


DirectX 10.1
“DirectX 10 and then some…”

Richard Huddy
Richard.Huddy@AMD.com

With thanks to Chris Oat of AMD who put 
together most of this material...

mailto:Richard.Huddy@AMD.com


Introduction to DirectX 10.1

 Super-set of DirectX 10 functionality

 Adds new features

 Adds new minimum requirements

 Backwards compatible with DX 10

 Ships with Windows Vista SP1



Creating a DirectX 10.1 
Device

 D3DX10CreateDevice(…)

 First tries to create a 10.1 device

 Falls back to a 10.0 device

 D3DX10GetFeatureLevel1(…)

 Tells you if you created a 10.0 or 10.1 device

 The 10.1 device interface inherits from 
10.0

 The Direct3D 10.1 DLLs support both 10.0 
and 10.1 hardware

 Some function calls may fail on 10.0 devices 
where new functionality is not supported



New Minimum Requirements

Feature DirectX 10.0 DirectX 10.1

Shader 
Model

4.0 4.1

MSAA 
Samples

None 4x

VS Inputs 16 32

Blending
INT8

FP16/32

INT8/16

FP16/32

Filtering FP16 FP32



New Features

 Cube map arrays
 Separate blend modes (per-MRT)
 PS can export coverage mask
 32 shader inputs/outputs 
 SSAA by running PS at sample freq.
 New shader instructions
 Standardized MSAA sample patterns
 CopyResource restrictions lifted

 Single-sample depth/stencil surfaces
 Multi-sample color & depth/stencil surfaces



New Possibilities!

 DirectX 10.1 features are important 
for improving image quality:

 Deferred shading with MSAA

 Alpha test (billboards) with MSAA

 Better reflections/GI approximation



Deferred Shading: Review

 Shading calculations depend on parameters 
like: normals, positions, and albedo

 Strategy:

 Store parameters in image space (called G-Buffer)

 Run complex shaders as post-process

 Hence, the shading is deferred

 The advantage:

 Decouples shading complexity from geometric 
complexity

 No expensive shading computation done on 
occluded samples



Deferred Shading: Compare

 On DX10.0 gaining access to the AA samples 
requires considerable extra effort

 (Write them to a single channel MRT colour buffer 
as you update the Z buffer, then re-use that color
buffer in subsequent passes)

 [Wasted extra memory this way.]

 DX10.1

 Write the Z once, no duplication of data, no extra 
shader variants to copy Z to the color channel



Why Now?
 We finally have everything necessary to 

do this correctly
 Can output to MRTs (form G-buffer)

 Can output to high-precision surfaces

 MSAA problem solved by DirectX 10.1

 DirectX 10.0
 Allows access to Multi-Sampled Color Buffers

 DirectX 10.1
 Allows access to Multi-Sampled Depth Buffer

 Use depth and inverse view-projection matrix to 
compute per-sample world space position

 Detect per-sample depth discontinuities
 Shade at fragment rate when depth samples are 

coherent

 Shade at sample rate when depth samples differ



Resolving the G-Buffer

 Compare depth value at pixel’s samples

 Find edge: Shade samples then average

 No edge: Shade a single sample

“Edge Pixels” Colored Red



Alpha test with MSAA

 Sample your alpha mask once per-sample

 Mask off samples that fail the test

 DirectX 10.1 uses a standardized sampling 
pattern so you know where the samples are

 You effectively get the alpha test running 
at the sample rate even though your 
shader runs at fragment rate

 Efficient anti-aliased alpha-tested edges



Anti-Aliased Billboards

 Thousands of ping pong balls drawn 
as imposters



 We want to draw a sphere as an 
alpha-tested imposter with MSAA

Anti-Aliased Billboards



 But MSAA only works on triangle 
edges

Anti-Aliased Billboards



 We want MSAA to happen on the 
alpha-tested edges of the imposter

Anti-Aliased Billboards



 The hardware considers a single pixel inside the 
imposter to be fully covered

 Shader is executed at the pixel’s center

Anti-Aliased Billboards



 If the pixel center is “inside” the 
alpha-tested sphere, then the entire 
pixel is drawn

Anti-Aliased Billboards



 We would like to alpha test at sample points

 But we do not want to shade the entire 
billboard at sample frequency

Anti-Aliased Billboards



 Derivative instructions used to find 
UV coordinates at each sample

 Sample locations are standardized in 
DirectX 10.1!

 Sample texture once for each MSAA 
sample

 Set the sample mask for each sample 
that passes the alpha-test

Anti-Aliased Billboards





Accurate Reflections

 Cube maps capture environment at a 
single point

 Used to approximate reflections at many 
points

 Reflections become less accurate as you 
move away from capture point

 Changing between cube maps in DirectX 
10.0 requires a state change and 
increases draw call count



Cube Map Array

 Store many capture points
 Shiny objects can pick closest cube 

map

 Or blend between the closest n cube 
maps

 Pixel shader has access to every 
capture point in a scene!
 No state changes!

 Can be used to approximate Global 
Illumination



Cube Map Array

 Environment captured from many points

 Uniform volume of light probes (radiance 
cache)

C
a
p

tu
r
e
 p

o
in

ts



Cube Map Array

 Gives spatially correct glossy reflections

 Works with area lights (anything you can 
render into the light probes)

Area Lights

Glossy Reflection



Cube Map Array

 Gives spatially correct glossy reflections

 Works with area lights (anything you can render 
into the light probes)



Cube Map Array

 Convert subset of light probes to Spherical 
Harmonics

 Use for diffuse reflections

Area Light Source



Cube Map Array

 Convert subset of light probes to Spherical Harmonics

 Use for diffuse reflections

Bounced Diffuse Light



Access to the AA Z buffer

 Application now has access to the 
AA Z buffer too…

 For high quality shadows at minimal 
extra cost

 Can reduce shader complexity and 
eliminates extra passes



Conclusion

 DirectX 10.1 adds valuable, 
simplifying functionality

 Improves image quality

 Improves efficiency

 Insanely easy to add support to 
your application if you already 
support 10.0



Thank you!

 Questions?

?
 Richard Huddy

 Richard.Huddy@amd.com


