
FORTRAN 77 4.0 Reference Manual

A Sun Microsystems, Inc. Business

Part No.: 802-2998-10
Revision A, November 1995

2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Please
Recycle

 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution
and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system and from the Berkeley 4.3 BSD system, licensed from the University of
California. Third-party software, including font technology in this product, is protected by copyright and licensed from Sun’s Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
SunSoft, A Sun Microsystems, Inc. Business, Sun, Sun Microsystems, the Sun logo, Sun Microsystems Computer Corporation, the Sun
Microsystems Computer Corporation logo, the SunSoft logo, Solaris, SunOS, and OpenWindows are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and certain other countries. UNIX is a registered trademark in the United States and other countries,
exclusively licensed through X/Open Company, Ltd. OPEN LOOK is a registered trademark of Novell, Inc. PostScript and Display PostScript
are trademarks of Adobe Systems, Inc. Intel® is a registered trademark of Intel Corporation. Pentium™ is a trademark of Intel Corporation.
Cray® is a registered trademark of Cray Research, Inc. VAX® and VMS® are registered trademarks of Digital Equipment Corporation. CDC
is a registered trademark of Control Data Corporation. UNIVAC is a registered trademark of UNISYS Corporation. All other product, service,
or company names mentioned herein are claimed as trademarks and trade names by their respective companies.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International, Inc. in the United
States and may be protected as trademarks in other countries. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811,
SPARCengine, SPARCprinter, SPARCserver, SPARCstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, and UltraSPARC are
licensed exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK™ and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUI’s and otherwise comply with Sun’s written license agreements.

X Window System is a trademark of the X Consortium.

Some of the material in this manual is based on the Bell Laboratories document entitled “A Portable Fortran 77 Compiler,” by S. I. Feldman
and P. J. Weinberger, dated August 1, 1978. Material on the I/O Library is derived from the paper entitled “Introduction to the f77 I/O
Library,” by David L. Wasley, University of California, Berkeley, California 94720. Further work was done at Sun Microsystems.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN, THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE
PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE
PROGRAMS(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii FORTRAN 77 Reference Manual

Contents

Preface . xxiii

1. Elements of FORTRAN 77 . 1

1.1 Operating Environments . 1

1.2 Standards . 2

1.3 Extensions . 2

1.4 Basic Terms . 2

1.5 Character Set . 3

1.6 Symbolic Names . 5

1.7 Program . 7

1.8 Statements . 7

Executable or Nonexecutable Statements 7

FORTRAN 77 Statements. 8

1.9 Source Line Formats. 8

Standard Fixed Format. 8

Tab-Format. 9

iv FORTRAN 77 Reference Manual

Mixing Formats . 9

Continuation Lines . 9

Extended Lines . 9

Padding . 10

Comments and Blank Lines. 10

Directives . 11

2. Data Types and Data Items . 13

2.1 Types . 13

Rules for Data Typing. 14

Array Elements . 14

Functions . 14

Properties of Data Types . 16

2.2 Constants . 25

Character Constants . 26

Complex Constants. 28

COMPLEX*16 Constants . 29

COMPLEX*32 (Quad Complex) Constants 29

Integer Constants . 30

Logical Constants . 31

Real Constants. 32

REAL*8 (Double-Precision Real) Constants 33

REAL*16 (Quad Real) Constants . 34

Typeless Constants (Binary, Octal, Hexadecimal). 35

2.3 Variables . 39

Contents v

2.4 Arrays . 40

Array Declarators . 40

Array Names with No Subscripts . 43

Array Subscripts . 44

Array Ordering . 45

2.5 Substrings . 46

2.6 Structures. 48

Syntax . 49

Field Declaration. 49

Rules and Restrictions for Structures . 50

Rules and Restrictions for Fields . 50

Record Declaration . 51

Record and Field Reference . 52

Substructure Declaration . 54

Unions and Maps . 56

2.7 Pointers . 58

Syntax Rules . 58

Usage of Pointers . 58

Address and Memory. 59

Optimization and Pointers . 61

3. Expressions . 65

3.1 Expressions, Operators, and Operands 65

3.2 Arithmetic Expressions . 66

Basic Arithmetic Expressions . 67

vi FORTRAN 77 Reference Manual

Mixed Mode . 70

Arithmetic Assignment . 72

3.3 Character Expressions . 74

Character String Assignment . 76

Rules of Assignment. 78

3.4 Logical Expressions . 78

3.5 Relational Operator . 80

3.6 Constant Expressions . 81

3.7 Record Assignment . 82

3.8 Evaluation of Expressions . 83

4. Statements . 85

4.1 ACCEPT. 85

4.2 ASSIGN. 86

4.3 Assignment . 87

4.4 AUTOMATIC . 93

4.5 BACKSPACE . 95

4.6 BLOCK DATA. 97

4.7 BYTE. 98

4.8 CALL. 99

4.9 CHARACTER . 102

4.10 CLOSE. 105

4.11 COMMON. 108

4.12 COMPLEX . 110

4.13 CONTINUE . 113

Contents vii

4.14 DATA. 114

4.15 DECODE/ENCODE . 117

4.16 DIMENSION . 119

4.17 DO . 122

4.18 DO WHILE . 127

4.19 DOUBLE COMPLEX . 130

4.20 DOUBLE PRECISION. 131

4.21 ELSE. 133

4.22 ELSE IF . 134

4.23 ENCODE/DECODE . 136

4.24 END. 137

4.25 END DO. 138

4.26 END FILE . 139

4.27 END IF . 141

4.28 END MAP . 142

4.29 END STRUCTURE . 142

4.30 END UNION . 143

4.31 ENTRY. 144

4.32 EQUIVALENCE. 147

4.33 EXTERNAL . 149

4.34 FORMAT. 151

4.35 FUNCTION (External) . 155

4.36 GO TO (Assigned) . 157

4.37 GO TO (Computed). 159

viii FORTRAN 77 Reference Manual

4.38 GO TO (Unconditional) . 161

4.39 IF (Arithmetic) . 162

4.40 IF (Block). 163

4.41 IF (Logical) . 166

4.42 IMPLICIT . 167

4.43 INCLUDE . 170

4.44 INQUIRE . 173

4.45 INTEGER . 179

4.46 INTRINSIC . 181

4.47 LOGICAL . 182

4.48 MAP. 184

4.49 NAMELIST . 185

4.50 OPEN. 187

4.51 OPTIONS . 193

4.52 PARAMETER . 195

4.53 PAUSE. 198

4.54 POINTER . 200

4.55 PRINT . 207

4.56 PROGRAM . 210

4.57 READ. 211

4.58 REAL. 217

4.59 RECORD. 219

4.60 RETURN. 222

4.61 REWIND. 223

Contents ix

4.62 SAVE. 225

4.63 Statement Function. 226

4.64 STATIC. 229

4.65 STOP. 230

4.66 STRUCTURE . 231

4.67 SUBROUTINE. 235

4.68 TYPE. 237

4.69 The Type Statement . 238

4.70 UNION and MAP. 241

4.71 VIRTUAL . 243

4.72 VOLATILE . 243

4.73 WRITE. 244

5. Input and Output . 251

5.1 General Concepts of FORTRAN 77 I/O 251

Logical Units . 252

I/O Errors . 252

General Restriction . 253

Kinds of I/O . 253

Combinations of I/O . 253

Printing Files . 255

Scratch Files . 256

Changing I/O Initialization with IOINIT 257

5.2 Direct Access . 259

Unformatted I/O . 259

x FORTRAN 77 Reference Manual

Formatted I/O. 260

5.3 Internal Files . 260

Sequential Formatted I/O . 260

Direct Access I/O . 261

5.4 Formatted I/O . 261

Input Actions. 261

Output Actions . 262

Format Specifiers . 263

Runtime Formats . 296

Variable Format Expressions (<e>) . 297

5.5 Unformatted I/O . 298

Sequential Access I/O . 299

Direct Access I/O . 299

5.6 List-Directed I/O . 301

Output Format . 302

Unquoted Strings . 304

Internal I/O . 305

5.7 NAMELIST I/O . 305

Syntax Rules . 305

Restrictions . 306

Output Actions . 306

Input Actions. 308

Data Syntax . 309

Name Requests . 313

Contents xi

6. Intrinsic Functions . 315

6.1 Arithmetic and Mathematical Functions 315

Arithmetic . 316

Type Conversion . 318

Trigonometric Functions . 320

Other Mathematical Functions . 322

6.2 Character Functions . 324

6.3 Miscellaneous Functions . 325

Bit Manipulation . 325

Environmental Inquiry Functions. 326

Memory . 327

6.4 Remarks . 327

6.5 Notes on Functions. 328

6.6 VMS Intrinsic Functions . 332

Double-Precision Complex . 333

Degree-Based Trigonometric . 333

Bit-Manipulation. 334

Multiple Integer Types . 335

Functions Coerced to a Particular Type 336

Functions Translated to a Generic Name 337

Zero Extend . 338

7. FORTRAN 77 Library Routines . 339

7.1 abort : Terminate and Write Memory to Core File 339

7.2 access : Check File for Permissions or Existence 339

xii FORTRAN 77 Reference Manual

7.3 alarm : Execute a Subroutine after a Specified Time 340

7.4 bit : Bit Functions: and , or , …, bit , setbit , … 342

Usage: and , or , xor , not , rshift , lshift 343

Usage: bic , bis , bit , setbit . 344

7.5 chdir : Change Default Directory 345

7.6 chmod: Change the Mode of a File 346

7.7 date : Get Current System Date as a Character String . . 347

7.8 dtime , etime : Elapsed Execution Time 347

dtime : Elapsed Time Since the Last dtime Call 347

etime : Elapsed Time Since Start of Execution 348

7.9 exit : Terminate a Process and Set the Status. 350

7.10 f77_floatingpoint : FORTRAN 77 IEEE Definitions . 350

IEEE Rounding Mode. 351

SIGFPE Handling . 351

IEEE Exception Handling . 352

IEEE Classification . 352

7.11 f77_ieee_environment : IEEE Arithmetic 353

7.12 fdate : Return Date and Time in an ASCII String 355

7.13 flush : Flush Output to a Logical Unit 356

7.14 fork : Create a Copy of the Current Process 357

7.15 free : Deallocate Memory Allocated by Malloc 357

7.16 fseek , ftell : Determine Position and Reposition a File 358

fseek : Reposition a File on a Logical Unit 358

ftell : Return Current Position of File 359

Contents xiii

7.17 getarg , iargc : Get Command-line Arguments. 360

getarg : Get the kth Command-Line Argument 360

iargc : Get the Count of Command-Line Arguments 360

7.18 getc , fgetc : Get Next Character 361

getc : Get Next Character from stdin 361

fgetc : Get Next Character from Specified Logical Unit. . . . 362

7.19 getcwd : Get Path of Current Working Directory. 363

7.20 getenv : Get Value of Environment Variables 364

7.21 getfd : Get File Descriptor for External Unit Number . . 364

7.22 getfilep : Get File Pointer for External Unit Number . 365

7.23 getlog : Get User’s Login Name . 366

7.24 getpid : Get Process ID. 367

7.25 getuid , getgid : Get User or Group ID of Process 367

getuid : Get User ID of the Process . 367

getgid : Get Group ID of the Process 368

7.26 hostnm : Get Name of Current Host 368

7.27 idate : Return Current System Date 369

Standard Version. 369

VMS Version . 370

7.28 itime : Current System Time . 370

7.29 index : Index or Length of Substring. 371

index : First Occurrence of String a2 in String a1. 371

rindex : Last Occurrence of String a2 in String a1. 372

lnblnk : Last Nonblank in String a1 . 372

xiv FORTRAN 77 Reference Manual

len : Declared Length of String a1 . 372

7.30 inmax : Return Maximum Positive Integer 373

7.31 ioinit : Initialize I/O: Carriage Control, File Names, … 374

Duration of File I/O Properties. 374

Internal Flags. 374

Source Code. 375

Usage: ioinit . 375

Restrictions . 375

Details of Arguments . 375

7.32 kill : Send a Signal to a Process . 378

7.33 libm_double : libm Double-Precision Functions 379

Intrinsic Functions . 379

Non-Intrinsic Functions . 380

7.34 libm_quadruple : libm Quad-Precision Functions . . . 383

Intrinsic Functions . 383

Non-Intrinsic Functions . 383

7.35 libm_single : libm Single-Precision Functions 385

Intrinsic Functions . 385

Non-Intrinsic Functions . 385

7.36 link , symlnk : Make a Link to an Existing File 388

link: Create a Link to an Existing File. 389

symlnk: Create a Symbolic Link to an Existing File 389

7.37 loc : Return the Address of an Object 390

7.38 long , short : Integer Object Conversion 390

Contents xv

long : Convert a Short Integer to a Long Integer 390

short : Convert a Long Integer to a Short Integer 390

7.39 longjmp , isetjmp : Return to Location Set by isetjmp 391

isetjmp : Set the Location for longjmp 391

longjmp : Return to the location set by isetjmp 392

Description . 392

Restrictions . 393

7.40 malloc : Allocate Memory and Get Address 394

7.41 mvbits : Move a Bit Field . 395

7.42 perror , gerror , ierrno : Get System Error Messages . 396

perror : Print Message to Logical Unit 0, stderr 396

gerror : Get Message for Last Detected System Error 396

ierrno : Get Number for Last Detected System Error 397

f77 I/O Error Codes and Meanings . 398

7.43 putc , fputc : Write a Character to a Logical Unit 399

putc : Write to Logical Unit 6 . 399

fputc : Write to Specified Logical Unit 400

7.44 qsort : Sort the Elements of a One-dimensional Array . 401

7.45 ran : Generate a Random Number between 0 and 1 402

7.46 rand , drand , irand : Return Random Values 403

7.47 rename : Rename a File . 405

7.48 secnds : Get System Time in Seconds, Minus Argument 406

7.49 sh : Fast Execution of an sh Command 407

7.50 signal : Change the Action for a Signal 408

xvi FORTRAN 77 Reference Manual

7.51 sleep : Suspend Execution for an Interval 409

7.52 stat , lstat , fstat : Get File Status 410

stat : Get Status for File, by File Name. 410

fstat : Get Status for File, by Logical Unit 411

lstat : Get Status for File, by File Name. 411

Detail of Status Array for Files . 412

7.53 system : Execute a System Command. 413

7.54 time , ctime , ltime , gmtime : Get System Time 414

time : Get System Time . 414

ctime : Convert System Time to Character 416

ltime : Split System Time to Month, Day,… (Local) 417

gmtime : Split System Time to Month, Day, … (GMT) 418

7.55 topen , tclose , tread ,…, tstate : Do Tape I/O 419

topen : Associate a Device with a Tape Logical Unit 419

tclose : Write EOF, Close Tape Channel, Disconnect tlu . . . 420

twrite : Write Next Physical Record to Tape 421

tread : Read Next Physical Record from Tape 422

trewin : Rewind Tape to Beginning of First Data File. 423

tskipf : Skip Files and Records; Reset EoF Status. 424

tstate : Get Logical State of Tape I/O Channel 425

7.56 ttynam , isatty : Get Name of a Terminal Port 428

ttynam : Get Name of a Terminal Port. 428

isatty : Is this Unit a Terminal? . 429

7.57 unlink : Remove a File . 429

Contents xvii

7.58 wait : Wait for a Process to Terminate 430

8. VMS Language Extensions . 431

8.1 Background . 431

8.2 VMS Language Features You Get Automatically 432

8.3 VMS Language Features that Require -xl 436

Summary of Features That Require -xl[d] 436

Details of Features That Require -xl[d] 437

8.4 Unsupported VMS FORTRAN . 439

A. ASCII Character Set . 443

B. Sample Statements . 447

C. Data Representations . 457

C.1 Real, Double, and Quadruple Precision. 457

C.2 Extreme Exponents. 458

Zero (signed) . 458

Subnormal Number . 458

Signed Infinity. 458

Not a Number (NaN) . 458

C.3 IEEE Representation of Selected Numbers 459

C.4 Arithmetic Operations on Extreme Values 459

C.5 Bits and Bytes by Architecture . 462

Index . 463

xviii FORTRAN 77 Reference Manual

xix

Tables

Table 1-1 Special Characters . 3

Table 1-2 Special Character Usage . 4

Table 1-3 Items with Symbolic Names . 5

Table 1-4 Sample Symbolic Names . 6

Table 1-5 FORTRAN 77 Statements . 8

Table 2-1 Sizes and Alignments without -dalign , –f , –i2 , –r8 , or -dbl 23

Table 2-2 Sizes and Alignments Changed by -i2 24

Table 2-3 Sizes and Alignments Changed by -r8 or -dbl (SPARC only) 24

Table 2-4 Sizes and Alignments Changed by -dalign or -f (SPARC only)25

Table 2-5 Backslash Escape Sequences . 28

Table 3-1 Arithmetic Operators . 66

Table 3-2 Arithmetic Expressions. 67

Table 3-3 Arithmetic Operator Precedence. 68

Table 3-4 Logical Operators . 78

Table 3-5 Logical Operator Precedence . 79

Table 3-6 Operator Precedence . 79

xx FORTRAN 77 Reference Manual

Table 3-7 Logical Expressions and Their Meanings 79

Table 3-8 Relational Operators . 80

Table 4-1 Arithmetic Assignment Conversion Rules 88

Table 4-2 INQUIRE Options Summary . 177

Table 4-3 Intrinsics That Cannot Be Passed As Actual Arguments 182

Table 4-4 OPEN Keyword Specifier Summary . 187

Table 4-5 OPEN Keyword Specifier Details . 188

Table 4-6 OPTIONS Statement Qualifiers . 193

Table 5-1 Summary of f77 Input and Output . 254

Table 5-2 Format Specifiers . 263

Table 5-3 Default w, d, e Values in Format Field Descriptors. 265

Table 5-4 Carriage Control with Blank, 0, 1, and + 268

Table 5-5 Maximum Characters in Noncharacter Type Hollerith (nHaaa) 272

Table 5-6 Sample Octal/Hex Input Values . 277

Table 5-7 Sample Octal/Hex Output Value . 278

Table 5-8 Default Formats for List-Directed Output 304

Table 6-1 Arithmetic Functions. 316

Table 6-2 More Arithmetic Functions . 316

Table 6-3 Type Conversion Functions . 318

Table 6-4 Trigonometric Functions . 320

Table 6-5 Other Mathematical Functions . 322

Table 6-6 Character Functions . 324

Table 6-7 Bitwise Functions. 325

Table 6-8 Environmental Inquiry Functions. 326

Table 6-9 Memory Functions . 327

Tables xxi

Table 6-10 Double-Precision Complex Functions . 333

Table 6-11 Degree-Based Trigonometric Functions. 333

Table 6-12 Bit-Manipulation Functions . 334

Table 6-13 Integer Functions . 335

Table 6-14 Translated Functions that VMS Coerces to a Particular Type 336

Table 6-15 VMS Functions That Are Translated into f77 Generic Names 337

Table 6-16 Zero-Extend Functions . 338

Table 7-1 DOUBLE PRECISION libm Functions . 380

Table 7-2 Quadruple-Precision libm Functions . 384

Table 7-3 Single-Precision libm Functions. 386

Table A-1 ASCII Character Set. 444

Table A-2 Control Characters. 445

Table B-1 FORTRAN 77 Statement Samples . 448

Table C-1 Floating-point Representation . 458

Table C-2 IEEE Representation of Selected Numbers 459

Table C-3 Extreme Value Abbreviations . 460

Table C-4 Extreme Values: Addition and Subtraction 460

Table C-5 Extreme Values: Multiplication. 460

Table C-6 Extreme Values: Division . 461

Table C-7 Extreme Values: Comparison . 461

Table C-8 Bits and Bytes for Intel and VAX Computers 462

Table C-9 Bits and Bytes for 680x0 and SPARC Computers 462

xxii FORTRAN 77 Reference Manual

xxiii

Preface

This preface is organized into the following sections:

Purpose and Audience
This manual describes the language and routines of the FORTRAN 77 4.0
compiler from SunSoft.

This is a reference manual. Though it contains many examples, it is not a
tutorial. Its function and purpose are solely to help you find features or
routines, not to teach you FORTRAN 77, programming, or programming style.

This book is for scientists and engineers with the following background:

• Thorough knowledge and experience with FORTRAN 77 programming
• General knowledge and understanding of some operating system
• Particular knowledge of Solaris® or UNIX commands.

For help using the compiler, linker, debugger, the related utilities, or making or
using libraries, refer to the FORTRAN 77 4.0 User's Guide.

Purpose and Audience page xxiii

How this Book is Organized page xxiv

Related Manuals page xxiv

Conventions in Text page xxiv

xxiv FORTRAN 77 Reference Manual

How this Book is Organized
This book is organized as follows:

Related Manuals
The following documents are provided on-line or in hard copy, as indicated:

Conventions in Text
We use the following conventions in this manual to display information.

Chapter 1, Elements of FORTRAN 77 page 1

Chapter 2, Data Types and Data Items page 13

Chapter 3, Expressions page 65

Chapter 4, Statements page 85

Chapter 5, Input and Output page 251

Chapter 6, Intrinsic Functions page 315

Chapter 7, FORTRAN 77 Library Routines page 339

Chapter 8, VMS Language Extensions page 431

Appendix A, ASCII Character Set page 443

Appendix B, Sample Statements page 447

Appendix C, Data Representations page 457

Title Hard Copy On-line

FORTRAN 77 4.0 User’s Guide X X

FORTRAN 77 4.0 Reference Manual X X

Debugging a Program X X

Incremental Link Editor X X

Numerical Computation Guide X X

What Every Computer Scientist Should Know About
Floating-Point Arithmetic

X

Installing SunSoft Developer Products on Solaris X X

xxv

• We show code listings examples in boxes:

• The plain Courier font shows prompts and coding.

• In dialogs, the boldface Courier font shows text you type in:

• Italics indicate general arguments or parameters that you replace with the
appropriate input. Italics also indicate emphasis.

• For Solaris 2.x, the default shell is sh ; the default prompt is the dollar sign
($) . Most systems have distinct host names, and you can read some of our
examples more easily if we use a symbol longer than a dollar sign. Where
the csh shell is shown, we use demo% as the system prompt.

• The small clear triangle ∆ shows a blank space where that is significant:

• We generally tag nonstandard features with a small black diamond (♦). A
program that uses a nonstandard feature does not conform to the ANSI
X3.9-1978 standard, as described in American National Standard
Programming Language FORTRAN, ANSI X3.9-1978, April 1978, American
National Standards Institute, Inc., abbreviated as the FORTRAN Standard.

• We usually show FORTRAN 77 examples in tab format, not fixed columns.
See Section 1.9, “Source Line Formats,” for details.

• We usually abbreviate FORTRAN 77 as f77 .

WRITE(*, *) 'Hello world'

demo% echo hello
hello
demo%

∆∆36.001

xxvi FORTRAN 77 Reference Manual

 1

Elements of FORTRAN 77 1

This chapter is organized into the following sections.

1.1 Operating Environments
Each release of f77 is available first on SPARC systems under the Solaris 2.x
operating environment. For information on other current platforms or
operating environments, see the /READMEs/fortran_77 file.

The previous major release was ported to Solaris™ 1.x and to Intel® 80386-
compatible computers running Solaris 2.x for x86, and some features remain in
this guide identified as being “Solaris 1.x only” or “x86 only,” and sometimes
“(1.x only)” or “(x86)”.

Operating Environments page 1

Standards page 2

Extensions page 2

Basic Terms page 2

Character Set page 3

Symbolic Names page 5

Program page 7

Statements page 7

Source Line Formats page 8

 2 FORTRAN 77 Reference Manual

1

1.2 Standards
This FORTRAN 77 compiler is an enhanced FORTRAN 77 development
system. It conforms to the ANSI X3.9-1978 FORTRAN 77 standard and the
corresponding International Standards Organization number is ISO 1539-1980.
NIST (formerly GSA and NBS) validates it at appropriate intervals.

This compiler also conforms to the standards FIPS 69-1, BS 6832, and MIL-STD-
1753. It provides an IEEE standard 754-1985 floating-point package.

On SPARC systems, it provides support for optimization exploiting features of
SPARC V8, including the SuperSPARC™ implementation. These features are
defined in the SPARC Architecture Manual: Version 8.

1.3 Extensions
This FORTRAN 77 compiler provides iMPact™ multiprocessor FORTRAN 77
and lint-like checking across routines for consistency of arguments, commons,
parameters, and so forth.

Other extensions include recursion, pointers, double-precision complex,
quadruple-precision real, quadruple-precision complex, and many VAX® and
VMS® FORTRAN 77 5.0 extensions, including NAMELIST, DO WHILE,
structures, records, unions, maps, and variable formats. Multiprocessor
FORTRAN 77 includes automatic and explicit loop parallelization.

You can write FORTRAN 77 programs with many VMS extensions, so that
these programs run with the same source code on both SPARC and VAX
systems.

1.4 Basic Terms
Some of the FORTRAN 77 basic terms and concepts are:

• A program consists of one or more program units.

• A program unit is a sequence of statements, terminated by an END.

• A statement consists of zero or more key words, symbolic names, literal
constants, statement labels, operators, and special characters.

• Each key word, symbolic name, literal constant, and operator consists of one or
more characters from the FORTRAN 77 character set.

Elements of FORTRAN 77 3

1

• A character constant can include any valid ASCII character.

• A statement label consists of 1 to 5 digits, with at least one nonzero.

1.5 Character Set
The character set consists of the following:

• Uppercase and lowercase letters, A – Z and a – z
• Numerals 0 – 9
• The special characters shown in the following table

Note the following usage and restrictions:

• Uppercase and lowercase—The case is not significant in the key words of
FORTRAN 77 statements or in symbolic names.

The –U option of f77 makes case significant in symbolic names. ♦

• Control characters ♦—Even though they are not in the character set, most
control characters are allowed as data. The exceptions are: Control A,
Control B, Control C, which are not allowed as data.

While entering a character string, do not hold down the Control key and
press the A, B, or C key. Even these characters can be entered other ways,
such as with the char() function.

Table 1-1 Special Characters

Character Name Character Name

Space
Tab
=
+
–
*
/
(
)
,
.

Space
Tab
Equals
Plus
Minus
Asterisk
Slash
Left parenthesis
Right parenthesis
Comma
Period

'
"
$
_
!
:
?
%
&
\
<
>

Apostrophe
Quote ♦

Dollar sign ♦

Underscore ♦

Exclamation point ♦

Colon
Question mark ♦

Percent ♦

Ampersand ♦

Backslash ♦

Left angle bracket ♦

Right angle bracket ♦

 4 FORTRAN 77 Reference Manual

1

• Special characters—The following table shows the special characters that
are used for punctuation:

Table 1-2 Special Character Usage

Character Usage

Space Ignored in statements, except as part of a character constant

Tab Establish the line as a tab-format source line ♦

= Assignment

+ Add, unary operator

– Subtract, unary operator

* Multiply, alternate returns, comments, exponentiation, stdin ,
stdout , list-directed I/O

/ Divide, delimit data, labeled commons, structures, end-of-record

() Enclose expressions, complex constants, equivalence groups, formats,
argument lists, subscripts

, Separator for data, expressions, complex constants, equivalence
groups, formats, argument lists, subscripts

. Radix point, delimiter for logical constants and operators, record fields

' Quoted character literals

" Quoted character literals, octal constants ♦

$ Delimit namelist input, edit descriptor, directives ♦

! Comments ♦

: Array declarators, substrings, edit descriptor

% Special functions: %REF, %VAL, %LOC♦

& Continuation, alternate return, delimit namelist input; in column 1:
establish the line as a tab-format source line ♦

? Request names in namelist group ♦

\ Escape character ♦

< > Enclose variable expressions in formats ♦

Elements of FORTRAN 77 5

1

• ASCII characters—Any ASCII character is valid as literal data in a character
string. ♦

For the backslash (\) character, you may need to use an escape sequence or
use the –xl compiler option. The backslash (\) is also called a reverse
solidus, and the slash (/), a solidus. For the newline (\n) character, you
must use an escape sequence. See also Table 2-5.

1.6 Symbolic Names
The items in the following table can have symbolic names:

The following restrictions apply:

• Symbolic names can have from 1 to 32 characters. The standard is 6. ♦

• Symbolic names consist of letters, digits, the dollar sign ($), and the
underscore character (_). $ and _ are not standard. ♦

• Symbolic names generally start with a letter—never with a digit or dollar
sign ($). Names that start with an underscore (_) are allowed, ♦ but it is
safer to reserve such names for the compiler.

• Uppercase and lowercase are not significant; the compiler converts them all
to lowercase. The –U option on the f77 command line overrides this
default, thereby preserving any uppercase used in your source file. ♦

• Example: These names are equivalent with the default in effect:

Table 1-3 Items with Symbolic Names

Symbolic constants
Variables
Arrays
Structures ♦

Records ♦

Record fields ♦

Labeled commons
Namelist groups ♦

Main programs
Subroutines
Functions
Entry points

ATAD = 1.0E-6
Atad = 1.0e-6

 6 FORTRAN 77 Reference Manual

1

• The space character is not significant.

Example: These names are equivalent:

Here are some sample symbolic names:

• In general, for any single program unit, different entities cannot have the
same symbolic name. The exceptions are:
• A variable or array can have the same name as a common block.
• A field of a record can have the same name as a structure. ♦

• A field of a record can have the same name as a field at a different level of
the structure. ♦

• Throughout any program of more than one programming unit, no two of
the following can have the same name:
• Block data subprograms
• Common blocks
• Entry points
• Function subprograms
• Main program
• Subroutines

IF (X .LT. ATAD) GO TO 9
IF (X .LT. A TAD) GO TO 9
IF(X.LT.ATAD)GOTO9

Table 1-4 Sample Symbolic Names

Valid Invalid Reason

X2 2X Starts with a digit.

DELTA_TEMP _DELTA_TEMP Starts with an _ (reserved for the compiler).

Y$Dot Y|Dot There is an invalid character | .

Consistently separating words by
spaces became a general
custom about the tenth century
A.D., and lasted until about 1957,
when FORTRAN 77 abandoned
the practice.

Elements of FORTRAN 77 7

1

1.7 Program
A program unit is a sequence of statements, terminated by an END statement.
Every program unit is either a main program or a subprogram. If a program is
to be executable, it must have a main program.

There are three types of subprograms: subroutines, functions, and block data
subprograms. The subroutines and functions are called procedures, which are
invoked from other procedures or from the main program. The block data
subprograms are handled by the loader.

1.8 Statements
A statement consists of one or more key words, symbolic names, literal
constants, and operators, with appropriate punctuation. In FORTRAN 77, no
keywords are reserved in all contexts. Most statements begin with a keyword;
the exceptions are the statement function and assignment statements.

Executable or Nonexecutable Statements

Every statement is either executable or nonexecutable. In general, if a
statement specifies an action to be taken at runtime, it is executable. Otherwise,
it is nonexecutable.

The nonexecutable statements specify attributes, such as type and size;
determine arrangement or order; define initial data values; specify editing
instructions; define statement functions; classify program units; and define
entry points. In general, nonexecutable statements are completed before
execution of the first executable statement.

 8 FORTRAN 77 Reference Manual

1

FORTRAN 77 Statements

1.9 Source Line Formats
A statement takes one or more lines; the first line is called the initial line; the
subsequent lines are called the continuation lines.

You can format a source line in either of two ways:

• Standard fixed format
• Tab format ♦

Standard Fixed Format

The standard fixed format source lines are defined as follows:

• The first 72 columns of each line are scanned. See “Extended Lines,” page 9.
• The first five columns must be blank or contain a numeric label.
• Continuation lines are identified by a nonblank, nonzero in column 6.
• Short lines are padded to 72 characters.
• Long lines are truncated. See “Extended Lines,” below.

Table 1-5 FORTRAN 77 Statements

The asterisk (*)
indicates an
executable statement.

ACCEPT*
ASSIGN*
Assignment*
AUTOMATIC
BACKSPACE*
BLOCK DATA
BYTE
CALL*
CHARACTER
CLOSE*
COMMON
COMPLEX
CONTINUE*
DATA
DECODE*
DIMENSION
DO*
DO WHILE*

DOUBLE COMPLEX
DOUBLE PRECISION
ELSE*
ELSE IF*
ENCODE*
END*
END DO*
END FILE*
END IF*
END MAP
END STRUCTURE
END UNION
ENTRY
EQUIVALENCE
EXTERNAL
FORMAT
FUNCTION
GOTO*

GOTO (Assigned)*
GOTO (Unconditional)*
IF (Arithmetic)*
IF (Block)*
IF (Logical)*
IMPLICIT
INCLUDE
INQUIRE*
INTEGER
INTRINSIC
LOGICAL
MAP
NAMELIST
OPEN*
OPTIONS
PARAMETER
PAUSE*
POINTER

 PRINT*
 PRAGMA
 PROGRAM
 REAL
 RECORD
 RETURN*
 REWIND*
 SAVE

Statement Function
 STATIC*
 STOP*
 STRUCTURE
 SUBROUTINE*
 TYPE
 UNION
 VIRTUAL
 VOLATILE
 WRITE*

Elements of FORTRAN 77 9

1

Tab-Format

The tab-format source lines are defined as follows: ♦

• A tab in any of columns 1 through 6, or an ampersand in column 1,
establishes the line as a tab-format source line.

• If the tab is the first nonblank character, the text following the tab is scanned
as if it started in column 7.

• A comment indicator or a statement number can precede the tab.

• Continuation lines are identified by an ampersand (&) in column 1, or a
nonzero digit after the first tab.

Mixing Formats

You can format lines both ways in one program unit, but not in the same line.

Continuation Lines

The default maximum number of continuation lines is 99 ♦ (1 initial and 99
continuation). To change this number of lines, use the -Nl n option. ♦

Extended Lines

To extend the source line length to 132 characters, use the –e option.♦
Otherwise, by default, f77 ignores any characters after column 72.

Example: Compile to allow extended lines:

demo% f77 -e prog.f

 10 FORTRAN 77 Reference Manual

1

Padding

Padding is significant in lines such as the two in the following DATA statement:

Comments and Blank Lines

A line with a c , C, * , d, D, or! in column one is a comment line, except that if
the –xld option is set, then the lines starting with D or d are compiled as
debug lines. The d, D, and! are nonstandard. ♦

If you put an exclamation mark (!) in any column of the statement field, except
within character literals, then everything after the ! on that line is a comment.
♦

A totally blank line is a comment line.

Example: c , C, d, D, * ,!, and blank comments:

C 1 2 3 4 5 6 7
C23456789012345678901234567890123456789012345678901234567890123456789012
 DATA SIXTYH/60H
 1 /

c Start expression analyzer
CHARACTER S, STACK*80
COMMON /PRMS/ N, S, STACK
…

* Crack the expression:
IF (S .GE. '0' .AND. S .LE. '9') THEN ! EoL comment

CALL PUSH ! Save on stack. EoL comment
d PRINT *, S! Debug comment & EoL comment

ELSE
CALL TOLOWER ! To lowercase EoL comment

END IF
D PRINT *, N! Debug comment & EoL comment

…
C Finished
! expression analyzer

Elements of FORTRAN 77 11

1

Directives

A directive passes information to a compiler in a special form of comment. ♦

Directives are also called compiler pragmas. There are two kinds of directives:

• General directives
• Parallel directives

General Directives

The form of a general directive is one of the following:

• C$PRAGMAid
• C$PRAGMAid (a [, a] …) [, id (a [, a] …)] ,…
• C$PRAGMA sun id=

The variable id identifies the kind of directive; a is an argument.

Syntax

A directive has the following syntax:

• In column one, any of the comment-indicator characters c , C, ! , or *
• In any column, the ! comment-indicator character
• The next 7 characters are $PRAGMA, no blanks, any uppercase or lowercase

Rules and Restrictions

After the first eight characters, blanks are ignored, and uppercase and
lowercase are equivalent, as in FORTRAN 77 text.

Because it is a comment, a directive cannot be continued, but you can have
many C$PRAGMA lines, one after the other, as needed.

If a comment satisfies the above syntax, it is expected to contain one or more
directives recognized by the compiler; if it does not, a warning is issued.

 12 FORTRAN 77 Reference Manual

1

The C() Directive

The C() directive specifies that its arguments are external functions written in
the C language. It is equivalent to an EXTERNAL declaration with the addition
that the FORTRAN 77 compiler does not append an underscore to such names,
as it ordinarily does with external names.

The C() directive for a particular function must appear before the first
reference to that function in each subprogram that contains such a reference.
The recommended usage is:

The unroll Directive

The unroll directive requires that you specify sun after C$PRAGMA.

The C$PRAGMA sun unroll= n directive instructs the optimizer to unroll
loops n times, where n is a positive integer. The choices are:

• If n=1, this directive orders the optimizer not to unroll any loops.
• If n>1, this directive suggests to the optimizer that it unroll loops n times.

If any loops are actually unrolled, then the executable file becomes larger.

Example: To unroll loops two times:

Parallel Directives

A parallel directive is a special comment that directs the compiler to do
something about parallelization. The following are the parallel directives:

• DOALL
• DOSERIAL
• DOSERIAL*

For syntax and other information on parallel directives, see the appendix on
multiple processors in the FORTRAN 77 4.0 User’s Guide.

EXTERNAL ABC, XYZ !$PRAGMA C(ABC, XYZ)

C$PRAGMA SUN UNROLL=2

 13

Data Types and Data Items 2

This chapter is organized into the following sections:

2.1 Types
Any constant or constant expression usually represents typed data; the
exceptions are the typeless constants. Any name of a variable, array, array
element, substring, or function usually represents typed data.

The following items have data types:

Types page 13

Constants page 25

Variables page 39

Arrays page 40

Substrings page 46

Structures page 48

Pointers page 58

Constant Expressions
Variables
Arrays

 External Functions
 Statement Functions

 14 FORTRAN 77 Reference Manual

2

These items do not have data types.

Rules for Data Typing

The name determines the type; that is, the name of a datum or function
determines its data type, explicitly or implicitly, according to the following
rules of data typing;

• A symbolic name of a constant, variable, array, or function has only one data
type for each program unit, except for generic functions.

• If you explicitly list a name in a type statement, then that determines the
data type.

• If you do not explicitly list a name in a type statement, then the first letter of
the name determines the data type implicitly.

• The default implicit typing rule is that if the first letter of the name is I , J ,
K, L, M, or N, then the data type is integer, otherwise it is real.

• You can change the default-implied types by using the IMPLICIT
statement, even to the extent of turning off all implicit typing with the
IMPLICIT NONE statement. You can also turn off all implicit typing by
specifying the –u compiler flag on the command line; this is equivalent to
beginning each program unit with the IMPLICIT NONE statement.

Array Elements

An array element has the same type as the array name.

Functions

Each intrinsic function has a specified type. An intrinsic function does not
require an explicit type statement, but that is allowed. A generic function does
not have a predetermined type; the type is determined by the type of the
arguments, as shown in Chapter , “Intrinsic Functions.”

Main Programs
Subroutines
Block Data Subprograms

 Common Blocks
 Namelist Groups ♦
 Structured Records ♦

Data Types and Data Items 15

2

An external function can have its type specified in any of the following ways:

• Explicitly by putting its name in a type statement

• Explicitly in its FUNCTION statement, by preceding the word FUNCTION
with the name of a data type

• Implicitly by its name, as with variables

Example: Explicitly by putting its name in a type statement:

Example: Explicitly in its FUNCTION statement:

Example: Implicitly by its name, as with variables:

Implicit typing can affect the type of a function, either by default implicit
typing or by an IMPLICIT statement. You must make the data type of the
function be the same within the function subprogram as it is in the calling
program unit. FORTRAN 77 does no type checking between program units.

FUNCTION F (X)
INTEGER F, X
F = X + 1
RETURN
END

INTEGER FUNCTION F (X)
INTEGER X
F = X + 1
RETURN
END

FUNCTION NXT (X)
INTEGER X
NXT = X + 1
RETURN
END

 16 FORTRAN 77 Reference Manual

2

Properties of Data Types

This section describes the data types, what each is for, the way storage is
allocated for each of them, and the alignment of the different types. Storage
and alignment are always given in bytes. Values that can fit into a single byte
are byte-aligned.

BYTE♦

The BYTE data type provides a data type that uses only one byte of storage. It
is a logical data type, and has the synonym, LOGICAL*1 .

A variable of type BYTE can hold any of the following:

• One character
• An integer between -128 and 127
• The logical values, .TRUE. or .FALSE.

If it is interpreted as a logical value, a value of 0 represents .FALSE. , and any
other value is interpreted as .TRUE.

f77 allows the BYTE type as an array index, just as it allows the REAL type,
but it does not allow BYTE as a DO loop index (where it allows only INTEGER,
REAL, and DOUBLE PRECISION). Wherever FORTRAN 77 makes an explicit
check for INTEGER, it does not allow BYTE.

Examples:

A BYTE item occupies 1 byte of storage, and is aligned on 1-byte boundaries.

CHARACTER

The character data type, CHARACTER, which has the synonym, CHARACTER*1,
holds one character.

The character is enclosed in apostrophes (') or quotes ("). ♦ Allowing quotes
(") is nonstandard; if you compile with the –xl option, quotes mean something
else, and you must use apostrophes to enclose a string.

BYTE Bit3 / 8 /, C1 / 'W' /,
& Counter / 0 /, Switch / .FALSE. /

Data Types and Data Items 17

2

The data of type CHARACTER is always unsigned.

A CHARACTER item occupies 1 byte (8 bits) of storage.

A CHARACTER item is aligned on 1-byte boundaries.

CHARACTER*n

The character string data type, CHARACTER*n, where n > 0 , holds a string of n
characters.

A CHARACTER*n data type occupies n bytes of storage.

A CHARACTER*n variable is aligned on 1-byte boundaries.

Every character string constant is aligned on 2-byte boundaries. If it does not
appear in a DATA statement, it is followed by a null character to ease
communication with C routines.

COMPLEX

A complex datum is an approximation of a complex number. The complex data
type, COMPLEX, which usually has the synonym COMPLEX*8, is a pair of
REAL*4 values that represent a complex number. The first element represents
the real part and the second represents the imaginary part.

The usual default size for a COMPLEX item (no size specified) is 8. If the –r8
compiler option is set, then the default size is 16; otherwise, it is 8.

COMPLEX is aligned on 4-byte boundaries, except if compiled on a Sun-4 or
SPARC computer with the –f option, in which case it is aligned on 8-byte
boundaries.

COMPLEX*8♦

The complex data type COMPLEX*8 is a synonym for COMPLEX, except that it
always has a size of 8 bytes, independent of any compiler options.

 18 FORTRAN 77 Reference Manual

2

COMPLEX*16(Double Complex) ♦

The complex data type COMPLEX*16 is a synonym for DOUBLE COMPLEX,
except that it always has a size of 16 bytes, independent of any compiler
options.

COMPLEX*32 (Quad Complex) ♦

(SPARC only) The complex data type COMPLEX*32 is a quadruple-precision
complex. It is a pair of REAL*16 elements, where each has a sign bit, a 15-bit
exponent, and a 112-bit fraction. These REAL*16 elements in f77 conform to
the IEEE standard.

The size for COMPLEX*32 is 32 bytes.

COMPLEX*32 is aligned on 4-byte boundaries, except if compiled on a Sun-4 or
SPARC computer with the –f option, in which case it is aligned on 8-byte
boundaries.

DOUBLE COMPLEX♦

The complex data type, DOUBLE COMPLEX, which usually has the synonym,
COMPLEX*16, is a pair of DOUBLE PRECISION (REAL*8) values that represents
a complex number. The first element represents the real part; the second
represents the imaginary part.

The default size for DOUBLE COMPLEX with no size specified is 16. If the –r8
compiler option is set, then the default size is 32; otherwise, it is 16.

COMPLEX*16 is aligned on 4-byte boundaries, except if compiled on a Sun-4 or
SPARC computer with the –f option, in which case it is aligned on 8-byte
boundaries.

DOUBLE PRECISION

A double-precision datum is an approximation of a real number. The double-
precision data type, DOUBLE PRECISION, which has the synonym, REAL*8,
holds one double-precision datum.

The default size for DOUBLE PRECISION with no size specified is 8. If the –r8
compiler option is set, then the default size is 16; otherwise, 8.

Data Types and Data Items 19

2

DOUBLE PRECISION is aligned on 4-byte boundaries.

A DOUBLE PRECISION element has a sign bit, an 11-bit exponent, and a 52-bit
fraction. These DOUBLE PRECISION elements in f77 conform to the IEEE
standard for double-precision floating-point data. The layout is shown in
Appendix C, “Data Representations.”

INTEGER

The integer data type, INTEGER, holds a signed integer.

The default size for INTEGER with no size specified is 4. However:

• If the –i2 compiler option is set, then the default size is 2; otherwise, it is 4.

• If the –r8 compiler option is set, then the default size is 8; otherwise, it is 4.

• If both the –i2 and –r8 options are set, then the results are unpredictable.

• If both the -r8 and -dbl options are set, then the default size is 8, and the
values are 64 bits long. Thus, -dbl is the only way to set 64-bit integer
values.

This data type is aligned on 4-byte boundaries, unless the –i2 option is set, in
which case it is aligned on 2-byte boundaries.

INTEGER*2 ♦

The short integer data type, INTEGER*2, holds a signed integer. An expression
involving only objects of type INTEGER*2 is of that type. Using this feature
may have adverse performance implications, and we do not recommend it.

Generic functions return short or long integers depending on the default
integer type. If a procedure is compiled with the –i2 flag, all integer constants
that fit and all variables of type INTEGER (no explicit size) are of type
INTEGER*2. If the precision of an integer-valued intrinsic function is not
determined by the generic function rules, one is chosen that returns the
prevailing length (INTEGER*2) when the –i2 command flag is in effect. When
the –i2 option is in effect, the default length of LOGICAL quantities is 2 bytes.

Ordinary integers follow the FORTRAN 77 rules about occupying the same
space as a REAL variable. They are assumed to be equivalent to the C type
long int , and 1-byte integers are of C type short int . These short integer
and logical quantities do not obey the standard rules for storage association.

 20 FORTRAN 77 Reference Manual

2

An INTEGER*2 occupies 2 bytes.

INTEGER*2 is aligned on 2-byte boundaries.

INTEGER*4 ♦

The integer data type, INTEGER*4, holds a signed integer.

An INTEGER*4 occupies 4 bytes.

INTEGER*4 is aligned on 4-byte boundaries.

INTEGER*8 ♦

The integer data type, INTEGER*8, holds a signed 64-bit integer. It is allowed
only if the -dbl option is set.

An INTEGER*8 occupies 8 bytes.

INTEGER*8 is aligned on 8-byte boundaries.

LOGICAL

The logical data type, LOGICAL, holds a logical value .TRUE. or .FALSE. The
value 0 represents .FALSE. ; any other value represents .TRUE.

The usual default size for an LOGICAL item with no size specified is 4.
However:

• If the –i2 option is set, then the default size is 2; otherwise, it is 4.
• If the –r8 or -dbl option is set, then the default size is 8; otherwise, it is 4.
• If both the –i2 and –r8 options are set, then the results are unpredictable.

LOGICAL is aligned on 4-byte boundaries, unless the –i2 option is set, then it
is aligned on 2-byte boundaries.

If the –i2 compiler flag is set, then LOGICAL (without any size specification) is
the same as LOGICAL*2 ; otherwise, it is the same as LOGICAL*4 .

Data Types and Data Items 21

2

LOGICAL*1 ♦

The one-byte logical data type, LOGICAL*1 , which has the synonym, BYTE,
can hold any of the following:

• One character
• An integer between -128 and 127
• The logical values .TRUE. or .FALSE.

The value is as defined for LOGICAL, but it can hold a character or small
integer. An example:

A LOGICAL*1 item occupies one byte of storage.

LOGICAL*1 is aligned on one-byte boundaries.

LOGICAL*2 ♦

The data type, LOGICAL*2 , holds logical value .TRUE. or .FALSE. The value
is defined as for LOGICAL.

A LOGICAL*2 occupies 2 bytes.

LOGICAL*2 is aligned on 2-byte boundaries.

LOGICAL*4 ♦

The logical data type, LOGICAL*4 holds a logical value .TRUE. or .FALSE.
The value is defined as for LOGICAL.

A LOGICAL*4 occupies 4 bytes.

LOGICAL*4 is aligned on 4-byte boundaries.

LOGICAL*8 ♦

The logical data type, LOGICAL*8 , holds the logical value .TRUE. or .FALSE.
This data type is allowed only if the -dbl option is set. The value is defined
the same way as for the LOGICAL data type.

LOGICAL*1 Bit3 / 8 /, C1 / 'W' /,
& Counter / 0 /, Switch / .FALSE. /

 22 FORTRAN 77 Reference Manual

2

A LOGICAL*8 occupies 8 bytes.

LOGICAL*8 is aligned on 8-byte boundaries.

REAL

A real datum is an approximation of a real number. The real data type, REAL,
which usually has the synonym, REAL*4, holds one real datum.

The usual default size for a REAL item with no size specified is 4 bytes. If the
–r8 option is set, then the default size is 8 bytes; otherwise, it is 4 bytes.

REAL is aligned on 4-byte boundaries, except if compiled on a Sun-4 or SPARC
computer with the –f option, in which case it is aligned on 8-byte boundaries.

A REAL element has a sign bit, an 8-bit exponent, and a 23-bit fraction. These
REAL elements in f77 conform to the IEEE standard.

REAL*4 ♦

The REAL*4 data type is a synonym for REAL, except that it always has a size
of 4 bytes, independent of any compiler options.

REAL*8 (Double-Precision Real) ♦

The REAL*8, data type is a synonym for DOUBLE PRECISION, except that it
always has a size of 8 bytes, independent of any compiler options.

REAL*16 (Quad Real) ♦

(SPARC only) The REAL*16 data type is a quadruple-precision real.

The size for a REAL*16 item is 16 bytes.

REAL*16 is aligned on 4-byte boundaries, except if compiled on a Sun-4 or
SPARC computer with the –f option, in which case it is aligned on 8-byte
boundaries.

A REAL*16 element has a sign bit, a 15-bit exponent, and a 112-bit fraction.
These REAL*16 elements in f77 conform to the IEEE standard for extended
precision.

Data Types and Data Items 23

2

Size and Alignment Summary

The size and alignment of types depends on various compiler options. This
table summarizes the size and alignment, ignoring other aspects of types and
options.

-dalign triggers the -f option.

Table 2-1 Sizes and Alignments without -dalign , –f , –i2 , –r8 , or -dbl

FORTRAN 77 Type Size (Bytes) Alignment (Bytes)

BYTE 1 1

CHARACTER 1 1

CHARACTER*n n 1

COMPLEX 8 4

COMPLEX*8 8 4

COMPLEX*16 16 4

DOUBLE COMPLEX 16 4

COMPLEX*32 (SPARC only) 32 4

REAL 4 4

REAL*4 4 4

REAL*8 8 4

DOUBLE PRECISION 8 4

REAL*16 (SPARC only) 16 4

INTEGER 4 4

INTEGER*4 4 4

INTEGER*2 2 2

LOGICAL 4 4

LOGICAL*4 4 4

LOGICAL*2 2 2

LOGICAL*1 1 1

Synonyms:
 COMPLEX≡ COMPLEX *8
 INTEGER ≡ INTEGER*4
 LOGICAL ≡ LOGICAL*4
 REAL ≡ REAL*4
 DOUBLE COMPLEX≡ COMPLEX*16
 DOUBLE PRECISION ≡ REAL*8

These are synonyms in the sense
that COMPLEX is treated the same as
COMPLEX*8; INTEGER is treated
the same as INTEGER*4, and so
forth.

REAL*16 is sometimes called quad
real. COMPLEX*32 is sometimes
called quad complex.

 24 FORTRAN 77 Reference Manual

2

Arrays and structures align according to their elements or fields. An array
aligns the same as the array element. A structure aligns the same as the field
with the widest alignment.

Do not use –i2 with –i4 or –r8 .

Do not use –r8 with –i2 .

With -dbl or -r8 , INTEGER and LOGICAL are allocated the larger space
indicated above. This is done to maintain the FORTRAN 77 requirement that
an integer item and a real item have the same amount of storage. However,
with -r8 8 bytes are allocated but only 4-byte arithmetic is done. With -dbl ,
8 bytes are allocated and full 8-byte arithmetic is done. In all other ways, -dbl
and -r8 produce the same results.

Table 2-2 Sizes and Alignments Changed by -i2

FORTRAN 77 Type Size (Bytes) Alignment (Bytes)

Changed synonyms:
 INTEGER ≡ INTEGER*2
 LOGICAL ≡ LOGICAL*2

INTEGER 2 2

LOGICAL 2 2

Table 2-3 Sizes and Alignments Changed by -r8 or -dbl (SPARC only)

FORTRAN 77 Type Size (Bytes) Alignment (Bytes)

Changed synonyms:
 COMPLEX≡ COMPLEX*16
 INTEGER ≡ INTEGER*8
 LOGICAL ≡ LOGICAL *8
 REAL ≡ REAL*8
 DOUBLE PRECISION ≡ REAL*16
 DOUBLE COMPLEX ≡ COMPLEX*32

COMPLEX 16 4

DOUBLE COMPLEX 32 4

REAL 8 4

DOUBLE PRECISION 16 4

INTEGER 8 4

LOGICAL 8 4

Data Types and Data Items 25

2

-dalign triggers the -f option.

2.2 Constants
A constant is a datum whose value cannot change throughout the program
unit. The form of the string representing a constant determines the value and
data type of the constant.

There are three general kinds of constants:

• Arithmetic
• Logical
• Character

Blank characters within an arithmetic or logical constant do not affect the value
of the constant. Within character constants, they do affect the value.

Here are the different kinds of arithmetic constants:

Table 2-4 Sizes and Alignments Changed by -dalign or -f (SPARC only)

FORTRAN 77 Type Size (Bytes) Alignment (Bytes)

COMPLEX*8 8 8

COMPLEX*16 16 8

DOUBLE COMPLEX 16 8

COMPLEX*32 (SPARC only) 32 8

REAL*8 8 8

REAL*16 (SPARC only) 16 8

Typed Constants Typeless Constants

Complex Binary

Double complex Octal

Double precision Hexadecimal

Integer Hollerith

Real

 26 FORTRAN 77 Reference Manual

2

A signed constant is an arithmetic constant with a leading plus or minus sign.
An unsigned constant is an arithmetic constant without a leading sign.

For integer, real, and double-precision data, zero is neither positive nor
negative. The value of a signed zero is the same as that of an unsigned zero.

Character Constants

A character-string constant is a string of characters enclosed in apostrophes or
quotes. The apostrophes are standard; the quotes are not. ♦

If you compile with the –xl option, then the quotes mean something else, and
you must use apostrophes to enclose a string.

To include an apostrophe in an apostrophe-delimited string, repeat it. To
include a quote in a quote-delimited string, repeat it. Examples:

If a string begins with one kind of delimiter, the other kind can be embedded
within it without using the repeated quote or backslash escapes. See Table 2-5.

Example: Character constants:

'abc' "abc"
'ain''t' "in vi type ""h9Y"

"abc" "abc"
"ain't" 'in vi type "h9Y'

Data Types and Data Items 27

2

Null Characters ♦

Each character string constant appearing outside a DATA statement is followed
by a null character to ease communication with C routines. You can make
character string constants consisting of no characters, but only as arguments
being passed to a subprogram. Such zero length character string constants are
not FORTRAN 77 standard.

Example: Null character string:

However, if you put such a null character constant into a character variable,
the variable will contain a blank, and have a length of at least 1 byte.

Example: Length of null character string:

demo% cat NulChr.f
write(*,*) 'a', '', 'b'
stop
end

demo% f77 NulChr.f
NulChr.f:
 MAIN:
demo% a.out
ab
demo%

demo% cat NulVar.f
character*1 x / 'a' /, y / '' /, z / 'c' /
write(*,*) x, y, z
write(*,*) len(y)
end

demo% f77 NulVar.f
NulVar.f:
 MAIN:
demo% a.out
a c
 1
demo%

 28 FORTRAN 77 Reference Manual

2

Escape Sequences ♦

For compatibility with C usage, the following backslash escapes are
recognized. If you include the escape sequence in a character string, then you
get the indicated character.

If you compile with the –xl option, then the backslash character (\) is treated
as an ordinary character. That is, with the –xl option, you cannot use these
escape sequences to get special characters.

Technically, the escape sequences are not nonstandard, but are implementation-
defined.

Complex Constants

A complex constant is an ordered pair of real or integer constants. The
constants are separated by a comma, and the pair is enclosed in parentheses.
The first constant is the real part, and the second is the imaginary part. A
complex constant, COMPLEX*8, uses 8 bytes of storage.

Table 2-5 Backslash Escape Sequences

Escape Sequence Character

\n Newline

\r Carriage return

\t Tab

\b Backspace

\f Form feed

\v Vertical tab

\0 Null

\' Apostrophe, which does not terminate a string

\" Quotation mark, which does not terminate a string

\\ \

\x x, where x is any other character

Data Types and Data Items 29

2

Example: Complex constants:

COMPLEX*16Constants

A double-complex constant, COMPLEX*16, is an ordered pair of real or integer
constants, where one of the constants is REAL*8, and the other is INTEGER,
REAL*4, or REAL*8. ♦

The constants are separated by a comma, and the pair is enclosed in
parentheses. The first constant is the real part, and the second is the imaginary
part. A double-complex constant, COMPLEX*16, uses 16 bytes of storage.

Example: Double-complex constants:

COMPLEX*32(Quad Complex) Constants

(SPARC only) A quad complex constant ♦ is an ordered pair of real or integer
constants, where one of the constants is REAL*16 , and the other is INTEGER,
REAL*4, REAL*8, or REAL*16 . ♦

The constants are separated by a comma, and the pair is enclosed in
parentheses. The first constant is the real part, and the second is the imaginary
part. A quad complex constant, COMPLEX*32♦, uses 32 bytes of storage.

(9.01, .603)
(+1.0, -2.0)
(+1.0, -2)
(1, 2)
(4.51,) Invalid —need second part

(9.01D6, .603)
(+1.0, -2.0D0)
(1D0, 2)
(4.51D6,) Invalid—need second part
(+1.0, -2.0) Not DOUBLE COMPLEX—need a REAL*8

 30 FORTRAN 77 Reference Manual

2

Example: Quad complex constants (SPARC only):

Integer Constants

An integer constant consists of an optional plus or minus sign, followed by a
string of decimal digits.

Restrictions

No other characters are allowed except, of course, a space.

If no sign is present, the constant is assumed to be nonnegative.

The value must be in the range (-2147483648, 2147483647).

If the -dbl option is set, then the value must be in the range
(-9223372036854775808,9223372036854775807).

Example: Integer constants:

(9.01Q6, .603)
(+1.0, -2.0Q0)
(1Q0, 2)
(3.3Q-4932, 9)
(1, 1.1Q+4932)
(4.51Q6,) Invalid—need second part
(+1.0, -2.0) Not quad complex —need a REAL*16

-2147483648
-2147483649 Invalid—too small, error message
-10
0
+199
29002
2.71828 Not INTEGE—decimal point not allowed
1E6 Not INTEGER—E not allowed
29,002 Invalid—comma not allowed, error message
2147483647
2147483648 Invalid— too large, error message

Data Types and Data Items 31

2

Alternate Octal Notation ♦

You can also specify integer constants with the following alternate octal
notation. Precede an integer string with a double quote (") and compile with
the –xl option. These are octal constants of type INTEGER.

Example: The following two statements are equivalent:

You can also specify typeless constants as binary, octal, hexadecimal, or
Hollerith. See “Typeless Constants (Binary, Octal, Hexadecimal)” on page 35.

Long Integers ♦

If the -dbl option is used, then the range of integer constants is changed from
(-21474836, 21474836) to (-9223372036854775808, 9223372036854775807). The
integer constant is stored or passed as an 8-byte integer, data type INTEGER*8.

Short Integers ♦

If a constant argument is in the range (-32768, 32767), it is usually widened to a
4-byte integer, data type INTEGER*4; but if the –i2 option is set, then it is
stored or passed as a 2-byte integer, data type INTEGER*2.

