
WINDOWS VISTA UIPI
User Interface Privilege Isolation

Speaker Info

� Edgar Barbosa
� Security researcher
� Currently employed at COSEINC
� Experience with reverse engineering of

Windows kernel executables
� Published some articles at rootkit.com
� Participated in the creation of bluepill, a

hardware-virtualization based rootkit

Windows Vista UIPI

� Shatter attacks
� Integrity Levels
� UIPI initialization
� Process and thread initialization
� Window messages
� UIPI in action
� Special cases

Why UIPI?

� Reasons to learn about UIPI internals:
� It’s not well documented
� The new book “Writing secure code for Windows

Vista” dedicates only one page to discuss UIPI
� UIPI affects several applications and API

functions
� There are some possible vectors of attacks

against UIPI
� To understand how windows messages are

internally processed
� Understand how some internal function works

under the hood

Shatter attacks

� Published by Chris Paget in 2002
� Process by which one application could

execute arbitrary code in another application
� Uses the window messaging system to send

messages from an unprivileged app to the
window message procedure of a privilege
application.

� WM_TIMER could be sent with a callback
pointer parameter

UIPI

� Stands for “User Interface Privilege Isolation”
� New for Windows Vista Operating System
� Vista now uses Integrity Levels for each

running process:
� 0x1000 - Low integrity
� 0x2000 - Medium integrity
� 0x3000 - High integrity
� 0x4000 - System Integrity

� Each application runs with one assigned IL.

UIPI

� A lower privilege application cannot [1] :
� Perform a window handle validation of higher

process privilege
� SendMessage or PostMessage to higher privilege

application windows (block “Shatter attacks”)
� Use thread hooks to attach to a higher privilege

process
� Use journal hooks to monitor a higher privilege

process
� Perform DLL injection to a higher privilege

process

Windows Vista UIPI

UIPI initialization

UIPI initialization

� The UIPI initialization process occurs in the
load time of the graphical subsystem module
(win32k.sys)

� DriverEntry will call Win32UserInitialize
function which will call:
� InitUIPI (win32k)

� RtlQueryElevationFlags (ntoskrnl)

� InitClipFormatExceptionList (win32k)

UIPI initialization
KUSER_SHARED_DATA
� Is a memory area shared between the user

mode and kernel mode space
� Mapped for each running process
� Initialized by the OS executive - ntoskrnl
� It contains very important system variables:

� KdDebuggerEnabled, SystemCall, TickCount
� DbgElevationEnabled, DbgVirtEnabled, ….

� It is protected:
� Read-only access for user mode code

UIPI initialization
RtlQueryElevationFlags
� Undocumented function exported by ntoskrnl.exe

and the ntdll.dll
� Prototype:

� NTSTATUS RtlQueryElevationFlags(OUT ULONG
*Flags);

� Retrieve UAC system information from the shared
memory area (KUSER_SHARED_DATA)

� Return flags:
� ElevationEnabled (0x01) - UAC is enabled
� VirtEnabled (0x02) - Virtualization is enabled
� InstallerDetectEnabled (0x04) - Detection of installers

UIPI initialization
VOID InitUIPI();
� UIPI is initialized by the InitUIPI function

implemented inside the win32k kernel module
� Calls the RtlQueryElevationFlags to check if

elevation is enabled (ElevationEnabled).
� If elevation is enabled, then check the value

“EnableUIPI” inside the system policies
registry key.

� If EnableUIPI value is set to true, the system
set the global variable gbEnforceUipi to TRUE.

� UIPI is only active if gbEnforceUipi is equal
TRUE.

UIPI initialization
InitClipFormatExceptionList
� Called immediately after InitUIPI if

gbEnforceUipi value is true.
� Responsible for reading the values of the

registry key:
� HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System\UIPI\Clip

board\ExceptionFormats

� gpClipFormatExceptionList:
� Pointer to a list of Clipboard Format values, e.g. CF_OEMTEXT

(0x07)

� gcClipFormatExceptionList:
� Global counter of the number of elements inside the list pointed

by the gpClipFormatExceptionList pointer.

