
11/25/08 5:30 PMThe Processor-Memory bottleneck : Problems and Solutions.

Page 1 of 8http://www.acm.org/crossroads/xrds5-3/pmgap.html

The Processor-Memory bottleneck: 
Problems and Solutions.
by Nihar R. Mahapatra and Balakrishna Venkatrao

Abstract

The rate of improvement in microprocessor speed exceeds the rate of improvement in DRAM (Dynamic
Random Access Memory) speed. So although the disparity between processor and memory speed is
already an issue, downstream someplace it will be a much bigger one. Hence computer designers are
faced with an increasing Processor - Memory Performance Gap [1] , which now is the primary
obstacle to improved computer system performance. This article examines this problem as well as its
various solutions.

Introduction

Motivation and Background

A computer's memory system is the repository for all the information used by and produced by the
computer's central processing unit (CPU). The phenomenal increase in microprocessor performance
places significant demands on the memory system. A perfect memory system is one that can supply
immediately any datum that the CPU requests. This ideal memory is not practically implementable,
however, as the three factors of memory (capacity, speed, and cost) are in direct opposition. An
economical solution, then, is a memory hierarchy organized into several levels, each smaller, faster, and
more expensive per byte than the next. The goal is to provide a memory system with cost almost as low
as the cheapest level of memory and speed almost as fast as the fastest level. The concept of memory
hierarchy takes advantage of the principle of locality. Briefly, this principle states that accessed memory
words will be accessed again quickly (temporal locality) and that memory words adjacent to an accessed
word will be accessed soon after the access in question (spatial locality). Further Smaller is faster -
smaller pieces of hardware will generally be faster than larger pieces. This simple principle is particularly
applicable to memories built from similar technologies for two reasons. First, larger memories have more
signal delay and require more levels to decode addresses to fetch the required datum. Second, in most
technologies we can obtain smaller memories that are faster than larger memories. This is primarily
because the designer can use more power per memory cell in a smaller design. The fastest memories are
generally available in smaller number of bits per chips at any point in time, and they cost substantially
more per byte. Based on the above reasons, the memory hierarchies of modern general purpose
computers generally contain the following:

Registers: These are the small, fast storage buffers within the CPU. The Compiler is responsible
for managing their use, deciding which values should be kept in the available register at each point
in the program.

Cache: This is small, fast memory located close to the CPU that holds the most recently accessed
code or data. The caches are generally made up of SRAM (static random access memory). When
the CPU finds the requested data item in the cache, it is called a cache hit. When the CPU does
not find the data item it needs in the cache, it results in cache miss, and the data item must be

http://www.acm.org/crossroads/crew/balakrishna_venkatrao.html
http://www.acm.org/crossroads/crew/nihar_mahapatra.html
http://www.acm.org/crossroads/xrds5-3/pmgap.html#ref1


11/25/08 5:30 PMThe Processor-Memory bottleneck : Problems and Solutions.

Page 2 of 8http://www.acm.org/crossroads/xrds5-3/pmgap.html

fetched from main memory. Caches typically exploit the principle of spatial locality of reference
by prefetching a fixed amount of data contiguous to the referenced value. Caches can vary widely
in their size and organization, and there may be more than one level of cache in the hierarchy. The
widening gap between the processor and memory has lead to a keen interest in multi-level caches.
Many of the present day caches have a two level structure, with the level closer to the processor
designated as L1 cache and the next level designated as L2 cache. Though adding levels in the
hierarchy is straightforward, it complicates design and performance analysis.

Main memory: This is the next level down in the hierarchy. Main memory satisfies the demand of
caches and serves as the I/O interface. The main memory is generally made up of DRAM
(Dynamic random access memory) and has relatively large storage capacity as compared to the
caches (SRAMs). The DRAMs also have relatively larger access times as compared to SRAMs.
Further, the dynamic nature of the DRAMs accounts for their reduced performance as compared to
SRAMs. However the simplified design structure and cost feasibility has made DRAMs the choice
for main memory.