Logical Constants

A logical constant is either the logical value true or false. The only logical
constants are .TRUE. and .FALSE. ; no others are possible. The period
delimiters are necessary.

A logical constant takes 4 bytes of storage. If it is an actual argument, it is
passed as 4 bytes, unless the –i2 option is set, in which case it is passed as 2.

JCOUNT = ICOUNT + "703
JCOUNT = ICOUNT + 451

 32 FORTRAN 77 Reference Manual

2

Real Constants

A real constant is an approximation of a real number. It can be positive,
negative, or zero. It has a decimal point or an exponent. If no sign is present,
the constant is assumed to be nonnegative.

Real constants, REAL*4, use 4 bytes of storage.

Basic Real Constant

A basic real constant consists of an optional plus or minus sign, followed by an
integer part, followed by a decimal point, followed by a fractional part.

The integer part and the fractional part are each strings of digits, and you can
omit either of these parts, but not both.

Example: Basic real constants:

Real Exponent

A real exponent consists of the letter E, followed by an optional plus or minus
sign, followed by an integer.

Example: Real exponents:

Real Constant

A real constant has one of these forms:

• Basic real constant
• Basic real constant followed by a real exponent
• Integer constant followed by a real exponent

+82.
-32.
90.
98.5

E+12
E-3
E6

Data Types and Data Items 33

2

A real exponent denotes a power of ten. The value of a real constant is the
product of that power of ten and the constant that precedes the E.

Example: Real constants:

The restrictions are:

• Other than the optional plus or minus sign, a decimal point, the digits 0
through 9, and the letter E, no other characters are allowed.

• The magnitude of a normalized single-precision floating-point value must
be in the approximate range (1.175494E-38, 3.402823E+38).

REAL*8 (Double-Precision Real) Constants

A double-precision constant is an approximation of a real number. It can be
positive, negative, or zero. If no sign is present, the constant is assumed to be
nonnegative. A double-precision constant has a double-precision exponent and
an optional decimal point. Double-precision constants, REAL*8, use 8 bytes of
storage. The REAL*8 notation is nonstandard. ♦

Double-Precision Exponent

A double-precision exponent consists of the letter D, followed by an optional plus
or minus sign, followed by an integer.

A double-precision exponent denotes a power of 10. The value of a double-
precision constant is the product of that power of 10 and the constant that
precedes the D. The form and interpretation are the same as for a real exponent,
except that a D is used instead of an E.

-32.
-32.18
1.6E-9
7E3
1.6E12
$1.0E2.0 Invalid— $ not allowed, error message
82 Not REAL—need decimal point or exponent
29,002.0 Invalid —comma not allowed, error message
1.6E39 Invalid—too large, machine infinity is used
1.6E-39 Invalid —too small, some precision is lost

 34 FORTRAN 77 Reference Manual

2

Examples of double-precision constants are:

The restrictions are:

• Other than the optional plus or minus sign, a decimal point, the digits 0
through 9, a blank, and the letter D. No other characters are allowed.

• The magnitude of an IEEE normalized double-precision floating-point value
must be in the approximate range (2.225074D-308, 1.797693D+308).

REAL*16 (Quad Real) Constants

(SPARC only) A quadruple-precision constant is a basic real constant (see the
start of the section, “Real Constants” on page 32), or an integer constant, such
that it is followed by a quadruple-precision exponent. ♦

A quadruple-precision exponent consists of the letter Q, followed by an optional
plus or minus sign, followed by an integer.

A quadruple-precision constant can be positive, negative, or zero. If no sign is
present, the constant is assumed to be nonnegative.

Example: Quadruple-precision constants (SPARC only):

1.6D-9
7D3
$1.0D2.0 Invalid —$ not allowed, error message
82 Not DOUBLE PRECISION—need decimal point or exponent
29,002.0D0 Invalid—comma not allowed, error message
1.8D308 Invalid—too large, machine infinity is used
1.0D-324 Invalid—too small, some precision is lost

1.6Q-9
7Q3
3.3Q-4932
1.1Q+4932
$1.0Q2.0 Invalid—$ not allowed, error message
82 Not quad —need exponent
29,002.0Q0 Invalid—comma not allowed, error message
1.6Q5000 Invalid—too large, machine infinity is used
1.6Q-5000 Invalid—too small, some precision is lost

Data Types and Data Items 35

2

The form and interpretation are the same as for a real constant, except that a Q
is used instead of an E.

The restrictions are:

• Other than the optional plus or minus sign, a decimal point, the digits 0
through 9, a blank, and the letter Q. No other characters are allowed.

• The magnitude of an IEEE normalized quadruple-precision floating-point
value must be in the approximate range (3.362Q-4932, 1.20Q+4932).

• It occupies 16 bytes of storage.

• Each such datum is aligned on 4-byte boundaries.

Typeless Constants (Binary, Octal, Hexadecimal)

Typeless numeric constants are so named because their expressions assume
data types based on how they are used. ♦

These constants are not converted before use. However, in f77 , they must be
distinguished from character strings.

The general form is to enclose a string of appropriate digits in apostrophes and
prefix it with the letter B, O, X, or Z. The B is for binary, the O is for octal, and
the X or Z are for hexadecimal.

Example: Binary, octal, and hexadecimal constants, DATA and PARAMETER:

Note the edit descriptors in FORMAT statements: O for octal, and Z for
hexadecimal. Each of the above integer constants has the value 31 decimal.

PARAMETER (P1 = Z'1F')
INTEGER*2 N1, N2, N3, N4
DATA N1 /B'0011111'/, N2/O'37'/, N3/X'1f'/, N4/Z'1f'/
WRITE (*, 1) N1, N2, N3, N4, P1

1 FORMAT (1X, O4, O4, Z4, Z4, Z4)
END

 36 FORTRAN 77 Reference Manual

2

Example: Binary, octal, and hexadecimal, other than in DATA and PARAMETER:

In the above example, the context defines B'0001000' and O'777' as
INTEGER*4 and X'FFF99A' as REAL*4. For a real number, using IEEE
floating-point, a given bit pattern yields the same value on different
architectures.

The above statements are treated as the following:

Control Characters

You can enter control characters with typeless constants, although the CHAR
function is standard, and this way is not.

Example: Control characters with typeless constants:

Alternate Notation for Typeless Constants

For compatibility with other versions of FORTRAN 77, the following alternate
notation is allowed for octal and hexadecimal notation. This alternate does not
work for binary, nor does it work in DATA or PARAMETER statements.

For an octal notation, enclose a string of octal digits in apostrophes and
append the letter O.

INTEGER*4 M, ICOUNT/1/, JCOUNT
REAL*4 TEMP
M = ICOUNT + B'0001000'
JCOUNT = ICOUNT + O'777'
TEMP = X'FFF99A'
WRITE(*,*) M, JCOUNT, TEMP
END

M = ICOUNT + 8
JCOUNT = ICOUNT + 511
TEMP = 2.35076E-38

CHARACTER BELL, ETX / X'03' /
PARAMETER (BELL = X'07')

Data Types and Data Items 37

2

Example: Octal alternate notation for typeless constants:

For hexadecimals, enclose a string of hex digits in apostrophes and append the
letter X.

Example: Hex alternate notation for typeless constants:

Here are the rules and restrictions for binary, octal, and hexadecimal constants:

• These constants are for use anywhere numeric constants are allowed.

• These constants are typeless. They are stored in the variables without any
conversion to match the type of the variable, but they are stored in the
appropriate part of the receiving field—low end, high end.

• If the receiving data type has more digits than are specified in the constant,
zeros are filled on the left.

• If the receiving data type has fewer digits than are specified in the constant,
digits are truncated on the left. If nonzero digits are lost, an error message is
displayed.

• Specified leading zeros are ignored.

• You can specify up to 8 bytes of data for any one constant—at least that's all
that are used.

• If a typeless constant is an actual argument, it has no data type, but it is
always 4 bytes that are passed.

• For binary constants, each digit must be 0 or 1.

'37'O
37'O Invalid—missing initial apostrophe
'37' Not numeric — missing letter O
'397'O Invalid—invalid digit

'ab'X
3fff'X
'1f'X
'1fX Invalid—missing trailing apostrophe
'3f' Not numeric — missing X
'3g7'X Invalid—invalid digit g

 38 FORTRAN 77 Reference Manual

2

• For octal constants, each digit must be in the range 0 to 7.

• For hexadecimal constants, each digit must be in the range 0 to 9 or in the
range A to F, or a to f.

• Outside of DATA statements, such constants are treated as the type required
by the context. If a typeless constant is used with a binary operator, it gets
the data type of the other operand (8.0 + '37'O).

• In DATA statements, such constants are treated as typeless binary,
hexadecimal, or octal constants.

Hollerith Constants ♦

A Hollerith constant consists of an unsigned, nonzero, integer constant,
followed by the letter H, followed by a string of printable characters where the
integer constant designates the number of characters in the string, including
any spaces and tabs.

A Hollerith constant occupies 1 byte of storage for each character.

A Hollerith constant is aligned on 2-byte boundaries.

The FORTRAN 77 standard does not have this old Hollerith notation, although
the standard recommends implementing the Hollerith feature to improve
compatibility with old programs.

Hollerith data can be used in place of character-string constants. They can also
be used in IF tests, and to initialize noncharacter variables in DATA statements
and assignment statements, though none of these are recommended, and none
are standard. These are typeless constants.

Example: Typeless constants:

CHARACTER C*1, CODE*2
INTEGER TAG*2
DATA TAG / 2Hok /
CODE = 2Hno
IF (C .EQ. 1HZ) CALL PUNT

Data Types and Data Items 39

2

The rules and restrictions on Hollerith constants are:

• The number of characters has no practical limit.

• The characters can continue over to a continuation line, but that gets tricky.
Short standard fixed format lines are padded on the right with blanks up to
72 columns, but short tab-format lines stop at the newline.

• If a Hollerith constant is used with a binary operator, it gets the data type of
the other operand.

• If you assign a Hollerith constant to a variable, and the length of the
constant is less than the length of the data type of the variable, then spaces
(ASCII 32) are appended on the right.

If the length of a Hollerith constant or variable is greater than the length of
the data type of the variable, then characters are truncated on the right.

• If a Hollerith constant is used as an actual argument, it is passed as a 4-byte
item.

• If a Hollerith constant is used, and the context does not determine the data
type, then INTEGER*4 is used.

2.3 Variables
A variable is a symbolic name paired with a storage location. A variable has a
name, a value, and a type. Whatever datum is stored in the location is the
value of the variable. This does not include arrays, array elements, records, or
record fields, so this definition is more restrictive than the usual usage of the
word “variable.”

You can specify the type of a variable in a type statement. If the type is not
explicitly specified in a type statement, it is implied by the first letter of the
variable name: either by the usual default implied typing, or by any implied
typing of IMPLICIT statements. See Section 2.1, “Types,” for more details on
the rules for data typing.

At any given time during the execution of a program, a variable is either
defined or undefined. If a variable has a predictable value, it is defined;
otherwise, it is undefined. A previously defined variable may become
undefined, as when a subprogram is exited.

 40 FORTRAN 77 Reference Manual

2

You can define a variable with an assignment statement, an input statement, or
a DATA statement. If a variable is assigned a value in a DATA statement, then it
is initially defined.

Two variables are associated if each is associated with the same storage
location. You can associate variables by use of EQUIVALENCE, COMMON, or MAP
statements. Actual and dummy arguments can also associate variables.

2.4 Arrays
An array is a named collection of elements of the same type. It is a nonempty
sequence of data and occupies a group of contiguous storage locations. An
array has a name, a set of elements, and a type.

An array name is a symbolic name for the whole sequence of data.

An array element is one member of the sequence of data. Each storage location
holds one element of the array.

An array element name is an array name qualified by a subscript. See “Array
Subscripts,” on page 14 for details.

You can declare an array in any of the following statements:

• DIMENSION statement
• COMMON statement
• Type statements: BYTE , CHARACTER, INTEGER, REAL, and so forth

Array Declarators

An array declarator specifies the name and properties of an array.

The syntax of an array declarator is:

where:

• a is the name of the array
• d is a dimension declarator

a (d [, d] …)

Data Types and Data Items 41

2

A dimension declarator has the form:

[dl:] du

where:

• dl is the lower dimension bound
• du is the upper dimension bound

The number of dimensions in an array is the number of dimension declarators.
The minimum number of dimensions is one; the maximum is seven. For an
assumed-size array, the last dimension can be an asterisk.

The lower bound indicates the first element of the dimension, and the upper
bound indicates the last element of the dimension. In a one-dimensional array,
these are the first and last elements of the array.

Example: Array declarator, lower and upper bounds:

In the above example, V is an array of real numbers, with 1 dimension and 11
elements. The first element is V(-5) ; the last element is V(5) .

Example: Default lower bound of 1:

In the above example, V is an array of real numbers, with 1 dimension and
1000 elements. The first element is V(1) ; the last element is V(1000) .

Example: Arrays can have as many as 7 dimensions:

Example: Lower bounds other than one:

REAL V(-5:5)

REAL V(1000)

REAL TAO(2,2,3,4,5,6,10)

REAL A(3:5, 7, 3:5), B(0:2)

 42 FORTRAN 77 Reference Manual

2

Example: Character arrays:

The array M has 12 elements, each of which consists of 7 characters.

The array V has 9 elements, each of which consists of 4 characters.

The following restrictions on bounds apply:

• Both the upper and the lower bounds can be negative, zero, or positive.

• The upper bound must be greater than or equal to the lower bound.

• If only one bound is specified, it is the upper, and the lower is one.

• In assumed-size arrays, the upper bound of the last dimension is an asterisk.

• Each bound is an integer expression, and each operand of the expression is
a constant, a dummy argument, or a variable in a common block. No array
references or user-defined functions are allowed.

Adjustable Arrays

An adjustable array is an array which is a dummy argument, and which has one
or more of its dimensions or bounds as integer variables that are either
themselves dummy arguments, or are in a common block.

You can declare adjustable arrays in the usual DIMENSION, COMMON, or type
statements. In f77, you can also declare adjustable arrays in a RECORD
statement, if that RECORD statement is not inside a structure declaration block.

Example: Adjustable array bounds with arguments, and variables in common;

The restrictions are:

• The size of an adjustable array cannot exceed the size of the corresponding
actual argument.

CHARACTER M(3,4)*7, V(9)*4

SUBROUTINE POPUP (A, B, N)
COMMON / DEFS / M, L, K
REAL A(3:5, 7, M:N), B(N+1:2*N)

Data Types and Data Items 43

2

• In the first caller of the call sequence, the corresponding array must be
dimensioned with constants.

Assumed-Size Arrays

An assumed-size array is an array that is a dummy argument, and which has an
asterisk as the upper bound of the last dimension.

You can declare assumed-size arrays in the usual DIMENSION, COMMON, or type
statements.

In f77, the following extensions are allowed:

• You can declare assumed-size arrays in a RECORD statement, if that RECORD
statement is not inside a structure declaration block.

• You can use an assumed-size array as a unit identifier for an internal file in
an I/O statement.

• You can use an assumed-size array as a runtime format specifier in an I/O
statement.

Example: Assumed-size with the upper bound of the last dimension an
asterisk:

An assumed-size array cannot be used in an I/O list.

Array Names with No Subscripts

An array name with no subscripts indicates the entire array. It can appear in
any of the following statements:

• COMMON
• DATA
• I/O statements
• NAMELIST
• RECORD statements
• SAVE
• Type statements

SUBROUTINE PULLDOWN (A, B, C)
 INTEGER A(5, *), B(*), C(0:1, (mI2:*) ea

 44 FORTRAN 77 Reference Manual

2

In an EQUIVALENCE statement, the array name without subscripts indicates
the first element of the array.

Array Subscripts

An array element name is an array name qualified by a subscript.

Form of a Subscript

A subscript is a parenthesized list of subscript expressions. There must be one
subscript expression for each dimension of the array.

The form of a subscript is:

(s [, s] …)

where s is a subscript expression. The parentheses are part of the subscript.

Example: Declare a two-by-three array with the declarator:

With the above declaration, you can assign a value to a particular element, as
follows:

The above code assigns 0.0 to the element in row 1, column 2, of array M.

Subscript Expressions

Subscript expressions have the following properties and restrictions:

• A subscript expression is an integer, real, or byte expression. According to
the FORTRAN 77 Standard, it must be an integer expression.

• A subscript expression can contain array element references and function
references.

• Evaluation of a function reference must not alter the value of any other
subscript expression within the same subscript.

REAL M(2,3)

M(1,2) = 0.0

Data Types and Data Items 45

2

• Each subscript expression is an index into the appropriate dimension of the
array.

• Each subscript expression must be within the bounds for the appropriate
dimension of the array.

• A subscript of the form (L1, …, Ln) , where each Li is the lower bound of the
respective dimension, references the first element of the array.

• A subscript of the form (U1, …, Un), where each Ui is the upper bound of the
respective dimension, references the last element of the array.

• Array element A(n) is not necessarily the nth element of array A:

In the above example, the fourth element of V is set to zero.

Subscript expressions cannot exceed the range of INTEGER*4. It is not
controlled, but if the subscript expression is not in the range
(-2147483648, 2147483647), then the results are unpredictable.

Array Ordering

Array elements are usually considered as being arranged with the first
subscript as the row number and the second subscript as the column number.
For example:

The elements of A are usually mentally arranged like this in 3 rows and 2
columns:

Array elements are stored in column-major order.

REAL V(-1:8)
V(2) = 0.0

INTEGER*4 A(3,2)

A(1,1) A(1,2)

A(2,1) A(2,2)

A(3,1) A(3,2)

 46 FORTRAN 77 Reference Manual

2

Example: For the array A, they are located in memory as follows:

The inner (leftmost) subscript changes more rapidly.

2.5 Substrings
A character datum is a sequence of one or more characters. A character
substring is a contiguous portion of a character variable or of a character array
element or of a character field of a structured record.

A substring name can be in either of the following two forms:

v([e1] : [e2])

a(s [, s] …) ([e1] : [e2])

where:

Both e1 and e2 are integer expressions. They cannot exceed the range of
INTEGER*4. If the expression is not in the range (-2147483648, 2147483647),
then the results are unpredictable.

Example: The string with initial character from the Ith character of S and with
the last character from the Lth character of S:

In the above example, there are L-I+1 characters in the substring.

A(1,1) A(2,1) A(3,1) A(1,2) A(2,2) A(3,2)

v Character variable name

a(s [, s] …) Character array element name

e1 Leftmost character position of the substring

e2 Rightmost character position of the substring

S(I:L)

Data Types and Data Items 47

2

The following string has an initial character from the Mth character of the
array element A(J,K) , with the last character from the Nth character of that
element.

In the above example, there are N-M+1 characters in the substring.

Here are the rules and restrictions for substrings:

• Character positions within a substring are numbered from left to right.

• The first character position is numbered 1, not 0.

• The initial and last character positions must be integer expressions.

• If the first expression is omitted, it is 1.

• If the second expression is omitted, it is the declared length.

• The result is undefined unless 0 < I ≤ L ≤ the declared length, where I is the
initial position, and L is the last position.

• Substrings can be used on the left and right sides of assignments and as
procedure actual arguments.

• Substrings must not be overlapping. ASTR(2:4) = ASTR(3:5) is illegal.

A(J,K)(M:N)

 48 FORTRAN 77 Reference Manual

2

Examples: Substrings—the value of the element in column 2, row 3 is e23 :

2.6 Structures
A structure is a generalization of an array. ♦

Just as an array is a collection of elements of the same type, a structure is a
collection of elements that are not necessarily of the same type.

demo% cat sub.f
character v*8 / 'abcdefgh' /,

& m(2,3)*3 / 'e11', 'e21',
& 'e12', 'e22',
& 'e13', 'e23' /

print *, v(3:5)
print *, v(1:)
print *, v(:8)
print *, v(:)
print *, m(1,1)
print *, m(2,1)
print *, m(1,2)
print *, m(2,2)
print *, m(1,3)
print *, m(2,3)
print *, m(1,3)(2:3)
end

demo% f77 sub.f
sub.f:
 MAIN:
demo% a.out
 cde
 abcdefgh
 abcdefgh
 abcdefgh
 e11
 e21
 e12
 e22
 e13
 e23
 13
demo%

Data Types and Data Items 49

2

As elements of arrays are referenced by using numeric subscripts, so elements
of structures are referenced by using element (or field) names.

The structure declaration defines the form of a record by specifying the name,
type, size, and order of the fields that constitute the record. Once a structure is
defined and named, it can be used in RECORD statements, as explained in the
following subsections.

Syntax

The structure declaration has the following syntax:

Field Declaration

Each field declaration can be one of the following:

• A substructure—either another structure declaration, or a record that has
been previously defined

• A union declaration, which is described later

• A FORTRAN 77 type declaration

STRUCTURE [/structure-name/] [field-list]
field-declaration

[field-declaration]
. . .
[field-declaration]

END STRUCTURE

structure-name Name of the structure

field-list List of fields of the specified structure

field-declaration Defines a field of the record.
field-declaration is defined in the next section.

 50 FORTRAN 77 Reference Manual

2

Example: A STRUCTURE declaration:

In the above example, a structure named PRODUCT is defined to consist of the
five fields ID , NAME, MODEL, COST, and PRICE. For an example with a field-list,
see “Structure within a Structure” on page 54.

Rules and Restrictions for Structures

Note the following:

• The name is enclosed in slashes, and is optional only in nested structures.

• If slashes are present, a name must be present.

• You can specify the field-list within nested structures only.

• There must be at least one field-declaration.

• Each structure-name must be unique among structures, although you can use
structure names for fields in other structures or as variable names.

• The only statements allowed between the STRUCTURE statement and the
END STRUCTURE statement are field-declaration statements and PARAMETER
statements. A PARAMETER statement inside a structure declaration block is
equivalent to one outside.

Rules and Restrictions for Fields

Fields that are type declarations use the identical syntax of normal FORTRAN
77 type statements. All f77 types are allowed, subject to the following rules
and restrictions:

• Any dimensioning needed must be in the type statement. The DIMENSION
statement has no effect on field names.

STRUCTURE /PRODUCT/
INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE

Data Types and Data Items 51

2

• You can specify the pseudo-name %FILL for a field name. %FILL is
provided for compatibility with other versions of FORTRAN 77. It is not
needed in f77 because the alignment problems are taken care of for you. It
may be a useful feature if you want to make one or more fields that you
cannot reference in some particular subroutine. The only thing that %FILL
does is provide a field of the specified size and type, and preclude
referencing it.

• You must explicitly type all field names. The IMPLICIT statement does not
apply to statements in a STRUCTURE declaration, nor do the implicit
I,J,K,L,M,N rules apply.

• You cannot use arrays with adjustable or assumed size in field declarations,
nor can you include passed-length CHARACTER declarations.

In a structure declaration, the offset of field n is the offset of the preceding
field, plus the length of the preceding field, possibly corrected for any
adjustments made to maintain alignment. See Appendix C, “Data
Representations,” for a summary of storage allocation.

Record Declaration

The RECORD statement declares variables to be records with a specified
structure, or declares arrays to be arrays of such records.

The syntax of a RECORD statement is:

Example: A RECORD that uses the previous STRUCTURE example:

RECORD / structure-name/ record-list
[,/ structure-name/ record-list]
…
[,/ structure-name/ record-list]

structure-name Name of a previously declared structure

record-list List of variables, arrays, or arrays with dimensioning and
index ranges, separated by commas.

RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)

 52 FORTRAN 77 Reference Manual

2

Each of the three variables, CURRENT, PRIOR, and NEXT, is a record which has
the PRODUCT structure; LINE is an array of 10 such records.

Note the following rules and restrictions for records:

• Each record is allocated separately in memory.

• Initially, records have undefined values, unless explicitly initialized.

• Records, record fields, record arrays, and record-array elements are allowed
as arguments and dummy arguments. When you pass records as arguments,
their fields must match in type, order, and dimension. The record
declarations in the calling and called procedures must match. Within a
union declaration, the order of the map fields is not relevant. See “Unions
and Maps” on page 56.

• Record fields are not allowed in COMMON statements.

• Records and record fields are not allowed in DATA, EQUIVALENCE, or
NAMELIST statements. Record fields are not allowed in SAVE statements.

Record and Field Reference

You can refer to a whole record, or to an individual field in a record, and since
structures can be nested, a field can itself be a structure, so you can refer to
fields within fields, within fields, and so forth.

The syntax of record and field reference is:

record-name[. field-name] … [. field-name]

record-name Name of a previously defined record variable

field-name Name of a field in the record immediately to the left.

Data Types and Data Items 53

2

Example: References that are based on structure and records of the above two
examples:

In the above example:

• The first assignment statement copies one whole record (all five fields) to
another record.

• The second assignment statement copies a whole record into the first
element of an array of records.

• The WRITE statement writes a whole record.

• The last statement sets the ID of one record to 82.

Example: Structure and record declarations, record and field assignments:

…
RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)
…
CURRENT = NEXT
LINE(1) = CURRENT
WRITE (9) CURRENT
NEXT.ID = 82

demo% cat str1.f
* str1.f Simple structure

STRUCTURE / S /
INTEGER*4 I
REAL*4 R

END STRUCTURE
RECORD / S / R1, R2
R1.I = 82
R1.R = 2.7182818
R2 = R1
WRITE (*, *) R2.I, R2.R
STOP
END

demo% f77 -silent str1.f
demo% a.out
82 2.718280
demo%

 54 FORTRAN 77 Reference Manual

2

Substructure Declaration

A structure can have a field that is also a structure. Such a field is called a
substructure. You can declare a substructure in one of two ways:

• A RECORD declaration within a structure declaration
• A structure declaration within a structure declaration (nesting)

Record within a Structure

A nested structure declaration is one that is contained within either a structure
declaration or a union declaration. You can use a previously defined record
within a structure declaration.

Example: Define structure SALE using previously defined record PRODUCT:

In the above example, the structure SALE contains three fields. BUYER,
QUANTITY, and ITEM, where ITEM is a record with the structure, /PRODUCT/.

Structure within a Structure

You can nest a declaration within a declaration.

STRUCTURE /SALE/
CHARACTER*32 BUYER
INTEGER*2 QUANTITY
RECORD /PRODUCT/ ITEM

END STRUCTURE

Data Types and Data Items 55

2

Example: If /PRODUCT/ is not declared previously, then you can declare it
within the declaration of SALE:

Here, the structure SALE still contains the same three fields as in the prior
example: BUYER, QUANTITY, and ITEM. The field ITEM is an example of a field-
list (in this case, a single-element list), as defined under “Structure
Declaration.”

The size and complexity of the various structures determine which style of
substructure declaration is best to use in a given situation.

Field Reference in Substructures

You can refer to fields within substructures.

Example: Refer to fields of substructures (PRODUCT and SALE, from the
previous examples, are defined in the current program unit):

STRUCTURE /SALE/
CHARACTER*32 BUYER
INTEGER*2 QUANTITY
STRUCTURE /PRODUCT/ ITEM

INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
END STRUCTURE

…
RECORD /SALE/ JAPAN
…
N = JAPAN.QUANTITY
I = JAPAN.ITEM.ID
…

 56 FORTRAN 77 Reference Manual

2

Rules and Restrictions for Substructures

Note the following:

• You must define at least one field name for any substructure.

• No two fields at the same nesting level can have the same name. Fields at
different levels of a structure can have the same name; however, doing so
might be questionable programming practice.

• You can use the pseudo-name, %FILL , to align fields in a record, and create
an unnamed empty field.

• You must not include a structure as a substructure of itself, at any level of
nesting.

Unions and Maps

A union declaration defines groups of fields that share memory at runtime.

Syntaxes

The syntax of a union declaration is:

The syntax of a map declaration is as follows.

UNION
map-declaration
map-declaration

[map-declaration]
…
[map-declaration]

END UNION

MAP
field-declaration

[field-declaration]
…
[field-declaration]

END MAP

Data Types and Data Items 57

2

Fields in a Map

Each field-declaration in a map declaration can be one of the following:

• Structure declaration
• Record
• Union declaration
• Declaration of a typed data field

A map declaration defines alternate groups of fields in a union. During
execution, one map at a time is associated with a shared storage location.
When you reference a field in a map, the fields in any previous map become
undefined and are succeeded by the fields in the map of the newly referenced
field. The amount of memory used by a union is that of its biggest map.

Example: Declare the structure /STUDENT/ to contain either NAME, CLASS, and
MAJOR—or NAME, CLASS, CREDITS, and GRAD_DATE:

If you define the variable PERSON to have the structure /STUDENT/ from the
above example, then PERSON.MAJOR references a field from the first map, and
PERSON.CREDITS references a field from the second map. If the variables of
the second map field are initialized, and then the program references the
variable PERSON.MAJOR, the first map becomes active, and the variables of the
second map become undefined.

STRUCTURE /STUDENT/
CHARACTER*32 NAME
INTEGER*2 CLASS
UNION

MAP
CHARACTER*16 MAJOR

END MAP
MAP

INTEGER*2 CREDITS
CHARACTER*8 GRAD_DATE

END MAP
END UNION

END STRUCTURE

 58 FORTRAN 77 Reference Manual

2

2.7 Pointers
The POINTER statement establishes pairs of variables and pointers. ♦

Each pointer contains the address of its paired variable.

Syntax Rules

 The POINTER statement has the following syntax:

where:

• v1, v2 are pointer-based variables.
• p1, p2 are the corresponding pointers.

A pointer-based variable is a variable paired with a pointer in a POINTER
statement. A pointer-based variable is usually just called a based variable. The
pointer is the integer variable that contains the address.

Example: A simple POINTER statement:

Here, V is a pointer-based variable, and P is its associated pointer.

Usage of Pointers

Normal use of pointer-based variables involves the following steps. The first
two steps can be in either order.

1. Define the pairing of the pointer-based variable and the pointer in a
POINTER statement.

2. Define the type of the pointer-based variable.
The pointer itself is integer type, but in general, it is safer if you not list it in
an INTEGER statement.

POINTER (p1, v1) [, (p2, v2) …]

POINTER (P, V)

Data Types and Data Items 59

2

3. Set the pointer to the address of an area of memory that has the
appropriate size and type.
You do not normally do anything else explicitly with the pointer.

4. Reference the pointer-based variable.
Just use the pointer-based variable in normal FORTRAN 77 statements—the
address of that variable is always from its associated pointer.

Address and Memory

No storage for the variable is allocated when a pointer-based variable is
defined, so you must provide an address of a variable of the appropriate type
and size, and assign the address to a pointer, usually with the normal
assignment statement or data statement.

See Table 6-9 on page 327.

Address by LOC() Function

You can obtain the address from the intrinsic function LOC() .

Example: Use the LOC() function to get an address:

In the above example, the CHARACTER statement allocates 12 bytes of storage
for A, but no storage for V. It merely specifies the type of V because V is a
pointer-based variable, then assign the address of A to P, so now any use of V
will refer to A by the pointer P. The program prints an E.

* ptr1.f: Assign an address via LOC()
POINTER (P, V)
CHARACTER A*12, V*12
DATA A / 'ABCDEFGHIJKL' /
P = LOC(A)
PRINT *, V(5:5)
END

 60 FORTRAN 77 Reference Manual

2

Memory and Address by MALLOC() Function

The function MALLOC() allocates an area of memory and returns the address
of the start of that area. The argument to the function is an integer specifying
the amount of memory to be allocated, in bytes. If successful, it returns a
pointer to the first item of the region; otherwise, it returns an integer 0. The
region of memory is not initialized in any way.

 Example: Memory allocation for pointers, by MALLOC:

In the above example, we get 10,000 bytes of memory from MALLOC() and
assign the address of that block of memory to the pointer P1.

Deallocation of Memory by FREE() Function

The subroutine FREE() deallocates a region of memory previously allocated
by MALLOC(). The argument given to FREE() must be a pointer previously
returned by MALLOC(), but not already given to FREE() . The memory is
returned to the memory manager, making it unavailable to the programmer.

Example: Deallocate via FREE:

In the above example, after getting memory via MALLOC(), and after some
other instructions, probably using that chunk of memory, we direct FREE() to
return those same 10,000 bytes to the memory manager.

COMPLEX Z
REAL X, Y
POINTER (P1, X), (P2, Y), (P3, Z)
…
P1 = MALLOC (10000)
…

POINTER (P1, X), (P2, Y), (P3, Z)
…
P1 = MALLOC (10000)
…
CALL FREE (P1)
…

Data Types and Data Items 61

2

Restrictions

The pointers are of type integer, and are automatically typed that way by the
compiler. You must not type them yourself.

A pointer-based variable cannot itself be a pointer.

The pointer-based variables can be of any type, including structures.

No storage is allocated when such a pointer-based variable is declared, even if
there is a size specification in the type statement.

You cannot use a pointer-based variable as a dummy argument or in COMMON,
EQUIVALENCE, DATA, or NAMELIST statements.

The dimension expressions for pointer-based variables must be constant
expressions in main programs. In subroutines and functions, the same rules
apply for pointer-based array variables as for dummy arguments—the
expression can contain dummy arguments and variables in common. Any
variables in the expressions must be defined with an integer value at the time
the subroutine or function is called.

Address expressions cannot exceed the range of INTEGER*4. If the expression
is not in the range (-2147483648, 2147483647), then the results are
unpredictable.

Optimization and Pointers

Pointers have the annoying side effect of reducing the assumptions that the
global optimizer can make. For one thing, compare the following:

• Without pointers, if you call a subroutine or function, the optimizer knows
that the call will change only variables in common or those passed as
arguments to that call.

• With pointers, this is no longer valid, since a routine can take the address of
an argument and save it in a pointer in common for use in a subsequent call
to itself or to another routine.

Therefore, the optimizer must assume that a variable passed as an argument in
a subroutine or function call can be changed by any other call. Such an
unrestricted use of pointers would degrade optimization for the vast majority
of programs that do not use pointers.

 62 FORTRAN 77 Reference Manual

2

General Guidelines

There are two alternatives for optimization with pointers.

• Do not use pointers with optimization level -O4 .

• Use a pointer only to identify the location of the data for calculations and
pass the pointer to a subprogram. Almost anything else you do to the
pointer can yield incorrect results.

The second choice also has a suboption: localize pointers to one routine and do
not optimize it, but do optimize the routines that do the calculations. If you put
the calling the routines on different files, you can optimize one and not
optimize the other.

Example: A relatively “safe” kind of coding with -O3 or -O4 :

If you want to optimize only CALC at level -O4 , then use no pointers in CALC.

Some Problematic Code Practices

Any of the following coding practices, and many others, could cause problems
with an optimization level of -O3 or -O4 :

• A program unit does arithmetic with the pointer.

• A subprogram saves the address of any of its arguments between calls.

• A function returns the address of any of its arguments, although it can
return the value of a pointer argument.

REAL A, B, V(100,100) ! Within this programming unit,
POINTER (P, V) ! do nothing else with P
P = MALLOC(10000) ! other than getting the address and passing it.
…
CALL CALC (P, A)
...
END

SUBROUTINE CALC (ARRAY, X)
...
RETURN
END

Data Types and Data Items 63

2

• A variable is referenced through a pointer, but the address of the variable is
not explicitly taken with the LOC() or MALLOC() functions.

Example: One kind of code that could cause trouble with -O3 or -O4 :

The compiler assumes that a reference through P may change A, but not B;
this assumption could produce incorrect code.

COMMON A, B, C
POINTER (P, V)
P = LOC(A) + 4 ! ←Possible problems if optimized
…

 64 FORTRAN 77 Reference Manual

2

 65

Expressions 3

An expression is a combination of one or more operands, zero or more
operators, and zero or more pairs of parentheses.

This chapter is organized into the following sections:

3.1 Expressions, Operators, and Operands
There are three kinds of expressions:

• An arithmetic expression evaluates to a single arithmetic value.
• A character expression evaluates to a single value of type character.
• A logical or relational expression evaluates to a single logical value.

The operators indicate what action or operation to perform.

Expressions, Operators, and Operands page 65

Arithmetic Expressions page 66

Character Expressions page 74

Logical Expressions page 78

Relational Operator page 80

Constant Expressions page 81

Record Assignment page 82

Evaluation of Expressions page 83

 66 FORTRAN 77 Reference Manual

3

The operands indicate what items to apply the action to. An operand can be any
of the following kinds of data items:

• Constant
• Variable
• Array element
• Function
• Substring
• Structured record field (if it evaluates to a scalar data item)

3.2 Arithmetic Expressions
An arithmetic expression evaluates to a single arithmetic value, and its operands
have the following types. ♦ indicates a nonstandard feature.

• BYTE♦

• COMPLEX
• COMPLEX*32 (SPARC only) ♦

• DOUBLE COMPLEX♦

• DOUBLE PRECISION
• INTEGER
• LOGICAL
• REAL
• REAL*16 (SPARC only) ♦

The operators for an arithmetic expression are any of the following:

If BYTE or LOGICAL operands are combined with arithmetic operators, they
are interpreted as integer data.

Table 3-1 Arithmetic Operators

Operator Meaning

**
*
/
-
+

 Exponentiation
 Multiplication
 Division
 Subtraction or Unary Minus
 Addition or Unary Plus

Expressions 67

3

Each of these operators is a binary operator in an expression of the form:

where a and b are operands, and ⊕ is any one of the ** , * , / , - , or + operators.

Examples: Binary operators:

The operators + and - are unary operators in an expression of the form:

 where b is an operand, and ⊕ is either of the - or + operators.

Examples: Unary operators:

Basic Arithmetic Expressions

Each arithmetic operator is shown in its basic expression in the following table:

a ⊕ b

A-Z
X*B

⊕ b

-Z
+B

Table 3-2 Arithmetic Expressions

Expression Meaning

a ** z
a / z
a * z
a - z
-z
a + z
+z

 Raise a to the power z
 Divide a by z
 Multiply a by z
 Subtract z from a
 Negate z
 Add z to a
 Same as z

 68 FORTRAN 77 Reference Manual

3

In the absence of parentheses, if there is more than one operator in an
expression, then the operators are applied in the order of precedence. With one
exception, if the operators are of equal precedence, they are applied left to
right.

For the left-to-right rule, the one exception is shown by the following example:

The above is evaluated as:

f77 allows two successive operators. ♦

Example: Two successive operators:

The above expression is evaluated as follows:

In the above example, the compiler starts to evaluate the ** , but it needs to
know what power to raise X to; so it looks at the rest of the expression and
must choose between - and * . It first does the * , then the - , then the ** .

Some early releases of this FORTRAN 77 incorrectly interpreted X**-A*Z as
(X**(-A))*Z . Current releases correctly interpret X**-A*Z ” as
“X**(-(A*Z)) , which is compatible with VMS FORTRAN.

Table 3-3 Arithmetic Operator Precedence

Operator Precedence

**

* /

+ -

 First
 Second
 Last

F ** S ** Z

F ** (S ** Z)

X ** -A * Z

X ** (-(A * Z))

Expressions 69

3

Example: Two successive operators:

demo% cat twoops.f
REAL X / 2.0 /, A / 1.0 /, Z / -3.0 /
PRINT *, "X**-A*Z = ", X ** -A*Z
PRINT *, "X**(-(A*Z)) = ", X ** (-(A*Z))
PRINT *, "(X**(-A))*Z = ", (X ** (-A))*Z
PRINT *, "X**-2 = ", X ** -2 !{same in both}
END

demo% f77old twoops.f (Use old)
twoops.f:
 MAIN:
demo% a.out
X**-A*Z = -1.50000
X**(-(A*Z)) = 8.00000
(X**(-A))*Z = -1.50000
X**-2 = 0.250000
demo% f77new -silent twoops.f {Use new}
demo% a.out
X**-A*Z = 8.00000
X**(-(A*Z)) = 8.00000
(X**(-A))*Z = -1.50000
X**-2 = 0.250000
demo%

 70 FORTRAN 77 Reference Manual

3

Mixed Mode

If both operands have the same type, then the resulting value has that type. If
operands have different types, then the weaker of two types is promoted to the
stronger type, where the weaker type is the one with less precision or fewer
storage units. The ranking is summarized in the following table:

Note – REAL*4, INTEGER*8, and LOGICAL*8 are of the same rank, but they
can be the results of different pairs of operands. For example, INTEGER*8
results if you combine INTEGER*8 and any of the types between 1-5. Likewise,
REAL*4 results if one of the operands is REAL*4, and the other is any of the
types between 1-5. LOGICAL*8 dictates only the 8-byte size of the result.

Example of mixed mode: If R is real, and I is integer, then the expression:

has the type real, because first I is promoted to real, and then the
multiplication is performed.

Data Type Rank

BYTE or LOGICAL*1
LOGICAL*2
LOGICAL*4
INTEGER*2
INTEGER*4
INTEGER*8
LOGICAL*8
REAL*4 (REAL)
REAL*8 (DOUBLE PRECISION)
REAL*16 (QUAD PRECISION) (SPARC only)
COMPLEX*8 (COMPLEX)
COMPLEX*16 (DOUBLE COMPLEX)
COMPLEX*32 (QUAD COMPLEX) (SPARC only)

1 (Weakest)
2
3
4
5
6
6
6
7
8
9
10
11 (Strongest)

R * I

Expressions 71

3

Rules

Note these rules for the data type of an expression:

• If there is more than one operator in an expression, then the type of the last
operation performed becomes the type of the final value of the expression.

• Integer operators apply to only integer operands.

Example: An expression that evaluates to zero:

• When an INTEGER*8 operand is mixed with REAL*4 operands, the result is
REAL*8.

There is one extension to this: a logical or byte operand in an arithmetic
context is used as an integer.

• Real operators apply to only real operands, or to combinations of byte,
logical, integer, and real operands. An integer operand mixed with a real
operand is promoted to real; the fractional part of the new real number is
zero. For example, if R is real, and I is integer, then R+I is real. However,
(2/3)*4.0 is 0.

• Double precision operators apply to only double precision operands, and
any operand of lower precision is promoted to double precision. The new
least significant bits of the new double precision number are set to zero.
Promoting a real operand does not increase the accuracy of the operand.

• Complex operators apply to only complex operands. Any integer operands
are promoted to real, and they are then used as the real part of a complex
operand, with the imaginary part set to zero.

• Numeric operations are allowed on logical variables. ♦ You can use a logical
value any place where the FORTRAN 77 Standard requires a numeric value.
The numeric can be integer , real , complex , double precision ,
double complex , or real*16 (SPARC only). The compiler implicitly
converts the logical to the appropriate numeric. Logical operations are
allowed on integers, bytes, and characters. If you use these features, your
program may not be portable.

2/3 + 3/4

 72 FORTRAN 77 Reference Manual

3

Example: Some combinations of both integer and logical types:

Resultant Type

For integer operands with a logical operator, the operation is done bit by bit.
The result is an integer.

If the operands are mixed integer and logical, then the logicals are converted to
integers, and the result is an integer.

Arithmetic Assignment

The arithmetic assignment statement assigns a value to a variable, array
element, or record field. The syntax is:

Assigning logicals to numerics is allowed, but nonstandard, and may not be
portable. The resultant data type is, of course, the data type of v. ♦

COMPLEX C1 / (1.0, 2.0) /
INTEGER*2 I1, I2, I3
LOGICAL L1, L2, L3, L4, L5
REAL R1 / 1.0 /
DATA I1 / 8 /, I2 / 'W' /, I3 / 0 /
DATA L1/.TRUE./, L2/.TRUE./, L3/.TRUE./, L4/.TRUE./,

& L5/.TRUE./
L1 = L1 + 1
I2 = .NOT. I2
L2 = I1 .AND. I3
L3 = I1 .OR. I2
L4 = L4 + C1
L5 = L5 + R1

v = e

e Arithmetic expression, a character constant, or a logical expression

v Numeric variable, array element, or record field

Expressions 73

3

Execution of an arithmetic assignment statement causes the evaluation of the
expression e, and conversion to the type of v (if types differ), and assignment of
v with the resulting value typed according to the table below.

Character constants can be assigned to variables of type integer or real. Such a
constant can be a Hollerith constant or a string in apostrophes or quotes. The
characters are transferred to the variables without any conversion of data. This
practice is nonstandard and may not be portable. ♦

Note – Some types of e depend on whether or not you compile with the -r8
option. See the FORTRAN 77 4.0 User’s Guide for a description of -r8 .

Type of v Type of e

INTEGER*2, INTEGER*4, or INTEGER*8
REAL
REAL*8
REAL*16 (SPARC only)
DOUBLE PRECISION
COMPLEX*8
COMPLEX*16
COMPLEX*32 (SPARC only)

INT(e)
REAL(e)
DBLE(e)
QREAL(e) (SPARC only)
DBLE(e)
CMPLX(e)
DCMPLX(e)
QCMPLX(e) (SPARC only)

 74 FORTRAN 77 Reference Manual

3

Example: Arithmetic assignment:

3.3 Character Expressions
A character expression is an expression whose operands have the character type.
It evaluates to a single value of type character, with a size of one or more
characters. The only character operator is the concatenation operator, // .

The result of concatenating two strings is a third string that contains the
characters of the left operand followed immediately by the characters of the
right operand. The value of a concatenation operation a//z is a character
string whose value is the value of a concatenated on the right with the value of
z , and whose length is the sum of the lengths of a and z .

INTEGER I2*2, J2*2, I4*4
LOGICAL L1, L2
REAL R4*4, R16*16 ! (The *16 is for SPARC only)
DOUBLE PRECISION DP
COMPLEX C8, C16*16
J2 = 29002
I2 = J2
I4 = (I2 * 2) + 1
DP = 6.4D0
QP = 9.8Q1
R4 = DP
R16 = QP
C8 = R1
C8 = (3.0, 5.0)
I2 = C8
C16 = C8
C8 = L1
R4 = L2

Expression Meaning

a // z Concatenate a with z.

Expressions 75

3

The operands can be any of the following kinds of data items:

• Character constant
• Character variable
• Character array element
• Character function
• Substring
• Structured record field (if it evaluates to a scalar character data item)

Examples: Character expressions, assuming C, S, and R.C are characters:

Note the following exceptions:

• Control characters ♦—One way to enter control characters is to hold down
the Control key and press another key. Most control characters can be
entered this way, but not Control-A, Control-B, Control-C, or Control-J.

Example: A valid way to enter a Control-C:

• Multiple byte characters ♦—Multiple byte characters, such as Kanji, are
allowed in comments and strings.

'wxy'
'AB' // 'wxy'
C
C // S
C(4:7)
R.C

CHARACTER etx
etx = CHAR(3)

 76 FORTRAN 77 Reference Manual

3

Character String Assignment

The form of the character string assignment is:

The meaning of character assignment is to copy characters from the right to the
left side.

Execution of a character assignment statement causes evaluation of the
character expression and assignment of the resulting value to v.

• If e is longer than v, characters on the right are truncated.
• If e is shorter than v, blank characters are padded on the right.

Example: The following program below displays joined ∆∆:

 Also, this program displays the equal string:

v = e

 e Expression giving the value to be assigned

 v Variable, array element, substring, or character record field

CHARACTER A*4, B*2, C*8
A = 'join'
B = 'ed'
C = A // B
PRINT *, C
END

IF (('ab' // 'cd') .EQ. 'abcd') PRINT *, 'equal'
END

Expressions 77

3

Example: Character assignment:

The results are:

Example 4: A Hollerith assignment: ♦

CHARACTER BELL*1, C2*2, C3*3, C5*5, C6*6
REAL Z
C2 = 'z'
C3 = 'uvwxyz'
C5 = 'vwxyz'
C5(1:2) = 'AB'
C6 = C5 // C2
I = 'abcd'
Z = 'wxyz'
BELL = CHAR(7) ! Control Character (^G)

 C2 gets 'z ∆' A trailing blank

 C3 gets 'uvw'

 C5 gets 'ABxyz'

 C6 gets 'ABxyzz' That is, the 'z' from C2

 I gets 'abcd'

 Z gets 'wxyz'

BELL gets 07 hex Control-G, a bell

CHARACTER S*4
INTEGER I2*2, I4*4
REAL R
S = 4Hwxyz
I2 = 2Hyz
I4 = 4Hwxyz
R = 4Hwxyz

 78 FORTRAN 77 Reference Manual

3

Rules of Assignment

Here are the rules for character assignments:

• If the left side is longer than the right, it is padded with trailing blanks.
• If the left side is shorter than the right, trailing characters are discarded.
• The left and right sides of a character assignment can share storage. ♦

Example: The following program displays abcefggh : ♦

3.4 Logical Expressions
A logical expression is a sequence of one or more logical operands and logical
operators. It evaluates to a single logical value. The operators can be any of the
following.

The period delimiters are necessary.

Two logical operators cannot appear consecutively, unless the second one is the
.NOT. operator.

CHARACTER S*8
S = 'abcdefgh'
S(4:6) = S(5:7)
WRITE(*,*) S
END

Table 3-4 Logical Operators

 Operator Standard Name

.AND.

.OR.

.NEQV.

.XOR.

.EQV.

.NOT.

Logical conjunction
Logical disjunction (inclusive OR)
Logical nonequivalence
Logical exclusive OR
Logical equivalence
Logical negation

Expressions 79

3

Logical operators are evaluated according to the following precedence:

If the logical operators are of equal precedence, they are evaluated left to right.

If the logical operators appear along with the various other operators in a
logical expression, the precedence is as follows.

The following table shows the meanings of simple expressions:

This is the syntax for the assignment of the value of a logical expression to a
logical variable:

Table 3-5 Logical Operator Precedence

Operator Precedence

.NOT.

.AND.

.OR.

.NEQV.,.XOR., .EQV.

Highest

Lowest

Table 3-6 Operator Precedence

Operator Precedence

Arithmetic
Character
Relational
Logical

 Highest

 Lowest

Table 3-7 Logical Expressions and Their Meanings

Expression Meaning

X .AND. Y
X .OR. Y
X .NEQV. Y
X .XOR. Y
X .EQV. Y
.NOT. X

Both X and Y are true.
Either X or Y, or both, are true.
X and Y are not both true and not both false.
Either X or Y is true, but not both.
X and Y are both true or both false.
Logical negation.

v = e

 80 FORTRAN 77 Reference Manual

3

where:

Execution of a logical assignment statement causes evaluation of the logical
expression e and assignment of the resulting value to v. If e is a logical
expression, rather than an integer between -128 and 127, or a single character
constant, then e must have a value of either true or false.

Logical expressions of any size can be assigned to logical variables of any size.

Assigning numerics to logicals is allowed. This practice is nonstandard,
however, and is not portable. ♦

Example: A logical assignment:

3.5 Relational Operator
A relational operator compares two arithmetic expressions, or two character
expressions, and evaluates to a single logical value. The operators can be any
of the following:

The period delimiters are necessary.

e A logical expression, an integer between –128 and 127, or a single character constant

v A logical variable, array element, or record field

LOGICAL B1*1, B2*1
LOGICAL L3, L4
B2 = B1
B1 = L3
L4 = .TRUE.

Table 3-8 Relational Operators

Operator Meaning

.LT.

.LE.

.EQ.

.NE.

.GT.

.GE.

 Less than
 Less than or equal
 Equal
 Not equal
 Greater than
 Greater than or equal

Expressions 81

3

All relational operators have equal precedence. Character and arithmetic
operators have higher precedence than relational operators.

For a relational expression, first each of the two operands is evaluated, and
then the two values are compared. If the specified relationship holds, then the
value is true; otherwise, it is false.

Example: Relational operators:

For character relational expressions:

• “Less than” means “precedes in the ASCII collating sequence.”

• If one operand is shorter than the other, the shorter one is padded on the
right with blanks to the length of the longer.

3.6 Constant Expressions
A constant expression is made up of explicit constants and parameters and the
FORTRAN 77 operators. Each operand is either itself another constant
expression, a constant, a symbolic name of a constant, or one of the intrinsic
functions, such as the following:

The functions, IAND, IOR, IEOR, and ISHFT, are also available, or you can use
the corresponding AND, OR, XOR, LSHIFT , or RSHIFT.

NODE .GE. 0
X .LT. Y
U*V .GT. U-V
M+N .GT. U-V Mixed mode: integer M+Nis promoted to real
STR1 .LT. STR2 where STR1 and STR2are type character
S .EQ. 'a' where S is type character

LOC, CHAR
IAND, IOR, IEOR, ISHFT
AND, OR, NOT, XOR, LSHIFT, RSHIFT, LGE, LGT, LLE, LLT
MIN, MAX, ABS, MOD, ICHAR, ANINT, NINT, DIM
DPROD, CMPLX, CONJG, AIMAG
INT, IFIX

 82 FORTRAN 77 Reference Manual

3

Examples: Constant expressions:

There are a few restrictions on constant expressions:

• Constant expressions are permitted wherever a constant is allowed, except
they are not allowed in DATA or standard FORMAT statements.

• Constant expressions are permitted in variable format expressions. ♦

• Exponentiation to a floating-point power is not allowed; a warning is
issued.

Example: Exponentiation to a floating-point power is not allowed:

3.7 Record Assignment
The general form of record assignment is: ♦

PARAMETER (L=29002), (P=3.14159), (C='along the ')
PARAMETER (I=L*2, V=4.0*P/3.0, S=C//'riverrun')
PARAMETER (M=MIN(I,L), IA=ICHAR('A'))
PARAMETER (Q=6.4Q6, D=2.3D9)
K = 66 * 80
VOLUME = V*10**3
DO I = 1, 20*3

demo% cat ConstExpr.f
parameter (T=2.0*(3.0**2.5))
write(*,*) t
end

demo% f77 ConstExpr.f
ConstExpr.f:
 MAIN:
"ConstExpr.f", line 1: Warning:

parameter t set to a nonconstant
demo% a.out
 31.1769
demo%

v = e

Expressions 83

3

where

Both e and v must have the same structure. That is, each must have the same
number of fields, and corresponding fields must be of the same type and size.

Example: A record assignment and a record-field assignment:

In the above example, the first assignment statement copies one whole record
(all five fields) to another record; the second assignment statement copies a
whole record into the first element of an array of records; the WRITE statement
writes a whole record; and the last statement sets the ID of one record to 82.

3.8 Evaluation of Expressions
The following restrictions apply to all arithmetic, character, relational, and
logical expressions:

• If you reference any one of these items in an expression, variable, array
element, character substring, record field, pointer, or function, then that item
must be defined at the time the reference is executed.

• An integer operand must be defined with an integer value, and not with a
statement label value by an ASSIGN statement.

e A record or record field

v A record or record field

STRUCTURE /PRODUCT/
INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)
…
CURRENT = NEXT
LINE(1) = CURRENT
WRITE (9) CURRENT
NEXT.ID = 82

 84 FORTRAN 77 Reference Manual

3

• All the characters of a substring that are referenced must be defined at the
time the reference is executed.

• The execution of a function reference must not alter the value of any other
entity within the same statement.

• The execution of a function reference must not alter the value of any entity
in common that affects the value of any other function reference in the same
statement.

 85

Statements 4

This chapter describes the FORTRAN 77 statements. The nonstandard
statements are indicated with a small black diamond (♦).

4.1 ACCEPT

The ACCEPT♦ statement reads from standard input.

Syntax

ACCEPTf [, iolist]

ACCEPTgrname

f Format identifier

iolist List of variables, substrings, arrays, and records

grname Name of the namelist group

 86 FORTRAN 77 Reference Manual

4

Description

ACCEPT f [, iolist] is equivalent to READ f [, iolist] and is for compatibility
with older versions of FORTRAN 77. An example of list-directed input:

4.2 ASSIGN

The ASSIGN statement assigns a statement label to a variable.

Syntax

Description

The label s is the label of an executable statement or a FORMAT statement.

The statement label must be the label of a statement that is defined in the same
program unit as the ASSIGN statement.

The integer variable i, once assigned a statement label, can be reassigned the
same statement label, a different label, or an integer.

Once a variable is defined as a statement label, you can reference in:

• An assigned GO TO statement
• An input/output statement, as a format identifier

Restrictions

Define a variable with a statement label before you reference it as a label.

i must be INTEGER*4 or INTEGER*8, not INTEGER*2.

REAL VECTOR(10)
ACCEPT *, NODE, VECTOR

ASSIGN s TO i

s Statement label

i Integer variable

Statements 87

4

While i is defined with a statement label value, do no arithmetic with i.

Examples

Example 1: Assign the statement number of an executable statement:

In the above example, the output shows the address, not 9.

Example 2: Assign the statement number of a format statement:

4.3 Assignment
The assignment statement assigns a value to a variable, substring, array
element, record, or record field.

ASSIGN 9 TO K
GO TO K
…

9 WRITE (*,*) 'Assigned ', K, ' to K'

INTEGER PHORMAT
2 FORMAT (A80)

ASSIGN 2 TO PHORMAT
…
WRITE (*, PHORMAT) 'Assigned a FORMAT statement no.'

 88 FORTRAN 77 Reference Manual

4

Syntax

Description

The value can be a constant or the result of an expression. The kinds of
assignment statements: are arithmetic, logical, character, and record
assignments.

Arithmetic Assignment

v is of numeric type and is the name of a variable, array element, or record
field.

e is an arithmetic expression, a character constant, or a logical expression.
Assigning logicals to numerics is nonstandard, and may not be portable; the
resultant data type is, of course, the data type of v. ♦

Execution of an arithmetic assignment statement causes the evaluation of the
expression e, and conversion to the type of v (if types differ), and assignment of
v with the resulting value typed according to the following table.

v = e

e Expression giving the value to be assigned

v Variable, substring, array element, record, or record field

Table 4-1 Arithmetic Assignment Conversion Rules

Type of v Type of e

INTEGER*2, INTEGER*4, or INTEGER*8
REAL
REAL*8
REAL*16 (SPARC only)
DOUBLE PRECISION
COMPLEX*8
COMPLEX*16
COMPLEX*32(SPARC only)

INT(e)
REAL(e)
REAL*8
QREAL(e) (SPARC only)
DBLE(e)
CMPLX(e)
DCMPLX(e)
QCMPLX(e) (SPARC only)

Statements 89

4

Note – Some types of e depend on whether or not you compile with the -r8
option. See the FORTRAN 77 4.0 User’s Guide for a description of -r8 .

Example: An assignment statement:

The above code is compiled exactly as if it were the following:

Logical Assignment

v is the name of a variable, array element, or record field of type logical.

e is a logical expression, or an integer between -128 and 127, or a single
character constant.

Execution of a logical assignment statement causes evaluation of the logical
expression e and assignment of the resulting value to v. If e is a logical
expression (rather than an integer between -128 and 127, or a single character
constant), then e must have a value of either true or false.

Logical expressions of any size can be assigned to logical variables of any size.
The section on the LOGICAL statement provides more details on the size of
logical variables.

Character Assignment

The constant can be a Hollerith constant or a string of characters delimited by
apostrophes (') or quotes ("). The character string cannot include the control
characters Control-A, Control-B, or Control-C; that is, you cannot hold down
the Control key and press the A, B, or C keys. If you need those control
characters, use the char() function.

REAL A, B
DOUBLE PRECISION V
V = A * B

REAL A, B
DOUBLE PRECISION V
V = DBLE(A * B)

 90 FORTRAN 77 Reference Manual

4

If you use quotes to delimit a character constant, then you cannot compile with
the -xl option, because, in that case, a quote introduces an octal constant. The
characters are transferred to the variables without any conversion of data, and
may not be portable.

Character expressions which include the // operator can be assigned only to
items of type CHARACTER. Here, the v is the name of a variable, substring,
array element, or record field of type CHARACTER; e is a character expression.

Execution of a character assignment statement causes evaluation of the
character expression and assignment of the resulting value to v. If the length of
e is more than that of v, characters on the right are truncated. If the length of e
is less than that of v, blank characters are padded on the right.

Record Assignment

v and e are each a record or record field. ♦

The e and v must have the same structure. They have the same structure if any
of the following occur:

• Both e and v are fields with the same elementary data type.

• Both e and v are records with the same number of fields such that
corresponding fields are the same elementary data type.

• Both e and v are records with the same number of fields such that
corresponding fields are substructures with the same structure as defined
 in 2, above.

The sections on the RECORD and STRUCTURE statements have more details on
the structure of records.

