IEEE Std 1003.9-1992

IEEE Standard for Information
Technology—POSIX FORTRAN 77
Language Interfaces—~Part 1: Binding for
System Application Program Interface
(API)

Sponsor

Technical Committee on Operating Systems and Application Environments
of the

IEEE Computer Society

Approved June 18, 1992
IEEE Standards Board

Abstract: This standard provides a standardized interface for accessing the system services of ISO/IEC
9945-1: 1990 (IEEE Std 1003.1-1990, also known as POSIX.1), and support routines to access constructs
not directly accessible with FORTRAN 77. This standard supports application portability at the source level
through the binding between ANSI X3.9-1978 and POSIX.1, and a standardized definition of language-
specific services. The goal is to provide standardized interfaces to the POSIX.1 system services via a
FORTRAN 77 language interface. Terminology and general requirements, process primitives, the process
environment, files and directories, input and output primitives, device- and class-specific functions, the
FORTRAN 77 language library, and system databases are covered.

Keywords: application portability, FORTRAN 77, interfaces, interoperability, POSIX, system interfaces

The Institute of Electrical and Electronics Engineers, Inc.

345 East 47th Street, New York, NY 10017-2394, USA

Copyright © 1992 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 1992 Printed in the United States of America
ISBN 1-55937-230-3

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the
prior written permission of the publisher.

IEEE Standards documents are developed within the Technical Committees of the IEEE Societies and the Standards
Coordinating Committees of the IEEE Standards Board. Members of the committees serve voluntarily and without
compensation. They are not necessarily members of the Institute. The standards developed within IEEE represent a
consensus of the broad expertise on the subject within the Institute as well as those activities outside of IEEE that have
expressed an interest in participating in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there are no other
ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE
Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change
brought about through developments in the state of the art and comments received from users of the standard. Every
IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document is more
than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some
value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the
latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation
with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with
appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to
specific applications. When the need for interpretations is brought to the attention of the IEEE, the Institute will initiate
action to prepare appropriate responses. Since IEEE Standards represent a consensus of all concerned interests, it is
important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason,
the IEEE and the members of its technical committees are not able to provide an instant response to interpretation
requests except in those cases where the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE Standards Board
445 Hoes Lane

P.O. Box 1331

Piscataway, NJ 08855-1331

USA

IEEE Standards documents are adopted by the Institute of Electrical and Electronics Engineers without|regard to
whether their adoption may involve patents on articles, materials, or processes. Such adoption does npt assume
any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the dtandards
documents.

Introduction

(This introduction is not a normative part of IEEE Std 1003.9-1992, |IEEE Standard for Information Technology—POSIX
FORTRAN 77 Language Interfaces—Part 1: Binding for System Application Program Interface (API), but is included for
information only.)

The purpose of this standard is to support application portability at the source level through the definition of:

1) An interface between the ANSI X3.9-1978 FORTRAN Standard (archival) and ISO/IEC 9945-1: 1990,
Information technology — Portable Operating System Interface (POSIX) — Part 1: System application
interface (API) [C language]

2) A standardized interface for language-specific services.

The focus of this standard is to provide standardized interfaces to the ISO/IEC 9945-1: 1990 system services via a
FORTRAN 77 language interface. Future work will consist of interfaces to other parts of ISO/IEC 9945 and the
possible use of new functionality provided in ISO/IEC 1539: 1991 (Fortran 90).

Organization of This Standard

1) Statement of scope and list of normative references (Section 1)
2) Definitions and global concepts (Section 2)
3) The various interface facilities (Section 3 through 9)

The FORTRAN 77 language interface for each service interface is given in the subclause labeled Synopsis. The
correspondence of the ISO/IEC 9945-1: 1990 system service interface to the FORTRAN 77 language interface is
described in the Description subclause. Additional information on the creation of specific actual arguments is provided

for some interfaces. The Description subclause provides a specification of the operation performed for the language-
specific services. In most cases, there is also an Errors subclause that describes error handling. References are used to
direct the reader to related sections in ISO/IEC 9945-1: 1990 and in POSIX.9. Additional material to complement
sections in this standard may be found in the Rationale and Notes (Annex A). This annex provides historical
perspectives into the technical choices made by developers of this standard. It also elaborates on the information
provided in the corresponding section of this standard.

Informative annexes are not part of the draft standard and are provided for information only. A normative annex is part
of the standard and imposes requirements, but there are currently no such normative annexes in this standard.

In publishing this standard, its developers simply intend to provide a basis upon which various FORTRAN 77
interfaces to ISO/IEC 9945-1: 1990 can be measured for conformance. It is not the intent of the developers to measure
or rate any products, to reward or sanction any vendors of products for conformance or lack of conformance to this
standard, or to enforce this standard by these or any other means. The responsibility for determining the degree of
conformance or lack thereof with this standard rests solely with the individual who is evaluating the product claiming
to be in conformance with this standard.

Background
The developers of this standard represent a cross section of hardware manufacturers, user organizations, software
designers, applications programmers, and others. In the course of the development of this standard, the developers

received guidance from members of the ANS Committee on Fortran, X3J3.

ISO/IEC 9945-1: 1990 describes a set of fundamental system services. Access to these services has been provided by
defining an interface using the FORTRAN 77 programming language in this standard.

Audience

The intended audience for this standard is all persons concerned with an industrywide standard FORTRAN 77
interface to the system services described in ISO/IEC 9945-1: 1990.

Purpose
Several principles guided the development of this standard:
Application Oriented

The basic goal was to promote portability of FORTRAN 77 application programs on systems conforming to
ISO/IEC 9945-1: 1990.

Interface, Not Implementation

This standard defines an interface, not an implementation. No details of the implementation of any function
are given, although historical practice may be indicated in Annex A.

Source, Not Object, Portability

This standard has been written so that a program written and translated for execution on one conforming
implementation may also be translated for execution on another conforming implementation. This standard
does not guarantee that executable (object or binary) code will execute under a different conforming
implementation than that for which it was translated, even if the underlying hardware is identical.

The FORTRAN 77 Language

This standard is written in terms of the standard FORTRAN 77 language as specified in the FORTRAN 77
standard {3}. See 1.3.3. It contains the single extension of 31-character names.

Minimal Interface, Minimally Defined

In keeping with the rules of FORTRAN 77, this standard uses subroutine and function calls to interface to the
ISO/IEC 9945-1: 1990. The 31-character name extension was added to allow the use of interface names from
ISO/IEC 9945-1: 1990.

Related Standards Activities
Activities to extend this standard to address additional requirements are being considered.
The following activities are under active consideration at this time, or are expected to become active in the near future:

1) 1S0 1539: 1991 (Fortran 90) Programming Language binding to a language-independent version of ISO/IEC
9945-1: 1990.

2) Fortran binding to Shell and Utilities facilities

3) Fortran binding to Realtime facilities

4) Fortran binding to Security

If you have interest in participating in the TCOS working groups addressing these issues, please send your name,
address, and telephone number to the Secretary, IEEE Standards Board, Institute of Electrical and Electronics
Engineers, Inc., P.O. Box 1331, 445 Hoes Lane, Piscataway, NJ 08855-1331, and ask to have this forwarded to the
chairperson of the appropriate TCOS working group. If you have interest in participating in this work at the
international level, contact your ISO/IEC national body.

This standard was prepared by the 1003.9 Working Group, sponsored by the Technical Committee on Operating
Systems and Application Environments of the IEEE Computer Society. At the time this standard was approved, the
membership of the 1003.9 Working Group was as follows:

Technical Committee on Operating Systems and Application Environments (TCOS)
Chair: Jehan-Francois Paris
TCOS Standards Subcommittee

Chair: Jim Isaak
Vice-Chairs: Ralph Barker
Hal Jespersen
Lorraine Kevra
Pete Meier
Andrew Twigger
Treasurer: Quin Hahn
Secretary: Shane McCarron

1003.9 Working Group Officials
Chair: John J. McGrory I

Vice-Chair: Michael Hannah
Editor: Daniel J. Magenheimer

Working Group

Joanne Brixius
Loren Buhle

The following persons were members of the balloting group that approved this standard for submission to the IEEE

Standards Board:

Roger E. Anderson
Bengt Asker
David Athersych
Edward Benson
Jerry Berkman
Keith Bierman
Andy Bihain
James M. Bishop
Andy Cheese
Kilnam Chon
Cynthia M. Cox
Larry Diegel

Ron Elliott

Roger Golliver

E. Howard Green
Robert M. Gross

Secretary: Larry Diegel

Cynthia M. Cox
Mike Hunter

Mark Guzzi

Charles Hammons
Michael Hannah
Kurt W. Hirchert
Don Huebschman
Michael T. Hunter
Jim Isaak

Hal Jespersen

Jens Kolind
Ip-Beau Phillip Law
Donald Lewine
F.C. Lim

Daniel J. Magenheimer
Roger Martin
Patrick McGehearty
John J. McGrory I

Joseph King

Robert McWhirter
Lyle Meier
Martha Nalebuff
Daniel Nissen
Fred Noz

Paul E. Renaud
Steve M. Rowan

Lorne H. Schachter

Gerhard Schmitt
Leonard Seagren
Richard Seibel
Dan Shia
Andrew D. Tait
Ravi Tavakley
Donn S. Terry
Mark-Rene Uchida

Michael W. Vannier Janusz Zalewski Joseph King(DECUS

Stephen Walli John Zolnowsky Institutional Representative)
Richard W. Weaver Joanne Brixius(ANSI X3J3
Frederick N. Webb Liaison)

When the IEEE Standards Board approved this standard on June 18, 1992, it had the following membership:

Marco W. Migliaro , Chair
Donald C. Loughry, Vice Chair
Andrew G. Salem Secretary

Dennis Bodson Donald N. Heirman T. Don Michael*

Paul L. Borrill Ben C. Johnson John L. Rankine

Clyde Camp Walter J. Karplus Wallace S. Read
Donald C. Fleckenstein Ivor N. Knight Ronald H. Reimer

Jay Forster* Joseph Koepfinger* Gary S. Robinson
David F. Franklin Irving Kolodny Martin V. Schneider
Ramiro Garcia D. N. “Jim” Logothetis Terrance R. Whittemore
Thomas L. Hannan Lawrence V. McCall Donald W. Zipse

*Member Emeritus
Also included are the following nonvoting IEEE Standards Board liaisons:

Satish K. Aggarwal Richard B. Engelman Stanley Warshaw
James Beall David E. Soffrin

Mary Lynne NielsenlEEE Standards Project Editor

Vi

CLAUSE

1.

(=T a1 = T 1

1.1
1.2
1.3

ST ol0] oL PP PP UPUPPPPPUPPPRPTIN: 1
Normative References
(©40] 1) 0] 01 1= (01T 2

Terminology and General REQUIFEMENTSccccuuiiiiiiiiiee e s e s e e e e e e e s s s s st e e e e s seeeesmnmmneneee e s 4

21
2.2
2.3
24
2.5
2.6
2.7
2.8
29

Conventions
D= 11 011 1o o PP

FORTRAN 77 Language BindiNgS CONCEPLScuveiiiiiiiiieee ittt ettt 1.
EFTON NUMIDEIS. ..ottt e e e e e e e et e e e e e e e e e s s e s e s s —— 111111
Primitive System Data Types
ENVIroNMENt DESCHPLION ..ot e e e e e e e e e e e e e e e e s e s snnne e e e e s et e
FORTRAN 77 Language Definitions
AN U] L= 1= U T4 PR 11
SYMBDOLIC CONSTANTS ...ttt e e st e e s s e e e e s anbeee e s e enes 11

o] (0 1o ST = A1 T AV 12

3.1
3.2
3.3
3.4

Process Creation and EXECULIONcciiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeieretb s s e e e e s e e e e e e e e e e e s s« L2
Process Termination
LY T = | UPEESRR

QLI =T] 01T = 1o R

PrOCESS ENVITONIMENT. ... ettt et e e ettt e et e e e e e e et e e e e et s e e saa s s omm—— et 1 e e e et s 23

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Process 1deNtifICAIONcciiiiiiii et e e e e e et e mmm———————aran s
(0 R gl [o (=Y g\ 1] i oz 4o] o DR POP SRR
PrOCESS GIOUPS....ciiiiiiiiiiiiititt ettt e e e e e e e e e e e e e e e e et e ettt et e eaees bttt e bt a s e e e e e e s anenennnnnnmnmn e aeeeeas
SYStemM IAENTFICALIONcoiiiiii et e e e eeee e e e e e e e aesaebeeeees
B L L= SOOI
Environment Variables
Terminal Identification
Configurable System Variables ... 35

1 [STSR= Ta Lo I B [To3 (o] [36

5.1
5.2
5.3
5.4
5.5
5.6
5.7

DT =T o3 (o) =SSR 36
LCT= Ao N Lo T 1 =Tt o] 38
GENEral File CrEALIONeeiiiii e ettt e e e e e e e e s e e e e e e e e e e e e s enaeeeasaanmnnssseneeees 39
SpeCial File CrEAtIONceii e ittt e e e e e et e e e e e e e e e s e e memememm—n e e s e ennn 42
1 Lo =T o 00 Y= | PR 44
1 Lo O F= T T =] 1S o SRR 46
Configurable Pathname Variables.c..oiiiiiiiii e 51

INPUt aNd OULPUL PrIMILIVES ...ttt e et e e e e e e s s e e neeeeeasant e e e e e e e e e e annns 52

6.1
6.2
6.3
6.4
6.5

T T SRR
File Descriptor ManipUIAtioNuuiiiieeee oo e e e e e e s s s r e e e e e e e e s s s s b e e e s mmmmmmmmneneeseeees

File Descriptor Deassignment
T 01U 1= o I @ 11 o ¥ P
Control OPErations ON FilESccciii i e e e e e e e s s e rreeeeeeaees

CLAUSE PAGE

7. Device- and Class-SPeCifiC PrOCEUUIEScuuiiiiiiiiiiie ettt s 1100 DO
7.1 General Terminal INTEITACEcoii i e e e e e 58
7.2 General Terminal Interface Control SUDIOULINES.........ccoiiiiiiiiiiiiiee e 61...
8. FORTRAN 77 LANQUAGJE LIDIAIYeeeiiiieiiiee ettt sttt s 50 64
8.1 FORTRAN 77 INIINSICS ..ttttetitiiieeesisieiieieeieeeee e e e e s ssessesteeaeeeeeaaeeessssnsetaeeeeeeeeeeesseaannsaesaaammnnnenseeees 64
8.2 System SYymMbOIIC CONSIANT ACCESS ...uueiiieiieeeieiiiiiiiiiieetee e e e e e sssstieteeereeaeeeesassnnesseeees e s mmmmmmmmmneee o 64
8.3 Structure Creation and Manipulationcc.uuiiiiiiiiiee e e e e semmeneeeeeees 65
8.4 Subroutine-Handle Manipulation.............ccuuuiiiiiiiiie e r e e e e e mmmeeeeeeennnn 69
8.5 External Unit and File Description INTEractioncuveieiiiiiiiieiiiiie e eemmmeeeeas 70
8.6 SIrEAM 1/O ...t a e e e e e e annane R -
8.7 Bit Field Manipulation
8.8 SyStEM Date @Nd TIME . ..uuiieiiiiiiee e e ettt e e e e e e e e e e e e s e s et ereeeeee s e s mmmmmmememmenn e e e
8.9 CommMANd-LiNe AFGUIMENES.......eiiiiiiiiiiie ittt ettt ettt et e e st e e e et e e e e st b e e e esnreee e e snaneas
8.10 Character String PrOCEAUIES.iiii ittt e e e e e e e e e s s e e e e e s emmmmmmmmmmemene e e e
8.11 Extended Range Integer Manipulation
8.12 ProCeSS TeIMUNALION.....ceiiiiietetii ittt ittt e e e e e e e e st eereeaeeesessaaee b eeeeeeeeeee e s s m— e
9. SYSIEM DAtADASES ... e e e e————n b e e 87
9.1 System Databases
0.2 DALADASE ACCESS ureiiiriie ittt e e st e st e st et e st e e ssr e e e s bt e s n et e s Ee e e e Re e e aE et e e s e e ne e e e e e e e e e nnre e
10. Data INterchange FOMMAL...........iioiiiiiiiiie et e et e e e e e e e e s e e e e e e e e e e s e s s mmmmmememmnmnn s e e e s e e ennnnenes 91
10.1 Archive/interchange File FOIMALuuiiiiiiiiiiiii e e eemmmmmmmne e 91
Annex A Rationale and Notes (INfOrMALIVE)ciiieeiii i e e e e e e s m— e 92

viii

IEEE Standard for Information
Technology—POSIX FORTRAN 77
Language Interfaces—Part 1.

Binding for System Application Program
Interface (API)

1. General

1.1 Scope

This standard provides the binding between the ANSI X3.9-1978 (FORTRAN 77) programming language and the
system services defined in ISO/IEC 9945-1: 1990 (hereinafter referred to as POSIX.1 {2}).

As with the definition of the service interfaces in POSIX.1 {2}, this FORTRAN 77 language binding is defined
exclusively at the source code level. The objective is that a Strictly Conforming Application may be developed in
FORTRAN 77 and compiled to execute on a POSIX.1 {2} conforming implementation.
It is intended that this FORTRAN 77 language binding may coexist on a system with any other language binding.
The following areas are outside the scope of this standard:

1) Extensions to the FORTRAN 77 language, other than the required longer external names.

2) Bindings to any system interfaces using new or changed features in the revision to FORTRAN 77 (ISO/IEC

1539: 1991).
3) Bindings for system interfaces other than those defined in POSIX.1 {2}.

1.2 Normative References

[1] ISO/IEC 9899:1990Information technology—Programming Ianguagesl—C.

1ISO/IEC documents can be obtained from the 1SO office, 1, rue de Varembé, Case Postale 56, CH-1211, Genéve 20, Switeerl&&ESuis
documents can be obtained from the Institute of Electrical and Electronic Engineers, Service Center, 445 Hoes Lane, BIOP&zathdvay,
NJ, 08855-1331, USA.

Copyright © 1992 IEEE All Rights Reserved 1

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

[2] ISO/IEC 9945-1: 1990 (IEEE Std 1003.1-199@¥ormation technology—Portable Operating System Interface
(POSIX)—Part 1: System Application Program Interface (API) [C Language].

[3] ANSI X3.9-1978 American National Standard Programming Language FORTRAN.

1.3 Conformance

1.3.1 Implementation Conformance

1.3.1.1 Requirements

A conforming implementatioshall meet all of the following criteria:

1) The system shall support all required interfaces defined within this standard. These interfaces shall support
the functional behavior described herein.

2) The system may provide additional routines or facilities not required by this standard. Nonstandard
extensions should be identified as such in the system documentation. Nonstandard extensions, when used,
may change the behavior of routines or facilities defined by this standard. The conformance document shall
define an environment in which an application can be made to run with the behavior specified by this
standard. In no case shall such an environment require modification of a Strictly Conforming POSIX.9
Application.

See POSIX.1 {2} 1.3 for a description of a POSIX.1 {2} conforming implementation.
1.3.1.2 Documentation

A conformance document with the information described in POSIX.1 {2} 1.3 and in this standard shall be available for

an implementation claiming conformance to POSIX.1 {2} and to this standard. The conformance document shall have
the same structure as that described in POSIX.1 {2} 1.3 and this standard, with the information presented in
appropriately-numbered sections. The conformance document shall not contain information about extended facilities
or capabilities outside the scope of POSIX.1 {2} 1.3, this standard, and the applicable standard described in 1.3.3.1.

The conformance document shall contain a statement that indicates the full name, number, and date of the standards
that apply. The conformance document may also list international software standards that are available for use by a
Conforming POSIX.1 {2} and POSIX.9 Application. Applicable characteristics where documentation is required by
one of these standards, or by standards of government bodies, may also be included.

The conformance document shall describe the behavior of the implementation for all implementation-defined features
defined in this standard. This requirement shall be met by listing these features and providing either a specific
reference to the system documentation or providing full syntax and semantics of these features. The conformance may
specify the behavior of the implementation for those features where this standard states that implementations may vary
or where features are identified as undefined or unspecified.

The phrases “shall document” or “shall be documented” in this standard mean that documentation of the feature shall
appear in the conformance document, as described previously, unless the system documentation is explicitly
mentioned.

The system documentation should also contain the information found in the conformance document.

See POSIX.1 {2} 1.3 for a description of a POSIX.1 {2} conformance document.

2This is an archival standard which is identical to the obsolete 1ISO 1539:1980. ANSI documents can be obtained from theNatieraan
Standards Institute, 1430 Broadway, New York, NY 10018, USA.

2 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

1.3.2 Application Conformance

All applications claiming conformance to this standard shall use only ANSI X3.9-1978 (FORTRAN 77) as described
in 1.3.3.1 and shall fall within one of the following categories:

1.3.2.1 Strictly Conforming POSIX.9 Application

A Strictly Conforming POSIX.9 Application is an application that requires only the facilities in POSIX.9 and the
facilities described in POSIX.1 {2} 1.3 and the language standard described in 1.3.3.$tfmtla Conforming
POSIX.1 ApplicationSuch an application shall accept any behavior described in this standamdpasifiedor
implementation-defined.

1.3.2.2 Conforming POSIX.9 Application

An IEEE Conforming POSIX.9 Application is an application that uses only the facilities described in this standard and
the facilities described in POSIX.1 {2} 1.3 foiGonforming POSIX.1 Application.

1.3.3 Language-Dependent Services for the FORTRAN 77 Programming Language

ANSI X3.9-1978 {3} (FORTRAN 77), will provide the definition of any FORTRAN 77 language-dependent features
used by POSIX.9. Section 8 provides new facilities and amplifications to facilities provided by the FORTRAN 77
standard. Any implementation claiming conformance to POSIX.9 shall provide the facilities of the FORTRAN 77
standard {3} that are referenced in Section 8 of POSIX.9 and any additions and amplifications required by Section 8
and 1.3.3.1.

Although POSIX.9 references FORTRAN 77 features to describe its own requirements, conformance to the
FORTRAN 77 standard {3} is unnecessary for conformance to this standard. Any Fortran implementation that does
not conflict with FORTRAN 77 and provides the facilities stipulated in Section 8 and 1.3.3.1 may claim conformance.
However, it shall clearly state that its Fortran language does not conform to the FORTRAN 77 standard.

NOTE — FORTRAN 77 is considered to be contained within the ISO/IEC 1539: 1991 (Fortran 90), i.e., all features in FORTRAN
77 are considered to be part of Fortran 90. While Fortran 90 features need not be acceptable to FORTRAN 77,
FORTRAN 77 features are acceptable under Fortran 90. To be able to use the Fortran 90 features, a separate bindings
standard for Fortran 90 will be developed at a later time.

1.3.3.1 FORTRAN 77 Language Binding

ANSI X3.9-1978 {3} (FORTRAN 77) is used as the basis for this FORTRAN 77 language bindings to ISO/IEC 9945-
1: 1990 {2}. Implementations claiming conformance to this standard must supply the FORTRAN 77 features required
by this document, such as the intrinsic function facility.

One extension to FORTRAN 77 is required by POSIX.9. FORTRAN 77 specifies that “a symbolic name takes the
form of one to six letters or digits, the first of which must be a letter.” This document assumes that the language
implementation can accept specified symbolic names that are longer than six characters. Subroutine and function
names, in particular, are assumed to be longer than six characters by this standard. Furthermore, to permit a
FORTRAN 77 implementation to claim conformance to POSIX.1 {2}, names that differ in or before the 31st character
position are required to be recognized as distinct names by the language implementation (see POSIX.1 {2} 1.3.5).

1.3.4 Other Language Related Specifications
The FORTRAN 77 standard {3} specifies that at least the 49 defined FORTRAN 77 characters shall exist with some

FORTRAN 77-specified ordering requirements in an implementation-defined collating sequence. The FORTRAN 77
functionsCHAR)) andICHAR() shall perform conversions based on that collating sequence.

Copyright © 1992 IEEE All Rights Reserved 3

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

A FORTRAN 77 character in a POSIX.9-conforming implementation shall be capable of representing all values of a
byte define by POSIX.1 {2}. The POSIX.9-conforming implementation shall use a collating sequence which
conforms to the FORTRAN 77 standard {3}.

2. Terminology and General Requirements

2.1 Conventions
2.1.1 Typographical Conventions
The following typographical conventions are used in this standard:

1) Theitalic font is used for:
O Cross references to defined terms within 1.2, 2.2.1, and 2.2.2, or within these sections in POSIX.1 {2}.
O Symbolic parameters in Synopsis subclauses and in the text that are generally substituted with real
values by the application.
0 FORTRAN language data types, variable names, and subroutine/function names (except in Synopsis
subclauses)
2) Thebold font is used with a word in all capital letters, such as

PATH
to represent an environment variable, as described in 2.6. It is also used for tHéletmpointer.”
3) Theconstant-width (Courier) font is used:

0 For FORTRAN 77 language data types and function names within function Synopsis subclauses
O Toillustrate examples of system input or output where exact usage is depicted
O For references to C-language syntax and headers
4) HELVETICA font is used in 8.3 to represent a “generic” data type for which the appropriate actual
FORTRAN 77 data type is substituted.
5) Symbolic constants returned by many functions and subroutines as error numbers are represented as:
[ERRNOQ]
See 2.4.
6) Symbolic constants or limits defined in certain POSIX.1 {2} headers are represented as:
{LIMIT}
See 2.8 and 2.9.

In some cases tabular information is presented “inline”; in others it is presented in a separately labeled table. This
arrangement was employed purely for ease of typesetting, and there is no normative difference between these two
cases.

The conventions listed previously are for ease of reading only. Editorial inconsistencies in the use of typography are
unintentional and have no normative meaning in this standard.

Notes provided as parts of labeled tables and figures are integral parts of this standard (normative). Footnotes and notes
within the body of the text are for information only (nonnormative).

2.1.2 Namespace Conventions
The following haming conventions are used in this standard:
2.1.2.1 subroutine naming:

This standard defines a FORTRAN 77 subroutine interface to POSIX.1 {2} system calls and language-specific service
routines. This standard prefixes the names of the POSIX.1 {2} system calls and service routines with the characters

4 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

PXFto create a unique name for the corresponding FORTRAN 77 procedures. For consistency, the names for the other
service subroutines defined in this standard are also prefixed with the same characters.

2.1.2.2 function naming:

This standard defines a FORTRAN 77 function interface to the functionality provided by certain POSIX.1 {2} macros
and service functions. All service functions in this standard that return an integer value are prefixed with the characters
IPXF.

2.1.2.3 argument naming:

The names of all integer items in the actual argument list of each defined procedure statement in the Synopsis sections
begin with one of the letters I, L, M, or N. The names of all items thatrargture handlesr subroutine handletsee
2.2.2) in the actual argument list are prefixed with the letter J.

2.2 Definitions

2.2.1 Terminology

For the purposes of this standard, the following definitions from POSIX.1 {2} apply:

2.2.1.1 conformance documentA document provided by an implementor that contains implementation details as

described in POSIX.1 {2} 1.3.1.2.

2.2.1.2 implementation definedAn indication that the implementation shall define and document the requirements
for correct program constructs and correct data of a value or behavior.

2.2.1.3 may:An indication of an optional feature.

With respect to implementations, the wandyis to be interpreted as an optional feature that is not required in this
standard but can be provided. With respect to Strictly Conforming POSIX.9 Applications, theayongans that the
optional feature shall not be used.

2.2.1.4 obsolescentAn indication that a certain feature may be considered for withdrawal in future revisions of this
standard.

Obsolescent features are retained in this version because of their widespread use. Their use in new applications is
discouraged.

2.2.1.5 shall/An indication of a requirement on the implementation or on Strictly Conforming POSIX.9 Applications,
where appropriate.

2.2.1.6 should:
1) With respect to implementations, an indication of an implementation recommendation, but not a requirement.
2) With respect to applications, an indication of a recommended programming practice for applications and a
requirement for Strictly Conforming POSIX.9 Applications.

2.2.1.7 supportedA condition regarding optional functionality.

Certain functionality in this standard is optional, but the interfaces to that functionality are always required. If the
functionality issupported the interfaces work as specified by this standard (except that they do not return the error
condition indicated for the unsupported case). If the functionality isupgortedthe interface shall always return the
indication specified for this situation.

2.2.1.8 system documentationAll documentation provided with an implementation, except the conformance
document.

Electronically distributed documents for an implementation are considered part of the system documentation.

Copyright © 1992 IEEE All Rights Reserved 5

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

2.2.1.9 undefinedAn indication that this standard imposes no portability requirements on an application’s use of an
indeterminate value or its behavior with erroneous program constructs or erroneous data.

Implementations (or other standards) may specify the result of using that value or causing that behavior. An
application using such behaviors is using extensions, as defined in POSIX.1 {2} 1.3.

2.2.1.10 unspecifiedAn indication that this standard imposes no portability requirements on applications for a correct
program construct or correct data.

Implementations (or other standards) may specify the result of using that value or causing that behavior. An
application requiring a specific behavior, rather than tolerating any behavior when using that functionality, is using
extensions, as defined in POSIX.1 {2} 1.3.

2.2.2 General Terms

In addition to those terms defined in ISO/IEC 9945-1: 1990 (see POSIX.1 {2} 2.2), the terms defined in this section are
used in this standard.

2.2.2.1 componentA member, element, or field of a structure.

2.2.2.2 handle:An integer value that refers to a structure handle or subroutine handle.

Unless otherwise specified in this standaahdlerefers to a structure handle.

2.2.2.3 structure handle:An integer value that refers to a unique instance of a structure.

An existing (structure) handle is a handle that references an existing instance of a structure.

2.2.2.4 subroutine handleAn integer value that refers to a unique instance of a subroutine.

2.2.2.5 intent: A description of whether the actual argument is used by a defined subprograi@ag argument
(intent=IN), as amutputargument (intent=OUT), or as both an input and output argument (intent=INOUT).

2.2.2.6 newline delimitedAn indication that the newline character is used as a delimiter.

2.2.2.7 POSIX-based FORTRAN I/O fileA FORTRAN 77 file associated with a POSIX.1 {2} file descriptor that is
connected to a FORTRAN 77 unit.

2.2.2.8 significant trailing blanks: One or more blanks at the end of a character string that are intended to be a
meaningful part of the contents of the string.

Unlike strings in the C language, character variables in FORTRAN 77 are of a fixed length and are padded with blanks.
That is, if a character variable is assigned a value that contains fewer characters than declared, the remainder of the
variable is filled with blanks. Because of this characteristic, it is difficult to determine the difference between a string
(e.g., a value assigned to an environment variable) that contains trailing blanks that are part of the string (significant
trailing blanks) and a string for which the trailing blanks are only FORTRAN 77-required padding. For example, the
strings “myprompt” and “mypromgt’ (where A represents a significant blank that is part of the string) can be
indistinguishable, but they are different legally valid prompts.

2.2.2.9 structure:An aggregate data type that allows the grouping of multiple data elements of possibly differing type
into a single unit.

Two common implementations of structures arestingctin C and theecordin Pascal. FORTRAN 77 provides no
such aggregate data type.

2.2.2.10 text file:A file that contains characters organized into one or more lines.

The lines shall not contain NUL characters and none shall exceed {LINE_MAX} bytes in length, including the
newline.

6 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

2.2.3 Abbreviations
For the purposes of this standard, the following abbreviations apply:

2.2.3.1 POSIX.1:This standard assumes and uses POSIX.1 {2} to mean ISO/IEC 9945-1: 1990 {2}. References to
sections and terms in that standard will be indicated using this term, e.g., “POSIX.1 {2} 2.3" will imply a reference to
Section 2.3 of ISO/IEC 9945-1: 1990 and “POSIX.1 2Fk()” will imply the function fork() described in that
standard.

2.2.3.2 POSIX.9:This standard.

2.2.3.3 FORTRAN 77:This standard assumes and uses FORTRAN 77 to mean ANSI X3.9-1978 {3} plus the
extension for long identifier names described in 1.3.3.1.

2.3 FORTRAN 77 Language Bindings Concepts

The following subsections present many of the design issues addressed in the development of this FORTRAN 77
Bindings standard. The discussion here is intended to be largely functional, i.e., describing only specific problems and
their solutions. The accompanying rationale (Annex A) discusses in more detail the design objectives and alternatives
that were considered in the development of this standard. With the exception of 2.3, the sections of the rationale
correspond directly to the sections of this standard and to the sections of the POSIX.1 {2} rationale.

Because the POSIX.1 {2} system services are defined in the C language and use many language features that are not
available in FORTRAN 77, many of the issues presented below are the result of differences and incompatibilities
between these two languages. The main goals were to achieve access to all required POSIX.1 {2} functionality while
following FORTRAN 77 as closely as possible and to allow consistent treatment of the exceptional cases.

2.3.1 System Headers

System headers containing definitionssgibolic constantandmacrosare used extensively throughout POSIX.1

{2}. These header files are intended for inclusion in application programs through the use of the C-language #include
mechanism; however, FORTRAN 77 provides no similar inclusion capability, so methods had to be devised to allow
the required header definitions to be accessed from FORTRAN 77 programs.

2.3.1.1 Symbolic Constants

The POSIX.1 {2} system headers contain the definitions of symbolic constants intended for use throughout the
POSIX.1 {2} programming environment. These symbolic constants can be accessed from FORTRAN 77 with defined
procedures. An overview of these procedures is given below:

O An integer function that returns the value of the named constant. This function can be used as an in-line call
and provides no error checking.

O Alogical function that indicates if the named constant is defined. This functionality is similarféatiine
test macrdn a C-based POSIX.1 {2} system.

O A subroutine that returns an argument containing the named constant. This subroutine provides full error
checking.

Further information, including definitions of the interfaces that shall be provided, is given in 8.2.
2.3.1.2 Macros
Where functionality in POSIX.1 {2} is provided by macros, this standard specifies FORTRAN 77 functions.

Definitions and descriptions for the functions that provide the functionality of those POSIX.1 {2} macros are included
in the appropriate sections of this standard.

Copyright © 1992 IEEE All Rights Reserved 7

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

2.3.2 Data Types

Incompatibilities between the data types of the C and FORTRAN 77 languages caused many issues in the development
of this standard. These incompatibilities can be divided into two categories: language-defined data types and data type
definition capabilities.

2.3.2.1 Primitive Data Types

FORTRAN 77 does not provide a facility for type definition such asythedefin the C language. Each of the
primitive data types defined in POSIX.1 {2}, as well as any additional implementation-defined primitive types, is
equated with a corresponding FORTRAN 77 intrinsic type in order to be used in FORTRAN 77 applications.
Specifically, the FORTRAN 77 INTEGER data type shall be used as a substitute for defined arithmetic types (see
POSIX.1 {2} 2.5).

2.3.2.2 Numeric Range of Integer Data

Many functions defined in POSIX.1 {2} make use of timsigned integedata type provided by C to double the range

of an argument or returned value. FORTRAN 77 does not provide such a data type. An implementation of this standard
may choose to utilize an available sign bit of the FORTRAN 77 INTEGER data type to extend the range of such values

to a range equivalent to that provided by the C bindings. Instances where this is allowable are indicated throughout the
text of this standard. A support routine is defined (see 8.11) to allow these extended-range integer values to be
compared.

2.3.2.3 Aggregate Data Types

Many of the service interfaces defined in POSIX.1 {2} require the use of aggregate data types that do not map to
FORTRAN 77. FORTRAN 77 does not provide any mechanism for the construction or use of aggregate data types,
creating a serious conflict.

The solution to this problem in the FORTRAN 77 bindings involves the udatafabstractionThrough the use of

additional subroutines to access and manipulate the aggregate data, the underlying data structures are largely hidden
from the FORTRAN 77 source code. It is the responsibility of the FORTRAN 77 programmer to maintain variables
corresponding to the individual components of the aggregate data, but the programmer need not worry about the
details of the actual implementation of the aggregate. The basic model of this data abstraction is used as follows:

O The programmer calls a subroutine to “create” an instance of the desired aggregate data type; this subroutine
returns a handle that the programmer subsequently uses in order to reference and/or manipulate the data. The
handle is guaranteed to fit in an integer variable, and a valid handle is guaranteed to be nonzero.

O The programmer uses additional subroutines to load values into or extract values from the aggregate data.
These subroutines are passed the handle of the desired aggregate and the name of the specific component that
is to be accessed. Notice that the programmer has direct control over only one component at a time.

O When an instance of an aggregate is no longer required, a subroutine can be called to release it.

O A subroutine is defined to duplicate contents of an instance of an aggregate.

Further information, including definitions of the subroutines that shall be provided, is given in 8.3.
2.3.2.3.1 List of Aggregate Data Types

The structure types shown in Table 2.1 shall be accessible through the techniques described previously in this section.
The components of these structures are enumerated and described in the section indicated.

8 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

Table 2.1—Structure Types

Structure Name Reference
sigset 3.3.1and 3.3.3
sigaction 3.34
utsname 441

tms 45.2
dirent 5.1.1

stat 5.6.1
utimbuf 5.6.6

flock 6.5.2
termios 7.1.2
group 9.2.1
passwd 9.2.2

An implementation may provide additional structures to be used in an implementation-defined manner. Any such
structures may be defined by an implementation to be able to be manipulated using these same structure manipulation
subroutines.

POSIX.1 {2} allows the implementation to support additional components of many of these structures. In an
implementation of POSIX.9 that corresponds to an implementation of POSIX.1 {2} that allows such extensions,
access to these additional components shall be provided using these same structure manipulation subroutines.

2.3.2.4 Character Variables and String Manipulation

Data contained in a FORTRAN 8fting [a dummy argument declared as CHARACTER*(*)] is padded with blanks

if necessary to match the declared string length. Because of this, it is difficult to differentiate between string data that
is intended to contain trailing blanks and data that has simply been padded with blanks in order to match the declared
string variable length. To allow this distinction, an extra argument is passed to or from procedures that have a string
argument.

For procedures in which the stringréegurned fromthe system, this extra argument shall contairatteal length of

the data assigned to the string. This length value can be zero, which indicates the equivalbtbf string
indicating that the value of the string is undefined. If the length of the character argument is insufficient to contain the
data to be returned from the systéBERRORshall be set tfETRUNC], the data shall be truncated to fit the string, and

the length argument shall contain the original length of the data before truncation.

For procedures in which the string is bepagsed tdhe system, this extra argument containgritendedlength of

the string contents, which is not necessarily the fixed, maximum length of the string variable. A value of zero passed
as the length of the string data shall indicate that trailing blanks are to be stripped and ignored, or, if the string contains
only blanks, shall indicate the equivalent dfdLL string.

2.3.2.5 Pointers
C-language pointers are used throughout POSIX.1 {2}; however, FORTRAN 77 does not have a pointer data type. In

cases where POSIX.1 {2} specifies functionality dependent on the use or detectidbbf gpointer, the behavior
has been modified slightly in this binding.

Copyright © 1992 IEEE All Rights Reserved 9

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

All uses of structures in POSIX.1 {2} are through pointers, i.e., structures are passed by reference to system functions.
In conjunction with the methods defined in this binding for accessing and manipulating structured data, an object
called ahandleis used in the FORTRAN 77 interfaces where POSIX.1 {2} uses pointers to structures. A handle is an
abstract reference to the aggregate data and does not require any direct manipulation by the FORTRAN 77
programmer. See 2.3.2.3 and 8.3 for further discussion of aggregate data and the use of handles.

Although FORTRAN 77 permits subroutines and functions declared as EXTERNAL to be passed as arguments to
another procedure, there is no way in FORTRAN 77 to store a pointer to a subroutine for later use. This functionality
shall be provided by the subroutines described in 8.4.

2.4 Error Numbers

Most functions in POSIX.1 {2} provide an error number in the external system vagiabte which is defined in the
C language as:

extern int errno;

In this standard, the interface specification for subroutines that can result in error conditions contains an extra out
argument]JERROR.Unless otherwise specified, a value of zero returned in this argument indicates that no error has
occurred and a nonzero value indicates that an kaoccurred. In this case, the value of other out arguments are
undefined unless otherwise specified.

The following symbolic names identify additional errors that can occur in the use of this standard. The values
represented by these names shall be unique and shall not conflict with error numbers specified in POSIX.1 {2}.

[ENONAME] Invalid constant, structure, or component name.
[ENOHANDLE] Handle not created.
[ETRUNC] The declared length of the out character argument is insufficient to contain the string to

be returned. (See 2.3.2.4.)

[EARRAYLEN] For getroutines, the number of array elements to be returned exéddelN, and only
the firstlALEN elements of the array argument have been setdtmutinesALEN
exceeds the number of array elements in the target array. Only the available elements of
the array in the target array have been set.

[EEND] End of file, record, or directory stream has been encountered.

