
  

 
 

AVR319: Using the USI module for SPI 
communication 

Features 
• C-code driver for SPI master and slave 
• Uses the USI module 
• Supports SPI Mode 0 and 1 

Introduction 
The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer 
between an AVR device and peripheral devices or between several AVR devices. 
The strength of the SPI bus includes ease of use, high communication speed and a 
vast amount of peripheral devices supporting it. 

The Universal Serial Interface (USI) module on devices like ATmega169, ATtiny26 
and ATtiny2313 has a dedicated Three-wire mode. The USI provides the basic 
hardware resources needed for synchronous serial communication. Combined with 
a minimum of control software, the USI allows higher transfer rates, less CPU load 
and in general uses less code space than solutions based on software only. 

This application note describes a SPI interface implementation, in form of a full-
featured driver and an example of usage for this driver. The driver handles 
transmission according to SPI Modes 0 and 1. 

 

Figure 1. Example application setup 
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Theory 
This section gives a short description of the SPI interface and the USI module. For 
more detailed information refer to the datasheets. 

Serial Peripheral 
Interface 

The Serial Peripheral Interface allows high-speed synchronous data transfer between 
an AVR device and peripheral devices or between several AVR devices. 

The interconnection between Master and Slave devices with SPI is shown in Figure 2. 
The system consists of two shift registers, and a master clock generator. The SPI 
Master initiates the communication cycle when pulling low the Slave Select (SS) pin 
of the desired Slave. Master and Slave prepare the data to be sent in their respective 
shift registers, and the Master generates the required clock pulses on the SCK line to 
interchange data. 

Figure 2. SPI Master-slave interconnection 
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The four combinations of SCK phase and polarity with respect to serial data are 
determined by clock phase (CPHA) and clock polarity (CPOL) settings. The SPI data 
transfer formats are shown in Figure 3 and Figure 4 below. Data bits are shifted out 
and latched in on opposite edges of the SCK signal, ensuring sufficient time for data 
signals to stabilize. 

SPI Data Modes 
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Figure 3. SPI Transfer Format with CPHA = 0 
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Figure 4. SPI Transfer Format with CPHA = 1 
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Universal Serial 
Interface 

The Universal Serial Interface provides the basic hardware resources needed for 
synchronous serial communication. The main features of the USI are: 

• Two-wire Synchronous Data Transfer 
• Three-wire Synchronous Data Transfer 
• Data Received Interrupt 
• Wakeup from Idle Mode 
The USI Three-wire mode is compliant with the Serial Peripheral Interface (SPI) mode 
0 and 1, but does not have the slave select (SS) pin functionality. However, this 
feature can be implemented in software if necessary. Figure 5 below shows the USI 
module block diagram, and Figure 6 shows the module in Three-wire mode. 
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Figure 5. Universal Serial Interface, Block Diagram 
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Figure 6. Three-wire Mode Operation, Simplified Diagram 
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The USI Data Register (USIDR) is an 8-bit Shift Register that contains the incoming 
and outgoing data. The register has no buffering so the data must be read as quickly 
as possible to ensure that no data is lost. The USI Status Register (USISR) contains 
a 4-bit counter. Both the shift register and the counter are clocked simultaneously by 
the same clock source. This allows the counter to count the number of bits received 
or transmitted and sets a flag alternatively generates an interrupt when the transfer is 
complete. The clock can be selected to use three different sources: The USCK pin, 
Timer/Counter0 Compare Match or from software. 
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Figure 6 shows two USI units operating in Three-wire mode, one as Master and one 
as Slave. The two shift registers are interconnected in such way that after eight USCK 
clocks, the data in each register are interchanged. The same clock also increments 
the USI’s 4-bit counter. The Counter Overflow Interrupt Flag, or USIOIF, can therefore 
be used to determine when a transfer is completed. The clock is generated by the 
Master device software by toggling the USCK pin via the PORT Register or by writing 
a one to the USITC bit in USICR. 

It is the master device’s responsibility to give the slave device time to prepare its next 
byte before starting a new transfer. 

Implementation 
This application note describes the implementation of a SPI driver for both master 
and slave communication. An example setup with the USI module as a SPI master is 
shown in Figure 7 below. The driver is written as a standalone driver that easily can 
be included into the main application. Use the code as an example, or customize it for 
own use. All relevant functions and global variables are prefixed with ‘spiX_’, so a 
quick search-and-replace is enough to rename the driver interface in case of naming 
conflicts. 

Figure 7. USI module setup as SPI master 
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The driver uses the USI module and the USI counter overflow interrupt. Therefore, 
interrupts must be enabled to be able to use the driver. In master mode the driver 
also uses Timer/Counter0. The T/C0 compare match interrupt is used to generate the 
master clock signal. 

The driver interface consists of these functions: 

• spiX_initmaster which initializes the driver in master mode. 
• spiX_initslave which initializes the driver in slave mode. 
• spiX_put which starts a transfer in master mode, or prepares a byte in slave mode. 
• spiX_get which returns the last incoming byte. 
• spiX_wait which waits for a transfer to finish. 
Note that the Slave Select (SS) line of the SPI bus must be controlled manually in 
software if required by the slave device. When using the USI as a SPI slave, you also 
need to watch the incoming SS line with for instance an interrupt line if required. The 
driver in this application note does not use the SS line. 

The following global variables are also available: 

• spiX_status which contains the driver status flags. 
• storedUSIDR which contains the last incoming byte. This should be accessed with 

the spiX_get() function only. 
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The functions are documented in the source code. In addition, the simplified flowchart 
for a typical byte transfer session is given in Figure 8 below. The example source 
code accompanying this application note shows an implementation of such a session. 

Note that the part of the flowchart below grouped under the spiX_wait() function is 
performed by interrupt handlers and not the function itself. The function just waits for 
the transfer complete flag to be set. 

The example code is written for the IAR Embedded Workbench AVR C compiler 
version 3.2. 

Literature References 
• ATmega169 Datasheet 
• Application Note AVR310: Using the USI module as a TWI master 
 



 AVR319
 

 7

2582A-AVR-09/04 

Figure 8. One byte transfer in master and slave mode 
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