operation

FlushL1CacheLine(linear_address)

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mm_clevict (const void*, int);

624 Reference Number: 327364-001

(lntel
APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If operand is not a memory location.

Reference Number: 327364-001 625

5
~r
(‘1

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

CLEVICT1 - Evict L2 line

Opcode Instruction Description
VEX.128.F3.0F AE /7 clevictl m8 Evict memory line from L2 in m8 using T1 hint.
MVEX.512.F3.0F AE /7 clevictl m8 Evict memory line from L2 in m8 using T1 hint.

Description

Invalidates from the second-level cache the cache line containing the specified linear ad-
dress (updating accordingly the cache hierarchy if the line is dirty). Note that, unlike
CLFLUSH, the invalidation is not broadcasted throughout the cache coherence domain.

The MVEX form of this instruction uses disp8*64 addressing. Displacements that would
normally be 8 bits according to the ModR/M byte are still 8 bits but scaled by 64 so that
they have cache-line granularity. VEX forms of this instruction uses regular disp8 address-
ing.

This instruction is a hint intended for performance and may be speculative, thus may be
dropped or specify invalid addresses without causing problems. The instruction does not
produce any type of memory-related fault.

Operation

FlushL2CacheLine(linear_address)

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mm_clevict (const void*, int);

626 Reference Number: 327364-001

(lntel
APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If operand is not a memory location.

Reference Number: 327364-001 627

5
~r
(‘L

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

DELAY - Stall Thread

Opcode Instruction Description
VEX.128.F3.0FEWO0 AE /6 delay r32 Stall Thread using r32.
VEX.128.F3.0FW1 AE /6 delay r64 Stall Thread using r64.

Description

Hints that the processor should not fetch/issue instructions for the current thread for the
specified number of clock cycles in register source. The maximum number of clock cycles
is limited to 232 — 1 (32 bit counter). The instructions is speculative and could be executed
as a NOP by a given processor implementation.

Any of the following events will cause the processor to start fetching instructions for the
delayed thread again: the counter counting down to zero, an NMI or SMI, a debug excep-
tion, a machine check exception, the BINIT# signal, the INIT# signal, or the RESET# signal.
The instruction may exit prematurely due to any interrupt (e.g. an interrupt on another
thread on the same core).

This instruction must properly handle the case where the current clock count turns over.
This can be accomplished by performing the subtraction shown below and treating the
result as an unsigned number.

This instruction should prevent the issuing of additional instructions on the issuing thread
as soon as possible, to avoid the otherwise likely case where another instruction on the
same thread that was issued 3 or 4 clocks later has to be killed, creating a pipeline bubble.

If, on any given clock, all threads are non-runnable, then any that are non-runnable due
to the execution of DELAY may or may not be treated as runnable threads.

Notes about Intel® Xeon Phi" coprocessor implementation:

o InIntel® Xeon Phi" coprocessor, the processor won't execute from a "delayed" thread
before the delay counter has expired, even if there are non-runnable threads at any
given point in time.

Operation

START_CLOCK = CURRENT_CLOCK_COUNT

DELAY_SLOTS = SRC

if (DELAY_SLOTS > OxFFFFFFFF) DELAY_SLOTS = OxFFFFFFFF
while ((CURRENT_CLOCK_COUNT - START_CLOCK) < DELAY_SLOTS)
{

xavoid fetching/issuing from the current threadx

}

628 Reference Number: 327364-001

(lntel
APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mm_delay_32 (unsigned int);
void _mm_delay_64 (unsigned _int64);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, FO, F2, F3, or 66 prefixes.

If operand is a memory location.

Reference Number: 327364-001

629

(lntel
APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

LZCNT - Leading Zero Count

Opcode Instruction Description

VEX.128.F3.0EW0 BD /r lzcntr32,r32 Countthe number of leading bits set to 0 in r32 (src), leaving the
result in r32 (dst).

VEX.128.F3.0FW1BD /r lzcntr64,r64 Countthe number of leading bits set to 0 in r64 (src), leaving the
result in r64 (dst).

Description

Counts the number of leading most significant zero bits in a source operand (second
operand) returning the result into a destination (first operand).

LZCNT is an extension of the BSR instruction. The key difference between LZCNT and BSR
is that LZCNT provides operand size as output when source operand is zero, while in the
case of BSR instruction, if source operand is zero, the content of destination operand are
undefined.

ZF flag is set when the most significant set bit is bit OSIZE-1. CF is set when the source
has no set bit.

Operation

temp = OPERAND_SIZE - 1

DEST = 0
while((temp >= 0) AND (SRC[temp] == 0))
{
temp = temp - 1
DEST = DEST + 1
}
if (DEST == OPERAND_SIZE) {
CF =1
} else {
CF =0
}
if (DEST == 0) ZF =1
} else {
ZF =0
}

630 Reference Number: 327364-001

(lntel
APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Flags Affected

e ZF flagis setto 1 in case of zero output (most significant bit of the source is set), and

to 0 otherwise
e CF flag is set to 1 if input was zero and cleared otherwise.
e The PE OF AF and SF flags are set to 0

Intel’ C/C++ Compiler Intrinsic Equivalent

unsigned int _lzent_u32 (unsigned int);
_int64 _lzcent u64 (unsigned _int64);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, FO, F2, F3, or 66 prefixes.

If second operand is a memory location.

Reference Number: 327364-001

631

(lntel
APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

POPCNT - Return the Count of Number of Bits Set to 1

Opcode
VEX.128.F3.0EWO0 B8 /r

VEX.128.F3.0EW1 B8 /r

Instruction Description
popentr32,1r32 Count the number of bits set to 1 in r32 (src), leaving the result

inr32 (dst).

popcntr64, r64 Count the number of bits set to 1 in r64 (src), leaving the result

in r64 (dst).

Operation

tmp = 0

for (i=0; i<OPERAND SIZE; i++)

{

if (SRC[i] == 1) tmp = tmp + 1

}
DEST = tmp

Flags Affected

e The ZF flag is set according to the result (if SRC==0)
e The OF, SE, AF, CF and PF flags are set to 0

Intel” C/C++ Compiler Intrinsic Equivalent

unsigned int _mm_popcnt_u32 (unsigned int);
_int64 _mm_popcnt_u64 (unsigned _int64);

Exceptions

Real-Address Mode and Virtual-8086

#UD

Instruction not available in these modes

Protected and Compatibility Mode

#UD

632

Instruction not available in these modes

Reference Number: 327364-001

5
D

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

64 bit Mode

Reference Number: 327364-001

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If second operand is a memory location.

633

5
~r
(‘L

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

SPFLT - Set performance monitor filtering mask

Opcode Instruction Description

VEX.128.F2.0EWO0 AE /6 spfltr32 Set performance monitoring filtering mask using r32.

VEX.128.F2.0EW1 AE /6 spfltr64 Set performance monitoring filtering mask using ré64.
Description

SPFLT enables/disables performance monitoring on the currently executing thread only
based on the LSB value of the source.

SPFLT instruction is a model specific instruction and is not part of Intel® Architecture.
The bit(s) and register(s) modified are model-specific and may vary by processor imple-
mentation.

The PERF_SPFLT_CTRL model-specific register modified by SPFLT instruction may also
be read / modified with the RDMSR / WRMSR instructions, when executing at privilege
level 0.

The PERF_SPFLT_CTRL MSR is thread specific. SPFLT execution moves LSB of source
(EAX) into the USR_PREF bit (bit 63) in the PERF_SPFLT_CTRL MSR. The lower N bits,
called CNTR_x_SPFLT_EN (bits N-1:0, 1 per counter), in PERF_SPFLT_CTRL MSR control
whether the USR_PREF bit affects enabling of performance monitoring for the corre-
sponding counter.

SPFLT instruction does not modify the CNTR_x_SPFLT_EN bits, where as RDMSR and
WRMSR read / modify all bits of the PERF_SPFLT_CTRL MSR.

Enabling Performance countering

On a per thread basis, a performance monitoring counter n is incremented if, and only if:

1. PERF_GLOBAL_CTRL[n] is setto 1

2. 1A32 PerfEvtSeln[22] is set to 1 (where 'n' is the enabled counter)

3. PERF_SPFLT_CTRL[n] is set to 0, or, PERF_SPFLT_CTRL[63] (USR_PREF) is set to 1.
4. The desired event is asserted for thread id T

634 Reference Number: 327364-001

5
~r
(‘1

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

MSR address Per-thread? Name

2Fh Y PERF_GLOBAL_CTRL
Bit 1: Enable IA32_PerfEvtSell
Bit 0: Enable IA32_PerfEvtSel0

28h Y [IA32_PerfEvtSel0
Bit 22: Enable counter 0

29h Y [IA32_PerfEvtSell
Bit 22: Enable counter 1

2Ch Y PERF_SPFLT_CTRL
Bit 63: User Preference (USR_PREF).
Bit 1: Counter 1 SPFLT Enable. Controls whether USR_PREF
is used in enabling performance monitoring for counter 1
Bit 0: Counter 0 SPFLT Enable. Controls whether USR_PREF
is used in enabling performance monitoring for counter 0

Operation

(x i is the thread ID of the current executing thread *)
PerfFilterMask[i] [0] = SRC[O0];

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mm_spflt_32 (unsigned int);
void _mm_spflt_64 (unsigned __int64);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

Reference Number: 327364-001

635

5
D

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

64 bit Mode
#UD If processor model does not implement SPFLT.

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If operand is a memory location.

636 Reference Number: 327364-001

5
~r
(‘1

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

TZCNT - Trailing Zero Count

Opcode Instruction
VEX.128.F3.0EWO0BC /r tzcntr32,r32

VEX.128.F3.0EW1 BC /r tzcntr64, r64

Description

Count the number of trailing bits set to 0 in r32 (src), leaving the
result in r32 (dst).

Count the number of trailing bits set to 0 in r64 (src), leaving the
result in r64 (dst).

Description

Searches the source operand (second operand) for the least significant set bit (1 bit). If a
least significant 1 bit is found, its bit index is stored in the destination operand; otherwise,
the destination operand is set to the operand size.

ZF flag is set when the least significant set bit is bit 0. CF is set when the source has no set

bit.

Operation

index = 0
if (SRC[OPERAND_SIZE-1:0] == 0)

{
DEST = OPERAND_SIZE
CF =1

}

else

{
while (SRC[index] == 0)
{

index = index+1

}
DEST = index
CF =0

}

Flags Affected

e The ZF is set according to the result
e The CF is set if SRC is zero

e The PE OF AF and SF flags are set to 0

Reference Number: 327364-001

637

5
D

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Intel’ C/C++ Compiler Intrinsic Equivalent

unsigned int _tzcnt_u32 (unsigned int);
_int64 _tzcnt_u64 (unsigned _int64);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If second operand is a memory location.

638 Reference Number: 327364-001

5
~r
(‘L

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

TZCNTI - Initialized Trailing Zero Count

Opcode Instruction Description
VEX.128.F2.0FWO0 BC /r tzcntir32,r32 Count the number of trailing bits set to 0 between r32 (dst) and
r32 (src).
VEX.128.F2.0EW1BC /r tzcntir64,r64 Countthe number of trailing bits set to 0 between r64 (dst) and
ré64 (src).
Description

Searches the source operand (second operand) for the least significant set bit (1 bit)
greater than bit DEST (where DEST is the destination operand, the first operand). If aleast
significant 1 bit is found, its bit index is stored in the destination operand ; otherwise, the
destination operand is set to the operand size. The value of DEST is a signed offset from
bit 0 of the source operand. Any negative DEST value will produce a search starting from
bit 0, like TZCNT. Any DEST value equal to or greater than (OPERAND_SIZE-1) will cause
the destination operand to be set to the operand size.

This instruction allows continuation of searches through bit vectors without having to
mask off each least significant 1-bit before restarting, as is required with TZCNT.

The functionality of this instruction is exactly the same as for the TZCNT instruction, ex-
cept that the search starts at bit DEST+1 rather than bit 0.

CF is set when the specified index goes beyond the operand size or there is no set bit
between the index and the MSB bit of the source.

Operation

// DEST is a signed operand, no overflow
if (DEST[OSIZE-1:0] < 0) index = 0O
else index = DEST + 1

if ((index > OPERAND_SIZE-1) || (SRC[OPERAND_SIZE-1:index] == 0))

{
DEST = OPERAND_SIZE
CF=1
}
else
{
while (SRC[index] == 0)
{
index = index+1
}
DEST = index
CF=0

Reference Number: 327364-001 639

5
D

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

}

Flags Affected

e The ZF is set according to the result

e The CFissetif SRCis zero betwen index and MSB, or index is greater than the operand
size.

e The PF, OF, AF and SF flags are set to 0

Intel’ C/C++ Compiler Intrinsic Equivalent

int _mm_tzcnti_32 (int, unsigned int);
_int64 _mm_tzcenti_64 (_int64, unsigned __int64);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If second operand is a memory location.

640 Reference Number: 327364-001

(intel‘

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

VPREFETCHO - Prefetch memory line using TO hint

Opcode Instruction Description
VEX.128.0F 18 /1 vprefetchO m8 Prefetch memory line in m8 using TO hint.
MVEX.512.0F 18 /1 vprefetchO m8 Prefetch memory line in m8 using TO hint.

Description

This is very similar to the existing 1A-32 prefetch instruction, PREFETCHO, as described
in IA-32 Intel® Architecture Software Developer's Manual: Volume 2. If the line selected is
already present in the cache hierarchy at a level closer to the processor, no data movement
occurs. Prefetches from uncacheable or WC memory are ignored.

In contrast with the existing prefetch instruction, the MVEX form of this instruction uses
disp8*64 addressing. Displacements that would normally be 8 bits according to the
ModR/M byte are still 8 bits but scaled by 64 so that they have cache-line granularity.
VEX forms of this instruction uses regular disp8 addressing.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresses without causing problems or memory related faults.

This instruction contains a set of hint attributes that modify the prefetching behavior:

exclusive: make line Exclusive in the L1 cache (unless it's already Exclusive or Modified
in the L1 cache).

nthintpre (NTH): load data into the L1 nontemporal cache rather than the L1 temporal
cache. Data will be loaded in the #TIDth way and made MRU. Data should still be
cached normally in the L2 and higher caches.

Note that in Intel® Xeon Phi” coprocessor, the hardware drops VPREFETCH if it hits L1
(so it becomes transparent to L2). Consequently, this instructon is not a good solution
to avoid hot L1/cold L2 performance problems. Prefetches set the access bit (A) in the
related TLB page entry, but prefetches with exclusive access (RFO) do not set the dirty bit

(D).

PREFETCH Hint equivalence for the Intel® Xeon Phi" coprocessor

Instruction Cache Level Non-temporal Bring as exclusive
VPREFETCHO L1 NO NO
VPREFETCHNTA L1 YES NO

VPREFETCH1 L2 NO NO

VPREFETCH2 L2 YES NO
VPREFETCHEO L1 NO YES
VPREFETCHENTA L1 YES YES
VPREFETCHE1 L2 NO YES
VPREFETCHE?2 L2 YES YES

Reference Number: 327364-001

641

5
D

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Operation

exclusive = 0
nthintpre = 0
FetchL1Cacheline(effective_address, exclusive, nthintpre)

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch (char const*, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If operand is not a memory location.

642 Reference Number: 327364-001

(intel‘

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

VPREFETCH1 - Prefetch memory line using T1 hint

Opcode Instruction Description
VEX.128.0F 18 /2 vprefetchl m8 Prefetch memory line in m8 using T1 hint.
MVEX.512.0F 18 /2 vprefetchl m8 Prefetch memory line in m8 using T1 hint.

Description

This is very similar to the existing 1A-32 prefetch instruction, PREFETCHO, as described
in IA-32 Intel® Architecture Software Developer's Manual: Volume 2. If the line selected is
already present in the cache hierarchy at a level closer to the processor, no data movement
occurs. Prefetches from uncacheable or WC memory are ignored.

In contrast with the existing prefetch instruction, the MVEX form of this instruction uses
disp8*64 addressing. Displacements that would normally be 8 bits according to the
ModR/M byte are still 8 bits but scaled by 64 so that they have cache-line granularity.
VEX forms of this instruction uses regular disp8 addressing.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresses without causing problems or memory related faults.

This instruction contains a set of hint attributes that modify the prefetching behavior:

exclusive: make line Exclusive in the L2 cache (unless it's already Exclusive or Modified
in the L2 cache).

nthintpre (NTH): load data into the L2 nontemporal cache rather than the L2 temporal
cache. Data will be loaded in the #TIDth way and made MRU. Data should still be
cached normally in the L2 and higher caches.

Note that in the Intel® Xeon Phi” coprocessor, the hardware drops VPREFETCH if it hits
L1 (so it becomes transparent to L2). Consequently, this instructon is not a good solution
to avoid hot L1/cold L2 performance problems. Prefetches set the access bit (A) in the
related TLB page entry, but prefetches with exclusive access (RFO) do not set the dirty bit

(D).

PREFETCH Hint equivalence for the Intel® Xeon Phi" coprocessor

Instruction Cache Level Non-temporal Bring as exclusive
VPREFETCHO L1 NO NO
VPREFETCHNTA L1 YES NO

VPREFETCH1 L2 NO NO

VPREFETCH2 L2 YES NO
VPREFETCHEO L1 NO YES
VPREFETCHENTA L1 YES YES
VPREFETCHE1 L2 NO YES
VPREFETCHE?2 L2 YES YES

Reference Number: 327364-001

643

5
D

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Operation

exclusive = 0
nthintpre = 0
FetchL2Cacheline(effective_address, exclusive, nthintpre)

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch (char const*, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If operand is not a memory location.

644 Reference Number: 327364-001

(intel‘

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

VPREFETCHZ - Prefetch memory line using T2 hint

Opcode Instruction Description
VEX.128.0F 18 /3 vprefetch2 m8 Prefetch memory line in m8 using T2 hint.
MVEX.512.0F 18 /3 vprefetch2 m8 Prefetch memory line in m8 using T2 hint.

Description

This is very similar to the existing 1A-32 prefetch instruction, PREFETCHO, as described
in IA-32 Intel® Architecture Software Developer's Manual: Volume 2. If the line selected is
already present in the cache hierarchy at a level closer to the processor, no data movement
occurs. Prefetches from uncacheable or WC memory are ignored.

In contrast with the existing prefetch instruction, the MVEX form of this instruction uses
disp8*64 addressing. Displacements that would normally be 8 bits according to the
ModR/M byte are still 8 bits but scaled by 64 so that they have cache-line granularity.
VEX forms of this instruction uses regular disp8 addressing.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresses without causing problems or memory related faults.

