
Reprinted from the

Proceedings of the
Linux Symposium

Volume Two

July 21th–24th, 2004
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



The World of OpenOffice

Michael Meeks
Novell, Inc.

mmeeks@novell.com

Abstract

In this talk I will present some of the is-
sues facing OpenOffice.org, particularly re-
lated to: performance, interoperability, build-
ability, ABI / engineering and release practice.
We’ll look at how to build the beast, the UNO
component model, and iterate a quick hack be-
fore your eyes. We’ll also show some of the
flash new features including the Gnome desk-
top integration work.

1 A friendly giant

The OpenOffice.org source base is one of the
largest monolithic Free software projects in ex-
istence, even with the pre-compiled mozilla bi-
naries for several architectures stripped out:

Project
Source bz2

(MB)
Mozilla 1.4.1 31
Linux 2.6.7 33
GNOME 2.6.2 108
OO.o 1.1.2 160

OpenOffice.org (OO.o) represents one of the
largest single contributions to Free software
ever. Given this, it is somewhat incredible that
Sun immediately settled on a licensing scheme
in that is both liberal and substantially symmet-
ric.

OpenOffice.org is licensed under two licenses:

• LGPL– the familiar, and best Lesser GPL.

• SISSL – essentially X11 with trip-wires
for malicious UNO API, and XML file
format compatibility breakage.

While it is necessary to share copyright with
Sun by signing the Joint Copyright Assignment
(JCA)[2], the use of OO.o code in StarOffice
can be considered as being achieved under the
SISSL[3] provisions.

Thus there is clearly huge potential for add-
ins, integration with proprietary data-feeds,
macros, etc.

2 Sun’s dilemma

Sun’s StarOffice product substantially consists
of the OpenOffice.org core, as seen in public
CVS, with the addition of a few extra propri-
etary modules. While this means that all the
latest bug fixes are available in public CVS, it
creates a number of frustrating artificial prob-
lems:

2.1 Release Engineering

• minor release cycles – there is a
correct separation of commercial updates;
of around once per quarter; thus this tends
to be the frequency of minor OO.o re-
leases regardless of bugginess.

• release patch-size – there is a
fixed upper-bound on the size of a cus-



362 • Linux Symposium 2004 • Volume Two

tomer patch download, thus ABI alter-
ations in low-level libraries which would
have a large knock-on effect, are forbid-
den.

• ultra conservatism – since cus-
tomer updates are infrequent there is little
incentive to back-port fixes to the stable
branch; so many, trivial but high-impact
fixes don’t make it.

• major release cycles – for rea-
sons unknown StarOffice works on an 18-
month release cycle, so—at times (given
freezes, etc.), it is possible to punt a fea-
ture / fix by nearly 2 years.

Clearly many of these problems make the OO.o
development process somewhat cumbersome.

2.2 Portability Engineering

In contrast to many Free software project,
StarOffice and hence OO.o, is designed to run
on a broad spectrum of operating systems and
versions. By contrast, e.g. GNOME applica-
tions, would typically require the latest version
of GNOME to run.

This creates a number of interesting, hard-core
engineering issues, and shows up the true state
of Linux as a robust platform for ISVs.

For example, for font discovery much Linux
software will link to the pleasant fontconfig li-
brary, and use purely client-side font render-
ing. OO.o in contrast has to run on older (or
newer) platforms where there is either no font-
config install, or it has a changed ABI, or it is
badly configured. Thus the OO.o font discov-
ery method uses the following heuristics:

• fontconfig – since this may not be
available, we try todlopen it, hook out
various symbols, and extract a simple list
of font filenames.

• chkfontpath – Red Hat, and others
once shipped this tool which dumps a list
of font paths; we try topopen and parse
the output.

• hard-coded paths – various direc-
tories such as/usr/X11R6/lib/X11/

fonts/truetype are known to be a
good bet, and are scanned for fonts, in-
cluding several language specific variants.

• X server query – the X server is
queried to see what it can do, and a load
of XLFDs are parsed.

• internal fonts – whatever internal
fonts, and font-metric files we distribute
are added to the mix.

Naturally, after doing all this work, we build a
OO.o specific cache of much of the informa-
tion, to accelerate subsequent startup.

This heavily engineered approach is not con-
strained to any one API-set, or technology—
so, e.g., OO.o will attempt to use either lpr or
cups for printing in a dynamic fashion.

Even glibc problems show up in Figure 1.

In addition, the cross-platform nature of OO.o
and the unpredictability of the Linux feature-
set (particularly the C++ ABI), leads to a
large number of software packages being in-
cluded inside the OO.o build itself. Thus, a
stock OOo would include it’s own compiles
of (at least): python , freetype , zlib ,
expat , libdb , NAS, neon , curl , sane ,
myspell , Xrender .

As is probably obvious, this level of old plat-
form support, and dependency aversion is hard
to get enthusiastic about.