Statements 91

4

Examples

Example 1: Arithmetic assignment:

Example 2: Logical assignment:

Example 3: Hollerith assignment:

INTEGER I2*2, J2*2, I4*4
REAL R1, QP*16 ! (The *16 is for SPARC only)
DOUBLE PRECISION DP
COMPLEX C8, C16*16, QC*32 ! (The *32 is for SPARC only)
J2 = 29002
I2 = J2
I4 = (I2 * 2) + 1
DP = 6.4D9
QP = 6.4Q9
R1 = DP
C8 = R1
C8 = (3.0, 5.0)
I2 = C8
C16 = C8
C32 = C8

LOGICAL B1*1, B2*1
LOGICAL L3, L4
L4 = .TRUE.
B1 = L4
B2 = B1

CHARACTER S*4
INTEGER I2*2, I4*4
REAL R
S = 4Hwxyz
I2 = 2Hyz
I4 = 4Hwxyz
R = 4Hwxyz

 92 FORTRAN 77 Reference Manual

4

Example 4: Character assignment:

The results of the above are:

Example 5: Record assignment and record field assignment:

CHARACTER BELL*1, C2*2, C3*3, C5*5, C6*6
REAL Z
C2 = 'z'
C3 = 'uvwxyz'
C5 = 'vwxyz'
C5(1:2) = 'AB'
C6 = C5 // C2
BELL = CHAR(7) ! Control Character (^G)

C2
C3
C5
C6

gets 'z ∆' That is, a trailing blank
gets 'uvw'
gets 'ABxyz'
gets 'ABxyzz' That is, an extra z left over from C5

BELL gets 07 hex That is, Control-G, a bell

STRUCTURE /PRODUCT/
INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)
…
CURRENT = NEXT ! Record to record
LINE(1) = CURRENT ! Record to array element
WRITE (9) CURRENT ! Write whole record
NEXT.ID = 82 ! Assign a value to a field

Statements 93

4

4.4 AUTOMATIC

The AUTOMATIC♦ statement makes each recursive invocation of the
subprogram have its own copy of the specified items. It also makes the
specified items become undefined outside the subprogram when the
subprogram exits through a RETURN statement.

Syntax

Description

For automatic variables, there is one copy for each invocation of the procedure.
To avoid local variables becoming undefined between invocations, f77
classifies every variable as either static or automatic with all local variables
being static by default. For other than the default, you can declare variables as
static or automatic in a STATIC ♦, AUTOMATIC♦, or IMPLICIT statement.
Compare with -stackvar option in the FORTRAN 77 4.0 User’s Guide.

One usage of AUTOMATIC is to declare all automatic at the start of a function.

Example: Recursive function with implicit automatic:

Local variables and arrays are static by default, so in general, there is no need
to use SAVE. You can still use SAVE to ensure portability. Also, SAVE is safer if
you leave a subprogram by some way other than a RETURN.

Restrictions

Automatic variables and arrays cannot appear in DATA or SAVE statements.

AUTOMATICvlist

vlist List of variables and arrays

INTEGER FUNCTION NFCTRL(I)
IMPLICIT AUTOMATIC (A-Z)
...
RETURN
END

 94 FORTRAN 77 Reference Manual

4

Arguments and function values cannot appear in DATA, RECORD, STATIC, or
SAVE statements because f77 always makes them automatic.

Examples

Example: Some other uses of AUTOMATIC:

Example: Structures are unpredictable if AUTOMATIC:

Note – An automatic structure sometimes works; sometimes, it core dumps.

AUTOMATIC A, B, C
REAL P, D, Q
AUTOMATIC P, D, Q
IMPLICIT AUTOMATIC (X-Z)

demo% cat autostru.f
AUTOMATIC X
STRUCTURE /ABC/
 INTEGER I
END STRUCTURE
RECORD /ABC/ X ! X is automatic. It cannot be a structure.
X.I = 1
PRINT '(I2)', X.I
END

demo% f77 -silent autostru.f
demo% a.out
*** TERMINATING a.out
*** Received signal 10 (SIGBUS)
Bus Error (core dumped)
demo%

Statements 95

4

Restrictions

An AUTOMATIC statement and a type statement cannot be combined to make
an AUTOMATICtype statement. For example, the statement:

does not declare the variable X to be both AUTOMATIC and REAL; it declares the
variable REALX to be AUTOMATIC.

4.5 BACKSPACE

The BACKSPACE statement positions the specified file to just before the
preceding record.

Syntax

Description

BACKSPACE in a terminal file has no effect.

u must be connected for sequential access. Execution of a BACKSPACE statement
on a direct-access file is not defined in the FORTRAN 77 Standard, and is
unpredictable. We do not recommend using a BACKSPACE statement on a
direct-access file or an append access file.

AUTOMATIC REAL X

BACKSPACEu

BACKSPACE([UNIT=] u [, IOSTAT= ios] [, ERR= s])

u Unit identifier of the external unit connected to the file

ios I/O status specifier, integer variable, or an integer array element

s Error specifier: s must be the label of an executable statement in the
same program unit in which the BACKSPACE statement occurs.
Program control is transferred to the label in case of an error during the
execution of the BACKSPACE statement.

 96 FORTRAN 77 Reference Manual

4

Execution of the BACKSPACE statement modifies the file position, as follows:

Examples

Example 1: Simple backspace:

Example 2: Backspace with error trap:

Prior to Execution After Execution

Beginning of the file Remains unchanged

Beyond the endfile record Before the endfile record

Beginning of the previous record Start of the same record

BACKSPACE 2
LUNIT = 2
BACKSPACE LUNIT

INTEGER CODE
BACKSPACE (2, IOSTAT=CODE, ERR=9)
…

9 WRITE (*,*) 'Error during BACKSPACE'
STOP

Statements 97

4

4.6 BLOCK DATA

The BLOCK DATA statement identifies a subprogram that initializes variables
and arrays in labeled common blocks.

Syntax

Description

A block data subprogram can contain as many labeled common blocks and
data initializations as desired.

The BLOCK DATA statement must be the first statement in a block data
subprogram.

The only other statements that can appear in a block data subprogram are:

• COMMON
• DATA
• DIMENSION
• END
• EQUIVALENCE
• IMPLICIT
• PARAMETER
• RECORD
• SAVE
• STRUCTURE
• Type statements

Only an entity defined in a labeled common block can be initially defined in a
block data subprogram.

If an entity in a labeled common block is initially defined, all entities having
storage units in the common block storage sequence must be specified, even if
they are not all initially defined.

BLOCK DATA [name]

name Symbolic name of the block data subprogram in which the BLOCK DATA
statement appears. This parameter is optional. It is a global name.

 98 FORTRAN 77 Reference Manual

4

Restrictions

Only one unnamed block data subprogram can appear in the executable
program.

The same labeled common block cannot be specified in more than one block
data subprogram in the same executable program.

The optional parameter name must not be the same as the name of an external
procedure, main program, common block, or other block data subprogram in
the same executable program. The name must not be the same as any local
name in the subprogram.

Example

4.7 BYTE

The BYTE♦ statement specifies the type to be 1-byte integer. It optionally
specifies array dimensions and initializes with values.

Syntax

Description

This is a synonym for LOGICAL*1 . A BYTE type item can hold the logical
values .TRUE. , .FALSE. , one character, or an integer between –128 and 127.

BLOCK DATA INIT
COMMON /RANGE/ X0, X1
DATA X0, X1 / 2.0, 6.0 /
END

BYTEv [/ c/] …

v Name of a symbolic constant, variable, array, array declarator, function,
or dummy function

c List of constants for the immediately preceding name

Statements 99

4

Example

4.8 CALL

The CALL statement branches to the specified subroutine, executes the
subroutine, and returns to the calling program after finishing the subroutine.

Syntax

Description

Arguments are separated by commas.

The FORTRAN 77 Standard requires that actual arguments in a CALL
statement must agree in order, number, and type with the corresponding
formal arguments of the referenced subroutine. The compiler checks this only
when the -XlistE option is on.

Recursion is allowed. A subprogram can call itself directly, or indirectly by
calling another subprogram that in turns calls this subroutine. Such recursion
is nonstandard. ♦

An actual argument, ar, must be one of the following:

• An expression

• An intrinsic function permitted to be passed as an argument; for a list of the
intrinsics that cannot be actual arguments, see Table 4-3.

• An external function name

• A subroutine name

BYTE BIT3 / 8 /, C1 / 'W' /,
& COUNTER /0/, M /127/, SWITCH / .FALSE. /

CALL sub [([ar [, ar] …])]

sub Name of the subroutine to be called

ar Actual argument to be passed to the subroutine

 100 FORTRAN 77 Reference Manual

4

• An alternate return specifier, * or &, followed by a statement number. The &
is nonstandard. ♦

The simplest expressions, and most frequently used, include such constructs
as:

• Constant
• Variable name
• Array name
• Formal argument, if the CALL statement is inside a subroutine
• Record name

If a subroutine has no arguments, then a CALL statement that references that
subroutine must not have any actual arguments. A pair of empty matching
parentheses can follow the subroutine name.

Execution of the CALL statement proceeds as follows:

1. All expressions (arguments) are evaluated.

2. All actual arguments are associated with the corresponding formal
arguments, and the body of the subroutine is executed.

3. Normally, the control is transferred back to the statement following the
CALL statement upon executing a RETURN statement or an END statement
in the subroutine. If an alternate return in the form of RETURNn is
executed, then control is transferred to the statement specified by the n
alternate return specifier in the CALL statement.

Examples

Example 1: Character string:

CHARACTER *25 TEXT
TEXT = 'Some kind of major screwup'
CALL OOPS (TEXT)
END
SUBROUTINE OOPS (S)
CHARACTER S*(*)
WRITE (*,*) S
END

Statements 101

4

Example 2: Alternate return:

Example 3: Another form of alternate return; the & is nonstandard: ♦

Example 4: Array, array element, and variable:

In this example, the real array M matches the real array, A, and the real array
element Q(1,2) matches the real variable, D.

CALL RANK (N, *8, *9)
WRITE (*,*) 'OK - Normal Return'
STOP

8 WRITE (*,*) 'Minor - 1st alternate return'
STOP

9 WRITE (*,*) 'Major - 2nd alternate return'
STOP
END

SUBROUTINE RANK (N, *, *)
IF (N .EQ. 0) RETURN
IF (N .EQ. 1) RETURN 1
RETURN 2
END

CALL RANK (N, &8, &9)

REAL M(100,100), Q(2,2), Y
CALL SBRX (M, Q(1,2), Y)
…
END
SUBROUTINE SBRX (A, D, E)
REAL A(100,100), D, E
…
RETURN
END

 102 FORTRAN 77 Reference Manual

4

Example 5: A structured record and field; the record is nonstandard: ♦

In the above example, the record NEW matches the record CURRENT, and the
integer variable, K, matches the record field, PRIOR.OLD.

4.9 CHARACTER

The CHARACTER statement specifies the type of a symbolic constant, variable,
array, function, or dummy function to be character.

Optionally, it initializes any of the items with values and specifies array
dimensions.

STRUCTURE /PRODUCT/
INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
RECORD /PRODUCT/ CURRENT, PRIOR
CALL SBRX (CURRENT, PRIOR.ID)
…
END
SUBROUTINE SBRX (NEW, K)
STRUCTURE /PRODUCT/

INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
RECORD /PRODUCT/ NEW
…
RETURN
END

Statements 103

4

Syntax

Description

Each character occupies 8 bits of storage, aligned on a character boundary.
Character arrays and common blocks containing character variables are packed
in an array of character variables. The first character of one element follows the
last character of the preceding element, without holes.

The length, len must be greater than 0. If len is omitted, it is assumed equal to
1.

For local and common character variables, symbolic constants, dummy
arguments, or function names, len can be an integer constant, or a
parenthesized integer constant expression.

For dummy arguments or function names, len can have another form: a
parenthesized asterisk, that is, CHARACTER*(*) , which denotes that the
function name length is defined in referencing the program unit, and the
dummy argument has the length of the actual argument.

For symbolic constants, len can also be a parenthesized asterisk, which
indicates that the name is defined as having the length of the constant. This is
shown in Example 5 in the next section.

The list c of constants can be used only for a variable, array, or array declarator.
There can be only one constant for the immediately preceding variable, and
one constant for each element of the immediately preceding array.

CHARACTER [* len [,]] v [* len / c/]] …

v Name of a symbolic constant, variable, array, array declarator, function, or
dummy function

len Length in characters of the symbolic constant, variable, array element, or
function

c List of constants for the immediately preceding name

 104 FORTRAN 77 Reference Manual

4

Examples

Example 1: Character strings and arrays of character strings:

The above code is exactly equivalent to the following:

Both of the above two examples are equivalent to the nonstandard variation: ♦

There are no null (zero-length) character-string variables. A one-byte character
string assigned a null constant has the length zero.

Example 2: No null character-string variables:

During execution of the assignment statement, the variable S is precleared to
blank, and then zero characters are moved into S, so S contains one blank;
because of the declaration, the intrinsic function LEN(S) will return a length of
1. You cannot declare a size of less than 1, so this is the smallest length string
variable you can get.

Example 3: Dummy argument character string with constant length:

CHARACTER*17 A, B(3,4), V(9)
CHARACTER*(6+3) C

CHARACTER A*17, B(3,4)*17, V(9)*17
CHARACTER C*(6+3)

CHARACTER A*17, B*17(3,4), V*17(9)! nonstandard

CHARACTER S*1
S = ''

SUBROUTINE SCHLEP (A)
CHARACTER A*32

Statements 105

4

Example 4: Dummy argument character string with length the same as
corresponding actual argument:

Example 5: Symbolic constant with parenthesized asterisk:

The intrinsic function LEN(INODE) returns the actual declared length of a
character string. This is mainly for use with CHAR*(*) dummy arguments.

Example 6: The LEN intrinsic function:

The above program displays 17 , not 3.

4.10 CLOSE

The CLOSE statement disconnects a file from a unit.

SUBROUTINE SCHLEP (A)
CHARACTER A*(*)
…

CHARACTER *(*) INODE
PARAMETER (INODE = 'Warning: INODE clobbered!')

CHARACTER A*17
A = "xyz"
PRINT *, LEN(A)
END

 106 FORTRAN 77 Reference Manual

4

Syntax

Description

For tape, it is more reliable to use the TOPEN() routines.

The options can be specified in any order.

The DISP= and DISPOSE= options are allowable alternates for STATUS=, with
a warning, if the -ansi flag is set.

Execution of CLOSE proceeds as follows:

1. The specified unit is disconnected.

2. If sta is DELETE, the file connected to the specified unit is deleted.

3. If an IOSTAT argument is specified, ios is set to zero if no error was
encountered; otherwise, it is set to a positive value.

Comments

All open files are closed with default sta at normal program termination.
Regardless of the specified sta, scratch files, when closed, are always deleted.

Execution of a CLOSE statement specifying a unit that does not exist, or a unit
that has no file connected to it, has no effect.

 CLOSE([UNIT=] u [, STATUS= sta] [, IOSTAT = ios] [, ERR = s])

u Unit identifier for an external unit. If UNIT= is not used, then u must be first.

sta Determines the disposition of the file—sta is a character expression whose
value, when trailing blanks are removed, can be KEEP or DELETE. The
default value for the status specifier is KEEP. For temporary (scratch) files, sta
is forced to DELETE always. For other files besides scratch files, the default
sta is KEEP.

ios I/O status specifier—ios must be an integer variable or an integer array
element.

s Error specifier—s must be the label of an executable statement in the same
program containing the CLOSE statement. The program control is transferred
to this statement in case an error occurs while executing the CLOSE
statement.

Statements 107

4

Execution of a CLOSE statement specifying a unit zero (standard error) is not
allowed, but you can reopen it to some other file.

The unit or file disconnected by the execution of a CLOSE statement can be
connected again to the same, or a different, file or unit.

Examples

Example 1: Close and keep:

Example 2: Close and delete:

Example 3: Close and delete a scratch file even though the status is KEEP:

CLOSE (2, STATUS='KEEP')

CLOSE (2, STATUS='DELETE', IOSTAT=I)

OPEN (2, STATUS='SCRATCH')
…
CLOSE (2, STATUS='KEEP', IOSTAT=I)

 108 FORTRAN 77 Reference Manual

4

4.11 COMMON

The COMMON statement defines a block of main memory storage so that
different program units can share the same data without using arguments.

Syntax

Description

If the common block name is omitted, then blank common block is assumed.

Any common block name including blank common can appear more than once
in COMMON statements in the same program unit. The list nlist following each
successive appearance of the same common block name is treated as a
continuation of the list for that common block name.

The size of a common block is the sum of the sizes of all the entities in the
common block, plus space for alignment.

Within a program, all common blocks in different program units that have the
same name must be of the same size. However, blank common blocks within a
program are not required to be of the same size.

Restrictions

Formal argument names and function names cannot appear in a COMMON
statement.

An EQUIVALENCE statement must not cause the storage sequences of two
different common blocks in the same program unit to be associated. See
Example 2.

An EQUIVALENCE statement must not cause a common block to be extended
on the left-hand side. See Example 4.

COMMON [/[cb]/] nlist [[,]/[cb] / nlist] …

cb Common block name

nlist List of variable names, array names, and array declarators

Statements 109

4

Examples

Example 1: Unlabeled common and labeled common:

In the above example, V and M are in the unlabeled common block; I and J are
defined in the named common block, LIMITS .

Example 2: You cannot associate storage of two different common blocks in the
same program unit:

Example 3: An EQUIVALENCE statement can extend a common block on the
right-hand side:

Example 4: An EQUIVALENCE statement must not cause a common block to be
extended on the left-hand side:

DIMENSION V(100)
COMMON V, M
COMMON / LIMITS / I, J
…

COMMON /X/ A
COMMON /Y/ B
EQUIVALENCE (A, B) ! ← Not allowed

DIMENSION A(5)
COMMON /X/ B
EQUIVALENCE (B, A)

COMMON /X/ A
REAL B(2)
EQUIVALENCE (A, B(2)) ! ← Not allowed

 110 FORTRAN 77 Reference Manual

4

4.12 COMPLEX

The COMPLEX statement specifies the type of a symbolic constant, variable,
array, function, or dummy function to be complex, optionally specifies array
dimensions and size, and initializes with values.

Syntax

Description

The declarations can be: COMPLEX, COMPLEX*8, COMPLEX*16, or
COMPLEX*32.

COMPLEX

For a declaration such as COMPLEX W, the variable W is usually two REAL*4
elements contiguous in memory, if no size options are set, interpreted as a
complex number. Details are in “Default Size,” the next subsection.

COMPLEX*8♦

For a declaration such as COMPLEX*8 W, the variable W is always two REAL*4
elements contiguous in memory, interpreted as a complex number.

COMPLEX*16♦

For a declaration such as COMPLEX*16 W, W is always two REAL*8 elements
contiguous in memory, interpreted as a double-width complex number.

COMPLEX [* len[,]] v [* len [/ c/]] [, v [* l en [/ c/]] …

v Name of a symbolic constant, variable, array, array declarator, function, or
dummy function

len Either 8, 16, or 32, the length in bytes of the symbolic constant, variable, array
element, or function (32 is SPARC only)

c List of constants for the immediately preceding name

Statements 111

4

COMPLEX*32♦

(SPARC only) For a declaration such as COMPLEX*32 W, the variable W is
always two REAL*16 elements contiguous in memory, interpreted as a
quadruple-width complex number.

Default Size

If you specify the size as 8, 16, or 32, COMPLEX*8, COMPLEX*16, COMPLEX*32,
you get what you specify; if you do not specify the size, you get the default
size. (*32 is for SPARC only.)

The default size, for a declaration such as COMPLEX Z, depends on –r8 :

• If the –r8 option is on the f77 command line, then the compiler allocates 16
bytes, and does 16-byte arithmetic.

If –r8 is not on the command line, the compiler allocates 8 bytes.

Similarly, for a declaration such as DOUBLE COMPLEX Z, the default size
depends on the –r8 option.

• If –r8 or -dbl is on the f77 command line, then the compiler allocates 32
bytes, and does 32-byte arithmetic (SPARC only).

If –r8 or -dbl is not on the command line, the compiler allocates 16 bytes.

• If you put both –i2 and –r8 on the f77 command line, the results are
unpredictable.

Specifying the size is nonstandard. ♦

There is a double-complex version of each complex built-in function. Generally,
the specific function names begin with Z or CD instead of C, except for the two
functions DIMAG and DREAL, which return a real value.

There are specific complex functions for quad precision (SPARC only). In
general, where there is a specific REAL a corresponding COMPLEX with a C
prefix, and a corresponding COMPLEX DOUBLE with a CD prefix, there is also a
quad-precision COMPLEX function with a CQ prefix. Examples are: SIN() ,
CSIN() , CDSIN() , CQSIN() .

 112 FORTRAN 77 Reference Manual

4

Examples

Example 1: Complex scalars. Styles. Each of these statements is equivalent to
the others. (Don’t use all three statements in the same program unit—you
cannot declare anything more than once in the same program unit.)

Example 2: Initialize complex scalars:

A complex constant is a pair of numbers, either integers or reals.

Example 3: Double complex, some initialization:

A double-complex constant is a pair of numbers, and at least one number of
the pair must be double precision.

Example 4: Quadruple complex, some initialization (SPARC only):

A quadruple complex constant is a pair of numbers, and at least one number of
the pair must be quadruple precision.

COMPLEX U, V
COMPLEX*8 U, V
COMPLEX U*8, V*8

COMPLEX U / (1, 9.0) /, V / (4.0, 5) /

COMPLEX R*16, V*16
COMPLEX U*16 / (1.0D0, 9) /, V*16 / (4.0, 5.0D0) /
COMPLEX*16 X / (1.0D0, 9.0) /, Y / (4.0D0, 5) /

COMPLEX R*32, V*32
COMPLEX U*32 / (1.0Q0, 9) /, V*32 / (4.0, 5.0Q0) /
COMPLEX*32 X / (1.0Q0, 9.0) /, Y / (4.0Q0, 5) /

Statements 113

4

Example 5: Complex arrays, all of which are nonstandard:

4.13 CONTINUE

The CONTINUE statement is a “do-nothing” statement.

Syntax

Description

The CONTINUE statement is often used as a place to hang a statement label,
usually it is the end of a DO loop.

The CONTINUE statement is used primarily as a convenient point for placing a
statement label, particularly as the terminal statement in a DO loop. Execution
of a CONTINUE statement has no effect.

If the CONTINUE statement is used as the terminal statement of a DO loop, the
next statement executed depends on the DO loop exit condition.

COMPLEX R*16(5), S(5)*16 ! (SPARC only)
COMPLEX U*32(5), V(5)*32 ! (SPARC only)
COMPLEX X*8(5), Y(5)*8

[label] CONTINUE

label Executable statement number

 114 FORTRAN 77 Reference Manual

4

Example

4.14 DATA

The DATA statement initializes variables, substrings, arrays, and array
elements.

Syntax

Description

All initially defined items are defined with the specified values when an
executable program begins running.

r*c is equivalent to r successive occurrences of the constant c.

A DATA statement is a nonexecutable statement, and must appear after all
specification statements, but it can be interspersed with statement functions
and executable statements.

DIMENSION U(100)
S = 0.0
DO 1 J = 1, 100

S = S + U(J)
IF (S .GE. 1000000) GO TO 2

1 CONTINUE
STOP

2 CONTINUE
…

DATA nlist / clist / [[,] nlist / clist /] …

nlist List of variables, arrays, array elements, substrings, and implied DO
lists separated by commas

clist List of the form: c [, c] …

c One of the forms: c or r*c, and
c is a constant or the symbolic name of a constant.

r Nonzero, unsigned integer constant or the symbolic name of such
constant

Statements 115

4

Taking into account the repeat factor, the number of constants in clist must be
equal to the number of items in the nlist. The appearance of an array in nlist is
equivalent to specifying a list of all elements in that array. Array elements can
be indexed by constant subscripts only.

Normal type conversion takes place for each noncharacter member of the clist.

Character Constants in the DATA Statement

If the length of a character item in nlist is greater than the length of the
corresponding constant in clist, it is padded with blank characters on the right.

If the length of a character item in nlist is less than that of the corresponding
constant in clist, the additional rightmost characters are ignored.

If the constant in clist is of integer type and the item of nlist is of character type,
they must conform to the following rules:

• The character item must have a length of one character.

• The constant must be of type integer and have a value in the range 0
through 255. For ^A, ^B, ^C, do not hold down the Control key and press A,
B, or C; use the CHAR intrinsic function.

If the constant of clist is a character constant or a Hollerith constant, and the
item of nlist is of type INTEGER, then the number of characters that can be
assigned is 2 or 4 for INTEGER*2 and INTEGER*4 respectively. If the character
constant or the Hollerith constant has fewer characters than the capacity of the
item, the constant is extended on the right with spaces. If the character or the
Hollerith constant contains more characters than can be stored, the constant is
truncated on the right.

Implied DO Lists

An nlist can specify an implied DO list for initialization of array elements.

The form of an implied DO list is:

(dlist, iv=m1, m2 [, m3])

dlist List of array element names and implied DO lists

iv Integer variable, called the implied DO variable

 116 FORTRAN 77 Reference Manual

4

The range of an implied DO loop is dlist. The iteration count for the implied DO
is computed from m1, m2, and m3, and it must be positive.

Variables

Variables can also be initialized in type statements. This is an extension of the
FORTRAN 77 Standard. Examples are given under each of the individual type
statements and under the general type statement. ♦

Examples

Example 1: Character, integer, and real scalars. Real arrays:

Example 2: Arrays—implied DO:

m1 Integer constant expression specifying the initial value of iv

m2 Integer constant expression specifying the limit value of iv

m3 Integer constant expression specifying the increment value of iv. If m3 is
omitted, then a default value of 1 is assumed.

CHARACTER TTL*16
REAL VEC(5), PAIR(2)
DATA TTL / 'Arbitrary Titles' /,

& M / 9 /, N / 0 /,
& PAIR(1) / 9.0 /,
& VEC / 3*9.0, 0.1, 0.9 /

…

REAL R(3,2), S(4,4)
DATA (S(I,I), I=1,4) / 4*1.0 /,

& ((R(I,J), J=1,3), I=1,2) / 6*1.0 /
…

Statements 117

4

Example 3: Mixing an integer and a character:

4.15 DECODE/ENCODE

ENCODE writes to a character variable, array, or array element. ♦ DECODEreads
from a character variable, array, or array element. ♦ Data is edited according to
the format identifier.

Similar functionality can be accomplished, using internal files with formatted
sequential WRITE statements and READ statements. ENCODE and DECODE are
not in the FORTRAN 77 Standard, and are provided for compatibility with
older versions of FORTRAN 77.

Syntax

CHARACTER CR*1
INTEGER I*2, N*4
DATA I / 'oy' /, N / 4Hs12t /, CR / 13 /
…

ENCODE(size, f, buf [, IOSTAT= ios] [, ERR = s]) [iolist]

DECODE(size, f, buf [, IOSTAT= ios] [, ERR= s]) [iolist]

size Number of characters to be translated, an integer expression

f Format identifier, either the label of a FORMAT statement, or a character
expression specifying the format string, or an asterisk.

buf Variable, array, or array element

ios I/O status specifier, ios must be an integer variable or an integer array
element.

s The error specifier (statement label) s must be the label of executable
statement in the same program unit in which the ENCODE and DECODE
statement occurs.

iolist List of input/output items.

 118 FORTRAN 77 Reference Manual

4

Description

The entities in the I/O list must be one of the following:

• Variables
• Substrings
• Arrays
• Array elements
• Record fields

A simple unsubscripted array name specifies all of the elements of the array in
memory storage order, with the leftmost subscript increasing more rapidly.

Execution proceeds as follows:

1. The ENCODE statement translates the list items to character form according
to the format identifier, and stores the characters in buf. A WRITE operation
on internal files does the same.

2. The DECODE statement translates the character data in buf to internal
(binary) form according to the format identifier, and stores the items in the
list. A READ statement does the same.

3. If buf is an array, its elements are processed in the order of subscript
progression, with the leftmost subscript increasing more rapidly.

4. The number of characters that an ENCODE or a DECODE statement can
process depends on the data type of buf. For example, an INTEGER*2 array
can contain two characters per element, so that the maximum number of
characters is twice the number of elements in that array. A character variable
or character array element can contain characters equal in number to its
length. A character array can contain characters equal in number to the
length of each element multiplied by the number of elements.

5. The interaction between the format identifier and the I/O list is the same as
for a formatted I/O statement.

Statements 119

4

Example

A program using DECODE/ENCODE:

The above program has this output:

The DECODE reads the characters of S as 3 integers, and stores them into V(1) ,
V(2) , and V(3) .

The ENCODE statement writes the values V(3) , V(2) , and V(1) into T as
characters; T then contains '547698' .

4.16 DIMENSION

The DIMENSION statement specifies the number of dimensions for an array,
including the number of elements in each dimension.

Optionally, the DIMENSION statement initializes items with values.

CHARACTER S*6 / '987654' /, T*6
INTEGER V(3)*4
DECODE(6, '(3I2)', S) V
WRITE(*, '(3I3)') V
ENCODE(6, '(3I2)', T) V(3), V(2), V(1)
PRINT *, T
END

 98 76 54
 547698

 120 FORTRAN 77 Reference Manual

4

Syntax

Description

This section contains descriptions for the dimension declarator and the arrays.

Dimension Declarator

The lower and upper limits of each dimension are designated by a dimension
declarator. The form of a dimension declarator is:

dd1 and dd2 are dimension bound expressions specifying the lower- and upper-
bound values. They can be arithmetic expressions of type integer or real. They
can be formed using constants, symbolic constants, formal arguments, or
variables defined in the COMMON statement. Array references and references to
user-defined functions cannot be used in the dimension bound expression. dd2
can also be an asterisk. If dd1 is not specified, a value of one is assumed. The
value of dd1 must be less than or equal to dd2.

Nonconstant dimension-bound expressions can be used in a subprogram to
define adjustable arrays, but not in a main program.

Noninteger dimension bound expressions are converted to integers before use.
Any fractional part is truncated.

Adjustable Array

If the dimension declarator is an arithmetic expression that contains formal
arguments or variables defined in the COMMON statement, then the array is
called an adjustable array. In such cases, the dimension is equal to the initial
value of the argument upon entry into the subprogram.

DIMENSIONa (d) [,a (d)] …

a Name of an array

d Specifies the dimensions of the array. It is a list of 1 to 7 declarators
separated by commas.

[dd1 :] dd2

Statements 121

4

Assumed-Size Array

The array is called an assumed-size array when the dimension declarator
contains an asterisk. In such cases, the upper bound of that dimension is not
stipulated. An asterisk can only appear for formal arrays and as the upper
bound of the last dimension in an array declarator.

Examples

Example 1: Arrays in a main program:

In the above example, M is specified as an array of dimensions 4 ×4 and V is
specified as an array of dimension 1000.

Example 2: An adjustable array in a subroutine:

In the above example, the formal arguments are an array, M, and a variable N. M
is specified to be a square array of dimensions N× N.

Example 3: Lower and upper bounds:

In the above example, HELIO is a 3-dimensional array. The first element is
HELIO(-3,1,3) and the last element is HELIO(3,4,9) .

DIMENSION M(4,4), V(1000)
…
END

SUBROUTINE INV(M, N)
DIMENSION M(N, N)
…
END

DIMENSION HELIO (-3:3, 4, 3:9)
…
END

 122 FORTRAN 77 Reference Manual

4

Example 4: Dummy array with lower and upper bounds:

Example 5: Noninteger bounds:

In the above example, A is an array of dimension 9×28.

Example 6: Adjustable array with noninteger bounds:

4.17 DO

The DO statement repeatedly executes a set of statements.

Syntax

s is a statement number.

SUBROUTINE ENHANCE(A, NLO, NHI)
DIMENSION A(NLO : NHI)
…
END

PARAMETER (LO = 1, HI = 9.3)
DIMENSION A(HI, HI*3 + LO)
…
END

SUBROUTINE ENHANCE(A, X, Y)
DIMENSION A(X : Y)
…
END

DO s [,] loop-control
 or

DO loop-control ♦

Statements 123

4

The form of loop-control is:

Description

The DO statement contains the following constructs.

Labeled DO Loop

A labeled DO loop consists of the following:

• DO statement
• Set of executable statements called a block
• Terminal statement, usually a CONTINUE statement

Terminal Statement

The statement identified by s is called the terminal statement. It must follow the
DO statement in the sequence of statements within the same program unit as
the DO statement.

The terminal statement should not be one of the following statements:

• Unconditional GO TO
• Assigned GO TO
• Arithmetic IF
• Block IF
• ELSE IF
• ELSE
• END IF
• RETURN
• STOP
• END DO

variable = e1, e2 [, e3]

variable Variable of type integer, real, or double precision.

e1, e2, e3 Expressions of type integer, real or double precision, specifying
initial, limit, and increment values respectively.

 124 FORTRAN 77 Reference Manual

4

If the terminal statement is a logical IF statement, it can contain any executable
statement, except:

• DO
• DO WHILE
• Block IF
• ELSE IF
• ELSE
• END IF
• END
• Logical IF statement

DO Loop Range

The range of a DO loop consists of all of the executable statements that appear
following the DO statement, up to and including the terminal statement.

If a DO statement appears within the range of another DO loop, its range must
be entirely contained within the range of the outer DO loop. More than one
labeled DO loop can have the same terminal statement.

If a DO statement appears within an IF , ELSE IF , or ELSE block, the range of
the associated DO loop must be contained entirely within that block.

If a block IF statement appears within the range of a DO loop, the
corresponding END IF statement must also appear within the range of that DO
loop.

Block DO Loop ♦

A block DO loop consists of:

• DO statement
• Set of executable statements called a block
• Terminal statement, an END DO statement

This loop is nonstandard.

Execution proceeds as follows:

1. The expressions e1, e2, and e3 are evaluated. If e3 is not present, its value
is assumed to be one.

Statements 125

4

2. The DO variable is initialized with the value of e1.

3. The iteration count is established as the value of the expression:

MAX (INT ((e2 - e1 + e3) / e3), 0)

The iteration count is zero if either of the following is true:
• e1 > e2 and e3 > zero.
• e1 < e2 and e3 < zero.

If the –onetrip compile time option is specified, then the iteration count is
never less than one.

4. The iteration count is tested, and, if it is greater than zero, the range of the
DO loop is executed.

Terminal Statement Processing

After the terminal statement of a DO loop is executed, the following steps are
performed:

1. The value of the DO variable, if any, is incremented by the value of e3 that
was computed when the DO statement was executed.

2. The iteration count is decreased by one.

3. The iteration count is tested, and if it is greater than zero, the statements
in the range of the DO loop are executed again.

Restrictions

The DO variable must not be modified in any way within the range of the DO
loop.

You must not jump into the range of a DO loop from outside its range.

 126 FORTRAN 77 Reference Manual

4

Comments

In some cases, the DO variable can overflow as a result of an increment that is
performed prior to testing it against the final value. When this happens, your
program has an error, and neither the compiler nor the runtime system detects
it. In this situation, though the DO variable wraps around, the loop can
terminate properly.

If there is a jump into the range of a DO loop from outside its range, a warning
is issued, but execution continues anyway.

When the jump is from outside to the terminal statement that is CONTINUE,
and this statement is the terminal statement of several nested DO loops, then
the most inner DO loop is always executed.

Examples

Example 1: Nested DO loops:

The inner loop is not executed, and at the WRITE, L is undefined. Here L is
shown as 0, but that is implementation-dependent; do not rely on it.

N = 0
DO 210 I = 1, 10

J = I
DO 200 K = 5, 1

L = K
N = N + 1

200 CONTINUE
210 CONTINUE

WRITE(*,*)'I =',I, ', J =',J, ', K =',K, ', N =',N, ', L =',L
END

demo% f77 -silent DoNest1.f
"DoNest1.f", line 4: Warning: DO range never executed
demo% a.out
I = 11, J = 10, K = 5, N = 0, L = 0
demo%

Statements 127

4

Example 2: The program DoNest2.f (DO variable always defined):

The above program prints out:

4.18 DO WHILE

The DO WHILE♦ statement repeatedly executes a set of statements while the
specified condition is true.

Syntax

Description

Execution proceeds as follows:

1. The specified expression is evaluated.

2. If the value of the expression is true, the statements in the range of the DO
WHILE loop are executed.

INTEGER COUNT, OUTER
COUNT = 0
DO OUTER = 1, 5

NOUT = OUTER
DO INNER = 1, 3

NIN = INNER
COUNT = COUNT+1

END DO
END DO
WRITE(*,*) OUTER, NOUT, INNER, NIN, COUNT
END

6 5 4 3 15

DO [s [,]] WHILE (e)

s Label of an executable statement

e Logical expression

 128 FORTRAN 77 Reference Manual

4

3. If the value of the expression is false, control is transferred to the
statement following the DO WHILE loop.

Terminal Statement

If s is specified, the statement identified by it is called the terminal statement,
and it must follow the DO WHILE statement. The terminal statement must not
be one of the following statements:

• Unconditional GO TO
• Assigned GO TO
• Arithmetic IF
• Block IF ELSE IF
• ELSE
• END IF
• RETURN
• STOP
• END
• DO
• DO WHILE

If the terminal statement is a logical IF statement, it can contain any executable
statement, except:

• DO
• DO WHILE
• Block IF
• ELSE IF
• ELSE
• END IF
• END
• Logical IF

If s is not specified, the DO WHILE loop must end with an END DO statement.

DO WHILE Loop Range

The range of a DO WHILE loop consists of all the executable statements that
appear following the DO WHILE statement, up to and including the terminal
statement.

Statements 129

4

If a DO WHILE statement appears within the range of another DO WHILE loop,
its range must be entirely contained within the range of the outer DO WHILE
loop. More than one DO WHILE loop can have the same terminal statement.

If a DO WHILE statement appears within an IF , ELSE IF, or ELSE block, the
range of the associated DO WHILE loop must be entirely within that block.

If a block IF statement appears within the range of a DO WHILE loop, the
corresponding END IF statement must also appear within the range of that DO
WHILE loop.

Terminal Statement Processing

After the terminal statement of a DO WHILE loop is executed, control is
transferred back to the corresponding DO WHILE statement.

Restrictions

If you jump into the range of a DO WHILE loop from outside its range, then the
results are unpredictable.

Comments

The variables used in the e can be modified in any way within the range of the
DO WHILE loop.

Examples

Example 1: A DO WHILEwithout a statement number:

INTEGER A(4,4), C, R
…
C = 4
R = 1
DO WHILE (C .GT. R)

A(C,R) = 1
C = C - 1

END DO

 130 FORTRAN 77 Reference Manual

4

Example 2: A DO WHILEwith a statement number:

4.19 DOUBLE COMPLEX

The DOUBLE COMPLEX♦ statement specifies the type to be double complex. It
optionally specifies array dimensions and size, and initializes with values.

Syntax

Description

The declaration can be: DOUBLE COMPLEX or COMPLEX*16.

DOUBLE COMPLEX♦

For a declaration such as DOUBLE COMPLEX Z, the variable Z is usually two
REAL*8 elements contiguous in memory, if no size options are set, interpreted
as one double-width complex number. See the next subsection, “Default Size.”

COMPLEX*16♦

For a declaration such as COMPLEX*16 Z, the variable Z is always two
REAL*8 elements contiguous in memory, interpreted as one double-width
complex number.

INTEGER A(4,4), C, R
…
DO 10 WHILE (C .NE. R)

A(C,R) = A(C,R) + 1
C = C+1

10 CONTINUE

DOUBLE COMPLEXv [/ c/] [, v [/ c/] …

v Name of a symbolic constant, variable, array, array declarator, function, or
dummy function

c List of constants for the immediately preceding name

Statements 131

4

Default Size

If you explicitly specify the size as 16, COMPLEX*16, you get what you specify;
if you do not specify the size, you get the default size. Default size, for such a
declaration as DOUBLE COMPLEX Z, depends on –r8 .

• If –r8 or -dbl is on the f77 command line, then the compiler allocates 32
bytes, and does 128-bit arithmetic (SPARC only).

• If –r8 or -dbl is not on the command line, then the compiler allocates 16
bytes, and does 64-bit arithmetic.

• If you put both –i2 and –r8 on the f77 command line, the results are
unpredictable.

Comments

There is a double-complex version of each complex built-in function. Generally,
the specific function names begin with Z or CD instead of C, except for the two
functions, DIMAG and DREAL, which return a real value. Examples are: SIN() ,
CSIN() , CDSIN() .

 Example: Double-complex scalars and arrays:

4.20 DOUBLE PRECISION

The DOUBLE PRECISION statement specifies the type to be double precision,
and optionally specifies array dimensions and initializes with values.

DOUBLE COMPLEX U, V
DOUBLE COMPLEX W(3,6)
COMPLEX*16 X, Y(5,5)
COMPLEX U*16(5), V(5)*16

 132 FORTRAN 77 Reference Manual

4

Syntax

Description

The declaration can be: DOUBLE PRECISION or REAL*8.

DOUBLE PRECISION

For a declaration such as DOUBLE PRECISION X, the variable X is usually a
REAL*8 element in memory, interpreted as one double-width real number. See
the next subsection, “Default Size.”

REAL*8 ♦

For a declaration such as REAL*8 X , the variable X is always an element of
type REAL*8 in memory, interpreted as a double-width real number.

Default Size

If you explicitly specify the size as 8, REAL*8, you get what you specify; if you
do not specify the size, you get the default size.

The default size for a declaration such as DOUBLE PRECISION X depends on
the –r8 option, as follows:

• If –r8 is on the f77 command line, then the compiler allocates 16 bytes, and
does 128-bit arithmetic (SPARC only).

• If –r8 is not on the command line, then the compiler allocates 8 bytes, and
does 64-bit arithmetic.

• If you put both –i2 and –r8 on the f77 command line, the results are
unpredictable.

DOUBLE PRECISION v [/ c/] [, v [/ c/] …

v Name of a symbolic constant, variable, array, array declarator, function, or
dummy function

c List of constants for the immediately preceding name

Statements 133

4

Example

Example: Double-precision scalars and arrays:

4.21 ELSE

The ELSE statement indicates the beginning of an ELSE block.

Syntax

Description

Execution of an ELSE statement has no effect on the program.

An ELSE block consists of all the executable statements following the ELSE
statements, up to but not including the next END IF statement at the same IF
level as the ELSE statement. See Section 4.40, “IF (Block),” for more details.

An ELSE block can be empty.

Restrictions

You cannot jump into an ELSE block from outside the ELSE block.

The statement label, if any, of an ELSE statement cannot be referenced by any
statement.

DOUBLE PRECISION R, S
DOUBLE PRECISION T(3,6)
REAL*8 U(3,6)
REAL V*8(6), W(6)*8

IF (e) THEN
...
ELSE
...
END IF

e Logical expression

 134 FORTRAN 77 Reference Manual

4

A matching END IF statement of the same IF level as the ELSE must appear
before any ELSE IF or ELSE statement at the same IF level.

Examples

 Example 1: ELSE:

Example 2: An invalid ELSE IF where an END IF is expected:

4.22 ELSE IF

The ELSE IF provides a multiple alternative decision structure.

CHARACTER S
…
IF (S .GE. '0' .AND. S .LE. '9') THEN

CALL PUSH
ELSE

CALL TOLOWER
END IF
…

IF (K .GT. 5) THEN
N = 1

ELSE
N = 0

ELSE IF (K .EQ. 5) THEN ←Incorrect
…

Statements 135

4

Syntax

Description

You can make a series of independent tests, and each test can have its own
sequence of statements.

An ELSE IF block consists of all the executable statements following the ELSE
IF statement up to, but not including, the next ELSE IF, ELSE, or END IF
statement at the same IF level as the ELSE IF statement.

An ELSE IF block can be empty.

Execution of the ELSE IF proceeds as follows:

1. e is evaluated.

2. If e is true, execution continues with the first statement of the ELSE IF
block. If e is true and the ELSE IF block is empty, control is transferred
to the next END IF statement at the same IF level as the ELSE IF
statement.

3. If e is false, control is transferred to the next ELSE IF , ELSE, or END IF
statement at the same IF level as the ELSE IF statement.

Restrictions

You cannot jump into an ELSE IF block from outside the ELSE IF block.

The statement label, if any, of an ELSE IF statement cannot be referenced by
any statement.

A matching END IF statement of the same IF level as the ELSE IF must
appear before any ELSE IF or ELSE statement at the same IF level.

IF (e1) THEN

ELSE IF (e2) THEN

END IF…

e1 and e2 Logical expressions

 136 FORTRAN 77 Reference Manual

4

Example

Example: ELSE IF :

4.23 ENCODE/DECODE

The ENCODE♦ statement writes data from a list to memory.

Syntax

Description

ENCODE is provided for compatibility with older versions of FORTRAN 77.
Similar functionality can be accomplished using internal files with a formatted
sequential WRITE statement. ENCODE is not in the FORTRAN 77 Standard.

Data are edited according to the format identifier.

READ (*,*) N
IF (N .LT. 0) THEN

WRITE(*,*) 'N<0'
ELSE IF (N .EQ. 0) THEN

WRITE(*,*) ’N=0’
ELSE

WRITE(*,*) ’N>0’
END IF

ENCODE(size, f, buf [, IOSTAT= ios] [, ERR= s]) [iolist]

size Number of characters to be translated

f Format identifier

buf Variable, array, or array element

ios I/O status specifier

s Error specifier (statement label)

iolist List of I/O items, each a character variable, array, or array element

Statements 137

4

Example

The DECODE reads the characters of S as 3 integers, and stores them into V(1) ,
V(2) , and V(3) . The ENCODE statement writes the values V(3) , V(2) , and
V(1) , into T as characters; T then contains '547698' .

See Section 4.15, “DECODE/ENCODE,” for more details and a full example.

4.24 END

The END statement indicates the end of a program unit.

Syntax

Description

The END statement:

• Must be the last statement in the program unit.
• Must be the only statement in a line.
• Can have a label.

In a main program, an END statement terminates the execution of the program.
In a function or subroutine, it has the effect of a RETURN. ♦

In the FORTRAN 77 Standard, the END statement cannot be continued, but f77
allows this practice. ♦

No other statement, such as an END IF statement, can have an initial line that
appears to be an END statement.

CHARACTER S*6, T*6
INTEGER V(3)*4
DATA S / '987654' /
DECODE(6, 1, S) V

1 FORMAT(3 I2)
ENCODE(6, 1, T) V(3), V(2), V(1)

END

 138 FORTRAN 77 Reference Manual

4

 Example

Example: END:

4.25 END DO

The END DO statement terminates a DO loop. ♦

Syntax

Description

The END DO statement is the delimiting statement of a Block DO statement. If
the statement label is not specified in a DO statement, the corresponding
terminating statement must be an END DO statement. You can branch to an END
DO statement only from within the range of the DO loop that it terminates.

Examples

Example 1: A DO loop with a statement number:

PROGRAM MAIN
WRITE(*, *) 'Very little'
END

END DO

DO 10 N = 1, 100
…

10 END DO

Statements 139

4

Example 2: A DO loop without statement number:

4.26 END FILE

The END FILE statement writes an end-of-file record as the next record of the
file connected to the specified unit.

Syntax

Description

If you are using the ENDFILE statement and other standard FORTRAN 77 I/O
for tapes, we recommend that you use the TOPEN() routines instead, because
they are more reliable.

Two endfile records signify the end-of-tape mark. When writing to a tape file,
ENDFILE writes two endfile records, then the tape backspaces over the second
one. If the file is closed at this point, both end-of-file and end-of-tape are
marked. If more records are written at this point, either by continued write
statements or by another program if you are using no-rewind magnetic tape,
the first tape mark stands (endfile record), and is followed by another data file,
then by more tape marks, and so on.

DO N = 1, 100
…

END DO

END FILE u

END FILE ([UNIT=] u [, IOSTAT= ios] [, ERR= s])

u Unit identifier of an external unit connected to the file, The options can be
specified in any order, but if UNIT= is omitted, then u must be first.

ios I/O status specifier, an integer variable or an integer array element.

s Error specifier, s must be the label of an executable statement in the same
program in which the END FILE statement occurs. The program control is
transferred to the label in the event of an error during the execution of the
END FILE statement.

 140 FORTRAN 77 Reference Manual

4

Restrictions

u must be connected for sequential access. Execution of an END FILE statement
on a direct-access file is not defined in the FORTRAN 77 Standard, and is
unpredictable. Do not use an END FILE statement on a direct-access file.

Examples

Example 1: Constants:

Example 2: Variables:

Example 3: Error trap:

END FILE 2
END FILE (2)
END FILE (UNIT=2)

LOGUNIT = 2
END FILE LOGUNIT
END FILE (LOGUNIT)
END FILE (UNIT=LOGUNIT)

NOUT = 2
END FILE (UNIT=NOUT, IOSTAT=KODE, ERR=9)
…

9 WRITE(*,*) 'Error at END FILE, on unit', NOUT
STOP

Statements 141

4

4.27 END IF

The END IF statement ends the block IF that the IF began.

Syntax

Description

For each block IF statement there must be a corresponding END IF statement
in the same program unit. An END IF statement matches if it is at the same IF
level as the block IF statement.

Examples

Example 1: IF/END IF :

Example 2: IF/ELSE/END IF :

END IF

IF (N .GT. 0)THEN
N = N+1

END IF

IF (N .EQ. 0) THEN
N = N+1

ELSE
N = N-1

END IF

 142 FORTRAN 77 Reference Manual

4

4.28 END MAP

The END MAP ♦ statement terminates the MAP declaration.

Syntax

Description

See Section 4.70, “UNION and MAP.”

Restrictions

The MAP statement must be within a UNION statement.

Example

4.29 END STRUCTURE

The END STRUCTURE ♦ statement t erminates the STRUCTURE statement.

Syntax

END MAP

…
MAP

CHARACTER *16 MAJOR
END MAP
…

END STRUCTURE

Statements 143

4

Description

See Section 4.66, “STRUCTURE.”

Example

4.30 END UNION

The END UNION ♦ statement terminates the UNION statement.

Syntax

Description

See Section 4.70, “UNION and MAP.”

STRUCTURE /PROD/
INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE

END UNION

 144 FORTRAN 77 Reference Manual

4

Example

4.31 ENTRY

The ENTRY statement defines an alternate entry point within a subprogram.

Syntax

Description

Note these nuances for the ENTRY statement:

Procedure References by Entry Names

An ENTRY name used in a subroutine subprogram is treated like a subroutine
and can be referenced with a CALL statement. Similarly, the ENTRY name used
in a function subprogram is treated like a function and can be referenced as a
function reference.

An entry name can be specified in an EXTERNAL statement and used as an
actual argument. It cannot be used as a dummy argument.

UNION
MAP

CHARACTER*16
END MAP
MAP

INTEGER*2 CREDITS
CHARACTER *8 GRAD_DATE

END MAP
END UNION

ENTRY en [([fa [, fa] …])]

en Symbolic name of an entry point in a function or subroutine subprogram

fa Formal argument—it can be a variable name, array name, formal procedure
name, or an asterisk specifying an alternate return label.

Statements 145

4

Execution of an ENTRY subprogram (subroutine or function) begins with the
first executable statement after the ENTRY statement.

The ENTRY statement is a nonexecutable statement.

The entry name cannot be used in the executable statements that physically
precede the appearance of the entry name in an ENTRY statement.

Parameter Correspondence

The formal arguments of an ENTRY statement need not be the same in order,
number, type, and name as those for FUNCTION, SUBROUTINE, and other
ENTRY statements in the same subprogram. Each reference to a function,
subroutine, or entry must use an actual argument list that agrees in order,
number, type, and name with the dummy argument list in the corresponding
FUNCTION, SUBROUTINE, or ENTRY statement.

Alternate return arguments in ENTRY statements can be specified by placing
asterisks in the dummy argument list. Ampersands are valid alternates. ♦

ENTRY statements that specify alternate return arguments can be used only in
subroutine subprograms, not functions.

Restrictions

An ENTRY statement cannot be used within a block IF construct or a DO loop.

If an ENTRY statement appears in a character function subprogram, it must be
defined as type CHARACTER with the same length as that of a function
subprogram.

 146 FORTRAN 77 Reference Manual

4

Examples

Example 1: Multiple entry points in a subroutine:

In the above example, the subroutine FINAGLE has two alternate entries: the
entry SCHLEP has an argument list; the entry SHMOOZ has no argument list.

Example 2: In the calling routine, you can call the above subroutine and entries
as follows:

In the above example, the order of the call statements need not match the order
of the entry statements.

SUBROUTINE FINAGLE(A, B, C)
INTEGER A, B
CHARACTER C*4
…
RETURN

ENTRY SCHLEP(A, B, C)
…
RETURN

ENTRY SHMOOZ
…
RETURN
END

INTEGER A, B
CHARACTER C*4
…
CALL FINAGLE(A, B, C)
…
CALL SHMOOZ
…
CALL SCHLEP(A, B, C)
…

Statements 147

4

Example 3: Multiple entry points in a function:

4.32 EQUIVALENCE

The EQUIVALENCE statement specifies that two or more variables or arrays in
a program unit share the same memory.

Syntax

Description

An EQUIVALENCE statement stipulates that the storage sequence of the entities
whose names appear in the list nlist must have the same first memory location.

An EQUIVALENCE statement can cause association of entities other than
specified in the nlist.

An array name, if present, refers to the first element of the array.

If an array element name appears in an EQUIVALENCE statement, the number
of subscripts can be less than or equal to the number of dimensions specified in
the array declarator for the array name.

REAL FUNCTION F2 (X)
F2 = 2.0 * X
RETURN

ENTRY F3 (X)
F3 = 3.0 * X
RETURN

ENTRY FHALF (X)
FHALF = X / 2.0
RETURN
END

EQUIVALENCE (nlist) [, (nlist)] …

nlist List of variable names, array element names, array names, and character
substring names separated by commas

 148 FORTRAN 77 Reference Manual

4

Restrictions

In nlist, dummy arguments and functions are not permitted.

Subscripts of array elements must be integer constants greater than the lower
bound and less than or equal to the upper bound.

EQUIVALENCE can associate automatic variables only with other automatic
variables or undefined storage classes. These classes must be ones which are
not in any of the COMMON, STATIC, SAVE, DATA, or dummy arguments.

An EQUIVALENCE statement can associate an element of type character with a
noncharacter element. ♦

An EQUIVALENCE statement cannot specify that the same storage unit is to
occur more than once in a storage sequence. For example, the following
statement is not allowed:

An EQUIVALENCE statement cannot specify that consecutive storage units are
to be nonconsecutive. For example, the following statement is not allowed:

When COMMON statements and EQUIVALENCE statements are used together,
several additional rules can apply. For such rules, refer to the notes on the
COMMON statement.

DIMENSION A (2)
EQUIVALENCE (A(1),B), (A(2),B)

REAL A (2)
DOUBLE PRECISION D (2)

EQUIVALENCE (A(1), D(1)), (A(2), D(2))

Statements 149

4

Example

The association of A, B, and C can be graphically illustrated as follows.

4.33 EXTERNAL

The EXTERNAL statement specifies procedures or dummy procedures as
external, and allows their symbolic names to be used as actual arguments.

Syntax

Description

If an external procedure or a dummy procedure is an actual argument, it must
be in an EXTERNAL statement in the same program unit.

If an intrinsic function name appears in an EXTERNAL statement, that name
refers to some external subroutine or function. The corresponding intrinsic
function is not available in the program unit.

CHARACTER A*4, B*4, C(2)*3
EQUIVALENCE (A,C(1)),(B,C(2))

01 02 03 04 05 06 07

A A(1) A(2) A(3) A(4)

B B(1) B(2) B(3) B(4)

C C(1) C(2)

EXTERNAL proc [, proc] …

proc Name of external procedure, dummy procedure, or block data routine.

 150 FORTRAN 77 Reference Manual

4

Restrictions

A subroutine or function name can appear in only one of the EXTERNAL
statements of a program unit.

A statement function name must not appear in an EXTERNAL statement.

Examples

Example 1: Use your own version of TAN:

Example 2: Pass a user-defined function name as an argument:

EXTERNAL TAN
T = TAN(45.0)
…
END
FUNCTION TAN(X)
…
RETURN
END

REAL AREA, LOW, HIGH
EXTERNAL FCN
…
CALL RUNGE (FCN, LOW, HIGH, AREA)
…
END

FUNCTION FCN(X)
…
RETURN
END

SUBROUTINE RUNGE (F, X0, X1, A)
…
RETURN
END

Statements 151

4

4.34 FORMAT

The FORMAT statement specifies the layout of the input or output records.

Syntax

The items in f have the form:

The repeatable edit descriptors are:

Here is a summary:

• I , O, Z are for integers (decimal, octal, hex)
• F, E, D, G are for reals (fixed-point, exponential, double, general)
• A is for characters
• L is for logicals

label FORMAT (f)

label Statement number

f Format specification list

 [r] d

 [r] (f)

r A repeat factor

d An edit descriptor (repeatable or nonrepeatable). If r is present, then d must
be repeatable.

I
I w
I w.m
O
Ow
Ow.m
Z
Zw
Zw.m

F
Fw
Fw.m
A
Aw
L
Lw

E
Ew
Ew.m
Ew.m.e
Ew.mEe

D
Dw
Dw.m
Dw.m.e
Dw.mEe

G
Gw
Gw.m
Gw.m.e
Gw.mEe

 152 FORTRAN 77 Reference Manual

4

See the section,“Formatted I/O,” in Chapter 5, “Input and Output,” for full
details of these edit descriptors.

Nonrepeatable Edit Descriptors

Variable Format Expressions ♦

In general, any integer constant in a format can be replaced by an arbitrary
expression enclosed in angle brackets:

The n in an nH… edit descriptor cannot be a variable format expression.

Description

The FORMAT statement includes the explicit editing directives to produce or
use the layout of the record. It is used with formatted input/output statements
and ENCODE/DECODE statements.

'a1a2 … an' [k]R k defaults to 10

"a1a2 … an" [k]P k defaults to 0

nHa1a2 … an S

$ SU

/ SP

: SS

B Tn

BN nT

BZ TL[n] n defaults to 1

TR[n] n defaults to 1

[n]X n defaults to 1

1 FORMAT(… < e > …)

Statements 153

4

Repeat Factor

r must be a nonzero, unsigned, integer constant.

Repeatable Edit Descriptors

The descriptors I , O, Z, F, E, D, G, L, and A indicate the manner of editing and
are repeatable.

w and e are nonzero, unsigned integer constants.

d and m are unsigned integer constants.

Nonrepeatable Edit Descriptors

The descriptors are the following:

(") , ($) , (') , (/) , (:) , B, BN, BZ, H, P, R, Q, S, SU, SP, SS, T, TL, TR, X

These descriptors indicate the manner of editing and are not repeatable:

• Each ai is any ASCII character.
• n is a nonzero, unsigned integer constant.
• k is an optionally signed integer constant.

Item Separator

Items in the format specification list are separated by commas. A comma can
be omitted before or after the slash and colon edit descriptors, between a P edit
descriptor, and the immediately following F, E, D, or G edit descriptors.

In some sense, the comma can be omitted anywhere the meaning is clear
without it, but, other than those cases listed above, this is nonstandard. ◆

Restrictions

The FORMAT statement label cannot be used in a GO TO, IF -arithmetic, DO, or
alternate return.

 154 FORTRAN 77 Reference Manual

4

Warnings

For constant formats, invalid format strings cause warnings or error messages
at compile time.

For formats in variables, invalid format strings cause warnings or error
messages at runtime.

For variable format expressions, of the form <e> , invalid format strings cause
warnings or error messages at compile time or runtime.

See Chapter 5, “Input and Output,” for more details and more examples.

Examples

Example 1: Some A, I , and F formats:

Example 2: Variable format expressions:

READ(2, 1) PART, ID, HEIGHT, WEIGHT
1 FORMAT(A8, 2X, I4, F8.2, F8.2)

WRITE(9, 2) PART, ID, HEIGHT, WEIGHT
2 FORMAT('Part:', A8, ' Id:', I4, ' Height:', F8.2,
& ' Weight:', F8.2)

DO 100 N = 1, 50
 …

1 FORMAT(2X, F<N+1>.2)

Statements 155

4

4.35 FUNCTION (External)
The FUNCTION statement identifies a program unit as a function subprogram.

Syntax

type is one of the following:

An alternate nonstandard syntax for length specifier is as follows: ♦

Description

Note the type, value, and formal arguments for a FUNCTION statement.

