

out the
IEEE Std 1003.9-1992

IEEE Standard for Information
Technology—POSIX FORTRAN 77
Language Interfaces—Part 1: Binding for
System Application Program Interface
(API)

Sponsor
Technical Committee on Operating Systems and Application Environments
of the
IEEE Computer Society

Approved June 18, 1992

IEEE Standards Board

Abstract: This standard provides a standardized interface for accessing the system services of ISO/IEC
9945-1: 1990 (IEEE Std 1003.1-1990, also known as POSIX.1), and support routines to access constructs
not directly accessible with FORTRAN 77. This standard supports application portability at the source level
through the binding between ANSI X3.9-1978 and POSIX.1, and a standardized definition of language-
specific services. The goal is to provide standardized interfaces to the POSIX.1 system services via a
FORTRAN 77 language interface. Terminology and general requirements, process primitives, the process
environment, files and directories, input and output primitives, device- and class-specific functions, the
FORTRAN 77 language library, and system databases are covered.
Keywords: application portability, FORTRAN 77, interfaces, interoperability, POSIX, system interfaces

The Institute of Electrical and Electronics Engineers, Inc.

345 East 47th Street, New York, NY 10017-2394, USA

Copyright © 1992 by the Institute of Electrical and Electronics Engineers, Inc.

All rights reserved. Published 1992 Printed in the United States of America

ISBN 1-55937-230-3

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, with
prior written permission of the publisher.
i

ndards
without
present a
that have

 no other
f the IEEE
to change
rd. Every
 is more
 of some
 have the

ffiliation
ther with

relate to
 initiate
erests, it is
is reason,
pretation

ard to
ssume
dards
IEEE Standards documents are developed within the Technical Committees of the IEEE Societies and the Sta
Coordinating Committees of the IEEE Standards Board. Members of the committees serve voluntarily and
compensation. They are not necessarily members of the Institute. The standards developed within IEEE re
consensus of the broad expertise on the subject within the Institute as well as those activities outside of IEEE
expressed an interest in participating in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there are
ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope o
Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject
brought about through developments in the state of the art and comments received from users of the standa
IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document
than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still
value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they
latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership a
with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, toge
appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they
specific applications. When the need for interpretations is brought to the attention of the IEEE, the Institute will
action to prepare appropriate responses. Since IEEE Standards represent a consensus of all concerned int
important to ensure that any interpretation has also received the concurrence of a balance of interests. For th
the IEEE and the members of its technical committees are not able to provide an instant response to inter
requests except in those cases where the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

IEEE Standards documents are adopted by the Institute of Electrical and Electronics Engineers without reg
whether their adoption may involve patents on articles, materials, or processes. Such adoption does not a
any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the stan
documents.
ii

OSIX
ed for

1990,
cation

es via a
nd the

sis. The
rface is
rovided
nguage-
are used to
lement
storical
ormation

x is part
d.

AN 77
 measure
e to this
egree of

laiming

, software
evelopers

rovided by
Introduction

(This introduction is not a normative part of IEEE Std 1003.9-1992, IEEE Standard for Information Technology—P
FORTRAN 77 Language Interfaces—Part 1: Binding for System Application Program Interface (API), but is includ
information only.)

The purpose of this standard is to support application portability at the source level through the definition of:

1) An interface between the ANSI X3.9-1978 FORTRAN Standard (archival) and ISO/IEC 9945-1:
Information technology — Portable Operating System Interface (POSIX) — Part 1: System appli
interface (API) [C language]

2) A standardized interface for language-specific services.

The focus of this standard is to provide standardized interfaces to the ISO/IEC 9945-1: 1990 system servic
FORTRAN 77 language interface. Future work will consist of interfaces to other parts of ISO/IEC 9945 a
possible use of new functionality provided in ISO/IEC 1539: 1991 (Fortran 90).

Organization of This Standard

1) Statement of scope and list of normative references (Section 1)
2) Definitions and global concepts (Section 2)
3) The various interface facilities (Section 3 through 9)

The FORTRAN 77 language interface for each service interface is given in the subclause labeled Synop
correspondence of the ISO/IEC 9945-1: 1990 system service interface to the FORTRAN 77 language inte
described in the Description subclause. Additional information on the creation of specific actual arguments is p
for some interfaces. The Description subclause provides a specification of the operation performed for the la
specific services. In most cases, there is also an Errors subclause that describes error handling. References
direct the reader to related sections in ISO/IEC 9945-1: 1990 and in POSIX.9. Additional material to comp
sections in this standard may be found in the Rationale and Notes (Annex A). This annex provides hi
perspectives into the technical choices made by developers of this standard. It also elaborates on the inf
provided in the corresponding section of this standard.

Informative annexes are not part of the draft standard and are provided for information only. A normative anne
of the standard and imposes requirements, but there are currently no such normative annexes in this standar

In publishing this standard, its developers simply intend to provide a basis upon which various FORTR
interfaces to ISO/IEC 9945-1: 1990 can be measured for conformance. It is not the intent of the developers to
or rate any products, to reward or sanction any vendors of products for conformance or lack of conformanc
standard, or to enforce this standard by these or any other means. The responsibility for determining the d
conformance or lack thereof with this standard rests solely with the individual who is evaluating the product c
to be in conformance with this standard.

Background

The developers of this standard represent a cross section of hardware manufacturers, user organizations
designers, applications programmers, and others. In the course of the development of this standard, the d
received guidance from members of the ANS Committee on Fortran, X3J3.

ISO/IEC 9945-1: 1990 describes a set of fundamental system services. Access to these services has been p
defining an interface using the FORTRAN 77 programming language in this standard.
iii

AN 77

ing to

unction

forming
andard
orming

AN 77

e to the
es from

r future:

SO/IEC

ur name,
ctronics

ed to the
at the
Audience

The intended audience for this standard is all persons concerned with an industrywide standard FORTR
interface to the system services described in ISO/IEC 9945-1: 1990.

Purpose

Several principles guided the development of this standard:

Application Oriented

The basic goal was to promote portability of FORTRAN 77 application programs on systems conform
ISO/IEC 9945-1: 1990.

Interface, Not Implementation

This standard defines an interface, not an implementation. No details of the implementation of any f
are given, although historical practice may be indicated in Annex A.

Source, Not Object, Portability

This standard has been written so that a program written and translated for execution on one con
implementation may also be translated for execution on another conforming implementation. This st
does not guarantee that executable (object or binary) code will execute under a different conf
implementation than that for which it was translated, even if the underlying hardware is identical.

The FORTRAN 77 Language

This standard is written in terms of the standard FORTRAN 77 language as specified in the FORTR
standard {3}. See 1.3.3. It contains the single extension of 31-character names.

Minimal Interface, Minimally Defined

In keeping with the rules of FORTRAN 77, this standard uses subroutine and function calls to interfac
ISO/IEC 9945-1: 1990. The 31-character name extension was added to allow the use of interface nam
ISO/IEC 9945-1: 1990.

Related Standards Activities

Activities to extend this standard to address additional requirements are being considered.

The following activities are under active consideration at this time, or are expected to become active in the nea

1) ISO 1539: 1991 (Fortran 90) Programming Language binding to a language-independent version of I
9945-1: 1990.

2) Fortran binding to Shell and Utilities facilities
3) Fortran binding to Realtime facilities
4) Fortran binding to Security

If you have interest in participating in the TCOS working groups addressing these issues, please send yo
address, and telephone number to the Secretary, IEEE Standards Board, Institute of Electrical and Ele
Engineers, Inc., P.O. Box 1331, 445 Hoes Lane, Piscataway, NJ 08855-1331, and ask to have this forward
chairperson of the appropriate TCOS working group. If you have interest in participating in this work
international level, contact your ISO/IEC national body.
iv

perating
ved, the

e IEEE
This standard was prepared by the 1003.9 Working Group, sponsored by the Technical Committee on O
Systems and Application Environments of the IEEE Computer Society. At the time this standard was appro
membership of the 1003.9 Working Group was as follows:

Technical Committee on Operating Systems and Application Environments (TCOS)

Chair: Jehan-François Pâris

TCOS Standards Subcommittee

Chair: Jim Isaak
Vice-Chairs: Ralph Barker
 Hal Jespersen
 Lorraine Kevra
 Pete Meier
 Andrew Twigger

Treasurer: Quin Hahn
Secretary: Shane McCarron

1003.9 Working Group Officials

Chair: John J. McGrory II
Vice-Chair: Michael Hannah

Editor: Daniel J. Magenheimer
Secretary: Larry Diegel

Working Group

Joanne Brixius
Loren Buhle

Cynthia M. Cox
Mike Hunter

Joseph King

The following persons were members of the balloting group that approved this standard for submission to th
Standards Board:

Roger E. Anderson
Bengt Asker
David Athersych
Edward Benson
Jerry Berkman
Keith Bierman
Andy Bihain
James M. Bishop
Andy Cheese
Kilnam Chon
Cynthia M. Cox
Larry Diegel
Ron Elliott
Roger Golliver
E. Howard Green
Robert M. Gross

Mark Guzzi
Charles Hammons
Michael Hannah
Kurt W. Hirchert
Don Huebschman
Michael T. Hunter
Jim Isaak
Hal Jespersen
Jens Kolind
Ip-Beau Phillip Law
Donald Lewine
F. C. Lim
Daniel J. Magenheimer
Roger Martin
Patrick McGehearty
John J. McGrory II

Robert McWhirter
Lyle Meier
Martha Nalebuff
Daniel Nissen
Fred Noz
Paul E. Renaud
Steve M. Rowan
Lorne H. Schachter
Gerhard Schmitt
Leonard Seagren
Richard Seibel
Dan Shia
Andrew D. Tait
Ravi Tavakley
Donn S. Terry
Mark-Rene Uchida
v

Michael W. Vannier
Stephen Walli
Richard W. Weaver
Frederick N. Webb

Janusz Zalewski
John Zolnowsky
Joanne Brixius (ANSI X3J3
Liaison)

Joseph King (DECUS
Institutional Representative)

When the IEEE Standards Board approved this standard on June 18, 1992, it had the following membership:

Marco W. Migliaro , Chair
Donald C. Loughry, Vice Chair

Andrew G. Salem, Secretary

Dennis Bodson
Paul L. Borrill
Clyde Camp
Donald C. Fleckenstein
Jay Forster*
David F. Franklin
Ramiro Garcia
Thomas L. Hannan

Donald N. Heirman
Ben C. Johnson
Walter J. Karplus
Ivor N. Knight
Joseph Koepfinger*
Irving Kolodny
D. N. “Jim” Logothetis
Lawrence V. McCall

T. Don Michael*
John L. Rankine
Wallace S. Read
Ronald H. Reimer
Gary S. Robinson
Martin V. Schneider
Terrance R. Whittemore
Donald W. Zipse

*Member Emeritus

Also included are the following nonvoting IEEE Standards Board liaisons:

Satish K. Aggarwal
James Beall

Richard B. Engelman
David E. Soffrin

Stanley Warshaw

Mary Lynne Nielsen, IEEE Standards Project Editor
vi

CLAUSE PAGE

....
1. General ..1

1.1 Scope.. 1
1.2 Normative References.. 1
1.3 Conformance.. 2

2. Terminology and General Requirements ..4

2.1 Conventions ... 4
2.2 Definitions.. 5
2.3 FORTRAN 77 Language Bindings Concepts.. 7
2.4 Error Numbers.. 10
2.5 Primitive System Data Types... 10
2.6 Environment Description ... 10
2.7 FORTRAN 77 Language Definitions .. 11
2.8 Numerical Limits ... 11
2.9 Symbolic Constants.. 11

3. Process Primitives ...12

3.1 Process Creation and Execution... 12
3.2 Process Termination... 13
3.3 Signals.. 15
3.4 Timer Operations ... 21

4. Process Environment...23

4.1 Process Identification... 23
4.2 User Identification.. 24
4.3 Process Groups... 27
4.4 System Identification ... 29
4.5 Time ... 30
4.6 Environment Variables .. 32
4.7 Terminal Identification .. 33
4.8 Configurable System Variables ... 35

5. Files and Directories ...36

5.1 Directories.. 36
5.2 Get Working Directory .. 38
5.3 General File Creation ... 39
5.4 Special File Creation.. 42
5.5 File Removal .. 44
5.6 File Characteristics... 46
5.7 Configurable Pathname Variables.. 51

6. Input and Output Primitives..52

6.1 Pipes ... 52
6.2 File Descriptor Manipulation ... 53
6.3 File Descriptor Deassignment .. 54
6.4 Input and Output .. 54
6.5 Control Operations on Files ... 56
vii

CLAUSE PAGE

7. Device- and Class-Specific Procedures ..58

7.1 General Terminal Interface .. 58
7.2 General Terminal Interface Control Subroutines... 61

8. FORTRAN 77 Language Library ...64

8.1 FORTRAN 77 Intrinsics .. 64
8.2 System Symbolic Constant Access .. 64
8.3 Structure Creation and Manipulation... 65
8.4 Subroutine-Handle Manipulation... 69
8.5 External Unit and File Description Interaction .. 70
8.6 Stream I/O .. 78
8.7 Bit Field Manipulation ... 81
8.8 System Date and Time ... 83
8.9 Command-Line Arguments.. 84
8.10 Character String Procedures... 85
8.11 Extended Range Integer Manipulation .. 86
8.12 Process Termination... 87

9. System Databases..87

9.1 System Databases... 87
9.2 Database Access... 87

10. Data Interchange Format...91

10.1 Archive/interchange File Format ... 91

Annex A Rationale and Notes (Informative) ..92
viii

nd the

fined
ped in

ing.

O/IEC

is
IEEE Standard for Information
Technology—POSIX FORTRAN 77
Language Interfaces—Part 1:
Binding for System Application Program
Interface (API)

1. General

1.1 Scope

This standard provides the binding between the ANSI X3.9-1978 (FORTRAN 77) programming language a
system services defined in ISO/IEC 9945-1: 1990 (hereinafter referred to as POSIX.1 {2}).

As with the definition of the service interfaces in POSIX.1 {2}, this FORTRAN 77 language binding is de
exclusively at the source code level. The objective is that a Strictly Conforming Application may be develo
FORTRAN 77 and compiled to execute on a POSIX.1 {2} conforming implementation.

It is intended that this FORTRAN 77 language binding may coexist on a system with any other language bind

The following areas are outside the scope of this standard:

1) Extensions to the FORTRAN 77 language, other than the required longer external names.
2) Bindings to any system interfaces using new or changed features in the revision to FORTRAN 77 (IS

1539: 1991).
3) Bindings for system interfaces other than those defined in POSIX.1 {2}.

1.2 Normative References

[1] ISO/IEC 9899:1990, Information technology—Programming languages—C.1

1ISO/IEC documents can be obtained from the ISO office, 1, rue de Varembé, Case Postale 56, CH-1211, Genève 20, Switzerland/Suse. IEEE
documents can be obtained from the Institute of Electrical and Electronic Engineers, Service Center, 445 Hoes Lane, P.O. Box 1331, Piscataway,
NJ, 08855-1331, USA.
Copyright © 1992 IEEE All Rights Reserved 1

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

ce

 support

ndard
en used,
nt shall
y this
SIX.9

ble for
all have
nted in
facilities
1.3.3.1.

standards
use by a
ed by

features
specific
nce may

may vary

ure shall
explicitly

[2] ISO/IEC 9945-1: 1990 (IEEE Std 1003.1-1990), Information technology—Portable Operating System Interfa
(POSIX)—Part 1: System Application Program Interface (API) [C Language].

[3] ANSI X3.9-1978, American National Standard Programming Language FORTRAN.2

1.3 Conformance

1.3.1 Implementation Conformance

1.3.1.1 Requirements

A conforming implementation shall meet all of the following criteria:

1) The system shall support all required interfaces defined within this standard. These interfaces shall
the functional behavior described herein.

2) The system may provide additional routines or facilities not required by this standard. Nonsta
extensions should be identified as such in the system documentation. Nonstandard extensions, wh
may change the behavior of routines or facilities defined by this standard. The conformance docume
define an environment in which an application can be made to run with the behavior specified b
standard. In no case shall such an environment require modification of a Strictly Conforming PO
Application.

See POSIX.1 {2} 1.3 for a description of a POSIX.1 {2} conforming implementation.

1.3.1.2 Documentation

A conformance document with the information described in POSIX.1 {2} 1.3 and in this standard shall be availa
an implementation claiming conformance to POSIX.1 {2} and to this standard. The conformance document sh
the same structure as that described in POSIX.1 {2} 1.3 and this standard, with the information prese
appropriately-numbered sections. The conformance document shall not contain information about extended
or capabilities outside the scope of POSIX.1 {2} 1.3, this standard, and the applicable standard described in

The conformance document shall contain a statement that indicates the full name, number, and date of the
that apply. The conformance document may also list international software standards that are available for
Conforming POSIX.1 {2} and POSIX.9 Application. Applicable characteristics where documentation is requir
one of these standards, or by standards of government bodies, may also be included.

The conformance document shall describe the behavior of the implementation for all implementation-defined
defined in this standard. This requirement shall be met by listing these features and providing either a
reference to the system documentation or providing full syntax and semantics of these features. The conforma
specify the behavior of the implementation for those features where this standard states that implementations
or where features are identified as undefined or unspecified.

The phrases “shall document” or “shall be documented” in this standard mean that documentation of the feat
appear in the conformance document, as described previously, unless the system documentation is
mentioned.

The system documentation should also contain the information found in the conformance document.

See POSIX.1 {2} 1.3 for a description of a POSIX.1 {2} conformance document.

2This is an archival standard which is identical to the obsolete ISO 1539:1980. ANSI documents can be obtained from the American National
Standards Institute, 1430 Broadway, New York, NY 10018, USA.
2 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

cribed

d the

rd and

tures
N 77
N 77

ection 8

to the
at does
ance.

TRAN
AN 77,

e bindings

9945-
quired

es the
nguage
 function
permit a
racter
.3.5).

h some
AN 77

1.3.2 Application Conformance

All applications claiming conformance to this standard shall use only ANSI X3.9-1978 (FORTRAN 77) as des
in 1.3.3.1 and shall fall within one of the following categories:

1.3.2.1 Strictly Conforming POSIX.9 Application

A Strictly Conforming POSIX.9 Application is an application that requires only the facilities in POSIX.9 an
facilities described in POSIX.1 {2} 1.3 and the language standard described in 1.3.3.1 for a Strictly Conforming
POSIX.1 Application. Such an application shall accept any behavior described in this standard as unspecified or
implementation-defined.

1.3.2.2 Conforming POSIX.9 Application

An IEEE Conforming POSIX.9 Application is an application that uses only the facilities described in this standa
the facilities described in POSIX.1 {2} 1.3 for a Conforming POSIX.1 Application.

1.3.3 Language-Dependent Services for the FORTRAN 77 Programming Language

ANSI X3.9-1978 {3} (FORTRAN 77), will provide the definition of any FORTRAN 77 language-dependent fea
used by POSIX.9. Section 8 provides new facilities and amplifications to facilities provided by the FORTRA
standard. Any implementation claiming conformance to POSIX.9 shall provide the facilities of the FORTRA
standard {3} that are referenced in Section 8 of POSIX.9 and any additions and amplifications required by S
and 1.3.3.1.

Although POSIX.9 references FORTRAN 77 features to describe its own requirements, conformance
FORTRAN 77 standard {3} is unnecessary for conformance to this standard. Any Fortran implementation th
not conflict with FORTRAN 77 and provides the facilities stipulated in Section 8 and 1.3.3.1 may claim conform
However, it shall clearly state that its Fortran language does not conform to the FORTRAN 77 standard.

NOTE — FORTRAN 77 is considered to be contained within the ISO/IEC 1539: 1991 (Fortran 90), i.e., all features in FOR
77 are considered to be part of Fortran 90. While Fortran 90 features need not be acceptable to FORTR
FORTRAN 77 features are acceptable under Fortran 90. To be able to use the Fortran 90 features, a separat
standard for Fortran 90 will be developed at a later time.

1.3.3.1 FORTRAN 77 Language Binding

ANSI X3.9-1978 {3} (FORTRAN 77) is used as the basis for this FORTRAN 77 language bindings to ISO/IEC
1: 1990 {2}. Implementations claiming conformance to this standard must supply the FORTRAN 77 features re
by this document, such as the intrinsic function facility.

One extension to FORTRAN 77 is required by POSIX.9. FORTRAN 77 specifies that “a symbolic name tak
form of one to six letters or digits, the first of which must be a letter.” This document assumes that the la
implementation can accept specified symbolic names that are longer than six characters. Subroutine and
names, in particular, are assumed to be longer than six characters by this standard. Furthermore, to
FORTRAN 77 implementation to claim conformance to POSIX.1 {2}, names that differ in or before the 31st cha
position are required to be recognized as distinct names by the language implementation (see POSIX.1 {2} 1

1.3.4 Other Language Related Specifications

The FORTRAN 77 standard {3} specifies that at least the 49 defined FORTRAN 77 characters shall exist wit
FORTRAN 77-specified ordering requirements in an implementation-defined collating sequence. The FORTR
functions CHAR() and ICHAR() shall perform conversions based on that collating sequence.
Copyright © 1992 IEEE All Rights Reserved 3

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

es of a
which

.1 {2}.

ith real

ynopsis

ctual

s:

le. This
hese two

phy are

 and notes

 service
aracters
A FORTRAN 77 character in a POSIX.9-conforming implementation shall be capable of representing all valu
byte define by POSIX.1 {2}. The POSIX.9-conforming implementation shall use a collating sequence
conforms to the FORTRAN 77 standard {3}.

2. Terminology and General Requirements

2.1 Conventions

2.1.1 Typographical Conventions

The following typographical conventions are used in this standard:

1) The italic font is used for:
 Cross references to defined terms within 1.2, 2.2.1, and 2.2.2, or within these sections in POSIX
 Symbolic parameters in Synopsis subclauses and in the text that are generally substituted w

values by the application.
 FORTRAN language data types, variable names, and subroutine/function names (except in S

subclauses)
2) The bold font is used with a word in all capital letters, such as

PATH
to represent an environment variable, as described in 2.6. It is also used for the term “NULL pointer.”

3) The constant-width (Courier) font is used:
 For FORTRAN 77 language data types and function names within function Synopsis subclauses
 To illustrate examples of system input or output where exact usage is depicted
 For references to C-language syntax and headers

4) HELVETICA font is used in 8.3 to represent a “generic” data type for which the appropriate a
FORTRAN 77 data type is substituted.

5) Symbolic constants returned by many functions and subroutines as error numbers are represented a
[ERRNO]

See 2.4.
6) Symbolic constants or limits defined in certain POSIX.1 {2} headers are represented as:

{LIMIT}
See 2.8 and 2.9.

In some cases tabular information is presented “inline”; in others it is presented in a separately labeled tab
arrangement was employed purely for ease of typesetting, and there is no normative difference between t
cases.

The conventions listed previously are for ease of reading only. Editorial inconsistencies in the use of typogra
unintentional and have no normative meaning in this standard.

Notes provided as parts of labeled tables and figures are integral parts of this standard (normative). Footnotes
within the body of the text are for information only (nonnormative).

2.1.2 Namespace Conventions

The following naming conventions are used in this standard:

2.1.2.1 subroutine naming:

This standard defines a FORTRAN 77 subroutine interface to POSIX.1 {2} system calls and language-specific
routines. This standard prefixes the names of the POSIX.1 {2} system calls and service routines with the ch
4 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

 the other

acros
aracters

s sections

ls as

ents

 this

f this

cations is

ions,

ement.
 and a

. If the

e error

e

nce

.

PXF to create a unique name for the corresponding FORTRAN 77 procedures. For consistency, the names for
service subroutines defined in this standard are also prefixed with the same characters.

2.1.2.2 function naming:

This standard defines a FORTRAN 77 function interface to the functionality provided by certain POSIX.1 {2} m
and service functions. All service functions in this standard that return an integer value are prefixed with the ch
IPXF.

2.1.2.3 argument naming:

The names of all integer items in the actual argument list of each defined procedure statement in the Synopsi
begin with one of the letters I, L, M, or N. The names of all items that are structure handles or subroutine handles (see
2.2.2) in the actual argument list are prefixed with the letter J.

2.2 Definitions

2.2.1 Terminology

For the purposes of this standard, the following definitions from POSIX.1 {2} apply:

2.2.1.1 conformance document: A document provided by an implementor that contains implementation detai
described in POSIX.1 {2} 1.3.1.2.

2.2.1.2 implementation defined: An indication that the implementation shall define and document the requirem
for correct program constructs and correct data of a value or behavior.

2.2.1.3 may: An indication of an optional feature.

With respect to implementations, the word may is to be interpreted as an optional feature that is not required in
standard but can be provided. With respect to Strictly Conforming POSIX.9 Applications, the word may means that the
optional feature shall not be used.

2.2.1.4 obsolescent: An indication that a certain feature may be considered for withdrawal in future revisions o
standard.

Obsolescent features are retained in this version because of their widespread use. Their use in new appli
discouraged.

2.2.1.5 shall: An indication of a requirement on the implementation or on Strictly Conforming POSIX.9 Applicat
where appropriate.

2.2.1.6 should:
1) With respect to implementations, an indication of an implementation recommendation, but not a requir
2) With respect to applications, an indication of a recommended programming practice for applications

requirement for Strictly Conforming POSIX.9 Applications.

2.2.1.7 supported: A condition regarding optional functionality.

Certain functionality in this standard is optional, but the interfaces to that functionality are always required
functionality is supported, the interfaces work as specified by this standard (except that they do not return th
condition indicated for the unsupported case). If the functionality is not supported, the interface shall always return th
indication specified for this situation.

2.2.1.8 system documentation: All documentation provided with an implementation, except the conforma
document.

Electronically distributed documents for an implementation are considered part of the system documentation
Copyright © 1992 IEEE All Rights Reserved 5

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

 of an

ior. An

orrect

ior. An
 using

tion are

 is

 be a

 blanks.
der of the
 string

gnificant
le, the
 be

g type

g the
2.2.1.9 undefined: An indication that this standard imposes no portability requirements on an application’s use
indeterminate value or its behavior with erroneous program constructs or erroneous data.

Implementations (or other standards) may specify the result of using that value or causing that behav
application using such behaviors is using extensions, as defined in POSIX.1 {2} 1.3.

2.2.1.10 unspecified: An indication that this standard imposes no portability requirements on applications for a c
program construct or correct data.

Implementations (or other standards) may specify the result of using that value or causing that behav
application requiring a specific behavior, rather than tolerating any behavior when using that functionality, is
extensions, as defined in POSIX.1 {2} 1.3.

2.2.2 General Terms

In addition to those terms defined in ISO/IEC 9945-1: 1990 (see POSIX.1 {2} 2.2), the terms defined in this sec
used in this standard.

2.2.2.1 component: A member, element, or field of a structure.

2.2.2.2 handle: An integer value that refers to a structure handle or subroutine handle.

Unless otherwise specified in this standard, handle refers to a structure handle.

2.2.2.3 structure handle: An integer value that refers to a unique instance of a structure.

An existing (structure) handle is a handle that references an existing instance of a structure.

2.2.2.4 subroutine handle: An integer value that refers to a unique instance of a subroutine.

2.2.2.5 intent: A description of whether the actual argument is used by a defined subprogram as an input argument
(intent=IN), as an output argument (intent=OUT), or as both an input and output argument (intent=INOUT).

2.2.2.6 newline delimited: An indication that the newline character is used as a delimiter.

2.2.2.7 POSIX-based FORTRAN I/O file: A FORTRAN 77 file associated with a POSIX.1 {2} file descriptor that
connected to a FORTRAN 77 unit.

2.2.2.8 significant trailing blanks: One or more blanks at the end of a character string that are intended to
meaningful part of the contents of the string.

Unlike strings in the C language, character variables in FORTRAN 77 are of a fixed length and are padded with
That is, if a character variable is assigned a value that contains fewer characters than declared, the remain
variable is filled with blanks. Because of this characteristic, it is difficult to determine the difference between a
(e.g., a value assigned to an environment variable) that contains trailing blanks that are part of the string (si
trailing blanks) and a string for which the trailing blanks are only FORTRAN 77-required padding. For examp
strings “myprompt” and “myprompt∆” (where ∆ represents a significant blank that is part of the string) can
indistinguishable, but they are different legally valid prompts.

2.2.2.9 structure: An aggregate data type that allows the grouping of multiple data elements of possibly differin
into a single unit.

Two common implementations of structures are the struct in C and the record in Pascal. FORTRAN 77 provides no
such aggregate data type.

2.2.2.10 text file: A file that contains characters organized into one or more lines.

The lines shall not contain NUL characters and none shall exceed {LINE_MAX} bytes in length, includin
newline.
6 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

ces to
nce to

s the

RAN 77
ems and
rnatives
ationale

at are not
tibilities
ity while

.1
include
o allow

out the
defined

line call

ll error

tions.
luded
2.2.3 Abbreviations

For the purposes of this standard, the following abbreviations apply:

2.2.3.1 POSIX.1: This standard assumes and uses POSIX.1 {2} to mean ISO/IEC 9945-1: 1990 {2}. Referen
sections and terms in that standard will be indicated using this term, e.g., “POSIX.1 {2} 2.3” will imply a refere
Section 2.3 of ISO/IEC 9945-1: 1990 and “POSIX.1 {2} fork()” will imply the function fork() described in that
standard.

2.2.3.2 POSIX.9: This standard.

2.2.3.3 FORTRAN 77: This standard assumes and uses FORTRAN 77 to mean ANSI X3.9-1978 {3} plu
extension for long identifier names described in 1.3.3.1.

2.3 FORTRAN 77 Language Bindings Concepts

The following subsections present many of the design issues addressed in the development of this FORT
Bindings standard. The discussion here is intended to be largely functional, i.e., describing only specific probl
their solutions. The accompanying rationale (Annex A) discusses in more detail the design objectives and alte
that were considered in the development of this standard. With the exception of 2.3, the sections of the r
correspond directly to the sections of this standard and to the sections of the POSIX.1 {2} rationale.

Because the POSIX.1 {2} system services are defined in the C language and use many language features th
available in FORTRAN 77, many of the issues presented below are the result of differences and incompa
between these two languages. The main goals were to achieve access to all required POSIX.1 {2} functional
following FORTRAN 77 as closely as possible and to allow consistent treatment of the exceptional cases.

2.3.1 System Headers

System headers containing definitions of symbolic constants and macros are used extensively throughout POSIX
{2}. These header files are intended for inclusion in application programs through the use of the C-language #
mechanism; however, FORTRAN 77 provides no similar inclusion capability, so methods had to be devised t
the required header definitions to be accessed from FORTRAN 77 programs.

2.3.1.1 Symbolic Constants

The POSIX.1 {2} system headers contain the definitions of symbolic constants intended for use through
POSIX.1 {2} programming environment. These symbolic constants can be accessed from FORTRAN 77 with
procedures. An overview of these procedures is given below:

 An integer function that returns the value of the named constant. This function can be used as an in-
and provides no error checking.

 A logical function that indicates if the named constant is defined. This functionality is similar to the feature
test macro in a C-based POSIX.1 {2} system.

 A subroutine that returns an argument containing the named constant. This subroutine provides fu
checking.

Further information, including definitions of the interfaces that shall be provided, is given in 8.2.

2.3.1.2 Macros

Where functionality in POSIX.1 {2} is provided by macros, this standard specifies FORTRAN 77 func
Definitions and descriptions for the functions that provide the functionality of those POSIX.1 {2} macros are inc
in the appropriate sections of this standard.
Copyright © 1992 IEEE All Rights Reserved 7

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

elopment
data type

es, is
tions.
es (see

e
standard
h values
hout the

es to be

 map to
a types,

ely hidden
riables
bout the
ows:

broutine
data. The

te data.
onent that

s section.
2.3.2 Data Types

Incompatibilities between the data types of the C and FORTRAN 77 languages caused many issues in the dev
of this standard. These incompatibilities can be divided into two categories: language-defined data types and
definition capabilities.

2.3.2.1 Primitive Data Types

FORTRAN 77 does not provide a facility for type definition such as the typedef in the C language. Each of the
primitive data types defined in POSIX.1 {2}, as well as any additional implementation-defined primitive typ
equated with a corresponding FORTRAN 77 intrinsic type in order to be used in FORTRAN 77 applica
Specifically, the FORTRAN 77 INTEGER data type shall be used as a substitute for defined arithmetic typ
POSIX.1 {2} 2.5).

2.3.2.2 Numeric Range of Integer Data

Many functions defined in POSIX.1 {2} make use of the unsigned integer data type provided by C to double the rang
of an argument or returned value. FORTRAN 77 does not provide such a data type. An implementation of this
may choose to utilize an available sign bit of the FORTRAN 77 INTEGER data type to extend the range of suc
to a range equivalent to that provided by the C bindings. Instances where this is allowable are indicated throug
text of this standard. A support routine is defined (see 8.11) to allow these extended-range integer valu
compared.

2.3.2.3 Aggregate Data Types

Many of the service interfaces defined in POSIX.1 {2} require the use of aggregate data types that do not
FORTRAN 77. FORTRAN 77 does not provide any mechanism for the construction or use of aggregate dat
creating a serious conflict.

The solution to this problem in the FORTRAN 77 bindings involves the use of data abstraction: Through the use of
additional subroutines to access and manipulate the aggregate data, the underlying data structures are larg
from the FORTRAN 77 source code. It is the responsibility of the FORTRAN 77 programmer to maintain va
corresponding to the individual components of the aggregate data, but the programmer need not worry a
details of the actual implementation of the aggregate. The basic model of this data abstraction is used as foll

 The programmer calls a subroutine to “create” an instance of the desired aggregate data type; this su
returns a handle that the programmer subsequently uses in order to reference and/or manipulate the
handle is guaranteed to fit in an integer variable, and a valid handle is guaranteed to be nonzero.

 The programmer uses additional subroutines to load values into or extract values from the aggrega
These subroutines are passed the handle of the desired aggregate and the name of the specific comp
is to be accessed. Notice that the programmer has direct control over only one component at a time.

 When an instance of an aggregate is no longer required, a subroutine can be called to release it.
 A subroutine is defined to duplicate contents of an instance of an aggregate.

Further information, including definitions of the subroutines that shall be provided, is given in 8.3.

2.3.2.3.1 List of Aggregate Data Types

The structure types shown in Table 2.1 shall be accessible through the techniques described previously in thi
The components of these structures are enumerated and described in the section indicated.
8 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

y such
nipulation

 In an
sions,
s.

ks
ata that
declared
 a string

tain the
nd

 passed
contains

 type. In
Table 2.1—Structure Types

An implementation may provide additional structures to be used in an implementation-defined manner. An
structures may be defined by an implementation to be able to be manipulated using these same structure ma
subroutines.

POSIX.1 {2} allows the implementation to support additional components of many of these structures.
implementation of POSIX.9 that corresponds to an implementation of POSIX.1 {2} that allows such exten
access to these additional components shall be provided using these same structure manipulation subroutine

2.3.2.4 Character Variables and String Manipulation

Data contained in a FORTRAN 77 string [a dummy argument declared as CHARACTER*(*)] is padded with blan
if necessary to match the declared string length. Because of this, it is difficult to differentiate between string d
is intended to contain trailing blanks and data that has simply been padded with blanks in order to match the
string variable length. To allow this distinction, an extra argument is passed to or from procedures that have
argument.

For procedures in which the string is returned from the system, this extra argument shall contain the actual length of
the data assigned to the string. This length value can be zero, which indicates the equivalent of a NULL string
indicating that the value of the string is undefined. If the length of the character argument is insufficient to con
data to be returned from the system, IERROR shall be set to [ETRUNC], the data shall be truncated to fit the string, a
the length argument shall contain the original length of the data before truncation.

For procedures in which the string is being passed to the system, this extra argument contains the intended length of
the string contents, which is not necessarily the fixed, maximum length of the string variable. A value of zero
as the length of the string data shall indicate that trailing blanks are to be stripped and ignored, or, if the string
only blanks, shall indicate the equivalent of a NULL string.

2.3.2.5 Pointers

C-language pointers are used throughout POSIX.1 {2}; however, FORTRAN 77 does not have a pointer data
cases where POSIX.1 {2} specifies functionality dependent on the use or detection of a NULL pointer, the behavior
has been modified slightly in this binding.

Structure Name Reference

sigset 3.3.1 and 3.3.3

sigaction 3.3.4

utsname 4.4.1

tms 4.5.2

dirent 5.1.1

stat 5.6.1

utimbuf 5.6.6

flock 6.5.2

termios 7.1.2

group 9.2.1

passwd 9.2.2
Copyright © 1992 IEEE All Rights Reserved 9

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

nctions.
 object

e is an
RAN 77

ents to
tionality

xtra out
ror has
 are

values
}.

7
a type is
.3.2.2 for

All uses of structures in POSIX.1 {2} are through pointers, i.e., structures are passed by reference to system fu
In conjunction with the methods defined in this binding for accessing and manipulating structured data, an
called a handle is used in the FORTRAN 77 interfaces where POSIX.1 {2} uses pointers to structures. A handl
abstract reference to the aggregate data and does not require any direct manipulation by the FORT
programmer. See 2.3.2.3 and 8.3 for further discussion of aggregate data and the use of handles.

Although FORTRAN 77 permits subroutines and functions declared as EXTERNAL to be passed as argum
another procedure, there is no way in FORTRAN 77 to store a pointer to a subroutine for later use. This func
shall be provided by the subroutines described in 8.4.

2.4 Error Numbers

Most functions in POSIX.1 {2} provide an error number in the external system variable errno, which is defined in the
C language as:

 extern int errno;

In this standard, the interface specification for subroutines that can result in error conditions contains an e
argument, IERROR. Unless otherwise specified, a value of zero returned in this argument indicates that no er
occurred and a nonzero value indicates that an error has occurred. In this case, the value of other out arguments
undefined unless otherwise specified.

The following symbolic names identify additional errors that can occur in the use of this standard. The
represented by these names shall be unique and shall not conflict with error numbers specified in POSIX.1 {2

2.5 Primitive System Data Types

Because all of the primitive system data types shall be arithmetic types (see POSIX.1 {2} 2.5), the FORTRAN 7
INTEGER data type shall be used as a substitute for each of the listed types. However, when a primitive dat
defined in the C bindings to POSIX.1 {2} as an unsigned integer, other issues may arise. See 2.3.2.1 and 2
further discussion.

2.6 Environment Description

The individual members of the environment (see POSIX.1 {2} 2.6) are examined using the PXFGETENV()
subroutine, modified using the PXFSETENV() subroutine, and cleared by the PXFCLEARENV() subroutine
(see 4.6.1).

[ENONAME] Invalid constant, structure, or component name.

[ENOHANDLE] Handle not created.

[ETRUNC] The declared length of the out character argument is insufficient to contain the string to
be returned. (See 2.3.2.4.)

[EARRAYLEN] For get routines, the number of array elements to be returned exceeds IALEN, and only
the first IALEN elements of the array argument have been set. For set routines, IALEN
exceeds the number of array elements in the target array. Only the available elements of
the array in the target array have been set.

[EEND] End of file, record, or directory stream has been encountered.
10 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

gh calls

h calls

es should
2.7 FORTRAN 77 Language Definitions

FORTRAN language terms and symbols used in this standard are defined by FORTRAN 77.

2.8 Numerical Limits

2.8.1 FORTRAN 77 Language Limits

Certain limits used in this standard are defined in the FORTRAN 77 programming language.

2.8.2 Minimum Values

The symbolic constants specifying minimum values described in POSIX.1 {2} 2.8.2 shall be accessible throu
to any of the PXFCONST procedures (see 8.2).

2.8.3 Run-Time Increasable Values

The magnitude limitations specified in POSIX.1 {2} 2.8.3 shall be accessible through a call to PXFSYSCONF() (see
4.8).

2.8.4 Run-Time Invariant Values (Possible Indeterminate)

The run time invariant values specified in POSIX.1 {2} 2.8.4 shall be accessible through a call to PXFSYSCONF() (see
4.8).

2.8.5 Pathname Variable Values

The pathname variable values specified in POSIX.1 {2} 2.8.5 shall be accessible through a call to PXFPATHCONF()
(see 5.7).

2.8.6 Invariant Values

The invariant values specified in POSIX.1 {2} 2.8.6 shall be accessible through a call to PXFSYSCONF() (see 4.8).

2.9 Symbolic Constants

The symbolic constants defined in POSIX.1 {2} (see POSIX.1 {2} 2.9) and POSIX.9 shall be accessible throug
to any of the PXFCONST() procedures (see 8.2).

2.9.1 Constants for FORTRAN 77 I/O to STDIO Translation

The following symbolic constants shall be accessible through calls to any of the PXFCONST() procedures (see 8.2).

The values of these constants shall be integers in the range 0–9. Portable applications using units for other fil
use values outside these ranges.

STDIN_UNIT The value of the FORTRAN 77 unit identifier associated with a preconnected input file.

STDOUT_UNIT The value of the FORTRAN 77 unit identifier associated with a preconnected output
file.

