

AVR319: Using the USI module for SPI
communication

Features
• C-code driver for SPI master and slave
• Uses the USI module
• Supports SPI Mode 0 and 1

Introduction
The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer
between an AVR device and peripheral devices or between several AVR devices.
The strength of the SPI bus includes ease of use, high communication speed and a
vast amount of peripheral devices supporting it.

The Universal Serial Interface (USI) module on devices like ATmega169, ATtiny26
and ATtiny2313 has a dedicated Three-wire mode. The USI provides the basic
hardware resources needed for synchronous serial communication. Combined with
a minimum of control software, the USI allows higher transfer rates, less CPU load
and in general uses less code space than solutions based on software only.

This application note describes a SPI interface implementation, in form of a full-
featured driver and an example of usage for this driver. The driver handles
transmission according to SPI Modes 0 and 1.

Figure 1. Example application setup

USI module in
ATmega169

SPI module in
ATmega128

MOSI

MISO

SCK

~SS

DO

DI

USCK

SW controlled

8-bit
Microcontrollers

Application Note

Rev. 2582A-AVR-09/04

2 AVR319
2582A-AVR-09/04

Theory
This section gives a short description of the SPI interface and the USI module. For
more detailed information refer to the datasheets.

Serial Peripheral
Interface

The Serial Peripheral Interface allows high-speed synchronous data transfer between
an AVR device and peripheral devices or between several AVR devices.

The interconnection between Master and Slave devices with SPI is shown in Figure 2.
The system consists of two shift registers, and a master clock generator. The SPI
Master initiates the communication cycle when pulling low the Slave Select (SS) pin
of the desired Slave. Master and Slave prepare the data to be sent in their respective
shift registers, and the Master generates the required clock pulses on the SCK line to
interchange data.

Figure 2. SPI Master-slave interconnection

SHIFT
ENABLE

The four combinations of SCK phase and polarity with respect to serial data are
determined by clock phase (CPHA) and clock polarity (CPOL) settings. The SPI data
transfer formats are shown in Figure 3 and Figure 4 below. Data bits are shifted out
and latched in on opposite edges of the SCK signal, ensuring sufficient time for data
signals to stabilize.

SPI Data Modes

 AVR319

 3

2582A-AVR-09/04

Figure 3. SPI Transfer Format with CPHA = 0

Bit 1
Bit 6

LSB
MSB

SCK (CPOL = 0)
mode 0

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 2

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

MSB first (DORD = 0)
LSB first (DORD = 1)

Figure 4. SPI Transfer Format with CPHA = 1

SCK (CPOL = 0)
mode 1

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 3

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB first (DORD = 0)
LSB first (DORD = 1)

Universal Serial
Interface

The Universal Serial Interface provides the basic hardware resources needed for
synchronous serial communication. The main features of the USI are:

• Two-wire Synchronous Data Transfer
• Three-wire Synchronous Data Transfer
• Data Received Interrupt
• Wakeup from Idle Mode
The USI Three-wire mode is compliant with the Serial Peripheral Interface (SPI) mode
0 and 1, but does not have the slave select (SS) pin functionality. However, this
feature can be implemented in software if necessary. Figure 5 below shows the USI
module block diagram, and Figure 6 shows the module in Three-wire mode.

4 AVR319
2582A-AVR-09/04

Figure 5. Universal Serial Interface, Block Diagram

D
A

T
A

 B
U

S

U
S

IP
F

U
S

IT
C

U
S

IC
L

K

U
S

IC
S

0

U
S

IC
S

1

U
S

IO
IF

U
S

IO
IE

U
S

ID
C

U
S

IS
IF

U
S

IW
M

0

U
S

IW
M

1

U
S

IS
IE

B
it7

Two-wire Clock
Control Unit

DO (Output only)

DI/SDA (Input/Open Drain)

USCK/SCL (Input/Open Drain)
4-bit Counter

USIDR

USISR

D Q
LE

USICR

CLOCK
HOLD

TIM0 COMP

B
it0

[1]

3

0
1

2

3

0
1

2

0

1

2

Figure 6. Three-wire Mode Operation, Simplified Diagram

SLAVE

MASTER

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

DO

DI

USCK

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

DO

DI

USCK

PORTxn

The USI Data Register (USIDR) is an 8-bit Shift Register that contains the incoming
and outgoing data. The register has no buffering so the data must be read as quickly
as possible to ensure that no data is lost. The USI Status Register (USISR) contains
a 4-bit counter. Both the shift register and the counter are clocked simultaneously by
the same clock source. This allows the counter to count the number of bits received
or transmitted and sets a flag alternatively generates an interrupt when the transfer is
complete. The clock can be selected to use three different sources: The USCK pin,
Timer/Counter0 Compare Match or from software.