Type of Function

The function statement involves type, name, and formal arguments.

[type] FUNCTION fun ([ar [, ar] …])

BYTE ♦
CHARACTER
CHARACTER*n
CHARACTER*(*)
COMPLEX
COMPLEX*8 ♦
COMPLEX*16 ♦
COMPLEX*32 ♦ (SPARC only)

DOUBLE COMPLEX♦
DOUBLE PRECISION
INTEGER
INTEGER*2 ♦
INTEGER*4 ♦
INTEGER*8 ♦
LOGICAL

LOGICAL*1 ♦
LOGICAL*2 ♦
LOGICAL*4 ♦
LOGICAL*8 ♦
REAL
REAL*4 ♦
REAL*8 ♦
REAL*16 ♦ (SPARC only)

n (as in CHARACTER*n) Must be greater than zero

fun Symbolic name assigned to function

ar Formal argument name

[type] FUNCTION name [* m]([ar [, ar] …])

m Unsigned, nonzero integer constant specifying length of the data type.

 156 FORTRAN 77 Reference Manual

4

If type is not present in the FUNCTION statement, then the type of the function
is determined by default and by any subsequent IMPLICIT or type statement.
If type is present, then the function name cannot appear in other type
statements.

Value of Function

The symbolic name of the function must appear as a variable name in the
subprogram. The value of this variable, at the time of execution of the RETURN
or END statement in the function subprogram, is the value of the function.

Formal Arguments

The list of arguments defines the number of formal arguments. The type of
these formal arguments is defined by some combination of default, type
statements, IMPLICIT statements, and DIMENSION statements.

The number of formal arguments must be the same as the number of actual
arguments at the invocation of this function subprogram.

A function can assign values to formal arguments. These values are returned to
the calling program when the RETURN or END statements are executed in the
function subprogram.

Restrictions

Alternate return specifiers are not allowed in FUNCTION statements.

f77 provides recursive calls. A function or subroutine is called recursively if it
calls itself directly. If it calls another function or subroutine, which in turn calls
this function or subroutine before returning, then it is also called recursively.

Statements 157

4

Examples

Example 1: Character function:

In the above example, BOOL is defined as a function of type CHARACTER with a
length of 5 characters. This function when called returns the string, TRUE or
FALSE, depending on the value of the variable, ARG.

Example 2: Real function:

In the above example, the function SQR is defined as function of type REAL by
default, and returns the square of the number passed to it.

Example 3: Size of function, alternate syntax: ♦

The above nonstandard form is treated as:

4.36 GO TO (Assigned)
The assigned GO TO statement branches to a statement label identified by the
assigned label value of a variable.

CHARACTER*5 FUNCTION BOOL(ARG)
BOOL = 'TRUE'
IF (ARG .LE. 0) BOOL = 'FALSE'
RETURN
END

FUNCTION SQR (A)
SQR = A*A
RETURN
END

 INTEGER FUNCTION FCN*2 (A, B, C)

INTEGER*2 FUNCTION FCN (A, B, C)

 158 FORTRAN 77 Reference Manual

4

Syntax

Description

Execution proceeds as follows:

1. At the time an assigned GO TO statement is executed, the variable i must
have been assigned the label value of an executable statement in the same
program unit as the assigned GO TO statement.

2. If an assigned GO TO statement is executed, control transfers to a
statement identified by i.

3. If a list of statement labels is present, the statement label assigned to i
must be one of the labels in the list.

Restrictions

i must be assigned by an ASSIGN statement in the same program unit as the
GO TO statement.

i must be INTEGER*4 or INTEGER*8, not INTEGER*2.

s must be in the same program unit as the GO TO statement.

The same statement label can appear more than once in a GO TO statement.

The statement you jump to must be executable, not DATA, ENTRY, FORMAT, or
INCLUDE.

You cannot jump into a DO, IF , ELSE IF, or ELSE block from outside the block.

GO TO i [[,] (s [, s] …)]

i Integer variable name

s Statement label of an executable statement

Statements 159

4

Example

Example: Assigned GO TO:

4.37 GO TO (Computed)
The computed GO TO statement selects one statement label from a list,
depending on the value of an integer or real expression, and transfers control
to the selected one.

Syntax

Description

Execution proceeds as follows:

1. e is evaluated first. It is converted to integer, if required.

2. If 1 ≤ e ≤ n, where n is the number of statement labels specified, then the
eth label is selected from the specified list and control is transferred to it.

3. If the value of e is outside the range, that is, e < 1 or e > n, then the
computed GO TO statement serves as a CONTINUE statement.

ASSIGN 10 TO N
…
GO TO N (10, 20, 30, 40)
…

10 CONTINUE
…

40 STOP

GO TO (s [, s] …) [,] e

 s Statement label of an executable statement

 e Expression of type integer or real

 160 FORTRAN 77 Reference Manual

4

Restrictions

 s must be in the same program unit as the GO TO statement.

The same statement label can appear more than once in a GO TO statement.

The statement you jump to must be executable, not DATA, ENTRY, FORMAT, or
INCLUDE.

You cannot jump into a DO, IF , ELSE IF, or ELSE block from outside the block.

Example

Example: Computed GO TO:

In the above example:

• If N=1, then go to 10.
• If N=2, then go to 20.
• If N=3, then go to 30.
• If N=4, then go to 40.
• If N<1 or N>4, then fall through to 10.

…
GO TO (10, 20, 30, 40), N
…

10 CONTINUE
…

20 CONTINUE
…

40 CONTINUE

Statements 161

4

4.38 GO TO (Unconditional)
The unconditional GO TO statement transfers control to a specified statement.

Syntax

Description

Execution of the GO TO statement transfers control to the statement labeled s.

Restrictions

 s must be in the same program unit as the GO TO statement.

The statement you jump to must be executable, not a DATA, ENTRY, FORMAT, or
INCLUDE statement.

You cannot jump into a DO, IF , ELSE IF, or ELSE block from outside the block.

Example

GO TO s

s Statement label of an executable statement

A = 100.0
B = 0.01
GO TO 90
…

90 CONTINUE

 162 FORTRAN 77 Reference Manual

4

4.39 IF (Arithmetic)
The arithmetic IF statement branches to one of three specified statements,
depending on the value of an arithmetic expression.

Syntax

Description

The IF statement transfers control to the first, second, or third label if the value
of the arithmetic expression is less than zero, equal to zero, or greater than
zero, respectively.

The restrictions are:

• The s1, s2, s3 must be in the same program unit as the IF statement.

• The same statement label can appear more than once in a IF statement.

• The statement you jump to must be executable, not DATA, ENTRY, FORMAT, or
INCLUDE.

• You cannot jump into a DO, IF , ELSE IF, or ELSE block from outside the
block.

Example

Since the value of N is zero, control is transferred to statement label 20 .

IF (e) s1, s2, s3

e Arithmetic expression: integer, real, double precision, or quadruple precision

s1, s2, s3 Labels of executable statements

N = 0
IF (N) 10, 20, 30

Statements 163

4

4.40 IF (Block)
The block IF statement executes one of two or more sequences of statements,
depending on the value of a logical expression.

Syntax

Description

The block IF statement evaluates a logical expression and, if the logical
expression is true, it executes a set of statements called the IF block. If the
logical expression is false, control transfers to the next ELSE, ELSE IF, or END
IF statement at the same IF -level.

IF Level

The IF level of a statement S is the value n1–n2, where n1 is the number of
block IF statements from the beginning of the program unit up to the end,
including S; n2 is the number of END IF statements in the program unit up to,
but not including, S.

Example: In the following program, the IF -level of statement 9 is 2-1, or, 1:

IF (e) THEN

 …

END IF

e A logical expression

IF (X .LT. 0.0) THEN
MIN = NODE

END IF
…

9 IF (Y .LT. 0.0) THEN
MIN = NODE - 1

END IF

 164 FORTRAN 77 Reference Manual

4

The IF -level of every statement must be zero or positive. The IF -level of each
block IF , ELSE IF, ELSE, and END IF statement must be positive. The IF -level
of the END statement of each program unit must be zero.

IF Block

An IF block consists of all the executable statements following the block IF
statement, up to, but not including, the next ELSE, ELSE IF, or END IF
statement that has the same if level as the block IF statement. An IF block
can be empty. In the following example, the two assignment statements form
an IF block:

Execution proceeds as follows:

1. The logical expression e is evaluated first. If e is true, execution continues
with the first statement of the IF block.

2. If e is true and the IF block is empty, control is transferred to the next END
IF statement with the same IF level as the block IF statement.

3. If e is false, control is transferred to the next ELSE IF, ELSE, or END IF
statement with the same IF level as the block IF statement.

4. If the last statement of the IF block does not result in a branch to a label,
control is transferred to the next END IF statement that has the same IF
level as the block IF statement preceding the IF block.

Restrictions

You cannot jump into an IF block from outside the IF block.

IF (X .LT. Y) THEN
M = 0
N = N+1

END IF

Statements 165

4

Examples

Example 1: IF-THEN-ELSE :

Example 2: IF-THEN-ELSE-IF with ELSE-IF :

Example 3: Nested IF-THEN-ELSE :

IF (L) THEN
N=N+1
CALL CALC

ELSE
K=K+1
CALL DISP

END IF

IF (C .EQ. 'a') THEN
NA=NA+1
CALL APPEND

ELSE IF (C .EQ. 'b') THEN
NB=NB+1
CALL BEFORE

ELSE IF (C .EQ. 'c') THEN
NC=NC+1
CALL CENTER

END IF

IF (PRESSURE .GT 1000.0) THEN
IF (N .LT. 0.0) THEN

X = 0.0
Y = 0.0

ELSE
Z = 0.0

END IF
ELSE IF (TEMPERATURE .GT. 547.0) THEN

Z = 1.0
ELSE

X = 1.0
Y = 1.0

END IF

 166 FORTRAN 77 Reference Manual

4

4.41 IF (Logical)
The logical IF statement executes one single statement, or does not execute it,
depending on the value of a logical expression.

Syntax

Description

The logical IF statement evaluates a logical expression and executes the
specified statement if the value of the logical expression is true. The specified
statement is not executed if the value of the logical expression is false, and
execution continues as though a CONTINUE statement had been executed.

st can be any executable statement, except a DO block, IF , ELSE IF, ELSE,
END IF, END, or another logical IF statement.

Example

IF (e) st

e Logical expression

st Executable statement

IF (VALUE .LE. ATAD) CALL PUNT ! Note that there is no THEN.
IF (TALLY .GE. 1000) RETURN

Statements 167

4

4.42 IMPLICIT

The IMPLICIT statement confirms or changes the default type of names.

Syntax

type is one of the following permitted types:

Description

The different uses for implicit typing and no implicit typing are described here.

Implicit Typing

The IMPLICIT statement can also indicate that no implicit typing rules apply
in a program unit.

IMPLICIT type (a [, a] …) [, type (a [, a] …)]

or:

IMPLICIT NONE

or:

IMPLICIT UNDEFINED(A-Z) ◆

BYTE ◆

CHARACTER
CHARACTER*n
CHARACTER*(*)
COMPLEX
COMPLEX*8◆

COMPLEX*16◆

COMPLEX*32 ◆ (SPARC only)
DOUBLE COMPLEX◆

DOUBLE PRECISION

INTEGER
INTEGER*2 ◆

INTEGER*4 ◆

INTEGER*8 ◆

LOGICAL
LOGICAL*1 ◆

LOGICAL*2 ◆

LOGICAL*4 ◆

LOGICAL*8 ◆

REAL
REAL*4 ◆

REAL*8 ◆

REAL*16 ◆ (SPARC only)
AUTOMATIC◆

STATIC ◆

n must be greater than 0.

a is either a single letter or a range of single letters in alphabetical order. A range of
letters can be specified by the first and last letters of the range, separated by a minus
sign.

 168 FORTRAN 77 Reference Manual

4

An IMPLICIT statement specifies a type and size for all user-defined names
that begin with any letter, either a single letter or in a range of letters,
appearing in the specification.

An IMPLICIT statement does not change the type of the intrinsic functions.

An IMPLICIT statement applies only to the program unit that contains it.

A program unit can contain more than one IMPLICIT statement.

IMPLICIT types for particular user names are overridden by a type statement.

No Implicit Typing

The second form of IMPLICIT specifies that no implicit typing should be done
for user-defined names, and all user-defined names shall have their types
declared explicitly.

If either IMPLICIT NONE or IMPLICIT UNDEFINED (A-Z) is specified, there
cannot be any other IMPLICIT statement in the program unit.

Restrictions

IMPLICIT statements must precede all other specification statements.

The same letter can appear more than once as a single letter, or in a range of
letters in all IMPLICIT statements of a program unit. ♦

The FORTRAN 77 Standard restricts this usage to only once. For f77 , if a letter
is used twice, each usage is declared in order. See Example 4.

Examples

Example 1: IMPLICIT : everything is integer:

IMPLICIT INTEGER (A-Z)
X = 3
K = 1
STRING = 0

Statements 169

4

Example 2: Complex if it starts with U, V, or W; character if it starts with C or S:

Example 3: All items must be declared:

In the above example, once IMPLICIT NONE is specified in the beginning. All
the variables must be declared explicitly.

Example 4: A letter used twice: ♦

In the above example, D through Z implies INTEGER, and A through C implies
REAL.

IMPLICIT COMPLEX (U,V,W), CHARACTER*4 (C,S)
U1 = (1.0, 3.0)
STRING = 'abcd'
I = 0
X = 0.0

IMPLICIT NONE
CHARACTER STR*8
INTEGER N
REAL Y
N = 100
Y = 1.0E5
STR = 'Length'

IMPLICIT INTEGER (A-Z)
IMPLICIT REAL (A-C)
C = 1.5E8
D = 9

 170 FORTRAN 77 Reference Manual

4

4.43 INCLUDE

The INCLUDE ♦ statement inserts a file into the source program.

Syntax

Description

The contents of the named file replace the INCLUDE statement.

Search Path

If the name referred to by the INCLUDE statement begins with the character / ,
then it is taken by f77 to mean the absolute path name of the INCLUDE file.
Otherwise, f77 looks for the file in the following directories, in this order:

1. The directory that contains the source file with the INCLUDE statement

2. The directories that are named in the -I loc options

3. The current directory in which the f77 command was issued

4. The directories in the default list. This is different in Solaris 1.x and 2.x.

The default list varies between Solaris 1.x and 2.x.

For Solaris 2.x, if you installed into the standard directory, the default list is:

/opt/SUNWspro/SC4.0/include/f77 /usr/include

If you installed into nonstandard directory / mydir/ , then it is:

/ mydir/SUNWspro/SC4.0/include/f77 /usr/include

INCLUDE ' file'

or:

INCLUDE "file"

file Name of the file to be inserted

Statements 171

4

For Solaris 1.x, if you installed in the standard directory, then the default list
is:

/usr/lang/SC4.0/include/f77 /usr/include

If you installed into nonstandard directory / mydir/ , then it is:

/ mydir/SC4.0/include/f77 /usr/include

The release number, SC4.0 , varies with the release of the set of compilers.

These INCLUDE statements can be nested ten deep.

Preprocessor #include

The paths and order searched for the INCLUDE statement are not the same as
those searched for the preprocessor #include directive, described under -I in
the FORTRAN 77 4.0 User’s Guide. Files included by the preprocessor
#include directive can contain #defines and the like; files included with
the compiler INCLUDE statement must contain only FORTRAN 77 statements.

VMS Logical File Names in the INCLUDE Statement

f77 interprets VMS logical file names on the INCLUDE statement if:

• The -xl[d] compiler option is set.

• The environment variable LOGICALNAMEMAPPING is there to define the
mapping between the logical names and the UNIX path name.

f77 uses the following rules for the interpretation:
• The environment variable should be set to a string with the syntax:

where each lname is a logical name and each path1, path2, and so forth is
the path name of a directory (without a trailing /).

• All blanks are ignored when parsing this string. It strips any trailing
/[no] list from the file name in the INCLUDE statement.

• Logical names in a file name are delimited by the first : in the VMS file
name, so f77 converts file names of the lname1: file form to the path1/ file
form.

"lname1=path1; lname2=path2; … "

 172 FORTRAN 77 Reference Manual

4

• For logical names, uppercase and lowercase are significant. If a logical
name is encountered on the INCLUDE statement which is not specified in
the LOGICALNAMEMAPPING, the file name is used, unchanged.

Examples

Example 1: INCLUDE, simple case:

The above line is replaced by the contents of the file stuff .

Example 2: INCLUDE, search paths:

For the following conditions:

• Your source file has the line:

• Your current working directory is /usr/ftn .
• Your source file is /usr/ftn/projA/myprg.f .

In this example, f77 seeks const.h in these directories, in the order shown.

For Solaris 2.x, If you installed into the standard directory, then f77 searches
these directories:

• /usr/ftn/projA/ver1
• /usr/ftn/ver1
• /opt/SUNWspro/SC4.0/include/f77/ver1
• /usr/include

If you installed into nonstandard directory /mydir, it searches these directories:

• /usr/ftn/projA/ver1
• /usr/ftn/ver1
• /mydir/SUNWspro/SC4.0/include/f77/ver1
• usr/include

INCLUDE 'stuff'

INCLUDE 'ver1/const.h'

Statements 173

4

For Solaris 1.x, if you installed into the standard directory, then f77 searches
these directories:

• /usr/ftn/projA/ver1
• /usr/ftn/ver1
• /usr/lang/SC4.0/include/f77/ver1
• /usr/include

If you installed into nonstandard directory /mydir/, it searches these directories:

• /usr/ftn/projA/ver1
• /usr/ftn/ver1
• / mydir/SC4.0/include/f77/ver1
• /usr/include

4.44 INQUIRE

The INQUIRE statement returns information about a unit or file.

Syntax

An inquire by unit has the general form:

An inquire by file has the general form:

The INQUIRE slist can include one or more of the following, in any order:

• ERR = s
• EXIST = ex
• OPENED = od
• NAMED = nmd
• ACCESS = acc

INQUIRE([UNIT=] u, slist)

INQUIRE(FILE= fn, slist)

fn Name of the file being queried

u Unit of the file being queried

slist Specifier list

 174 FORTRAN 77 Reference Manual

4

• SEQUENTIAL = seq
• DIRECT = dir
• FORM = fm
• FORMATTED = fmt
• UNFORMATTED = unf
• NAME = fn
• BLANK = blnk
• IOSTAT = ios
• NUMBER = num
• RECL = rcl
• NEXTREC = nr

Description

You can determine such things about a file as whether it exists, is opened, or is
connected for sequential I/O. That is, files have such attributes as name,
existence (or nonexistence), and the ability to be connected in certain ways
(FORMATTED, UNFORMATTED, SEQUENTIAL, or DIRECT).

You can inquire either by unit or by file, but not by both in the same INQUIRE
statement.

In this system environment, the only way to discover what permissions you
have for a file is to use the ACCESS(3F) function. The INQUIRE statement does
not determine permissions.

The specifiers for INQUIRE are:

• FILE = fn—n is a character expression or * with the name of the file.
Trailing blanks in the file name are ignored. If the file name is all blanks,
that means the current directory. The file need not be connected to a unit in
the current program.

• UNIT = u—u is an integer expression or * with the value of the unit.
Exactly one of FILE or UNIT must be used.

• IOSTAT = ios—ios is as in the OPEN statement.

• ERR = s—s is a statement label of a statement to branch to if an error
occurs during the execution of the INQUIRE statement.

• EXIST = ex—ex is a logical variable that is set to .TRUE. if the file or unit
exists, and .FALSE. otherwise.

Statements 175

4

• OPENED = od—od is a logical variable that is set to .TRUE. if the file is
connected to a unit or the unit is connected to a file, and .FALSE.
otherwise.

• NUMBER = num—num is an integer variable that is assigned the number of
the unit connected to the file, if any. If no file is connected, the variable is
unchanged.

• NAMED = nmd—nmd is a logical variable that is assigned .TRUE. if the file
has a name, .FALSE. otherwise.

• NAME = fn—fn is a character variable that is assigned the name of the file
connected to the unit. If you do an inquire-by-unit, the name parameter is
undefined, unless both the values of the OPENED and NAMED variables are
both true. If you do an inquire by file, the name parameter is returned, even
though the FORTRAN 77 Standard leaves it undefined.

• ACCESS = acc—acc is a character variable that is assigned the value
'SEQUENTIAL' if the connection is for sequential I/O and 'DIRECT' if the
connection is for direct I/O. The value is undefined if there is no connection.

• SEQUENTIAL = seq—seq is a character variable that is assigned the value
'YES' if the file could be connected for sequential I/O, 'NO' if the file
could not be connected for sequential I/O, and 'UNKNOWN' if the system
can’t tell.

• DIRECT = dir—dir is a character variable that is assigned the value 'YES'
if the file could be connected for direct I/O, 'NO' if the file could not be
connected for direct I/O, and 'UNKNOWN' if the system can’t tell.

• FORM = fm—fm is a character variable which is assigned the value
'FORMATTED' if the file is connected for formatted I/O and
'UNFORMATTED' if the file is connected for unformatted I/O.

• FORMATTED = fmt—fmt is a character variable that is assigned the value
'YES' if the file could be connected for formatted I/O, 'NO' if the file
could not be connected for formatted I/O, and 'UNKNOWN' if the system
cannot tell.

• UNFORMATTED =unf—unf is a character variable that is assigned the value
'YES' if the file could be connected for unformatted I/O, 'NO' if the file
could not be connected for unformatted I/O, and 'UNKNOWN' if the system
cannot tell.

 176 FORTRAN 77 Reference Manual

4

• RECL = rcl—rcl is an integer variable that is assigned the record length of
the records in the file if the file is connected for direct access. f77 does not
adjust the rcl returned by INQUIRE. The OPEN statement does such an
adjustment if the -xl[d] option is set. For an explanation of -xl[d] , see
the section, “Details of Features That Require -xl[d]” on page 437.

• NEXTREC = nr— nr is an integer variable that is assigned one more than
the number of the last record read from a file connected for direct access.

• BLANK = blnk—blnk is a character variable that is assigned the value
'NULL' if null blank control is in effect for the file connected for formatted
I/O, and 'ZERO' if blanks are being converted to zeros and the file is
connected for formatted I/O.

Example: An OPEN statement in which declarations are omitted:

For f77, this statement opens the console for formatted sequential I/O. An
INQUIRE for either unit 1 or the file, /dev/console , reveals that the file:

• Exists
• Is connected to unit 1
• Has the name /dev/console
• Is opened for sequential I/O
• Could be connected for sequential I/O
• Cannot be connected for direct I/O, that is cannot seek
• Is connected for formatted I/O
• Can be connected for formatted I/O
• Cannot be connected for unformatted I/O, that is, cannot seek
• Has neither a record length nor a next record number
• Is ignoring blanks in numeric fields

OPEN(1, FILE='/dev/console')

Statements 177

4

The following table summarizes the INQUIRE options:

Table 4-2 INQUIRE Options Summary

Form: SPECIFIER = Variable

SPECIFIER Value of Variable Data Type of Variable

ACCESS 'DIRECT'
'SEQUENTIAL'

CHARACTER

BLANK 'NULL','ZERO' CHARACTER

The asterisk (*)
indicates the returned
value is undefined for
inquire-by-unit in the
FORTRAN 77 Standard,
but is defined in f77 .

DIRECT * 'YES'
'NO'
'UNKNOWN'

CHARACTER

ERR Statement number INTEGER

EXIST .TRUE., .FALSE. LOGICAL

FORM 'FORMATTED'
'UNFORMATTED'

CHARACTER

FORMATTED * 'YES'
'NO'
'UNKNOWN'

CHARACTER

IOSTAT Error number INTEGER

The † indicates the
returned value is
undefined for inquire-by-
file in the FORTRAN 77
Standard, but is defined
in f77 .

NAME † Name of the file CHARACTER

NAMED † .TRUE., .FALSE. LOGICAL

NEXTREC Next record number INTEGER

NUMBER * Unit number INTEGER

OPENED .TRUE., .FALSE. LOGICAL

RECL Record length INTEGER

SEQUENTIAL * 'YES'
'NO'
'UNKNOWN'

CHARACTER

UNFORMATTED * 'YES'
'NO'
'UNKNOWN'

CHARACTER

 178 FORTRAN 77 Reference Manual

4

Also:

• If a file is scratch, then NAMED and NUMBER are not returned.

• If there is no file with the specified name, then these variables are not
returned: DIRECT, FORMATTED, NAME, NAMED, SEQUENTIAL, and
UNFORMATTED.

• If OPENED=.FALSE., then these variables are not returned: ACCESS, BLANK,
FORM, NEXTREC, and RECL.

• If no file is connected to the specified unit, then these variables are not
returned: ACCESS, BLANK, DIRECT, FORM, FORMATTED, NAME, NAMED,
NEXTREC, NUMBER, RECL, SEQUENTIAL, and UNFORMATTED.

• If ACCESS='SEQUENTIAL', then these variables are not returned: RECL and
NEXTREC.

• If FORM='UNFORMATTED’, then BLANK is not returned.

Examples

Example 1: Inquire by unit:

Example 2: Inquire by unit—omit the UNIT= :

Example 3: Inquire by file:

LOGICAL OK
INQUIRE(UNIT=3, OPENED=OK)
IF (OK) CALL GETSTD (3, STDS)

LOGICAL OK
INQUIRE(3, OPENED=OK)
IF (OK) CALL GETSTD (3, STDS)

LOGICAL THERE
INQUIRE(FILE='.profile', EXIST=THERE)
IF (THERE) CALL GETPROFILE(FC, PROFILE)

Statements 179

4

Example 4: More than one answer:

4.45 INTEGER

The INTEGER statement specifies the type to be integer for a symbolic constant,
variable, array, function, or dummy function.

Optionally, it specifies array dimensions and size and initializes with values.

Syntax

Description

If you specify the size as 2, 4, or 8, you get what you specify; if you do not
specify the size, you get the default size.

Default Size

The default size depends on –i2 and –r8 .

• If the –i2 option is on the f77 command line, then the default length is 2;
otherwise, the default is 4.

CHARACTER FN*32
LOGICAL HASNAME, OK
INQUIRE (UNIT=3, OPENED=OK, NAMED=HASNAME, NAME=FN)
IF (OK .AND. HASNAME) PRINT *, 'Filename="', FN, '"'

INTEGER [* len[,]] v [* len [/ c/]] [, v [* len [/ c/]] …

v Name of a symbolic constant, variable, array, array declarator, function, or
dummy function

len Either 2, 4, or 8, the length in bytes of the symbolic constant, variable,
array element, or function. 8 is allowed only if -dbl is on. ♦

c List of constants for the immediately preceding name

 180 FORTRAN 77 Reference Manual

4

• If the –r8 option is on the f77 command line, then the compiler allocates 8
bytes, but still performs only 4-byte arithmetic. This is done to satisfy the
requirements of the FORTRAN 77 Standard that an integer and a real datum
are allocated the same amount of storage.

• If the -dbl option is on, then the compiler allocates 8 bytes and performs 8-
byte arithmetic as well.

• If you put both –i2 and –r8 on the f77 command line, the results are
unpredictable.

Restrictions

Do not use INTEGER*8 variables or 8-byte constants or expressions when
indexing arrays, otherwise, only 4 low-order bytes are taken into account. This
action can cause unpredictable results in your program if the index value
exceeds the range for 4-byte integers.

We recommend that you not use INTEGER*8 in your code, since the program
will not compile if you omit -dbl . Instead, use INTEGER and compile with
-dbl , which automatically converts INTEGER to 64-bit integers.

Examples

Example 1: Each of these integer scalars is equivalent to the others, if there is
no –i2 :

Do not use all three lines in the same program unit—you cannot declare
anything more than once in the same program unit.

Example 2: Initialize:

INTEGER U, V
INTEGER*4 U, V
INTEGER U*4, V*4

INTEGER U / 1 /, V / 4 /, W*2 / 1 /, X*2 / 4 /

Statements 181

4

Example 3: Use any one of these lines for integer arrays; they are equivalent:

4.46 INTRINSIC

The INTRINSIC statement lists intrinsic functions that can be passed as actual
arguments.

Syntax

Description

If the name of an intrinsic function is used as an actual argument, it must
appear in an INTRINSIC statement in the same program unit.

Example: Intrinsic functions passed as actual arguments:

Restrictions

A symbolic name must not appear in both an EXTERNAL and an INTRINSIC
statement in the same program unit.

The actual argument must be a specific name. Most generic names are also
specific, but a few are not: IMAG, LOG, and LOG10.

A symbolic name can appear more than once in an INTRINSIC statement. ♦ In
the FORTRAN 77 Standard, a symbolic name can appear only once in an
INTRINSIC statement.

INTEGER U(9), V(9)
INTEGER*4 U(9), V(9)
INTEGER U*4(9), V(9)*4

INTRINSIC fun [, fun] …

fun Function name

INTRINSIC SIN, COS
X = CALC (SIN, COS)

 182 FORTRAN 77 Reference Manual

4

Because they are in-line or generic, the following intrinsics cannot be passed as
actual arguments:

4.47 LOGICAL

The LOGICAL statement specifies the type to be logical for a symbolic constant,
variable, array, function, or dummy function.

Optionally, it specifies array dimensions and initializes with values.

Table 4-3 Intrinsics That Cannot Be Passed As Actual Arguments

LOC
AND
IAND
IIAND
JIAND
OR
IOR
IIOR
IEOR
IIEOR
JIOR
JIEOR
NOT
INOT
JNOT
XOR
LSHIFT
RSHIFT
INT
IINT
JINT
IQINT

IIQINT
JIQINT
IFIX
IIFIX
JIFIX
IDINT
IIDINT
JIDINT
FLOAT
FLOATI
FLOATJ
DFLOAT
DFLOTI
DFLOTJ
SNGL
SNGLQ
REAL
DREAL
DBLE
DBLEQ
QEXT

QEXTD
QFLOAT
CMPLX
DCMPLX
ICHAR
IACHAR
ACHAR
CHAR
MAX
MAX0
AMAX0
AIMAX0
AJMAX0
IMAX0
JMAX0
MAX1
AMAX1
DMAX1
IMAX1
JMAX1
QMAX1

MIN
MIN0
AMIN0
AIMIN0
AJMIN0
IMIN0
JMIN0
MIN1
AMIN1
DMIN1
IMIN1
JMIN1
QMIN1
IMAG
EPBASE
EPEMAX
EPEMIN
EPHUGE
EPMRSP
EPPREC
EPTINY

LOG
LOG10
QREAL
QCMPLX
SIZEOF

Statements 183

4

Syntax

Description

If you specify the size as 1, 2, or 4, then you get what you specify; but if you do
not specify the size, you get the default size.

Default Size

The default size depends on –i2 and –r8 :

• If the –i2 option is on the f77 command line, then the default length is 2;
otherwise, the default is 4.

• If the –r8 or -dbl option is on the f77 command line, then the compiler
allocates 8 bytes. If -dbl is specified, 8-byte arithmetic is done, otherwise
only 4-byte arithmetic is performed. This is to satisfy the requirements of the
FORTRAN 77 Standard that an integer and a real datum are allocated the
same amount of storage.

• If you put both –i2 and –r8 on the f77 command line, the results are
unpredictable.

Examples

Example 1: Each of these statements is equivalent to the others, if there is no
-i2 :

LOGICAL [* len[,]] v[* len [/ c/]] [, v [* len [/ c/]] …

v Name of a symbolic constant, variable, array, array declarator, function, or
dummy function

len Either 1, 2, 4, or 8, the length in bytes of the symbolic constant, variable,
array element, or function. 8 is allowed only if -dbl is on. ♦

c List of constants for the immediately preceding name

LOGICAL U, V
LOGICAL*4 U, V
LOGICAL U*4, V*4

 184 FORTRAN 77 Reference Manual

4

Do not use all three statements in the same program unit—you cannot declare
anything more than once in the same program unit.

Example 2: Initialize:

4.48 MAP

The MAP♦ declaration defines alternate groups of fields in a union.

Syntax

Description

Each field declaration can be one of the following:

• Type declaration, which can include initial values

• Substructure—either another structure declaration, or a record that has been
previously defined

• Union declaration—see Section 4.70, “UNION and MAP, ” for more details

LOGICAL U /.false./, V /0/, W*4 /.true./, X*4 /'z'/

MAP
field-declaration

…
[field-declaration]

END MAP

Statements 185

4

Example

Example: MAP:

4.49 NAMELIST

The NAMELIST♦ statement defines a list of variables or array names, and
associates it with a unique group name.

Syntax

Description

The NAMELIST statement contains a group name and other items.

STRUCTURE /STUDENT/
CHARACTER*32 NAME
INTEGER*2 CLASS
UNION

MAP
CHARACTER*16 MAJOR

END MAP
MAP

INTEGER*2 CREDITS
CHARACTER*8 GRAD_DATE

END MAP
END UNION

END STRUCTURE

NAMELIST / grname / namelist [[,] / grname / namelist] …

grname Symbolic name of the group

namelist List of variables and arrays

 186 FORTRAN 77 Reference Manual

4

Group Name

The group name is used in the namelist-directed I/O statement to identify the
list of variables or arrays that are to be read or written. This name is used by
namelist-directed I/O statements instead of an input/output list. The group
name must be unique, and identifies a list whose items can be read or written.

A group of variables can be defined through several NAMELIST statements
with the same group name. Together, these definitions are taken as defining
one NAMELIST group.

Namelist Items

The namelist items can be of any data type. The items in the namelist can be
variables or arrays, and can appear in more than one namelist. Only the items
specified in the namelist can be read or written in namelist-directed I/O, but it
is not necessary to specify data in the input record for every item of the
namelist.

The order of the items in the namelist controls the order in which the values
are written in namelist-directed output. The items in the input record can be in
any order.

Restrictions

Input data can assign values to the elements of arrays or to substrings of
strings that appear in a namelist.

The following constructs cannot appear in a NAMELIST statement:

• Constants (parameters)
• Array elements
• Records and record fields
• Character substrings
• Dummy assumed-size arrays

See Chapter 5, “Input and Output,” for more details on namelist.

Statements 187

4

Example

Example: The NAMELIST statement:

In this example, the group CASE has three variables: SAMPLE, NEW, and DELTA.

4.50 OPEN

The OPEN statement connects an existing external file to a unit, or creates a file
and connects it to a unit, or changes some specifiers of the connection.

Syntax

Description

For tape, it is more reliable to use the TOPEN() routines. The OPEN statement
determines the type of file named, whether the connection specified is legal for
the file type (for instance, DIRECT access is illegal for tape and tty devices),
and allocates buffers for the connection if the file is on tape or if the
subparameter FILEOPT='BUFFER=n' is specified. Existing files are never
truncated on opening. The options can be specified in any order.

CHARACTER*16 SAMPLE
LOGICAL*4 NEW
REAL*4 DELTA
NAMELIST /CASE/ SAMPLE, NEW, DELTA

OPEN(KEYWORD1=value1, KEYWORD2=value2, …)

KEYWORDn A valid keyword specifier, as listed below

Table 4-4 OPEN Keyword Specifier Summary

Standard Form Alternate Form

[UNIT=] u

FILE = fin NAME = fin

ACCESS = acc

 188 FORTRAN 77 Reference Manual

4

Details of the OPEN keyword specifier are listed in the following table.

BLANK = blnk

ERR = s

FORM = fm

IOSTAT = ios

RECL = rl RECORDSIZE = rl

STATUS = sta TYPE = sta

FILEOPT = fopt ♦

READONLY♦

ACTION = act ♦

Table 4-5 OPEN Keyword Specifier Details

[UNIT=] u

u is an integer expression or an asterisk (*) that specifies the unit number. u is required. If u is first in the parameter
list, then UNIT= can be omitted.

FILE= fin

fin is a character expression or * naming the file to open. An OPEN statement need not specify a file name. If the file
name is not specified, a default name is created.

Reopen—If you open a unit that is already open without specifying a file name (or with the previous file name),
FORTRAN 77 thinks you are reopening the file to change parameters. The file position is not changed. The only
parameters you are allowed to change are BLANK (NULL or ZERO) and FORM (FORMATTED or PRINT). To change any
other parameters, you must close, then reopen the file.

Switch Files—If you open a unit that is already open, but you specify a different file name, it is as if you closed
with the old file name before the open.

Switch Units—If you open a file that is already open, but you specify a different unit, that is an error. This error is
not detected by the ERR= option, however, and the program does not terminate abnormally.

Scratch—If a file is opened with STATUS='SCRATCH', a temporary file is created and opened. See STATUS=sta.

Table 4-4 OPEN Keyword Specifier Summary (Continued)

Standard Form Alternate Form

Statements 189

4

ACCESS=acc

The ACCESS=acc clause is optional. acc is a character expression. Possible values are: APPEND, DIRECT, or
SEQUENTIAL. The default is SEQUENTIAL.

If ACCESS='APPEND': SEQUENTIAL and FILEOPT='EOF ' are assumed. This is for opening a file to append records
to an existing sequential-access file. Only WRITE operations are allowed. This is an extension. ♦

If ACCESS='DIRECT': RECL must also be given, since all I/O transfers are done in multiples of fixed-size records.

Only directly accessible files are allowed; thus, tty, pipes, and magnetic tape are not allowed. If you build a file as
sequential, then you cannot access it as direct.

If FORM is not specified, unformatted transfer is assumed.

If FORM='UNFORMATTED', the size of each transfer depends upon the data transferred.

If ACCESS='SEQUENTIAL', RECL is ignored. ♦ The FORTRAN 77 Standard prohibits RECL for sequential access.

No padding of records is done.

If you build a file as direct, then you cannot access it as sequential.

Files do not have to be randomly accessible, in the sense that tty, pipes, and tapes can be used. For tapes, we
recommend the TOPEN() routines because they are more reliable.

If FORM is not specified, formatted transfer is assumed.

If FORM='FORMATTED', each record is terminated with a newline (\n) character; that is, each record actually has one
extra character.

If FORM='PRINT', the file acts like a FORM='FORMATTED' file, except for interpretation of the column-1 characters on
the output (blank = single space, 0 = double space, 1 = form feed, and + = no advance).

If FORM='UNFORMATTED', each record is preceded and terminated with an INTEGER*4 count, making each record
8 characters longer than normal. This convention is not shared with other languages, so it is useful only for
communicating between FORTRAN 77 programs.

FORM=fm

The FORM=fm clause is optional. fm is a character expression. Possible values are 'FORMATTED', 'UNFORMATTED', or
'PRINT'. ♦ The default is 'FORMATTED'.

This option interacts with ACCESS.

'PRINT' makes it a print file. See Chapter 5, “Input and Output,” for details.

Table 4-5 OPEN Keyword Specifier Details (Continued)

 190 FORTRAN 77 Reference Manual

4

RECL=rl

The RECL=rl clause is required if ACCESS='DIRECT' and ignored otherwise.

rl is an integer expression for the length in characters of each record of a file. rl must be positive.

If the record length is unknown, you can use RECL=1; see “Direct Access I/O” on page 261.

If -xl[d] is not set, rl is number of characters, and record length is rl.

If -xl[d] is set, rl is number of words, and record length is rl*4. ♦

There are more details in the ACCESS='SEQUENTIAL' section, above.

Each WRITE defines one record and each READ reads one record (unread characters are flushed).

The default buffer size for tape is 64K characters. For tapes, we recommend the TOPEN() routines because they are
more reliable.

ERR=s

The ERR=s clause is optional. s is a statement label of a statement to branch to if an error occurs during execution
of the OPEN statement.

IOSTAT=ios

The IOSTAT=ios clause is optional. ios is an integer variable that receives the error status from an OPEN. After the
execution of the OPEN, if no error condition exists, then ios is zero; otherwise, it is some positive number.

If you want to avoid aborting the program when an error occurs on an OPEN, include ERR=s or IOSTAT=ios.

BLANK=blnk

The BLANK=blnk clause is optional, and is for formatted input only. The blnk is a character expression that indicates
how blanks are treated. Possible values are 'ZERO' and 'NULL'.

'ZERO'—Blanks are treated as zeroes.

'NULL'—Blanks are ignored during numeric conversion. This is the default.

STATUS=sta

The STATUS=sta clause is optional. sta is a character expression. Possible values are: 'OLD' , 'NEW' , 'UNKNOWN', or
'SCRATCH' .

'OLD' — The file already exists (nonexistence is an error). For example: STATUS='OLD' .

'NEW' — The file doesn't exist (existence is an error). If 'FILE= name' is not specified, then a file named 'fort. n' is
opened, where n is the specified logical unit.

'UNKNOWN' — Existence is unknown. This is the default.

Table 4-5 OPEN Keyword Specifier Details (Continued)

Statements 191

4

STATUS=sta (Continued)

'SCRATCH' — For a file opened with STATUS='SCRATCH', a temporary file with a name of the form
tmp.F AAAxnnnnn is opened. Any other STATUS specifier without an associated file name results in opening a file
named 'fort. n', where n is the specified logical unit number. By default, a scratch file is deleted when closed or
during normal termination. If the program aborts, then the file may not be deleted. To prevent deletion, CLOSE
with STATUS='KEEP'.

The FORTRAN 77 Standard prohibits opening a named file as scratch: if OPEN has a FILE =name option, then it
cannot have a STATUS='SCRATCH' option. This FORTRAN 77 extends the standard by allowing opening named
files as scratch. ♦ Such files are normally deleted when closed or at normal termination.

TMPDIR: FORTRAN 77 programs normally put scratch files in the current working directory. If the TMPDIR
environment variable is set to a writable directory, then the program puts scratch files there. ♦

FILEOPT=fopt ♦

The FILEOPT=fopt clause is optional. fopt is a character expression. Possible values are 'NOPAD', 'BUFFER=n', and
'EOF'.

'NOPAD'—Do not extend records with blanks if you read past the end-of-record (formatted input only). That is, a
short record causes an abort with an error message, rather than just filling with trailing blanks and continuing.

'BUFFER=n'— This suboption is for disks. For tapes, we recommend the TOPEN() routines because they are more
reliable. It sets the size in bytes of the I/O buffer to use. For writes, larger buffers yield faster I/O. For good
performance, make the buffer a multiple of the largest record size. This size can be larger than the actual physical
memory, and probably the best performance is obtained by making the record size equal to the entire file size.
Larger buffer sizes can cause extra paging.

'EOF'—Opens a file at end-of-file rather than at the beginning (useful for appending data to file), for example,
FILEOPT='EOF' . Unlike ACCESS='APPEND', in this case, both READ and BACKSPACE are allowed.

READONLY♦

The file is opened read-only.

ACTION = act

This specifier denotes file permissions. Possible values are: READ, WRITE, and READWRITE.

If act is READ, it specifies that the file is opened read-only.

If act is WRITE, it specifies that the file is opened write-only. You cannot execute a BACKSPACE statement on a
write-only file.

If act is READWRITE, it specifies that the file is opened with both read and write permissions.

Table 4-5 OPEN Keyword Specifier Details (Continued)

 192 FORTRAN 77 Reference Manual

4

Examples

Here are six examples.

Example 1: Open a file and connect it to unit 8—either of the following forms
of the OPEN statement opens the file, projectA/data.test , and connects it
to FORTRAN 77 unit 8:

In the above example, these properties are established by default: sequential
access, formatted file, and (unwisely) no allowance for error during file open.

Example 2: Explicitly specify properties:

Example 3: Either of these opens file, fort.8 , and connects it to unit 8:

In the above example, you get sequential access, formatted file, and no
allowance for error during file open. If the file, fort.8 does not exist before
execution, it is created. The file remains after termination.

Example 4: Allowing for open errors:

The above statement branches to 99 if an error occurs during OPEN.

Example 5: Allowing for variable-length records;

OPEN(UNIT=8, FILE='projectA/data.test')
OPEN(8, FILE=’projectA/data.test’)

OPEN(UNIT=8, FILE='projectA/data.test',
& ACCESS='SEQUENTIAL', FORM='FORMATTED')

OPEN(UNIT=8)
OPEN(8)

OPEN(UNIT=8, FILE='projectA/data.test', ERR=99)

OPEN(1, ACCESS='DIRECT', recl=1)

Statements 193

4

For more information on variable-length records, see “Direct Access I/O” on
page 261.

Example 6: Scratch file:

This statement opens a temporary file with a name, such as tmp.FAAAa003zU .
The file is usually in the current working directory, or in TMPDIR if that
environment variable is set.

4.51 OPTIONS

The OPTIONS♦ statement overrides compiler command-line options.

Syntax

Description

The following table shows the OPTIONS statement qualifiers:

OPEN(1, STATUS='SCRATCH')

OPTIONS / qualifier [/ qualifier …]

Table 4-6 OPTIONS Statement Qualifiers

Qualifier Action Taken

/[NO]G_FLOATING None (not implemented)

/[NO]I4 Enables/Disables the -i2 option

/[NO]F77 None (not implemented)

/CHECK=ALL Enables the -C option

/CHECK=[NO]OVERFLOW None (not implemented)

/CHECK=[NO]BOUNDS Disables/Enables the -C option

/CHECK=[NO]UNDERFLOW None (not implemented)

 194 FORTRAN 77 Reference Manual

4

Restrictions

The OPTIONS statement must be the first statement in a program unit; it must
be before the BLOCK DATA, FUNCTION, PROGRAM, and SUBROUTINE
statements.

Options set by the OPTIONS statement override those of the command line.

Options set by the OPTIONS statement endure for that program unit only.

A qualifier can be abbreviated to four or more characters.

Uppercase or lowercase is not significant.

Example

For the following source, integer variables declared with no explicit size
occupy 4 bytes rather than 2, with or without the –i2 option on the command
line. This rule does not change the size of integer constants, only variables.

By way of contrast, if you use /NOI4 , then all integer variables declared with
no explicit size occupy 2 bytes rather than 4, with or without the –i2 option on
the command line. However, integer constants occupy 2 bytes with –i2 , and 4
bytes otherwise.

/CHECK=NONE Disables the -C option

/NOCHECK Disables the -C option

/[NO]EXTEND_SOURCE Disables/enables the -e option

OPTIONS /I4
PROGRAM FFT
…
END

Table 4-6 OPTIONS Statement Qualifiers (Continued)

Qualifier Action Taken

Statements 195

4

4.52 PARAMETER

The PARAMETER statement assigns a symbolic name to a constant.

Syntax

An alternate syntax is allowed, if the –xl flag is set: ♦

In this alternate form, the type of the constant expression determines the type
of the name; no conversion is done.

Description

e can be of any type and the type of symbolic name and the corresponding
expression must match.

A symbolic name can be used to represent the real part, imaginary part, or
both parts of a complex constant.

A constant expression is made up of explicit constants and parameters and the
FORTRAN 77 operators. See Section 3.6, “Constant Expressions,” for more
details.

No structured records or record fields are allowed in a constant expression.

Exponentiation to a floating-point power is not allowed, and a warning is
issued.

If the type of the data expression does not match the type of the symbolic
name, then the type of the name must be specified by a type statement or
IMPLICIT statement prior to its first appearance in a PARAMETER statement,
otherwise conversion will be performed.

PARAMETER (p= e [, p=e] …)

p Symbolic name

e Constant expression

PARAMETERp=e [, p=e] …

 196 FORTRAN 77 Reference Manual

4

If a CHARACTER statement explicitly specifies the length for a symbolic name,
then the constant in the PARAMETER statement can be no longer than that
length. Longer constants are truncated, and a warning is issued. The
CHARACTER statement must appear before the PARAMETER statement.

If a CHARACTER statement uses *(*) to specify the length for a symbolic
name, then the data in the PARAMETER statement are used to determine the
length of the symbolic constant. The CHARACTER statement must appear before
the PARAMETER statement.

Any symbolic name of a constant that appears in an expression e must have
been defined previously in the same or a different PARAMETER statement in the
same program unit.

Restrictions

A symbolic constant must not be defined more than once in a program unit.

If a symbolic name appears in a PARAMETER statement, then it cannot
represent anything else in that program unit.

A symbolic name cannot be used in a constant format specification, but it can
be used in a variable format specification.

If you pass a parameter as an argument, and the subprogram tries to change it,
you may get a runtime error.

Examples

Example 1: Some real, character, and logical parameters:

CHARACTER HEADING*10
LOGICAL T
PARAMETER (EPSILON=1.0E-6, PI=3.141593,

& HEADING=’IO Error #’,
& T=.TRUE.)

…

Statements 197

4

Example 2: Let the compiler count the characters:

Example 3: The alternate syntax, if the –xl flag is set:

The above statement is treated as:

An ambiguous statement that could be interpreted as either a PARAMETER
statement or an assignment statement is always taken to be the former, as long
as either the –xl or –xld option is set.

Example: An ambiguous statement:

With -xl , the above statement is a PARAMETER statement about the variable S.

It is not an assignment statement about the variable PARAMETERS.

CHARACTER HEADING*(*)
PARAMETER (HEADING='I/O Error Number')
…

PARAMETER FLAG1 = .TRUE.

LOGICAL FLAG1
PARAMETER (FLAG1 = .TRUE.)

PARAMETER S = .TRUE.

PARAMETER S = .TRUE.

PARAMETERS = .TRUE.

 198 FORTRAN 77 Reference Manual

4

4.53 PAUSE

The PAUSE statement suspends execution, and waits for you to type: go .

Syntax

Description

The PAUSE statement suspends program execution temporarily, and waits for
acknowledgment. On acknowledgment, execution continues.

If the argument string is present, it is displayed on the screen (written to
stdout), followed by the following message:

PAUSE [str]

str String of not more than 5 digits or a character constant

PAUSE. To resume execution, type: go
Any other input will terminate the program.

Statements 199

4

After you type: go , execution continues as if a CONTINUE statement is
executed. See this example:

If stdin is not a tty I/O device, PAUSE displays a message like this:

where pid is the process ID.

Example: stdin not a tty I/O device:

For the above example, type the following command line at a shell prompt in
some other window. The window displaying the message cannot accept
command input.

demo% cat p.f
PRINT *, "Start"
PAUSE 1
PRINT *, "Ok"
END

demo% f77 p.f
p.f:
 MAIN:
demo% a.out
Start
PAUSE: 1
To resume execution, type: go
Any other input will terminate the program.
go
Execution resumed after PAUSE.
Ok
demo%

PAUSE: To resume execution, type: kill -15 pid

demo% a.out < mydatafile
PAUSE: To resume execution, type: kill -15 20537
demo%

demo% kill -15 20537

 200 FORTRAN 77 Reference Manual

4

4.54 POINTER

The POINTER♦ statement establishes pairs of variables and pointers.

Syntax

Description

Each pointer contains the address of its paired variable.

A pointer-based variable is a variable paired with a pointer in a POINTER
statement. A pointer-based variable is usually called just a based variable. The
pointer is the integer variable that contains the address.

Usage

Normal use of pointer-based variables involves the following steps. The first
two steps can be in either order.

1. Define the pairing of the pointer-based variable and the pointer in a
POINTER statement.

2. Define the type of the pointer-based variable.
The pointer itself is an integer type, but in general, it is safer if you not list it
in an INTEGER statement.

3. Set the pointer to the address of an area of memory that has the
appropriate size and type.
You do not normally do anything else with the pointer explicitly.

4. Reference the pointer-based variable.
Just use the pointer-based variable in normal FORTRAN 77 statements; the
address of that variable is always taken from its associated pointer.

POINTER (p1, v1) [, (p2, v2) …]

v1, v2 Pointer-based variables

p1, p2 Corresponding pointers

Statements 201

4

Address and Memory

No storage for the variable is allocated when a pointer-based variable is
defined, so you must provide an address of a variable of the appropriate type
and size, and assign the address to a pointer, usually with the normal
assignment statement or data statement.

There are three procedures used to manage memory with pointers:

• LOC—You can obtain the address from the intrinsic function LOC() .

• MALLOC—You can obtain both the area of memory and the address from the
function MALLOC().

• FREE—You can deallocate a region of memory previously allocated by
MALLOC() by using the subroutine FREE() .

Subroutine FREE()

The subroutine FREE() deallocates a region of memory previously allocated
by MALLOC(). The argument given to FREE() must be a pointer previously
returned by MALLOC(), but not already given to FREE() . The memory is
returned to the memory manager, making it unavailable to the programmer.

Function MALLOC()

The function MALLOC() allocates an area of memory and returns the address
of the start of that area. The argument to the function is an integer specifying
the amount of memory to be allocated, in bytes. If successful, it returns a
pointer to the first item of the region; otherwise, it returns an integer 0. The
region of memory is not initialized in any way—assume it is garbage.

Optimization and Pointers

Pointers have the side effect of reducing the assumptions that the global
optimizer can make.

Compare:

• Without pointers, if you call a subroutine or function, the optimizer knows
that the call will change only variables in common or those passed as
arguments to that call.

 202 FORTRAN 77 Reference Manual

4

• With pointers, this is no longer valid, since a routine can take the address of
an argument and save it in a pointer in common for use in a subsequent call
to itself or to another routine.

Therefore, the optimizer must assume that a variable passed as an argument in
a subroutine or function call can be changed by any other call. Such an
unrestricted use of pointers would degrade optimization for the vast majority
of programs that do not use pointers.

Restrictions

The pointers are of type integer and are automatically typed that way by the
compiler. You must not type them yourself.

A pointer-based variable cannot itself be a pointer.

The pointer-based variables can be of any type, including structures.

No storage is allocated when such a pointer-based variable is defined, even if
there is a size specification in the type statement.

You cannot use a pointer-based variable as a dummy argument or in COMMON,
EQUIVALENCE, DATA, or NAMELIST statements.

The dimension expressions for pointer-based variables must be constant
expressions in main programs. In subroutines and functions, the same rules
apply for pointer-based array variables as for dummy arguments—the
expression can contain dummy arguments and variables in common. Any
variables in the expressions must be defined with an integer value at the time
the subroutine or function is called.

This implementation of POINTER follows more along the line of Cray, not
Fortran 90, although it does not follow Cray exactly.

The address cannot exceed the range of INTEGER*4. If the address expression
is not in the range (-2147483648, 2147483647), then the results are
unpredictable.

If you use an optimization level greater than -O2 , you must write your
programs with the following restrictions on the use of pointers:

• Subroutines and functions are not permitted to save the address of any of
their arguments between calls.

Statements 203

4

• A function cannot return the address of any of its arguments, although it
can return the value of a pointer argument.

• Only those variables whose addresses are explicitly taken with the LOC() or
MALLOC() functions can be referenced through a pointer.

Example: One kind of code that could cause problems if you optimize at a level
greater than -O2 :

The compiler assumes that a reference through P can change A, but not B; this
assumption could produce incorrect code.

Examples

Example 1: A simple POINTER statement:

Here, V is a pointer-based variable, and P is its associated pointer.

Example 2: Using the LOC() function to get an address:

In the above example, the CHARACTER statement allocates 12 bytes of storage
for A, but no storage for V; it merely specifies the type of V because V is a
pointer-based variable. You then assign the address of A to P, so now any use of
V refers to A by the pointer P. The program prints an E.

COMMON A, B, C
POINTER (P, V)
P = LOC(A) + 4 ! ←Possible problems if optimized
…

POINTER (P, V)

* ptr1.f: Assign an address via LOC()
POINTER (P, V)
CHARACTER A*12, V*12
DATA A / 'ABCDEFGHIJKL' /
P = LOC(A)
PRINT *, V(5:5)
END

 204 FORTRAN 77 Reference Manual

4

Example 3: Memory allocation for pointers, by MALLOC:

In the above example, you get 36 bytes of memory from MALLOC() and then,
after some other instructions, probably using that chunk of memory, tell
FREE() to return those same 36 bytes to the memory manager.

Example 4: Get the area of memory and its address:

In the above example, you obtain 12 bytes of memory from the function
MALLOC() and assign the address of that block of memory to the pointer P.

Example 5: Dynamic allocation of arrays:

POINTER (P1, X), (P2, Y), (P3, Z)
…
P1 = MALLOC (36)
…
CALL FREE (P1)
…

POINTER (P, V)
CHARACTER V*12, Z*1
P = MALLOC(12)
…
END

PROGRAM UsePointers
REAL X
POINTER (P, X)
…
READ (*,*) Nsize ! Get the size.
P = MALLOC(Nsize)! Allocate the memory.
…
CALL CALC (X, Nsize)
…
END
SUBROUTINE CALC (A, N)
REAL A(N)
… ! Use the array of whatever size.
RETURN
END

Statements 205

4

This is a slightly more realistic example. The size might well be some large
number, say, 10,000. Once that’s allocated, the subroutines perform their tasks,
not knowing that the array was dynamically allocated.

 206 FORTRAN 77 Reference Manual

4

Example 6: One way to use pointers to make a linked list in f77 :

Linked.f STRUCTURE /NodeType/
INTEGER recnum
CHARACTER*3 label
INTEGER next

END STRUCTURE
RECORD /NodeType/ r, b
POINTER (pr,r), (pb,b)
pb = malloc(12) ! Create the base record, b.
pr = pb ! Make pr point to b.
NodeNum = 1
DO WHILE (NodeNum .LE. 4) ! Initialize/create records
 IF (NodeNum .NE. 1) pr = r.next
 CALL struct_creat(pr,NodeNum)
 NodeNum = NodeNum + 1
END DO
r.next = 0
pr = pb ! Show all records.
DO WHILE (pr .NE. 0)
 PRINT *, r.recnum, " ", r.label
 pr = r.next
END DO
END
SUBROUTINE struct_creat(pr,Num)
STRUCTURE /NodeType/

INTEGER recnum
CHARACTER*3 label
INTEGER next

END STRUCTURE

RECORD /NodeType/ r
POINTER (pr,r), (pb,b)
CHARACTER v*3(4)/'aaa', 'bbb', 'ccc', 'ddd'/

r.recnum = Num ! Initialize current record.
r.label = v(Num)
pb = malloc(12) ! Create next record.
r.next = pb
RETURN
END

Statements 207

4

Remember:

• Do not optimize programs using pointers like this with -O3 , -O4, or -O5 .
• The warnings can be ignored.
• This is not the normal usage of pointers described at the start of this section.

4.55 PRINT

The PRINT statement writes from a list to stdout .

Syntax

Description

The PRINT statement accepts the following arguments.

demo% f77 -silent Linked.f
"Linked.f", line 6: Warning: local variable "b" never used
"Linked.f", line 31: Warning: local variable "b" never used
demo% a.out
 1 aaa
 2 bbb
 3 ccc
 4 ddd
demo%

PRINT f [, iolist]

PRINT grname

f Format identifier

iolist List of variables, substrings, arrays, records, …

grname Name of the namelist group

 208 FORTRAN 77 Reference Manual

4

Format Identifier

f is a format identifier and can be:

• An asterisk (*), which indicates list-directed I/O. See Section 5.6, “List-
Directed I/O,” for details.

• The label of a FORMAT statement that appears in the same program unit.

• An integer variable name that has been assigned the label of a FORMAT
statement that appears in the same program unit.

• A character expression or integer array that specifies the format string. The
integer array is nonstandard. ♦

Output List

iolist can be empty or can contain output items or implied DO lists. The output
items must be one of the following:

• Variables
• Substrings
• Arrays
• Array elements
• Record fields
• Any other expression

A simple unsubscripted array name specifies all of the elements of the array in
memory storage order, with the leftmost subscript increasing more rapidly.

Namelist-Directed PRINT

The second form of the PRINT statement is used to print the items of the
specified namelist group. Here, grname is the name of a group previously
defined by a NAMELIST statement.

Execution proceeds as follows:

1. The format, if specified, is established.

2. If the output list is not empty, data is transferred from the list to standard
output.
If a format is specified, data is edited accordingly.

Statements 209

4

3. In the second form of the PRINT statement, data is transferred from the
items of the specified namelist group to standard output.

Restrictions

Output from an exception handler is unpredictable. If you make your own
exception handler, do not do any FORTRAN 77 output from it. If you must do
some, then call abort right after the output. Doing so reduces the relative risk
of a program freeze. FORTRAN 77 I/O from an exception handler amounts to
recursive I/O. See the next point.

Recursive I/O does not work reliably. If you list a function in an I/O list, and
if that function does I/O, then during runtime, the execution may freeze, or
some other unpredictable problem may occur. This risk exists independent of
parallelization.