STDERR_UNIT The value of the FORTRAN 77 unit identifier associated with a preconnected error file.
Copyright © 1992 IEEE All Rights Reserved 11

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

criptors

lue

2} and
3. Process Primitives

3.1 Process Creation and Execution

3.1.1 Process Creation

Subroutine: PXFFORK()

3.1.1.1 Synopsis

 SUBROUTINE PXFFORK (IPID, IERROR)
 INTEGER IPID, IERROR

3.1.1.2 Description

The PXFFORK() subroutine shall provide the same functionality as the POSIX.1 {2} function fork() (see POSIX.1
{2} 3.1) except that files opened with the FORTRAN 77 OPEN statement are not required to have file des
(see 8.5).

Arguments for PXFFORK() correspond to the arguments for fork(), as shown in Table 3.1.

Table 3.1—Arguments for PXFFORK()

3.1.1.3 Errors

Possible error conditions for PXFFORK() are identical to those for the POSIX.1 {2} function fork(). Under the
circumstances specified by POSIX.1 {2}, the argument IERROR shall be set to the corresponding nonzero va
specified by the POSIX.1 {2} function. Upon successful completion, the argument IERROR shall be set to zero.
IERROR may be set to a nonzero value to indicate error conditions that are not specified by POSIX.1 {
POSIX.9.

3.1.2 Execute a File

Subroutines: PXFEXECV(), PXFEXECVE(), PXFEXECVP()

3.1.2.1 Synopsis

 SUBROUTINE PXFEXECV (PATH, LENPATH, ARGV, LENARGV, IARGC, IERROR)
 INTEGER LENPATH, LENARGV(0:IARGC-1), IARGC, IERROR
 CHARACTER*(*) PATH, ARGV(0:IARGC-1)

 SUBROUTINE PXFEXECVE (PATH, LENPATH, ARGV, LENARGV, IARGC,
 + ENV, LENENV, IENVC, IERROR)
 INTEGER LENPATH, LENARGV(0:IARGC-1), IARGC, LENENV(IENVC), IENVC, IERROR
 CHARACTER*(*) PATH, ARGV(0:IARGC-1), ENV(IENVC)

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IPID ret_value OUT

IERROR ret_value/errno OUT
12 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

, the
 are to

ation and

g
ror

xecution
, or the
 SUBROUTINE PXFEXECVP (FILE, LENFILE, ARGV, LENARGV, IARGC, IERROR)
 INTEGER LENFILE, LENARGV(0:IARGC-1), IARGC, IERROR
 CHARACTER*(*) FILE, ARGV(0:IARGC-1)

3.1.2.2 Description

The PXFEXECV subroutines shall provide the same functionality as the corresponding POSIX.1 {2} exec functions in
POSIX.1 {2} (see POSIX.1 {2} 3.1).

The lengths of the ARGV and ENV arrays are explicitly passed in the arguments IARGC and IENVC respectively. The
arrays ARGV and LENARGV shall be dimensioned at least as large as IARGC, and the arrays ENV and LENENV shall
be dimensioned at least as large as IENVC. While these arrays may be dimensioned greater than required
arguments IARGC and IENVC specify the number of the elements at the beginning of the respective arrays that
be used by the subroutine. The string length of each element of the ARGV and ENV arrays is passed in the
corresponding element of the LENARGV and LENENV arrays.

Arguments for these subroutines correspond to the arguments for the corresponding POSIX.1 {2} process cre
execution functions, as shown in Table 3.2.

Table 3.2—Arguments for the PXFEXEC...() Subroutines

3.1.2.3 Errors

Possible error conditions for the PXFEXECV() family of subroutines are identical to those for the POSIX.1 {2} exec()
family. Under the circumstances specified by POSIX.1 {2}, the argument IERROR shall be set to the correspondin
nonzero value specified by the POSIX.1 {2} function. IERROR may be set to a nonzero value to indicate er
conditions that are not specified by POSIX.1 {2} and POSIX.9.

3.2 Process Termination

Process termination shall provide the functionality defined by the POSIX.1 {2} function _exit() (see POSIX.1 {2}
3.2.2). There are two kinds of process termination, normal and abnormal. Normal termination occurs by the e
of the FORTRAN 77 END statement in the FORTRAN 77 main program, the FORTRAN 77 STOP statement

FORTRAN
Argument POSIX.1 Argument Intent Notes

PATH path IN

LENPATH -- IN Length of PATH; see 2.3.2.4

FILE file IN

LENFILE -- IN Length of FILE; see 2.3.2.4

ARGV argv IN

IARGC -- IN Number of elements in ARGV

LENARGV -- IN Length of elements in ARGV; see 2.3.2.4

ENV envp IN

IENVC -- IN Number of elements in ENV

LENENV -- IN Length of elements in ENV; see 2.3.2.4

IERROR ret_value/errno OUT
Copyright © 1992 IEEE All Rights Reserved 13

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

ls are

tions

defined
se values
ee 8.7).
wn in
PXFFASTEXIT() or PXFEXIT() subroutine (see 3.2.2 and 8.12). Abnormal termination occurs when certain signa
received, as defined in POSIX.1 {2} 3.3.

A parent process may suspend its execution to wait for the termination of a child process with the PXFWAIT() or
PXFWAITPID() subroutines.

3.2.1 Wait for Process Termination

Subroutines: PXFWAIT(), PXFWAITPID()

3.2.1.1 Synopsis

 SUBROUTINE PXFWAIT (ISTAT, IRETPID, IERROR)
 INTEGER ISTAT, IRETPID, IERROR

 SUBROUTINE PXFWAITPID (IPID, ISTAT, IOPTIONS, IRETPID, IERROR
 INTEGER IPID, ISTAT, IOPTIONS, IRETPID, IERROR)

3.2.1.2 Description

The PXFWAIT() and PXFWAITPID() subroutines shall provide the same functionality as the POSIX.1 {2} func
wait() and waitpid() (see POSIX.1 {2} 3.2).

The value for the IOPTIONS arguments to the PXFWAITPID() subroutine is based on the symbolic constants
for waitpid(). These constants shall be accessible through any of the PXFCONST() procedures (see 8.2). The
of the symbolic constants shall be distinct and can be combined with the use of the inclusive OR function (s
Arguments for PXFWAIT() and PXFWAITPID() correspond to the arguments for wait() and waitpid(), as sho
Table 3.3.

Table 3.3—Arguments for PXFWAIT() and PXFWAITPID()

The following functions may be used to interpret the ISTAT argument, as defined in POSIX.1 {2} 3.2.

 LOGICAL FUNCTION PXFWIFEXITED (ISTAT)
 INTEGER ISTAT

 INTEGER FUNCTION IPXFWEXITSTATUS (ISTAT)
 INTEGER ISTAT

 LOGICAL FUNCTION PXFWIFSIGNALED (ISTAT)
 INTEGER ISTAT

FORTRAN
Argument

POSIX.1
Argument Intent Notes

ISTAT stat_loc OUT

IPID pid IN

IRETPID ret_value OUT

IOPTIONS options IN

IERROR ret_value/errno OUT
14 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

s
tion.

o

 signals.

d by
ey shall

 this
 INTEGER FUNCTION IPXFWTERMSIG (ISTAT)
 INTEGER ISTAT

 LOGICAL FUNCTION PXFWIFSTOPPED (ISTAT)
 INTEGER ISTAT

 INTEGER FUNCTION IPXFWSTOPSIG (ISTAT)
 INTEGER ISTAT

3.2.1.3 Errors

Possible error conditions for PXFWAIT() and PXFWAITPID() are identical to those for the POSIX.1 {2} function
wait() and waitpid(). IERROR shall be set to the corresponding nonzero value specified by the POSIX.1 {2} func
Upon successful completion, the argument IERROR shall be set to zero. IERROR may be set to a nonzero value t
indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

3.2.2 Terminate a Process

Subroutine: PXFFASTEXIT()

3.2.2.1 Synopsis

 SUBROUTINE PXFFASTEXIT (ISTATUS)
 INTEGER ISTATUS

3.2.2.2 Description

The PXFFASTEXIT() subroutine shall provide the same functionality as the POSIX.1 {2} function _exit() (see
POSIX.1 {2} 3.2). There is no possible return from PXFFASTEXIT(), and no IERROR argument is defined for
PXFFASTEXIT(). Arguments for PXFFASTEXIT() correspond to the arguments for _exit(), as shown in Table 3.4.

Table 3.4—Arguments for PXFFASTEXIT()

3.3 Signals

3.3.1 Signal Concepts

3.3.1.1 Signal Names

The values for use with the signal procedures are based on the symbolic constants defined for POSIX.1 {2}
These constants shall be accessible through any of the PXFCONST() procedures (see 8.2).

The symbolic constants SIG_DFL and SIG_IGN represent values that shall not be identical to any value returne
PXFGETSUBHANDLE() (see 8.4 and 3.3.1.3). When used as the handle for the signal-catching subroutine, th
cause the signal-specific default action or ignore signal action respectively.

The subroutine PXFSTRUCTCREATE() with the string ‘sigset’ given as the STRUCTNAME argument may be used to
obtain an instance of the sigset_t type as defined in POSIX.1 {2} 3.3.1. There are no defined components of

FORTRAN
Argument

POSIX.1
Argument Intent Notes

ISTATUS status IN
Copyright © 1992 IEEE All Rights Reserved 15

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

routines.

ne (see
ains the

hile it is
eed

gument
cified
structure, and the contents of the structure may not be altered with the structure-component manipulation sub
Instead, the subroutines defined in 3.3.3 shall be used.

3.3.1.2 Signal Generation and Delivery

3.3.1.3 Signal Actions

On delivery of a signal (see POSIX.1 {2} 3.3), the system may call a user-defined signal-catching subrouti
3.3.4). This signal-catching subroutine shall be defined with a single integer argument. The argument cont
number of the signal being delivered.

3.3.1.4 Signal Effects on Other Subroutines

Signals may affect the behavior of certain procedures defined by this standard if delivered to a process w
executing such a procedure. Specifically, nonzero values of IERROR for each of the system services are not guarant
to be reliable in the presence of signals.

3.3.2 Send a Signal to a Process

Subroutine: PXFKILL()

3.3.2.1 Synopsis

 SUBROUTINE PXFKILL (IPID, ISIG, IERROR)
 INTEGER IPID, ISIG, IERROR

3.3.2.2 Description

The PXFKILL() subroutine shall provide the same functionality as the POSIX.1 {2} function kill () (see POSIX.1 {2}
3.3).

The value of the desired signal (specified by ISIG) shall be accessible through calls to any of the PXFCONST()
procedures (see 8.2). Arguments for PXFKILL() correspond to the arguments for kill (), as shown in Table 3.5.

Table 3.5—Arguments for PXFKILL()

3.3.2.3 Errors

Possible error conditions for PXFKILL are identical to those for the POSIX.1 {2} function kill ().()IERROR shall be set
to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completion, the ar
IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate error conditions that are not spe
by POSIX.1 {2} and POSIX.9.

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IPID pid IN

ISIG sig IN

IERROR ret_value/errno OUT
16 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

ulation

nal set
3.3.3 Manipulate Signal Sets

Subroutines: PXFSIGEMPTYSET(), PXFSIGFILLSET() PXFSIGADDSET(), PXFSIGDELSET(),
PXFSIGISMEMBER()

3.3.3.1 Synopsis

 SUBROUTINE PXFSIGEMPTYSET (JSIGSET, IERROR)
 INTEGER JSIGSET, IERROR

 SUBROUTINE PXFSIGFILLSET (JSIGSET, IERROR)
 INTEGER JSIGSET, IERROR

 SUBROUTINE PXFSIGADDSET (JSIGSET, ISIGNO, IERROR)
 INTEGER JSIGSET, ISIGNO, IERROR

 SUBROUTINE PXFSIGDELSET (JSIGSET, ISIGNO, IERROR)
 INTEGER JSIGSET, ISIGNO, IERROR

 SUBROUTINE PXFSIGISMEMBER (JSIGSET, ISIGNO, ISMEMBER, IERROR)
 INTEGER JSIGSET, ISIGNO, IERROR
 LOGICAL ISMEMBER

3.3.3.2 Description

These subroutines shall provide the same functionality as the equivalent POSIX.1 {2} signal set manip
functions (see POSIX.1 {2} 3.3).

The PXFSIGISMEMBER() procedure shall return a logical value .TRUE. in the argument ISMEMBER if the specified
signal is a member of the specified set or a value of .FALSE. if it is not.

Applications shall call either PXFSIGEMPTYSET() or PXFSIGFILLSET() at least once for each sigset structure prior
to any other use of that structure. If the structure is not initialized in this way, the results are undefined.

This standard defines sigset as a structure. An instance of a sigset shall be created using PXFSTRUCTCREATE()
before manipulation using these subroutines.

Arguments for these subroutines correspond to the arguments for the corresponding POSIX.1 {2} sig
manipulation functions, as shown in Table 3.6.

Table 3.6—Arguments for the PXFSIG...() Subroutines

FORTRAN
Argument

POSIX.1
Argument Intent Notes

JSIGSET set IN 1.

ISMEMBER ret_value OUT

ISIGNO signo IN

IERROR ret_value/errno OUT

1. Handle obtained from PXFSTRUCTCREATE (‘sigset’,...); see 8.3.1.
Copyright © 1992 IEEE All Rights Reserved 17

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

ipulation
IX.1

he
cause the

h
2):

nent
3.3.3.3 Errors

Possible error conditions for these subroutines are identical to those for the corresponding signal set man
functions defined in POSIX.1 {2}. IERROR shall be set to the corresponding nonzero value specified by the POS
{2} function. Upon successful completion, the argument IERROR shall be set to zero. IERROR may be set to a nonzero
value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

3.3.4 Examine and Change Signal Action

Subroutine: PXFSIGACTION()

3.3.4.1 Synopsis

 SUBROUTINE PXFSIGACTION (ISIG, JSIGACT, JOSIGACT, IERROR)
 INTEGER ISIG, JSIGACT, JOSIGACT, IERROR

3.3.4.2 Description

The PXFSIGACTION() subroutine shall provide the same functionality as the POSIX.1 {2} function sigaction() (see
POSIX.1 {2} 3.3). Arguments for PXFSIGACTION() correspond to the arguments for sigaction(), as shown in
Table 3.7.

Table 3.7—Arguments for PXFSIGACTION()

The functionality obtained in the POSIX.1 {2} function sigaction() by passing a NULL can be obtained in
PXFSIGACTION by passing a handle argument with a value of zero.

The values of the symbolic constants SIG_DFL and SIG_IGN shall be accessible through calls to any of t
PXFCONST() procedures (see 8.2) and can be used as values for the signal handler component. They shall
signal-specific default action or ignore signal action respectively, as defined by POSIX.1 {2} 3.3.1.3.

The PXFSTRUCTCREATE() subroutine (see 8.3.1) with the string ‘sigaction’ given as the STRUCTNAME argument
shall be used to obtain a handle for an instance of the sigaction structure as defined in POSIX.1 {2} 3.3. Eac
component access shall require one of the following structure-component manipulation subroutines (see 8.3.

SUBROUTINE PXFINTGET(JSIGACTION, COMPNAM, IVALUE, IERROR)
INTEGER JSIGACTION, IVALUE, IERROR

SUBROUTINE PXFINTSET(JSIGACTION, COMPNAM, IVALUE, IERROR)
INTEGER JSIGACTION, IVALUE, IERROR

where JSIGACTION is a handle and COMPNAM is a character expression which evaluates to one of the compo
names shown in Table 3.8.

FORTRAN
Argument

POSIX.1
Argument Intent Notes

ISIG sig IN

JSIGACT act IN 1.

JOSIGACT oact OUT 1.

IERROR ret_value/errno OUT

1. Handle obtained from PXFSTRUCTCREATE (‘sigaction’,...); see 8.3.1.
18 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

nts
all to

all to

clusive
any of the

lue

2} and

ion
r

Table 3.8—Components for sigaction Structure

The sa_handler component shall be a subroutine handle obtained from a call to PXFGETSUBHANDLE() (see 8.4),
obtained from a previous call to PXFSIGACTION(), or that shall contain the value of one of the symbolic consta
SIG_DFL or SIG_IGN. The sa_mask component shall be a sigset structure handle (see 3.3) obtained from a c
PXFSTRUCTCREATE().

Values of the sa_flags component can be used to modify the behavior of the signal specified in a c
PXFSIGACTION(). Values of sa_flags are composed of the flag bits used by the sigaction() function as defined in
POSIX.1 {2} 3.3. The values of these flags shall be bitwise distinct and can be combined with the use of the in
OR function (see 8.7). The flag names are constants for which the values shall be accessible through calls to
PXFCONST() procedures (see 8.2).

3.3.4.3 Errors

Possible error conditions for PXFSIGACTION() are identical to those for the POSIX.1 {2} function sigaction(). Under
the circumstances specified by POSIX.1 {2}, the argument IERROR shall be set to the corresponding nonzero va
specified by the POSIX.1 {2} function. Upon successful completion, the argument IERROR shall be set to zero.
IERROR may be set to a nonzero value to indicate error conditions that are not specified by POSIX.1 {
POSIX.9.

3.3.5 Examine and Change Blocked Signals

Subroutine: PXFSIGPROCMASK()

3.3.5.1 Synopsis

 SUBROUTINE PXFSIGPROCMASK (IHOW, JSIGSET, JOSIGSET, IERROR)
 INTEGER IHOW, JSIGSET, JOSIGSET, IERROR

3.3.5.2 Description

The PXFSIGPROCMASK() subroutine shall provide the same functionality as the POSIX.1 {2} funct
sigprocmask() (see POSIX.1 {2} 3.3). Arguments for PXFSIGPROCMASK() correspond to the arguments fo
sigprocmask(), as shown in Table 3.9.

POSIX.1
Component COMPNAM Structure Procedure Used to Access

sa_handler ‘sa_handler’ PXFINTGET,PXFINTSET

sa_mask ‘sa_mask’ PXFINTGET,PXFINTSET

sa_flags ‘sa_flags’ PXFINTGET,PXFINTSET
Copyright © 1992 IEEE All Rights Reserved 19

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

Upon
te

cessful
ror
Table 3.9—Arguments for PXFSIGPROCMASK()

The functionality obtained in the POSIX.1 {2} function sigprocmask() by passing a NULL may be obtained in
PXFSIGPROCMASK by passing a handle argument with a value of zero.

3.3.5.3 Errors

Possible error conditions for PXFSIGPROCMASK() are identical to those for the POSIX.1 {2} function
sigprocmask(). IERROR shall be set to the corresponding nonzero value specified by the POSIX.1 {2} function.
successful completion, the argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indica
error conditions that are not specified by POSIX.1 {2} and POSIX.9.

3.3.6 Examine Pending Signals

Subroutine: PXFSIGPENDING()

3.3.6.1 Synopsis

 SUBROUTINE PXFSIGPENDING (JSIGSET, IERROR
 INTEGER JSIGSET, IERROR

3.3.6.2 Description

The PXFSIGPENDING() subroutine shall provide the same functionality as the POSIX.1 {2} function sigpending()
(see POSIX.1 {2} 3.3). Arguments for PXFSIGPENDING() correspond to the arguments for sigpending(), as shown in
Table 3.10.

Table 3.10—Arguments for PXFSIGPENDING()

3.3.6.3 Errors

Possible error conditions for PXFSIGPENDING() are identical to those for the POSIX.1 {2} function sigpending().
IERROR shall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon suc
completion, the argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate er
conditions that are not specified by POSIX.1 {2} and POSIX.9.

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IHOW how IN

JSIGSET set IN 1.

JOSIGSET oset OUT 1.

IERROR ret_value/errno OUT

1.Handle obtained from PXFSTRUCTCREATE (‘sigset’,...); see 8.3.1.

FORTRAN
Argument

POSIX.1
Argument Intent Notes

JSIGSET set IN 1.

IERROR ret_value/errno OUT

1. Handle obtained from PXFSTRUCTCREATE (‘sigset’,...); see 8.3.1.
20 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

letion

 the
ed by
3.3.7 Wait for a Signal

Subroutine: PXFSIGSUSPEND()

3.3.7.1 Synopsis

 SUBROUTINE PXFSIGSUSPEND (JSIGSET, IERROR)
 INTEGER JSIGSET, IERROR

3.3.7.2 Description

The PXFSIGSUSPEND() subroutine shall provide the same functionality as the POSIX.1 {2} function sigsuspend()
(see POSIX.1 {2} 3.3). Arguments for PXFSIGSUSPEND() correspond to the arguments for sigsuspend(), as shown in
Table 3.11.

Table 3.11—Arguments for PXFSIGSUSPEND()

3.3.7.3 Errors

Since the PXFSIGSUSPEND() subroutine suspends process execution indefinitely, there is no successful comp
return value.

Possible error conditions for PXFSIGSUSPEND() are identical to those for the POSIX.1 {2} function sigsuspend(). If
any of these conditions occur, the argument IERROR shall be set to the corresponding nonzero value specified by
POSIX.1 {2} function. IERROR may be set to a nonzero value to indicate error conditions that are not specifi
POSIX.1 {2} and POSIX.9.

3.4 Timer Operations

3.4.1 Schedule Alarm

Subroutine: PXFALARM()

3.4.1.1 Synopsis

 SUBROUTINE PXFALARM (ISECONDS, ISECLEFT, IERROR)
 INTEGER ISECONDS, ISECLEFT, IERROR

3.4.1.2 Description

The PXFALARM() subroutine shall provide the same functionality as the POSIX.1 {2} function alarm() (see POSIX.1
{2} 3.4).

FORTRAN
Argument

POSIX.1
Argument Intent Notes

JSIGSET sigmask IN 1.

IERROR ret_value/errno OUT

1. Handle obtained from PXFSTRUCTCREATE (‘sigset’,...); see 8.3.1.
Copyright © 1992 IEEE All Rights Reserved 21

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

uest

 return

1 {2}
2} and
If there is a previous PXFALARM() request with time remaining, the number of seconds until the previous req
would have generated a SIGALARM signal is returned in ISECLEFT. Otherwise, ISECLEFT shall contain a value of
zero upon return.

Arguments for PXFALARM() correspond to the arguments for alarm(), as shown in Table 3.12.

Table 3.12—Arguments for PXFALARM()

3.4.1.3 Errors

POSIX.1 {2} does not specify any error conditions that are required to be detected for the alarm() function. Upon
successful completion of PXFALARM(), the argument IERROR shall be set to zero. IERROR may be set to a nonzero
value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

3.4.2 Suspend Process Execution

Subroutine: PXFPAUSE()

3.4.2.1 Synopsis

 SUBROUTINE PXFPAUSE (IERROR)
 INTEGER IERROR

3.4.2.2 Description

The PXFPAUSE() subroutine shall provide the same functionality as the POSIX.1 {2} function pause() (see POSIX.1
{2} 3.4). Arguments for PXFPAUSE() correspond to the arguments for pause(), as shown in Table 3.13.

Table 3.13—Arguments for PXFPAUSE()

3.4.2.3 Errors

Since the PXFPAUSE() subroutine suspends process execution indefinitely, there is no successful completion
value.

Possible error conditions for PXFPAUSE() are identical to those for the POSIX.1 {2} function pause(). If any of these
conditions occur, the argument IERROR shall be set to the corresponding nonzero value specified by the POSIX.
function. IERROR may be set to a nonzero value to indicate error conditions that are not specified by POSIX.1 {
POSIX.9.

FORTRAN
Argument POSIX.1 Argument Intent Notes

ISECONDS seconds IN

ISECLEFT ret_value OUT 1.

IERROR ret_value/errno OUT

1. Value may exceed the range of a signed integer; see 2.3.2.2.

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IERROR ret_value/errno OUT
22 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

inus
3.4.3 Delay Process Execution

Subroutine: PXFSLEEP()

3.4.3.1 Synopsis

 SUBROUTINE PXFSLEEP (ISECONDS, ISECLEFT, IERROR)
 INTEGER ISECONDS, ISECLEFT, IERROR

3.4.3.2 Description

The PXFSLEEP() subroutine shall provide the same functionality as the POSIX.1 {2} function sleep() (see POSIX.1
{2} 3.4).

If PXFSLEEP() returns because the requested time has elapsed, the value of ISECLEFT is set to zero. If PXFSLEEP()
returns due to delivery of a signal, ISECLEFT shall contain upon return the unslept amount (the requested time m
the time actually slept) in seconds.

Arguments for PXFSLEEP() correspond to the arguments for sleep(), as shown in Table 3.14.

Table 3.14—Arguments for PXFSLEEP()

3.4.3.3 Errors

POSIX.1 {2} does not specify any error conditions that are required to be detected for the sleep() function. Upon
successful completion of PXFSLEEP(), the argument IERROR shall be set to zero. IERROR may be set to a nonzero
value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

4. Process Environment

4.1 Process Identification

4.1.1 Get Process and Parent Process IDs

Subroutines: PXFGETPID(), PXFGETPPID()

4.1.1.1 Synopsis

 SUBROUTINE PXFGETPID (IPID, IERROR)
 INTEGER IPID, IERROR

 SUBROUTINE PXFGETPPID (IPID, IERROR)
 INTEGER IPID, IERROR

FORTRAN
Argument POSIX.1 Argument Intent Notes

ISECONDS seconds IN

ISECLEFT ret_value OUT 1.

IERROR ret_value/errno OUT

1. Value may exceed the range of a signed integer; see 2.3.2.2.
Copyright © 1992 IEEE All Rights Reserved 23

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

{2}

.1 {2}

e

ification
4.1.1.2 Description

The PXFGETPID() and PXFGETPPID() subroutines shall provide the same functionality as the POSIX.1
functions getpid() and getppid() (see POSIX.1 {2} 4.1). Arguments for PXFGETPID() and PXFGETPPID()
correspond to the arguments for getpid() and getppid(), as shown in Table 4.1.

Table 4.1—Arguments for PXFGETPID() and PXFGETPPID()

4.1.1.3 Errors

POSIX.1 {2} does not specify any error conditions that are required to be detected for the getpit() function or the
getppid() function. Upon successful completion of PXFGETPID() or PXFGETPPID(), the argument IERROR shall be
set to zero. IERROR may be set to a nonzero value to indicate error conditions that are not specified by POSIX
and POSIX.9.

4.2 User Identification

4.2.1 Get Real User, Effective User, Real Group, and Effective Group IDs

Subroutines: PXFGETUID(), PXFGETEUID(), PXFGETGID(), PXGETEGID()

4.2.1.1 Synopsis

 SUBROUTINE PXFGETUID (IUID, IERROR)
 INTEGER IUID, IERROR

 SUBROUTINE PXFGETUEID (IEUID, IERROR)
 INTEGER IEUID, IERROR

 SUBROUTINE PXFGETGID (IGID, IERROR)
 INTEGER IGID, IERROR

 SUBROUTINE PXFGETEGID (IEGID, IERROR)
 INTEGER IEGID, IERROR

4.2.1.2 Description

The PXFGETUID(), PXFGETEUID(), PXFGETGID(), and PXFGETEGID() subroutines shall provide the sam
functionality as the POSIX.1 {2} functions getuid(), geteuid(), getgid(), and getegid() (see POSIX.1 {2} 4.2).
Arguments for these subroutines correspond to the arguments for the corresponding POSIX.1 {2} user ident
functions, as shown in Table 4.2.

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IPID ret_value OUT

IERROR ret_value/errno OUT
24 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

2} and

ons

s
tion.

o

Table 4.2—Arguments for the PXFGET...ID() Subroutines

4.2.1.3 Errors

POSIX.1 {2} does not specify any error conditions that are required to be detected for the get...id() family of functions.
Upon successful completion of any of the PXFGET...ID() family of subroutines, the argument IERROR shall be set to
zero. IERROR may be set to a nonzero value to indicate error conditions that are not specified by POSIX.1 {
POSIX.9.

4.2.2 Set User and Group IDs

Subroutines: PXFSETUID(), PXFSETGID()

4.2.2.1 Synopsis

 SUBROUTINE PXFSETUID (IUID, IERROR)
 INTEGER IUID, IERROR

 SUBROUTINE PXFSETGID (IGID, IERROR)
 INTEGER IGID, IERROR

4.2.2.2 Description

The PXFSETUID() and PXFSETGID() subroutines shall provide the same functionality as the POSIX.1 {2} functi
setuid() and setgid() (see POSIX.1 {2} 4.2). Arguments for PXFSETUID() and PXFSETGID() correspond to the
arguments for setuid() and setgid(), as shown in Table 4.3.

Table 4.3—Arguments for PXFSETUID() and PXFSETGID()

4.2.2.3 Errors

Possible error conditions for PXFSETUID0 and PXFGETUID() are identical to those for the POSIX.1 {2} function
setuid() and getuid(). IERROR shall be set to the corresponding nonzero value specified by the POSIX.1 {2} func
Upon successful completion, the argument IERROR shall be set to zero. IERROR may be set to a nonzero value t
indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IUID ret_value OUT

IEUID ret_value OUT

IGID ret_value OUT

IEGID ret_value OUT

IERROR ret_value/errno OUT

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IUID uid IN

IGID gid IN

IERROR ret_value/errno OUT
Copyright © 1992 IEEE All Rights Reserved 25

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

cessful
ror
4.2.3 Get Supplementary Group IDs

Subroutine: PXFGETGROUPS()

4.2.3.1 Synopsis

 SUBROUTINE PXFGETGROUPS (IGIDSETSIZE, IGROUPLIST, NGROUPS, IERROR)
 INTEGER IGIDSETSIZE, IGROUPLIST(IGIDSETSIZE), NGROUPS, IERROR

4.2.3.2 Description

The PXFGETGROUPS() subroutine shall provide the same functionality as the POSIX.1 {2} function getgroups()
(see POSIX.1 {2} 4.2), including the special case behavior when the IGIDSETSIZE argument is zero.

Arguments for PXFGETGROUPS() correspond to the arguments for getgroups(), as shown in Table 4.4.

Table 4.4—Arguments for PXFGETGROUPS()

4.2.3.3 Errors

Possible error conditions for PXFGETGROUPS() are identical to those for the POSIX.1 {2} function getgroups().
IERROR shall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon suc
completion, the argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate er
conditions that are not specified by POSIX.1 {2} and POSIX.9.

4.2.4 Get User Name

Subroutine: PXFGETLOGIN()

4.2.4.1 Synopsis

 SUBROUTINE PXFGETLOGIN (S, ILEN, IERROR)
 CHARACTER*(*) S
 INTEGER ILEN, IERROR

4.2.4.2 Description

PXFGETLOGIN() shall provide the same functionality as the POSIX.1 {2} function getlogin() (see POSIX.1 {2} 4.2).
Arguments for PXFGETLOGIN() correspond to the arguments for getlogin(), as shown in Table 4.5.

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IGROUPLIST grouplist OUT

IGIDSETSIZE gidsetsize IN

NGROUPS ret_value OUT

IERROR ret_value/errno OUT
26 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992
Table 4.5—Arguments for PXFGETLOGIN()

4.2.4.3 Errors

POSIX.1 {2} does not specify any error conditions that are required to be detected for the getlogin() function. Upon
successful completion of PXFGETLOGIN(), the argument IERROR shall be set to zero. If any of the following
conditions occur, PXFGETLOGIN() shall set the argument to the corresponding value. IERROR may be set to a
nonzero value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

4.3 Process Groups

4.3.1 Get Process Group ID

Subroutine: PXFGETPGRP()

4.3.1.1 Synopsis

 SUBROUTINE PXFGETPGRP (IPGRP, IERROR)
 INTEGER, IPGRP, IERROR

4.3.1.2 Description

The PXFGETPGRP() subroutine shall provide the same functionality as the POSIX.1 {2} function getpgrp() (see
POSIX.1 {2} 4.3). Arguments to PXFGETPGRP() correspond to the arguments for getpgrp(), as shown in Table 4.6.

Table 4.6—Arguments for PXFGETPGRP()

4.3.1.3 Errors

POSIX.1 {2} does not specify any error conditions that are required to be detected for the getpgrp() function. Upon
successful completion of PXFGETPGRP(), the argument IERROR shall be set to zero. IERROR may be set to a
nonzero value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

FORTRAN
Argument

POSIX.1
Argument Intent Notes

S ret_value OUT

ILEN — OUT Length of S; see 2.3.2.4

IERROR ret_value/errno OUT

[ETRUNC] The declared length of the argument S is insufficient to contain the string to be returned.
(See 2.3.2.4.)

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IPGRP ret_value OUT

IERROR ret_value/errno OUT
Copyright © 1992 IEEE All Rights Reserved 27

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

ion, the
 not
4.3.2 Create Session and Set Process Group ID

Subroutine: PXFSETSID()

4.3.2.1 Synopsis

 SUBROUTINE PXFSETSID (ISID, IERROR)
 INTEGER ISID, IERROR

4.3.2.2 Description

The PXFSETSID() subroutine shall provide the same functionality as the POSIX.1 {2} function setsid() (see POSIX.1
{2} 4.3). Arguments for PXFSETSID() correspond to the arguments for setsid(), as shown in Table 4.7.

Table 4.7—Arguments for PXFSETSID()

4.3.2.3 Errors

Possible error conditions for PXFSETSID() are identical to those for the POSIX.1 {2} function setsid(). IERROR shall
be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful complet
argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate error conditions that are
specified by POSIX.1 {2} and POSIX.9.

4.3.3 Set Process Group ID for Job Control

Subroutine: PXFSETPGID()

4.3.3.1 Synopsis

 SUBROUTINE PXFSETPGID (IPID, IPGID, IERROR)
 INTEGER IPID, IPGID, IERROR

4.3.3.2 Description

The PXFSETPGID() subroutine shall provide the same functionality as the POSIX.1 {2} function setpgid() (see
POSIX.1 {2} 4.3). Arguments for PXFSETPGID() correspond to the arguments for setpgid(), as shown in Table 4.8.

Table 4.8—Arguments for PXFSETPGID()

FORTRAN
Argument

POSIX.1
Argument Intent Notes

ISID ret_value OUT

IERROR ret_value/errno OUT

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IPID pid IN

IPGID pgid IN

IERROR ret_value/errno OUT
28 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

pletion,
t are

h
2):

nent
4.3.3.3 Errors

Possible error conditions for PXFSETPGID() are identical to those for the POSIX.1 {2} function setpgid(). IERROR
shall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful com
the argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate error conditions tha
not specified by POSIX.1 {2} and POSIX.9.

4.4 System Identification

4.4.1 Get System Name

Subroutine: PXFUNAME()

4.4.1.1 Synopsis

 SUBROUTINE PXFUNAME (JUTSNAME, IERROR)
 INTEGER JUSTSNAME, IERROR

4.4.1.2 Description

The PXFUNAME() subroutine shall provide the same functionality as the POSIX.1 {2} function uname() (see
POSIX.1 {2} 4.4). Arguments for PXFUNAME() correspond to the arguments for uname(), as shown in Table 4.9.

Table 4.9—Arguments for PXFUNAME()

The PXFSTRUCTCREATE() subroutine (see 8.3.1) with the string ‘utsname’ given as the STRUCTNAME argument
shall be used to obtain a handle for an instance of the utsname structure as defined in POSIX.1 {2} 4.4. Eac
component access shall require one of the following structure-component manipulation subroutines (see 8.3.

SUBROUTINE PXFSTRGET (JUTSNAME, COMPNAM, SVALUE, ILEN, IERROR)
INTEGER JUTSNAME, ILEN, IERROR
CHARACTER*(*) SVALUE

where JUTSNAME is a handle and COMPNAM is a character expression which evaluates to one of the compo
names shown in Table 4.10.

FORTRAN
Argument

POSIX.1
Argument Intent Notes

JUTSNAM
E

name IN 1.

IERROR ret_value/errno OUT

1. Handle obtained from PXFSTRUCTCREATE (‘utsname’,...); see 8.3.1.
Copyright © 1992 IEEE All Rights Reserved 29

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

or
ion

on, the
 not
Table 4.10—Components for utsname Structure

4.4.1.3 Errors

POSIX.1 {2} does not specify any error conditions that are required to be detected for the uname() function. Upon
successful completion of PXFUNAME(), the argument IERROR shall be set to zero. IERROR may be set to a nonzero
vaue to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

4.5 Time

4.5.1 Get System Time

Subroutine: PXFTIME()

4.5.1.1 Synopsis

 SUBROUTINE PXFTIME (ITIME, IERROR)
 INTEGER ITIME, IERROR

4.5.1.2 Description

The value of time is always returned in the argument ITIME. No indirection or separate return value is used
necessary. Otherwise, the PXFTIME() subroutine shall provide the same functionality as the POSIX.1 {2} funct
time() (see POSIX.1 {2} 4.5). Arguments for PXFTIME() correspond to the arguments for time(), as shown in
Table 4.11.

Table 4.11—Arguments for PXFTIME()

4.5.1.3 Errors

Possible error conditions for PXFTIME() are identical to those for the POSIX.1 {2} function time(). IERROR shall be
set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completi
argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate error conditions that are
specified by POSIX.1 {2} and POSIX.9.

POSIX.1
Component COMPNAM Structure Procedures Used to Access

sysname ‘sysname’ PXFSTRGET

nodename ‘nodename’ PXFSTRGET

release ‘release’ PXFSTRGET

version ‘version’ PXFSTRGET

machine ‘machine’ PXFSTRGET

FORTRAN
Argument

POSIX.1
Argument Intent Notes

ITIME *tloc OUT 1.

IERROR ret_value/errno OUT

1. Value may exceed the range of a signed integer; see 2.3.2.2.
30 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

ess

ames

ed
4.5.2 Get Process Times

Subroutine: PXFTIMES()

4.5.2.1 Synopsis

 SUBROUTINE PXFTIMES (JTMS, ITIME, IERROR)
 INTEGER JTMS, ITIME, IERROR

4.5.2.2 Description

The PXFTIMES() subroutine shall provide the same functionality as the POSIX.1 {2} function times() (see POSIX.1
{2} 4.5). Arguments for PXFTIMES correspond to the arguments for times(), as shown in Table 4.12.

Table 4.12—Arguments for PXFTIMES()

The PXFSTRUCTCREATE() subroutine (see 8.3.1) with the string ‘tms’ given as the STRUCTNAME argument shall
be used to obtain a handle for an instance of the tms structure as defined in POSIX.1 {2} 4.5. Each component acc
shall require one of the following structure-component manipulation subroutines (see 8.3.2):

SUBROUTINE PXFINTGET(JTMS, COMPNAM, IVALUE, IERROR)
INTEGER JTMS, IVALUE, IERROR

where JTMS is a handle and COMPNAM is a character expression which evaluates to one of the component n
shown in Table 4.13.

Table 4.13—Components for tms Structure

The value of the tms_utime, tms_stime, tms_cutime, and tms_cstime components may exceed the range of a sign
integer. See 2.3.2.2.

FORTRAN
Argument

POSIX.1
Argument Intent Notes

JTMS buffer IN 1.

ITIME ret_value OUT 2.

IERROR ret_value/errno OUT

1. Handle obtained from PXFSTRUCTCREATE (‘tms’,...); see 8.3.1.

2. Value may exceed the range of a signed integer; see 2.3.2.2.

POSIX.1
Component COMPNAM Structure Procedures Used to Access

tms_utime ‘tms_utime’ PXFINTGET

tms_stime ‘tms_stime’ PXFINTGET

tms_cutime ‘tms_cutime’ PXFINTGET

tms_cstime ‘tms_cstime’ PXFINTGET
Copyright © 1992 IEEE All Rights Reserved 31

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

 {2} is

ition
ty

form

nt
o

efined
4.5.2.3 Errors

POSIX.1 {2} does not specify any error conditions that are required to be detected for the times() function. Upon
successful completion of PXFTIMES(), the argument IERROR shall be set to zero. IERROR may be set to a nonzero
value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

4.6 Environment Variables

4.6.1 Environment Access

Subroutines: PXFGETENV(), PXFSETENV(), PXFCLEARENV()

4.6.1.1 Synopsis

 SUBROUTINE PXFGETENV (NAME, LENNAME, VALUE, LENVAL, IERROR)
 CHARACTER*(*) NAME, VALUE
 INTEGER LENNAME, LENVAL, IERROR

 SUBROUTINE PXFSETENV (NAME, LENNAME, NEW, LENNEW, IOVERWRITE, IERROR)
 CHARACTER*(*) NAME, NEW
 INTEGER LENNAME, LENNEW, IOVERWRITE, IERROR

 SUBROUTINE PXFCLEARENV (IERROR)
 INTEGER IERROR

4.6.1.2 Description

The argument VALUE shall be a valid user-space character variable; the static return area provided by POSIX.1
not supported. Upon completion of PXFGETENV(), VALUE shall contain the value for the specified name NAME, and
LENVAL shall contain the length of the value. If the specified variable is found but has no value, the value of LENVAL
shall be set to zero and VALUE shall be filled with blanks. If the specified variable cannot be found, the cond
EINVAL shall be returned in IERROR. Otherwise, the PXFGETENV() subroutine shall provide the same functionali
as the POSIX.1 {2} function getenv() (see POSIX.1 {2} 4.6).