UIPI Initialization

Windows Vista UIPI

Processes, threads and UIPI

Process initialization and UIPI

� Data structures:
� EPROCESS
� PROCESSINFO

� Functions:
� xxxInitProcessInfo()

EPROCESS

� Each process is represented by an executive
process object structure (EPROCESS)

� Accessible only for kernel mode code
� Some EPROCESS data information includes:

� Handle table pointer
� Virtual Address space Descriptors (VAD)
� Access token
� PROCESSINFO pointer

PROCESSINFO

� Structure used by win32k to store all the
USER32 related information about a process.

� Created at the first time that the process calls
a USER32 syscall and it is initialized by the
xxxInitProcessInfo function

� Address stored at EPROCESS-
>Win32Process

� Data information includes:
� Pointer to EPROCESS
� Desktop, UserHandleCount, WinStation

information
� ….

EPROCESS and
PROCESSINFO

xxxInitProcessInfo

� Prototype
� NTSTATUS xxxInitProcessInfo(PROCESSINFO

*pi);

� Responsible for the initialization of the
PROCESSINFO structure

� Open the primary token of the process with
PsReferencePrimaryToken and

� Get the Integrity Level of the process by calling
SeQueryInformationToken with the
TOKEN_INTEGRITY_LEVEL information
class

xxxInitProcessInfo

� If gbEnforceUIPI == TRUE
� Copy the Integrity Level value at pi-
>IntegrityLevel

� Check for the TokenUIAccess flag using
SeQueryInformationToken function. If the flag
is set, set the correspondent flag at pi->Flags

� The TokenUIAccess importance will be
presented soon.

Thread initialization and UIPI

� Data structures:
� ETHREAD
� THREADINFO

� Functions:
� xxxInitThreadInfo
� NtUserCheckAccessForIntegrityLevel

ETHREAD

� Structure used by the kernel to represent a
thread (ETHREAD)

� Each ETHREAD is always owned by an
EPROCESS structure (ETHREAD-
>Tcb.Process)

� Linked to other threads by the ThreadListEntry
pointer

� Some fields:
� InitialStack, StartAddress, ThreadListEntry,

ApcState
� Priority, Affinity, THREADINFO, ...

THREADINFO

� Undocumented structure used by win32k to
store USER32 information related to a thread

� Created only if the thread calls a USER32
function

� THREADINFO address stored at
ETHREAD->Tcb.Win32Thread

� Some fields:
� pq (Input message queue)
� mlPost (Post message queue)
� Send message queue
� Windows hook information...

xxxCreateThreadInfo()

� Function called to allocated and initialize the
THREADINFO structure

� Some responsibilities:
� Allocate and initialize the input, send and post

message queues.
� Set desktop
� Set integrity level of the message queue
� Set foreground priority

Kernel structures

NtUserCheckAccessForIntegrity
Level
� Undocumented syscall which can be used by

usermode programs (not officially supported)
� It’s used by the USER32 usermode functions:

� TileWindows()
� CascadeWindows()

� NTSTATUS
NtUserCheckAccessForIntegrityLevel (Pid1,
Pid2, *BOOL Result);

� It checks the current process PROCESSINFO
integrity level against the integrity level of the
target process PROCESSINFO.

Windows Vista UIPI

Window messages

Window messages

� Data structures:
� Message Queue

� Functions:
� ChangeWindowMessageFilter

Window messages

� Each window has a window procedure.
� Window messages are used by the system to

send events to a window procedure.
� Each windows, which is identified by a window

handle (HWND), is always owned by a thread.
� But each thread can own more than one

window
� Range 0x0 -> 0xffff (available to programmer)
� 0x10000 -> 0x1ffff (reserved to system)

Message Queues

� Each received message is sent to a message
queue

� The window message queues are
implemented in the THREADINFO structure

� There are 3 queues:
� Input queue (SendInput, mouse and keyboard

msgs)
� Post queue (PostMessage)
� Send queue (SendMessage)

� The Input Queue structure, a.k.a Virtualized
Input Queue (VIQ), Integrity Level field.