Example: Recursive I/O fails intermittently:

Examples

Example 1: Formatted scalars:

Example 2: List-directed array:

PRINT *, x, f(x) ! Not allowed, f() does I/O.
END
FUNCTION F(X)
PRINT *, X
RETURN
END

CHARACTER TEXT*16
PRINT 1, NODE, TEXT

1 FORMAT (I2, A16)

PRINT *, I, J, (VECTOR(I), I = 1, 5)

 210 FORTRAN 77 Reference Manual

4

Example 3: Formatted array:

Example 4: Namelist:

4.56 PROGRAM

The PROGRAM statement identifies the program unit as a main program.

Syntax

Description

For the loader, the main program is always named MAIN. The PROGRAM
statement serves only the person who reads the program.

Restrictions

The PROGRAM statement can appear only as the first statement of the main
program.

The name of the program cannot be:

• The same as that of an external procedure or common block
• MAIN (all uppercase), or a runtime error results

INTEGER VECTOR(10)
PRINT '(12 I2)', I, J, VECTOR

CHARACTER LABEL*16
REAL QUANTITY
INTEGER NODE
NAMELIST /SUMMARY/ LABEL, QUANTITY, NODE
PRINT SUMMARY

PROGRAMpgm

pgm Symbolic name of the main program

Statements 211

4

The name of the program can be the same as a local name in the main
program.♦ The FORTRAN 77 Standard does not allow this practice.

Example

Example: A PROGRAM statement:

4.57 READ

The READ statement reads data from a file or the keyboard to items in the list.
If you use this statement for tapes, we recommend the TOPEN() routines
instead, because they are more reliable.

Syntax

An alternate to the UNIT=u, REC=rn form is as follows: ♦

PROGRAM US_ECONOMY
NVARS = 2
NEQS = 2
…

READ([UNIT=] u [, [FMT=] f] [, IOSTAT= ios] [, REC= rn]
[, END= s] [, ERR= s]) iolist

READ f [, iolist]

READ([UNIT=] u, [NML=] grname [,IOSTAT= ios] [,END= s] [,ERR= s])

READ grname

READ(u ' rn …) iolist

u Unit identifier of the unit connected to the file

f Format identifier

ios I/O status specifier

rn Record number to be read

 212 FORTRAN 77 Reference Manual

4

The options can be specified in any order.

Description

The READ statement accepts the following arguments.

Unit Identifier

u is either an external unit identifier or an internal file identifier.

An external unit identifier must be one of these:

• A nonnegative integer expression
• An asterisk (*), identifying stdin , normally connected to the keyboard

If the optional characters UNIT= are omitted from the unit specifier, then u
must be the first item in the list of specifiers.

Format Identifier

f is a format identifier and can be:

• An asterisk (*), indicating list-directed I/O. See Section 5.6, “List-Directed
I/O,” for details.

• A label of a FORMAT statement that appears in the same program unit

• An integer variable name that has been assigned the label of a FORMAT
statement that appears in the same program unit

• A character expression or integer array specifying the format string. This is
called a runtime format or a variable format. The integer array is
nonstandard. ♦

If the optional characters, FMT=, are omitted from the format specifier, then f
must appear as the second argument for a formatted read; otherwise, it must
not appear at all.

s Statement label for end of file processing

iolist List of variables

grname Name of a namelist group

Statements 213

4

Unformatted data transfer from internal files and terminal files is not allowed,
hence, f must be present for such files.

List-directed data transfer from direct-access and internal files is allowed;
hence, f can be an asterisk for such files. ♦

If a file is connected for formatted I/O, unformatted data transfer is not
allowed, and vice versa.

I/O Status Specifier

ios must be an integer variable or an integer array element.

Record Number

rn must be a positive integer expression, and can be used for direct-access files
only. rn can be specified for internal files. ♦

End-of-File Specifier

s must be the label of an executable statement in the same program unit in
which the READ statement occurs.

The END=s and REC=rn specifiers can be present in the same READ statement. ♦

Error Specifier

s must be the label of an executable statement in the same program unit in
which the READ statement occurs.

Input List

iolist can be empty or can contain input items or implied DO lists. The input
items can be any of the following:

• Variables
• Substrings
• Arrays
• Array elements
• Record fields

 214 FORTRAN 77 Reference Manual

4

A simple unsubscripted array name specifies all of the elements of the array in
memory storage order, with the leftmost subscript increasing more rapidly.

Namelist-Directed READ

The third and fourth forms of the READ statement are used to read the items of
the specified namelist group, and grname is the name of the group of variables
previously defined in a NAMELIST statement.

Execution

Execution proceeds as follows:

1. The file associated with the specified unit is determined.
The format, if specified, is established. The file is positioned appropriately
prior to the data transfer.

2. If the input list is not empty, data is transferred from the file to the
corresponding items in the list.
The items are processed in order as long as the input list is not exhausted.
The next specified item is determined and the value read is transmitted to it.
Data editing in formatted READ is done according to the specified format.

3. In the third and fourth forms of namelist-directed READ, the items of the
specified namelist group are processed according to the rules of
namelist -directed input.

4. The file is repositioned appropriately after data transfer.

5. If ios is specified and no error occurred, it is set to zero.
ios is set to a positive value, if an error or end of file was encountered.

6. If s is specified and end of file was encountered, control is transferred to s.

7. If s is specified and an error occurs, control is transferred to s .

There are two forms of READ:

READ f [, iolist]

READ ([NML=] grname)

Statements 215

4

The above two forms operate the same way as the others, except that reading
from the keyboard is implied.

Execution has the following differences:

• When the input list is exhausted, the cursor is moved to the start of the line
following the input. For an empty input list, the cursor is moved to the start
of the line following the input.

• If an end-of-line, CR, or NL is reached before the input list is satisfied, input
continues from the next line.

• If an end-of-file (Control-D) is received before the input list is satisfied,
input stops, and unsatisfied items of the input list remain unchanged.

If u specifies an external unit that is not connected to a file, an implicit OPEN
operation is performed which is equivalent to opening the file with the options
in the following example:

The value of fmt is 'FORMATTED' or 'UNFORMATTED' accordingly, as the read
is formatted or unformatted.

A simple unsubscripted array name specifies all of the elements of the array in
memory storage order, with the leftmost subscript increasing more rapidly.

An attempt to read the record of a direct-access file that has not been written,
causes all items in the input list to become undefined.

The record number count starts from one.

Namelist-directed input is permitted on sequential access files only.

 OPEN(u, FILE='FORT.u', STATUS='OLD',

& ACCESS='SEQUENTIAL', FORM= fmt)

 216 FORTRAN 77 Reference Manual

4

Examples

Example 1: Formatted read, trap I/O errors, EOF, and I/O status:

Example 2: Direct, unformatted read, trap I/O errors, and I/O status:

Example 3: List-directed read from keyboard:

Example 4: Formatted read from an internal file:

Example 5: Read an entire array:

READ(1, 2, ERR=8, END=9, IOSTAT=N) X, Y
…

8 WRITE(*, *) 'I/O error # ', N, ', on 1'
STOP

9 WRITE(*, *) 'EoF on 1'
RETURN
END

…
READ(1, REC=3, IOSTAT=N, ERR=8) V
…

4 CONTINUE
RETURN

8 WRITE(*, *) 'I/O error # ', N, ', on 1'
END

READ(*, *) A, V
or

READ *, A, V

CHARACTER CA*16 / 'abcdefghijklmnop' /, L*8, R*8
READ(CA, 1) L, R

1 FORMAT(2 A8)

DIMENSION V(5)
READ(3, '(5F4.1)') V

Statements 217

4

Example 6: Namelist-directed read:

4.58 REAL

The REAL statement specifies the type of a symbolic constant, variable, array,
function, or dummy function to be real, and optionally specifies array
dimensions and size, and initializes with values.

Syntax

Description

Following are descriptions for REAL, REAL*4, REAL*8, and REAL*16 .

REAL

For a declaration such as REAL W, the variable W is usually a REAL*4 element
in memory, interpreted as a real number. For more details, see the next section,
“Default Size.”

CHARACTER SAMPLE*16
LOGICAL NEW*4
REAL DELTA*4
NAMELIST /G/ SAMPLE, NEW, DELTA
…
READ(1, G)

or
READ(UNIT=1, NML=G)

or
READ(1, NML=G)

REAL [* len[,]] v[* len [/ c/]] [, v [* len [/ c/]] …

v Name of a variable, symbolic constant, array, array declarator, function, or
dummy function

len Either 4, 8, or 16 (SPARC only), the length in bytes of the symbolic constant,
variable, array element, or function

c List of constants for the immediately preceding name

 218 FORTRAN 77 Reference Manual

4

REAL*4 ♦

For a declaration such as REAL*4 W, the variable W is always a REAL*4
element in memory, interpreted as a single-width real number.

REAL*8 ♦

For a declaration such as REAL*8 W, the variable W is always a REAL*8
element in memory, interpreted as a double-width real number.

REAL*16 ♦

(SPARC only) For a declaration such as REAL*16 W, the variable W is always an
element of type REAL*16 in memory, interpreted as a quadruple-width real.

Default Size

If you specify the size as 4, 8, or 16, you get what you specify; if you do not
specify the size, you get the default size.

The default size for a declaration such as REAL X, depends on the –r8 option:

• If –r8 or -dbl is on the f77 command line, then for declarations such as
REAL X, the compiler allocates 8 bytes, and does 8-byte arithmetic. If –r8 or
-dbl is not on the f77 command line, then the compiler allocates 4 bytes.

• If you put both –i2 and –r8 on the f77 command line, the results are
unpredictable.

Examples

Example 1: Simple real scalars—each of these statements is generally
equivalent to the others, but the first is different if you compile with -r8 :

Do not use all three statements in the same program unit.

REAL U, V
REAL*4 U, V
REAL U*4, V*4

Statements 219

4

Example 2: Initialize scalars (REAL*16 is for SPARC only):

Example 3: Specify dimensions for some real arrays:

Example 4: Initialize some arrays:

Example 5: Double and quadruple precision (REAL*16 is for SPARC only):

In the above example, D and R are both double precision; Q is quadruple
precision.

4.59 RECORD

The RECORD♦ statement defines variables to have a specified structure, or
arrays to be arrays of variables with such structures.

Syntax

REAL U/ 1.0 /, V/ 4.3 /, D*8/ 1.0 /, Q*16/ 4.5 /

REAL A(10,100), V(10)
REAL X*4(10), Y(10)*4

REAL A(10,100) / 1000 * 0.0 /, B(2,2) / 1.0, 2.0, 3.0, 4.0 /

REAL*8 R
REAL*16 Q
DOUBLE PRECISION D

RECORD /struct-name/ record-list [,/ struct-name/ record-list]…

struct-name Name of a previously declared structure

record-list List of variables, arrays, or array declarators

 220 FORTRAN 77 Reference Manual

4

Description

A structure is a template for a record. The name of the structure is included in
the STRUCTURE statement, and once a structure is thus defined and named, it
can be used in a RECORD statement.

The record is a generalization of the variable or array: where a variable or
array has a type, the record has a structure. Where all the elements of an array
must be of the same type, the fields of a record can be of different types.

The RECORD line is part of an inherently multiline group of statements, and
neither the RECORD line nor the END RECORD line has any indication of
continuation. Do not put a nonblank in column six, nor an & in column one.

Restrictions

Each record is allocated separately in memory.

Initially, records have undefined values.

Records, record fields, record arrays, and record-array elements are allowed as
arguments and dummy arguments. When you pass records as arguments, their
fields must match in type, order, and dimension. The record declarations in the
calling and called procedures must match.

Within a union declaration, the order of the map fields is not relevant.

Record fields are not allowed in COMMON statements.

Records and record fields are not allowed in DATA, EQUIVALENCE, NAMELIST,
PARAMETER, AUTOMATIC, STATIC, or SAVE statements. To initialize records
and record fields, use the STRUCTURE statement. See Section 4.66,
“STRUCTURE.”

Statements 221

4

Example

Example 1: Declare some items to be records of a specified structure:

Each of the three variables CURRENT, PRIOR, and NEXT is a record which has
the PRODUCT structure, and LINE is an array of 10 such records.

Example 2: Define some fields of records, then use them:

The above program produces the following output:

STRUCTURE /PRODUCT/
INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)
…

STRUCTURE /PRODUCT/
INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)
CURRENT.ID = 82
PRIOR.NAME = "CacheBoard"
NEXT.PRICE = 1000.00
LINE(2).MODEL = "96K"
PRINT 1, CURRENT.ID, PRIOR.NAME, NEXT.PRICE, LINE(2).MODEL

1 FORMAT(1X I5/1X A16/1X F8.2/1X A8)
END

 82
CacheBoard
 1000.00
96K

 222 FORTRAN 77 Reference Manual

4

4.60 RETURN

A RETURN statement returns control to the calling program unit.

Syntax

Description

Execution of a RETURN statement terminates the reference of a function or
subroutine.

Execution of an END statement in a function or a subroutine is equivalent to the
execution of a RETURN statement. ♦

The expression e is evaluated and converted to integer, if required. e defines
the ordinal number of the alternate return label to be used. Alternate return
labels are specified as asterisks (or ampersands) ♦ in the SUBROUTINE
statement.

If e is not specified, or the value of e is less than one or greater than the number
of asterisks or ampersands in the SUBROUTINE statement that contains the
RETURN statement, control is returned normally to the statement following the
CALL statement that invoked the subroutine.

If the value of e is between one and the number of asterisks (or ampersands) in
the SUBROUTINE statement, control is returned to the statement identified by
the eth alternate. A RETURN statement can appear only in a function
subprogram or subroutine.

RETURN [e]

e Expression of type INTEGER or REAL

Statements 223

4

Examples

Example 1: Standard return:

Example 2: Alternate return:

4.61 REWIND

REWIND positions the file associated with the specified unit to its initial point.

If you use this statement for tapes, we recommend the TOPEN() routines
instead, because they are more reliable.

CHARACTER*25 TEXT
TEXT = "Some kind of minor catastrophe"
…
CALL OOPS (TEXT)
STOP
END
SUBROUTINE OOPS (S)
CHARACTER S* 32
WRITE (*,*) S
RETURN
END

CALL RANK (N, *8, *9)
WRITE (*,*) 'OK - Normal Return'
STOP

8 WRITE (*,*) 'Minor - 1st alternate return'
STOP

9 WRITE (*,*) 'Major - 2nd alternate return'
END
SUBROUTINE RANK (N, *,*)
IF (N .EQ. 0) RETURN
IF (N .EQ. 1) RETURN 1
RETURN 2
END

 224 FORTRAN 77 Reference Manual

4

Syntax

Description

The options can be specified in any order.

Rewinding a unit not associated with any file has no effect. Likewise, REWIND
in a terminal file has no effect either.

We do not recommend using a REWIND statement on a direct-access file, as the
execution is not defined in the FORTRAN 77 Standard, and is unpredictable.

Examples

Example 1: Simple form of unit specifier:

REWINDu

REWIND ([UNIT=] u [, IOSTAT= ios] [, ERR= s])

u Unit identifier of an external unit connected to the file
u must be connected for sequential access, or append access.

ios I/O specifier, an integer variable or an integer array element

s Error specifier: s must be the label of an executable statement in the same
program in which this REWIND statement occurs. The program control is
transferred to this label in case of an error during the execution of the
REWIND statement.

ENDFILE 3
REWIND 3
READ (3,'(I2)') I
REWIND 3
READ (3,'(I2)')I

Statements 225

4

Example 2: REWIND with the UNIT=u form of unit specifier and error trap:

4.62 SAVE

The SAVE statement prevents items in a subprogram from becoming undefined
after the RETURN or END statements are executed.

Syntax

Description

All variables to be saved are placed in an internal static area. All common
blocks are saved by allocating a static area. Therefore, common block names
specified in SAVE statements are just ignored.

A SAVE statement is optional in the main program and has no effect.

A SAVE with no list saves everything that can be saved.

SAVE/STATIC

Local variables and arrays are static by default, so in general, using these
constructs eliminates the need for SAVE. You can still use SAVE to ensure
portability.

Also, SAVE is safer if you leave a subprogram by some way other than a
RETURN.

INTEGER CODE
…
REWIND (UNIT = 3)
REWIND (UNIT = 3, IOSTAT = CODE, ERR = 100)
…

100 WRITE (*,*) 'error in rewinding'
STOP

SAVE [v [, v] …]

v Name of an array, variable, or common block (enclosed in slashes), occurring
in a subprogram

 226 FORTRAN 77 Reference Manual

4

Restrictions

The following constructs must not appear in a SAVE statement:

• Variables or arrays in a common block
• Dummy argument names
• Record names
• Procedure names
• Automatic variables or arrays

Example

Example: A SAVE statement:

4.63 Statement Function
A statement function statement is a function-like declaration, made in a single
statement.

Syntax

Description

If a statement function is referenced, the defined calculations are inserted.

SUBROUTINE FFT
DIMENSION A(1000,1000), V(1000)
SAVE A
…
RETURN
END

fun ([d [, d] …]) = e

fun Name of statement function being defined

d Statement function dummy argument

e Expression. e can be any of the types arithmetic, logical, or character.

Statements 227

4

Example: The following statement is a statement function:

The statement function argument list indicates the order, number, and type of
arguments for the statement function.

A statement function is referenced by using its name, along with its arguments,
as an operand in an expression.

Execution proceeds as follows:

1. If they are expressions, actual arguments are evaluated.

2. Actual arguments are associated with corresponding dummy arguments.

3. The expression e, the body of a statement function, is evaluated.

4. If the type of the above result is different from the type of the function
name, then the result is converted.

5. Return the value.

The resulting value is thus available to the expression that referenced the
function.

Restrictions

Note these restrictions:

• A statement function must appear only after the specification statements
and before the first executable statement of the program unit in which it is
referenced.

• A statement function is not executed at the point where it is specified. It is
executed, as any other, by the execution of a function reference in an
expression.

• The type conformance between fun and e are the same as those for the
assignment statement. The type of fun and e can be different, in which case e
is converted to the type of fun.

• The actual arguments must agree in order, number, and type with
corresponding dummy arguments.

ROOT(A, B, C) = (-B + SQRT(B**2-4.0*A*C))/(2.0*A)

 228 FORTRAN 77 Reference Manual

4

• The same argument cannot be specified more than once in the argument list.

• The statement function must be referenced only in the program unit that
contains it.

• The name of a statement function cannot be an actual argument. Nor can it
appear in an EXTERNAL statement.

• The type of the argument is determined as if the statement function were a
whole program unit in itself.

• Even if the name of a statement function argument is the same as that of
another local variable, the reference is considered a dummy argument of the
statement function, not the local variable of the same name.

• The length specification of a character statement function or its dummy
argument of type CHARACTER must be an integer constant expression.

• A statement function cannot be invoked recursively.

Examples

Example 1: Arithmetic statement function:

Example 2: Logical statement function:

PARAMETER (PI=3.14159)
REAL RADIUS, VOLUME
SPHERE (R) = 4.0 * PI * (R**3) / 3.0
READ *, RADIUS
VOLUME = SPHERE(RADIUS)
…

LOGICAL OKFILE
INTEGER STATUS
OKFILE (I) = I .LT. 1
READ(*, *, IOSTAT=STATUS) X, Y
IF (OK FILE(STATUS)) CALL CALC (X, Y, A)
…

Statements 229

4

Example 3: Character statement function:

4.64 STATIC

The STATIC ♦ statement ensures that the specified items are stored in static
memory.

Syntax

Description

To deal with the problem of local variables becoming undefined between
invocations, f77 classifies every variable as either static or automatic, with all
local variables being static by default.

For static variables, there is exactly one copy of each datum, and its value is
retained between calls. You can also explicitly define variables as static or
automatic in a STATIC or AUTOMATIC statement, or in any type statement or
IMPLICIT statement.

Local variables and arrays are static by default, so in general, these constructs
eliminate the need for SAVE. You can still use SAVE to ensure portability.

Also, SAVE is safer if you leave a subprogram by some way other than a
RETURN.

CHARACTER FIRST*1, STR*16
FIRST(S) = S(1:1)
READ(*, *) STR
IF (FIRST(STR) .LT. " ") CALL CONTROL (S, A)
…

STATIC list

list List of variables and arrays

 230 FORTRAN 77 Reference Manual

4

Also note that:

• Arguments and function values are automatic.

• A STATIC statement and a type statement cannot be combined to make a
STATIC type statement. For example, the statement:

does not declare the variable X to be both STATIC and REAL; it declares the
variable REALX to be STATIC.

Example

4.65 STOP

The STOP statement terminates execution of the program.

Syntax

Description

The argument str is displayed when the program stops.

If str is not specified, no message is displayed.

STATIC REAL X ! Not what you might expect

STATIC A, B, C
REAL P, D, Q
STATIC P, D, Q
IMPLICIT STATIC (X-Z)

STOP [[str]

str String of no more that 5 digits or a character constant

Statements 231

4

Examples

Example 1: Integer:

The above statement displays:

Example 2: Character:

The above statement displays:

Example 3: Nothing after the stop :

The above statement displays nothing.

4.66 STRUCTURE

The STRUCTURE♦ statement organizes data into structures.

stop 9

STOP: 9

stop 'oyvay'

STOP: oyvay

stop

 232 FORTRAN 77 Reference Manual

4

Syntax

 Each field declaration can be one of the following:

• A substructure—either another structure declaration, or a record that has
been previously defined

• A union declaration

• A type declaration, which can include initial values

Description

A STRUCTURE statement defines a form for a record by specifying the name,
type, size, and order of the fields that constitute the record. Optionally, it can
specify the initial values.

A structure is a template for a record. The name of the structure is included in
the STRUCTURE statement, and once a structure is thus defined and named, it
can be used in a RECORD statement.

The record is a generalization of the variable or array—where a variable or
array has a type, the record has a structure. Where all the elements of an array
must be of the same type, the fields of a record can be of different types.

Restrictions

The name is enclosed in slashes and is optional in nested structures only.

If slashes are present, a name must be present.

STRUCTURE [/ structure-name/] [field-list]

field-declaration
[field-declaration]
…
[field-declaration]

END STRUCTURE

structure-name Name of the structure

field-list List of fields of the specified structure

field-declaration Field of the record

Statements 233

4

You can specify the field-list within nested structures only.

There must be at least one field-declaration.

Each structure-name must be unique among structures, although you can use
structure names for fields in other structures or as variable names.

The only statements allowed between the STRUCTURE statement and the END
STRUCTURE statement are field-declaration statements and PARAMETER
statements. A PARAMETER statement inside a structure declaration block is
equivalent to one outside.

Restrictions for Fields

Fields that are type declarations use the identical syntax of normal
FORTRAN 77 type statements, and all f77 types are allowed, subject to the
following rules and restrictions:

• Any dimensioning needed must be in the type statement. The DIMENSION
statement has no effect on field names.

• You can specify the pseudonyme %FILL for a field name. The %FILL is
provided for compatibility with other versions of FORTRAN 77. It is not
needed in f77 because the alignment problems are taken care of for you. It
is a useful feature if you want to make one or more fields not referenceable
in some particular subroutine. The only thing that %FILL does is provide a
field of the specified size and type, and preclude referencing it.

• You must explicitly type all field names. The IMPLICIT statement does not
apply to statements in a STRUCTURE declaration, nor do the implicit
I,J,K,L,M,N rules apply.

• You cannot use arrays with adjustable or assumed size in field declarations,
nor can you include passed-length CHARACTER declarations.

In a structure declaration, the offset of field n is the offset of the preceding
field, plus the length of the preceding field, possibly corrected for any
adjustments made to maintain alignment.

You can initialize a field that is a variable, array, substring, substructure, or
union.

 234 FORTRAN 77 Reference Manual

4

Examples

Example 1: A structure of five fields:

In the above example, a structure named PRODUCT is defined to consist of the
fields ID , NAME, MODEL, COST, and PRICE. Each of the three variables,
CURRENT, PRIOR, and NEXT, is a record which has the PRODUCT structure, and
LINE is an array of 10 such records. Every such record has its ID initially set to
99, and its MODEL initially set to Z.

Example 2: A structure of two fields:

The above structure matches the one used by the pc Pascal compiler from
SunSoft for varying length strings. The 25 is arbitrary.

STRUCTURE /PRODUCT/
INTEGER*4 ID/ 99 /
CHARACTER*16 NAME
CHARACTER*8 MODEL/ 'Z' /
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)

STRUCTURE /VARLENSTR/
INTEGER*4 NBYTES
CHARACTER A*25

END STRUCTURE
RECORD /VARLENSTR/ VLS
VLS.NBYTES = 0

Statements 235

4

4.67 SUBROUTINE

The SUBROUTINE statement identifies a named program unit as a subroutine,
and specifies arguments for it.

Syntax

Description

A subroutine subprogram must have a SUBROUTINE statement as the first
statement. A subroutine can have any other statements, except a BLOCK DATA,
FUNCTION, PROGRAM, or another SUBROUTINE statement.

sub is the name of a subroutine and is a global name, and must not be the same
as any other global name such as a common block name or a function name.
Nor can it be the same as any local name in the same subroutine.

d is the dummy argument, and multiple dummy arguments are separated by
commas. d can be one of the following:

• Variable name
• Array name
• Dummy procedure name
• Record name
• Asterisk (*) or an ampersand (&) ♦

The dummy arguments are local to the subroutine and must not appear in any
of the following statements, except as a common block name:

• EQUIVALENCE
• PARAMETER
• SAVE
• STATIC
• AUTOMATIC
• INTRINSIC

SUBROUTINE sub [([fd [, fd] …])]

sub Name of subroutine subprogram

d Variable name, array name, record name, or dummy procedure name, an
asterisk, or an ampersand

 236 FORTRAN 77 Reference Manual

4

• DATA
• COMMON

The actual arguments in the CALL statement that references a subroutine must
agree with the corresponding formal arguments in the SUBROUTINE statement,
in order, number, and type. An asterisk (or an ampersand) in the formal
argument list denotes an alternate return label. A RETURN statement in this
procedure can specify the ordinal number of the alternate return to be taken.

Examples

Example 1: A variable and array as parameters:

Example 2: Standard alternate returns:

Example 3: Nonstandard alternate returns: ♦

SUBROUTINE SHR (A, B)
CHARACTER A*8
REAL B(10,10)
…
RETURN
END

In this example, the RETURN 1
statement refers to the first
alternate return label (first *).
The RETURN 2 statement refers
to the second alternate return
label (second *) specified in the
SUBROUTINE statement.

PROGRAM TESTALT
CALL RANK (N, *8, *9)
WRITE (*,*) 'OK - Normal Return [n=0]'
STOP

8 WRITE (*,*) 'Minor - 1st alternate return [n=1]'
STOP

9 WRITE (*,*) 'Major - 2nd alternate return [n=2]'
END
SUBROUTINE RANK (N, *, *)
IF (N .EQ. 0) RETURN
IF (N .EQ. 1) RETURN 1
RETURN 2
END

CALL SUB(…, & label, …)

Statements 237

4

is treated as:

4.68 TYPE

The TYPE♦ statement writes to stdout .

Syntax

Description

The TYPE statement is provided for compatibility with older versions of
FORTRAN 77, and is equivalent to the following:

• PRINT f [, iolist]
• PRINT grname
• WRITE(*, f) [iolist]
• WRITE(*, grname)

Examples

Example 1: Formatted output:

CALL SUB(…, * label, …)

TYPE f [, iolist]

or:

TYPE grname

f Format identifier

iolist List of output variables

grname Name of the namelist group

INTEGER V(5)
TYPE 1, V

1 FORMAT(5 I3)

 238 FORTRAN 77 Reference Manual

4

Example 2: Namelist output:

4.69 The Type Statement
The type statement specifies the data type of items in the list, optionally
specifies array dimensions, and initializes with values.

Syntax

type can be preceded by either AUTOMATIC or STATIC.

type can be one of the following type specifiers:

CHARACTER S*16
INTEGER N
NAMELIST /G/ N, S
…
TYPE G

type v [/ clist /] [, v [/ clist /]…

v Variable name, array name, array declarator, symbolic name of a constant,
statement function or function subprogram name

clist List of constants. There are more details about clist in the section on the
DATA statement.

BYTE♦
CHARACTER
CHARACTER*n
CHARACTER*(*)
COMPLEX
COMPLEX*8♦
COMPLEX*16♦
COMPLEX*32 (SPARC only) ♦
DOUBLE COMPLEX♦
DOUBLE PRECISION

INTEGER
INTEGER*2 ♦
INTEGER*4 ♦
INTEGER*8 ♦
LOGICAL
LOGICAL*1 ♦
LOGICAL*2 ♦
LOGICAL*4 ♦
LOGICAL*8 ♦
REAL
REAL*4 ♦
REAL*8 ♦
REAL*16 (SPARC only) ♦

Statements 239

4

n, as in CHARACTER*n, must be greater than 0.

Description

A type statement can be used to:

• Confirm or to override the type established by default or by the IMPLICIT
statement

• Specify dimension information for an array, or confirm the type of an
intrinsic function

• Override the length by one of the acceptable lengths for that data type

A type statement can assign initial values to variables, arrays, or record fields
by specifying a list of constants (clist) as in a DATA statement. ♦

The general form of a type statement is:

Example: Various type statements:

When you initialize a data type, remember the following restrictions:

• For a simple variable, there must be exactly one constant.

• If any element of an array is initialized, all must be initialized.

type VariableName / constant / …

or:

type ArrayName / constant, … /

or:

type ArrayName / r*constant /

where r is a repeat factor.

CHARACTER LABEL*12 / 'Standard' /
COMPLEX STRESSPT / (0.0, 1.0) /
INTEGER COUNT / 99 /, Z / 1 /
REAL PRICE / 0.0 /, COST / 0.0 /
REAL LIST(8) / 0.0, 6*1.0, 0.0 /

 240 FORTRAN 77 Reference Manual

4

• You can use an integer as a repeat factor, followed by an asterisk (*), followed
by a constant. In the example above, six values of 1.0 are stored into array
elements 2, 3, 4, 5, 6, and 7 of LIST .

• If a variable or array is declared AUTOMATIC, then it cannot be initialized.

• A pointer-based variable or array cannot be initialized. For example:

In this case, the compiler issues a warning message, and Z is not initialized.

If a variable or array is not initialized, its values are undefined.

If such initialization statements involve variables in COMMON, and the –ansi
compiler flag is set, then a warning is issued.

Restrictions

A symbolic name can appear only once in type statements in a program unit.

A type statement must precede all executable statements.

Example

Example: The type statement:

In the above example:

• J is initialized to 0
• PI is initialized to 3.141592654
• The first five elements of ARRAY are initialized to 0.0
• The second five elements of ARRAY are initialized to 1.0
• TITLE is initialized to 'Heading'

INTEGER Z / 4 /
POINTER (x, Z)

INTEGER*2 I, J/0/
REAL*4 PI/3.141592654/,ARRAY(10)/5*0.0,5*1.0/
CHARACTER*10 NAME
CHARACTER*10 TITLE/'Heading'/

Statements 241

4

4.70 UNION and MAP

The UNION♦ statement defines groups of fields that share memory at runtime.

Syntax

The syntax of a UNION declaration is as follows:

The syntax of a MAP declaration is:

Description

A MAP statement defines alternate groups of fields in a union. During
execution, one map at a time is associated with a shared storage location.
When you reference a field in a map, the fields in any previous map become
undefined, and are succeeded by the fields in the map of the newly referenced
field. Also:

• A UNION declaration can appear only within a STRUCTURE declaration.
• The amount of memory used by a union is that of its biggest map.
• Within a UNION declaration, the order of the MAP statements is not relevant.

The UNION line is part of an inherently multiline group of statements, and
neither the UNION line nor the END UNION line has any special indication of
continuation. You do not put a nonblank in column six, nor an & in column
one.

UNION
map-declaration
map-declaration
[map-declaration]
...

END UNION

MAP
field-declaration
[field-declaration]
...
[field-declaration]
END MAP

 242 FORTRAN 77 Reference Manual

4

Each field-declaration in a map declaration can be one of the following:

• Structure declaration
• Record
• Union declaration
• Declaration of a typed data field

Example

Declare the structure /STUDENT/ to contain either NAME, CLASS, and MAJOR,
or NAME, CLASS, CREDITS, and GRAD_DATE:

In the above example, the variable PERSON has the structure /STUDENT/ , so:

• PERSON.MAJOR references a field from the first map; PERSON.CREDITS
references a field from the second map.

• If the variables of the second map field are initialized, and then the program
references the variable PERSON.MAJOR, the first map becomes active, and
the variables of the second map become undefined.

STRUCTURE /STUDENT/
CHARACTER*32 NAME
INTEGER*2 CLASS
UNION

MAP
CHARACTER*16 MAJOR

END MAP
MAP

INTEGER*2 CREDITS
CHARACTER*8 GRAD_DATE

END MAP
END UNION

END STRUCTURE
RECORD /STUDENT/ PERSON

Statements 243

4

4.71 VIRTUAL

The VIRTUAL ♦ statement is treated the same as the DIMENSION statement.

Syntax

Description

The VIRTUAL statement has the same form and effect as the DIMENSION
statement. It is included for compatibility with older versions of FORTRAN 77.

Example

4.72 VOLATILE

The VOLATILE ♦ statement prevents optimization on the specified items.

Syntax

VIRTUAL a (d) [, a (d)] …

a Name of an array

a(d) Specifies the dimension of the array. It is a list of 1 to 7 declarators
separated by commas

VIRTUAL M(4,4), V(1000)
…
END

VOLATILE nlist

nlist List of variables, arrays, or common blocks

 244 FORTRAN 77 Reference Manual

4

Description

The VOLATILE statement prevents optimization on the items in the list.
Programs relying on it are usually nonportable.

Example

Example: VOLATILE: ♦

In the above example, the array V, the variable Z, and the common block
/INI/ are explicitly specified as VOLATILE. The variable X is VOLATILE
through an equivalence.

4.73 WRITE

The WRITE statement writes data from the list to a file.

PROGRAM FFT
INTEGER NODE*2, NSTEPS*2
REAL DELTA, MAT(10,10), V(1000), X, Z
COMMON /INI/ NODE, DELTA, V
…
VOLATILE V, Z, MAT, /INI/
…
EQUIVALENCE (X, V)
…

Statements 245

4

Syntax

The options can be specified in any order.

An alternate for the REC=rn form is allowed, as follows: ♦

See Example 3, later on in this section.

Description

For tapes, we recommend the TOPEN() routines because they are more
reliable.

Unit Identifier

u is either an external unit identifier or an internal file identifier.

An external unit identifier must be one of the following:

• A nonnegative integer expression
• An asterisk, identifying stdout , which is normally connected to the console

If the optional characters UNIT= are omitted from the unit specifier, then u
must be the first item in the list of specifiers.

WRITE([UNIT=] u [, [FMT=] f] [, IOSTAT= ios] [, REC= rn]
[, ERR= s]) iolist

WRITE([UNIT=] u, [NML=] grname [, IOSTAT= ios] [, ERR= s])

u Unit identifier of the unit connected to the file

f Format identifier

ios I/O status specifier

rn Record number

s Error specifier (statement label)

iolist List of variables

grname Name of the namelist group

 WRITE(u ' rn …) iolist ♦

 246 FORTRAN 77 Reference Manual

4

Format Identifier

f is a format identifier and can be:

• An asterisk (*), indicating list-directed I/O. See “List-Directed I/O” on page
301 for details.

• The label of a FORMAT statement that appears in the same program unit

• An integer variable name that has been assigned the label of a FORMAT
statement that appears in the same program unit

• A character expression or integer array that specifies the format string. This
is called a runtime format or a variable format. The integer array is
nonstandard. ♦

If the optional characters, FMT=, are omitted from the format specifier, then f
must appear as the second argument for a formatted write; otherwise, it must
not appear at all.

f must not be an asterisk for direct access.

f can be an asterisk for internal files. ♦

If a file is connected for formatted I/O, unformatted data transfer is prohibited,
and vice versa.

I/O Status Specifier

ios must be an integer variable, integer array element, or integer record field.

Record Number

rn must be a positive integer expression. This argument can appear only for
direct-access files. rn can be specified for internal files. ♦

Error Specifier

s must be the label of an executable statement in the same program unit in
which this WRITE statement occurs.

Statements 247

4

Output List

iolist can be empty, or it can contain output items or implied DO lists. The
output items must be one of the following:

• Variables
• Substrings
• Arrays
• Array elements
• Record fields
• Any other expression

A simple unsubscripted array name specifies all of the elements of the array in
memory storage order, with the leftmost subscript increasing more rapidly.

If the output item is a character expression that employs the concatenation
operator, the length specifiers of its operands can be an asterisk (*). This rule is
nonstandard. ♦

If a function appears in the output list, that function must not cause an
input/output statement to be executed.

Namelist-Directed WRITE

The second form of WRITE is used to output the items of the specified namelist
group. Here, grname is the name of the list previously defined in a NAMELIST
statement.

Execution

Execution proceeds as follows:

1. The file associated with the specified unit is determined.
The format, if specified, is established. The file is positioned appropriately
prior to data transfer.

2. If the output list is not empty, data is transferred from the list to the file.
Data is edited according to the format, if specified.

3. In the second form of namelist-directed WRITE, the data is transferred
from the items of the specified namelist group according to the rules of
namelist-directed output.

 248 FORTRAN 77 Reference Manual

4

4. The file is repositioned appropriately after the data transfer.

5. If ios is specified, and no error occurs, it is set to zero; otherwise, it is set
to a positive value.

6. If s is specified and an error occurs, control is transferred to s.

Restrictions

Note these restrictions:

• Output from an exception handler is unpredictable.

If you make your own exception handler, do not do any FORTRAN 77
output from it. If you must do some, then call abort right after the output.
Doing so reduces the relative risk of a system freeze. FORTRAN 77 I/O
from an exception handler amounts to recursive I/O. See the next
paragraph.

• Recursive I/O does not work reliably.

If you list a function in an I/O list, and if that function does I/O, then
during runtime, the execution may freeze, or some other unpredictable
problem results. This risk exists independent of using parallelization.

Example: Recursive I/O fails intermittently:

WRITE(*,*) x, f(x) ! Not allowed, f() does I/O.
END
FUNCTION F(X)
WRITE(*,*) X
RETURN
END

Statements 249

4

Comments

If u specifies an external unit that is not connected to a file, an implicit OPEN
operation is performed that is equivalent to opening the file with the following
options:

The value of fmt is 'FORMATTED' if the write is formatted, and
'UNFORMATTED' otherwise.

A simple unsubscripted array name specifies all of the elements of the array in
memory storage order, with the leftmost subscript increasing more rapidly.

The record number for direct-access files starts from one onwards.

Namelist-directed output is permitted on sequential access files only.

Examples

Example 1: Formatted write with trap I/O errors and I/O status:

Example 2: Direct, unformatted write, trap I/O errors, and I/O status:

OPEN(u, FILE='FORT. u', STATUS='UNKNOWN',
& ACCESS='SEQUENTIAL', FORM=fmt)

WRITE(1, 2, ERR=8, IOSTAT=N) X, Y
RETURN
…

8 WRITE(*, *) 'I/O error # ', N, ', on 1'
STOP
END

…
WRITE(1, REC=3, IOSTAT=N, ERR=8) V
…

4 CONTINUE
RETURN

8 WRITE(*, *) 'I/O error # ', N, ', on 1'
END

 250 FORTRAN 77 Reference Manual

4

Example 3: Direct, alternate syntax (equivalent to above example):

Example 4: List-directed write to screen:

Example 5: Formatted write to an internal file:

Example 6: Write an entire array:

Example 7: Namelist-directed write:.

…
WRITE(1 ' 3, IOSTAT=N, ERR=8) V
…

4 CONTINUE
RETURN

8 WRITE(*, *) 'I/O error # ', N, ', on 1'
END

WRITE(*, *) A, V
or

PRINT *, A, V

CHARACTER CA*16, L*8 /'abcdefgh'/, R*8 /'ijklmnop'/
WRITE(CA, 1) L, R

1 FORMAT(2 A8)

DIMENSION V(5)
WRITE(3, '(5F4.1)') V

CHARACTER SAMPLE*16
LOGICAL NEW*4
REAL DELTA*4
NAMELIST /G/ SAMPLE, NEW, DELTA
…
WRITE(1, G)

or
WRITE(UNIT=1, NML=G)

or
WRITE(1, NML=G)

 251

Input and Output 5

This chapter describes the general concepts of FORTRAN 77 input and output,
and provides details on the different kids of I/O. It is organized into the
following sections:

5.1 General Concepts of FORTRAN 77 I/O
Any operating system based on the UNIX operating system is not as record-
oriented as FORTRAN 77. This operating system treats files as sequences of
characters instead of collections of records. The FORTRAN 77 runtime system
keeps track of file formats and access mode during runtimes. It also provides
the file facilities, including the FORTRAN 77 libraries and the standard I/O
library.

General Concepts of FORTRAN 77 I/O page 251

Direct Access page 259

Internal Files page 260

Formatted I/O page 261

Unformatted I/O page 298

List-Directed I/O page 301

NAMELIST I/O page 305

 252 FORTRAN 77 Reference Manual

5

Logical Units

The FORTRAN 77 default value for the maximum number of logical units that
a program can have open at one time is 64. For current Solaris releases, this
limit is 256. A FORTRAN 77 program can increase this limit beyond 64 by
calling the setrlim() function. See the man page setrlim (2). If you are
running csh , you can also do this with the limit or unlimit command; see
csh (1).

The standard logical units 0, 5, and 6 are preconnected to Solaris as stderr ,
stdin , and stdout , respectively. These are not actual file names, and cannot
be used for opening these units. INQUIRE does not return these names, and
indicates that the above units are not named unless they have been opened to
real files. However, these units can be redefined with an OPEN statement.

The names, stderr , stdin , and stdout , are meant to make error reporting
more meaningful. To preserve error reporting, the system makes it is an error
to close logical unit 0, although it can be reopened to another file.

If you want to open a file with the default file name for any preconnected
logical unit, remember to close the unit first. Redefining the standard units can
impair normal console I/O. An alternative is to use shell redirection to
externally redefine the above units.

To redefine default blank control or the format of the standard input or output
files, use the OPEN statement, specifying the unit number and no file name, and
use the options for the kind of blank control you want.

I/O Errors

Any error detected during I/O processing causes the program to abort, unless
alternative action has been provided specifically in the program. Any I/O
statement can include an ERR= clause (and IOSTAT= clause) to specify an
alternative branch to be taken on errors and return the specific error code.
Read statements can include END=n to branch on end-of-file. File position and
the value of I/O list items are undefined following an error. END= catches both
EOF and error conditions; ERR= catches only error conditions.

If your program does not trap I/O errors, then before aborting, an error
message is written to stderr with an error number in square brackets, [] ,
and the logical unit and I/O state. The signal that causes the abort is IOT.

Input and Output 253

5

Error numbers less than 1000 refer to operating system errors; see intro (2).
Error numbers greater than or equal to 1000 come from the I/O library.

For external I/O, part of the current record is displayed if the error was caused
during reading from a file that can backspace. For internal I/O, part of the
string is printed with a vertical bar (|) at the current position in the string.

General Restriction

Do not reference a function in an I/O list if executing that function causes an
I/O statement to be executed. Example:

Kinds of I/O

The four kinds of I/O are: formatted, unformatted, list-directed, and
NAMELIST.

The two modes of access to files are sequential and direct. When you open a file,
the access mode is set to either sequential or direct. If you do not set it
explicitly, you get sequential by default.

The two types of files are: external files and internal files. An external file
resides on a physical peripheral device, such as disk or tape. An internal file is
a location in main memory, is of character type, and is either a variable,
substring, array, array element, or a field of a structured record.

Combinations of I/O

I/O combinations on external files are:

WRITE(1, 10) Y, A + 2.0 * F(X) ! Wrong if F() does I/O

Allowed Not Allowed

Sequential unformatted
Sequential formatted
Sequential list-directed
Sequential NAMELIST
Direct unformatted
Direct formatted

Direct-access, list-directed I/O
Direct-access, NAMELIST I/O
NAMELIST I/O on internal files
Unformatted, internal I/O

 254 FORTRAN 77 Reference Manual

5

The following table shows combinations of I/O form, access mode, and
physical file types.

Avoid list-directed internal writes. The number of lines and items per line
varies with the values of items.

Table 5-1 Summary of f77 Input and Output

 Kind of I/O Access Mode

Form File Type Sequential Direct

Formatted Internal The file is a character variable, substring, array, or array
element. ♦

The file is a character array; each
record is one array element.

External Only formatted records of same or variable length. Only formatted records, all the
same length.

Unformatted Internal Not allowed. Not allowed.

External Contains only unformatted records. READ: Gets one logical record at
a time. WRITE: Unfilled part of
record is undefined.

List-directed Internal READ: Reads characters until EOF or I/O list is satisfied.

WRITE: Writes records until list is satisfied. ♦

Not allowed.

External Uses standard formats based on type of variable and size
of element. Blanks or commas are separators. Any
columns.

Not allowed.

NAMELIST Internal Not allowed. Not allowed.

External READ: Reads records until it finds $groupname in columns
2-80. Then reads records searching for names in that
group, and stores data in those variables. Stops reading
on $ or eof .

WRITE: Writes records showing the group name and each
variable name with value.

Not allowed.

Input and Output 255

5

Printing Files

You get a print file by using the nonstandard FORM='PRINT' in OPEN. ♦

This specifier works for sequential access files only.

Definition

A print file has the following features:

• With formatted output, you get vertical format control for that logical unit:
• Column one is not printed.
• If column one is blank, 0, or 1, then vertical spacing is one line, two lines,

or top of page, respectively.
• If column 1 is +, it is replaced by a control sequence that causes a return to

the beginning of the previous line.

• With list-directed output, you get for that logical unit, column one is not
printed.

In general, if you open a file with FORM='PRINT' , then for that file list-
directed output does not provide the FORTRAN 77 Standard blank in column
one; otherwise, it does provide that blank. FORM='PRINT' is for one file per
call.

If you open a file with FORM='PRINT' , then that file has the same content as if
it was opened with FORM='FORMATTED', and filtered with the output filter,
asa .

If you compile with the -oldldo option (old list-directed output), then all the
files written by the program do list-directed output without that blank in
column one; otherwise, they all get that blank. The -oldldo option is global.

The INQUIRE Statement

The INQUIRE statement returns 'PRINT' in the FORM variable for logical units
opened as print files. It returns -1 for the unit number of an unopened file.

OPEN (..., FORM='PRINT', ...)

 256 FORTRAN 77 Reference Manual

5

Special Uses of OPEN

If a logical unit is already open, an OPEN statement using the BLANK option
does nothing but redefine that option.

As a nonstandard extension, if a logical unit is already open, an OPEN
statement using the FORM option does nothing but redefine that option. ♦

These forms of the OPEN statement need not include the file name, and must
not include a file name if UNIT refers to standard input, output, or standard
error.

If you connect a unit with OPEN and do not use the file name parameter, then
you get the default file name, fort. nn, where nn is the unit number.
Therefore, to redefine the standard output as a print file, use:

Scratch Files

Scratch files are temporary files that normally disappears after execution is
completed.

Example: Create a scratch file:

To prevent a temporary file from disappearing after execution is completed,
you must execute a CLOSE statement with STATUS='KEEP' . KEEP is the
default status for all other files.

Example: Close a scratch file that you want to access later:

Remember to get the real name of the scratch file. Use INQUIRE if you want to
reopen it later.

OPEN(UNIT=6, FORM='PRINT')

OPEN(UNIT=7, STATUS='SCRATCH')

CLOSE(UNIT=7, STATUS='KEEP')

Input and Output 257

5

Changing I/O Initialization with IOINIT

Traditional FORTRAN 77 environments usually assume carriage control on all
logical units. They usually interpret blank spaces on input as zeroes, and often
provide attachment of global file names to logical units at runtime. The routine
IOINIT (3F) can be called to specify these I/O control parameters. This routine:

• Recognizes carriage control for all formatted files.
• Ignores trailing and embedded blanks in input files.
• Positions files at the beginning or end upon opening.
• Preattaches file names of a specified pattern with logical units.

Example: IOINIT and logical unit preattachment:

For the above call, the FORTRAN 77 runtime system looks in the environment
for names of the form FORTnn, and then opens the corresponding logical unit
for sequential formatted I/O.

With the above example, suppose your program opened unit 7, as follows:

The FORTRAN 77 runtime system looks in the environment for the FORT07
file, and connects it to unit 7.

In general, names must be of the form PREFIXnn, where the particular PREFIX
is specified in the call to IOINIT , and nn is the logical unit to be opened. Unit
numbers less than 10 must include the leading 0. For details, see IOINIT (3F).

Example: Attach external files ini1.inp and ini1.out to units 1and 2:

In sh :

CALL IOINIT (.TRUE., .FALSE., .FALSE., 'FORT', .FALSE.)

OPEN(UNIT=07, FORM='FORMATTED')

demo$ TST01=ini1.inp
demo$ TST02=ini1.out
demo$ export TST01 TST02

 258 FORTRAN 77 Reference Manual

5

In csh :

Example: Attach the file, s ini1.inp and ini1.out , to units 1 and 2:

IOINIT should prove adequate for most programs as written. However, it is
written in FORTRAN 77 so that it can serve as an example for similar user-
supplied routines. A copy can be retrieved as follows:

In Solaris 2.x:

In Solaris 1.x:

demo% setenv TST01 ini1.inp
demo% setenv TST02 ini1.out

demo% cat ini1.f
CHARACTER PRFX*8
LOGICAL CCTL, BZRO, APND, VRBOSE
DATA CCTL, BZRO, APND, PRFX, VRBOSE

& /.TRUE., .FALSE., .FALSE., 'TST', .FALSE. /
C

CALL IOINIT(CCTL, BZRO, APND, PRFX, VRBOSE)
READ(1, *) I, B, N
WRITE(*, *) 'I = ', I, ' B = ', B, ' N = ', N
WRITE(2, *) I, B, N
END

demo% f77 ini1.f
ini1.f:
 MAIN:
demo% a.out
 I = 12 B = 3.14159012 N = 6
demo%

demo% cp /opt/SUNWspro/SC3.0.1/src/ioinit.f .

demo% cp /usr/lang/SC3.0.1/src/ioinit.f .

Input and Output 259

5

5.2 Direct Access
A direct-access file contains a number of records that are written to or read
from by referring to the record number. Direct access is also called random
access.

In direct access:

• Records must be all the same length.

• Records are usually all the same type.

• A logical record in a direct access, external file is a string of bytes of a length
specified when the file is opened.

• Read and write statements must not specify logical records longer than the
original record size definition.

• Shorter logical records are allowed.
• Unformatted direct writes leave the unfilled part of the record undefined.
• Formatted direct writes pass the unfilled record with blanks.

• Each READ operation acts on exactly one record.

• In using direct unformatted I/O, be careful with the number of values your
program expects to read.

• Direct access READ and WRITE statements have an argument, REC=n, which
gives the record number to be read or written. An alternate, nonstandard
form is ' n.

Unformatted I/O

Example: Direct access, unformatted:

This code opens a file for direct-access, unformatted I/O, with a record length
of 20 characters, then reads the thirteenth record as is.

OPEN(2, FILE='data.db', ACCESS='DIRECT', RECL=20,
& FORM='UNFORMATTED', ERR=90)

READ(2, REC=13, ERR=30) X, Y
READ(2 ' 13, ERR=30) X, Y ! ← Alternate form ♦

 260 FORTRAN 77 Reference Manual

5

Formatted I/O

Example: Direct access, formatted:

This code opens a file for direct-access, formatted I/O, with a record length of
20 characters, then reads the thirteenth record and converts it according to the
(I10,F10.3) format.

5.3 Internal Files
An internal file is a character-string object, such as a constant, variable,
substring, array, element of an array, or field of a structured record—all of type
character. For a variable or substring, there is only a single record in the file but
for an array; each array element is a record.

Sequential Formatted I/O

On internal files, the FORTRAN 77 Standard includes only sequential
formatted I/O. (I/O is not a precise term to use here, but internal files are dealt
with using READ and WRITE statements.) Internal files are used by giving the
name of the character object in place of the unit number. The first read from a
sequential-access internal file always starts at the beginning of the internal file;
similarly for a write.

Example: Sequential, formatted reads:

The above code reads a print-line image into X, and then reads two integers
from X.

OPEN(2, FILE='inven.db', ACCESS='DIRECT', RECL=20,
& FORM='FORMATTED', ERR=90)

READ(2, FMT='(I10,F10.3)', REC=13, ERR=30) A, B

CHARACTER X*80
READ(5, '(A)') X
READ(X, '(I3,I4)') N1, N2

Input and Output 261

5

Direct Access I/O

f77 extends direct I/O to internal files.♦

This is like direct I/O on external files, except that the number of records in the
file cannot be changed. In this case, a record is a single element of an array of
character strings.

Example: Direct access read of the third record of the internal file, LINE :

5.4 Formatted I/O
In formatted I/O:

• The list items are processed in the order they appear in the list.
• Any list item is completely processed before the next item is started.
• Each sequential access reads or writes one or more logical records.

Input Actions

In general, a formatted read statement does the following:

• Reads character data from the external record or from an internal file.

• Converts the items of the list from character to binary form according to the
instructions in the associated format.

• Puts converted data into internal storage for each list item of the list.

demo% cat intern.f
CHARACTER LINE(3)*14
DATA LINE(1) / ' 81 81 ' /
DATA LINE(2) / ' 82 82 ' /
DATA LINE(3) / ' 83 83 ' /
READ (LINE, FMT='(2I4)', REC=3) M, N
PRINT *, M, N
END

demo% f77 -silent intern.f
demo% a.out
 83 83
demo%

 262 FORTRAN 77 Reference Manual

5

Example: Formatted read:

Output Actions

In general, a formatted write statement does the following:

• Gets data from internal storage for each list item specified by the list.

• Converts the items from binary to character form according to the
instructions in the associated format.

• Transfers the items to the external record or to an internal file.

• Terminates formatted output records with newline characters.

Example: Formatted write:

For formatted write statements, the logical record length is determined by the
format statement that interacts with the list of input or output variables (I/O
list) at execution time.

For formatted write statements, if the external representation of a datum is too
large for the field width specified, the specified field is filled with asterisks (*).

For formatted read statements, if there are fewer items in the list than there are
data fields, the extra fields are ignored.

READ(6, 10) A, B
10 FORMAT(F8.3, F6.2)

REAL A / 1.0 /, B / 9.0 /
WRITE(6, 10) A, B

10 FORMAT(F8.3, F6.2)

Input and Output 263

5

Format Specifiers

w, m, d, e Parameters (As In Gw. dEe)

The definitions for the parameters, w, m, d, and e are:

• w specifies that the field occupies w positions.
• m specifies the insertion of leading zeros to a width of m.
• d specifies the number of digits to the right of the decimal point.
• e specifies the width of the exponent field.

Table 5-2 Format Specifiers

Purpose FORTRAN 77 f77 Extensions

Specifiers can be uppercase
as well as lowercase
characters in format
statements and in all the
alphabetic arguments to the
I/O library routines.

Blank control BN, BZ B

Carriage control /, space, 0, 1 $

Character edit nH, Aw, 'aaa' "aaa" , A

Floating-point edit Dw. dEe,
Ew. dEe,
Fw. dEe,
Gw. dEe

Ew. d. e,
Dw. d. e,
Gw. d. e

Hexadecimal edit Zw. m

Integer edit I w.m

Logical edit Lw

Octal edit Ow. m

Position control nX, Tn, TLn, TRn nT, T, X

Radix control nR, R

Remaining characters Q

Scale control nP P

Sign control S, SP, SS SU

Terminate a format :

Variable format expression < e >

 264 FORTRAN 77 Reference Manual

5

Defaults for w, d, and e

You can write field descriptors A, D, E, F, G, I , L, O, or Z without the w, d, or e
field indicators. ♦ If these are not unspecified, the appropriate defaults are used
based on the data type of the I/O list element. See Table 5-3.

Typical format field descriptor forms that use w, d, or e include:

Aw, I w, L w, O w, Z w, D w. d, E w. d, G w. d, E w. dEe, G w. dEe

Example: With the default w=7 for INTEGER*2, and since 161 decimal = A1
hex:

This example produces the following output:

 ↑ column 6

INTEGER*2 M
M = 161
WRITE (*, 8) M

8 FORMAT (Z)
END

demo% f77 def1.f
def1.f:
 MAIN:
demo% a.out
∆∆∆∆∆a1
demo%

Input and Output 265

5

The defaults for w, d, and e are summarized in the following table.

For complex items, the value for w is for each real component. The default for
the A descriptor with character data is the declared length of the corresponding
I/O list element. REAL*16 and COMPLEX*32 are for SPARC only.

Apostrophe Editing (' aaa')

The apostrophe edit specifier is in the form of a character constant. It causes
characters to be written from the enclosed characters of the edit specifier itself,
including blanks. An apostrophe edit specifier must not be used on input. The
width of the field is the number of characters contained in, but not including,

Table 5-3 Default w, d, e Values in Format Field Descriptors

Field Descriptor List Element w d e

I,O,Z BYTE 7 - -

I,O,Z INTEGER*2 , LOGICAL*2 7 - -

I,O,Z INTEGER*4 , LOGICAL*4 12 - -

O,Z REAL*4 12 - -

O,Z REAL*8 23 - -

O,Z REAL*16 , COMPLEX*32 44 - -

L LOGICAL 2 - -

F,E,D,G REAL , COMPLEX*8 15 7 2

F,E,D,G REAL*8 , COMPLEX*16 25 16 2

F,E,D,G REAL*16 , COMPLEX*32 42 33 3

A LOGICAL*1 1 - -

A LOGICAL*2, INTEGER*2 2 - -

A LOGICAL*4, INTEGER*4 4 - -

A REAL*4, COMPLEX*8 4 - -

A REAL*8, COMPLEX*16 8 - -

A REAL*16, COMPLEX*32 16 - -

A CHARACTER*n n - -

 266 FORTRAN 77 Reference Manual

5

the delimiting apostrophes. Within the field, two consecutive apostrophes with
no intervening blanks are counted as a single apostrophe. You can use quotes
in a similar way.

Example: apos.f , apostrophe edit (two equivalent ways):

The above program writes this message twice: This is an apostrophe '.

Blank Editing (B, BN, BZ)

The B, BN, and BZ edit specifiers control interpretation of imbedded and
trailing blanks for numeric input.

The following blank specifiers are available:

• BN—If BN precedes a specification, a nonleading blank in the input data is
considered null, and is ignored.

• BZ—If BZ precedes a specification, a nonleading blank in the input data is
considered zero.

• B—If B precedes a specification, it returns interpretation to the default mode
of blank interpretation. This is consistent with S, which returns to the
default sign control. ♦

Without any specific blank specifiers in the format, nonleading blanks in
numeric input fields are normally interpreted as zeros or ignored, depending
on the value of the BLANK= suboption of OPEN currently in effect for the unit.
The default value for that suboption is ignore , so if you use defaults for both
BN/BZ/B and BLANK=, you get ignore .

WRITE(*, 1)
1 FORMAT('This is an apostrophe ''.')

WRITE(*, 2)
2 FORMAT("This is an apostrophe '.")

END

Input and Output 267

5

Example: Read and print the same data once with BZ and once with BN:

 Note these rules for blank control:

• Blank control specifiers apply to input only.

• A blank control specifier remains in effect until another blank control
specifier is encountered, or format interpretation is complete.

• The B, BN, and BZ specifiers affect only I , F, E, D, and G editing.

Carriage Control ($, Space,0, 1)

You use $, the space, 0, and 1 for carriage control.

Dollar $

The special edit descriptor $ suppresses the carriage return. ♦

The action does not depend on the first character of the format. It is used
typically for console prompts. For instance, you can use this descriptor to make
a typed response follow the output prompt on the same line. This edit
descriptor is constrained by the same rules as the colon (:).

demo% cat bz1.f
* 12341234

CHARACTER LINE*18 / ' 82 82 ' /
READ (LINE, '(I4, BZ, I4) ') M, N
PRINT *, M, N
READ (LINE, '(I4, BN, I4) ') M, N
PRINT *, M, N
END

demo% f77 -silent bz1.f
demo% a.out
 82 8200
 82 82
demo%

 268 FORTRAN 77 Reference Manual

5

Example: The $ carriage control:

The above code produces a displayed prompt and user input response, such as:

The first character of the format is printed out, in this case, a blank. For an
input statement, the $ descriptor is ignored.