The PXFSETENV() subroutine shall search the environment list (see POSIX.1 {2} 2.6) for a string of the
name=value, where name is the contents of the character argument NAME. If no such string is present, PXFSETENV()
shall add a string of the form name=new to the environment list, where new is the contents of the character argume
NEW. Otherwise, if the IOVERWRITE argument is nonzero, PXFSETENV() either shall change the existing value t
the contents of NEW or shall delete the string name=value and add the string name=new. The values assigned to the
environment variables are restricted as specified in POSIX.1 {2} 2.6.

The PXFCLEARENV() subroutine shall clear the process environment. No environment variables are d
immediately after a call to PXFCLEARENV().

Arguments for PXFGETENV() correspond to the arguments for getenv(), as shown in Table 4.14.
32 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

s
o

 is not
ided by
Table 4.14—Arguments for PXFGETENV()

4.6.1.3 Errors

POSIX.1 {2} does not specify any error conditions that are required to be detected for the getenv() function. Upon
successful completion of PXFGETENV(), the argument IERROR shall be set to zero. If any of the following condition
occur, PXFGETENV() shall set the argument to the corresponding value. IERROR may be set to a nonzero value t
indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

Upon successful completion of PXFSETENV(), the argument IERROR shall be set to zero. If any of the following
conditions occur, PXFSETENV() shall set the argument to the corresponding value. IERROR may be set to a nonzero
value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

Upon successful completion of PXFLCEARENV(), the argument IERROR shall be set to zero. IERROR may be set to
a nonzero value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

4.7 Terminal Identification

4.7.1 Generate Terminal Pathname

Subroutine: PXFCTERMID()

4.7.1.1 Synopsis

 SUBROUTINE PXFCTERMID (S, ILEN, IERROR)
 CHARACTER*(*) S
 INTEGER ILEN, IERROR

4.7.1.2 Description

The argument S shall be a valid user-space character variable; the static return area provided by POSIX.1 {2}
supported, and the maximum length of the returned string indicated by the symbolic constant L_ctermid prov

FORTRAN
Argument

POSIX.1
Argument Intent Notes

NAME name IN

LENNAME -- IN Length of NAME; see 2.3.2.4

VALUE ret_value OUT

LENVAL -- OUT Returned length of VALUE

IERROR ret_value/errno OUT

[EINVAL] The variable NAME is not in the environment list.

[ETRUNC] The declared length of the argument VALUE is insufficient to contain the string to be
returned. (See 2.3.2.4.)

[ENOMEM] Not enough memory is available to create the necessary structures.
Copyright © 1992 IEEE All Rights Reserved 33

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

he
 is

ion

ions
POSIX.1 {2} is not supported. The argument ILEN shall contain zero if the pathname that would refer to t
controlling terminal cannot be determined or if PXFCTERMID is unsuccessful. If the length of the returned value
longer than the length of the passed character variable S, the return value shall be truncated.

Otherwise, the PXFCTERMID() subroutine shall provide the same functionality as the POSIX.1 {2} funct
ctermid() (see POSIX.1 {2} 4.7).

Upon completion, S shall contain a string that represents the controlling terminal for the current process, andILEN
shall contain the length of the string. Arguments for PXFCTERMID() correspond to the arguments for ctermid(), as
shown in Table 4.15.

Table 4.15—Arguments for PXFCTERMID()

4.7.1.3 Errors

POSIX.1 {2} does not specify any error conditions that are required to be detected for the ctermid() function. Upon
successful completion of PXFCTERMID(), the argument IERROR shall be set to zero. If any of the following
conditions occur, PXFCTERMID() shall set the argument to the corresponding value. IERROR may be set to a nonzero
value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

4.7.2 Determine Terminal Device Name

Subroutines: PXFTTYNAME(), PXFISATTY()

4.7.2.1 Synopsis

 SUBROUTINE PXFTTYNAME (IFILDES, S, ILEN, IERROR)
 INTEGER IFILDES, ILEN, IERROR
 CHARACTER*(*) S

 SUBROUTINE PXFISATTY (IFILDES, ISATTY, IERROR)
 INTEGER IFILDES, IERROR
 LOGICAL ISATTY

4.7.2.2 Description

PXFTTYNAME() and PXFISATTY() shall provide the same functionality as the corresponding POSIX.1 {2} funct
ttyname() and isatty() (see POSIX.1 {2} 4.7). Upon return, the value of ISATTY shall be .TRUE. if IFILDES contains
a valid file descriptor associated with a terminal. Otherwise, it shall be .FALSE..

FORTRAN
Argument

POSIX.1
Argument Intent Notes

S s OUT

ILEN -- OUT Length of S; see 2.3.2.4

IERROR ret_value/errno OUT

[ETRUNC] The declared length of the argument S is insufficient to contain the string to be returned.
(See 2.3.2.4.)
34 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992
Upon completion of PXFTTYNAME(), S shall contain the terminal pathname, and ILEN shall contain the length of the
string. If the length of the returned value is longer than the length of the passed character variable S, the return value
shall be truncated.

Arguments for PXFTTYNAME() and PXFISATTY() correspond to the arguments for ttyname() and isatty(), as shown
in Table 4.16.

Table 4.16—Arguments for PXFTTYNAME() and PXFISATTY()

4.7.2.3 Errors

POSIX.1 {2} does not specify any error conditions that are required to be detected for the ttyname() function. Upon
successful completion of PXFTTYNAME(), the argument IERROR shall be set to zero. If any of the following
conditions occur, PXFTTYNAME() shall set the argument to the corresponding value. IERROR may be set to a nonzero
value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

POSIX.1 {2} does not specify any error conditions that are required to be detected for the isatty() function. Upon
successful completion of PXFISATTY(), the argument IERROR shall be set to zero. IERROR may be set to a nonzero
value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

4.8 Configurable System Variables

4.8.1 Get Configurable System Variables

Subroutine: PXFSYSCONF()

4.8.1.1 Synopsis

 SUBROUTINE PXFSYSCONF (NAME, IVAL, IERROR)
 INTEGER NAME
 INTEGER IVAL, IERROR

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IFILDES fildes IN

S ret_value OUT

ILEN -- OUT Length of S; see 2.3.2.4

ISATTY ret_value OUT

IERROR ret_value/errno OUT

[ETRUNC] The declared length of the argument S is insufficient to contain the string to be returned.
(See 2.3.2.4.)

[EBADF] IFILDES is not a valid file descriptor.
Copyright © 1992 IEEE All Rights Reserved 35

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

lescent.

pletion,
t are

nt

ames
4.8.1.2 Description

The PXFSYSCONF() subroutine shall provide the same functionality as the POSIX.1 {2} function sysconf() (see
POSIX.1 {2} 4.8). NAME is an integer value representing a symbolic system variable. Values for NAME shall be
obtained through calls to any of the PXFCONST() procedures (see 8.2).

Access to the special symbol {CLK_TCK} is not included since POSIX.1 {2} declares such access to be obso

Arguments for PXFSYSCONF() correspond to the arguments for sysconf(), as shown in Table 4.17.

Table 4.17—Arguments for PXFSYSCONF()

4.8.1.3 Errors

Possible error conditions for PXFSYSCONF() are identical to those for the POSIX.1 {2} function sysconf(). IERROR
shall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful com
the argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate error conditions tha
not specified by POSIX.1 {2} and POSIX.9.

5. Files and Directories

5.1 Directories

5.1.1 Format of Directory Entries

The PXFSTRUCTCREATE() subroutine (see 8.3.1) with the string ‘dirent’ given as the STRUCTNAME argument shall
be used to obtain a handle for an instance of the dirent structure as defined in POSIX.1 {2} 5.1. Each compone
access shall require one of the following structure-component manipulation subroutines (see 8.3.2):

SUBROUTINE PXFSTRGET(JDIRENT, COMPNAM, SVALUE, ILEN, IERROR)
INTEGER, JDIRENT, ILEN, IERROR
CHARACTER*(*) SVALUE

where JDIRENT is a handle and COMPNAM is a character expression which evaluates to one of the component n
shown in Table 5.1.

Table 5.1—Components for dirent Structure

FORTRAN
Argument

POSIX.1
Argument Intent Notes

NAME name IN

IVAL ret_value OUT

IERROR ret_value/errno OUT

POSIX.1
Component COMPNAM Structure Procedures Used to Access

d_name ‘d_name’ PXFSTRGET
36 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

ll

erations

 {2}, as
5.1.2 Directory Operations

Subroutines: PXFOPENDIR(), PXFREADDIR(), PXFREWINDDIR(), PXFCLOSEDIR()

5.1.2.1 Synopsis

 SUBROUTINE PXFOPENDIR (DIRNAME, LENDIRNAME, IOPENDIRID, IERROR)
 CHARACTER*(*) DIRNAME
 INTEGER LENDIRNAME, IOPENDIRID, IERROR

 SUBROUTINE PXFREADDIR (IDIRID, JDIRENT, IERROR)
 INTEGER IDIRID, JDIRENT, IERROR

 SUBROUTINE PXFREWINDDIR (IDIRID, IERROR)
 INTEGER IDIRID, IERROR

 SUBROUTINE PXFCLOSEDIR (IDIRID, IERROR)
 INTEGER IDIRID, IERROR

5.1.2.2 Description

The type DIR (see POSIX.1 {2} 5.1) is represented by a directory identifier contained in the integer arguments IDIRID
and IOPENDIRID. This integer shall contain an identifier for a directory stream, which is an ordered sequence of a
the directory entries in a particular directory. A unique value of IOPENDIRID shall be returned by a call to
PXFOPENDIR(), and IDIRID shall become undefined upon the matching call to PXFCLOSEDIR(). Otherwise
PXFOPENDIR(), PXFCLOSEDIR(), PXFREWINDDIR(), and PXFREADDIR() shall provide the same functionality
as the corresponding POSIX.1 {2} functions (see POSIX.1 {2} 5.1).

When the end of the directory stream is reached by PXFREADDIR(), the components in the dirent structure shall be
undefined, and IERROR shall be set to the value indicated in 5.1.2.3.

Arguments for these subroutines correspond to the arguments for the corresponding POSIX.1 {2} directory op
(see POSIX.1 {2} 5.1), as shown in Table 5.2.

Table 5.2—Arguments for the PXF...DIR() Subroutines

5.1.2.3 Errors

Possible error conditions for these subroutines include those for the directory operations defined in POSIX.1
well as the conditions listed below. If any of these conditions occur, the argument IERROR shall be set to the

FORTRAN
Argument

POSIX.1
Argument Intent Notes

DIRNAME dirname IN

LENDIRNAME dirname IN Length of DIRNAME; see 2.3.2.4

IOPENDIRID ret_value OUT

IDIRID dirp IN

JDIRENT -- IN 1.

IERROR ret_value/errno OUT

1. Handle obtained from PXFSTRUCTCREATE (‘dirent’,...); see 8.3.1.
Copyright © 1992 IEEE All Rights Reserved 37

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

cified
onding

e

lue

2} and
corresponding nonzero value specified by the POSIX.1 {2} function. In addition to the POSIX.1 {2} spe
conditions, if any of the following conditions occur, these subroutines shall set the argument to the corresp
value. Upon successful completion, the argument IERROR shall be set to zero. IERROR may be set to a nonzero valu
to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

5.2 Get Working Directory

5.2.1 Change Current Working Directory

Subroutine: PXFCHDIR()

5.2.1.1 Synopsis

 SUBROUTINE PXFCHDIR (PATH, ILEN, IERROR)
 CHARACTER*(*) PATH
 INTEGER ILEN, IERROR

5.2.1.2 Description

The PXFCHDIR() subroutine shall provide the same functionality as the POSIX.1 {2} function chdir() (see POSIX.1
{2} 5.2). Arguments for PXFCHDIR() correspond to the arguments for chdir(), as shown in Table 5.3.

Table 5.3—Arguments for PXFCHDIR()

5.2.1.3 Errors

Possible error conditions for PXFCHDIR() are identical to those for the POSIX.1 {2} function chdir(). Under the
circumstances specified by POSIX.1 {2}, the argument IERROR shall be set to the corresponding nonzero va
specified by the POSIX.1 {2} function. Upon successful completion, the argument IERROR shall be set to zero.
IERROR may be set to a nonzero value to indicate error conditions that are not specified by POSIX.1 {
POSIX.9.

5.2.2 Get Working Directory Pathname

Subroutine: PXFGETCWD()

5.2.2.1 Synopsis

 SUBROUTINE PXFGETCWD (BUF, ILEN, IERROR)
 CHARACTER*(*) BUF
 INTEGER ILEN, IERROR

[EEND] Following a call to PXFREADDIR(), indicates that all directory entries have been read.

FORTRAN
Argument

POSIX.1
Argument Intent Notes

PATH path IN

ILEN -- IN Length of PATH; see 2.3.2.4

IERROR ret_value/errno OUT
38 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

he
Upon
te

e
e
function
5.2.2.2 Description

The size argument in the POSIX.1 {2} function getcwd() is superfluous in PXFGETCWD() since the size of BUF is
defined by the declaration of the character variable. ILEN is the returned length of the string written into BUF. If
PXFGETCWD() is unsuccessful, ILEN is set to zero. Otherwise, PXFGETCWD() shall provide the same functionality
as the POSIX.1 {2} function getcwd() (see POSIX.1 {2} 5.2). Arguments for PXFGETCWD() correspond to the
arguments for getcwd(), as shown in Table 5.4.

Table 5.4—Arguments for PXFGETCWD()

5.2.2.3 Errors

Except for replacing the ERANGE error with the ETRUNC error below, possible error conditions for PXFGETCWD()
are identical to those for the POSIX.1 {2} function getcwd(). Under the circumstances specified by POSIX.1 {2}, t
argument IERROR shall be set to the corresponding nonzero value specified by the POSIX.1 {2} function.
successful completion, the argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indica
error conditions that are not specified by POSIX.1 {2} and POSIX.9.

5.3 General File Creation

5.3.1 Open a File

Subroutine: PXFOPEN()

5.3.1.1 Synopsis

 SUBROUTINE PXFOPEN (PATH, ILEN, IOPENFLAG, IMODE, IFILDES, IERROR)
 CHARACTER*(*) PATH
 INTEGER ILEN, IOPENFLAG, IMODE, IFILDES, IERROR

5.3.1.2 Description

The PXFOPEN() subroutine shall provide the same functionality as the POSIX.1 {2} function open() (see POSIX.1
{2} 5.3).

The values of the symbolic constants defined in POSIX.1 {2} for open() and necessary for construction of th
IOPENFLAG and IMODE arguments shall be accessible through any of the PXFCONST() procedures (see 8.2). Thes
values of the symbolic constants shall be distinct and can be combined with the use of the inclusive OR
(see 8.7).

FORTRAN
Argument

POSIX.1
Argument Intent Notes

BUF buf OUT

-- size --

ILEN -- OUT Length of returned string in BUF

IERROR ret_value/errno OUT

[ETRUNC] The declared length of the argument BUF is insufficient to contain the string that is to
be returned. (See 2.3.2.4.)
Copyright © 1992 IEEE All Rights Reserved 39

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

on, the
 not

lic
ents for
Arguments for PXFOPEN() correspond to the arguments for open(), as shown in Table 5.5.

Table 5.5—Arguments for PXFOPEN()

5.3.1.3 Errors

Possible error conditions for PXFOPEN() are identical to those for the POSIX.1 {2} function open(). IERROR shall be
set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completi
argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate error conditions that are
specified by POSIX.1 {2} and POSIX.9.

5.3.2 Create a New File or Rewrite an Existing One

Subroutine: PXFCREAT()

5.3.2.1 Synopsis

 SUBROUTINE PXFCREAT (PATH, ILEN, IMODE, IFILDES, IERROR)
 CHARACTER*(*) PATH
 INTEGER ILEN, IMODE, IFILDES, IERROR

5.3.2.2 Description

The PXFCREAT() subroutine shall provide the same functionality as the POSIX.1 {2} function creat() (see POSIX.1
{2} 5.3).

The values of the symbolic constants defined in POSIX.1 {2} for creat() and necessary for construction of the IMODE
argument shall be accessible through any of the PXFCONST() procedures (see 8.2). The values of the symbo
constants shall be distinct and can be combined with the use of the inclusive OR function (see 8.7). Argum
PXFCREAT() correspond to the arguments for creat(), as shown in Table 5.6.

FORTRAN
Argument

POSIX.1
Argument Intent Notes

PATH path IN

ILEN -- IN Length of PATH; see 2.3.2.4

IOPENFLAG oflag IN

IMODE mode IN 1.

IFILDES ret_value OUT

IERROR ret_value/errno OUT

1. Utilized only if IOPENFLAG contains O_CREAT and if the file did not previously exist.
40 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

ion, the
 not

ny
mbined

ation of
Table 5.6—Arguments for PXFCREAT()

5.3.2.3 Errors

Possible error conditions for PXFCREAT() are identical to those for the POSIX.1 {2} function creat(). IERROR shall
be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful complet
argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate error conditions that are
specified by POSIX.1 {2} and POSIX.9.

5.3.3 Set File Creation Mask

Subroutine: PXFUMASK()

5.3.3.1 Synopsis

 SUBROUTINE PXFUMASK (ICMASK, IPREVCMASK, IERROR)
 INTEGER ICMASK, IPREVCMASK, IERROR

5.3.3.2 Description

The PXFUMASK() subroutine shall provide the same functionality as the POSIX.1 {2} function umask() (see
POSIX.1 {2} 5.3).

The values of the symbolic constants necessary to compose the ICMASK() argument shall be accessible through a
of the PXFCONST() procedures (see 8.2). The values of the symbolic constants shall be distinct and can be co
with the use of the inclusive OR function (see 8.7).

The file creation mask of the process shall also be used when determining the permission bits for the cre
POSIX-based FORTRAN I/O files (see 8.5.1). Arguments for PXFUMASK() correspond to the arguments for umask(),
as shown in Table 5.7.

Table 5.7—Arguments for PXFUMASK()

FORTRAN
Argument

POSIX.1
Argument Intent Notes

PATH path IN

ILEN -- IN Length of PATH; see 2.3.2.4

IMODE mode IN

IFILDES ret_value OUT

IERROR ret_value/errno OUT

FORTRAN
Argument

POSIX.1
Argument Intent Notes

ICMASK cmask IN

IPREVCMASK ret_value OUT

IERROR ret_value/errno OUT
Copyright © 1992 IEEE All Rights Reserved 41

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

on, the
 not
5.3.3.3 Errors

POSIX.1 {2} does not specify any error conditions that are required to be detected for the umask() function. Upon
successful completion of PXFUMASK(), the argument IERROR shall be set to zero. IERROR may be set to a nonzero
value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

5.3.4 Link to a File

Subroutine: PXFLINK()

5.3.4.1 Synopsis

 SUBROUTINE PXFLINK (EXISTING, LENEXIST, NEW, LENNEW, IERROR)
 CHARACTER*(*) EXISTING, NEW
 INTEGER LENEXIST, LENNEW, IERROR

5.3.4.2 Description

The PXFLINK() subroutine shall provide the same functionality as the POSIX.1 {2} function link() (see POSIX.1 {2}
5.3). Arguments for PXFLINK() correspond to the arguments for link(), as shown in Table 5.8.

Table 5.8—Arguments for PXFLINK()

5.3.4.3 Errors

Possible error conditions for PXFLINK() are identical to those for the POSIX.1 {2} function link(). IERROR shall be
set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completi
argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate error conditions that are
specified by POSIX.1 {2} and POSIX.9.

5.4 Special File Creation

5.4.1 Make a Directory

Subroutine: PXFMKDIR()

5.4.1.1 Synopsis

 SUBROUTINE PXFMKDIR (PATH, ILEN, IMODE, IERROR)
 CHARACTER*(*) PATH
 INTEGER ILEN, IMODE, IERROR

FORTRAN
Argument

POSIX.1
Argument Intent Notes

EXISTING existing IN

LENEXIST -- IN Length of EXISTING; see 2.3.2.4

NEW new IN

LENNEW -- IN Length of NEW; see 2.3.2.4

IERROR ret_value/errno OUT
42 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

e
he
e 8.7).

ion, the
 not

e
he
e 8.7).
5.4.1.2 Description

The PXFMKDIR() subroutine shall provide the same functionality as the POSIX.1 {2} function mkdir() (see POSIX.1
{2} 5.4).

The values of the symbolic constants defined in POSIX.1 {2} for mkdir() and necessary for construction of th
IMODE argument shall be accessible through any of the PXFCONST() procedures (see 8.2). These values of t
symbolic constants shall be distinct and can be combined with the use of the inclusive OR function (se
Arguments for PXFMKDIR() correspond to the arguments for mkdir(), as shown in Table 5.9.

Table 5.9—Arguments for PXFMKDIR()

5.4.1.3 Errors

Possible error conditions for PXFMKDIR() are identical to those for the POSIX.1 {2} function mkdir(). IERROR shall
be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful complet
argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate error conditions that are
specified by POSIX.1 {2} and POSIX.9.

5.4.2 Make a FIFO Special File

Subroutine: PXFMKFIFO()

5.4.2.1 Synopsis

 SUBROUTINE PXFMKFIFO (PATH, ILEN, IMODE, IERROR)
 CHARACTER*(*) PATH
 INTEGER ILEN, IMODE, IERROR

5.4.2.2 Description

The PXFMKFIFO() subroutine shall provide the same functionality as the POSIX.1 {2} function mkfifo() (see
POSIX.1 {2} 5.4).

The values of the symbolic constants defined in POSIX.1 {2} for mkfifo() and necessary for construction of th
IMODE argument shall be accessible through any of the PXFCONST() procedures (see 8.2). These values of t
symbolic constants shall be distinct and can be combined with the use of the inclusive OR function (se
Arguments for PXFMKFIFO() correspond to the arguments for mkfifo(), as shown in Table 5.10.

FORTRAN
Argument

POSIX.1
Argument Intent Notes

PATH path IN

ILEN -- IN Length of PATH; see 2.3.2.4

IMODE mode IN

IERROR ret_value/errno OUT
Copyright © 1992 IEEE All Rights Reserved 43

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

pletion,
t are

pletion,
t are
Table 5.10—Arguments for PXFMKFIFO()

5.4.2.3 Errors

Possible error conditions for PXFMKFIFO() are identical to those for the POSIX.1 {2} function mkfifo(). IERROR
shall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful com
the argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate error conditions tha
not specified by POSIX.1 {2} and POSIX.9.

5.5 File Removal

5.5.1 Remove Directory Entries

Subroutine: PXFUNLIN()

5.5.1.1 Synopsis

 SUBROUTINE PXFUNLINK (PATH, ILEN, IERROR)
 CHARACTER*(*) PATH
 INTEGER ILEN, IERROR

5.5.1.2 Description

The PXFUNLINK() subroutine shall provide the same functionality as the POSIX.1 {2} function unlink() (see
POSIX.1 {2} 5.5). Arguments for PXFUNLINK() correspond to the arguments for unlink(), as shown in Table 5.11.

Table 5.11—Arguments for PXFFUNLINK()

5.5.1.3 Errors

Possible error conditions for PXFUNLINK() are identical to those for the POSIX.1 {2} function unlink(). IERROR
shall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful com
the argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate error conditions tha
not specified by POSIX.1 {2} and POSIX.9.

FORTRAN
Argument

POSIX.1
Argument Intent Notes

PATH path IN

ILEN -- IN Length of PATH; see 2.3.2.4

IMODE mode IN

IERROR ret_value/errno OUT

FORTRAN
Argument

POSIX.1
Argument Intent Notes

PATH path IN

ILEN -- IN Length of PATH; see 2.3.2.4

IERROR ret_value/errno OUT
44 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

ion, the
 not
5.5.2 Remove a Directory

Subroutine: PXFRMDIR()

5.5.2.1 Synopsis

 SUBROUTINE PXFRMDIR (PATH, ILEN, IERROR)
 CHARACTER*(*) PATH
 INTEGER ILEN, IERROR

5.5.2.2 Description

The PXFRMDIR() subroutine shall provide the same functionality as the POSIX.1 {2} function rmdir() (see POSIX.1
{2} 5.5). Arguments for PXFRMDIR() correspond to the arguments for rmdir(), as shown in Table 5.12.

Table 5.12—Arguments for PXFRMDIR()

5.5.2.3 Errors

Possible error conditions for PXFRMDIR() are identical to those for the POSIX.1 {2} function rmdir(). IERROR shall
be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful complet
argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate error conditions that are
specified by POSIX.1 {2} and POSIX.9.

5.5.3 Rename a File

Subroutine: PXFRENAME()

5.5.3.1 Synopsis

 SUBROUTINE PXFRENAME (OLD, LENOLD, NEW, LENNEW, IERROR)
 CHARACTER*(*) OLD, NEW
 INTEGER LENOLD, LENNEW, IERROR

5.5.3.2 Description

The PXFRENAME() subroutine shall provide the same functionality as the POSIX.1 {2} function rename() (see
POSIX.1 {2} 5.5). Arguments for PXFRENAME() correspond to the arguments for rename(), as shown in Table 5.13.

FORTRAN
Argument

POSIX.1
Argument Intent Notes

PATH path IN

ILEN -- IN Length of PATH; see 2.3.2.4

IERROR ret_value/errno OUT
Copyright © 1992 IEEE All Rights Reserved 45

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

pletion,
t are

ess

ames
Table 5.13—Arguments for PXFRENAME()

5.5.3.3 Errors

Possible error conditions for PXFRENAME() are identical to those for the POSIX.1 {2} function rename(). IERROR
shall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful com
the argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate error conditions tha
not specified by POSIX.1 {2} and POSIX.9.

5.6 File Characteristics

5.6.1 File Characteristics: Header and Data Structure

The PXFSTRUCTCREATE() subroutine (see 8.3.1) with the string ‘stat’ given as the STRUCTNAME argument shall
be used to obtain a handle for an instance of the stat structure as defined in POSIX.1 {2} 5.6. Each component acc
shall require one of the following structure-component manipulation subroutines (see 8.3.2):

SUBROUTINE PXFINTGET(JSTAT, COMPNAM, IVALUE, IERROR)
INTEGER JSTAT, IVALUE, IERROR

where JSTAT is a handle and COMPNAM is a character expression which evaluates to one of the component n
shown in Table 5.14.

Table 5.14—Components for stat Structure

FORTRAN
Argument

POSIX.1
Argument Intent Notes

OLD old IN

LENOLD -- IN Length of OLD; see 2.3.2.4

NEW new IN

LENNEW -- IN Length of NEW; see 2.3.2.4

IERROR ret_value/errno OUT

POSIX.1
Component COMPNAM Structure Procedures Used to Access

st_mode ‘st_mode’ PXFINTGET

st_ino ‘st_ino’ PXFINTGET

st_dev ‘st_dev’ PXFINTGET

st_nlink ‘st_nlink’ PXFINTGET

st_uid ‘st_uid’ PXFINTGET

st_gid ‘st_gid’ PXFINTGET

st_size ‘st_size’ PXFINTGET

st_atime ‘st_atime’ PXFINTGET

st_mtime ‘st_mtime’ PXFINTGET

st_ctime ‘st_ctime’ PXFINTGET
46 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

.2.2.

turning
e

e

The value of the st_atime, st_mtime, and st_ctime components may exceed the range of a signed integer. See 2.3

5.6.1.1 File Types

The following functions shall test whether a file is of the specified type, performing the same functions and re
the same logical result as the macros defined in POSIX.1 {2} 5.6. The value M supplied to the functions is the valu
of st_mode obtained from PXFINTGET(JSTAT, ‘st_mode’,...).

 LOGICAL FUNCTION PXFISDIR (M)
 INTEGER M

 LOGICAL FUNCTION PXFISCHR (M)
 INTEGER M

 LOGICAL FUNCTION PXFISBLK (M)
 INTEGER M

 LOGICAL FUNCTION PXFISREG (M)
 INTEGER M

 LOGICAL FUNCTION PXFISFIFO (M)
 INTEGER M

5.6.1.2 File Modes

All constants and masks defined in POSIX.1 {2} 5.6 for encoding the st_mode value shall be recognized by any of th
PXFCONST() procedures (see 8.2).

5.6.1.3 Time Entries

The time-related structure components shall be interpreted as described in POSIX.1 {2} 5.6.1.3.

5.6.2 Get File Status

Subroutines: PXFSTAT(), PXFFSTAT()

5.6.2.1 Synopsis

 SUBROUTINE PXFSTAT (PATH, ILEN, JSTAT, IERROR)
 CHARACTER*(*) PATH
 INTEGER ILEN, JSTAT, IERROR

 SUBROUTINE PXFFSTAT (IFILDES, JSTAT, IERROR)
 INTEGER IFILDES, JSTAT, IERROR

5.6.2.2 Description

The PXFSTAT() and PXFFSTAT() subroutines shall provide the same functionality as the POSIX.1 {2} functions stat()
and fstat() (see POSIX.1 {2} 5.6). Arguments for PXFSTAT() and PXFFSTAT() correspond to the arguments for stat()
and fstat(), as shown in Table 5.15.
Copyright © 1992 IEEE All Rights Reserved 47

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

Upon
te

e
he
Table 5.15—Arguments for PXFSTAT() and PXFFSTAT()

5.6.2.3 Errors

Possible error conditions for PXFSTAT() and PXFFSTAT() are identical to those for the POSIX.1 {2} functions stat()
and fstat(). IERROR shall be set to the corresponding nonzero value specified by the POSIX.1 {2} function.
successful completion, the argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indica
error conditions that are not specified by POSIX.1 {2} and POSIX.9.

5.6.3 Check File Accessibility

Subroutine: PXFACCESS()

5.6.3.1 Synopsis

 SUBROUTINE PXFACESS (PATH, ILEN, IAMODE, IERROR)
 CHARACTER*(*) PATH
 INTEGER ILEN, IAMODE, IERROR

5.6.3.2 Description

The PXFACCESS() subroutine shall provide the same functionality as the POSIX.1 {2} function access() (see
POSIX.1 {2} 5.6).

The values of the symbolic constants defined in POSIX.1 {2} for access() and necessary for construction of th
IAMODE argument shall be accessible through any of the PXFCONST() procedures (see 8.2). These values of t
symbolic constants shall be distinct and can be combined with the use of the inclusive OR function (see 8.7).

Arguments for PXFACCESS() correspond to the arguments for access(), as shown in Table 5.16.

Table 5.16—Arguments for PXFACCESS()

FORTRAN
Argument

POSIX.1
Argument Intent Notes

PATH path IN

ILEN -- IN Length of PATH; see 2.3.2.4

IFILDES fildes IN

JSTAT buf IN 1.

IERROR ret_value/errno OUT

1. Handle obtained from PXFSTRUCTCREATE (‘stat’,...); see 8.3.1.

FORTRAN
Argument

POSIX.1
Argument Intent Notes

PATH path IN

ILEN -- IN Length of PATH; see 2.3.2.4

IAMODE amode IN

IERROR ret_value/errno OUT
48 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

lue

2} and

e
he
e 8.7).

pletion,
t are
5.6.3.3 Errors

Possible error conditions for PXFACCESS() are identical to those for the POSIX.1 {2} function access(). Under the
circumstances specified by POSIX.1 {2}, the argument IERROR shall be set to the corresponding nonzero va
specified by the POSIX.1 {2} function. Upon successful completion, the argument IERROR shall be set to zero.
IERROR may be set to a nonzero value to indicate error conditions that are not specified by POSIX.1 {
POSIX.9.

5.6.4 Change File Modes

Subroutine: PXFCHMOD()

5.6.4.1 Synopsis

 SUBROUTINE PXFCHMOD (PATH, ILEN, IMODE, IERROR)
 CHARACTER*(*) PATH
 INTEGER ILEN, IMODE, IERROR

5.6.4.2 Description

The PXFCHMOD() subroutine shall provide the same functionality as the POSIX.1 {2} function chmod() (see
POSIX.1 {2} 5.6).

The values of the symbolic constants defined in POSIX.1 {2} for chmod() and necessary for construction of th
IMODE argument shall be accessible through any of the PXFCONST() procedures (see 8.2). These values of t
symbolic constants shall be distinct and can be combined with the use of the inclusive OR function (se
Arguments for PXFCHMOD(correspond to the arguments for chmod(), as shown in Table 5.17.

Table 5.17—Arguments for PXFCHMOD()

5.6.4.3 Errors

Possible error conditions for PXFCHMOD() are identical to those for the POSIX.1 {2} function chmod(). IERROR
shall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful com
the argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate error conditions tha
not specified by POSIX.1 {2} and POSIX.9.

5.6.5 Change Owner and Group of a File

Subroutine: PXFCHOWN()

5.6.5.1 Synopsis

 SUBROUTINE PXFCHOWN (PATH, ILEN, IOWNER, IGROUP, IERROR)

FORTRAN
Argument

POSIX.1
Argument Intent Notes

PATH path IN

ILEN -- IN Length of PATH; see 2.3.2.4

IMODE mode IN

IERROR ret_value/errno OUT
Copyright © 1992 IEEE All Rights Reserved 49

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

lue

2} and
 CHARACTER*(*) PATH
 INTEGER ILEN, IOWNER, IGROUP, IERROR

5.6.5.2 Description

The PXFCHOWN() subroutine shall provide the same functionality as the POSIX.1 {2} function chown() (see
POSIX.1 {2} 5.6). Arguments for PXFCHOWN() correspond to the arguments for chown(), as shown in Table 5.18.

Table 5.18—Arguments for PXFCHOWN()

5.6.5.3 Errors

Possible error conditions for PXFCHOWN() are identical to those for the POSIX.1 {2} function chown(). Under the
circumstances specified by POSIX.1 {2}, the argument IERROR shall be set to the corresponding nonzero va
specified by the POSIX.1 {2} function. Upon successful completion, the argument IERROR shall be set to zero.
IERROR may be set to a nonzero value to indicate error conditions that are not specified by POSIX.1 {
POSIX.9.

5.6.6 Set File Access and Modification Times

Subroutine: PXFUTIME()

5.6.6.1 Synopsis

 SUBROUTINE PXFUTIME (PATH, ILEN, JUTIMBUF, IERROR)
 CHARACTER*(*) PATH
 INTEGER ILEN, JUTIMBUF, IERROR

5.6.6.2 Description

The PXFUTIME() subroutine shall provide the same functionality as the POSIX.1 {2} function utime() (see POSIX.1
{2} 5.6).

The functionality obtained in the POSIX.1 {2} function utime() by passing a NULL can be obtained in PXFUTIME by
passing a handle argument with a value of zero. Arguments or PXFUTIME() correspond to the arguments for utime(),
as shown in Table 5.19.

FORTRAN
Argument

POSIX.1
Argument Intent Notes

PATH path IN

ILEN -- IN Length of PATH; see 2.3.2.4

IOWNER owner IN

IGROUP group IN

IERROR ret_value/errno OUT
50 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

h
2.):

nent

ion, the
 not
Table 5.19—Arguments for PXFUTIME()

The PXFSTRUCTCREATE() subroutine (see 8.3.1) with the string ‘utimbuf’ given as the STRUCTNAME argument
shall be used to obtain a handle for an instance of the utimbuf structure as defined in POSIX.1 {2} 5.6. Eac
component access shall require one of the following structure-component manipulation subroutines (see 8.3.

SUBROUTINE PXFINTSET(JUTIMBUF, COMPNAM, IVALUE, IERROR)
INTEGER JUTIMBUF, IVALUE, IERROR

where JUTIMBUF is a handle and COMPNAM is a character expression which evaluates to one of the compo
names shown in Table 5.20.

Table 5.20—Components for utimbuf Structure

The value of the actime and modtime components may exceed the range of a signed integer. See 2.3.2.2.

5.6.6.3 Errors

Possible error conditions for PXFUTIME() are identical to those for the POSIX.1 {2} function utime(). IERROR shall
be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful complet
argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate error conditions that are
specified by POSIX.1 {2} and POSIX.9.

5.7 Configurable Pathname Variables

5.7.1 Get Configurable Pathname Variables

Subroutines: PXFPATHCONF(), PXFFPATHCONF()

5.7.1.1 Synopsis

 SUBROUTINE PXFPATHCONF (PATH, ILEN, NAME, IVAL, IERROR)
 CHARACTER*(*) PATH
 INTEGER ILEN, NAME, IVAL, IERROR

 SUBROUTINE PXFPATHCONF (IFILDES, NAME, IVAL, IERROR)

FORTRAN
Argument

POSIX.1
Argument Intent Notes

PATH path IN

ILEN -- IN Length of PATH; see 2.3.2.4

JUTIMBUF times IN 1.

IERROR ret_value/errno OUT

1. Handle obtained from PXFSTRUCTCREATE (‘utimbuf,...); see 8.3.1.

POSIX.1
Component COMPNAM Structure Procedures Used to Access

actime ‘actime’ PXFINTSET

modtime ‘modtime’ PXFINTSET
Copyright © 1992 IEEE All Rights Reserved 51

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

{2}
lic
.

}

ion, the
 not
 INTEGER IFILDES, NAME, IVAL, IERROR

5.7.1.2 Description

The PXFPATHCONF() and PXFFPATHCONF() subroutines shall provide the same functionality as the POSIX.1
functions pathconf() and fpathconf() (see POSIX.1 {2} 5.7). NAME is an integer value representing a symbo
pathname variable. Values for NAME shall be obtained through calls to any of the PXFCONST() procedures (see 8.2)
Arguments for PXFPATHCONF() and PXFFPATHCONF() correspond to the arguments for pathconf() and
fpathconf(), as shown in Table 5.21.

Table 5.21—Arguments for PXFPATHCONF() and PXFFPATHCONF()

5.7.1.3 Errors

Possible error conditions for PXFPATHCONF() and PXFFPATHCONF() are identical to those for the POSIX.1 {2
functions pathconf() and fpathconf(). Under the circumstances specified by POSIX.1 {2}, the argument IERROR shall
be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful complet
argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate error conditions that are
specified by POSIX.1 {2} and POSIX.9.

6. Input and Output Primitives

6.1 Pipes

6.1.1 Create an Inter-Process Channel

Subroutine: PXFPIPE()

6.1.1.1 Synopsis

 SUBROUTINE PXFPIPE (IREADFD, IWRTFD, IERROR)
 INTEGER IREADFD, IWRTFD, IERROR

6.1.1.2 Description

The PXFPIPE() subroutine shall provide the same functionality as the POSIX.1 {2} function pipe() (see POSIX.1 {2}
6.1). Arguments for PXFPIPE() correspond to the arguments for pipe(), as shown in Table 6.1.

FORTRAN
Argument

POSIX.1
Argument Intent Notes

PATH path IN

ILEN -- IN Length of PATH; see 2.3.2.4

IFILDES fildes IN

NAME name IN

IVAL ret_value OUT

IERROR ret_value/errno OUT
52 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

on, the
 not
Table 6.1—Arguments for PXFPIPE()

6.1.1.3 Errors

Possible error conditions for PXFPIPE() are identical to those for the POSIX.1 {2} function pipe(). IERROR shall be
set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completi
argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate error conditions that are
specified by POSIX.1 {2} and POSIX.9.

6.2 File Descriptor Manipulation

6.2.1 Duplicate an Open File Descriptor

Subroutines: PXFDUP(), PXFDUP2()

6.2.1.1 Synopsis

 SUBROUTINE PXFDUP (IFILDES, IFID, IERROR)
 INTEGER IFILDES, IFID, IERROR

 SUBROUTINE PXFDUP2 (IFILDES, IFILDES2, IERROR)
 INTEGER IFILDES, IFILDES2, IFID, IERROR

6.2.1.2 Description

The PXFDUP() and PXFDUP2() subroutines shall provide the same functionality as the POSIX.1 {2} functions dup()
and dup2() (see POSIX.1 {2} 6.2).

If PXFDUP2() succeeds, then the context of the file open on IFILDES has been duplicated into IFILDES2. If
PXFDUP2() fails, then IFILDES2 should be considered closed or invalid, depending on the value in IERROR.
Arguments for PXFDUP() and PXFDUP2() correspond to the arguments for dup() and dup2(), as shown in Table 6.2.

Table 6.2—Arguments for PXFDUP() and PXFDUP2()

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IREADFD fildes[0] IN

IWRTFD fildes[1] IN

IERROR ret_value/errno OUT

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IFILDES fildes IN

IFILDES2 fildes2 IN

IFID ret_value OUT

IERROR ret_value/errno OUT
Copyright © 1992 IEEE All Rights Reserved 53

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

Upon
te

ion, the
 not
6.2.1.3 Errors

Possible error conditions for PXFDUP() and PXFDUP2() are identical to those for the POSIX.1 {2} functions dup()
and dup2(). IERROR shall be set to the corresponding nonzero value specified by the POSIX.1 {2} function.
successful completion, the argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indica
error conditions that are not specified by POSIX.1 {2} and POSIX.9.

6.3 File Descriptor Deassignment

6.3.1 Close a File

Subroutine: PXFCLOSE()

6.3.1.1 Synopsis

 SUBROUTINE PXFCLOSE (IFILDES, IERROR)
 INTEGER IFILDES, IERROR

6.3.1.2 Description

The PXFCLOSE() subroutine shall provide the same functionality as the POSIX.1 {2} function close() (see POSIX.1
{2} 6.3). Arguments for PXFCLOSE() correspond to the arguments for close(), as shown in Table 6.3.

