
Memory System Performance in a NUMA Multicore
Multiprocessor

Zoltan Majo
Department of Computer Science

ETH Zurich, Switzerland
zoltan.majo@inf.ethz.ch

Thomas R. Gross
Department of Computer Science

ETH Zurich, Switzerland
thomas.gross@inf.ethz.ch

ABSTRACT
Modern multicore processors with an on-chip memory con-
troller form the base for NUMA (non-uniform memory archi-
tecture) multiprocessors. Each processor accesses part of the
physical memory directly and has access to the other parts
via the memory controller of other processors. These other
processors are reached via the cross-processor interconnect.
As a consequence a processor’s memory controller must sat-
isfy two kinds of requests: those that are generated by the
local cores and those that arrive via the interconnect from
other processors. On the other hand, a core (respectively the
core’s cache) can obtain data from multiple sources: data
can be supplied by the local memory controller or by a re-
mote memory controller on another processor. In this paper
we experimentally analyze the behavior of the memory con-
trollers of a commercial multicore processor, the Intel Xeon
5520 (Nehalem). We develop a simple model to characterize
the sharing of local and remote memory bandwidth. The
uneven treatment of local and remote accesses has implica-
tions for mapping applications onto such a NUMA multicore
multiprocessor. Maximizing data locality does not always
minimize execution time; it may be more advantageous to
allocate data on a remote processor (and then to fetch these
data via the cross-processor interconnect) than to store the
data of all processes in local memory (and consequently over-
loading the on-chip memory controller).

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement Techniques;
C.4 [Performance of Systems]: Performance Attributes

General Terms
Experimentation, Measurement, Performance

Keywords
NUMA, multicore processors, memory system performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SYSTOR’11 May 30–June 1, 2011, Haifa, Israel.
Copyright 2011 ACM 978-1-4503-0773-4/11/05 ...$10.00.

1. INTRODUCTION
Current microprocessors are multicore systems, and the

number of cores that are integrated onto a single proces-
sor is likely to further increase in the future. One of the
challenges faced by multicore processors is to provide ade-
quate memory access for the processor’s cores. Caches can
help to reduce the memory bandwidth requirements, but
as the number of cores increases, processor designers must
find a way to provide higher and higher memory bandwidth
while avoiding further increases in memory access latency.
To improve the performance of the memory interface and
to supply all cores with data, newer processor designs inte-
grate the memory controller on-chip with the processor. In
comparison with previous designs that required an off-chip
memory controller, this solution offers memory accesses with
increased bandwidth and reduced latency.

The on-chip memory controller has another advantage as
well. In a multicore multiprocessor (a multiprocessor built
from several multicore processors), a local memory controller
allows scaling a system as there is no single central mem-
ory controller. Instead, the physical address space is split
between processors, and the cores of each processor can di-
rectly access only a part of the physical memory via the
local memory interface. To support the familiar model of
a shared-memory multiprocessor, each processor (and its
cores) must be able to access not only the directly con-
nected local memory, but the local memory of other proces-
sors as well. These remote memory accesses pass through
a cross-chip interconnect that connects the processors. Ma-
jor processor manufacturers have come up with their pro-
prietary cross-processor interconnect technology (e.g., the
Intel QuickPath Interconnect (QPI) [13], or the AMD Hy-
pertransport [1]).

The throughput of the cross-chip interconnect, however,
is lower than the throughput of the on-chip memory con-
trollers. Remote memory accesses that pass through the
cross-chip interconnect also encounter latencies larger than
the latencies of local memory accesses. Because of the het-
erogeneity of their memory interfaces, such multiprocessors
are classified as non-uniform memory architecture (NUMA)
systems. The performance penalty of remote memory ac-
cesses is significant (we call this penalty NUMA factor); in
current implementations the NUMA factor can be as high
as 2 (equivalent to a 2X slowdown) for some applications.

The most important performance optimization for NUMA
systems considered until now is to increase the data locality
of the system (i.e., to allocate memory close to the compu-
tations accessing it, so that the number of remote accesses is

reduced and thus the NUMA-specific performance penalty
is avoided). Various researchers investigated techniques to
improve application performance on NUMA systems. All
approaches focus on increasing the data locality in the sys-
tem using either profile-based [12, 18, 16] or on-line [21, 24,
27, 28, 25] optimizations that target the allocation of mem-
ory and the mapping of computations in the system. As
the performance of many applications is ultimately limited
by the performance of the memory system, it is important
to understand the memory system of such NUMA multicore
multiprocessors as simple and realistic models are crucial
to find mappings (of data and computations) that result in
good performance on these systems.

Previous research has focused on evaluating the band-
width and latency of the on-chip memory controller and of
the cross-chip interconnect of modern NUMA machines in
separation (i.e., when there are either local or remote mem-
ory accesses in the system, but not both of them at the same
time) [19, 8, 15]. However, it rarely happens in real sys-
tems that a computation’s memory traffic exclusively flows
through either the local memory interface or the cross-chip
interconnect that connects to the memory controller of a re-
mote processor. So it is also important to understand how
these two types of memory accesses (local and remote) in-
teract.

A recent study [2] evaluates the problems and opportu-
nities posed by having multiple types of memory controllers
in a system. The authors demonstrate that reducing data
locality in the system can improve performance because ex-
cessive contention on the memory interfaces of the system
is avoided. However, their study is more concerned about
future architectures and less with existing ones. In this pa-
per we analyze the bandwidth sharing properties of a com-
mercial microprocessor and discuss the implications of these
properties for optimizing programs in multicore systems. We
show that in some cases when the machine is highly loaded
the cross-chip interconnect outperforms the on-chip memory
controller. Mapping computations so that all memory traffic
flows through the local memory interface is bound to be sub-
optimal in many situations. Given the design times of mod-
ern processors, we expect that our evaluation techniques and
observations are of interest for a while as processors based
on this microarchitecture are released.