Space, 0, 1, and +

The following first-character slew controls and actions are provided:

If the first character of the format is not space, 0, 1, or +, then it is treated as a
space, and it is not printed.

The behavior of the slew control character + is: if the character in the first
column is +, it is replaced by a control sequence that causes printing to return
to the first column of the previous line, where the rest of the input line is
printed.

Space, 0, 1, and + work for stdout if piped through asa .

* dol1.f The $ edit descriptor with space
WRITE (*, 2)

2 FORMAT (' Enter the node number: ', $)
READ (*, *) NODENUM
END

Enter the node number: 82

Table 5-4 Carriage Control with Blank, 0, 1, and +

Character Vertical spacing before printing

Blank

0

1

+

One line

Two lines

To first line of next page

No advance (stdout only, not files)

Input and Output 269

5

Example: First-character formatting, standard output piped through asa :

The program, slew1.f produces file, slew1.out , as printed by lpr :

The results are different on a screen; the tabbing puts in spaces:

See asa (1).

The space, 0, and 1, and + work for a file opened with:

• Sequential access
• FORM='PRINT'

demo% cat slew1.f
WRITE(*, '("abcd")')
WRITE(*, '(" efg")') ! The blank single spaces
WRITE(*, '("0hij")') ! The "0" double spaces
WRITE(*, '("1klm")') ! The "1" starts this on a new page
WRITE(*, '("+", T5, "nop")') ! The "+" starts this at col 1 of latest line
END

demo% f77 -silent slew1.f
demo% a.out | asa | lpr
demo%

Printer bcd
efg

hij

klmnop ← This starts on a new page. The + of +nop is obeyed.

Screen demo% cat slew1.out
bcd
efg

hij

 nop ← This starts on a new page. The + of +nop is obeyed.
demo%

 270 FORTRAN 77 Reference Manual

5

Example: First-character formatting, file output:

The program, slew2.f , produces the file, slew2.out , that is equal to the file,
slew1.out , in the example above.

Slew control codes '0' , '1' , and '+' in column one are in the output file as
'\n' , '\f' , and '\r' , respectively.

Character Editing (A)

The A specifier is used for character type data items. The general form is:

On input, character data is stored in the corresponding list item.

On output, the corresponding list item is displayed as character data.

If w is omitted, then:

• For character data type variables, it assumes the size of the variable.

• For noncharacter data type variables, it assumes the maximum number of
characters that fit in a variable of that data type. This is nonstandard
behavior. ♦

demo% cat slew2.f
OPEN(1,FILE='slew.out',FORM='PRINT')
WRITE(1, '("abcd")')
WRITE(1, '("efg")')
WRITE(1, '("0hij")')
WRITE(1, '("1klm")')
WRITE(1, '("+", T5, "nop")')
CLOSE(1, STATUS='KEEP')
END

demo% f77 -silent slew2.f
demo% a.out

A [w]

Input and Output 271

5

Each of the following examples read into a size n variable (CHARACTER*n), for
various values of n, for instance, for n = 9.

The various values of n, in CHARACTER C*n are:

∆ indicates a blank space.

Example: Output strings of 3, 5, and 7 characters, each in a 5 character field:

The above program displays:

CHARACTER C*9
READ '(A7)', C

Size n 9 7 4 1

Data Node ∆Id Node ∆Id Node ∆Id Node ∆Id

Format A7 A7 A7 A7

Memory Node ∆Id ∆∆ Node∆Id e ∆Id d

PRINT 1, 'The', 'whole', 'shebang'
1 FORMAT(A5 / A5 / A5)

END

∆∆The
whole
sheba

 272 FORTRAN 77 Reference Manual

5

The maximum characters in noncharacter types are summarized in the
following table.

In f77 , you can use Hollerith constants wherever a character constant can be
used in FORMAT statements, assignment statements, and DATA statements.♦
These constants are not recommended. FORTRAN 77 does not have these old
Hollerith (n H) notations, although the FORTRAN 77 Standard recommends
implementing the Hollerith feature to improve compatibility with old
programs. But such constants cannot be used as input data elements in list-
directed or NAMELIST input.

For example, these two formats are equivalent:

Table 5-5 Maximum Characters in Noncharacter Type Hollerith (nHaaa)

Type of List Item Maximum Number of Characters

BYTE
LOGICAL*1
LOGICAL*2
LOGICAL*4
LOGICAL*8
INTEGER*2
INTEGER*4
INTEGER*8
REAL
REAL*4
REAL*8
REAL*16 (SPARC only)
DOUBLE PRECISION
COMPLEX
COMPLEX*8
COMPLEX*16
COMPLEX*32 (SPARC only)
DOUBLE COMPLEX

 1
 1
 2
 4
 8
 2
 4
 8
 4
 4
 8

 16
 8
 8
 8

 16
 32
 16

10 FORMAT(8H Code = , A6)
20 FORMAT(' Code = ', A6)

Input and Output 273

5

In f77 , commas between edit descriptors are generally optional:

READs into Hollerith Edit Descriptors

For compatibility with older programs, f77 also allows READs into Hollerith
edit descriptors. ♦

Example: Read into hollerith edit descriptor—no list in the READ statement:

In the above code, if the format is a runtime format (variable format), then the
reading into the actual format does not work, and the format remains
unchanged. Hence, the following program fails:

Obviously, there are better ways to read into the actual format.

10 FORMAT(5H flex 4Hible)

demo% cat hol1.f
WRITE(*, 1)

1 FORMAT(6Holder)
READ(*, 1)
WRITE(*, 1)
END

demo% f77 hol1.f
hol1.f:
 MAIN
demo% a.out
older
newer
newer
demo%

CHARACTER F*18 / '(A8)' /
READ(*,F) ! ← Does not work.
…

 274 FORTRAN 77 Reference Manual

5

Integer Editing (I)

The I specifier is used for decimal integer data items. The general form is:

The I w and I w.m edit specifiers indicate that the field to be edited occupies w
positions. The specified input/output list item must be of type integer. On
input, the specified list item becomes defined with an integer datum. On
output, the specified list item must be defined as an integer datum.

On input, an I w.m edit specifier is treated identically to an I w edit specifier.

The output field for the I w edit specifier consists of:

• Zero or more leading blanks followed by

• Either a minus if the value is negative, or an optional plus, followed by

• The magnitude of the value in the form on an unsigned integer constant
without leading zeros

An integer constant always has at least one digit.

The output field for the I w.m edit specifier is the same as for the I w edit
specifier, except that the unsigned integer constant consists of at least m digits,
and, if necessary, has leading zeros. The value of m must not exceed the value
of w. If m is zero, and the value of the item is zero, the output field consists of
only blank characters, regardless of the sign control in effect.

Example: int1.f , integer input:

The program above displays:

I [w [. m]]

CHARACTER LINE*8 / '12345678' /
READ(LINE, '(I2, I3, I2)') I, J, K
PRINT *, I, J, K
END

 12 345 67

Input and Output 275

5

Example: int2.f , integer output:

The above program displays:

Logical Editing (L)

The L specifier is used for logical data items. The general form is:

The L w edit specifier indicates that the field occupies w positions. The
specified input/output list item must be of type LOGICAL. On input, the list
item becomes defined with a logical datum. On output, the specified list item
must be defined as a logical datum.

The input field consists of optional blanks, optionally followed by a decimal
point, followed by a T for true, or F for false. The T or F can be followed by
additional characters in the field. The logical constants, .TRUE. and
.FALSE., are acceptable as input. The output field consists of w-1 blanks
followed by a T for true, or F for false.

Example: log1.f , logical output:

N = 1234
PRINT 1, N, N, N, N

1 FORMAT(I6 / I4 / I2 / I6.5)
END

 1234
1234
**
01234

 L w

LOGICAL A*1 /.TRUE./, B*2 /.TRUE./, C*4 /.FALSE./
PRINT '(L1 / L2 / L4)', A, B, C
END

 276 FORTRAN 77 Reference Manual

5

The program above displays:

Example: log2.f , logical input:

The program above accepts any of the following as valid input data:

Octal and Hexadecimal Editing (O, Z)

The O and Z field descriptors for a FORMAT statement are for octal and
hexadecimal integers, respectively, but they can be used with any data type.♦

The general form is:

where w is the number of characters in the external field. For output, m, if
specified, determines the total number of digits in the external field; that is, if
there are fewer than m nonzero digits, the field is zero-filled on the left to a
total of m digits. m has no effect on input.

T
∆T
∆∆∆F

LOGICAL*4 A
1 READ '(L8)', A

PRINT *, A
GO TO 1
END

t true T TRUE .t .t. .T .T. .TRUE. TooTrue
f false F FALSE .f .F .F. .FALSE. Flakey

Ow[. m]

Zw[. m]

Input and Output 277

5

Octal and Hex Input
A READ, with the O or Z field descriptors in the FORMAT, reads in w characters
as octal or hexadecimal, respectively, and assigns the value to the
corresponding member of the I/O list.

Example: Octal input, the external data field is:

↑ column 1

The program that does the input is:

The above data and program result in the octal value 654321 being loaded into
the variable M. Further examples are included in the following table.

The general rules for octal and hex input are:

• For octal values, the external field can contain only numerals 0 through 7.

• For hexadecimal values, the external field can contain only numerals 0
through 9 and the letters A through F or a through f .

• Signs, decimal points, and exponent fields are not allowed.

• All-blank fields are treated as having a value of zero.

• If a data item is too big for the corresponding variable, an error message is
displayed.

654321

READ (*, 2) M
2 FORMAT (O6)

Table 5-6 Sample Octal/Hex Input Values

Format External Field Internal (Octal or Hex) Value

O4
O4
O3

1234 ∆
16234
97∆∆∆

1234
1623
Error: “9” not allowed

Z5
Z5
Z4

A23DE∆
A23DEF
95.AF2

A23DE
A23DE
Error: “.” not allowed

 278 FORTRAN 77 Reference Manual

5

Octal and Hex Output
A WRITE, with the O or Z field descriptors in the FORMAT, writes out values as
octal or hexadecimal integers, respectively. It writes to a field that is w
characters wide, right-justified.

Example: Hex output:

The program above displays A1 (161 decimal = A1 hex):

↑ column 2

Further examples are included in the following table.

The general rules for octal and hex output are:

• Negative values are written as if unsigned; no negative sign is printed.
• The external field is filled with leading spaces, as needed, up to the width w.
• If the field is too narrow, it is filled with asterisks.
• If m is specified, the field is left-filled with leading zeros, to a width of m.

M = 161
WRITE (*, 8) M

8 FORMAT (Z3)
END

∆A1

Table 5-7 Sample Octal/Hex Output Value

Format Internal (Decimal) Value External (Octal/Hex) Representation

O6
O2
O4.3
O4.4
O6

32767
14251
 27
 27
-32767

∆77777
 **

∆033
 0033
100001

Z4
Z3.3
Z6.4
Z5

32767
 2708
 2708
-32767

 7FFF
 A94
∆∆0A94
∆8001

Input and Output 279

5

Positional Editing (T, nT, TRn, TLn, nX)

For horizontal positioning along the print line, f77 supports the forms:

TRn, TLn, Tn, nT, T

where n is a strictly positive integer. The format specifier T can appear by itself,
or be preceded or followed by a positive nonzero number.

Tn—Absolute Columns
This tab reads from the nth column or writes to the nth column.

TLn—Relative Columns
This tab reads from the nth column to the left or writes to the nth column to the
left.

TRn—Relative Columns
This tab reads from the nth column to the right or writes to the nth column to
the right.

nTL—Relative Tab Stop
This tab tabs to the nth tab stop for both read and write. If n is omitted, this tab
uses n = 1 and tabs to the next tab stop.

TL—Relative Tab Stop
This tab tabs to the next tab stop for both read and write. It is the same as the
nTL with n omitted; it tabs to the next tab stop.

The rules and Restrictions for tabbing are:

• Tabbing right beyond the end of an input logical record is an error.

• Tabbing left beyond the beginning of an input logical record leaves the
input pointer at the beginning of the record.

• Nondestructive tabbing is implemented for both internal and external
formatted I/O. Nondestructive tabbing means that tabbing left or right on
output does not destroy previously written portions of a record.

 280 FORTRAN 77 Reference Manual

5

• Tabbing right on output causes unwritten portions of a record to be filled
with blanks.

• Tabbing left requires that the logical unit allows a seek . Therefore, it is not
allowed in I/O to or from a terminal or pipe.

• Likewise, nondestructive tabbing in either direction is possible only on a
unit that can seek. Otherwise, tabbing right or spacing with the X edit
specifier writes blanks on the output.

• Tab stops are hard-coded every eight columns.

nX—Positions
The nX edit specifier indicates that the transmission of the next character to or
from a record is to occur at the position n characters forward from the current
position.

On input, the nX edit specifier advances the record pointer by n positions,
skipping n characters.

A position beyond the last character of the record can be specified if no
characters are transmitted from such positions.

On output, the nX specifier writes n blanks.

The n defaults to 1.

Example: Input, Tn (absolute tabs):

demo% cat rtab.f
CHARACTER C*2, S*2
OPEN(1, FILE='mytab.data')
DO I = 1, 2

READ(1, 2) C, S
2 FORMAT(T5, A2, T1, A2)

PRINT *, C, S
END DO
END

demo%

Input and Output 281

5

The two-line data file is:

The run and the output are:

The above example first reads columns 5 and 6, then columns 1 and 2.

Example: Output Tn (absolute tabs); this program writes an output file:

The output file is:

The above example writes 20 characters, then changes columns 10 and 20.

demo% cat mytab.data
defguvwx
12345678
demo%

demo% a.out
uvde
5612
demo%

demo% cat otab.f
CHARACTER C*20 / "12345678901234567890" /
OPEN(1, FILE=’mytab.rep’)
WRITE(1, 2) C, ":", ":"

2 FORMAT(A20, T10, A1, T20, A1)
END

demo%

demo% cat mytab.rep
123456789:123456789:
demo%

 282 FORTRAN 77 Reference Manual

5

Example: Input, TRn and TL n (relative tabs)—the program reads:

The two-line data file is:

The run and the output are:

The above example reads column 1, then tabs right 5 to column 7, then tabs left
4 to column 4.

demo% cat rtabi.f
CHARACTER C, S, T
OPEN(1, FILE='mytab.data')
DO I = 1, 2

READ(1, 2) C, S, T
2 FORMAT(A1, TR5, A1, TL4, A1)

PRINT *, C, S, T
END DO
END

demo%

demo% cat mytab.data
defguvwx
12345678
demo%

demo% a.out
dwg
174
demo%

Input and Output 283

5

Example: Output TR n and TL n (relative tabs)—this program writes an output
file:

The run shows nothing, but you can list the mytab.rep output file:

The above program writes 20 characters, tabs left 11 to column 10, then tabs
right 9 to column 20.

Quotes Editing ("aaa")

The quotes edit specifier is in the form of a character constant.♦ It causes
characters to be written from the enclosed characters of the edit specifier itself,
including blanks. A quotes edit specifier must not be used on input.

The width of the field is the number of characters contained in, but not
including, the delimiting quotes. Within the field, two consecutive quotes with
no intervening blanks are counted as a single quote. You can use apostrophes
in a similar way.

Example: quote.f (two equivalent ways):

demo% cat rtabo.f
CHARACTER C*20 / "12345678901234567890" /
OPEN(1, FILE='rtabo.rep')
WRITE(1, 2) C, ":", ":"

2 FORMAT(A20, TL11, A1, TR9, A1)
END

demo%

demo% cat rtabo.rep
123456789:123456789:
demo%

WRITE(*, 1)
1 FORMAT('This is a quote ".')

WRITE(*, 2)
2 FORMAT("This is a quote "".")

END

 284 FORTRAN 77 Reference Manual

5

This program writes this message twice: This is a quote ".

Radix Control (R)

The format specifier is R or nR, where 2 ≤ n ≤36. ♦ If n is omitted, the default
decimal radix is restored.

You can specify radixes other than 10 for formatted integer I/O conversion.
The specifier is patterned after P, the scale factor for floating-point conversion.
It remains in effect until another radix is specified or format interpretation is
complete. The I/O item is treated as a 32-bit integer.

Example: Radix 16—the format for an unsigned, hex, integer, 10 places wide,
zero-filled to 8 digits, is (su, 16r, I10.8) , as in:

Real Editing (D, E, F, G)

The D, E, F, and G specifiers are for decimal real data items.

D Editing
The D specifier is for the exponential form of decimal double-precision items.
The general form is:

The D w and D w.d edit specifiers indicate that the field to be edited occupies w
positions. d indicates that the fractional part of the number (the part to the
right of the decimal point) has d digits. However, if the input datum contains a
decimal point, that decimal point overrides the d value.

SU is described in the section,
“Sign Editing (SU, SP, SS, S)."

demo% cat radix.f
integer i / 110 /
write(*, 1) i

1 format(su, 16r, I10.8)
end

demo% f77 -silent radix.f
demo% a.out
∆∆0000006e
demo%

D [w [. d]]

Input and Output 285

5

On input, the specified list item becomes defined with a real datum. On
output, the specified list item must be defined as a real datum.

In an output statement, the D edit descriptor does the same thing as the E edit
descriptor, except that a D is used in place of an E. The output field for the D
w.d edit specifier has the width w. The value is right-justified in that field. The
field consists of zero or more leading blanks followed by either a minus if the
value is negative, or an optional plus, followed by the magnitude of the value
of the list item rounded to d decimal digits.

w must allow for a minus sign, at least one digit to the left of the decimal point,
the decimal point, and d digits to the right of the decimal point. Therefore, it
must be the case that w ≥ w+3.

Example: Real input with D editing in the program, Dinp.f :

The above program displays:

In the above example, the first input data item has no decimal point, so D8.3
determines the decimal point. The other input data items have decimal points,
so those decimal points override the D edit descriptor as far as decimal points
are concerned.

Example: Real output with D editing in the program Dout.f :

CHARACTER LINE*24 / '12345678 23.5678 .345678' /
READ(LINE, '(D8.3, D8.3, D8.3)') R, S, T
PRINT '(D10.3, D11.4, D13.6)', R, S, T
END

0.123D+05 0.2357D+02 0.345678D+00

R = 1234.678
PRINT 1, R, R, R

1 FORMAT(D9.3 / D8.4 / D13.4)
END

 286 FORTRAN 77 Reference Manual

5

The above program displays:

In the above example, the second printed line is asterisks because the D8.4
does not allow for the sign; in the third printed line the D13.4 results in three
leading blanks.

E Editing
The E specifier is for the exponential form of decimal real data items. The
general form is:

w indicates that the field to be edited occupies w positions.

d indicates that the fractional part of the number (the part to the right of the
decimal point) has d digits. However, if the input datum contains a decimal
point, that decimal point overrides the d value.

e indicates the number of digits in the exponent field. The default is 2.

The specified input/output list item must be of type real. On input, the
specified list item becomes defined with a real datum. On output, the specified
list item must be defined as a real datum.

The output field for the E w.d edit specifier has the width w. The value is right-
justified in that field. The field consists of zero or more leading blanks followed
by either a minus if the value is negative, or an optional plus, followed by a
zero, a decimal point, the magnitude of the value of the list item rounded to d
decimal digits, and an exponent.

For the form Ew. d:

• If | exponent | ≤ 99, it has the form E±nn or 0±nn.
• If 99 ≤ | exponent | ≤ 999, it has the form ±nnn.

0.123D+04

∆∆∆0.1235D+04

 E [w [. d] [E e]]

Input and Output 287

5

For the form Ew. dEe, if | exponent | ≤ (10e) - 1, then the exponent has the
form ±nnn.

For the form Dw. d:

• If | exponent | ≤ 99, it has the form D±nn or E±nn or 0±nn.
• If 99 ≤ | exponent | ≤ 999, it has the form ±nnn.

n is any digit.

The sign in the exponent is required.

w need not allow for a minus sign, but must allow for a zero, the decimal
point, and d digits to the right of the decimal point, and an exponent.
Therefore, for nonnegative numbers, w ≥ d+6; if e is present, then w ≥ d+e+4.
For negative numbers, w ≥ d+7; if e is present, then w ≥ d+e+5.

Example: Real input with E editing in the program, Einp.f :

The above program displays:

In the above example, the first input data item has no decimal point, so E9.3
determines the decimal point. The other input data items have decimal points,
so those decimal points override the D edit descriptor as far as decimal points
are concerned.

Example: Real output with E editing in the program Eout.f :

* 123456789 23456789012 23456789012
CHARACTER L*40/'1234567E2 1234.67E-3 12.4567 '/
READ(L, '(E9.3, E12.3, E12.6)') R, S, T
PRINT '(E15.6, E15.6, E15.7)', R, S, T
END

∆∆∆0.123457E+06 ∆∆∆0.123467E+01 ∆∆0.1245670E+02

R = 1234.678
PRINT 1, R, R, R

1 FORMAT(E9.3 / E8.4 / E13.4)
END

 288 FORTRAN 77 Reference Manual

5

The above program displays:

In the above example, E8.4 does not allow for the sign, so we get asterisks.
Also, the extra wide field of the E13.4 results in three leading blanks.

Example: Real output with Ew.dEe editing in the program EwdEe.f :

The above program displays:

F Editing
The F specifier is for decimal real data items. The general form is:

The Fw and Fw.d edit specifiers indicate that the field to be edited occupies w
positions.

d indicates that the fractional part of the number (the part to the right of the
decimal point) has d digits. However, if the input datum contains a decimal
point, that decimal point overrides the d value.

The specified input/output list item must be of type real. On input, the
specified list item becomes defined with a real datum. On output, the specified
list item must be defined as a real datum.

0.123E+04

∆∆∆0.1235E+04

REAL X / 0.000789 /
WRITE(*,'(E13.3)') X
WRITE(*,'(E13.3E4)') X
WRITE(*,'(E13.3E5)') X
END

∆∆∆∆0.789E-03
∆∆0.789E-0003
∆0.789E-00003

 F [w [. d]]

Input and Output 289

5

The output field for the F w.d edit specifier has the width w. The value is right-
justified in that field. The field consists of zero or more leading blanks followed
by either a minus if the value is negative, or an optional plus, followed by the
magnitude of the value of the list item rounded to d decimal digits.

w must allow for a minus sign, at least one digit to the left of the decimal point,
the decimal point, and d digits to the right of the decimal point. Therefore, it
must be the case that w ≥ d+3.

Example: Real input with F editing in the program Finp.f :

The program displays:

In the above example, the first input data item has no decimal point, so F8.3
determines the decimal point. The other input data items have decimal points,
so those decimal points override the F edit descriptor as far as decimal points
are concerned.

Example: Real output with F editing in the program Fout.f :

The above program displays:

CHARACTER LINE*24 / '12345678 23.5678 .345678' /
READ(LINE, '(F8.3, F8.3, F8.3)') R, S, T
PRINT '(F9.3, F9.4, F9.6)', R, S, T
END

12345.678DD23.5678D0.345678

R = 1234.678
PRINT 1, R, R, R

1 FORMAT(F9.3 / F8.4 / F13.4)
END

∆1234.678

∆∆∆∆1234.6780

 290 FORTRAN 77 Reference Manual

5

In the above example, F8.4 does not allow for the sign; F13.4 results in four
leading blanks and one trailing zero.

G Editing
The G specifier is for decimal real data items. The general form is:

The D, E, F, and G edit specifiers interpret data in the same way.

The representation for output by the G edit descriptor depends on the
magnitude of the internal datum. In the following table, N is the magnitude of
the internal datum.

Commas in Formatted Input
If you are entering numeric data that is controlled by a fixed-column format,
then you can use commas to override any exacting column restrictions.

Example: Format:

Using the above format reads the following record correctly:

G [w [. d]]

or:

G w. d E e

Range Form

 0.1 ≤ N < 1.0
 1.0 ≤ N < 10.0
…
 10 (d-2) ≤ N ≤ 10(d-1)

 10 (d-1) ≤ N < 10d

 F (w-4).d, n(∆)
 F (w-4).(d-1), n(∆)
…
 F (w-4).1, n(∆)
 F (w-4).0, n(∆)

(I10, F20.10, I4)

–345,.05e–3,12

Input and Output 291

5

The I/O system is just being more lenient than described in the FORTRAN 77
Standard. In general, when doing a formatted read of noncharacter variables,
commas override field lengths. More precisely, for the I w, Fw.d, Ew.d[Ee], and
Gw.d input fields, the field ends when w characters have been scanned, or a
comma has been scanned, whichever occurs first. If it is a comma, the field
consists of the characters up to, but not including, the comma; the next field
begins with the character following the comma.

Remaining Characters (Q)

The Q edit descriptor gets the length of an input record or the remaining
portion of it that is unread. ♦ It gets the number of characters remaining to be
read from the current record.

Example: From a real and a string, get: real, string length, and string:

The above program reads a field into the variable R, then reads the number of
characters remaining after that field into L, then reads L characters into CVECT.
Q as the nth edit descriptor matches with L as the nth element in the READ list.

demo% cat qed1.f
* qed1.f Q edit descriptor (real & string)

CHARACTER CVECT(80)*1
OPEN (UNIT=4, FILE='qed1.data')
READ (4, 1) R, L, (CVECT(I), I=1,L)

1 FORMAT (F4.2, Q, 80 A1)
WRITE (*, 2) R, L, '"', (CVECT(I),I=1,L), '"'

2 FORMAT (1X, F7.2, 1X, I2, 1X, 80A1)
END

demo% cat qed1.data
8.10qwerty
demo% f77 qed1.f -o qed1
qed1.f:
 MAIN:
demo% qed1
 8.10 6 "qwerty"
demo%

 292 FORTRAN 77 Reference Manual

5

Example: Get length of input record; put the Q descriptor first:

The above example gets the length of the input record. With the whole input
string and its length, you can then parse it yourself.

Several restrictions on the Q edit descriptor apply:

• The list element Q corresponds to must be of INTEGER or LOGICAL data
type.

• Q does strictly a character count. It gets the number of characters remaining
in the input record, and does not get the number of integers or reals or
anything else.

• The Q edit descriptor cannot be applied for pipe files, as Q edit requires that
the file be rereadable.

• This descriptor operates on files and stdin (terminal) input.

• This descriptor is ignored for output.

Scale Factor (P)

The P edit descriptor scales real input values by a power of 10. It also gives
you more control over the significant digit displayed for output values.

demo% cat qed2.f
CHARACTER CVECT(80)*1
OPEN (UNIT=4, FILE='qed2.data')
READ (4, 1) L, (CVECT(I), I=1,L)

1 FORMAT (Q, 80A1)
WRITE (*, 2) L, '"', (CVECT(I),I=1,L), '"'

2 FORMAT (1X, I2, 1X, 80A1)
END

demo% cat qed2.data
qwerty
demo% f77 qed2.f -o qed2
qed2.f:
 MAIN:
demo% qed2
 6 "qwerty"
demo%

Input and Output 293

5

The general form is:

k is called the scale factor, and the default value is zero.

Example: I/O statements with scale factors:

P by itself is equivalent to 0P. It resets the scale factor to the default value 0P.
This P by itself is nonstandard.

Scope
The scale factor is reset to zero at the start of execution of each I/O statement.
The scale factor can have an effect on D, E, F, and G edit descriptors.

Input
On input, any external datum that does not have an exponent field is divided
by 10k before it is stored internally.

Input examples: Showing data, scale factors, and resulting value stored:

Output
On output, with D, and E descriptors, and with G descriptors if the E editing is
required, the internal item gets its basic real constant part multiplied by 10k,
and the exponent is reduced by k before it is written out.

On output with the F descriptor and with G descriptors, if the F editing is
sufficient, the internal item gets its basic real constant part multiplied by 10k

before it is written out.

[k] P

k Integer constant, with an optional sign

READ (1, '(3P E8.2)') X
WRITE (1, '(1P E8.2)') X

Data 18.63 18.63 18.63E2 18.63

Format E8.2 3P E8.2 3P E8.2 -3P E8.2

Memory 18.63 .01863 18.63E2 18630.

 294 FORTRAN 77 Reference Manual

5

Output Examples: Showing value stored, scale factors, and resulting output:

Sign Editing (SU, SP, SS, S)

The SU, SP, and S edit descriptors control leading signs for output. For normal
output, without any specific sign specifiers, if a value is negative, a minus sign
is printed in the first position to the left of the leftmost digit; if the value is
positive, printing a plus sign depends on the implementation, but f77 omits
the plus sign.

The following sign specifiers are available:

• SP—If SP precedes a specification, a sign is printed.

• SS—If SS precedes a specification, plus-sign printing is suppressed.

• S—If S precedes a specification, the system default is restored. The default is
SS.

• SU—If SU precedes a specification, integer values are interpreted as
unsigned. This is nonstandard. ♦

For example, the unsigned specifier can be used with the radix specifier to
format a hexadecimal dump, as follows:

The rules and restrictions for sign control are:

• Sign-control specifiers apply to output only.

• A sign-control specifier remains in effect until another sign-control specifier
is encountered, or format interpretation is complete.

• The S, SP, and SS specifiers affect only I , F, E, D, and G editing.

• The SU specifier affects only I editing.

Memory 290.0 290.0 290.0 290.0

Format 2P E9.3 1P E9.3 -1P E9.3 F9.3

Display 29.00E+01 2.900E+02 0.029E+04 0.290E+03

2000 FORMAT(SU, 16R, 8I10.8)

Input and Output 295

5

Slash Editing (/)

The slash (/) edit specifier indicates the end of data transfer on the current
record.

Sequential Access
On input, any remaining portion of the current record is skipped, and the file is
positioned at the beginning of the next record. Two successive slashes (//) skip
a whole record.

On output, an end-of-record is written, and a new record is started. Two
successive slashes (//) produce a record of no characters. If the file is an
internal file, that record is filled with blanks.

Direct Access
Each slash increases the record number by one, and the file is positioned at the
start of the record with that record number.

On output, two successive slashes (//) produce a record of no characters, and
that record is filled with blanks.

Termination Control (:)

The colon (:) edit descriptor allows for conditional termination of the format.
If the I/O list is exhausted before the format, then the format terminates at the
colon.

Example: Termination control:

* col1.f The colon (:) edit descriptor
DATA INIT / 3 /, LAST / 8 /
WRITE (*, 2) INIT
WRITE (*, 2) INIT, LAST

2 FORMAT (1X 'INIT = ', I2, :, 3X, 'LAST = ', I2)
END

 296 FORTRAN 77 Reference Manual

5

The above program produces output like the following

Without the colon, the output is more like this:

Runtime Formats

You can put the format specifier into an object that you can change during
execution. Doing so improves flexibility. There is some increase in execution
time because this kind of format specifier is parsed every time the I/O
statement is executed. These are also called variable formats.

The object must be one of the following kinds:

• Character expression—The character expression can be a scalar, an array, an
element of an array, a substring, a field of a structured record ♦, the
concatenation of any of the above, and so forth.

• Integer array ♦—The integer array can get its character values by a DATA
statement, an assignment statement, a READ statement, and so forth.

You must provide the delimiting left and right parentheses, but not the word
FORMAT, and not a statement number.

You must declare the object so that it is big enough to hold the entire format.
For instance, '(8X,12I)' does not fit in an INTEGER*4 or a CHARACTER*4
object.

INIT = 3
INIT = 3 LAST = 8

INIT = 3 LAST =
INIT = 3 LAST = 8

Input and Output 297

5

Examples: Runtime formats in character expressions and integer arrays:

Variable Format Expressions (<e>)

In general, inside a FORMAT statement, any integer constant can be replaced by
an arbitrary expression. ♦

demo% cat runtim.f
CHARACTER CS*8
CHARACTER CA(1:7)*1 /'(','1','X',',','I','2',')'/
CHARACTER S(1:7)*6
INTEGER*4 IA(2)
STRUCTURE / STR /

CHARACTER*4 A
INTEGER*4 K

END STRUCTURE
CHARACTER*8 LEFT, RIGHT
RECORD /STR/ R
N = 9
CS = '(I8)'
WRITE(*, CS) N ! Character Scalar
CA(2) = '6'
WRITE(*, CA) N ! Character Array
S(2) = '(I8)'
WRITE(*, S(2)) N ! Element of Character Array
IA(1) = '(I8)'
WRITE(*, IA) N ! Integer Array
R.A = '(I8)'
WRITE(*, R.A) N ! Field Of Record
LEFT = '(I'
RIGHT = '8)'
WRITE(*, LEFT // RIGHT) N ! Concatenate
END

demo% f77 -silent runtim.f
demo% a.out
 9
 9
 9
 9
 9
 9
demo%

 298 FORTRAN 77 Reference Manual

5

The expression itself must be enclosed in angle brackets.

For example, the 6 in:

can be replaced by the variable N, as in:

or by the slightly more complicated expression 2*N+M, as in:

Similarly, the 3 or 1 can be replaced by any expression.

The single exception is the n in an nH… edit descriptor.

The rules and restrictions for variable format expressions are:

• The expression is reevaluated each time it is encountered in a format scan.
• If necessary, the expression is converted to integer type.
• Any valid FORTRAN 77 expression is allowed, including function calls.
• Variable expressions are not allowed in formats generated at runtime.
• The n in an nH… edit descriptor cannot be a variable expression.

5.5 Unformatted I/O
Unformatted I/O is used to transfer binary information to or from memory
locations without changing its internal representation. Each execution of an
unformatted I/O statement causes a single logical record to be read or written.
Since internal representation varies with different architectures, unformatted
I/O is limited in its portability.

You can use unformatted I/O to write data out temporarily, or to write data
out quickly for subsequent input to another FORTRAN 77 program running on
a machine with the same architecture.

1 FORMAT(3F6.1)

1 FORMAT(3F<N>.1)

1 FORMAT(3F<2*N+M>.1)

Input and Output 299

5

Sequential Access I/O

Logical record length for unformatted, sequential files is determined by the
number of bytes required by the items in the I/O list. The requirements of this
form of I/O cause the external physical record size to be somewhat larger than
the logical record size.

Example:

The FORTRAN 77 runtime system embeds the record boundaries in the data
by inserting an INTEGER*4 byte count at the beginning and end of each
unformatted sequential record during an unformatted sequential WRITE. The
trailing byte count enables BACKSPACE to operate on records. The result is that
FORTRAN 77 programs can use an unformatted sequential READ only on data
that was written by an unformatted sequential WRITE operation. Any attempt
to read such a record as formatted would have unpredictable results.

Here are some guidelines:

• Avoid using the unformatted sequential READ unless your file was written
that way.

• Because of the extra data at the beginning and end of each unformatted
sequential record, you might want to try using the unformatted direct I/O
whenever that extra data is significant. It is more significant with short
records than with very long ones.

Direct Access I/O

If your I/O lists are different lengths, you can OPEN the file with the RECL=1
option. This signals FORTRAN 77 to use the I/O list to determine how many
items to read or write.

For each read, you still must tell it the initial record to start at, in this case
which byte, so you must know the size of each item. ♦

A simple example follows.

WRITE(8) A, B

 300 FORTRAN 77 Reference Manual

5

Example: Direct access—write 3 records, 2 integers each:

Example: Direct access—read 3 records, 2 integers each:

Example: Direct-access read, variable-length records, recl=1 :

demo% cat Direct1.f
integer u/4/, v /5/, w /6/, x /7/, y /8/, z /9/
open(1, access='DIRECT', recl=8)
write(1, rec=1) u, v
write(1, rec=2) w, x
write(1, rec=3) y, z
end

demo% f77 -silent Direct1.f
demo% a.out
demo%

If you know record length is n,
then you can use the recl= n
option.

Here you read it as it was
written.

This method is simpler, easier,
and better.

demo% cat Direct2.f
integer u, v, w, x, y, z
open(1, access='DIRECT', recl=8)
read(1, rec=1) u, v
read(1, rec=2) w, x
read(1, rec=3) y, z
write(*,*) u, v, w, x, y, z
end

demo% f77 -silent Direct2.f
demo% a.out
 4 5 6 7 8 9
demo%

If you know the size of each item,
but not the record length, then
you can use the recl=1 option.

Here you can read it using
different record lengths than it
was written with.

This method is trickier.

demo% cat Direct3.f
integer u, v, w, x, y, z
open(1, access='DIRECT', recl=1)
read(1, rec=1) u, v, w
read(1, rec=13) x, y, z
write(*,*) u, v, w, x, y, z
end

demo% f77 -silent Direct3.f
demo% a.out
 4 5 6 7 8 9
demo%

Input and Output 301

5

In the above example, after reading 3 integers (12 bytes), you start the next
read at record 13.

5.6 List-Directed I/O
List-directed I/O is a free-form I/O for sequential access devices. To get it, use
an asterisk as the format identifier, as in:

Note these rules for list-directed input:

• On input, values are separated by strings of blanks and, possibly, a comma.

• Values, except for character strings, cannot contain blanks.

• Character strings can be quoted strings, using pairs of quotes ("), pairs of
apostrophes ('), or unquoted strings (see “Unquoted Strings”), but not
hollerith (nHxyz) strings.

• End-of-record counts as a blank, except in character strings, where it is
ignored.

• Complex constants are given as two real constants separated by a comma
and enclosed in parentheses.

• A null input field, such as between two consecutive commas, means that the
corresponding variable in the I/O list is not changed.

• Input data items can be preceded by repetition counts, as in:

The above input stands for 4 complex constants, 2 null input fields, and 4
string constants.

• A slash (/) in the input list terminates assignment of values to the input list
during list-directed input, and the remainder of the current input line is
skipped. Any text that follows the slash is ignored and can be used to
comment the data line.

READ(6, *) A, B, C

4*(3.,2.) 2*, 4*'hello'

 302 FORTRAN 77 Reference Manual

5

Output Format

List-directed output provides a quick and easy way to print output without
fussing with format details. If you need exact formats, use formatted I/O. A
suitable format is chosen for each item, and where a conflict exists between
complete accuracy and simple output form, the simple form is chosen.

Note these rules for list-directed output:

• In general, each record starts with a blank space. For a print file, that blank
is not printed. See “Printing Files,” for details. ♦

• Character strings are printed as is. They are not enclosed in quotes, so only
certain forms of strings can be read back using list-directed input. These
forms are described in the next section.

• A number with no exact binary representation is rounded off.

Example: No exact binary representation:

In the above example, if you need accuracy, specify the format.

Also note:

• Output lines longer than 80 characters are avoided where possible.

• Complex and double complex values include an appropriate comma.

• Real, double, and quadruple precision values are formatted differently.

demo% cat lis5.f
READ (5, *) X
WRITE(6, *) X, ' beauty'
WRITE(6, 1) X

1 FORMAT(1X, F13.8, ' truth')
END

demo% f77 lis5.f
lis5.f:
 MAIN:
demo% a.out
1.4
 1.40000000 beauty
 1.39999998 truth
demo%

Input and Output 303

5

• A backslash-n (\n) in a character string is output as a carriage return, unless
the –xl option is on, and then it is output as a backslash-n(\n).

Example: List-directed I/O and backslash-n, with and without -xl :

Without –xl , \n prints as a carriage return:

With –xl , \n prints as a character string:

demo% cat f77 bslash.f
CHARACTER S*8 / '12\n3' /
PRINT *, S
END

demo%

demo% f77 -silent bslash.f
demo% a.out
12
3
demo%

demo% f77 -xl -silent bslash.f
demo% a.out
12\n3
demo%

 304 FORTRAN 77 Reference Manual

5

Unquoted Strings

f77 list-directed I/O allows reading of a string not enclosed in quotes. ♦

The string must not start with a digit, and cannot contain separators (commas
or slashes (/)) or whitespace (spaces or tabs). A newline terminates the string
unless escaped with a backslash (\). Any string not meeting the above
restrictions must be enclosed in single or double quotes.

Example: List-directed input of unquoted strings:

Table 5-8 Default Formats for List-Directed Output

Type Format

BYTE
CHARACTER*n
COMPLEX
COMPLEX*16
COMPLEX*32 (SPARC only)
INTEGER*2
INTEGER*4
INTEGER*8
LOGICAL*1
LOGICAL*2
LOGICAL*4
LOGICAL*8
REAL
REAL*8
REAL*16 (SPARC only)

Two blanks followed by the number
An {n = length of character expression}
' ∆∆(', 1PE14.5E2, ',', 1PE14.5E2, ')'
' ∆∆(', 1PE22.13.E2, ',', 1PE22.13.E2, ')'
' ∆∆(', 1PE44.34E3, ',', 1PE44.34E3, ')'
Two blanks followed by the number
Two blanks followed by the number
Two blanks followed by the number
Two blanks followed by the number
L3
L3
L3
1PE14.5E2
1PE22.13.E2
1PE44.34E4

CHARACTER C*6, S*8
READ *, I, C, N, S
PRINT *, I, C, N, S
END

Input and Output 305

5

 The above program, unquoted.f , reads and displays as follows:

Internal I/O

f77 extends list-directed I/O to allow internal I/O. ♦

During internal, list-directed reads, characters are consumed until the input list
is satisfied or the end-of-file is reached. During internal, list-directed writes,
records are filled until the output list is satisfied. The length of an internal
array element should be at least 20 characters to avoid logical record overflow
when writing double-precision values. Internal, list-directed read was
implemented to make command line decoding easier. Internal, list-directed
output should be avoided.

5.7 NAMELIST I/O
NAMELIST I/O produces format-free input or output of whole groups of
variables, or input of selected items in a group of variables. ♦

The NAMELIST statement defines a group of variables or arrays. It specifies a
group name, and lists the variables and arrays of that group.

Syntax Rules

The syntax of the NAMELIST statement is:

demo% a.out
23 label 82 locked
 23label 82locked
demo%

NAMELIST / group-name/ namelist[[,]/ group-name/namelist] …

group-name Identifier

namelist List of variables or arrays, separated by commas

 306 FORTRAN 77 Reference Manual

5

Example: NAMELIST statement:

A variable or array can be listed in more than one NAMELIST group.

The input data can include array elements and strings. It can include
substrings in the sense that the input constant data string can be shorter than
the declared size of the variable.

Restrictions

group name can appear in only the NAMELIST, READ, or WRITE statements, and
must be unique for the program.

list cannot include constants, dummy arguments, array elements, structures,
substrings, records, record fields, pointers, or pointer-based variables.

Example: A variable in two NAMELIST groups:

In the above example, DELTA is in the group CASE and in the group GRID.

Output Actions

NAMELIST output uses a special form of WRITE statement, which makes a
report that shows the group name. For each variable of the group, it shows the
name and current value in memory. It formats each value according to the type
of each variable, and writes the report so that NAMELIST input can read it.

CHARACTER*18 SAMPLE
LOGICAL*4 NEW
REAL*4 DELTA
NAMELIST /CASE/ SAMPLE, NEW, DELTA

REAL ARRAY(4,4)
CHARACTER*18 SAMPLE
LOGICAL*4 NEW
REAL*4 DELTA
NAMELIST /CASE/ SAMPLE, NEW, DELTA
NAMELIST /GRID/ ARRAY, DELTA

Input and Output 307

5

 The syntax of NAMELIST WRITE is:

where namelist-specifier has the form:

and group-name has been previously defined in a NAMELIST statement.

The NAMELIST WRITE statement writes values of all variables in the group, in
the same order as in the NAMELIST statement.

Example: NAMELIST output:

↑ column 2

Note that if you do omit the keyword NML then the unit parameter must be
first, namelist-specifier must be second, and there must not be a format specifier.

WRITE (extu, namelist-specifier [, iostat] [, err])

[NML=] group-name

demo% cat nam1.f
* nam1.f Namelist output

CHARACTER*8 SAMPLE
LOGICAL*4 NEW
REAL*4 DELTA
NAMELIST /CASE/ SAMPLE, NEW, DELTA
DATA SAMPLE /'Demo'/, NEW /.TRUE./, DELTA /0.1/
WRITE (*, CASE)
END

demo% f77 nam1.f
f77 nam1.f
nam1.f:
 MAIN:
demo% a.out
∆&case sample= Demo , new= T, delta= 0.100000
∆&end
demo%

 308 FORTRAN 77 Reference Manual

5

The WRITE can have the form of the following example:

Input Actions

The NAMELIST input statement reads the next external record, skipping over
column one, and looking for the symbol $ in column two or beyond, followed
by the group name specified in the READ statement.

If the $group-name is not found, the input records are read until end of file.

The records are input and values assigned by matching names in the data with
names in the group, using the data types of the variables in the group.

Variables in the group that are not found in the input data are unaltered.

 The syntax of NAMELIST READ is:

where namelist-specifier has the form:

and group-name has been previously defined in a NAMELIST statement.

Example: NAMELIST input:

WRITE (UNIT=6, NML=CASE)

READ (extu, namelist-specifier [, iostat] [, err] [, end])

[NML=] group-name

CHARACTER*14 SAMPLE
LOGICAL*4 NEW
REAL*4 DELTA, MAT(2,2)
NAMELIST /CASE/ SAMPLE, NEW, DELTA, MAT
READ (1, CASE)

Input and Output 309

5

In this example, the group CASE consists of the variables, SAMPLE, NEW, DELTA,
and MAT. If you do omit the keyword NML, then you must also omit the
keyword UNIT. The unit parameter must be first, namelist-specifier must be
second, and there must not be a format specifier.

The READ can have the form of the following example:

Data Syntax

The first record of NAMELIST input data has the special symbol $ (dollar sign)
in column two or beyond, followed by the NAMELIST group name. This is
followed by a series of assignment statements, starting in or after column two,
on the same or subsequent records, each assigning a value to a variable (or one
or more values to array elements) of the specified group. The input data is
terminated with another $ in or after column two, as in the pattern:

You can alternatively use an ampersand (&) in place of each dollar sign, but the
beginning and ending delimiters must match. END is an optional part of the
last delimiter.

The input data assignment statements must be in one of the following forms:

If an array is subscripted, it must be subscripted with the appropriate number
of subscripts: 1, 2, 3,…

READ (UNIT=1, NML=CASE)

∆$group-name variable=value [, variable=value,…] $[END]

variable=value

array=value1[, value2,]…

array(subscript)=value1[, value2,]…

array(subscript,subscript)=value1[, value2,]…

variable=character constant

variable(index:index)=character constant

 310 FORTRAN 77 Reference Manual

5

Use quotes (either " or ') to delimit character constants. For more on character
constants, see the next section.

The following is sample data to be read by the program segment above:

 ↑ column 2

The data could be on several records:

↑ column 2

Syntax Rules
The following syntax rules apply for input data to be read by NAMELIST:

• The variables of the named group can be in any order, and any can be
omitted.

• The data must start in or after column two. Column one is totally ignored.

• There must be at least one comma, space, or tab between variables, and one
or more spaces or tabs are the same as a single space. Consecutive commas
are not permitted before a variable name. Spaces before or after a comma
have no effect.

• No spaces or tabs are allowed inside a group name or a variable name,
except around the commas of a subscript, around the colon of a substring,
and after the (and before the) marks. No name can be split over two
records.

• The end of a record acts like a space character.

∆$case delta=0.05, mat(2, 2) = 2.2, sample='Demo' $

Here NEW was not input, and the
order is not the same as in the
example NAMELIST statement.

∆$case
∆delta=0.05
∆mat(2, 2) = 2.2
∆sample='Demo'
∆$

Input and Output 311

5

Note an exception—in a character constant, it is ignored, and the character
constant is continued with the next record. The last character of the current
record is immediately followed by the second character of the next record.
The first character of each record is ignored.

• The equal sign of the assignment statement can have zero or more blanks or
tabs on each side of it.

• Only constant values can be used for subscripts, range indicators of
substrings, and the values assigned to variables or arrays. You cannot use a
symbolic constant (parameter) in the actual input data.

Hollerith, octal, and hexadecimal constants are not permitted.

Each constant assigned has the same form as the corresponding
FORTRAN 77 constant.

There must be at least one comma, space, or tab between constants. Zero or
more spaces or tabs are the same as a single space. You can enter:
1,2,3 , or 1 2 3 , or 1, 2, 3 , and so forth.

Inside a character constant, consecutive spaces or tabs are preserved, not
compressed.

A character constant is delimited by apostrophes (') or quotes ("), but if you
start with one of those, you must finish that character constant with the
same one. If you use the apostrophe as the delimiter, then to get an
apostrophe in a string, use two consecutive apostrophes.

Example: Character constants:

A complex constant is a pair of real or integer constants separated by a comma
and enclosed in parentheses. Spaces can occur only around the punctuation.

A logical constant is any form of true or false value, such as .TRUE. or
.FALSE. , or any value beginning with .T, .F , and so on.

∆sample='use "$" in 2' (Goes in as: use $ in 2)
∆sample='don''t' (Goes in as: don't)
∆sample="don''t" (Goes in as: don''t)
∆sample="don't" (Goes in as: don't)

 312 FORTRAN 77 Reference Manual

5

A null data item is denoted by two consecutive commas, and it means the
corresponding array element or complex variable value is not to be changed.
Null data item can be used with array elements or complex variables only. One
null data item represents an entire complex constant; you cannot use it for
either part of a complex constant.

Example: NAMELIST input with some null data:

The data for nam2.f is:

 ↑ column 2 ↑ 5 consecutive commas

This code loads 9s into row 1, skips 4 elements, and loads 8s into row 3 of
ARRAY.

Arrays Only
The forms r* c and r* can be used only with an array.

The form r*c stores r copies of the constant c into an array, where r is a nonzero,
unsigned integer constant, and c is any constant.

Example: NAMELIST with repeat-factor in data:

* nam2.f Namelist input with consecutive commas
REAL ARRAY(4,4)
NAMELIST /GRID/ ARRAY
WRITE (*, *) 'Input?'
READ (*, GRID)
WRITE (*, GRID)
END

∆$GRID ARRAY = 9,9,9,9,,,,,8,8,8,8 $

* nam3.f Namelist "r*c" and "r* "
REAL PSI(10)
NAMELIST /GRID/ PSI
WRITE (*, *) 'Input?'
READ (*, GRID)
WRITE (*, GRID)
END

Input and Output 313

5

The input for nam3.f is:

↑ column 2

The program, nam3.f , reads the above input and loads 980.0 into the first 5
elements of the array PSI .

• The form r* skips r elements of an array (that is, does not change them),
where r is an unsigned integer constant.

Example: NAMELIST input with some skipped data.

The other input is:

 ↑ column 2

The program, nam3.f , with the above input, skips the first 3 elements and
loads 980.0 into elements 4,5,6,7,8 of PSI .

Name Requests

If your program is doing NAMELIST input from the terminal, you can request
the group name and NAMELIST names that it accepts.

To do so, enter a question mark (?) in column two and press Return. The group
name and variable names are then displayed. The program then waits again
for input.

∆$GRID PSI = 5*980 $

∆$GRID PSI = 3* 5*980 $

 314 FORTRAN 77 Reference Manual

5

Example: Requesting names:

 ↑ column 2

User input 1 →

User input 2 →

demo% cat nam4.f
* nam4.f Namelist: requesting names

CHARACTER*14 SAMPLE
LOGICAL*4 NEW
REAL*4 DELTA
NAMELIST /CASE/ SAMPLE, NEW, DELTA
WRITE (*, *) 'Input?'
READ (*, CASE)
END

demo% f77 -silent nam4.f
demo% a.out
 Input?
∆?
∆$case
∆sample
∆new
∆delta
D

∆$case sample="Test 2", delta=0.03 $
demo%

 315

Intrinsic Functions 6

This chapter contains a number of tables on intrinsic functions, as well as some
explanatory notes. It is organized into the following sections:

6.1 Arithmetic and Mathematical Functions
This section provides details on arithmetic functions, type conversions,
trigonometric functions, and other functions.

Arithmetic and Mathematical Functions page 315

Character Functions page 324

Miscellaneous Functions page 325

VMS Intrinsic Functions page 332

 316 FORTRAN 77 Reference Manual

6

Arithmetic

Table 6-1 Arithmetic Functions

Intrinsic Function Definition
No. of
Args.

Generic
Name

Specific
Names

Argument
Type

Function
Type

Truncation
 See Note (1).

int(a) 1 AINT AINT
DINT
QINT ♦

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Nearest whole
number

int(a+.5) if a ≥ 0
int(a-.5) if a < 0

1 ANINT ANINT
DNINT
QNINT ♦

REAL
DOUBLE
REAL*16
(SPARC only)

REAL
DOUBLE
REAL*16

Nearest integer int(a+.5) if a ≥ 0
int(a-.5) if a < 0

1 NINT NINT
IDNINT
IQNINT ♦

REAL
DOUBLE
REAL*16

INTEGER
INTEGER
INTEGER

Table 6-2 More Arithmetic Functions

Intrinsic Function Definition
No. of
Args.

Generic
Name

Specific
Name

Argument
Type

Function
Type

Absolute value
 See Note (6).

|a|

(ar2 + ai2)**(1/2)

1 ABS IABS
ABS
DABS
CABS
QABS ♦
ZABS ♦
CDABS ♦
CQABS ♦

INTEGER
REAL
DOUBLE
COMPLEX
REAL*16
COMPLEX*16
COMPLEX*16
COMPLEX*32

INTEGER
REAL
DOUBLE
REAL
REAL*16
DOUBLE
DOUBLE
REAL*16

Remainder
 See Note (1).

a1-int(a1/a2)*a2 2 MOD MOD
AMOD
DMOD
QMOD♦

INTEGER
REAL
DOUBLE
REAL*16

INTEGER
REAL
DOUBLE
REAL*16

Transfer of sign |a1| if a2 ≥ 0
-|a1| if a2 < 0

2 SIGN ISIGN
SIGN
DSIGN
QSIGN ♦

INTEGER
REAL
DOUBLE
REAL*16

INTEGER
REAL
DOUBLE
REAL*16

Intrinsic Functions 317

6

Positive difference a1-a2 if a1 > a2
0 if a1 ≤ a2

2 DIM IDIM
DIM
DDIM
QDIM ♦

INTEGER
REAL
DOUBLE
REAL*16

INTEGER
REAL
DOUBLE
REAL*16

Double and quad products a1 * a2 2 - DPROD
QPROD♦

REAL
DOUBLE

DOUBLE
REAL*16

Choosing largest value max(a1, a2, …) ≥ 2 MAX MAX0
AMAX1
DMAX1
QMAX1 ♦
AMAX0
MAX1

INTEGER
REAL
DOUBLE
REAL*16
INTEGER
REAL

INTEGER
REAL
DOUBLE
REAL*16
REAL
INTEGER

Choosing smallest value min(a1, a2, …) ≥ 2 MIN MIN0
AMIN1
DMIN1
QMIN1 ♦
AMIN0
MIN1

INTEGER
REAL
DOUBLE
REAL*16
INTEGER
REAL

INTEGER
REAL
DOUBLE
REAL*16
REAL
INTEGER

Table 6-2 More Arithmetic Functions (Continued)

Intrinsic Function Definition
No. of
Args.

Generic
Name

Specific
Name

Argument
Type

Function
Type

 318 FORTRAN 77 Reference Manual

6

Type Conversion

Table 6-3 Type Conversion Functions

Conversion to
No. of
Arguments

Generic
Name Specific Name Argument Type Function Type

INTEGER
 See Note (1).

1 INT -
INT
IFIX
IDINT
-
-
-
IQINT ♦

INTEGER
REAL
REAL
DOUBLE
COMPLEX
COMPLEX*16
COMPLEX*32
REAL*16

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

REAL
 See Note (2).

1 REAL REAL
FLOAT
-
SNGL
-
-
-
-
SNGLQ ♦
-
-
-
-

INTEGER
INTEGER
REAL
DOUBLE
REAL*16
COMPLEX
COMPLEX*16
COMPLEX*32
DOUBLE
REAL*16
COMPLEX
COMPLEX*16
COMPLEX*32

REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL

DOUBLE
 See Note (3).

1 DBLE DBLE
DFLOAT
DREAL ♦
DBLEQ
-
-
-
-

INTEGER
INTEGER
REAL
DOUBLE
REAL*16
COMPLEX
COMPLEX*16
COMPLEX*32

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

REAL*16
 See Note (3’).

1 QREAL
QEXT

QREAL ♦
QFLOAT ♦
QEXT ♦
QEXTD ♦

INTEGER
INTEGER
INTEGER
DOUBLE
COMPLEX
COMPLEX*16
COMPLEX*32

REAL*16
REAL*16
REAL*16
REAL*16
REAL*16
REAL*16
REAL*16

Intrinsic Functions 319

6

On an ASCII machine, including Sun systems:

• ACHAR is a nonstandard synonym for CHAR
• IACHAR is a nonstandard synonym for ICHAR

On a non-ASCII machine, ACHAR and IACHAR were intended to provide a way
to deal directly with ASCII.

COMPLEX
 See Notes (4) and (8).

1 or 2 CMPLX -
-
-
-
-
-
-

INTEGER
REAL
DOUBLE
REAL*16
COMPLEX
COMPLEX*16
COMPLEX*32

COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX

COMPLEX*16
 See Note (8).

1 or 2 DCMPLX -
-
-
-
-
-
-

INTEGER
REAL
DOUBLE
REAL*16
COMPLEX
COMPLEX*16
COMPLEX*32

DOUBLE COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX

COMPLEX*32
 See Note (8).

1 or 2 QCMPLX -
-
-
-
-
-
-

INTEGER
REAL
DOUBLE
REAL*16
COMPLEX
COMPLEX*16
COMPLEX*32

COMPLEX*32
COMPLEX*32
COMPLEX*32
COMPLEX*32
COMPLEX*32
COMPLEX*32
COMPLEX*32

INTEGER
 See Note (5).

1 -
-

ICHAR
IACHAR ♦

CHARACTER INTEGER

CHARACTER
 See Note (5).

1 -
-

CHAR
ACHAR ♦

INTEGER CHARACTER

Table 6-3 Type Conversion Functions (Continued)

Conversion to
No. of
Arguments

Generic
Name Specific Name Argument Type Function Type

 320 FORTRAN 77 Reference Manual

6

Trigonometric Functions

Table 6-4 Trigonometric Functions

Intrinsic Function Definition
No. of
Args.

Generic
Name Specific Name Argument Type Function Type

Sine
 See Note (7).

sin(a) 1 SIN SIN
DSIN
QSIN
CSIN
ZSIN ♦

CDSIN ♦

CQSIN ♦

REAL
DOUBLE
REAL*16
COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
COMPLEX*32

REAL
DOUBLE
REAL*16
COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
COMPLEX*32

Sine (degrees)
 See Note (7).

sin(a) 1 SIND ♦ SIND ♦

DSIND ♦

QSIND ♦

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Cosine
 See Note (7).

cos(a) 1 COS COS
DCOS
QCOS
CCOS
ZCOS♦

CDCOS♦
CQCOS♦

REAL
DOUBLE
REAL*16
COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
COMPLEX*32

REAL
DOUBLE
REAL*16
COMPLEX
DOUBLE COMPLEX
DOUBLE COMPLEX
COMPLEX*32

Cosine (degrees)
 See Note (7).

cos(a) 1 COSD♦ COSD♦

DCOSD♦

QCOSD♦

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Tangent
 See Note (7).

tan(a) 1 TAN TAN
DTAN
QTAN♦

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Tangent (degrees)
 See Note (7).

tan(a) 1 TAND♦ TAND♦

DTAND♦

QTAND♦

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Arcsine
 See Note (7).

arcsin(a) 1 ASIN ASIN
DASIN
QASIN ♦

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Arcsine (degrees)
 See Note (7).

arcsin(a) 1 ASIND ♦ ASIND ♦

DASIND♦

QASIND♦

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Intrinsic Functions 321

6

REAL*16 and COMPLEX*32 are SPARC only.