Linux Symposium 2004 • Volume Two • 363

typedef struct {
struct { long status; int spinlock; } sem_lock;
int sem_value;
void *sem_waiting;

} glibc_21_sem_t;
/*

* XXX this a hack of course. since sizeof(sem_t) changed
* from glibc-2.0.7 to glibc-2.1.x, we have to allocate the
* larger of both XXX
*/

#ifdef LINUX
if (sizeof(glibc_21_sem_t) > sizeof(sem_t))

Semaphore = malloc(sizeof(glibc_21_sem_t));
else

#endif
Semaphore = malloc(sizeof(sem_t));

}

Figure 1: compatibility with oldglibc versions

3 Community Issues

In addition to these unusual constraints, the
OO.o project is encumbered by acute tooling
and collaboration inadequacies.

Perhaps the most serious problem, is that it ap-
pears CVS was not designed with 200+ MB of
source / binaries in mind. Thus, even basic op-
erations, such as acvs tag can take up to a
couple of hours, and are frequently blocked by
robots slowly traversing the repository.

Secondarily, the collab.net SourceCast system
adds a level of bureaucracy, and lack of re-
sponsiveness which when combined with be-
ing totally un-fixable makes for an unneces-
sarily painful experience. It seems likely that
SourceCast is ideal for the use of existing, es-
tablished Free software projects, or even newly
formed projects—but it stumbles with OO.o.
Furthermore, using closed software for Open
Source collaboration is an intrinsically inter-
esting decision.

4 The other side of the coin

4.1 http://ooo.ximian.com/

To make up for the existing inadequate web-
tools, and documentation we provide several
‘external’ tools of interest.

• hackers guide – a Linux focused,
hackers guide on how to build, iterate, and
some basics of the OO.o code structure.

• LXR/Bonsai – basic web tools without
which navigating the OO.o source is sub-
stantially more difficult.

• bug filing – a gateway that de-
mangles the curious user-focused issue fil-
ing process, and allows bug filing directly
against given code modules.

• Planet OO.o – the obligatory RSS ag-
gregator.

4.2 ooo-build

The process of productising OO.o into a Linux
package is filled with pain; so to amortise this



364 • Linux Symposium 2004 • Volume Two

a collaboration has coalesced between various
Linux vendors: Novell ne Ximian, Debian,
Red Hat, SuSE, Ark, and PLD Linux around
ooo-build.

ooo-build provides a growing set of useful
patches many of which may arrive in OO.o in
many months time; indeed all our work is in-
tended to go up-stream into OO.o. We also pro-
vide a simple patch sub-setting system, to al-
low vendors to select a suitable set of patches.

Many of the features associated with ooo-build
are desktop integration, system integration, and
GUI cleanup pieces; e.g.:

• attractive new icons

• native-widget rendering

• GNOME-VFS integration

• ergonomic & aesthetic fixes

• system library usage

The ooo-build wrapper is also intended to
make OO.o substantially easier to compile with
a familiar ./configure; ./download;
make; make install process.

5 Performance

Performance is an area ripe for substantial
improvement in OO.o, however, poor perfor-
mance is caused by many factors, and identify-
ing the most important of these is not always
easy.

5.1 Linking

The linker has a very hard time linking OO.o,
and while this can be reduced by pre-linking,
the architecture of OO.o—whereby the major-
ity of the code is in shared libraries required

not by the main binary—but by other shared
component libraries, linked at run-time.

Ulrich’s analysis of OO.o [1] shows that
20,000 relocations are performed during
startup, which combined with lookups across
multiple libraries gives 1,700,000 string com-
parisons to startup. The sheer size of the sym-
bol tables and the lack of locality of reference
in the linking process causes much of this work
to fall outside the processors’ cache—giving
abnormally poor performance.

5.2 C++ issues

Some features of C++ exacerbate the problems
of large symbol tables, and poor startup perfor-
mance. The stripping / re-working of static ini-
tialisers has helped accelerate performance—
these being replaced with a thread-safe late
instantiation based on accessor method local
static variables.

C++ is a very symbol-hungry language—
particularly with respect to virtual functions,
which create an unnecessary burden (Figure 2).
Virtual functions, despite resolving to a sim-
ple function pointer export a symbol, which is
referred to directly to chain to parent imple-
mentations. While of course this can often be
resolved away at link time, in a cross-library
situation it would perhaps be more efficient to
dereference a parent vtable function pointer.

Similarly, since in theory at least, a single class
can be implemented across multiple shared ob-
jects, even ‘private:’ methods export symbols.

In addition to these problems, a more pro-
active approach to pruning old, and redun-
dant code has been adopted in the development
branch, to reduce code footprint, and symbol
count.