2.5 Primitive System Data Types

Because all of the primitive system data types shadlrltemetictypes (see POSIX.1 {2} 2.5), the FORTRAN 77
INTEGER data type shall be used as a substitute for each of the listed types. However, when a primitive data type is
defined in the C bindings to POSIX.1 {2} as an unsigned integer, other issues may arise. See 2.3.2.1 and 2.3.2.2 for
further discussion.

2.6 Environment Description
The individual members of the environment (see POSIX.1 {2} 2.6) are examined usiRXE@ETENY)

subroutine, modified using thBEXFSETENY) subroutine, and cleared by tHRXFCLEARENY) subroutine
(see 4.6.1).

10 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

2.7 FORTRAN 77 Language Definitions

FORTRAN language terms and symbols used in this standard are defined by FORTRAN 77.

2.8 Numerical Limits

2.8.1 FORTRAN 77 Language Limits

Certain limits used in this standard are defined in the FORTRAN 77 programming language.
2.8.2 Minimum Values

The symbolic constants specifying minimum values described in POSIX.1 {2} 2.8.2 shall be accessible through calls
to any of the®PXFCONSTprocedures (see 8.2).

2.8.3 Run-Time Increasable Values

The magnitude limitations specified in POSIX.1 {2} 2.8.3 shall be accessible through aRéF$Y SCONE (see
4.8).

2.8.4 Run-Time Invariant Values (Possible Indeterminate)

The run time invariant values specified in POSIX.1 {2} 2.8.4 shall be accessible through 3 &86SCONE (see
4.8).

2.8.5 Pathname Variable Values

The pathname variable values specified in POSIX.1 {2} 2.8.5 shall be accessible through RXdakAGHCONIK)
(see 5.7).

2.8.6 Invariant Values

The invariant values specified in POSIX.1 {2} 2.8.6 shall be accessible through aRél &Y SCONE (see 4.8).

2.9 Symbolic Constants

The symbolic constants defined in POSIX.1 {2} (see POSIX.1 {2} 2.9) and POSIX.9 shall be accessible through calls
to any of thePXFCONST) procedures (see 8.2).

2.9.1 Constants for FORTRAN 77 I/O to STDIO Translation

The following symbolic constants shall be accessible through calls to anyRXE@ONST) procedures (see 8.2).

STDIN_UNIT The value of the FORTRAN 77 unit identifier associated with a preconnected input file.

STDOUT_UNIT The value of the FORTRAN 77 unit identifier associated with a preconnected output
file.

STDERR_UNIT The value of the FORTRAN 77 unit identifier associated with a preconnected error file.

The values of these constants shall be integers in the range 0-9. Portable applications using units for other files should
use values outside these ranges.

Copyright © 1992 IEEE All Rights Reserved 11

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

3. Process Primitives

3.1 Process Creation and Execution
3.1.1 Process Creation
SubroutinePXFFORK)

3.1.1.1 Synopsis

SUBROUTINE PXFFORK (IPID, IERROR)
INTEGER IPID, IERROR

3.1.1.2 Description

The PXFFORK) subroutine shall provide the same functionality as the POSIX.1 {2} funfdit() (see POSIX.1

{2} 3.1) except that files opened with the FORTRAN 77 OPEN statement are not required to have file descriptors
(see 8.5).

Arguments foPXFFORK) correspond to the arguments fork(), as shown in Table 3.1.

Table 3.1—Arguments for PXFFORK()
FORTRAN POSIX.1

Argument Argument Intent Notes
IPID ret_value ouT
IERROR ret_value/errno ouT

3.1.1.3 Errors

Possible error conditions fd?XFFORK) are identical to those for the POSIX.1 {2} functiéark(). Under the
circumstances specified by POSIX.1 {2}, the argum&RRORSshall be set to the corresponding nonzero value
specified by the POSIX.1 {2} function. Upon successful completion, the arguEBRRORshall be set to zero.
IERRORmMay be set to a nonzero value to indicate error conditions that are not specified by POSIX.1 {2} and
POSIX.9.

3.1.2 Execute a File
SubroutinesPXFEXECY), PXFEXECVE), PXFEXECVR)
3.1.2.1 Synopsis
SUBROUTINE PXFEXECYV (PATH, LENPATH, ARGV, LENARGV, IARGC, IERROR)
INTEGER LENPATH, LENARGV(0:IARGC-1), IARGC, IERROR
CHARACTER*(*) PATH, ARGV(0:IARGC-1)
SUBROUTINE PXFEXECVE (PATH, LENPATH, ARGV, LENARGV, IARGC,
+ ENV, LENENV, IENVC, IERROR)

INTEGER LENPATH, LENARGV(0:IARGC-1), IARGC, LENENV(IENVC), IENVC, IERROR
CHARACTER*(*) PATH, ARGV(0:IARGC-1), ENV(IENVC)

12 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

SUBROUTINE PXFEXECVP (FILE, LENFILE, ARGV, LENARGYV, IARGC, IERROR)
INTEGER LENFILE, LENARGV(0:IARGC-1), IARGC, IERROR
CHARACTER*(*) FILE, ARGV(0:IARGC-1)

3.1.2.2 Description

ThePXFEXECVsubroutines shall provide the same functionality as the corresponding POSDéxiefjnctions in
POSIX.1 {2} (see POSIX.1 {2} 3.1).

The lengths of thARGVandENV arrays are explicitly passed in the argum&BRGCandIENVCrespectively. The
arraysARGVandLENARGVshall be dimensioned at least as larggA&5C,and the arrayENVandLENENVshall

be dimensioned at least as largellBSlVC. While these arrays may be dimensioned greater than required, the
argumentdARGCandIENVC specify the number of the elements at the beginning of the respective arrays that are to
be used by the subroutine. The string length of each element &RBY/ and ENV arrays is passed in the
corresponding element of th&E NARGVandLENENVarrays.

Arguments for these subroutines correspond to the arguments for the corresponding POSIX.1 {2} process creation and
execution functions, as shown in Table 3.2.

Table 3.2—Arguments for the PXFEXEC...() Subroutines

FORTRAN

Argument POSIX.1 Argument Intent Notes

PATH path IN

LENPATH -- IN Length of PATH; see 2.3.2.4

FILE file IN

LENFILE - IN Length of FILE; see 2.3.2.4

ARGV argv IN

IARGC - IN Number of elements in ARGV
LENARGV - IN Length of elements in ARGV, see 2.3.2.4
ENV envp IN

IENVC - IN Number of elements in ENV

LENENV - IN Length of elements in ENV; see 2.3.2.4
IERROR ret_value/errno ouT

3.1.2.3 Errors

Possible error conditions for tiRXFEXECY) family of subroutines are identical to those for the POSIX.1e§&¢)
family. Under the circumstances specified by POSIX.1 {2}, the argulB®RORshall be set to the corresponding
nonzero value specified by the POSIX.1 {2} functi®BRRORmay be set to a nonzero value to indicate error
conditions that are not specified by POSIX.1 {2} and POSIX.9.

3.2 Process Termination
Process termination shall provide the functionality defined by the POSIX.1 {2} funatitl) (see POSIX.1 {2}

3.2.2). There are two kinds of process termination, normal and abnormal. Normal termination occurs by the execution
of the FORTRAN 77 END statement in the FORTRAN 77 main program, the FORTRAN 77 STOP statement, or the

Copyright © 1992 IEEE All Rights Reserved 13

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

PXFFASTEXIT) or PXFEXIT() subroutine (see 3.2.2 and 8.12). Abnormal termination occurs when certain signals are
received, as defined in POSIX.1 {2} 3.3.

A parent process may suspend its execution to wait for the termination of a child process RKRF\W&IT) or
PXFWAITPIL) subroutines.

3.2.1 Wait for Process Termination
SubroutinesPXFWAIT), PXFWAITPIL)
3.2.1.1 Synopsis

SUBROUTINE PXFWAIT (ISTAT, IRETPID, IERROR)
INTEGER ISTAT, IRETPID, IERROR

SUBROUTINE PXFWAITPID (IPID, ISTAT, IOPTIONS, IRETPID, IERROR
INTEGER IPID, ISTAT, IOPTIONS, IRETPID, IERROR)

3.2.1.2 Description

The PXFWAIT() and PXFWAITPID() subroutines shall provide the same functionality as the POSIX.1 {2} functions
wait() and waitpid() (see POSIX.1 {2} 3.2).

The value for the IOPTIONS arguments to the PXFWAITPID() subroutine is based on the symbolic constants defined
for waitpid(). These constants shall be accessible through any of the PXFCONST() procedures (see 8.2). These values
of the symbolic constants shall be distinct and can be combined with the use of the inclusive OR function (see 8.7).
Arguments for PXFWAIT() and PXFWAITPID() correspond to the arguments for wait() and waitpid(), as shown in
Table 3.3.

Table 3.3—Arguments for PXFWAIT() and PXFWAITPID()
FORTRAN POSIX.1

Argument Argument Intent Notes
ISTAT stat_loc ouT

IPID pid IN

IRETPID ret_value ouT

IOPTIONS options IN

IERROR ret_value/errno ouT

The following functions may be used to interpret the ISTAT argument, as defined in POSIX.1 {2} 3.2.

LOGICAL FUNCTION PXFWIFEXITED (ISTAT)
INTEGER ISTAT

INTEGER FUNCTION IPXFWEXITSTATUS (ISTAT)
INTEGER ISTAT

LOGICAL FUNCTION PXFWIFSIGNALED (ISTAT)
INTEGER ISTAT

14 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

INTEGER FUNCTION IPXFWTERMSIG (ISTAT)
INTEGER ISTAT

LOGICAL FUNCTION PXFWIFSTOPPED (ISTAT)
INTEGER ISTAT

INTEGER FUNCTION IPXFWSTOPSIG (ISTAT)
INTEGER ISTAT

3.2.1.3 Errors

Possible error conditions f&EXFWAIT) andPXFWAITPIL) are identical to those for the POSIX.1 {2} functions
wait() andwaitpid(). IERRORshall be set to the corresponding nonzero value specified by the POSIX.1 {2} function.
Upon successful completion, the argumERRORshall be set to zerdERRORmay be set to a nonzero value to
indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

3.2.2 Terminate a Process

SubroutinePXFFASTEXIT)

3.2.2.1 Synopsis

SUBROUTINE PXFFASTEXIT (ISTATUS)
INTEGER ISTATUS

3.2.2.2 Description

The PXFFASTEXIT) subroutine shall provide the same functionality as the POSIX.1 {2} functexil) (see
POSIX.1 {2} 3.2). There is no possible return frdPXFFASTEXIT), and nolERRORargument is defined for
PXFFASTEXIT). Arguments foPXFFASTEXIT) correspond to the arguments faxit), as shown in Table 3.4.

Table 3.4—Arguments for PXFFASTEXIT()

FORTRAN POSIX.1
Argument Argument Intent Notes

ISTATUS status IN

3.3 Signals
3.3.1 Signal Concepts
3.3.1.1 Signal Names

The values for use with the signal procedures are based on the symbolic constants defined for POSIX.1 {2} signals.
These constants shall be accessible through any BXREONST) procedures (see 8.2).

The symbolic constan8IG_DFLandSIG_IGNrepresent values that shall not be identical to any value returned by
PXFGETSUBHANDLGE (see 8.4 and 3.3.1.3). When used as the handle for the signal-catching subroutine, they shall
cause the signal-specific default action or ignore signal action respectively.

The subroutin®XFSTRUCTCREATEwith the string ‘sigset’ given as ti8TRUCTNAMErgument may be used to
obtain an instance of theigset ttype as defined in POSIX.1 {2} 3.3.1. There are no defined components of this

Copyright © 1992 IEEE All Rights Reserved 15

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

structure, and the contents of the structure may not be altered with the structure-component manipulation subroutines.
Instead, the subroutines defined in 3.3.3 shall be used.

3.3.1.2 Signal Generation and Delivery

3.3.1.3 Signal Actions

On delivery of a signal (see POSIX.1 {2} 3.3), the system may call a user-defined signal-catching subroutine (see
3.3.4). This signal-catching subroutine shall be defined with a single integer argument. The argument contains the
number of the signal being delivered.

3.3.1.4 Signal Effects on Other Subroutines

Signals may affect the behavior of certain procedures defined by this standard if delivered to a process while it is
executing such a procedure. Specifically, nonzero valueER&RORfor each of the system services are not guaranteed

to be reliable in the presence of signals.

3.3.2 Send a Signal to a Process

Subroutine PXFKILL()

3.3.2.1 Synopsis

SUBROUTINE PXFKILL (IPID, ISIG, IERROR)
INTEGER IPID, ISIG, IERROR

3.3.2.2 Description

The PXFKILL() subroutine shall provide the same functionality as the POSIX.1 {2} funkifigh(see POSIX.1 {2}
3.3).

The value of the desired signal (specifiedI8}G) shall be accessible through calls to any of Rix-CONST)
procedures (see 8.2). ArgumentsFOtFKILL() correspond to the arguments kilt(), as shown in Table 3.5.

Table 3.5—Arguments for PXFKILL()
FORTRAN POSIX.1

Argument Argument Intent Notes
IPID pid IN

ISIG sig IN

IERROR ret_value/errno ouT

3.3.2.3 Errors

Possible error conditions f®¥XFKILL are identical to those for the POSIX.1 {2} functiiti ().)IERRORshall be set

to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completion, the argument
IERRORshall be set to zertERRORmay be set to a nonzero value to indicate error conditions that are not specified
by POSIX.1 {2} and POSIX.9.

16 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

3.3.3 Manipulate Signal Sets

Subroutines: PXFSIGEMPTYSH], PXFSIGFILLSEY) PXFSIGADDSET), PXFSIGDELSET),
PXFSIGISMEMBER

3.3.3.1 Synopsis

SUBROUTINE PXFSIGEMPTYSET (JSIGSET, IERROR)
INTEGER JSIGSET, IERROR

SUBROUTINE PXFSIGFILLSET (JSIGSET, IERROR)
INTEGER JSIGSET, IERROR

SUBROUTINE PXFSIGADDSET (JSIGSET, ISIGNO, IERROR)
INTEGER JSIGSET, ISIGNO, IERROR

SUBROUTINE PXFSIGDELSET (JSIGSET, ISIGNO, IERROR)
INTEGER JSIGSET, ISIGNO, IERROR

SUBROUTINE PXFSIGISMEMBER (USIGSET, ISIGNO, ISMEMBER, IERROR)
INTEGER JSIGSET, ISIGNO, IERROR
LOGICAL ISMEMBER

3.3.3.2 Description

These subroutines shall provide the same functionality as the equivalent POSIX.1 {2} signal set manipulation
functions (see POSIX.1 {2} 3.3).

The PXFSIGISMEMBER (procedure shall return a logical value .TRUE. in the arguiS8nEMBERIf the specified
signal is a member of the specified set or a value of .FALSE. if it is not.

Applications shall call eithd?XFSIGEMPTYSETQr PXFSIGFILLSET(at least once for eadigsetstructure prior
to any other use of that structure. If the structure is not initialized in this way, the results are undefined.

This standard definesigsetas a structure. An instance of a sigset shall be created REIR§TRUCTCREATE()
before manipulation using these subroutines.

Arguments for these subroutines correspond to the arguments for the corresponding POSIX.1 {2} signal set
manipulation functions, as shown in Table 3.6.

Table 3.6—Arguments for the PXFSIG...() Subroutines
FORTRAN POSIX.1

Argument Argument Intent Notes
JSIGSET set IN 1.
ISMEMBER ret_value ouT

ISIGNO signo IN

IERROR ret_value/errno ouT

1. Handle obtained from PXFSTRUCTCREATE (‘sigset’,...); see 8.3.1.

Copyright © 1992 IEEE All Rights Reserved 17

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

3.3.3.3 Errors

Possible error conditions for these subroutines are identical to those for the corresponding signal set manipulation
functions defined in POSIX.1 {2}JERRORshall be set to the corresponding nonzero value specified by the POSIX.1
{2} function. Upon successful completion, the argun&RRORshall be set to zertERRORmMay be set to a nonzero

value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

3.3.4 Examine and Change Signal Action

SubroutinePXFSIGACTION()

3.3.4.1 Synopsis

SUBROUTINE PXFSIGACTION (I1SIG, JSIGACT, JOSIGACT, IERROR)
INTEGER ISIG, JSIGACT, JOSIGACT, IERROR

3.3.4.2 Description

The PXFSIGACTION(subroutine shall provide the same functionality as the POSIX.1 {2} funsig@ction()(see
POSIX.1 {2} 3.3). Arguments foPXFSIGACTION()correspond to the arguments feigaction(),as shown in
Table 3.7.

Table 3.7—Arguments for PXFSIGACTION()
FORTRAN POSIX.1

Argument Argument Intent Notes
ISIG sig IN

JSIGACT act IN 1.
JOSIGACT oact ouT 1.
IERROR ret_value/errno ouT

1. Handle obtained from PXFSTRUCTCREATE (‘sigaction’,...); see 8.3.1.

The functionality obtained in the POSIX.1 {2} functi®gigaction() by passing aNULL can be obtained in
PXFSIGACTIONuy passing a handle argument with a value of zero.

The values of the symbolic constar8$G_DFL and SIG_IGN shall be accessible through calls to any of the
PXFCONST(procedures (see 8.2) and can be used as values for the signal handler component. They shall cause the
signal-specific default action or ignore signal action respectively, as defined by POSIX.1 {2} 3.3.1.3.

The PXFSTRUCTCREATEgubroutine (see 8.3.1) with the string ‘sigaction’ given asStiRUCTNAMEargument
shall be used to obtain a handle for an instance oitection structure as defined in POSIX.1 {2} 3.3. Each
component access shall require one of the following structure-component manipulation subroutines (see 8.3.2):

SUBROUTINE PXFINTGET(JSIGACTION, COMPNAM, IVALUE, IERROR)
INTEGER JSIGACTION, IVALUE, IERROR

SUBROUTINE PXFINTSET(JSIGACTION, COMPNAM, IVALUE, IERROR)
INTEGER JSIGACTION, IVALUE, IERROR

whereJSIGACTIONs a handle an@OMPNAMis a character expression which evaluates to one of the component
names shown in Table 3.8.

18 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

Table 3.8—Components for sigaction Structure

POSIX.1

Component COMPNAM Structure Procedure Used to Access
sa_handler ‘sa_handler’ PXFINTGET,PXFINTSET
sa_mask ‘sa_mask’ PXFINTGET,PXFINTSET
sa_flags ‘sa_flags’ PXFINTGET,PXFINTSET

The sa_handlercomponent shall be a subroutine handle obtained from a RRHRGETSUBHANDLE(fsee 8.4),
obtained from a previous call RXFSIGACTION()or that shall contain the value of one of the symbolic constants
SIG_DFLor SIG_IGN.Thesa_maskcomponent shall be a sigset structure handle (see 3.3) obtained from a call to
PXFSTRUCTCREATE().

Values of thesa_ flagscomponent can be used to modify the behavior of the signal specified in a call to
PXFSIGACTION()Values ofsa_flagsare composed of the flag bits used by gtgaction()function as defined in

POSIX.1 {2} 3.3. The values of these flags shall be bitwise distinct and can be combined with the use of the inclusive
OR function (see 8.7). The flag names are constants for which the values shall be accessible through calls to any of the
PXFCONST(procedures (see 8.2).

3.3.4.3 Errors

Possible error conditions f®XFSIGACTION(are identical to those for the POSIX.1 {2} functisigaction().Under

the circumstances specified by POSIX.1 {2}, the arguntBRRORshall be set to the corresponding nonzero value
specified by the POSIX.1 {2} function. Upon successful completion, the arguEBRRORshall be set to zero.
IERRORmMay be set to a nonzero value to indicate error conditions that are not specified by POSIX.1 {2} and
POSIX.9.

3.3.5 Examine and Change Blocked Signals

SubroutinePXFSIGPROCMASK()

3.3.5.1 Synopsis

SUBROUTINE PXFSIGPROCMASK (IHOW, JSIGSET, JOSIGSET, IERROR)
INTEGER IHOW, JSIGSET, JOSIGSET, IERROR

3.3.5.2 Description
The PXFSIGPROCMASK()subroutine shall provide the same functionality as the POSIX.1 {2} function

sigprocmask()(see POSIX.1 {2} 3.3). Arguments fd?PXFSIGPROCMASK(xorrespond to the arguments for
sigprocmask()as shown in Table 3.9.

Copyright © 1992 IEEE All Rights Reserved 19

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

Table 3.9—Arguments for PXFSIGPROCMASK()
FORTRAN POSIX.1

Argument Argument Intent Notes
IHOW how IN

JSIGSET set IN 1.
JOSIGSET oset ouT 1.
IERROR ret_value/errno ouT

1.Handle obtained from PXFSTRUCTCREATE (‘sigset’,...); see 8.3.1.

The functionality obtained in the POSIX.1 {2} functi@igprocmask(by passing &NULL may be obtained in
PXFSIGPROCMASHKYy passing a handle argument with a value of zero.

3.3.5.3 Errors

Possible error conditions foPXFSIGPROCMASK()are identical to those for the POSIX.1 {2} function
sigprocmask(). IERROShall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon
successful completion, the argumEERRORshall be set to zertERRORmay be set to a nonzero value to indicate
error conditions that are not specified by POSIX.1 {2} and POSIX.9.

3.3.6 Examine Pending Signals

SubroutinePXFSIGPENDING()

3.3.6.1 Synopsis

SUBROUTINE PXFSIGPENDING (JSIGSET, IERROR
INTEGER JSIGSET, IERROR

3.3.6.2 Description

The PXFSIGPENDING(subroutine shall provide the same functionality as the POSIX.1 {2} funsiigpending()
(see POSIX.1 {2} 3.3). Arguments fBXXFSIGPENDING(rorrespond to the arguments $igpending()as shown in
Table 3.10.

Table 3.10—Arguments for PXFSIGPENDING()
FORTRAN POSIX.1

Argument Argument Intent Notes
JSIGSET set IN 1.
IERROR ret_value/errno ouT

1. Handle obtained from PXFSTRUCTCREATE (‘sigset’,...); &l

3.3.6.3 Errors

Possible error conditions f®@XFSIGPENDING(are identical to those for the POSIX.1 {2} functisigpending().
IERRORshall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful
completion, the argumehERRORshall be set to zerédERRORmay be set to a nonzero value to indicate error
conditions that are not specified by POSIX.1 {2} and POSIX.9.

20 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

3.3.7 Wait for a Signal
SubroutinePXFSIGSUSPEND()
3.3.7.1 Synopsis

SUBROUTINE PXFSIGSUSPEND (JSIGSET, IERROR)
INTEGER JSIGSET, IERROR

3.3.7.2 Description

The PXFSIGSUSPEND@ubroutine shall provide the same functionality as the POSIX.1 {2} funsiimuspend()
(see POSIX.1{2} 3.3). Arguments fXFSIGSUSPEND@orrespond to the arguments $ggsuspend(gs shown in
Table 3.11.

Table 3.11—Arguments for PXFSIGSUSPEND()
FORTRAN POSIX.1

Argument Argument Intent Notes
JSIGSET sigmask IN 1.
IERROR ret_value/errno ouT

1. Handle obtained from PXFSTRUCTCREATE (‘sigset’,...); see 8.3.1.

3.3.7.3 Errors

Since thePXFSIGSUSPEND(@ubroutine suspends process execution indefinitely, there is no successful completion
return value.

Possible error conditions fBRXFSIGSUSPEND@re identical to those for the POSIX.1 {2} functisigsuspend()f
any of these conditions occur, the argumBRRORshall be set to the corresponding nonzero value specified by the

POSIX.1 {2} function.IERRORmMay be set to a nonzero value to indicate error conditions that are not specified by
POSIX.1 {2} and POSIX.9.

3.4 Timer Operations
3.4.1 Schedule Alarm
SubroutinePXFALARM()
3.4.1.1 Synopsis

SUBROUTINE PXFALARM (ISECONDS, ISECLEFT, IERROR)
INTEGER ISECONDS, ISECLEFT, IERROR

3.4.1.2 Description

ThePXFALARM()subroutine shall provide the same functionality as the POSIX.1 {2} funatémm() (see POSIX.1
{2} 3.4).

Copyright © 1992 IEEE All Rights Reserved 21

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

If there is a previouPXFALARM()request with time remaining, the number of seconds until the previous request
would have generated a SIGALARM signal is returnelSEECLEFT.Otherwise]SECLEFTshall contain a value of

zero upon return.

Arguments foPXFALARM()correspond to the arguments &arm(), as shown in Table 3.12.

Table 3.12—Arguments for PXFALARM()

FORTRAN

Argument POSIX.1 Argument Intent Notes
ISECONDS seconds IN

ISECLEFT ret_value ouT 1.
IERROR ret_value/errno ouT

1. Value may exceed the range of a signed integer; see 2.3.2.2.

3.4.1.3 Errors

POSIX.1 {2} does not specify any error conditions that are required to be detected ditarth@ function. Upon
successful completion &8XFALARM()the argumentERRORshall be set to zertERRORmay be set to a nonzero
value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

3.4.2 Suspend Process Execution

SubroutinePXFPAUSE()

3.4.2.1 Synopsis

SUBROUTINE PXFPAUSE (IERROR)
INTEGER IERROR

3.4.2.2 Description

The PXFPAUSE (subroutine shall provide the same functionality as the POSIX.1 {2} fungtioee()Xsee POSIX.1
{2} 3.4). Arguments foPXFPAUSE(orrespond to the arguments f@muse() as shown in Table 3.13.

Table 3.13—Arguments for PXFPAUSE()

FORTRAN POSIX.1
Argument Argument Intent Notes

IERROR ret_value/errno ouT

3.4.2.3 Errors

Since thePXFPAUSE()subroutine suspends process execution indefinitely, there is no successful completion return
value.

Possible error conditions f®¥XFPAUSE(Jare identical to those for the POSIX.1 {2} functipause()If any of these
conditions occur, the argumdBERRORshall be set to the corresponding nonzero value specified by the POSIX.1 {2}
function.IERRORmay be set to a nonzero value to indicate error conditions that are not specified by POSIX.1 {2} and
POSIX.9.

22 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

3.4.3 Delay Process Execution
SubroutinePXFSLEEP()
3.4.3.1 Synopsis

SUBROUTINE PXFSLEEP (ISECONDS, ISECLEFT, IERROR)
INTEGER ISECONDS, ISECLEFT, IERROR

3.4.3.2 Description

The PXFSLEEP()subroutine shall provide the same functionality as the POSIX.1 {2} funsksap()(see POSIX.1
{2} 3.4).

If PXFSLEEP(yeturns because the requested time has elapsed, the iB&COEFTis set to zero. IPXFSLEEP()
returns due to delivery of a signEBECLEFTshall contain upon return the unslept amount (the requested time minus
the time actually slept) in seconds.

Arguments foPXFSLEEP(correspond to the arguments $beep(),as shown in Table 3.14.

Table 3.14—Arguments for PXFSLEEP()

FORTRAN

Argument POSIX.1 Argument Intent Notes
ISECONDS seconds IN

ISECLEFT ret_value ouT 1.
IERROR ret_value/errno ouT

1. Value may exceed the range of a signed integer; see 2.3.2.2.

3.4.3.3 Errors
POSIX.1 {2} does not specify any error conditions that are required to be detected $teegh@function. Upon

successful completion #fXFSLEEP()the argumentERRORshall be set to zertERRORmay be set to a nonzero
value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

4. Process Environment

4.1 Process ldentification

4.1.1 Get Process and Parent Process IDs
SubroutinesPXFGETPID(), PXFGETPPID()
4.1.1.1 Synopsis

SUBROUTINE PXFGETPID (IPID, IERROR)
INTEGER IPID, IERROR

SUBROUTINE PXFGETPPID (IPID, IERROR)
INTEGER IPID, IERROR

Copyright © 1992 IEEE All Rights Reserved 23

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

4.1.1.2 Description

The PXFGETPID() and PXFGETPPID() subroutines shall provide the same functionality as the POSIX.1 {2}
functions getpid() and getppid() (see POSIX.1 {2} 4.1). Arguments fdPXFGETPID() and PXFGETPPID()
correspond to the arguments gmtpid()andgetppid(),as shown in Table 4.1.

Table 4.1—Arguments for PXFGETPID() and PXFGETPPID()
FORTRAN POSIX.1

Argument Argument Intent Notes
IPID ret_value ouT
IERROR ret_value/errno ouT

4.1.1.3 Errors
POSIX.1 {2} does not specify any error conditions that are required to be detected detgh@ function or the
getppid()function. Upon successful completionRXFGETPID()or PXFGETPPID() the argumenERRORshall be

set to zerolERRORmay be set to a nonzero value to indicate error conditions that are not specified by POSIX.1 {2}
and POSIX.9.

4.2 User ldentification

4.2.1 Get Real User, Effective User, Real Group, and Effective Group IDs
SubroutinesPXFGETUID(), PXFGETEUID(), PXFGETGID(), PXGETEGID()
4.2.1.1 Synopsis

SUBROUTINE PXFGETUID (IUID, IERROR)
INTEGER IUID, IERROR

SUBROUTINE PXFGETUEID (IEUID, IERROR)
INTEGER IEUID, IERROR

SUBROUTINE PXFGETGID (IGID, IERROR)
INTEGER IGID, IERROR

SUBROUTINE PXFGETEGID (IEGID, IERROR)
INTEGER IEGID, IERROR

4.2.1.2 Description
The PXFGETUID(), PXFGETEUID(), PXFGETGID(and PXFGETEGID() subroutines shall provide the same
functionality as the POSIX.1 {2} functiongetuid(), geteuid(), getgid(Jand getegid() (see POSIX.1 {2} 4.2).

Arguments for these subroutines correspond to the arguments for the corresponding POSIX.1 {2} user identification
functions, as shown in Table 4.2.

24 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

Table 4.2—Arguments for the PXFGET...ID() Subroutines
FORTRAN POSIX.1

Argument Argument Intent Notes
IUID ret_value ouT

IEUID ret_value ouT

IGID ret_value ouT

IEGID ret_value ouT

IERROR ret_value/errno ouT

4.2.1.3 Errors

POSIX.1 {2} does not specify any error conditions that are required to be detectedyiet: tia{)family of functions.

Upon successful completion of any of 8FGET...ID()family of subroutines, the argumdERRORshall be set to
zero.IERRORmay be set to a nonzero value to indicate error conditions that are not specified by POSIX.1 {2} and
POSIX.9.

4.2.2 Set User and Group IDs

SubroutinesPXFSETUID(), PXFSETGID()

4.2.2.1 Synopsis

SUBROUTINE PXFSETUID (IUID, IERROR)
INTEGER IUID, IERROR

SUBROUTINE PXFSETGID (IGID, IERROR)
INTEGER IGID, IERROR

4.2.2.2 Description
ThePXFSETUID()andPXFSETGID()subroutines shall provide the same functionality as the POSIX.1 {2} functions
setuid() and setgid() (see POSIX.1 {2} 4.2). Arguments f&*XFSETUID()and PXFSETGID()correspond to the

arguments fosetuid()andsetgid(),as shown in Table 4.3.

Table 4.3—Arguments for PXFSETUID() and PXFSETGID()
FORTRAN POSIX.1

Argument Argument Intent Notes
IUID uid IN

IGID gid IN

IERROR ret_value/errno ouT

4.2.2.3 Errors

Possible error conditions f®@XFSETUIDOandPXFGETUID()are identical to those for the POSIX.1 {2} functions
setuid()andgetuid(). IERRORhall be set to the corresponding nonzero value specified by the POSIX.1 {2} function.
Upon successful completion, the argumERRORshall be set to zerdERRORmay be set to a nonzero value to
indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

Copyright © 1992 IEEE All Rights Reserved 25

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

4.2.3 Get Supplementary Group IDs
SubroutinePXFGETGROUPS()
4.2.3.1 Synopsis

SUBROUTINE PXFGETGROUPS (IGIDSETSIZE, IGROUPLIST, NGROUPS, IERROR)
INTEGER IGIDSETSIZE, IGROUPLIST(IGIDSETSIZE), NGROUPS, IERROR

4.2.3.2 Description

The PXFGETGROUPS(3ubroutine shall provide the same functionality as the POSIX.1 {2} fungetgroups()
(see POSIX.1 {2} 4.2), including the special case behavior whelGIRESETSIZEargument is zero.

Arguments foPXFGETGROUPS@orrespond to the arguments f@mtgroups() as shown in Table 4.4.

Table 4.4—Arguments for PXFGETGROUPS()

FORTRAN POSIX.1

Argument Argument Intent Notes
IGROUPLIST grouplist ouT
IGIDSETSIZE gidsetsize IN

NGROUPS ret_value ouT

IERROR ret_value/errno ouT

4.2.3.3 Errors
Possible error conditions f(*XFGETGROUPS(are identical to those for the POSIX.1 {2} functigatgroups().
IERRORshall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful
completion, the argumehERRORSshall be set to zerdERRORmMay be set to a nonzero value to indicate error
conditions that are not specified by POSIX.1 {2} and POSIX.9.
4.2.4 Get User Name
SubroutinePXFGETLOGIN()
4.2.4.1 Synopsis

SUBROUTINE PXFGETLOGIN (S, ILEN, IERROR)

CHARACTER*(*) S

INTEGER ILEN, IERROR
4.2.4.2 Description

PXFGETLOGIN(shall provide the same functionality as the POSIX.1 {2} funagiethogin()(see POSIX.1 {2} 4.2).
Arguments folPXFGETLOGIN()correspond to the arguments §mtlogin(),as shown in Table 4.5.

26 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

Table 4.5—Arguments for PXFGETLOGIN()
FORTRAN POSIX.1

Argument Argument Intent Notes

S ret_value ouT

ILEN — ouT Length of S; see 2.3.2.4
IERROR ret_value/errno ouT

4.2.4.3 Errors
POSIX.1 {2} does not specify any error conditions that are required to be detecteddetltigin() function. Upon
successful completion ®@XFGETLOGIN), the argumentERRORshall be set to zero. If any of the following

conditions occurPXFGETLOGIN) shall set the argument to the corresponding vdElRRORmMay be set to a
nonzero value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

[ETRUNC] The declared length of the argum8ig insufficient to contain the string to be returned.
(See 2.3.2.4)
4.3 Process Groups
4.3.1 Get Process Group ID
SubroutinePXFGETPGRP
4.3.1.1 Synopsis

SUBROUTINE PXFGETPGRP (IPGRP, IERROR)
INTEGER, IPGRP, IERROR

4.3.1.2 Description

The PXFGETPGRBP subroutine shall provide the same functionality as the POSIX.1 {2} fungttwgrg) (see
POSIX.1 {2} 4.3). Arguments teXFGETPGRP correspond to the arguments f@tpgrp(),as shown in Table 4.6.

Table 4.6—Arguments for PXFGETPGRP()
FORTRAN POSIX.1

Argument Argument Intent Notes
IPGRP ret_value ouT
IERROR ret_value/errno ouT

4.3.1.3 Errors
POSIX.1 {2} does not specify any error conditions that are required to be detecteddetphrf) function. Upon

successful completion ®XFGETPGRP()the argumentERRORshall be set to zerdERRORmay be set to a
nonzero value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

Copyright © 1992 IEEE All Rights Reserved 27

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

4.3.2 Create Session and Set Process Group ID
SubroutinePXFSETSID)
4.3.2.1 Synopsis

SUBROUTINE PXFSETSID (ISID, IERROR)
INTEGER ISID, IERROR

4.3.2.2 Description

ThePXFSETSID) subroutine shall provide the same functionality as the POSIX.1 {2} funstitaid) (see POSIX.1
{2} 4.3). Arguments folPXFSETSID) correspond to the arguments $etsid(),as shown in Table 4.7.

Table 4.7—Arguments for PXFSETSID()
FORTRAN POSIX.1

Argument Argument Intent Notes
ISID ret_value ouT
IERROR ret_value/errno ouT

4.3.2.3 Errors

Possible error conditions fEXFSETSII) are identical to those for the POSIX.1 {2} functigetsid(). IERRORhall

be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completion, the
argumentERRORshall be set to zertERRORmay be set to a honzero value to indicate error conditions that are not
specified by POSIX.1 {2} and POSIX.9.

4.3.3 Set Process Group ID for Job Control

SubroutinePXFSETPGID)

4.3.3.1 Synopsis

SUBROUTINE PXFSETPGID (IPID, IPGID, IERROR)
INTEGER IPID, IPGID, IERROR

4.3.3.2 Description

The PXFSETPGIE) subroutine shall provide the same functionality as the POSIX.1 {2} funegtipgid) (see
POSIX.1 {2} 4.3). Arguments foPXFSETPGI) correspond to the arguments $atpgid(),as shown in Table 4.8.

Table 4.8—Arguments for PXFSETPGID()
FORTRAN POSIX.1

Argument Argument Intent Notes
IPID pid IN

IPGID pgid IN

IERROR ret_value/errno ouT

28 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

4.3.3.3 Errors
Possible error conditions f®XFSETPGID) are identical to those for the POSIX.1 {2} functisetpgid(). IERROR
shall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completion,

the argumentERRORshall be set to zertERRORmay be set to a nonzero value to indicate error conditions that are
not specified by POSIX.1 {2} and POSIX.9.

4.4 System ldentification
4.4.1 Get System Name
SubroutinePXFUNAME)
4.4.1.1 Synopsis

SUBROUTINE PXFUNAME (JUTSNAME, IERROR
INTEGER JUSTSNAME, IERROR

4.4.1.2 Description

The PXFUNAME) subroutine shall provide the same functionality as the POSIX.1 {2} funciamé) (see
POSIX.1 {2} 4.4). Arguments foPXFUNAME) correspond to the arguments torame(),as shown in Table 4.9.

Table 4.9—Arguments for PXFUNAME()
FORTRAN POSIX.1

Argument Argument Intent Notes
JUTSNAM name IN 1.

E

IERROR ret_value/errno ouT

1. Handle obtained from PXFSTRUCTCREATE (‘utsname’,...); see 8.3.1.

The PXFSTRUCTCREAT(ESubroutine (see 8.3.1) with the string ‘utsname’ given aSTiRIUCTNAMErgument
shall be used to obtain a handle for an instance otitsreamestructure as defined in POSIX.1 {2} 4.4. Each
component access shall require one of the following structure-component manipulation subroutines (see 8.3.2):

SUBROUTINE PXFSTRGET (JUTSNAME, COMPNAM, SVALUE, ILEN, IERROR)
INTEGER JUTSNAME, ILEN, IERROR
CHARACTER*(*) SVALUE

whereJUTSNAMEis a handle an€@OMPNAMis a character expression which evaluates to one of the component
names shown in Table 4.10.

Copyright © 1992 IEEE All Rights Reserved 29

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

Table 4.10—Components for utsname Structure

POSIX.1

Component COMPNAM Structure Procedures Used to Access
syshame ‘sysname’ PXFSTRGET

nodename ‘nodename’ PXFSTRGET

release ‘release’ PXFSTRGET

version ‘version’ PXFSTRGET

machine ‘machine’ PXFSTRGET

4.4.1.3 Errors
POSIX.1 {2} does not specify any error conditions that are required to be detected doath€) function. Upon

successful completion ##XFUNAME(),the argumentERRORshall be set to zertERRORmay be set to a nonzero
vaue to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

4.5 Time

4.5.1 Get System Time
SubroutinePXFTIMK)
4.5.1.1 Synopsis

SUBROUTINE PXFTIME (ITIME, IERROR)
INTEGER ITIME, IERROR

4.5.1.2 Description

The value of time is always returned in the argumM@hYE. No indirection or separate return value is used or
necessary. Otherwise, tRXFTIMEK) subroutine shall provide the same functionality as the POSIX.1 {2} function
timg)) (see POSIX.1 {2} 4.5). Arguments f&?XFTIME) correspond to the arguments fime), as shown in
Table 4.11.

Table 4.11—Arguments for PXFTIME()
FORTRAN POSIX.1

Argument Argument Intent Notes
ITIME *tloc ouT 1.
IERROR ret_value/errno ouT

1. Value may exceed the range of a signed integer; see 2.3.2.2.

4.5.1.3 Errors

Possible error conditions f&XFTIMEK) are identical to those for the POSIX.1 {2} functiime(). [IERRORshall be

set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completion, the
argumentERRORshall be set to zertERRORmay be set to a honzero value to indicate error conditions that are not
specified by POSIX.1 {2} and POSIX.9.

30 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

4.5.2 Get Process Times
SubroutinePXFTIMES)
4.5.2.1 Synopsis

SUBROUTINE PXFTIMES (JTMS, ITIME, IERROR)
INTEGER JTMS, ITIME, IERROR

4.5.2.2 Description

The PXFTIMES) subroutine shall provide the same functionality as the POSIX.1 {2} funitiw¥) (see POSIX.1
{2} 4.5). Arguments folPXFTIMEScorrespond to the arguments fiones(),as shown in Table 4.12.