Table 6.3—Arguments for PXFCLOSE()

6.3.1.3 Errors

Possible error conditions for PXFCLOSE() are identical to those for the POSIX.1 {2} function close(). IERROR shall
be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful complet
argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate error conditions that are
specified by POSIX.1 {2} and POSIX.9.

6.4 Input and Output

6.4.1 Read From a File

Subroutine: PXFREAD()

6.4.1.1 Synopsis

 SUBROUTINE PXFREAD (IFILDES, BUF, NBYTE, NREAD, IERROR)
 INTEGER IFILDES
 CHARACTER BUF*
 INTEGER NBYTE, NREAD, IERROR

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IFILDES fildes IN

IERROR ret_value/errno OUT
54 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

on, the
 not
6.4.1.2 Description

The PXFREAD() subroutine shall provide the same functionality as the POSIX.1 {2} function read() (see POSIX.1
{2} 6.4). Arguments for PXFREAD() correspond to the arguments for read(), as shown in Table 6.4.

Table 6.4—Arguments for PXFREAD()

6.4.1.3 Errors

Possible error conditions for PXFREAD() are identical to those for the POSIX.1 {2} function read(). IERROR shall be
set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful completi
argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate error conditions that are
specified by POSIX.1 {2} and POSIX.9.

6.4.2 Write to a File

Subroutine: PXFWRITE()

6.4.2.1 Synopsis

 SUBROUTINE PXFWRITE (IFILDES, BUF, NBYTE, NWRITTEN, IERROR)
 INTEGER IFILDES
 CHARACTER BUF(*))
 INTEGER NBYTE, NWRITTEN, IERROR

6.4.2.2 Description

The PXFWRITE() subroutine shall provide the same functionality as the POSIX.1 {2} function write() (see POSIX.1
{2} 6.4). Arguments for PXFWRITE() correspond to the arguments for write(), as shown in Table 6.5.

Table 6.5—Arguments for PXFWRITE()

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IFILDES fildes IN

BUF buf OUT

NBYTE nbyte IN

NREAD ret_value OUT Undefined if error occurs

IERROR ret_value/errno OUT

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IFILDES fildes IN

BUF buf IN

NBYTE nbyte IN

NWRITTEN ret_value OUT Undefined if error occurs

IERROR ret_value/errno OUT
Copyright © 1992 IEEE All Rights Reserved 55

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

ion, the
 not

for an

ess
6.4.2.3 Errors

Possible error conditions for PXFWRITE() are identical to those for the POSIX.1 {2} function write(). IERROR shall
be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful complet
argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate error conditions that are
specified by POSIX.1 {2} and POSIX.9.

6.5 Control Operations on Files

6.5.1 Data Definitions for File Control Operations

Values for all of the command and control constants defined in POSIX.1 {2} for the fcntl() and open() functions shall
be accessible through calls to any of the PXFCONST() procedures (see 8.2).

6.5.2 File Control

Subroutine: PXFFCNTL()

6.5.2.1 Synopsis

 SUBROUTINE PXFFCNTL (IFILDES, ICMD, IARGIN, IARGOUT, IERROR)
 INTEGER IFILDES, ICMD, IARGIN, IARGOUT, IERROR

6.5.2.2 Description

The PXFFCNTL() subroutine shall provide the same functionality as the POSIX.1 {2} function fcntl() (see POSIX.1
{2} 6.5), with the exception that the third argument is always of integer type: It can be a (integer) handle
instance of the flock structure or an integer (representing a numeric value), depending on the argument ICMD under the
conditions defined in POSIX.1 {2} 6.5. The value returned in IARGOUT shall also depend on the ICMD argument.

The constant values for use in specifying ICMD shall be accessible through calls to any of the PXFCONST()
procedures (see 8.2). Arguments for PXFFCNTL() correspond to the arguments for fcntl(), as shown in Table 6.6.

Table 6.6—Arguments for PXFFCNTL()

The PXFSTRUCTCREATE() subroutine (see 8.3.1) with the string ‘flock’ given as the STRUCTNAME argument shall
be used to obtain a handle for an instance of the flock structure as defined in POSIX.1 {2} 6.5. Each component acc
shall require one of the following structure-component manipulation subroutines (see 8.3.2):

SUBROUTINE PXFINTGET(JFLOCK, COMPNAM, IVALUE, IERROR)
INTEGER JFLOCK, IVALUE, IERROR

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IFILDES fildes IN

ICMD cmd IN

IARGIN arg IN 1.(or integer value)

IARGOUT ret_value OUT

IERROR ret_value/errno OUT

1. Handle obtained from PXFSTRUCTCREATE (‘flock’,...); see 8.3.1.
56 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

ames

lue

2} and
SUBROUTINE PXFINTSET(JFLOCK, COMPNAM, IVALUE, IERROR)
INTEGER JFLOCK, IVALUE, IERROR

where JFLOCK is a handle and COMPNAM is a character expression which evaluates to one of the component n
shown in Table 6.7.

Table 6.7—Components for flock Structure

6.5.2.3 Errors

Possible error conditions for PXFFCNTL() are identical to those for the POSIX.1 {2} function fcntl(). Under the
circumstances specified by POSIX.1 {2}, the argument IERROR shall be set to the corresponding nonzero va
specified by the POSIX.1 {2} function. Upon successful completion, the argument IERROR shall be set to zero.
IERROR may be set to a nonzero value to indicate error conditions that are not specified by POSIX.1 {
POSIX.9.

6.5.3 Reposition Read/Write File Offset

Subroutine: PXFLSEEK()

6.5.3.1 Synopsis

 SUBROUTINE PXFLSEEK (IFILDES, IOFFSET, IWHENCE, IPOSITION, IERROR)
 INTEGER IFILDES, IOFFSET, IWHENCE, IPOSITION, IERROR

6.5.3.2 Description

The PXFLSEEK() subroutine shall provide the same functionality as the POSIX.1 {2} function lseek() (see POSIX.1
{2} 6.5).

The file-positioning constants defined in POSIX.1 {2} and used for the argument IWHENCE shall be accessible
through calls to any of the PXFCONST() procedures (see 8.2). Arguments for PXFLSEEK() correspond to the
arguments for lseek(), as shown in Table 6.8.

POSIX.1
Component COMPNAM Structure Procedures Used to Access

l_type ‘l_type’ PXFINTGET,PXFINTSET

l_whence ‘l_whence’ PXFINTGET,PXFINTSET

l_start ‘l_start’ PXFINTGET,PXFINTSET

l_len ‘l_len’ PXFINTGET,PXFINTSET

l_pid ‘l_pid’ PXFINTGET,PXFINTSET
Copyright © 1992 IEEE All Rights Reserved 57

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

ion, the
 not

nt
Table 6.8—Arguments for PXFLSEEK()

6.5.3.3 Errors

Possible error conditions for PXFLSEEK() are identical to those for the POSIX.1 {2} function lseek(). IERROR shall
be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon successful complet
argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate error conditions that are
specified by POSIX.1 {2} and POSIX.9.

7. Device- and Class-Specific Procedures

7.1 General Terminal Interface

The terminal interface model shall be the same as defined in POSIX.1 {2}.

7.1.1 Interface Characteristics

The interface characteristics shall be the same as defined in POSIX.1 {2}.

7.1.2 Parameters That Can Be Set

7.1.2.1 termios Structure

Any application that needs to control certain terminal I/O characteristics shall do so by using the termios structure (see
POSIX.1 {2} 7.1).

The PXFSTRUCTCREATE() subroutine (see 8.3.1) with the string ‘termios’ given as the STRUCTNAME argument
shall be used to obtain a handle for an instance of the termios structure as defined in POSIX.1 {2} 7.1. Each compone
access shall require one of the following structure-component manipulation subroutines (see 8.3.2):

SUBROUTINE PXFINTGET(JTERMIOS, COMPNAM, IVALUE, IERROR)
INTEGER JTERMIOS, IVALUE, IERROR

SUBROUTINE PXFINTGET(JTERMIOS, COMPNAM, IVALUE, IERROR)
INTEGER JTERMIOS, IVALUE, IERROR

SUBROUTINE PXFAINTGET(JTERMIOS, COMPNAM, IAVALUE, IALEN, IERROR)
INTEGER JTERMIOS, IAVALUE(IALEN), IALEN, IERROR

SUBROUTINE PXFAINTGET(JTERMIOS, COMPNAM, IAVALUE, IALEN, IERROR)

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IFILDES fildes IN

IOFFSET offset IN 1.

IWHENCE whence IN

IPOSITION ret_value OUT 1.

IERROR ret_value/errno OUT

1. Value may exceed the range of a signed integer, see 2.3.2.2
58 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

nent

 number
of the

scribed
e of the
ugh calls

masks
with the
ccessible

 masks
with the
ccessible

scribed
e of the
INTEGER JTERMIOS, IAVALUE(IALEN), IALEN, IERROR

SUBROUTINE PXFEINTGET(JTERMIOS, COMPNAM, IVALUE, INDEX, IERROR)
INTEGER JTERMIOS, IVALUE, INDEX, IERROR

SUBROUTINE PXFEINTGET(JTERMIOS, COMPNAM, IVALUE, INDEX, IERROR)
INTEGER JTERMIOS, IVALUE, INDEX, IERROR

where JTERMIOS is a handle and COMPNAM is a character expression which evaluates to one of the compo
names shown in Table 7.1.

Table 7.1—Components for termios Structure

The component c_cc is an array of integers that can be accessed as an entire array or an element at a time. The
of elements in c_cc is the value of the constant NCCS, which shall be accessible through calls to any
PXFCONST() procedures (see 8.2).

7.1.2.2 Input Modes

Values of the c_iflag component describe the basic terminal input control and are composed of the bit masks de
in POSIX.1 {2} 7.1.2.2). The values of these masks shall be bitwise distinct and can be combined with the us
inclusive OR function (see 8.7). The mask names are constants for which the values shall be accessible thro
to any of the PXFCONST() procedures (see 8.2).

7.1.2.3 Output Modes

Values of the c_oflag component describe the basic terminal output control and are composed of the bit
described in POSIX.1 {2} 7.1.2.3). The values of these masks shall be bitwise distinct and can be combined
use of the inclusive OR function (see 8.7). The mask names are constants for which the values shall be a
through calls to any of the PXFCONST() procedures (see 8.2).

7.1.2.4 Control Modes

Values of the c_cflag component describe the basic terminal hardware control and are composed of the bit
described in POSIX.1 {2} 7.1.2.4). The values of these masks shall be bitwise distinct and can be combined
use of the inclusive OR function (see 8.7). The mask names are constants for which the values shall be a
through calls to any of the PXFCONST() procedures (see 8.2).

7.1.2.5 Local Modes

Values of the c_lflag component describe the control of various functions and are composed of the bit masks de
in POSIX.1 {2} 7.1.2.5). The values of these masks shall be bitwise distinct and can be combined with the us

POSIX.1
Component COMPNAM Structure Procedures Used to Access

c_iflag ‘c_iflag’ PXFINTSET,PXFINTGET

c_oflag ‘c_oflag’ PXFINTSET,PXFINTGET

c_cflag ‘c_cflag’ PXFINTSET,PXFINTGET

c_lflag ‘c_lflag’ PXFINTSET,PXFINTGET

c_cc ‘c_cc PXFAINTSET,PXFAINTGET,
PXFEINTSET,PXFEINTGET
Copyright © 1992 IEEE All Rights Reserved 59

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

ugh calls

 to any of
rol

aud
y of the

X.1 {2}
aud rate
inclusive OR function (see 8.7). The mask names are constants for which the values shall be accessible thro
to any of the PXFCONST() procedures (see 8.2).

7.1.2.6 Special Control Characters

The values of special control characters are defined by the array component c_cc, as described by POSIX.1 {2}
7.1.2.6). The subscript names are symbolic constants for which the values shall be accessible through calls
the PXFCONST() procedures (see 8.2). The elements of the c_cc array contain integer representations of the cont
characters. (See 1.3.4).

7.1.2.7 Baud Rate Values

Baud rate values described in 7.1.3 can be set into the termios structure by the baud rate subroutines in 7.1.3. The b
rates are specified by symbolic constants for which the values shall be accessible through calls to an
PXFCONST() procedures (see 8.2).

7.1.3 Baud Rate Subroutines

Subroutines: PXFCFGETOSPEED(), PXFCFSETOSPEED(), PXFCFGETISPEED(), PXFCFSETISPEED()

7.1.3.1 Synopsis

 SUBROUTINE PXFCFGETOSPEED (JTERMIOS, IOSPEED, IERROR)
 INTEGER JTERMIOS, IOSPEED, IERROR

 SUBROUTINE PXFCFSETOSPEED (JTERMIOS, ISPEED, IERROR)
 INTEGER JTERMIOS, ISPEED, IERROR

 SUBROUTINE PXFCFGETISPEED (JTERMIOS, IOSPEED, IERROR)
 INTEGER JTERMIOS, IOSPEED, IERROR

 SUBROUTINE PXFCFSETISPEED (JTERMIOS, ISPEED, IERROR)
 INTEGER JTERMIOS, ISPEED, IERROR

7.1.3.2 Description

These subroutines shall provide the same functionality as the POSIX.1 {2} baud rate functions (see POSI
7.1.3). Arguments for these subroutines correspond to the arguments for the corresponding POSIX.1 {2} b
functions, as shown in Table 7.2.

Table 7.2—Arguments for the PXFCF..SPEED() Subroutines

FORTRAN
Argument

POSIX.1
Argument Intent Notes

JTERMIOS termios_p IN 1.

ISPEED speed IN

IOSPEED ret_value OUT

IERROR ret_value/errno OUT

1. Handle obtained from PXFSTRUCTCREATE (‘termios’,...); see 8.3.1
60 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

ed by

{2}

}
IX.1
7.1.3.3 Errors

POSIX.1 {2} does not specify any error conditions that are required to be detected for the cf...speed() family of
functions. Upon successful completion of any of the PXFCF...SPEED() family of subroutines, the argument IERROR
shall be set to zero. IERROR may be set to a nonzero value to indicate error conditions that are not specifi
POSIX.1 {2} and POSIX.9.

7.2 General Terminal Interface Control Subroutines

7.2.1 Get and Set State

Subroutines: PXFTCGETATTR(), PXFTCSETATTR()

7.2.1.1 Synopsis

 SUBROUTINE PXFTCGETATTR (IFILDES, JTERMIOS, IERROR)
 INTEGER IFILDES, JTERMIOS, IERROR

 SUBROUTINE PXFTCSETATTR (IFILDES, IOPTACTS, JTERMIOS, IERROR)
 INTEGER IFILDES, IOPTACTS, JTERMIOS, IERROR

7.2.1.2 Description

The PXFTCGETATTR() and PXFTCSETATTR() subroutines shall provide the same functionality as the POSIX.1
functions tcgetattr() and tcsetattr() (see POSIX.1 {2} 7.2). Arguments for PXFTCSETATTR() and PXFTCGETATTR()
correspond to the arguments for tcsetattr() and tcgetattr(), as shown in Table 7.3.

Table 7.3—Arguments for PXFTCSETATTR() and PXFTCGETATTR()

7.2.1.3 Errors

Possible error conditions for PXFTCGETATTR() and PXFTCSETATTR() are identical to those for the POSIX.1 {2
functions tcgetattr() and tcsetattr(). IERROR shall be set to the corresponding nonzero value specified by the POS
{2} function. Upon successful completion, the argument IERROR shall be set to zero. IERROR may be set to a nonzero
value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

7.2.2 Line Control Subroutines

Subroutines: PXFTCSENDBREAK(), PXFTCDRAIN(), PXFTCFLUSH(), PXFTCFLOW()

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IFILDES fildes IN

IOPTACTS optional_actions IN

JTERMIOS termios_p IN 1.

IERROR ret_value/errno OUT

1. Handle obtained from PXFSTRUCTCREATE (‘termios’,...); see 8.3.1.
Copyright © 1992 IEEE All Rights Reserved 61

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

he

control

nctions
 {2}
7.2.2.1 Synopsis

 SUBROUTINE PXFTCSENDBREAK (IFILDES, IDURATION, IERROR)
 INTEGER IFILDES, IDURATION, IERROR

 SUBROUTINE PXFTCDRAIN (IFILDES, IERROR)
 INTEGER IFILDES, IERROR

 SUBROUTINE PXFTCFLUSH (IFILDES, IQUEUE, IERROR)
 INTEGER IFILDES, IQUEUE, IERROR

 SUBROUTINE PXFTCFLOW (IFILDES, IACTION, IERROR)
 INTEGER IFILDES, IACTION, IERROR

7.2.2.2 Description

PXFTCSENDBREAK(), PXFTCDRAIN(), PXFTCFLUSH(), and PXFTCFLOW() shall provide the same functionality
as their respective POSIX.1 {2} functions tcsendbreak(), tcdrain(), tcflush(), and tcflow() (see POSIX.1 {2} 7.2).

The constant values for use in specifying IQUEUE and IACTION shall be accessible through calls to any of t
PXFCONST() procedures (see 8.2).

Arguments for these subroutines correspond to the arguments for the corresponding POSIX.1 {2} line
functions, as shown in Table 7.4.

Table 7.4—Arguments for the PXFTC..() Subroutines

7.2.2.3 Errors

Possible error conditions for these subroutines are identical to those for the corresponding line control fu
defined in POSIX.1 {2}. IERROR shall be set to the corresponding nonzero value specified by the POSIX.1
function. Upon successful completion, the argument IERROR shall be set to zero. IERROR may be set to a nonzero
value to indicate error conditions that are not specified by POSIX.1 {2} and POSIX.9.

7.2.3 Get Foreground Process Group ID

Subroutine: PXFTCGETPGRP()

7.2.3.1 Synopsis

 SUBROUTINE PXFTCGETPGRP (IFILDES, IPGID, IERROR)
 INTEGER IFILDES, IPGID, IERROR

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IFILDES fildes IN

IDURATION duration IN

IQUEUE queue_selector IN

IACTION action IN

IERROR ret_value/errno OUT
62 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

cesful
ror

cessful
ror
7.2.3.2 Description

The PXFTCGETPGRP() subroutine shall provide the same functionality as the POSIX.1 {2} function tcgetpgrp() (see
POSIX.1 {2} 7.2), except that the process group is returned in IPGID. Arguments for PXFTCGETPGRP() correspond
to the arguments for tcgetpgrp(), as shown in Table 7.5.

Table 7.5—Arguments for PXFTCGETPGRP()

7.2.3.3 Errors

Possible error conditions for PXFTCGETPGRP() are identical to those for the POSIX.1 {2} function tcgetpgrp().
IERROR shall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon suc
completion, the argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate er
conditions that are not specified by POSIX.1 {2} and POSIX.9.

7.2.4 Set Foreground Process Group ID

Subroutine: PXFTCSETPGRP()

7.2.4.1 Synopsis

 SUBROUTINE PXFTCSETPGRP (IFILDES, IPGID, IERROR)
 INTEGER IFILDES, IPGID, IERROR

7.2.4.2 Description

The PXFTCSETPGRP() subroutine shall provide the same functionality as the POSIX.1 {2} function tcsetpgrp() (see
POSIX.1 {2} 7.2). Arguments for PXFTCSETPGRP() correspond to the arguments for tcsetpgrp(), as shown in
Table 7.6.

Table 7.6—Arguments for PXFTCSETPGRP()

7.2.4.3 Errors

Possible error conditions for PXFTCSETPGRP() are identical to those for the POSIX.1 {2} function tcsetpgrp().
IERROR shall be set to the corresponding nonzero value specified by the POSIX.1 {2} function. Upon suc
completion, the argument IERROR shall be set to zero. IERROR may be set to a nonzero value to indicate er
conditions that are not specified by POSIX.1 {2} and POSIX.9.

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IFILDES fildes IN

IPGID ret_value OUT

IERROR ret_value/errno OUT

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IFILDES fildes IN

IPGID pgrp_id IN

IERROR ret_value/errno OUT
Copyright © 1992 IEEE All Rights Reserved 63

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

.1 {2}

ssed
 with the

ssful

 any of
8. FORTRAN 77 Language Library

8.1 FORTRAN 77 Intrinsics

For general information regarding these functions, see FORTRAN 77 {3}.

8.2 System Symbolic Constant Access

For general information regarding these subroutines, see 2.3.1.

8.2.1 Access and Verify Symbolic Constants

Subroutine: PXFCONST()

Functions: IPXFCONST(), PXFISCONST()

8.2.1.1 Synopsis

 INTEGER FUNCTION IPXFCONST (CONSTNAME)
 CHARACTER*(*) CONSTNAME

 LOGICAL FUNCTION PXFISCONST (CONSTNAME)
 CHARACTER*(*) CONSTNAME

 SUBROUTINE PXFCONST (CONSTNAME, IVAL, IERROR)
 CHARACTER*(*) CONSTNAME
 INTEGER IVAL, IERROR

8.2.1.2 Description

The argument CONSTNAME is the character representation of the name of any constant defined in a POSIX
header or in POSIX.9. CONSTNAME is case-sensitive, and trailing blanks in the argument shall be ignored.

The function IPXFCONST() shall provide an integer return value but no error checking. If the argument pa
corresponds to a defined constant in POSIX.1 {2} or POSIX.9, the return value is the integer value associated
constant; if the argument is not a defined constant, the behavior is implementation defined. The PXFISCONST()
function shall confirm whether the argument is a valid constant defined by POSIX.1 {2} or POSIX.9. PXFISCONST()
shall return .TRUE. if and only if IPXFCONST() would return a valid value for the same CONSTNAME.

The subroutine PXFCONST() shall provide error checking and a return value in the same call. Upon succe
completion, the argument IVAL shall be set to the integer value associated with the symbolic constant.

The alteration of a constant value by an implementation should require recompilation of an application utilizing
these PXFCONST() procedures to access the altered constant.

Table 8.1—Arguments for Symbolic Constant Procedures

FORTRAN
Argument Intent Notes

CONSTNAME IN

IVAL OUT

IERROR OUT
64 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

the system
ollowed

e
all).

 the

POSIX.1

 in the
IX.9-
e of
8.2.1.3 Errors

Upon successful completion of PXFCONST(), the argument IERROR shall be set to zero. If any of the following
conditions occur, PXFCONST() shall set the argument to the corresponding value. IERROR may be set to a nonzero
value to indicate error conditions that are not specified by POSIX.9.

8.3 Structure Creation and Manipulation

For general information regarding these subroutines, see 2.3.2.

There are two common usage patterns associated with accessing the aggregate data: passing information to
service procedures and obtaining information from the system procedures. The following steps should be f
when using system procedures that require the use of aggregate data:

 PXFSTRUCTCREATE() can be called to create an instance of the desired structure and to obtain a handle
with which to reference it.

 If an application passes information to the system, the PXF<TYPE>SET() subroutines shall be called, onc
for each member, before calling the system procedure (i.e., the structure is loaded before the system c

 The desired system procedure is called.
 If an application needs to get information from the system, the PXF<TYPE>GET() subroutines should be

called, once for each member, after calling the system procedure (i.e., the information is only available in
structure after the system call).

 PXFSTRUCTFREE() can be called to remove the instance of the structure.

When calling the actual system procedure, the calling sequence is equivalent to the C binding as shown in
{2}, except that a handle is used in place of the POSIX.1 {2} structure (pointer) argument.

8.3.1 Structure Creation

Subroutine: PXFSTRUCTCREATE()

8.3.1.1 Synopsis

 SUBROUTINE PXFSTRUCTCREATE (STRUCTNAME, JHANDLE, IERROR)
 CHARACTER*(*) STRUCTNAME
 INTEGER JHANDLE, IERROR

8.3.1.2 Description

The subroutine PXFSTRUCTCREATE() creates an instance of the desired structure and returns a nonzero handle
argument JHANDLE. All further references to this instance of this structure are through this handle. A list of POS
defined values for STRUCTNAME is provided in 2.3.2.3. The initial values of components within the new instanc
the structure are undefined.

[ENONAME] Invalid constant name.
Copyright © 1992 IEEE All Rights Reserved 65

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

(),
Table 8.2—Arguments for PXFSTRUCTCREATE()

8.3.1.3 Errors

Upon successful completion of PXFSTRUCTCREATE(), the argument IERROR shall be set to zero. If any of the
following conditions occur, PXFSTRUCTCREATE() shall set the argument to the corresponding value. IERROR may
be set to a nonzero value to indicate error conditions that are not specified by POSIX.9.

8.3.2 Structure-Component Manipulation

Subroutines: PXF<TYPE>SET(), PXF<TYPE>GET(), PXFA<TYPE>SET(), PXFA<TYPE>GET
PXFE<TYPE>SET(), PXFE<TYPE>GET(),

8.3.2.1 Synopsis

 SUBROUTINE PXF<TYPE>SET (JHANDLE, COMPNAM, VALUE [,ILEN], IERROR)
 INTEGER JHANDLE, [ILEN], IERROR)
 CHARACTER*(*) COMPNAM
 TYPE VALUE

 SUBROUTINE PXF<TYPE>GET (JHANDLE,COMPNAM, VALUE [,ILEN], IERROR)
 INTEGER JHANDLE, [ILEN,] IERROR)
 CHARACTER*(*) COMPNAM
 TYPE VALUE

 SUBROUTINE PXFA<TYPE>SET (JHANDLE, COMPNAM, VALUE, IALEN [,ILEN], IERROR)
 INTEGER JHANDLE, IALEN, [ILEN(IALEN),] IERROR)
 CHARACTER*(*) COMPNAM
 TYPE VALUE(IALEN)

 SUBROUTINE PXFA<TYPE>GET (JHANDLE, COMPNAM, VALUE, IALEN [,ILEN], IERROR)
 INTEGER JHANDLE, IALEN, [ILEN(IALEN),] IERROR)
 CHARACTER*(*) COMPNAM
 TYPE VALUE(IALEN)

 SUBROUTINE PXFE<TYPE>SET (JHANDLE, COMPNAM, INDEX, VALUE [,ILEN], IERROR)
 INTEGER JHANDLE, INDEX, [ILEN,] IERROR)
 CHARACTER*(*) COMPNAM
 TYPE VALUE

FORTRAN
Argument Intent Notes

STRUCTNAME IN

JHANDLE OUT

IERROR OUT

[ENONAME] Invalid structure name.

[ENOHANDLE] Instance of the structure could not be created.
66 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

 the
re is a

tructure.
n access
routines

the
 are used.

is
,

 SUBROUTINE PXFE<TYPE>GET (JHANDLE, COMPNAM, INDEX, VALUE [,ILEN], IERROR)
 INTEGER JHANDLE, INDEX, [ILEN,] IERROR)
 CHARACTER*(*) COMPNAM
 TYPE VALUE

NOTE — The argument ILEN only appears in the interface definition when the type of TYPE VALUE is CHARACTER*(*).

8.3.2.2 Description

The PXF<TYPE>SET() subroutines allow components of a structure to be set or modified, while
PXF<TYPE>GET() subroutines allow values stored in individual components to be extracted and used. The
separate subroutine for handling each unique base FORTRAN 77 data type that may occur within a s
Substituting one of the following character sequences for <TYPE> in the generic names shown shall result i
to a structure component of the indicated data type. A conforming implementation shall provide all access
required to access the structures described in 2.3.2.3.1.

Table 8.3—<TYPE>s of Structure Element Subroutines

The subroutines PXFAT<YPE>SET() and PXFA<TYPE>GET() are analogous subroutines that are used when
structure component is an array. The entire array is accessed (read/written) as a unit when these subroutines
PXFE<TYPE>SET() and PXFe<TYPE>GET() can be used to access a single element of a structure component that
an array. The array element is selected with the argument INDEX. Note that, unlike in the C binding of POSIX.1 {2}
these FORTRAN 77 arrays are one-based for indexing.

For all subroutines, the arguments named JHANDLE, COMPNAM, and INDEX are “in” arguments, and IERROR is an
“out” argument. The intent of the VALUE, ILEN, and IALEN arguments are “in” for the PXF<TYPE>SET()
subroutines or any of the analagous array or array element subroutines, and “out” for the PXF<TYPE>GET()
subroutines or any of the analagous array or array element subroutines.

8.3.2.3 Errors

Upon successful completion of any of the PXF<TYPE>SET() or PXF<TYPE>GET() subroutines or any of the
analagous array or array element subroutines, the argument IERROR shall be set to zero. If any of the following
conditions occur, the subroutine shall set the argument to the corresponding value.

<TYPE> TYPE

INT INTEGER

REAL REAL

LGCL LOGICAL

STR CHARACTER*(*)

CHAR CHARACTER*1

DBL DOUBLE PRECISION

CPLX COMPLEX
Copyright © 1992 IEEE All Rights Reserved 67

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

type (e.g.,

Access to a structure component that does not belong to the structure referenced by JHANDLE or use of a subroutine
of the wrong class (e.g., the use of an array subroutine to access a scalar structure component) or the wrong
the use of a STR routine when the component is an integer) is undefined.

8.3.3 Structure Deletion

Subroutine: PXFSTRUCTFREE()

8.3.3.1 Synopsis

 SUBROUTINE PXFSTRUCTFREE (JHANDLE, IERROR)
 INTEGER JHANDLE, IERROR

8.3.3.2 Description

The subroutine PXFSTRUCTFREE() deletes the instance of the structure referenced by JHANDLE.

Table 8.4—Arguments for PXFSTRUCTFREE()

8.3.3.3 Errors

Upon successful completion of PXFSTRUCTFREE(), the argument IERROR shall be set to zero. IERROR may be set
to a nonzero value to indicate error conditions that are not specified by POSIX.9.

8.3.4 Structure Copy

Subroutine: PXFSTRUCTCOPY()

8.3.4.1 Synopsis

 SUBROUTINE PXFSTRUCTCOPY (STRUCTNAME, JHANDLE1, JHANDLE2, IERROR)
 INTEGER JHANDLE1, JHANDLE2, IERROR
 CHARACTER*(*) STRUCTNAME

[EINVAL] Invalid value for INDEX.

[ENONAME] Component name is not defined for this structure.

[ETRUNC] The declared length of the character argument is insufficient to contain the string to be
returned. (See 2.3.2.4.)

[EARRAYLEN] For PXF<TYPE>GET subroutines, the number of array elements to be returned
exceeds IALEN, and only the first IALEN elements of the array argument have been set.
For PXF<TYPE>SET subroutines, IALEN exceeds the number of array elements in the
structure component. Only the available elements of the array in the structure
component have been set.

FORTRAN
Argument Intent Notes

JHANDLE IN structure handle

IERROR OUT
68 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

he
ned
8.3.4.2 Description

The subroutine PXFSTRUCTCOPY() copies the contents of the structure referenced by JHANDLE1 to the structure
referenced by JHANDLE2. Both handles shall have been created by PXFSTRUCTCREATE using the same
STRUCTNAME. A list of POSIX.9 defined values for STRUCTNAME is provided in 2.3.2.3.

Table 8.5—Arguments for PXFSTRUCTCOPY()

8.3.4.3 Errors

Upon successful completion of PXFSTRUCTCOPY(), the argument IERROR shall be set to zero. If any of the
following conditions occur, PXFSTRUCTCOPY() shall set the argument to the corresponding value. IERROR may be
set to a nonzero value to indicate error conditions that are not specified by POSIX.9.

8.4 Subroutine-Handle Manipulation

These subroutines shall provide the subroutine pointer facility described in 2.3.2.5.

8.4.1 Save and Reference Subroutine Handle

Subroutine: PXFGETSUBHANDLE(), PXFCALLSUBHANDLE()

8.4.1.1 Synopsis

 SUBROUTINE PXFGETSUBHANDLE (SUB, JHANDLE1, IERROR)
 INTEGER JHANDLE, IERROR
 EXTERNAL SUB

 SUBROUTINE PXFCALLSUBHANDLE(JHANDLE2, IVAL, IERROR)
 INTEGER JHANDLE, IVAL, IERROR

8.4.1.2 Description

Given a subroutine external argument, PXFGETSUBHANDLE() returns a subroutine handle for that subroutine in t
argument JHANDLE1. The argument SUB shall not be a function, an intrinsic, or an entry point and shall be defi
with exactly one integer argument.

Given a subroutine handle obtained from a previous call to PXFGETSUBHANDLE() or PXFSIGACTION(),
PXFCALLSUBHANDLE() calls the subroutine associated with that handle, with IVAL as the one integer argument.

FORTRAN
Argument Intent Notes

STRUCTNAME IN

JHANDLE1 IN structure handle

JHANDLE2 IN structure handle

IERROR OUT

[ENONAME] Invalid structure name.
Copyright © 1992 IEEE All Rights Reserved 69

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

ndle

t are

cal to
The
ng the
SIX I/O
 may be

ected
 newline

 set to
Table 8.6—Arguments for Subroutine-Handle Manipulation Subroutines

The values of the symbolic constants SIG_DFL and SIG_IGN are reserved and never returned as a value for the ha
by PXFGETSUBHANDLE() nor may they be passed as the SUB argument in a call to PXFCALLSUBHANDLE().

8.4.1.3 Errors

Upon successful completion of PXFGETSUBHANDLE() or PXFCALLSUBHANDLE(), the argument IERROR shall
be set to zero. If any of the following conditions occur, PXFGETSUBHANDLE() and PXFCALLSUBHANDLE() shall
set the argument to the corresponding value. IERROR may be set to a nonzero value to indicate error conditions tha
not specified by POSIX.9.

8.5 External Unit and File Description Interaction

This section describes the interaction of FORTRAN 77 external units with file descriptors. A unit identifier is lo
a single process. After an PXFFORK() call, an open file description shall be shared by parent and child.
PXFFDOPEN() subroutine shall connect a unit to a file descriptor (see 8.5.3). When a file is opened usi
FORTRAN 77 OPEN statement, an external unit shall be connected to a file descriptor if the value of the PO
flag (see 8.5.1) is one (1) upon execution of the OPEN statement. External units not described in this section
connected to file descriptors.

The preconnected units identified by STDIN_UNIT, STDOUT_UNIT, and STDERR_UNIT shall each be conn
to file descriptors. In addition, records read from or written to these units shall be accessed as if they are
delimited (see 8.5.1).

8.5.1 POSIX-Based FORTRAN I/O

Subroutine: PXFPOSIXIO()

8.5.1.1 Synopsis

 SUBROUTINE PXFPOSIXIO (NEW, OLD, IERROR)
 INTEGER NEW, OLD, IERROR

8.5.1.2 Description

The PXFPOSIXIO() subroutine sets and returns the current value of the POSIX I/O flag. The POSIX I/O flag is
the value of NEW. The previous value of the POSIX I/O flag is returned in OLD. The initial state of the POSIX I/O flag
is unspecified.

FORTRAN
Argument Intent Notes

SUB IN

JHANDLE1 OUT subroutine handle

JHANDLE2 IN subroutine handle

IVAL IN

IERROR OUT

[ENOHANDLE] Instance of the subroutine handle could not be created by PXFGETSUBHANDLE().
70 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

it shall
d as if the
er. When
 to a file
delimited.

pecifier
Table 8.7—Arguments for PXFPOSIXIO()

If a file is opened with a FORTRAN 77 OPEN statement when the value of the POSIX I/O flag is one (1), the un
be connected to a file descriptor. In addition, records within formatted sequential access files shall be accesse
records are newline delimited, even if the file does not contain records that are delimited by a newline charact
the value of the POSIX I/O flag is zero (0) upon execution of the FORTRAN 77 OPEN statement, a connection
descriptor is not assumed, and the records in the file are not required to be accessed as if they are newline
If the value of the POSIX I/O flag is other than zero or one, the interpretation is unspecified.

If the file is already open and another FORTRAN 77 OPEN statement is only used to change the BLANK= s
on the same file, the selection of POSIX-based FORTRAN I/O is not changed on that file.

8.5.1.3 Errors

Upon successful completion of PXFPOSIXIO(), the argument IERROR shall be set to zero. If any of the following
conditions occur, PXFPOSIXIO() shall set the argument to the corresponding value. IERROR may be set to a nonzero
value to indicate error conditions that are not specified by POSIX.9.

8.5.2 Map a Unit to a File Descriptor

Subroutine: PXFFILENO()

8.5.2.1 Synopsis

 SUBROUTINE PXFFILENO (IUNIT, IFILDES, IERROR)
 INTEGER IUNIT, IFILDES, IERROR

8.5.2.2 Description

The PXFFILENO() subroutine shall return in IFILDES the file descriptor to which the unit identified by IUNIT is
connected.

Table 8.8—Arguments for PXFFILENO()

FORTRAN
Argument Intent Notes

NEW IN

OLD OUT

IERROR OUT

[EINVAL] Value of NEW is neither zero nor one and is not supported.

FORTRAN
Argument Intent Notes

IUNIT IN

IFILDES OUT

IERROR OUT
Copyright © 1992 IEEE All Rights Reserved 71

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

UNIT
LENO.
 read
s unit is
AN 77
is unit is
shall be

he OPEN
The units associated with the preconnected files identified by STDIN_UNIT, STDOUT_UNIT, and STDERR_
(see 2.9.1) are connected to the file descriptors defined by the symbolic constants STDIN_FI
STDOUT_FILENO, and STDERR_FILENO respectively (see Table 8.9). When performing FORTRAN 77
operations on a file connected to the processor-determined external unit specified by the asterisk (*), thi
connected to the file descriptor defined by the symbolic constant STDIN_FILENO, When performing FORTR
write operations on a file connected to the processor-determined external unit specified by the asterisk (*), th
connected to the file descriptor defined by the symbolic constant STDOUT_FILENO. The symbolic constants
accessible through calls to any of the PXFCONST() procedures (see 8.2).

Table 8.9—File Descriptor Constants

8.5.2.3 Errors

Upon successful completion of PXFFILENO(), the argument IERROR shall be set to zero. If any of the following
conditions occur, PXFFILENO() shall set the argument to the corresponding value. IERROR may be set to a nonzero
value to indicate error conditions that are not specified by POSIX.9.

8.5.3 Open a Unit

Subroutine: PXFFDOPEN()

8.5.3.1 Synopsis

 SUBROUTINE PXFFDOPEN (IFILDES, IUNIT, ACCESS, IERROR)
 INTEGER IUNIT, IFILDES, IERROR
 CHARACTER*(*) ACCESS

8.5.3.2 Description

The PXFFDOPEN() subroutine connects an external unit identified by IUNIT, to a file descriptor, IFILDES. If the unit
is connected to a file, the file shall be closed before the unit becomes connected to the file descriptor. See t
statement in FORTRAN 77 {3}.

Name Description File Descriptor Value

STDIN_FILENO Standard input file descriptor 0

STDOUT_FILENO Standard output file descriptor 1

STDERR_FILENO Standard error file descriptor 2

[EINVAL] IUNIT is not an open unit.

[EBADF] IUNIT is not connected with a file descriptor.
72 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

s of one
quals (=)

d is set
ll be

TRAN

 OPEN
offset

fined.
Table 8.10—Arguments for PXFFDOPEN()

The ACCESS argument is a character string that specifies the attributes of the connection. This string consist
or more keyword/value pairs, described in Table 8.11. Keywords shall be separated from their values by the e
character. Keyword/value pairs shall be separated by the comma (,) character. Blanks shall be ignored.

Table 8.11—Values for ACCESS Argument

Records within a formatted file shall be accessed as if they are newline delimited when the NEWLINE keywor
to the value YES. When the FORM keyword is set to the value ‘UNFORMATTED’, the NEWLINE keyword sha
ignored.

The meaning and behavior of the BLANK and FORM keywords and its values shall be as defined for the FOR
77 OPEN statement.

The meaning and behavior of the STATUS keyword and its values shall be as defined for the FORTRAN 77
statement with the following exceptions. When the STATUS keyword is set to the value ‘OLD’, the file
associated with the file description shall not be changed as a result of calling PXFFDOPEN().

Additional ACCESS argument keywords and values may be present.Their interpretation is implementation de

8.5.3.3 Errors

Upon successful completion of PXFFDOPEN(), the argument IERROR shall be set to zero. If any of the following
conditions occur, PXFFDOPEN() shall set the argument to the corresponding value. IERROR may be set to a nonzero
value to indicate error conditions that are not specified by POSIX.9.

FORTRAN
Argument Intent Notes

IFILDES IN

IUNIT IN

ACCESS IN

IERROR OUT

Keyword Values Function Default

‘NEWLINE’ ‘YES’ I/O type ‘YES’
‘NO’

‘BLANK’ ‘NULL’
‘ZERO’

Interpretation of blanks ‘NULL’

‘STATUS’ ‘OLD’
‘SCRATCH’
‘UNKNOWN’

File status at open ‘UNKNOWN’

‘FORM’ ‘FORMATTED’
‘UNFORMATTED’

Format type ‘FORMATTED’

[EINVAL] The ACCESS keyword specifies invalid options.

[EACCES] Access is not permitted by the file permissions of the file.

[EBADF] The IFILDES argument is not a valid file descriptor or the IUNIT argument does not
specify a valid external unit.
Copyright © 1992 IEEE All Rights Reserved 73

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

ystem is
lar, this

section
ified by

fined by
8.5.4 Flush Output

Subroutine: PXFFFLUSH()

8.5.4.1 Synopsis

 SUBROUTINE PXFFFLUSH (IUNIT, IERROR)
 INTEGER IUNIT, IERROR

8.5.4.2 Description

The PXFFFLUSH() subroutine shall write any buffered output to the file connected to the unit IUNIT. End-of-record
is not implied by a call to PXFFFLUSH().

