

Advancements in Storage and File Systems in Windows 8.1

Andy Herron
Microsoft Corporation

Overview

- Who am I?
 - Developer in Windows Storage and File Systems group
 - Worked on Spaces Tiering for 8.1
- What are we covering?
 - Enhancements to local storage stack
 - ■Windows Client 8.1
 - □ Windows Server 2012 R2

Specifics of what we will cover

- Solid State Hybrid Drives
- NVMe Devices
- Storage Spaces Advancements
 - Storage Tiering
- SM-API Management Advancements
- □ File System Advancements
 - NTFS
 - **REFS**

Solid State Hybrid Drives

Solid State Hybrid Drive

- Support added for Windows Client 8.1
 - Currently not supported in Windows Server 2012 R2
- ☐ Also known as
 - "SSHD"
 - "Hybrid Drive"
 - "Hybrid Disk"

What is a Solid State Hybrid Drive?

- Spinning magnetic disk + nonvolatile flash in a single physical device
- The flash typically acts as a nonvolatile cache for data also available on the disk
 - Total storage capacity of the device is max(flash size, disk size)

Image Source: www.Seagate.com

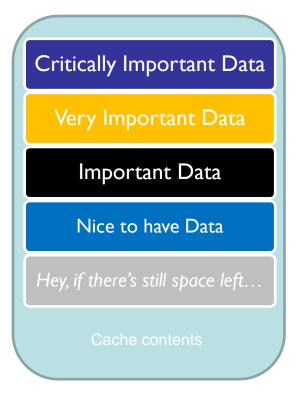
"SSHD" Value Proposition

- High level goal:
 - SSD-like performance + HHD-like price and capacity
 - Users want large storage capacity for music, videos, photos, etc. that would be prohibitively expensive for OEMs to meet with flash only storage.
- SSHDs can dramatically improve performance for low to mid-range systems with reasonable cost increase

New Host-Hinted SSHD devices

- Standardized interface through SATA-IO
 - □ "TP_042v14_SATA31_Hybrid Information"
- Host-hinted SSHDs rely on the OS to provide "hints" as to which LBAs are important / high value.
- A hint is a suggestion, not an order.
 - Device can move an LBA into flash immediately, lazily, or not at all.