Table 4.12—Arguments for PXFTIMES()
FORTRAN POSIX.1

Argument Argument Intent Notes
JTMS buffer IN 1.
ITIME ret_value ouT 2.
IERROR ret_value/errno ouT

1. Handle obtained from PXFSTRUCTCREATE (‘tms’,...); see 8.3.1.

2. Value may exceed the range of a signed integer; see 2.3.2.2.

The PXFSTRUCTCREATESsubroutine (see 8.3.1) with the string ‘tms’ given asSRRUCTNAMEargument shall
be used to obtain a handle for an instance ofitisstructure as defined in POSIX.1 {2} 4.5. Each component access
shall require one of the following structure-component manipulation subroutines (see 8.3.2):

SUBROUTINE PXFINTGET(JTMS, COMPNAM, IVALUE, IERROR)
INTEGER JTMS, IVALUE, IERROR

whereJTMSis a handle an@OMPNAMis a character expression which evaluates to one of the component names
shown in Table 4.13.

Table 4.13—Components for tms Structure

POSIX.1

Component COMPNAM Structure Procedures Used to Access
tms_utime ‘tms_utime’ PXFINTGET

tms_stime ‘tms_stime’ PXFINTGET

tms_cutime ‘tms_cutime’ PXFINTGET

tms_cstime ‘tms_cstime’ PXFINTGET

The value of thems_utime, tms_stime, tms_ cutiraedtms_cstimeomponents may exceed the range of a signed
integer. See 2.3.2.2.

Copyright © 1992 IEEE All Rights Reserved 31

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

4.5.2.3 Errors

POSIX.1 {2} does not specify any error conditions that are required to be detected tioneffe function. Upon
successful completion FXFTIMES(),the argumentERRORshall be set to zertERRORmMay be set to a nonzero
value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

4.6 Environment Variables

4.6.1 Environment Access

SubroutinesPXFGETENY), PXFSETENY), PXFCLEARENY)
4.6.1.1 Synopsis

SUBROUTINE PXFGETENV (NAME, LENNAME, VALUE, LENVAL, IERROR)
CHARACTER*(*) NAME, VALUE
INTEGER LENNAME, LENVAL, IERROR

SUBROUTINE PXFSETENV (NAME, LENNAME, NEW, LENNEW, IOVERWRITE, IERROR)
CHARACTER*(*) NAME, NEW
INTEGER LENNAME, LENNEW, IOVERWRITE, IERROR

SUBROUTINE PXFCLEARENV (I[ERROR
INTEGER IERROR

4.6.1.2 Description

The argumenVALUE shall be a valid user-space character variable; the static return area provided by POSIX.1 {2} is
not supported. Upon completion®KFGETENY), VALUE shall contain the value for the specified n&tA&E,and
LENVALshall contain the length of the value. If the specified variable is found but has no value, the MaNeAdf

shall be set to zero andALUE shall be filled with blanks. If the specified variable cannot be found, the condition
EINVAL shall be returned ilERROR Otherwise, th®€ XFGETENY) subroutine shall provide the same functionality

as the POSIX.1 {2} functiogeteny) (see POSIX.1 {2} 4.6).

The PXFSETENY) subroutine shall search the environment list (see POSIX.1 {2} 2.6) for a string of the form
name=valuewherenameis the contents of the character argundAME. If no such string is preseXFSETENY)

shall add a string of the formame=newto the environment list, whereewis the contents of the character argument
NEW. Otherwise, if thdOVERWRITEargument is nonzer®XFSETENY) either shall change the existing value to
the contents dNEW or shall delete the strimame=valueand add the stringame=newThe values assigned to the
environment variables are restricted as specified in POSIX.1 {2} 2.6.

The PXFCLEARENY) subroutine shall clear the process environment. No environment variables are defined
immediately after a call tBXFCLEARENY).

Arguments foPXFGETENY) correspond to the arguments fateny), as shown in Table 4.14.

32 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

Table 4.14—Arguments for PXFGETENV()
FORTRAN POSIX.1

Argument Argument Intent Notes

NAME name IN

LENNAME -- IN Length of NAME; see 2.3.2.4
VALUE ret_value ouT

LENVAL -- ouT Returned length of VALUE
IERROR ret_value/errno ouT

4.6.1.3 Errors
POSIX.1 {2} does not specify any error conditions that are required to be detected detehg) function. Upon
successful completion XFGETENY), the argumenERRORshall be set to zero. If any of the following conditions

occur,PXFGETENY) shall set the argument to the corresponding viiERRORmMay be set to a nonzero value to
indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

[EINVAL] The variableNAME s not in the environment list.

[ETRUNC] The declared length of the argum¥AtLUE is insufficient to contain the string to be
returned. (See 2.3.2.4))

Upon successful completion BXFSETENY), the argumentERRORshall be set to zero. If any of the following
conditions occulPXFSETENY) shall set the argument to the corresponding véitRRORmay be set to a nonzero
value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

[ENOMEM] Not enough memory is available to create the necessary structures.

Upon successful completion BXKFLCEARENY), the argumentERRORshall be set to zertERRORmay be set to
a nonzero value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

4.7 Terminal ldentification
4.7.1 Generate Terminal Pathname
SubroutinePXFCTERMIL)
4.7.1.1 Synopsis
SUBROUTINE PXFCTERMID (S, ILEN, IERROR)
CHARACTER*(*) S
INTEGER ILEN, IERROR
4.7.1.2 Description

The argumen$ shall be a valid user-space character variable; the static return area provided by POSIX.1 {2} is not
supported, and the maximum length of the returned string indicated by the symbolic constant L_ctermid provided by

Copyright © 1992 IEEE All Rights Reserved 33

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

POSIX.1 {2} is not supported. The argumdhEN shall contain zero if the pathname that would refer to the
controlling terminal cannot be determined oPKFCTERMIDis unsuccessful. If the length of the returned value is
longer than the length of the passed character vaigatie return value shall be truncated.

Otherwise, thePXFCTERMIL) subroutine shall provide the same functionality as the POSIX.1 {2} function
ctermid) (see POSIX.1 {2} 4.7).

Upon completionS shall contain a string that represents the controlling terminal for the current procelds;Mnd
shall contain the length of the string. ArgumentsAXFCTERMIL) correspond to the arguments fermid), as
shown in Table 4.15.

Table 4.15—Arguments for PXFCTERMID()
FORTRAN POSIX.1

Argument Argument Intent Notes

S S ouT

ILEN -- ouT Length of S; see 2.3.2.4
IERROR ret_value/errno ouT

4.7.1.3 Errors
POSIX.1 {2} does not specify any error conditions that are required to be detecteddtarthie() function. Upon
successful completion d?PXFCTERMIL), the argumentERRORshall be set to zero. If any of the following

conditions occulPXFCTERMIL) shall set the argument to the corresponding véiRRORmay be set to a nonzero
value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

[ETRUNC] The declared length of the argum8id insufficient to contain the string to be returned.
(See 2.3.24)
4.7.2 Determine Terminal Device Name
SubroutinesPXFTTYNAME), PXFISATTY)
4.7.2.1 Synopsis
SUBROUTINE PXFTTYNAME (IFILDES, S, ILEN, IERROR)
INTEGER IFILDES, ILEN, IERROR
CHARACTER*(*) S
SUBROUTINE PXFISATTY (IFILDES, ISATTY, IERROR)
INTEGER IFILDES, IERROR
LOGICAL ISATTY
4.7.2.2 Description
PXFTTYNAME) andPXFISATTY) shall provide the same functionality as the corresponding POSIX.1 {2} functions

ttyname) andisatty() (see POSIX.1 {2} 4.7). Upon return, the valud®ATTYshall be .TRUE. ifFILDES contains
a valid file descriptor associated with a terminal. Otherwise, it shall be .FALSE..

34 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

Upon completion oPXFTTYNAME), Sshall contain the terminal pathname, #riEN shall contain the length of the
string. If the length of the returned value is longer than the length of the passed characterS;ahniabtturn value
shall be truncated.

Arguments foPXFTTYNAME) andPXFISATTY) correspond to the arguments fiynamé€) andisatty(), as shown
in Table 4.16.

Table 4.16—Arguments for PXFTTYNAME() and PXFISATTY/()
FORTRAN POSIX.1

Argument Argument Intent Notes

IFILDES fildes IN

S ret_value ouT

ILEN -- ouT Length of S; see 2.3.2.4
ISATTY ret_value ouT

IERROR ret_value/errno ouT

4.7.2.3 Errors

POSIX.1 {2} does not specify any error conditions that are required to be detectedtfgndimeg) function. Upon
successful completion @XFTTYNAME), the argumentERRORshall be set to zero. If any of the following
conditions occuPXFTTYNAME) shall set the argument to the corresponding véiRRORmMay be set to a nonzero
value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

[ETRUNC] The declared length of the argum8id insufficient to contain the string to be returned.
(See 2.3.24)
[EBADF] IFILDES is not a valid file descriptor.

POSIX.1 {2} does not specify any error conditions that are required to be detected iattyfe function. Upon
successful completion FXFISATTY), the argumentERRORshall be set to zertERRORmay be set to a nonzero
value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

4.8 Configurable System Variables
4.8.1 Get Configurable System Variables
SubroutinePXFSYSCON
4.8.1.1 Synopsis
SUBROUTINE PXFSYSCONF (NAME, IVAL, IERROR)

INTEGER NAME
INTEGER IVAL, IERROR

Copyright © 1992 IEEE All Rights Reserved 35

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

4.8.1.2 Description

The PXFSYSCON@ subroutine shall provide the same functionality as the POSIX.1 {2} funetisoonf) (see
POSIX.1 {2} 4.8).NAME is an integer value representing a symbolic system variable. Valub\FE shall be
obtained through calls to any of tRXFCONST) procedures (see 8.2).

Access to the special symbol {CLK_TCK} is not included since POSIX.1 {2} declares such access to be obsolescent.

Arguments folPXFSYSCONG@ correspond to the arguments $yscon(), as shown in Table 4.17.

Table 4.17—Arguments for PXFSYSCONF()
FORTRAN POSIX.1

Argument Argument Intent Notes
NAME name IN

IVAL ret_value ouT

IERROR ret_value/errno ouT

4.8.1.3 Errors
Possible error conditions fBYXFSYSCONG are identical to those for the POSIX.1 {2} functisysconf(). [IERROR
shall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completion,

the argumentERRORshall be set to zertERRORmay be set to a nonzero value to indicate error conditions that are
not specified by POSIX.1 {2} and POSIX.9.

5. Files and Directories

5.1 Directories

5.1.1 Format of Directory Entries

ThePXFSTRUCTCREAT(Esubroutine (see 8.3.1) with the string ‘dirent’ given asStRRUCTNAMErgument shall

be used to obtain a handle for an instance ofittemt structure as defined in POSIX.1 {2} 5.1. Each component

access shall require one of the following structure-component manipulation subroutines (see 8.3.2):

SUBROUTINE PXFSTRGET(JDIRENT, COMPNAM, SVALUE, ILEN, IERROR)
INTEGER, JDIRENT, ILEN, IERROR
CHARACTER*(*) SVALUE

whereJDIRENTIs a handle an@OMPNAMis a character expression which evaluates to one of the component names
shown in Table 5.1.

Table 5.1—Components for dirent Structure

POSIX.1
Component COMPNAM Structure Procedures Used to Access
d_name ‘d_name’ PXFSTRGET

36 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

5.1.2 Directory Operations
SubroutinesPXFOPENDIR(), PXFREADDIR(), PXFREWINDDIR(), PXFCLOSEDIR
5.1.2.1 Synopsis

SUBROUTINE PXFOPENDIR (DIRNAME, LENDIRNAME, IOPENDIRID, IERROR)
CHARACTER*(*) DIRNAME
INTEGER LENDIRNAME, IOPENDIRID, IERROR

SUBROUTINE PXFREADDIR (IDIRID, JDIRENT, IERROR)
INTEGER IDIRID, JDIRENT, IERROR

SUBROUTINE PXFREWINDDIR (IDIRID, IERROR)
INTEGER IDIRID, IERROR

SUBROUTINE PXFCLOSEDIR (IDIRID, IERROR)
INTEGER IDIRID, IERROR

5.1.2.2 Description

The type DIR (see POSIX.1 {2} 5.1) is represented by a directory identifier contained in the integer artRifREhts
andIOPENDIRID. This integer shall contain an identifier fodigectory streamwhich is an ordered sequence of all
the directory entries in a particular directory. A unique valudGFENDIRID shall be returned by a call to
PXFOPENDIFK), and IDIRID shall become undefined upon the matching calPX¢-CLOSEDIR). Otherwise
PXFOPENDIR(), PXFCLOSEDIR(), PXFREWINDR)RandPXFREADDIR) shall provide the same functionality
as the corresponding POSIX.1 {2} functions (see POSIX.1 {2} 5.1).

When the end of the directory stream is reacheBXiyREADDIR), the components in thdirent structure shall be
undefined, antERRORshall be set to the value indicated in 5.1.2.3.

Arguments for these subroutines correspond to the arguments for the corresponding POSIX.1 {2} directory operations
(see POSIX.1 {2} 5.1), as shown in Table 5.2.

Table 5.2—Arguments for the PXF...DIR() Subroutines

FORTRAN POSIX.1

Argument Argument Intent Notes

DIRNAME dirname IN

LENDIRNAME dirname IN Length of DIRNAME; see 2.3.2.4
IOPENDIRID ret_value ouT

IDIRID dirp IN

JDIRENT -- IN 1.

IERROR ret_value/errno ouT

1. Handle obtained from PXFSTRUCTCREATE (‘dirent’,...); see 8.3.1.

5.1.2.3 Errors

Possible error conditions for these subroutines include those for the directory operations defined in POSIX.1 {2}, as
well as the conditions listed below. If any of these conditions occur, the arglERRORshall be set to the

Copyright © 1992 IEEE All Rights Reserved 37

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

corresponding nonzero value specified by the POSIX.1 {2} function. In addition to the POSIX.1 {2} specified
conditions, if any of the following conditions occur, these subroutines shall set the argument to the corresponding
value. Upon successful completion, the arguniERRORshall be set to zertERRORmMay be set to a nonzero value

to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

[EEND] Following a call tcPXFREADDIR), indicates that all directory entries have been read.

5.2 Get Working Directory
5.2.1 Change Current Working Directory
SubroutinePXFCHDIR)
5.2.1.1 Synopsis
SUBROUTINE PXFCHDIR (PATH, ILEN, IERROR)
CHARACTER*(*) PATH
INTEGER ILEN, IERROR
5.2.1.2 Description

The PXFCHDIR) subroutine shall provide the same functionality as the POSIX.1 {2} funciidin() (see POSIX.1
{2} 5.2). Arguments foPXFCHDIR) correspond to the arguments &idir(), as shown in Table 5.3.

Table 5.3—Arguments for PXFCHDIR()
FORTRAN POSIX.1

Argument Argument Intent Notes

PATH path IN

ILEN -- IN Length of PATH; see 2.3.2.4
IERROR ret_value/errno ouT

5.2.1.3 Errors
Possible error conditions f6*XFCHDIR)) are identical to those for the POSIX.1 {2} functiondir(). Under the
circumstances specified by POSIX.1 {2}, the argum&RRORshall be set to the corresponding nonzero value
specified by the POSIX.1 {2} function. Upon successful completion, the arguBRRORshall be set to zero.
IERRORmMay be set to a nonzero value to indicate error conditions that are not specified by POSIX.1 {2} and
POSIX.9.
5.2.2 Get Working Directory Pathname
SubroutinePXFGETCW)
5.2.2.1 Synopsis

SUBROUTINE PXFGETCWD (BUF, ILEN, IERROR)

CHARACTER*(*) BUF
INTEGER ILEN, IERROR

38 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

5.2.2.2 Description

Thesizeargument in the POSIX.1 {2} functiogetcwd) is superfluous iPXFGETCWID) since the size @BUF is
defined by the declaration of the character varidhEEN is the returned length of the string written iBOF. If
PXFGETCWD) is unsuccessfullLEN is set to zero. OtherwisBXFGETCWID) shall provide the same functionality
as the POSIX.1 {2} functiometcwd) (see POSIX.1 {2} 5.2). Arguments f®@XFGETCWID) correspond to the
arguments fogetcwd), as shown in Table 5.4.

Table 5.4—Arguments for PXFGETCWD()
FORTRAN POSIX.1

Argument Argument Intent Notes

BUF buf ouT

- size -

ILEN -- ouT Length of returned string in BUF
IERROR ret_value/errno ouT

5.2.2.3 Errors

Except for replacing the ERANGE error with the ETRUNC error below, possible error conditiHGETCWD)

are identical to those for the POSIX.1 {2} functigetcwd). Under the circumstances specified by POSIX.1 {2}, the
argumentiERRORshall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon

successful completion, the argumEERRORshall be set to zertERRORmay be set to a nonzero value to indicate
error conditions that are not specified by POSIX.1 {2} and POSIX.9.

[ETRUNC] The declared length of the argumBhiF is insufficient to contain the string that is to
be returned. (See 2.3.2.4.)
5.3 General File Creation
5.3.1 Open a File
SubroutinePXFOPEN)
5.3.1.1 Synopsis
SUBROUTINE PXFOPEN (PATH, ILEN, IOPENFLAG, IMODE, IFILDES, IERROR)
CHARACTER*(*) PATH
INTEGER ILEN, IOPENFLAG, IMODE, IFILDES, IERROR

5.3.1.2 Description

The PXFOPEN) subroutine shall provide the same functionality as the POSIX.1 {2} funoper() (see POSIX.1
{2} 5.3).

The values of the symbolic constants defined in POSIX.1 {2}ofmer{() and necessary for construction of the
IOPENFLAGandIMODE arguments shall be accessible through any d?¥feCONST) procedures (see 8.2). These
values of the symbolic constants shall be distinct and can be combined with the use of the inclusive OR function
(see 8.7).

Copyright © 1992 IEEE All Rights Reserved 39

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

Arguments foPXFOPEN) correspond to the arguments égren(), as shown in Table 5.5.

Table 5.5—Arguments for PXFOPEN()

FORTRAN POSIX.1

Argument Argument Intent Notes

PATH path IN

ILEN -- IN Length of PATH; see 2.3.2.4
IOPENFLAG oflag IN

IMODE mode IN 1.

IFILDES ret_value ouT

IERROR ret_value/errno ouT

1. Utilized only if IOPENFLAG contains O_CREAT and if the file did not previously exist.

5.3.1.3 Errors

Possible error conditions f®XFOPEN) are identical to those for the POSIX.1 {2} functiogpen(). IERRORhall be

set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completion, the
argumentERRORshall be set to zertERRORmay be set to a honzero value to indicate error conditions that are not
specified by POSIX.1 {2} and POSIX.9.

5.3.2 Create a New File or Rewrite an Existing One

SubroutinePXFCREAT)

5.3.2.1 Synopsis
SUBROUTINE PXFCREAT (PATH, ILEN, IMODE, IFILDES, IERROR)
CHARACTER*(*) PATH
INTEGER ILEN, IMODE, IFILDES, IERROR

5.3.2.2 Description

The PXFCREAT) subroutine shall provide the same functionality as the POSIX.1 {2} functéat) (see POSIX.1
{2} 5.3).

The values of the symbolic constants defined in POSIX.1 {2¢rfea{) and necessary for construction of IRKODE

argument shall be accessible through any ofRKECONST) procedures (see 8.2). The values of the symbolic
constants shall be distinct and can be combined with the use of the inclusive OR function (see 8.7). Arguments for
PXFCREAT) correspond to the arguments éoeaf)), as shown in Table 5.6.

40 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

Table 5.6—Arguments for PXFCREAT()
FORTRAN POSIX.1

Argument Argument Intent Notes

PATH path IN

ILEN - IN Length of PATH; see 2.3.2.4
IMODE mode IN

IFILDES ret_value ouT

IERROR ret_value/errno ouT

5.3.2.3 Errors

Possible error conditions fB"XFCREAT) are identical to those for the POSIX.1 {2} functiomat). IERRORshall

be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completion, the
argumentERRORshall be set to zertERRORmay be set to a honzero value to indicate error conditions that are not
specified by POSIX.1 {2} and POSIX.9.

5.3.3 Set File Creation Mask

SubroutinePXFUMASK)

5.3.3.1 Synopsis

SUBROUTINE PXFUMASK (ICMASK, IPREVCMASK, IERROR)
INTEGER ICMASK, IPREVCMASK, IERROR

5.3.3.2 Description

The PXFUMASK) subroutine shall provide the same functionality as the POSIX.1 {2} functioask) (see
POSIX.1 {2} 5.3).

The values of the symbolic constants necessary to compokEMIRSK() argument shall be accessible through any
of thePXFCONSY) procedures (see 8.2). The values of the symbolic constants shall be distinct and can be combined
with the use of the inclusive OR function (see 8.7).

The file creation mask of the process shall also be used when determining the permission bits for the creation of
POSIX-based FORTRAN I/O files (see 8.5.1). Argument®XFUMASK) correspond to the arguments fonask),
as shown in Table 5.7.

Table 5.7—Arguments for PXFUMASK()

FORTRAN POSIX.1

Argument Argument Intent Notes
ICMASK cmask IN

IPREVCMASK ret_value ouT

IERROR ret_value/errno ouT

Copyright © 1992 IEEE All Rights Reserved 41

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

5.3.3.3 Errors
POSIX.1 {2} does not specify any error conditions that are required to be detected dionabk) function. Upon
successful completion 8] XFUMASK), the argumentERRORshall be set to zertERRORmay be set to a nonzero
value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.
5.3.4 Link to a File
Subroutine PXFLINK()
5.3.4.1 Synopsis
SUBROUTINE PXFLINK (EXISTING, LENEXIST, NEW, LENNEW, IERROR)
CHARACTER*(*) EXISTING, NEW
INTEGER LENEXIST, LENNEW, IERROR
5.3.4.2 Description

ThePXFLINK() subroutine shall provide the same functionality as the POSIX.1 {2} funiatiof) (see POSIX.1 {2}
5.3). Arguments foPXFLINK() correspond to the arguments fiok(), as shown in Table 5.8.

Table 5.8—Arguments for PXFLINK()
FORTRAN POSIX.1

Argument Argument Intent Notes

EXISTING existing IN

LENEXIST - IN Length of EXISTING; see 2.3.2.4
NEW new IN

LENNEW - IN Length of NEW; see 2.3.2.4
IERROR ret_value/errno ouT

5.3.4.3 Errors
Possible error conditions fBYXFLINK() are identical to those for the POSIX.1 {2} functiimk(). IERRORshall be
set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completion, the

argumentERRORshall be set to zertERRORmay be set to a nonzero value to indicate error conditions that are not
specified by POSIX.1 {2} and POSIX.9.

5.4 Special File Creation
5.4.1 Make a Directory
SubroutinePXFMKDIR()
5.4.1.1 Synopsis
SUBROUTINE PXFMKDIR (PATH, ILEN, IMODE, IERROR)

CHARACTER*(*) PATH
INTEGER ILEN, IMODE, IERROR

42 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

5.4.1.2 Description

ThePXFMKDIR() subroutine shall provide the same functionality as the POSIX.1 {2} functiatin) (see POSIX.1
{2} 5.4).

The values of the symbolic constants defined in POSIX.1 {2}nfldif) and necessary for construction of the
IMODE argument shall be accessible through any ofRKECONST) procedures (see 8.2). These values of the
symbolic constants shall be distinct and can be combined with the use of the inclusive OR function (see 8.7).
Arguments foPXFMKDIR() correspond to the arguments fokdir(), as shown in Table 5.9.

Table 5.9—Arguments for PXFMKDIR()
FORTRAN POSIX.1

Argument Argument Intent Notes

PATH path IN

ILEN - IN Length of PATH; see 2.3.2.4
IMODE mode IN

IERROR ret_value/errno ouT

5.4.1.3 Errors
Possible error conditions f&EXFMKDIR() are identical to those for the POSIX.1 {2} functimokdir(). IERRORshall
be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completion, the
argumentERRORshall be set to zertERRORmay be set to a honzero value to indicate error conditions that are not
specified by POSIX.1 {2} and POSIX.9.
5.4.2 Make a FIFO Special File
SubroutinePXFMKFIFO()
5.4.2.1 Synopsis
SUBROUTINE PXFMKFIFO (PATH, ILEN, IMODE, IERROR)
CHARACTER*(*) PATH
INTEGER ILEN, IMODE, IERROR
5.4.2.2 Description

The PXFMKFIFQ() subroutine shall provide the same functionality as the POSIX.1 {2} functikiifq) (see
POSIX.1 {2} 5.4).

The values of the symbolic constants defined in POSIX.1 {2}nfkfifq) and necessary for construction of the
IMODE argument shall be accessible through any ofIKECONST) procedures (see 8.2). These values of the
symbolic constants shall be distinct and can be combined with the use of the inclusive OR function (see 8.7).
Arguments foPXFMKFIFQ() correspond to the arguments fokfifd), as shown in Table 5.10.

Copyright © 1992 IEEE All Rights Reserved 43

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

Table 5.10—Arguments for PXFMKFIFO()
FORTRAN POSIX.1

Argument Argument Intent Notes

PATH path IN

ILEN -- IN Length of PATH; see 2.3.2.4
IMODE mode IN

IERROR ret_value/errno ouT

5.4.2.3 Errors
Possible error conditions f6(*XFMKFIFO() are identical to those for the POSIX.1 {2} functiorkfifo(). IERROR
shall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completion,

the argumentERRORshall be set to zertERRORmay be set to a nonzero value to indicate error conditions that are
not specified by POSIX.1 {2} and POSIX.9.

5.5 File Removal

5.5.1 Remove Directory Entries

SubroutinePXFUNLIN()

5.5.1.1 Synopsis
SUBROUTINE PXFUNLINK (PATH, ILEN, IERROR)
CHARACTER*(*) PATH
INTEGER ILEN, IERROR

5.5.1.2 Description

The PXFUNLINK() subroutine shall provide the same functionality as the POSIX.1 {2} functidimk() (see
POSIX.1 {2} 5.5). Arguments foPXFUNLINK() correspond to the arguments tmlink(), as shown in Table 5.11.

Table 5.11—Arguments for PXFFUNLINK()
FORTRAN POSIX.1

Argument Argument Intent Notes

PATH path IN

ILEN -- IN Length of PATH; see 2.3.2.4
IERROR ret_value/errno ouT

5.5.1.3 Errors

Possible error conditions f@*XFUNLINK() are identical to those for the POSIX.1 {2} functionlink(). IERROR

shall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completion,
the argumentERRORshall be set to zertERRORmay be set to a nonzero value to indicate error conditions that are
not specified by POSIX.1 {2} and POSIX.9.

44 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

5.5.2 Remove a Directory

SubroutinePXFRMDIR)

5.5.2.1 Synopsis
SUBROUTINE PXFRMDIR (PATH, ILEN, IERROR)
CHARACTER*(*) PATH
INTEGER ILEN, IERROR

5.5.2.2 Description

ThePXFRMDIR) subroutine shall provide the same functionality as the POSIX.1 {2} funetidir() (see POSIX.1
{2} 5.5). Arguments foPXFRMDIR) correspond to the arguments fordir(), as shown in Table 5.12.

Table 5.12—Arguments for PXFRMDIR()
FORTRAN POSIX.1

Argument Argument Intent Notes

PATH path IN

ILEN -- IN Length of PATH; see 2.3.2.4
IERROR ret_value/errno ouT

5.5.2.3 Errors
Possible error conditions f’XFRMDIR) are identical to those for the POSIX.1 {2} functiondir(). IERRORshall
be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completion, the
argumentERRORshall be set to zertERRORmay be set to a nonzero value to indicate error conditions that are not
specified by POSIX.1 {2} and POSIX.9.
5.5.3 Rename a File
SubroutinePXFRENAME)
5.5.3.1 Synopsis
SUBROUTINE PXFRENAME (OLD, LENOLD, NEW, LENNEW, IERROR)
CHARACTER*(*) OLD, NEW
INTEGER LENOLD, LENNEW, IERROR
5.5.3.2 Description

The PXFRENAME) subroutine shall provide the same functionality as the POSIX.1 {2} funotioamé€) (see
POSIX.1 {2} 5.5). Arguments foPXFRENAME) correspond to the arguments fenamg), as shown in Table 5.13.

Copyright © 1992 IEEE All Rights Reserved 45

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

Table 5.13—Arguments for PXFRENAME()
FORTRAN POSIX.1

Argument Argument Intent Notes

OLD old IN

LENOLD -- IN Length of OLD; see 2.3.2.4
NEW new IN

LENNEW -- IN Length of NEW; see 2.3.2.4
IERROR ret_value/errno ouT

5.5.3.3 Errors

Possible error conditions fB*XFRENAME) are identical to those for the POSIX.1 {2} functimmamé€). IERROR

shall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completion,
the argumentERRORshall be set to zertERRORmMay be set to a nonzero value to indicate error conditions that are
not specified by POSIX.1 {2} and POSIX.9.

5.6 File Characteristics

5.6.1 File Characteristics: Header and Data Structure

The PXFSTRUCTCREATESsubroutine (see 8.3.1) with the string ‘stat’ given asShRUCTNAMEargument shall

be used to obtain a handle for an instance oftidsstructure as defined in POSIX.1 {2} 5.6. Each component access

shall require one of the following structure-component manipulation subroutines (see 8.3.2):

SUBROUTINE PXFINTGET(JSTAT, COMPNAM, IVALUE, IERROR)
INTEGER JSTAT, IVALUE, IERROR

whereJSTATIs a handle an@OMPNAMis a character expression which evaluates to one of the component names
shown in Table 5.14.

Table 5.14—Components for stat Structure

POSIX.1

Component COMPNAM Structure Procedures Used to Access
st_mode ‘st_mode’ PXFINTGET
st_ino ‘st_ino’ PXFINTGET
st_dev ‘st_dev’ PXFINTGET
st_nlink ‘st_nlink’ PXFINTGET
st_uid ‘st_uid’ PXFINTGET
st_gid ‘st_gid’ PXFINTGET
st_size ‘st_size’ PXFINTGET
st_atime ‘st_atime’ PXFINTGET
st_mtime ‘st_mtime’ PXFINTGET
st_ctime ‘st_ctime’ PXFINTGET

46 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

The value of thet_atime, st_mtim@ndst_ctimecomponents may exceed the range of a signed integer. See 2.3.2.2.
5.6.1.1 File Types

The following functions shall test whether a file is of the specified type, performing the same functions and returning
the same logical result as the macros defined in POSIX.1 {2} 5.6. TheMalueplied to the functions is the value

of st modeobtained from PXFINTGET(JSTAT, ‘st_mode’,...).

LOGICAL FUNCTION PXFISDIR (Y]
INTEGER M

LOGICAL FUNCTION PXFISCHR (Y]
INTEGER M

LOGICAL FUNCTION PXFISBLK (Y]
INTEGER M

LOGICAL FUNCTION PXFISREG (Y]
INTEGER M

LOGICAL FUNCTION PXFISFIFO (Y]
INTEGER M

5.6.1.2 File Modes

All constants and masks defined in POSIX.1 {2} 5.6 for encodingtthraodevalue shall be recognized by any of the
PXFCONSY) procedures (see 8.2).

5.6.1.3 Time Entries
The time-related structure components shall be interpreted as described in POSIX.1 {2} 5.6.1.3.
5.6.2 Get File Status
SubroutinesPXFSTAT), PXFFSTAT)
5.6.2.1 Synopsis
SUBROUTINE PXFSTAT (PATH, ILEN, JSTAT, IERROR)
CHARACTER*(*) PATH

INTEGER ILEN, JSTAT, IERROR

SUBROUTINE PXFFSTAT (IFILDES, JSTAT, IERROR)
INTEGER IFILDES, JSTAT, IERROR

5.6.2.2 Description
ThePXFSTAT) andPXFFSTAT) subroutines shall provide the same functionality as the POSIX.1 {2} funstiat)s

andfstal)) (see POSIX.1 {2} 5.6). Arguments f&XFSTAT) andPXFFSTAT) correspond to the arguments &)
andfstaf), as shown in Table 5.15.

Copyright © 1992 IEEE All Rights Reserved 47

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

Table 5.15—Arguments for PXFSTAT() and PXFFSTAT()
FORTRAN POSIX.1

Argument Argument Intent Notes

PATH path IN

ILEN -- IN Length of PATH; see 2.3.2.4
IFILDES fildes IN

JSTAT buf IN 1.

IERROR ret_value/errno ouT

1. Handle obtained from PXFSTRUCTCREATE (‘stat’,...); see 8.3.1.

5.6.2.3 Errors
Possible error conditions f®IXFSTAT) andPXFFSTAT) are identical to those for the POSIX.1 {2} functistal)
andfstaf). IERRORshall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon
successful completion, the argumEERRORshall be set to zertERRORmay be set to a nonzero value to indicate
error conditions that are not specified by POSIX.1 {2} and POSIX.9.
5.6.3 Check File Accessibility
SubroutinePXFACCESH
5.6.3.1 Synopsis

SUBROUTINE PXFACESS (PATH, ILEN, IAMODE, IERROR)

CHARACTER*(*) PATH

INTEGER ILEN, IAMODE, IERROR
5.6.3.2 Description

The PXFACCESE subroutine shall provide the same functionality as the POSIX.1 {2} functimes§) (see
POSIX.1 {2} 5.6).

The values of the symbolic constants defined in POSIX.1 {2Jafmes§) and necessary for construction of the
IAMODE argument shall be accessible through any oPlIKECONST) procedures (see 8.2). These values of the
symbolic constants shall be distinct and can be combined with the use of the inclusive OR function (see 8.7).

Arguments foPXFACCESE correspond to the arguments &mces§), as shown in Table 5.16.

Table 5.16—Arguments for PXFACCESS()
FORTRAN POSIX.1

Argument Argument Intent Notes

PATH path IN

ILEN -- IN Length of PATH; see 2.3.2.4
IAMODE amode IN

IERROR ret_value/errno ouT

48 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

5.6.3.3 Errors

Possible error conditions fG*XFACCESE are identical to those for the POSIX.1 {2} functiaoces§). Under the
circumstances specified by POSIX.1 {2}, the argum&RRORshall be set to the corresponding nonzero value
specified by the POSIX.1 {2} function. Upon successful completion, the arguEBRRORshall be set to zero.
IERRORmMay be set to a nonzero value to indicate error conditions that are not specified by POSIX.1 {2} and
POSIX.9.

5.6.4 Change File Modes

SubroutinePXFCHMOL)

5.6.4.1 Synopsis
SUBROUTINE PXFCHMOD (PATH, ILEN, IMODE, IERROR)
CHARACTER*(*) PATH
INTEGER ILEN, IMODE, IERROR

5.6.4.2 Description

The PXFCHMOQLD) subroutine shall provide the same functionality as the POSIX.1 {2} functiomod) (see
POSIX.1 {2} 5.6).

The values of the symbolic constants defined in POSIX.1 {2)cfanod) and necessary for construction of the
IMODE argument shall be accessible through any ofFKECONST) procedures (see 8.2). These values of the
symbolic constants shall be distinct and can be combined with the use of the inclusive OR function (see 8.7).
Arguments foPXFCHMOD(correspond to the arguments étvmod), as shown in Table 5.17.

Table 5.17—Arguments for PXFCHMOD()
FORTRAN POSIX.1

Argument Argument Intent Notes

PATH path IN

ILEN - IN Length of PATH; see 2.3.2.4
IMODE mode IN

IERROR ret_value/errno ouT

5.6.4.3 Errors

Possible error conditions f6(’XFCHMOL) are identical to those for the POSIX.1 {2} functionmod). IERROR

shall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completion,
the argumentERRORshall be set to zertERRORmMay be set to a nonzero value to indicate error conditions that are
not specified by POSIX.1 {2} and POSIX.9.

5.6.5 Change Owner and Group of a File

SubroutinePXFCHOWN)

5.6.5.1 Synopsis

SUBROUTINE PXFCHOWN (PATH, ILEN, IOWNER, IGROUP, IERROR)

Copyright © 1992 IEEE All Rights Reserved 49

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77
CHARACTER*(*) PATH
INTEGER ILEN, IOWNER, IGROUP, IERROR

5.6.5.2 Description

The PXFCHOWN) subroutine shall provide the same functionality as the POSIX.1 {2} functomvr() (see
POSIX.1 {2} 5.6). Arguments foPXFCHOWN) correspond to the arguments éiowr(), as shown in Table 5.18.

Table 5.18—Arguments for PXFCHOWN()
FORTRAN POSIX.1

Argument Argument Intent Notes

PATH path IN

ILEN - IN Length of PATH; see 2.3.2.4
IOWNER owner IN

IGROUP group IN

IERROR ret_value/errno ouT

5.6.5.3 Errors

Possible error conditions fB"XFCHOWN) are identical to those for the POSIX.1 {2} functidmowr(). Under the
circumstances specified by POSIX.1 {2}, the argum&RRORSshall be set to the corresponding nonzero value
specified by the POSIX.1 {2} function. Upon successful completion, the arguBRRORshall be set to zero.
IERRORmMay be set to a nonzero value to indicate error conditions that are not specified by POSIX.1 {2} and
POSIX.9.

5.6.6 Set File Access and Modification Times

SubroutinePXFUTIMK)

5.6.6.1 Synopsis
SUBROUTINE PXFUTIME (PATH, ILEN, JUTIMBUF, IERROR)
CHARACTER*(*) PATH
INTEGER ILEN, JUTIMBUF, IERROR

5.6.6.2 Description

The PXFUTIME) subroutine shall provide the same functionality as the POSIX.1 {2} funatiorg) (see POSIX.1
{2} 5.6).

The functionality obtained in the POSIX.1 {2} functiatimg) by passing &lULL can be obtained RXFUTIMEby
passing a handle argument with a value of zero. ArgumeREBUTIME) correspond to the arguments ttimg),
as shown in Table 5.19.

50 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

Table 5.19—Arguments for PXFUTIME()
FORTRAN POSIX.1

Argument Argument Intent Notes

PATH path IN

ILEN - IN Length of PATH; see 2.3.2.4
JUTIMBUF times IN 1.

IERROR ret_value/errno ouT

1. Handle obtained from PXFSTRUCTCREATE (‘utimbuf,...); see 8.3.1.

The PXFSTRUCTCREAT(Esubroutine (see 8.3.1) with the string ‘utimbuf’ given asSRRUCTNAMEargument
shall be used to obtain a handle for an instance ofutingbuf structure as defined in POSIX.1 {2} 5.6. Each
component access shall require one of the following structure-component manipulation subroutines (see 8.3.2.):

SUBROUTINE PXFINTSET(JUTIMBUF, COMPNAM, IVALUE, IERROR)
INTEGER JUTIMBUF, IVALUE, IERROR

whereJUTIMBUF is a handle an€@OMPNAMis a character expression which evaluates to one of the component
names shown in Table 5.20.

Table 5.20—Components for utimbuf Structure

POSIX.1

Component COMPNAM Structure Procedures Used to Access
actime ‘actime’ PXFINTSET

modtime ‘modtime’ PXFINTSET

The value of thectimeandmodtimecomponents may exceed the range of a signed integer. See 2.3.2.2.

5.6.6.3 Errors

Possible error conditions f®XFUTIMEK) are identical to those for the POSIX.1 {2} functioiime(). IERRORhall

be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completion, the

argumentERRORshall be set to zertERRORmMay be set to a nonzero value to indicate error conditions that are not
specified by POSIX.1 {2} and POSIX.9.

5.7 Configurable Pathname Variables

5.7.1 Get Configurable Pathname Variables

SubroutinesPXFPATHCONF(), PXFFPATHCONF

5.7.1.1 Synopsis
SUBROUTINE PXFPATHCONF (PATH, ILEN, NAME, IVAL, IERROR)
CHARACTER*(*) PATH
INTEGER ILEN, NAME, IVAL, IERROR

SUBROUTINE PXFPATHCONF (IFILDES, NAME, IVAL, IERROR)

Copyright © 1992 IEEE All Rights Reserved 51

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

INTEGER IFILDES, NAME, IVAL, IERROR
5.7.1.2 Description

The PXFPATHCONFK) andPXFFPATHCONEK) subroutines shall provide the same functionality as the POSIX.1 {2}
functions pathconf) and fpathconf) (see POSIX.1 {2} 5.7)NAME is an integer value representing a symbolic
pathname variable. Values fNAME shall be obtained through calls to any of BM-CONST) procedures (see 8.2).
Arguments for PXFPATHCONKE) and PXFFPATHCONR) correspond to the arguments fpathconf) and
fpathconf), as shown in Table 5.21.