This instruction contains a set of hint attributes that modify the prefetching behavior:

exclusive: make line Exclusive in the L2 cache (unless it's already Exclusive or Modified
in the L2 cache).

nthintpre (NTH): load data into the L2 nontemporal cache rather than the L2 temporal
cache. Data will be loaded in the #TIDth way and made MRU. Data should still be
cached normally in the L2 and higher caches.

Note that in Intel® Xeon Phi” coprocessor, the hardware drops VPREFETCH if it hits L1
(so it becomes transparent to L2). Consequently, this instructon is not a good solution
to avoid hot L1/cold L2 performance problems. Prefetches set the access bit (A) in the
related TLB page entry, but prefetches with exclusive access (RFO) do not set the dirty bit

(D).

PREFETCH Hint equivalence for the Intel® Xeon Phi" coprocessor

Instruction Cache Level Non-temporal Bring as exclusive
VPREFETCHO L1 NO NO
VPREFETCHNTA L1 YES NO

VPREFETCH1 L2 NO NO

VPREFETCH2 L2 YES NO
VPREFETCHEO L1 NO YES
VPREFETCHENTA L1 YES YES
VPREFETCHE1 L2 NO YES
VPREFETCHE?2 L2 YES YES

Reference Number: 327364-001

645

5
D

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Operation

exclusive = 0
nthintpre = 1
FetchL2Cacheline(effective_address, exclusive, nthintpre)

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch (char const*, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If operand is not a memory location.

646 Reference Number: 327364-001

(intel‘

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

VPREFETCHEO - Prefetch memory line using TO hint, with intent to write

VEX.128.0F 18 /5
MVEX.512.0F 18 /5

Opcode Instruction Description
vprefetcheO m8 Prefetch memory line in m8 using TO hint with intent to write.
vprefetcheO m8 Prefetch memory line in m8 using TO hint with intent to write.

Description

This is very similar to the existing 1A-32 prefetch instruction, PREFETCHO, as described
in IA-32 Intel® Architecture Software Developer's Manual: Volume 2. If the line selected is
already present in the cache hierarchy at a level closer to the processor, no data movement
occurs. Prefetches from uncacheable or WC memory are ignored.

In contrast with the existing prefetch instruction, the MVEX form of this instruction uses
disp8*64 addressing. Displacements that would normally be 8 bits according to the
ModR/M byte are still 8 bits but scaled by 64 so that they have cache-line granularity.
VEX forms of this instruction uses regular disp8 addressing.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresses without causing problems or memory related faults.

This instruction contains a set of hint attributes that modify the prefetching behavior:

exclusive: make line Exclusive in the L1 cache (unless it's already Exclusive or Modified
in the L1 cache).

nthintpre (NTH): load data into the L1 nontemporal cache rather than the L1 temporal
cache. Data will be loaded in the #TIDth way and made MRU. Data should still be
cached normally in the L2 and higher caches.

In Intel® Xeon Phi” coprocessor, the hardware drops VPREFETCH if it hits L1 (so it be-
comes transparent to L2). Consequently, this instructon is not a good solution to avoid
hot L1/cold L2 performance problems. Prefetches set the access bit (A) in the related
TLB page entry, but prefetches with exclusive access (RFO) do not set the dirty bit (D).

PREFETCH Hint equivalence for the Intel® Xeon Phi" coprocessor

Instruction Cache Level Non-temporal Bring as exclusive
VPREFETCHO L1 NO NO
VPREFETCHNTA L1 YES NO
VPREFETCH1 L2 NO NO
VPREFETCH2 L2 YES NO
VPREFETCHEO L1 NO YES
VPREFETCHENTA L1 YES YES
VPREFETCHE1 L2 NO YES
VPREFETCHE2 L2 YES YES

Reference Number: 327364-001

647

5
D

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Operation

exclusive = 1
nthintpre = 0
FetchL1Cacheline(effective_address, exclusive, nthintpre)

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch (char const*, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If operand is not a memory location.

648 Reference Number: 327364-001

(intel‘

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

VPREFETCHET1 - Prefetch memory line using T1 hint, with intent to write

VEX.128.0F 18 /6
MVEX.512.0F 18 /6

Opcode Instruction Description
vprefetchel m8 Prefetch memory line in m8 using T1 hint with intent to write.
vprefetchel m8 Prefetch memory line in m8 using T1 hint with intent to write.

Description

This is very similar to the existing 1A-32 prefetch instruction, PREFETCHO, as described
in IA-32 Intel® Architecture Software Developer's Manual: Volume 2. If the line selected is
already present in the cache hierarchy at a level closer to the processor, no data movement
occurs. Prefetches from uncacheable or WC memory are ignored.

In contrast with the existing prefetch instruction, the MVEX form of this instruction uses
disp8*64 addressing. Displacements that would normally be 8 bits according to the
ModR/M byte are still 8 bits but scaled by 64 so that they have cache-line granularity.
VEX forms of this instruction uses regular disp8 addressing.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresses without causing problems or memory related faults.

This instruction contains a set of hint attributes that modify the prefetching behavior:

exclusive: make line Exclusive in the L2 cache (unless it's already Exclusive or Modified
in the L2 cache).

nthintpre (NTH): load data into the L2 nontemporal cache rather than the L2 temporal
cache. The data will be loaded in the #TIDth way and making the data MRU. Data
should still be cached normally in the L2 and higher caches.

The hardware drops VPREFETCH if it hits L1 (so it becomes transparent to L2). Conse-
quently, this instructon is not a good solution to avoid hot L1/cold L2 performance prob-
lems. Prefetches set the access bit (A) in the related TLB page entry, but prefetches with
exclusive access (RFO) do not set the dirty bit (D).

PREFETCH Hint equivalence for the Intel® Xeon Phi" coprocessor

Instruction Cache Level Non-temporal Bring as exclusive
VPREFETCHO L1 NO NO
VPREFETCHNTA L1 YES NO
VPREFETCH1 L2 NO NO
VPREFETCH2 L2 YES NO
VPREFETCHEO L1 NO YES
VPREFETCHENTA L1 YES YES
VPREFETCHE1 L2 NO YES
VPREFETCHE?2 L2 YES YES

Reference Number: 327364-001

649

5
D

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Operation

exclusive = 1
nthintpre = 0
FetchL2Cacheline(effective_address, exclusive, nthintpre)

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch (char const*, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If operand is not a memory location.

650 Reference Number: 327364-001

(intel‘

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

VPREFETCHEZ - Prefetch memory line using T2 hint, with intent to write

VEX.128.0F 18 /7
MVEX.512.0F 18 /7

Opcode Instruction Description
vprefetche2 m8 Prefetch memory line in m8 using T2 hint with intent to write.
vprefetche2 m8 Prefetch memory line in m8 using T2 hint with intent to write.

Description

This is very similar to the existing 1A-32 prefetch instruction, PREFETCHO, as described
in IA-32 Intel® Architecture Software Developer's Manual: Volume 2. If the line selected is
already present in the cache hierarchy at a level closer to the processor, no data movement
occurs. Prefetches from uncacheable or WC memory are ignored.

In contrast with the existing prefetch instruction, the MVEX form of this instruction uses
disp8*64 addressing. Displacements that would normally be 8 bits according to the
ModR/M byte are still 8 bits but scaled by 64 so that they have cache-line granularity.
VEX forms of this instruction uses regular disp8 addressing.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresses without causing problems or memory related faults.

This instruction contains a set of hint attributes that modify the prefetching behavior:

exclusive: make line Exclusive in the L2 cache (unless it's already Exclusive or Modified
in the L2 cache).

nthintpre (NTH): load data into the L2 nontemporal cache rather than the L2 temporal
cache. Data will be loaded in the #TIDth way and made MRU. Data should still be
cached normally in the L2 and higher caches.

Note that in Intel® Xeon Phi” coprocessor, the hardware drops VPREFETCH if it hits L1
(so it becomes transparent to L2). Consequently, this instructon is not a good solution
to avoid hot L1/cold L2 performance problems. Prefetches set the access bit (A) in the
related TLB page entry, but prefetches with exclusive access (RFO) do not set the dirty bit

(D).

PREFETCH Hint equivalence for the Intel® Xeon Phi" coprocessor

Instruction Cache Level Non-temporal Bring as exclusive
VPREFETCHO L1 NO NO
VPREFETCHNTA L1 YES NO

VPREFETCH1 L2 NO NO

VPREFETCH2 L2 YES NO
VPREFETCHEO L1 NO YES
VPREFETCHENTA L1 YES YES
VPREFETCHE1 L2 NO YES
VPREFETCHE?2 L2 YES YES

Reference Number: 327364-001

651

5
D

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Operation

exclusive = 1
nthintpre = 1
FetchL2Cacheline(effective_address, exclusive, nthintpre)

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch (char const*, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If operand is not a memory location.

652 Reference Number: 327364-001

(intel‘

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

VPREFETCHENTA - Prefetch memory line using NTA hint, with intent to

write
Opcode Instruction Description
VEX.128.0F 18 /4 vprefetchenta m8 Prefetch memory line in m8 using NTA hint with intent to write.
MVEX.512.0F 18 /4 vprefetchentam8 Prefetch memory line in m8 using NTA hint with intent to write.
Description

This is very similar to the existing IA-32 prefetch instruction, PREFETCHO, as described
in IA-32 Intel® Architecture Software Developer's Manual: Volume 2. If the line selected is
already presentin the cache hierarchy at a level closer to the processor, no data movement
occurs. Prefetches from uncacheable or WC memory are ignored.

In contrast with the existing prefetch instruction, this instruction uses disp8*64 address-
ing. Displacements that would normally be 8 bits according to the ModR/M byte are still
8 bits but scaled by 64 so that they have cache-line granularity.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresses without causing problems or memory related faults.

This instruction contains a set of hint attributes that modify the prefetching behavior:

exclusive: make line Exclusive in the L1 cache (unless it's already Exclusive or Modified
in the L1 cache).

nthintpre (NTH): load data into the L1 nontemporal cache rather than the L1 temporal
cache. The data will be loaded in the #TIDth way and making the data MRU. Data
should still be cached normally in the L2 and higher caches.

The hardware drops VPREFETCH if it hits L1 (so it becomes transparent to L2). Conse-
quently, this instructon is not a good solution to avoid hot L1/cold L2 performance prob-
lems. Prefetches set the access bit (A) in the related TLB page entry, but prefetches with
exclusive access (RFO) do not set the dirty bit (D).

PREFETCH Hint equivalence for the Intel® Xeon Phi” coprocessor

Instruction Cache Level Non-temporal Bring as exclusive
VPREFETCHO L1 NO NO
VPREFETCHNTA L1 YES NO

VPREFETCH1 L2 NO NO

VPREFETCH2 L2 YES NO
VPREFETCHEO L1 NO YES
VPREFETCHENTA L1 YES YES
VPREFETCHE1 L2 NO YES
VPREFETCHE2 L2 YES YES

Reference Number: 327364-001

653

5
D

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Operation

exclusive = 1
nthintpre = 1
FetchL1Cacheline(effective_address, exclusive, nthintpre)

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch (char const*, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If operand is not a memory location.

654 Reference Number: 327364-001

(intel‘

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

VPREFETCHNTA - Prefetch memory line using NTA hint

Opcode Instruction Description
VEX.128.0F 18 /0 vprefetchnta m8 Prefetch memory line in m8 using NTA hint.
MVEX.512.0F 18 /0 vprefetchntam8 Prefetch memory line in m8 using NTA hint.

Description

This is very similar to the existing 1A-32 prefetch instruction, PREFETCHO, as described
in IA-32 Intel® Architecture Software Developer's Manual: Volume 2. If the line selected is
already present in the cache hierarchy at a level closer to the processor, no data movement
occurs. Prefetches from uncacheable or WC memory are ignored.

In contrast with the existing prefetch instruction, the MVEX form of this instruction uses
disp8*64 addressing. Displacements that would normally be 8 bits according to the
ModR/M byte are still 8 bits but scaled by 64 so that they have cache-line granularity.
VEX forms of this instruction uses regular disp8 addressing.

This instruction is a hint and may be speculative, and may be dropped or specify invalid
addresses without causing problems or memory related faults.

This instruction contains a set of hint attributes that modify the prefetching behavior:

exclusive: make line Exclusive in the L1 cache (unless it's already Exclusive or Modified
in the L1 cache).

nthintpre (NTH): load data into the L1 nontemporal cache rather than the L1 temporal
cache. Data will be loaded in the #TIDth way and made MRU. Data should still be
cached normally in the L2 and higher caches.

In Intel® Xeon Phi” coprocessor, the hardware drops VPREFETCH if it hits L1 (so it be-
comes transparent to L2). Consequently, this instructon is not a good solution to avoid
hot L1/cold L2 performance problems. Prefetches set the access bit (A) in the related
TLB page entry, but prefetches with exclusive access (RFO) do not set the dirty bit (D).

PREFETCH Hint equivalence for the Intel® Xeon Phi" coprocessor

Instruction Cache Level Non-temporal Bring as exclusive
VPREFETCHO L1 NO NO
VPREFETCHNTA L1 YES NO
VPREFETCH1 L2 NO NO
VPREFETCH2 L2 YES NO
VPREFETCHEO L1 NO YES
VPREFETCHENTA L1 YES YES
VPREFETCHE1 L2 NO YES
VPREFETCHE2 L2 YES YES

Reference Number: 327364-001

655

5
D

APPENDIX A. SCALAR INSTRUCTION DESCRIPTIONS

Operation

exclusive = 0
nthintpre = 1
FetchL1Cacheline(effective_address, exclusive, nthintpre)

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch (char const*, int);

Exceptions

Real-Address Mode and Virtual-8086

#UD Instruction not available in these modes

Protected and Compatibility Mode

#UD Instruction not available in these modes

64 bit Mode

If preceded by any REX, FO, F2, F3, or 66 prefixes.
If operand is not a memory location.

656 Reference Number: 327364-001

intel
L/ APPENDIX B. INTEL" XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT

Appendix B

Intel’ Xeon Phi~ coprocessor 64 bit Mode
Scalar Instruction Support

In 64 bit mode, the Intel® Xeon Phi” coprocessor supports a subset of the Intel 64 Architecture instructions. The

64 bit mode instructions supported by the Intel® Xeon Phi” coprocessor are listed in this chapter.

B.1 64 bit Mode General-Purpose and X87 Instructions

Intel® Xeon Phi” coprocessor supports most of the general-purpose register (GPR) and X87 instructions in 64
bit mode. They are listed in Table B.2.

64 bit Mode GPR and X87 Instructions in the Intel® Xeon Phi" coprocessor:

ADC ADD AND BSF BSR
BSWAP BT BTC BTR BTS
CALL CBW CDQ CDQE CLC
CLD CLI CLTS CMC CMP
CMPS CMPSB CMPSD CMPSQ CMPSW
CMPXCHG | CMPXCHG8B | CPUID CQo CWD
CWDE DEC DIV ENTER F2XM1
FABS FADD FADDP FBLD FBSTP
FCHS FCLEX FCOM FCOMP FCOMPP
FCOS FDECSTP FDIV FDIVP FDIVR
FDIVRP FFREE FIADD FICOM FICOMP
FIDIV FIDIVR FILD FIMUL FINCSTP
FINIT FIST FISTP FISUB FISUBR
FLD FLD1 FLDCW FLDENV | FLDLZE
FLDL2T FLDLG2 FLDLNZ2 FLDPI FLDZ
FMUL FMULP FNCLEX FNINIT FNOP
FNSAVE FNSTCW FNSTENV | FNSTSW | FPATAN

Reference Number: 327364-001

657

APPENDIX B. INTEL’ XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT

5
~r
(‘1

658

FPREM FPREM1 FPTAN FRNDINT | FRESTOR
FSAVE FSCALE FSIN FSINCOS | FSQRT
FST FSTCW FSTENV | FSTP FSTSW
FSUB FSUBP FSUBR FSUBRP | FTST
FUCOM FUCOMP FUCOMPP | FWAIT FXAM
FXCH FXRSTOR FXSAVE | FXTRACT | FYL2X
FYL2XP1 | HLT IDIV IMUL INC
INT INT3 INTO INVD INVPLG
IRET IRETD JA JAE |B

JBE JC JCXZ JE JECXZ
]G JGE JL JLE JMP
JNA JNAE JNB JNBE JNC
JNE JNG JNGE JNL JNLE
JNO JNP JNS JNZ JO

JP JPE JPO IS 1Z
LAHF LAR LEA LEAVE LFS
LGDT LGS LIDT LLDT LMSW
LOCK LODS LODSB LODSD LODSQ
LODSW | LOOP LOOPE LOOPNE | LOOPNZ
LOOPZ LSL LSS LTR MOV
MOVCR | MOV DR MOVS MOVSB | MOVSD
MOVSQ MOVSW MOVSX MOVSXD | MOVZX
MUL NEG NOP NOT OR
POP POPF POPFQ PUSH PUSHF
PUSHFQ | RCL RCR RDMSM | RDPMC
RDTSC REP REPE REPNE | REPNZ
RET ROL ROR RSM SAHF
SAL SAR SBB SCAS SCASB
SCASD SCASQ SCASW SETA SETAE
SETB SETBE SETC SETE SETG
SETGE SETL SETLE SETNA | SETNAE
SETNB SETNBE SETNC SETNE SETNG
SETNGE | SETNL SETNLE | SETNO | SETNP
SETNS SETNZ SETO SETP SETPE
SETPO SETS SETZ SGDT SHL
SHLD SHR SHRD SIDT SLDT
SMSW STC STD STI STOSB
STOSD STOSQ STOSW STR SUB
SWAPGS | SYSCALL SYSRET | TEST VERR
VERW WAIT WBINVD | WRMSR | XADD
XCHG XLAT XLATB XOR UD2

Reference Number: 327364-001

intel
L/ APPENDIX B. INTEL" XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT

B.2 Intel’ Xeon Phi" coprocessor 64 bit Mode Limitations

In 64 bit mode, the Intel® Xeon Phi” coprocessor supports a subset of the Intel 64 Architecture instructions.
The following summarizes Intel 64 Architecture instructions that are not supported in the Intel® Xeon Phi"

coprocessor:

« Instructions that operate on MMX registers

« Instructions that operate on XMM registers

« Instructions that operate on YMM registers

GPR and X87 Instructions Not Supported in the Intel® Xeon Phi” coprocessor

CMOV CMPXCHG16B | FCMOVcc | FCOMI
FCOMIP FUCOMI FUCOMIP | IN

INS INSB INSD INSW
MONITOR | MWAIT ouT OUTS
OUTSB OUTSD OUTSW PAUSE
SYSENTER | SYSEXIT

Reference Number: 327364-001

659

5
~r
(‘L

APPENDIX B. INTEL’ XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT

B.3 LDMXCSR - Load MXCSR Register

Opcode Instruction Description
OF AE /2 ldmxcsr m32 Load MXCSR register from m32

Description

Loads the source operand into the MXCSR control/status register. The source operand is
a 32 bit memory location. See MXCSR Control and Status Register in Chapter 10, of the
1A-32 Intel Architecture Software Developers Manual, Volume 1, for a description of the
MZXCSR register and its contents. See chapter 3 of this document for a description of the
new Intel® Xeon Phi” coprocessor's MXCSR feature bits.