Virtual Memory: Systems generally require a greater number of memory locations than are
available in the main memory (i.e., a larger address space). The entire portion of the address space
that the CPU uses is stored on large magnetic or optical disks. The most frequently used sections
of the virtual memory are kept in the main memory and are moved back and forth.

Performance metrics
The performance of a computer system is related directly to its execution time. The execution time is
given by

CPU time = IC * CPI * Clock period

IC = number of instructions executed 
CPI = average clock cycles required per instruction

The performance of a computer depends on the interface between the processor and the memory. If this
interface is not correct, a significant increase in CPI can result. A better measure, which captures the
essence of the above statement, is the average time to access memory.

Average memory access time = Hit time + Miss rate * Miss penalty.

where Hit Time is the time to hit the cache, Miss rate is the fraction of access that are not in the cache
and Miss penalty is the additional clock cycles to service the miss.

The two parameters, which characterize the processor-memory interface, are:

Memory Bandwidth: The rate at which the memory system can service requests from the
processor. Thus, in short, it refers to the amount of data that is transferred in each access.

Memory Latency: The time between the initiation of a memory request and its completion.

The Processor-Memory performance gap
The rate of improvement in microprocessor speed exceeds the rate of improvement in DRAM memory



11/25/08 5:30 PMThe Processor-Memory bottleneck : Problems and Solutions.

Page 3 of 8http://www.acm.org/crossroads/xrds5-3/pmgap.html

speed. There are a number of reasons to account for this growing disparity. The division of the
semiconductor industry into microprocessor and memory camps is the prime reason, though it has its
own advantages. First and foremost, a fabrication line can be tailored to the needs of the device.
Microprocessor fab lines offer fast transistors to make fast logic and many metal layers to accelerate
communication and simplify power dissipation, while DRAM fabrication lines offer many polysilicon
layers to achieve both small DRAM cells and low leakage current to reduce DRAM refresh rate.
Seperate chips also mean separate packages, allowing microprocessors to use expensive packages that
dissipate high power (5 to 50 watt) and provide hundreds of pins to make wider connection to external
memory, while allowing DRAMs to use inexpensive packages which dissipate low power (1 watt) and
use only a few dozen pins. Separate packages in turn mean computer designers can scale the number of
memory chips independent of the number of processors.

Having the industry split into two camps - memory manufacturers and processor manufacturers, also has
its inherent disadvantages. While microprocessor performance has been improving at a rate of 60 percent
per year, the access time to DRAM has been improving at less than 10 percent per year [2]. Thus though
each is improving exponentially, the exponent for the microprocessor is substantially larger than that for
the DRAMs. The difference between diverging exponentials also grows exponentially, so although the
disparity between processor and memory speed is already an issue, downstream someplace it will be a
much bigger one. Hence computer designers are faced with an increasing Processor - Memory
Performance Gap, which now is the primary obstacle to improved computer system performance.

 
Processor -Memory Performance Gap

Because of the growing memory access latencies (measured in processor cycles), any request that misses
in the caches may eventually take hundred of cycles to satisfy. Thus system speed will now be dominated
by memory performance. Quantitatively the problem involved is reducing the average memory access
time. This involves primarily improving each of the three factors of Hit time, Miss penalty and Miss rate
(refer to [1] for a more involved discussion on optimization of each of the three parameters). However
these latency tolerance (or reduction) techniques may increase a processor's memory bandwidth needs by
causing the processor to request the same stream of operands in less time or by causing the processor to
request more data from memory. Thus implementation of aggressive memory latency tolerance
techniques aggravate stalls due to finite memory bandwidth, which actually become more significant
than stalls resulting from uncongested memory latency alone. Thus the two factors of memory latency
and memory bandwidth are closely related. Improvement in memory bandwidth is critically necessary to
support aggressive memory latency techniques. The range of techniques to improve effective memory

http://www.acm.org/crossroads/xrds5-3/pmgap.html#ref2
http://www.acm.org/crossroads/xrds5-3/pmgap.html#ref1


11/25/08 5:30 PMThe Processor-Memory bottleneck : Problems and Solutions.