2. EXPERIMENTAL SETUP
In this section we describe the architecture of the evalua-

tion system, the benchmark programs, and the experimental
methodology we use.

2.1 Hardware
We investigate the memory system of a multicore multi-

processor machine based on the Intel Nehalem microarchi-
tecture. The evaluation machine is equipped with two Intel
Xeon E5520 quad-core CPUs and a total of 12 GB RAM (see
Figure 1). Each processor has a direct connection to half
of the memory space via a three-channel integrated mem-
ory controller. The on-chip integrated memory controller
(IMC) provides a maximum throughput of 25.6 GB/s. Ad-
ditionally, each processor has two QuickPath Interconnect
(QPI) interfaces [13], one connecting to the remote processor
and one to the I/O hub. The interconnect has a maximum
throughput of 11.72 GB/s in one direction and 23.44 GB/s
in both directions. Although the throughput of the IMC

and QPI is similar, there are two IMCs in the system, while
there is only one QPI link connecting the two processors. If
there is good data locality in the system, the throughput of
the two IMCS (2x25.6 GB/s) can be fully exploited. Oth-
erwise the performance of the application is limited by the
throughput of the single cross-chip interconnect of the sys-
tem. Moreover, the latencies of local and remote memory
accesses differ significantly as well.

IMC QPI QPI

L3 cache

QPI QPI IMCDDR3

I/O

Core 0 Core 2

Core 4 Core 6

Global Queue

Core 1 Core 3

Core 5 Core 7

L3 cache L3 cache

Global Queue

DDR3

Figure 1: Intel Nehalem in 2-processor configuration.

The performance benefit of per-processor memory con-
trollers is substantial. Figure 2 shows the maximal through-
put of a memory-intensive microbenchmark executed on two
consecutive generations of Intel Xeon processors: the Xeon
5345 with an off-chip memory controller and the Xeon 5520,
which includes on-chip memory controllers. Both systems
are equipped with two processors. The memory controller
of the Xeon 5345 is already saturated by two active cores,
but the throughput of the newer Xeon 5520 scales up to
eight active cores.

5

10

15

20

25

30

35

1 2 3 4 5 6 8

M
em

or
y

ba
nd

w
id

th
 [G

B/
s]

Number of tasks

Xeon 5345

Xeon 5520

Figure 2: Memory system throughput of two consecutive
generations of Intel Xeon processors.

Each core of a Nehalem processor has its own level 1 and
level 2 exclusive cache, but the per-processor inclusive 8 MB
last-level cache (LLC) is shared between all cores of the same
processor. In this paper we refer to the subsystem incorpo-
rating the LLC, the arbitration mechanisms, and the mem-
ory controllers as the uncore (marked with dotted lines on
Figure 1).

When a processor accesses a memory location, there are
many different locations that can hold the data (e.g., local
or remote caches, local or remote RAM). Similarly, there
can be several outstanding memory requests, from multiple
processors, in flight at any point of time, so a routing and ar-

bitration mechanism for these requests is necessary. On the
Nehalem, a part of the uncore called the Global Queue (GQ)
arbitrates these requests [9]. The GQ controls and buffers
data requests coming from different subsystems of the pro-
cessor. For each subsystem (processor cores, L3 cache, IMC,
and QPI) there is a separate port at the GQ, as shown in
Figure 3. Requests to local and remote memory are tracked
separately. As many different types of accesses go through
the GQ, the fairness of the GQ is crucial to assure that each
subsystem experiences the same service quality in terms of
the share of the total system bandwidth.

Global Queue

Cores 0, 2

Cores 4, 6

 L3 cache

IMC

QPI

Figure 3: Global Queue.

Intel Nehalem processors feature a dynamic overclocking
mechanism called Turbo Boost that allows raising the clock
rate of processor cores over their nominal rate if the per-
processor thermal and power limits still remain within the
processor’s design specifications [5]. Turbo Boost results in a
performance improvement of up to 6.6% in both single- and
multithreaded configurations of the benchmarks we use, but
we disable it (together with dynamic frequency scaling) to
improve the stability of our measurements and to allow a
focus on the memory system interface. The hardware and
adjacent cache line prefetchers are enabled for all our exper-
iments.

Although our 8-core 2-processor evaluation system is small,
it nevertheless allows interesting experiments, as it already
offers the opportunity to study the interaction between local
and remote memory accesses. It is possible to build larger
systems (up to eight sockets) based on the Intel Nehalem
microarchitecture. These systems use a processor with a
larger number of QPIs to allow point-to-point connections
between all processors. We used such a system with 4 pro-
cessors/32 cores, but the uncore of these systems is more
complicated [10], so a presentation of the possible interac-
tions between the uncore components exceeds the scope of
this paper. Nevertheless, to assess the performance implica-
tions of having more than four cores per processor in Sec-
tion 4 we briefly evaluate the memory system performance
of the 6-core die shrink of the Nehalem, the Westmere.

2.2 Benchmarks
We use the triad workload of the STREAM benchmark

suite [17] to evaluate the sustainable memory bandwidth of
individual cores, processors, and the complete system. The
triad workload is a program with a single execution phase
with high memory demands. It operates on three arrays
(a[], b[] and c[]) that must be sized so that they are larger
than the last-level cache to cause memory controller traffic
(see Figure 4).