Table 5.21—Arguments for PXFPATHCONF() and PXFFPATHCONF()
FORTRAN POSIX.1

Argument Argument Intent Notes

PATH path IN

ILEN -- IN Length of PATH; see 2.3.2.4
IFILDES fildes IN

NAME name IN

IVAL ret_value ouT

IERROR ret_value/errno ouT

5.7.1.3 Errors

Possible error conditions fBAXFPATHCONK) andPXFFPATHCONK) are identical to those for the POSIX.1 {2}
functionspathconf) andfpathconf). Under the circumstances specified by POSIX.1 {2}, the argulB&RORshall

be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completion, the

argumentERRORshall be set to zertERRORmay be set to a nonzero value to indicate error conditions that are not
specified by POSIX.1 {2} and POSIX.9.

6. Input and Output Primitives

6.1 Pipes

6.1.1 Create an Inter-Process Channel
SubroutinePXFPIPK)

6.1.1.1 Synopsis

SUBROUTINE PXFPIPE (IREADFD, IWRTFD, IERROR)
INTEGER IREADFD, IWRTFD, IERROR

6.1.1.2 Description

ThePXFPIPK) subroutine shall provide the same functionality as the POSIX.1 {2} fungije() (see POSIX.1 {2}
6.1). Arguments foPXFPIPHK) correspond to the arguments fipg(), as shown in Table 6.1.

52 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

Table 6.1—Arguments for PXFPIPE()
FORTRAN POSIX.1
Argument Argument Intent Notes
IREADFD fildes[0] IN
IWRTFD fildes[1] IN
IERROR ret_value/errno ouT

6.1.1.3 Errors
Possible error conditions f&XFPIPE) are identical to those for the POSIX.1 {2} functipipe(). IERRORhall be
set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completion, the

argumentERRORshall be set to zertERRORmay be set to a nonzero value to indicate error conditions that are not
specified by POSIX.1 {2} and POSIX.9.

6.2 File Descriptor Manipulation
6.2.1 Duplicate an Open File Descriptor
SubroutinesPXFDUP(), PXFDUP2)
6.2.1.1 Synopsis

SUBROUTINE PXFDUP (
INTEGER

IFILDES, IFID, IERROR)
IFILDES, IFID, IERROR

SUBROUTINE PXFDUP2 (
INTEGER

IFILDES, IFILDESZ2, IERROR)
IFILDES, IFILDES2, IFID, IERROR

6.2.1.2 Description

ThePXFDUR() andPXFDUPZQ) subroutines shall provide the same functionality as the POSIX.1 {2} functigais
anddup2?) (see POSIX.1 {2} 6.2).

If PXFDUPZ) succeeds, then the context of the file openFOhDES has been duplicated inl&ILDES2. If
PXFDUPZ) fails, thenIFILDES2 should be considered closed or invalid, depending on the vallERROR
Arguments folPXFDUR() andPXFDUPZ) correspond to the arguments étup() anddup?), as shown in Table 6.2.

Table 6.2—Arguments for PXFDUP() and PXFDUPZ2()

FORTRAN POSIX.1

Argument Argument Intent Notes
IFILDES fildes IN

IFILDES2 fildes2 IN

IFID ret_value ouT

IERROR ret_value/errno ouT

Copyright © 1992 IEEE All Rights Reserved 53

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

6.2.1.3 Errors
Possible error conditions f&@XFDUR) andPXFDUPZ) are identical to those for the POSIX.1 {2} functiahgy)
anddup2(). IERRORshall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon

successful completion, the argum&ERRORshall be set to zertERRORmay be set to a nonzero value to indicate
error conditions that are not specified by POSIX.1 {2} and POSIX.9.

6.3 File Descriptor Deassignment
6.3.1 Close a File
SubroutinePXFCLOSE)

6.3.1.1 Synopsis

SUBROUTINE PXFCLOSE (IFILDES, IERROR)
INTEGER IFILDES, IERROR

6.3.1.2 Description

The PXFCLOSE(subroutine shall provide the same functionality as the POSIX.1 {2} funciiise) (see POSIX.1
{2} 6.3). Arguments folPXFCLOSE) correspond to the arguments &wose(),as shown in Table 6.3.

Table 6.3—Arguments for PXFCLOSE()
FORTRAN POSIX.1

Argument Argument Intent Notes
IFILDES fildes IN
IERROR ret_value/errno ouT

6.3.1.3 Errors
Possible error conditions f®"XFCLOSEK) are identical to those for the POSIX.1 {2} functidose(). IERRORNhall
be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completion, the

argumentERRORshall be set to zertERRORmay be set to a honzero value to indicate error conditions that are not
specified by POSIX.1 {2} and POSIX.9.

6.4 Input and Output

6.4.1 Read From a File

SubroutinePXFREAL)

6.4.1.1 Synopsis
SUBROUTINE PXFREAD (IFILDES, BUF, NBYTE, NREAD, IERROR)
INTEGER IFILDES

CHARACTER BUF*
INTEGER NBYTE, NREAD, IERROR

54 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

6.4.1.2 Description

The PXFREAL) subroutine shall provide the same functionality as the POSIX.1 {2} functinf) (see POSIX.1
{2} 6.4). Arguments foPXFREAL) correspond to the arguments fead(),as shown in Table 6.4.

Table 6.4—Arguments for PXFREAD()
FORTRAN POSIX.1

Argument Argument Intent Notes

IFILDES fildes IN

BUF buf ouT

NBYTE nbyte IN

NREAD ret_value ouT Undefined if error occurs
IERROR ret_value/errno ouT

6.4.1.3 Errors
Possible error conditions f&FXFREAL) are identical to those for the POSIX.1 {2} functiead(). [IERRORhall be
set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completion, the
argumentERRORshall be set to zertERRORmay be set to a honzero value to indicate error conditions that are not
specified by POSIX.1 {2} and POSIX.9.
6.4.2 Write to a File
SubroutinePXFWRITE)
6.4.2.1 Synopsis
SUBROUTINE PXFWRITE (IFILDES, BUF, NBYTE, NWRITTEN, IERROR)
INTEGER IFILDES
CHARACTER BUF(*))
INTEGER NBYTE, NWRITTEN, IERROR
6.4.2.2 Description

The PXFWRITE) subroutine shall provide the same functionality as the POSIX.1 {2} funatiibe() (see POSIX.1
{2} 6.4). Arguments foPXFWRITE) correspond to the arguments ¥anite(), as shown in Table 6.5.

Table 6.5—Arguments for PXFWRITE()

FORTRAN POSIX.1

Argument Argument Intent Notes

IFILDES fildes IN

BUF buf IN

NBYTE nbyte IN

NWRITTEN ret_value ouT Undefined if error occurs
IERROR ret_value/errno ouT

Copyright © 1992 IEEE All Rights Reserved 55

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

6.4.2.3 Errors
Possible error conditions f®*XFWRITE) are identical to those for the POSIX.1 {2} functiamite(). IERRORshall
be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completion, the

argumentERRORshall be set to zertERRORmMay be set to a nonzero value to indicate error conditions that are not
specified by POSIX.1 {2} and POSIX.9.

6.5 Control Operations on Files
6.5.1 Data Definitions for File Control Operations

Values for all of the command and control constants defined in POSIX.1 {2} féortt@ andopen() functions shall
be accessible through calls to any of BdFCONST) procedures (see 8.2).

6.5.2 File Control
SubroutinePXFFCNTL)
6.5.2.1 Synopsis

SUBROUTINE PXFFCNTL (IFILDES, ICMD, IARGIN, IARGOUT, IERROR)
INTEGER IFILDES, ICMD, IARGIN, IARGOUT, IERROR

6.5.2.2 Description

The PXFFCNTL) subroutine shall provide the same functionality as the POSIX.1 {2} funfdidlf) (see POSIX.1

{2} 6.5), with the exception that the third argument is always of integer type: It can be a (integer) handle for an
instance of thockstructure or an integer (representing a numeric value), depending on the al@Mi2oinder the
conditions defined in POSIX.1 {2} 6.5. The value returnebAiRGOUTshall also depend on th&éMD argument.

The constant values for use in specifyif@MD shall be accessible through calls to any of FX~CONST)
procedures (see 8.2). ArgumentsRFFCNTL) correspond to the arguments fontl(), as shown in Table 6.6.

Table 6.6—Arguments for PXFFCNTL()
FORTRAN POSIX.1

Argument Argument Intent Notes

IFILDES fildes IN

ICMD cmd IN

IARGIN arg IN 1.(or integer value)
IARGOUT ret_value ouT

IERROR ret_value/errno ouT

1. Handle obtained from PXFSTRUCTCREATE (‘flock’,...); see 8.3.1.

The PXFSTRUCTCREATEsubroutine (see 8.3.1) with the string ‘flock’ given asSRRUCTNAMErgument shall
be used to obtain a handle for an instance didlkstructure as defined in POSIX.1 {2} 6.5. Each component access
shall require one of the following structure-component manipulation subroutines (see 8.3.2):

SUBROUTINE PXFINTGET(JFLOCK, COMPNAM, IVALUE, IERROR)
INTEGER JFLOCK, IVALUE, IERROR

56 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

SUBROUTINE PXFINTSET(JFLOCK, COMPNAM, IVALUE, IERROR)
INTEGER JFLOCK, IVALUE, IERROR

whereJFLOCKIs a handle an@OMPNAMis a character expression which evaluates to one of the component names
shown in Table 6.7.

Table 6.7—Components for flock Structure

POSIX.1

Component COMPNAM Structure Procedures Used to Access
|_type ‘_type’ PXFINTGET,PXFINTSET

|_whence ‘|_whence’ PXFINTGET,PXFINTSET

|_start ‘|_start’ PXFINTGET,PXFINTSET

I_len ‘I_len’ PXFINTGET,PXFINTSET

|_pid ‘|_pid’ PXFINTGET,PXFINTSET

6.5.2.3 Errors

Possible error conditions f&*XFFCNTL() are identical to those for the POSIX.1 {2} functitantl(). Under the
circumstances specified by POSIX.1 {2}, the argum&RRORSshall be set to the corresponding nonzero value
specified by the POSIX.1 {2} function. Upon successful completion, the argyEBRRORshall be set to zero.
IERRORmMay be set to a nonzero value to indicate error conditions that are not specified by POSIX.1 {2} and
POSIX.9.

6.5.3 Reposition Read/Write File Offset

SubroutinePXFLSEEK)

6.5.3.1 Synopsis

SUBROUTINE PXFLSEEK (IFILDES, IOFFSET, IWHENCE, IPOSITION, IERROR)
INTEGER IFILDES, IOFFSET, IWHENCE, IPOSITION, IERROR

6.5.3.2 Description

The PXFLSEEK) subroutine shall provide the same functionality as the POSIX.1 {2} funisii@k) (see POSIX.1
{2} 6.5).

The file-positioning constants defined in POSIX.1 {2} and used for the argukMHENCE shall be accessible

through calls to any of theXFCONST) procedures (see 8.2). Arguments RXFLSEEK) correspond to the
arguments folseek(),as shown in Table 6.8.

Copyright © 1992 IEEE All Rights Reserved 57

IEEE STD 1003.9-1992

IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

Table 6.8—Arguments for PXFLSEEK()
FORTRAN POSIX.1
Argument Argument Intent Notes
IFILDES fildes IN
IOFFSET offset IN 1.
IWHENCE whence IN
IPOSITION ret_value ouT 1
IERROR ret_value/errno ouT

1. Value may exceed the range of a signed integer, see 2.3.2.2

6.5.3.3 Errors
Possible error conditions f®’XFLSEEK) are identical to those for the POSIX.1 {2} functiceek(). IERRORall
be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completion, the

argumentERRORshall be set to zertERRORmay be set to a nonzero value to indicate error conditions that are not
specified by POSIX.1 {2} and POSIX.9.

7. Device- and Class-Specific Procedures

7.1 General Terminal Interface

The terminal interface model shall be the same as defined in POSIX.1 {2}.
7.1.1 Interface Characteristics

The interface characteristics shall be the same as defined in POSIX.1 {2}.
7.1.2 Parameters That Can Be Set

7.1.2.1 termios Structure

Any application that needs to control certain terminal I/O characteristics shall do so by utséngibsstructure (see
POSIX.1{2}7.1).

The PXFSTRUCTCREAT(E subroutine (see 8.3.1) with the string ‘termios’ given asSSRUCTNAMEargument
shall be used to obtain a handle for an instance eéthr@osstructure as defined in POSIX.1 {2} 7.1. Each component
access shall require one of the following structure-component manipulation subroutines (see 8.3.2):

SUBROUTINE PXFINTGET(JTERMIOS, COMPNAM, IVALUE, IERROR)
INTEGER JTERMIOS, IVALUE, IERROR

SUBROUTINE PXFINTGET(JTERMIOS, COMPNAM, IVALUE, IERROR)
INTEGER JTERMIOS, IVALUE, IERROR

SUBROUTINE PXFAINTGET(JTERMIOS, COMPNAM, IAVALUE, IALEN, IERROR)
INTEGER JTERMIOS, IAVALUE(IALEN), IALEN, IERROR

SUBROUTINE PXFAINTGET(JTERMIOS, COMPNAM, IAVALUE, IALEN, IERROR)

58 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

INTEGER JTERMIOS, IAVALUE(IALEN), IALEN, IERROR

SUBROUTINE PXFEINTGET(JTERMIOS, COMPNAM, IVALUE, INDEX, IERROR)
INTEGER JTERMIOS, IVALUE, INDEX, IERROR

SUBROUTINE PXFEINTGET(JTERMIOS, COMPNAM, IVALUE, INDEX, IERROR)
INTEGER JTERMIOS, IVALUE, INDEX, IERROR

whereJTERMIOSIis a handle an€@OMPNAMis a character expression which evaluates to one of the component
names shown in Table 7.1.

Table 7.1—Components for termios Structure

POSIX.1

Component COMPNAM Structure Procedures Used to Access
c_iflag ‘c_iflag’ PXFINTSET,PXFINTGET

c_oflag ‘c_oflag’ PXFINTSET,PXFINTGET

c_cflag ‘c_cflag’ PXFINTSET,PXFINTGET

c_lflag ‘c_Iflag’ PXFINTSET,PXFINTGET

c_cc ‘c_cc PXFAINTSET,PXFAINTGET,

PXFEINTSET,PXFEINTGET

The componert_ccis an array of integers that can be accessed as an entire array or an element at a time. The number
of elements inc_ccis the value of the constant NCCS, which shall be accessible through calls to any of the
PXFCONSTY) procedures (see 8.2).

7.1.2.2 Input Modes

Values of thee_iflagcomponent describe the basic terminal input control and are composed of the bit masks described
in POSIX.1 {2} 7.1.2.2). The values of these masks shall be bitwise distinct and can be combined with the use of the
inclusive OR function (see 8.7). The mask names are constants for which the values shall be accessible through calls
to any of thePXFCONST) procedures (see 8.2).

7.1.2.3 Output Modes

Values of thec_oflag component describe the basic terminal output control and are composed of the bit masks
described in POSIX.1 {2} 7.1.2.3). The values of these masks shall be bitwise distinct and can be combined with the
use of the inclusive OR function (see 8.7). The mask names are constants for which the values shall be accessible
through calls to any of tHeXFCONST) procedures (see 8.2).

7.1.2.4 Control Modes

Values of thec_cflagcomponent describe the basic terminal hardware control and are composed of the bit masks
described in POSIX.1 {2} 7.1.2.4). The values of these masks shall be bitwise distinct and can be combined with the
use of the inclusive OR function (see 8.7). The mask names are constants for which the values shall be accessible
through calls to any of tHeXFCONST) procedures (see 8.2).

7.1.2.5 Local Modes

Values of thee_Iflagcomponent describe the control of various functions and are composed of the bit masks described

in POSIX.1 {2} 7.1.2.5). The values of these masks shall be bitwise distinct and can be combined with the use of the

Copyright © 1992 IEEE All Rights Reserved 59

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

inclusive OR function (see 8.7). The mask names are constants for which the values shall be accessible through calls
to any of thePXFCONST) procedures (see 8.2).

7.1.2.6 Special Control Characters

The values of special control characters are defined by the array compooeras described by POSIX.1 {2}
7.1.2.6). The subscript names are symbolic constants for which the values shall be accessible through calls to any of
the PXFCONST) procedures (see 8.2). The elements ottleEarray contain integer representations of the control
characters. (See 1.3.4).

7.1.2.7 Baud Rate Values

Baud rate values described in 7.1.3 can be set intertm@sstructure by the baud rate subroutines in 7.1.3. The baud
rates are specified by symbolic constants for which the values shall be accessible through calls to any of the
PXFCONSY) procedures (see 8.2).

7.1.3 Baud Rate Subroutines

SubroutinesPXFCFGETOSPEED(), PXFCFSETOSPEED(), PXFCFGETISPEED(), PXFCFSETISPEED

7.1.3.1 Synopsis

SUBROUTINE PXFCFGETOSPEED (JTERMIOS, IOSPEED, IERROR)
INTEGER JTERMIOS, IOSPEED, IERROR

SUBROUTINE PXFCFSETOSPEED (JTERMIOS, ISPEED, IERROR)
INTEGER JTERMIOS, ISPEED, IERROR

SUBROUTINE PXFCFGETISPEED (JTERMIOS, IOSPEED, IERROR)
INTEGER JTERMIOS, IOSPEED, IERROR

SUBROUTINE PXFCFSETISPEED (JTERMIOS, ISPEED, IERROR)
INTEGER JTERMIOS, ISPEED, IERROR

7.1.3.2 Description
These subroutines shall provide the same functionality as the POSIX.1 {2} baud rate functions (see POSIX.1 {2}
7.1.3). Arguments for these subroutines correspond to the arguments for the corresponding POSIX.1 {2} baud rate

functions, as shown in Table 7.2.

Table 7.2—Arguments for the PXFCF..SPEED() Subroutines
FORTRAN POSIX.1

Argument Argument Intent Notes
JTERMIOS termios_p IN 1.
ISPEED speed IN

IOSPEED ret_value ouT

IERROR ret_value/errno ouT

1. Handle obtained from PXFSTRUCTCREATE (‘termios’,...); see 8.3.1

60 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

7.1.3.3 Errors
POSIX.1 {2} does not specify any error conditions that are required to be detected &br..Hpeef family of
functions. Upon successful completion of any ofRxd-CF...SPEED family of subroutines, the argumdERROR

shall be set to zerdERRORmMay be set to a nonzero value to indicate error conditions that are not specified by
POSIX.1 {2} and POSIX.9.

7.2 General Terminal Interface Control Subroutines
7.2.1 Get and Set State

SubroutinesPXFTCGETATTR(), PXFTCSETAT)R
7.2.1.1 Synopsis

SUBROUTINE PXFTCGETATTR (IFILDES, JTERMIOS, IERROR)
INTEGER IFILDES, JTERMIOS, IERROR

SUBROUTINE PXFTCSETATTR (IFILDES, IOPTACTS, JTERMIOS, IERROR)
INTEGER IFILDES, IOPTACTS, JTERMIOS, IERROR

7.2.1.2 Description
The PXFTCGETATTR andPXFTCSETATTR subroutines shall provide the same functionality as the POSIX.1 {2}
functionstcgetattl) andtcsetattf) (see POSIX.1 {2} 7.2). Arguments fBIXFTCSETATT® andPXFTCGETATTRH

correspond to the arguments fosetatt() andtcgetattr(),as shown in Table 7.3.

Table 7.3—Arguments for PXFTCSETATTR() and PXFTCGETATTR()
FORTRAN POSIX.1

Argument Argument Intent Notes
IFILDES fildes IN

IOPTACTS optional_actions IN

JTERMIOS termios_p IN 1.
IERROR ret_value/errno ouT

1. Handle obtained from PXFSTRUCTCREATE (‘termios’,...); see 8.3.1.

7.2.1.3 Errors

Possible error conditions fBRIXFTCGETATTR andPXFTCSETATTR are identical to those for the POSIX.1 {2}
functionstcgetattl) andtcsetattr(). IERRORhall be set to the corresponding nonzero value specified by the POSIX.1
{2} function. Upon successful completion, the argun&RRORshall be set to zertERRORmay be set to a nonzero
value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

7.2.2 Line Control Subroutines

SubroutinesPXFTCSENDBREAK(), PXFTCDRAIN(), PXFTCFLUSH(), PXFTCFOW

Copyright © 1992 IEEE All Rights Reserved 61

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

7.2.2.1 Synopsis

SUBROUTINE PXFTCSENDBREAK (IFILDES, IDURATION, IERROR)
INTEGER IFILDES, IDURATION, IERROR

SUBROUTINE PXFTCDRAIN (IFILDES, IERROR)
INTEGER IFILDES, IERROR

SUBROUTINE PXFTCFLUSH (IFILDES, IQUEUE, IERROR)
INTEGER IFILDES, IQUEUE, IERROR

SUBROUTINE PXFTCFLOW (IFILDES, IACTION, IERROR)
INTEGER IFILDES, IACTION, IERROR

7.2.2.2 Description

PXFTCSENDBREAK(), PXFTCDRAIN(), PXFTCFLUSHJPXFTCFLOW) shall provide the same functionality
as their respective POSIX.1 {2} functiotesendbreak(), tedrain(), tcflush@ndtcflow() (see POSIX.1 {2} 7.2).

The constant values for use in specifyli@JEUE andIACTION shall be accessible through calls to any of the
PXFCONSY) procedures (see 8.2).

Arguments for these subroutines correspond to the arguments for the corresponding POSIX.1 {2} line control
functions, as shown in Table 7.4.

Table 7.4—Arguments forthe PXFTC..() Subroutines
FORTRAN POSIX.1

Argument Argument Intent Notes
IFILDES fildes IN

IDURATION duration IN

IQUEUE queue_selector IN

IACTION action IN

IERROR ret_value/errno ouT

7.2.2.3 Errors

Possible error conditions for these subroutines are identical to those for the corresponding line control functions
defined in POSIX.1 {2}.ERRORshall be set to the corresponding nonzero value specified by the POSIX.1 {2}
function. Upon successful completion, the argumiERRORshall be set to zerdtERRORmMay be set to a nonzero

value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

7.2.3 Get Foreground Process Group ID

SubroutinePXFTCGETPGRP()

7.2.3.1 Synopsis

SUBROUTINE PXFTCGETPGRP (IFILDES, IPGID, IERROR)
INTEGER IFILDES, IPGID, IERROR

62 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

7.2.3.2 Description

ThePXFTCGETPGRP(ubroutine shall provide the same functionality as the POSIX.1 {2} funiciiigtpgrp()(see
POSIX.1 {2} 7.2), except that the process group is returné@@iD. Arguments foPXFTCGETPGRP(¢orrespond
to the arguments fdcgetpgrp(),as shown in Table 7.5.

Table 7.5—Arguments for PXFTCGETPGRP()
FORTRAN POSIX.1

Argument Argument Intent Notes
IFILDES fildes IN

IPGID ret_value ouT

IERROR ret_value/errno ouT

7.2.3.3 Errors

Possible error conditions f®@XFTCGETPGRP(pare identical to those for the POSIX.1 {2} functitigetpgrp().
IERRORshall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon succesful
completion, the argumehERRORSshall be set to zerdERRORmMay be set to a nonzero value to indicate error
conditions that are not specified by POSIX.1 {2} and POSIX.9.

7.2.4 Set Foreground Process Group ID

SubroutinePXFTCSETPGRP()

7.2.4.1 Synopsis

SUBROUTINE PXFTCSETPGRP (IFILDES, IPGID, IERROR)
INTEGER IFILDES, IPGID, IERROR

7.2.4.2 Description

The PXFTCSETPGRP@ubroutine shall provide the same functionality as the POSIX.1 {2} funiatpgrp()see
POSIX.1 {2} 7.2). Arguments foPXFTCSETPGRP(forrespond to the arguments tosetpgrp(),as shown in
Table 7.6.

Table 7.6—Arguments for PXFTCSETPGRP()
FORTRAN POSIX.1

Argument Argument Intent Notes
IFILDES fildes IN

IPGID parp_id IN

IERROR ret_value/errno ouT

7.2.4.3 Errors

Possible error conditions f®®XFTCSETPGRP (are identical to those for the POSIX.1 {2} functitssetpgrp().
IERRORshall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful
completion, the argumehERRORshall be set to zerédERRORmay be set to a nonzero value to indicate error
conditions that are not specified by POSIX.1 {2} and POSIX.9.

Copyright © 1992 IEEE All Rights Reserved 63

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

8. FORTRAN 77 Language Library

8.1 FORTRAN 77 Intrinsics

For general information regarding these functions, see FORTRAN 77 {3}.

8.2 System Symbolic Constant Access

For general information regarding these subroutines, see 2.3.1.
8.2.1 Access and Verify Symbolic Constants
SubroutinePXFCONST()

Functions1IPXFCONST(), PXFISCONST()

8.2.1.1 Synopsis

INTEGER FUNCTION IPXFCONST (CONSTNAME)
CHARACTER*(*) CONSTNAME

LOGICAL FUNCTION PXFISCONST (CONSTNAME)
CHARACTER*(*) CONSTNAME

SUBROUTINE PXFCONST (CONSTNAME, IVAL, IERROR)
CHARACTER*(*) CONSTNAME
INTEGER IVAL, IERROR

8.2.1.2 Description

The argumenCONSTNAMES the character representation of the name of any constant defined in a POSIX.1 {2}
header or in POSIX.CONSTNAMEHS case-sensitive, and trailing blanks in the argument shall be ignored.

The functionlPXFCONST()shall provide an integer return value but no error checking. If the argument passed
corresponds to a defined constant in POSIX.1 {2} or POSIX.9, the return value is the integer value associated with the
constant; if the argument is not a defined constant, the behavior is implementation definedFT3@ONST()

function shall confirm whether the argument is a valid constant defined by POSIX.1 {2} or PGSKISCONST()

shall return .TRUE. if and only [IPXFCONST (would return a valid value for the sat@®NSTNAME.

The subroutind®XFCONST()shall provide error checking and a return value in the same call. Upon successful
completion, the argumeiWAL shall be set to the integer value associated with the symbolic constant.

The alteration of a constant value by an implementation should require recompilation of an application utilizing any of
thesePXFCONST (procedures to access the altered constant.

Table 8.1—Arguments for Symbolic Constant Procedures

FORTRAN

Argument Intent Notes
CONSTNAME IN

IVAL ouT

IERROR ouT

64 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

8.2.1.3 Errors

Upon successful completion ®XFCONST()the argumentERRORshall be set to zero. If any of the following
conditions occurPXFCONST (shall set the argument to the corresponding viitRRORmay be set to a nonzero
value to indicate error conditions that are not specified by POSIX.9.

[ENONAME] Invalid constant name.

8.3 Structure Creation and Manipulation
For general information regarding these subroutines, see 2.3.2.

There are two common usage patterns associated with accessing the aggregate data: passing information to the system
service procedures and obtaining information from the system procedures. The following steps should be followed
when using system procedures that require the use of aggregate data:

0 PXFSTRUCTCREATE@an be called to create an instance of the desired structure and to didauiea
with which to reference it.

O If an application passes information to the systemP&e<TYPE>SET(subroutines shall be called, once
for each membeheforecalling the system procedure (i.e., the structure is loaded before the system call).

O The desired system procedure is called.

O If an application needs to get information from the systemPXe<TYPE>GET()subroutines should be
called, once for each membefter calling the system procedure (i.e., the information is only available in the
structure after the system call).

0 PXFSTRUCTFREE@an be called to remove the instance of the structure.

When calling the actual system procedure, the calling sequence is equivalent to the C binding as shown in POSIX.1
{2}, except that a handle is used in place of the POSIX.1 {2} structure (pointer) argument.

8.3.1 Structure Creation
SubroutinePXFSTRUCTCREATE()
8.3.1.1 Synopsis
SUBROUTINE PXFSTRUCTCREATE (STRUCTNAME, JHANDLE, IERROR)
CHARACTER*(*) STRUCTNAME
INTEGER JHANDLE, IERROR
8.3.1.2 Description
The subroutin®XFSTRUCTCREATE(reates an instance of the desired structure and returns a nonzero handle in the
argumentJHANDLE All further references to this instance of this structure are through this handle. A list of POSIX.9-

defined values foBTRUCTNAMES provided in 2.3.2.3. The initial values of components within the new instance of
the structure are undefined.

Copyright © 1992 IEEE All Rights Reserved 65

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

Table 8.2—Arguments for PXFSTRUCTCREATE()

FORTRAN

Argument Intent Notes
STRUCTNAME IN

JHANDLE ouT

IERROR ouT

8.3.1.3 Errors

Upon successful completion 8XFSTRUCTCREATE(Jhe argumentERRORshall be set to zero. If any of the
following conditions occuiPXFSTRUCTCREATE§éhall set the argument to the corresponding véiiRRORmay
be set to a nonzero value to indicate error conditions that are not specified by POSIX.9.

[ENONAME] Invalid structure name.

[ENOHANDLE] Instance of the structure could not be created.

8.3.2 Structure-Component Manipulation

Subroutines: PXF<TYPE>SET(), @ PXF<TYPE>GET(), = PXFA<TYPE>SET(), PXFA<TYPE>GET(),
PXFE<TYPE>SET(), PXFE<TYPE>GET(),

8.3.2.1 Synopsis

SUBROUTINE PXF<TYPE>SET (JHANDLE, COMPNAM, VALUE [ILEN], IERROR)
INTEGER JHANDLE, [ILEN], IERROR)

CHARACTER*(*) COMPNAM

TYPE VALUE

SUBROUTINE PXF<TYPE>GET (JHANDLE,COMPNAM, VALUE [,ILEN], IERROR)
INTEGER JHANDLE, [ILEN,] IERROR)

CHARACTER*(*) COMPNAM

TYPE VALUE

SUBROUTINE PXFA<TYPE>SET (JHANDLE, COMPNAM, VALUE, IALEN [,ILEN], IERROR)
INTEGER JHANDLE, IALEN, [ILEN(IALEN),] IERROR)

CHARACTER*(*) COMPNAM

TYPE VALUE(IALEN)

SUBROUTINE PXFA<TYPE>GET (JHANDLE, COMPNAM, VALUE, IALEN [,ILEN], IERROR)
INTEGER JHANDLE, IALEN, [ILEN(IALEN),] IERROR)

CHARACTER*(*) COMPNAM

TYPE VALUE(IALEN)

SUBROUTINE PXFE<TYPE>SET (JHANDLE, COMPNAM, INDEX, VALUE [/ILEN], IERROR)
INTEGER JHANDLE, INDEX, [ILEN,] IERROR)

CHARACTER*(*) COMPNAM

TYPE VALUE

66 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

SUBROUTINE PXFE<TYPE>GET (JHANDLE, COMPNAM, INDEX, VALUE [,ILEN], IERROR)
INTEGER JHANDLE, INDEX, [ILEN,] IERROR)

CHARACTER*(*) COMPNAM

TYPE VALUE

NOTE — The argumenLEN only appears in the interface definition when the type of TYRBJEis CHARACTER*(*).

8.3.2.2 Description

The PXF<TYPE>SET() subroutines allow components of a structure to be set or modified, while the
PXF<TYPE>GET()subroutines allow values stored in individual components to be extracted and used. There is a
separate subroutine for handling each unique base FORTRAN 77 data type that may occur within a structure.
Substituting one of the following character sequences for <TYPE> in the generic nhames shown shall result in access
to a structure component of the indicated data type. A conforming implementation shall provide all access routines
required to access the structures described in 2.3.2.3.1.

Table 8.3—<TYPE>s of Structure Element Subroutines

<TYPE> TYPE

INT INTEGER

REAL REAL

LGCL LOGICAL

STR CHARACTER*(*)
CHAR CHARACTER*1

DBL DOUBLE PRECISION
CPLX COMPLEX

The subroutine®XFAT<YPE>SET) and PXFA<TYPE>GET) are analogous subroutines that are used when the
structure component is an array. The entire array is accessed (read/written) as a unit when these subroutines are used.
PXFE<TYPE>SET) andPXFe<TYPE>GET) can be used to accessiagleelement of a structure component that is

an array. The array element is selected with the arguiBEX. Note that, unlike in the C binding of POSIX.1 {2},

these FORTRAN 77 arrays are one-based for indexing.

For all subroutines, the arguments nadiddNDLE, COMPNAMandINDEX are “in” arguments, andERRORs an
“out” argument. The intent of th&’ ALUE, ILEN, and IALEN arguments are “in” for th&XF<TYPE>SEY)
subroutines or any of the analagous array or array element subroutines, and “out” POFEYPE>GET)
subroutines or any of the analagous array or array element subroutines.

8.3.2.3 Errors
Upon successful completion of any of tRXF<TYPE>SET) or PXF<TYPE>GET) subroutines or any of the

analagous array or array element subroutines, the arguERRORshall be set to zero. If any of the following
conditions occur, the subroutine shall set the argument to the corresponding value.

Copyright © 1992 IEEE All Rights Reserved 67

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

[EINVAL] Invalid value for INDEX.
[ENONAME] Component name is not defined for this structure.
[ETRUNC] The declared length of the character argument is insufficient to contain the string to be

returned. (See 2.3.2.4.)

[EARRAYLEN] For PXF<TYPE>GETsubroutines, the number of array elements to be returned
exceed$ALEN, and only the firstALEN elements of the array argument have been set.
For PXF<TYPE>SETsubroutineslALEN exceeds the number of array elements in the
structure component. Only the available elements of the array in the structure
component have been set.

Access to a structure component that does not belong to the structure refereité@8iBy Eor use of a subroutine

of the wrong class (e.g., the use of an array subroutine to access a scalar structure component) or the wrong type (e.g.,
the use of a STR routine when the component is an integer) is undefined.

8.3.3 Structure Deletion

SubroutinePXFSTRUCTFREg

8.3.3.1 Synopsis

SUBROUTINE PXFSTRUCTFREE (JHANDLE, IERROR)
INTEGER JHANDLE, IERROR

8.3.3.2 Description
The subroutinXFSTRUCTFREE deletes the instance of the structure referenceltHByWNDLE.

Table 8.4—Arguments for PXFSTRUCTFREE()

FORTRAN

Argument Intent Notes
JHANDLE IN structure handle
IERROR ouT

8.3.3.3 Errors

Upon successful completion BX(FSTRUCTFRE®, the argumentERRORshall be set to zertERRORmay be set
to a nonzero value to indicate error conditions that are not specified by POSIX.9.

8.3.4 Structure Copy
SubroutinePXFSTRUCTCORY
8.3.4.1 Synopsis
SUBROUTINE PXFSTRUCTCOPY (STRUCTNAME, JHANDLE1, JHANDLE?Z2, IERROR)

INTEGER JHANDLE1, JHANDLEZ, IERROR
CHARACTER*(*) STRUCTNAME

68 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

8.3.4.2 Description

The subroutinXFSTRUCTCORY copies the contents of the structure referencedHANDLE1to the structure
referenced byJHANDLEZ2. Both handles shall have been created R¥FSTRUCTCREATHRIsing the same
STRUCTNAMEA list of POSIX.9 defined values f&@TRUCTNAMEs provided in 2.3.2.3.

Table 8.5—Arguments for PXFSTRUCTCOPY/()

FORTRAN

Argument Intent Notes
STRUCTNAME IN

JHANDLE1 IN structure handle
JHANDLE2 IN structure handle
IERROR ouT

8.3.4.3 Errors
Upon successful completion &FXFSTRUCTCORY, the argumentERRORshall be set to zero. If any of the

following conditions occul?XFSTRUCTCOR(Y shall set the argument to the corresponding véiRRORmay be
set to a nonzero value to indicate error conditions that are not specified by POSIX.9.

[ENONAME] Invalid structure name.

8.4 Subroutine-Handle Manipulation
These subroutines shall provide the subroutine pointer facility described in 2.3.2.5.
8.4.1 Save and Reference Subroutine Handle
SubroutinePXFGETSUBHANDLE(), PXFCALLSUBHANDQE
8.4.1.1 Synopsis
SUBROUTINE PXFGETSUBHANDLE (SUB, JHANDLE1, IERROR)
INTEGER JHANDLE, IERROR
EXTERNAL SUB

SUBROUTINE PXFCALLSUBHANDLE(JHANDLEZ2, IVAL, IERROR)
INTEGER JHANDLE, IVAL, IERROR

8.4.1.2 Description
Given a subroutine external argumdhXFGETSUBHANDLE returns a subroutine handle for that subroutine in the
argumentIHANDLE1.The argumenBUBshall not be a function, an intrinsic, or an entry point and shall be defined

with exactly one integer argument.

Given a subroutine handle obtained from a previous calPX6-GETSUBHANDLE or PXFSIGACTION(),
PXFCALLSUBHANDLE calls the subroutine associated with that handle, Wilh. as the one integer argument.

Copyright © 1992 IEEE All Rights Reserved 69

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

Table 8.6—Arguments for Subroutine-Handle Manipulation Subroutines

FORTRAN

Argument Intent Notes

SUB IN

JHANDLE1 ouT subroutine handle
JHANDLE2 IN subroutine handle
IVAL IN

IERROR ouT

The values of the symbolic constat&_DFLandSIG_IGNare reserved and never returned as a value for the handle
by PXFGETSUBHANDLE nor may they be passed as 8iéBargument in a call tBXFCALLSUBHANDLE.

8.4.1.3 Errors
Upon successful completion BXFGETSUBHANDLEB or PXFCALLSUBHANDLB, the argumentERRORSshall
be set to zero. If any of the following conditions ocEXXFGETSUBHANDLE andPXFCALLSUBHANDLB shall

set the argument to the corresponding vdlERRORmMay be set to a nonzero value to indicate error conditions that are
not specified by POSIX.9.

[ENOHANDLE] Instance of the subroutine handle could not be creat@XBYETSUBHANDLE.

8.5 External Unit and File Description Interaction

This section describes the interaction of FORTRAN 77 external units with file descriptors. A unit identifier is local to

a single process. After aAXFFORK) call, an open file description shall be shared by parent and child. The
PXFFDOPEN) subroutine shall connect a unit to a file descriptor (see 8.5.3). When a file is opened using the
FORTRAN 77 OPEN statement, an external unit shall be connected to a file descriptor if the value of the POSIX I/O
flag (see 8.5.1) is one (1) upon execution of the OPEN statement. External units not described in this section may be
connected to file descriptors.

The preconnected units identified by STDIN_UNIT, STDOUT_UNIT, and STDERR_UNIT shall each be connected
to file descriptors. In addition, records read from or written to these units shall be accessed as if they are newline
delimited (see 8.5.1).

8.5.1 POSIX-Based FORTRAN 1/O

SubroutinePXFPOSIXIQ)

8.5.1.1 Synopsis

SUBROUTINE PXFPOSIXIO (NEW, OLD, IERROR)
INTEGER NEW, OLD, IERROR

8.5.1.2 Description
The PXFPOSIXIQ) subroutine sets and returns the current value of the POSIX I/O flag. The POSIX I/O flag is set to

the value oNEW. The previous value of the POSIX I/O flag is returne@liid. The initial state of the POSIX I/O flag
is unspecified.

70 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

Table 8.7—Arguments for PXFPOSIXIO()

FORTRAN

Argument Intent Notes
NEW IN

OLD ouT

IERROR ouT

If a file is opened with a FORTRAN 77 OPEN statement when the value of the POSIX I/O flag is one (1), the unit shall
be connected to a file descriptor. In addition, records within formatted sequential access files shall be accessed as if the
records are newline delimited, even if the file does not contain records that are delimited by a newline character. When
the value of the POSIX I/O flag is zero (0) upon execution of the FORTRAN 77 OPEN statement, a connection to a file
descriptor is not assumed, and the records in the file are not required to be accessed as if they are newline delimited.
If the value of the POSIX I/O flag is other than zero or one, the interpretation is unspecified.

If the file is already open and another FORTRAN 77 OPEN statement is only used to change the BLANK= specifier
on the same file, the selection of POSIX-based FORTRAN I/O is not changed on that file.

8.5.1.3 Errors
Upon successful completion BXFPOSIXIQ), the argumentERRORshall be set to zero. If any of the following

conditions occulPXFPOSIXIQ) shall set the argument to the corresponding viRRORmMay be set to a nonzero
value to indicate error conditions that are not specified by POSIX.9.

[EINVAL] Value of NEWis neither zero nor one and is not supported.

8.5.2 Map a Unit to a File Descriptor
SubroutinePXFFILENQ)
8.5.2.1 Synopsis

SUBROUTINE PXFFILENO (IUNIT, IFILDES, IERROR)
INTEGER IUNIT, IFILDES, IERROR

8.5.2.2 Description

The PXFFILENQ)) subroutine shall return ilFILDES the file descriptor to which the unit identified RYNIT is
connected.