Table 8.12—Arguments for PXFFFLUSH()

If the IUNIT argument is not connected for POSIX-based FORTRAN I/O (see 8.5), the results of PXFFFLUSH() are
undefined. PXFFFLUSH() shall mark for update the st_ctime and st_mtime fields of the underlying file if the file is
writable, the call results in a transfer of data to the file, and if data has not yet been written to the file.

8.5.4.3 Errors

Upon successful completion of PXFFFLUSH(), the argument IERROR shall be set to zero. If any of the following
conditions occur, PXFFFLUSH() shall set the argument to the corresponding value. IERROR may be set to a nonzero
value to indicate error conditions that are not specified by POSIX.9.

8.5.5 FORTRAN Language I/O Statements

This section describes the behavior of FORTRAN 77 I/O that is special because the underlying operating s
POSIX based. It defines special procedures that provide I/O capabilities specific to this environment. In particu
section describes interactions of FORTRAN 77 I/O statements with POSIX.9. All interactions specified in this
apply only to POSIX-based FORTRAN I/O files. These interactions define behavior that is undefined or unspec
FORTRAN 77 and does not modify or replace any behavior that is defined in FORTRAN 77.

The set of allowable names for a file (see Section 12.2.2 of FORTRAN 77 {3}) shall include pathnames as de
POSIX.9. A connected unit is a unit that has been opened by the FORTRAN 77 statement OPEN or by PXFFDOPEN.

FORTRAN
Argument Intent Notes

IUNIT IN

IERROR OUT

[EINVAL] The IUNIT argument is not a valid external unit identifier.

[EFBIG] An attempt was made to write a file that exceeds an implementation-defined maximum
file size.

[ENOSPC] There is no free space remaining on the device containing the file.

[ESPIPE] An attempt is made to write a pipe (or FIFO) that is not open for reading by a process.
A SIGPIPE signal shall also be sent to the process.
74 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

limited,

raction of

P, or

is also

on. A file
POSIX.9

or affects
tements

ion with
 the file
using the
ns.
sition

on a file
ted to the

was

on on

han two
s before
If these

pulated
ll
ted after
FORTRAN 77 — formatted sequential I/O shall read and write files that are accessed as if they are newline de
but is not limited to reading and writing these files.

8.5.5.1 General Interactions of FORTRAN I/O Statements

A single open file description can be accessed through units and file descriptors. This section defines the inte
units and file descriptors with an open file description.

A unit is explicitly closed in FORTRAN 77 by a CLOSE statement. It is implicitly closed through OPEN, STO
END statements as specified by FORTRAN 77. A unit is implicitly closed through PXFFDOPEN() and PXFEXIT().
A file descriptor is explicitly closed by PXFCLOSE() and implicitly closed by PXFFASTEXIT() or by one of the
PXFEXEC() calls under the conditions specified in 3.1. When a unit is closed, the underlying file descriptor
closed.

A unit is connected to a file descriptor when the unit and the file descriptor access the same open file descripti
descriptor is connected to a unit when the unit and the file descriptor access the same open file description.
subroutines that could affect the file offset are PXFLSEEK(), PXFREAD(), and PXFWRITE().

For direct access files, operations that could directly affect the file offset are undefined.

For unformatted sequential access files, when a POSIX.9 procedure that operates directly on a file descript
the file offset, and that file descriptor is connected to a unit, the results of subsequent FORTRAN 77 I/O sta
using the connected unit are undefined.

For formatted sequential access files, operations that directly affect the file offset may be used in conjunct
FORTRAN 77 I/O operations. When a POSIX.9 procedure that operates directly on a file descriptor affects
offset, and that file descriptor is connected to a unit, the results of subsequent FORTRAN 77 I/O statements
connected unit are undefined unless PXFFFLUSH() was called to flush the connected unit prior to such operatio
After a call to PXFFFLUSH(), the subsequent I/O operation on the connected unit shall reestablish the file po
from the file offset, as the first action of the operation.

A file connected to a unit shall become connected to two units in two separate processes after a PXFFORK(). In
addition, a file could become connected to two different units as a result of calling PXFFDOPEN(). I/O operations on
these units shall be coordinated by the application. For direct access files, I/O operations are not defined
connected to more than one unit at a time. For sequential files, I/O operations on subsequent units connec
same file at the same time are defined under one or more of the following conditions:

1) No operation was performed on the initial unit that could affect the file offset.
2) The initial unit has been closed, unless a subsequent unit was connected by PXFFORK().
3) The subroutine PXFFLUSH() was executed on the initial unit, and no subsequent I/O operation

performed on that unit that could affect the file offset.
4) Following 47 PXFFORK(), the process that connected the initial unit has not performed any I/O operati

that unit that could affect the file offset and has successfully executed any one of the PXFEXEC...() or
PXFFASTEXIT() subroutines.

5) Prior to PXFFORK(), conditions (1) or (3) are met.

I/O operations on the initial unit are defined only if the same conditions are met for subsequent units. If more t
units are connected to the same open file description, these conditions should be met for all other unit
performing I/O operations on any one unit. If these conditions are met, no data shall be duplicated or lost.
conditions are not met, the results of performing I/O operations on these units are undefined.

For formatted sequential access files, the file position (see Section 12.2.3 of FORTRAN 77 {3}) could be mani
with PXFFSEEK(), PXFGETC(), PXFFGETC(), PXFPUTC(), and PXFFPUTC() (see 8.6). These routines sha
access the bytes of a file. FORTRAN 77 I/O operations access the records of the file. The file position is upda
Copyright © 1992 IEEE All Rights Reserved 75

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

 if the byte
eration,
miter.

 byte at
e byte
 is no

ine, the
 point

 calling

:

 of the
SIX.9-

N 77

lows:

 of the
SIX.9-

N 77

n of

le.
if
each byte or record access. A byte access operation that follows a record access operation shall behave as
position of the file is the byte following the newline that delimited the record accessed. After a byte access op
the current, next, and preceding records are defined according to the file position and the newline record deli

If a byte access positions the file on a byte other than a newline delimiter, the next record shall begin with the
the file position. If a byte access positions the file on a newline delimiter, the next record shall begin with th
following the file position. If the number of records is zero, or if the file is positioned at its terminal point, there
next record.

The preceding record shall begin with the byte following the preceding newline. If there is no preceding newl
record shall begin at the file initial point. If the number of records is zero, or if the file is positioned at its initial,
there is no preceding record.

After a byte access operation, the current record is undefined.

8.5.5.2 Interactions With FORTRAN 77 OPEN Statement

The FORTRAN 77 OPEN statement shall allocate a file descriptor with at least the consequences of
PXFOPEN(). When creating a new file, OPEN shall have at least the consequences of calling PXFOPEN() with a value
of

 IOR(IPXFCONST(‘S_IRUSR’),IOR(IPXFCONST(‘S_IWUSR’),
 + IOR(IPXFCONST(‘S_IRGRP’),IOR(IPXFCONST(‘S_IWGRP’),
 + IOR(IPXFCONST(‘S_IROTH’),IPXFCONST(‘S_IWOTH’))))))

for the mode argument.

In the FORTRAN 77 OPEN statement, the interaction of POSIX.9 with open list specifiers shall be as follows

 IOSTAT
If the OPEN statement fails due to a POSIX.9 error condition, the value returned in the argument
IOSTAT specifier shall be the POSIX.9 error value. The implementation-defined values for the PO
defined error conditions shall be different from any processor-defined values for additional FORTRA
processor-defined error conditions.

8.5.5.3 Interactions With FORTRAN 77 INQUIRE Statement

In the FORTRAN 77 INQUIRE statement, the interaction of POSIX.9 with inquire list specifiers shall be as fol

 IOSTAT
If the INQUIRE statement fails due to a POSIX.9 error condition, the value returned in the argument
IOSTAT specifier shall be the POSIX.9 error value. The implementation-defined values for the PO
defined error conditions shall be different from any processor-defined values for additional FORTRA
processor-defined error conditions.

 NAMED
Files opened with PXFFDOPEN() do not have names. If a second unit is connected by executio
PXFFORK() and the first unit has a name, the second unit shall have a name.

 NAME
If the file has a name, the value returned by the NAME argument shall be the complete pathname for the fi
If the file does not have a name, the value returned by the NAME argument shall be a string of all blanks.
an absolute pathname cannot be determined.
76 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

ws:

 of the
IX.9-
N 77

s of
e. The
irect),

of a

 shall

of the
SIX.9-

N 77

ifiers

 of the
SIX.9-

N 77

 of
table,
8.5.5.4 Interactions With FORTRAN 77 CLOSE Statement

The results of the FORTRAN 77 CLOSE statement shall have at least the consequences of PXFCLOSE() called with
the file descriptor connected to the unit. It shall also mark for update the st_ctime and st_mtime fields of the file, if the
unit is writable and if buffered data has not been written to the file.

In the FORTRAN 77 CLOSE statement, the interaction of POSIX.9 with closed list specifiers shall be as follo

 IOSTAT
If the CLOSE statement fails due to a POSIX.9 error condition, the value returned in the argument
IOSTAT keyword shall be the POSIX.9 error value. The implementation-defined values for the POS
defined error conditions shall be different from any processor-defined values for additional FORTRA
processor-defined error conditions.

8.5.5.5 Interactions With FORTRAN 77 READ Statement

FORTRAN 77 sequential READ, PXFFGETC(), and PXFGETC() (see 8.6) shall have at least the consequence
PXFREAD() when the open file description is accessed, except the condition [EINTR] shall not cause failur
st_atime field shall be marked for update by the first successful execution of READ (sequential or d
PXFFGETC(), or PXFGETC() that results in data transferred from the file.

Before a READ, PXFFGETC(), or PXFGETC() operation on the controlling terminal, data buffered as a result
WRITE, PXFFPUTC(), or PXFPUTC() operation shall be written.

In the FORTRAN 77 READ statement, the interaction of POSIX.9 with READ control information list specifiers
be as follows:

 IOSTAT
If the READ statement fails due to a POSIX.9 error condition, the value returned in the argument
IOSTAT specifier shall be the POSIX.9 error value. The implementation-defined values for the PO
defined error conditions shall be different from any processor-defined values for additional FORTRA
processor-defined error conditions.

8.5.5.6 Interactions With FORTRAN 77 WRITE Statement

FORTRAN 77 sequential WRITE shall have at least the consequences of PXFWRITE() when the open file description
is accessed, except the condition [EINTR] shall not cause failure. The st_ctime and st_mtime shall be marked for
update by the first successful execution of WRITE (sequential or direct), PXFFPUTC(), or PXFPUTC() (see 8.6) that
results in data being transferred to the file.

In the FORTRAN 77 WRITE statement, the interaction of POSIX.9 with WRITE control information list spec
shall be as follows:

 IOSTAT
If the WRITE statement fails due to a POSIX.9 error condition, the value returned in the argument
IOSTAT specifier shall be the POSIX.9 error value. The implementation-defined values for the PO
defined error conditions shall be different from any processor-defined values for additional FORTRA
processor-defined error conditions.

8.5.5.7 Interactions With FORTRAN 77 BACKSPACE and REWIND Statements

FORTRAN 77 BACKSPACE, FORTRAN 77 REWIND, and PXFFSEEK() shall have at least the consequences
calling PXFLSEEK() for the equivalent file positioning. Provided the unit is connected to a file that exists, is wri
and unbuffered data has not yet been written to the file, BACKSPACE, REWIND, and PXFFSEEK() shall have at least
Copyright © 1992 IEEE All Rights Reserved 77

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

calling

nding

ment
r the

itional

be as

TAT
d error
essor-

 record-
lts of the
ned for

 by
the consequences of PXFWRITE(), except the condition [EINTR] shall not cause failure. In addition, st_ctime and
st_mtime shall be marked for update. The results of REWIND shall have at least the consequences of
PXFLSEEK() with the IOFFSET argument set to zero and the IWHENCE argument set to
IPXFCONST(‘SEEK_SET’). FORTRAN 77 I/O shall consider the file to be at its initial point.

In the FORTRAN 77 BACKSPACE and REWIND statements, the interaction of POSIX.9 with the correspo
auxiliary list specifiers shall be as follows:

 IOSTAT
If the BACKSPACE or REWIND fails due to a POSIX.9 error condition, the value returned in the argu
of the IOSTAT specifier shall be the POSIX.9 error value. The implementation-defined values fo
POSIX.9-defined error conditions shall be different from any processor-defined values for add
FORTRAN 77 processor-defined error conditions.

8.5.5.8 Interactions With FORTRAN 77 ENDFlLE Statement

FORTRAN 77 ENDFILE shall have at least the consequences of calling PXFWRITE(), except the condition [EINTR]
shall not cause failure. ENDFILE shall mark the st_ctime and st_mtime of the file for update.

In the FORTRAN 77 ENDFILE statement, the interaction of POSIX.9 with the auxiliary list specifiers shall
follows:

 IOSTAT
If ENDFILE fails due to a POSIX.9 error condition, the value returned in the argument of the IOS
specifier shall be the POSIX.9 error value. The implementation-defined values for the POSIX.9-define
conditions shall be different from any processor-defined values for additional FORTRAN 77 proc
defined error conditions.

8.6 Stream I/O

Stream I/O shall provide byte access to a POSIX-based FORTRAN I/O file (see 8.5). These files, including
control information contained in these files, shall be accessible through the stream I/O subroutines. The resu
procedures in this section are undefined for files that are not POSIX-based FORTRAN I/O files and files ope
unformatted FORTRAN I/O.

8.6.1 Modify a File Position

Subroutine: PXFFSEEK()

8.6.1.1 Synopsis

 SUBROUTINE PXFFSEEK (IUNIT, IOFFSET, IWHENCE, IERROR)
 INTEGER IUNIT, IOFFSET, IWHENCE, IERROR

8.6.1.2 Description

The subroutine PXFFSEEK() shall modify the file position of the file connected to the unit IUNIT. The IUNIT
argument shall refer to an open unit. The IOFFSET argument is an offset in bytes relative to the position specified
IWHENCE.
78 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

ent
Table 8.13—Arguments for PXFFSEEK()

The file-positioning constants used for the argument IWHENCE are the same as those used for the argum
IWHENCE for the procedure PXFLSEEK() (see 6.5.3).

8.6.1.3 Errors

Upon successful completion of PXFFSEEK(), the argument IERROR shall be set to zero. If any of the following
conditions occur, PXFFSEEK() shall set the argument to the corresponding value. IERROR may be set to a nonzero
value to indicate error conditions that are not specified by POSIX.9.

8.6.2 Read a File Position

Subroutine: PXFFTELL()

8.6.2.1 Synopsis

 SUBROUTINE PXFFTELL (IUNIT, IOFFSET, IERROR)
 INTEGER IUNIT, IOFFSET, IERROR

8.6.2.2 Description

The subroutine PXFFTELL() shall return the file position for the file connected to the unit IUNIT. The file position
returned in the argument IOFFSET shall be the number of bytes from the beginning of the file.

Table 8.14—Arguments for PXFFTELL()

FORTRAN
Argument

Intent Notes

IUNIT IN

IOFFSET IN 1.

IWHENCE IN

IERROR OUT

1. Value may exceed the range of a signed integer; see 2.3.2.2.

[EINVAL] No file is connected to IUNIT, or IWHENCE is not a proper value, or the resulting file
offset would be invalid.

[ESPIPE] The IUNIT argument is connected to a pipe or FIFO.

[EEND] The end of file was encountered.

FORTRAN
Argument Intent Notes

IUNIT IN

IOFFSET OUT 1.

IERROR OUT

1. Value may exceed the range of a signed integer; see 2.3.2.2.
Copyright © 1992 IEEE All Rights Reserved 79

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

rrent file
ng these

ent to

ue.
8.6.2.3 Errors

Upon successful completion of PXFFTELL(), the argument IERROR shall be set to zero. If any of the following
conditions occur, PXFFTELL() shall set the argument to the corresponding value. IERROR may be set to a nonzero
value to indicate error conditions that are not specified by POSIX.9.

8.6.3 Get a Character

Subroutine: PXFGETC(), PXFFGETC()

8.6.3.1 Synopsis

 SUBROUTINE PXFGETC (CHAR, IERROR)
 CHARACTER*1 CHAR
 INTEGER IERROR

 SUBROUTINE PXFFGETC (IUNIT, CHAR, IERROR)
 CHARACTER*1 CHAR
 INTEGER IUNIT, IERROR

8.6.3.2 Description

These subroutines shall read a byte from a file connected to an external unit. When a byte is read, the cu
position shall be incremented by one byte. FORTRAN 77 record processing shall not apply to bytes read usi
subroutines.

The PXFGETC() subroutine shall read from the unit connected to standard input STDIN_UNIT and is equival
the call

 PXFFGETC(IPXFCONST(‘STDIN_UNIT’), CHAR, IERROR)

Table 8.15—Arguments for PXFGETC() and PXFFGETC()

8.6.3.3 Errors

Upon successful completion of PXFGETC() or PXFFGETC(), the argument IERROR shall be set to zero. If any of the
following conditions occur, PXFGETC() and PXFFGETC() shall set the argument to the corresponding val
IERROR may be set to a nonzero value to indicate error conditions that are not specified by POSIX.9.

[EINVAL] No file is connected to IUNIT.

[ESPIPE] The IUNIT argument is connected to a pipe or FIFO.

FORTRAN
Argument Intent Notes

IUNIT IN

CHAR OUT

IERROR OUT

[EEND] The end of file has been encountered.
80 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

rent file
ng these

nt to

 integer
efined
8.6.4 Write a Character

Subroutine: PXFPUTC(), PXFFPUTC()

8.6.4.1 Synopsis

 SUBROUTINE PXFPUTC (CHAR, IERROR)
 CHARACTER*1 CHAR
 INTEGER IERROR

 SUBROUTINE PXFFPUTC (IUNIT, CHAR, IERROR)
 CHARACTER*1 CHAR
 INTEGER IUNIT, IERROR

8.6.4.2 Description

These subroutines shall write a byte to a file connected to an external unit. When a byte is written, the cur
position shall be incremented by one byte. FORTRAN 77 record processing shall not apply to bytes written usi
subroutines.

Table 8.16—Arguments for PXFPUTC() and PXFFPUTC()

The PXFPUTC() subroutine writes to the unit connected to standard output {STDOUT_UNIT} and is equivale
the call

 PXFFPUTC(IPXFCONST(‘STDOUT_UNIT’), CHAR, IERROR)

8.6.4.3 Errors

Upon successful completion of PXFPUTC() or PXFFPUTC(), the argument IERROR shall be set to zero. IERROR
may be set to a nonzero value to indicate error conditions that are not specified by POSIX.9.

8.7 Bit Field Manipulation

The following subroutines and functions shall be provided to construct and manipulate bit patterns within an
variable. This functionality is required in order to achieve the range of capability provided by the system-d
integer constants (i.e., the ability to combine such values into a single value to be sent to a system call).

8.7.1 Inclusive OR

Function: IOR()

8.7.1.1 Synopsis

 INTEGER FUNCTION IOR (M, N)
 INTEGER M, N

FORTRAN
Argument Intent Notes

IUNIT IN

CHAR IN

IERROR OUT
Copyright © 1992 IEEE All Rights Reserved 81

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77
8.7.1.2 Description

The IOR() function returns the inclusive-or result of the bit patterns contained in the input arguments M and N, as
shown in Table 8.17.

Table 8.17—Definition of Inclusive-Or

8.7.1.3 Errors

The IOR() function is always successful, and no return argument is specified to indicate an error.

8.7.2 Logical AND

Function: IAND()

8.7.2.1 Synopsis

 INTEGER FUNCTION IAND (M, N)
 INTEGER M, N

8.7.2.2 Description

The IAND() function returns the logical-and result of the bit patterns contained in the input arguments M and N, as
shown in Table 8.18.

Table 8.18—Definition of Logical-And

8.7.2.3 Errors

The IAND() function is always successful, and no return argument is specified to indicate an error.

8.7.3 Bitwise NOT

Function: NOT()

Bit in Argument M Bit in Argument N Bit in Result

0 0 0

0 1 1

1 0 1

1 1 1

Bit in Argument M Bit in Argument N Bit in Result

0 0 0

0 1 0

1 0 0

1 1 1
82 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992
8.7.3.1 Synopsis

 INTEGER FUNCTION NOT (M)
 INTEGER M

8.7.3.2 Description

The NOT() function returns the bitwise-not result of the bit pattern contained in the input argument M, as shown in
Table 8.19.

Table 8.19—Definition of Bitwise-Not

8.7.3.3 Errors

The NOT() function is always successful, and no return argument is specified to indicate an error.

8.8 System Date and Time

The following subroutine shall be provided to access the system clock based on the TZ environment variable (see
POSIX.1 {2} 2.6).

8.8.1 Local Time

Subroutine: PXFLOCALTIME()

8.8.1.1 Synopsis

 SUBROUTINE PXFLOCALTIME (ISECNDS, IATIME, IERROR)
 INTEGER ISECNDS, IATIME(9), IERROR

8.8.1.2 Description

The PXFLOCALTIME() subroutine converts the time (in seconds since the epoch) in the ISECNDS argument to local
date and time as described by the integer array IATIME as shown:

IATIME(1)= Seconds (0–61)
IATIME(2)= Minutes (0–59)
IATIME(3)= Hours (0–23)
IATIME(4)= Day of the month (0–31)
IATIME(5)= Month of the year (1–12)
IATIME(6)= Gregorian year (e.g., 1990)
IATIME(7)= Day of the week (0 = Sunday)
IATIME(8)= Day of the year (1–366)
IATIME(9)= Daylight savings flag (0 = standard, nonzero = daylight savings)

Bit in Argument M Bit in Result

0 1

1 0
Copyright © 1992 IEEE All Rights Reserved 83

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

mation

ation.

he
 the
Table 8.20—Arguments for PXFLOCALTIME()

If IATIME is not dimensioned to at least nine elements, the action performed by PXFLOCALTIME() is undefined.

Local time as returned by PXFLOCALTIME() is relative to the time zone defined by the current value of the TZ time-
zone environment variable (see POSIX.1 {2} 2.7) or based on implementation-defined default time-zone infor
if TZ is absent from the environment. The environment variable TZ can be set using PXFSETENV() (see 4.6.1). The
value of TZ shall be as defined by POSIX.1 {2} 8.1.1.

8.8.1.3 Errors

Upon successful completion of PXFLOCALTIME(), the argument IERROR shall be set to zero. If any of the following
conditions occur, PXFLOCALTIME() shall set the argument to the corresponding value. IERROR may be set to a
nonzero value to indicate error conditions that are not specified by POSIX.9.

8.9 Command-Line Arguments

The following subroutines shall be provided to access the arguments of the command that invoked the applic

8.9.1 Get Command-Line Argument

Subroutine: PXFGETARG()

8.9.1.1 Synopsis

 SUBROUTINE PXFGETARG (M, BUF, ILEN, IERROR)
 CHARACTER*(*) BUF
 INTEGER M, ILEN, IERROR

8.9.1.2 Description

The PXFGETARG() subroutine examines the command used to invoke the executing program and places tMth
command-line argument in the character string BUF. If M has a value of zero, the value of the argument returned is
command name. The significant length of BUF is returned in ILEN.

FORTRAN
Argument Intent Notes

ISECNDS IN

IATIME OUT

IERROR OUT

[EINVAL] The current value of the TZ environment variable is invalid.
84 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

and-line
Table 8.21—Arguments for PXFGETARG()

8.9.1.3 Errors

Upon successful completion of PXFGETARG(), the argument IERROR shall be set to zero. If any of the following
conditions occur, PXFGETARG() shall set the argument to the corresponding value. IERROR may be set to a nonzero
value to indicate error conditions that are not specified by POSIX.9.

8.9.2 Index of Last Command-Line Argument

Function: IPXFARGC()

8.9.2.1 Synopsis

 INTEGER FUNCTION IPXFARGC()

8.9.2.2 Description

The function IPXFARGC() returns the number of command-line arguments, excluding the command name, in the
command used to invoke the executing program. A return value of zero indicates that there are no comm
arguments other than the command name itself.

8.9.2.3 Errors

The IPXFARGC() function is always successful, and no return argument is specified to indicate an error.

8.10 Character String Procedures

8.10.1 Length of a String Trimmed of Trailing Blanks

Function: IPXFLENTRIM()

8.10.1.1 Synopsis

 INTEGER FUNCTION IPXFLENTRIM (STRING)
 CHARACTER*(*) STRING

FORTRAN
Argument Intent Notes

M IN

BUF OUT

ILEN OUT

IERROR OUT

[EINVAL] The argument M is out of range.

[ETRUNC] The declared length of the character argument BUF is insufficient to contain the string
to be returned. (See 2.3.2.4.)
Copyright © 1992 IEEE All Rights Reserved 85

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

enting

or.
8.10.1.2 Description

The function IPXFLENTRIM() returns the index of the last nonblank character in the input argument STRING, or zero
if all characters in STRING are blank characters.

8.10.1.3 Errors

The IPXFLENTRIM() function is always successful, and no return argument is specified to indicate an error.

8.11 Extended Range Integer Manipulation

8.11.1 Unsigned Comparison

Function: PXFUCOMPARE()

8.11.1.1 Synopsis

 SUBROUTINE PXFUCOMPARE (I1, I2, ICMPR, IDIFF)
 INTEGER I1, I2, ICMPR, IDIFF

8.11.1.2 Description

The subroutine PXFUCOMPARE() is used to determine the difference between two integer arguments repres
unsigned (extended range; see 2.3.2.2) numbers.

Table 8.22—Arguments for PXFUCOMPARE()

The argument ICMPR indicates the relative value of the two unsigned numbers, as shown in Table 8.22.

Table 8.23—ICMPR Return Values

The argument IDIFF shall provide the absolute value of the difference of I1 and I2.

8.11.1.3 Errors

The PXFUCOMPARE() subroutine is always successful, and no return argument is specified to indicate an err

FORTRAN
Argument Intent Notes

I2 IN

I2 IN

ICMPR OUT

IDIFF OUT

Value of ICMPR Relation of I1 and I2

-1 I1 > I2

0 I1 = I2

1 I1 <I2
86 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

7 END
 process
pecified

, the

east the

N 77
as the
8.12 Process Termination

Process termination shall occur when the FORTRAN 77 STOP statement is executed or the FORTRAN 7
statement in the main program is executed. This subsection describes the interactions of FORTRAN 77
termination with procedures defined by POSIX.9. These interactions define behavior that is undefined or uns
by FORTRAN 77 and do not modify or replace any behavior that is defined in FORTRAN 77.

8.12.1 Interactions of the FORTRAN 77 STOP Statement

The FORTRAN 77 STOP statement shall terminate the program with at least the consequences of PXFFASTEXIT()
with a value for the ISTATUS argument. If the optional argument to STOP exists and is a string of digits
termination consequences shall be as if these digits were interpreted as the integer value of the ISTATUS argument.
Otherwise, the termination consequences shall be as if the ISTATUS argument was set to zero.

8.12.2 Interactions of the FORTRAN 77 END Statement

The execution of the FORTRAN 77 END statement in the main program shall terminate the program with at l
consequences of calling PXFFASTEXIT() with a value of zero for the status argument.

8.12.3 POSIX-Based Fortran Process Termination

Function: PXFEXIT()

8.12.3.1 Synopsis

 SUBROUTINE PXFEXIT (ISTATUS)
 INTEGER ISTATUS

8.12.3.2 Description

The PXFEXIT() subroutine shall provide the same FORTRAN 77 functionality as execution of the FORTRA
END statement in the FORTRAN 77 main program and shall provide the same POSIX.1 {2} functionality
POSIX.1 {2} function _exit() (see POSIX.1 {2} 3.2). There is no possible return value from PXFEXIT() and no
IERROR argument is defined for PXFEXIT(). Arguments for PXFEXIT() correspond to the arguments for _exit(), as
shown in Table 8.24.

Table 8.24—Arguments for PXFEXIT()

9. System Databases

9.1 System Databases

9.2 Database Access

9.2.1 Group Database Access

Subroutines: PXFGETGRGID(), PXFGETGRNAM()

FORTRAN
Argument

POSIX.1
Argument Intent Notes

ISTATUS status IN
Copyright © 1992 IEEE All Rights Reserved 87

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

{2}

ess

ames
9.2.1.1 Synopsis

 SUBROUTINE PXFGETGRGID (IGID, JGROUP, IERROR)
 INTEGER IGID, JGROUP, IERROR

 SUBROUTINE PXFGETGRNAM (NAME, ILEN, JGROUP, IERROR)
 CHARACTER*(*) NAME
 INTEGER ILEN, JGROUP, IERROR

9.2.1.2 Description

The PXFGETGRGID() and PXFGETGRNAM() subroutines shall provide the same functionality as the POSIX.1
functions getgrgid() and getgrnam() (see POSIX.1 {2} 9.2). Arguments for PXFGETGRGID() and
PXFGETGRNAM() correspond to the arguments for getgrgid() and getgrnam(), as shown in Table 9.1.

Table 9.1—Arguments for PXFGETGRGID() and PXFGETGRNAM()

The PXFSTRUCTCREATE() subroutine (see 8.3.1) with the string ‘group’ given as the STRUCTNAME argument shall
be used to obtain a handle for an instance of the group structure as defined in POSIX.1 {2} 9.2. Each component acc
shall require one of the following structure-component manipulation subroutines (see 8.3.2):

SUBROUTINE PXFINTGET(JGROUP, COMPNAM, IVALUE, IERROR)
INTEGER JGROUP, IVALUE, IERROR

SUBROUTINE PXFSTRGET(JGROUP, COMPNAM, SVALUE, ILEN, IERROR)
INTEGER JGROUP, ILEN, IERROR
CHARACTER*(*) SVALUE

SUBROUTINE PXFESTRGET(JGROUP, COMPNAM, INDEX, SVALUE, ILEN, IERROR)
INTEGER JGROUP, INDEX, ILEN, IERROR
CHARACTER*(*) SVALUE

where JGROUP is a handle and COMPNAM is a character expression which evaluates to one of the component n
shown in Table 9.2.

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IGID gid IN

NAME name IN

ILEN -- IN Length of NAME; see 2.3.2.4

JGROUP ret_value IN 1.

IERROR ret_value/errno OUT

1. Handle obtained from PXFSTRUCTCREATE (‘group’,...); see 8.3.1.
88 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

number
y

ed by

}

Table 9.2—Components for group Structure

The component gr_mem is an array of character strings that can only be accessed one element at a time. The
of elements in gr_mem is contained in the component gr_nmem, which is not a structure component defined b
POSIX.1 {2}.

9.2.1.3 Errors

POSIX.1 {2} does not specify any error conditions that are required to be detected for the getgrgid() and getgrnam()
functions. Upon successful completion of PXFGETGRGID() and PXFGETGRNAM(), the argument IERROR shall be
set to zero. If any of the following conditions occur, PXFGETGRGID() and PXFGETGRNAM() shall set the argument
to the corresponding value. IERROR may be set to a nonzero value to indicate error conditions that are not specifi
POSIX.1 {2} and POSIX.9.

9.2.2 User Database Access

Subroutines: PXFGETPWUID(), PXFGETPWNAM()

9.2.2.1 Synopsis

 SUBROUTINE PXFGETPWUID (IUID, JPASSWD, IERROR)
 INTEGER IUID, JPASSWD, IERROR

 SUBROUTINE PXFGETPWNAM (NAME, ILEN, JPASSWD, IERROR)
 CHARACTER*(*) NAME
 INTEGER JPASSWD, ILEN, IERROR

9.2.2.2 Description

The subroutines PXFGETPWUID() and PXFGETPWNAM() shall provide the same functionality as the POSIX.1 {2
functions getpwuid() and getpwnam() (see POSIX.1 {2} 9.2.) Arguments for PXFGETPWUID() and
PXFGETPWNAM() correspond to the arguments for getpwuid() and getpwnam(), as shown in Table 9.3.

POSIX.1
Component COMPNAM Structure Procedures Used to Access

gr_name ‘gr_name’ PXFSTRGET

gr_gid ‘gr_gid’ PXFINTGET

-- ‘gr_nmem’ PXFINTGET

gr_mem ‘gr_mem’ PXFESTRGET

[ENOENT] The requested entry could not be found.
Copyright © 1992 IEEE All Rights Reserved 89

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

nt

ames

ed by
Table 9.3—Arguments for PXFGETPWUID() and PXFGETPWNAM()

The PXFSTRUCTCREATE() subroutine (see 8.3.1) with the string ‘passwd’ given as the STRUCTNAME argument
shall be used to obtain a handle for an instance of the passwd structure as defined in POSIX.1 {2} 9.2. Each compone
access shall require one of the following structure-component manipulation subroutines (see 8.3.2):

SUBROUTINE PXFINTGET(JPASSWD, COMPNAM, IVALUE, IERROR)
INTEGER JPASSWD, IVALUE, IERROR

SUBROUTINE PXFSTRGET(JPASSWD, COMPNAM, SVALUE, ILEN, IERROR)
INTEGER JPASSWD, ILEN, IERROR
CHARACTER*(*) SVALUE

where JPASSWD is a handle and COMPNAM is a character expression which evaluates to one of the component n
shown in Table 9.4.

Table 9.4—Components for passwd Structure

9.2.2.3 Errors

POSIX.1 {2} does not specify any error conditions that are required to be detected for the getpwuid() and getpwnam()
functions. Upon successful completion of PXFGETPWUID() and PXFGETPWNAM(), the argument IERROR shall be
set to zero. If any of the following conditions occur, PXFGETPWUID() and PXFGETPWNAM() shall set the argument
to the corresponding value. IERROR may be set to a nonzero value to indicate error conditions that are not specifi
POSIX.1 {2} and POSIX.9.

FORTRAN
Argument

POSIX.1
Argument Intent Notes

IUID uid IN

NAME name IN

ILEN -- IN Length of NAME; see 2.3.2.4

JPASSWD ret_value IN 1.

IERROR ret_value/errno OUT

1. Handle obtained from PXFSTRUCTCREATE (‘passwd’,...); see 8.3.1.

POSIX.1
Component COMPNAM Structure Procedures Used to Access

pw_name ‘pw_name’ PXFSTRGET

pw_uid ‘pw_uid’ PXFINTGET

pw_gid ‘pw_gid’ PXFINTGET

pw_dir ‘pw_dir’ PXFSTRGET

pw_shell ‘pw_shell’ PXFSTRGET

[ENOENT] The requested entry could not be found.
90 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992
10. Data Interchange Format

10.1 Archive/interchange File Format

The functionality described in this section in POSIX.1 {2} is outside the scope of this standard.
Copyright © 1992 IEEE All Rights Reserved 91

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

 (IEEE
ations and
ropriate.

 like that
 of the

cussed
nxious
RTRAN
by

ings to
n the
ommon
 and

loping

ire to limit
e to that
uding it
 result a

e belief
ewed as
avoided
 90 was
on (2),
es and
hed to

fourth
 scope
ts (e.g.,
rate on
ctions
Annex A Rationale and Notes

(Informative)

The Annex summarizes the development of the FORTRAN 77 language binding to the ISO/IEC 9945-1: 1990
Std 1003.1-1990). It presents the deliberations of the developers of this standard, discusses design consider
alternatives, and provides notes of interest to application programmers and system implementors where app3

This rationale is modeled after the rationale accompanying the existing ISO/IEC 9945-1: 1990 standard, and,
one, is organized such that the rationale follows the exact structure of the standard (with the exception
introductory sections, which cover additional material).

A.1 General

The development of FORTRAN 77 Bindings to the (at the time proposed) POSIX.1 {2} standard was first dis
at the /usr/group/supercomputing meeting in June 1987. The discussion was initiated by supercomputer users a
to program in the POSIX environment. The first draft of this standard was presented in January 1988 to the FO
subgroup. After further subgroup work, the proposal was accepted by the committee and officially forwarded /usr/
group to the IEEE P1003 committee in September 1988.

In January 1989, the P1003.9 working group was formed and was charged with developing FORTRAN Bind
POSIX. The document produced under /usr/group was used as the base document, and subsequent work o
standard focused largely on integrating characteristics of the FORTRAN programming environment and c
practice into the heavily UNIX®-oriented4 POSIX environment. The group was comprised of a mixture of vendors
users, with a variety of FORTRAN and UNIX expertise.

Following the acceptance of this first FORTRAN bindings standard, the committee will continue work on deve
FORTRAN bindings to other POSIX functional areas (e.g., IEEE P1003.2, P1003.4, etc.).

A.1.1 Scope

The areas declared as out of scope were done so for various reasons, but were primarily motivated by the des
the work to a small enough area that could gain the consensus of the affected community and still be of valu
community. When a topic area was considered highly contentious, with nearly equal arguments both for incl
and against including it, the developers of this standard generally chose to exclude it from this standard. As a
number of “nice to have” or “convenient” features were not included. This approach was often softened by th
that this binding, because of its use of FORTRAN 77 and the imminent emergence of Fortran 90, could be vi
an interim standard. The coming Fortran 90 standard was a major reason for scope restriction (1), which
significant extensions to FORTRAN 77 in this binding. The expectation of a subsequent binding using Fortran
a major factor in restriction (2), which avoids dealing with any part of Fortran 90 was a major factor in restricti
which avoids dealing with any part of Fortran 90 in this binding. A combination of limited development resourc
lack of desire to “open Pandora’s box” caused restriction (3). Finally, the developers of this standard wis
minimize the impact on existing implementations of FORTRAN 77 by the installation of these bindings. A
scope limitation was in place throughout the development of this standard and well into balloting. That
limitation was: “Possible side effects to the operating system by standard FORTRAN 77 language construc
READ, WRITE, STOP), or such side effects by I/O routines specified in Section 8 of this standard which ope
files connected to FORTRAN 77 units (as opposed to POSIX.1 {2} file descriptors).” Significant ballot obje
were raised to this scope limitation.

3The material in this annex is derived in part from copyrighted draft documents developed under the sponsorship of UniForum, as a part an ongoing
program of that association to support the POSIX standards program efforts.
4UNIX is a trademark of Unix System Laboratories in the US and other countries..
92 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

t of a
e line
ntionally
 existing

ight
native”
les that
 only

TRAN 77

 under

and

78.

.2.1 and

d
cerning
cription

uence
xample,
FORTRAN I/O in a POSIX.1 {2} environment is a highly contentious issue. POSIX.1 {2} I/O has no concep
record, a concept integral to FORTRAN I/O. While POSIX.1 {2} I/O has some special behavior concerning th
feed and null characters, this is not the same as FORTRAN records. The developers of this standard inte
avoided (as much as possible) specifying the underlying implementation of these bindings. It recognized that
implementations of FORTRAN I/O may need to exist in parallel with POSIX I/O, where FORTRAN records m
have nothing to do with line feeds. However, due to ballot objections, the operating system side effects of “
FORTRAN 77 constructs, especially I/O constructs, were specified, but the side effects were limited to those fi
were explicitly created as POSIX-based FORTRAN I/O files. Even the POSIX I/O flag was originally included
after considerable debate, because guaranteeing the specified behavior is essential to constructing FOR
utilities that are able to be piped with other traditional utilities (e.g., cat, sort, grep, etc.).

A.1.2 Normative References

In addition to the references used in the main body of this standard, the following standards or drafts
development are referred to in this appendix:

{A1} ISO/IEC 1539:1991, Information technology-Programming languages-FORTRAN.

{A2} ISO/IEC 9945-2:, Information technology-Portable Operating System Interface (POSIX)-Part 2: Shell
Utilities

{A3} P1003.6/D12, Draft Security Interface Standards for POSIX.5

{A4} MIL-STD-1753, Military Standard: FORTRAN, DOD Supplement to American National Standard X3.9-19

A.1.3 Conformance

A.1.3.1 Implementation Conformance

There is no additional rationale provided for this subclause.

A.1.3.2 Application Conformance

There is no additional rationale provided for this subclause.

A.1.3.3 Language-Dependent Services for the FORTRAN 77 Programming Language

There is no additional rationale provided for this subclause.

A.1.3.3.1 FORTRAN 77 Language Binding

Further information on issues and discussions related to FORTRAN 77 standard conformance is given in 2.3
2.3.2.4.

A.1.3.4 Other Language Related Specifications

The FORTRAN 77 standard defines the functions CHAR() and ICHAR() with respect to some implementation-define
collating sequence. For details see Section 3.1 of the FORTRAN 77 {3} standard, especially Section 3.1.5, con
the collating sequence, and see Section 15.10 of the FORTRAN 77 {3} standard, note (5) Table 5, for the des
of CHAR() and ICHAR() as mapping to this implementation-defined collating sequence. While this collating seq
must at least contain the 49 FORTRAN 77 characters in the order specified, special characters might, for e

5To be approved and published.
Copyright © 1992 IEEE All Rights Reserved 93

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

 the C-

fix needed
ximize
f the

ons are

nctions
d
to letting
for the I
ent for

sage of
t by the

 argument
come before the alphabet. Therefore, there is normally no guarantee in FORTRAN 77 that CHAR(0) equals
language character ‘\0’. CHAR(0) simply equals whatever is the first character in the collating sequence.