The LDMXCSR instruction is typically used in conjunction with the STMXCSR instruction,
which stores the contents of the MXCSR register in memory.

The default MXCSR value at reset is 0020_0000H (DUE=1, FZ=0, RC=00, PM=0, UM=0,
OM=0, ZM=0, DM=0, IM=0, DAZ=0, PE=0, UE=0, OE=0, ZE=0, DE=0, [E=0).

Any attempt to set to 1 reserved bits in control register MXCSR will produce a #GP fault:

Bit default Comment
MXCSR[7-12] 0 Note that this corresponds to Intel® SSE's IM/DM/ZM/OM/UM/PM
MXCSR[16-20] O Reserved
MXCSR[22-31] O Reserved

Additionally, any attempt to set MXCSR.DUE (bit 21) to 0 will produce a #GP fault:

Bit default Comment
MXCSR[21] 1 DUE (Disable Unmasked Exceptions) always enforced in Intel® Xeon Phi" coprocessor

This instructions operation is the same in non-64 bit modes and 64 bit mode.

Operation

MXCSR = MemLoad (m32)

Flags Affected

None.

660 Reference Number: 327364-001

intel
L/ APPENDIX B. INTEL" XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT

Intel’ C/C++ Compiler Intrinsic Equivalent

void _mm_setcsr (unsigned int)

Exceptions
#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

For an attempt to set reserved bits in MXCSR

#PF (fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CS.L=0 or IA32_EFER.LMA=0.
If the lock prefix is used.

#AC(0) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege
level is 3.

Reference Number: 327364-001 661

APPENDIX B. INTEL’ XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT

(intel‘

B.4 FXRSTOR - Restore x87 FPU and MXCSR State

662

Opcode Instruction Description
OF AE /1 fxrstor m512byte Restore the x87 FPU and MXCSR register state from m512byte
REX.W+0F AE /1 fxrstor64 m512byte Restore the x87 FPU with 64-bit FPU-DP and MXCSR register state

from m512byte

Description

See Intel64® Intel® Architecture Software Developer's Manual for the description of the
original x86 instruction.

Reloads the x87 FPU and the MXCSR state from the 512-byte memory image specified
in the source operand. This data should have been written to memory previously using
the FXSAVE instruction of the Intel® Xeon Phi" coprocessor , and in the same format as
required by the operating modes. The first byte of the data should be located on a 16-byte
boundary. There are three distinct layout of the FXSAVE state map: one for legacy and
compatibility mode, a second format for 64 bit mode with promoted operandsize, and the
third format is for 64 bit mode with default operand size.

Intel® Xeon Phi” coprocessor follows the same layouts as described in Intel64® Intel®
Architecture Software Developer's Manual.

The state image referenced with an FXRSTOR instruction must have been saved using an
FXSAVE instruction or be in the same format as required by the reference pages of FXSAVE
/ FXRSTORE instruction of the Intel® Xeon Phi” coprocessor. Referencing a state image
saved with an FSAVE, FNSAVE instruction or incompatible field layout will result in an
incorrect state restoration.

The FXRSTOR instruction does not flush pending x87 FPU exceptions. To check and raise
exceptions when loading x87 FPU state information with the FXRSTOR instruction, use an
FWAIT instruction after the FXRSTOR instruction.

The coprocessor will enforce the XMM state save area must be zero, otherwise a #GP will
be raised. The coprocessor does not use the content of the MXCSR_MASK field. The co-
processor will clear bits 0:127 of the ZMM state.

Any attempt to set reserved bits in control register MXCSR to 1 will produce a #GP fault:

Bit default Comment
MXCSR[7-12] 0 Note that this corresponds to Intel® SSE's IM/DM/ZM/0OM/UM/PM
MXCSR[16-19] O Reserved
MXCSR[20] 0 Reserved
MXCSR[22-31] O Reserved

Additionally, any attempt to set MXCSR.DUE (bit 21) to 0 will produce a #GP fault:

Reference Number: 327364-001

intel
L/ APPENDIX B. INTEL" XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT

Bit default Comment
MXCSR[21] 1 DUE (Disable Unmasked Exceptions) always enforced in Intel® Xeon Phi" coprocessor
Operation

// Clear bits [0:127] of ZMM states, enforce XMM state save area must be zero, ignore MXCSR_MA!
(x87 FPU, MXCSR) = MemLoad(SRC);

Flags Affected

None.

Intel” C/C++ Compiler Intrinsic Equivalent

void _fxrstor64 (void*);

Exceptions

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.
If trying to set illegal MXCSR values.

#MF If there is a pending x87 FPU exception.

#PF (fault-code) For a page fault.

#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.
If instruction is preceded by a LOCK prefix.

#NM If CRO.TS[bit 3] = 1.
If CRO.EM[bit 2] = 1.

#AC If this exception is disabled a general protection exception

(#GP) is signaled if the memory operand is not aligned on a
16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of
#AC is not guaranteed and may vary with implementation, as
follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In
addition, the width of the alignment check may also vary with
implementation. For instance, for a given implementation,

an alignment check exception might be signaled for a 2-byte
misalignment, whereas a general protection exception might
be signaled for all other misalignments (4-, 8-, or 16-byte

Reference Number: 327364-001 663

5
~r
(‘L

APPENDIX B. INTEL’ XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT

misalignments).

664 Reference Number: 327364-001

intel
L/ APPENDIX B. INTEL" XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT

B.5 FXSAVE - Save x87 FPU and MXCSR State

Opcode Instruction Description
OF AE /0 fxsave m512byte Save the x87 FPU and MXCSR register state to m512byte

Description

See Intel64® Intel® Architecture Software Developer's Manual for the description of the
original x86 instruction.

Saves the current state of the x87 FPU and the relevant state in the MXCSR register to a
512-byte memory location specified in the destination operand. The content layout of the
512 byte region depends on whether the processor is operating in non- 64 bit operating
modes or 64 bit sub-mode of I1A-32e mode.

Bytes 464:511 are available to software use. The processor does not write to bytes
464:511 of an FXSAVE area.

Intel® Xeon Phi” coprocessor follows a similar layout as described in Intel64® Intel® Ar-
chitecture Software Developer's Manual.

The processor will write 0s to the MXCSR_MASK field and the XMM state save area. The
processor does not save any portion of the ZMM register states into the FXSAVE state save
area.

Operation

if (64 bit Mode)
{
if (REX.W == 1)
{
// clear MXCSR_MASK field and XMM save area
MemStore (m512byte) = Save64BitPromotedFxsave(x87 FPU, MXCSR);
}
else {
// clear MXCSR_MASK field and XMM save area
MemStore (m512byte) = Save64BitDefaultFxsave(x87 FPU, MXCSR);
}
}
else {
// clear MXCSR_MASK field and XMM save area
MemStore (mb12byte) = SavelLegacyFxsave(x87 FPU, MXCSR);
}

Reference Number: 327364-001 665

5
~r
(‘l

APPENDIX B. INTEL’ XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

void _fxsave64 (void*);

Exceptions

#SS(0) If a memory address referencing the SS segment is
in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.
If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#MF If there is a pending x87 FPU exception.

#PF (fault-code) For a page fault.

#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.
If instruction is preceded by a LOCK prefix.

#NM If CRO.TS[bit 3] = 1.
If CRO.EM[bit 2] = 1.

#AC If this exception is disabled a general protection exception

(#GP) is signaled if the memory operand is not aligned on a
16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of
#AC is not guaranteed and may vary with implementation, as
follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In
addition, the width of the alignment check may also vary with
implementation. For instance, for a given implementation,

an alignment check exception might be signaled for a 2-byte
misalignment, whereas a general protection exception might
be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

666 Reference Number: 327364-001

(intel‘

APPENDIX B. INTEL" XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT

B.6 RDPMC-

Read Performance-Monitoring Counters

Opcode Instruction Description
OF 33 rdpmc Read

performance-
monitoring
counter
speci-

fied by

ECX

into
EDX:EAX.

Description

Loads the 40-bit performance-monitoring counter specified in the ECX register into reg-
isters EDX:EAX. The EDX register is loaded with the high-order 8 bits of the counter and
the EAX register is loaded with the low-order 32 bits. The counter to be read is specified
with an unsigned integer placed in the ECX register.

Intel® Xeon Phi” coprocessor has 2 performance monitoring counters per thread, speci-
fied with 0000H through 0001H, respectively, in the ECX register.

When in protected or virtual 8086 mode, the performance-monitoring counters enabled
(PCE) flag in register CR4 restricts the use of the RDPMC instruction as follows. When the
PCE flag is set, the RDPMC instruction can be executed at any privilege level; when the flag
is clear, the instruction can only be executed at privilege level 0. (When in real-address
mode, the RDPMC instruction is always enabled.)

The performance-monitoring counters can also be read with the RDMSR instruction,
when executing at privilege level 0.

The performance-monitoring counters are event counters that can be programmed to
count events such as the number of instructions decoded, number of interrupts received,
or number of cache loads. Appendix A, Performance-Monitoring Events, in the 1A-32
Intel® Architecture Software Developers Manual, Volume 3, lists the events that can be
counted for the Intel® Pentium® 4, Intel Xeon®, and earlier IA-32 processors.

The RDPMC instruction is not a serializing instruction; that is, it does not imply that all the
events caused by the preceding instructions have been completed or that events caused
by subsequent instructions have not begun. If an exact event count is desired, software
must insert a serializing instruction (such as the CPUID instruction) before and/or after
the RDPMC instruction.

The RDPMC instruction can execute in 16 bit addressing mode or virtual-8086 mode;
however, the full contents of the ECX register are used to select the counter, and the event
count is stored in the full EAX and EDX registers.

Reference Number: 327364-001 667

5
D

APPENDIX B. INTEL’ XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT

The RDPMC instruction was introduced into the IA-32 Architecture in the Intel® Pentium®
Pro processor and the Intel® Pentium® processor with Intel® MMX™ technology. The ear-
lier Intel® Pentium® processors have performance-monitoring counters, but they mustbe
read with the RDMSR instruction.

In 64 bit mode, RDPMC behavior is unchanged from 32 bit mode. The upper 32 bits of
RAX and RDX are cleared.

Operation

if (((ECX[31:0] >= 0) && (ECX[31:0] < 2)
&& ((CR4.PCE = 1) || (CPL = 0) || (CRO.PE = 0))
)

{
if (64 bit Mode)
{
RAX[31:0] = PMC(ECX[31:0])[31:0]; (* 40-bit read *)
RAX[63:32] = 0;
RDX[31:0] = PMC(ECX[31:0])[39:32];
RDX[63:32] = 0;
}
else
{
EAX = PMC(ECX[31:0])[31:0]; (* 40-bit read *)
EDX = PMC(ECX[31:0])[39:32];
}
}
else
{
#GP (0)
}
Flags Affected
None.

Intel’ C/C++ Compiler Intrinsic Equivalent

_int64 _rdpmc (int);

668 Reference Number: 327364-001

intel
L/ APPENDIX B. INTEL" XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT

Exceptions

TBD

Reference Number: 327364-001 669

APPENDIX B. INTEL’ XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT

5
D

B.7 STMXCSR - Store MXCSR Register

670

Opcode Instruction

OF AE /3 stmxcsr m32

Description
Store contents of MXCSR register to m32

Description

Stores the contents of the MXCSR control and status register to the destination operand.
The destination operand is a 32 bit memory location.

This instructions operation is the same in non-64 bit modes and 64 bit mode.

Operation

MemStore (m32) = MXCSR

Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

unsigned int _mm_getcsr (void)

Exceptions

#55(0)

#GP(0)

#PF (fault-code)
#NM

#UD

#AC(0)

If a memory address referencing the SS segment is
in a non-canonical form.

If the memory address is in a non-canonical form.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CS.L=0 or IA32_EFER.LMA=0.

If the lock prefix is used.

If alignment checking is enabled and an unaligned
memory reference is made while the current privilege
level is 3.

Reference Number: 327364-001

(intel‘

APPENDIX B. INTEL" XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT

B.8 CPUID - CPUID Identification

Opcode Instruction Description
OF A2 cpuid Returns processor identification and feature information to the EAX, EBX, ECX, and

EDX registers, as determined by the input value entered in EAX.

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If
a software procedure can set and clear this flag, the processor executing the procedure

supports the CPUID instruction. This instruction operates the same in non-64 bit modes
and 64 bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and
EDX registers. The instructions output is dependent on the contents of the EAX register
upon execution. For example, the following pseudo-code loads EAX with 00H and causes
CPUID to return a Maximum Return Value and the Vendor Identification String in the ap-
propriate registers:

MOV EAX, OOH
CPUID

Table B.4 through B.7 shows information returned, depending on the initial value loaded
into the EAX register. Table B.3 shows the maximum CPUID input value recognized for
each family of IA-32 processors on which CPUID is implemented. Since Intel® Pentium®
4 family of processors, two types of information are returned: basic and extended function
information. Prior to that, only the basic function information was returned. The first is
accessed with EAX=0000000xh while the second is accessed with EAX=8000000xh. If a
value is entered for CPUID.EAX that is invalid for a particular processor, the data for the
highest basic information leaf is returned.

CPUID can be executed at any privilege level to serialize instruction execution. Serializing
instruction execution guarantees that any modifications to flags, registers, and memory
for previous instructions are completed before the next instruction is fetched and exe-
cuted.

INPUT EAX = 0: Returns CPUID's Highest Value for Basic Processor Information and
the Vendor Identification String

When CPUID executes with EAX set to 0, the processor returns the highest value the CPUID
recognizes for returning basic processor information. The value is returned in the EAX
register (see Table B.4 and is processor specific. A vendor identification string is also
returned in EBX, EDX, and ECX. For Intel® processors, the string is "Genuinelntel” and is
expressed:

EBX
EDX

756e6547h (* "Genu", with G in the low nibble of BL *)
49656e69h (* "ineI", with i in the low nibble of DL *)

Reference Number: 327364-001

671

5
~r
(‘L

APPENDIX B. INTEL’ XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT

[A-32 Processors Highest Value in EAX
Basic Information Extended Function In-
formation
Earlier Intel486 Processors CPUID Not Imple- CPUID Not Imple-
mented mented
Later Intel486 Processors and | 01H Not Implemented
Intel® Pentium® Processors
Intel® Pentium® Pro and Intel® | 02H Not Implemented
Pentium® II Processors, Intel®
Celeron Processors
Intel® Pentium® III Processors 03H Not Implemented
Intel® Pentium® 4 Processors 02H 80000004H
Intel® Xeon® Processors 02H 80000004H
Intel® Pentium® M Processor 02H 80000004H
Intel® Pentium® 4 Processor sup- | 05H 80000008H
porting Intel® Hyper-Threading
Technology
Intel® Pentium® D Processor | 05H 80000008H
(8xx)
Intel® Pentium® D Processor | 06H 80000008H
(9xx)
Intel® Core” Duo Processor 0AH 80000008H
Intel® Core” 2 Duo Processor 0AH 80000008H
Intel® Xeon® Processor 3000, | 0AH 80000008H
3200,5100, 5300 Series
Intel® Xeon Phi" coprocessor 04H 80000008H

Table B.3: Highest CPUID Source Operand for IA-32 Processors

ECX = 6c¢65746eh (* "ntel", with n in the low nibble of CL *)

INPUT EAX = 1: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 1, version information is returned in EAX. Extended
family, extended model, model, family, and processor type for Intel® Xeon Phi" coproces-
sor is as follows:

* Extended Model: 0000B
Extended Family: 0000_0000B
¢ Model: *see table*

Family: 1011B

e Processor Type: 00B

INPUT EAX = 1: Returns Additional Information in EBX

When CPUID executes with EAX set to 1, additional information is returned to the EBX
register:

e Brand index (low byte of EBX) - this number provides an entry into a brand string

table that contains brand strings for 1A-32 processors. More information about this
field is provided later in this section.

672 Reference Number: 327364-001

intel
L—/ APPENDIX B. INTEL" XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT
0

EAX Information Provided about the Processor Return value
Basic CPUID Information
H EAX Maximum Input Value for Basic CPUID Information 1
EBX "Genu" "Genu"
ECX "ntel" "ntel"
EDX "inel" "inel"
Basic and Extended Feature Information
1H
EAX Version Information: Type, Family, Model, and Stepping
ID
Bits 3-0: Stepping Id XXXX
Bits 7-4: Model 0001B
Bits 11-8: Family ID 1011B
Bits 13-12: Type 00B
Bits 19-16: Extended Model Id 00B
Bits 27-20: Extended Family Id 00000000B
EBX Bits 7-0: Brand Index 0
Bits 15-8: CLFLUSH/CLEVICTn line size (Value x 8 = cache | 8
line size in bytes)
Bits 23-16: Maximum number oflogical processorsinthis | 248
physical package.
Bits 31-24: Initial APIC ID XXX
ECX Extended Feature Information (see Tables B.10) 00000000H
EDX Feature Information (see Tables B.8 and B.9) 110193FFH
Cache and TLB Information
2H EAX Reserved 0
EBX Reserved 0
ECX Reserved 0
EDX Reserved 0
Serial Number Information
3H EAX Reserved 0
EBX Reserved 0
ECX Reserved 0
EDX Reserved 0

Table B.4: Information Returned by CPUID Instruction

e CLFLUSH/CLEVICTn instruction cache line size (second byte of EBX) - this number
indicates the size of the cache line flushed with CLEVICT1 instruction in 8-byte incre-
ments. This field was introduced in the Intel® Pentium® 4 processor.

e Local APIC ID (high byte of EBX) - this number is the 8-bit ID that is assigned to the
local APIC on the processor during power up. This field was introduced in the Intel®
Pentium® 4 processor.

INPUT EAX = 1: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 1, feature information is returned in ECX and EDX.