A single instance of the triad workload is not capable
of saturating any of the memory interfaces of our evalua-
tion machine, thus it does not allow us to explore the lim-
its of the machine’s main memory subsystem. Besides, a
single triad instance does not allow for evaluating the in-

for (i = 0; i < ARRAY_SIZE; i++)

{

a[i] = b[i] + SCALAR * c[i];

}

Figure 4: triad program fragment.

teraction between the different types of memory controllers,
because we need at least one triad instance for each type
of memory controller to have two types of memory accesses
in the system at the same time. Hence, we construct multi-
programmed workloads that consist of co-executing instances
of triad (also referred to as triad clones). In this paper we
refer to these workloads as xP, where x is the number of
triad clones the workload is composed of (e.g., 3P repre-
sents a workload composed of three triad clones).

To keep our analysis simple, the version of the triad

benchmark we use in this paper is multiprogrammed and
uses processes (contrary to the original implementation of
the STREAM benchmark suite that is implemented with
OpenMP and uses threads). As a result, there is no data
shared between co-executing triad clones. The Nehalem
microarchitecture implements the MESIF cache coherency
protocol, and accesses to cache lines in each different state
(i.e., Modified, Exclusive, Shared, Invalid, or Forwarding)
involve different access latencies [19]. By using a multipro-
grammed benchmark, we restrict the types of cache lines
accessed to M, E, and I, and therefore we need not account
for the different latencies of accesses to cache lines in all pos-
sible states. As a result, our measurement data are easier to
interpret and to understand. Nevertheless, our analysis can
be easily extended to evaluate the bandwidth sharing prop-
erties of accesses to cache lines in other coherency states as
well, following the methodology described by [19].

There are two useful properties of triad that make it
well suited for the main memory system evaluation. First,
triad’s cache miss rate per instructions executed stays con-
stant when executed in multiprogrammed configurations,
because co-executing triad clones that share a LLC do not
cause additional inter-core misses [23] to each other. With
other words, triad is a cache gobbler type of program (ac-
cording to the classification proposed by Sandberg et al.
in [22]. The second useful property of triad is that 94–99%
of its read memory accesses are served by main memory
(for details about write accesses see Section 3). As a result,
in multi-programmed configurations triad slows down only
because of bandwidth saturation, increased memory access
latencies, and contention on the memory controllers of the
system, but not due to contention on the shared caches of
the system. Hence triad is very well suited for evaluating
the raw performance of the main memory system, and is not
influenced by caching effects at all.

We use standard Linux system calls [11] to control on
which processor the memory is allocated and where the pro-
cesses executing the triad clones are scheduled. We use the
terms triad process and triad clone interchangeably in this
paper, as there is a 1:1 mapping between a clone (an in-
stance of the triad program) and the process executing it.
To evaluate the interaction between the IMC and QPI, the
memory used by triad processes is always allocated on a sin-
gle processor, Processor 0, but the process-to-core mapping
changes. The workloads can execute in multiple configura-

tions, depending on the number of triad processes mapped
onto the same processor. The terms local and remote are
always relative to the processor that holds the data in mem-
ory. We denote with xL and xR the number x of local and
remote processes, respectively. For example, a three-process
(3P) workload executing in the (2L, 1R) configuration means
that two cores access memory locally and one core accesses
memory remotely, as shown in Figure 5. In this paper the
instances of the workload executing locally are referred to
as L processes, while instances executing remotely are called
R processes. Memory accesses of L processes must pass just
through the Global Queue and the IMC, while R processes
have the additional overhead of passing through the proces-
sor cross-chip interconnect (QPI) and the GQ of the remote
processor. The datapaths used by the (2L, 1R) workload
are also illustrated in Figure 5.

IMC QPI QPI

L3 cache

QPI QPI IMCMemory

I/O

Core 0 Core 2

Core 4 Core 6

Global Queue

Core 1 Core 3

Core 5 Core 7

L3 cache L3 cache

Global Queue

L L R

DDR3

Figure 5: 3P workload in (2L, 1R) configuration.

2.3 Measurements and methodology
The evaluation machine runs Ubuntu Linux 2.6.30 patched

with perfmon2 [6]. We use the processor’s performance mon-
itoring unit to obtain information about the elapsed CPU
cycles and the amount of last-level cache (LLC) misses a pro-
gram generates. We calculate the generated memory band-
width using Equation 1.

bandwidth =
64 · LLC misses · 2.27 · 109

CPU cycles · 106
MB/s (1)

The cache line size of the LLC of the Intel Nehalem is 64
bytes. The processors in our system were clocked at 2.27
GHz. Due to the limitations of the performance monitoring
unit, we can measure only the read bandwidth of the cores.
We also use the uncore monitoring facility of the Nehalem to
monitor the state of the GQ and to cross-check the readings
obtained with the per-core performance counters.

As the triad workload is very memory bound and has a
single program phase, its bandwidth and performance read-
ings are very stable and do not depend on the factors re-
ported by Mytkowicz et al. [20] (e.g., the size of the UNIX
environment and link-order). All measurement data are the
average of three measurement runs; the variation of the per-
formance counter readings is negligible.

3. MEMORY SYSTEM PERFORMANCE
To measure the bandwidth sharing properties of the Ne-

halem microarchitecture we measure the bandwidth achieved
by each instance of the triad benchmark. We configure the

benchmark with a number of processes ranging from one
to eight (the number of cores on our machine), and then
measure all possible local-remote mapping configurations for
any given number of triad processes. Recall that only per-
process read bandwidth can be reported due to limitations of
the hardware performance counter subsystem. However, the
total amount of read and write bandwidth on the interfaces
of the system can be measured using uncore performance
counters. These measurements show that the triad bench-
mark is read-intensive, as in any configuration 75% of the
total main memory bandwidth is caused by reads, and 25%
is due to writes. Therefore, the measurements of the read
bandwidth of the system are representative for the behavior
of the memory interfaces of the Nehalem-based system.