A.2 Terminology and General Requirements

A.2.1 Conventions

A.2.1.1 Typographical Conventions

There is no additional rationale provided for this subclause.

A.2.1.2 Namespace Conventions

There is no additional rationale provided for this subclause.

A.2.1.2.1 Subroutine Naming

There was a great deal of debate about the prefix to be used for procedure names. It was agreed that the pre
to be fairly unusual, to minimize naming conflicts with names in existing application code, and short, to ma
usability. In early drafts, the prefix F77 was used. This convention was strenuously objected to by members o
ANSI Fortran 90 committee. (In fact, they voted unanimously against it.) The chosen prefix PXF is a shorthand
notation for POSIX-FORTRAN, which represents the bridge between the two worlds. Since naming conventi
personal, aesthetic choices, it is unlikely that any prefix chosen will be considered acceptable to all. The PXF prefix,
it is hoped, will be objectionable to the fewest.

A.2.1.2.2 Function Naming

There was some debate over whether or not to prefix functions returning an integer with the letter I and fu
returning a logical with the letter L. Some thought a consistent use of the PXF prefix in all procedures was better, an
some wanted to take into account the historical carelessness of FORTRAN programmers, who are used
variables and functions be undeclared and thus be declared implicitly. The ease-of-use argument won out
prefix, which implicitly declares the function to return an integer, but since there was no equivalent argum
logical functions (an L prefix implicitly causes an integer return), the L prefix was dropped.

A.2.2 Definitions

A.2.2.1 Terminology

There is no additional rationale provided for this subclause.

A.2.2.2 General Terms

The term intent is derived from the Fortran 90 standard, where it is a keyword used to describe the intended u
an actual argument. In Fortran 90, an “intent out” argument guarantees that the variable declared will be se
subprogram. This standard does not intend that usage, but only the looser, English usage; namely, what the
is intended to be used for: passing arguments to or from the subprogram.

A.2.2.3 Abbreviations

There is no additional rationale provided for this subclause.
94 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

ed in the
effects on
es are

ss was the
e issues

 the
ems,
rovide
 of the
uture.
ectively
 use of
wbacks
TRAN
nt, but
l years

rd have
ided in
tion.

 POSIX
s
ecified
nctional
es the
age.

 the C
ded in this
 for this
, the

velopers
lt of this
the C and
xtensive
ifications
ations as
A.2.3 FORTRAN 77 Language Bindings Concepts

This section of the rationale is used to present many high-level objectives and design alternatives consider
development of the FORTRAN 77 bindings. The topics and issues discussed here are those that have broad
the bindings specification. Full specifications and low-level technical details associated with the interfac
provided in the appropriate sections elsewhere in the rationale.

A.2.3.0.1 Choice of Standards

A.2.3.0.1.1 FORTRAN 77 Versus Fortran 90

A fundamental issue addressed by the developers of this standard early in the standard-development proce
choice between using FORTRAN 77 or Fortran 90 as the base language for this standard. A summary of th
related to both possibilities follows.

 FORTRAN 77. The work of the established FORTRAN community is predominantly based on
FORTRAN 77 language. Many FORTRAN 77 applications will be ported to POSIX-conforming syst
and new application code will continue to be written in FORTRAN 77 on such systems. In order to p
utility to the established community, it is necessary to work with FORTRAN 77. Furthermore, the size
FORTRAN 77 community guarantees that it will continue to be an effective standard for the indefinite f

 Fortran 90. The emerging Fortran 90 standard provides many language features that could be used eff
in developing a bindings standard. For example, the presence of structured data types will allow the
more traditional (in the POSIX environment) data handling techniques. However, there are several dra
associated with using Fortran 90 at its inception, most notably its lack of presence in the FOR
community. Having just been finalized during the late stages of the FORTRAN 77 bindings developme
not formally approved as a standard by start of balloting of this standard, it will probably be severa
until it is in widespread use.

NOTE — Although the decision was made to produce this FORTRAN 77 Binding first, the developers of this standa
already begun work on a Fortran 90 Binding. This future Binding will take advantage of the new features prov
Fortran 90, but is intended to coexist with this FORTRAN 77 binding, both as a standard and as an implementa

A.2.3.0.1.2 POSIX Language Independence

In early 1990, the IEEE, in response to direction from ISO, mandated a formal change in the structure of the
standards, namely, a shift towards a more dear division of work between language-independent functional standard,
and language bindings to those functional standards. Using this structure, all functional standards are to be sp
in a language-independent style and a language binding is always to be correlated to the appropriate fu
standard. This division of work forces the functionality to be specified in a more abstract style and provid
language binding developers more freedom to develop a binding that is particularly appropriate for their langu

The most specific target of this division of work is the fact that all earlier POSIX work was specified using
language, a convention that resulted in the dependence on C-Language-specific features in many areas. Inclu
body of earlier work was the now obsolete IEEE Std 1003.1-1988, which was used as the functional basis
FORTRAN 77 Binding. Because this new division of work within POSIX was so late in gaining momentum
language-independent version of POSIX.1 {2} is scheduled to be balloted after this standard; therefore, the de
of the P1003.9 standard used the existing POSIX.1 {2} standard as the reference specification. The resu
decision is that many of the technical decisions the developers have made deal with the differences between
FORTRAN 77 languages. In fact, the issues confronted by the developers of this standard have led to e
feedback to the developers of the language-independent specifications. The language-independent spec
should begin appearing in the future, and subsequent language bindings work will use these newer specific
base reference standards.
Copyright © 1992 IEEE All Rights Reserved 95

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

g
-1978

 (long

erface.
nt of
uages

ese
 the
l. Among
ss.”
vious
owever,
never
hat may
ding a

.1 {2} (C
or every
IX.1 {2}
d as a

d to be
ld not be

 routine
 C; i.e.,

 to and
ames

decisions

ractice,
s within
dent that

m of 11
 use this
 common
A.2.3.0.2 Design Objectives

The primary goals behind the design of this standard were as follows:

1) Standardization and System Independence. In order to achieve complete portability, following existin
standards as closely as possible was the foremost objective. More specifically, the ANSI X3.9
FORTRAN {3} standard was the primary basis of the language requirements; with one exception
identifier names; see 1.2.3.1 and A.2.3.0.4.1), there are no dependencies on language extensions.

2) Consistency. The FORTRAN 77 language bindings must present a consistent user and system int
Additionally, this binding definition should be capable of serving as a model for future developme
FORTRAN 77 bindings to other areas of POSIX functionality, and possibly for other programming lang
binding to POSIX.

3) Integration of FORTRAN 77 and UNIX. This was of course the motivation for the development of th
bindings: to allow effective FORTRAN 77 programming in a UNIX (POSIX) environment. Preserving
key elements as well as accepted or common practices of both of these environments was essentia
the developers of this standard, this issue was often referred to as “FORTRAN-ness versus UNIX-ne

4) Run-Time Performance. Performance is always a concern, but it was definitely not as crucial as the pre
goals. In order to achieve the three primary goals, some performance efficiency may be sacrificed; h
the overall benefits of achieving the above objectives far outweigh the lost efficiency. Also, whe
possible, notes have been made in this rationale to describe possible implementation alternatives t
enhance performance. However, the developers of this standard did attempt to avoid preclu
performance-efficient implementation or extensions to provide efficiency.

A.2.3.0.3 Design Strategy

Consistency was a major goal throughout this standard. There is a direct correspondence between the POSIX
language) bindings and these FORTRAN 77 language bindings. There is a FORTRAN 77 interface defined f
POSIX.1 {2} system call, plus a few additional procedures that are necessary for achieving the complete POS
functionality. In practice, it is most likely that the initial FORTRAN 77 language bindings would be implemente
set of interface procedures built on top of the existing C-language system calls.

In order to implement this design strategy of corresponding C/FORTRAN system interfaces, a convention ha
developed to differentiate the FORTRAN 77 procedures from the C system routines (the same names cou
used; see A.2.3.0.4.1). Therefore, the convention of prefixing the three characters PXF to the actual system
name was used. With this design, using the system calls from FORTRAN 77 is very similar to using them from
with a few exceptions, the calling sequences of the FORTRAN 77 and C versions are identical.

A.2.3.0.4 Extensions to and Deviations From the FORTRAN 77 Standard

In the early development of these FORTRAN 77 bindings, various technical proposals required extensions
deviations from the ANSI X3.9-1978 FORTRAN {3} standard One such extension — the use of identifier n
greater than six characters in length — was retained, but all others were discarded.The rationale for these
follows.

A.2.3.0.4.1 Length of Identifier Names

The ANSI X3.9-1978 FORTRAN {3} standard states that identifier names can contain only six characters. In p
most implementations allow identifiers much longer than six characters, although some still require uniquenes
six or eight characters. However, most newer systems provide a higher limit for uniqueness; it was this prece
the developers of this standard chose to follow.

This FORTRAN 77 bindings standard specifies identifiers containing up to 15 characters, requiring a maximu
to determine uniqueness (this “worst case” occurs in the structure-handling routines; see 8.3). Rather than
limit as the general requirement, the developers of this standard decided to adopt the 31-character limit that is
96 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

d, and
s. This

t for

lopment
s. These

ld
aving a
haracter
h small
rs.
od
 of
s of the
racters.
doned as

n of the
cessor

r option
sirable

n
nguage
inking
t this

ngle
ing
oblems
ity by

er, such
s many
 In order
m those

nts, and
of actual

cification
rgument
among implementations and is specified by POSIX.1 {2} (see POSIX.1 {2} 1.3.5), the Fortran 90 {A1} standar
the IEEE P1003.2 {A2} standard, the latter in its section concerning the execution environment of language
higher limit will provide sufficient flexibility for binding to other POSIX functional areas, as well as suppor
implementing system- and site-dependent extensions to POSIX in a consistent style.

The decision to require this extension to the FORTRAN 77 language faced much opposition in the early deve
of this standard. Several alternatives were suggested to avoid the need for the longer identifier name
alternatives, and their rebuttals, are summarized below.

 Choose names that fit within the six-character limit. An encoding of all the bindings into six characters wou
result in a cryptic name space that would greatly decrease usability. It would also defeat the goal of h
consistent and direct name correspondence with the C-language bindings. Furthermore, the six-c
limitation is thought to be based on old compilers and linkers from physically addressed machines wit
(e.g., 64 Kbyte) address spaces. Most compilers and linkers already allow far more than six characte

 Choose names that fit within an eight-character limit. It was argued that eight characters was a go
compromise, since it is nearly a de facto standard minimum length for industry linkers. At an early stage
development, the developers of this standard proposed a set of conventions by which the name
bindings interfaces (as of that time) could be converted into a set that was unique in eight cha
However, as the bindings matured, these conventions were soon inadequate. This scheme was aban
a result of its limited flexibility and extensibility.

 Specify a preprocessor to convert the long binding names into a six- or eight-character encoding. Specifying
such a preprocessor would be difficult, and its presence would represent a substantial modificatio
common FORTRAN programming environment. Of course, a vendor could choose to provide a prepro
as a last resort, although it is thought that it would be strongly resisted by the user community. Anothe
would be for the compiler to recognize all binding interfaces as intrinsics, although this too has unde
effects on the implementation.

 Use the same interface names as the POSIX.1 {2} standard. This alternative requires the implementatio
compiler and/or linker to be able to differentiate between source languages (e.g., by attaching a la
identification to each symbol table entry). This scheme suffers from the potential flaw of impeding the l
of multiple-language programs. A practical drawback is the substantial implementation effort tha
scheme might require.

 Use the “single-entry-point” method. In this scheme, all bindings would be accessed through a si
common interface, [e.g., SYCALL(‘RENAME’,...) instead of PXFRENAME(...)]. Besides introduc
another standard deviation (variable-length argument lists; see A.2.3.0.4.2), it contained potential pr
with program size, due to the static linking model common to UNIX systems, and might impair usabil
hiding useful program development and debugging information.

A.2.3.0.4.2 Variable-length Argument Lists

Early drafts of this standard included instances of procedures requiring variable-length argument lists; howev
argument lists are in violation of the FORTRAN 77 standard. This was viewed as a significant deviation, a
compilers and linkers check the length of argument lists and issue warnings or errors for length mismatches.
to accommodate variable-length argument lists, this useful diagnostic capability would have to be removed fro
implementations.

Other options were examined, such as

1) Requiring the maximum number of arguments and passing null or zero values for the unused argume
2) Specifying different versions of the same procedure to be used based on the number and/or type

arguments

However, each alternative has severe usability drawbacks. It was instead decided to modify or remove the spe
of the nonconforming procedures to eliminate the problem. The routines that required the variable-length a
Copyright © 1992 IEEE All Rights Reserved 97

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

.1.2 and
ressed.

 used to
erent base
 contains
ponent

rnative
lack of
at such

tions.
es type

 modify
entation

mmonly
esthetic
tandard-
the ANSI

tion to be

, which is

s of
utines to
uggested
o meet
mples of
t these

e bit-
ctionality
n

ssion. A
ard are
cts or
lists were recognized as redundant, so they were removed with no loss of functionality in this standard. See 3
A.3.1.2 for descriptions and further information about the specific procedures that caused this issue to be add

A.2.3.0.4.3 Variable-Type Arguments

Early drafts of this standard specified a different implementation of the data abstraction concept that was
access aggregate data (see 2.3.2, 8.3): rather than specify a different component-access routine for each diff
type, a different access routine was specified for each unique structure. Using the older method, if a structure
components of differing types, the type of the argument to the access routine will vary according to which com
is being accessed. Other past proposals relied on a similar flexibility, including the “single entry point” alte
discussed in A.2.3.0.4.1. Early readings of the ANSI X3.9-1978 FORTRAN {3} standard seemed to reveal a
definition in the relevant areas, but an interpretation from the ANSI Fortran committee, X3J3, indicated th
generic-type behavior is in fact in violation of the standard. An excerpt from the interpretation follows:

“There is no way in FORTRAN 77 that a user can provide the generic behavior of intrinsic func
Therefore, a standard conforming set of language bindings to a set of supplied library functions requir
matching...”

While this generic-type functionality is available on many systems, the developers of this standard decided to
the nonconforming areas of the bindings to remove the need for it. Consequently, the data abstraction implem
was modified as mentioned above.

A.2.3.0.4.4 Character Set Restrictions

Lowercase alphabetic characters are not strictly conformant to the standard, although their use is a very co
implemented extension. Binding names in the proposal were previously shown in lowercase, more for a
presentation than with an intent to require an implementation to support this extension. After encountering s
based objections to this, all procedure names were changed to uppercase, since this is in agreement with
X3.9-1978 FORTRAN {3} standard.

Many implementations that support both cases fold the cases to one. Thus, alternatives that require a distinc
recognized between uppercase and lowercase were not considered.

Another nonstandard convention in an early draft of these bindings was the use of the underscore character
not part of the character set of the FORTRAN 77 language standard. All of the function names began with F77_, but
were later changed to use just F77 (and then to PXF) as the prefix.

A.2.3.0.4.5 MIL-STD-1753 Extensions

The MIL-STD-1753 {A4} Extensions to the FORTRAN 77 standard provide additional functionality both in term
language constructs and intrinsic routines; examples include a mechanism for inclusion of headers, and ro
perform bit-manipulation operations. Because this set of extensions is implemented on many systems, it was s
that this standard either require them to be implemented fully or at least borrow portions of the functionality t
specific needs. The examples given above (file inclusion, bit manipulation) were among the most obvious exa
functionality that might prove beneficial to the development of this standard. However, it was determined tha
extensions are not implemented on a substantial number of systems; that MIL-STD-1753 {A4} requires thes
manipulation procedures to be implemented as externals, and they are often intrinsics; and also that the fun
provided by the complete set of extensions was in fact not critical or highly desirable. Therefore, the decisionot to
require the MIL-STD {A4} Extensions was among the earliest actions of the developers of this standard.

Much of the debate in this area centered on the file inclusion mechanism; see A.2.3.1.1.2 for a technical discu
limited set of bit-manipulation operations are required by this standard, and those defined in this stand
functionally equivalent to those defined in MIL-STD-1753 {A4}; see 8.7 for their specification. No other constru
routines from these Extensions are intentionally duplicated in this standard.
98 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

 of the

equired
sidered.

IX.1 {2}.
lternate
oint of

guage).

ented,
hanism.

ng
 makes
 clash
nly use
if any set
intained.
mmon

ged at
)...)

he entire

., as in
er
(e.g., a

asically
d when

t. This is
Take, for

tool
neficial.

nism, this
on could
tines with
A.2.3.1 System Headers

The POSIX.1 {2} standard specifies many headers intended for inclusion within programs through the use
preprocessor defined for the C language. These headers contain definitions of symbolic constants and macros. Because
FORTRAN 77 does not provide equivalent functionality, alternate techniques were developed to provide the r
functionality. The following sections introduce the chosen techniques, as well as several others that were con

A.2.3.1.1 Symbolic Constants

This standard defines additional interface routines that provide access to symbolic constants defined in POS
These routines are introduced in 2.3.1.1 and defined fully in 8.2. The following two clauses discuss two a
techniques for providing the required functionality. Neither of these methods was ever considered to the p
actually being included in a draft of this standard, but the discussion provides valuable background material.

A.2.3.1.1.1 Proposed Use of a Preprocessor

Ideally, symbolic constants should be defined and used the same way they are in POSIX.1 {2} (i.e., in the C lan
Unfortunately, a symbolic preprocessor scheme similar to (or identical to) that defined for the C language (cpp) is not
implemented by most vendors, and the concept is foreign to most FORTRAN 77 programmers. Even if implem
the FORTRAN 77 language imposes certain restrictions that limit the usability and usefulness of such a mec
Additional relevant information is given below:

 Unlike C, symbolic names are case-insensitive in FORTRAN 77. Thus, the C convention of defini
constants in uppercase to easily distinguish them from real variable names would be of no help. This
it difficult to define a set of largely invisible, yet readable symbolic constant names that are unlikely to
with existing user variable names. (FORTRAN 77 programmers are also case-insensitive. Some o
uppercase. Some only use lowercase — a common ANSI extension. Some even mix cases.) Further,
of names chosen is different from the C binding names, a parallel set of headers would have to be ma

 Variables need not be declared in FORTRAN 77. Thus, a programmer might accidentally use a co
constant name while neglecting to include the correct file. The mistake would not only not be flag
compile time, but would be difficult to track down at runtime! (For example, IF (IERROR .EQ. ENOENT
Misspelled names would also be a problem.

 Spaces are not significant in FORTRAN 77. A preprocessor might have to be smart enough to parse t
language in order to properly isolate tokens for substitution.

 FORTRAN 77 source is line-oriented and limited to 72 characters per line. Textual substitution (e.g
cpp) would have to be cognizant of this restriction and replace n-character symbolic names with n-charact
numeric constants. This may be a problem if the symbolic name is short but the constant is long
constant like HUGE or MAXVAL).

 C programmers are used to debugging in an environment with a well-defined preprocessor, which is b
part of the language. Programmers who are less familiar with preprocessors may easily get confuse
they ask the debugger for the value of a symbolic constant and the debugger does not know about i
especially true if language considerations, such as those above, make preprocessing more complex. (
example, a C++ interpreter.)

It is clear that the existing C preprocessor, cpp, would not be fully capable, and the specification of an appropriate
would be a difficult task. The developers of this standard decided that pursuing this approach would not be be

It should be noted that while the developers of this standard chose not to require any preprocessing mecha
decision should in no way be taken as an attempt to preclude the use of preprocessors. An implementati
choose to define its own preprocessing system that could replace all calls to the symbolic constant access rou
the appropriate values at compile time. Such preprocessors may be vendor- or site-dependent.
Copyright © 1992 IEEE All Rights Reserved 99

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

{A4}
 77

several
en below:

. This
d any

by a

 names,

ameter
tement

n all
 do not
-1753

s reside
ever, the
d with a
.

plicitly
X.1 {2}

sing the
me of

ted for the

ariable-

ments
 of this

create
vided

ies of the
A.2.3.1.1.2 Proposed Use of the MIL-STD-1753 INCLUDE Mechanism

Another potentially attractive alternative is the INCLUDE statement as defined in the MIL-STD-1753
Extensions (but not the ANSI X3.9-1978 FORTRAN {3} standard used in conjunction with the FORTRAN
PARAMETER statement, which defines the equivalent of a constant. However, this approach has
disadvantages and was discarded by the developers of this standard. The rationale behind this decision is giv

 Since there are no global variables in FORTRAN 77, header files must be included in every program unit (i.e.,
subroutine or function) that uses a constant, not just at the beginning of the compilation unit
coordination problem is compounded by the capability of independent compilation of a program an
procedures and/or libraries it may use. This is very inconvenient for the programmer.

 Each PARAMETER statement in each include file is entirely processed by the compiler, not
preprocessor. This is likely to increase compile time substantially.

 Since the syntax is different from C, even if the symbolic names chosen are the same as the C binding
a parallel set of include/header files must be maintained.

 Constraints on statement ordering in FORTRAN 77 may restrict the contents of include files to just par
statements (e.g., no function declarations) and may require precise positioning of the INCLUDE sta
within each program unit.

 Again, the MIL-STD-1753 {A4} Extensions are not a part of FORTRAN 77, and are not implemented o
systems. Requiring them to be implemented would be an unreasonable burden on vendors who
currently support them. (See A.2.3.0.4.5 for further discussion of the consideration of the MIL-STD
{A4} Extensions.)

A.2.3.1.2 Macros

Another common C-language feature used in the POSIX.1 {2} standard is the macro capability. These macro
in system headers and are accessed from application code in a manner similar to a standard function call. How
C preprocessor performs macro substitution at compile time, thus eliminating the run-time overhead associate
standard function call. FORTRAN 77 does not provide any equivalent feature, so two options were discussed

The approach adopted by the developers of this standard is to specify all functionality, including that ex
provided with macros in POSIX.1 {2}, through separate interfaces. Therefore, each macro specified in POSI
corresponds to a distinct routine in this standard.

The initial approach taken by the developers of this standard was to specify a generalized utility for acces
functionality provided in macros in POSIX.1 {2}. This utility was a single interface routine that accepted the na
the desired macro and the required arguments and returned the appropriate result. This scheme was rejec
following reasons:

 In order to accommodate the full set of macros specified in POSIX.1 {2}, the PXFMACRO() function
required the use of a variable-length argument list. As discussed earlier, it was decided to eliminate v
length argument lists (see A.2.3.0.4.2).

 The PXFMACRO() function also required the use of variable-type arguments, as the types of the argu
would have to vary according to the macro being specified. As discussed earlier, the developers
standard decided to eliminate variable-type arguments (see A.2.3.0.4.3).

 In POSIX.1 {2}, the distinction between functions and macros is sometimes vague. This could
confusion within this standard due to uncertainty as to exactly which functionalities should be pro
through the PXFMACRO() utility or as separate interfaces.

The separate-interfaces approach that was adopted eliminates the need to accept any of the deficienc
generalized approach.
100 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

tended
or site-

rovides

nsigned
ge in
garding
, those
nism for

r of
 of the
not be
re, this
ed-range

plexities
ation of
e various

ent the
sed at the
al detail

the
 but the
system-
ed
{2}

n a
but the
intimate
ly be
Although this standard provides only interfaces corresponding to those macros specified in POSIX.1 {2}, it is in
that this same model could be used to provide a consistent FORTRAN 77 binding to additional system-
dependent macro functionalities.

A.2.3.2 Data Types

There is no additional rationale provided for this subclause.

A.2.3.2.1 Primitive Data Types

There is no additional rationale provided for this subclause.

A.2.3.2.2 Numeric Range of Integer Data

A potential problem results from the fact that FORTRAN 77 provides only one integer data type, whereas C p
several (short, long, unsigned). In all but a few cases, the FORTRAN 77 INTEGER is sufficient to accommodate the
intended usage specified in POSIX.1 {2}. However, there are a few cases where it is likely that the lack of an u
integer in FORTRAN 77 may limit its ability to provide functionality equivalent to that provided by the C langua
POSIX.1 {2}. The specific cases where this problem may arise are values related to time and file offsets. (Re
time, it is less of a concern for those with units of seconds — they will not expire until about 2033 A.D. However
measured in CLK_TCKs may expire substantially sooner than expected.) Technical details and a mecha
dealing with this problem are described below.

Assuming that a FORTRAN 77 INTEGER is the same size as a C long (as is true on a large numbe
implementations), the FORTRAN 77 (signed) variable will be able to store values providing only half the range
C (unsigned) variable. Actually, the FORTRAN 77 variable can in fact contain the same range, but can
conveniently or portably used (compared) beyond the signed integer range without great difficulty. Therefo
standard provides a subroutine that provides comparison of two integer values that may contain extend
(unsigned) values. This routine is specified in 8.11.

A.2.3.2.3 Aggregate Data Types

Another of the early fundamental decisions was to use the data abstraction technique in order to hide the com
of managing aggregate data types from the FORTRAN 77 programmer. This decision led to the consider
several specific proposals for structure access and manipulation procedures; see A.8.3 for discussion of thes
alternatives for specific routines.

As with the other somewhat creative solutions devised, the decision to specify additional interfaces to implem
data abstraction model was not without considerable debate. The following alternate approaches were discus
earliest stage of development, but never seriously considered. They are provided here for additional technic
and background:

 Use no structure-access procedures, just add all of the structure members to the argument list of
appropriate system procedures. The advantage is that no additional procedures are required,
disadvantage is that there is no extensibility (e.g., structure members added or removed, addition of
specific structure members). Furthermore, the affected PXF interface procedures become severely modifi
and are then inconsistent with the other PXF procedures, in terms of correspondence to the POSIX.1
interface definitions.

 Use the FORTRAN 77 EQUIVALENCE construct with a local memory buffer to access the data stored i
system structure. Again, the advantage is the lack of additional structure-access procedures,
drawbacks are severe: applications using this technique would be largely nonportable, as it requires
machine-level knowledge of data storage conventions (of course, such information would like
implementation-dependent).
Copyright © 1992 IEEE All Rights Reserved 101

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

e
r to the
argely
chanism
either
f the
mpt at
ram

verhead
ation for
ented by
erally an
plemented
ll.

ncept of
nzero
atched

ures.

strings
erence

wn in a
he length

added.

ection is

dard. A
re are no

ughout
ode:

er
number
other
 Use the FORTRAN 77 COMMON block construct with a named COMMON for each structure. Again, th
advantage is the lack of additional structure-access procedures, but the drawbacks are simila
EQUIVALENCE construct and are again severe. Applications using this technique would also be l
nonportable due to implementation-dependent data storage conventions, and a nonstandard me
would be required to map the FORTRAN 77 COMMON block to the system structure. With the lack of
a “global” variable construct or a standard INCLUDE feature, the requirement for coordination o
existence of the COMMON block in every routine that needed it would be a problem. Further, any atte
some form of INCLUDE would impose the variable names in the COMMON block on the prog
namespace, inviting conflict.

The most contentious issue was potential performance degradation resulting from the additional run-time o
incurred by additional procedure calls for every structure access. While this may be a reasonable consider
certain applications on certain systems, the developers of this standard felt that the programming model pres
the data abstraction technique is far superior to the alternatives. Furthermore, the cost of a library call is gen
order of magnitude less than the cost of a system call. Assuming that the structure-access procedures are im
as library routines, the cost of their use is therefore very small relative to the cost of the associated system ca

In addition, the developers of this standard also hoped to define a construct that would easily deal with the co
a NULL pointer to a structure, which exists throughout POSIX.1 {2}. Restricting valid handle values to no
values permitted reserving the handle value of zero as an equivalence to a NULL pointer, which intuitively m
the C construct.

See 8.3 and A.8.3 for specification and discussion of the issues related to the actual structure-access proced

A.2.3.2.4 Character Strings and String Manipulation

In C, character strings are terminated with the NULL character, which is defined to be ‘\0’, but FORTRAN 77
are blank-padded and not NULL-terminated. It is the responsibility of the implementation to handle this diff
where necessary (e.g., in a system that implements this standard on top of existing C bindings).

Due to the requirements of FORTRAN 77, the maximum length of an actual string argument is always kno
called procedure where it is a formal argument. Assignment of a sequence of characters to the string where t
of the sequence of characters is greater than the length of the string will result in truncation.

Strings (declared CHARACTER*(*) as dummy arguments) in FORTRAN 77 are fixed length and are blank p
Because of these definitions, it is difficult to differentiate between a string that is supposed to contain trailing blanks
and one that has simply been blank-padded according to the language definition. The remainder of this s
devoted to the discussion of this issue and the options considered for use in this standard.

The issue of significant trailing blanks provoked extended discussion among the developers of this stan
problem arises because FORTRAN 77 defines character strings to be fixed length and blank padded, i.e., the
variable-length strings. This causes difficulties when dealing with many string entities commonly used thro
POSIX.1 {2}, such as path/filenames and environment variables. For example, if a user writes the following c

 CHARACTER*14 C
 C = ‘foo’
 CALL PXFOPEN(C,....)

is the name of the file that is opened ‘foo’ or ‘foo∆∆∆∆∆∆∆∆∆∆∆’ (where ∆ represents a blank character)? If the latt
is the case, unusual filenames will abound on the system; potentially there will be strings differing only in the
of trailing blanks they contain, making it extremely difficult to distinguish between them. For example, an
program may use

 CHARACTER*12 C
102 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

ame or
7
nks, but
scenario
 to work
 trailing

t

.
.

orm that

 exact

 of this

ly by

ecreate
h call);

eter.

ised the
ld rebel

to be

assed”.
 C = ‘foo’
 CALL PXFOPEN(C,....)

This opens a different file than the previous program. Common utilities such as ls and rm would fare poorly, and users
of FORTRAN 77 applications using this standard could be very unsatisfied.

The other option — ignoring any trailing blanks — seems more sensible but creates another difficulty. If a filen
environment variable value exists on the system that does contain a trailing blank, how does the FORTRAN 7
application access it? POSIX.1 {2} defines the portable filename character set so that it does not contain bla
admits the possibility (indeed the probability) of filenames containing nonstandard characters. This leads to a
where a FORTRAN 77 application might, for example, back up all the files on a storage device and be unable
with those files (perhaps created by an errant C or shell application) that are named with filenames containing
blanks. Therefore, the developers of this standard deemed this option equally unacceptable.

In order to address this problem, a set of guidelines were determined to measure potential solutions:

 All functionality available from C must be available from FORTRAN 77 (provided the solution is notoo
unusable for the user or implementor).

 The user must be protected (if not prevented) from careless creation of filenames with trailing blanks
 Performance is important. Solutions that require the string to be parsed in each call are unacceptable

The committee explored several options covering the range of possibilities considered, including the second f
was retained:

 Implicit but exact length. For all routines that pass character strings, the user is required to pass the
substring required by the subroutine. In the example above,
 C = ‘foo’
 CALL PXFOPEN(C(1:3),....)
or more likely, using the function defined in Section 8:
 CALL PXFOPEN(C(1:IPXFLENTRIM(C)),....)
Although passing explicit length arguments is available to FORTRAN 77 programmers, the developers
standard considered this option unacceptable because:
1) It creates a high probability of the creation of unusual (trailing blank) filenames, especial

inexperienced users;
2) It is inaesthetic, difficult to use, and performs poorly (the first choice requires the user to save or r

the length of each string; the latter requires the string to be scanned for the first nonblank in eac
and

3) It creates a burden on the user to work with an unusual corner case.
 Explicit length passed. All procedures that pass character strings require an additional length param

Thus, to link ‘foo’ to ‘bar’, the following code would be used:
 C = ‘foo’
 D = ‘bar’
 CALL PXFLINK(C,3,D,3)
Besides having many of the same problems as the above implicit-length approach, this solution ra
objection that FORTRAN 77 was designed to avoid length passing and that FORTRAN 77 users wou
at passing string lengths explicitly (as was required in FORTRAN 66).

 “Global” variable . A global variable, or context, is set to indicate whether or not trailing blanks are
ignored, such as the following:
 C = ‘foo ∆∏
 CALL PXFTRAILINGBLANKSARESIGNIFICANT(.TRUE.)
 CALL PXFOPEN(C,...)
This option still requires a length to be passed in case trailing blanks are significant, so
 CALL PXFOPEN(C,4,...)
is the calling sequence. This option creates problems similar to those encountered in “explicit length p
Copyright © 1992 IEEE All Rights Reserved 103

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

 (e.g.,
e system,
ters was

as being

e.g.,
gs and
priate (in
. It was
re likely

blanks
 of this
still be
ble to
tances of

fication
 example

er, it
ming
e length

h debate
RAN 77
r general

memory
 of the

rs of this
t of the
t solution:
le and
dard.

ta type.
r to the
nguage
ointer
OSIX.1
odified
 Embedded escape characters. Blanks are not significant unless preceded by an escape character
backslash). This requires all strings to be scanned for escape sequences and possibly translated by th
which was deemed unacceptable. A combination of global variables and embedded escape charac
suggested: Escape characters are only special if the flag is set. This option was similarly rejected
complex and unwieldy.

 Remove trailing blanks. Disallow trailing blanks except in contexts where absolutely necessary [
PXFREAD()]. This solution differentiates between two character constructs (abstract data types): strin
character buffers. Each character usage is examined to determine which of these choices is appro
some cases both are appropriate). For those where “string” is chosen, trailing blanks are ignored
suggested that all pathnames, login and group names, and the names of environment variables we
candidates for the “string” category. As previously discussed, this makes such strings with trailing
inaccessible from FORTRAN 77. After seeing the drawbacks of the other choices, some developers
standard thought that this option was relatively acceptable; after all, FORTRAN 77 applications would
able to access any file that is “creatable” from FORTRAN 77. Besides, FORTRAN 77 potentially is a
create filenames with embedded NULL characters that are inaccessible from C, so there are other ins
definite incompatibilities in this area. However, this approach was eventually discarded also.

From all the above discussions, option (2) was the eventual choice, albeit in a slightly modified form. The modi
is that the programmer can specify the length as zero when trailing blanks are to be ignored, such as (using the
from above):

 CALL PXFLINK(C,0,D,0)

would link ‘foo’ to ‘bar’ and

 CALL PXFLINK(C,4,D,0)

would link ‘foob’ to ‘bar’. Although this option still puts the burden of the additional arguments on the us
simplifies the situation and does allow for full functionality. As a side effect, since the most likely program
practice is for the length argument to be zero in all cases where there are no significant blanks, wherever th
argument is not zero highlights the likelihood that the value has a significant railing blank.

A.2.3.2.5 Pointers

The use of the handle abstraction to reference aggregate data (i.e., structures) and subroutines caused muc
among the developers of this standard. Some felt that using this abstraction essentially augmented the FORT
language, while others countered that because it is only defined abstractly and not as a construct available fo
use by programmers that it cannot be considered an extension. In terms of implementation, the topic of
allocation was related: creating handles entails the allocation of memory dynamically (from the perspective
program, that is; of course the system implementation could use a static block allocation). Again, the develope
standard were split on the principle of whether the implicit specification of dynamic memory allocation was ou
scope of this standard. Eventually, consensus was reached that the handle abstraction scheme is the bes
specifically, it allows full functionality and causes the programmer the least hardship. In addition, it is flexib
easily extensible, thereby allowing the easy integration of system- and site- dependent extensions to this stan

C-language pointers are used throughout POSIX.1 {2}; however, FORTRAN 77 does not have a pointer da
Many of the uses of pointers in C such as passing a pointer to a character string are functionally simila
FORTRAN 77 method of passing by reference. Therefore, no explicit solution had to be devised for this la
binding. However, the use of a NULL pointer in C cannot be duplicated in FORTRAN 77 because a NULL p
cannot be distinguished from a valid pointer in the pass-by-reference FORTRAN 77 model. In cases where P
{2} specifies functionality dependent on the use or detection of a NULL pointer, the behavior has been m
slightly in this binding.
104 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

ro as an

rtant to
ror

e value

d many
t for the

,

e call

ented

ntually
without

ith an
 provide
r less

mers)

r the)
uld
iscarded
essarily
y was

 to the
em.
the

d as
rategy.

ten

OSIX.9
ror. In the
ion that
 function
e with an
de would
Finally, by requiring a valid handle value to be nonzero, this abstraction scheme reserved the value of ze
indication of a NULL pointer, which was an intuitive equivalence to a NULL pointer in the C language.

A.2.4 Error Numbers

In order to understand the motivation for the error reporting conventions specified by this standard, it is impo
understand first the common usage of the errno mechanism in the POSIX.1 {2} environment. In the event of an er
return from a system call, the programmer checks the current errno value against other possible errno values (i.e.,
those listed in POSIX.1 {2} as applicable to that system call) by using the appropriate symbolic constants. Th
of errno is defined only when an error is returned from a system call.

In order to provide the equivalent functionality in this standard, the developers of this standard considere
alternatives. As with other areas, the main goals were to provide all necessary functionality in a style convenien
FORTRAN 77 programmer. The following options were considered:

 Specify an additional function to return the current errno value. One additional interface was specified
PXFERRNO(), which took no arguments and returned the current value of errno. The common POSIX.1 {2}
programming model could then be mimicked quite closely by FORTRAN 77 by simply putting an inlin
to the PXFERRNO() function in all places where a C program would directly reference the errno variable,
and using the IPXFCONST() function (see 8.2) in order to do comparisons to other error numbers repres
by symbolic constants.
While this option was the accepted solution through several drafts of this standard, it was eve
discarded. A primary reason for its demise was the decision to specify all interfaces as subroutines;
a function return value to indicate success or failure (as in POSIX.1 {2}), the POSIX.1 {2} errno model is
broken. To provide the basic functionality, the FORTRAN 77 subroutines then had to be specified w
additional argument to indicate success or failure; this additional argument then was easily adapted to
the functionality of both indicating success or failure and returning the specific error value. Othe
significant factors in the decision to abandon the conventional errno model included its implication of the
existence of an underlying C binding implementation and its uncommon (to FORTRAN 77 program
programming model.

 Specify an additional function to return the current string representation of the (symbolic constant fo
current errno value. The function would return a string containing, for example, [ENOENT], which co
then be used in string compares against the appropriate symbolic constant strings. This option was d
as being generally undesirable (string manipulations, performance considerations), while not nec
achieving either of the goals (functionality and usability). Furthermore, the string handling functionalit
redundant after the PXFCONST() mechanism (see 8.2) was specified.

 Specify an additional function to compare a passed-in string representation of a symbolic constant
current errno value. This option was discarded for reasons similar to those described in the previous it

 Use FORTRAN 77 COMMON to access the errno variable. This option was discarded because, although
value of errno can be accessed, there is no comparable (i.e., direct) way to obtain other errno values that are
stored in the system headers in order to do comparisons. After the PXFCONST() mechanism was conceived
(see 8.2), the other errno values became accessible, but using FORTRAN 77 COMMON was still viewe
being inconvenient for the programmer and inconsistent with the overall language bindings design st

Another consideration was whether or not an additional function should be provided to facilitate setting errno values
[e.g., PXFERRNOSET()] from within FORTRAN 77 programs. Although this functionality is available in C (and of
used in library code), no immediate use was found for it in these bindings, and therefore it was not included.

There are a number of functions in POSIX.1 {2} that are defined to be “always successful.” Despite this, the P
equivalent procedure for some of these functions includes an argument for these procedures to return an er
C-language binding to POSIX.1 {2}, if either a vendor or another standard (e.g. POSIX.6) provides an extens
creates a possibility of an error, because of the errno construct the source code invocation of the C-binding
does not need to be changed. Since errno is not accessible in the FORTRAN 77 bindings, a new procedur
added error argument would have to be defined to provide such an extension. Thus, FORTRAN 77 source co
Copyright © 1992 IEEE All Rights Reserved 105

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

lt that an
TRAN
akes them
t exists,
 when

rdens the
f these

 “thin”

ng exact
stify

ers of this

its. (See
not be portable across systems that did or did not provide for such an error. The developers of this standard fe
additional argument was not a significant burden to provide this portability and extensibility. Since most FOR
77 binding procedures do have an error argument, also specifying an error argument on these procedures m
more consistent with the rest of the FORTRAN 77 binding procedures. Finally, just because this error argumen
an application that was Strictly Conforming to only POSIX.9 would be under no obligation to check for errors
using POSIX.9 procedures that had no POSIX.1 {2} or POSIX.9 errors defined.

However, there was an outstanding objection that this alters the semantics of the binding and unnecessarily bu
programmer with having to code for errors, where none are possible. It was argued that the usability o
procedures is diminished by the addition of these error return values. These include PXFALARM(), PXFGETUID()
PXFGETEUId() PXFGETGID(), PXFGETEGID(), PXFGETPID(), PXFGETPPID(), PXFGETGRP(), and
PXFUMASK().

A.2.5 Primitive System Data Types

A.2.6 Environment Description

A.2.7 FORTRAN 77 Language Definitions

Just as the developers of this standard wished to avoid duplicating the POSIX.i {2} definitions, in the spirit of a
binding the FORTRAN 77 definitions are not duplicated.

A.2.8 Numerical Limits

A.2.8.1 FORTRAN 77 Language Limits

There is no additional rationale provided for this subclause.