Message Queues

� The VIQ structure is allocated by the
AllocQueue() function, which is called by the
xxxCreateThreadInfo() function.

� AllocQueue() returns a pointer to the VIQ
address.

� If the owner process of the Queue is the
CSRSS process, the Queue->IntegrityLevel
will be set equal 0x2000
(MEDIUM_INTEGRITY). If not, it will be set
equal the PROCESSINFO->IntegrityLevel.

VIQ, IntegrityLevel and
Messages

ChangeWindowMessageFilter

� Documented API directly related to UIPI
� New for Window Vista.
� Can be used to add or remove Window messages from the

message filter
� If a message is added to the filter, any other process is able

to send that message to the process, regardless of the
integrity level of the processes.

� Prototype:
� BOOL ChangeWindowMessageFilter(UINT msg, DWORD

dwFlag);
� dwFlag:

� MSGFLT_ADD: Adds the message to the filter
� MSGFLT_REMOVE: Removes the message from the filter

Window Message Filter
implementation
� Message Filter is implemented in the

PROCESSINFO.
� Message queues are implemented per-thread, but

all threads (windows) share the same Message
Filter.

� Can’t be used by LOW_INTEGRITY processes!
� win32k!_ChangeWindowMessageFilter function is

the real code responsible for the filter
management.

� The filter is implemented using bitmap structures:
� 0 = message is not allowed
� 1 = message is allowed

� The address of the bitmap tables is stored at
PROCESSINFO->MessageFilter

Message Filter implementation

Windows Vista UIPI

UIPI in action

UIPI in action

� How PostThreadMessage function works
internally in Windows Vista?

� Functions:
� PostThreadMessage
� NtUserPostThreadMessage
� AllowMessageAcrossIL
� CheckForMessageAccessCrossIL
� CheckAccessForIntegrityLevel

PostThreadMessage

� PostThreadMessage function posts a
message to the message queue of the
specified thread.

� It returns without waiting for the thread to
process the message.

� It uses the syscall NtUserPostThreadMessage

NtUserPostThreadMessage

� Kernel mode implementation of
PostThreadMessage

� Prototype:
� BOOL NtUserPostThreadMessage(DWORD

idThread, UINT msg, WPARAM wParam,
LPARAM lParam);

� Flow:
� Get the address of the THREADINFO structure of

the current thread and save it in the _gptiCurrent
variable.

� Get the THREADINFO of the target idThread
using the PtiFromThreadId() function.

NtUserPostThreadMessage

� If they are from the same desktop, it calls the
CheckForMessageAccessCrossIL() function,
which will verify if the destination thread allows
the window message to be posted in the target
thread post message queue.

� If the return code of
CheckForMessageAccessCrossIL is TRUE, the
PostThreadMessage is called

� PostThreadMessage allocates a new queue entry
(AllocQEntry), stores the message
(StoreQMessage) and set the wake message
flags (SetWakeBit)

NtUserPostThreadMessage

CheckForMessageAccessCross
IL
� CheckForMessageAccessCrossIL is a

complex function
� We will analyze now each function used by

CheckForMessageAccessCrossIL:
� CheckAccessForIntegrityLevel()
� AllowMessageCrossIL()

CheckAccessForIntegrityLevel

� Internal win32k function extremelly used
� Prototype:

� BOOL CheckAccessForIntegrityLevel(ULONG
SourceIntegrityLevel, ULONG
TargetIntegrityLevel);

� If the SourceIntegrityLevel <
TargetIntegrityLevel, returns FALSE

� If SourceIntegrityLevel >= TargetIntegrityLevel,
returns TRUE.

AllowMessageCrossIL

� Internal win32k function
� Prototype:

� BOOL AllowMessageCrossIL(PROCESSINFO
*pi, UINT msg);

� This function uses the MessageFilter bitmap
structures created by the
ChangeWindowMessageFilter function.