Figure 6 shows a scenario where four local processes share
the IMC bandwidth with different numbers of remote pro-
cesses. If there are no remote processes, the complete band-
width is allocated to local requests (4L, 0R). As a single re-
mote process is added (resulting in configuration (4L, 1R)),
the total bandwidth increases. Then, as the number of re-
mote processes further increases, the total bandwidth is re-
duced slightly (configurations (4L, 2R) to (4L, 4R)). Two
remote processes consume the maximal bandwidth that can
be obtained through remote accesses; the share of the re-
mote processes does not grow as we increase the number of
remote processes. As a consequence, each remote process
realizes a smaller and smaller absolute memory bandwidth.

0
2
4
6
8

10
12
14

(4L, 0R) (4L, 1R) (4L, 2R) (4L, 3R) (4L, 4R)

To
ta

l b
an

dw
id

th
 [G

B/
s]

Configurations

L processes R processes

Figure 6: Bandwidth sharing (4L with variable number of
R processes).

The data in Figure 6 might convince a system developer
to favor mapping a process onto the processor that holds the
data locally. However, the situation is more complex: Fig-
ure 6 shows the total bandwidth achieved by all processes.
Figure 7 contrasts Figure 6 by showing the performance of
individual R and L processes. If there is a single L and a
single R process, the L process captures almost 50% more of
the memory bandwidth (L: 6776 MB/s, R: 4412 MB/s). As
the number of L processes increases, these L processes com-
pete for local access, and although the R process’s declines
as well (to 3472 MB/s), the bandwidth obtained by each L
process declines a lot more (to 2622 MB/s).

Table 1 shows the complete measurement data. Each row
reports the bandwidth obtained by a each L instance in the
presence of varying number of R processes. Table 2 shows
the bandwidth obtained by the R processes in the same con-
figurations as Table 1. Figure 7 contrasts column 2 of Tables
1 and 2. Tables 3 and 4 report the cumulative data (for all

0%
10%
20%
30%
40%
50%
60%
70%

(1L,1R) (2L,1R) (3L,1R) (4L,1R)

Sh
ar

e
of

 to
ta

l b
an

dw
id

th

Configurations

L process

R process

Figure 7: Percentage of L and R of the total bandwidth
measured in the system.

the L respectively R processes in an experiment). Figure 6
is based on the last row of Tables 3 and 4; the sum of these
rows yields the total shown in the figure.

3.1 A simple model
Our experiments show that if there are only local processes

running on the system, the total bandwidth obtained by
these processes can be described as:

bwLtotal = min(active cores ∗ bwL, bwLmax) (2)

In Equation 2 bwL is the bandwidth of a single, locally
executing triad clone (L process) (see column “0 R” of Ta-
ble 1). If the sum of the bandwidth of the individual cores
bwLtotal is greater than the threshold bwLmax (see column
“0 R” of Table 3 for the exact values), each core obtains an
equal share of the threshold value (12925 MB/s).

Similarly, the total bandwidth obtained by remote pro-
cesses can be characterized as:

bwRtotal = min(active cores ∗ bwR, bwRmax) (3)

In Equation 3 bwR is the bandwidth achieved by a sin-
gle triad instance executing remotely (R process) (see col-
umn “0 L” of Table 2). The maximum throughput of the R
processes (bwRmax) is limited by the QPI interface and is
6998 MB/s (experimentally determined). The QPI is also
fair in the sense that if the threshold is to be exceeded, each
R processes obtains an equal share of the total bandwidth.

The total bandwidth obtained by the system is composed
of the bandwidth achieved by L and R processes and is
shown in Table 5 for all configurations of the triad bench-
mark. The limit bwLmax of L processes can be observed
in row “4 L” column “0 R” of Table 5. Similarly, the limit
bwRmax of R processes can be observed in row “0 L” and
column “2 R” of Table 5. Remote processes hit their limit
bwRmax with two active cores, while four local processes are
needed to hit the limit bwLmax . This is because the QPI is
already saturated by two triad clones, however all four cores
need to be active to saturate the IMC. Next generations of
the Nehalem have a larger number of cores connected to the
same local memory controller, therefore not all cores of a
processor are required to achieve the saturation limit of the
IMC. In Section 4 we briefly look at a such machine.

Formally the total bandwidth in the system can be ex-
pressed as:

0 R 1 R 2 R 3 R 4 R
0 L 0 4844 6998 6938 6807
1 L 7656 11188 12345 12205 12155
2 L 11024 12977 13708 13618 13517
3 L 12607 13842 14001 13882 13844
4 L 12925 13959 13865 13758 13719

Table 5: Total cumulative bandwidth [MB/s].

bwtotal = (1 − β) ∗ bwLtotal + β ∗ bwRtotal (4)

We call the variable β the sharing factor. The sharing
factor determines the share of the total bandwidth received
by local and remote triad clones. β is a real value between
0 and 1. If β is 1, all bandwidth is obtained by R processes.
Similarly, if β is 0, all bandwidth is obtained by L processes.
As the Global Queue (GQ) arbitrates between local and re-
mote memory accesses, the GQ determines the value of β
based on the arrival rate of requests at its ports.

If the system must handle memory requests coming from
a small number of cores, the bandwidth (and thus the per-
formance) of local processes is much better than the band-
width of remote ones. As the load on the system increases
and there are more local processes, the bandwidth obtained
by individual local processes (bwL) becomes comparable to
the cumulative bandwidth of the QPI (bwRtotal). Situations
when the bandwidth of the QPI is better than the band-
width of individual local processes are also possible (e.g.,
configuration (4L, 1R) and (3L, 1R)). Overloading the QPI
with a large number of remotely executing memory-bound
processes should be avoided, as the lower throughput of the
QPI interface is divided between R processes, resulting in
low performance of R processes, if their number is too large.
In conclusion, if the system has a low utilization, local exe-
cution is preferred. Nevertheless, as the load on the memory
system increases, remote execution becomes more favorable,
but care needs to be taken not to overload the cross-chip
interconnect.