Reference Number: 327364-001 673

5
~r
(‘L

APPENDIX B. INTEL’ XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT

EAX Information Provided about the Processor Return value
CPUID leaves > 3 < 80000000 are visible only when
IA32_MISC_ENABLES.BOOT_NT4[bit 22] = 0 (default).

Deterministic Cache Parameters Leaf ECX=0/1/2

4H Note: 04H output also depends on the inital value in ECX.

EAX Bits 4-0: Cache Type (0 = Null - No more caches; 1 = Data Cache | 2/1/1
2 = Instruction Cache, 3 = Unified Cache)

Bits 7-5: Cache Level (starts at 1) 1/1/2
Bits 8: Self Initializing cache level (does not need SW initializa- | 1/1/1
tion)

Bits 9: Fully Associative cache 0/0/0
Bits 10: Write-Back Invalidate 0/1/1
Bits 11: Inclusive (of lower cache levels) 0/1/1
Bits 13-12: Reserved 0

Bits 25-14: Maximum number of threads sharing this cacheina | */*/*
physical package (minus one)
Bits 31-26: Maximum number of processor cores in this physical | */*/*
package (minus one)

EBX Bits 11-00: L = System Coherency Line Size (minus 1) 63/63/63
Bits 21-12: P = Physical Line partitions (minus 1) 0/0/0
Bits 31-22: W = Ways of associativity (minus 1) 7/7]7
ECX S =Number of Sets (minus 1) 63/63/1023
EDX Reserved=0 0

Table B.5: Information Returned by CPUID Instruction (Contd.)

 Table B.8 through Table B.9 show encodings for EDX.
e Table B.10 show encodings for ECX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel® to properly
interpret feature flags.

INPUT EAX = 2: Cache and TLB Information Returned in EAX, EBX, ECX, EDX

Intel® Xeon Phi" coprocessor considers leaf 2 to be reserved, so no cache and TLB infor-
mation is returned when CPUID executes with EAX set to 2.

INPUT EAX = 3: Serial Number Information

Intel® Xeon Phi” coprocessor does not implement Processor Serial Number support, as
signalled by feature bit CPUID.EAX[01h].EDX.PSN. Therefore, all the returned fields are
considered reserved.

INPUT EAX = 4: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 4 and ECX contains an index value, the processor
returns encoded data that describe a set of deterministic cache parameters (for the cache
level associated with the input in ECX).

674 Reference Number: 327364-001

5
~r
(‘L

APPENDIX B. INTEL" XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT

EAX Information Provided about the Processor Return value
Extended Function CPUID Information
80000000H | EAX Maximum Input Value for Extended CPUID Information 80000008H
EBX Reserved 0
ECX Reserved 0
EDX Reserved 0
Feature Information
80000001H | EAX Reserved 0
EBX Reserved 0
ECX Bit 0: LAHF/SAHF available in 64 bit mode 1
Bits 31-1: Reserved 0
EDX Bits 10-0: Reserved 0
Bit 11: SYSCALL/SYSRET available (in 64 bit mode) 1
Bits 19-12: Reserved 0
Bit 20: Execute Disable Bit available 0
Bits 28-21: Reserved 0
Bit 29: Intel® 64 Technology available 1
Bits 31-30: Reserved 0
Processor Brand String
80000002H | EAX Processor Brand String 0
EBX Processor Brand String Continued 0
ECX Processor Brand String Continued 0
EDX Processor Brand String Continued 0
80000003H | EAX Processor Brand String Continued 0
EBX Processor Brand String Continued 0
ECX Processor Brand String Continued 0
EDX Processor Brand String Continued 0
80000004H | EAX Processor Brand String Continued 0
EBX Processor Brand String Continued 0
ECX Processor Brand String Continued 0
EDX Processor Brand String Continued 0
Reserved
80000005H | EAX Reserved 0
EBX Reserved 0
ECX Reserved 0
EDX Reserved 0

Table B.6: Information Returned by CPUID Instruction. 8000000xH leafs.

Software can enumerate the deterministic cache parameters for each level of the cache hi-
erarchy starting with an index value of 0, until the parameters report the value associated
with the cache type field is 0. The architecturally defined fields reported by deterministic
cache parameters are documented in Table B.5. The associated cache structures described
by the different ECX descriptors are:

¢ ECX=0: Instruction Cache (I1)
e ECX=1: L1 Data Cache (L1)
e ECX=2: L2 Data Cache (L2)

Reference Number: 327364-001 675

APPENDIX B. INTEL’ XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT

5
~r
(‘L

676

EAX Information Provided about the Processor Return value
80000006H | EAX Reserved 0
EBX Reserved 0
ECX Bits 7-0: L2 cache Line size in bytes 64
Bits 15-12: L2 associativity field 06H
Bits 31-16: L2 cache size in 1K units 512
EDX Reserved 0
Reserved

80000007H| EAX Reserved
EBX Reserved
ECX Reserved
EDX Reserved
Virtual /Physical Address size
80000008H | EAX Bits 7-0: #Physical Address Bits 40

o O o o

Bits 15-8: #Virtual Address Bits 48
EBX Reserved 0
ECX Reserved 0
EDX Reserved 0

Table B.7: Information Returned by CPUID Instruction. 8000000xH leafs. (Contd.)

Operation

IA32_BIOS_SIGN_ID MSR = Update with installed microcode revision number;

case (EAX)
{
EAX == 0:
EAX = O1H; // Highest basic function CPUID input value
EBX = "Genu";
ECX = "inel";
EDX = "ntel";
break;
EAX = 2H:
// Cache and TLB information
EAX = 0;
EBX = 0;
ECX = 0;

EDX = 0
break;
EAX = 3H:

// PSN features
EAX =
EBX =
ECX =
EDX =
break;
EAX = 4H:

)

’
’

’

O O O O

’

Reference Number: 327364-001

5
~r
(‘L

APPENDIX B. INTEL" XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT

// Deterministic Cache Parameters Leaf;
EAX = *see tablex
EBX = *see tablex
ECX = *see tablex
EDX = *see tablex

break;

EAX = 20000000H;
EAX = O1H; // Reserved
EBX = 0; // Reserved
ECX = 0; // Reserved
EDX = 0; // Reserved
break;

EAX = 20000001H;
EAX = 0; // Reserved
EBX = 0; // Reserved
ECX = 0; // Reserved
EDX = 00000010H; // Reserved
break;

EAX = 80000000H;
// Extended leaf

EAX = 08H; // Highest extended function CPUID input value
EBX = 0; // Reserved
ECX = 0; // Reserved
EDX = 0; // Reserved
break;

EAX = 80000001H;
EAX = 0; // Reserved
EBX = 0; // Reserved
ECX[0] =1; // LAHF/SAHF support in 64 bit mode
ECX[31:1] = 0; // Reserved
EDX[10:0] = 0; // Reserved
EDX[11] 1; // SYSCALL/SYSRET available in 64 bit mode
EDX[19:12] = 0; // Reserved
EDX [20] = 0; // Execute Disable Bit available
EDX[28:21] = 0; // Reserved
EDX [29] = 1; // Intel(R) 64 Technology available
EDX[31:30] = 0; // Reserved
break;

EAX = 80000002H;
EAX = 0; // Processor Brand String
EBX = 0; // Processor Brand String Continued
ECX = 0; // Processor Brand String Continued
EDX = 0; // Processor Brand String Continued
break;

EAX = 80000003H;
EAX = 0; // Processor Brand String Continued
EBX = 0; // Processor Brand String Continued
ECX = 0; // Processor Brand String Continued
EDX = 0; // Processor Brand String Continued
break;

EAX = 80000004H;
EAX = 0; // Processor Brand String Continued

Reference Number: 327364-001 677

intel
APPENDIX B. INTEL’ XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT Q—/

EBX = 0; // Processor Brand String Continued
ECX = 0; // Processor Brand String Continued
EDX = 0; // Processor Brand String Continued
break;
EAX = 80000005H;
EAX = 0; // Reserved
EBX = 0; // Reserved
ECX = 0; // Reserved
EDX = 0; // Reserved
break;
EAX = 80000006H;
EAX = 0; // Reserved
EBX = 0; // Reserved
ECX[7:0] = 64; // L2 cache Line size in bytes
ECX[15:12] = 6; // L2 associativity field (8-way)
ECX[31:16] = 256; // L2 cache size in 1K units
EDX = 0; // Reserved
break;
EAX = 80000007H;
EAX = 0; // Reserved
EBX = 0; // Reserved
ECX = 0; // Reserved
EDX = 0; // Reserved
break;
EAX = 80000008H;
EAX[7:0] = 40; // Physical Address bits
EAX[15:8] = 48; // Virtual Address bits
EAX[31:16] = 0; // Reserved
EBX = 0; // Reserved
ECX = 0; // Reserved
EDX = 0; // Reserved
break;
default, EAX == 1H:
EAX[3:0] = Stepping ID;
EAX[7:4] = *gsee tablex // Model
EAX[11:8] = 1011B; // Family
EAX[13:12] = 00B; // Processor type
EAX[15:14] = 0OB; // Reserved
EAX[19:16] = 0000B; // Extended Model
EAX[23:20] = 00000000B; // Extended Family
EAX[31:24] = OOH; // Reserved;
EBX[7:0] = Q0O0H; // Brand Index (* Reserved if the value is zero *)
EBX[15:8] = 8; // CLEVICT1/CLFLUSH Line Size (x8)
EBX[23:16] = 248; // Maximum number of logical processors
EBX[31:24] = Initial Apic ID;
ECX = 00000000H; // Feature flags
EDX = 110193FFH; // Feature flags
break;

678 Reference Number: 327364-001

intel
L/ APPENDIX B. INTEL' XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT
Flags Affected

None.

Intel’ C/C++ Compiler Intrinsic Equivalent

None

Exceptions

None.

Reference Number: 327364-001 679

intel
APPENDIX B. INTEL’ XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT L—/

Bit | Mnemonic Description Return
Value
0 FPU Floating-point Unit On-Chip. The processor contains an x87 FPU. 1

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, in- | 1

cluding CR4.VME for controlling the feature, CR4.PVI for protected mode vir-
tual interrupts, software interrupt indirection, expansion of the TSS with the
software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.

2 DE Debugging Extensions. Support for I/0 breakpoints, including CR4.DE for | 1
controlling the feature, and optional trapping of accesses to DR4 and DR5.
3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including | 1

CRA4.PSE for controlling the feature, the defined dirty bit in PDE (Page Directory
Entries), optional reserved bit trapping in CR3, PDEs, and PTEs.

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD | 1
for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR | 1
and WRMSR instructions are supported. Some of the MSRs are implementation
dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are sup- | 1

ported: extended page table entry formats, an extra level in the page transla-
tion tables is defined, 2-MByte pages are supported instead of 4 Mbyte pages
if PAE bitis 1. The actual number of address bits beyond 32 is not defined, and
is implementation specific.

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks, in- | 1
cluding CR4.MCE for controlling the feature. This feature does not define
the model-specific implementations of machine-check error logging, report-
ing, and processor shutdowns. Machine Check exception handlers may have to
depend on processor version to do model specific processing of the exception,
or test for the presence of the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) in- | 1
struction is supported (implicitly locked and atomic).
9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt | ?

Controller (APIC), responding to memory mapped commands in the physical
address range FFFEOOOOH to FFFEOFFFH (by default - some processors permit
the APIC to be relocated).

10 | Reserved Reserved 0

11 | SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and as- | 0
sociated MSRs are supported.

12 | MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR | 1

contains feature bits that describe what memory types are supported, how
many variable MTRRs are supported, and whether fixed MTRRs are supported.
13 | PGE PTE Global Bit. The global bit in page directory entries (PDEs) and page table | 0
entries (PTEs) is supported, indicating TLB entries that are common to differ-
ent processes and need not be flushed. The CR4.PGE bit controls this feature.
14 | MCA Machine Check Architecture. The Machine Check Architecture, which pro- | 0
vides a compatible mechanism for error reporting in P6 family, Pentium® 4,
Intel® Xeon®processors, and future processors, is supported. The MCG_CAP
MSR contains feature bits describing how many banks of error reporting MSRs
are supported.

Table B.8: Feature Information Returned in the EDX Register (CPUID.EAX[01h].EDX)

680 Reference Number: 327364-001

APPENDIX B. INTEL" XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT

Mnemonic

Description

Return
Value

CMOV

Conditional Move Instructions. The conditional move instruction CMOV is
supported. In addition, if x87 FPU is present as indicated by the CPUID.FPU
feature bit, then the FCOMI and FCMOV instructions are supported

0

16

PAT

Page Attribute Table. Page Attribute Table is supported. This feature aug-
ments the Memory Type Range Registers (MTRRs), allowing an operating sys-
tem to specify attributes of memory on a 4K granularity through a linear ad-
dress.

17

PSE-36

36-Bit Page Size Extension. Extended 4-MByte pages that are capable of ad-
dressing physical memory beyond 4 GBytes are supported. This feature indi-
cates that the upper four bits of the physical address of the 4-MByte page is
encoded by bits 13-16 of the page directory entry.

18

PSN

Processor Serial Number. The processor supports the 96-bit processor iden-
tification number feature and the feature is enabled.

19

CLFSH

CLFLUSH Instruction. CLFLUSH Instruction is supported.

20

Reserved

Reserved

o

21

DS

Debug Store. The processor supports the ability to write debug information
into a memory resident buffer. This feature is used by the branch trace store
(BTS) and precise event-based sampling (PEBS) facilities (see Chapter 15, De-
bugging and Performance Monitoring, in the 1A-32 Intel® Architecture Soft-
ware Developers Manual, Volume 3).

22

ACPI

Thermal Monitor and Software Controlled Clock Facilities. The processor im-
plements internal MSRs that allow processor temperature to be monitored
and processor performance to be modulated in predefined duty cycles under
software control.

23

Intel®
MMX

Intel® MMX" Technology. The processor supports the Intel® MMX" technol-
ogy.

24

FXSR

FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions
are supported for fast save and restore of the floating-point context. Presence
of this bit also indicates that CR4.0SFXSR is available for an operating system
to indicate that it supports the FXSAVE and FXRSTOR instructions.

25

Intel® SSE

Intel® SSE. The processor supports the Intel® SSE extensions.

26

Intel® SSE2

Intel® SSE2. The processor supports the Intel® SSE2 extensions.

o

27

SS

Self Snoop. The processor supports the management of conflicting memory
types by performing a snoop of its own cache structure for transactions issued
to the bus.

28

HTT

Multi-Threading. The physical processor package is capable of supporting
more than one logical processor.

29

™

Thermal Monitor. The processor implements the thermal monitor automatic
thermal control circuitry (TCC).

30

Reserved

Reserved

31

PBE

Pending Break Enable. The processor supports the use of the FERR#/PBE#
pin when the processor is in the stop-clock state (STPCLK# is asserted) to sig-
nal the processor that an interrupt is pending and that the processor should
return to normal operation to handle the interrupt. Bit 10 (PBE enable) in the
[A32_MISC_ENABLE MSR enables this capability.

Table B.9: Feature Information Returned in the EDX Register (CPUID.EAX[01h].EDX) (Contd.)

Reference Number: 327364-001

681

APPENDIX B. INTEL’ XEON PHI" COPROCESSOR 64 BIT MODE SCALAR INSTRUCTION SUPPORT

(intel

Bit # Mnemonic Description Return
Value

0 Intel® SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the | 0
processor supports this technology.

1-2 Reserved Reserved 0

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor sup- | 0
ports this feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor | 0
supports the extensions to the Debug Store feature to allow for
branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the pro- | 0
cessor supports this technology.

6 Reserved Reserved 0

7 EST Enhanced Intel® SpeedStep® technology. A value of 1 indicates | 0
that the processor supports this technology.

8 T™M2 Thermal Monitor 2. A value of 1 indicates whether the proces- | 0
sor supports this technology.

9 SSSE3 Supplemental Streaming SIMD Extensions 3 (SSSE3). A value | 0
of 1 indicates the processor supports this technology.

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode | 0
can be set to either adaptive mode or shared mode. A value of
0 indicates this feature is not supported. See definition of the
[A32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode)
for details.

11-12 Reserved Reserved 0

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature | 0
is available. See the CMPXCHG8B/CMPXCHG16BCompare and
Exchange Bytes section in Volume 2A.

14 xTPR Update xTPR Update Control. A value of 1 indicates that the processor | 0

Control supports changing IA32_MISC_ENABLES[bit 23].

15 PDCM Perf/Debug Capability MSR. A value of 1 indicates that the pro- | 0
cessor supports the performance and debug feature indication
MSR

18-16 Reserved Reserved 0

19 Intel® SSE4.1 Intel® Streaming SIMD Extensions 4.1 (Intel® SSE4.1). A value | 0
of 1 indicates the processor supports this technology.

20 Intel® SSE4.2 Intel® Streaming SIMD Extensions 4.2 (Intel® SSE4.2). A value | 0
of 1 indicates the processor supports this technology.

22-21 Reserved Reserved 0

23 POPCNT POPCNT. A value of 1 indicates the processor supports the | 0¢
POPCNT instruction.

31-24 Reserved Reserved 0

Table B.10: Feature Information Returned in the ECX Register (CPUID.EAX[01h].ECX)

aCPUID bit 23 erroneously indicates that POPCNT is not supported. Intel® Xeon Phi" coprocessor does support the POPCNT instruction.

See Appendix A for more information.

682

Reference Number: 327364-001

5
D

APPENDIX C. FLOATING-POINT EXCEPTION SUMMARY

Appendix C

Floating-Point Exception Summary

C.1 Instruction floating-point exception summary

Table C.3 shows all those instruction that can generate a floating-point exception. Each type of exception is
shown per instruction. For each table entry you will find one of the following symbols:

e Nothing : Exception of that type cannot be produced by that instruction.

* Yyo:n: The instruction can produce that exception. The exception may be produced by either the operation
or the data-type conversion applied to memory operand.

* Y.ono: The instruction can produce that exception. That exception can only be produced by the data-type
conversion applied to memory operand.

* Y,per: The instruction can produce that exception. The exception can only be produced by the operation.