A.2.8.2 Minimum Values

There is no additional rationale provided for this subclause.

A.2.8.3 Run-Time Increasable Values

There is no additional rationale provided for this subclause.

A.2.9 Symbolic Constants

A.2.9.1 Constants for FORTRAN 77 I/O to STDIO_UNIT Translation

The specification of the constants for mapping FORTRAN 77 unit identifiers to POSIX.1 {2} stdio streams was
viewed as a standardization of common practice to enhance portability. Early proposals suggested specifyi
values (5,6,0 for stdin, stdout, stclerr), but it was determined that this convention was not widespread enough to ju
its standardization. Therefore, the compromise of specifying the range 0–9 was reached; as far as the develop
standard were able to identify, this range accommodates the vast majority of existing implementations.

Recommended usage (to ensure portability) is therefore to use the defined constants to access the stdio streams and to
use program-defined unit identifiers outside the specified ranges to avoid conflict with the preconnected un
A.8.5.2.2).
106 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

rs
0.3.2 for
e these

use they
TRAN

rrays;
ay.

his is the

ecifying
ndard,

d data of

ce the
A.3 Process Primitives

A.3.1 Process Creation and Execution

A.3.1.1 Process Creation

There is no additional rationale provided for this subclause.

A.3.1.2 Execute a File

Early drafts of this standard contained all of the exec entry points that are included in POSIX.1 {2}, but the develope
of this standard decided to eliminate the subroutines that use variable-length argument lists. (See A.2.4.
discussion of the decision to eliminate the use of variable-length argument lists.) The decision to eliminat
routines was made easier by the fact that the POSIX.1 {2} exec family is redundant; all of the functionality of the
discarded functions is still available in the remaining functions. These subroutines were also eliminated beca
require the construct of an external global variable (environ), which is a construct not directly available in FOR
77.

The subroutines that were eliminated are: PXFEXECL(), PXFEXECLE(), and PXFEXECLP(), defined as follow:

 SUBROUTINE PXFEXECL (PATH, ARG0, ARG1, ..., ARGN, PXFNULL())
 CHARACTER*(*) PATH, ARG0, ARG1, ..., ARGN

 SUBROUTINE PXFEXECLE (PATH, ARG0, ARG1, ..., ARGN, PXFNULL() ENVP)
 CHARACTER*(*)PATH, ARG0, ARG1, ..., ARGN, ENVP(*)

 SUBROUTINE PXFEXECLP (FILE, ARG0, ARG1, ..., ARGN, PXFNUL())
 CHARACTER*(*) FILE, ARG0, ARG1, ..., ARGN

The POSIX.1 {2} versions of the remaining subroutines require the use of NULL-terminated argument a
however, the FORTRAN 77 versions use additional arguments to specify the number of elements in each arr

A.3.2 Process Termination

A.3.2.1 Wait for Process Termination

Due to difficulties discussed in POSIX.1 {2} 3.2, it is not possible to specify a NULL pointer for the stat_loc
argument.

A.3.2.2 Terminate a Process

The underscore is not in the legal identifier character set in FORTRAN 77 and so is not used in the name. T
only exception to the naming convention of prefixing PXF before the C equivalent.

In early drafts of this standard, the FORTRAN 77 language construct STOP was referenced rather than sp
PXFFASTEXIT(). The functionality is similar (i.e., it terminates the process), but STOP does not provide a sta
defined method for returning a status value to the system.

The function PXFFASTEXIT() is analogous to the POSIX.1 {2} function _exit(). The functionality of _exit() is
required in order to recover from failed calls to any one of the PXFEXEC() subroutines. PXFEXEC() executes a new
program without creating a new process. A new process is created by calling PXFFORK(). PXFFORK() creates a new
process that is a copy of the current process, including all code and data. Generally, the copy of the code an
the parent is soon replaced by a new program when the child calls PXFEXEC(). However, if the call to PXFEXEC()
should fail, the child has no way to exit without risking modification of the open files of the parent program. Sin
Copyright © 1992 IEEE All Rights Reserved 107

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

e
s files,
e files.
rs,
f
 keep
r
 value to

 handle.

IX
quiring

 the
ible, this

eliability
buffers of the child process are copies of the parents’, when PXFEXIT(), STOP, or END is executed the data in th
buffers will be written to the file and the child will terminate. When the parent writes additional data or closes it
the files will be updated with the parents’ copy of the same buffers; therefore, the data will be duplicated in th
In order to recover from a failed call to PXFEXEC(), the child process must be able to exit without flushing buffe
which is the functionality of _exit(). Without the functionality of _exit(), large programs will tend to avoid the use o
any of the PXFEXEC() functions so that data written will not be corrupted, or they will devise some scheme to
track of all units that are currently open and use PXFFLUSH() to dear all the buffers. The functionality of eithe
PXFEXIT() is also needed so that a child process can flush its buffers, terminate normally, and return a status
its parent.

A.3.3 Signals

See POSIX.1 {2} B.3.3 for description of the evolution of the sigset_t defined type.

A.3.3.1 Signal Concepts

There is no additional rationale provided for this subclause.

A.3.3.1.1 Signal Names

SIG_IGN and SIG_DFL are possible values of a subroutine handle that cannot match any other subroutine
This is also the case in POSIX.1 {2} (see POSIX.1 {2} 3.3.1.1).

A.3.3.1.2 Signal Generation and Delivery

There is no additional rationale provided for this subclause.

A.3.3.1.3 Signal Actions

Because many implementations will choose to implement the IERROR return value by building it on top of errno,
which is inherently unreliable, IERROR must also be considered unreliable.

Consider the following hypothetical implementation of PXFFORK():

 void f77fork(long *rtn_value, long *status)
 {
 if ((*rtn_value = fork()) == -1)
 *status = errno;
 else
 *status = 0;
 }

Since the return value of the POSIX.1 {2} function fork() is reliable, values of zero for IERROR are also reliable.
However, since errno is not reliable, nonzero values of IERROR are not reliable. Given that most interfaces on UN
systems are C interfaces, this standard did not prohibit POSIX.9 implementations layered on top of C. Re
nonzero values of IERROR to be reliable would require most existing POSIX.1 {2} implementations to rewrite
system interfaces. In order to have this standard implemented in a timely fashion and as widely as poss
requirement was not made.

A.3.3.1.4 Signal Effects on other Subroutines

For historical reasons, some implementations of errno may be unreliable. Implementations should note that r
of error reporting may be required by future standards.
108 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

rror
ruct of

tly define
A.3.3.2 Send a Signal to a Process

There is no additional rationale provided for this subclause.

A.3.3.3 Manipulate Signal Sets

While PXFSIGISMEMBER() could have been defined as a LOGICAL function, POSIX.1 {2} does define the e
[EINVAL] for the purpose of testing whether the signal number is valid or supported. Therefore, the const
subroutine with two OUT arguments (the value and the error) seemed more appropriate.

A.3.3.4 Examine and Change Signal Action

There is no additional rationale provided for this subclause.

A.3.3.5 Examine and Change Blocked Signals

There is no additional rationale provided for this subclause.

A.3.3.6 Examine Pending Signals

There is no additional rationale provided for this subclause.

A.3.3.7 Wait for a Signal

There is no additional rationale provided for this subclause.

A.3.4 Timer Operations

A.3.4.1 Schedule Alarm

There is no additional rationale provided for this subclause.

A.3.4.2 Suspend Process Execution

There is no additional rationale provided for this subclause.

A.3.4.3 Delay Process Execution

There is no additional rationale provided for this subclause.

A.4 Process Environment

A.4.1 Process Identification

A.4.1.1 Get Process and Parent Process IDs

There is no additional rationale provided for this subclause.

A.4.2 User Identification

The existence of an error return argument was considered essential, even though POSIX.1 does not curren
any errors, since security enhancements are likely to provide errors in this topic area.
Copyright © 1992 IEEE All Rights Reserved 109

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

ion

haracter-

f the
7 (i.e.,

 not a
ot
A.4.2.1 Get Real User, Effective User, Real Group, and Effective Group IDs

There is no additional rationale provided for this subclause.

A.4.2.2 Set User and Group IDs

There is no additional rationale provided for this subclause.

A.4.2.3 Get Supplementary Group IDs

The option of using one argument to combine the argument ISETSIZE with the argument NGROUPS was considered;
however, it was discarded because it made it impossible for a constant to be passed as ISETSIZE. The error
[EARRAYLEN] could have been defined, but the existing POSIX.1 {2} definition of error [EINVAL] for this funct
covers this condition.

A.4.2.4 Get User Name

It was necessary to provide arguments to this routine in order to accommodate the decision to eliminate c
string function returns, since two OUT arguments are usually required (the string and the significant length).

A.4.3 Process Groups

A.4.3.1 Get Process Group ID

There is no additional rationale provided for this subclause.

A.4.3.2 Create Session and Set Process Group ID

There is no additional rationale provided for this subclause.

A.4.3.3 Set Process Group ID for Job Control

There is no additional rationale provided for this subclause.

A.4.4 System Identification

A.4.4.1 Get System Name

The data items in the utsname structure are null-terminated character arrays in C, so it is the responsibility o
implementation to return them to the FORTRAN 77 caller as character arrays that conform to FORTRAN 7
blank-padded, not null-terminated).

A.4.5 Time

A.4.5.1 Get System Time

It is not possible to specify a NULL pointer for the tloc argument. However, since this is a subroutine and
function and the value is always and only stored in the ITIME argument, having a NULL flag to prevent storage is n
meaningful.

A.4.5.2 Get Process Times

There is no additional rationale provided for this subclause.
110 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

 nature of
ificant

t trailing
aracter
entation;
 and the
se two
n equals
les. In

ess the

in
riable
onment

ust be
{2} is
o such

o value
standard

ll be
 zero-

llows the

s a C

haracter
n asterisk
ent. This
entation
character

ire name
e is

 less than
ides an
ation or
A.4.6 Environment Variables

A.4.6.1 Environment Access

It was necessary to add arguments to this function and split the environment name and value because of the
FORTRAN 77 strings and the CHARACTER type. This is an example of the need for a mechanism for sign
trailing blanks (see A.2.3.2.4). Both the environment name and the environment value might have a significan
blank. While POSIX.1 {2} states that they “should consist solely of characters from the portable filename ch
set”, which does not include blank, it goes on to state that “other characters may be permitted by an implem
applications shall tolerate the presence of such names.” The splitting of the OUT arguments into two (the name
value) has a side effect of requiring the underlying implementation of POSIX.9 to perform the parsing into tho
values rather than the application. This lets the application avoid the issue of a name or a value containing a
sign. The C-language binding of POSIX.1 {2} affords two mechanisms to access the environment variab
addition to this function, an application could access the global variable environ directly. As FORTRAN 77 has no
direct equivalent of a global variable, this procedure is the only FORTRAN 77 mechanism available to acc
environment.

POSIX.1 {2} does not contain the functions setenv() or clearenv(). However, these functions are currently defined
the draft revision to POSIX.1 {2}. In addition, because of the capability of directly accessing the global va
environ mentioned above, the C-language binding already permits the capability of setting or clearing the envir
even without these explicit routines. The developers of this standard decided that this useful functionality m
defined in POSIX.9, even if only in Section 8, but put it in Section 4 to match where it will be after POSIX.1
revised. The nature of the C language allows the POSIX.1 {2} interface to return a NULL value when there is n
variable in the environment list and to return a zero-length string when the variable is in the list but has n
assigned. In FORTRAN 77, these two conditions are not easily represented in one return argument. This
specifies that if the variable is not in the list, the error condition [EINVAL] will be returned in IERROR, indicating that
the value of the NAME argument is invalid. If the variable is in the list but has no value, the VALUE argument wi
set to all blanks and the LENVAL argument will be set to zero, indicating that the value of the variable named is a
length string.

It is common to use shell utilities to create environment variables that have no values. This standard also a
creation of such variables by calling PXFSETENV() with NEW set to all blanks and LENNEW set to zero.

A.4.7 Terminal Identification

A.4.7.1 Generate Terminal Pathname

The PXFCTERMID() subroutine provides the same interface as the POSIX.1 {2} function ctermid(), i.e., it returns a
string that will refer to the controlling terminal if used with a pathname. The POSIX.1 {2} description provide
interface with its rules of character array declaration and assignment.

POSIX.9 uses the FORTRAN 77 rules for character declaration and assignment. FORTRAN 77 requires that c
entities are declared with an integer constant or an integer constant expression. They may be declared with a
in a subprogram to indicate that the length of the dummy character argument is the length of the actual argum
does not allow the use of L_ctermid for the length of the character argument. It also does not allow the implem
to store the name completely in the character argument if the name is longer than the declared length of the
argument.

The character argument is declared with a fixed-length that may or may not be large enough to hold the ent
returned by the PXFCTERMID() subroutine. FORTRAN 77 rules for assignment are used. That is, the nam
truncated if the size of the name is larger than the size of the fixed-length character argument. If the name is
the fixed length of the character argument, the name is left justified and filled with blanks. The interface prov
extra length argument that returns the size of the name returned by the function. This is helpful when trunc
blank fill occurs or to emulate the C-language construct of an empty string.
Copyright © 1992 IEEE All Rights Reserved 111

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

n

nt. This

turned by

, even

 to the

 return
quired

liminate

h of the
A.4.7.2 Determine Terminal Device Name

It was necessary to modify the calling sequence of the PXFTTYNAME() function in order to accommodate the decisio
to eliminate character-string function returns.

A.4.8 Configurable System Variables

POSIX.1 {2} includes access to the special symbol {CLK_TCK}but declares such access to be obsolesce
standard does not provide such access.

A.4.8.1 Get Configurable System Variables

In a previous revision, it was documented that all of the system variables and constants shown that can be re
PXFSYSCONF() are recognized by the PXFCONST() function. This is actually not the case: PXFSYSCONF() is for
accessing runtime-variable system configuration variables. That is, the variable may vary from system to system
of the same model from the same vendor (e.g., memory available for process). PXFCONST() is used only for variables
that may differ from one vendor to the other but, once compiled in an application, will not change from one run
next.

A.5 Files and Directories

A.5.1 Directories

A.5.1.1 Format of Directory Entries

There is no additional rationale provided for this subclause.

A.5.1.2 Directory Operations

Note that, since IDIRID could be a file descriptor, the value of zero is not reserved. Thus, an equivalent to the
of a NULL pointer is not defined. However, with the existence of the error [EEND], all cases that would have re
a return of NULL produce a nonzero IERROR and are therefore identifiable.

A.5.2 Working Directory

A.5.2.1 Change Current Working Directory

There is no additional rationale provided for this subclause.

A.5.2.2 Get Working Directory Pathname

It was necessary to modify the calling sequence of this function in order to accommodate the decision to e
character-string function returns.

The size argument was eliminated from the calling sequence for PXFGETCWD() because it is redundant if it is
assumed that the underlying implementation of POSIX.9 has access to the FORTRAN 77 declared lengt
CHARACTER argument. (See A.2.3.3.1 further discussion.) The OUT argument LEN is explicitly set to zero in the
presence of an error to match the explicit return of a NULL in the presence of an error in getcwd().
112 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

. The

of

e

A.5.3 General File Creation

A.5.3.1 Open a File

There is no additional rationale provided for this subclause.

A.5.3.2 Create a New File or Rewrite an Existing One

In previous revisions, PXFCREAT() was not present as it was deemed redundant with PXFOPEN(); however, the
operation performed by PXFCREAT() is very common, and the interface to PXFOPEN()is awkward enough that
PXFCREAT() was put back in for usability reasons and to match its (redundant) existence in POSIX.1 {2}
description was left minimal because it is redundant.

A.5.3.3 Set File Creation Mask

While umask() currently is always successful, the IERROR argument was included in anticipation of the possibility
returning an error if the process is not permitted to use a particular mask for some defined security reason.

A.5.3.4 Link to a File

The argument names changed from PATH1 and PATH2 to EXISTING and NEW to reflect the corresponding nam
changes from POSIX.1-1988 to POSIX.1-1990.

A.5.4 Special File Creation

A.5.4.1 Make a Directory

There is no additional rationale provided for this subclause.

A.5.4.2 Make a FIFO Special File

There is no additional rationale provided for this subclause.

A.5.5 File Removal

A.5.5.1 Remove Directory Entries

There is no additional rationale provided for this subclause.

A.5.5.2 Remove a Directory

There is no additional rationale provided for this subclause.

A.5.5.3 Rename a File

There is no additional rationale provided for this subclause.

A.5.6 File Characteristics

A.5.6.1 File Characteristics: Header and Data Structure

There is no additional rationale provided for this subclause.
Copyright © 1992 IEEE All Rights Reserved 113

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

sponding
RAN 77

system

in three

ile the

ely on
A.5.6.1.1 File Types

The initial draft of this standard specified that the POSIX.1 {2} macros S_ISDIR(m), S_ISCHR(m), S_ISBLK(m),
S_ISREG(m), and S_ISFIFO(m) shall all be recognized by the generalized macro usage utility PXFMACRO(). This
utility was later discarded and the standard updated to reflect the decision to specify a distinct procedure corre
to each POSIX.1 {2} macro. Because these file-related macros return exclusively true/false results, the FORT
LOGICAL type is used to define the return value.

See A.2.3.1.2 for further discussion of decisions related to macros.

A.5.6.2 Get File Status

There is no additional rationale provided for this subclause.

A.5.6.3 Check File Accessibility

There is no additional rationale provided for this subclause.

A.5.6.4 Change File Modes

There is no additional rationale provided for this subclause.

A.5.6.5 Change Owner and Group of a File

There is no additional rationale provided for this subclause.

A.5.6.6 Set File Access and Modification Times

There is no additional rationale provided for this subclause.

A.5.7 Configurable Pathname Variables

A.5.7.1 Get Configurable Pathname Variables

There is no additional rationale provided for this subclause.

A.6 Input and Output Primitives

FORTRAN 77 contains an extensive list of I/O operations. These operations might conflict with use of the
interfaces listed in this section. Interactions of these procedures and FORTRAN 77 I/O are defined in 8.5.5.

No relationship of FORTRAN 77 files to the underlying POSIX operating system can be assumed except
conditions:

1) The file was successfully opened with PXFFDOPEN(),
2) The file was opened for formatted or unformatted sequential access with FORTRAN 77 OPEN wh

POSIX I/O flag was one (see 8.5),
3) A file opened by the mechanism of either (1) or (2) was inherited from a parent process.

While a given implementation may provide additional relationships, a Strictly Conforming Application cannot r
them.
114 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

7 I/O
77 unit
ormally.

filling.

onstant

ard
er) handle
id an
The results of mixing many of the I/O operations defined in this section and Section 8 with FORTRAN 7
operations is implementation defined. For example, if a file descriptor that is associated with a FORTRAN
identifier is closed, subsequent FORTRAN 77 operations on the unit may cause the program to terminate abn

A.6.1 Pipes

A.6.1.1 Create an Inter-Process Channel

There is no additional rationale provided for this subclause.

A.6.2 File Descriptor Manipulation

A.6.2.1 Duplicate an Open File Descriptor

There is no additional rationale provided for this subclause.

A.6.3 File Descriptor Deassignment

A.6.3.1 Close a File

There is no additional rationale provided for this subclause.

A.6.4 Input and Output

A.6.4.1 Read From a File

The BUF argument is specified as an array of characters instead of a CHARACTER*(*) in order to avoid blank
It is truly a buffer of characters, not a string. The option of using one argument to combine the in NBYTE argument
with the out NREAD argument was considered; however, it was discarded because it made it impossible for a c
to be passed as NBYTE. As is typical in FORTRAN 77, specifying NBYTE greater than the dimensioned sixed of BUF
is unsafe, and the results are undefined. C-language programmers should note that BUF is a FORTRAN 77 array and
is therefore one-based.

A.6.4.2 Write to a File

The option of using one argument to combine the in NBYTE argument with the out NWRITTEN argument was
considered; however, it was discarded because it made it impossible for a constant to be passed as NBYTE. (See also
the discussion on the BUF argument in A.6.4.1).

A.6.5 Control Operations on Files

A.6.5.1 Data Definitions for File Control Operations

There is no additional rationale provided for this subclause.

A.6.5.2 File Control

Although the POSIX.1 {2} (C language) version, fcntl(), varies between two and three parameters, this stand
requires that the third and fourth arguments always be present. Since these arguments may be either a (integ
for an instance of the flock structure or a “plain” integer, there is no conflict. Two arguments are required to avo
IN/OUT argument that would not allow a constant to be used as the IN argument.
Copyright © 1992 IEEE All Rights Reserved 115

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

.9.
f this new

also
 the C-
RAN 77

that one

er
It was suggested that the interface for POSIX.1 {2} fcntl() was awkward and should not be propagated into POSIX
The developers of this standard chose to retain the interface to maintain a better name recognition for users o
standard to leverage long-existing familiarity with the C-language interface.

A.6.5.3 Reposition Read/Write File Offset

The file offset is defined to be of type off_t, which is one of the Primitive System Data Types (see 2.5, and
POSIX.1 {2} 2.5). It is possible that this data type may be defined within the system (or, more specifically, in
language bindings) as being an unsigned integer, in which case its range will be greater than that of the FORT
INTEGER. See also 2.3.2.2 for more information on handling unsigned quantities.

A.7 Device- and Class-Specific Functions

A.7.1 General Terminal Interface

A.7.1.1 Interface Characteristics

There is no additional rationale provided for this subclause.

A.7.1.2 Parameters That Can Be Set

There is no additional rationale provided for this subclause.

A.7.1.2.1 termios Structure

There is no additional rationale provided for this subclause.

A.7.1.2.2 Input Modes

There is no additional rationale provided for this subclause.

A.7.1.2.3 Output Modes

Although there is only one mask defined, the text still applies, since an implementation may support more
mask for this field.

A.7.1.2.4 Control Modes

The mask CSIZE can be used to mask off the baud rate bits for the other control bits. The behavior of PXFOPEN() with
respect to these control codes is no different than that of open(), defined in POSIX.1 {2}.

A.7.1.2.5 Local Modes

There is no additional rationale provided for this subclause.

A.7.1.2.6 Special Control Characters

In POSIX.1 {2} and this standard, the elements of the c_cc array are integral values. A FORTRAN 77 programm
could do the following to define the kill character as control-D (CHAR(4)):

C create an instance of the structure
 CALL PXFSTRUCTCREATE(‘termios’, JHANDLE, IERROR)
C fill the components of the structure
116 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

TRAN
 for the
 avoided
restore to

 file,
 the

 case of
rom
 CALL PXFTCGETATTR(FILDES, JHANDLE, IERROR)
C set a single element of the control_character component
 CALL PXFESETINT(JHANDLE, ‘c_cc’, IPXFCONST(‘VKILL’), 4, IERROR)
C now make the change NOW
 CALL PXFTCSETATTR(FILDES, IPXFCONST(‘TCSANOW’), JHANDLE, IERROR)

Implementors of POSIX.9 should note that since the entire ‘c_cc’ array can be obtained by

 CALL PXFAINTGET(JHANDLE, ‘c_cc’, IAVALUE, IPXFCONST(‘ NCCS’), IERROR)

and the array IAVALUE will be a FORTRAN 77 one-based array, the subscript values to be returned to the FOR
77 application will be one greater than those returned to a C-language application. This is not an issue
application writer since only the subscript names, not values, should be used. This difference could have been
by not providing access to the array as a whole, but the value of being able to store the entire array and then
an original condition seemed to outweigh this difference.

A.7.1.2.7 Baud Rate Values

There is no additional rationale provided for this subclause.

A.7.2 General Terminal Interface Control Subroutines

A.7.2.1 Get and Set State

There is no additional rationale provided for this subclause.

A.7.2.2 Line Control Subroutines

There is no additional rationale provided for this subclause.

A.7.2.3 Get Foreground Process Group ID

There is no additional rationale provided for this subclause.

A.7.2.4 Set Foreground Process Group ID

There is no additional rationale provided for this subclause.

A.8 FORTRAN 77 Language Library

A.8.1 FORTRAN 77 Intrinsics

A.8.2 System Symbolic Constant Access

A.8.2.1 Access and Verify Symbolic Constants

The following example illustrates the use of the PXFCONST() subroutine and the IPXFCONST() function for
accessing symbolic constants. It uses the PXFCHMOD() system call, which changes the access permissions on a
using PXFCONST() to obtain the mode specifier (‘O_RDWR’). The value of the mode is then used in
PXFCHMOD() system call to change the access permissions on a file. Following the call, IPXFCONST() is used to
obtain the unit identifier associated with the preconnected file identified by STDERR_UNIT (see 2.9.1) and, in
an error, to obtain the values of two errno values (possible error conditions) for comparison with the error return f
the system call.
Copyright © 1992 IEEE All Rights Reserved 117

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

ss to the
ragraphs.

was very
that
ce the
 in the

machine.
ic name.

ause it is
ions, not

/valid
onstant-

ant in the

 and was

t wish to
 error
 to
 PROGRAM TEST
 ...
C Make the call to PXFCONST()
 CALL PXFCONST(‘O_RDWR’, IMODE, ISTAT)
 IF (ISTAT .NE. O) THEN
 WRITE (IPXFCONST(‘STDERR_UNIT’), 102) ‘Could not access constant!’
 ...
 END IF
C Make the system call to PXFCHMOD().
C If it fails, check a couple errno conditions.
 CALL PXFCHMOD(‘/tmp/testfile’, O, IMODE, ISTAT)
 IF (ISTAT .NE. O) THEN
 WRITE (IPXFCONST(‘STDERR_UNIT’), 99) ‘Call to PXFCHMOD failed!’
 IF (ISTAT .EQ. IPXFCONST(‘ENOENT’)) THEN
 WRITE (IPXFCONST(‘STDERR_UNIT’), 99) ‘errno = ENOENT’
 ELSE IF (ISTAT .EQ. IPXFCONST(‘EPERM’)) THEN
 WRITE (IPXFCONST(‘STDERR_UNIT’), 99) ‘errno = EPERM’
 END IF
99 FORMAT(1X,A)
 ...
 END IF
 ...
 END

As discussed in A.2.3.1.1, one of the earliest decisions was to specify additional procedures to provide acce
system symbolic constants. The evolution of the constant-access procedures is described in the following pa

During the early development of this standard, only one function was specified for accessing the constants; it
similar to the current version of IPXFCONST(). The developers of this standard later realized the limitations of
one function, namely its inability to provide an acceptable error-reporting mechanism. More specifically, sin
actual integers corresponding to the symbolic names in POSIX.1 {2} are not specified (and the list may grow
future), it must be assumed that the range of valid constant values is the full range of integers possible on the
But the function must also be able to indicate an error if the passed string does not match a known symbol
Several methods of reporting/recording this error were considered:

 Returning -2, noting that no known system constant has this value. The value -1 was not chosen bec
the return value for the system procedures (at this time, all system interfaces were specified as funct
subroutines).

 Adding an extra (return) argument to the argument list.
 Specifying a symbolic name that was guaranteed to report an error.
 Specifying an additional function that returns an implementation-defined value unique from all defined

constant values; this function could be used for comparisons against the value returned from the c
access function to identify an error.

Each of these options was discarded for various reasons, and the discussions generated here were signific
development of the current family of constant-access procedures.

The current family of constant-access procedures appeared midway through the development of this standard
conceived as the following:

 A function that returns the value of the symbolic constant but provides no error checking [IPXFCONST()].
This function is easy to embed in expressions and subroutine calls where the programmer does no
utilize any error checking. Also, implementations that provide an intelligent preprocessor may do
checking during preprocessing/compilation. (The leading I in the function name was deemed necessary
118 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

it need

r to the
ut the
e

s the
ecking

s may

cally, a
pe name

erhead
ration for
ssing the
rally an
mented
 call. If

sor that
 removing
ng the

ame, in
avoid problems on implementations with loose type checking and was a nod towards usability; now
not be declared.)

 A function that verifies that the argument is the name of a symbolic constant [PXFISCONST()]. This function
provides error checking for the cautious programmer, but also provides a capability somewhat simila
conditional compilation available in the C language. This capability can prove useful in inquiring abo
presence of various features at run-time (including sysconf variables) and possibly at compile-time (if th
implementation supports an intelligent preprocessor).

 A subroutine that returns the value of the symbolic constant and provides error checking [PXFCONST()].
This subroutine interface is more awkward but more robust. Note that it essentially combine
functionality of the other two functions, but can both return the constant value and provide error ch
(using separate arguments) in only one procedure call.

Although all constants defined in POSIX.1 {2} are integral, specific implementations and/or future standard
require constants of other types. It is recommended that the family of names corresponding to PXFREALCONST() and
PXFSTRCONST() be reserved for use by implementations that require nonintegral typed constants. Specifi
family of constant-access routines analogous to the current set could be defined, with the appropriate ty
(REALCONST or STRCONST) being substituted for CONST in the current procedure names.

A contentious issue was the potential performance degradation resulting from the additional run-time ov
incurred by the additional procedure calls for every constant access. While this may be a reasonable conside
certain applications on certain systems, it was felt that there was no adequate solution to the problems of acce
constants that did not involve additional procedure-call overhead. Furthermore, the cost of a library call is gene
order of magnitude less than the cost of a system call. Assuming that the constant-access procedures are imple
as library routines, the cost of using them is therefore very small relative to the cost of the associated system
performance is a critical issue, an implementation may still choose to implement an intelligent preproces
replaces instances of calls to the constant-access procedures with the appropriate constant values (thereby
the run-time overhead). Of course, such an implementation should also provide error-checking duri
preprocessing.

A.8.3 Structure Creation and Manipulation

A.8.3.1 Structure Creation

To reference a given structure type, a FORTRAN 77 string (trailing blanks ignored) containing the structure n
lowercase, is used, e.g.:

 CALL PXFSTRUCTCREATE(‘utimbuf’,JHANDLE,IERROR)

A.8.3.2 Structure-Component Manipulation

The following is an example of using one of the structure-component access routines, specifically PXFINTGET() with
the PXFSTAT() system call.

 PROGRAM TEST
 INTEGER STHAND, ISTAT, ISIZE, IERROR
C Allocate an instance if a stat structure
 CALL PXFSTRUCTCREATE(‘stat’, STHAND, IERROR)
 ...
C Make the system call to PXFSTAT()
 CALL PXFSTAT(‘/etc/passwd’, O, STHAND, ISTAT)
C Obtain the value stored in the st_size component
 CALL PXFINTGET(STHAND, ‘st_size’, ISIZE, ISTAT)
 IF (ISTAT .NE. O) THEN
 WRITE (IPXFCONST(’STDERR_UNIT), 102) ‘Could not access component!’
Copyright © 1992 IEEE All Rights Reserved 119

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

nes 42
 used in
entation-

cepted at
mponent
phs:

nterface
in several

differ in
 (see

itional
ultiple

cture, the
a more
bove.

ultiple

ing
 may be
ber is

ocedure

ocedure
s models
egarding
rlier but

 call).

stem. For
 ...
 END IF
 WRITE (*,101) ‘Number of bytes in file: ’, ISIZE
 ...
 END

Using all of the TYPEs defined in Table 8.3 with the list of procedure names in 8.3.2.1, this standard defi
different procedures for structure-component manipulation. However, only some of the procedures are actually
this standard; the others should be reserved for possible use in future standards and also used for implem
defined structures and components.

While the data abstraction model for accessing and manipulating aggregate data from FORTRAN 77 was ac
the earliest stage of development of this standard, the selection and specification of the procedures for co
manipulation generated must debate. Several options proposed earlier are discussed in the following paragra

 Specify component-manipulation procedures on a per-system-interface basis; i.e., for each system i
procedure, the necessary component-manipulation procedures are specified. This method was used
early drafts of this standard and was specified as follows:
 FUNCTION PXF<SYS_ROUTINE_NAME>GET (MEMBER_NAME_VALUE)
 CHARACTER*(*) MEMBER_NAME
 TYPE VALUE
 FUNCTION PXF<SYS_ROUTINE_NAME>SET (MEMBER_NAME_VALUE)
 CHARACTER*(*) MEMBER_NAME
 TYPE VALUE
where TYPE varies according to the MEMBER_NAME.
The primary weakness was that this method required procedures with actual arguments that could
type from call to call. This was determined to be a deviation from the FORTRAN 77 standard
A.2.3.0.4.3) and led to the evolution of the current set of procedures (which are specified on a per-type basis
rather than per-function). Another drawback is that this method is not easily extensible without add
potentially complex specifications, for example, situations where one system interface utilizes m
instances of the same structure or different structures with identical member names.

 Specify a single structure-access procedure that takes three arguments: the name (type) of the stru
name of the desired field, and the value to be loaded (or the variable to be returned). This is
generalized solution, but still suffers from the variable-type arguments problem mentioned a
Additionally, the performance of an implementation of this method might be quite poor due to the m
string lookups required for every invocation.

 Specify one structure-access procedure per structure that requires (simultaneously) arguments represent
all members of the structure. This method presents the advantage that all members of a structure
loaded or extracted with only one procedure call, but suffers severely in terms of extensibility; if a mem
added to the structure (either by another standard or in a particular implementation), the access pr
argument list would be inappropriate.

Performance implications were frequently discussed, both with respect to the general model of requiring a pr
call for every structure-component access, and also with respect to the implementation of the various acces
discussed previously. See A.2.3.2.3 for a discussion of the general procedure-call overhead issue. R
implementation, it is interesting to note that a variation of the model finally accepted was considered much ea
discarded largely because of performance concerns. However, the introduction of the handle mechanism encourages
much more efficient implementation than the earlier variation (which required parsing multiple strings in each

A.8.3.3 Structure Deletion

When finished with an instance of a structure, the structure should be deleted to return resources to the sy
example:
120 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

orarily
 ...
 CALL PXFSTAT(‘/etc/passwd’, O, STHAND, ISTAT)
 ...
 CALL PXFINTGET(STHAND, ‘st_size’, ISIZE, ISTAT)
 ...

C Delete the stat structure when done with it.
 CALL PXFSTRUCTFREE(STHAND, ISTAT)
 IF (ISTAT .NE. O) THEN
 WRITE (IPXFCONST(‘STDERR_UNIT’), 102) ‘Stat structure handle not
deleted!’
 ...
 END IF
 WRITE (*,101) ‘Number of bytes in file: ’, ISIZE
 ...

A.8.3.4 Structure Copy

It is sometimes useful to keep several instances of a structure. The PXFSTRUCTCOPY() subroutine can be used to
maintain identical or similar instances. In the following example, the behavior of the terminal driver is temp
modified (see 7.2.1 for information on the terminal interface control subroutines used here).

 ...
 INTEGER OLDTS, NEWTS, ISTAT, NOECHO, CLFLAG, IFD
 ...
 CALL PXFSTRUCTCREATE(‘termios’, OLDTS, ISTAT)
 ...
 CALL PXFSTRUCTCREATE(‘termios’, NEWTS, ISTAT)
 ...
 CALL PXFTGETATTR(IFD, OLDTS, ISTAT)
 ...

C Copy the contents to the current terminal settings to the new
C structure and modify the contents slightly, thus changing only
C one terminal characteristic.
 CALL PXFSTRUCTCOPY(OLDTS, NEWTS, ISTAT)
 IF (ISTAT .NE. O) THEN
 WRITE (IPXFCONST(‘STDERR_UNIT’), 10)
 + ‘Error copying termios structure’
 STOP
 END IF

C Disable terminal echo.
 NOECHO = NOT(IPXFCONST(‘ECHO’))
 CALL PXFINTGET(OLDTS, ‘c_lflag’, CLFLAG, ISTAT)
 CLFLAG = IAND(NOECHO, CLFLAG)
 CALL PXFINTSET(NEWTS, ‘c_lflag’, CLFLAG, ISTAT)
 CALL PXFTCSETATTR(IFD, IPXFCONST(‘TCSANOW’), NEWTS, ISTAT)
 ...

C When it‘s time to exit restore the ‘old’ terminal driver settings.
 CALL PXFTCSETATTR(IFD, IPXFCONST(‘TCSANOW’), OLDTS, ISTAT)
 ...
Copyright © 1992 IEEE All Rights Reserved 121

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

 function

ll to
ine
lls the
ion
d by the
A.8.4 Subroutine-Handle Manipulation

A.8.4.1 Save and Reference Subroutine Handle

Without these subroutines, there is no way to obtain the value of an element of a structure that is a pointer to a
and subsequently call that function. This is a requirement for the sigaction structure.

The text of the standard states that PXFCALLSUBHANDLE() is called with (and, in 3.3.4, that the sa_handler
component of the JSIGACT structure shall be) a subroutine handle obtained from a previous ca
PXFGETSUBHANDLE() or PXFSIGACTION(). Implementors should note that, if an implementation for subrout
handles is other than a pointer to a function, process initialization code (e.g. the “MAIN” code that ca
FORTRAN program) or calls to the kernel sigaction() functionality from another language may cause confus
between the handler representation in internal kernel tables and the representation that is manipulate
application. These differences must be appropriately translated by the bindings implementation.

The following program uses PXFGETSUBHANDLE() to set up a Control-C trap.

 PROGRAM TEST

 INTEGER ISTAT, HANDLE, SIGACT
 CHARACTER*80 ALINE

 EXTERNAL CTRLCH

 CALL PXFSTRUCTCREATE(SIGACT, ‘sigaction’, ISTAT)
 IF (ISTAT .NE. O) STOP

C Get the handle for the subroutine CTRLCH.

 CALL PXFGETSUBHANDLE(CTRLCH, HANDLE, ISTAT)
 IF (ISTAT .NE. O) THEN
 WRITE (IPXFCONST(‘STDERR_UNIT’), 10)
 + ‘Error getting handle for subroutine CTRLCH’
 STOP
 END IF

C Test the handle by calling it once.

 CALL PXFCALLSUBHANDLE(HANDLE, O, ISTAT)
 IF (ISTAT .NE. O) THEN
 WRITE (IPXFCONST(‘STDERR_UNIT’), 10)
 + ‘Error calling handle for subroutine CTRLCH’
 STOP
 END IF

C Now pass the handle to the system to use as a Control-C handler.

 CALL PXFINTSET(SIGACT, ‘sa_handler’, HANDLE, ISTAT)
 CALL PXFINTSET(SIGACT, ‘sa_mask’, O, ISTAT)
 CALL PXFINTSET(SIGACT, ‘sa_flags’, O, ISTAT)

 CALL PXFSIGACTION(IPXFCONST(‘SIGINT’), SIGACT, O, ISTAT)
 IF (ISTAT .NE. O) STOP
122 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

nal unit
 clarify

ther
ific file.

or more
n is used
portant
scriptor
ence, it
lated by

ed with

late file

r a non-

g. If the
d records
cted to a

as input
e
file will
sed as if

wline

erified by

AN
C Block on the controlling terminal just to test the interrupt.
 READ (*,10) ALINE
10 FORMAT (A)
 END

C The handler subroutine.
 SUBROUTINE CTRLCH(ARG)
 INTEGER ARG
 WRITE (*,10) ‘Control C was pressed’
 RETURN
 END

A.8.5 External Unit and File Descriptor Interaction

There are three different ways of referring to external files in POSIX.9. They can be referred to by an exter
identifier, by a file descriptor, or by both an external unit identifier and a file descriptor. This section attempts to
the difference between a unit identifier and a file descriptor.

A unit identifier is provided in FORTRAN 77 to refer to a FORTRAN 77 file. It is used in READ, WRITE, and o
I/O statements to perform operations on files. There is a direct correlation between a specific unit and a spec

A file descriptor is provided by the POSIX system to refer to a file. All open files on a POSIX system have one
associated file descriptors. For each open file, the POSIX system keeps a file description. The file descriptio
by the system to access the file. It tells the POSIX system the position of the file pointer, in addition to other im
file attributes. Each process has its own file table. The file table contains pointers to file descriptions. The file de
is an index into the file table. When a process is created, it receives a copy of the file table of its parent; h
receives the pointers to the descriptions for all of the open files of the parent. File table entries may be manipu
using PXFFCNTRL(). In summary, a file descriptor is kept by a process and is an integer value that is associat
a file description that is kept by the system.

POSIX.9 defines some of the interactions of units and file descriptors and provides interfaces to manipu
descriptors and units.

A FORTRAN 77 file can be opened with a unit. The FORTRAN 77 OPEN statement can be used to open eithe
POSIX FORTRAN 77 file or a POSIX-based FORTRAN 77 file. A subroutine PXFPOSIXIO() (see 8.5.1.1) is
provided to determine the current setting of the global POSIX I/O flag and to change it to the required settin
value of the flag is zero, then the file created is not required to be accessed as if it contained newline delimite
and the unit is not required to be connected to a file descriptor. If the flag is set to one, the unit will be conne
file descriptor and formatted files will be accessed as newline delimited records.

A FORTRAN 77 file can be opened with both a unit and a file descriptor. POSIX.9 provides a call to PXFFDOPEN()
(see 8.5.3) to connect an external unit to a file descriptor. Both the unit and the file descriptor are supplied
arguments to the subroutine. The NEWLINE=YES/NO string in the ACCESS string argument indicates whether th
file will be accessed as if it contains newline delimited records. If the value is YES or the string is omitted, the
be accessed as if it contained newline delimited records. If the value is NO, the file is not required to be acces
it contained newline delimited records. Most POSIX.2 utilities will not execute correctly on files without ne
delimited records.

