

ABSTRACT

 NUMA refers to the computer memory design choice

available for multiprocessors. NUMA means that it will take

longer to access some regions of memory than others. This work

aims at explaining what NUMA is, the background

developments, and how the memory access time depends on the

memory location relative to a processor. First, we present a

background of multiprocessor architectures, and some trends in

hardware that exist along with NUMA. We, then briefly discuss

the changes NUMA demands to be made in two key areas. One

is in the policies the Operating System should implement for

scheduling and run-time memory allocation scheme used for

threads and the other is in the programming approach the

programmers should take, in order to harness NUMA’s full

potential. In the end we also present some numbers for

comparing UMA vs. NUMA’s performance.

Keywords: NUMA, Intel i7, NUMA Awareness, NUMA Distance

SECTIONS

 In the following sections we first describe the background,

hardware trends, Operating System’s goals, changes in

programming paradigms, and then we conclude after giving some

numbers for comparison.

Background

Hardware Goals / Performance Criteria

 There are 3 criteria on which performance of a multiprocessor

system can be judged, viz. Scalability, Latency and Bandwidth.

Scalability is the ability of a system to demonstrate a proportionate

increase in parallel speedup with the addition of more processors.
 Latency is the time taken in sending a message from node A to node

B, while bandwidth is the amount of data that can be communicated

per unit of time. So, the goal of a multiprocessor system is to

achieve a highly scalable, low latency, high bandwidth system.

Parallel Architectures

 Typically, there are 2 major types of Parallel Architectures that

are prevalent in the industry: Shared Memory Architecture and

Distributed Memory Architecture. Shared Memory Architecture,

again, is of 2 types: Uniform Memory Access (UMA), and Non-

Uniform Memory Access (NUMA).

Shared Memory Architecture

 As seen from the figure 1 (more details shown in “Hardware

Trends” section) all processors share the same memory, and treat it

as a global address space. The major challenge to overcome in such

architecture is the issue of Cache Coherency (i.e. every read must

Figure 1 Shared Memory Architecture (from [1])

reflect the latest write). Such architecture is usually adapted in

hardware model of general purpose CPU’s in laptops and

desktops.

Distributed Memory Architecture

 In figure 2 (more details shown in “Hardware Trends”

section) type of architecture, all the processors have their own

local memory, and there is no mapping of memory addresses

across processors. So, we don’t have any concept of global

address space or cache coherency. To access data in another

processor, processors use explicit communication. One example

where this architecture is used with clusters, with different nodes

connected over the internet as network.

Shared Memory Architecture – UMA

 Shared Memory Architecture, again, is of 2 distinct types,

Uniform Memory Access (UMA), and Non-Uniform Memory

Access (NUMA).

Figure 2 Distributed Memory (from [1])

Figure 3 UMA Architecture Layout (from [3])

Non-Uniform Memory Access (NUMA)

Nakul Manchanda and Karan Anand

New York University

{nm1157, ka804} @cs.nyu.edu

The Figure 3 shows a sample layout of processors and memory

across a bus interconnection. All the processors are identical, and

have equal access times to all memory regions. These are also

sometimes known as Symmetric Multiprocessor (SMP) machines.

The architectures that take care of cache coherency in hardware

level, are knows as CC-UMA (cache coherent UMA).

Shared Memory Architecture – NUMA

 Figure 4 shows type of shared memory architecture, we have

identical processors connected to a scalable network, and each

processor has a portion of memory attached directly to it. The

primary difference between a NUMA and distributed memory

architecture is that no processor can have mappings to memory

connected to other processors in case of distributed memory

architecture, however, in case of NUMA, a processor may have so.

It also introduces classification of local memory and remote

memory based on access latency to different memory region seen

from each processor. Such systems are often made by physically

linking SMP machines. UMA, however, has a major disadvantage of

not being scalable after a number of processors [6].

Hardware Trends

 We now discuss 2 practical implementations of the memory

architectures that we just saw, one is the Front Side Bus and the

other is Intel’s Quick Path Interconnect based implementation.

Traditional FSB Architecture (used in UMA)

 As shown in Figure 5, FSB based UMA architecture has a

Memory Controller Hub, which has all the memory connected to

it. The CPUs interact with the MCH whenever they need to

access the memory. The I/O controller hub is also connected to

the MCH, hence the major bottleneck in this implementation is

the bus, which has a finite speed, and has scalability issues. This

is because, for any communication, the CPU’s need to take

control of the bus which leads to contention problems.

Quick Path Interconnect Architecture (used in NUMA)

 The key point to be observed in this implementation is that

the memory is directly connected to the CPU’s instead of a

memory controller. Instead of accessing memory via a Memory

Controller Hub, each CPU now has a memory controller

embedded inside it. Also, the CPU’s are connected to an I/O hub,

and to each other. So, in effect, this implementation tries to

address the common-channel contention problems.

New Cache Coherency Protocol

 This new QPI based implementation also introduces a new

cache coherency protocol, “MESIF” instead of “MESI”. The

new state “F” stands for forward, and is used to denote that a

cache should act as a designated responder for any requests.