The data-type conversion applied to the memory operand cannot produce any exception.

|| Instruction #1 | #D | #Z | #0 [#U | #P ||

Vaddpd Yboth Yoper Yoper Yoper Yoper
Vaddps Yboth Yoper Yope’r Yoper Yoper
Vaddnpd Yboth Yopcr Yoper Yopcr Yoper
Vaddnps Yboth Yoper Yoper Yoper Yoper
Vaddsetsps Yboth Yoper Yoper Yoper Yoper
vblendmps Yconw

vbroadcastf32x4 | Yeonw

vbroadcastss Yconv

chppd Yboth YOpE’I’

vcmpps Yootn Yoper

VCthdeS Yboth YopET Yoper YopET Yope'r
vevtps2pd Yooth | Yoper

vevtfxpntdqZ2ps Yoper
vevtfxpntpd2dq Yvotn Yoper
vevtfxpntpd2udq | Yeorn Yoper

Reference Number: 327364-001

683

APPENDIX C. FLOATING-POINT EXCEPTION SUMMARY

5
~r
(‘1

684

|| Instruction | #1 | #D | #Z | #0 [#U | #P ||
vevtfxpntps2dq Yoot Yoper
vevtfxpntps2udq | Yeorn Yoper
vevtfxpntudq2ps Yoper
vexp223ps Yoper
vfixupnanpd Yootn
vfixupnanps Yooih
vfmadd132pd Yiotr, | Yoper Yoper | Yoper | Yoper
meadd132ps Yboth Yoper Yope’r Yoper Yoper
vfmadd213pd Yiotr, | Yoper Yoper | Yoper | Yoper
vimadd?2 13p$ Yboth Yoper Yope’r Yoper Yoper
vfmadd23 1pd Yboth Yoper Yoper Yoper Yope'r‘
vfmadd23 1pS Yboth Yoper Yope’r Yoper Yoper
vfmadd233ps Yoot | Yoper Yoper | Yoper | Yoper
vifmsub132pd Yootr, | Yoper Yoper | Yoper | Yoper
vifmsub132ps Yioth | Yoper Yoper | Yoper | Yoper
vifmsub?2 13pd Yboth Yoper Yope?" Yoper Yoper
vifmsub213ps Yootr, | Yoper Yoper | Yoper | Yoper
vfmsub23 1pd Yboth Yoper Yoper Yoper Yoper
vimsub231ps Yootr, | Yoper Yoper | Yoper | Yoper
vfnmadd132pd Yboth Yoper Yoper Yoper Yoper
vfnmadd132ps Yoot | Yoper Yoper | Yoper | Yoper
vfnmadd213pd Yootr, | Yoper Yoper | Yoper | Yoper
vinmadd?2 13pS Yboth Yoper Yope’r Yoper Yoper
vinmadd231pd Yootr, | Yoper Yoper | Yoper | Yoper
vinmadd231ps Yootr, | Yoper Yoper | Yoper | Yoper
vinmsub132pd Yiotr, | Yoper Yoper | Yoper | Yoper
vinmsub132ps Yootr, | Yoper Yoper | Yoper | Yoper
vinmsub213pd Yootr, | Yoper Yoper | Yoper | Yoper
vinmsub213ps Yooth | Yoper Yoper | Yoper | Yoper
vinmsub231pd Yiotr | Yoper Yoper | Yoper | Yoper
vinmsub23 1pS Yboth Yoper Yope’r Yoper Yoper
vgatherdps Yeonw
vgetexppd Yooth | Yoper
vgetexpps Yooth | Yoper
vgetmantpd Yootn | Yoper
vgetmantps Yootr | Yoper
vgmaxpd Yootn | Yoper
vgmaxps Yooth | Yoper
vgmaxabsps Yootn | Yoper
nglnpd Yootn Yoper
vgminps Yooth | Yoper
vloadunpackhps | Yconw
vloadunpacklps Yconv
VlngpS Yboth Yoper
vmovaps (load) Yconw
vmovaps (Store) Ycon'u Yconv Ycon'u Yconv Yconv
Vmulpd Yboth Yoper Yoper Yoper Yope'r‘
VmUIpS Yboth Yoper Yoper Yoper Yoper

Reference Number: 327364-001

5
~r
(‘l

APPENDIX C. FLOATING-POINT EXCEPTION SUMMARY

|| Instruction | #1 | #D | #Z | #0 [#U | #P ||

vpackstorehps Yeonv | Yeonw Yeonv | Yeonw | Yeonw
vpackstorelps Yeonv | Yeonw Yeonv | Yeonv | Yeonw
vrcp23ps Yootn Yoper

vrndfxpntpd Yooih Yoper
vrndfxpntps Yooih Yoper
vrsqrt23ps Yooih Yoper

vscaleps Yoper Yoper Yoper Yoper Yoper
Vscatterdps Yeonv | Yeonw Yeonv | Yeonv | Yeonw
VSprd Yboth Yoper Yoper Yoper Yoper
VSprS Yboth Yoper Yoper Yoper Yoper
VSUbI'pd Yboth Yoper Yoper Yoper Yoper
Vsubrps Yboth Yoper Yoper Yoper Yoper

C.2 Conversion floating-point exception summary

|| Float-to-float | | |
Float16 to float32 SwizzUpConv/UpConv | Invalid (on SNaN)

Float32 to float64 VCVTPS2PD Invalid (on SNaN), Denormal

Float32 to floatl6 DownConv Invalid (on SNaN), Overflow, Underflow,
Precision, Denormal

Float64 to float32 VCVTPD2PS Invalid (on SNaN), Overflow, Underflow,

Precision, Denormal

| Integer-to-float \ \ |

Uint8/16 to float32 UpConv None

Sint8/16 to float32 UpConv None

Uint32 to float32 VCVTFXPNTUDQ2PS | Precision

Sint32 to float32 VCVTFXPNTDQZ2PS Precision

Uint32 to float64 VCVTUDQZPD None

Sint32 to float64 VCVTDQ2PD None

| Float-to-integer \ \ |

Float32 to uint8/16 DownConv Invalid (on NaN, out-of-range), Precision
(if in-range but input not integer)

Float32 to sint8/16 DownConv Invalid (on NaN, out-of-range), Precision
(if in-range but input not integer)

Float32 to uint32 VCVTFXPNTPS2UDQ | Invalid (on NaN, out-of-range), Precision
(if in-range but input not integer)

Float32 to sint32 VCVTFXPNTPS2DQ Invalid (on NaN, out-of-range), Precision
(if in-range but input not integer)

Float64 to uint32 VCVTFXPNTPD2UDQ | Invalid (on NaN, out-of-range), Precision
(if in-range but input not integer)

Float64 to sint32 VCVTFXPNTPD2DQ Invalid (on NaN, out-of-range), Precision

(if in-range but input not integer)

Reference Number: 327364-001 685

APPENDIX C. FLOATING-POINT EXCEPTION SUMMARY

(intel‘“

Out-of-range values are dependent on operation definition and rounding mode. Table C.3 and Table C.4 describe
maximum and minimum allowed values for float to integer and float to float conversion respectively. Please note
that presented ranges are considered after “Denormals Are Zero (DAZ)" are applied.

Those entries in Table C.4 labelled with an asterisk(*), are not required for the Intel® Xeon Phi” coprocessor.

C.3 Denormal behavior

|| Instruction | Treat Input Denormals As Zeros | Flush Tiny Results To Zero ||

vaddpd MXCSR.DAZ MXCSR.FZ
vaddps MXCSR.DAZ MXCSR.FZ
vaddnpd MXCSR.DAZ MXCSR.FZ
vaddnps MXCSR.DAZ MXCSR.FZ
vaddsetsps MXCSR.DAZ MXCSR.FZ
vblendmpd NO NO

vblendmps NO NO

vemppd MXCSR.DAZ Not Applicable
vempps MXCSR.DAZ Not Applicable
vevtdq2pd Not Applicable Not Applicable
vevtpd2ps MXCSR.DAZ MXCSR.FZ
vevtps2pd MXCSR.DAZ Not Applicable
vevtudq2pd Not Applicable Not Applicable
vevtfxpntdq2ps Not Applicable Not Applicable
vevtfxpntpd2dq MXCSR.DAZ Not Applicable
vevtfxpntpd2udq MXCSR.DAZ Not Applicable
vevtfxpntps2dq MXCSR.DAZ Not Applicable
vevtfxpntps2udq MXCSR.DAZ Not Applicable
vevtfxpntudqg2ps Not Applicable Not Applicable
vexp223ps Not Applicable YES
vfixupnanpd MXCSR.DAZ NO
vfixupnanps MXCSR.DAZ NO
vfmadd132pd MXCSR.DAZ MXCSR.FZ
vfmadd132ps MXCSR.DAZ MXCSR.FZ
vfmadd213pd MXCSR.DAZ MXCSR.FZ
vfmadd213ps MXCSR.DAZ MXCSR.FZ
vfmadd231pd MXCSR.DAZ MXCSR.FZ
vfmadd231ps MXCSR.DAZ MXCSR.FZ
vfmadd233ps MXCSR.DAZ MXCSR.FZ
vfmsub132pd MXCSR.DAZ MXCSR.FZ
vfmsub132ps MXCSR.DAZ MXCSR.FZ
vfmsub213pd MXCSR.DAZ MXCSR.FZ
vfmsub213ps MXCSR.DAZ MXCSR.FZ
vfmsub231pd MXCSR.DAZ MXCSR.FZ
vfmsub231ps MXCSR.DAZ MXCSR.FZ
vfnmadd132pd MXCSR.DAZ MXCSR.FZ

686

Reference Number: 327364-001

5
~r
(‘1

APPENDIX C. FLOATING-POINT EXCEPTION SUMMARY
| Instruction | Treat Input Denormals As Zeros | Flush Tiny Results To Zero ||

vfnmadd132ps MXCSR.DAZ MXCSR.FZ
vinmadd213pd MXCSR.DAZ MXCSR.FZ
vfnmadd213ps MXCSR.DAZ MXCSR.FZ
vinmadd231pd MXCSR.DAZ MXCSR.FZ
vfnmadd231ps MXCSR.DAZ MXCSR.FZ
vinmsub132pd MXCSR.DAZ MXCSR.FZ
vfnmsub132ps MXCSR.DAZ MXCSR.FZ
vinmsub213pd MXCSR.DAZ MXCSR.FZ
vfnmsub213ps MXCSR.DAZ MXCSR.FZ
vifnmsub231pd MXCSR.DAZ MXCSR.FZ
vfnmsub231ps MXCSR.DAZ MXCSR.FZ
vgatherdpd NO NO
vgatherdps NO NO
vgatherpfOdps NO NO
vgatherpfOhintdpd NO NO
vgatherpfOhintdps NO NO
vgatherpfldps NO NO

vgetexppd MXCSR.DAZ Not Applicable
vgetexpps MXCSR.DAZ Not Applicable
vgetmantpd MXCSR.DAZ Not Applicable
vgetmantps MXCSR.DAZ Not Applicable
vgmaxpd MXCSR.DAZ NO

vgmaxps MXCSR.DAZ NO
vgmaxabsps MXCSR.DAZ NO

vgminpd MXCSR.DAZ NO

vgminps MXCSR.DAZ NO
vloadunpackhpd NO NO
vloadunpackhps NO NO
vloadunpacklpd NO NO
vloadunpacklps NO NO

vlog2ps YES YES

vmovapd (load) NO NO

vmovapd (store) NO (DAZ¥) NO

vmovaps (load) NO NO

vmovaps (store) NO (DAZ¥) NO
vmovnrapd (load) NO NO
vmovnrapd (store) NO (DAZ¥) NO
vmovnraps (load) NO NO
vmovnraps (store) NO (DAZ¥) NO
vmovnrngoapd (load) | NO NO
vmovnrngoapd (store) | NO (DAZ*) NO
vmovnrngoaps (load) NO NO
vmovnrngoaps (store) | NO (DAZ*) NO

vmulpd MXCSR.DAZ MXCSR.FZ
vmulps MXCSR.DAZ MXCSR.FZ
vpackstorehpd NO (DAZ¥) NO
vpackstorehps NO (DAZ*) NO
vpackstorelpd NO (DAZ*) NO

Reference Number: 327364-001

687

APPENDIX C. FLOATING-POINT EXCEPTION SUMMARY

5
D

688

| Instruction | Treat Input Denormals As Zeros | Flush Tiny Results To Zero ||
vpackstorelps NO (DAZ*) NO
vrcp23ps YES YES
vrndfxpntpd MXCSR.DAZ NO
vrndfxpntps MXCSR.DAZ NO
vrsqrt23ps YES YES
vscaleps MXCSR.DAZ MXCSR.FZ
vscatterdpd NO (DAZ¥) NO
vscatterdps NO (DAZ¥) NO
vscatterpfOdps NO NO
vscatterpfOhintdpd NO NO
vscatterpfOhintdps NO NO
vscatterpfldps NO NO
vsubpd MXCSR.DAZ MXCSR.FZ
vsubps MXCSR.DAZ MXCSR.FZ
vsubrpd MXCSR.DAZ MXCSR.FZ
vsubrps MXCSR.DAZ MXCSR.FZ

(*) FP32 down-conversion obeys MXCSR.DAZ

Reference Number: 327364-001

APPENDIX C. FLOATING-POINT EXCEPTION SUMMARY

intel

a3uey pIfeA UI/Xe| 19331ul-03-180[€ 9S[qelL

(AT + 0T - TE.2-) J3PT00000009TIX0 (dInT - TE.2) PP IHXO 7d 0AZAdLNdXLLADA | ZEIUIS 01 $91e0[q
(dinT + 0T - TE.2Z-) 100000002 T9X0 (0T - T£-2) 00000233HPTHX0 nyg 0AZAdLNIX4LADA | ZEIUIS 01 y91e0[]
(1£-.2-) 0000000000000 TX(Q (dInT - T€.2) J3IBIIP THX0 ay 0AZAdLNdXLLADA | ZEIUIS 01 $9180[4
(S0-1£-2-) 00000T0000000°T9X((dInT - §°0 - T€.2) JIPIIHHIPIFX0 N 0AZAdLNdXLLADA | ZEIUIS 03 $91B0[]
(dInT + 0°T-) J33333333333939X0 (dInT - Z€.7) BHBIIBIPTYXO0 Zd 0ANZAdLNIXALADA | Z€IUm 01 $91e0[]
(dinT + 0°1-) 333333333333939X0 (0T - 2£-2) 000003332 THX0 g 0dNZAdLNdXALADA | ZEIUIN 03 $93e0[q
(0°0-) 0000000000000008%0 (dinT - Z£.27) BHBIHIPTYX0 ad 0ANZAdLNIXALADA | Z€Ium 01 $91e0[]
(50-) 0000000000000239%0 (dInT - §°0 - Z€.2) JHIRHIBIPTYX0 NI 0ANZAdLNIXALADA | Z€Iun 01 $91e0[q
(1£-2-) 00000052%0 (dint - 1£.2) 333339¥X0 Zd 0UAZSdLNdXALADA | Z£iuis 01 Zgreo[]
(T£-2-) 00000052%0 (dInT - T£.27) 3333390 ml 0dZSdLNdXALADA | Z€uls 03 Zgreolq
(1£-2-) 0000005%0 (dint - 1£.2) 333339%X0 ad 0UAZSdLNdXALADA | Z£iuis 03 Zgreo[]
(T€£-2-) 0000002%0 (dInT - T£.2) 333332¥X0 NY 0AZSALNIXALADA | ZSiuls 01 ZEIeo[d

(dint + 0°1-) 3333 L39X0 (dint - 2£.2) 3IILIVXO ANl 0ANZSALNdXALADA | Z£ium 03 Zg1eo[d

(dinT +0°1-) 3333 L39X0 (dint - 2€.2) IIIILITX0 ny 0ANZSALNdXALADA | Z€Iun 01 Zgeolq

(0°0-) 00000008%0 (dint - 2£.2) 3IILIVXO ad 0ANZSAINIXALADA | Zgium 03 zgjeold

(s°0-) 00000039%0 (dinT - 2£.2) 3IBLIVXO NY 0ANZSALNdXALADA | Z€Ium 01 ZgIeolq
(s'8942€-) 080000£9%0 (dint - §°2922€) 3R1I9¥X0 NY AuojpUMO(9TIUIS 03 ZEIBO[]
(5'0-) 00000039%0 (dInT - §°SE£SS9) JLIILLYXO NY AuopumoQq 9T3uIn 0} ZgIeO[]

(s821-) 000800£9%0 (dint - §°221) 332IZHX0 NY Au0)UMO(gIuIs 03 zgieofd

(5°0-) 00000039%0 (dInt - §°552) PWILILEVXO NY AUO)UMO(gIuIn 03 ZE£Ieol]

UL XeN wc_@csom 1Xa9juo) UoIs.IaAU0)

689

Reference Number: 327364-001

APPENDIX C. FLOATING-POINT EXCEPTION SUMMARY

Case Rounding Max pos arg w/o overflow Min pos arg w/ overflow
Float32 to float16 RN 0x477feftf (65520.0 - 1ulp) 0x477f000 (65520.0)
RD* 0x4771fttf (65536.0 - 1ulp) 0x47800000 (65536.0)
RU* 0x477fe000 (65504.0) 0x477fe001 (65504.0 + 1ulp)
RZ 0x4771tttf (65536.0 - 1ulp) 0x47800000 (65536.0)
Float64 to float32 RN 0x47 efffffefffffff (212° — 2193 — 1ulp) 0x47effffff0000000 (2128 — 2103)
RD 0x47 efffffEereeeer (2128 — 1ulp) 0x47f0000000000000 (2128-9)
RU 0x47efffffe0000000 (2128 — 2104) 0x47efffffe0000001 (2'28 — 2194 1ulp)
RZ 0x47 efffffEeeeeeer (2128 — 1ulp) 0x47f0000000000000 (2128:9)
Case Rounding Max neg arg w/o overflow Min neg arg w/ overflow
Float32 to float16 RN 0xc77feftf (-65520.0 + 1ulp) 0xc77ff000 (-65520.0)
RD* 0xc77fe000 (-65504.0) 0xc77fe001 (-65504.0 - 1ulp)
RU* 0xc7 7fffff (-65536.0 + 1ulp) 0xc7800000 (-65536.0)
RZ 0xc7 7fffff (-65536.0 + 1ulp) 0xc7800000 (-65536.0)
Float64 to float32 RN 0xc7 efffffeffff (—212% + 2193 + 1ulp) 0xc7effffff0000000 (—2128 + 2103)
RD 0xc7efffffe0000000 (—2128 + 2104) | Oxc7efffffe0000001 (—2'28 + 2194 — 1ulp)
RU 0xc7 efffffeeeeef (—212% + 1ulp) 0xc7f0000000000000 (—2'289)
RZ 0xc7effffffreeeeef (—2128 + 1ulp) 0xc7f0000000000000 (—21289)