Page 4 of 8http://www.acm.org/crossroads/xrds5-3/pmgap.html

bandwidth includes [3]:

1. Wider and faster connection to memory.

As pointed out earlier, memory bandwidth is the amount of data bits transferred per second.
Therefore traditional approaches to improving the memory bandwidth include speeding up the
memory clock (this is to reduce the access latencies), increasing the bus width, or both. For
conventional DRAMs, these approaches are reaching their practical limits. While clock rate scaling
causes stringent system timing requirements, which dictate precise component and PCB modeling,
the increase of bus width comes at the expense of increasing the pin count, increasing I/O power,
and creating a host of mechanical and PCB layout problems. Although large increases in pin
counts have recently occurred - and significant breakthroughs in packaging technology
undoubtedly lie on the horizon- the issues of reliability, power and especially cost will prevent pins
from sustaining growth in numbers commensurate with the growth rate of processor performance.
Of late, novel memory system interfaces like Rambus (RDRAM) and Synchronous link
(SLDRAM) have emerged which promise bandwidth on the order of multi-gigabytes/second.
Another technique to buy more bandwidth is to use memory interleaving, but this comes at the
expense of increased cost and problems associated with memory expansion. The key question is
not whether providing enough memory bandwidth with each generation is possible, but whether
providing enough for each generation is cost effective.

2. Larger on-chip caches.

Larger caches improve effective bandwidth by sending fewer requests (misses) across the
interconnect. Present day on-chip caches are reaching the megabyte range. Although caches this
large will be able to hold the working sets for many applications, there will always be programs
whose access patterns aren't amenable to caching. There will also be programs with working sets
that are too large to fit in these caches. Further, large on-chip caches have the affect of increasing
the system cost.

3. Dynamic access ordering [4]

This method maximizes memory performance for streaming computations (e.g., signal/image
processing, multimedia compression and decompression). This approach is based on access
ordering, or changing the order of memory requests to improve the rate at which those requests are
serviced by a memory system with non-uniform access times. This method combines a hardware
and software approach: the compiler arranges for the processor to transmit a stream of information
to a Stream Memory Controller, or SMC, at run-time, and the SMC dynamically reorders the
access, attempting to issue them in a sequence that maximizes effective memory bandwidth. The
processor issues its memory requests in the natural order of the computation, and the streamed data
is buffered within the controller until requested by the processor (for memory loads) or written to
memory by the controller (for memory stores).

4. More efficient on-chip caches.

Although caches are quite effective at capturing temporal and spatial locality in the dynamic
reference stream, they do so in a crude fashion, and are far from optimal in their use of buffering
active data. An effort to improve the content of caching is the Impulse Project [5]. Impulse is a
new memory system architecture that adds two important features to a traditional memory
controller. First, Impulse supports application specific optimizations through configurable physical
address remapping. By remapping physical addresses, applications can control how their data is

http://www.acm.org/crossroads/xrds5-3/pmgap.html#ref3
http://www.acm.org/crossroads/xrds5-3/pmgap.html#ref4
http://www.acm.org/crossroads/xrds5-3/pmgap.html#ref5


11/25/08 5:30 PMThe Processor-Memory bottleneck : Problems and Solutions.

Page 5 of 8http://www.acm.org/crossroads/xrds5-3/pmgap.html

accessed and cached, which enables them to improve their cache and bus utilization. Second,
Impulse supports prefetching at the memory controller. By prefetching data at the controller, the
memory system can hide much of the DRAM accesses. Because it requires no modification to
processor cache, or bus design, impulse can be adopted to a conventional system.

5. Logic/DRAM integration.

The processor-memory bandgap is becoming an increasing impediment to performance, which
might shift the focus to integrating the processor on the same die (or in the same package) as the
main memory. This eliminates the need for expensive, high bandwidth interchip interconnects.
However, as mentioned earlier, the difference between manufacturing processors (logic) and
memory gives rise to a lot of challenges to make this technology feasible. Much research is being
conducted in this area. Particularly noteworthy is the Intelligent RAM (IRAM) project at
University of California at Berkeley [2].