Once the connection between the unit and the file descriptor has been established, that association may be v
calling PXFFILENO() (see 8.5.2.1) to return the file descriptor to which the unit is connected.

The procedures PXFFDOPEN() and PXFFILENO() provide access to file descriptors and allow the use of FORTR
77 I/O on I/O channels that have no file name. Such channels are created by PXFPIPE() and PXFFORK(). This allows
one to use FORTRAN 77 READ and WRITE to communicate on pipes or inherited file descriptors.
Copyright © 1992 IEEE All Rights Reserved 123

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

assure
N 77 I/
tandard.
matted
process

nnected
or
 same
mely,

r

ss
 default
to

at the
 the

:

 units

ed with
fined:

 create
s. This

RTRAN
andard
 use

tation
n could
In general, text files (see POSIX.2 {A2}) should be written using POSIX-based FORTRAN 77 I/O in order to
interoperability with other POSIX programs and utilities. One may choose not to use POSIX-based FORTRA
O in order to take advantage of implementation-defined features or performance options not defined by this s
POSIX-based FORTRAN I/O applies also to unformatted sequential access files, thereby allowing unfor
FORTRAN I/O across interprocess communication channels. In addition, such files are inherited by a child
after a call to PXFFORK().

The ability to perform system level I/O using PXFLSEEK(), PXFREAD(), and PXFWRITE() in addition to FORTRAN
77 I/O to the same open file is intentionally left undefined by this standard. If byte access is required on a co
unit, the procedures PXFFFSEEK(), PXFFGETC(), and PXFFPUTC() should be used. Note that it is a requirement f
strictly conforming applications to insure that system level I/O and FORTRAN level I/O is not performed on the
file. Note that this restriction is limited to system level I/O subroutines that can affect the file offset, na
PXFLSEEK(), PXFREAD(), and PXFWRITE therefore, PXFFCNTRL() and PXFFSTAT() may be used to determine o
set file attributes such as protections and locking.

Finally, a POSIX.9 file can be opened without involving a FORTRAN 77 unit by invoking PXFOPEN() (see 5.3.1.2).
It provides the same functionality as the POSIX.1 {2} function open(). In this case, a file descriptor is used to acce
the file. Because of the possibility of breaking existing FORTRAN applications, this standard does not specify
setting of the POSIXIO flag. Therefore, the subroutine PXFPOSIXIO() should be called to set the POSIX I/O flag
a value of one, if any of the following POSIX behaviors are required:

1) Interoperability with POSIX system utilities (defined in the forthcoming POSIX.2 standard — e.g., grep, cat,
sort);

2) Ability to perform FORTRAN formatted or unformatted sequential I/O over pipes or fifos;
3) Ability to inherit FORTRAN files open for formatted or unformatted sequential access. It is intended th

FORTRAN binding to POSIX.2 shall specify that, for the compiler “fort77,” the default setting of
POSIXIO flag shall be one.

Some questions that have been asked about the interaction of external unit identifiers and file descriptors are

Can unformatted sequential or direct access I/O be done to a file opened using PXFFDOPEN()?
Files can be opened for unformatted sequential access by PXFFDOPEN(), but not for direct access I/O.
Can PXFFDOPEN() be used in conjunction with PXFFILENO() to have two different unit numbers
connected to the same file use the same file with the same file descriptor?
Yes this can occur. It is up to the application or applications to coordinate usage of two or more
connected to the same file (see 8.5.5).
Can section 6.4 and 6.5 procedures be applied to file descriptors obtained with PXFFILENO()? If so, what is
the interaction?
For sequential access files, the procedures in 6.4 and 6.5 may be applied to file descriptors obtain
PXFFILENO(), as specified in 8.5.5. For direct access files, the following operations are not de
PXFLSEEK(), PXFREAD(), and PXFWRITE().

A.8.5.1 POSIX-Based FORTRAN I/O

Since FORTRAN 77 does not define record control information, it is possible for a FORTRAN 77 program to
text files that can not be used by other POSIX utilities and would not be portable to other POSIX system
subroutine allows the user to specify a POSIX-compatible record structure. This is intended to insure that FO
programs could interoperate with other POSIX programs and utilities (defined in the forthcoming POSIX.2 st
— e.g., grep, cat). In addition, the application programmer must know the record structure in order to
PXFFSEEK() and the other stream I/O subroutines effectively.

During balloting of this standard, one alternative that was discussed was to permit the PXFPOSIXIO() and
PXFFDOPEN() procedures to return the error [ENOSYS]. This subtle change would permit the actual implemen
of POSIX side effects on existing FORTRAN 77 language I/O statements to be optional, i.e., an implementatio
124 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

h side
effects,
ionality

ines on
e byte

On such
iding a
nager, if

ility, data
RTRAN
res are
esult.

rder to
ecords.

ing)
ith the

t a value
tion. A
 the state
 has
ws other
bal

does not
ut, once
for each

ne to a
cument
RTRAN
-based

removed
version
n an
n will

 binding

 opened
RTRAN
fined I/O
 build
always return [ENOSYS] from any call to either procedure. While an application could portably test whether suc
effects existed, no application could portably rely on such side effects. If an application required POSIX side
the application would be required to use the POSIX I/O procedures for all I/O It was determined that this opt
would reduce consensus; thus, this error was not defined for these procedures.

There was concern that FORTRAN 77 files might not be byte oriented. By specifying byte access rout
formatted files that are open for POSIX-based FORTRAN I/O, this standard is requiring that such files b
oriented.

It was noted that on some implementations the POSIX I/O system and a record manager may coexist.
systems, certain FORTRAN 77 applications may perform better if the record manager is used. By prov
subroutine that selects POSIX-based FORTRAN I/O, an implementation may provide access to the record ma
one exists.

Since this standard does not define the default record structure, all applications concerned with data portab
interoperability, and stream I/O access either should set the POSIX I/O flag to one before performing any FO
77 I/O operation or should only use the POSIX.9 file descriptor I/O primitives. Since all other record structu
implementation defined, the setting of the POSIX I/O flag to zero cannot be relied upon to give any portable r

The POSIX I/O flag was changed from a logical two-state variable to a multistate integer variable in o
accomodate a request for more flexibility within the flag, e.g., to specify stream I/O separately from POSIX r
Values other than true or false are now available to implementations to allow extensions.

Therefore, with an appropriate setting of the POSIX I/O flag POSIX.9 conforming (but not strictly conform
applications can create and process files for any number of implementation-defined record structures. W
introduction of more values than two, an error return was added to indicate when an attempt was made to se
other than the two defined by POSIX.1 {2} (0 and 1), but that value was not defined on this implementa
POSIX.9 conforming implementation must define zero and one since zero is an unspecified default and one is
required for POSIX.9 strictly conforming portability. Note that an implementation that only provides POSIX I/O
the trivial case where zero means the same as one, but both are still defined. Adding the error return also allo
errors associated with other values for NEW. While the current value of the POSIX I/O flag may be considered a glo
flag, the setting for a given file is a property of each specific connection since the property for that connection
change if or when the flag changes. The flag could be explicitly set or changed prior to each specific open b
open, the property of that file remains unchanged. Making a global flag simply eliminates the need to define it
open when a series are desired to have the same property.

The FORTRAN 77 standard {3} (Section 12.9.5.2.3) discusses the action called “printing,” which might be do
formatted record. While POSIX-based FORTRAN I/O files are defined to contain formatted records, this do
does not specify whether any action (such as directing a record to a specific file like STDOUT) constitutes FO
77 “printing” in a POSIX-based environment. Those implementations surveyed have no “automatic” POSIX
actions that constitute “printing.” Some implementations have a utility program (asa) that converts a file containing
newline-terminated records to a new set of newline-terminated records with the first character of each record
and containing appropriate additional newlines, carriage-returns, formfeeds, or other ASCII codes. The con
performed by this utility is defined as equivalent to the FORTRAN 77 action of “printing.” If some action o
implementation constitutes “printing” as defined by FORTRAN 77, it is expected that such an implementatio
document such action. It is expected that future standards developers will deal with utilities when the Fortran
to POSIX.2 is addressed. The developing draft of POSIX.2 already includes the asa utility.

A.8.5.2 Map a Unit to a File Descriptor

This subroutine returns the file descriptor associated with a connected unit. Initially it was required that all files
with the FORTRAN 77 OPEN statement must have an associated file descriptor. While extensions to the FO
77 OPEN statement would have been permitted to bypass POSIX I/O in order to access implementation-de
systems for improved performance or functionality, there were objections to requiring implementations to
Copyright © 1992 IEEE All Rights Reserved 125

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

based

 parent

ctively.
ternal units
bers for
ed not be
of units
 number

ring the
 providing
 opened

mapping

fining a
roblems
rent and
le:
FORTRAN 77 I/O on top of POSIX I/O The compromise position reached was to require only POSIX-
FORTRAN I/O (see 8.5) to have an associated file descriptor.

A child process will inherit units connected to file descriptors. If a child attempts to use a unit connected by its
that is not connected to a file descriptor, the results are unspecified.

The units obtained through STDIN_UNIT and STDOUT_UNIT are preconnected input and output files, respe
This standard does not specify that these preconnected units are the same as the processor-determined ex
specified by asterisk on READ or WRITE statements. FORTRAN 77 does not require that the actual unit num
these processor-determined external units be retrievable by a Fortran application program. Therefore, they ne
valid unit numbers. Some current implementations of FORTRAN 77 place these units outside the range
available to a Fortran application program so the program can access more units with fewer restrictions on the
of units available.

A.8.5.3 Open a Unit

The developers of this standard considered several alternative methods to achieve this functionality. Alte
FORTRAN 77 OPEN statement was ruled out as being beyond the scope of the standard. Also discussed was
a mapping routine that associated a connected unit to a different file descriptor. This would require that a file be
to obtain the connected unit first, and then the file would be have to be closed (and possibly deleted) by the
routine. It would also create a problem with some of the FORTRAN 77 OPEN keywords, especially STATUS, IOSTAT
and ERR. STATUS and ERR could be defined to have no meaning during the mapping call, but access to STATUS
would be required. In addition, the OPEN keywords have been extended by many implementations. By de
subroutine and the keywords that will connect a unit to a file descriptor, these performance and keyword p
were eliminated. For example, a program may create a file that contains checkpoint information, and the pa
child processes may then both write into the file (see 8.5). Such behavior is illustrated in the following examp

 PROGRAM PARENT

 CHARACTER*10 ARGS():1),ARG1
 INTEGER LENARGS():1)

C Be sure the unit is connected to a file descriptor by setting
C the POSIXIO flag to 1

 CALL PXFPOSIXIO(1, IOLD, IERROR)
 ARGS())(1:8) = ‘childpgm’
 LENARGS()) = 8

 OPEN(UNIT=11, FILE=‘pgm.log’, ACCESS=‘SEQUENTIAL’,
 + STATUS=‘NEW’, FORM=‘FOMATTED’)

C Get the file descriptor associated with the unit to pass to
C the child program

 CALL PXFFILENO(11, IFD, IERROR)
 IF (IERROR .NE. 0) STOP ‘Error getting file descriptor’
 WRITE(UNIT=ARGS(1), FMT=10) IFD
10 FORMAT(15)
 LENARGS(1) = 5

C Now create a new process and exec a new image

 CALL PXFFFLUSH(11, IERROR)
126 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

 of the

tement,
xample
r the child
 parent
n made

ng the

OEXEC
 CALL PXFFORK(IPID, IERROR)
 IF (IERROR .NE. 0) STOP

 IF (IPID .EQ. O) THEN
 CALL PXFEXECV(‘./childpgm’, 10, ARGS, LENARGS, 2, IERROR)
 CALL PXFFASTEXIT(-1)
 END IF

C The parent may do other work or wait...

 CLOSE(11)
 END

 PROGRAM CHILD
 CHARACTER ARGFMT*5, ARG1*100

C The child program reads its argument list and then connects to
C the file descriptor passed as the first argument...

 IF (IPXFARGC() .NE. 1) CALL PXFEXIT(-1)
 CALL PXFGETARG(1, ARG1, LENARG1, IERROR)

 READ(UNIT=ARGFMT, FMT=10) LENARG1
10 FORMAT(‘(I‘,15,’)‘)
 READ(UNIT=ARG1, FMT=ARGFMT) IFD

 CALL PXFFDOPEN(IFD, 14, ‘STATUS=OLD, POSIXIO=YES’, IERROR)
 IF (IERROR .NE. 0) CALL PXFEXIT(-1)

C Now the child can write to the file...
 WRITE(14,20) ‘Child complete.’
20 FORMAT (A)
 CLOSE(14)
 CALL PXFEXIT(O)
 END

During balloting of this standard, one alternative that was discussed was to permit the implementation
functionality of PXFFDOPEN() to be optional (see A.8.5.1).

A.8.5.4 Flush Output

If FORTRAN I/O is to be resumed by a child process on a file opened by the parent using the OPEN sta
PXFFFLUSH() must be called before the child is created in order to flush the I/O buffers of the parent. In the e
below, a child process is created that writes to a unit that the parent may have been using. The parent waits fo
to complete and then may resume writing to the file. The results of this program would be unpredictable if the
did not flush the buffers before creating the child. When the child closes its connection to the file, the connectio
by the parent to the file remains. Notice that the child performs FORTRAN 77 I/O on the file by directly usi
external unit without need to identify or use file descriptors. This is permitted since PXFFORK() will duplicate the
parents’ connection to the file, and the connected file descriptor will be inherited. Once a call to one of the PXFEXEC()
subroutines is made, the connected unit is destroyed, but the file descriptor is preserved (unless the FD_CL
flag is set on the file). Therefore, after a call to one of the PXFEXEC() subroutines is made, PXFFDOPEN() must be
called to establish the connection of a unit to the inherited file descriptor.

 PROGRAM SHARE
Copyright © 1992 IEEE All Rights Reserved 127

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

ssible,
erlying

lowing

After a
 data,
he data

.

 CALL PXFPOSIXIO(1, IOLD, IERROR)

 OPEN (UNIT=11, FILE=‘share.me’, ACCESS=‘ SEQUENTIAL’,
 + STATUS=’ NEW’, FORM=‘FORMATTED’)

 WRITE(11,10) ‘THIS IS THE PARENT TALKING’
 CALL PXFFFLUSH(11, IERROR)
 IF (IERROR .NE. 0) STOP ‘Error flushing output!’
 CALL PXFFORK(IPID, IERROR)
 IF (IERROR .NE. 0) STOP ‘Error during fork!’
 IF (IPID .EQ. 0) THEN
 WRITE(11,10) ‘THIS IS THE CHILD TALKING’
 CLOSE(11)
 CALL PXFEXIT(0)
 ELSE
 CALL PXFWAIT(ISTAT, IPID, IERROR)
 END IF
 WRITE(11,10) ‘THIS IS THE PARENT SAYING GOOD-BYE’
 CLOSE(11)
10 FORMAT (A)
 END

A.8.5.5 FORTRAN Language Input/Output Statements

All of the interactions defined by this standard only apply to POSIX-based FORTRAN I/O files. As much as po
these specifications both reflect what is the intuitive relationship of the FORTRAN 77 construct and an und
POSIX system, as well as reflect a number of current implementations.

A.8.5.5.1 Interactions of FORTRAN I/O Statements

This standard does not define the operations of PXFREAD(), PXFWRITE(), or PXFLSEEK() on file descriptors that are
connected to direct access files. This allows implementations to provide special optimizations while al
PXFSTAT() and PXFFCNTL() to be used on a file.

POSIX.9 defines two methods that can result in the same file being connected to two different unit.
PXFFORK(), the I/O buffers of the parent will be duplicated in the child. If any of those buffers contain unwritten
there is the danger of duplicating that data in the file. The duplication of data may be avoided by flushing t
before performing PXFFORK() or by performing PXFEXEC() immediately after the PXFFORK(). If PXFFORK()
should fail, PXFFASTEXIT() may be used to terminate the process without writing the buffered data.

A.8.5.5.2 Interactions With FORTRAN 77 OPEN Statement

The setting of the mode to

 IOR(IPXFCONST(‘S_IRUSR’),IOR(IPXFCONST(‘S_IWUSR’),
 + IOR(IPXFCONST(‘S_IRGRP’),IOR(IPXFCONST (‘S_IWGRP’),
 + IOR (IPXFCONST(‘S_IROTH’),IPXFCONST(‘S_IWOTH’))))))

ensures that the umask value of the user will be used to determine the file permissions of newly created files
128 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

ust do a

that an

ts may
OSIX-

 a mode
.1) and

rolling
rminal

to send
ode is

hen the

cord.
A.8.5.5.3 Interactions With FORTRAN 77 INQUIRE Statement

POSIX.1 {2} does not define a reliable method of determining the absolute pathname of a file. Each open m
“get working directory” call to try to get this at the time of the open.

A.8.5.5.4 Interactions With FORTRAN 77 CLOSE Statement

There is no additional rationale provided for this subclause.

A.8.5.5.5 Interactions With FORTRAN 77 READ Statement

For all reading and writing on a unit, the read or write must not fail due to an interrupt. This is not to say
underlying POSIX read cannot fail due to an interrupt.

When reading the terminal device file associated with the controlling terminal, the behavior of READ statemen
be altered by setting the mode of the controlling terminal. An example arises in user terminal input: Since P
based FORTRAN I/0 records are terminated by the newline character, it is important not to put the terminal in
that will suppress the transmission of newline. For example, if the terminal is in noncanonical mode (see 7
INLCR is set (map NL to CR), then there is no way for the application to receive a newline from the cont
terminal. A READ statement at this point may cause the application to hang. Although setting the controlling te
to noncanonical mode with INLCR not set will allow the newline to be sent, on most keyboards the only way
the newline is by pressing control-J. Applications should set ICRNL (map CR to NL) whenever noncanonical m
entered. Also, take care that IGNCR (ignore CR) is not set. This allows the read operation to complete w
carriage return key is pressed at the keyboard of the controlling terminal.

A.8.5.5.6 Interactions With FORTRAN 77 WRITE Statement

There is no additional rationale provided for this subclause.

A.8.5.5.7 Interactions With FORTRAN 77 BACKSPACE and REWIND Statements

A question was asked about the following program:

 CHARACTER ONELINE*7, CHAR

 CALL POSIXIO(1, DUMMY, IERROR)
 OPEN (UNIT=14, FILE=‘TEMP.TXT’, STATUS=‘NEW’)
 WRITE (14,10) ‘ABCDEF’
 WRITE (14,10) ‘JKLMNO’
 WRITE (14,10) ‘STUVWX’
 CLOSE (14)
 OPEN (UNIT=14, FILE=‘TEMP.TXT’, STATUS=‘OLD’)
 READ (14,10) ONELINE
 CALL PXFFGETC (14, CHAR)
 BACKSPACE(14)
 READ (14,10) ONELINE
 WRITE (*,10) ONELINE
10 FORMAT (A)
 END

Which line will be written? The BACKSPACE will move the file position to the beginning of the preceding re
Section 8.5.5.1 defines what the preceding record will be after the call to PXFFGETC(); therefore, the answer is:

JKLMNO with CHAR containing the letter J. This is also the intuitive answer.
Copyright © 1992 IEEE All Rights Reserved 129

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

ompilers
 those in
rest of the
 and
lities of
POSIX
t is not
a record
to specify
hen the

xisting

 unit.
lement.
a result,
mittee
nflict

TC and
did not
ndicated
lly, X3J3
en of ten
. Most

s limited
eam I/0
ctively

cessible
ine (see
 would
le output
A.8.5.5.8 Interactions With FORTRAN 77 ENDFILE Statement

There is no additional rationale provided for this subclause.

A.8.6 Stream I/O

The subroutines defined in this section are based on common-practice extensions to many FORTRAN 77 c
and libraries available on UNIX-based systems today. The specifications here match as closely as possible
common usage. However, the syntax has been changed so that these subroutines are consistent with the
binding (i.e., names prefixed with PXF). Therefore, there is little likelihood of conflict between these subroutines
the common vendor extensions. These subroutines provide functionality that is not available with the I/O faci
FORTRAN 77 (i.e., the ability to access a file a byte at a time); such functionality has many applications in a
environment (e.g., screen prompting, building of filter programs). These subroutines provide functionality tha
provided by Fortran 90 since the Fortran 90 {A1} language standard can only provide access to bytes within
whereas these procedures can access bytes outside of a FORTRAN record. Such functionality is not possible
in a language standard that may be implemented on a wide variety of operating systems. It is only possible w
scope is restricted to a specific operating system, such as the scope of this standard.

Mixing stream I/O and FORTRAN 77 record I/O was a concern. The model of mixing chosen was taken from e
implementations. The model specifies that calls to PXFGETC(), PXFFGETC(), PXFPUTC(), PXFFPUTC(), and/or
PXFFSEEK() may be intermixed with FORTRAN 77 READ and/or WRITE statements to the same connected
There was much concern that this would not be portable and would be difficult for some architectures to imp
There was also concern that the existing implementations were in conflict with the FORTRAN 77 standard. As
the developers of this standard sought an official interpretation and guidance from the ANSI FORTRAN com
(X3J3), with the feedback indicating that this model of mixing stream I/O with FORTRAN 77 I/O was not in co
with the FORTRAN 77 standard.

The developers of this standard also asked for guidance from X3J3 on the issue of mixing PXFGETC/PXFPU
READ/WRITE on the same formatted sequential file during a single OPEN of a device. X3J3 indicated that it
take a vote on the issue, but that a survey of FORTRAN 77 implementors who were present at the meeting i
that several of them provide this feature. It is generally disliked because its behavior can be erratic. Genera
expressed no support for mixing these I/0 methods to the same file. At a later meeting of X3J3, a survey tak
implementors indicated that four would approve of the mixture, four would disapprove, and two abstained
developers of this standard felt that the feature would benefit the users of this standard.

In order to ensure that these routines could be used portably, the operation of the stream I/O subroutines wa
to formatted sequential files that are open for POSIX-based FORTRAN I/O (see 8.5). The behavior of the str
subroutines is undefined for files that are not opened for POSIX-based FORTRAN I/O. This restriction effe
limits the use of these subroutines to formatted sequential files.

When a call to one of the stream I/0 subroutines is followed by a FORTRAN 77 I/O statement, the record ac
to the FORTRAN 77 statement begins with the byte following the byte processed by the stream I/0 subrout
8.6.3.2). Conversely, if a stream I/O call is made following a FORTRAN 77 I/O statement, the byte processed
be the next byte after the record processed by the FORTRAN 77 statement. The following program and samp
illustrates the mixing behavior defined in 8.5.5.

 PROGRAM IO

 CHARACTER CH*1, STRING*20

C Set the POSIXIO flag to 1 so that mixing can occur predictably.

 CALL PXFPOSIXIO(1, IOLD, IERROR)
130 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992
C Write to standard out using both kinds of I/O

 PRINT 10, ‘Hello,’
 CALL PXFPUTC(‘ ’, IERROR)
 CALL PXFPUTC(‘W’, IERROR)
 CALL PXFPUTC(‘o’, IERROR)
 PRINT 10, ‘rld!’
10 FORMAT (A)

C Read from a file using both kinds of I/O.

 OPEN(UNIT=14, FILE=‘temp.txt’, STATUS=‘OLD’)
 DO 80 I=1, 5
 CALL PXFFGETC(14, CH, IERROR)
 CALL PXFPUTC(CH, IERROR)
80 CONTINUE

C Mark the transition from Stream I/O to FORTRAN I/O with an X.

 CALL PXFPUTC(‘X’, IERROR)
 READ(14, 10) STRING
 PRINT 10, STRING

C Go back to the beginning of the file and do partial reads.
C Notice that FORTRAN 77 always reads a complete record.

 CALL PXFSEEK(14, O, IPXFCONST(‘FSEEK_BEGIN’), IERROR)
 READ(14,30) STRING
30 FORMAT (A3)
 PRINT 10, STRING

 DO 90 I=1, 4
 CALL PXFFGETC(14, CH, IERROR)
 CALL PXFPUTC(CH, IERROR)
90 CONTINUE

C Read the end of record character. This is something you
C cannot do with FORTRAN 77 or Fortran 90 as it now stands.

 CALL PXFFGETC(14, CH, IERROR)
 PRINT 40, ICHAR(CH)
40 FORMAT (14)

 END
 If the file temp.txt contains the data:
 Line 1
 Text
 last

 The output from the program will be the following:
 Hello,
 World!
 Line X1
 Lin
Copyright © 1992 IEEE All Rights Reserved 131

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

newline-
I/O files
 used with

UNIT
ally left
e unit

.

I/O. It

pecified
s. The
132 Copyright © 1992 IEEE All Rights Reserved

 Text 10

In the example above, the character 10 is the newline character, which is the end of record. However,
delimited can only be assumed to be the definition of the record structures for POSIX-based FORTRAN 77
(see 8.5). Therefore, as stated in 8.6, portable use of the stream I/O procedures can only be assured when
such files.

A.8.6.1 Modify a File Position

The PXFFSEEK() subroutine may be used on formatted POSIX-based FORTRAN I/O files (see 8.5). While the I
argument “shall refer to an open unit,” this might not be the case, hence the error value. Further, it is intention
unspecified whether performing this subroutine performs an implicit connection of a file to the unit for som
numbers.

In the following code fragment, lines in a data file are accessed according to the byte offset stored in an array

C Seek to the starting field within the current line

80 CALL PXFFSEEK(IUNIT, RELPOS(IPTR),
 + IPXFCONST(‘FSEEK_CURRENT’), ISTAT)
 IF (ISTAT .EQ. IPXFCONST(‘EEND’) GOTO 90
 IF (ISTAT .NE. 0) THEN
 WRITE (IPXFCONST(‘STDERR_UNIT’), 10) ‘Error during PXFFSEEK’
 STOP
 END IF
10 FORMAT (A)

C now read a record beginning at this location on the line

 READ (UNIT=IUNIT, FMT=10, END=90) LINE

 PRINT 10, LINE

 GOTO 80
90 CONTINUE

A.8.6.2 Read a File Position

The PXFFTELL() subroutine is used to obtain the byte offset in a file that is open for POSIX-based FORTRAN
may used in conjunction with PXFFSEEK() to return to specific byte locations within a file. While the IUNIT argument
“shall refer to an open unit,” this might not be the case, hence the error value. Further, it is intentionally left uns
whether performing this subroutine performs an implicit connection of a file to the unit for some unit number
following code fragment reads a large data file containing DNA sequences and references. PXFFTELL() is used to
store the byte offset of each DNA sequence.

...

C Read a line

 READ (UNIT=IUNIT, FMT=10, END=110) LINE

C If the line begins with >>> it is a sequence

 IF (LINE(1:3) .EQ. ‘>>>’) THEN
 CALL PXFFTELL(IUNIT, IOFF, ISTAT)

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

grams,
trolling

s, or
d lines
 IF (ISTAT .NE. 0) THEN
 WRITE (IPXFCONST(‘STDERR_UNIT’), 10) ‘Error during PXFFTELL’
10 FORMAT (A)
 STOP
 END IF

C Store the offset in a file for later use by PXFFSEEK

 WRITE (IUNIT2, 20) LINE(4:), IOFF
20 FORMAT (A,I6)
 END IF

C Repeat until all the lines have been read
 ...

A.8.6.3 Get a Character

The PXFGETC() subroutine reads data from a file a byte at a time. It is useful for constructing menus, filter pro
or system utilities. The following code fragment waits for a single key to be pressed at the keyboard. The con
terminal must be in noncanonical mode in order for this code to function properly (see 7.1).

 PRINT 10, ‘Press any key when ready.’
 Call PXFGETC(CH, ISTAT)

A.8.6.4 Write a Character

The subroutines PXFFPUTC() and PXFFGETC() may be used together to create menu prompts, filter program
system utilities. The following is an example of a filter program that converts a file with carriage-return-delimite
to a file with newline-delimited lines.

 PROGRAM CRTOLF

 INTEGER I, INUNT, OUTUNT, ISTAT, ILEN
 CHARACTER*256 PGM, OPT, INFILE, OUTFIL
 CHARACTER*1 CH

 CALL PXFPOSIXIO(1, IOLD, IERROR)
 INUNT = IPXFCONST(‘STDIN_UNIT’)
 OUTUNT = IPXFCONST(‘STDOUT_UNIT’)

C Get the file names from the command line. If they are
C missing use standard in and standard out.
C No OPEN is required for either standard input or standard output.
C Note that a more robust program would probably check for errors on OPEN.

 IF (IPXFARGC() .GT. 0) THEN
 CALL PXFGETARG(1, OPT, ILEN, ISTAT)
 IF (OPT(1:ILEN) .NE. ‘-’) THEN
 INFILE(1:ILEN) = OPT(1:ILEN)
 INUNT = 14
 OPEN(UNIT=INUNT, FILE=INFILE, STATUS=‘OLD’,
 + ACCESS=‘SEQUENTIAL’, FORM=‘FORMATTED’)
 END IF
 END IF
Copyright © 1992 IEEE All Rights Reserved 133

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

ension
TD

cifying
nctions
tionality
 IF (IPXFARGC() .EQ. 2) THEN
 CALL PXFGETARG(2, OPT, ILEN, ISTAT)
 IF (OPT(1:ILEN) .NE. ‘-’) THEN
 OUTFIL(1:ILEN) = OPT(1:ILEN)
 OUTUNT = 15
 OPEN(UNIT=OUTUNT, FILE=OUTFIL, STATUS=‘UNKNOWN’,
 + ACCESS=‘SEQUENTIAL’, FORM=,FORMATTED’)
 END IF
 END IF
 IF (IPXFARGC() .GT. 2) THEN
 CALL PXFGETARG(0, PGM, ILEN, ISTAT)
 PRINT 10, ‘USAGE: ’, PGM(1:ILEN), ‘ [infile] [outfile]’
 STOP
 END IF

C This is where the actual work of the program begins.
C The input is byte filtered to the output until the input is
C exhausted.

50 CALL PXFFGETC(INUNT, CH, ISTAT)
 IF (ISTAT .EQ. IPXFCONST(‘EEND’)) GOTO 60
 IF (ISTAT .NE. 0) STOP ‘PXFFGETC ERROR’
 IF (CH .EQ. CHAR(13)) CH = CHAR(10)

 CALL PXFFPUTC(OUTUNT, CH, ISTAT)
 IF (ISTAT .NE. 0) STOP ‘PXFFPUTC ERROR’

 GOTO 50
60 CONTINUE
 CLOSE(INUNT)
 CLOSE(OUTUNT)
 END

A.8.7 Bit Field Manipulation

These functions are functionally identical to those of the same name in the MIL-STD-1753 {A4}, a common ext
to FORTRAN 77. (See A.2.3.0.4.5 for further discussion of MIL-STD-1753 {A4} Extensions.) While the MIL-S
{A4} requires this type of function to be external, the developers of this standard intentionally avoided spe
whether these functions were to be implemented as externals or intrinsics. Only this set of bit-manipulation fu
was specified in this standard because they were deemed minimally sufficient to access all the available func
provided in POSIX.1 {2}.

A.8.7.1 Inclusive OR

There is no additional rationale provided for this subclause.

A.8.7.2 Logical AND

There is no additional rationale provided for this subclause.

A.8.7.3 Bitwise NOT

There is no additional rationale provided for this subclause.
134 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

d date
g
o be
tice,
anged to
crease

inherent
mplete

e cases of

ument list
TRAN

.
w
ffectively
A.8.8 System Date and Time

A.8.8.1 Local Time

The PXFLOCALTIME() subroutine converts time in seconds since the epoch to local time. The current time an
can be retrieved from the system by calling PXFTIME(). It can then be converted into local time by callin
PXFLOCALTIME(). The PXFSTAT() subroutine will return file times in seconds since the epoch, which can als
converted to local time using PXFLOCALTIME(). Although a number of time procedures exist as standard prac
the developers of this standard chose to introduce this new procedure since the return value of year was ch
provide the Gregorian year rather than simply the year of the century. This full value permits monotonic in
across the century change, which is almost upon us. Further, Gregorian year is returned in both the DATE and the
VALUES(1) arguments of the Fortran 90 {A1} intrinsic subroutine DATE_AND_TIME().

A subroutine that returned a character string describing current time was discarded in order to avoid the
problems of internationalization of such a string. It was felt that this one subroutine provided minimal but co
functionality.

While the normal range of the value of seconds is 0–59, the range is extended to 0–61 to be able to handle th
“leap seconds.”

A.8.9 Command-Line Arguments

Although a large number of existing implementations already have the procedures GETARG() and IARGC() defined,
the developers of this standard chose to specify new procedures in order to increase their robustness. The arg
returned by PXFGETARG() is zero-based, i.e., argument number zero is the command. It was argued that FOR
77 programmers are more accustomed to one-based indexing, and that because the array passed to the PXFEXECV()
subroutine would be, by default, one based, specifying PXFGETARG() to be zero-based would be confusing
However, the most common usage of PXFGETARG() will likely be to read the arguments of the command no
executing. Since the command name is argument number zero, the list of arguments to the command are e
one based. In addition, all of the current implementations surveyed are zero based.

The following program demonstrates the usage of the PXFGETARG() and IPXFARGC() subroutines; it simply
displays the command-line arguments that were passed to the current program.

 PROGRAM ARGS

 INTEGER I, STATUS, ILEN
 CHARACTER*128 ARG, PGMNAM

 INTEGER IPXFARGC

C Complain if no arguments are passed.

 IF (IPXFARGC() .EQ. 0) THEN
 CALL PXFGETARG(0, PGMNAM, ILEN, STATUS)
 WRITE (IPXFCONST (‘STDERR’),20) ‘usage: ’, PGMNAM(1:ILEN), ‘arg1 [arg2]
...’
 STOP
 END IF

 WRITE (*,10) ‘The number of arguments = ’, IPXFARGC()
10 FORMAT (A,14)

 DO I=1, IPXFARGC()
Copyright © 1992 IEEE All Rights Reserved 135

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77

ling

h is one

mine the
gh the

and
mon

ng.

se
ge, the
extended
vide
bility to
es in the

{A1}.
 CALL PXFGETARG(I, ARG, ILEN, STATUS)
 WRITE (*,20) ARG(1:ILEN)
20 FORMAT (A)
 END DO

 END

A.8.9.1 Get Command-Line Argument

Arguments were added to PXFGETARG() to specify the returned length of the string (to handle the significant trai
blanks issue), and to permit an error return.

A.8.9.2 Index of Last Command-Line Argument

As explained above, the array of command-line arguments is zero based (unlike a FORTRAN 77 array, whic
based).

A.8.10 Character String Procedure

A.8.10.1 Length of a String Trimmed of Trailing Blanks

Because of the fixed-declaration characteristic of FORTRAN 77 character variables, and the need to deter
actual length, minus the trailing blanks, of the string stored in that variable, this function was added. Althou
FORTRAN 77 standard INDEXfunction()could information, the developers of this standard felt that usability
portability would be improved by including this special case function. While the name LNBLNK is current com
practice, the specific name was chosen to reflect the TRIM() intrinsic function in Fortran 90 {A1}. In addition, the use
of the PXF prefix made it clearer that this subroutine is only expected to be needed for a FORTRAN 77 bindi

A.8.11 Extended Range Integer Manipulation

As discussed in 2.3.2.2, POSIX.1 {2} makes use of the unsigned integer data type available in the C language. Becau
there is no primitive type available in FORTRAN 77 that is guaranteed to provide equivalent numeric ran
developers of this standard decided it was necessary to provide a portable means for manipulating these
range integers. It was not intended to specify a new primitive type for use in FORTRAN 77 applications, or to pro
utilities to support general-purpose functionality (e.g., arithmetic operations). Rather, it was agreed that the a
compare two extended range integers was sufficient to support common or intended usage of these valu
POSIX.1 {2} environment. See A.2.3.2.2 for relevant technical details.

A.8.11.1 Unsigned Comparison

There is no additional rationale provided for this subclause.

A.8.12 Process Termination

No interactions for the PAUSE statement are specified since it has been identified as obsolete by Fortran 90

A.8.12.1 Interactions of the FORTRAN 77 STOP Statement

Note that the FORTRAN 77 standard does not allow for a negative value, so

 STOP -1

is not standard conforming. The equivalent
136 Copyright © 1992 IEEE All Rights Reserved

LANGUAGE INTERFACES—PART 1: BINDING FOR SYSTEM API IEEE STD 1003.9-1992

us value
given

d the
c data
 access

aining an
 of user

s

rinting,
 Co.

oup and
onating
 STOP 255

must be used to obtain the equivalent functionality.

A.8.12.2 Interactions of the FORTRAN 77 END Statement

There is no additional rationale provided for this subclause.

A.8.12.3 POSIX-Based Fortran Process Termination

Originally, the FORTRAN 77 language construct STOP was referenced rather than specifying PXFEXIT(). The
functionality is similar (i.e., it terminates the process), but STOP does not provide a method for returning a stat
to the system. Also, PXFEXIT() has clearly defined cleanup responsibilities that need not be met by a
implementation when STOP is executed.

A.9 System Databases

A.9.1 System Databases

A.9.2 Database Access

A.9.2.1 Group Database Access

Note that the group structure differs slightly from the POSIX.1 {2} specification because POSIX.1 {2} specifie
gr_mem field as a “null-terminated vector of pointers to the individual member names” that “may point to stati
that is overwritten in each call.” Such a value would be difficult to represent and manipulate using the structure
and manipulation subroutines in this standard. As a result, an array of character strings is used, each cont
individual member name. Implementors should note that the length of this array is bound only by the number
names allowed in a group. Tricks with dynamic storage in the PXF<TYPE>GET() subroutines may be required if thi
bound is unspecified.

Group names may contain significant trailing blanks. Thus, a length argument is required and provided.

A.9.2.2 User Database Access

There is no additional rationale provided for this subclause.

A.10 Data Interchange Format

A.10.1 Archive/interchange File Format

There is no additional rationale provided for this clause.

Acknowledgments

The developers of this standard wish to thank the following organizations for donating significant computer, p
and editing resources to the production of this standard: UniForum (formerly/usr/group) and Hewlett Packard

Also, the developers of this standard wish to thank the organizations employing the members of the working gr
the balloting group for both covering the expenses related to attending and participating in meetings and for d
the time required both in and out of meetings for this effort.
Copyright © 1992 IEEE All Rights Reserved 137

IEEE STD 1003.9-1992 IEEE STANDARD FOR INFORMATION TECHNOLOGY—POSIX FORTRAN 77
UniForum

Cray Research

Genetic Computing Group

Hewlett-Packard Company

IBM Corporation

Lawrence Livermore National Laboratory

Sandia National Laboratories

San Diego Supercomputer Center
138 Copyright © 1992 IEEE All Rights Reserved

	Title Page
	Introduction
	Participants
	CONTENTS
	1. General
	1.1 Scope
	1.2 Normative References
	1.3 Conformance

	2. Terminology and General Requirements
	2.1 Conventions
	2.2 Definitions
	2.3 FORTRAN 77 Language Bindings Concepts
	2.4 Error Numbers
	2.5 Primitive System Data Types
	2.6 Environment Description
	2.7 FORTRAN 77 Language Definitions
	2.8 Numerical Limits
	2.9 Symbolic Constants

	3. Process Primitives
	3.1 Process Creation and Execution
	3.2 Process Termination
	3.3 Signals
	3.4 Timer Operations

	4. Process Environment
	4.1 Process Identification
	4.2 User Identification
	4.3 Process Groups
	4.4 System Identification
	4.5 Time
	4.6 Environment Variables
	4.7 Terminal Identification
	4.8 Configurable System Variables

	5. Files and Directories
	5.1 Directories
	5.2 Get Working Directory
	5.3 General File Creation
	5.4 Special File Creation
	5.5 File Removal
	5.6 File Characteristics
	5.7 Configurable Pathname Variables

	6. Input and Output Primitives
	6.1 Pipes
	6.2 File Descriptor Manipulation
	6.3 File Descriptor Deassignment
	6.4 Input and Output
	6.5 Control Operations on Files

	7. Device- and Class-Specific Procedures
	7.1 General Terminal Interface
	7.2 General Terminal Interface Control Subroutines

	8. FORTRAN 77 Language Library
	8.1 FORTRAN 77 Intrinsics
	8.2 System Symbolic Constant Access
	8.3 Structure Creation and Manipulation
	8.4 Subroutine-Handle Manipulation
	8.5 External Unit and File Description Interaction
	8.6 Stream I/O
	8.7 Bit Field Manipulation
	8.8 System Date and Time
	8.9 Command-Line Arguments
	8.10 Character String Procedures
	8.11 Extended Range Integer Manipulation
	8.12 Process Termination

	9. System Databases
	9.1 System Databases
	9.2 Database Access

	10. Data Interchange Format
	10.1 Archive/interchange File Format

	Annex A—Rationale and Notes
	A.1 General
	A.2 Terminology and General Requirements
	A.3 Process Primitives
	A.4 Process Environment
	A.5 Files and Directories
	A.6 Input and Output Primitives
	A.7 Device- and Class-Specific Functions
	A.8 FORTRAN 77 Language Library
	A.9 System Databases
	A.10 Data Interchange Format
	Acknowledgments