Table C.4: Float-to-float Max/Min Valid Range

Reference Number: 327364-001

690

APPENDIX D. INSTRUCTION ATTRIBUTES AND CATEGORIES

Appendix D

Instruction Attributes and Categories

In this Appendix we enumerate instruction attributes and categories

Reference Number: 327364-001 691

5
D

APPENDIX D. INSTRUCTION ATTRIBUTES AND CATEGORIES

D.1 Conversion Instruction Families

D.1.1 Dy3, Family of Instructions

VMOVAPS VMOVNRAPS VMOVNRNGOAPS
VPACKSTORELPS VSCATTERDPS VSCATTERPF1DPS

VPACKSTOREHPS

D.1.2 Dys, Family of Instructions

VMOVAPD VMOVNRAPD
VPACKSTORELPD VSCATTERDPD

VMOVNRNGOAPD VPACKSTOREHPD

D.1.3 D3, Family of Instructions

VMOVDQA32 VPACKSTOREHD VPACKSTORELD VPSCATTERDD

D.1.4 D,z Family of Instructions

VMOVDQA64 VPACKSTOREHQ VPACKSTORELQ VPSCATTERDQ

D.1.5 S;s, Family of Instructions

VADDNPS VADDPS VADDSETSPS VBLENDMPS
VCMPPS VCVTFXPNTPS2DQ VCVTFXPNTPS2UDQ VCVTPS2PD
VFMADD132PS VFMADD213PS VFMADD231PS VFMADD233PS
VFMSUB132PS VFMSUB213PS VFMSUB231PS VFNMADD132PS
VFNMADD213PS VFNMADD231PS VFNMSUB132PS VFNMSUB213PS
VFNMSUB231PS VGETEXPPS VGETMANTPS VGMAXABSPS
VGMAXPS VGMINPS VMULPS VRNDFXPNTPS
VSUBPS VSUBRPS

D.1.6 Sys4 Family of Instructions
VADDNPD VADDPD VBLENDMPD VCMPPD
VCVTFXPNTPD2DQ VCVTFXPNTPD2UDQ VCVTPD2PS VFMADD132PD
VFMADD213PD VFMADD231PD VFMSUB132PD VFMSUB213PD
VFMSUB231PD VFNMADD132PD VFNMADD213PD VFNMADD231PD
VFNMSUB132PD VFNMSUB213PD VFNMSUB231PD VGETEXPPD
VGETMANTPD VGMAXPD VGMINPD VMULPD
VRNDFXPNTPD VSUBPD VSUBRPD

692 Reference Number: 327364-001

intel
L/ APPENDIX D. INSTRUCTION ATTRIBUTES AND CATEGORIES
D.1.7 S;3, Family of Instructions

VCVTDQ2PD VCVTFXPNTDQ2PS VCVTFXPNTUDQ2PS VCVTUDQZPD

VFIXUPNANPS VPADCD VPADDD VPADDSETCD
VPADDSETSD VPANDD VPANDND VPBLENDMD
VPCMPD VPCMPEQD VPCMPGTD VPCMPLTD
VPCMPUD VPMADD231D VPMADD233D VPMAXSD
VPMAXUD VPMINSD VPMINUD VPMULHD
VPMULHUD VPMULLD VPORD VPSBBD
VPSBBRD VPSLLD VPSLLVD VPSRAD
VPSRAVD VPSRLD VPSRLVD VPSUBD
VPSUBRD VPSUBRSETBD VPSUBSETBD VPTESTMD
VPXORD VSCALEPS

D.1.8 S;s, Family of Instructions

VFIXUPNANPD VPANDNQ VPANDQ VPBLENDMQ
VPORQ VPXORQ

D.1.9 Uy, Family of Instructions

VBROADCASTF32X4 VBROADCASTSS VGATHERDPS VGATHERPFODPS
VGATHERPFOHINTDPS VGATHERPF1DPS VLOADUNPACKHPS VLOADUNPACKLPS
VMOVAPS VMOVNRAPS VMOVNRNGOAPS VSCATTERPFODPS

VSCATTERPFOHINTDPS

D.1.10 Uye, Family of Instructions

VBROADCASTF64X4 VBROADCASTSD VGATHERDPD VGATHERPFOHINTDPD
VLOADUNPACKHPD VLOADUNPACKLPD VMOVAPD VMOVNRAPD
VMOVNRNGOAPD VSCATTERPFOHINTDPD

D.1.11 U3, Family of Instructions

VBROADCASTI32X4 VLOADUNPACKHD VLOADUNPACKLD VMOVDQA32
VPBROADCASTD VPGATHERDD

D.1.12 U, Family of Instructions

VBROADCASTI64X4 VLOADUNPACKHQ VLOADUNPACKLQ VMOVDQA64
VPBROADCASTQ VPGATHERDQ

Reference Number: 327364-001 693

APPENDIX E. NON-FAULTING UNDEFINED OPCODES

5
D

Appendix E

Non-faulting Undefined Opcodes

The following opcodes are non-faulting and have undefined behavior:

694

MVEX.512.0F38.W0 D2 /r
MVEX.512.0F38.W0 D3 /r
MVEX.512.0F38.W0 D6 /r
MVEX.512.0F38.W0 D7 /r
MVEX.512.66.0F38.W0 48 /r
MVEX.512.66.0F38.W0 49 /r
MVEX.512.66.0F38.W0 4A /r
MVEX.512.66.0F38.W0 4B /r
MVEX.512.66.0F38.W0 68 /r
MVEX.512.66.0F38.W0 69 /r
MVEX.512.66.0F38.W0 6A /r
MVEX.512.66.0F38.W0 6B /r
MVEX.512.66.0F38.W0 BO /r /vsib
MVEX.512.66.0F38.W0 B2 /r /vsib
MVEX.512.66.0F38.W0 CO /r /vsib
MVEX.512.66.0F38.W0 D2 /r
MVEX.512.66.0F38.W0 D6 /r
MVEX.512.66.0F3A.W0 DO /r ib
MVEX.512.66.0F3A.W0 D1 /r ib
MVEX.NDS.512.66.0F38.W0 54 /r

Reference Number: 327364-001

APPENDIX E. NON-FAULTING UNDEFINED OPCODES

(5-
~r
L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] 2

MVEX.NDS.512.66.0F38.W0 56 /r
MVEX.NDS.512.66.0F38.W0 57 /r
MVEX.NDS.512.66.0F38.W0 67 /r
MVEX.NDS.512.66.0F38.W0 70 /r
MVEX.NDS.512.66.0F38.W0 71 /r
MVEX.NDS.512.66.0F38.W0 72 /r
MVEX.NDS.512.66.0F38.W0 73 /r
MVEX.NDS.512.66.0F38.W0 94 /r
MVEX.NDS.512.66.0F38.W0 CE /r
MVEX.NDS.512.66.0F38.W0 CF /r
MVEX.NDS.512.66.0F38.W1 94 /r
MVEX.NDS.512.66.0F38.W1 CE /r
VEX.128.F2.0F38.W0 FO /r
VEX.128.F2.0F38.WO0 F1 /r
VEX.128.F2.0F38.W1 FO /r
VEX.128.F2.0F38.W1F1 /r
VEX.128.F3.0F38.W0 FO /r
VEX.128.F3.0F38.W1 FO /r

Reference Number: 327364-001

695

5
~r
(‘L

APPENDIX F. GENERAL TEMPLATES

Appendix F

General Templates

In this Chapter all the general templates are described. Each instruction has one (at least) valid format, and each
format matches with one of these templates.

696 Reference Number: 327364-001

intel)

F.1 Mask Operation Templates

APPENDIX F. GENERAL TEMPLATES

Reference Number: 327364-001 697

5
D

APPENDIX F. GENERAL TEMPLATES
Mask mO - Template

VMASKMask m0
Opcode Instruction Description
VEX.128 KOP k1, k2 Operate [mask k1 and] mask k2 [and store the
result in k1]
Description

\ Operand is a register \

ESCAPE(C5) [1 1 0 0]0 1 0 1|
T 6 5 4 3 2 T 0
VEX2 [T]1 1 1 1]0[pm]
T 6 5 4 3 2 T 0
OPCODE | OPCODE \
T %6 5 4 3 2 T 0
ModR/M | 11 [reg(K1) [r(K2) |
T %6 5 4 3 2 T 0

698 Reference Number: 327364-001

(lntel‘
APPENDIX F. GENERAL TEMPLATES

Mask m1 - Template

VMASKMask m1

Opcode Instruction Description

VEX.128 KOP r32/r64, k1, imm8 Move mask k1 into r32/r64 using imm8
Description

| Operand is a register |

ESCAPE(C4)] 1 1 0 0 \ 1 0 \
7 6 5 1 3 2 T 0

VEX1 ‘ !T€g3 1 1 ‘ my ms mo mq mo ‘
7 5 5 1 3 2 I 0

VEX2] w \ 1 1 1 1 \ L=0 \ P1 Do \
7 6 5 1 3 p) T 0

OPCODE | OPCODE |
7 6 5 1 3 2 T y

ModR/M] 11 | reg(reg) | r (K1) |
5 1 3 p) T 0

{IMMS8}] I7 Is Is I, I3 I I Iy \
7 5 5 1 3 2 T 0

Reference Number: 327364-001 699

5
~r
(‘L

APPENDIX F. GENERAL TEMPLATES
Mask m2 - Template

VMASKMask m2

\ Opcode Instruction Description

Description

| Operand is a register \

ESCAPE(C4) [1 1 0 0] 0 1 0 0 |
7 3 5 T 3 2 T 0
VEX1 | lregs 1 1 | my ms mg mi Mg |
7 6 5 7 3 7 T 0
7 6 5 7 3 7 T 0
OPCODE | OPCODE, |
7 6 5 7 3 7 T 0
ModR/M \ 11 \ reg (reg) \ r (K2) \
7 6 5 7 3 7 T 0

700 Reference Number: 327364-001

(lntel‘
APPENDIX F. GENERAL TEMPLATES

Mask m3 - Template

VMASKMask m3

Opcode Instruction Description

VEX.128 KOP r32/r64, k1 Move mask k1 into r32/r64
Description

| Operand is a register |

ESCAPE(CS) [1 1 0 0[]0 1 0 1|
7 5 4 3 2 T 0
VEX1 \ Iregs \ 1 1 1 1 \ 0 \ P11 Po \
7 5 4 3 2 T 0
OPCODE | OPCODE \
7 5 4 3 2 T O
ModR/M] 11 | reg(reg) | r(K1) |
7 5 4 3 2 T 0

Reference Number: 327364-001 701

5
~r
(‘L

APPENDIX F. GENERAL TEMPLATES
Mask m4 - Template

VMASKMask m4
Opcode Instruction Description
VEX.128 KOP k1, r32/r64 Move r32/r64 into mask k1
Description
| Operand is a register |
| C4 Version |
ESCAPE(C4) [1 1 0 0 | 1 0 0|
T 6 5 T 3 p T 0
VEX1 1 1 lregs[mgy mg mg my my |
TG 5 1 3 2 T 0
VEX2 (W[T 1 1 1[0 [p po]
TG 5 T 3 p T 0
OPCODE | OPCODE |
6 5 T 3 p T 0
ModR/M 11] reg (K1) \ r (reg) \
TG 5 1 3 p T 0
| C5 Version |
ESCAPE(C5) [1 1 0 0][0 1 0 1|
TG 5 T 3 p T 0
VEX1 (1T 1 1 1 110 [p po]
6 5 1 3 p, T 0
OPCODE | OPCODE |
6 5 T 3 p T 0
ModR/M 11] reg (K1) \ r (reg) \
TG 5 T 3 2 T 0

702 Reference Number: 327364-001

(intel“

APPENDIX F. GENERAL TEMPLATES

Mask m5 - Template

VMASKMask m5

Opcode Instruction Description

VEX.128 KOP k1, r32/r64, imm8 Move r32/r64 field into mask k1 using imm8
Description

] Operand is a register

ESCAPE(C4) [1 1 0 0] 0 1 0 0 |
O 5 1 3 2 T 0
VEX1 [1 1 Tregs[mgy ms my myi mg |
(G 5 1 3 2 T 0
VEX2 (W[1 1 1 1][1=0]pm po|
TG 5 1 3 p T 0
OPCODE | OPCODE |
% 5 1 3 2 T 0
ModR/M | 11 | reg (K1) \ r (reg) |
6 5 1 3 p T 0
gmMmsy [I, I L T, L L I |
6 5 1 3 7 T 0

Reference Number: 327364-001

703

APPENDIX F. GENERAL TEMPLATES

F.2 Vector Operation Templates

704

Reference Number: 327364-001

(intel‘

APPENDIX F. GENERAL TEMPLATES

Vector vO - Template

VectorVector v0
Opcode Instruction Description
MVEX.512 VOP zmml {k1}, zmm?2, Operate vector zmm?2 and vector S(zmm3/m;)
S(zmm3/my) [and vector zmm1] and store the result in
zmm1, under write-mask k1
MVEX.512 VOP zmml {k1}, zmm?2, Operate vector zmm?2 and vector S(zmm3/m;)
S(zmm3/m;), imm8 [and vector zmm1] and store the result in
zmm1 using imm8, under write-mask k1
Description
] Operand is a register \
ESCAPE(62)] 0 1 1 0 \ 0 0 1 0 \
7 6 5 T 3) T 0
MVEX1 ’ 'Z].g 'Z34 'Z33 'Z14 ‘ ms meo my mo ‘
7 3 5 7 3 p) T 0
7 4 5 7 3 p) T 0
MVEX3] EH \ S S1 So \ 1224 \ Kl, Kl; Klp \
7 6 5 7 3) T 0
OPCODE] OPCODE \
7 4 5 7 3 P) T 0
ModR/M \ 11 \ reg (ZMM1) r (ZMM3) |
7 6 5 7 3 p) T 0
{IM M8}] 17 Ig I 1y I3 Is I Iy \
7 3 5 7 3 p) T 0
] Operand is a memory location \
ESCAPE(62)] 0 1 1 0 \ 0 0 1 0 \
7 6 5 T 3) T 0
7 3 5 7 3 p) T 0
7 4 5 7 3 p) T 0
MVEX3] EH \ S S1 So \ 1224 \ Kl, Kl; Klp \
7 6 5 7 3) T 0
OPCODE] OPCODE \
7 4 5 7 3 P) T 0
ModR/M \ mod \ reg (ZMM1) \ m (mt) |
7 6 5 7 3 T 0
{SIB}] SIB byte |
7 6 5 7 3 p) T 0
{DISPL} | Displacement (8*N/32) |

Reference Number: 327364-001

31,8

705

(lntel
APPENDIX F. GENERAL TEMPLATES

(MM8y | I, Iy I, L, Iy b L I |
T [

5 4 3 2 I 0

706 Reference Number: 327364-001

(intel‘

APPENDIX F. GENERAL TEMPLATES

Vector v1 - Template

VectorVector v1
Opcode Instruction Description
MVEX.512 VOP zmm1 {k1}, S(m) Load/brodcast vector S(m.) into zmm1, under
write-mask k1
Description

| Operand is a memory location |

ESCAPE(62) [0
7

MVEX1
MVEX2
MVEX3
OPCODE
ModR/M
(SIB)

{DISPL}

Reference Number: 327364-001

1 1 0 0 © 1 0 |
6 5 1 3 2 ! 0

[1Z13 X B Zly[m3 my mi mg |
7 6 5 1 3 2 T 0

[W1 1 1 1J[L0] p po |
7 6 5 4 3 2 T 0

’ EH ‘SQ Sl SO ‘ 1 ‘KlQ K11 Klo ‘
7 6 5 1 3 2 T 0

] OPCODE \
7 6 5 1 3 2 I 0

| mod | reg(ZMM1) | m (mt) \
65 1 3 2 T 0

] SIB byte \
3

7 [} 5 4 2 T 0

\ Displacement (8*N/32) \
: : : : : : 0

707

APPENDIX F. GENERAL TEMPLATES

Vector v10 - Template

VectorVector v10
Opcode Instruction Description
MVEX.512 VOP zmm1 {k1}, S(zmm2/m;) Operate vector S(zmm2/m;) and store the re-
sult in zmm1, under write-mask k1
MVEX.512 VOP zmm1 {k1}, S(zmm2/m.), Operate vector S(zmm2/m,) and store the re-
imm8 sultin zmm1 using imm8, under write-mask k1
MVEX.512 VOP zmm1 {k1}, S(zmm2/m;) Move vector S(zmm2/m;) into zmm1, under
write-mask k1
Description

] Operand is a register \

ESCAPE(62) [0 1 1 0 [0 0 1 0 |
7 5 5 T 3) T 0
7 B 5 7 3) T 0
7 § 5 z 3) T 0

MVEX3 [EH [S, S1 So |'Z14 | K1, K1, Kl |
7 5 5 T 3) T 0

OPCODE] OPCODE |
7 B 5 7 3) T 0

ModR/M \ 11 \ Op. Ext. \ r (ZMM2) |
5 z 3 P) T 0

{ImMms8}y [I I I5 1y I3 Iy I I
7 B 5 7 3) T 0

] Operand is a memory location \

ESCAPE(62) [0 1 1 0 [0 0 1 0 |
7 5 5 T 3) T 0

MVEX1 |1 X 'B 1 [ms mo my mg |
7 B 5 7 3) T 0
7 § 5 z 3) T 0

MVEX3 [EH [S, Sy So |'Z14 | K1, K1, Kl |
7 B 5 T 3) T 0

OPCODE] OPCODE |
7 B 5 7 3) T 0

ModR/M \ mod \ Op. Ext. \ m (mt) |
7 6 5 7 3 P) T 0

{SIB}] SIB byte |
7 B 5 7 3 P T 0

{DISPL} | Displacement (8*N/32) |
31,8 0

708

Reference Number: 327364-001

=
~r
(‘L

APPENDIX F. GENERAL TEMPLATES

Reference Number: 327364-001

I
2

Lo I |
T 0

709

APPENDIX F. GENERAL TEMPLATES

Vector v11 - Template

VectorVector vl1
Opcode Instruction Description
MVEX.512 VOP zmm1 {k1}, zmm?2, S(m;) Load/brodcast and OP vector S(m;) with
zmm?2 and write resultinto zmm1, under write-
mask k1
Description

] Operand is a memory location

ESCAPE(62) [0 1 1 0 | 0 0 1 0 |
7 G 5 7 3 7 T 0
MVEX1 (71, X B ZL, | ms ma i mo |
7 5 5 1 3 2 T 0
7 § 5 1 3 2 T 0
MVEX3 [EH | S, S S, |72 | Ki;, K, Kl |
7 5 5 1 3 P T 0
OPCODE | OPCODE \
7 G 5 T 3 2 T 0
ModR/M | mod \ reg (ZMM1) \ m (mt) |
7 § 5 1 3 2 T 0
{SIB}] SIB byte |
T G 5 1 3 2 T 0
{DISPL} | Displacement (8*N/32) |
31,8 : : : : 0