 AVR319

 5

2582A-AVR-09/04

Figure 6 shows two USI units operating in Three-wire mode, one as Master and one
as Slave. The two shift registers are interconnected in such way that after eight USCK
clocks, the data in each register are interchanged. The same clock also increments
the USI’s 4-bit counter. The Counter Overflow Interrupt Flag, or USIOIF, can therefore
be used to determine when a transfer is completed. The clock is generated by the
Master device software by toggling the USCK pin via the PORT Register or by writing
a one to the USITC bit in USICR.

It is the master device’s responsibility to give the slave device time to prepare its next
byte before starting a new transfer.

Implementation
This application note describes the implementation of a SPI driver for both master
and slave communication. An example setup with the USI module as a SPI master is
shown in Figure 7 below. The driver is written as a standalone driver that easily can
be included into the main application. Use the code as an example, or customize it for
own use. All relevant functions and global variables are prefixed with ‘spiX_’, so a
quick search-and-replace is enough to rename the driver interface in case of naming
conflicts.

Figure 7. USI module setup as SPI master

Master device
implementing

SPI communication
via its USI module

Slave SPI device

MOSI

MISO

SCK

~SS

DO

DI

USCK

SW controlled

The driver uses the USI module and the USI counter overflow interrupt. Therefore,
interrupts must be enabled to be able to use the driver. In master mode the driver
also uses Timer/Counter0. The T/C0 compare match interrupt is used to generate the
master clock signal.

The driver interface consists of these functions:

• spiX_initmaster which initializes the driver in master mode.
• spiX_initslave which initializes the driver in slave mode.
• spiX_put which starts a transfer in master mode, or prepares a byte in slave mode.
• spiX_get which returns the last incoming byte.
• spiX_wait which waits for a transfer to finish.
Note that the Slave Select (SS) line of the SPI bus must be controlled manually in
software if required by the slave device. When using the USI as a SPI slave, you also
need to watch the incoming SS line with for instance an interrupt line if required. The
driver in this application note does not use the SS line.

The following global variables are also available:

• spiX_status which contains the driver status flags.
• storedUSIDR which contains the last incoming byte. This should be accessed with

the spiX_get() function only.

6 AVR319
2582A-AVR-09/04

The functions are documented in the source code. In addition, the simplified flowchart
for a typical byte transfer session is given in Figure 8 below. The example source
code accompanying this application note shows an implementation of such a session.

Note that the part of the flowchart below grouped under the spiX_wait() function is
performed by interrupt handlers and not the function itself. The function just waits for
the transfer complete flag to be set.

The example code is written for the IAR Embedded Workbench AVR C compiler
version 3.2.

Literature References
• ATmega169 Datasheet
• Application Note AVR310: Using the USI module as a TWI master

 AVR319

 7

2582A-AVR-09/04

Figure 8. One byte transfer in master and slave mode

MASTER

Ongoing
transfer

?

Write Collision

Prepare flags and USI
data register and start

timer

Compare match interrupt
handler toggles clock line
which in turn clocks the

USI module

All 8 bits
transferred

?

USI overflow interrupt
handler stops timer and

stores incoming byte

Ready for next
transfer

No

Yes

Yes

No

Master application calls
spiX_put(...)

Master application calls
spiX_get() to get stored

byte

SLAVE

Prepare flags and USI
data register and wait for
clock signal from master

Clock signal from master
device clocks the USI

module

All 8 bits
transferred

?

USI overflow interrupt
handler stores incoming

byte

Ready for next
transfer

Yes

No

Slave application calls
spiX_put(...)

Slave application calls
spiX_get() to get stored

byte

sp
iX

_p
ut

(..
.)

sp
iX

_w
ai

t()
sp

iX
_g

et
()

Ongoing
transfer

?

Write Collision
No

Yes

Disclaimer

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

 Literature Requests

www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET
FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY
WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR
INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR
LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of
the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.
Atmel does not make any commitment to update the information contained herein. Atmel’s products are not intended, authorized, or warranted
for use as components in applications intended to support or sustain life.

© Atmel Corporation 2004. All rights reserved. Atmel®, logo and combinations thereof, AVR®, and AVR Studio® are registered trademarks,
and Everywhere You Are™ are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of
others.

2582A-AVR-09/04

	AVR319: Using the USI module for SPI communication
	Features
	Introduction
	Theory
	Serial Peripheral Interface
	SPI Data Modes

	Universal Serial Interface

	Implementation
	Literature References
	Disclaimer