Computing by Compression (CC) paradigm
Another interesting method for improving the effective bandwidth of an interconnect is compression.
Researchers have proposed and/or implemented schemes to use compression for data, addresses and
code. All these schemes increase effective bandwidth to memory at the expense of some extra hardware
on the CPU/Memory end. Current technology trends (computation growing cheaper relative to expensive
communication) will make compression more attractive in the future.

Cache Operation and Information Theory
An alternative view of the operation of cache memory is that caches work because of redundancy in the
sequence of address requests made to memory by the processor. It is this redundancy that allows the
simple demand fetch hardware algorithm to accurately predict the future reference requirement of the
processor. In a now well known study on the subject [6], Hammerstrom showed that there was generally
no more than one percent information content in an address trace. Given knowledge of past reference, 99
bits out of every 100 bits of address reference made to the memory system by the processor are
predictable. The remaining bit of information represents the occurrence of references to new localities
undeterminable until the time of program execution.

Thus the paradigm Computing by Compression (CC) is particularly interesting as it brings to surface the
important question - Are we really communicating intelligent information between the memory and
CPU? How much redundancy can be exploited in the information that is exchanged between the
processor and memory? For example we already know that the programs exhibit temporal and spatial
locality. In the above circumstance, is it really wise to dedicate an accruing number of address lines
(pins) to communicate these addresses when their temporal and spatial features can be better exploited?
Therefore it becomes very important to analyze the present traffic (data, instructions and addresses) and
exploit the redundancy involved to devise specific compression techniques to send the optimal
information between the processor and memory.

Related Work
1. Creating wider Bus Caching Techniques [7]

The effective bandwidth of a bus (communication channel) can be increased by using a variant of

http://www.acm.org/crossroads/xrds5-3/pmgap.html#ref2
http://www.acm.org/crossroads/xrds5-3/pmgap.html#ref6
http://www.acm.org/crossroads/xrds5-3/pmgap.html#ref7


11/25/08 5:30 PMThe Processor-Memory bottleneck : Problems and Solutions.

Page 6 of 8http://www.acm.org/crossroads/xrds5-3/pmgap.html

data compression techniques, exploting the ``Principle of Locality'' of the data values. The
compaction is performed by caching the higher order bits into a table and sending the index into a
table along with the lower order bits. A coherent table at the receiving end expands the word into
its original form. Compaction/expansion units can be placed between the memory and processor,
between the processor and local bus and between the devices that access the system bus.

2. Address Compression through Base register caching [8]

With the increase in the address space, more and more address lines are required for address
communication between the processor and the CPU. However, limitations are imposed by the
number of pins. Address reference streams exhibit large amounts of temporal and spatial locality
and are consequently very predictable. Therefore, a typical address word has very low information
content. By caching the higher order portions of address references in a set of dynamically
allocated base registers, it becomes possible to transmit small register indices between the
processor and memory instead of higher order bits themselves, thereby increasing available
processor bandwidth.

3. Instruction Compression in Embedded Systems [9, 10]

This method is basically used for compressing programs in embedded processors, where
instruction memory size dominates cost. In this method, a post compilation analyzer examines a
program and replaces common sequences of instruction with a single instruction code word which
acts as a pointer to a dictionary (maintained at the processor end) containing the sequences of
instructions it represents. Thus, effective compression of program can be obtained. Another
research effort has been to use ideas of text compression for efficient reduction of code size.

Conclusion
The problem of Memory Wall [11] is becoming increasingly important and is emerging as one of the
greatest impediments to the microprocessor system performance. It is now time to start thinking about
how to avoid hitting this wall. Though many techniques have been suggested to circumvent this problem,
most of them provide one time boosts of either bandwidth or latency. While these delay the date of
impact, they don't change the fundamentals. The most convenient resolution would be the discovery of a
cool, dense memory technology whose speed scales with that of processors. Though nothing concrete has
been taken in this direction, a good approach, at present time, would be to affect changes at the
architectural level. The CC concept has a lot of potential but it warrants more research and analysis
before actual implementation.