To fully understand the system, the dependence of the
sharing factor β of the GQ on the load coming from the
local cores and remote memory interfaces needs to be char-
acterized. However, as most implementation details of the
Nehalem queuing system are not disclosed, and the perfor-
mance monitoring subsystem of our Nehalem-based proces-
sor does not allow for measuring queue status directly, such
a model is difficult to construct. Instead, in Sections 3.2
and 3.3 we describe two empirically observed properties of
the GQ that help understanding the bandwidth sharing prop-
erties of our evaluation system: queuing fairness and aggre-
gate throughput.

3.2 Queuing fairness
Table 4 shows that for any number of local processes there

is a significant difference between the throughput of the non-
saturated QPI executing a single R process (the “1 R” col-
umn), and the throughput of the QPI transferring the data
for two R processes (the column labeled“2 R”). Adding more
R processes (columns “3 R” and “4 R”) does not modify the
overall bandwidth allocation of the system, as the through-
put limit of the QPI has already been reached, and the QPI
is saturated. However, a large difference in the total band-
width obtained by the L and R processes is observed by

0 R 1 R 2 R 3 R 4 R
0 L 0 0 0 0 0
1 L 7656 6776 6325 6185 6210
2 L 5512 4460 4189 4142 4121
3 L 4202 3389 3078 3047 3048
4 L 3231 2622 2348 2325 2326

Table 1: Per-core L bandwidth [MB/s].

0 R 1 R 2 R 3 R 4 R
0 L 0 4844 3499 2313 1702
1 L 0 4412 3010 2007 1486
2 L 0 4056 2664 1778 1319
3 L 0 3675 2383 1581 1175
4 L 0 3472 2236 1486 1104

Table 2: Per-core R bandwidth [MB/s].

0 R 1 R 2 R 3 R 4 R
0 L 0 0 0 0 0
1 L 7656 6776 6325 6185 6210
2 L 11024 8921 8379 8283 8242
3 L 12607 10167 9235 9141 9145
4 L 12925 10487 9393 9299 9302

Table 3: Total L bandwidth [MB/s].

0 R 1 R 2 R 3 R 4 R
0 L 0 4844 6998 6938 6807
1 L 0 4412 6020 6020 5945
2 L 0 4056 5329 5335 5275
3 L 0 3675 4765 4742 4699
4 L 0 3472 4472 4459 4416

Table 4: Total R bandwidth [MB/s].

varying the number of L processes (rows “1 L” to “4 L”).
In the following, we consider the QPI as a fifth agent con-

nected to the GQ (in addition to the four local cores), exe-
cuting either the 1R workload, or a workload equivalent to
the memory intensity generated by the 2R workload. We
take as baseline the performance of two cases. In the first
case the GQ is serving 1R from the QPI and 1L from the
local cores, as depicted by Figure 8a. In the second case the
GQ is serving the 2R in combination with 1L, as depicted
by Figure 8b. Using the previously defined notation, these
workloads can be denoted with (1L, 1R) and (1L, 2R). To
increase the contention on the GQ, one, two, or three ad-
ditional L process(es) are executed on the system. These
L processes (the base L process plus the additional L pro-
cesses) contend with the QPI for IMC bandwidth.

Figure 9 shows the variation of the sharing factor (param-
eter β of Equation 4) when contention on the local port of
the GQ increases. The sharing factor depends on the load on
the GQ: the more traffic L processes generate, the larger a
share of the bandwidth they obtain, and the more the share
of the R processes (given by β) decreases. Nonetheless, if
we consider the performance degradation of the two baseline
workloads (1L, 1R) and (1L, 2R) (shown in Figure 10a and
in Figure 10b respectively), the performance of individual
L process in each of the two workloads degrades more than
the performance of the QPI does. Therefore, the more load
there is on the GQ, the more attractive is to execute some
processes remotely.

In conclusion, if the GQ is contended, the Nehalem mi-
croarchitecture is unfair towards local cores (vs. the QPI), as
the performance degradation local cores experience is larger
than that of the QPI. Still, this behavior is reasonable as the
GQ does not allow remote cores to starve, and thus it avoids
further aggravating the penalty of remote memory accesses.
Nevertheless, this property of the Nehalem is undocumented
and can be discovered only with experimental evaluation.

3.3 Aggregate throughput
To further motivate the benefit of having a good pro-

portion of local and remote memory accesses in the system
in Figure 11 we show the total system throughput for the
4P workload in different mapping configurations (ranging
from the configuration when all processes execute locally to
the configuration with all processes executing remotely). In

Processor 1Processor 0

L

RAM

QPI

L

L

L

contenders

R

(a) (1L, 1R)

Processor 1

L

RAM

QPI

L

L

L

contenders

R

R

Processor 0

(b) (1L, 2R)

Figure 8: Setup to evaluate GQ fairness.

the configurations with some remote memory accesses the
throughput of the memory system can be better (at a peak
of 13842 MB/s) relative to the configuration when all mem-
ory accesses are local (12925 MB/s).

To take a closer look at the total system throughput, we
examine two cases. First, we map the processes of the triad
workload onto local cores. This way, all memory operations
use the local ports of the Global Queue. Then, we move one
process to the remote processor, thus the QPI port of the

0%

10%

20%

30%

40%

50%

60%

+0L +1L +2L +3L

Sh
ar

in
g

fa
ct

or
 β

Additional contention

(1L,1R)

(1L,2R)

Figure 9: Dependence of β on aggregate load.

0%

20%

40%

60%

80%

100%

+1L +2L +3L

Pe
rf

or
m

an
ce

 d
eg

ra
da

tio
n

re
la

tiv
e

to
 (1

L,
1R

)

Additional contention

L process

QPI

(a) Performance degradation of (1L,1R).