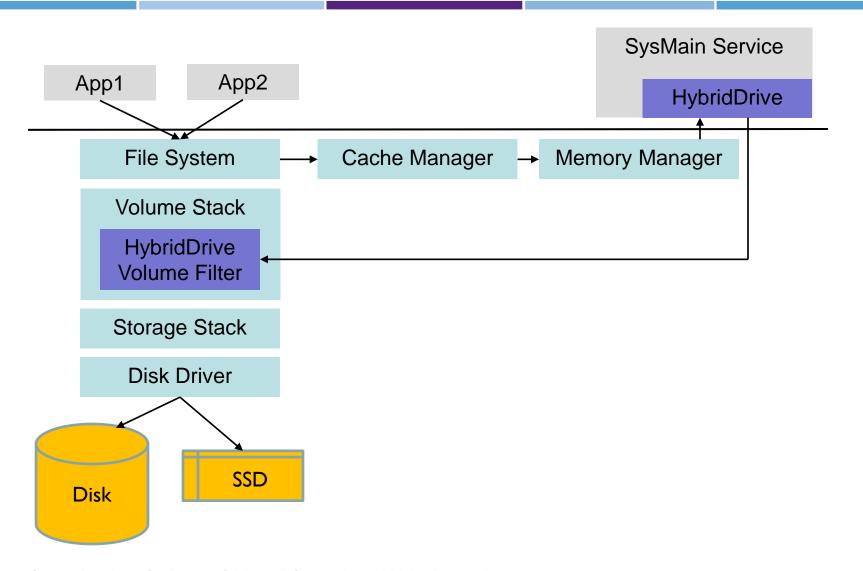
New Host-Hinted SSHD devices



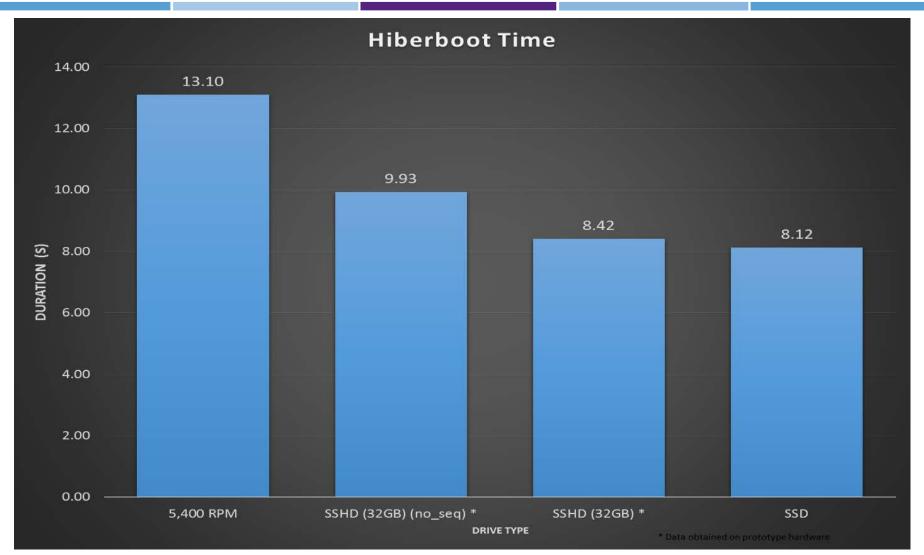
- Cache remains a black box to the host. There is no way to query its contents, or determine if a particular LBA is in the flash.
 - We can get some high-level info like how much cache space is used.
- Drives can use their own proprietary selfpinning logic in addition to host hints.

Hinting Priorities

- Host hinted SSHDs take a "hint priority"
- Indicates how valuable an LBA is with respect to others in the cache.
- If there is not enough cache space, the device evicts LBAs from the lowest nonempty priority first to make room for higher priority LBAs.
- Number of priority levels varies by device.
 - Windows 8.1 logo mandate at least 6 priority levels be exposed to the OS.


Windows Client 8.1: Scenario-Focused Approach

- Other solutions look at recent access history
 - Cold data can be pushed out by hot data but the cold data could still be important
- Window's SuperFetch has context on data accessed during important scenarios
 - Boot, Logon, Hibernate, Resume, and Standby
 - App Launch and Fast User Switch
- Scenarios are assigned to different priorities
 - Device will evict LBAs from less important scenarios before important ones.
 - Cold (but important) data can stay in the cache.


Hybrid Disk Support Architecture

SSHD Results in Windows 8.1

^{*} Pre-Production Hybrid Hard Disk

NVMe Devices

NVMe in Windows

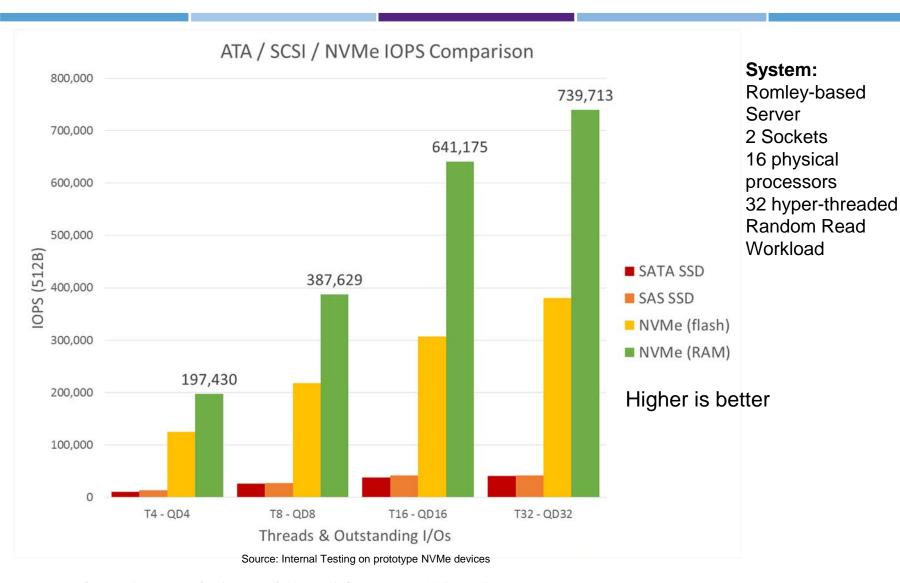
- □ The Protocol
 - Standardized PCIe Storage