Arccosine
 See Note (7).

arccos(a) 1 ACOS ACOS
DACOS
QACOS♦

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Arccosine (degrees)
 See Note (7).

arccos(a) 1 ACOSD♦ ACOSD♦

DACOSD♦
QACOSD♦

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Arctangent
 See Note (7).

arctan(a) 1 ATAN ATAN
DATAN
QATAN♦

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

arctan(a1/a2) 2 ATAN2 ATAN2
DATAN2
QATAN2♦

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Arctangent (degrees)
 See Note (7).

arctan(a) 1 ATAND♦ ATAND♦

DATAND♦

QATAND♦

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

arctan(a1/a2) 2 ATAN2D♦ ATAN2D♦

DATAN2D♦

QATAN2D♦

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Hyperbolic Sine
 See Note (7).

sinh(a) 1 SINH SINH
DSINH
QSINH ♦

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Hyperbolic Cosine
 See Note (7).

cosh(a) 1 COSH COSH
DCOSH
QCOSH♦

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Hyperbolic Tangent
 See Note (7).

tanh(a) 1 TANH TANH
DTANH
QTANH♦

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Table 6-4 Trigonometric Functions (Continued)

Intrinsic Function Definition
No. of
Args.

Generic
Name Specific Name Argument Type Function Type

 322 FORTRAN 77 Reference Manual

6

Other Mathematical Functions

Table 6-5 Other Mathematical Functions

Intrinsic Function Definition
No. of
Args.

Generic
 Name Specific Name Argument Type Function Type

Imaginary part of a complex
 See Note (6).

ai 1 IMAG AIMAG
DIMAG♦

QIMAG♦

COMPLEX
COMPLEX*16
COMPLEX*32

REAL
DOUBLE
COMPLEX*32

Conjugate of a complex
 See Note (6).

(ar, -ai) 1 CONJG CONJG
DCONJG♦

QCONJG♦

COMPLEX
COMPLEX*16
COMPLEX*32

COMPLEX
COMPLEX*16
COMPLEX*32

Square root a**(1/2) 1 SQRT SQRT
DSQRT
QSQRT
CSQRT
ZSQRT♦

CDSQRT♦
CQSQRT♦

REAL
DOUBLE
REAL*16
COMPLEX
COMPLEX*16
COMPLEX*16
COMPLEX*32

REAL
DOUBLE
REAL*16
COMPLEX
COMPLEX*16
COMPLEX*16
COMPLEX*32

Cube root
 See Note(8’).

a**(1/3) 1 CBRT CBRT♦
DCBRT ♦
QCBRT ♦
CCBRT ♦
CDCBRT ♦
CQCBRT♦

REAL
DOUBLE
REAL*16
COMPLEX
COMPLEX*16
COMPLEX*32

REAL
DOUBLE
REAL*16
COMPLEX
COMPLEX*16
COMPLEX*32

Exponential e**a 1 EXP EXP
DEXP
QEXP♦

CEXP
ZEXP♦

CDEXP♦

CQEXP♦

REAL
DOUBLE
REAL*16
COMPLEX
COMPLEX*16
COMPLEX*16
COMPLEX*32

REAL
DOUBLE
REAL*16
COMPLEX
COMPLEX*16
COMPLEX*16
COMPLEX*32

Natural logarithm log(a) 1 LOG ALOG
DLOG
QLOG♦

CLOG
ZLOG♦

CDLOG♦

CQLOG♦

REAL
DOUBLE
REAL*16
COMPLEX
COMPLEX*16
COMPLEX*16
COMPLEX*32

REAL
DOUBLE
REAL*16
COMPLEX
COMPLEX*16
COMPLEX*16
COMPLEX*32

Intrinsic Functions 323

6

REAL*16 and COMPLEX*32 are SPARC only.

Common logarithm log10(a) 1 LOG10 ALOG10
DLOG10
QLOG10♦

REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Error function 2/sqrt(pi)*
integral from
0 to a of
exp(-t*t) dt

1 ERF ERF♦
DERF♦

REAL
DOUBLE

REAL
DOUBLE

Error function 1.0 - erf(a) 1 ERFC ERFC♦
DERFC♦

REAL
DOUBLE

REAL
DOUBLE

Table 6-5 Other Mathematical Functions (Continued)

Intrinsic Function Definition
No. of
Args.

Generic
 Name Specific Name Argument Type Function Type

 324 FORTRAN 77 Reference Manual

6

6.2 Character Functions

On an ASCII machine (including Sun systems):

• ACHAR is a nonstandard synonym for CHAR
• IACHAR is a nonstandard synonym for ICHAR

On a non-ASCII machine, ACHAR and IACHAR were intended to provide a way
to deal directly with ASCII.

Table 6-6 Character Functions

Intrinsic Function Definition
No. of
Args.

Generic
 Name

Specific
Name Argument Type Function Type

Conversion
 See Note (5).

Conversion to character

Conversion to integer

1

1

-
-
-
-

CHAR
ACHAR♦

ICHAR
IACHAR♦

(See also
Table 6-3.)

INTEGER

CHARACTER

CHARACTER

INTEGER

Index of a substring Location of substring a2 in
string a1
 See Note (10).

2 - INDEX CHARACTER INTEGER

Length Length of character entity
 See Note (11).

1 - LEN CHARACTER INTEGER

Lexically greater
than or equal

a1 ≥ a2
 See Note (12).

2 - LGE CHARACTER LOGICAL

Lexically greater
than

a1 > a2
 See Note (12).

2 - LGT CHARACTER LOGICAL

Lexically less than or
equal

a1 ≤ a2
 See Note (12).

2 - LLE CHARACTER LOGICAL

Lexically less than a1 < a2
 See Note (12).

2 - LLT CHARACTER LOGICAL

Intrinsic Functions 325

6

6.3 Miscellaneous Functions
Other miscellaneous functions include bitwise functions, environmental
inquiry functions, and memory allocation and deallocation functions.

Bit Manipulation

The above functions are available as intrinsic or extrinsic functions. See also
“bit: Bit Functions: and, or, …, bit, setbit, …,” on page 342.

Table 6-7 Bitwise Functions

Bitwise Operations
No. of
Args. Specific Name

Argument
Type Function Type

Complement 1 NOT♦ INTEGER INTEGER

And 2
2

AND♦
IAND ♦

INTEGER
INTEGER

INTEGER
INTEGER

Inclusive or 2
2

OR♦
IOR ♦

INTEGER
INTEGER

INTEGER
INTEGER

Exclusive or 2
2

XOR♦
IEOR ♦

INTEGER
INTEGER

INTEGER
INTEGER

Shift
 See Note (14).

2 ISHFT ♦ INTEGER INTEGER

Left shift
 See Note (14).

2 LSHIFT ♦ INTEGER INTEGER

Right shift
 See Note (14).

2 RSHIFT ♦ INTEGER INTEGER

Logical right shift
 See Note (14).

2 LRSHFT♦ INTEGER INTEGER

Bit extraction 3 IBITS ♦ INTEGER INTEGER

Bit set 2 IBSET ♦ INTEGER INTEGER

Bit test 2 BTEST♦ INTEGER LOGICAL

Bit clear 2 IBCLR ♦ INTEGER INTEGER

Circular shift 3 ISHFTC ♦ INTEGER INTEGER

 326 FORTRAN 77 Reference Manual

6

See Chapter 8, “VMS Language Extensions,” for details on other bitwise
operations. ♦

Environmental Inquiry Functions

Table 6-8 Environmental Inquiry Functions

Definition
No. of
Args. Generic Name Specific Name Argument Type Function Type

Base of Number System 1 EPBASE♦ - INTEGER
REAL
DOUBLE
REAL*16

INTEGER
INTEGER
INTEGER
INTEGER

Number of Significant Bits 1 EPPREC♦ - INTEGER
REAL
DOUBLE
REAL*16

INTEGER
INTEGER
INTEGER
INTEGER

Minimum Exponent 1 EPEMIN♦ - REAL
DOUBLE
REAL*16

INTEGER
INTEGER
INTEGER

Maximum Exponent 1 EPEMAX♦ - REAL
DOUBLE
REAL*16

INTEGER
INTEGER
INTEGER

Least Nonzero Number 1 EPTINY ♦ - REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Largest Number Representable 1 EPHUGE♦ - INTEGER
REAL
DOUBLE
REAL*16

INTEGER
REAL
DOUBLE
REAL*16

Epsilon
 See Note (16).

1 EPMRSP♦ - REAL
DOUBLE
REAL*16

REAL
DOUBLE
REAL*16

Intrinsic Functions 327

6

Memory

6.4 Remarks
The following remarks apply to all of the intrinsic function tables in this
chapter.

• The abbreviation DOUBLE stands for DOUBLE PRECISION.

• An intrinsic that takes an INTEGER argument accepts INTEGER*2,
INTEGER*4, or INTEGER*8.

• An intrinsic that returns an INTEGER value returns the prevailing INTEGER
type: if no -i2 or -dbl , then INTEGER*4; if -i2 , then INTEGER*4; if -dbl ,
then INTEGER*8.

The exceptions are LOC and MALLOC, which always return an INTEGER*4.

• (SPARC only) An intrinsic that returns a REAL value returns the prevailing
REAL type: if no -r8 , then REAL*4; if -r8 , then REAL*8.

• (SPARC only) An intrinsic that returns a DOUBLE PRECISION value returns
the prevailing DOUBLE PRECISION type: if no -r8 , then REAL*8; if -r8
then REAL*16 .

• (SPARC only) An intrinsic that returns a COMPLEX value returns the
prevailing COMPLEX type: if no -r8 , then COMPLEX*8; if -r8 , then
COMPLEX*16.

Table 6-9 Memory Functions

Intrinsic
Function Definition

No. of
Args.

Generic
Name

Specific
Name

Argument
Type

Function
Type

Location Address of
 See Note (17).

1 - LOC♦ Any INTEGER

Allocate Allocate memory and return
address.
 See Note (17).

1 - MALLOC♦ INTEGER INTEGER

Deallocate Deallocate memory
allocated by MALLOC.

1 - FREE♦ Any -

Size Return the size of the
argument in bytes.
 See Note (18).

1 - SIZEOF ♦ Any expression
or type name

INTEGER

 328 FORTRAN 77 Reference Manual

6

• (SPARC only) An intrinsic that returns a DOUBLE COMPLEX value returns the
prevailing DOUBLE COMPLEX type: if no -r8 , then COMPLEX*16; if -r8 ,
then COMPLEX*32.

• A function with a generic name returns a value with the same type as the
argument—except for type conversion functions, the nearest integer
function, and the absolute value of a complex argument. If there is more
than one argument, they must all be of the same type.

• If a function name is used as an actual argument, then it must be a specific
name.

• If a function name is used as a dummy argument, then it does not identify
an intrinsic function in the subprogram, and it has a data type according to
the same rules as for variables and arrays.

6.5 Notes on Functions
Tables and notes 1 through 12 are based on the “Table of Intrinsic Functions,”
from ANSI X3.9-1978 Programming Language FORTRAN, with the FORTRAN 77
extensions added.

(1) INT

If A is type integer, then INT(A) is A.

If A is type real or double precision, then:

if |A| < 1 , then INT(A) is 0
if |A| ≥ 1 , then INT(A) is the greatest integer that does not exceed the
magnitude of A, and whose sign is the same as the sign of A. (Such a
mathematical integer value may be too large to fit in the computer
integer type.)

If A is type complex or double complex, then apply the above rule to the real
part of A.

If A is type real, then IFIX(A) is the same as INT(A) .

(2) REAL

If A is type real, then REAL(A) is A.

If A is type integer or double precision, then REAL(A) is as much precision
of the significant part of A as a real datum can contain.

Intrinsic Functions 329

6

If A is type complex, then REAL(A) is the real part of A.

If A is type double complex, then REAL(A) is as much precision of the
significant part of the real part of A as a real datum can contain.

(3) DBLE

If A is type double precision, then DBLE(A) is A.

If A is type integer or real, then DBLE(A) is as much precision of the
significant part of A as a double precision datum can contain.

If A is type complex, then DBLE(A) is as much precision of the significant
part of the real part of A as a double precision datum can contain.

If A is type COMPLEX*16, then DBLE(A) is the real part of A.

(3’) QREAL

If A is type REAL*16 , then QREAL(A) is A.

If A is type integer, real, or double precision, then QREAL(A) is as much
precision of the significant part of A as a REAL*16 datum can contain.

If A is type complex or double complex, then QREAL(A) is as much
precision of the significant part of the real part of A as a REAL*16 datum can
contain.

If A is type COMPLEX*16 or COMPLEX*32, then QREAL(A) is the real part of
A.

(4) CMPLX

If A is type complex, then CMPLX(A) is A.

If A is type integer, real, or double precision, then CMPLX(A) is
REAL(A) + 0i .

If A1 and A2 are type integer, real, or double precision, then CMPLX(A1,A2)
is REAL(A1) + REAL(A2)*i .

If A is type double complex, then CMPLX(A) is
REAL(DBLE(A)) + i*REAL(DIMAG(A)) .

If CMPLX has two arguments, then they must be of the same type, and they
may be one of integer, real, or double precision.

 330 FORTRAN 77 Reference Manual

6

If CMPLX has one argument, then it may be one of integer, real, double
precision, complex, COMPLEX*16, or COMPLEX*32.

(4’) DCMPLX

If A is type COMPLEX*16, then DCMPLX(A) is A.

If A is type integer, real, or double precision, then DCMPLX(A) is
DBLE(A) + 0i .

If A1 and A2 are type integer, real, or double precision, then
DCMPLX(A1,A2) is DBLE(A1) + DBLE(A2)*i .

If DCMPLX has two arguments, then they must be of the same type, and they
may be one of integer, real, or double precision.

If DCMPLX has one argument, then it may be one of integer, real, double
precision, complex, COMPLEX*16, or COMPLEX*32.

(5) ICHAR

ICHAR(A) is the position of A in the collating sequence.

The first position is 0, the last is N-1, 0 ≤ICHAR(A) ≤N-1 , where N is the
number of characters in the collating sequence, and A is of type character of
length one.

CHAR and ICHAR are inverses in the following sense:
• ICHAR(CHAR(I)) = I , for 0≤I ≤N-1

• CHAR(ICHAR(C)) = C , for any character C capable of representation in
the processor

(6) COMPLEX

A COMPLEX value is expressed as an ordered pair of reals, (ar, ai) , where
ar is the real part, and ai is the imaginary part.

(7) Radians

All angles are expressed in radians, unless the “Intrinsic Function” column
includes the “(degrees)” remark.

(8) COMPLEX Function

The result of a function of type COMPLEX is the principal value.

Intrinsic Functions 331

6

(8’) CBRT

If a is of COMPLEX type, CBRT results in COMPLEX RT1=(A, B) , where:
A>= 0.0 , and -60 degrees <= arctan (B/A) < + 60 degrees.

Other two possible results can be evaluated as follows:
• RT2 = RT1 * (-0.5, square_root (0.75))
• RT3 = RT1 * (-0.5, square_root (0.75))

(9) Argument types

All arguments in an intrinsic function reference must be of the same type.

(10) INDEX

INDEX(X,Y) is the place in X where Y starts. That is, it is the starting
position within character string X of the first occurrence of character string
Y.

If Y does not occur in X, then INDEX(X,Y) is 0.

If LEN(X) < LEN(Y) , then INDEX(X,Y) is 0.

(11) Argument to LEN

The value of the argument of the LEN function need not be defined at the
time the function reference is executed.

(12) Lexical Compare

LGE(X, Y) is true if X=Y, or if X follows Y in the collating sequence;
otherwise, it is false.

LGT(X, Y) is true if X follows Y in the collating sequence; otherwise, it
is false.

LLE(X, Y) is true if X=Y, or if X precedes Y in the collating sequence;
otherwise, it is false.

LLT(X, Y) is true if X precedes Y in the collating sequence; otherwise, it
is false.

If the operands for LGE, LGT, LLE, and LLT are of unequal length, the
shorter operand is considered as if it were extended on the right with
blanks.

 332 FORTRAN 77 Reference Manual

6

(13) Bit Functions

See Chapter 8, “VMS Language Extensions,” for details on other bitwise
operations. ♦

(14) Shift

LSHIFT shifts a1 logically left by a2 bits (inline code).

LRSHFT shifts a1 logically right by a2 bits (inline code).

RSHIFT shifts a1 arithmetically right by a2 bits.

ISHFT shifts a1 logically left if a2 > 0 and right if a2 < 0.

The LSHIFT and RSHIFT functions are the FORTRAN 77 analogs of the C
<< and >> operators. As in C, the semantics depend on the hardware.

(15) Environmental inquiries

Only the type of the argument is significant.

(16) Epsilon

Epsilon is the least e, such that 1.0 + e ≠ 1.0 .

(17) LOC and MALLOC

The LOC function returns the 32-bit address of a variable or of an external
procedure. The function call MALLOC(n) allocates a block of at least n
bytes, and returns the 32-bit address of that block.

(18) SIZEOF

The SIZEOF intrinsic cannot be applied to arrays of an assumed size,
characters of a length that is passed, or subroutine calls or names.

6.6 VMS Intrinsic Functions
This section lists VMS FORTRAN intrinsic routines recognized by f77 . They
are, of course, nonstandard. ♦

Intrinsic Functions 333

6

Double-Precision Complex

Degree-Based Trigonometric

Table 6-10 Double-Precision Complex Functions

Name Generic/Specific Function Argument Type Result Type

CDABS
CDEXP
CDLOG
CDSQRT

Specific
Specific
Specific
Specific

Absolute value
Exponential, e**a
Natural log
Square root

COMPLEX*16
COMPLEX*16
COMPLEX*16
COMPLEX*16

REAL*8
COMPLEX*16
COMPLEX*16
COMPLEX*16

CDSIN
CDCOS

Specific
Specific

Sine
Cosine

COMPLEX*16
COMPLEX*16

COMPLEX*16
COMPLEX*16

DCMPLX
DCONJG
DIMAG
DREAL

Generic
Specific
Specific
Specific

Convert to DOUBLE COMPLEX
Complex conjugate
Imaginary part of complex
Real part of complex

Any numeric
COMPLEX*16
COMPLEX*16
COMPLEX*16

COMPLEX*16
COMPLEX*16
REAL*8
REAL*8

Table 6-11 Degree-Based Trigonometric Functions

Name Generic/Specific Function Argument Type Result Type

SIND
SIND
DSIND
QSIND

Generic
Specific
Specific
Specific

Sine
Sine
Sine
Sine

-
REAL*4
REAL*8
REAL*16

-
REAL*4
REAL*8
REAL*16

COSD
COSD
DCOSD
QCOSD

Generic
Specific
Specific
Specific

Cosine
Cosine
Cosine
Cosine

-
REAL*4
REAL*8
REAL*16

-
REAL*4
REAL*8
REAL*16

TAND
TAND
DTAND
QTAND

Generic
Specific
Specific
Specific

Tangent
Tangent
Tangent
Tangent

-
REAL*4
REAL*8
REAL*16

-
REAL*4
REAL*8
REAL*16

ASIND
ASIND
DASIND
QASIND

Generic
Specific
Specific
Specific

Arc sine
Arc sine
Arc sine
Arc sine

-
REAL*4
REAL*8
REAL*16

-
REAL*4
REAL*8
REAL*16

 334 FORTRAN 77 Reference Manual

6

Bit-Manipulation

ACOSD
ACOSD
DACOSD
QACOSD

Generic
Specific
Specific
Specific

Arc cosine
Arc cosine
Arc cosine
Arc cosine

-
REAL*4
REAL*8
REAL*16

-
REAL*4
REAL*8
REAL*16

ATAND
ATAND
DATAND
QATAND

Generic
Specific
Specific
Specific

Arc tangent
Arc tangent
Arc tangent
Arc tangent

-
REAL*4
REAL*8
REAL*16

-
REAL*4
REAL*8
REAL*16

ATAN2D
ATAN2D
DATAN2D
QATAN2D

Generic
Specific
Specific
Specific

Arc tangent of a1/a2
Arc tangent of a1/a2
Arc tangent of a1/a2
Arc tangent of a1/a2

-
REAL*4
REAL*8
REAL*16

-
REAL*4
REAL*8
REAL*16

Table 6-12 Bit-Manipulation Functions

Name Generic/Specific Function Argument Type Result Type

IBITS
IIBITS
JIBITS

Generic
Specific
Specific

From a1 , initial bit a2 , extract a3 bits
From a1 , initial bit a2 , extract a3 bits
From a1 , initial bit a2 , extract a3 bits

-
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

ISHFT
IISHFT
JISHFT

Generic
Specific
Specific

Shift a1 logically by a2 bits *
Shift a1 logically left by a2 bits
Shift a1 logically left by a2 bits

-
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

ISHFTC
IISHFTC
JISHFTC

Generic
Specific
Specific

In a1 , circular shift by a2 places, of right a3 bits
In a1 , circular shift by a2 places, of right a3 bits
In a1 , circular shift by a2 places, of right a3 bits

-
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

IAND
IIAND
JIAND

Generic
Specific
Specific

Bitwise AND of a1 , a2
Bitwise AND of a1 , a2
Bitwise AND of a1 , a2

-
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

IOR
IIOR
JIOR

Generic
Specific
Specific

Bitwise OR of a1 , a2
Bitwise OR of a1 , a2
Bitwise OR of a1 , a2

-
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

IEOR
IIEOR
JIEOR

Generic
Specific
Specific

Bitwise exclusive OR of a1 , a2
Bitwise exclusive OR of a1 , a2
Bitwise exclusive OR of a1 , a2

-
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

Table 6-11 Degree-Based Trigonometric Functions (Continued)

Name Generic/Specific Function Argument Type Result Type

Intrinsic Functions 335

6

* ISHFT—If a2 is positive, then shift left; if negative, then shift right.

Multiple Integer Types

The possibility of multiple integer types is not addressed by the FORTRAN 77
Standard. f77 copes with their existence by treating a specific INTEGER→
INTEGER function name (IABS , and so forth) as a special sort of generic. The
argument type is used to select the appropriate runtime routine name, which is
not accessible to the programmer.

VMS FORTRAN 77 takes a similar approach, but makes the specific names
available.

NOT
INOT
JNOT

Generic
Specific
Specific

Bitwise complement
Bitwise complement
Bitwise complement

-
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

IBSET
IIBSET
JIBSET

Generic
Specific
Specific

In a1 , set bit a2 to 1
In a1 , set bit a2 to 1; return new a1
In a1 , set bit a2 to 1; return new a1

-
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

BTEST
BITEST
BJTEST

Generic
Specific
Specific

If bit a2 of a1 is 1, return .TRUE.
If bit a2 of a1 is 1, return .TRUE.
If bit a2 of a1 is 1, return .TRUE.

-
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

IBCLR
IIBCLR
JIBCLR

Generic
Specific
Specific

In a1 , set bit a2 to 0; return new a1
In a1 , set bit a2 to 0; return new a1
In a1 , set bit a2 to 0; return new a1

-
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

Table 6-13 Integer Functions

Name Generic/Specific Function Argument Type Result Type

IIABS
JIABS

Specific
Specific

Absolute value
Absolute value

INTEGER*2
INTEGER*4

INTEGER*2
INTEGER*4

IMAX0
JMAX0

Specific
Specific

Maximum 1

Maximum 1
INTEGER*2
INTEGER*4

INTEGER*2
INTEGER*4

IMIN0
JMIN0

Specific
Specific

Minimum 1

Minimum 1
INTEGER*2
INTEGER*4

INTEGER*2
INTEGER*4

Table 6-12 Bit-Manipulation Functions (Continued)

Name Generic/Specific Function Argument Type Result Type

 336 FORTRAN 77 Reference Manual

6

Functions Coerced to a Particular Type

Some VMS FORTRAN functions coerce to a particular INTEGER type.

1. There must be at least two arguments.

2. The positive difference is: a1-min(a1,a2))

IIDIM
JIDIM

Specific
Specific

Positive difference 2

Positive difference 2
INTEGER*2
INTEGER*4

INTEGER*2
INTEGER*4

IMOD
JMOD

Specific
Specific

Remainder of a1/a2
Remainder of a1/a2

INTEGER*2
INTEGER*4

INTEGER*2
INTEGER*4

IISIGN
JISIGN

Specific
Specific

Transfer of sign, |a1|* sign(a2)
Transfer of sign, |a1|* sign(a2)

INTEGER*2
INTEGER*4

INTEGER*2
INTEGER*4

Table 6-14 Translated Functions that VMS Coerces to a Particular Type

Name Generic/Specific Function Argument Type Result Type

IINT
JINT

Specific
Specific

Truncation toward zero
Truncation toward zero

REAL*4
REAL*4

INTEGER*2
INTEGER*4

IIDINT
JIDINT

Specific
Specific

Truncation toward zero
Truncation toward zero

REAL*8
REAL*8

INTEGER*2
INTEGER*4

IQINT
IIQINT
JIQINT

Specific
Specific
Specific

Truncation toward zero
Truncation toward zero
Truncation toward zero

REAL*16
REAL*16
REAL*16

INTEGER
INTEGER*2
INTEGER*4

ININT
JNINT

Specific
Specific

Nearest integer, INT(a+.5*sign(a))
Nearest integer, INT(a+.5*sign(a))

REAL*4
REAL*4

INTEGER*2
INTEGER*4

IIDNNT
JIDNNT

Specific
Specific

Nearest integer, INT(a+.5*sign(a))
Nearest integer, INT(a+.5*sign(a))

REAL*8
REAL*8

INTEGER*2
INTEGER*4

IQNINT
IIQNNT
JIQNNT

Generic
Specific
Specific

Nearest integer, INT(a+.5*sign(a))
Nearest integer, INT(a+.5*sign(a))
Nearest integer, INT(a+.5*sign(a))

REAL*16
REAL*16
REAL*16

INTEGER
INTEGER*2
INTEGER*4

IIFIX
JIFIX

Specific
Specific

Fix
Fix

REAL*4
REAL*4

INTEGER*2
INTEGER*4

IMAX1
JMAX1

Specific
Specific

Maximum1

Maximum1
REAL*4
REAL*4

INTEGER*2
INTEGER*4

Table 6-13 Integer Functions (Continued)

Name Generic/Specific Function Argument Type Result Type

Intrinsic Functions 337

6

1. There must be at least two arguments.

REAL*16 is SPARC only.

Functions Translated to a Generic Name

In some cases, each VMS-specific name is translated into an f77 generic name.

IMIN1
JMIN1

Specific
Specific

Minimum1

Minimum1
READ*4
READ*4

INTEGER*2
INTEGER*4

Table 6-15 VMS Functions That Are Translated into f77 Generic Names

Name Generic/Specific Function Argument Type Result Type

FLOATI
FLOATJ

Specific
Specific

Convert to REAL*4
Convert to REAL*4

INTEGER*2
INTEGER*4

REAL*4
REAL*4

DFLOAT Generic Convert to REAL*8 INTEGER REAL*8

DFLOTI
DFLOTJ

Specific
Specific

Convert to REAL*8
Convert to REAL*8

INTEGER*2
INTEGER*4

REAL*8
REAL*8

AIMAX0
AJMAX0

Specific
Specific

Maximum
Maximum

INTEGER*2
INTEGER*4

REAL*4
REAL*4

AIMIN0
AJMIN0

Specific
Specific

Minimum
Minimum

INTEGER*2
INTEGER*4

REAL*4
REAL*4

Table 6-14 Translated Functions that VMS Coerces to a Particular Type (Continued)

Name Generic/Specific Function Argument Type Result Type

 338 FORTRAN 77 Reference Manual

6

Zero Extend

The following zero-extend functions are recognized by f77 . The first unused
high-order bit is set to zero and extended toward the higher-order end to the
width indicated in the table

Table 6-16 Zero-Extend Functions

Name Generic/Specific Function Argument Type Result Type

ZEXT Generic Zero-extend - -

IZEXT Specific Zero-extend BYTE
LOGICAL*1
LOGICAL*2 INTEGER*2

INTEGER*2

JZEXT Specific Zero-extend BYTE
LOGICAL*1 LOGICAL*2
LOGICAL*4
INTEGER
INTEGER*2
INTEGER*4

INTEGER*4

 339

FORTRAN 77 Library Routines 7

This chapter lists the f77 library routines alphabetically, along with
explanations and examples. See Chapter 6, “Intrinsic Functions,” for VMS
intrinsic functions.

7.1 abort : Terminate and Write Memory to Core File
The subroutine is:

abort cleans up the I/O buffers and then aborts producing a core file in the
current directory. See also abort (3).

7.2 access : Check File for Permissions or Existence
The function is:

call abort

status = access (name, mode)

name character Input File name

mode character Input Permissions

Return value INTEGER Output status=0: OK
status>0: Error code

 340 FORTRAN 77 Reference Manual

7

access tells you if you can access the file name with the permissions mode.

You can set mode to one or more of r, w, or x, in any order, and in any
combination, where r, w, x have the following meanings:

Example 1: Write, and arguments are literals:

Example 2: Test for existence:

See also access (2) and perror (3F).

7.3 alarm : Execute a Subroutine after a Specified Time
The function is:

r
w
x
blank

Read
Write
Execute
Existence

integer access, status
status = access ('taccess.data', 'w')
if (status .eq. 0) write(*,*) "ok"
if (status .ne. 0) write(*,*) 'cannot write', status
end

integer access, status
status = access ('taccess.data', ' ')! blank mode
if (status .eq. 0) write(*,*) "ok"
if (status .ne. 0) write(*,*) 'no such file', status
end

n = alarm (time, sbrtn)

time INTEGER Input Number of seconds to wait (0=do not call)

sbrtn Routine
name

Input Subprogram to execute must be listed in an
external statement.

Return value INTEGER Output Time remaining on the last alarm

FORTRAN 77 Library Routines 341

7

Example: alarm —wait 9 seconds then call sbrtn :

See also: alarm (3C), sleep (3F), and signal (3F).

Note the following restrictions:

• A subroutine cannot pass its own name to alarm because of restrictions in
the FORTRAN 77 Standard.

• Your subroutine must not do any I/O because the alarm routine generates
signals, and signals interfere with any I/O. I/O is interrupt-driven.

• Do not call alarm() from a FORTRAN 77 MP program—it has
unpredictable behavior in MP mode.

integer alarm, time / 1 /
common / alarmcom / i
external sbrtn
i = 9
write(*,*) i
nseconds = alarm (time, sbrtn)
do n = 1,100000 ! Wait until alarm activates sbrtn.

r = n ! (any calculations that take enough time)
x=sqrt(r)

end do
write(*,*) i
end

subroutine sbrtn
common / alarmcom / i
i = 3 ! Do no I/O in this routine.
return
end

 342 FORTRAN 77 Reference Manual

7

7.4 bit : Bit Functions: and , or , …, bit , setbit , …
The definitions are:

The alternate external versions for MIL-STD-1753 are:

See also “mvbits: Move a Bit Field,” on page 395, and “Miscellaneous
Functions,” on page 325.

and(word1, word2) Computes the bitwise and of its arguments.

or(word1, word2) Computes the bitwise inclusive or of its arguments.

xor(word1, word2) Computes the bitwise exclusive or of its arguments.

not(word) Returns the bitwise complement of its argument.

lshift(word, nbits) Is a logical left shift with no end around carry.

rshift(word, nbits) Is an arithmetic right shift with sign extension.

bis(bitnum, word) Sets bit bitnum in word to 1.

bic(bitnum, word) Clears bit bitnum in word to 0.

bit(bitnum, word) Tests bit bitnum in word and returns .true. if the bit is 1, .false. if it is 0.

setbit(bitnum, word, state) Sets bit bitnum in word to 1 if state is nonzero, and clears it otherwise.

iand(m, n) Computes the bitwise and of its arguments.

ior(m, n) Computes the bitwise inclusive or of its arguments.

ieor(m, n) Computes the bitwise exclusive or of its arguments.

ishft(m, k) Is a logical shift with no end around carry (left if k>0, right if k<0).

ishftc(m, k, ic) Circular shift: right-most ic bits of m are left-shifted circularly k places.

ibits(m, i, len) Extracts bits: from m, starting at bit i, extracts len bits.

ibset(m, i) Sets bit: return value is equal to word m with bit number i set to 1.

ibclr(m, i) Clears bit: return value is equal to word m with bit number i set to 0.

btest(m, i) Tests bit i in m; returns .true. if the bit is 1, and .false. if it is 0.

FORTRAN 77 Library Routines 343

7

Usage: and , or , xor , not , rshift , lshift

These are generic functions expanded inline by the compiler.

No test is made for a reasonable value of nbits.

Example: and, or, xor, not :

Example: lshift , rshift :

x = and(word1, word2)

x = or(word1, word2)

x = xor(word1, word2)

x = not(word)

x = rshift(word, nbits)

x = lshift(word, nbits)

word1, word2, word, nbits integer or logical (short or long) Input

print 1, and(7,4), or(7,4), xor(7,4), not(4)
 1 format(4x 'and(7,4)', 5x 'or(7,4)', 4x 'xor(7,4)',
& 6x 'not(4)'/4o12.11)

end
demo% f77 -silent tandornot.f
demo% a.out
 and(7,4) or(7,4) xor(7,4) not(4)
 00000000004 00000000007 00000000003 37777777773
demo%

integer lshift, rshift
print 1, lshift(7,1), rshift(4,1)

 1 format(1x 'lshift(7,1)', 1x 'rshift(4,1)'/2o12.11)
end

demo% f77 -silent tlrshift.f
demo% a.out
 lshift(7,1) rshift(4,1)
 00000000016 00000000002
demo%

 344 FORTRAN 77 Reference Manual

7

Usage: bic , bis , bit , setbit

Bits are numbered so that bit 0 is the least significant bit, and bit 31 is the most
significant.

bic , bis , and setbit are external subroutines. bit is an external function.

call bic(bitnum, word)

call bis(bitnum, word)

call setbit(bitnum, word, state)

x = bit(bitnum, word)

Return value logical Logical value

bitnum INTEGER*4 Input

state INTEGER*4 Input

word INTEGER*4 Input and output (an input that is changed)

FORTRAN 77 Library Routines 345

7

Example 3: bic , bis , setbit , bit :

7.5 chdir : Change Default Directory
The function is:

Example: chdir —change cwd to MyDir :

integer bitnum/2/, state/0/, word/7/
logical bit
print 1, word

 1 format(13x 'word', o12.11)
call bic(bitnum, word)
print 2, word

 2 format('after bic(2,word)', o12.11)
call bis(bitnum, word)
print 3, word

 3 format('after bis(2,word)', o12.11)
call setbit(bitnum, word, state)
print 4, word

 4 format('after setbit(2,word,0)', o12.11)
print 5, bit(bitnum, word)

 5 format('bit(2,word)', L)
end

<output>
 word 00000000007
after bic(2,word) 00000000003
after bis(2,word) 00000000007
after setbit(2,word,0) 00000000003
bit(2,word) F

n = chdir(dirname)

dirname character Input Directory name

Return value INTEGER Output n=0: OK, n>0: Error code

integer chdir, n
n = chdir ('MyDir')
if (n .ne. 0) stop 'chdir: error'
end

 346 FORTRAN 77 Reference Manual

7

See also: chdir (2), cd (1), and perror (3F).

Path names can be no longer than MAXPATHLEN as defined in
<sys/param.h> .

Use of this function can cause inquire by unit to fail.

Certain FORTRAN 77 file operations reopen files by name. Using chdir while
doing I/O can cause the runtime system to lose track of files created with
relative path names. including the files that are created by open statements
without file names.

7.6 chmod: Change the Mode of a File
The function is:

Example: chmod—add write permissions to MyFile .:

See also: chmod(1). Note this bug: the path names cannot be longer than
MAXPATHLEN as defined in <sys/param.h> .

n = chmod(name, mode)

name character Input Single path name

mode character Input Anything recognized by chmod(1),
such as o-w , 444 , etc.

Return value INTEGER Output n = 0: OK; n>0: System error number

character*18 name, mode
integer chmod, n
name = 'MyFile'
mode = '+w'
n = chmod(name, mode)
if (n .ne. 0) stop ’chmod: error’
end

FORTRAN 77 Library Routines 347

7

7.7 date : Get Current System Date as a Character String

The form of the returned string c is:

Example: date :

See also Section 7.27, “idate: Return Current System Date.”

7.8 dtime , etime : Elapsed Execution Time
Both functions have return values of elapsed time (or -1.0 as error indicator).
The time is in seconds. The resolution is to a nanosecond under Solaris 2.x, and
is determined by the system clock frequency under Solaris 1.x.

dtime : Elapsed Time Since the Last dtime Call

For dtime , the elapsed time is:

• First call: elapsed time since start of execution

call date(c)

c CHARACTER*9 Output Variable, array, array element, or character substring

dd-mmm-yy

dd Day of the month, as a 2-digit integer

mmm Month, as a 3-letter abbreviation

yy Year, as a 2-digit integer

demo% cat dat1.f
* dat1.f -- Get the date as a character string.

character c*9
call date (c)
write(*,"(' The date today is: ', A9)") c
end

demo% f77 -silent dat1.f
demo% a.out
 The date today is: 23-Sep-88
demo%

 348 FORTRAN 77 Reference Manual

7

• Subsequent calls: elapsed time since the last call to dtime

• Single processor: time used by the CPU

• Multiple Processor: the sum of times for all the CPUs, which is not useful
data; use etime instead.

Note – Do not call dtime from within a parallelized loop.

The function is:

Example: dtime() , single processor:

etime : Elapsed Time Since Start of Execution

For etime , the elapsed time is:

• Single Processor—CPU time for the calling process
• Multiple Processor—wallclock time while processing your program

e = dtime(tarray)

tarray real(2) Output e= -1.0:
e≠ -1.0:

Error: tarray values are undefined
User time in tarray(1) if no error
System time in tarray(2) if no error

Return
value

real Output e= -1.0:
e≠ -1.0:

Error
The sum of tarray(1) and tarray(2)

real e, dtime, t(2)
print *, 'elapsed:', e, ', user:', t(1), ', sys:', t(2)
do i = 1, 10000

k=k+1
end do
e = dtime(t)
print *, 'elapsed:', e, ', user:', t(1), ', sys:', t(2)
end

demo% f77 -silent tdtime.f
demo% a.out
elapsed: 0., user: 0., sys: 0.
elapsed: 0.180000, user: 6.00000E-02, sys: 0.120000
demo%

FORTRAN 77 Library Routines 349

7

Here is how FORTRAN 77 decides single processor or multiple processor:

For a FORTRAN 77 MP program that uses an MP option—ultimately, linked
with libF77_mt , if the environment variable PARALLEL is:

• Undefined, the current run is single processor.
• Defined and in the range 1, 2, 3, …, the current run is multiple processor.
• Defined, but some value other than 1, 2, 3, …, the results are unpredictable.

The function is:

Example: etime() , single processor:

See also times (2), f77 (1), and the FORTRAN 77 User’s Guide.

e = etime(tarray)

tarray real(2) Output e= -1.0:
e≠ -1.0:

Error: tarray values are undefined
Single Processor: User time in

System time in
Multiple Processor: Wall clock time in

 0.0 in

tarray(1)
tarray(2)
tarray(1)
tarray(2)

Return value real Output e= -1.0:
e≠ -1.0:

Error
The sum of tarray(1) and tarray(2)

real e, etime, t(2)
do i = 1, 10000

k=k+1
end do
e = etime(t)
print *, 'elapsed:', e, ', user:', t(1), ‘, sys:', t(2)
end

demo% f77 -silent tetime.f
demo% a.out
elapsed: 0.190000, user: 6.00000E-02, sys: 0.130000
demo%

 350 FORTRAN 77 Reference Manual

7

7.9 exit : Terminate a Process and Set the Status
The subroutine is:

Example: exit() :

exit flushes and closes all the files in the process, and notifies the parent
process if it is executing a wait .

The low-order 8 bits of status are available to the parent process. These 8 bits
are shifted left 8 bits, and all other bits are zero. (Therefore, status should be in
the range of 256 - 65280). This call will never return.

The C function exit can cause cleanup actions before the final 'sys exit '.

If you call exit without an argument, you will get a warning message, and a
zero will be automatically provided as an argument. See also: exit (2),
fork (2), fork (3f), wait (2), wait (3f).

7.10 f77_floatingpoint : FORTRAN 77 IEEE Definitions
The file f77_floatingpoint.h defines constants and types used to
implement standard floating-point according to ANSI/IEEE Std 754-1985.

Include the file in a source program as follows:

call exit(status)

status INTEGER Input

integer status
status = 7
call exit(status)
end

#include <f77/f77_floatingpoint.h>

FORTRAN 77 Library Routines 351

7

The file f77_floatingpoint.h defines constants and types used to
implement standard floating-point according to ANSI/IEEE Std 754-1985. Use
these constants and types to write more easily understood .F source files that
will undergo automatic preprocessing prior to FORTRAN 77 compilation.

IEEE Rounding Mode

SIGFPE Handling

fp_direction_type The type of the IEEE rounding direction mode. The order
of enumeration varies according to hardware.

sigfpe_code_type The type of a SIGFPE code.

sigfpe_handler_type The type of a user-definable SIGFPE exception
handler called to handle a particular SIGFPE code.

SIGFPE_DEFAULT A macro indicating default SIGFPE exception
handling: IEEE exceptions to continue with a
default result and to abort for other SIGFPE codes.

SIGFPE_IGNORE A macro indicating an alternate SIGFPE exception
handling, namely to ignore and continue execution.

SIGFPE_ABORT A macro indicating an alternate SIGFPE exception
handling, namely to abort with a core dump.

 352 FORTRAN 77 Reference Manual

7

IEEE Exception Handling

IEEE Classification

Refer to the Numerical Computation Guide. See also ieee_environment (3M)
and f77_ieee_environment (3F).

N_IEEE_EXCEPTION The number of distinct IEEE floating-point exceptions.

fp_exception_type The type of the N_IEEE_EXCEPTION exceptions. Each
exception is given a bit number.

fp_exception_field_type The type intended to hold at least
N_IEEE_EXCEPTION bits corresponding to the IEEE
exceptions numbered by fp_exception_type . Thus,
fp_inexact corresponds to the least significant bit
and fp_invalid to the fifth least significant bit.
Some operations can set more than one exception.

fp_class_type A list of the classes of IEEE floating-point values and symbols.

FORTRAN 77 Library Routines 353

7

7.11 f77_ieee_environment : IEEE Arithmetic
Here is a summary:

These subprograms provide modes and status required to fully exploit
ANSI/IEEE Std 754-1985 arithmetic in a FORTRAN 77 program. They
correspond closely to the functions ieee_flags (3M) , ieee_handler (3M),
and sigfpe (3).

If you use sigfpe , you must do your own setting of the corresponding trap-
enable-mask bits in the floating-point status register. The details are in the
SPARC architecture manual. The libm function ieee_handler sets these
trap-enable-mask bits for you.

Example 1: Set rounding direction to round toward zero, unless the hardware
does not support directed rounding modes:

ieee_flags ieeer = ieee_flags(action, mode, in, out)

ieee_handler ieeer = ieee_handler(action, exception, hdl)

sigfpe ieeer = sigfpe(code, hdl)

action character Input

code sigfpe_code_type Input

mode character Input

in character Input

exception character Input

hdl sigfpe_handler_type Input

out character Output

Return value INTEGER Output

integer ieeer
character*1 mode, out, in
ieeer = ieee_flags('set', 'direction', 'tozero', out)

 354 FORTRAN 77 Reference Manual

7

Example 2: Clear rounding direction to default (round toward nearest):

Example 3: Clear all accrued exception-occurred bits:

Example 4: If Example 3 generates the overflow exception, detect it as follows:

The above code sets out to overflow and ieeer to 25. Similar coding detects
exceptions, such as invalid or inexact .

character*1 out, in
ieeer = ieee_flags('clear','direction', in, out)

character*18 out
ieeer = ieee_flags('clear', 'exception', 'all', out)

character*18 out
ieeer = ieee_flags('get', 'exception', 'overflow', out)

FORTRAN 77 Library Routines 355

7

Example 5: hand1.f , write and use a signal handler (Solaris 2.x):

Read the Numerical Computation Guide. See also: floatingpoint (3),
signal (3), sigfpe (3), f77_floatingpoint (3F), ieee_flags (3M), and
ieee_handler (3M).

7.12 fdate : Return Date and Time in an ASCII String
The subroutine or function:

external hand
real r / 14.2 /, s / 0.0 /
i = ieee_handler('set', 'division', hand)
t = r/s
end

integer function hand (sig, sip, uap)
integer sig, address
structure /fault/

integer address
end structure
structure /siginfo/

integer si_signo
integer si_code
integer si_errno
record /fault/ fault

end structure
record /siginfo/ sip
address = sip.fault.address
write (*,10) address

 10 format('Exception at hex address ', z8)
end

call fdate(string)

string character*24 Output

 356 FORTRAN 77 Reference Manual

7

or:

Example 1: fdate as a subroutine:

Output:

Example 2: fdate as a function, same output:

See also: ctime (3), time (3F), and idate (3F).

7.13 flush : Flush Output to a Logical Unit
The subroutine is:

The flush subroutine flushes the contents of the buffer for the logical unit,
lunit , to the associated file. This is most useful for logical units 0 and 6 when
they are both associated with the control terminal.

See also fclose (3S).

string = fdate() If you use it as a function, the calling
routine must define the type and
length of fdate .

Return value character*24 Output

character*24 string
call fdate(string)
write(*,*) string
end

 Wed Aug 3 15:30:23 1994

character*24 fdate
write(*,*) fdate()
end

call flush(lunit)

lunit INTEGER Input Logical unit

FORTRAN 77 Library Routines 357

7

7.14 fork : Create a Copy of the Current Process
The function is:

The fork function creates a copy of the calling process. The only distinction
between the two processes is that the value returned to one of them, referred to
as the parent process, will be the process ID of the copy. The copy is usually
referred to as the child process. The value returned to the child process will
be zero.

All logical units open for writing are flushed before the fork to avoid
duplication of the contents of I/O buffers in the external files.

Example: fork() :

A corresponding exec routine has not been provided because there is no
satisfactory way to retain open logical units across the exec routine. However,
the usual function of fork/exec can be performed using system (3F). See
also: fork (2), wait (3F), kill (3F), system (3F), and perror (3F).

7.15 free : Deallocate Memory Allocated by Malloc
The subroutine is:

free deallocates a region of memory previously allocated by malloc . The
region of memory is returned to the memory manager; it is not explicitly
available to the user’s program.

n = fork()

Return value INTEGER Output n>0: n=Process ID of copy
n<0, n=System error code

integer fork, pid
pid = fork()
end

call free (ptr)

ptr pointer Input

 358 FORTRAN 77 Reference Manual

7

Example: free() :

See Section 7.40, “malloc: Allocate Memory and Get Address,” for details.

7.16 fseek , ftell : Determine Position and Reposition a File
fseek and ftell are routines that permit repositioning of a file. ftell
returns a file’s curent position as an offset of so many bytes from the beginning
of the file. At some later point in the program, fseek can use this saved offset
value to reposition the file to that same place for reading.

CAUTION: On sequential files, following a call to fseek by an output
operation (e.g. WRITE) causes all data records following the fseek ’ed position
to be deleted and replaced by the new data record (and an end-of-file mark).
Rewriting a record in place can only be done with direct access files.

fseek : Reposition a File on a Logical Unit

The function is:

real x
pointer (ptr, x)
ptr = malloc (10000)
call free (ptr)
end

n = fseek(lunit, offset, from)

lunit INTEGER Input Open logical unit

offset INTEGER Input Offset in bytes relative to position specified
by from

from INTEGER Input 0=Beginning of file
1=Current position
2=End of file

Return value INTEGER Output n=0: OK; n>0: System error code

FORTRAN 77 Library Routines 359

7

Example: fseek() —Reposition MyFile to two bytes from the beginning:

ftell : Return Current Position of File

The function is:

Example: ftell() :

See also fseek (3S) and perror (3F).

integer fseek, lunit/1/, offset/2/, from/0/, n
open(UNIT=lunit, FILE='MyFile')
n = fseek(lunit, offset, from)
if (n .gt. 0) stop 'fseek error'
end

n = ftell(lunit)

lunit INTEGER Input Open logical unit

Return value INTEGER Input n>=0: n=Offset in bytes from start of file
n<0: n=System error code

integer ftell, lunit/1/, n
open(UNIT=lunit, FILE='MyFile')

* …
n = ftell(lunit)
if (n .lt. 0) stop 'ftell error'
end

 360 FORTRAN 77 Reference Manual

7

7.17 getarg , iargc : Get Command-line Arguments
gettarg and iargc return command-line arguments.

getarg : Get the kth Command-Line Argument

The subroutine is:

iargc : Get the Count of Command-Line Arguments

The function is:

Example: iargc and getarg , get argument count and each argument:

call getarg(k, arg)

k INTEGER Input Index of argument (0=first=command name)

arg character* n Output kth argument

n INTEGER Size of arg Large enough to hold longest argument

m = iargc()

Return value INTEGER Output Number of arguments on the command line

character argv*10
integer i, iargc, n
n = iargc()
do i = 1, n

call getarg(i, argv)
write(*, '(i2, 1x, a)') i, argv

end do
end

FORTRAN 77 Library Routines 361

7

After compiling, a sample run of the above source is:

See also execve (2) and getenv (3F).

7.18 getc , fgetc : Get Next Character
getc and fgetc get the next character.

getc : Get Next Character from stdin

The function is:

Example: getc gets each character from the keyboard; note the Control-D
(EOF):

demo% a.out first second last
1 first
2 second
3 last
demo%

status = getc(char)

char character Output Next character

Return value INTEGER Output status=0: OK
status=-1: End of file
status>0: System error code or
f77 I/O error code

character char
integer getc, status
status = 0
do while (status .eq. 0)

status = getc(char)
write(*, '(i3, o4.3)') status, char

end do
end

 362 FORTRAN 77 Reference Manual

7

After compiling, a sample run of the above source is:

For any logical unit, do not mix normal FORTRAN 77 input with getc() .

fgetc : Get Next Character from Specified Logical Unit

The function is:

Example: fgetc gets each character from tfgetc.data ; note the linefeeds
(Octal 012):

demo% a.out
ab
^D
0 141
0 142
0 012
-1 012
demo%

status = fgetc(lunit, char)

lunit INTEGER Input Logical unit

char character Output Next character

Return value INTEGER Output status=-1: End of File
status>0: System error code or
f77 I/O error code

character char
integer fgetc, status
open(unit=1, file='tfgetc.data')
status = 0
do while (status .eq. 0)

status = fgetc(1, char)
write(*, '(i3, o4.3)') status, char

end do
end

FORTRAN 77 Library Routines 363

7

After compiling, a sample run of the above source is:

For any logical unit, do not mix normal FORTRAN 77 input with fgetc() .

See also: getc (3S), intro (2), and perror (3F).

7.19 getcwd : Get Path of Current Working Directory
The function is:

Example: getcwd :

demo% cat tfgetc.data
ab
yz
demo% a.out
0 141
0 142
0 012
0 171
0 172
0 012
-1 012
demo%

status = getcwd(dirname)

dirname character* n Output Path name of the current
working directory

Return value INTEGER Output status=0: OK
status>0: Error code

n INTEGER Size of dirname, in bytes Must be big enough for
the longest path name

integer getcwd, status
character*64 dirname
status = getcwd(dirname)
if (status .ne. 0) stop 'getcwd: error'
write(*,*) dirname
end

 364 FORTRAN 77 Reference Manual

7

See also: chdir (3F), perror (3F), and getwd (3).

Note this bug: the path names cannot be longer than MAXPATHLEN as defined
in <sys/param.h> .

7.20 getenv : Get Value of Environment Variables
The subroutine is:

The getenv subroutine searches the environment list for a string of the form
ename=evalue and returns the value in evalue if such a string is present;
otherwise, it fills evalue with blanks.

Example: getenv() :

See also: execve (2) and environ (5).

7.21 getfd : Get File Descriptor for External Unit Number
The function is:

call getenv(ename, evalue)

ename character* n Input Name of the environment variable sought

evalue character* n Output Value of the environment variable found;
blanks if not successful

n INTEGER Size of evalue n must be large enough for the value.

character*18 evalue
call getenv('SHELL', evalue)
write(*,*) "'", evalue, "'"
end

fildes = getfd(unitn)

unitn INTEGER Input External unit number

Return value INTEGER Output File descriptor if the file is connected;
-1 if the file is not connected

FORTRAN 77 Library Routines 365

7

Example: getfd() :

See also open (2).

7.22 getfilep : Get File Pointer for External Unit Number
The function is:

This function is used for mixing standard FORTRAN 77 I/O with C I/O. Such
a mix is nonportable, and is not guaranteed for subsequent releases of the
operating system or FORTRAN 77. Use of this function is not recommended,
and no direct interface is provided. You must enter your own C routine to use
the value returned by getfilep . A sample C routine is shown below.

Example: FORTRAN 77 uses getfilep by passing it to a C function:

integer fildes, getfd, unitn/1/
open(unitn, file='tgetfd.data')
fildes = getfd(unitn)
if (fildes .eq. -1) stop 'getfd: file not connected'
write(*,*) 'file descriptor = ', fildes
end

irtn = c_read(getfilep(unitn), inbyte, 1)

c_read C function Input You write this C function. See the example.

unitn INTEGER Input External unit number.

getfilep INTEGER Return value File pointer if the file is connected; -1 if the
file is not connected

tgetfilepF.f character*1 inbyte
 integer*4 c_read, getfilep, unitn / 5 /
 external getfilep
 write(*,'(a,$)') 'What is the digit? '

 irtn = c_read(getfilep(unitn), inbyte, 1)

 write(*,9) inbyte
 9 format('The digit read by C is ', a)
 end

 366 FORTRAN 77 Reference Manual

7

Sample C function actually using getfilep :

A sample compile-build-run is:

For more information, read the chapter on the C-FORTRAN 77 interface in the
FORTRAN 77 4.0 User's Guide. See also open (2).

7.23 getlog : Get User’s Login Name
The subroutine is:

tgetfilepC.c #include <stdio.h>
int c_read_ (fd, buf, nbytes, buf_len)
FILE **fd ;
char *buf ;
int *nbytes, buf_len ;
{
 return fread(buf, 1, *nbytes, *fd) ;
}

demo 11% cc -c tgetfilepC.c
demo 12% f77 tgetfilepC.o tgetfilepF.f
tgetfileF.f:
MAIN:
demo 13% a.out
What is the digit? 3
The digit read by C is 3
demo 14%

call getlog(name)

name character *n Output User’s login name, or all blanks if the
process is running detached from a terminal.

n INTEGER Size of name Large enough to hold the longest name

FORTRAN 77 Library Routines 367

7

Example: getlog :

See also getlogin (3).

7.24 getpid : Get Process ID
The function is:

Example: getpid :

See also getpid (2).

7.25 getuid , getgid : Get User or Group ID of Process
getuid and getgid get the user or group ID of the process, respectively.

getuid : Get User ID of the Process

The function is:

character*18 name
call getlog(name)
write(*,*) "'", name, "'"
end

pid = getpid()

Return value INTEGER Output Process ID of the current process

integer getpid, pid
pid = getpid()
write(*,*) 'process id = ', pid
end

uid = getuid()

Return value INTEGER Output User ID of the process

 368 FORTRAN 77 Reference Manual

7

getgid : Get Group ID of the Process

The function is:

Example: getuid() and getpid() :

See also: getuid (2).

7.26 hostnm : Get Name of Current Host
The function is:

Example: hostnm() :

See also gethostname (2).

gid = getgid()

Return value INTEGER Output Group ID of the process

integer getuid, getgid, gid, uid
uid = getuid()
gid = getgid()
write(*,*) uid, gid
end

status = hostnm(name)

name character* n Output Name of current host

Return value INTEGER Output status=0: OK
status>0: Error

n INTEGER Size of name Big enough to hold the host name,
or the memory is clobbered.

integer hostnm, status
character*8 name
status = hostnm(name)
write(*,*) 'host name = "', name, '"'
end

FORTRAN 77 Library Routines 369

7

7.27 idate : Return Current System Date
idate has two versions:

• Standard—Put the current system date into an integer array: day, month,
and year.

• VMS—Put the current system date into three integer variables: month,
day, and year.

If you use the -lV77 compiler option to request the VMS library, then you get
the VMS versions of both time() and idate() ; otherwise, you get the
standard versions.

Standard Version

The standard version puts the current system date into one integer array: day,
month, and year.

The subroutine is:

Example: idate (standard version):

Compile and run the above source:

call idate(iarray)

iarray INTEGER Output array (3). Note the order: day, month, year.

integer iarray(3)
call idate(iarray)
write(*, "(' The date is: ',3i5)") iarray
end

demo% f77 -silent tidate.f
demo% a.out
 The date is: 10 8 1994
demo%

 370 FORTRAN 77 Reference Manual

7

VMS Version

The VMS version puts the current system date into three integer variables:
month, day, and year

The subroutine is:.

Example: idate (VMS version):

 Compile and run the above source; note the -lV77 option:

7.28 itime : Current System Time
itime puts the current system time into an integer array: hour, minute, and
second.

The subroutine is:

call idate(m, d, y)

m INTEGER Output Month (1 - 12)

d INTEGER Output Day (1 - 7)

y INTEGER Output Year (1 - 99)

integer m, d, y
call idate (m, d, y)
write (*, "(' The date is: ',3i5)") m, d, y
end

demo% f77 -silent tidateV.f -lV77
demo% a.out
 The date is: 8 10 94
demo%

call itime(iarray)

iarray INTEGER Output array (3). Note the order: hour, minute, second

FORTRAN 77 Library Routines 371

7

Example: itime :

Compile and run the above source:

See also time (3f), ctime (3F), and fdate (3F).

7.29 index : Index or Length of Substring
index has the following forms:

index : First Occurrence of String a2 in String a1

The intrinsic function is:

integer iarray(3)
call itime(iarray)
write (*, "(' The time is: ',3i5)") iarray
end

demo% f77 -silent titime.f
demo% a.out
 The time is: 15 42 35
demo%

index(a1, a2) Index of first occurrence of string a2 in string a1

rindex(a1, a2) Index of last occurrence of string a2 in string a1

lnblnk(a1) Index of last nonblank in string a1

len(a1) Declared length of string a1

n = index(a1, a2)

a1 character Input Main string

a2 character Input Substring

Return value INTEGER Output n>0: Index of first occurrence of a2 in a1
n=0: a2 does not occur in a1.

 372 FORTRAN 77 Reference Manual

7

rindex : Last Occurrence of String a2 in String a1

The function is:

lnblnk : Last Nonblank in String a1

The function is:

len : Declared Length of String a1

The intrinsic function is:

This function is useful since all f77 character objects are of a fixed length and
blank-padded.

n = rindex(a1, a2)

a1 character Input Main string

a2 character Input Substring

Return value INTEGER Output n>0: Index of last occurrence of a2 in a1
n=0: a2 does not occur in a1

n = lnblnk(a1)

a1 character Input String

Return value INTEGER Output n>0: Index of last nonblank in a1
n=0: a1 is all nonblank

declen = len(a1)

a1 character Input String

Return value INTEGER Output Declared length of a1

FORTRAN 77 Library Routines 373

7

Example: len() , index() , rindex() , lnblnk() :

In the above example, declen is 32, not 21.

7.30 inmax : Return Maximum Positive Integer
The function is:

Example: inmax :

See also libm_single (3f) and libm_double (3f).

* 123456789 123456789 1234
character s*24 / 'abcPDQxyz...abcPDQxyz ' /
integer declen, index, first, last, len, lnblnk, rindex
declen = len(s)
first = index(s, 'abc')
last = rindex(s, 'abc')
lastnb = lnblnk(s)
write(*,*) declen, lastnb
write(*,*) first, last
end

demo% f77 -silent tindex.f
demo% a.out
32 21
1 13
demo%

m = inmax()

Return value INTEGER Output The maximum positive integer

integer inmax, m
m = inmax()
write(*,*) m
end

demo% f77 -silent tinmax.f
demo% a.out
 2147483647
demo%

 374 FORTRAN 77 Reference Manual

7

7.31 ioinit : Initialize I/O: Carriage Control, File Names, …
The IOINIT routine establishes properties of file I/O for files opened after the
call to IOINIT . The file I/O properties that IOINIT controls are as follows:

IOINIT does the following:

• Initializes global parameters specifying f77 file I/O properties

• Opens logical units 0 through 19 with the specified file I/O properties—
attaches externally defined files to logical units at runtime

Duration of File I/O Properties

The file I/O properties apply as long as the connection exists. If you close the
unit, the properties no longer apply. The exception is the preassigned units 5
and 6, to which carriage control and blanks/zeroes apply at any time.