Table 8.8—Arguments for PXFFILENO()

FORTRAN

Argument Intent Notes
IUNIT IN

IFILDES ouT

IERROR ouT

Copyright © 1992 IEEE All Rights Reserved 71

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

The units associated with the preconnected files identified by STDIN_UNIT, STDOUT_UNIT, and STDERR_UNIT
(see 2.9.1) are connected to the file descriptors defined by the symbolic constants STDIN_FILENO.
STDOUT_FILENO, and STDERR_FILENO respectively (see Table 8.9). When performing FORTRAN 77 read
operations on a file connected to the processor-determined external unit specified by the asterisk (*), this unit is
connected to the file descriptor defined by the symbolic constant STDIN_FILENO, When performing FORTRAN 77
write operations on a file connected to the processor-determined external unit specified by the asterisk (*), this unit is
connected to the file descriptor defined by the symbolic constant STDOUT_FILENO. The symbolic constants shall be
accessible through calls to any of #PFCONST) procedures (see 8.2).

Table 8.9—File Descriptor Constants

Name Description File Descriptor Value
STDIN_FILENO Standard input file descriptor 0
STDOUT_FILENO Standard output file descriptor 1
STDERR_FILENO Standard error file descriptor 2

8.5.2.3 Errors
Upon successful completion 8XFFILENQ), the argumentERRORSshall be set to zero. If any of the following

conditions occulPXFFILENQ) shall set the argument to the corresponding véiiRRORmMay be set to a nonzero
value to indicate error conditions that are not specified by POSIX.9.

[EINVAL] IUNIT is not an open unit.

[EBADF] IUNIT is not connected with a file descriptor.

8.5.3 Open a Unit
SubroutinePXFFDOPEN)
8.5.3.1 Synopsis
SUBROUTINE PXFFDOPEN (IFILDES, IUNIT, ACCESS, IERROR)
INTEGER IUNIT, IFILDES, IERROR
CHARACTER*(*) ACCESS
8.5.3.2 Description
ThePXFFDOPEN) subroutine connects an external unit identifietlBYIT, to a file descriptotFILDES. If the unit

is connected to a file, the file shall be closed before the unit becomes connected to the file descriptor. See the OPEN
statement in FORTRAN 77 {3}.

72 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

Table 8.10—Arguments for PXFFDOPEN()

FORTRAN

Argument Intent Notes
IFILDES IN

IUNIT IN

ACCESS IN

IERROR ouT

The ACCESSargument is a character string that specifies the attributes of the connection. This string consists of one
or more keyword/value pairs, described in Table 8.11. Keywords shall be separated from their values by the equals (=)
character. Keyword/value pairs shall be separated by the comma (,) character. Blanks shall be ignored.

Table 8.11—Values for ACCESS Argument

Keyword Values Function Default
‘NEWLINE’ ‘YES' I/0 type ‘YES'
‘NO'
‘BLANK’ ‘NULL’ Interpretation of blanks ~ ‘NULL’
‘ZERC’
‘STATUS’ ‘OLD’ File status at open ‘UNKNOWN’
‘SCRATCH’
‘UNKNOWN’
‘FORM’ ‘FORMATTED’ Format type ‘FORMATTED’
‘UNFORMATTED’

Records within a formatted file shall be accessed as if they are newline delimited when the NEWLINE keyword is set
to the value YES. When the FORM keyword is set to the value ‘UNFORMATTED’, the NEWLINE keyword shall be
ignored.

The meaning and behavior of the BLANK and FORM keywords and its values shall be as defined for the FORTRAN
77 OPEN statement.

The meaning and behavior of the STATUS keyword and its values shall be as defined for the FORTRAN 77 OPEN
statement with the following exceptions. When the STATUS keyword is set to the value ‘OLD’, the file offset
associated with the file description shall not be changed as a result of BXIFRPOPEN).

Additional ACCESS argument keywords and values may be present.Their interpretation is implementation defined.
8.5.3.3 Errors

Upon successful completion BXFFDOPEN), the argumentERRORshall be set to zero. If any of the following

conditions occu?XFFDOPEN) shall set the argument to the corresponding vé#iRRORmay be set to a nonzero
value to indicate error conditions that are not specified by POSIX.9.

[EINVAL] The ACCESS keyword specifies invalid options.
[EACCES] Access is not permitted by the file permissions of the file.
[EBADF] TheIFILDES argument is not a valid file descriptor or the IUNIT argument does not

specify a valid external unit.

Copyright © 1992 IEEE All Rights Reserved 73

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

8.5.4 Flush Output
SubroutinePXFFFLUSH)
8.5.4.1 Synopsis

SUBROUTINE PXFFFLUSH (IUNIT, IERROR)
INTEGER IUNIT, IERROR

8.5.4.2 Description

The PXFFFLUSH) subroutine shall write any buffered output to the file connected to thkJDHIE. End-of-record
is not implied by a call teXFFFLUSH).

Table 8.12—Arguments for PXFFFLUSH()

FORTRAN

Argument Intent Notes
IUNIT IN

IERROR ouT

If the IUNIT argument is not connected for POSIX-based FORTRAN I/O (see 8.5), the reRMBRFLUSH) are
undefined PXFFFLUSH) shall mark for update thet_ctimeandst_mtimefields of the underlying file if the file is
writable, the call results in a transfer of data to the file, and if data has not yet been written to the file.

8.5.4.3 Errors

Upon successful completion BXFFFLUSH), the argumentERRORshall be set to zero. If any of the following
conditions occulPXFFFLUSH) shall set the argument to the corresponding vé#iRRORmay be set to a nonzero
value to indicate error conditions that are not specified by POSIX.9.

[EINVAL] The IUNIT argument is not a valid external unit identifier.

[EFBIG] An attempt was made to write a file that exceeds an implementation-defined maximum
file size.

[ENOSPC] There is no free space remaining on the device containing the file.

[ESPIPE] An attempt is made to write a pipe (or FIFO) that is not open for reading by a process.

A SIGPIPE signal shall also be sent to the process.

8.5.5 FORTRAN Language I/O Statements

This section describes the behavior of FORTRAN 77 I/O that is special because the underlying operating system is
POSIX based. It defines special procedures that provide I/O capabilities specific to this environment. In particular, this
section describes interactions of FORTRAN 77 1/O statements with POSIX.9. All interactions specified in this section
apply only to POSIX-based FORTRAN I/O files. These interactions define behavior that is undefined or unspecified by
FORTRAN 77 and does not modify or replace any behavior that is defined in FORTRAN 77.

The set of allowable names for a file (see Section 12.2.2 of FORTRAN 77 {3}) shall include pathnames as defined by
POSIX.9. A connected unit is a unit that has been opened by the FORTRAN 77 statement OPEXKFGTQPEN

74 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

FORTRAN 77 — formatted sequential I/O shall read and write files that are accessed as if they are newline delimited,
but is not limited to reading and writing these files.

8.5.5.1 General Interactions of FORTRAN /O Statements

A single open file description can be accessed through units and file descriptors. This section defines the interaction of
units and file descriptors with an open file description.

A unit is explicitly closed in FORTRAN 77 by a CLOSE statement. It is implicitly closed through OPEN, STOP, or
END statements as specified by FORTRAN 77. A unit is implicitly closed thiegtrDOPEN) andPXFEXIT).

A file descriptor is explicitly closed bR XFCLOSKE) and implicitly closed byPXFFASTEXIT) or by one of the
PXFEXEQ) calls under the conditions specified in 3.1. When a unit is closed, the underlying file descriptor is also
closed.

A unit is connected to a file descriptor when the unit and the file descriptor access the same open file description. A file
descriptor is connected to a unit when the unit and the file descriptor access the same open file description. POSIX.9
subroutines that could affect the file offset BMFLSEEK), PXFREAL), andPXFWRITE).

For direct access files, operations that could directly affect the file offset are undefined.

For unformatted sequential access files, when a POSIX.9 procedure that operates directly on a file descriptor affects
the file offset, and that file descriptor is connected to a unit, the results of subsequent FORTRAN 77 I/O statements
using the connected unit are undefined.

For formatted sequential access files, operations that directly affect the file offset may be used in conjunction with
FORTRAN 77 1/0O operations. When a POSIX.9 procedure that operates directly on a file descriptor affects the file
offset, and that file descriptor is connected to a unit, the results of subsequent FORTRAN 77 1/O statements using the
connected unit are undefined unl®&§-FFLUSH) was called to flush the connected unit prior to such operations.
After a call toPXFFFLUSH), the subsequent 1/0O operation on the connected unit shall reestablish the file position
from the file offset, as the first action of the operation.

A file connected to a unit shall become connected to two units in two separate processeBXHFEORK). In

addition, a file could become connected to two different units as a result of B{EPOPEN). I/O operations on

these units shall be coordinated by the application. For direct access files, 1/O operations are not defined on a file
connected to more than one unit at a time. For sequential files, I/O operations on subsequent units connected to the
same file at the same time are defined under one or more of the following conditions:

1) No operation was performed on the initial unit that could affect the file offset.

2) The initial unit has been closed, unless a subsequent unit was conneXeRYRK).

3) The subroutinePXFFLUSH) was executed on the initial unit, and no subsequent I/O operation was
performed on that unit that could affect the file offset.

4) Following 47PXFFORK), the process that connected the initial unit has not performed any I/O operation on
that unit that could affect the file offset and has successfully executed any onePXRBEXEC..() or
PXFFASTEXIT) subroutines.

5) Prior toPXFFORK), conditions (1) or (3) are met.

I/0 operations on the initial unit are defined only if the same conditions are met for subsequent units. If more than two
units are connected to the same open file description, these conditions should be met for all other units before
performing I/O operations on any one unit. If these conditions are met, no data shall be duplicated or lost. If these
conditions are not met, the results of performing I/O operations on these units are undefined.

For formatted sequential access files, the file position (see Section 12.2.3 of FORTRAN 77 {3}) could be manipulated

with PXFFSEEK), PXFGET(), PXFFGETQ), PXFPUTQ), and PXFFPUTQ) (see 8.6). These routines shall
access the bytes of a file. FORTRAN 77 1/0O operations access the records of the file. The file position is updated after

Copyright © 1992 IEEE All Rights Reserved 75

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

each byte or record access. A byte access operation that follows a record access operation shall behave as if the byte
position of the file is the byte following the newline that delimited the record accessed. After a byte access operation,
the current, next, and preceding records are defined according to the file position and the newline record delimiter.

If a byte access positions the file on a byte other than a newline delimiter, the next record shall begin with the byte at
the file position. If a byte access positions the file on a newline delimiter, the next record shall begin with the byte
following the file position. If the number of records is zero, or if the file is positioned at its terminal point, there is no
next record.

The preceding record shall begin with the byte following the preceding newline. If there is no preceding newline, the
record shall begin at the file initial point. If the number of records is zero, or if the file is positioned at its initjal point
there is no preceding record.

After a byte access operation, the current record is undefined.
8.5.5.2 Interactions With FORTRAN 77 OPEN Statement

The FORTRAN 77 OPEN statement shall allocate a file descriptor with at least the consequences of calling
PXFOPEN). When creating a new file, OPEN shall have at least the consequences oPEDBEN) with a value
of

IOR(IPXFCONST('S_IRUSR’),IOR(IPXFCONST('S_IWUSR),
+ IOR(IPXFCONST('S_IRGRP"),IOR(IPXFCONST('S_IWGRP’),
+ IOR(IPXFCONST('S_IROTH’),IPXFCONST(‘'S_IWOTH"))))))

for the mode argument.
In the FORTRAN 77 OPEN statement, the interaction of POSIX.9 with open list specifiers shall be as follows:

O IOSTAT
If the OPEN statement fails due to a POSIX.9 error condition, the value returned in the argument of the
IOSTAT specifier shall be the POSIX.9 error value. The implementation-defined values for the POSIX.9-
defined error conditions shall be different from any processor-defined values for additional FORTRAN 77
processor-defined error conditions.

8.5.5.3 Interactions With FORTRAN 77 INQUIRE Statement
In the FORTRAN 77 INQUIRE statement, the interaction of POSIX.9 with inquire list specifiers shall be as follows:

O IOSTAT
If the INQUIRE statement fails due to a POSIX.9 error condition, the value returned in the argument of the
IOSTAT specifier shall be the POSIX.9 error value. The implementation-defined values for the POSIX.9-
defined error conditions shall be different from any processor-defined values for additional FORTRAN 77
processor-defined error conditions.

0O NAMED
Files opened witlPXFFDOPEN) do not have names. If a second unit is connected by execution of
PXFFORK) and the first unit has a name, the second unit shall have a name.

0O NAME
If the file has a name, the value returned byNA®E argument shall be the complete pathname for the file.
If the file does not have a name, the value returned byMAME argument shall be a string of all blanks. if
an absolute pathname cannot be determined.

76 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

8.5.5.4 Interactions With FORTRAN 77 CLOSE Statement

The results of the FORTRAN 77 CLOSE statement shall have at least the consequBxX¢eSLEDSE) called with
the file descriptor connected to the unit. It shall also mark for updasé ttténeandst_mtimefields of the file, if the
unit is writable and if buffered data has not been written to the file.

In the FORTRAN 77 CLOSE statement, the interaction of POSIX.9 with closed list specifiers shall be as follows:

O IOSTAT
If the CLOSE statement fails due to a POSIX.9 error condition, the value returned in the argument of the
IOSTAT keyword shall be the POSIX.9 error value. The implementation-defined values for the POSIX.9-
defined error conditions shall be different from any processor-defined values for additional FORTRAN 77
processor-defined error conditions.

8.5.5.5 Interactions With FORTRAN 77 READ Statement

FORTRAN 77 sequential REARXFFGET(Q), andPXFGETQ) (see 8.6) shall have at least the consequences of
PXFREAL) when the open file description is accessed, except the condition [EINTR] shall not cause failure. The
st_atimefield shall be marked for update by the first successful execution of READ (sequential or direct),
PXFFGETQ), or PXFGETQ) that results in data transferred from the file.

Before a READPXFFGETQ), or PXFGETQ) operation on the controlling terminal, data buffered as a result of a
WRITE, PXFFPUTQ), or PXFPUTQ) operation shall be written.

In the FORTRAN 77 READ statement, the interaction of POSIX.9 with READ control information list specifiers shall
be as follows:

O IOSTAT
If the READ statement fails due to a POSIX.9 error condition, the value returned in the argument of the
IOSTAT specifier shall be the POSIX.9 error value. The implementation-defined values for the POSIX.9-
defined error conditions shall be different from any processor-defined values for additional FORTRAN 77
processor-defined error conditions.

8.5.5.6 Interactions With FORTRAN 77 WRITE Statement

FORTRAN 77 sequential WRITE shall have at least the consequereB&WfRITE) when the open file description
is accessed, except the condition [EINTR] shall not cause failurestTheémeandst_mtimeshall be marked for
update by the first successful execution of WRITE (sequential or dPedtFPUTQ), or PXFPUTQ) (see 8.6) that
results in data being transferred to the file.

In the FORTRAN 77 WRITE statement, the interaction of POSIX.9 with WRITE control information list specifiers
shall be as follows:

O IOSTAT
If the WRITE statement fails due to a POSIX.9 error condition, the value returned in the argument of the
IOSTAT specifier shall be the POSIX.9 error value. The implementation-defined values for the POSIX.9-
defined error conditions shall be different from any processor-defined values for additional FORTRAN 77
processor-defined error conditions.

8.5.5.7 Interactions With FORTRAN 77 BACKSPACE and REWIND Statements
FORTRAN 77 BACKSPACE, FORTRAN 77 REWIND, aiKFFSEEK) shall have at least the consequences of

calling PXFLSEEK) for the equivalent file positioning. Provided the unit is connected to a file that exists, is writable,
and unbuffered data has not yet been written to the file, BACKSPACE, REWINDX&HSEEK) shall have at least

Copyright © 1992 IEEE All Rights Reserved 77

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

the consequences BXFWRITE), except the condition [EINTR] shall not cause failure. In additbngtimeand
st_mtimeshall be marked for update. The results of REWIND shall have at least the consequences of calling
PXFLSEEK) with the IOFFSET argument set to zero and théWHENCE argument set to
IPXFCONST('SEEK_SET’). FORTRAN 77 1/O shall consider the file to be at its initial point.

In the FORTRAN 77 BACKSPACE and REWIND statements, the interaction of POSIX.9 with the corresponding
auxiliary list specifiers shall be as follows:

O IOSTAT
If the BACKSPACE or REWIND fails due to a POSIX.9 error condition, the value returned in the argument
of the IOSTAT specifier shall be the POSIX.9 error value. The implementation-defined values for the
POSIX.9-defined error conditions shall be different from any processor-defined values for additional
FORTRAN 77 processor-defined error conditions.

8.5.5.8 Interactions With FORTRAN 77 ENDFILE Statement

FORTRAN 77 ENDFILE shall have at least the consequences of cRHRYVRITE), except the condition [EINTR]
shall not cause failure. ENDFILE shall mark #tectimeandst_mtimeof the file for update.

In the FORTRAN 77 ENDFILE statement, the interaction of POSIX.9 with the auxiliary list specifiers shall be as
follows:

O IOSTAT
If ENDFILE fails due to a POSIX.9 error condition, the value returned in the argument of the IOSTAT
specifier shall be the POSIX.9 error value. The implementation-defined values for the POSIX.9-defined error
conditions shall be different from any processor-defined values for additional FORTRAN 77 processor-
defined error conditions.

8.6 Stream I/O

Stream 1/O shall provide byte access to a POSIX-based FORTRAN 1/O file (see 8.5). These files, including record-

control information contained in these files, shall be accessible through the stream 1/O subroutines. The results of the
procedures in this section are undefined for files that are not POSIX-based FORTRAN I/O files and files opened for

unformatted FORTRAN 1/O.

8.6.1 Modify a File Position

SubroutinePXFFSEEK)

8.6.1.1 Synopsis

SUBROUTINE PXFFSEEK (IUNIT, IOFFSET, IWHENCE, IERROR)
INTEGER IUNIT, IOFFSET, IWHENCE, IERROR

8.6.1.2 Description
The subroutindPXFFSEEK) shall modify the file position of the file connected to the UdNIT. The [UNIT

argument shall refer to an open unit. TB&EFSETargument is an offset in bytes relative to the position specified by
IWHENCE

78 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

Table 8.13—Arguments for PXFFSEEK()

FORTRAN Intent Notes
Argument

IUNIT IN

IOFFSET IN 1.
IWHENCE IN

IERROR ouT

1. Value may exceed the range of a signed integer; see 2.3.2.2.

The file-positioning constants used for the argum@HENCE are the same as those used for the argument
IWHENCEfor the procedur®XFLSEEK) (see 6.5.3).

8.6.1.3 Errors
Upon successful completion 8XFFSEEK), the argumentERRORshall be set to zero. If any of the following

conditions occurPXFFSEEK) shall set the argument to the corresponding vélitRRORmMay be set to a nonzero
value to indicate error conditions that are not specified by POSIX.9.

[EINVAL] No file is connected tdUNIT, or IWHENCEis not a proper value, or the resulting file
offset would be invalid.

[ESPIPE] ThdUNIT argument is connected to a pipe or FIFO.

[EEND] The end of file was encountered.

8.6.2 Read a File Position
SubroutinePXFFTELL()
8.6.2.1 Synopsis

SUBROUTINE PXFFTELL (IUNIT, IOFFSET, IERROR)
INTEGER IUNIT, IOFFSET, IERROR

8.6.2.2 Description

The subroutindXFFTELL() shall return the file position for the file connected to the lWNHT. The file position
returned in the argumelDFFSETshall be the number of bytes from the beginning of the file.

Table 8.14—Arguments for PXFFTELL()

FORTRAN

Argument Intent Notes
IUNIT IN

IOFFSET ouT 1.
IERROR ouT

1. Value may exceed the range of a signed integer; see 2.3.2.2.

Copyright © 1992 IEEE All Rights Reserved 79

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

8.6.2.3 Errors
Upon successful completion &XFFTELL), the argumentERRORshall be set to zero. If any of the following

conditions occurPXFFTELL() shall set the argument to the corresponding viitRRORmay be set to a nonzero
value to indicate error conditions that are not specified by POSIX.9.

[EINVAL] No file is connected tdUNIT.
[ESPIPE] ThdUNIT argument is connected to a pipe or FIFO.

8.6.3 Get a Character
SubroutinePXFGETQ), PXFFGETQ)
8.6.3.1 Synopsis
SUBROUTINE PXFGETC (CHAR, IERROR)
CHARACTER*1 CHAR
INTEGER IERROR
SUBROUTINE PXFFGETC (/UNIT, CHAR, IERROR)
CHARACTER*1 CHAR
INTEGER IUNIT, IERROR
8.6.3.2 Description
These subroutines shall read a byte from a file connected to an external unit. When a byte is read, the current file
position shall be incremented by one byte. FORTRAN 77 record processing shall not apply to bytes read using these

subroutines.

The PXFGETQ) subroutine shall read from the unit connected to standard input STDIN_UNIT and is equivalent to
the call

PXFFGETC(IPXFCONST(‘STDIN_UNIT’), CHAR, IERROR)

Table 8.15—Arguments for PXFGETC() and PXFFGETC()

FORTRAN

Argument Intent Notes
IUNIT IN

CHAR ouT

IERROR ouT

8.6.3.3 Errors

Upon successful completion BXKFGETQ) or PXFFGET(Q), the argumenERRORshall be set to zero. If any of the
following conditions occurPXFGETQ) and PXFFGETQ) shall set the argument to the corresponding value.
IERRORmay be set to a nonzero value to indicate error conditions that are not specified by POSIX.9.

[EEND] The end of file has been encountered.

80 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

8.6.4 Write a Character
SubroutinePXFPUTQ), PXFFPUTQ)
8.6.4.1 Synopsis
SUBROUTINE PXFPUTC (CHAR, IERROR)
CHARACTER*1 CHAR
INTEGER IERROR
SUBROUTINE PXFFPUTC (IUNIT, CHAR, IERROR)
CHARACTER*1 CHAR
INTEGER IUNIT, IERROR
8.6.4.2 Description
These subroutines shall write a byte to a file connected to an external unit. When a byte is written, the current file
position shall be incremented by one byte. FORTRAN 77 record processing shall not apply to bytes written using these

subroutines.

Table 8.16—Arguments for PXFPUTC() and PXFFPUTC()

FORTRAN

Argument Intent Notes
IUNIT IN

CHAR IN

IERROR ouT

The PXFPUTQ) subroutine writes to the unit connected to standard output {STDOUT_UNIT} and is equivalent to
the call

PXFFPUTC(IPXFCONST(‘STDOUT_UNIT’), CHAR, IERROR)
8.6.4.3 Errors

Upon successful completion BXFPUTQ) or PXFFPUTQ), the argumentERRORshall be set to zeréERROR
may be set to a nonzero value to indicate error conditions that are not specified by POSIX.9.

8.7 Bit Field Manipulation

The following subroutines and functions shall be provided to construct and manipulate bit patterns within an integer
variable. This functionality is required in order to achieve the range of capability provided by the system-defined
integer constants (i.e., the ability to combine such values into a single value to be sent to a system call).

8.7.1 Inclusive OR

Function:IOR()

8.7.1.1 Synopsis

INTEGER FUNCTION IOR (M, N)
INTEGER M, N

Copyright © 1992 IEEE All Rights Reserved 81

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

8.7.1.2 Description

The IOR() function returns the inclusive-or result of the bit patterns contained in the input arglunantkN, as
shown in Table 8.17.

Table 8.17—Definition of Inclusive-Or
Bitin Argument M Bitin Argument N Bit in Result

0 0 0
0 1 1
1 0 1
1 1 1

8.7.1.3 Errors

ThelOR() function is always successful, and no return argument is specified to indicate an error.
8.7.2 Logical AND

Function:IAND()

8.7.2.1 Synopsis

INTEGER FUNCTION IAND (M, N)
INTEGER M, N

8.7.2.2 Description

ThelAND() function returns the logical-and result of the bit patterns contained in the input argiviremddN, as
shown in Table 8.18.

Table 8.18—Definition of Logical-And
Bitin Argument M Bitin Argument N Bit in Result

0 0 0
0 1 0
1 0 0
1 1 1

8.7.2.3 Errors
ThelAND() function is always successful, and no return argument is specified to indicate an error.
8.7.3 Bitwise NOT

Function:NOT()

82 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

8.7.3.1 Synopsis

INTEGER FUNCTION NOT (M
INTEGER M

8.7.3.2 Description

The NOT() function returns the bitwise-not result of the bit pattern contained in the input argdmasishown in
Table 8.19.

Table 8.19—Definition of Bitwise-Not

Bit in Argument M Bit in Result
0 1
1 0

8.7.3.3 Errors

The NOT() function is always successful, and no return argument is specified to indicate an error.

8.8 System Date and Time

The following subroutine shall be provided to access the system clock basedTahetronment variable (see
POSIX.1 {2} 2.6).

8.8.1 Local Time
SubroutinePXFLOCALTIME)
8.8.1.1 Synopsis

SUBROUTINE PXFLOCALTIME (ISECNDS, IATIME, IERROR)
INTEGER ISECNDS, IATIME(9), IERROR

8.8.1.2 Description

The PXFLOCALTIME) subroutine converts the time (in seconds since the epoch)IBERINDSargument to local
date and time as described by the integer dAAME as shown:

IATIME(1)= Seconds (0-61)

IATIME(2)= Minutes (0-59)

IATIME(3)= Hours (0-23)

IATIME(4)= Day of the month (0-31)

IATIME(5)= Month of the year (1-12)

IATIME(6)= Gregorian year (e.g., 1990)

IATIME(7)= Day of the week (0 = Sunday)

IATIME(8)= Day of the year (1-366)

IATIME(9)= Daylight savings flag (0 = standard, nonzero = daylight savings)

Copyright © 1992 IEEE All Rights Reserved 83

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

Table 8.20—Arguments for PXFLOCALTIME()

FORTRAN

Argument Intent Notes
ISECNDS IN

IATIME ouT

IERROR ouT

If IATIME is not dimensioned to at least nine elements, the action perfornidHWOCALTIME) is undefined.

Local time as returned BIRXFLOCALTIME) is relative to the time zone defined by the current value GfZhigne-

zone environment variable (see POSIX.1 {2} 2.7) or based on implementation-defined default time-zone information
if TZ is absent from the environment. The environment varidBlean be set usingXFSETENY) (see 4.6.1). The

value ofTZ shall be as defined by POSIX.1 {2} 8.1.1.

8.8.1.3 Errors

Upon successful completion BXKFLOCALTIME), the argumenERRORshall be set to zero. If any of the following

conditions occurPXFLOCALTIME) shall set the argument to the corresponding vaERRORmMay be set to a
nonzero value to indicate error conditions that are not specified by POSIX.9.

[EINVAL] The current value of th&Z environment variable is invalid.

8.9 Command-Line Arguments
The following subroutines shall be provided to access the arguments of the command that invoked the application.
8.9.1 Get Command-Line Argument
SubroutinePXFGETAR®)
8.9.1.1 Synopsis
SUBROUTINE PXFGETARG (M, BUF, ILEN, IERROR)
CHARACTER*(*) BUF
INTEGER M, ILEN, IERROR
8.9.1.2 Description
The PXFGETARG) subroutine examines the command used to invoke the executing program and plattes the

command-line argument in the character stBhlf-. If M has a value of zero, the value of the argument returned is the
command name. The significant lengttBafF is returned inLEN.

84 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

Table 8.21—Arguments for PXFGETARG()

FORTRAN

Argument Intent Notes
M IN

BUF ouT

ILEN ouT

IERROR ouT

8.9.1.3 Errors
Upon successful completion BXFGETAR®), the argumentERRORshall be set to zero. If any of the following

conditions occurPXFGETARG@) shall set the argument to the corresponding véliRRORmay be set to a nonzero
value to indicate error conditions that are not specified by POSIX.9.

[EINVAL] The argumentM is out of range.

[ETRUNC] The declared length of the character argurBétit is insufficient to contain the string
to be returned. (See 2.3.2.4.)
8.9.2 Index of Last Command-Line Argument
Function:IPXFARGQ)
8.9.2.1 Synopsis
INTEGER FUNCTION IPXFARGC()
8.9.2.2 Description
The functionlPXFARGQ) returns the number of command-line argumeetsjudingthe command name, in the
command used to invoke the executing program. A return value of zero indicates that there are no command-line
arguments other than the command name itself.

8.9.2.3 Errors

The IPXFARGQ) function is always successful, and no return argument is specified to indicate an error.

8.10 Character String Procedures

8.10.1 Length of a String Trimmed of Trailing Blanks
Function:IPXFLENTRIM)

8.10.1.1 Synopsis

INTEGER FUNCTION IPXFLENTRIM (STRING
CHARACTER*(*) STRING

Copyright © 1992 IEEE All Rights Reserved 85

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

8.10.1.2 Description

The functionPXFLENTRIM) returns the index of the last nonblank character in the input arg@mBHNG or zero
if all characters ir6TRINGare blank characters.

8.10.1.3 Errors

ThelPXFLENTRIM) function is always successful, and no return argument is specified to indicate an error.

8.11 Extended Range Integer Manipulation
8.11.1 Unsigned Comparison
Function:PXFUCOMPARE)

8.11.1.1 Synopsis

SUBROUTINE PXFUCOMPARE (11, 12, ICMPR, IDIFF)
INTEGER 11, 12, ICMPR, IDIFF

8.11.1.2 Description

The subroutine®XFUCOMPARIE) is used to determine the difference between two integer arguments representing
unsigned (extended range; see 2.3.2.2) numbers.

Table 8.22—Arguments for PXFUCOMPARE()

FORTRAN

Argument Intent Notes
12 IN

12 IN

ICMPR ouT

IDIFF ouT

The argumentCMPR indicates the relative value of the two unsigned numbers, as shown in Table 8.22.

Table 8.23— ICMPR Return Values

Value of ICMPR Relation of 11 and 12
-1 11>12
0 11=12
1 11<I2

The argumentDIFF shall provide the absolute value of the difference aindl2.
8.11.1.3 Errors

The PXFUCOMPARE subroutine is always successful, and no return argument is specified to indicate an error.

86 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

8.12 Process Termination

Process termination shall occur when the FORTRAN 77 STOP statement is executed or the FORTRAN 77 END

statement in the main program is executed. This subsection describes the interactions of FORTRAN 77 process
termination with procedures defined by POSIX.9. These interactions define behavior that is undefined or unspecified
by FORTRAN 77 and do not modify or replace any behavior that is defined in FORTRAN 77.

8.12.1 Interactions of the FORTRAN 77 STOP Statement

The FORTRAN 77 STOP statement shall terminate the program with at least the consequeREFASTEXIT)

with a value for thdSTATUSargument. If the optional argument to STOP exists and is a string of digits, the
termination consequences shall be as if these digits were interpreted as the integer vall&TAfTth8argument.
Otherwise, the termination consequences shall be asIBTAd USargument was set to zero.

8.12.2 Interactions of the FORTRAN 77 END Statement

The execution of the FORTRAN 77 END statement in the main program shall terminate the program with at least the
consequences of calliXFFASTEXIT) with a value of zero for the status argument.

8.12.3 POSIX-Based Fortran Process Termination
Function:PXFEXIT)
8.12.3.1 Synopsis

SUBROUTINE PXFEXIT (ISTATUS)
INTEGER ISTATUS

8.12.3.2 Description

The PXFEXIT)) subroutine shall provide the same FORTRAN 77 functionality as execution of the FORTRAN 77
END statement in the FORTRAN 77 main program and shall provide the same POSIX.1 {2} functionality as the
POSIX.1 {2} function_exif) (see POSIX.1 {2} 3.2). There is no possible return value fFRXFEXIT) and no
IERRORargument is defined f&*XFEXIT(). Arguments foPXFEXIT) correspond to the arguments faxif), as

shown in Table 8.24.

Table 8.24—Arguments for PXFEXIT()

FORTRAN POSIX.1
Argument Argument Intent Notes

ISTATUS status IN

9. System Databases

9.1 System Databases

9.2 Database Access
9.2.1 Group Database Access

SubroutinesPXFGETGRGIR), PXFGETGRNAN)

Copyright © 1992 IEEE All Rights Reserved 87

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

9.2.1.1 Synopsis

SUBROUTINE PXFGETGRGID (IGID, JGROUP, IERROR)
INTEGER IGID, JGROUP, IERROR

SUBROUTINE PXFGETGRNAM (NAME, ILEN, JGROUP, IERROR)
CHARACTER*(*) NAME
INTEGER ILEN, JGROUP, IERROR

9.2.1.2 Description

The PXFGETGRGID) andPXFGETGRNAN) subroutines shall provide the same functionality as the POSIX.1 {2}
functions getgrgid) and getgrnanf) (see POSIX.1 {2} 9.2). Arguments foPXFGETGRGID) and
PXFGETGRNAN) correspond to the arguments §mtgrgid) andgetgrnan), as shown in Table 9.1.

Table 9.1—Arguments for PXFGETGRGID() and PXFGETGRNAM()
FORTRAN POSIX.1

Argument Argument Intent Notes

IGID gid IN

NAME name IN

ILEN -- IN Length of NAME; see 2.3.2.4
JGROUP ret_value IN 1.

IERROR ret_value/errno ouT

1. Handle obtained from PXFSTRUCTCREATE (‘group’,...); see 8.3.1.

ThePXFSTRUCTCREATEsubroutine (see 8.3.1) with the string ‘group’ given asSfiRUCTNAMErgument shall
be used to obtain a handle for an instance dfiixepstructure as defined in POSIX.1 {2} 9.2. Each component access
shall require one of the following structure-component manipulation subroutines (see 8.3.2):

SUBROUTINE PXFINTGET(JGROUP, COMPNAM, IVALUE, IERROR)
INTEGER JGROUP, IVALUE, IERROR

SUBROUTINE PXFSTRGET(JGROUP, COMPNAM, SVALUE, ILEN, IERROR)
INTEGER JGROUP, ILEN, IERROR
CHARACTER*(*) SVALUE

SUBROUTINE PXFESTRGET(JGROUP, COMPNAM, INDEX, SVALUE, ILEN, IERROR)
INTEGER JGROUP, INDEX, ILEN, IERROR
CHARACTER*(*) SVALUE

whereJGROUPIs a handle an@OMPNAMis a character expression which evaluates to one of the component names
shown in Table 9.2.

88 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

Table 9.2—Components for group Structure

POSIX.1

Component COMPNAM Structure Procedures Used to Access
gr_name ‘gr_name’ PXFSTRGET

gr_gid ‘gr_gid’ PXFINTGET

-- ‘gr_nmem’ PXFINTGET

gr_mem ‘gr_mem’ PXFESTRGET

The componengr_memis an array of character strings that can only be accessed one element at a time. The number
of elements ingr_memis contained in the componegt_nmem which isnot a structure component defined by
POSIX.1 {2}.

9.2.1.3 Errors

POSIX.1 {2} does not specify any error conditions that are required to be detecteddetaged) andgetgrnang)

functions. Upon successful completionRXFGETGRGID) andPXFGETGRNAN), the argumenERRORshall be

set to zero. If any of the following conditions ocd®XFGETGRGID) andPXFGETGRNAN) shall set the argument

to the corresponding valuEERRORmMay be set to a nonzero value to indicate error conditions that are not specified by
POSIX.1 {2} and POSIX.9.

[ENOENT] The requested entry could not be found.

9.2.2 User Database Access
SubroutinesPXFGETPWUIE), PXFGETPWNAN)
9.2.2.1 Synopsis

SUBROUTINE PXFGETPWUID (IUID, JPASSWD, IERROR)
INTEGER IUID, JPASSWD, IERROR

SUBROUTINE PXFGETPWNAM (NAME, ILEN, JPASSWD, IERROR)
CHARACTER*(*) NAME
INTEGER JPASSWD, ILEN, IERROR
9.2.2.2 Description
The subroutinePXFGETPWUIE) andPXFGETPWNAN) shall provide the same functionality as the POSIX.1 {2}

functions getpwuid) and getpwnar() (see POSIX.1 {2} 9.2.) Arguments foPXFGETPWUIF) and
PXFGETPWNAN) correspond to the arguments é@tpwuid) andgetpwnar(), as shown in Table 9.3.

Copyright © 1992 IEEE All Rights Reserved 89

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

Table 9.3—Arguments for PXFGETPWUID() and PXFGETPWNAM()
FORTRAN POSIX.1

Argument Argument Intent Notes

IUID uid IN

NAME name IN

ILEN -- IN Length of NAME; see 2.3.2.4
JPASSWD ret_value IN 1.

IERROR ret_value/errno ouT

1. Handle obtained from PXFSTRUCTCREATE (‘passwd’,...); see 8.3.1.

The PXFSTRUCTCREAT(IE subroutine (see 8.3.1) with the string ‘passwd’ given aSTRUCTNAMEargument
shall be used to obtain a handle for an instance @bewvdstructure as defined in POSIX.1 {2} 9.2. Each component
access shall require one of the following structure-component manipulation subroutines (see 8.3.2):

SUBROUTINE PXFINTGET(JPASSWD, COMPNAM, IVALUE, IERROR)
INTEGER JPASSWD, IVALUE, IERROR

SUBROUTINE PXFSTRGET(JPASSWD, COMPNAM, SVALUE, ILEN, IERROR)
INTEGER JPASSWD, ILEN, IERROR
CHARACTER*(*) SVALUE

whereJPASSWDs a handle anBOMPNAMis a character expression which evaluates to one of the component names
shown in Table 9.4.

Table 9.4—Components for passwd Structure

POSIX.1

Component COMPNAM Structure Procedures Used to Access
pw_name ‘pw_name’ PXFSTRGET

pw_uid ‘pw_uid’ PXFINTGET

pw_gid ‘pw_gid’ PXFINTGET

pw_dir ‘pw_dir’ PXFSTRGET

pw_shell ‘pw_shell’ PXFSTRGET

9.2.2.3 Errors

POSIX.1 {2} does not specify any error conditions that are required to be detecteddetpiivaiq) andgetpwnan()
functions. Upon successful completiolRFGETPWUIL) andPXFGETPWNAN), the argumenERRORshall be

set to zero. If any of the following conditions ocd@XFGETPWUIR) andPXFGETPWNAN) shall set the argument

to the corresponding valuEERRORmay be set to a nonzero value to indicate error conditions that are not specified by
POSIX.1 {2} and POSIX.9.

[ENOENT] The requested entry could not be found.

90 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

10. Data Interchange Format

10.1 Archivelinterchange File Format

The functionality described in this section in POSIX.1 {2} is outside the scope of this standard.

Copyright © 1992 IEEE All Rights Reserved 91

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

Annex A Rationale and Notes

(Informative)

The Annex summarizes the development of the FORTRAN 77 language binding to the ISO/IEC 9945-1: 1990 (IEEE
Std 1003.1-1990). It presents the deliberations of the developers of this standard, discusses design considerations and
alternatives, and provides notes of interest to application programmers and system implementors where ei*ppropriate.

This rationale is modeled after the rationale accompanying the existing ISO/IEC 9945-1: 1990 standard, and, like that
one, is organized such that the rationale follows the exact structure of the standard (with the exception of the
introductory sections, which cover additional material).

A.1 General

The development of FORTRAN 77 Bindings to the (at the time proposed) POSIX.1 {2} standard was first discussed
at the/usr/group/supercomputingieeting in June 1987. The discussion was initiated by supercomputer users anxious
to program in the POSIX environment. The first draft of this standard was presented in January 1988 to the FORTRAN
subgroup. After further subgroup work, the proposal was accepted by the committee and officially forwarsiéd by
groupto the IEEE P1003 committee in September 1988.

In January 1989, the P1003.9 working group was formed and was charged with developing FORTRAN Bindings to
POSIX. The document produced undesr/groupwas used as the base document, and subsequent work on the
standard focused largely on integrating characteristics of the FORTRAN programming environment and common
practice into the heavily UNIR-oriented POSIX environment. The group was comprised of a mixture of vendors and
users, with a variety of FORTRAN and UNIX expertise.

Following the acceptance of this first FORTRAN bindings standard, the committee will continue work on developing
FORTRAN bindings to other POSIX functional areas (e.g., IEEE P1003.2, P1003.4, etc.).