710

Reference Number: 327364-001

(intel‘

APPENDIX F. GENERAL TEMPLATES

Vector v2 - Template

VectorVector v2
Opcode Instruction Description
MVEX.512 VOP k2 {k1}, zmm2, S(zmm3/m;) Operate vector zmm2 and vector S(zmm3/m;)
and store the result in k2, under write-mask k1
MVEX.512 VOPKk2 {k1},zmm2, S(zmm3/m,), Operate vector zmm?2 and vector S(zmm3/m,)
imm8 and store the result in k2 using imm8, under
write-mask k1
Description

| Operand is a register |

ESCAPE(62) [0 1 1 0 | 0 0 1 0 |
7 G 5 7 3 2 T Y
MVEX1 ’ 1 'Z24 'Z23 1 ‘ ms meo mq mo ‘
7 6 5 T 3 pi T 0
7 6 5 7 3 7 T 0
MVEX3 [EBH | S, S S |7l | Ki, Ki; Kl |
7 5 5 7 3 pi T 0
OPCODE | OPCODE \
7 6 5 T 3 7 T 0
ModR/M] 11 \ reg (K2) \ r (ZMM2) |
G 5 7 3 7 T Y
ammsy [I, T L s L L Iy |
7 6 5 7 3 pi T 0
| Operand is a memory location |
ESCAPE(62) [0 1 10 [0 0 1 0 |
7 g 5 7 3 2 T 0
MVEXT [1 X 1B 1 [ms ma i mg |
7 6 5 T 3 pi T 0
MVEX2 ’ W "Zlg, 'Zlg 'le 'Zlo ‘ L=0‘ P1 Po ‘
7 6 5 7 3 7 T 0
MVEX3 ~ [EBH | S, S S |7l | Ki, Ki; Ki, |
7 6 5 7 3 pi T 0
OPCODE | OPCODE \
7 6 5 T 3 7 T 0
ModR/M] mod | reg (K2) \ m (mt) |
7 G 5 7 3 7 T Y
(SIB} | SIB byte \
7 6 5 7 3 pi T 0
{DISPL} | Displacement (8*N/32) |
318 ; ; : : ; 0
amMmsy [I, I L s L L I |

Reference Number: 327364-001

711

5
~r
(‘L

APPENDIX F. GENERAL TEMPLATES

712 Reference Number: 327364-001

(intel‘

APPENDIX F. GENERAL TEMPLATES

Vector v3 - Template

VectorVector v3
Opcode Instruction Description
MVEX.512 VOP my {k1}, D(zmm1) Store vector D(zmm1) into m,, under write-
mask k1
Description

| Operand is a memory location |

ESCAPE(62) [0
7

MVEX1
MVEX2
MVEX3
OPCODE
ModR/M
(SIB)

{DISPL}

Reference Number: 327364-001

1 1 0 0 © 1 0 |
6 5 1 3 2 ! 0

[1Z13 X B Zly[m3 my mi mg |
7 6 5 1 3 2 T 0

[W1 1 1 1J[L0] p po |
7 6 5 4 3 2 T 0

’ EH ‘SQ Sl SO ‘ 1 ‘KlQ K11 Klo ‘
7 6 5 1 3 2 T 0

] OPCODE \
7 6 5 1 3 2 I 0

| mod | reg(ZMM1) | m (mt) \
65 1 3 2 T 0

] SIB byte \
3

7 [} 5 4 2 T 0

\ Displacement (8*N/32) \
: : : : : : 0

713

APPENDIX F. GENERAL TEMPLATES

Vector v4 - Template

VectorVector v4
Opcode Instruction Description
MVEX.512 VOP zmm1 {k1}, zmm2 /my Operate vector zmm2/m; and store the result
in zmm1, under write-mask k1
MVEX.512 VOP zmm1 {k1}, zmm2/m;, imm8 Operate vector zmm2/m,; and store the result
in zmm1 using imm8, under write-mask k1
Description

| Operand is a register |

ESCAPE(62) [0 1 1 0 [0 0 1 0 |
7 B 5 7 3 2 T 0
MVEX1 ’ 'Z].g 'Z24 'Z23 'Z].4 ‘ ms mo maq mo ‘
7 G 5 7 3 2 T 0
MVEX2 [W | 1T 1 1 1 [L=0] p_ po |
7 6 5 7 3 7 T 0
MVEX3 [EH | 0 0 0 | 1 [Kl, K, K|
T 6 5 1 3 2 T 0
OPCODE | OPCODE \
7 § 5 7 3 2 T 0
ModR/M] 11 | reg(ZMM1) | r (ZMM2) |
7 6 5 7 3 T 0
ummsy [I, I, I, L s L Iy |
7 § 5 7 3 7 T 0
| Operand is a memory location |
ESCAPE(62) [0 1 1 0 [0 0 1 0 |
7 5 5 7 3 7 T 0
7 G 5 7 3 2 T 0
MVEX2 [W | 1T 1 1 1]L=0] p po |
7 3 5 7 3 7 T 0
MVEX3 [EH | 0 0 0 | 1 [Kl, K, K|
T 6 5 1 3 2 T 0
OPCODE | OPCODE \
7 § 5 7 3 2 T 0
ModR/M] mod | reg(ZMM1) | m (mt) |
7 6 5 7 3 7 T 0
{(SIB} | SIB byte \
T 6 5 1 3 2 T 0
{DISPL} | Displacement (8*N/32) |
378 ; ; ; : 0
mMMsy [I, I, L L L L L I |
7 6 5 7 3 7 T 0

714

Reference Number: 327364-001

5
~r
(‘L

APPENDIX F. GENERAL TEMPLATES

Reference Number: 327364-001

715

APPENDIX F. GENERAL TEMPLATES

(5‘.
~r
m

Vector v5 - Template

VectorVector v5
Opcode Instruction Description
MVEX.512 VOP zmm1 {k1}, S(zmm2/m;) Operate vector S(zmm2/m;) and store the re-
sult in zmm1, under write-mask k1
MVEX.512 VOP zmm1 {k1}, S(zmm2/m,), Operate vector S(zmm2/m,) and store the re-
imm8 sultin zmm1 using imm8, under write-mask k1
MVEX.512 VOP zmm1 {k1}, S(zmm2/m;) Move vector S(zmm2/m;) into zmm1, under
write-mask k1
Description

] Operand is a register \

ESCAPE(62) [0 1 1 0 [0 0 0 |
7 G 5 7 3 p) T 0
MVEX1 ’ 'Z].g '224 '223 'Z].4 ‘ ms mo mq mo ‘
7 § 5 7 3 2 T 0
MVEX2 | w1 1 1 1 [L=0] p po |
7 § 5 z 3) T 0
MVEX3 | EH | 5, S1 So | 1 [Kl; K1, Kl |
7 § 5 7 3 p) T 0
OPCODE] OPCODE |
7 § 5 z 3) T 0
ModR/M \ 11 | reg(ZMM1) \ r (ZMM2) |
7 6 5 7 3 p) T 0
{rmMm8}y [I I Is 1y I3 Iy I Iy |
7 § 5 7 3 2 T 0
] Operand is a memory location \
ESCAPE(62) [O 1 1 0] O 0 0 |
7 G 5 7 3 p) T 0
7 § 5 7 3) T 0
MVEX2 | w1 1 1 1 [L=0] p po |
7 § 5 z 3) T y
MVEX3 | EH | 5, S1 So | 1 [Kl; K1, Kl |
7 § 5 7 3 p) T 0
OPCODE] OPCODE |
7 § 5 7 3) T 0
ModR/M \ mod | reg(ZMM1) | m (mt) |
7 6 5 7 3 T 0
{SIB}] SIB byte |
7 § 5 7 3 2 T y
{DISPL} | Displacement (8*N/32) |
31,8 : X 5 ; ; ; U

716

Reference Number: 327364-001

=
~r
(‘L

APPENDIX F. GENERAL TEMPLATES

Reference Number: 327364-001

L I |
T 0

717

APPENDIX F. GENERAL TEMPLATES

5
~r
(‘L

Vector v6 - Template

VectorVector v6
Opcode Instruction Description
MVEX.512 VOP zmm1 {k1}, S(mwv;) Gather sparse vector S(mwv;) into zmm1, using
completion mask k1
MVEX.512 VOP muw; {k1}, D(zmm1) Scatter vector D(zmml) into sparse vector
muy, using completion mask k1
Description

| Operand is a memory location |

ESCAPE(62)
MVEX1
MVEX2
MVEX3
OPCODE
ModR/M
VSIB
{DISPL}

{IM M8}

718

[0 1 1 00 0 1 0|
7 6 5 1 3 7 T 0

’ !Zlg !Xg !Bg !Z14 ‘ 3 mo mq mo ‘
7 g 5 1 3 2 T 0

(w1 1 1 1 JL=0] pr po]
7 G 5 1 3 i T 0

[EH [S, S So |'X4 [Kl K1, Kl |
T 5 5 1 3 2 T 0

| OPCODE \
7 g 5 7 3 2 T 0

] mod | reg(ZMM1) | m= 100 |
7 4 5 1 3 T 0

[SS1 SSo | Index(X) Base(B) |
7 g 1 T 0

] Displacement (8*N/32) |
31,8 : : : : : 0

(- I, I, L L L L I |
7 G 5 1 3 7 T 0

Reference Number: 327364-001

(intel‘

APPENDIX F. GENERAL TEMPLATES

Vector v7 - Template

VectorVector v7
Opcode Instruction Description
MVEX.512 VOP zmm1 {k1}, k2, S(zmm3/m,) Operate mask k2 and vector S(zmm3/m,) [and
vectorzmm1], and store the resultinzmm1, un-
der write-mask k1
Description

| Operand is a register \

ESCAPE(62) [0 1 1 0 [0 0 1 0 |
7 G 5 7 3 2 T 0
MVEX1 ’ 'Z].g 'Z34 'Z33 'Zl4 ‘ ms meo mq mo ‘
7 G 5 1 3 2 T 0
MVEX2 ’ W ‘ 1 'K22 'K21 'K20 ‘ L=0 ‘ D1 Po ‘
7 G 5 7 3 P T 0
MVEX3 [BH | 8 S S | 1 [Ki, Ki; Ki|
7 6 5 1 3 2 T 0
OPCODE | OPCODE \
7 5 5 1 3 2 T 0
ModR/M] 11 \ reg (ZMM1) \ r (ZMM3) |
7 G 5 7 3 p) T 0
| Operand is a memory location \
ESCAPE(62) [0 1 1 0 | 0 0 1 0 |
7 G 5 7 3 2 T 0
MVEX1 1713 X 'B IZ1, | m3 my my mg |
7 6 5 7 3 2 T 0
MVEX2 [W | 1 K2, 'K2; K2 [=0 | ;i po |
7 G 5 1 3 2 T 0
MVEX3 [EH | 8, & S | 1 |Ki, KI, K|
7 § 5 7 3 2 T 0
OPCODE | OPCODE |
7 6 5 1 3 2 T 0
ModR/M] mod \ reg (ZMM1) \ m (mt) |
7 5 5 1 3 2 T 0
{SIB}] SIB byte |
7 G 5 7 3 p) T 0
{DISPL} | Displacement (8*N/32) |
31,8 : : : : ; 0

Reference Number: 327364-001

719

APPENDIX F. GENERAL TEMPLATES

Vector v8 - Template

VectorVector v8
Opcode Instruction Description
MVEX.512 VOP zmm1 {k1},zmm2,zmm3/m; Operate vector zmm2 and vector zmm3/m;
[and vector zmm1] and store the result in
zmm1, under write-mask k1
MVEX.512 VOP zmml {k1}, zmm?2, Operate vector zmm2 and vector zmm3/m;
zmm3/m;, imm8 [and vector zmm1] and store the result in
zmm1 using imm8, under write-mask k1
Description
] Operand is a register \
ESCAPE(62)] 0 1 1 0 \ 0 0 1 0 \
7 6 5 T 3) T 0
MVEX1 ’ 'Z].g 'Z34 'Z33 'Z14 ‘ ms meo my mo ‘
7 3 5 7 3 p) T 0
7 4 5 7 3 p) T 0
MVEX3] EH \ 0 0 0 \ 1724 \ Kl, K11 Kl \
7 6 5 7 3) T 0
OPCODE] OPCODE \
7 4 5 7 3 P) T 0
ModR/M \ 11 \ reg (ZMM1) \ r (ZMM3) |
7 5 7 3 p) T 0
{IM M8}] 17 Ig I 1y I3 Is I Iy \
7 3 5 7 3 p) T 0
] Operand is a memory location \
ESCAPE(62)] 0 1 1 0 \ 0 0 1 0 \
7 6 5 T 3) T 0
7 3 5 7 3 p) T 0
7 4 5 7 3 p) T 0
MVEX3] EH \ 0 0 0 \ 1724 \ Kl, Kl1; Kl \
7 6 5 7 3) T 0
OPCODE] OPCODE \
7 4 5 7 3 P) T 0
ModR/M \ mod \ reg (ZMM1) \ m (mt) |
7 6 5 7 3 T 0
{SIB}] SIB byte |
7 6 5 7 3 p) T 0
{DISPL} | Displacement (8*N/32) |
31,8 ; ; ; ; 0

720

Reference Number: 327364-001

=
~r
(‘L

APPENDIX F. GENERAL TEMPLATES

{IM M8}

Reference Number: 327364-001

I;
7

I
2

I Iy |
T

0

721

APPENDIX F. GENERAL TEMPLATES
Vector v9 - Template

5
~r
(‘L

VectorVector v9
Opcode Instruction Description
MVEX.512 VOP S(muv;) {k1} Prefetch sparse vector S(muv;), under write-
mask k1
Description

| Operand is a memory location |

ESCAPE(62) [0 1 1 0] 0 0 1 0 |
7 G 5 1 3 2 T 0
MVEX1 ’ 1 'X3 'Bg 1 ‘ 3 mo mi mo ‘
7 6 5 7 3 2 T 0
MVEX2 [W [11 1 1 [L=0] p;__ po |
7 g 5 1 3 2 T 0
MVEX3 [EH | S, S Sy |'X4 | Kl KI, Kl |
7 6 5 T 3 2 T 0
OPCODE | OPCODE |
T g 5 T 3 2 T 0
ModR/M | mod | Op. Ext. \ m= 100 |
7 G 5 T 3 2 T 0
VSIB [SS1 S5y [Index(X) \ Base(B) |
7 6 5 7 3 b T 0
{DISPL} | Displacement (8*N/32) |
31,8 : : ; : : : 0

722 Reference Number: 327364-001

APPENDIX F. GENERAL TEMPLATES

F.3 Scalar Operation Templates

Reference Number: 327364-001 723

5
~r
(‘L

APPENDIX F. GENERAL TEMPLATES
Scalar sO - Template

scalarScalar s0

Opcode Instruction Description

0F/0F38/0F3A OPrl6,r16/m16 Operate [r16 and] r16/m16, leaving the result
inrlé

0F/0F38/0F3A OPr32,r32/m32 Operate [r32 and] r32/m32, leaving the result
inr32

REX.W 0F/0F38/0F3A OP r64, r64/mé64 Operate [r64 and] r64/m64, leaving the result
in r64

Description

] Operand is a register \

| C4 Version \

ESCAPE(C4) [1 1 0 [0 1 0 \
7 5 5 T 3 2 T 0

VEX1 | ldst3 1 lsrcg [mg m3 my mi mg |
7 5 5 T 3 s T y

VEX2 W [1 1 1 110 pm po|
7 5 5 7 3 i T 0

OPCODE | OPCODE \
7 5 5 T 3 i T 0

ModR/M \ 11 \ reg (dst) \ r (src) |
7 5 5 7 3 i T 0

| C5 Version \

ESCAPE(CS) [1 1 0 0][0 1 0 1|
7 5 5 T 3 2 T

VEX2 [Wdst; [T 1 1 1 [L=0] p po |
7 5 5 I 3 i T 0

OPCODE | OPCODE \
7 5 5 T 3 4 T 0

ModR/M] 11 \ reg (dst) \ r (src) |
7 5 5 T 3 i T y

724 Reference Number: 327364-001

(intel‘

APPENDIX F. GENERAL TEMPLATES

Scalar s1 - Template

scalarScalar s1

Opcode Instruction Description
VEX.128 OP my Prefetch/Evict m; memory location
Description

| Operand is a memory location |

| C4 Version |
ESCAPE(C4) [1 1 0 0 0 0 |
T 5 1 3 2 T 0
VEX1 [1 X B [my m3g my my my|
T 5 1 3 2 T 0
VEX2 (W1 1 1 1][L=0]p po|
T 6 5 1 3 2 T 0
OPCODE | OPCODE \
T 5 T 3 s T 0
ModR/M] 7modb _ Op.fxt. \] m(gnt)] |
{SIB}] SIB byte |
T 5 1 3 2 T 0
{DISPL}]318 Displacement (8/32)] |
| C5 Version |
ESCAPE(CS) [11 0 0 [0 1 0 1|
T 5 1 3 2 T 0
VEX2 [T [1 1 1 1]JL=0[p po|
O 5 1 3 2 T 0
OPCODE | OPCODE \
T 5 1 3 p) T 0
ModR/M | mod Op. Ext. \ m (mt) |
T 5 T 3 2 T 0
{SIB}] SIB byte |
T 5 1 3 p T 0
{DISPL} ’318 Displacement (8/32) ; |

Reference Number: 327364-001

725

	Introduction
	Instructions Terminology and State
	Overview of the Intel® Xeon Phi� Coprocessor Instruction Set Architecture Extensions
	What are vectors?
	Vector mask registers
	Vector mask k0
	Example of use

	Understanding Intel® Xeon Phi� Coprocessor Instruction Set Architecture
	Intel® Xeon Phi� Coprocessor Instruction Set Architecture Vector Instructions
	Intel® Xeon Phi� Coprocessor Instruction Set Architecture Vector Memory Instructions:
	Intel® Xeon Phi� Coprocessor Instruction Set Architecture vector mask Instructions
	Intel® Xeon Phi� Coprocessor Instruction Set Architecture New Scalar Instructions

	Intel® Xeon Phi� Coprocessor Instruction Set Architecture Swizzles and Converts
	Load-Op Swizzle/Convert
	Load Up-convert
	Down-Conversion