� Return:
� If TRUE, the target thread will accept the

message
� If FALSE, doesn’t mean nothing! Why?

CheckForMessageAccessCross
IL
� Prototype:

� BOOL CheckForMessageAccessCrossIL (
PROCESSINFO *piSource, PROCESSINFO
*piTarget, UINT msg, WPARAM wParam);

� How it works?
� It compares the piSource against piTarget. If

equal, return TRUE. There’s no reason in
checking threads of the same processinfo.

� If different, calls the AllowMessageAcrossIL(
piTarget, msg), but it do not check the return
value immediately!

CheckForMessageAccessCross
IL

� It now compares the msg with a list of always allowed
messages:
� 0x000 - WM_NULL
� 0x003 - WM_MOVE
� 0x005 - WM_SIZE
� 0x00D - WM_GETTEXT
� 0x00E - WM_GETTEXTLENGTH
� 0x033 - WM_GETHOTKEY
� 0x07F - WM_GETICON
� 0x305 - WM_RENDERFORMAT
� 0x308 - WM_DRAWCLIPBOARD
� 0x30D - WM_CHANGECBCHAIN
� 0x31A - WM_THEMECHANGED
� 0x313, 0x31B (WM_???)

CheckForMessageAccessCross
IL

� If the message is in the list of always allowed,
return TRUE immediately.

� If not, checks now the returned value of the
CheckForMessageAccessCrossIL() . If equal true,
then returns TRUE.

� If false, compare the current IL against the target
IL using the CheckAccessForIntegrityLevel. If the
current thread has a IL greater or equal than the
target thread IL, returns TRUE.

� Check if CSRSS is the owner process of the
target thread and allow the message if it is.

Windows Vista UIPI

UIPI special cases

Special cases

� CSRSS
� TokenUIAccess

CSRSS threads

� The CSRSS process is responsible for the
creation of the console window for console-
mode applications.

� Each console window is controled by a
CSRSS thread (ConsoleInputThread function)
inside winsrv.dll

� It registers the window class
“ConsoleWindowClass”

� ProcessCreateConsoleWindow creates the
console window

� ConsoleWindowProc is the window procedure.

CSRSS threads

� As exception, CSRSS threads that creates
windows will have the THREADINFO-
>IntegrityLevel set equal 0x2000 (
MEDIUM_INTEGRITY) by the
xxxCreateThreadInfo function, regardless of
the CSRSS IL.

� The address of the PROCESSINFO structure
of csrss process is stored at win32k.sys in the
global variable _gpepCSRSS

� How is this related to UIPI?

CSRSS threads

� Windows owned by CSRSS threads are the
great exception rule in UIPI!

� In February 2007, Joanna Rutkowska
published in her blog [2] that is possible to send
WM_KEYDOWN messages to a open
Administrative Shell (cmd.exe) running at
HIGH IL from a LOW IL program.

� This is not only possible with cmd.exe, but with
any console mode program running regardless
of the its integrity level.

CSRSS threads

� The CheckForMessageAccessCrossIL() and
xxxInterSendMsgEx() functions checks if the
process owner of the target thread is CSRSS
(gpepCSRSS)

� If CSRSS is the owner, the message is sent or
posted even if the IL of the source thread is
lesser than the IL of the target thread.

� Message is allowed even if the target’s
message filter do not allow the message.

TokenUIAccess

� TokenUIAccess is a new token flag (at enum
TOKEN_INFORMATION_CLASS)

� At the PROCESSINFO initialization process,
the system checks for the TokenUIAccess flag
in the primary token of the process.

� If the flag is present, the TokenUIAccess is set
in the Flags field of PROCESSINFO.

� This flag allows application to potentially
override some UIPI restrictions [3]

Windows Vista UIPI

MSCTF.DLL and UIPI

MSCTF.dll

� AttachThreadInput
� MSCTF.DLL
� DoS attack
� Queue integrity level elevation

AttachThreadInput

� Input messages (keyboard, mouse, SendInput)
are inserted at the Virtualized Input Queue of the
THREADINFO.