A.1.1 Scope

The areas declared as out of scope were done so for various reasons, but were primarily motivated by the desire to limit
the work to a small enough area that could gain the consensus of the affected community and still be of value to that
community. When a topic area was considered highly contentious, with nearly equal arguments both for including it
and against including it, the developers of this standard generally chose to exclude it from this standard. As a result a
number of “nice to have” or “convenient” features were not included. This approach was often softened by the belief
that this binding, because of its use of FORTRAN 77 and the imminent emergence of Fortran 90, could be viewed as
an interim standard. The coming Fortran 90 standard was a major reason for scope restriction (1), which avoided
significant extensions to FORTRAN 77 in this binding. The expectation of a subsequent binding using Fortran 90 was
a major factor in restriction (2), which avoids dealing with any part of Fortran 90 was a major factor in restriction (2),
which avoids dealing with any part of Fortran 90 in this binding. A combination of limited development resources and
lack of desire to “open Pandora’s box” caused restriction (3). Finally, the developers of this standard wished to
minimize the impact on existing implementations of FORTRAN 77 by the installation of these bindings. A fourth
scope limitation was in place throughout the development of this standard and well into balloting. That scope
limitation was: “Possible side effects to the operating system by standard FORTRAN 77 language constructs (e.g.,
READ, WRITE, STOP), or such side effects by I/O routines specified in Section 8 of this standard which operate on
files connected to FORTRAN 77 units (as opposed to POSIX.1 {2} file descriptors).” Significant ballot objections
were raised to this scope limitation.

3The material in this annex is derived in part from copyrighted draft documents developed under the sponsorship of UréRmatiranasngoing
program of that association to support the POSIX standards program efforts.
4UNIX is a trademark of Unix System Laboratories in the US and other countries..

92 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

FORTRAN /O in a POSIX.1 {2} environment is a highly contentious issue. POSIX.1 {2} I/O has no concept of a
record, a concept integral to FORTRAN 1/O. While POSIX.1 {2} I/O has some special behavior concerning the line
feed and null characters, this is not the same as FORTRAN records. The developers of this standard intentionally
avoided (as much as possible) specifying the underlying implementation of these bindings. It recognized that existing
implementations of FORTRAN I/O may need to exist in parallel with POSIX 1/O, where FORTRAN records might
have nothing to do with line feeds. However, due to ballot objections, the operating system side effects of “native”
FORTRAN 77 constructs, especially I/O constructs, were specified, but the side effects were limited to those files that
were explicitly created as POSIX-based FORTRAN 1/O files. Even the POSIX I/O flag was originally included only
after considerable debate, because guaranteeing the specified behavior is essential to constructing FORTRAN 77
utilities that are able to be piped with other traditional utilities (ead,,sort, grepetc.).

A.1.2 Normative References

In addition to the references used in the main body of this standard, the following standards or drafts under
development are referred to in this appendix:

{A1} ISO/IEC 1539:1991 Information technology-Programming languages-FORTRAN

{A2} ISO/IEC 9945-2:, Information technology-Portable Operating System Interface (POSIX)-Part 2: Shell and
Utilities

{A3} P1003.6/D12,Draft Security Interface Standards for POSIX.

{A4} MIL-STD-1753, Military Standard: FORTRAN, DOD Supplement to American National Standard X3.9-1978.
A.1.3 Conformance

A.1.3.1 Implementation Conformance

There is no additional rationale provided for this subclause.

A.1.3.2 Application Conformance

There is no additional rationale provided for this subclause.

A.1.3.3 Language-Dependent Services for the FORTRAN 77 Programming Language

There is no additional rationale provided for this subclause.

A.1.3.3.1 FORTRAN 77 Language Binding

Further information on issues and discussions related to FORTRAN 77 standard conformance is given in 2.3.2.1 and
2.3.2.4.

A.1.3.4 Other Language Related Specifications

The FORTRAN 77 standard defines the functiGhAR)) andICHAR() with respect to some implementation-defined
collating sequence. For details see Section 3.1 of the FORTRAN 77 {3} standard, especially Section 3.1.5, concerning
the collating sequence, and see Section 15.10 of the FORTRAN 77 {3} standard, note (5) Table 5, for the description

of CHAR) andICHAR() as mapping to this implementation-defined collating sequence. While this collating sequence
must at least contain the 49 FORTRAN 77 characters in the order specified, special characters might, for example,

5To be approved and published.

Copyright © 1992 IEEE All Rights Reserved 93

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

come before the alphabet. Therefore, there is normally no guarantee in FORTRAN 77 that CHAR(O) equals the C-
language character \0’. CHAR(O) simply equals whatever is the first character in the collating sequence.

A.2 Terminology and General Requirements

A.2.1 Conventions

A.2.1.1 Typographical Conventions

There is no additional rationale provided for this subclause.

A.2.1.2 Namespace Conventions

There is no additional rationale provided for this subclause.

A.2.1.2.1 Subroutine Naming

There was a great deal of debate about the prefix to be used for procedure names. It was agreed that the prefix needed
to be fairly unusual, to minimize naming conflicts with names in existing application code, and short, to maximize
usability. In early drafts, the prefix77 was used. This convention was strenuously objected to by members of the
ANSI Fortran 90 committee. (In fact, they voted unanimously against it.) The chosenRX€&fis a shorthand

notation for POSIX-FORTRAN, which represents the bridge between the two worlds. Since naming conventions are
personal, aesthetic choices, it is unlikely that any prefix chosen will be considered acceptable t& XIF itedix,

it is hoped, will be objectionable to the fewest.

A.2.1.2.2 Function Naming

There was some debate over whether or not to prefix functions returning an integer with the letter | and functions
returning a logical with the letter L. Some thought a consistent use BXthprefix in all procedures was better, and

some wanted to take into account the historical carelessness of FORTRAN programmers, who are used to letting
variables and functions be undeclared and thus be declared implicitly. The ease-of-use argument won out for the |
prefix, which implicitly declares the function to return an integer, but since there was no equivalent argument for
logical functions (an L prefix implicitly causes an integer return), the L prefix was dropped.

A.2.2 Definitions

A.2.2.1 Terminology

There is no additional rationale provided for this subclause.

A.2.2.2 General Terms

The termintentis derived from the Fortran 90 standard, where it is a keyword used to describe the intended usage of
an actual argument. In Fortran 90, an “intent out” argument guarantees that the variable declared will be set by the
subprogram. This standard does not intend that usage, but only the looser, English usage; namely, what the argument
is intended to be used for: passing arguments to or from the subprogram.

A.2.2.3 Abbreviations

There is no additional rationale provided for this subclause.

94 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

A.2.3 FORTRAN 77 Language Bindings Concepts

This section of the rationale is used to present many high-level objectives and design alternatives considered in the
development of the FORTRAN 77 bindings. The topics and issues discussed here are those that have broad effects on
the bindings specification. Full specifications and low-level technical details associated with the interfaces are
provided in the appropriate sections elsewhere in the rationale.

A.2.3.0.1 Choice of Standards
A.2.3.0.1.1 FORTRAN 77 Versus Fortran 90

A fundamental issue addressed by the developers of this standard early in the standard-development process was the
choice between using FORTRAN 77 or Fortran 90 as the base language for this standard. A summary of the issues
related to both possibilities follows.

O FORTRAN 77 The work of the established FORTRAN community is predominantly based on the
FORTRAN 77 language. Many FORTRAN 77 applications will be ported to POSIX-conforming systems,
and new application code will continue to be written in FORTRAN 77 on such systems. In order to provide
utility to the established community, it is necessary to work with FORTRAN 77. Furthermore, the size of the
FORTRAN 77 community guarantees that it will continue to be an effective standard for the indefinite future.

O Fortran 90 The emerging Fortran 90 standard provides many language features that could be used effectively
in developing a bindings standard. For example, the presence of structured data types will allow the use of
more traditional (in the POSIX environment) data handling techniques. However, there are several drawbacks
associated with using Fortran 90 at its inception, most notably its lack of presence in the FORTRAN
community. Having just been finalized during the late stages of the FORTRAN 77 bindings development, but
not formally approved as a standard by start of balloting of this standard, it will probably be several years
until it is in widespread use.

NOTE — Although the decision was made to produce this FORTRAN 77 Binding first, the developers of this standard have
already begun work on a Fortran 90 Binding. This future Binding will take advantage of the new features provided in
Fortran 90, but is intended to coexist with this FORTRAN 77 binding, both as a standard and as an implementation.

A.2.3.0.1.2 POSIX Language Independence

In early 1990, the IEEE, in response to direction from 1ISO, mandated a formal change in the structure of the POSIX
standards, namely, a shift towards a more dear division of work belavgprage-independent functional standards
andlanguage binding$o those functional standards. Using this structure, all functional standards are to be specified
in a language-independent style and a language binding is always to be correlated to the appropriate functional
standard. This division of work forces the functionality to be specified in a more abstract style and provides the
language binding developers more freedom to develop a binding that is particularly appropriate for their language.

The most specific target of this division of work is the fact that all earlier POSIX work was specified using the C
language, a convention that resulted in the dependence on C-Language-specific features in many areas. Included in this
body of earlier work was the now obsolete IEEE Std 1003.1-1988, which was used as the functional basis for this
FORTRAN 77 Binding. Because this new division of work within POSIX was so late in gaining momentum, the
language-independent version of POSIX.1 {2} is scheduled to be balloted after this standard; therefore, the developers
of the P1003.9 standard used the existing POSIX.1 {2} standard as the reference specification. The result of this
decision is that many of the technical decisions the developers have made deal with the differences between the C and
FORTRAN 77 languages. In fact, the issues confronted by the developers of this standard have led to extensive
feedback to the developers of the language-independent specifications. The language-independent specifications
should begin appearing in the future, and subsequent language bindings work will use these newer specifications as
base reference standards.

Copyright © 1992 IEEE All Rights Reserved 95

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

A.2.3.0.2 Design Objectives
The primary goals behind the design of this standard were as follows:

1) Standardization and System Independenieorder to achieve complete portability, following existing
standards as closely as possible was the foremost objective. More specifically, the ANSI X3.9-1978
FORTRAN {3} standard was the primary basis of the language requirements; with one exception (long
identifier names; see 1.2.3.1 and A.2.3.0.4.1), there are no dependencies on language extensions.

2) ConsistencyThe FORTRAN 77 language bindings must present a consistent user and system interface.
Additionally, this binding definition should be capable of serving as a model for future development of
FORTRAN 77 bindings to other areas of POSIX functionality, and possibly for other programming languages
binding to POSIX.

3) Integration of FORTRAN 77 and UNIXhis was of course the motivation for the development of these
bindings: to allow effective FORTRAN 77 programming in a UNIX (POSIX) environment. Preserving the
key elements as well as accepted or common practices of both of these environments was essential. Among
the developers of this standard, this issue was often referred to as “FORTRAN-ness versus UNIX-ness.”

4) Run-Time Performanc®erformance is always a concern, but it was definitely not as crucial as the previous
goals. In order to achieve the three primary goals, some performance efficiency may be sacrificed; however,
the overall benefits of achieving the above objectives far outweigh the lost efficiency. Also, whenever
possible, notes have been made in this rationale to describe possible implementation alternatives that may
enhance performance. However, the developers of this standard did attempt to avoid precluding a
performance-efficient implementation or extensions to provide efficiency.

A.2.3.0.3 Design Strategy

Consistency was a major goal throughout this standard. There is a direct correspondence between the POSIX.1 {2} (C
language) bindings and these FORTRAN 77 language bindings. There is a FORTRAN 77 interface defined for every
POSIX.1 {2} system call, plus a few additional procedures that are necessary for achieving the complete POSIX.1 {2}
functionality. In practice, it is most likely that the initial FORTRAN 77 language bindings would be implemented as a
set of interface procedures built on top of the existing C-language system calls.

In order to implement this design strategy of corresponding C/[FORTRAN system interfaces, a convention had to be
developed to differentiate the FORTRAN 77 procedures from the C system routines (the same names could not be
used; see A.2.3.0.4.1). Therefore, the convention of prefixing the three characters PXF to the actual system routine
name was used. With this design, using the system calls from FORTRAN 77 is very similar to using them from C; i.e.,
with a few exceptions, the calling sequences of the FORTRAN 77 and C versions are identical.

A.2.3.0.4 Extensions to and Deviations From the FORTRAN 77 Standard

In the early development of these FORTRAN 77 bindings, various technical proposals required extensions to and
deviations from the ANSI X3.9-1978 FORTRAN {3} standard One such extension — the use of identifier names
greater than six characters in length — was retained, but all others were discarded.The rationale for these decisions
follows.

A.2.3.0.4.1 Length of Identifier Names

The ANSI X3.9-1978 FORTRAN {3} standard states that identifier names can contain only six characters. In practice,
most implementations allow identifiers much longer than six characters, although some still require uniqueness within
six or eight characters. However, most newer systems provide a higher limit for uniqueness; it was this precedent that
the developers of this standard chose to follow.

This FORTRAN 77 bindings standard specifies identifiers containing up to 15 characters, requiring a maximum of 11

to determine unigueness (this “worst case” occurs in the structure-handling routines; see 8.3). Rather than use this
limit as the general requirement, the developers of this standard decided to adopt the 31-character limit that is common

96 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

among implementations and is specified by POSIX.1 {2} (see POSIX.1 {2} 1.3.5), the Fortran 90 {A1} standard, and
the IEEE P1003.2 {A2} standard, the latter in its section concerning the execution environment of languages. This
higher limit will provide sufficient flexibility for binding to other POSIX functional areas, as well as support for
implementing system- and site-dependent extensions to POSIX in a consistent style.

The decision to require this extension to the FORTRAN 77 language faced much opposition in the early development
of this standard. Several alternatives were suggested to avoid the need for the longer identifier names. These
alternatives, and their rebuttals, are summarized below.

O Choose names that fit within the six-character lidait encoding of all the bindings into six characters would
result in a cryptic name space that would greatly decrease usability. It would also defeat the goal of having a
consistent and direct name correspondence with the C-language bindings. Furthermore, the six-character
limitation is thought to be based on old compilers and linkers from physically addressed machines with small
(e.g., 64 Kbyte) address spaces. Most compilers and linkers already allow far more than six characters.

O Choose names that fit within an eight-character lirttitwas argued that eight characters was a good
compromise, since it is nearlyda factostandard minimum length for industry linkers. At an early stage of
development, the developers of this standard proposed a set of conventions by which the names of the
bindings interfaces (as of that time) could be converted into a set that was unique in eight characters.
However, as the bindings matured, these conventions were soon inadequate. This scheme was abandoned as
a result of its limited flexibility and extensibility.

O Specify a preprocessor to convert the long binding names into a six- or eight-character erfspeaiying
such a preprocessor would be difficult, and its presence would represent a substantial modification of the
common FORTRAN programming environment. Of course, a vendor could choose to provide a preprocessor
as a last resort, although it is thought that it would be strongly resisted by the user community. Another option
would be for the compiler to recognize all binding interfaces as intrinsics, although this too has undesirable
effects on the implementation.

O Use the same interface names as the POSIX.1 {2} stantlisl.alternative requires the implementation
compiler and/or linker to be able to differentiate between source languages (e.g., by attaching a language
identification to each symbol table entry). This scheme suffers from the potential flaw of impeding the linking
of multiple-language programs. A practical drawback is the substantial implementation effort that this
scheme might require.

O Use the “single-entry-point” methodn this scheme, all bindings would be accessed through a single
common interface, [e.g., SYCALL('RENAME',...) instead of PXFRENAME(...)]. Besides introducing
another standard deviation (variable-length argument lists; see A.2.3.0.4.2), it contained potential problems
with program size, due to the static linking model common to UNIX systems, and might impair usability by
hiding useful program development and debugging information.

A.2.3.0.4.2 Variable-length Argument Lists

Early drafts of this standard included instances of procedures requiring variable-length argument lists; however, such
argument lists are in violation of the FORTRAN 77 standard. This was viewed as a significant deviation, as many
compilers and linkers check the length of argument lists and issue warnings or errors for length mismatches. In order
to accommodate variable-length argument lists, this useful diagnostic capability would have to be removed from those
implementations.

Other options were examined, such as
1) Requiring the maximum number of arguments and passing null or zero values for the unused arguments, and
2) Specifying different versions of the same procedure to be used based on the number and/or type of actual

arguments

However, each alternative has severe usability drawbacks. It was instead decided to modify or remove the specification
of the nonconforming procedures to eliminate the problem. The routines that required the variable-length argument

Copyright © 1992 IEEE All Rights Reserved 97

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

lists were recognized as redundant, so they were removed with no loss of functionality in this standard. See 3.1.2 and
A.3.1.2 for descriptions and further information about the specific procedures that caused this issue to be addressed.

A.2.3.0.4.3 Variable-Type Arguments

Early drafts of this standard specified a different implementation of the data abstraction concept that was used to
access aggregate data (see 2.3.2, 8.3): rather than specify a different component-access routine for each different base
type, a different access routine was specified for each unique structure. Using the older method, if a structure contains
components of differing types, the type of the argument to the access routine will vary according to which component

is being accessed. Other past proposals relied on a similar flexibility, including the “single entry point” alternative
discussed in A.2.3.0.4.1. Early readings of the ANSI X3.9-1978 FORTRAN {3} standard seemed to reveal a lack of
definition in the relevant areas, but an interpretation from the ANSI Fortran committee, X3J3, indicated that such
generic-type behavior is in fact in violation of the standard. An excerpt from the interpretation follows:

“There is no way in FORTRAN 77 that a user can provide the generic behavior of intrinsic functions.
Therefore, a standard conforming set of language bindings to a set of supplied library functions requires type
matching...”

While this generic-type functionality is available on many systems, the developers of this standard decided to modify
the nonconforming areas of the bindings to remove the need for it. Consequently, the data abstraction implementation
was modified as mentioned above.

A.2.3.0.4.4 Character Set Restrictions

Lowercase alphabetic characters are not strictly conformant to the standard, although their use is a very commonly
implemented extension. Binding names in the proposal were previously shown in lowercase, more for aesthetic
presentation than with an intent to require an implementation to support this extension. After encountering standard-
based objections to this, all procedure names were changed to uppercase, since this is in agreement with the ANSI
X3.9-1978 FORTRAN {3} standard.

Many implementations that support both cases fold the cases to one. Thus, alternatives that require a distinction to be
recognized between uppercase and lowercase were not considered.

Another nonstandard convention in an early draft of these bindings was the use of the underscore character, which is
not part of the character set of the FORTRAN 77 language standard. All of the function names bdgan wiitht
were later changed to use ji5t7 (and then td®XF) as the prefix.

A.2.3.0.4.5 MIL-STD-1753 Extensions

The MIL-STD-1753 {A4} Extensions to the FORTRAN 77 standard provide additional functionality both in terms of
language constructs and intrinsic routines; examples include a mechanism for inclusion of headers, and routines to
perform bit-manipulation operations. Because this set of extensions is implemented on many systems, it was suggested
that this standard either require them to be implemented fully or at least borrow portions of the functionality to meet
specific needs. The examples given above (file inclusion, bit manipulation) were among the most obvious examples of
functionality that might prove beneficial to the development of this standard. However, it was determined that these
extensions areot implemented on a substantial number of systems; that MIL-STD-1753 {A4} requires these bit-
manipulation procedures to be implemented as externals, and they are often intrinsics; and also that the functionality
provided by the complete set of extensions was in fact not critical or highly desirable. Therefore, the rEdision

require the MIL-STD {A4} Extensions was among the earliest actions of the developers of this standard.

Much of the debate in this area centered on the file inclusion mechanism; see A.2.3.1.1.2 for a technical discussion. A
limited set of bit-manipulation operations are required by this standard, and those defined in this standard are
functionally equivalent to those defined in MIL-STD-1753 {A4}; see 8.7 for their specification. No other constructs or
routines from these Extensions are intentionally duplicated in this standard.

98 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

A.2.3.1 System Headers

The POSIX.1 {2} standard specifies many headers intended for inclusion within programs through the use of the
preprocessor defined for the C language. These headers contain defingignbaifc constants and macr@ecause

FORTRAN 77 does not provide equivalent functionality, alternate techniques were developed to provide the required
functionality. The following sections introduce the chosen techniques, as well as several others that were considered.

A.2.3.1.1 Symbolic Constants

This standard defines additional interface routines that provide access to symbolic constants defined in POSIX.1 {2}.
These routines are introduced in 2.3.1.1 and defined fully in 8.2. The following two clauses discuss two alternate
techniques for providing the required functionality. Neither of these methods was ever considered to the point of
actually being included in a draft of this standard, but the discussion provides valuable background material.

A.2.3.1.1.1 Proposed Use of a Preprocessor

Ideally, symbolic constants should be defined and used the same way they are in POSIX.1 {2} (i.e., in the C language).
Unfortunately, a symbolic preprocessor scheme similar to (or identical to) that defined for the C lacgmagadt
implemented by most vendors, and the concept is foreign to most FORTRAN 77 programmers. Even if implemented,
the FORTRAN 77 language imposes certain restrictions that limit the usability and usefulness of such a mechanism.
Additional relevant information is given below:

O Unlike C, symbolic names are cassensitive in FORTRAN 77. Thus, the C convention of defining
constants in uppercase to easily distinguish them from real variable names would be of no help. This makes
it difficult to define a set of largely invisible, yet readable symbolic constant names that are unlikely to clash
with existing user variable names. (FORTRAN 77 programmers are also case-insensitive. Some only use
uppercase. Some only use lowercase — a common ANSI extension. Some even mix cases.) Further, if any set
of names chosen is different from the C binding names, a parallel set of headers would have to be maintained.

O Variables need not be declared in FORTRAN 77. Thus, a programmer might accidentally use a common
constant name while neglecting to include the correct file. The mistake would not only not be flagged at
compile time, but would be difficult to track down at runtime! (For example, IF IERROR .EQ. ENOENT)...)
Misspelled names would also be a problem.

O Spaces are not significant in FORTRAN 77. A preprocessor might have to be smart enough to parse the entire
language in order to properly isolate tokens for substitution.

O FORTRAN 77 source is line-oriented and limited to 72 characters per line. Textual substitution (e.g., as in
cpp) would have to be cognizant of this restriction and reptacgaracter symbolic names with n-character
numeric constants. This may be a problem if the symbolic name is short but the constant is long (e.g., a
constant like HUGE or MAXVAL).

O C programmers are used to debugging in an environment with a well-defined preprocessor, which is basically
part of the language. Programmers who are less familiar with preprocessors may easily get confused when
they ask the debugger for the value of a symbolic constant and the debugger does not know about it. This is
especially true if language considerations, such as those above, make preprocessing more complex. (Take, for
example, a C++ interpreter.)

It is clear that the existing C preprocesspp, would not be fully capable, and the specification of an appropriate tool
would be a difficult task. The developers of this standard decided that pursuing this approach would not be beneficial.

It should be noted that while the developers of this standard chose not to require any preprocessing mechanism, this
decision should in no way be taken as an attempt to preclude the use of preprocessors. An implementation could
choose to define its own preprocessing system that could replace all calls to the symbolic constant access routines with
the appropriate values at compile time. Such preprocessors may be vendor- or site-dependent.

Copyright © 1992 IEEE All Rights Reserved 99

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

A.2.3.1.1.2 Proposed Use of the MIL-STD-1753 INCLUDE Mechanism

Another potentially attractive alternative is the INCLUDE statement as defined in the MIL-STD-1753 {A4}
Extensions (but not the ANSI X3.9-1978 FORTRAN {3} standard used in conjunction with the FORTRAN 77
PARAMETER statement, which defines the equivalent of a constant. However, this approach has several
disadvantages and was discarded by the developers of this standard. The rationale behind this decision is given below:

O Since there are no global variables in FORTRAN 77, header files must be incleded/program unit (i.e.,
subroutine or function) that uses a constant, not just at the beginning of the compilation unit. This
coordination problem is compounded by the capability of independent compilation of a program and any
procedures and/or libraries it may use. This is very inconvenient for the programmer.

O Each PARAMETER statement in each include file is entirely processed by the compiler, not by a
preprocessor. This is likely to increase compile time substantially.

O Since the syntax is different from C, even if the symbolic names chosen are the same as the C binding names,
a parallel set of include/header files must be maintained.

O Constraints on statement ordering in FORTRAN 77 may restrict the contents of include files to just parameter
statements (e.g., no function declarations) and may require precise positioning of the INCLUDE statement
within each program unit.

O Again, the MIL-STD-1753 {A4} Extensions are not a part of FORTRAN 77, and are not implemented on all
systems. Requiring them to be implemented would be an unreasonable burden on vendors who do not
currently support them. (See A.2.3.0.4.5 for further discussion of the consideration of the MIL-STD-1753
{A4} Extensions.)

A.2.3.1.2 Macros

Another common C-language feature used in the POSIX.1 {2} standard is the macro capability. These macros reside
in system headers and are accessed from application code in a manner similar to a standard function call. However, the
C preprocessor performs macro substitution at compile time, thus eliminating the run-time overhead associated with a
standard function call. FORTRAN 77 does not provide any equivalent feature, so two options were discussed.

The approach adopted by the developers of this standard is to specify all functionality, including that explicitly
provided with macros in POSIX.1 {2}, through separate interfaces. Therefore, each macro specified in POSIX.1 {2}
corresponds to a distinct routine in this standard.

The initial approach taken by the developers of this standard was to specify a generalized utility for accessing the
functionality provided in macros in POSIX.1 {2}. This utility was a single interface routine that accepted the name of

the desired macro and the required arguments and returned the appropriate result. This scheme was rejected for the
following reasons:

O In order to accommodate the full set of macros specified in POSIX.1 {2JPXeMACRQ) function
required the use of a variable-length argument list. As discussed earlier, it was decided to eliminate variable-
length argument lists (see A.2.3.0.4.2).

O ThePXFMACRQ) function also required the use of variable-type arguments, as the types of the arguments
would have to vary according to the macro being specified. As discussed earlier, the developers of this
standard decided to eliminate variable-type arguments (see A.2.3.0.4.3).

O In POSIX.1 {2}, the distinction between functions and macros is sometimes vague. This could create
confusion within this standard due to uncertainty as to exactly which functionalities should be provided
through thdPXFMACRQ) utility or as separate interfaces.

The separate-interfaces approach that was adopted eliminates the need to accept any of the deficiencies of the
generalized approach.

100 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

Although this standard provides only interfaces corresponding to those macros specified in POSIX.1 {2}, it is intended
that this same model could be used to provide a consistent FORTRAN 77 binding to additional system- or site-
dependent macro functionalities.

A.2.3.2 Data Types

There is no additional rationale provided for this subclause.
A.2.3.2.1 Primitive Data Types

There is no additional rationale provided for this subclause.
A.2.3.2.2 Numeric Range of Integer Data

A potential problem results from the fact that FORTRAN 77 provides only one integer data type, whereas C provides
several $hort, long, unsigngdin all but a few cases, the FORTRAN INTEGERIs sufficient to accommodate the
intended usage specified in POSIX.1 {2}. However, there are a few cases where it is likely that the lack of an unsigned
integer in FORTRAN 77 may limit its ability to provide functionality equivalent to that provided by the C language in
POSIX.1 {2}. The specific cases where this problem may arise are values related to time and file offsets. (Regarding
time, it is less of a concern for those with units of seconds — they will not expire until about 2033 A.D. However, those
measured in CLK_TCKs may expire substantially sooner than expected.) Technical details and a mechanism for
dealing with this problem are described below.

Assuming that a FORTRAN 7INTEGER is the same size as a C long (as is true on a large number of
implementations), the FORTRAN 77 (signed) variable will be able to store values providing only half the range of the
C (unsigned) variable. Actually, the FORTRAN 77 variable can in fact contain the same range, but cannot be
conveniently or portably used (compared) beyond the signed integer range without great difficulty. Therefore, this
standard provides a subroutine that provides comparison of two integer values that may contain extended-range
(unsigned) values. This routine is specified in 8.11.

A.2.3.2.3 Aggregate Data Types

Another of the early fundamental decisions was to use the data abstraction technique in order to hide the complexities
of managing aggregate data types from the FORTRAN 77 programmer. This decision led to the consideration of
several specific proposals for structure access and manipulation procedures; see A.8.3 for discussion of these various
alternatives for specific routines.

As with the other somewhat creative solutions devised, the decision to specify additional interfaces to implement the
data abstraction model was not without considerable debate. The following alternate approaches were discussed at the
earliest stage of development, but never seriously considered. They are provided here for additional technical detalil
and background:

O Use no structure-access procedyr@sst add all of the structure members to the argument list of the
appropriate system procedures. The advantage is that no additional procedures are required, but the
disadvantage is that there is no extensibility (e.g., structure members added or removed, addition of system-
specific structure members). Furthermore, the affde¥edinterface procedures become severely modified
and are then inconsistent with the otRe{F procedures, in terms of correspondence to the POSIX.1 {2}
interface definitions.

O Use the FORTRAN 77 EQUIVALENCE constmith a local memory buffer to access the data stored in a
system structure. Again, the advantage is the lack of additional structure-access procedures, but the
drawbacks are severe: applications using this technique would be largely nonportable, as it requires intimate
machine-level knowledge of data storage conventions (of course, such information would likely be
implementation-dependent).

Copyright © 1992 IEEE All Rights Reserved 101

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

O Use the FORTRAN 77 COMMON block constmith a named COMMON for each structure. Again, the
advantage is the lack of additional structure-access procedures, but the drawbacks are similar to the
EQUIVALENCE construct and are again severe. Applications using this technique would also be largely
nonportable due to implementation-dependent data storage conventions, and a nonstandard mechanism
would be required to map the FORTRAN 77 COMMON block to the system structure. With the lack of either
a “global” variable construct or a standard INCLUDE feature, the requirement for coordination of the
existence of the COMMON block in every routine that needed it would be a problem. Further, any attempt at
some form of INCLUDE would impose the variable names in the COMMON block on the program
namespace, inviting conflict.

The most contentious issue was potential performance degradation resulting from the additional run-time overhead
incurred by additional procedure calls for every structure access. While this may be a reasonable consideration for
certain applications on certain systems, the developers of this standard felt that the programming model presented by
the data abstraction technique is far superior to the alternatives. Furthermore, the cost of a library call is generally an
order of magnitude less than the cost of a system call. Assuming that the structure-access procedures are implemented
as library routines, the cost of their use is therefore very small relative to the cost of the associated system call.

In addition, the developers of this standard also hoped to define a construct that would easily deal with the concept of
a NULL pointer to a structure, which exists throughout POSIX.1 {2}. Restricting valid handle values to nonzero
values permitted reserving the handle value of zero as an equivalence to a NULL pointer, which intuitively matched
the C construct.

See 8.3 and A.8.3 for specification and discussion of the issues related to the actual structure-access procedures.
A.2.3.2.4 Character Strings and String Manipulation

In C, character strings are terminated with the NULL character, which is defined to be \0’, but FORTRAN 77 strings
are blank-padded and not NULL-terminated. It is the responsibility of the implementation to handle this difference
where necessary (e.g., in a system that implements this standard on top of existing C bindings).

Due to the requirements of FORTRAN 77, the maximum length of an actual string argument is always known in a
called procedure where it is a formal argument. Assignment of a sequence of characters to the string where the length
of the sequence of characters is greater than the length of the string will result in truncation.

Strings (declared CHARACTER*(*) as dummy arguments) in FORTRAN 77 are fixed length and are blank padded.
Because of these definitions, it is difficult to differentiate between a string thaipssedo contain trailing blanks

and one that has simply been blank-padded according to the language definition. The remainder of this section is
devoted to the discussion of this issue and the options considered for use in this standard.

The issue of significant trailing blanks provoked extended discussion among the developers of this standard. A
problem arises because FORTRAN 77 defines character strings to be fixed length and blank padded, i.e., there are no
variable-length strings. This causes difficulties when dealing with many string entities commonly used throughout
POSIX.1 {2}, such as path/filenames and environment variables. For example, if a user writes the following code:

CHARACTER*14 C

C = ‘foo’

CALL PXFOPEN(C,....)
is the name of the file that is opened ‘foo’ or AMAAAAAAAAN' (whereA represents a blank character)? If the latter
is the case, unusual filenames will abound on the system; potentially there will be strings differing only in the number
of trailing blanks they contain, making it extremely difficult to distinguish between them. For example, another
program may use

CHARACTER*12 C

102 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

C = ‘foo’
CALL PXFOPEN(C,....)

This opens differentfile than the previous program. Common utilities suds asdrm would fare poorly, and users
of FORTRAN 77 applications using this standard could be very unsatisfied.

The other option — ignoring any trailing blanks — seems more sensible but creates another difficulty. If a filename or
environment variable value exists on the system dbats contaima trailing blank, how does the FORTRAN 77
application access it? POSIX.1 {2} defines the portable filename character set so that it does not contain blanks, but
admits the possibility (indeed the probability) of filenames containing nonstandard characters. This leads to a scenario
where a FORTRAN 77 application might, for example, back up all the files on a storage device and be unable to work
with those files (perhaps created by an errant C or shell application) that are named with filenames containing trailing
blanks. Therefore, the developers of this standard deemed this option equally unacceptable.

In order to address this problem, a set of guidelines were determined to measure potential solutions:

O All functionality available from C must be available from FORTRAN 77 (provided the solution teamot
unusable for the user or implementor).

O The user must be protected (if not prevented) from careless creation of filenames with trailing blanks.

O Performance is important. Solutions that require the string to be parsed in each call are unacceptable.

The committee explored several options covering the range of possibilities considered, including the second form that
was retained:

O Implicit but exact lengthFor all routines that pass character strings, the user is required to pass the exact
substring required by the subroutine. In the example above,
C = ‘foo’
CALL PXFOPEN(C(1:3),....)
or more likely, using the function defined in Section 8:
CALL PXFOPEN(C(1:IPXFLENTRIM(C)),....)

Although passing explicit length arguments is available to FORTRAN 77 programmers, the developers of this

standard considered this option unacceptable because:

1) It creates a high probability of the creation of unusual (trailing blank) filenames, especially by
inexperienced users;

2) ltisinaesthetic, difficult to use, and performs poorly (the first choice requires the user to save or recreate
the length of each string; the latter requires the string to be scanned for the first nonblank in each call);
and

3) It creates a burden on the user to work with an unusual corner case.

O Explicit length passedAll procedures that pass character strings require an additional length parameter.

Thus, to link ‘foo’ to ‘bar’, the following code would be used:

C = ‘foo’
D = ‘bar
CALL PXFLINK(C,3,D,3)

Besides having many of the same problems as the above implicit-length approach, this solution raised the

objection that FORTRAN 77 was designed to avoid length passing and that FORTRAN 77 users would rebel

at passing string lengths explicitly (as was required in FORTRAN 66).

O “Global” variable. A global variable, or context, is set to indicate whether or not trailing blanks are to be
ignored, such as the following:
C =‘foo Al
CALL PXFTRAILINGBLANKSARESIGNIFICANT(.TRUE.)
CALL PXFOPEN(C,...)

This option still requires a length to be passed in case trailing blanks are significant, so
CALL PXFOPEN(C,4,...)

is the calling sequence. This option creates problems similar to those encountered in “explicit length passed”.

Copyright © 1992 IEEE All Rights Reserved 103

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

0O Embedded escape characteBlanks are not significant unless preceded by an escape character (e.g.,
backslash). This requires all strings to be scanned for escape sequences and possibly translated by the system,
which was deemed unacceptable. A combination of global variables and embedded escape characters was
suggested: Escape characters are only special if the flag is set. This option was similarly rejected as being
complex and unwieldy.

O Remove trailing blanksDisallow trailing blanks except in contexts where absolutely necessary [e.g.,
PXFREAL)]. This solution differentiates between two character constructs (abstract data types): strings and
character buffers. Each character usage is examined to determine which of these choices is appropriate (in
some cases both are appropriate). For those where “string” is chosen, trailing blanks are ignored. It was
suggested that all pathnames, login and group names, and the names of environment variables were likely
candidates for the “string” category. As previously discussed, this makes such strings with trailing blanks
inaccessible from FORTRAN 77. After seeing the drawbacks of the other choices, some developers of this
standard thought that this option was relatively acceptable; after all, FORTRAN 77 applications would still be
able to access any file that is “creatable” from FORTRAN 77. Besides, FORTRAN 77 potentially is able to
create filenames with embedded NULL characters that are inaccessible from C, so there are other instances of
definite incompatibilities in this area. However, this approach was eventually discarded also.

From all the above discussions, option (2) was the eventual choice, albeit in a slightly modified form. The modification
is that the programmer can specify the length as zero when trailing blanks are to be ignored, such as (using the example
from above):

CALL PXFLINK(C,0,D,0)
would link ‘foo’ to ‘bar’ and
CALL PXFLINK(C,4,D,0)

would link ‘foob’ to ‘bar’. Although this option still puts the burden of the additional arguments on the user, it
simplifies the situation and does allow for full functionality. As a side effect, since the most likely programming
practice is for the length argument to be zero in all cases where there are no significant blanks, wherever the length
argument is not zero highlights the likelihood that the value has a significant railing blank.

A.2.3.2.5 Pointers

The use of thdandleabstraction to reference aggregate data (i.e., structures) and subroutines caused much debate
among the developers of this standard. Some felt that using this abstraction essentially augmented the FORTRAN 77
language, while others countered that because it is only defined abstractly and not as a construct available for general
use by programmers that it cannot be considered an extension. In terms of implementation, the topic of memory
allocation was related: creating handles entails the allocation of memory dynamically (from the perspective of the
program, that is; of course the system implementation could use a static block allocation). Again, the developers of this
standard were split on the principle of whether the implicit specification of dynamic memory allocation was out of the
scope of this standard. Eventually, consensus was reached that the handle abstraction scheme is the best solution:
specifically, it allows full functionality and causes the programmer the least hardship. In addition, it is flexible and
easily extensible, thereby allowing the easy integration of system- and site- dependent extensions to this standard.

C-language pointers are used throughout POSIX.1 {2}; however, FORTRAN 77 does not have a pointer data type.
Many of the uses of pointers in C such as passing a pointer to a character string are functionally similar to the
FORTRAN 77 method of passing by reference. Therefore, no explicit solution had to be devised for this language
binding. However, the use of a NULL pointer in C cannot be duplicated in FORTRAN 77 because a NULL pointer
cannot be distinguished from a valid pointer in the pass-by-reference FORTRAN 77 model. In cases where POSIX.1
{2} specifies functionality dependent on the use or detection of a NULL pointer, the behavior has been modified
slightly in this binding.

104 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

Finally, by requiring a valid handle value to be nonzero, this abstraction scheme reserved the value of zero as an
indication of a NULL pointer, which was an intuitive equivalence to a NULL pointer in the C language.

A.2.4 Error Numbers

In order to understand the motivation for the error reporting conventions specified by this standard, it is important to
understand first the common usage ofdirao mechanism in the POSIX.1 {2} environment. In the event of an error
return from a system call, the programmer checks the cwremt value against other possil#erno values (i.e.,

those listed in POSIX.1 {2} as applicable to that system call) by using the appropriate symbolic constants. The value
of errnois defined only when an error is returned from a system call.

In order to provide the equivalent functionality in this standard, the developers of this standard considered many
alternatives. As with other areas, the main goals were to provide all necessary functionality in a style convenient for the
FORTRAN 77 programmer. The following options were considered:

O Specify an additional function to return the current errno valDae additional interface was specified,
PXFERRNQ®), which took no arguments and returned the current valeermd. The common POSIX.1 {2}
programming model could then be mimicked quite closely by FORTRAN 77 by simply putting an inline call
to thePXFERRNQ) function in all places where a C program would directly referencerthe variable,
and using théPXFCONST) function (see 8.2) in order to do comparisons to other error numbers represented
by symbolic constants.

While this option was the accepted solution through several drafts of this standard, it was eventually
discarded. A primary reason for its demise was the decision to specify all interfaces as subroutines; without
a function return value to indicate success or failure (as in POSIX.1 {2}), the POSIXetr{®t} model is

broken. To provide the basic functionality, the FORTRAN 77 subroutines then had to be specified with an
additional argument to indicate success or failure; this additional argument then was easily adapted to provide
the functionality of both indicating success or failure and returning the specific error value. Other less
significant factors in the decision to abandon the convente&mab model included its implication of the
existence of an underlying C binding implementation and its uncommon (to FORTRAN 77 programmers)
programming model.

O Specify an additional function to return the current string representation of the (symbolic constant for the)
current errno valueThe function would return a string containing, for example, [ENOENT], which could
then be used in string compares against the appropriate symbolic constant strings. This option was discarded
as being generally undesirable (string manipulations, performance considerations), while not necessarily
achieving either of the goals (functionality and usability). Furthermore, the string handling functionality was
redundant after theXFCONST) mechanism (see 8.2) was specified.

O Specify an additional function to compare a passed-in string representation of a symbolic constant to the
current errno valueThis option was discarded for reasons similar to those described in the previous item.