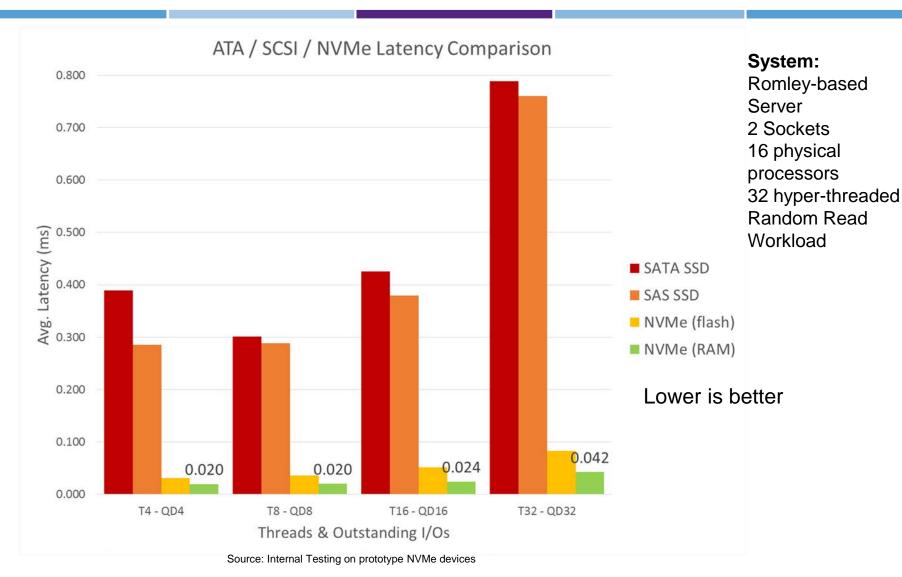
Image Source: www.Micron.com

- Windows OS Support
 - Windows Inbox Driver (StorNVMe.sys)
 - Windows Server 2012 R2 (highdensity/performance)
 - Windows 8.1 (small form factors)
 - Stable Base Driver for all NVMe Compliant Devices

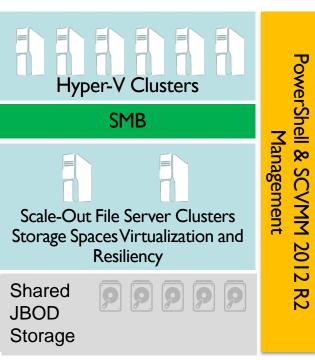
NVMe in Windows Storage Stack


- The Storport Model
 - Reduced development cost
 - Offloads Basics: PnP, Power, Setup, Crash, Boot*
 - Mature / Hardened Model
 - Storport optimized for performance
 - RAM-backed NVMe device
 - □> 1 million IOPS | < 20µs latencies

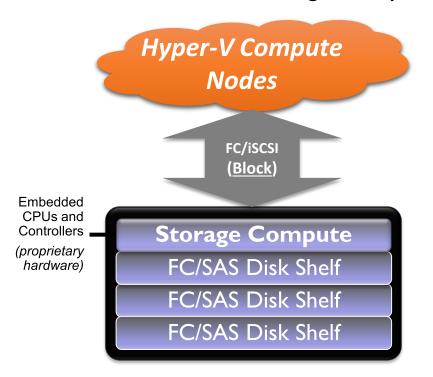
^{*} For machines that have compatible UEFI boot environment


Windows Stack Performance

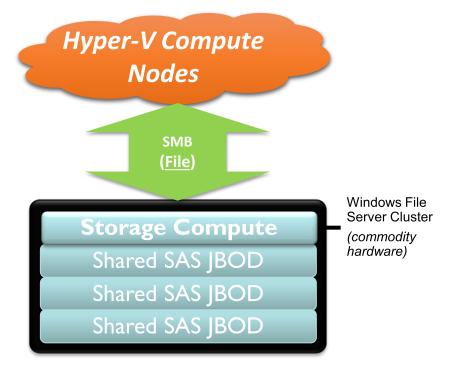
Windows Stack Latency



Infrastructure-as-a-Service Storage Vision


- IAAS : Cloud hosted VM for generic workloads
- Dramatically lowering the costs and effort of delivering laaS storage services
- Disaggregated compute and storage
 - Independent manage and scale at each layer
- Industry standard servers, networking and storage
 - Inexpensive networks
 - Inexpensive shared JBOD storage

Storage Spaces Deployment Model



Traditional Storagewith FC/iSCSI Storage Array

Windows File Server Cluster

with Storage Spaces

- New Resiliency Schemes
 - Windows Server 2012 had simple, mirrored, and single parity
 - Windows Server 2012 R2 now adds dual parity with erasure coding
 - □ Requires at least seven disks in pool for dual parity
 - Dual parity guarantees resiliency in the case of two concurrent device failures
 - Uses a write journal for crash consistency
 - Battery backup of storage not required