0%

20%

40%

60%

80%

100%

+1L +2L +3L

Pe
rf

or
m

an
ce

 d
eg

ra
da

tio
n

re
la

tiv
e

to
 (1

L,
 2

R)

Additional contention

L process

QPI

(b) Performance degradation of (1L,2R).

Figure 10: Performance degradation of the workloads
(1L,1R) and (1L, 2R).

GQ is also used to actively handle memory requests. For
both cases, we compute overall system throughput as the
sum of the instructions per cycle (IPC) values obtained by
the processes:

IPCtotal =
X

p∈Processes

IPCp (5)

We are aware that in case of heterogeneous workloads
(workloads that execute different instruction streams) us-
ing the metric defined by Equation 5 is not appropriate,
as pointed out by Eyerman in [7]. However, in our case
all processes execute the same tight memory-intensive loop
(shown in Figure 4) operating on identical data, therefore
the instructions executed by each workload are the same.
The clock rate of all processor cores is also equal, so the ra-
tio of instructions executed and cycles consumed is a precise

measure for system throughput. As triad is very memory
intensive, the aggregate memory bandwidth achieved on the
system is also directly proportional to the system through-
put. This metric does not characterize the fairness of the
system, but it accurately reflects the throughput of the main
memory system.

0
2
4
6
8

10
12
14
16

(4L,0R) (3L,1R) (2L,2R) (1L,3R) (0L,4R)

To
ta

l b
an

dw
id

th
 [G

B/
s]

Configurations

Figure 11: Total bandwidth of 4P in different configurations.

0%
1%
2%
3%
4%
5%
6%
7%
8%

2 3 4

Im
pr

ov
em

en
t

Number of processes

IPC

Bandwidth

Figure 12: Improvement of aggregate IPC and total memory
bandwidth when both memory controllers (IMC and QPI)
are used relative to the single IMC case.

Figure 12 shows the benefit of mapping one process re-
motely over the all-local case (where all memory requests
come from local cores). The benefit is minor (1.7%) if there
are just two processes running on the system, but it gets
significant (7.4 %) if there are four processes. This increase
of performance in the four-process case can be explained by
the distribution of contention on the GQ. When the GQ
handles four locally executing triad clones, its local port is
saturated (it is full 10% of the time). Moving one process to
the remote processor transfers some of load from the local
port of the GQ to its remote port. In this new configuration
neither the local-, nor the remote port of the GQ is satu-
rated, therefore system throughput increases. However, if
all processes execute remotely, the remote port of the GQ
gets saturated (it is full 31% of the time).

In conclusion, in a single-threaded context the bandwidth
and latency of the on-chip memory interface greatly outper-
forms the same parameters of the QPI. However, in the case
when multiple cores are competing this advantage dimin-
ishes as contention on the queuing system increases. Dis-
tributing computations such that there are both local and
remote accesses in the system helps to improve aggregate
throughput.

3.4 Discussion
In our analysis we did not account for the overhead of the

cache coherency protocol. On every cache miss, there is a
snoop request towards the cache of the adjacent processor
(as measured on the read-, write-, and peer–probe-tracker of
each processor’s uncore). Snoop requests are transferred on
the cross-chip interconnect of the system. However, while
normal reads usually requests data of the size equal to a
cache line, we do not know the amount of data transferred
with a snoop requests, therefore we cannot calculate the
amount of traffic generated by these requests, and we cannot
calculate the bandwidth overhead of the cache coherency
protocol.

In this work we use a single, homogeneous workload (com-
posed of multiple triad clones) to evaluate the main mem-
ory system performance of a NUMA-multicore machine. Be-
cause the triad benchmark does not benefit of caching, its
performance describes the main memory system of our eval-
uation system well. In case multiple, heterogeneous work-
loads are executing on the system (with programs that are
less memory bound than triad), caching effects also come
into play. For an analysis of these scenarios, and the appli-
cability of the principles described in the previous section to
OS scheduling, see [14].

4. THE NEXT GENERATION
In 2010 Intel has released a die shrink of the Nehalem co-

denamed Westmere. This new processor contains six cores
instead of four (as it is in the case of the Nehalem). To see
if the principles described in this paper also apply for the
Westmere microarchitecture, we perform the experiments
described in Section 3 with a machine based on this mi-
croarchitecture as well. The Westmere-based system (Intel
Xeon X5680) we evaluate has also two processors, however
it shows some differences to the Nehalem-based machine de-
scribed in detail in this paper. A comparison of the two
microarchitectures is shown in Table 6. Note that although
the QPI bandwidth of the Westmere is higher than its IMC
bandwidth, the latency of memory accesses that have to pass
through the QPI is much higher than that of IMC accesses.

Xeon E5520 Xeon X5680
Cores per processor: 4 6
L3 cache size: 8 MB 12 MB
IMC bandwidth: 25.6 GB/s 19.2 GB/s
QPI bandwidth: 23.44 GB/s 25.6 GB/s

Table 6: Parameters of the evaluation machine.

We do the same set of experiments with the Westmere as
with the Nehalem, but because of space limitations we do
not present the complete data. Instead, we present two pro-
jections of the Westmere data, similar to the ones presented
for the Nehalem in Figure 6 and Figure 7, respectively. In
Figure 13 four local processes share the bandwidth of the
IMC of Processor 0. As one R process is added, the total
achieved bandwidth increases. Adding more R processes in-
creases the share of R processes until the saturation limit of
the QPI is achieved (in the case of Westmere four R pro-
cesses are required to saturate the QPI versus two R pro-
cesses in the case of the Nehalem).