O Use FORTRAN 77 COMMON to access the errno varidliles option was discarded because, although the
value oferrno can be accessed, there is no comparable (i.e., direct) way to obtaieroiberalues that are
stored in the system headers in order to do comparisons. AfleKEReONST) mechanism was conceived
(see 8.2), the otherrno values became accessible, but using FORTRAN 77 COMMON was still viewed as
being inconvenient for the programmer and inconsistent with the overall language bindings design strategy.

Another consideration was whether or not an additional function should be provided to facilitateesettinglues
[e.g.,PXFERRNOSH)] from within FORTRAN 77 programs. Although this functionality is available in C (and often
used in library code), no immediate use was found for it in these bindings, and therefore it was not included.

There are a number of functions in POSIX.1 {2} that are defined to be “always successful.” Despite this, the POSIX.9
equivalent procedure for some of these functions includes an argument for these procedures to return an error. In the
C-language binding to POSIX.1 {2}, if either a vendor or another standard (e.g. POSIX.6) provides an extension that
creates a possibility of an error, because of the errno construct the source code invocation of the C-binding function
does not need to be changed. Since errno is not accessible in the FORTRAN 77 bindings, a new procedure with an
added error argument would have to be defined to provide such an extension. Thus, FORTRAN 77 source code would

Copyright © 1992 IEEE All Rights Reserved 105

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

not be portable across systems that did or did not provide for such an error. The developers of this standard felt that an
additional argument was not a significant burden to provide this portability and extensibility. Since most FORTRAN

77 binding procedures do have an error argument, also specifying an error argument on these procedures makes them
more consistent with the rest of the FORTRAN 77 binding procedures. Finally, just because this error argument exists,
an application that was Strictly Conforming to only POSIX.9 would be under no obligation to check for errors when
using POSIX.9 procedures that had no POSIX.1 {2} or POSIX.9 errors defined.

However, there was an outstanding objection that this alters the semantics of the binding and unnecessarily burdens the
programmer with having to code for errors, where none are possible. It was argued that the usability of these
procedures is diminished by the addition of these error return values. These PXRAILARM), PXFGETUIX)
PXFGETEUId) PXFGETGIK), PXFGETEGIR), PXFGETPIX), PXFGETPPIF), PXFGETGRP), and
PXFUMASK).

A.2.5 Primitive System Data Types
A.2.6 Environment Description
A.2.7 FORTRAN 77 Language Definitions

Just as the developers of this standard wished to avoid duplicating the POSIX.i {2} definitions, in the spirit of a “thin”
binding the FORTRAN 77 definitions are not duplicated.

A.2.8 Numerical Limits

A.2.8.1 FORTRAN 77 Language Limits

There is no additional rationale provided for this subclause.

A.2.8.2 Minimum Values

There is no additional rationale provided for this subclause.

A.2.8.3 Run-Time Increasable Values

There is no additional rationale provided for this subclause.

A.2.9 Symbolic Constants

A.2.9.1 Constants for FORTRAN 77 /O to STDIO_UNIT Translation

The specification of the constants for mapping FORTRAN 77 unit identifiers to POSIX dtdi@}streams was

viewed as a standardization of common practice to enhance portability. Early proposals suggested specifying exact
values (5,6,0 fostdin stdout stclerr), but it was determined that this convention was not widespread enough to justify

its standardization. Therefore, the compromise of specifying the range 0-9 was reached; as far as the developers of this
standard were able to identify, this range accommodates the vast majority of existing implementations.
Recommended usage (to ensure portability) is therefore to use the defined constants to atdiesstrdeems and to

use program-defined unit identifiers outside the specified ranges to avoid conflict with the preconnected units. (See
A.8.5.2.2).

106 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

A.3 Process Primitives

A.3.1 Process Creation and Execution

A.3.1.1 Process Creation

There is no additional rationale provided for this subclause.
A.3.1.2 Execute a File

Early drafts of this standard contained all of¢lxecentry points that are included in POSIX.1 {2}, but the developers

of this standard decided to eliminate the subroutines that use variable-length argument lists. (See A.2.4.0.3.2 for
discussion of the decision to eliminate the use of variable-length argument lists.) The decision to eliminate these
routines was made easier by the fact that the POSIX.Ex8¢family is redundant; all of the functionality of the
discarded functions is still available in the remaining functions. These subroutines were also eliminated because they
require the construct of an external global variable (environ), which is a construct not directly available in FORTRAN
77.

The subroutines that were eliminated &EFEXECL), PXFEXECLE), andPXFEXECLFK), defined as follow:

SUBROUTINE PXFEXECL (PATH, ARGO, ARG1, ..., ARGN, PXFNULLY())
CHARACTER*(*) PATH, ARGO, ARG1, ..., ARGN

SUBROUTINE PXFEXECLE (PATH, ARGO, ARG1, ..., ARGN, PXFNULL() ENVP)
CHARACTER*(*)PATH, ARGO, ARG1, ..., ARGN, ENVP(*)

SUBROUTINE PXFEXECLP (FILE, ARGO, ARGL1, ..., ARGN, PXFNUL())
CHARACTER*(*) FILE, ARGO, ARG1, ..., ARGN

The POSIX.1 {2} versions of the remaining subroutines require the use of NULL-terminated argument arrays;
however, the FORTRAN 77 versions use additional arguments to specify the number of elements in each array.

A.3.2 Process Termination
A.3.2.1 Wait for Process Termination

Due to difficulties discussed in POSIX.1 {2} 3.2, it is not possible to specify a NULL pointer fastahdoc
argument.

A.3.2.2 Terminate a Process

The underscore is not in the legal identifier character set in FORTRAN 77 and so is not used in the name. This is the
only exception to the naming convention of prefixitigF before the C equivalent.

In early drafts of this standard, the FORTRAN 77 language construct STOP was referenced rather than specifying
PXFFASTEXIY). The functionality is similar (i.e., it terminates the process), but STOP does not provide a standard,
defined method for returning a status value to the system.

The functionPXFFASTEXIY) is analogous to the POSIX.1 {2} functiorexi{). The functionality of exi{) is

required in order to recover from failed calls to any one oPKEEXEQ) subroutinesPXFEXEQ) executes a new

program without creating a new process. A new process is created by BXIRRORK). PXFFORK) creates a new

process that is a copy of the current process, including all code and data. Generally, the copy of the code and data of
the parent is soon replaced by a new program when the childP#HEXEQ). However, if the call t&® XFEXEQ)

should fail, the child has no way to exit without risking modification of the open files of the parent program. Since the

Copyright © 1992 IEEE All Rights Reserved 107

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

buffers of the child process are copies of the parents’, WXEHEXIT), STOP, or END is executed the data in the
buffers will be written to the file and the child will terminate. When the parent writes additional data or closes its files,
the files will be updated with the parents’ copy of the same buffers; therefore, the data will be duplicated in the files.
In order to recover from a failed call BXFEXEQ), the child process must be able to exit without flushing buffers,
which is the functionality of exi). Without the functionality of exi{), large programs will tend to avoid the use of

any of thePXFEXEQ) functions so that data written will not be corrupted, or they will devise some scheme to keep
track of all units that are currently open and B3d-FLUSH) to dear all the buffers. The functionality of either
PXFEXIT) is also needed so that a child process can flush its buffers, terminate normally, and return a status value to
its parent.

A.3.3 Signals

See POSIX.1 {2} B.3.3 for description of the evolution of sigset_tdefined type.
A.3.3.1 Signal Concepts

There is no additional rationale provided for this subclause.

A.3.3.1.1 Signal Names

SIG_IGN and SIG_DFL are possible values of a subroutine handle that cannot match any other subroutine handle.
This is also the case in POSIX.1 {2} (see POSIX.1{2} 3.3.1.1).

A.3.3.1.2 Signal Generation and Delivery
There is no additional rationale provided for this subclause.
A.3.3.1.3 Signal Actions

Because many implementations will choose to implementBR&ORreturn value by building it on top @frrno,
which is inherently unreliabléERRORmust also be considered unreliable.

Consider the following hypothetical implementatiorPFFORK):

void f77fork(long *rtn_value, long *status)
{
if ((*rtn_value = fork()) ==-1)
*status = errno;
else
*status = 0;

}

Since the return value of the POSIX.1 {2} functifork() is reliable, values of zero fdERRORare also reliable.
However, since errno is not reliable, nonzero valudERRORare not reliable. Given that most interfaces on UNIX
systems are C interfaces, this standard did not prohibit POSIX.9 implementations layered on top of C. Requiring
nonzero values dERRORto be reliable would require most existing POSIX.1 {2} implementations to rewrite the
system interfaces. In order to have this standard implemented in a timely fashion and as widely as possible, this
requirement was not made.

A.3.3.1.4 Signal Effects on other Subroutines

For historical reasons, some implementations of errno may be unreliable. Implementations should note that reliability
of error reporting may be required by future standards.

108 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

A.3.3.2 Send a Signal to a Process

There is no additional rationale provided for this subclause.

A.3.3.3 Manipulate Signal Sets

While PXFSIGISMEMBER could have been defined as a LOGICAL function, POSIX.1 {2} does define the error
[EINVAL] for the purpose of testing whether the signal number is valid or supported. Therefore, the construct of
subroutine with two OUT arguments (the value and the error) seemed more appropriate.

A.3.3.4 Examine and Change Signal Action

There is no additional rationale provided for this subclause.

A.3.3.5 Examine and Change Blocked Signals

There is no additional rationale provided for this subclause.

A.3.3.6 Examine Pending Signals

There is no additional rationale provided for this subclause.

A.3.3.7 Wait for a Signal

There is no additional rationale provided for this subclause.

A.3.4 Timer Operations

A.3.4.1 Schedule Alarm

There is no additional rationale provided for this subclause.

A.3.4.2 Suspend Process Execution

There is no additional rationale provided for this subclause.

A.3.4.3 Delay Process Execution

There is no additional rationale provided for this subclause.

A.4 Process Environment

A.4.1 Process Identification

A.4.1.1 Get Process and Parent Process IDs

There is no additional rationale provided for this subclause.
A.4.2 User Identification

The existence of an error return argument was considered essential, even though POSIX.1 does not currently define
any errors, since security enhancements are likely to provide errors in this topic area.

Copyright © 1992 IEEE All Rights Reserved 109

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

A.4.2.1 Get Real User, Effective User, Real Group, and Effective Group IDs

There is no additional rationale provided for this subclause.

A.4.2.2 Set User and Group IDs

There is no additional rationale provided for this subclause.

A.4.2.3 Get Supplementary Group IDs

The option of using one argument to combine the argulB&TSIZEwith the argumeniGROUPSvas considered,;
however, it was discarded because it made it impossible for a constant to be pakSEdSABE.The error
[EARRAYLEN] could have been defined, but the existing POSIX.1 {2} definition of error [EINVAL] for this function
covers this condition.

A.4.2.4 Get User Name

It was necessary to provide arguments to this routine in order to accommodate the decision to eliminate character-
string function returns, since two OUT arguments are usually required (the string and the significant length).

A.4.3 Process Groups

A.4.3.1 Get Process Group ID

There is no additional rationale provided for this subclause.

A.4.3.2 Create Session and Set Process Group ID

There is no additional rationale provided for this subclause.

A.4.3.3 Set Process Group ID for Job Control

There is no additional rationale provided for this subclause.

A.4.4 System Identification

A.4.4.1 Get System Name

The data items in thetsnamestructure are null-terminated character arrays in C, so it is the responsibility of the
implementation to return them to the FORTRAN 77 caller as character arrays that conform to FORTRAN 77 (i.e.,
blank-padded, not null-terminated).

A.4.5 Time

A.4.5.1 Get System Time

It is not possible to specify a NULL pointer for the tloc argument. However, since this is a subroutine and not a
function and the value is always and only stored inTHdE argument, having a NULL flag to prevent storage is not
meaningful.

A.4.5.2 Get Process Times

There is no additional rationale provided for this subclause.

110 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

A.4.6 Environment Variables
A.4.6.1 Environment Access

It was necessary to add arguments to this function and split the environment name and value because of the nature of
FORTRAN 77 strings and the CHARACTER type. This is an example of the need for a mechanism for significant
trailing blanks (see A.2.3.2.4). Both the environment name and the environment value might have a significant trailing
blank. While POSIX.1 {2} states that they “should consist solely of characters from the portable filename character
set”, which does not include blank, it goes on to state that “other characters may be permitted by an implementation;
applications shall tolerate the presence of such names.” The splitting of the OUT arguments into two (the name and the
value) has a side effect of requiring the underlying implementation of POSIX.9 to perform the parsing into those two
values rather than the application. This lets the application avoid the issue of a name or a value containing an equals
sign. The C-language binding of POSIX.1 {2} affords two mechanisms to access the environment variables. In
addition to this function, an application could access the global vagabl®ndirectly. As FORTRAN 77 has no

direct equivalent of a global variable, this procedure is the only FORTRAN 77 mechanism available to access the
environment.

POSIX.1 {2} does not contain the functiosstenv()or clearenv().However, these functions are currently defined in

the draft revision to POSIX.1 {2}. In addition, because of the capability of directly accessing the global variable
environmentioned above, the C-language binding already permits the capability of setting or clearing the environment
even without these explicit routines. The developers of this standard decided that this useful functionality must be
defined in POSIX.9, even if only in Section 8, but put it in Section 4 to match where it will be after POSIX.1 {2} is
revised. The nature of the C language allows the POSIX.1 {2} interface to return a NULL value when there is no such
variable in the environment list and to return a zero-length string when the variable is in the list but has no value
assigned. In FORTRAN 77, these two conditions are not easily represented in one return argument. This standard
specifies that if the variable is not in the list, the error condition [EINVAL] will be return&RROR jndicating that

the value of th&NAME argument is invalid. If the variable is in the list but has no value, the VALUE argument will be
set to all blanks and the&ENVALargument will be set to zero, indicating that the value of the variable named is a zero-
length string.

It is common to use shell utilities to create environment variables that have no values. This standard also allows the
creation of such variables by calliRgKFSETENY) with NEWset to all blanks andENNEWSset to zero.

A.4.7 Terminal Identification
A.4.7.1 Generate Terminal Pathname

The PXFCTERMID()subroutine provides the same interface as the POSIX.1 {2} functigomid(),i.e., it returns a
string that will refer to the controlling terminal if used with a pathname. The POSIX.1 {2} description provides a C
interface with its rules of character array declaration and assignment.

POSIX.9 uses the FORTRAN 77 rules for character declaration and assignment. FORTRAN 77 requires that character
entities are declared with an integer constant or an integer constant expression. They may be declared with an asterisk
in a subprogram to indicate that the length of the dummy character argument is the length of the actual argument. This
does not allow the use of L_ctermid for the length of the character argument. It also does not allow the implementation
to store the name completely in the character argument if the name is longer than the declared length of the character
argument.

The character argument is declared with a fixed-length that may or may not be large enough to hold the entire name
returned by thd®XFCTERMID()subroutine. FORTRAN 77 rules for assignment are used. That is, the name is
truncated if the size of the name is larger than the size of the fixed-length character argument. If the name is less than
the fixed length of the character argument, the name is left justified and filled with blanks. The interface provides an
extra length argument that returns the size of the name returned by the function. This is helpful when truncation or
blank fill occurs or to emulate the C-language construct of an empty string.

Copyright © 1992 IEEE All Rights Reserved 111

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

A.4.7.2 Determine Terminal Device Name

It was necessary to modify the calling sequence dPXIeT TYNAME (function in order to accommodate the decision
to eliminate character-string function returns.

A.4.8 Configurable System Variables

POSIX.1 {2} includes access to the special symbol {CLK_TCK}but declares such access to be obsolescent. This
standard does not provide such access.

A.4.8.1 Get Configurable System Variables

In a previous revision, it was documented that all of the system variables and constants shown that can be returned by
PXFSYSCONF(are recognized by tHeXFCONST(¥unction. This is actually not the cas®XFSYSCONF(js for
accessinguntime-variablesystem configuration variables. That is, the variable may vary from system to system, even

of the same model from the same vendor (e.g., memory available for preedsSONST()s used only for variables

that may differ from one vendor to the other but, once compiled in an application, will not change from one run to the
next.

A.5 Files and Directories

A.5.1 Directories

A.5.1.1 Format of Directory Entries

There is no additional rationale provided for this subclause.

A.5.1.2 Directory Operations

Note that, sincéDIRID could be a file descriptor, the value of zero is not reserved. Thus, an equivalent to the return
of a NULL pointer is not defined. However, with the existence of the error [EEND], all cases that would have required
a return of NULL produce a nonzelleRRORand are therefore identifiable.

A.5.2 Working Directory

A.5.2.1 Change Current Working Directory

There is no additional rationale provided for this subclause.

A.5.2.2 Get Working Directory Pathname

It was necessary to modify the calling sequence of this function in order to accommodate the decision to eliminate
character-string function returns.

The size argument was eliminated from the calling sequence¥iFGETCWD()because it is redundant if it is
assumed that the underlying implementation of POSIX.9 has access to the FORTRAN 77 declared length of the
CHARACTER argument. (See A.2.3.3.1 further discussion.) The OUT arguidhis explicitly set to zero in the
presence of an error to match the explicit return of a NULL in the presence of an getowd().

112 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

A.5.3 General File Creation

A.5.3.1 Open a File

There is no additional rationale provided for this subclause.

A.5.3.2 Create a New File or Rewrite an Existing One

In previous revisionsPXFCREAT()was not present as it was deemed redundantRXOPEN(); however, the
operation performed bPXFCREAT()is very common, and the interface RXFOPEN(}s awkward enough that
PXFCREAT()was put back in for usability reasons and to match its (redundant) existence in POSIX.1 {2}. The
description was left minimal because it is redundant.

A.5.3.3 Set File Creation Mask

While umask()currently is always successful, #fiEERRORargument was included in anticipation of the possibility of
returning an error if the process is not permitted to use a particular mask for some defined security reason.

A.5.3.4 Link to a File

The argument names changed frBAIH1 and PATH2to EXISTINGandNEW to reflect the corresponding name
changes from POSIX.1-1988 to POSIX.1-1990.

A.5.4 Special File Creation

A.5.4.1 Make a Directory

There is no additional rationale provided for this subclause.
A.5.4.2 Make a FIFO Special File

There is no additional rationale provided for this subclause.
A.5.5 File Removal

A.5.5.1 Remove Directory Entries

There is no additional rationale provided for this subclause.
A.5.5.2 Remove a Directory

There is no additional rationale provided for this subclause.
A.5.5.3 Rename a File

There is no additional rationale provided for this subclause.
A.5.6 File Characteristics

A.5.6.1 File Characteristics: Header and Data Structure

There is no additional rationale provided for this subclause.

Copyright © 1992 IEEE All Rights Reserved 113

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

A.5.6.1.1 File Types

The initial draft of this standard specified that the POSIX.1 {2} macros S_I@DJB_ISCHRm), S_ISBLK(m),
S_ISREGmM), and S_ISFIFQ@n) shall all be recognized by the generalized macro usage RKIBMACRO().This

utility was later discarded and the standard updated to reflect the decision to specify a distinct procedure corresponding
to each POSIX.1 {2} macro. Because these file-related macros return exclusively true/false results, the FORTRAN 77
LOGICAL type is used to define the return value.

See A.2.3.1.2 for further discussion of decisions related to macros.

A.5.6.2 Get File Status

There is no additional rationale provided for this subclause.

A.5.6.3 Check File Accessibility

There is no additional rationale provided for this subclause.

A.5.6.4 Change File Modes

There is no additional rationale provided for this subclause.

A.5.6.5 Change Owner and Group of a File

There is no additional rationale provided for this subclause.

A.5.6.6 Set File Access and Modification Times

There is no additional rationale provided for this subclause.

A.5.7 Configurable Pathname Variables

A.5.7.1 Get Configurable Pathname Variables

There is no additional rationale provided for this subclause.

A.6 Input and Output Primitives

FORTRAN 77 contains an extensive list of I/O operations. These operations might conflict with use of the system
interfaces listed in this section. Interactions of these procedures and FORTRAN 77 1/O are defined in 8.5.5.

No relationship of FORTRAN 77 files to the underlying POSIX operating system can be assumed except in three
conditions:

1) The file was successfully opened WwitKFFDOPEN(),

2) The file was opened for formatted or unformatted sequential access with FORTRAN 77 OPEN while the
POSIX I/O flag was one (see 8.5),

3) Afile opened by the mechanism of either (1) or (2) was inherited from a parent process.

While a given implementation may provide additional relationships, a Strictly Conforming Application cannot rely on
them.

114 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

The results of mixing many of the I/O operations defined in this section and Section 8 with FORTRAN 77 /O
operations is implementation defined. For example, if a file descriptor that is associated with a FORTRAN 77 unit
identifier is closed, subsequent FORTRAN 77 operations on the unit may cause the program to terminate abnormally.
A.6.1 Pipes

A.6.1.1 Create an Inter-Process Channel

There is no additional rationale provided for this subclause.

A.6.2 File Descriptor Manipulation

A.6.2.1 Duplicate an Open File Descriptor

There is no additional rationale provided for this subclause.

A.6.3 File Descriptor Deassignment

A.6.3.1 Close a File

There is no additional rationale provided for this subclause.

A.6.4 Input and Output

A.6.4.1 Read From a File

TheBUF argument is specified as an array of characters instead of a CHARACTER*(*) in order to avoid blank filling.

It is truly a buffer of characterapt a string. The option of using one argument to combine thNBMTEargument

with the outNREADargument was considered; however, it was discarded because it made it impossible for a constant
to be passed &4BYTEAs is typical in FORTRAN 77, specifyingBY TEgreater than the dimensioned sixe@® i

is unsafe, and the results are undefined. C-language programmers should Bti€ tkat FORTRAN 77 array and

is therefore one-based.

A.6.4.2 Write to a File

The option of using one argument to combine thé&BYTEargument with the ouNWRITTENargument was
considered; however, it was discarded because it made it impossible for a constant to be pES¢ER .£See also

the discussion on tHRUF argument in A.6.4.1).

A.6.5 Control Operations on Files

A.6.5.1 Data Definitions for File Control Operations

There is no additional rationale provided for this subclause.

A.6.5.2 File Control

Although the POSIX.1 {2} (C language) versidientl(), varies between two and three parameters, this standard
requires that the third and fourth arguments always be present. Since these arguments may be either a (integer) handle

for an instance of thibock structure or a “plain” integer, there is no conflict. Two arguments are required to avoid an
IN/OUT argument that would not allow a constant to be used as the IN argument.

Copyright © 1992 IEEE All Rights Reserved 115

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

It was suggested that the interface for POSIX.1f€2itl() was awkward and should not be propagated into POSIX.9.

The developers of this standard chose to retain the interface to maintain a better name recognition for users of this new
standard to leverage long-existing familiarity with the C-language interface.

A.6.5.3 Reposition Read/Write File Offset

The file offset is defined to be of tyjdf t, which is one of the Primitive System Data Types (see 2.5, and also
POSIX.1 {2} 2.5). It is possible that this data type may be defined within the system (or, more specifically, in the C-

language bindings) as being an unsigned integer, in which case its range will be greater than that of the FORTRAN 77
INTEGER. See also 2.3.2.2 for more information on handling unsigned quantities.

A.7 Device- and Class-Specific Functions

A.7.1 General Terminal Interface

A.7.1.1 Interface Characteristics

There is no additional rationale provided for this subclause.
A.7.1.2 Parameters That Can Be Set

There is no additional rationale provided for this subclause.
A.7.1.2.1 termios Structure

There is no additional rationale provided for this subclause.
A.7.1.2.2 Input Modes

There is no additional rationale provided for this subclause.
A.7.1.2.3 Output Modes

Although there is only one mask defined, the text still applies, since an implementation may support more that one
mask for this field.

A.7.1.2.4 Control Modes

The maslCSIZEcan be used to mask off the baud rate bits for the other control bits. The behBXBOFIFEN ()with
respect to these control codes is no different than thapeni(),defined in POSIX.1 {2}.

A.7.1.2.5 Local Modes
There is no additional rationale provided for this subclause.
A.7.1.2.6 Special Control Characters

In POSIX.1 {2} and this standard, the elements of¢hecarray are integral values. A FORTRAN 77 programmer
could do the following to define the kill character as control-D (CHAR(4)):

C create an instance of the structure

CALL PXFSTRUCTCREATE('termios’, JHANDLE, IERROR)
C fill the components of the structure

116 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

CALL PXFTCGETATTR(FILDES, JHANDLE, IERROR)
C set a single element of the control_character component
CALL PXFESETINT(JHANDLE, ‘c_cc’, IPXFCONST(‘VKILL"), 4, IERROR)
C now make the change NOW
CALL PXFTCSETATTR(FILDES, IPXFCONST('TCSANOW'’), JHANDLE, IERROR)
Implementors of POSIX.9 should note that since the entire ‘c_cc’ array can be obtained by
CALL PXFAINTGET(JHANDLE, ‘c_cc’, IAVALUE, IPXFCONST(* NCCS’), IERROR)
and the arrayAVALUE will be a FORTRAN 77 one-based array, the subscript values to be returned to the FORTRAN
77 application will be one greater than those returned to a C-language application. This is not an issue for the
application writer since only the subscript names, not values, should be used. This difference could have been avoided
by not providing access to the array as a whole, but the value of being able to store the entire array and then restore to
an original condition seemed to outweigh this difference.
A.7.1.2.7 Baud Rate Values
There is no additional rationale provided for this subclause.
A.7.2 General Terminal Interface Control Subroutines
A.7.2.1 Get and Set State
There is no additional rationale provided for this subclause.
A.7.2.2 Line Control Subroutines
There is no additional rationale provided for this subclause.
A.7.2.3 Get Foreground Process Group ID
There is no additional rationale provided for this subclause.

A.7.2.4 Set Foreground Process Group ID

There is no additional rationale provided for this subclause.

A.8 FORTRAN 77 Language Library

A.8.1 FORTRAN 77 Intrinsics

A.8.2 System Symbolic Constant Access
A.8.2.1 Access and Verify Symbolic Constants

The following example illustrates the use of AXFCONST()subroutine and théPXFCONST()function for
accessing symbolic constants. It usesRKECHMOD()system call, which changes the access permissions on a file,
using PXFCONST()to obtain the mode specifier (‘(O_RDWR’). The value of the mode is then used in the
PXFCHMOD() system call to change the access permissions on a file. Following tHEXBICONST()is used to

obtain the unit identifier associated with the preconnected file identified by STDERR_UNIT (see 2.9.1) and, in case of
an error, to obtain the values of terno values (possible error conditions) for comparison with the error return from

the system call.

Copyright © 1992 IEEE All Rights Reserved 117

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

PROGRAM TEST

C Make the call to PXFCONST()
CALL PXFCONST('O_RDWR’, IMODE, ISTAT)
IF (ISTAT .NE. O) THEN
WRITE (IPXFCONST(‘'STDERR_UNIT’), 102) ‘Could not access constant!

END IF
C Make the system call to PXFCHMOD().
C |Ifitfails, check a couple errno conditions.
CALL PXFCHMOD('/tmp/testfile’, O, IMODE, ISTAT)
IF (ISTAT .NE. O) THEN
WRITE (IPXFCONST('STDERR_UNIT"), 99) ‘Call to PXFCHMOD failed!
IF (ISTAT .EQ. IPXFCONST(‘ENOENT’)) THEN

WRITE (IPXFCONST('STDERR_UNIT’), 99) ‘errno = ENOENT’

ELSE IF (ISTAT .EQ. IPXFCONST('EPERM’)) THEN

WRITE (IPXFCONST('STDERR_UNIT’), 99) ‘errno = EPERM’

END IF

99

FORMAT(1X,A)

END IF

END

As discussed in A.2.3.1.1, one of the earliest decisions was to specify additional procedures to provide access to the
system symbolic constants. The evolution of the constant-access procedures is described in the following paragraphs.

During the early development of this standard, only one function was specified for accessing the constants; it was very
similar to the current version tiPXFCONST). The developers of this standard later realized the limitations of that

one function, namely its inability to provide an acceptable error-reporting mechanism. More specifically, since the
actual integers corresponding to the symbolic names in POSIX.1 {2} are not specified (and the list may grow in the
future), it must be assumed that the range of valid constant values is the full range of integers possible on the machine.
But the function must also be able to indicate an error if the passed string does not match a known symbolic name.
Several methods of reporting/recording this error were considered:

O

OooOo

Returning -2, noting that no known system constant has this value. The value -1 was not chosen because it is
the return value for the system procedures (at this time, all system interfaces were specified as functions, not
subroutines).

Adding an extra (return) argument to the argument list.

Specifying a symbolic name that was guaranteed to report an error.

Specifying an additional function that returns an implementation-defined value unique from all defined/valid
constant values; this function could be used for comparisons against the value returned from the constant-
access function to identify an error.

Each of these options was discarded for various reasons, and the discussions generated here were significant in the
development of the current family of constant-access procedures.

The current family of constant-access procedures appeared midway through the development of this standard and was
conceived as the following:

O

118

A function that returns the value of the symbolic constant but provides no error chigeKRGONST()].

This function is easy to embed in expressions and subroutine calls where the programmer does not wish to
utilize any error checking. Also, implementations that provide an intelligent preprocessor may do error
checking during preprocessing/compilation. (The leadlimgthe function name was deemed necessary to

Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

avoid problems on implementations with loose type checking and was a nod towards usability; now it need
not be declared.)

O A function that verifies that the argument is the name of a symbolic cofp¥anS8CONST ()] This function
provides error checking for the cautious programmer, but also provides a capability somewhat similar to the
conditional compilation available in the C language. This capability can prove useful in inquiring about the
presence of various features at run-time (includipgconfvariables) and possibly at compile-time (if the
implementation supports an intelligent preprocessor).

O A subroutine that returns the value of the symbolic constatiprovides error checkinlPXFCONST()].

This subroutine interface is more awkward but more robust. Note that it essentially combines the
functionality of the other two functions, but can both return the constant value and provide error checking
(using separate arguments) in only one procedure call.

Although all constants defined in POSIX.1 {2} are integral, specific implementations and/or future standards may
require constants of other types. It is recommended that the family of names correspdPYFI§EALCONST@nd
PXFSTRCONST@®e reserved for use by implementations that require nonintegral typed constants. Specifically, a
family of constant-access routines analogous to the current set could be defined, with the appropriate type name
(REALCONSDr STRCONSTBeing substituted faEONSTIin the current procedure names.

A contentious issue was the potential performance degradation resulting from the additional run-time overhead
incurred by the additional procedure calls for every constant access. While this may be a reasonable consideration for
certain applications on certain systems, it was felt that there was no adequate solution to the problems of accessing the
constants that did not involve additional procedure-call overhead. Furthermore, the cost of a library call is generally an
order of magnitudéessthan the cost of a system call. Assuming that the constant-access procedures are implemented
as library routines, the cost of using them is therefore very small relative to the cost of the associated system call. If
performance is a critical issue, an implementation may still choose to implement an intelligent preprocessor that
replaces instances of calls to the constant-access procedures with the appropriate constant values (thereby removing
the run-time overhead). Of course, such an implementation should also provide error-checking during the
preprocessing.

A.8.3 Structure Creation and Manipulation
A.8.3.1 Structure Creation

To reference a given structure type, a FORTRAN 77 string (trailing blanks ignored) containing the structure name, in
lowercase, is used, e.g.:

CALL PXFSTRUCTCREATE(‘utimbuf , JHANDLE,IERROR)
A.8.3.2 Structure-Component Manipulation

The following is an example of using one of the structure-component access routines, spEEAIGET ()with
the PXFSTAT (system call.

PROGRAM TEST
INTEGER STHAND, ISTAT, ISIZE, IERROR
C Allocate an instance if a stat structure
CALL PXFSTRUCTCREATE(‘stat’, STHAND, IERROR)

C Make the system call to PXFSTAT()
CALL PXFSTAT('/etc/passwd’, O, STHAND, ISTAT)
C Obtain the value stored in the st_size component
CALL PXFINTGET(STHAND, ‘st_size’, ISIZE, ISTAT)
IF (ISTAT .NE. O) THEN
WRITE (IPXFCONST('STDERR_UNIT), 102) ‘Could not access component!’

Copyright © 1992 IEEE All Rights Reserved 119

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

END IF

WRITE (*,101) ‘Number of bytes in file: ’, ISIZE

END
Using all of the TYPEs defined in Table 8.3 with the list of procedure names in 8.3.2.1, this standard defines 42
different procedures for structure-component manipulation. However, only some of the procedures are actually used in

this standard; the others should be reserved for possible use in future standards and also used for implementation-
defined structures and components.

While the data abstraction model for accessing and manipulating aggregate data from FORTRAN 77 was accepted at
the earliest stage of development of this standard, the selection and specification of the procedures for component
manipulation generated must debate. Several options proposed earlier are discussed in the following paragraphs:

O Specify component-manipulation procedures on a per-system-interface basis; i.e., for each system interface
procedure, the necessary component-manipulation procedures are specified. This method was used in several
early drafts of this standard and was specified as follows:

FUNCTION PXF<SYS_ROUTINE_NAME>GET (MEMBER _NAME_ VALUE)

CHARACTER*(*) MEMBER_NAME

TYPE VALUE

FUNCTION PXF<SYS_ROUTINE_NAME>SET (MEMBER _NAME_ VALUE)

CHARACTER*(*) MEMBER_NAME

TYPE VALUE
where TYPE varies according to thieEMBER_NAME.
The primary weakness was that this method required procedures with actual arguments that could differ in
type from call to call. This was determined to be a deviation from the FORTRAN 77 standard (see
A.2.3.0.4.3) and led to the evolution of the current set of procedures (which are specifjest-typabasis
rather than per-function). Another drawback is that this method is not easily extensible without additional
potentially complex specifications, for example, situations where one system interface utilizes multiple
instances of the same structure or different structures with identical member names.

O Specify a single structure-access procedure that takes three arguments: the name (type) of the structure, the
name of the desired field, and the value to be loaded (or the variable to be returned). This is a more
generalized solution, but still suffers from the variable-type arguments problem mentioned above.
Additionally, the performance of an implementation of this method might be quite poor due to the multiple
string lookups required for every invocation.

O Specify one structure-access procedagestructurethat requires (simultaneously) arguments representing
all members of the structure. This method presents the advantage that all members of a structure may be
loaded or extracted with only one procedure call, but suffers severely in terms of extensibility; if a member is
added to the structure (either by another standard or in a particular implementation), the access procedure
argument list would be inappropriate.

Performance implications were frequently discussed, both with respect to the general model of requiring a procedure
call for every structure-component access, and also with respect to the implementation of the various access models
discussed previously. See A.2.3.2.3 for a discussion of the general procedure-call overhead issue. Regarding
implementation, it is interesting to note that a variation of the model finally accepted was considered much earlier but
discarded largely because of performance concerns. However, the introductioharidreanechanism encourages

much more efficient implementation than the earlier variation (which required parsing multiple strings in each call).

A.8.3.3 Structure Deletion

When finished with an instance of a structure, the structure should be deleted to return resources to the system. For
example:

120 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

CALL PXFSTAT('/etc/passwd’, O, STHAND, ISTAT)

CALL PXFINTGET(STHAND, ‘st_size’, ISIZE, ISTAT)

C Delete the stat structure when done with it.
CALL PXFSTRUCTFREE(STHAND, ISTAT)
IF (ISTAT .NE. O) THEN
WRITE (IPXFCONST(‘'STDERR_UNIT"), 102) ‘Stat structure handle not
deleted!”
END IF
WRITE (*,101) ‘Number of bytes in file: ’, ISIZE

A.8.3.4 Structure Copy

It is sometimes useful to keep several instances of a structur@XHETRUCTCOPY @Qubroutine can be used to
maintain identical or similar instances. In the following example, the behavior of the terminal driver is temporarily
modified (see 7.2.1 for information on the terminal interface control subroutines used here).

INTEGER OLDTS, NEWTS, ISTAT, NOECHO, CLFLAG, IFD
CALL PXFSTRUCTCREATE('termios’, OLDTS, ISTAT)
CALL PXFSTRUCTCREATE('termios’, NEWTS, ISTAT)

CALL PXFTGETATTR(IFD, OLDTS, ISTAT)

Copy the contents to the current terminal settings to the new
structure and modify the contents slightly, thus changing only
one terminal characteristic.
CALL PXFSTRUCTCOPY(OLDTS, NEWTS, ISTAT)
IF (ISTAT .NE. O) THEN
WRITE (IPXFCONST(‘'STDERR_UNIT"), 10)
+ ‘Error copying termios structure’
STOP
END IF

OO0

C Disable terminal echo.
NOECHO = NOT(IPXFCONST(‘ECHQ"))
CALL PXFINTGET(OLDTS, ‘c_Iflag’, CLFLAG, ISTAT)
CLFLAG = IAND(NOECHO, CLFLAG)
CALL PXFINTSET(NEWTS, ‘c_lflag’, CLFLAG, ISTAT)
CALL PXFTCSETATTR(IFD, IPXFCONST(‘TCSANOW’), NEWTS, ISTAT)

C When it's time to exit restore the ‘old’ terminal driver settings.
CALL PXFTCSETATTR(IFD, IPXFCONST(‘TCSANOW’), OLDTS, ISTAT)

Copyright © 1992 IEEE All Rights Reserved 121

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

A.8.4 Subroutine-Handle Manipulation
A.8.4.1 Save and Reference Subroutine Handle

Without these subroutines, there is no way to obtain the value of an element of a structure that is a pointer to a function
and subsequently call that function. This is a requirement faighetionstructure.

The text of the standard states tRFCALLSUBHANDLE()s called with (and, in 3.3.4, that tlsa_handler
component of theJSIGACT structure shall be) a subroutine handle obtained from a previous call to
PXFGETSUBHANDLE(@®r PXFSIGACTION()Implementors should note that, if an implementation for subroutine
handles is other than a pointer to a function, process initialization code (e.g. the “MAIN” code that calls the
FORTRAN program) or calls to the kerngfaction()functionality from another language may cause confusion
between the handler representation in internal kernel tables and the representation that is manipulated by the
application. These differences must be appropriately translated by the bindings implementation.

The following program useBRXFGETSUBHANDLE({o set up a Control-C trap.
PROGRAM TEST

INTEGER ISTAT, HANDLE, SIGACT
CHARACTER*80 ALINE

EXTERNAL CTRLCH

CALL PXFSTRUCTCREATE(SIGACT, ‘sigaction’, ISTAT)
IF (ISTAT .NE. O) STOP

C Get the handle for the subroutine CTRLCH.

CALL PXFGETSUBHANDLE(CTRLCH, HANDLE, ISTAT)
IF (ISTAT .NE. O) THEN
WRITE (IPXFCONST('STDERR_UNIT"), 10)
+ ‘Error getting handle for subroutine CTRLCH’
STOP
END IF

C Test the handle by calling it once.

CALL PXFCALLSUBHANDLE(HANDLE, O, ISTAT)
IF (ISTAT .NE. O) THEN
WRITE (IPXFCONST('STDERR_UNIT"), 10)
+ ‘Error calling handle for subroutine CTRLCH’
STOP
END IF

C Now pass the handle to the system to use as a Control-C handler.
CALL PXFINTSET(SIGACT, ‘sa_handler’, HANDLE, ISTAT)
CALL PXFINTSET(SIGACT, ‘sa_mask’, O, ISTAT)

CALL PXFINTSET(SIGACT, ‘sa_flags’, O, ISTAT)

CALL PXFSIGACTION(IPXFCONST('SIGINT’), SIGACT, O, ISTAT)
IF (ISTAT .NE. O) STOP

122 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

C Block on the controlling terminal just to test the interrupt.
READ (*,10) ALINE

10 FORMAT (A)
END

C The handler subroutine.
SUBROUTINE CTRLCH(ARG)
INTEGER ARG
WRITE (*,10) ‘Control C was pressed’
RETURN
END

A.8.5 External Unit and File Descriptor Interaction

There are three different ways of referring to external files in POSIX.9. They can be referred to by an external unit
identifier, by a file descriptor, or by both an external unit identifier and a file descriptor. This section attempts to clarify
the difference between a unit identifier and a file descriptor.

A unit identifier is provided in FORTRAN 77 to refer to a FORTRAN 77 file. It is used in READ, WRITE, and other
I/0 statements to perform operations on files. There is a direct correlation between a specific unit and a specific file.

A file descriptor is provided by the POSIX system to refer to a file. All open files on a POSIX system have one or more
associated file descriptors. For each open file, the POSIX system keeps a file description. The file description is used
by the system to access the file. It tells the POSIX system the position of the file pointer, in addition to other important
file attributes. Each process has its own file table. The file table contains pointers to file descriptions. The file descriptor
is an index into the file table. When a process is created, it receives a copy of the file table of its parent; hence, it
receives the pointers to the descriptions for all of the open files of the parent. File table entries may be manipulated by
usingPXFFCNTRL()In summary, a file descriptor is kept by a process and is an integer value that is associated with
a file description that is kept by the system.

