


DirectX 10.1
“DirectX 10 and then some…”

Richard Huddy
Richard.Huddy@AMD.com

With thanks to Chris Oat of AMD who put 
together most of this material...

mailto:Richard.Huddy@AMD.com


Introduction to DirectX 10.1

 Super-set of DirectX 10 functionality

 Adds new features

 Adds new minimum requirements

 Backwards compatible with DX 10

 Ships with Windows Vista SP1



Creating a DirectX 10.1 
Device

 D3DX10CreateDevice(…)

 First tries to create a 10.1 device

 Falls back to a 10.0 device

 D3DX10GetFeatureLevel1(…)

 Tells you if you created a 10.0 or 10.1 device

 The 10.1 device interface inherits from 
10.0

 The Direct3D 10.1 DLLs support both 10.0 
and 10.1 hardware

 Some function calls may fail on 10.0 devices 
where new functionality is not supported



New Minimum Requirements

Feature DirectX 10.0 DirectX 10.1

Shader 
Model

4.0 4.1

MSAA 
Samples

None 4x

VS Inputs 16 32

Blending
INT8

FP16/32

INT8/16

FP16/32

Filtering FP16 FP32



New Features

 Cube map arrays
 Separate blend modes (per-MRT)
 PS can export coverage mask
 32 shader inputs/outputs 
 SSAA by running PS at sample freq.
 New shader instructions
 Standardized MSAA sample patterns
 CopyResource restrictions lifted

 Single-sample depth/stencil surfaces
 Multi-sample color & depth/stencil surfaces



New Possibilities!

 DirectX 10.1 features are important 
for improving image quality:

 Deferred shading with MSAA

 Alpha test (billboards) with MSAA

 Better reflections/GI approximation



Deferred Shading: Review

 Shading calculations depend on parameters 
like: normals, positions, and albedo

 Strategy:

 Store parameters in image space (called G-Buffer)

 Run complex shaders as post-process

 Hence, the shading is deferred

 The advantage:

 Decouples shading complexity from geometric 
complexity

 No expensive shading computation done on 
occluded samples



Deferred Shading: Compare

 On DX10.0 gaining access to the AA samples 
requires considerable extra effort

 (Write them to a single channel MRT colour buffer 
as you update the Z buffer, then re-use that color
buffer in subsequent passes)

 [Wasted extra memory this way.]

 DX10.1

 Write the Z once, no duplication of data, no extra 
shader variants to copy Z to the color channel



Why Now?
 We finally have everything necessary to 

do this correctly
 Can output to MRTs (form G-buffer)

 Can output to high-precision surfaces

 MSAA problem solved by DirectX 10.1

 DirectX 10.0
 Allows access to Multi-Sampled Color Buffers

 DirectX 10.1
 Allows access to Multi-Sampled Depth Buffer

 Use depth and inverse view-projection matrix to 
compute per-sample world space position

 Detect per-sample depth discontinuities
 Shade at fragment rate when depth samples are 

coherent

 Shade at sample rate when depth samples differ



Resolving the G-Buffer

 Compare depth value at pixel’s samples

 Find edge: Shade samples then average

 No edge: Shade a single sample

“Edge Pixels” Colored Red



Alpha test with MSAA

 Sample your alpha mask once per-sample

 Mask off samples that fail the test

 DirectX 10.1 uses a standardized sampling 
pattern so you know where the samples are

 You effectively get the alpha test running 
at the sample rate even though your 
shader runs at fragment rate

 Efficient anti-aliased alpha-tested edges



Anti-Aliased Billboards

 Thousands of ping pong balls drawn 
as imposters



 We want to draw a sphere as an 
alpha-tested imposter with MSAA

Anti-Aliased Billboards



 But MSAA only works on triangle 
edges

Anti-Aliased Billboards



 We want MSAA to happen on the 
alpha-tested edges of the imposter

Anti-Aliased Billboards



 The hardware considers a single pixel inside the 
imposter to be fully covered

 Shader is executed at the pixel’s center

Anti-Aliased Billboards



 If the pixel center is “inside” the 
alpha-tested sphere, then the entire 
pixel is drawn

Anti-Aliased Billboards



 We would like to alpha test at sample points

 But we do not want to shade the entire 
billboard at sample frequency

Anti-Aliased Billboards



 Derivative instructions used to find 
UV coordinates at each sample

 Sample locations are standardized in 
DirectX 10.1!

 Sample texture once for each MSAA 
sample

 Set the sample mask for each sample 
that passes the alpha-test

Anti-Aliased Billboards





Accurate Reflections

 Cube maps capture environment at a 
single point

 Used to approximate reflections at many 
points

 Reflections become less accurate as you 
move away from capture point

 Changing between cube maps in DirectX 
10.0 requires a state change and 
increases draw call count



Cube Map Array

 Store many capture points
 Shiny objects can pick closest cube 

map

 Or blend between the closest n cube 
maps

 Pixel shader has access to every 
capture point in a scene!
 No state changes!

 Can be used to approximate Global 
Illumination



Cube Map Array

 Environment captured from many points

 Uniform volume of light probes (radiance 
cache)

C
a
p

tu
r
e
 p

o
in

ts



Cube Map Array

 Gives spatially correct glossy reflections

 Works with area lights (anything you can 
render into the light probes)

Area Lights

Glossy Reflection



Cube Map Array

 Gives spatially correct glossy reflections

 Works with area lights (anything you can render 
into the light probes)



Cube Map Array

 Convert subset of light probes to Spherical 
Harmonics

 Use for diffuse reflections

Area Light Source



Cube Map Array

 Convert subset of light probes to Spherical Harmonics

 Use for diffuse reflections

Bounced Diffuse Light



Access to the AA Z buffer

 Application now has access to the 
AA Z buffer too…

 For high quality shadows at minimal 
extra cost

 Can reduce shader complexity and 
eliminates extra passes



Conclusion

 DirectX 10.1 adds valuable, 
simplifying functionality

 Improves image quality

 Improves efficiency

 Insanely easy to add support to 
your application if you already 
support 10.0



Thank you!

 Questions?

?
 Richard Huddy

 Richard.Huddy@amd.com