Figure 13 shows a breakdown of the total bandwidth of
the two types of processes, L and R. Figure 14 shows the

0

2

4

6

8

10

To
ta

l b
an

dw
id

th
 [G

B/
s]

Configurations

Figure 13: Bandwidth sharing on the Westmere (4L with
variable number of R processes).

memory bandwidth of a single L resp. R process with in-
creasing number of L processes. On the Westmere a single R
processes is able to achieve more bandwidth than an L pro-
cess already in the configuration with two locally executing
processes.

0%

10%

20%

30%

40%

50%

60%

(1L, 1R) (2L, 1R) (3L, 1R) (4L, 1R) (5L, 1R) (6L, 1R)

Sh
ar

e
of

 to
ta

l b
an

dw
id

th

Configurations

Figure 14: Percentage of L and R of total bandwidth mea-
sured in the Westmere-based system.

To compare the Nehalem to the Westmere, Figure 15a
and 15b show the total read bandwidth measured on the
Nehalem and the Westmere, respectively. As the Westmere
includes two cores more than the Nehalem, the thresholds
bwLmax and bwRmax defined in Equations 2 and 3 are more
prominent than on the Nehalem: on the Westmere four
triad clones are required to saturate the QPI (vs. two on the
Nehalem), while the IMC saturates with four triad clones,
just as on the Nehalem.

In conclusion, the principles we describe for the Nehalem
also apply for the Westmere microarchitecture. Because the
Westmere has more cores, a different LLC size, and memory
interfaces with slightly different throughput as the Nehalem,
the bandwidth sharing properties of this machine are quan-
titatively, but not qualitatively, different.

5. RELATED WORK
Molka et al. [19] analyze in detail the memory system per-

formance of the Intel Nehalem. In later work, Hackenberg
et al. [8] compare the performance of the Intel Nehalem with
the AMD Shanghai. Their methodology measures memory
bandwidth and memory access latency and also analyzes
the impact of cache coherency. However, they consider the
properties of the different interconnects of multicore chips

0 L
1 L

2 L
3 L

4 L

0

2

4

6

8

10

12

14

16

0 R
1 R

2 R
3 R

4 R

To
ta

l b
an

dw
id

th
 [G

B/
s]

Configurations

(a) Nehalem.

0 L
1 L2 L3 L4 L5 L6 L

0

2

4

6

8

10

12

0 R
1 R

2 R
3 R

4 R
5 R

6 R

To
ta

l b
an

dw
id

th
 [G

B/
s]

Configurations

(b) Westmere.

Figure 15: Total bandwidth on Nehalem and Westmere.

only in isolation, and not the interaction between them.
Our measurements considered only cache lines in the E, M
and I states, but the measurement framework can be ex-
tended to measure the sharing of bandwidth to cache lines
in other coherency states as well. Yang et al. [29] exam-
ine the dependence of application performance on memory
and thread placement in an AMD Opteron-based NUMA
machine. They quantify execution time, but do not mea-
sure low-level hardware issues (e.g., cache coherency traffic
that is significant in some execution configuration of their
benchmarks).

Mandal et al. [15] model the memory bandwidth and mem-
ory access latency of commercially available systems (among
those also the Nehalem) as a function of concurrent memory
references in the system. However, it is difficult to extend
their model to include sharing between multiple types of
memory controllers, because requests can be produced at
different rates through the on-chip memory controller and
the QPI. Their pointer-chasing benchmark also encounters
inter-core misses, so the values reported are slightly depen-
dent on the cache sharing behavior of the evaluated systems.

Tuduce et al. [26] describe the asymmetries of the memory
system of a multicore multiprocessor with a shared off-chip
memory controller. The authors argue that the hardware
performance measurement unit of modern CPUs should be

improved to allow system software detect and avoid the per-
formance bottlenecks of the underlying architecture. In this
paper we analyze a different architecture with multiple types
of memory controllers and find that asymmetries are present
in this system as well, however they are of a different na-
ture. In the system analyzed in this paper the fairness of
the arbitration mechanism (the Global Queue) is crucial for
performance, therefore better monitoring of this subsystem
should be made possible in successors of the Nehalem mi-
croarchitecture.

To best of our knowledge, Awasthi et al. [2] are the first
to consider the problem of data placement in a system with
multiple memory controllers. They identify the performance
degradation caused by overloading a single memory con-
troller in the system, and attribute the costs to increased
queuing delays and decreased DRAM row-buffer hit rates.
However, their evaluation focuses more on future architec-
tures and less on present and near-future systems. Blago-
durov et al. state in [4] that software management of con-
tention for shared resources must be extended to NUMA
systems as well. Because of its shortness, their paper lacks
details about the implementation and the evaluation of their
proposed approach. Blagodurov et al. [3] conduct a detailed
evaluation of shared resource contention in multicore sys-
tem. Among other factors, they quantify the contribution
of contention on memory controllers to application perfor-
mance degradation. Although they present NUMA-related
performance issues, they do not account for issues related to
the fairness of the queuing system of their evaluation ma-
chine.

6. CONCLUSIONS
Today’s processors are multicores that integrate a mem-

ory controller with the cores and caches on a single chip.
Such a design leads to a new generation of NUMA multi-
core multiprocessors that present software developers with
a new set of challenges and create a different class of per-
formance optimization problems. The cores put pressure on
the memory controller to service the local memory access
requests while at the same time the memory controller must
deal with requests by other processors. So it is important
that the software finds a balance between local and remote
memory accesses if overall performance is to be optimized.