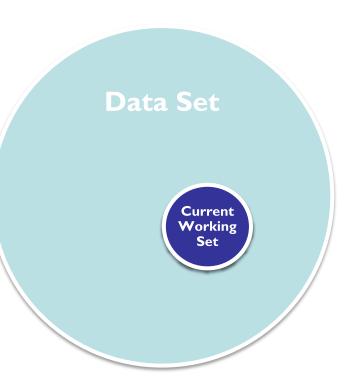
- Parity Spaces are now supported in clustered scenarios.
- Space allocation for Parity Spaces are now Enclosure Aware.
 - Distributed across enclosures such that it is resilient to failure of one full enclosure and another disk in a different enclosure.

- □ Fast (Parallel) Rebuild
 - When a physical disk fails, Storage Spaces regenerates the data on the replaced physical disk in parallel.
 - In the past, priority was placed on not interfering with IOs rather than completing the rebuild quickly.
 - Configurable on a per disk basis and defaults to fast rebuild enabled.

- □ Persistent Write Back Cache
 - Available for simple and mirrored spaces
 - □ Parity gets this through journal on SSD
 - Uses SSDs to log small writes and then destage over time. Bypassed for large writes.
 - Configurable per space.
 - Requires same degree of resiliency as space it is caching data for.

Tiered Storage on Spaces

Tiered Storage - High Level



- Enhancement to Windows Storage Spaces
- Capacity of large pool of disks with benefits of flash performance
- Flash drives (SSDs) and hard drives (HDDs) on same volume
- Write back cache (WBC) on flash is used to buffer writes to volume
 - WBC only caches blocks going to disk regions, not flash regions

Tiered Storage

- Match Workload Characteristics to Drives
- Common Workload Characteristics
 - Large data set, and majority of data is cold
 - Minority of data is in active use, and is hot
 - □ The hot data is the "working set"
 - Working set changes over time
- Common Drive Characteristics
 - Hard Disk Drives
 - Capacity Optimized
 - Solid State Drives
 - □ Performance Optimized

Tiered Storage

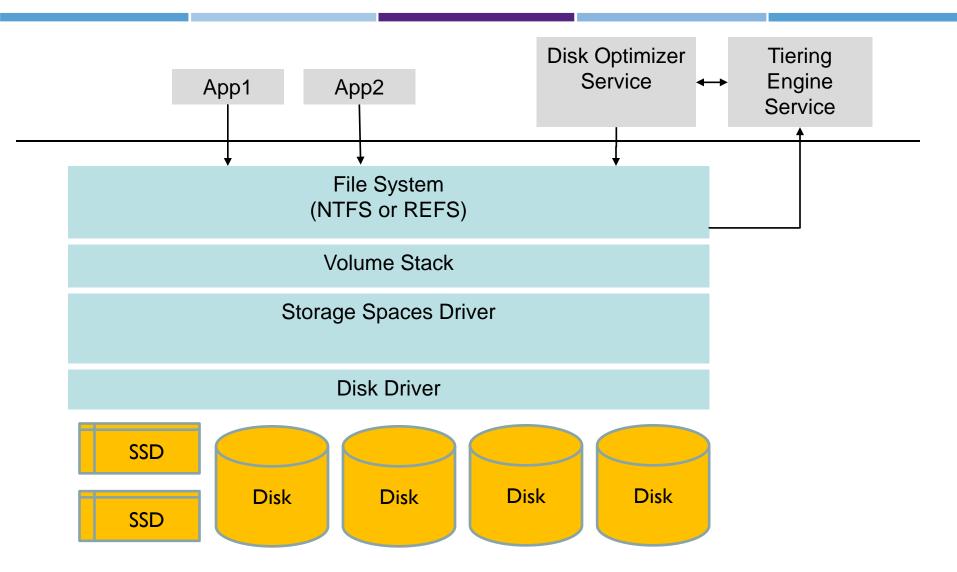
- Traditionally done as remap layer of LBA below file system
 - Pros
 - □ Transparent to file system
 - □ Faster media can be shared across volumes
 - Cons
 - Yet another table lookup at IO time
 - Mapping must be hardened against loss at flush or FUA write time
 - Underlying remap layer not aware when a file is moved to new LBA. Has no knowledge about what LBAs make up a particular file.