Linux Symposium 2004 • Volume Two • 365

class Foo : public Baa {
virtual void VFunc();

private:
void ExportsSymbol();

};
...
void VFunc()
{

...
Baa::VFunc();

}

Figure 2:C++ virtual functions

5.3 Binary filter code

To shrink the OO.o footprint, a large chunk
of creaking binary format code has been ex-
tracted, along with compatible chunks of the
core. This code pre-dating the XML file
formats scattered the process of serialisation
across the code, and resulted in a complex,
hard-to-maintain and increasingly irrelevant
maintenance problem. In OO.o 2.0 it will be
used only on the rare occasions it is necessary
as a binary to XML filter.

5.4 system libraries

Shrinking the large number of internal li-
braries, on Linux systems, and increasing the
number of libraries shared with the system is
an important part of performance improvement
in 2.0. It clearly makes little sense to have an
internal gtk+ library when the system version
is ABI compatible, and better maintained.

Using system libraries—e.g., neon—also re-
duces the pain of handling security updates in
the built-in libraries.

5.5 mmap performance

Possibly the most significant speedup in the 1.0
to 1.1 transition was the process of forcing as

much of the OO.o code into memory before at-
tempting to run it. This gave a very noticeable
win; this was implemented in a simple fash-
ion with mmap, and a loop reading a byte from
each page. Ideally of course, the underling op-
erating system would be able to do better here.

6 Interoperability

In a world where a tiny fraction of people are
using Free software, the ability to share docu-
ments in a loss-less fashion with other people
is crucial to the adoption of OO.o.

Much work has been done in this area for 2.0,
of particular note the row-limit in calc has been
raised to that of Excel, and much work has
been done on form controls.

There are also exciting developments in VBA
interoperability. OO.o provides a VBA-like
language: StarBasic, and by devious means it
has been possible to extract VBA text from Of-
fice files for some while. Office for perfor-
mance reasons however stores VBA in 3 forms:
an SRPstream, a compiled form, and a com-
pressed text form. Since these are authorita-
tive in that order (the text providing only a fi-
nal fallback), it was thought that effective ex-
port would entail reverse engineering at least
the the compiled form.

However in recent time, yet more devious
means have been discovered to export macros
as text to Excel and have them run transpar-
ently to the user. This it turns out is the founda-
tion of macro interoperability between Office
versions 97 through XP. Thus work is ongoing
to improve the macro support so crucial for ef-
fective Excel interoperability.



366 • Linux Symposium 2004 • Volume Two

7 Desktop integration

Much of the work of ooo-build has been
adopted in one form or another up-stream for
2.0, giving the prospect of a highly desktop in-
tegrated OO.o experience out-of-the-box.

To achieve this, the lowest levels of OO.o’s
cross-platform abstraction: the Visual Class
Library (VCL) have been virtualised, and now
the main-loop, and top-level windows on a
GNOME system are handled by the gtk+
toolkit. In order to avoid a complete re-write of
the widget system—we use a simplified them-
ing system that virtualises only the rendering
of widgets, allowing basic widgets to match the
look of the rest of the desktop.

Similarly main-loop integration makes things
such as integrating the gtk+ file-selector and
other GNOME dialogs fairly simple. The
main-loop integration was made substantially
more painful by the mis-match between the
recursive OO.o toolkit lock, and the non-
recursive gtk+ lock. In order to reconcile these
and provide a single, comprehensible locking
pattern—after considerable thought we added
hooks to gtk+ to allow a shared (recursive) lock
to be used. This makes gtk+ use in OO.o virtu-
ally seamless.

8 UNO component model

OO.o provides a rich, and well documented
component model, which is exported for the
use of language bindings. The power of this,
and its flexibility have resulted in active bind-
ings for StarBasic, Java, and Python.

The UNO model is particularly interesting,
since it consumes little overhead beyond a
stock C++ virtual function call. In addition
each class has associated, small compiled IDL
type information. This can be used, to dynam-

ically (at run time) construct bridges to other
languages, and allow dynamic method invo-
cation. While this adds a compiler version /
ABI dependency to the OO.o core, it avoids the
problem of creating stub / skeleton code which
ended up consuming many MB before the dy-
namic approach was adopted.

9 Conclusions

OO.o provides an unusualm and particularly
pathalogical case of a gigantic C++ project.
This leads us to push the boundaries of the sys-
tem, showing up several areas for potential im-
provement.

The ooo-build infrastructure provides a solid
base for contributing work to OO.o in a famil-
iar and accessible manner, and seeing the de-
ployed results of your work quickly.

OpenOffice 2.0 will give substantial perfor-
mance, code-cleanliness and interoperability
improvements, in addition to many new fea-
tures.

References

[1] Ulrich Drepper. How to write shared
libraries, 2004.
http://people.redhat.com/
drepper/dsohowto.pdf .

[2] Sun Microsystems, Inc. Joint copyright
assignment.
http://www.openoffice.org/
licenses/jca.pdf .

[3] Sun Microsystems, Inc. Sun industry
standards source license.
http://www.openoffice.org/
licenses/sissl_license.html .