POSIX.9 defines some of the interactions of units and file descriptors and provides interfaces to manipulate file
descriptors and units.

A FORTRAN 77 file can be opened with a unit. The FORTRAN 77 OPEN statement can be used to open either a non-
POSIX FORTRAN 77 file or a POSIX-based FORTRAN 77 file. A subrodX&POSIXIO()(see 8.5.1.1) is

provided to determine the current setting of the global POSIX I/O flag and to change it to the required setting. If the
value of the flag is zero, then the file created is not required to be accessed as if it contained newline delimited records
and the unit is not required to be connected to a file descriptor. If the flag is set to one, the unit will be connected to a
file descriptor and formatted files will be accessed as newline delimited records.

A FORTRAN 77 file can be opened with both a unit and a file descriptor. POSIX.9 provides ®#2&FRDOPEN()

(see 8.5.3) to connect an external unit to a file descriptor. Both the unit and the file descriptor are supplied as input
arguments to the subroutine. The NEWLINE=YES/NO string inrABEESSstring argument indicates whether the

file will be accessed as if it contains newline delimited records. If the value is YES or the string is omitted, the file will
be accessed as if it contained newline delimited records. If the value is NO, the file is not required to be accessed as if
it contained newline delimited records. Most POSIX.2 utilities will not execute correctly on files without newline
delimited records.

Once the connection between the unit and the file descriptor has been established, that association may be verified by
calling PXFFILENO()(see 8.5.2.1) to return the file descriptor to which the unit is connected.

The procedureBXFFDOPEN()andPXFFILENO()provide access to file descriptors and allow the use of FORTRAN

77 1/0 on 1/O channels that have no file name. Such channels are creBdaRIPE()andPXFFORK().This allows
one to use FORTRAN 77 READ and WRITE to communicate on pipes or inherited file descriptors.

Copyright © 1992 IEEE All Rights Reserved 123

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

In general, text files (see POSIX.2 {A2}) should be written using POSIX-based FORTRAN 77 1/O in order to assure
interoperability with other POSIX programs and utilities. One may choose not to use POSIX-based FORTRAN 77 I/
O in order to take advantage of implementation-defined features or performance options not defined by this standard.
POSIX-based FORTRAN I/O applies also to unformatted sequential access files, thereby allowing unformatted
FORTRAN I/O across interprocess communication channels. In addition, such files are inherited by a child process
after a call tc°PXFFORK).

The ability to perform system level I/O usiBXFLSEEK), PXFREAL), andPXFWRITE) in addition to FORTRAN

77 1/0 to the same open file is intentionally left undefined by this standard. If byte access is required on a connected
unit, the procedurd®XFFFSEEK), PXFFGETQ), andPXFFPUTQ) should be used. Note that it is a requirement for
strictly conforming applications to insure that system level /0 and FORTRAN level I/O is not performed on the same
file. Note that this restriction is limited to system level I/O subroutines that can affect the file offset, namely,
PXFLSEEK), PXFREAL), andPXFWRITEherefore PXFFCNTRI() andPXFFSTAT) may be used to determine or

set file attributes such as protections and locking.

Finally, a POSIX.9 file can be opened without involving a FORTRAN 77 unit by invékitOPEN()(see 5.3.1.2).

It provides the same functionality as the POSIX.1 {2} funcbper(). In this case, a file descriptor is used to access

the file. Because of the possibility of breaking existing FORTRAN applications, this standard does not specify default
setting of the POSIXIO flag. Therefore, the subrouBX&-POSIXI®) should be called to set the POSIX I/O flag to

a value of one, if any of the following POSIX behaviors are required:

1) Interoperability with POSIX system utilities (defined in the forthcoming POSIX.2 standard -grepg Gat,
sort);

2) Ability to perform FORTRAN formatted or unformatted sequential 1/O over pipes or fifos;

3) Ability to inherit FORTRAN files open for formatted or unformatted sequential access. It is intended that the
FORTRAN binding to POSIX.2 shall specify that, for the compiler “fort77,” the default setting of the
POSIXIOflag shall be one.

Some questions that have been asked about the interaction of external unit identifiers and file descriptors are:

Can unformatted sequential or direct access I/O be done to a file openedXBFOPEN)?

Files can be opened for unformatted sequential acceBXBYDOPEN), but not for direct access 1/0.

Can PXFFDOPEN() be used in conjunction witPXFFILENQ) to have two different unit numbers
connected to the same file use the same file with the same file descriptor?

Yes this can occur. It is up to the application or applications to coordinate usage of two or more units
connected to the same file (see 8.5.5).

Can section 6.4 and 6.5 procedures be applied to file descriptors obtainB&XRith.ENQ)? If so, what is

the interaction?

For sequential access files, the procedures in 6.4 and 6.5 may be applied to file descriptors obtained with
PXFFILENQ), as specified in 8.5.5. For direct access files, the following operations are not defined:
PXFLSEEK), PXFREAL), andPXFWRITE).

A.8.5.1 POSIX-Based FORTRAN I/O

Since FORTRAN 77 does not define record control information, it is possible for a FORTRAN 77 program to create
text files that can not be used by other POSIX utilities and would not be portable to other POSIX systems. This
subroutine allows the user to specify a POSIX-compatible record structure. This is intended to insure that FORTRAN
programs could interoperate with other POSIX programs and utilities (defined in the forthcoming POSIX.2 standard
— e.g., grep, ca}. In addition, the application programmer must know the record structure in order to use
PXFFSEEK) and the other stream 1/O subroutines effectively.

During balloting of this standard, one alternative that was discussed was to perrPKREROSIXI@) and

PXFFDOPEN) procedures to return the error [ENOSYS]. This subtle change would permit the actual implementation
of POSIX side effects on existing FORTRAN 77 language 1/O statements to be optional, i.e., an implementation could

124 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

alwaysreturn [ENOSYS] from any call to either procedure. While an application could portably test whether such side
effects existed, no application could portably rely on such side effects. If an application required POSIX side effects,
the application would be required to use the POSIX I/O procedures for all I/O It was determined that this optionality
would reduce consensus; thus, this error was not defined for these procedures.

There was concern that FORTRAN 77 files might not be byte oriented. By specifying byte access routines on
formatted files that are open for POSIX-based FORTRAN I/O, this standard is requiring that such files be byte
oriented.

It was noted that on some implementations the POSIX I/O system and a record manager may coexist. On such
systems, certain FORTRAN 77 applications may perform better if the record manager is used. By providing a
subroutine that selects POSIX-based FORTRAN I/O, an implementation may provide access to the record manager, if
one exists.

Since this standard does not define the default record structure, all applications concerned with data portability, data
interoperability, and stream 1/O access either should set the POSIX I/O flag to one before performing any FORTRAN
77 1/0 operation or should only use the POSIX.9 file descriptor I/O primitives. Since all other record structures are
implementation defined, the setting of the POSIX 1/O flag to zero cannot be relied upon to give any portable result.

The POSIX I/O flag was changed from a logical two-state variable to a multistate integer variable in order to
accomodate a request for more flexibility within the flag, e.g., to specify stream I/O separately from POSIX records.
Values other than true or false are now available to implementations to allow extensions.

Therefore, with an appropriate setting of the POSIX I/0 flag POSIX.9 conforming (but not strictly conforming)
applications can create and process files for any number of implementation-defined record structures. With the
introduction of more values than two, an error return was added to indicate when an attempt was made to set a value
other than the two defined by POSIX.1 {2} (0 and 1), but that value was not defined on this implementation. A
POSIX.9 conforming implementation must define zero and one since zero is an unspecified default and one is the state
required for POSIX.9 strictly conforming portability. Note that an implementation that only provides POSIX I/O has
the trivial case where zero means the same as one, but both are still defined. Adding the error return also allows other
errors associated with other valuesNi&\W. While the current value of the POSIX 1/O flag may be considered a global

flag, the setting for a given file is a property of each specific connection since the property for that connection does not
change if or when the flag changes. The flag could be explicitly set or changed prior to each specific open but, once
open, the property of that file remains unchanged. Making a global flag simply eliminates the need to define it for each
open when a series are desired to have the same property.

The FORTRAN 77 standard {3} (Section 12.9.5.2.3) discusses the action called “printing,” which might be done to a
formatted record. While POSIX-based FORTRAN 1/O files are defined to contain formatted records, this document
does not specify whether any action (such as directing a record to a specific file like STDOUT) constitutes FORTRAN
77 “printing” in a POSIX-based environment. Those implementations surveyed have no “automatic” POSIX-based
actions that constitute “printing.” Some implementations have a utility progasgntfiat converts a file containing
newline-terminated records to a new set of newline-terminated records with the first character of each record removed
and containing appropriate additional newlines, carriage-returns, formfeeds, or other ASCII codes. The conversion
performed by this utility is defined as equivalent to the FORTRAN 77 action of “printing.” If some action on an
implementation constitutes “printing” as defined by FORTRAN 77, it is expected that such an implementation will
document such action. It is expected that future standards developers will deal with utilities when the Fortran binding
to POSIX.2 is addressed. The developing draft of POSIX.2 already inclucesailtdity.

A.8.5.2 Map a Unit to a File Descriptor
This subroutine returns the file descriptor associated with a connected unit. Initially it was required that all files opened
with the FORTRAN 77 OPEN statement must have an associated file descriptor. While extensions to the FORTRAN

77 OPEN statement would have been permitted to bypass POSIX I/O in order to access implementation-defined 1/0
systems for improved performance or functionality, there were objections to requiring implementations to build

Copyright © 1992 IEEE All Rights Reserved 125

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

FORTRAN 77 1/0O on top of POSIX I/O The compromise position reached was to require only POSIX-based
FORTRAN 1/O (see 8.5) to have an associated file descriptor.

A child process will inherit units connected to file descriptors. If a child attempts to use a unit connected by its parent
that is not connected to a file descriptor, the results are unspecified.

The units obtained through STDIN_UNIT and STDOUT_UNIT are preconnected input and output files, respectively.
This standard does not specify that these preconnected units are the same as the processor-determined external units
specified by asterisk on READ or WRITE statements. FORTRAN 77 does not require that the actual unit numbers for
these processor-determined external units be retrievable by a Fortran application program. Therefore, they need not be
valid unit numbers. Some current implementations of FORTRAN 77 place these units outside the range of units
available to a Fortran application program so the program can access more units with fewer restrictions on the number
of units available.

A.8.5.3 Open a Unit

The developers of this standard considered several alternative methods to achieve this functionality. Altering the
FORTRAN 77 OPEN statement was ruled out as being beyond the scope of the standard. Also discussed was providing
a mapping routine that associated a connected unit to a different file descriptor. This would require that a file be opened
to obtain the connected unit first, and then the file would be have to be closed (and possibly deleted) by the mapping
routine. It would also create a problem with some of the FORTRAN 77 OPEN keywords, esfddallys, IOSTAT

andERR STATUSandERRcould be defined to have no meaning during the mapping call, but acc&BATOS

would be required. In addition, the OPEN keywords have been extended by many implementations. By defining a
subroutine and the keywords that will connect a unit to a file descriptor, these performance and keyword problems
were eliminated. For example, a program may create a file that contains checkpoint information, and the parent and
child processes may then both write into the file (see 8.5). Such behavior is illustrated in the following example:

PROGRAM PARENT

CHARACTER*10 ARGS():1),ARG1
INTEGER LENARGS():1)

C Be sure the unit is connected to a file descriptor by setting
C the POSIXIO flagto 1

CALL PXFPOSIXIO(1, IOLD, IERROR)
ARGS())(1:8) = ‘childpgm’
LENARGS()) = 8

OPEN(UNIT=11, FILE="pgm.log’, ACCESS="SEQUENTIAL’,
+ STATUS='NEW’, FORM="FOMATTED’)

C Get the file descriptor associated with the unit to pass to
C the child program

CALL PXFFILENO(11, IFD, IERROR)
IF (IERROR .NE. 0) STOP ‘Error getting file descriptor’
WRITE(UNIT=ARGS(1), FMT=10) IFD
10 FORMAT(15)
LENARGS(1) =5

C Now create a new process and exec a new image

CALL PXFFFLUSH(11, IERROR)

126 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

CALL PXFFORK(IPID, IERROR)
IF (IERROR .NE. Q) STOP

IF (IPID .EQ. O) THEN
CALL PXFEXECV("./childpgm’, 10, ARGS, LENARGS, 2, IERROR)
CALL PXFFASTEXIT(-1)

END IF

C The parent may do other work or wait...

CLOSE(11)
END

PROGRAM CHILD
CHARACTER ARGFMT*5, ARG1*100

C The child program reads its argument list and then connects to
C the file descriptor passed as the first argument...

IF (IPXFARGC() .NE. 1) CALL PXFEXIT(-1)
CALL PXFGETARG(1, ARG1, LENARG1, IERROR)

READ(UNIT=ARGFMT, FMT=10) LENARG1
10 FORMAT((I,15,))
READ(UNIT=ARG1, FMT=ARGFMT) IFD

CALL PXFFDOPEN(IFD, 14, ‘STATUS=0LD, POSIXIO=YES’, IERROR)
IF (IERROR .NE. 0) CALL PXFEXIT(-1)

C Now the child can write to the file...
WRITE(14,20) ‘Child complete.’
20 FORMAT (A)
CLOSE(14)
CALL PXFEXIT(O)
END

During balloting of this standard, one alternative that was discussed was to permit the implementation of the
functionality of PXFFDOPEN()to be optional (see A.8.5.1).

A.8.5.4 Flush Output

If FORTRAN 1/O is to be resumed by a child process on a file opened by the parent using the OPEN statement,
PXFFFLUSH) must be called before the child is created in order to flush the 1/O buffers of the parent. In the example
below, a child process is created that writes to a unit that the parent may have been using. The parent waits for the child
to complete and then may resume writing to the file. The results of this program would be unpredictable if the parent
did not flush the buffers before creating the child. When the child closes its connection to the file, the connection made
by the parent to the file remains. Notice that the child performs FORTRAN 77 1/O on the file by directly using the
external unit without need to identify or use file descriptors. This is permittedBkteeORK) will duplicate the

parents’ connection to the file, and the connected file descriptor will be inherited. Once a call to oRXIBEXKE Q)
subroutines is made, the connected unit is destroyed, but the file descriptor is preserved (unless the FD_CLOEXEC
flag is set on the file). Therefore, after a call to one oPKIEEXEQ) subroutines is mad@XFFDOPEN) must be

called to establish the connection of a unit to the inherited file descriptor.

PROGRAM SHARE

Copyright © 1992 IEEE All Rights Reserved 127

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

CALL PXFPOSIXIO(1, IOLD, IERROR)

OPEN (UNIT=11, FILE='share.me’, ACCESS=' SEQUENTIAL’,
+ STATUS="NEW’, FORM="FORMATTED")

WRITE(11,10) ‘THIS IS THE PARENT TALKING’
CALL PXFFFLUSH(11, IERROR)
IF (IERROR .NE. 0) STOP ‘Error flushing output!
CALL PXFFORK(IPID, IERROR)
IF (IERROR .NE. 0) STOP ‘Error during fork!”
IF (IPID .EQ. 0) THEN
WRITE(11,10) ‘THIS IS THE CHILD TALKING’
CLOSE(11)
CALL PXFEXIT(0)
ELSE
CALL PXFWAIT(ISTAT, IPID, IERROR)
END IF
WRITE(11,10) ‘THIS IS THE PARENT SAYING GOOD-BYFE’
CLOSE(11)
10 FORMAT (A)
END

A.8.5.5 FORTRAN Language Input/Output Statements

All of the interactions defined by this standard only apply to POSIX-based FORTRAN I/O files. As much as possible,
these specifications both reflect what is the intuitive relationship of the FORTRAN 77 construct and an underlying
POSIX system, as well as reflect a number of current implementations.

A.8.5.5.1 Interactions of FORTRAN I/O Statements

This standard does not define the operatio”RX$TREAD(), PXFWRITE, or PXFLSEEK) on file descriptors that are
connected to direct access files. This allows implementations to provide special optimizations while allowing
PXFSTAT) andPXFFCNTL) to be used on a file.

POSIX.9 defines two methods that can result in the same file being connected to two different unit. After a
PXFFORK), the I/O buffers of the parent will be duplicated in the child. If any of those buffers contain unwritten data,
there is the danger of duplicating that data in the file. The duplication of data may be avoided by flushing the data
before performind®XFFORK) or by performingPXFEXEQ) immediately after thXFFORK().If PXFFORK)
should fail, PXFFASTEXIT) may be used to terminate the process without writing the buffered data.
A.8.5.5.2 Interactions With FORTRAN 77 OPEN Statement
The setting of the mode to
IOR(IPXFCONST('S_IRUSR’),IOR(IPXFCONST('S_IWUSR’),
+ IOR(IPXFCONST('S_IRGRP’),IOR(IPXFCONST (‘S_IWGRP’),
+ I0R (IPXFCONST('S_IROTH’),IPXFCONST('S_IWOTH")))))

ensures that the umask value of the user will be used to determine the file permissions of newly created files.

128 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

A.8.5.5.3 Interactions With FORTRAN 77 INQUIRE Statement

POSIX.1 {2} does not define a reliable method of determining the absolute pathname of a file. Each open must do a
“get working directory” call to try to get this at the time of the open.

A.8.5.5.4 Interactions With FORTRAN 77 CLOSE Statement
There is no additional rationale provided for this subclause.
A.8.5.5.5 Interactions With FORTRAN 77 READ Statement

For all reading and writing on a unit, the read or write must not fail due to an interrupt. This is not to say that an
underlying POSIX read cannot fail due to an interrupt.

When reading the terminal device file associated with the controlling terminal, the behavior of READ statements may
be altered by setting the mode of the controlling terminal. An example arises in user terminal input: Since POSIX-
based FORTRAN 1/0 records are terminated by the newline character, it is important not to put the terminal in a mode
that will suppress the transmission of newline. For example, if the terminal is in noncanonical mode (see 7.1) and
INLCR is set (map NL to CR), then there is no way for the application to receive a newline from the controlling
terminal. A READ statement at this point may cause the application to hang. Although setting the controlling terminal
to noncanonical mode with INLCR not set will allow the newline to be sent, on most keyboards the only way to send
the newline is by pressing control-J. Applications should set ICRNL (map CR to NL) whenever noncanonical mode is
entered. Also, take care that IGNCR (ignore CR) is not set. This allows the read operation to complete when the
carriage return key is pressed at the keyboard of the controlling terminal.

A.8.5.5.6 Interactions With FORTRAN 77 WRITE Statement
There is no additional rationale provided for this subclause.
A.8.5.5.7 Interactions With FORTRAN 77 BACKSPACE and REWIND Statements
A question was asked about the following program:
CHARACTER ONELINE*7, CHAR

CALL POSIXIO(1, DUMMY, IERROR)
OPEN (UNIT=14, FILE="TEMP.TXT’, STATUS="NEW’)
WRITE (14,10) ‘ABCDEF’
WRITE (14,10) ‘JKLMNO’
WRITE (14,10) ‘STUVWX’
CLOSE (14)
OPEN (UNIT=14, FILE="TEMP.TXT’, STATUS='OLD))
READ (14,10) ONELINE
CALL PXFFGETC (14, CHAR)
BACKSPACE(14)
READ (14,10) ONELINE
WRITE (*,10) ONELINE
10 FORMAT (A)
END

Which line will be written? The BACKSPACE will move the file position to the beginning of the preceding record.
Section 8.5.5.1 defines what the preceding record will be after the PMRBGETC();therefore, the answer is:

JKLMNO with CHARcontaining the letter J. This is also the intuitive answer.

Copyright © 1992 IEEE All Rights Reserved 129

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

A.8.5.5.8 Interactions With FORTRAN 77 ENDFILE Statement
There is no additional rationale provided for this subclause.
A.8.6 Stream I/O

The subroutines defined in this section are based on common-practice extensions to many FORTRAN 77 compilers
and libraries available on UNIX-based systems today. The specifications here match as closely as possible those in
common usage. However, the syntax has been changed so that these subroutines are consistent with the rest of the
binding (i.e., names prefixed wilhXF). Therefore, there is little likelihood of conflict between these subroutines and

the common vendor extensions. These subroutines provide functionality that is not available with the I/O facilities of
FORTRAN 77 (i.e., the ability to access a file a byte at a time); such functionality has many applications in a POSIX
environment (e.g., screen prompting, building of filter programs). These subroutines provide functionality that is not
provided by Fortran 90 since the Fortran 90 {A1} language standard can only provide access to bytes within a record
whereas these procedures can access bytes outside of a FORTRAN record. Such functionality is not possible to specify
in a language standard that may be implemented on a wide variety of operating systems. It is only possible when the
scope is restricted to a specific operating system, such as the scope of this standard.

Mixing stream 1/0O and FORTRAN 77 record 1/0O was a concern. The model of mixing chosen was taken from existing
implementations. The model specifies that calBX6¢-GETC(), PXFFGETC(), PXFPUTC(), PXFFPUTC4nd/or
PXFFSEEK()may be intermixed with FORTRAN 77 READ and/or WRITE statements to the same connected unit.
There was much concern that this would not be portable and would be difficult for some architectures to implement.
There was also concern that the existing implementations were in conflict with the FORTRAN 77 standard. As a result,
the developers of this standard sought an official interpretation and guidance from the ANSI FORTRAN committee
(X3J3), with the feedback indicating that this model of mixing stream 1/O with FORTRAN 77 1/0O was not in conflict
with the FORTRAN 77 standard.

The developers of this standard also asked for guidance from X3J3 on the issue of mixing PXFGETC/PXFPUTC and
READ/WRITE on the same formatted sequential file during a single OPEN of a device. X3J3 indicated that it did not
take a vote on the issue, but that a survey of FORTRAN 77 implementors who were present at the meeting indicated
that several of them provide this feature. It is generally disliked because its behavior can be erratic. Generally, X3J3
expressed no support for mixing these 1/0 methods to the same file. At a later meeting of X3J3, a survey taken of ten
implementors indicated that four would approve of the mixture, four would disapprove, and two abstained. Most
developers of this standard felt that the feature would benefit the users of this standard.

In order to ensure that these routines could be used portably, the operation of the stream 1/O subroutines was limited
to formatted sequential files that are open for POSIX-based FORTRAN I/O (see 8.5). The behavior of the stream 1/0
subroutines is undefined for files that are not opened for POSIX-based FORTRAN I/O. This restriction effectively
limits the use of these subroutines to formatted sequential files.
When a call to one of the stream 1/0 subroutines is followed by a FORTRAN 77 1/O statement, the record accessible
to the FORTRAN 77 statement begins with the byte following the byte processed by the stream I/0 subroutine (see
8.6.3.2). Conversely, if a stream /O call is made following a FORTRAN 77 1/O statement, the byte processed would
be the next byte after the record processed by the FORTRAN 77 statement. The following program and sample output
illustrates the mixing behavior defined in 8.5.5.

PROGRAM IO

CHARACTER CH*1, STRING*20
C Setthe POSIXIO flag to 1 so that mixing can occur predictably.

CALL PXFPOSIXIO(1, IOLD, IERROR)

130 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API

C Write to standard out using both kinds of I/O

PRINT 10, ‘Hello,’
CALL PXFPUTC(*’, IERROR)
CALL PXFPUTC('W’, IERROR)
CALL PXFPUTC('0’, IERROR)
PRINT 10, ‘rld"

10 FORMAT (A)

C Read from a file using both kinds of 1/0.

OPEN(UNIT=14, FILE="temp.txt’, STATUS="OLD’)
DO 80I=1,5
CALL PXFFGETC(14, CH, IERROR)
CALL PXFPUTC(CH, IERROR)
80 CONTINUE

C Mark the transition from Stream I/O to FORTRAN [/O with an X.

CALL PXFPUTC('X’, IERROR)
READ(14, 10) STRING
PRINT 10, STRING

C Go back to the beginning of the file and do partial reads.
C Notice that FORTRAN 77 always reads a complete record.

CALL PXFSEEK(14, O, IPXFCONST('FSEEK_BEGIN’), IERROR)
READ(14,30) STRING

30 FORMAT (A3)
PRINT 10, STRING

DO 90 I=1, 4
CALL PXFFGETC(14, CH, IERROR)
CALL PXFPUTC(CH, IERROR)
90 CONTINUE

C Read the end of record character. This is something you
C cannot do with FORTRAN 77 or Fortran 90 as it now stands.

CALL PXFFGETC(14, CH, IERROR)
PRINT 40, ICHAR(CH)
40 FORMAT (14)

END

If the file temp.txt contains the data:
Line 1

Text

last

The output from the program will be the following:
Hello,

World!

Line X1

Lin

Copyright © 1992 IEEE All Rights Reserved

IEEE STD 1003.9-1992

131

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

Text 10

In the example above, the character 10 is the newline character, which is the end of record. However, newline-
delimited can only be assumed to be the definition of the record structures for POSIX-based FORTRAN 77 I/O files
(see 8.5). Therefore, as stated in 8.6, portable use of the stream 1/O procedures can only be assured when used with
such files.

A.8.6.1 Modify a File Position

ThePXFFSEEK()subroutine may be used on formatted POSIX-based FORTRAN 1/O files (see 8.5). While the IUNIT
argument “shall refer to an open unit,” this might not be the case, hence the error value. Further, it is intentionally left
unspecified whether performing this subroutine performs an implicit connection of a file to the unit for some unit
numbers.

In the following code fragment, lines in a data file are accessed according to the byte offset stored in an array.
C Seek to the starting field within the current line

80 CALL PXFFSEEK(IUNIT, RELPOS(IPTR),
+ IPXFCONST(‘FSEEK_CURRENT’), ISTAT)
IF (ISTAT .EQ. IPXFCONST(‘EEND’) GOTO 90
IF (ISTAT .NE. 0) THEN
WRITE (IPXFCONST('STDERR_UNIT’), 10) ‘Error during PXFFSEEK’
STOP
END IF
10 FORMAT (A)

C now read a record beginning at this location on the line
READ (UNIT=IUNIT, FMT=10, END=90) LINE
PRINT 10, LINE

GOTO 80
90 CONTINUE

A.8.6.2 Read a File Position

ThePXFFTELL()subroutine is used to obtain the byte offset in a file that is open for POSIX-based FORTRAN I/O. It
may used in conjunction witAXFFSEEK(}o return to specific byte locations within a file. WhiletbBIT argument

“shall refer to an open unit,” this might not be the case, hence the error value. Further, it is intentionally left unspecified
whether performing this subroutine performs an implicit connection of a file to the unit for some unit numbers. The
following code fragment reads a large data file containing DNA sequences and refd?&ik¢€BELL() is used to

store the byte offset of each DNA sequence.

C Readaline
READ (UNIT=IUNIT, FMT=10, END=110) LINE
C If the line begins with >>> it is a sequence

IF (LINE(L:3) .EQ. >>>') THEN
CALL PXFFTELL(IUNIT, IOFF, ISTAT)

132 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

IF (ISTAT .NE. 0) THEN
WRITE (IPXFCONST('STDERR_UNIT’), 10) ‘Error during PXFFTELL’
10 FORMAT (A)
STOP
END IF

C Store the offset in a file for later use by PXFFSEEK

WRITE (IUNIT2, 20) LINE(4:), IOFF
20 FORMAT (A,6)
END IF

C Repeat until all the lines have been read

A.8.6.3 Get a Character

ThePXFGETC()subroutine reads data from a file a byte at a time. It is useful for constructing menus, filter programs,
or system ultilities. The following code fragment waits for a single key to be pressed at the keyboard. The controlling
terminal must be in noncanonical mode in order for this code to function properly (see 7.1).

PRINT 10, ‘Press any key when ready.’
Call PXFGETC(CH, ISTAT)

A.8.6.4 Write a Character

The subroutine®XFFPUTC()andPXFFGETC()may be used together to create menu prompts, filter programs, or
system utilities. The following is an example of a filter program that converts a file with carriage-return-delimited lines
to a file with newline-delimited lines.

PROGRAM CRTOLF

INTEGER I, INUNT, OUTUNT, ISTAT, ILEN
CHARACTER*256 PGM, OPT, INFILE, OUTFIL
CHARACTER*1 CH

CALL PXFPOSIXIO(1, IOLD, IERROR)
INUNT = IPXFCONST('STDIN_UNIT’)
OUTUNT = IPXFCONST(‘STDOUT_UNIT")

Get the file names from the command line. If they are

missing use standard in and standard out.

No OPEN is required for either standard input or standard output.

Note that a more robust program would probably check for errors on OPEN.

OO0

IF (IPXFARGC() .GT. 0) THEN
CALL PXFGETARG(1, OPT, ILEN, ISTAT)
IF (OPT(LILEN) .NE. ') THEN
INFILE(L:ILEN) = OPT(L:ILEN)
INUNT = 14
OPEN(UNIT=INUNT, FILE=INFILE, STATUS='OLD’,
+ ACCESS='SEQUENTIAL’, FORM="FORMATTED")
END IF
END IF

Copyright © 1992 IEEE All Rights Reserved 133

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

IF (IPXFARGC() .EQ. 2) THEN
CALL PXFGETARG(2, OPT, ILEN, ISTAT)
IF (OPT(L:ILEN) .NE. -’) THEN
OUTFIL(L:ILEN) = OPT(L:ILEN)
OUTUNT =15

OPEN(UNIT=OUTUNT, FILE=OUTFIL, STATUS="UNKNOWN’,
+ ACCESS='SEQUENTIAL’, FORM=,FORMATTED’)

END IF
END IF
IF (IPXFARGC() .GT. 2) THEN
CALL PXFGETARG(0, PGM, ILEN, ISTAT)
PRINT 10, ‘USAGE: ’, PGM(L:ILEN), * [infile] [outfile]
STOP
END IF

C This is where the actual work of the program begins.
C The input is byte filtered to the output until the input is
C exhausted.

50 CALL PXFFGETC(INUNT, CH, ISTAT)
IF (ISTAT .EQ. IPXFCONST(‘EEND’)) GOTO 60
IF (ISTAT .NE. 0) STOP ‘PXFFGETC ERROR’
IF (CH .EQ. CHAR(13)) CH = CHAR(10)

CALL PXFFPUTC(OUTUNT, CH, ISTAT)
IF (ISTAT .NE. 0) STOP '‘PXFFPUTC ERROR’

GOTO 50

60 CONTINUE
CLOSE(INUNT)
CLOSE(OUTUNT)
END

A.8.7 Bit Field Manipulation

These functions are functionally identical to those of the same name in the MIL-STD-1753 {A4}, a common extension
to FORTRAN 77. (See A.2.3.0.4.5 for further discussion of MIL-STD-1753 {A4} Extensions.) While the MIL-STD
{A4} requires this type of function to be external, the developers of this standard intentionally avoided specifying
whether these functions were to be implemented as externals or intrinsics. Only this set of bit-manipulation functions
was specified in this standard because they were deemed minimally sufficient to access all the available functionality

provided in POSIX.1 {2}.

A.8.7.1 Inclusive OR

There is no additional rationale provided for this subclause.

A.8.7.2 Logical AND

There is no additional rationale provided for this subclause.

A.8.7.3 Bitwise NOT

There is no additional rationale provided for this subclause.

134

Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

A.8.8 System Date and Time
A.8.8.1 Local Time

The PXFLOCALTIME()subroutine converts time in seconds since the epoch to local time. The current time and date
can be retrieved from the system by callRXFTIME(). It can then be converted into local time by calling
PXFLOCALTIME().The PXFSTAT()subroutine will return file times in seconds since the epoch, which can also be
converted to local time usim@XFLOCALTIME().Although a number of time procedures exist as standard practice,

the developers of this standard chose to introduce this new procedure since the return value of year was changed to
provide the Gregorian year rather than simply the year of the century. This full value permits monotonic increase
across the century change, which is almost upon us. Further, Gregorian year is returned in[b®TiE toed the
VALUES(1)arguments of the Fortran 90 {A1} intrinsic subroutd&TE_AND_TIME().

A subroutine that returned a character string describing current time was discarded in order to avoid the inherent
problems of internationalization of such a string. It was felt that this one subroutine provided minimal but complete
functionality.

While the normal range of the value of seconds is 0-59, the range is extended to 0-61 to be able to handle the cases of
“leap seconds.”

A.8.9 Command-Line Arguments

Although a large number of existing implementations already have the proc€lFARG()andIARGC()defined,

the developers of this standard chose to specify new procedures in order to increase their robustness. The argument list
returned byPXFGETARG()s zero-based, i.e., argument number zero is the command. It was argued that FORTRAN

77 programmers are more accustomed to one-based indexing, and that because the array pdREEEXEEY ()

subroutine would be, by default, one based, specifAXgFGETARG()to be zero-based would be confusing.
However, the most common usageRAXFGETARG()will likely be to read the arguments of the command now
executing. Since the command name is argument number zero, the list of arguments to the command are effectively
one based. In addition, all of the current implementations surveyed are zero based.

The following program demonstrates the usage ofRKEGETARG()and IPXFARGC() subroutines; it simply
displays the command-line arguments that were passed to the current program.

PROGRAM ARGS

INTEGER I, STATUS, ILEN
CHARACTER*128 ARG, PGMNAM

INTEGER IPXFARGC
C Complain if no arguments are passed.
IF (IPXFARGC() .EQ. 0) THEN
CALL PXFGETARG(0, PGMNAM, ILEN, STATUS)
WRITE (IPXFCONST (‘'STDERR’),20) ‘usage:’, PGMNAM(1:ILEN), ‘arg1[arg2]

STOP
END IF

WRITE (*,10) ‘The number of arguments =, IPXFARGC()
10 FORMAT (A,14)

DO I=1, IPXFARGC()

Copyright © 1992 IEEE All Rights Reserved 135

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

CALL PXFGETARG(l, ARG, ILEN, STATUS)
WRITE (*,20) ARG(1:ILEN)
20 FORMAT (A)
END DO
END
A.8.9.1 Get Command-Line Argument

Arguments were added RXFGETARG(}o specify the returned length of the string (to handle the significant trailing
blanks issue), and to permit an error return.

A.8.9.2 Index of Last Command-Line Argument

As explained above, the array of command-line arguments is zero based (unlike a FORTRAN 77 array, which is one
based).

A.8.10 Character String Procedure

A.8.10.1 Length of a String Trimmed of Trailing Blanks

Because of the fixed-declaration characteristic of FORTRAN 77 character variables, and the need to determine the
actual length, minus the trailing blanks, of the string stored in that variable, this function was added. Although the
FORTRAN 77 standard INDEXnction(kould information, the developers of this standard felt that usability and
portability would be improved by including this special case function. While the name LNBLNK is current common
practice, the specific name was chosen to refleGRiI() intrinsic function in Fortran 90 {A1}. In addition, the use

of the PXF prefix made it clearer that this subroutine is only expected to be needed for a FORTRAN 77 binding.
A.8.11 Extended Range Integer Manipulation

As discussed in 2.3.2.2, POSIX.1 {2} makes use olitiegned integedata type available in the C language. Because

there is no primitive type available in FORTRAN 77 that is guaranteed to provide equivalent numeric range, the
developers of this standard decided it was necessary to provide a portable means for manipulating these extended
range integers. It wasotintended to specify a new primitive type for use in FORTRAN 77 applications, or to provide
utilities to support general-purpose functionality (e.g., arithmetic operations). Rather, it was agreed that the ability to
compare two extended range integers was sufficient to support common or intended usage of these values in the
POSIX.1 {2} environment. See A.2.3.2.2 for relevant technical details.

A.8.11.1 Unsigned Comparison

There is no additional rationale provided for this subclause.

A.8.12 Process Termination

No interactions for the PAUSE statement are specified since it has been identified as obsolete by Fortran 90 {A1}.
A.8.12.1 Interactions of the FORTRAN 77 STOP Statement

Note that the FORTRAN 77 standard does not allow for a negative value, so

STOP -1

is not standard conforming. The equivalent

136 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

STOP 255
must be used to obtain the equivalent functionality.
A.8.12.2 Interactions of the FORTRAN 77 END Statement
There is no additional rationale provided for this subclause.
A.8.12.3 POSIX-Based Fortran Process Termination
Originally, the FORTRAN 77 language construct STOP was referenced rather than spdediABXIT(). The
functionality is similar (i.e., it terminates the process), but STOP does not provide a method for returning a status value

to the system. AlsoPXFEXIT() has clearly defined cleanup responsibilities that need not be met by a given
implementation when STOP is executed.

A.9 System Databases

A.9.1 System Databases

A.9.2 Database Access

A.9.2.1 Group Database Access

Note that the group structure differs slightly from the POSIX.1 {2} specification because POSIX.1 {2} specified the
gr_memfield as a “null-terminated vector of pointers to the individual member names” that “may point to static data
that is overwritten in each call.” Such a value would be difficult to represent and manipulate using the structure access
and manipulation subroutines in this standard. As a result, an array of character strings is used, each containing an
individual member name. Implementors should note that the length of this array is bound only by the number of user
names allowed in a group. Tricks with dynamic storage iP¥fe<TYPE>GET ()subroutines may be required if this

bound is unspecified.

Group names may contain significant trailing blanks. Thus, a length argument is required and provided.

A.9.2.2 User Database Access

There is no additional rationale provided for this subclause.

A.10 Data Interchange Format
A.10.1 Archivel/interchange File Format

There is no additional rationale provided for this clause.

Acknowledgments

The developers of this standard wish to thank the following organizations for donating significant computer, printing,
and editing resources to the production of this standard: UniForum (formerly/usr/group) and Hewlett Packard Co.

Also, the developers of this standard wish to thank the organizations employing the members of the working group and

the balloting group for both covering the expenses related to attending and participating in meetings and for donating
the time required both in and out of meetings for this effort.

Copyright © 1992 IEEE All Rights Reserved 137

IEEE STD 1003.9-1992

UniForum

Cray Research

Genetic Computing Group
Hewlett-Packard Company

IBM Corporation

Lawrence Livermore National Laboratory
Sandia National Laboratories

San Diego Supercomputer Center

138

IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

Copyright © 1992 IEEE All Rights Reserved

	Title Page
	Introduction
	Participants
	CONTENTS
	1. General
	1.1 Scope
	1.2 Normative References
	1.3 Conformance

	2. Terminology and General Requirements
	2.1 Conventions
	2.2 Definitions
	2.3 FORTRAN 77 Language Bindings Concepts
	2.4 Error Numbers
	2.5 Primitive System Data Types
	2.6 Environment Description
	2.7 FORTRAN 77 Language Definitions
	2.8 Numerical Limits
	2.9 Symbolic Constants

	3. Process Primitives
	3.1 Process Creation and Execution
	3.2 Process Termination
	3.3 Signals
	3.4 Timer Operations

	4. Process Environment
	4.1 Process Identification
	4.2 User Identification
	4.3 Process Groups
	4.4 System Identification
	4.5 Time
	4.6 Environment Variables
	4.7 Terminal Identification
	4.8 Configurable System Variables

	5. Files and Directories
	5.1 Directories
	5.2 Get Working Directory
	5.3 General File Creation
	5.4 Special File Creation
	5.5 File Removal
	5.6 File Characteristics
	5.7 Configurable Pathname Variables

	6. Input and Output Primitives
	6.1 Pipes
	6.2 File Descriptor Manipulation
	6.3 File Descriptor Deassignment
	6.4 Input and Output
	6.5 Control Operations on Files

	7. Device- and Class-Specific Procedures
	7.1 General Terminal Interface
	7.2 General Terminal Interface Control Subroutines

	8. FORTRAN 77 Language Library
	8.1 FORTRAN 77 Intrinsics
	8.2 System Symbolic Constant Access
	8.3 Structure Creation and Manipulation
	8.4 Subroutine-Handle Manipulation
	8.5 External Unit and File Description Interaction
	8.6 Stream I/O
	8.7 Bit Field Manipulation
	8.8 System Date and Time
	8.9 Command-Line Arguments
	8.10 Character String Procedures
	8.11 Extended Range Integer Manipulation
	8.12 Process Termination

	9. System Databases
	9.1 System Databases
	9.2 Database Access

	10. Data Interchange Format
	10.1 Archive/interchange File Format

	Annex A—Rationale and Notes
	A.1 General
	A.2 Terminology and General Requirements
	A.3 Process Primitives
	A.4 Process Environment
	A.5 Files and Directories
	A.6 Input and Output Primitives
	A.7 Device- and Class-Specific Functions
	A.8 FORTRAN 77 Language Library
	A.9 System Databases
	A.10 Data Interchange Format
	Acknowledgments