References

1
John L Hennessy and David A Patterson, Computer Architecture: A Quantitative Approach,
Morgan Kaufman, CA, 1996.

2
David Patterson, Thomas Anderson et al., A Case for Intelligent RAM : IRAM, IEEE Micro, April
1997.

http://www.acm.org/crossroads/xrds5-3/pmgap.html#ref8
http://www.acm.org/crossroads/xrds5-3/pmgap.html#ref9
http://www.acm.org/crossroads/xrds5-3/pmgap.html#ref10
http://www.acm.org/crossroads/xrds5-3/pmgap.html#ref11
http://www.amazon.com/exec/obidos/ISBN=1558603298/acmcrossroadsstu


11/25/08 5:30 PMThe Processor-Memory bottleneck : Problems and Solutions.

Page 7 of 8http://www.acm.org/crossroads/xrds5-3/pmgap.html

3
D. Burger, J.R. Goodman, and A. Kagi. Memory Bandwidth Limitations of Future
Microprocessors, Proc. 23rd Ann. Int'l Symp. Computer Architecture, Assoc. of Computing
Machinery, pp. 79-90, Aug. 1996.

4
McKee, S.A. Dynamic Access Ordering : Bounds on Memory Bandwidth, University of Virginia,
Technical Report CS-94-14, April 1994.

5
J. Carter et al. Impulse: An Adaptable Memory System. Submitted to 5th Int'l Symp. Computer
Architecture, Assoc. of Computing Machinery, Jan 1999.

6
Hammerstrom, D. and E. Davidson. Information Content of CPU Memory Referencing Behavior,
Proc. 4th Ann. Int'l Symp. Computer Architecture, Assoc. of Computing Machinery, pp. 184-192.
March 1977.

7
L. Rudolph and D. Criton. Creating a Wider Bus using Caching Techniques. Proc. 1st Int'l Symp.
High Performance Computer Architecture. IEEE Comp Society Press, pp. 90-99. 1995.

8
M. Farrens and A. Park. Dynamic Base regsiter caching: A Technique for reducing address bus
width. Proc 18th Int'l Symp. Computer Architecture, ACM, pp.128-137. 1991.

9
T. Mudge and P. Bird. An Instruction stream Compression Technique. Proc of Micro -30, Dec
1997.

10
Srinivas Devadas et al. A text Compression based method for code size minimization in Embedded
System. To appear in ACM TODAES., Vol 4, No 1, Jan 1999.

11
Wm. A. Wulf and Sally A McKee. Hitting the Memory wall: Implications of the Obvious.
Computer Architecture News, 23(1), pp. 20-24, March 1995.

FIGURE inserted with kind permission of Dr. David A Patterson, University of California, Berkeley.

About the authors:

Dr Nihar Mahapatra is an Assistant Professor in the Computer Science and Engineering Department at
the State University of New York at Buffalo. His research interests include Computer Architecture,
Parallel Processing and VLSI design.

Balakrishna Venkatrao is a graduate student in the Computer Science and Engineering Department at the
State University of New York at Buffalo. His research interests include Computer Architecture, VLSI
and molecular electronics.

http://www.cs.buffalo.edu/~mahapatr
http://www.acsu.buffalo.edu/~bvv1


11/25/08 5:30 PMThe Processor-Memory bottleneck : Problems and Solutions.

Page 8 of 8http://www.acm.org/crossroads/xrds5-3/pmgap.html

Copyright 1999 Nihar R. Mahapatra and Balakrishna Venkatrao

Want more articles about Computer Architecture? Go to the index, the the next one or to the
previous one.

Last Modified: 
Location: www.acm.org/crossroads/xrds5-3/pmgap.html

http://www.acm.org/crossroads/xrds5-3/copyright.html
http://www.acm.org/crossroads/xrds5-3/ntu.html
http://www.acm.org/crossroads/doc/indices/features.html#Computer%20Architecture
http://www.acm.org/crossroads/xrds6-1/parallel.html