Operating System Policies

OS Design Goals

 Operating Systems, basically, try to achieve 2 major goals,

viz. Usability and Utilization. By usability, we mean that OS

should be able to abstract the hardware for programmer’s

convenience. The other goal is to achieve optimal resource

management, and the ability to multiplex the hardware amongst

different applications.

Figure 4 NUMA Architecture Layout (from [3])

Figure 5 Intel's FSB based UMA Arch. (from [4])

Figure 6 Intel's QPI based NUMA Arch. (from [4])

Features of NUMA aware OS

 The basic requirements of a NUMA aware OS are to be able to

discover the underlying hardware topology, and to be able to

calculate the NUMA distance accurately. NUMA distances tell the

processors (and / or the programmer) how much time it would take

to access that particular memory.
 Besides these, the OS should provide a mechanism for processor

affinity. This is basically done to make sure that some threads are

scheduled on certain processor(s), to ensure data locality. This not

only avoids remote access, but can also take the advantage of hot

cache. Also, the operating system needs to exploit the first touch

memory allocation policy.

Optimized Scheduling Decisions

 The operating systems needs to make sure that load is balanced

amongst the different processors (by making sure that data is

distributed amongst CPU’s for large jobs), and also to implement

dynamic page migration (i.e. use latency topology to make page

migration decisions).

Conflicting Goals

 The goals that the Operating System is trying to achieve are

conflicting in nature, in the sense, on one hand we are trying to

optimize the memory placement (for load balancing), and on the

other hand, we would like to minimize the migration of data (to

overcome resource contention). Eventually, there is a trade off

which is decided on the basis of the type of application.

Programming Paradigms

NUMA Aware Programming Approach
 The main goals of NUMA aware programming approach are to

reduce lock contention and maximize memory allocation on local

node. Also, programmers need to manage their own memory for

maximum portability. This is can prove to be quite a challenge,

since most languages do not have an in-built memory manager.

Support for Programmers

 Programmers rely on tools and libraries for application

development. Hence the tools and libraries need to help the

programmers in achieving maximum efficiency, also to implement

implicit parallelism. The user or the system interface, in turn needs

to have programming constructs for associating virtual memory

addresses. They also need to provide certain functions for obtaining

page residency.

Programming Approach

 The programmers need to explore the various NUMA libraries

that are available to help simplify the task. If the data allocation

pattern is analyzed properly, “First Touch Access” can be exploited

fully. There are several lock-free approaches available, which can be

used.

 Besides these approaches, the programmers can exploit various

parallel programming paradigms, such as Threads, Message

Passing, and Data Parallelism.

Performance Comparison

Scalability – UMA vs NUMA

 We can see from the figure, that UMA based implementation

have scalability issues. Initially both the architectures scale

linearly, until the bus reaches a limit and stagnates. Since there is

no concept of a “shared bus” in NUMA, it is more scalable.

Cache Latency

Figure 8 UMA vs NUMA - Cache Latency (from [4])

 The figure shows a comparison of cache latency numbers of

UMA and NUMA. There is no layer 3 cache in UMA. However,

for Main Memory and Layer 2 cache, NUMA shows a

considerable improvement. Only for Layer 1 cache, UMA

marginally beats NUMA.

CONCLUSION

 The hardware industry has adapted NUMA as a architecture

design choice, primarily because of its characteristics like

scalability and low latency. However, modern hardware changes

also demand changes in the programming approaches

(development libraries, data analysis) as well Operating System

Figure 7 UMA vs. NUMA – Scalability (from [6])

Figure 7:

policies (processor affinity, page migration). Without these changes,

full potential of NUMA cannot be exploited.

REFERENCES

[1] “Introduction to Parallel Computing.”:

 https://computing.llnl.gov/tutorials/parallel_comp/

[2] “Optimizing software applications for NUMA”:

http://software.intel.com/en-us/articles/optimizing-software-

applications-for-numa/

[3] “Parallel Computer Architecture - Slides”:

http://www.eecs.berkeley.edu/~culler/cs258-s99/

[4] “Cache Latency Comparison”:

http://arstechnica.com/hardware/reviews/2008/11/nehalem-

launch-review.ars/3

[5] “Intel – Processor Specifications”:

 http://www.intel.com/products/processor/index.htm

[6] “UMA-NUMA Scalability”

www.cs.drexel.edu/~wmm24/cs281/lectures/ppt/cs28

2_lec12.ppt

https://computing.llnl.gov/tutorials/parallel_comp/
http://software.intel.com/en-us/articles/optimizing-software-applications-for-numa/
http://software.intel.com/en-us/articles/optimizing-software-applications-for-numa/
http://www.eecs.berkeley.edu/~culler/cs258-s99/
http://arstechnica.com/hardware/reviews/2008/11/nehalem-launch-review.ars/3
http://arstechnica.com/hardware/reviews/2008/11/nehalem-launch-review.ars/3
http://www.intel.com/products/processor/index.htm
http://www.cs.drexel.edu/~wmm24/cs281/lectures/ppt/cs282_lec12.ppt
http://www.cs.drexel.edu/~wmm24/cs281/lectures/ppt/cs282_lec12.ppt