This paper presents an evaluation of the bandwidth shar-
ing properties of a commercially available multicore system,
the Intel Nehalem (Xeon 5520), and shows that if a large
part or all of the cores of a processor are active, then favor-
ing data locality may not lead to optimal performance. In
addition to data locality, the bandwidth limits of the mem-
ory controllers and the fairness of the arbitration between
local and remote accesses are also important. The overhead
of arbitration and queuing is likely to become more impor-
tant in larger systems as the complexity of this mechanism
increases with a growing number of processors in the system,
so it is important to develop realistic models of the mem-
ory system that can guide operating system and compiler
developers.

Multicore multiprocessors will be an increasingly impor-
tant class of parallel systems, as they provide (some) mem-
ory system scaling while using widely applicable off-the-shelf
building blocks. Operating system and compiler (runtime
systems) developers need to understand how to balance the
memory system demands on such a system. The simple

approach that aims only at maximizing data locality results
in sub-optimal performance in important scenarios (applica-
tions limited by memory bandwidth). Instead, the software
developers need to understand the memory system so that
the best tradeoff between local and remote access can be
found.

7. REFERENCES
[1] Advanced Micro Devices. AMD HyperTransport

Technology-based system architecture. 2002.

[2] M. Awasthi, D. W. Nellans, K. Sudan,
R. Balasubramonian, and A. Davis. Handling the
problems and opportunities posed by multiple on-chip
memory controllers. In Proceedings of PACT’10.

[3] S. Blagodurov, S. Zhuravlev, and A. Fedorova.
Contention-aware scheduling on multicore systems.
ACM Transactions on Computer Systems, 28:8:1–8:45,
December 2010.

[4] S. Blagodurov, S. Zhuravlev, A. Fedorova, and
A. Kamali. A case for NUMA-aware contention
management on multicore systems. In Proceedings of
PACT’10.

[5] J. Charles, P. Jassi, N. S. Ananth, A. Sadat, and
A. Fedorova. Evaluation of the Intel Core i7 Turbo
Boost feature. In Proceedings of IISWC ’09.

[6] S. Eranian. What can performance counters do for
memory subsystem analysis? In Proceedings of
MSPC’08.

[7] S. Eyerman and L. Eeckhout. System-level
performance metrics for multiprogram workloads.
IEEE Micro, 28(3):42–53, 2008.

[8] D. Hackenberg, D. Molka, and W. E. Nagel.
Comparing cache architectures and coherency
protocols on x86-64 multicore SMP systems. In
Proceedings of MICRO-42, 2009.

[9] Intel Corporation. Intel 64 and IA-32 Architectures
Optimization Reference Manual, November 2009.

[10] Intel Corporation. Intel Xeon Processor 7500 Series
Uncore Programming Guide, March 2010.

[11] C. Lameter. Local and remote remory: Memory in a
Linux/NUMA system, 2006.

[12] H. Li, S. Tandri, M. Stumm, and K. C. Sevcik.
Locality and loop scheduling on NUMA
multiprocessors. In Proceedings of ICPP’93.

[13] R. A. Maddox, G. Singh, and R. J. Safranek. A first
look at the Intel QuickPath Interconnect. 2009.

[14] Z. Majo and T. R. Gross. Memory management in
NUMA multicore systems: Trapped between cache
contention and interconnect overhead. In Proceedings
of ISMM’11 – to appear.

[15] A. Mandal, R. Fowler, and A. Porterfield. Modeling
memory concurrency for multi-socket multi-core
systems. In Proceedings of ISPASS’10.

[16] J. Marathe and F. Mueller. Hardware profile-guided
automatic page placement for ccNUMA systems. In

Proceedings of PPoPP’06.

[17] J. D. McCalpin. Memory bandwidth and machine
balance in current high performance computers. IEEE
Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, pages 19–25,
December 1995.

[18] C. McCurdy and J. S. Vetter. Memphis: Finding and
fixing NUMA-related performance problems on
multi-core platforms. In Proceedings of ISPASS’10,
2010.

[19] D. Molka, D. Hackenberg, R. Schöne, and M. S.
Müller. Memory performance and cache coherency
effects on an Intel Nehalem multiprocessor system. In
Proceedings of PACT’09.

[20] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F.
Sweeney. Producing wrong data without doing
anything obviously wrong! In Proceedings of ASPLOS
’09.

[21] T. Ogasawara. NUMA-aware memory manager with
dominant-thread-based copying GC. In Proceedings of
OOPSLA’09, 2009.

[22] A. Sandberg, D. Eklöv, and E. Hagersten. Reducing
cache pollution through detection and elimination of
non-temporal memory accesses. In Proceedings of the
2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC’10.

[23] S. Srikantaiah, M. Kandemir, and M. J. Irwin.
Adaptive set pinning: managing shared caches in chip
multiprocessors. In Proceedings of ASPLOS’08, 2008.

[24] M. M. Tikir and J. K. Hollingsworth. NUMA-aware
Java heaps for server applications. In Proceedings of
IPDPS’05.

[25] M. M. Tikir and J. K. Hollingsworth. Hardware
monitors for dynamic page migration. Journal of
Parallel and Distributed Computing, 68(9):1186–1200,
2008.

[26] I. Tuduce, Z. Majo, A. Gauch, B. Chen, and T. R.
Gross. Asymmetries in multi-core systems – or why we
need better performance measurement units. The
Exascale Evaluation and Research Techniques
Workshop (EXERT) co-located with ASPLOS’10.

[27] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum.
Operating system support for improving data locality
on CC-NUMA compute servers. In Proceedings of
ASPLOS’96.

[28] K. M. Wilson and B. B. Aglietti. Dynamic page
placement to improve locality in CC-NUMA
multiprocessors for TPC-C. In Proceedings of SC’01,
2001.

[29] R. Yang, J. Antony, P. P. Janes, and A. P. Rendell.
Memory and thread placement effects as a function of
cache usage: A study of the gaussian chemistry code
on the SunFire X4600 M2. In Proceedings of
ISPAN’08.