Tiered Storage – A new approach

- Allocate large blocks of different media types into explicit regions of logical volume.
- Make configuration of tiers and explicit mappings for a volume known to the file system.
- Use file extent list in file system the authoritative mapping of what portions of what file go into which regions.
- Measure read/write heat at logical file offset level so that when file moves, heat moves too.

Tiered Storage

- Benefits to new approach vs Traditional Remap
 - No secondary lookup at IO time through remap layer.
 - No extent mapping to be hardened at write or flush.
 - Can provide an API that allows administrators to specify tier at the file level.
 - File systems can get initial placement correct.
 - When a file is moved to new LBA, current tier can be taken into account and maintained.


Tiered Storage

- File system is aware of different regions and can have different allocation policies for different tiers.
- Read/Write IO is measured at logical file offset layer so that when file is moved, heat follows the file.
 - Important for REFS integrity streams
- □ REFS during Allocate-On-Write can preserve tier during new allocations for same file or file range.

Tiered Volume Architecture

Tiered Storage

- □ Tiering Engine Service
 - Tracks IO workload on volume and moves data once a day by default.
 - Cold data existing on flash regions is moved to disk regions.
 - Hot data existing on disk regions is moved to flash regions.
 - Configurable how much data is moved and how often.
 - Defrag interface to file system is used to move data between tier regions.

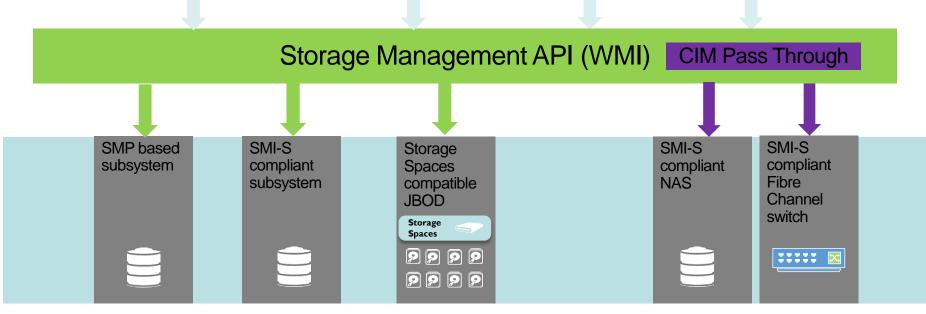
Tiered Storage

- Tier creation and configuration is integrated into core Storage Management UI
- Individual files can have their storage tier explicitly set via PowerShell command
- Administrative operations are done from PowerShell or UI.
 - No administrative actions required to get good results

Tiering and Hybrid Disk Support

- Currently two distinct separate technologies
- □ Tiered Storage scenarios
 - Windows Server 2012 R2
 - Optimized for generic enterprise workload performance where the working set changes slowly over time.
- Hybrid Drive scenarios
 - Windows Client 8.1
 - Optimized for fast boot and application launch
 - Dramatically speeds up key scenarios in client

SM-API Management Advancements


SM-API Overview

Single standardized management interface to manage storage

Windows Server 2012 Server Manager ISV or Storage Vendor Applications

System Center Virtual Machine Manager

SM-API Management

- Remote Spaces Management
 - Connect to a provider in cluster namespace or a standalone machine's local subsystem
 - Disabled connecting to local subsystem if node part of a cluster
 - Pool, Space, and Physical Disks can be remotely managed.
 - □ Virtual Disk, Volume, and Partition not yet supported remotely

SM-API Management

- Automatic Cluster Aggregation
 - Consistent view from any cluster node.
 - Management operations performed on subsystem basis
 - Automatic redirection of operations to owner node

SM-API Management

- New CreateVolume API automatically does following:
 - Creates a Storage Space
 - Initializes the disk
 - Creates a partition
 - Formats the volume

Many performance improvements

NTFS & REFS Advancements

File System Advancements

- NTFS & REFS
 - Worry Free Thin Provisioning
 - □ A thin-provisioned volume no longer disappears if the underlying physical storage runs out of space to back an allocation.
 - An application now gets STATUS_DISK_FULL in this condition
 - API available to read copies of data exposed by Spaces
 - Allow for applications that implement their own checksum schemes
 - Lots of performance improvements

File System Enhancements

- REFS
 - Alternative Data Streams now supported
 - Self correcting on both mirror and parity
 Spaces volumes
 - □ File system metadata
 - User data with integrity enabled
 - More self healing
 - Automatically recovers from directory metadata corruption

Questions?