	Static Rounding Mode
	Intel® Xeon Phi� coprocessor Execution Environments

	Intel® Xeon Phi� Coprocessor Instruction Set Architecture Format
	Overview
	Instruction Formats
	MVEX/VEX and the LOCK prefix
	MVEX/VEX and the 66H, F2H, and F3H prefixes
	MVEX/VEX and the REX prefix

	The MVEX Prefix
	Vector SIB (VSIB) Memory Addressing

	The VEX Prefix
	Intel® Xeon Phi� Coprocessor Instruction Set Architecture Assembly Syntax
	Notation
	Operand Notation
	The Displacement Bytes
	Memory size and disp8*N calculation

	EH hint
	Functions and Tables Used
	MemLoad and MemStore
	SwizzUpConvLoad, UpConvLoad and DownConvStore
	Other Functions/Identifiers

	Floating-Point Environment, Memory Addressing, and Processor State
	Overview
	Suppress All Exceptions Attribute (SAE)
	SIMD Floating-Point Exceptions
	SIMD Floating-Point Exception Conditions
	Invalid Operation Exception (#I)
	Divide-By-Zero Exception (#Z)
	Denormal Operand Exception (#D)
	Numeric Overflow Exception (#O)
	Numeric Underflow Exception (#U)
	Inexact Result (Precision) Exception (#P)

	Denormal Flushing Control
	Denormal control in up-conversions and down-conversions
	Up-conversions
	Down-conversions

	Extended Addressing Displacements
	Swizzle/up-conversion exceptions
	Accessing uncacheable memory
	Memory read operations
	vloadunpackh*/vloadunpackl*
	vgatherd*
	Memory stores

	Floating-point Notes
	Rounding Modes
	Swizzle-explicit rounding modes
	Definition and propagation of NaNs
	Signed Zeros

	REX prefix and Intel® Xeon Phi� Coprocessor Instruction Set Architecture interactions

	Intel® Xeon Phi� Coprocessor Instruction Set Architecture State Save
	Intel® Xeon Phi� Coprocessor Instruction Set Architecture Processor State After Reset

	Instruction Set Reference
	Interpreting Instruction Reference Pages
	Instruction Format
	Opcode Notations for MVEX Encoded Instructions
	Opcode Notations for VEX Encoded Instructions

	Instruction Descriptions
	Vector Mask Instructions
	JKNZD - Jump near if mask is not zero
	JKZD - Jump near if mask is zero
	KAND - AND Vector Mask
	KANDN - AND NOT Vector Mask
	KANDNR - Reverse AND NOT Vector Mask
	KCONCATH - Pack and Move High Vector Mask
	KCONCATL - Pack and Move Low Vector Mask
	KEXTRACT - Extract Vector Mask From Register
	KMERGE2L1H - Swap and Merge High Element Portion and Low Portion of Vector Masks
	KMERGE2L1L - Move Low Element Portion into High Portion of Vector Mask
	KMOV - Move Vector Mask
	KNOT - Not Vector Mask
	KOR - OR Vector Masks
	KORTEST - OR Vector Mask And Set EFLAGS
	KXNOR - XNOR Vector Masks
	KXOR - XOR Vector Masks
	Vector Instructions
	VADDNPD - Add and Negate Float64 Vectors
	VADDNPS - Add and Negate Float32 Vectors
	VADDPD - Add Float64 Vectors
	VADDPS - Add Float32 Vectors
	VADDSETSPS - Add Float32 Vectors and Set Mask to Sign
	VALIGND - Align Doubleword Vectors
	VBLENDMPD - Blend Float64 Vectors using the Instruction Mask
	VBLENDMPS - Blend Float32 Vectors using the Instruction Mask
	VBROADCASTF32X4 - Broadcast 4xFloat32 Vector
	VBROADCASTF64X4 - Broadcast 4xFloat64 Vector
	VBROADCASTI32X4 - Broadcast 4xInt32 Vector
	VBROADCASTI64X4 - Broadcast 4xInt64 Vector
	VBROADCASTSD - Broadcast Float64 Vector
	VBROADCASTSS - Broadcast Float32 Vector
	VCMPPD - Compare Float64 Vectors and Set Vector Mask
	VCMPPS - Compare Float32 Vectors and Set Vector Mask
	VCVTDQ2PD - Convert Int32 Vector to Float64 Vector
	VCVTFXPNTDQ2PS - Convert Fixed Point Int32 Vector to Float32 Vector
	VCVTFXPNTPD2DQ - Convert Float64 Vector to Fixed Point Int32 Vector
	VCVTFXPNTPD2UDQ - Convert Float64 Vector to Fixed Point Uint32 Vector
	VCVTFXPNTPS2DQ - Convert Float32 Vector to Fixed Point Int32 Vector
	VCVTFXPNTPS2UDQ - Convert Float32 Vector to Fixed Point Uint32 Vector
	VCVTFXPNTUDQ2PS - Convert Fixed Point Uint32 Vector to Float32 Vector
	VCVTPD2PS - Convert Float64 Vector to Float32 Vector
	VCVTPS2PD - Convert Float32 Vector to Float64 Vector
	VCVTUDQ2PD - Convert Uint32 Vector to Float64 Vector
	VEXP223PS - Base-2 Exponential Calculation of Float32 Vector
	VFIXUPNANPD - Fix Up Special Float64 Vector Numbers With NaN Passthrough
	VFIXUPNANPS - Fix Up Special Float32 Vector Numbers With NaN Passthrough
	VFMADD132PD - Multiply Destination By Second Source and Add To First Source Float64 Vectors
	VFMADD132PS - Multiply Destination By Second Source and Add To First Source Float32 Vectors
	VFMADD213PD - Multiply First Source By Destination and Add Second Source Float64 Vectors
	VFMADD213PS - Multiply First Source By Destination and Add Second Source Float32 Vectors
	VFMADD231PD - Multiply First Source By Second Source and Add To Destination Float64 Vectors
	VFMADD231PS - Multiply First Source By Second Source and Add To Destination Float32 Vectors
	VFMADD233PS - Multiply First Source By Specially Swizzled Second Source and Add To Second Source Float32 Vectors
	VFMSUB132PD - Multiply Destination By Second Source and Subtract First Source Float64 Vectors
	VFMSUB132PS - Multiply Destination By Second Source and Subtract First Source Float32 Vectors
	VFMSUB213PD - Multiply First Source By Destination and Subtract Second Source Float64 Vectors
	VFMSUB213PS - Multiply First Source By Destination and Subtract Second Source Float32 Vectors
	VFMSUB231PD - Multiply First Source By Second Source and Subtract Destination Float64 Vectors
	VFMSUB231PS - Multiply First Source By Second Source and Subtract Destination Float32 Vectors
	VFNMADD132PD - Multiply Destination By Second Source and Subtract From First Source Float64 Vectors
	VFNMADD132PS - Multiply Destination By Second Source and Subtract From First Source Float32 Vectors
	VFNMADD213PD - Multiply First Source By Destination and Subtract From Second Source Float64 Vectors
	VFNMADD213PS - Multiply First Source By Destination and Subtract From Second Source Float32 Vectors
	VFNMADD231PD - Multiply First Source By Second Source and Subtract From Destination Float64 Vectors
	VFNMADD231PS - Multiply First Source By Second Source and Subtract From Destination Float32 Vectors
	VFNMSUB132PD - Multiply Destination By Second Source, Negate, and Subtract First Source Float64 Vectors
	VFNMSUB132PS - Multiply Destination By Second Source, Negate, and Subtract First Source Float32 Vectors
	VFNMSUB213PD - Multiply First Source By Destination, Negate, and Subtract Second Source Float64 Vectors
	VFNMSUB213PS - Multiply First Source By Destination, Negate, and Subtract Second Source Float32 Vectors
	VFNMSUB231PD - Multiply First Source By Second Source, Negate, and Subtract Destination Float64 Vectors
	VFNMSUB231PS - Multiply First Source By Second Source, Negate, and Subtract Destination Float32 Vectors
	VGATHERDPD - Gather Float64 Vector With Signed Dword Indices
	VGATHERDPS - Gather Float32 Vector With Signed Dword Indices
	VGATHERPF0DPS - Gather Prefetch Float32 Vector With Signed Dword Indices Into L1
	VGATHERPF0HINTDPD - Gather Prefetch Float64 Vector Hint With Signed Dword Indices
	VGATHERPF0HINTDPS - Gather Prefetch Float32 Vector Hint With Signed Dword Indices
	VGATHERPF1DPS - Gather Prefetch Float32 Vector With Signed Dword Indices Into L2
	VGETEXPPD - Extract Float64 Vector of Exponents from Float64 Vector
	VGETEXPPS - Extract Float32 Vector of Exponents from Float32 Vector
	VGETMANTPD - Extract Float64 Vector of Normalized Mantissas from Float64 Vector
	VGETMANTPS - Extract Float32 Vector of Normalized Mantissas from Float32 Vector
	VGMAXABSPS - Absolute Maximum of Float32 Vectors
	VGMAXPD - Maximum of Float64 Vectors
	VGMAXPS - Maximum of Float32 Vectors
	VGMINPD - Minimum of Float64 Vectors
	VGMINPS - Minimum of Float32 Vectors
	VLOADUNPACKHD - Load Unaligned High And Unpack To Doubleword Vector
	VLOADUNPACKHPD - Load Unaligned High And Unpack To Float64 Vector
	VLOADUNPACKHPS - Load Unaligned High And Unpack To Float32 Vector
	VLOADUNPACKHQ - Load Unaligned High And Unpack To Int64 Vector
	VLOADUNPACKLD - Load Unaligned Low And Unpack To Doubleword Vector
	VLOADUNPACKLPD - Load Unaligned Low And Unpack To Float64 Vector
	VLOADUNPACKLPS - Load Unaligned Low And Unpack To Float32 Vector
	VLOADUNPACKLQ - Load Unaligned Low And Unpack To Int64 Vector
	VLOG2PS - Vector Logarithm Base-2 of Float32 Vector
	VMOVAPD - Move Aligned Float64 Vector
	VMOVAPS - Move Aligned Float32 Vector
	VMOVDQA32 - Move Aligned Int32 Vector
	VMOVDQA64 - Move Aligned Int64 Vector
	VMOVNRAPD - Store Aligned Float64 Vector With No-Read Hint
	VMOVNRAPS - Store Aligned Float32 Vector With No-Read Hint
	VMOVNRNGOAPD - Non-globally Ordered Store Aligned Float64 Vector With No-Read Hint
	VMOVNRNGOAPS - Non-globally Ordered Store Aligned Float32 Vector With No-Read Hint
	VMULPD - Multiply Float64 Vectors
	VMULPS - Multiply Float32 Vectors
	VPACKSTOREHD - Pack And Store Unaligned High From Int32 Vector
	VPACKSTOREHPD - Pack And Store Unaligned High From Float64 Vector
	VPACKSTOREHPS - Pack And Store Unaligned High From Float32 Vector
	VPACKSTOREHQ - Pack And Store Unaligned High From Int64 Vector
	VPACKSTORELD - Pack and Store Unaligned Low From Int32 Vector
	VPACKSTORELPD - Pack and Store Unaligned Low From Float64 Vector
	VPACKSTORELPS - Pack and Store Unaligned Low From Float32 Vector
	VPACKSTORELQ - Pack and Store Unaligned Low From Int64 Vector
	VPADCD - Add Int32 Vectors with Carry
	VPADDD - Add Int32 Vectors
	VPADDSETCD - Add Int32 Vectors and Set Mask to Carry
	VPADDSETSD - Add Int32 Vectors and Set Mask to Sign
	VPANDD - Bitwise AND Int32 Vectors
	VPANDND - Bitwise AND NOT Int32 Vectors
	VPANDNQ - Bitwise AND NOT Int64 Vectors
	VPANDQ - Bitwise AND Int64 Vectors
	VPBLENDMD - Blend Int32 Vectors using the Instruction Mask
	VPBLENDMQ - Blend Int64 Vectors using the Instruction Mask
	VPBROADCASTD - Broadcast Int32 Vector
	VPBROADCASTQ - Broadcast Int64 Vector
	VPCMPD - Compare Int32 Vectors and Set Vector Mask
	VPCMPEQD - Compare Equal Int32 Vectors and Set Vector Mask
	VPCMPGTD - Compare Greater Than Int32 Vectors and Set Vector Mask
	VPCMPLTD - Compare Less Than Int32 Vectors and Set Vector Mask
	VPCMPUD - Compare Uint32 Vectors and Set Vector Mask
	VPERMD - Permutes Int32 Vectors
	VPERMF32X4 - Shuffle Vector Dqwords
	VPGATHERDD - Gather Int32 Vector With Signed Dword Indices
	VPGATHERDQ - Gather Int64 Vector With Signed Dword Indices
	VPMADD231D - Multiply First Source By Second Source and Add To Destination Int32 Vectors
	VPMADD233D - Multiply First Source By Specially Swizzled Second Source and Add To Second Source Int32 Vectors
	VPMAXSD - Maximum of Int32 Vectors
	VPMAXUD - Maximum of Uint32 Vectors
	VPMINSD - Minimum of Int32 Vectors
	VPMINUD - Minimum of Uint32 Vectors
	VPMULHD - Multiply Int32 Vectors And Store High Result
	VPMULHUD - Multiply Uint32 Vectors And Store High Result
	VPMULLD - Multiply Int32 Vectors And Store Low Result
	VPORD - Bitwise OR Int32 Vectors
	VPORQ - Bitwise OR Int64 Vectors
	VPSBBD - Subtract Int32 Vectors with Borrow
	VPSBBRD - Reverse Subtract Int32 Vectors with Borrow
	VPSCATTERDD - Scatter Int32 Vector With Signed Dword Indices
	VPSCATTERDQ - Scatter Int64 Vector With Signed Dword Indices
	VPSHUFD - Shuffle Vector Doublewords
	VPSLLD - Shift Int32 Vector Immediate Left Logical
	VPSLLVD - Shift Int32 Vector Left Logical
	VPSRAD - Shift Int32 Vector Immediate Right Arithmetic
	VPSRAVD - Shift Int32 Vector Right Arithmetic
	VPSRLD - Shift Int32 Vector Immediate Right Logical
	VPSRLVD - Shift Int32 Vector Right Logical
	VPSUBD - Subtract Int32 Vectors
	VPSUBRD - Reverse Subtract Int32 Vectors
	VPSUBRSETBD - Reverse Subtract Int32 Vectors and Set Borrow
	VPSUBSETBD - Subtract Int32 Vectors and Set Borrow
	VPTESTMD - Logical AND Int32 Vectors and Set Vector Mask
	VPXORD - Bitwise XOR Int32 Vectors
	VPXORQ - Bitwise XOR Int64 Vectors
	VRCP23PS - Reciprocal of Float32 Vector
	VRNDFXPNTPD - Round Float64 Vector
	VRNDFXPNTPS - Round Float32 Vector
	VRSQRT23PS - Vector Reciprocal Square Root of Float32 Vector
	VSCALEPS - Scale Float32 Vectors
	VSCATTERDPD - Scatter Float64 Vector With Signed Dword Indices
	VSCATTERDPS - Scatter Float32 Vector With Signed Dword Indices
	VSCATTERPF0DPS - Scatter Prefetch Float32 Vector With Signed Dword Indices Into L1
	VSCATTERPF0HINTDPD - Scatter Prefetch Float64 Vector Hint With Signed Dword Indices
	VSCATTERPF0HINTDPS - Scatter Prefetch Float32 Vector Hint With Signed Dword Indices
	VSCATTERPF1DPS - Scatter Prefetch Float32 Vector With Signed Dword Indices Into L2
	VSUBPD - Subtract Float64 Vectors
	VSUBPS - Subtract Float32 Vectors
	VSUBRPD - Reverse Subtract Float64 Vectors
	VSUBRPS - Reverse Subtract Float32 Vectors

	Scalar Instruction Descriptions
	CLEVICT0 - Evict L1 line
	CLEVICT1 - Evict L2 line
	DELAY - Stall Thread
	LZCNT - Leading Zero Count
	POPCNT - Return the Count of Number of Bits Set to 1
	SPFLT - Set performance monitor filtering mask
	TZCNT - Trailing Zero Count
	TZCNTI - Initialized Trailing Zero Count
	VPREFETCH0 - Prefetch memory line using T0 hint
	VPREFETCH1 - Prefetch memory line using T1 hint
	VPREFETCH2 - Prefetch memory line using T2 hint
	VPREFETCHE0 - Prefetch memory line using T0 hint, with intent to write
	VPREFETCHE1 - Prefetch memory line using T1 hint, with intent to write
	VPREFETCHE2 - Prefetch memory line using T2 hint, with intent to write
	VPREFETCHENTA - Prefetch memory line using NTA hint, with intent to write
	VPREFETCHNTA - Prefetch memory line using NTA hint

	Intel® Xeon Phi� coprocessor 64 bit Mode Scalar Instruction Support
	64 bit Mode General-Purpose and X87 Instructions
	Intel® Xeon Phi� coprocessor 64 bit Mode Limitations
	LDMXCSR - Load MXCSR Register
	FXRSTOR - Restore x87 FPU and MXCSR State
	FXSAVE - Save x87 FPU and MXCSR State
	RDPMC - Read Performance-Monitoring Counters
	STMXCSR - Store MXCSR Register
	CPUID - CPUID Identification

	Floating-Point Exception Summary
	Instruction floating-point exception summary
	Conversion floating-point exception summary
	Denormal behavior

	Instruction Attributes and Categories
	Conversion Instruction Families
	Df32 Family of Instructions
	Df64 Family of Instructions
	Di32 Family of Instructions
	Di64 Family of Instructions
	Sf32 Family of Instructions
	Sf64 Family of Instructions
	Si32 Family of Instructions
	Si64 Family of Instructions
	Uf32 Family of Instructions
	Uf64 Family of Instructions
	Ui32 Family of Instructions
	Ui64 Family of Instructions

	Non-faulting Undefined Opcodes
	General Templates
	Mask Operation Templates
	Mask m0 - Template
	Mask m1 - Template
	Mask m2 - Template
	Mask m3 - Template
	Mask m4 - Template
	Mask m5 - Template
	Vector Operation Templates
	Vector v0 - Template
	Vector v1 - Template
	Vector v10 - Template
	Vector v11 - Template
	Vector v2 - Template
	Vector v3 - Template
	Vector v4 - Template
	Vector v5 - Template
	Vector v6 - Template
	Vector v7 - Template
	Vector v8 - Template
	Vector v9 - Template
	Scalar Operation Templates
	Scalar s0 - Template
	Scalar s1 - Template