� With the AttachThreadInput function, two threads
can share their VIQ.

� Prototype:
� BOOL AttachThreadInput(tidAttach, tidAttachTo,

fAttach);
� When 2 thread share their input queues, input

messages will be processed synchronously.
� If one thread hangs, the other thread will hang

too.

Before AttachThreadInput

After AttachThreadInput

AttachThreadInput

� Must be used very carefully because it affects
the robustness of the window message
processing of the threads.

� NtUserAttachThreadInput is the syscall used
by the user32 AttachThreadInput

� It is affected by UIPI, because the
zzzAttachThreadInput function will check the
Queue->IntegrityLevel of calling thread against
the ProcessInfo->IntegrityLevel of the target
thread.

MSCTF.DLL

� There are a DLL located in the system32
folder called MSCTF.dll which is used by the
user32.dll.

� Practically all running programs in the Vista
system loads msctf.dll

MSCTF.DLL

� MSCTF.dll is one of the few DLLs in Vista that uses
the new ChangeWindowMessageFilter() function.

� How this new API is being used by the MSCTF?
� The first step is to call the internal function

EnsurePrivateMessages()
� EnsurePrivateMessages() internals:

� Uses the USER32!RegisterWindowMessage function to
register several window messages

� RegisterWindowMessage takes as parameter a string and
returns a window message that is guaranteed to be unique
througout the system.

� It now uses the returned window message and calls
ChangeWindowMessageFilter() function

MSCTF.DLL

� Example:
gAttMsg =

RegisterWindowMessage(“MSUIM.Msg.AttachThreadInput”);
If (gAttMsg)

ChangeWindowMessageFilter(gAttMsg, MSGFLT_ADD);

� After EnsurePrivateMessages(), MSCTF will
register a window class
“CicMarshallWndClass” with the window
procedure CicMarshallWndProc();

� Where is the problem?
� The problem is inside the CicMarshallWndProc()

code responsible for the processing of gAttMsg
message

MSCTF.DLL

� The code is:
curThread = GetCurrentThreadId();

AttachThreadInput(curThread, wParam, lParam);

� If a low integrity thread calls
AttachThreadInput against a higher integrity
thread, the call will fail.

� But now, if the higher IL thread uses the
MSCTF.dll, we can simply send a gAttMsg
message and the target thread will call
AttachThreadInput for us

� SendMessage(targetwnd, gAttMsg, GetCurrentThreadId(),TRUE);

DoS attack

� Using the AttachThreadInput message created by
msctf.dll, we can create a Denial of Service tool
which will hang all application running on the
system with the msctf.dll loaded.

� Due to the fact that attach thread processes input
messages synchronously, a low IL program is
able to hang even higher integrity applications.

� One interesting consequence of attaching the
virtualized input queue of two thread of different
integrity levels is the elevation of the integrity level
of the queue of the less privileged thread.

Queue integrity level elevation

� Each input queue (VIQ) has it’s own Integrity
Level

� VIQ IL is assigned by xxxCreateThreadInfo
function

� If a medium integrity level (0x2000) thread
uses the Msctf AttachThreadInput message to
attach to a high integrity level (0x3000) thread,
the AttachThreadInput function
(zzzAttachToQueue) will elevate the queue IL
from 0x2000 to 0x3000

Final notes

� UIPI has some weird rules
� The always allowed window messages list is

not public and documented
� We will probably see malwares using the UIPI

exception rules, like the CSRSS case
� ChangeWindowMessageFilter function must

be carefully used to avoid unprivileged
processes to control privileged processes, like
the MSCTF AttachThreadInput example.

References

� [1]http://blogs.msdn.com/vishalsi/archive/2006/11/30/what-is-user-interface-
privilege-isolation-uipi-on-vista.aspx

� [2] http://theinvisiblethings.blogspot.com/2007/02/running-vista-every-
day.html

� [3] M. Howard and D. LeBlanc - Writing Secure Code for Windows Vista -
2007. page 24.

Questions?

Thank you for your time!