Internal Flags

IOINIT uses labeled common to communicate with the runtime I/O system. It
stores internal flags in the equivalent of the following labeled common block:

In releases prior to SC 3.0.1, the labeled common block was named IOIFLG . We
changed this name to _ _IOIFLG, so that a user common block named
IOIFLG does not cause problems. It is safer this way because _ _IOIFLG is
not part of the user name space.

Carriage control Recognize carriage control on any logical unit.

Blanks/zeroes Treat blanks in input data fields as blanks or zeroes.

File position Open files at beginning or at EoF.

Prefix Find and open files named prefixNN, 0 ≤ NN ≤ 19.

INTEGER*2 IEOF, ICTL, IBZR
COMMON /_ _IOIFLG/ IEOF, ICTL, IBZR ! Not in user name space

FORTRAN 77 Library Routines 375

7

Source Code

Some user needs are not satisfied with a generic version of IOINIT , so we
provide the source code. It is written in FORTRAN 77 77. The location is:

• For a standard installation, it is in:
/opt/SUNWspro/SC4.0/src/ioinit.f

• If you installed in / mydir, it is in / mydir/SC3.0.1/src/ioinit.f

Usage: ioinit

See also getarg (3F) and getenv (3F).

Restrictions

Note the following restrictions:

• prefix can be no longer than 30 characters.

• A path name associated with an environment name can be no longer than
255 characters.

• The + carriage control does not work.

Details of Arguments

Here are the arguments for ioinit .

call ioinit (cctl, bzro, apnd, prefix, vrbose)

cctl logical Input True: Recognize carriage control, all
formatted output (except unit 0)

bzro logical Input True: Treat trailing and imbedded blanks as
zeroes.

apnd logical Input True: Open files at EoF. Append.

prefix character* n Input Nonblank: For unit NN, seek and open file
prefixNN

vrbose logical Input True: Report ioinit activity as it happens

 376 FORTRAN 77 Reference Manual

7

cctl (Carriage Control)

By default, carriage control is not recognized on any logical unit. If cctl is
.TRUE. , then carriage control is recognized on formatted output to all logical
units, except unit 0, the diagnostic channel. Otherwise, the default is restored.

bzro (Blanks)

By default, trailing and embedded blanks in input data fields are ignored. If
bzro is .TRUE. , then such blanks are treated as zeros. Otherwise, the default is
restored.

apnd (Append)

By default, all files opened for sequential access are positioned at their
beginning. It is sometimes necessary or convenient to open at the end-of-file,
so that a write will append to the existing data. If apnd is .TRUE. , then files
opened subsequently on any logical unit are positioned at their end upon
opening. A value of .FALSE. restores the default behavior.

prefix (Automatic File Connection)

If the argument prefix is a nonblank string, then names of the form prefixNN are
sought in the program environment. The value associated with each such name
found is used to open the logical unit NN for formatted sequential access.

This search and connection is provided only for NN between 0 and19,
inclusive. For NN > 19, nothing is done; see “Source Code” on page 375.

vrbose (IOINIT Activity)

If the argument vrbose is .TRUE. , then ioinit reports on its own activity.

Example: The program myprogram has the following ioinit call:

You can assign file name in at least two ways.

call ioinit(.true., .false., .false., 'FORT', .false.)

FORTRAN 77 Library Routines 377

7

In sh :

In csh :

With either shell, the ioinit call in the above example gives these results:

• Open logical unit 1 to the file, mydata .

• Open logical unit 12 to the file, myresults .

• Both files are positioned at their beginning.

• Any formatted output has column 1 removed and interpreted as carriage
control.

• Embedded and trailing blanks are to be ignored on input.

Example: ioinit() —list and compile:

demo$ FORT01=mydata
demo$ FORT12=myresults
demo$ export FORT02 FORT12
demo$ myprogram

demo% setenv FORT01 mydata
demo% setenv FORT12 myresults
demo% myprogram

demo% cat tioinit.f
character*3 s
call ioinit(.true., .false., .false., 'FORT', .false.)
do i = 1, 2

read(1, '(a3,i4)') s, n
write(12, 10) s, n

end do
10 format(a3,i4)

end
demo% cat tioinit.data
abc 123
PDQ 789
demo% f77 -silent tioinit.f
demo%

 378 FORTRAN 77 Reference Manual

7

You can set environment variables as follows, using either sh or csh :

ioinit() —sh :

ioinit() —csh :

ioinit() —Run and test:

7.32 kill : Send a Signal to a Process
The function is:

demo$ FORT01=tioinit.data
demo$ FORT12=tioinit.au
demo$ export tioinit.data tioinit.au
demo$

demo% a.out
demo% cat tioinit.au
abc 123
PDQ 789
demo%

demo% a.out
demo% cat tioinit.au
abc 123
PDQ 789
demo%

status = kill(pid, signum)

pid INTEGER Input Process ID of one of the user’s processes

signum INTEGER Input Valid signal number. See signal (3).

Return value INTEGER Output status=0: OK
status>0: Error code

FORTRAN 77 Library Routines 379

7

Example (fragment): Send a message using kill() :

This function just sends a message; it does not necessarily kill the process.
Some users have been known to consider this a UNIX misnomer. If you really
want to kill a process, see the following example.

Example (fragment): Kill a process using kill() :

See also: kill (2), signal (3), signal (3F), fork (3F), and perror (3F).

7.33 libm_double : libm Double-Precision Functions
These subprograms are double-precision libm functions and subroutines.

Intrinsic Functions

The following FORTRAN 77 intrinsic functions return double-precision values
if they have double-precision arguments. You need not put them in a type
statement. If the function needed is available as an intrinsic function, it is
simpler to use an intrinsic than a non-intrinsic function.

integer kill, pid, signum
* …

status = kill(pid, signum)
if (status .ne. 0) stop 'kill: error'
write(*,*) 'Sent signal ', signum, ' to process ', pid
end

status = kill(pid, SIGKILL)

The ♦ symbol indicates it is
nonstandard that this is an
intrinsic function.

sqrt(x) asin(x) cosd(x) ♦

log(x) acos(x) asind(x) ♦

log10(x) atan(x) acosd(x) ♦

exp(x) atan2(x,y) atand(x) ♦

x**y sinh(x) atan2d(x,y) ♦

sin(x) cosh(x) aint(x)

cos(x) tanh(x) anint(x)

tan(x) sind(x) ♦ nint(x)

 380 FORTRAN 77 Reference Manual

7

Non-Intrinsic Functions

In general, these functions do not correspond to standard FORTRAN 77 generic
intrinsic functions—data types are determined by the usual data typing rules.

Example: Subroutine and non-Intrinsic double-precision functions:

For meanings of routines and arguments, type man on the routine name
without the d_ ; it is a C man page, but the meanings are the same.

The DOUBLE PRECISION
functions used are in a DOUBLE
PRECISION statement.

DOUBLE PRECISION c, d_acosh , d_hypot , d_infinity , s, x, y, z
...
z = d_acosh(x)
i = id_finite(x)
z = d_hypot(x, y)
z = d_infinity()
CALL d_sincos(x, s, c)

Table 7-1 DOUBLE PRECISION libm Functions

Variables c , l , p, s , u, x , and y
are of type DOUBLE PRECISION.

If you use one of these DOUBLE
PRECISION functions, put it
into a DOUBLE PRECISION
statement (or type it by some
IMPLICIT statement).

sind(x) , asind(x) , … involve
degrees rather than radians.

d_acos(x)
d_acosd(x)
d_acosh(x)
d_acosp(x)
d_acospi(x)

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

Function
Function
Function
Function
Function

arc cosine

arc cosh

d_atan(x)
d_atand(x)
d_atanh(x)
d_atanp(x)
d_atanpi(x)

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

Function
Function
Function
Function
Function

arc tangent

arc tanh

d_asin(x)
d_asind(x)
d_asinh(x)
d_asinp(x)
d_asinpi(x)

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

Function
Function
Function
Function
Function

arc sine

arc sinh

d_atan2((y, x)
d_atan2d(y, x)
d_atan2pi(y, x)

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

Function
Function
Function

arc tangent

FORTRAN 77 Library Routines 381

7

d_cbrt(x)
d_ceil(x)
d_copysign(x, x)

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

Function
Function
Function

cube root
ceiling

d_cos(x)
d_cosd(x)
d_cosh(x)
d_cosp(x)
d_cospi(x)

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

Function
Function
Function
Function
Function

cosine

hyperbolic cos

d_erf(x)
d_erfc(x)

DOUBLE PRECISION
DOUBLE PRECISION

Function
Function

error function

d_expm1(x)
d_floor(x)
d_hypot(x, y)
d_infinity()

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

Function
Function
Function
Function

(e**x)-1
floor
hypotenuse

d_j0(x)
d_j1(x)
d_jn(x)

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

Function
Function
Function

bessel

id_finite(x)
id_fp_class(x)
id_ilogb(x)
id_irint(x)
id_isinf(x)
id_isnan(x)
id_isnormal(x)
id_issubnormal(x)
id_iszero(x)
id_signbit(x)

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

d_addran()
d_addrans(x, p, l, u)
d_lcran()
d_lcrans(x, p, l, u)
d_shufrans(x, p, l,u)

DOUBLE PRECISION
n/a
DOUBLE PRECISION
n/a
n/a

Function
Function
Subroutine
Subroutine
Subroutine

random
number
generators

d_lgamma(x)
d_logb(x)
d_log1p(x)
d_log2(x)

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

Function
Function
Function
Function

log gamma

Table 7-1 DOUBLE PRECISION libm Functions (Continued)

 382 FORTRAN 77 Reference Manual

7

See also: intro (3M) and the Numerical Computation Guide.

d_max_normal()
d_max_subnormal()
d_min_normal()
d_min_subnormal()
d_nextafter(x, y)
d_quiet_nan(n)
d_remainder(x, y)
d_rint(x)
d_scalb(x, y)
d_scalbn(x, n)
d_signaling_nan(n)
d_significand(x)

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

d_sin(x)
d_sind(x)
d_sinh(x)
d_sinp(x)
d_sinpi(x)

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

Function
Function
Function
Function
Function

sine

hyperbolic sin

d_sincos(x, s, c)
d_sincosd(x, s, c)
d_sincosp(x, s, c)
d_sincospi(x, s, c)

n/a
n/a
n/a
n/a

Subroutine
Subroutine
Subroutine
Subroutine

sine and cosine

d_tan(x)
d_tand(x)
d_tanh(x)
d_tanp(x)
d_tanpi(x)

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

Function
Function
Function
Function
Function

tangent

hyperbolic tan

d_y0(x)
d_y1(x)
d_yn(n,x)

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

Function
Function
Function

bessel

Table 7-1 DOUBLE PRECISION libm Functions (Continued)

FORTRAN 77 Library Routines 383

7

7.34 libm_quadruple : libm Quad-Precision Functions
These subprograms are quadruple-precision (REAL*16) libm functions and
subroutines (SPARC only).

Intrinsic Functions

The following FORTRAN 77 intrinsic functions return quadruple-precision
values if they have quadruple-precision arguments. You need not put them in
a type statement. If the function needed is available as an intrinsic function, it
is simpler to use an intrinsic than a non-intrinsic function.

Non-Intrinsic Functions

In general, these do not correspond to standard generic intrinsic functions; data
types are determined by the usual data typing rules.

Samples: Quadruple precision functions:

The ♦ symbol indicates it is
nonstandard that this is an
intrinsic function.

sqrt(x) asin(x) cosd(x) ♦

log(x) acos(x) asind(x) ♦

log10(x) atan(x) acosd(x) ♦

exp(x) atan2(x,y) atand(x) ♦

x**y sinh(x) atan2d(x,y) ♦

sin(x) cosh(x) aint(x)

cos(x) tanh(x) anint(x)

tan(x) sind(x) ♦ nint(x)

The quadruple precision
functions used are in a REAL*16
statement.

REAL*16 c, q_acosh , q_hypot , q_infinity , s, x, y, z
...
z = q_acosh(x)
i = iq_finite(x)
z = q_hypot(x, y)
z = q_infinity()
CALL q_sincos(x, s, c)

 384 FORTRAN 77 Reference Manual

7

If you need to use any other quadruple-precision libm function, you can call it
using $PRAGMA C(fcn) before the call. For details, read the chapter, “The C–
FORTRAN 77 Interface” in the FORTRAN 77 User’s Guide.

Table 7-2 Quadruple-Precision libm Functions

The variables c , l , p, s , u, x , and
y are of type quadruple precision.

If you use one of these quadruple
precision functions, put it into a
REAL*16 statement (or type it by
some IMPLICIT statement).

sind(x) , asind(x) , … involve
degrees rather than radians.

For meanings of routines and
arguments, type man on the
routine name without the q_; it is a
C man page for the double
precision function, but the
meanings are the same.

q_copysign(x, y)
q_fabs(x)
q_fmod(x)
q_infinity()

REAL*16
REAL*16
REAL*16
REAL*16

Function
Function
Function
Function

iq_finite(x)
iq_fp_class(x)
iq_ilogb(x)
iq_isinf(x)
iq_isnan(x)
iq_isnormal(x)
iq_issubnormal(x)
iq_iszero(x)
iq_signbit(x)

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

Function
Function
Function
Function
Function
Function
Function
Function
Function

q_max_normal()
q_max_subnormal()
q_min_normal()
q_min_subnormal()
q_nextafter(x, y)
q_quiet_nan(n)
q_remainder(x, y)
q_scalbn(x, n)
q_signaling_nan(n)

REAL*16
REAL*16
REAL*16
REAL*16
REAL*16
REAL*16
REAL*16
REAL*16
REAL*16

Function
Function
Function
Function
Function
Function
Function
Function
Function

FORTRAN 77 Library Routines 385

7

7.35 libm_single : libm Single-Precision Functions
These subprograms are single-precision libm functions and subroutines.

Intrinsic Functions

The following FORTRAN 77 intrinsic functions return single-precision values if
they have single-precision arguments. If the function needed is available as an
intrinsic function, it may be simpler to use it than a non-intrinsic function.

Non-Intrinsic Functions

In general, the functions below provide access to single-precision libm
functions that do not correspond to standard FORTRAN 77 generic intrinsic
functions—data types are determined by the usual data typing rules.

Samples: Single-precision libm functions:

The ♦ symbol indicates it is
nonstandard that this is an
intrinsic function.

sqrt(x) asin(x) cosd(x) ♦

log(x) acos(x) asind(x) ♦

log10(x) atan(x) acosd(x) ♦

exp(x) atan2(x,y) atand(x) ♦

x**y sinh(x) atan2d(x,y) ♦

sin(x) cosh(x) aint(x)

cos(x) tanh(x) anint(x)

tan(x) sind(x) ♦ nint(x)

The REAL functions used are not
in a REAL statement. The type is
determined by the default typing
rules for the letter r .

REAL c, s, x, y, z
..
z = r_acosh(x)
i = ir_finite(x)
z = r_hypot(x, y)
z = r_infinity()
CALL r_sincos(x, s, c)

 386 FORTRAN 77 Reference Manual

7

For meanings of routines and arguments, type man on the routine name
without the r_ ; it is a C man page, but the meanings are the same.

Table 7-3 Single-Precision libm Functions

Variables c , l , p, s , u, x , and y
are of type REAL.

If you use one of these REAL
functions, it will get the default
type of REAL, unless you have
some IMPLICIT statement for
variables starting with r .

sind(x) , asind(x) , … involve
degrees rather than radians.

r_acos(x)
r_acosd(x)
r_acosh(x)
r_acosp(x)
r_acospi(x)

REAL
REAL
REAL
REAL
REAL

Function
Function
Function
Function
Function

arc cosine

arc cosh

r_atan(x)
r_atand(x)
r_atanh(x)
r_atanp(x)
r_atanpi(x)

REAL
REAL
REAL
REAL
REAL

Function
Function
Function
Function
Function

arc tangent

arc tanh

r_asin(x)
r_asind(x)
r_asinh(x)
r_asinp(x)
r_asinpi(x)

REAL
REAL
REAL
REAL
REAL

Function
Function
Function
Function
Function

arc sine

arc sinh

r_atan2((y, x)
r_atan2d(y, x)
r_atan2pi(y, x)

REAL
REAL
REAL

Function
Function
Function

arc tangent

r_cbrt(x)
r_ceil(x)
r_copysign(x, y)

REAL
REAL
REAL

Function
Function
Function

cube root
ceiling

r_cos(x)
r_cosd(x)
r_cosh(x)
r_cosp(x)
r_cospi(x)

REAL
REAL
REAL
REAL
REAL

Function
Function
Function
Function
Function

cosine

hyperbolic cos

r_erf(x)
r_erfc(x)

REAL
REAL

Function
Function

error function

r_expm1(x)
r_floor(x)
r_hypot(x, y)
r_infinity()
r_j0(x)
r_j1(x)
r_jn(x)

REAL
REAL
REAL
REAL
REAL
REAL
REAL

Function
Function
Function
Function
Function
Function
Function

(e**x)-1
floor
hypotenuse
bessel

FORTRAN 77 Library Routines 387

7

ir_finite(x)
ir_fp_class(x)
ir_ilogb(x)
ir_irint(x)
ir_isinf(x)
ir_isnan(x)
ir_isnormal(x)
ir_issubnormal(x)
ir_iszero(x)
ir_signbit(x)

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

r_addran()
r_addrans(x, p, l, u)
r_lcran()
r_lcrans(x, p, l, u)
r_shufrans(x, p, l, u)

REal
n/a
REAL
n/a
n/a

Function
Function
Subroutine
Subroutine
Subroutine

random number

r_lgamma(x)
r_logb(x)
r_log1p(x)
r_log2(x)

REAL
REAL
REAL
REAL

Function
Function
Function
Function

log gamma

r_max_normal()
r_max_subnormal()
r_min_normal()
r_min_subnormal()
r_nextafter(x, y)
r_quiet_nan(n)
r_remainder(x, y)
r_rint(x)
r_scalb(x, y)
r_scalbn(x, n)
r_signaling_nan(n)
r_significand(x)

REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL

Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

r_sin(x)
r_sind(x)
r_sinh(x)
r_sinp(x)
r_sinpi(x)

REAL
REAL
REAL
REAL
REAL

Function
Function
Function
Function
Function

sine

hyperbolic sin

Table 7-3 Single-Precision libm Functions (Continued)

 388 FORTRAN 77 Reference Manual

7

See also: intro (3M) and the Numerical Computation Guide.

7.36 link , symlnk : Make a Link to an Existing File
link creates a link to an existing file. symlink creates a symbolic link to an
existing file.

The functions are:

r_sincos(x, s, c)
r_sincosd(x, s, c)
r_sincosp(x, s, c)
r_sincospi(x, s, c)

n/a
n/a
n/a
n/a

Subroutine
Subroutine
Subroutine
Subroutine

sine & cosine

r_tan(x)
r_tand(x)
r_tanh(x)
r_tanp(x)
r_tanpi(x)

REAL
REAL
REAL
REAL
REAL

Function
Function
Function
Function
Function

tangent

hyperbolic tan

r_y0(x)
r_y1(x)
r_yn(n, x)

REAL
REAL
REAL

Function
Function
Function

bessel

status = link(name1, name2)

status = symlnk(name1, name2)

name1 character* n Input Path name of an existing file

name2 character* n Input Path name to be linked to the file, name1.
name2 must not already exist.

Return value INTEGER Output status=0: OK
status>0: System error code

Table 7-3 Single-Precision libm Functions (Continued)

FORTRAN 77 Library Routines 389

7

link : Create a Link to an Existing File

Example 1: link : Create a link named data1 to the file, tlink.db.data.1 :

symlnk : Create a Symbolic Link to an Existing File

Example 2: symlnk : Create a symbolic link named data1 to the file,
tlink.db.data.1 :

See also: link (2), symlink (2), perror (3F), and unlink (3F).

Note this bug: the path names cannot be longer than MAXPATHLEN as defined
in <sys/param.h> .

character*34 name1/'tlink.db.data.1'/, name2/'data1'/
integer link, status
status = link(name1, name2)
if (status .ne. 0) stop 'link: error'
end

demo% f77 -silent tlink.f
demo% ls -l data1
data1 not found
demo% a.out
demo% ls -l data1
-rw-rw-r-- 2 generic 2 Aug 11 08:50 data1
demo%

character*34 name1/'tlink.db.data.1'/, name2/'data1'/
integer status, symlnk
status = symlnk(name1, name2)
if (status .ne. 0) stop 'symlnk: error'
end

demo% f77 -silent tsymlnk.f
demo% ls -l data1
data1 not found
demo% a.out
demo% ls -l data1
lrwxrwxrwx 1 generic 15 Aug 11 11:09 data1 -> tlink.db.data.1
demo%

 390 FORTRAN 77 Reference Manual

7

7.37 loc : Return the Address of an Object
The function is:

Example: loc :

7.38 long , short : Integer Object Conversion
long and short handle integer object conversions.

long : Convert a Short Integer to a Long Integer

The function is:

short : Convert a Long Integer to a Short Integer

The function is:

k = loc(arg)

arg Any type Input Name of any variable, array, or structure

Return value INTEGER Output Address of arg

integer k, loc
real arg / 9.0 /
k = loc(arg)
write(*,*) k
end

call ExpecLong(long(int2))

int2 INTEGER*2 Input

Return value INTEGER*4 Output

call ExpecShort(short(int4))

int4 INTEGER*4 Input

Return value INTEGER*2 Output

FORTRAN 77 Library Routines 391

7

Example (fragment): long() and short() :

long is useful if constants are used in calls to library routines and the code is
compiled with the -i2 option.

short is useful in similar context when an otherwise long object must be
passed as a short integer.

7.39 longjmp , isetjmp : Return to Location Set by isetjmp

isetjmp sets a location for longjmp ; longjmp returns to that location.

isetjmp : Set the Location for longjmp

The function is:

integer*4 int4/8/, long
integer*2 int2/8/, short
call ExpecLong(long(int2))
call ExpecShort(short(int4))
…
end

ival = isetjmp(env)

env integer env(12) Output env is a 12-word integer array

Return value INTEGER Output ival = 0 if isetjmp is called
explicitly
ival ≠ 0 if isetjmp is called
through longjmp

 392 FORTRAN 77 Reference Manual

7

longjmp : Return to the location set by isetjmp

The subroutine is:

Description

The isetjmp and longjmp routines are used to deal with errors and
interrupts encountered in a low-level routine of a program.

These routines should be used only as a last resort. They require discipline,
and are not portable. Read the man page, setjmp (3V), for bugs and other
details.

isetjmp saves the stack environment in env. It also saves the register
environment.

longjmp restores the environment saved by the last call to isetjmp , and
returns in such a way that execution continues as if the call to isetjmp had
just returned the value ival.

The integer expression ival returned from isetjmp is zero if longjmp is not
called, and nonzero if longjmp is called.

call longjmp(env, ival)

env integer env(12) Input env is the 12-word integer array
initialized by isetjmp

ival INTEGER Output ival = 0 if isetjmp is called explicitly
ival ≠ 0 if isetjmp is called through
longjmp

FORTRAN 77 Library Routines 393

7

Example: Code fragment using isetjmp and longjmp :

Restrictions

You must invoke isetjmp before calling longjmp() .

The argument to isetjmp must be a 12-integer array.

You must pass the env variable from the routine that calls isetjmp to the
routine that calls longjmp , either by common or as an argument.

longjmp attempts to clean up the stack. longjmp must be called from a lower
call-level than isetjmp .

Passing isetjmp as an argument that is a procedure name does not work.

See setjmp (3V).

integer env(12)
common /jmpblk/ env
j = isetjmp(env) ! ←isetjmp
if (j .eq. 0) then

call sbrtnA
else

call error_processor
end if
end
subroutine sbrtnA
integer env(12)
common /jmpblk/ env
call longjmp(env, ival) ! ← longjmp
return
end

 394 FORTRAN 77 Reference Manual

7

7.40 malloc : Allocate Memory and Get Address
The function is:

The function malloc allocates an area of memory and returns the address of
the start of that area. The region of memory is not initialized in any way—
assume it is garbage.

Example: Code fragment using malloc() :

In the above example, we get 1,000 bytes of memory.

See also Section 7.15, “free: Deallocate Memory Allocated by Malloc,” for more
details.

k = malloc(n)

n INTEGER Input Number of bytes of memory

Return value INTEGER Output k>0: k=address of the start of the block
of memory allocated
k=0: Error

pointer (p1, X)
…
p1 = malloc(1000)
if (p1 .eq. 0) stop 'malloc: cannot allocate'
…
end

FORTRAN 77 Library Routines 395

7

7.41 mvbits : Move a Bit Field

Example: mvbits :

If you use idate or time , you get VMS versions.

Note the following:

• Bits are numbered according to VMS convention: from low-ordered end (as
in the example above).

• mvbits changes only bits ini2 through ini2+nbits-1 of the des location, and
no bits of the src location.

call mvbits(src, ini1, nbits, des, ini2)

src INTEGER Input Source

ini1 INTEGER Input Initial bit position in the source

nbits INTEGER Input Number of bits to move

des INTEGER Output Destination

ini2 INTEGER Input Initial bit position in the destination

demo% cat mvb1.f
* mvb1.f -- From src, initial bit 0, move 3 bits to des, initial
bit 3.
* src des
* 543210 543210 ← Bit numbers (VMS convention)
* 000111 000001 ← Values before move
* 000111 111001 ← Values after move

integer src, ini1, nbits, des, ini2
data src, ini1, nbits, des, ini2

& / 7, 0, 3, 1, 3 /
call mvbits (src, ini1, nbits, des, ini2)
write (*,"(5o3)") src, ini1, nbits, des, ini2
end

demo% f77 -silent mvb1.f
demo% a.out
 7 0 3 71 3
demo%

 396 FORTRAN 77 Reference Manual

7

• The restrictions are:
• ini1 + nbits ≤ 32
• ini2 + nbits ≤ 32

7.42 perror , gerror , ierrno : Get System Error Messages
These routines perform the following functions:

perror : Print Message to Logical Unit 0, stderr

The subroutine is:

Example 1:

gerror : Get Message for Last Detected System Error

The subroutine or function is:

perror Print a message to FORTRAN 77 logical unit 0, stderr .

gerror Get a system error message (of the last detected system error)

ierrno Get the error number of the last detected system error.

call perror(string)

string character *n Input The message. It is written preceding
the standard error message for the last
detected system error.

…
call perror("file is for formatted I/O")

…

call gerror(string)

string character *n Output Message for the last detected
system error

FORTRAN 77 Library Routines 397

7

Example 2: gerror() as a subroutine:

Example 3: gerror () as a function; string not used:

ierrno : Get Number for Last Detected System Error

The function is:

This number is updated only when an error actually occurs. Most routines and
I/O statements that might generate such errors return an error code after the
call; that value is a more reliable indicator of what caused the error condition.

Example 4: ierrno() :

See also intro (2) and perror (3).

character string*30
…
call gerror (string)
write(*,*) string
end

character gerror*30, z*30
…
z = gerror()
write(*,*) z
end

n = ierrno()

Return value INTEGER Output Error number of last detected system error

integer ierrno, n
…
n = ierrno()
write(*,*) n
end

 398 FORTRAN 77 Reference Manual

7

Note these bugs:

• string in the call to perror cannot be longer than 127 characters.

• The length of the string returned by gerror is determined by the calling
program.

f77 I/O Error Codes and Meanings

If the error number is less than 1000, then it is a system error. See intro (2).

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027

error in format
illegal unit number
formatted io not allowed
unformatted io not allowed
direct io not allowed
sequential io not allowed
can't backspace file
off beginning of record
can't stat file
no * after repeat count
off end of record
<not used>
incomprehensible list input
out of free space
unit not connected
read unexpected character
illegal logical input field
'new' file exists
can't find 'old' file
unknown system error
requires seek ability
illegal argument
negative repeat count
illegal operation for unit
 <not used>
incompatible specifiers in open
illegal input for namelist
error in FILEOPT parameter

FORTRAN 77 Library Routines 399

7

7.43 putc , fputc : Write a Character to a Logical Unit
putc writes to logical unit 6, normally the control terminal output.

fputc writes to a logical unit.

These functions write a character to the file associated with a FORTRAN 77
logical unit bypassing normal FORTRAN 77 I/O.

For any one unit, do not mix normal FORTRAN 77 output with output by
these functions.

putc : Write to Logical Unit 6

The function is:

Example: putc() :

status = putc(char)

char character Input The character to write to the unit

Return value INTEGER Output status=0: OK
status>0: System error code

character char, s*10 / 'OK by putc' /
integer putc, status
do i = 1, 10

char = s(i:i)
status = putc(char)

end do
status = putc('\n')
end

demo% f77 -silent tputc.f
demo% a.out
OK by putc
demo%

 400 FORTRAN 77 Reference Manual

7

fputc : Write to Specified Logical Unit

The function is:

Example: fputc() :

See also putc (3S), intro (2), and perror (3F).

status = fputc(lunit, char)

lunit INTEGER Input The unit to write to

char character Input The character to write to the unit

Return value INTEGER Output status=0: OK
status>0: System error code

character char, s*11 / 'OK by fputc' /
integer fputc, status
open(1, file='tfputc.data')
do i = 1, 11

char = s(i:i)
status = fputc(1, char)

end do
status = fputc(1, '\n')
end

demo% f77 -silent tfputc.f
demo% a.out
demo% cat tfputc.data
OK by fputc
demo%

FORTRAN 77 Library Routines 401

7

7.44 qsort : Sort the Elements of a One-dimensional Array
The subroutine is:

The function compar(arg1, arg2) determines the sorting order. The two
arguments are elements of array. The function must return:

Example: qsort() :

call qsort(array, len, isize, compar)

array array Input Contains the elements to be sorted

len INTEGER Input Number of elements in the array.

isize INTEGER Input Size of an element, typically:
 4 for integer or real
 8 for double precision or complex
 16 for double complex
 Length of character object for character arrays

compar function name Input Name of a user-supplied INTEGER*2 function

Negative If arg1 is considered to precede arg2

Zero If arg1 is equivalent to arg2

Positive If arg1 is considered to follow arg2

external compar
integer*2 compar
integer array(10)/5,1,9,0,8,7,3,4,6,2/, len/10/, isize/4/
call qsort(array, len, isize, compar)
write(*,'(10i3)') array
end

integer*2 function compar(a, b)
integer a, b
if (a .lt. b) compar = -1
if (a .eq. b) compar = 0
if (a .gt. b) compar = 1
return
end

 402 FORTRAN 77 Reference Manual

7

Compile and run the above source:

See also qsort (3).

7.45 ran : Generate a Random Number between 0 and 1
Repeated calls to ran generate a sequence of random numbers with a uniform
distribution.

See lcrans (3m).

Example: ran :

demo% f77 -silent tqsort.f
demo% a.out
 0 1 2 3 4 5 6 7 8 9
demo%

r = ran(i)

i INTEGER*4 Input Variable or array element

r REAL Output Variable or array element

demo% cat ran1.f
* ran1.f -- Generate random numbers.

integer i, n
real r(10)
i = 760013
do n = 1, 10

r(n) = ran (i)
end do
write (*, "(5 f11.6)") r
end

demo% f77 -silent ran1.f
demo% a.out
 0.222058 0.299851 0.390777 0.607055 0.653188
 0.060174 0.149466 0.444353 0.002982 0.976519
demo%

FORTRAN 77 Library Routines 403

7

Note the following:

• The range includes 0.0 and excludes 1.0.

• The algorithm is a multiplicative, congruential type, general random
number generator.

• In general, the value of i is set once during execution of the calling program.

• The initial value of i should be a large odd integer.

• Each call to RAN gets the next random number in the sequence.

• To get a different sequence of random numbers each time you run the
program, you must set the argument to a different initial value for each run.

• The argument is used by RAN to store a value for the calculation of the next
random number according to the following algorithm:

• SEED contains a 32-bit number, and the high-order 24 bits are converted to
floating point, and that value is returned.

7.46 rand , drand , irand : Return Random Values
rand returns real values in the range 0.0 through 1.0.

drand returns double precision values in the range 0.0 through 1.0.

irand returns positive integers in the range 0 through 2147483647.

SEED = 6909 * SEED + 1 (MOD 2**32)

 404 FORTRAN 77 Reference Manual

7

These functions use random (3) to generate sequences of random numbers. The
three functions share the same 256 byte state array. The only advantage of
these functions is that they are widely available on UNIX systems. For better
random number generators, compare lcrans , addrans , and shufrans ; also
read the Numerical Computation Guide.

Example: irand() :

See also random (3).

i = irand(k)

r = rand(k)

d = drand(k)

k, r, d INTEGER*4 Input k=0: Get next random number in the sequence
k=1: Restart sequence, return first number
k>0: Use as a seed for new sequence, return first number

rand REAL*4 Output

drand REAL*8 Output

irand INTEGER*4 Output

integer*4 v(5), iflag/0/
do i = 1, 5

v(i) = irand(iflag)
end do
write(*,*) v
end

demo% f77 -silent trand.f
demo% a.out
 2078917053 143302914 1027100827 1953210302 755253631
demo%

FORTRAN 77 Library Routines 405

7

7.47 rename : Rename a File
The function is:

If to exists, then both from and to must be the same type of file, and must reside
on the same file system. If to exists, it is removed first.

Example: rename() —Rename file trename.old to trename.new :

See also rename (2) and perror (3F).

Note the bug: the path names cannot be longer than MAXPATHLEN as defined in
<sys/param.h> .

status = rename(from, to)

from character* n Input Path name of an existing file

to character* n Input New path name for the file

Return value INTEGER Output status=0: OK
status>0: System error code

integer rename, status
character*18 from/'trename.old'/, to/'trename.new'/
status = rename(from, to)
if (status .ne. 0) stop 'rename: error'
end

demo% f77 - silent trename.f
demo% ls trename*
trename.f trename.old
demo% a.out
demo% ls trename*
trename.f trename.new
demo%

 406 FORTRAN 77 Reference Manual

7

7.48 secnds : Get System Time in Seconds, Minus Argument

Example: secnds :

Note that:

• The returned value from SECNDS is accurate to 0.01 second.

• The value is the system time, as the number of seconds from midnight, and
it correctly spans midnight.

• Some precision may be lost for small time intervals near the end of the day.

t = secnds(t0)

t0 REAL Input Constant, variable, or array element

Return
Value

REAL Output Number of seconds since midnight, minus t0

demo% cat sec1.f
real elapsed, t0, t1, x, y
t0 = 0.0
t1 = secnds(t0)
y = 0.1
do i = 1, 1000

x = asin(y)
end do
elapsed = secnds(t1)
write (*, 1) elapsed

1 format (' 1000 arcsines: ', f12.6, ' sec')
end

demo% f77 -silent sec1.f
demo% a.out
 1000 arcsines: 6.699141 sec
demo%

FORTRAN 77 Library Routines 407

7

7.49 sh : Fast Execution of an sh Command
The function is:

Example: sh() :

The function sh passes string to the sh shell as input, as if the string had been
typed as a command.

The current process waits until the command terminates.

The forked process flushes all open files:

• For output files, the buffer is flushed to the actual file.
• For input files, the position of the pointer is unpredictable.

The sh() function is not MT-safe. Do not call it from multithreaded programs;
that is, do not call it from FORTRAN 77 MP programs.

See also: execve (2), wait (2), and system (3).

Note this bug: string cannot be longer than 1,024 characters.

status = sh(string)

string character* n Input String containing command to do

Return value INTEGER Output Exit status of the shell executed.
See wait (2) for an explanation of
this value.

character*18 string / 'ls > MyOwnFile.names' /
integer status, sh
status = sh(string)
if (status .ne. 0) stop 'sh: error'
...
end

 408 FORTRAN 77 Reference Manual

7

7.50 signal : Change the Action for a Signal
The function is:

If proc is called, it is passed the signal number as an integer argument.

If a process incurs a signal, the default action is usually to clean up and abort.
You can change the action by writing an alternative signal handling routine,
and then telling the system to use it.

You direct the system to use alternate action by calling signal .

The returned value can be used in subsequent calls to signal to restore a
previous action definition.

You can get a negative return value even though there is no error. In fact, if you
pass a valid signal number to signal() , and you get a return value less than -
1, then it is OK.

f77 arranges to trap certain signals when a process is started. The only way to
restore the default f77 action is to save the returned value from the first call to
signal .

n = signal(signum, proc, flag)

signum INTEGER Input Signal number; see signal (3)

proc Routine name Input Name of user signal handling routine; must be in an external statement

flag INTEGER Input flag<0:
flag≥0:

Use proc as the signal handling routine
Ignore proc; pass flag as the action

flag=0: Use the default action
flag=1: Ignore this signal

Return value INTEGER Output n=-1:
n>0:
n>1:
n<-1:

System error
Definition of previous action
n=Address of routine that would have been called
If signum is a valid signal number, then:
 n=address of routine that would have been called.
If signum is a not a valid signal number, then:

n is an error number.

FORTRAN 77 Library Routines 409

7

Example: Code fragment that uses signal() —if illegal instruction signal,
then call MyAct :

See also kill (1), signal (3), and kill (3F).

7.51 sleep : Suspend Execution for an Interval
The subroutine is:

The actual time can be up to 1 second less than itime due to granularity in
system timekeeping.

Example: sleep() :

See also sleep (3).

#include <signal.h>
integer flag/-1/, n, signal
external MyAct
…
n = signal(SIGILL, MyAct, flag)
if (n .eq. -1) stop 'Error from signal()'
if (n .lt. -1) write(*,*) 'From signal: n = ', -n
…
end

subroutine MyAct(signum)
integer signum
…
return
end

subroutine sleep(itime)

eyc INTEGER Input Number of seconds to sleep

integer time / 5 /
write(*,*) 'Start'
call sleep(time)
write(*,*) 'End'
end

 410 FORTRAN 77 Reference Manual

7

7.52 stat , lstat , fstat : Get File Status
These functions return the following information:

device, inode number, protection, number of hard links,
user ID, group ID, device type, size, access time, modify time,
status change time, optimal blocksize, blocks allocated

Both stat and lstat query by file name. fstat queries by logical unit.

stat : Get Status for File, by File Name

The function is:

Example 1: stat() :

ierr = stat (name, statb)

name character* n Input Name of the file

statb INTEGER Output Status structure for the file,
13-element array

Return value INTEGER Output ierr=0: OK
ierr>0: Error code

character name*18 /'MyFile'/
integer ierr, stat, lunit/1/, statb(13)
open(unit=lunit, file=name)
ierr = stat (name, statb)
if (ierr .ne. 0) stop 'stat: error'
write(*,*)'UID of owner = ',statb(5),', blocks = ',statb(13)
end

FORTRAN 77 Library Routines 411

7

fstat : Get Status for File, by Logical Unit

The function is:

Example 2: fstat() :

lstat : Get Status for File, by File Name

The function is:

ierr = fstat (lunit, statb)

lunit INTEGER Input Logical unit number

statb INTEGER Output Status structure for the file, 13-element array

Return value INTEGER Output ierr=0: OK
ierr>0: Error code

character name*18 /'MyFile'/
integer fstat, lunit/1/, statb(13)
open(unit=lunit, file=name)
ierr = fstat (lunit, statb)
if (ierr .ne. 0) stop 'fstat: error'
write(*,*)'UID of owner = ',statb(5),', blocks = ',statb(13)
end

ierr = lstat (name, statb)

name character* n Input File name

statb INTEGER Output Status array of file, 13 elements

Return value INTEGER Output ierr=0: OK
ierr>0: Error code

 412 FORTRAN 77 Reference Manual

7

Example 3: lstat() :

Detail of Status Array for Files

The meaning of the information returned in array statb is as described for the
structure stat under stat (2).

Spare values are not included. The order is shown in the following table:

See also stat (2), access (3F), perror (3F), and time (3F).

Note this bug—the path names can be no longer than MAXPATHLEN as defined
in <sys/param.h> .

character name*18 /'MyFile'/
integer lstat, lunit/1/, statb(13)
open(unit=lunit, file=name)
ierr = lstat (name, statb)
if (ierr .ne. 0) stop 'lstat: error'
write(*,*)'UID of owner = ',statb(5),', blocks = ',statb(13)
end

statb (1)
statb (2)
statb (3)
statb (4)
statb (5)
statb (6)
statb (7)
statb (8)
statb (9)
statb (10)
statb (11)
statb (12)
statb (13)

 Device inode resides on
 This inode’s number
 Protection
 Number of hard links to the file
 User ID of owner
 Group ID of owner
 Device type, for inode that is device
 Total size of file
 File last access time
 File last modify time
 File last status change time
 Optimal blocksize for file system I/O ops
 Actual number of blocks allocated

FORTRAN 77 Library Routines 413

7

7.53 system : Execute a System Command
The function is:

Example: system() :

The function system passes string to your shell as input, as if the string had
been typed as a command.

If system can find the environment variable SHELL, then system uses the
value of SHELL as the command interpreter (shell); otherwise, it uses sh (1).

The current process waits until the command terminates.

Historically, cc and f77 developed with different assumptions:

• If cc calls system , the shell is always the Bourne shell.

• If f77 calls system , then which shell is called depends on the environment
variable SHELL.

The system function flushes all open files:

• For output files, the buffer is flushed to the actual file.
• For input files, the position of the pointer is unpredictable.

See also: execve (2), wait (2), and system (3).

The system() function is not MT-safe. Do not call it from multithreaded
programs; that is, do not call it from FORTRAN 77 MP programs.

status = system(string)

string character* n Input String containing command to do

Return value INTEGER Output Exit status of the shell executed.
See wait (2) for an explanation of
this value.

character*8 string / 'ls s*' /
integer status, system
status = system(string)
if (status .ne. 0) stop 'system: error'
end

 414 FORTRAN 77 Reference Manual

7

Note the bug: string cannot be longer than 1,024 characters.

7.54 time , ctime , ltime , gmtime : Get System Time
These routines have the following functions:

time : Get System Time

For time() , there are two versions, a standard version and a VMS version. If
you use the f77 command-line option -lV77, then you get the VMS version
for time() and for idate() ; otherwise, you get the standard versions.

Version Standard with Operating System

The function is:

The function time() returns an integer with the time since 00:00:00 GMT,
January 1, 1970, measured in seconds. This is the value of the operating system
clock.

time Standard version: Get system time as integer (seconds since 0 GMT 1/1/70)
VMS Version: Get the system time as character (hh:mm:ss)

ctime Convert a system time to an ASCII string.

ltime Dissect a system time into month, day, and so forth, local time.

gmtime Dissect a system time into month, day, and so forth, GMT.

n = time()

Return value INTEGER Output Time, in seconds, since 0:0:0, GMT, 1/1/70

FORTRAN 77 Library Routines 415

7

Example: time() , version standard with the operating system:

VMS Version

This function time gets the current system time as a character string.

The function is:

Example: time(t) , VMS version, ctime —convert the system time to ASCII:

Do not use -lV77 . integer n, time
n = time()
write(*,*) 'Seconds since 0 1/1/70 GMT = ', n
end

demo% f77 -silent ttime.f
demo% a.out
 The time is: 771967850
demo%

call time(t)

t character*8 Output Time, in the form hh:mm:ss
hh, mm, and ss are each two digits: hh
is the hour; mm is the minute; ss is the
second

Use -lV77 . character t*8
call time(t)
write(*, "(' The current time is ', A8)") t
end

demo% f77 -silent ttimeV.f -lV77
demo% a.out
 The current time is 08:14:13
demo%

 416 FORTRAN 77 Reference Manual

7

ctime : Convert System Time to Character

The function ctim e converts a system time, stime, and returns it as a 24-
character ASCII string.

The function is:

The format of the ctime returned value is shown in the following example. It
is described in the man page ctime , section 3C in Solaris 2.x, 3V in Solaris 1.x.

Example: ctime() :

string = ctime(stime)

stime INTEGER*4 Input System time from time() (standard
version)

Return value character*24 Output System time as character string. You must
type ctime and string as character*24 .

character*24 ctime, string
integer n, time
n = time()
string = ctime(n)
write(*,*) 'ctime: ', string
end

demo% f77 -silent tctime.f
demo% a.out
 ctime: Mon Aug 12 10:35:38 1991
demo%

FORTRAN 77 Library Routines 417

7

ltime : Split System Time to Month, Day,… (Local)

This routine dissects a system time into month, day, and so forth, for the local
time zone.

The subroutine is:

For the meaning of the elements in tarray , see the next section.

Example: ltime () :

call ltime(stime, tarray)

stime INTEGER*4 Input System time from time() (standard version)

tarray INTEGER*4(9) Output System time, local, as day, month, year, …

integer*4 stime, tarray(9), time
stime = time()
call ltime(stime, tarray)
write(*,*) 'ltime: ', tarray
end

demo% f77 -silent tltime.f
demo% a.out
 ltime: 25 49 10 12 7 91 1 223 1
demo%

 418 FORTRAN 77 Reference Manual

7

gmtime : Split System Time to Month, Day, … (GMT)

This routine dissects a system time into month, day, and so on, for GMT.

The subroutine is:

Example: gmtime :

Here are the tarray() values, from ctime : index, units, and range:

These values are described in the man page ctime , section 3C in Solaris 2.x, 3V
in Solaris 1.x.

See also: ctime , idate (3F), and fdate (3F).

call gmtime(stime, tarray)

stime INTEGER*4 Input System time from time() (standard version)

tarray INTEGER*4(9) Output System time, GMT, as day, month, year, …

integer*4 stime, tarray(9), time
stime = time()
call gmtime(stime, tarray)
write(*,*) 'gmtime: ', tarray
end

demo% f77 -silent tgmtime.f
demo% a.out
 gmtime: 12 44 19 18 5 94 6 168 0
demo%

tarray()

For Solaris1.x, the range for
seconds is 0 - 59

1
2
3
4
5

Seconds (0 - 61)
Minutes (0 - 59)
Hours (0 - 23)
Day of month (1 - 31)
Months since January (0 - 11)

6
7
8
9

Year - 1900
Day of week (Sunday = 0)
Day of year (0 - 365)
Daylight Saving Time,
 1 if DST in effect

FORTRAN 77 Library Routines 419

7

7.55 topen , tclose , tread ,…, tstate : Do Tape I/O
You can manipulate magnetic tape from FORTRAN 77 using these functions:

On any one unit, do not mix these functions with standard FORTRAN 77 I/O.

You must first use topen () to open a tape logical unit, tlu, for the specified
device. Then you do all other operations on the specified tlu. tlu has no
relationship at all to any normal FORTRAN 77 logical unit.

Before you use one of these functions, its name must be in an INTEGER type
statement.

topen : Associate a Device with a Tape Logical Unit

This function does not move the tape. See perror (3f) for details.

topen Associate a device name with a tape logical unit.

tclose Write EOF, close tape device channel, and remove association with tlu.

tread Read next physical record from tape into buffer.

twrite Write the next physical record from buffer to tape.

trewin Rewind the tape to the beginning of the first data file.

tskipf Skip forward over files and/or records, and reset EOF status.

tstate Determine the logical state of the tape I/O channel.

n = topen(tlu, devnam, islabeled)

tlu INTEGER Input Tape logical unit. It must be in the range 0 to 7.

islabeled LOGICAL Input True=the tape is labeled
A label is the first file on the tape.

Return
value

INTEGER Output n=0: OK
n<0: Error

 420 FORTRAN 77 Reference Manual

7

EXAMPLE: topen() —open a 1/4-inch tape file:

The output is:

tclose : Write EOF, Close Tape Channel, Disconnect tlu

Caution – tclose () places an EOF marker immediately after the current
location of the unit pointer, and then closes the unit. So if you trewin() a unit
before you tclose() it, its contents are discarded.

Example: tclose() —close an opened 1/4-inch tape file:

CHARACTER devnam*9 / '/dev/rst0' /
INTEGER n / 0 /, tlu / 1 /, topen
LOGICAL islabeled / .false. /
n = topen(tlu, devnam, islabeled)
IF (n .LT. 0) STOP "topen: cannot open"
WRITE(*,'("topen ok:", 2I3, 1X, A10)') n, tlu, devnam
END

topen ok: 0 1 /dev/rst0

n = tclose (tlu)

tlu INTEGER Input Tape logical unit, in range 0 to 7

n INTEGER Return value n=0: OK
n<0: Error

CHARACTER devnam*9 / '/dev/rst0' /
INTEGER n / 0 /, tlu / 1 /, tclose, topen
LOGICAL islabeled / .false. /
n = topen(tlu, devnam, islabeled)
n = tclose(tlu)
IF (n .LT. 0) STOP "tclose: cannot close"
WRITE(*, '("tclose ok:", 2I3, 1X, A10)') n, tlu, devnam
END

FORTRAN 77 Library Routines 421

7

The output is:

twrite : Write Next Physical Record to Tape

The physical record length is the size of buffer .

Example: twrite() —write a 2-record file:

The output is:

tclose ok: 0 1 /dev/rst0

n = twrite(tlu, buffer)

tlu INTEGER Input Tape logical unit, in range 0 to 7

buffer character Input Must be sized at a multiple of 512

n INTEGER Return
value

n>0: OK, and n = the number of bytes written
n=0: End of Tape
n<0: Error

CHARACTER devnam*9 / '/dev/rst0' /, rec1*512 / "abcd" /,
& rec2*512 / "wxyz" /

INTEGER n / 0 /, tlu / 1 /, tclose, topen, twrite
LOGICAL islabeled / .false. /
n = topen(tlu, devnam, islabeled)
IF (n .LT. 0) STOP "topen: cannot open"
n = twrite(tlu, rec1)
IF (n .LT. 0) STOP "twrite: cannot write 1"
n = twrite(tlu, rec2)
IF (n .LT. 0) STOP "twrite: cannot write 2"
WRITE(*, '("twrite ok:", 2I4, 1X, A10)') n, tlu, devnam
END

twrite ok: 512 1 /dev/rst0

 422 FORTRAN 77 Reference Manual

7

tread : Read Next Physical Record from Tape

If the tape is at EOF or EOT, then tread does a return; it does not read tapes.

Example: tread() —read the first record of the file written above:

The output is:

n = tread(tlu, buffer)

tlu INTEGER Input Tape logical unit, in range 0 to 7.

buffer character Input Must be sized at a multiple of 512, and
must be large enough to hold the largest
physical record to be read.

n INTEGER Return value n>0: OK, and n is the number of bytes read.
n<0: Error
n=0: EOF

CHARACTER devnam*9 / '/dev/rst0' /, onerec*512 / " " /
INTEGER n / 0 /, tlu / 1 /, topen, tread
LOGICAL islabeled / .false. /
n = topen(tlu, devnam, islabeled)
IF (n .LT. 0) STOP "topen: cannot open"
n = tread(tlu, onerec)
IF (n .LT. 0) STOP "tread: cannot read"
WRITE(*,'("tread ok:", 2I4, 1X, A10)') n, tlu, devnam
WRITE(*,'(A4)') onerec
END

tread ok: 512 1 /dev/rst0
abcd

FORTRAN 77 Library Routines 423

7

trewin : Rewind Tape to Beginning of First Data File

If the tape is labeled, then the label is skipped over after rewinding.

Example 1: trewin() —typical fragment:

Example 2: trewin() —in a two-record file, try to read three records, rewind,
read one record:

n = trewin (tlu)

tlu INTEGER Input Tape logical unit, in range 0 to 7

n INTEGER Return value n=0: OK
n<0: Error

CHARACTER devnam*9 / '/dev/rst0' /
INTEGER n /0/, tlu /1/, tclose, topen, tread, trewin
…
n = trewin(tlu)
IF (n .LT. 0) STOP "trewin: cannot rewind"
WRITE(*, '("trewin ok:", 2I4, 1X, A10)') n, tlu, devnam
…
END

CHARACTER devnam*9 / '/dev/rst0' /, onerec*512 / " " /
INTEGER n / 0 /, r, tlu / 1 /, topen, tread, trewin
LOGICAL islabeled / .false. /
n = topen(tlu, devnam, islabeled)
IF (n .LT. 0) STOP "topen: cannot open"
DO r = 1, 3
 n = tread(tlu, onerec)
 WRITE(*,'(1X, I2, 1X, A4)') r, onerec
END DO
n = trewin(tlu)
IF (n .LT. 0) STOP "trewin: cannot rewind"
WRITE(*, '("trewin ok:" 2I4, 1X, A10)') n, tlu, devnam
n = tread(tlu, onerec)
IF (n .LT. 0) STOP "tread: cannot read after rewind"
WRITE(*,'(A4)') onerec
END

 424 FORTRAN 77 Reference Manual

7

The output is:

tskipf : Skip Files and Records; Reset EoF Status

This function does not skip backward.

First, the function skips forward over nf end-of-file marks. Then, it skips
forward over nr physical records. If the current file is at EOF, this counts as one
file to skip. This function also resets the EOF status.

Example: tskipf() —typical fragment: skip four files and then skip one
record:

Compare with tstate in the next section.

1 abcd
2 wxyz
3 wxyz
trewin ok: 0 1 /dev/rst0
abcd

n = tskipf(tlu, nf, nr)

tlu INTEGER Input Tape logical unit, in range 0 to 7

nf INTEGER Input Number of end-of-file marks to skip over first

nr INTEGER Input Number of physical records to skip over after
skipping files

n INTEGER Return value n=0: OK
n<0: Error

INTEGER nfiles / 4 /, nrecords / 1 /, tskipf, tlu / 1 /
…
n = tskipf(tlu, nfiles, nrecords)
IF (n .LT. 0) STOP "tskipf: cannot skip"
…

FORTRAN 77 Library Routines 425

7

tstate : Get Logical State of Tape I/O Channel

For details, see st (4s).

While eoff is true, you cannot read from that tlu. You can set this EOF status
flag to false by using tskipf() to skip one file and zero records:

Then you can read any valid record that follows.

End-of-tape (EOT) is indicated by an empty file, often referred to as a double
EOF mark. You cannot read past EOT, but you can write past it.

n = tstate(tlu, fileno, recno, errf, eoff, eotf, tcsr)

tlu INTEGER Input Tape logical unit, in range 0 to 7

fileno INTEGER Output Current file number

recno INTEGER Output Current record number

errf LOGICAL Output True=an error occurred

eoff LOGICAL Output True=the current file is at EOF

eotf LOGICAL Output True=tape has reached logical end-of-tape

tcsr INTEGER Output True=hardware errors on the device. It contains
the tape drive control status register. If the error
is software, then tcsr is returned as zero. The
values returned in this status register vary
grossly with the brand and size of tape drive.

n = tskipf(tlu, 1, 0).

 426 FORTRAN 77 Reference Manual

7

Example: Write three files of two records each:

 The next example uses tstate() to trap EOF and get at all files.

CHARACTER devnam*10 / '/dev/nrst0' /,
& f0rec1*512 / "eins" /, f0rec2*512 / "zwei" /,
& f1rec1*512 / "ichi" /, f1rec2*512 / "ni__" /,
& f2rec1*512 / "un__" /, f2rec2*512 / "deux" /

INTEGER n / 0 /, tlu / 1 /, tclose, topen, trewin, twrite
LOGICAL islabeled / .false. /
n = topen(tlu, devnam, islabeled)
n = trewin(tlu)
n = twrite(tlu, f0rec1)
n = twrite(tlu, f0rec2)
n = tclose(tlu)
n = topen(tlu, devnam, islabeled)
n = twrite(tlu, f1rec1)
n = twrite(tlu, f1rec2)
n = tclose(tlu)
n = topen(tlu, devnam, islabeled)
n = twrite(tlu, f2rec1)
n = twrite(tlu, f2rec2)
n = tclose(tlu)
END

FORTRAN 77 Library Routines 427

7

Example: Use tstate() in a loop that reads all records of the 3 files written in
the previous example:

The output is:

CHARACTER devnam*10 / '/dev/nrst0' /, onerec*512 / " " /
INTEGER f, n / 0 /, tlu / 1 /, tcsr, topen, tread,

& trewin, tskipf, tstate
LOGICAL errf, eoff, eotf, islabeled / .false. /
n = topen(tlu, devnam, islabeled)
n = tstate(tlu, fn, rn, errf, eoff, eotf, tcsr)
WRITE(*,1) 'open:', fn, rn, errf, eoff, eotf, tcsr

1 FORMAT(1X, A10, 2I2, 1X, 1L, 1X, 1L,1X, 1L, 1X, I2)
2 FORMAT(1X, A10,1X,A4,1X,2I2,1X,1L,1X,1L,1X,1L,1X,I2)

n = trewin(tlu)
n = tstate(tlu, fn, rn, errf, eoff, eotf, tcsr)
WRITE(*,1) 'rewind:', fn, rn, errf, eoff, eotf, tcsr
DO f = 1, 3
 eoff = .false.
 DO WHILE (.NOT. eoff)
 n = tread(tlu, onerec)
 n = tstate(tlu, fn, rn, errf, eoff, eotf, tcsr)
 IF (.NOT. eoff) WRITE(*,2) 'read:', onerec,

& fn, rn, errf, eoff, eotf, tcsr
 END DO
 n = tskipf(tlu, 1, 0)
 n = tstate(tlu, fn, rn, errf, eoff, eotf, tcsr)
 WRITE(*,1) 'tskip: ', fn, rn, errf, eoff, eotf, tcsr
END DO
END

open: 0 0 F F F 0
rewind: 0 0 F F F 0
read: eins 0 1 F F F 0
read: zwei 0 2 F F F 0
tskip: 1 0 F F F 0
read: ichi 1 1 F F F 0
read: ni__ 1 2 F F F 0
tskip: 2 0 F F F 0
read: un__ 2 1 F F F 0
read: deux 2 2 F F F 0
tskip: 3 0 F F F 0

 428 FORTRAN 77 Reference Manual

7

A summary of EOF and EOT follows:

• If you are at either EOF or EOT, then:
• Any tread() just returns; it does not read the tape.
• A successful tskipf(tlu,1,0) resets the EOF status to false, and

returns; it does not advance the tape pointer.

• A successful twrite() resets the EOF and EOT status flags to false.

• A successful tclose() resets all those flags to false.

• tclose() truncates; it places an EOF marker immediately after the current
location of the unit pointer, and then closes the unit. So, if you use
trewin() to rewind a unit before you use tclose() to close it, its
contents are discarded. This behavior of tclose() is inherited from the
Berkeley code.

See also: ioctl (2), mtio (4s), perror (3f), read (2), st (4s), and write (2).

7.56 ttynam , isatty : Get Name of a Terminal Port
ttynam and isatty handle terminal port names.

ttynam : Get Name of a Terminal Port
The function ttynam returns a blank padded path name of the terminal device
associated with logical unit lunit.

The function is:

name = ttynam(lunit)

lunit INTEGER Input Logical unit

Return
value

character* n Output name is nonblank: name=path name of device on lunit.
name is an empty string (all blanks): lunit is not associated with a
terminal device in the directory, /dev

n INTEGER Size of name Must be large enough for the longest path name

FORTRAN 77 Library Routines 429

7

isatty : Is this Unit a Terminal?
The function is:

Example: Determine if lunit is a tty:

The output is:

7.57 unlink : Remove a File
The function is:

The function unlink removes the file specified by path name patnam. If this is
the last link to the file, the contents of the file are lost.

terminal = isatty(lunit)

lunit INTEGER Input Logical unit

Return value LOGICAL Output terminal=true: It is a terminal device
terminal=false: It is not a terminal device

character*12 name, ttynam
integer lunit /5/
logical isatty, terminal
terminal = isatty(lunit)
name = ttynam(lunit)
write(*,*) 'terminal = ', terminal, ', name = "', name, '"'
end

 terminal = T, name = "/dev/ttyp1 "

n = unlink (patnam)

patnam character* n Input File name

Return value INTEGER Output n=0: OK
n>0: Error

 430 FORTRAN 77 Reference Manual

7

Example: unlink() —Remove the tunlink.data file:

See also: unlink (2), link (3F), and perror (3F). Note this bug—the path
names cannot be longer than MAXPATHLEN as defined in <sys/param.h> .

7.58 wait : Wait for a Process to Terminate
The function is:

wait suspends the caller until a signal is received, or one of its child processes
terminates. If any child has terminated since the last wait , return is
immediate. If there are no children, return is immediate with an error code.

Example: Code fragment using wait() :

See also: wait (2), signal (3F), kill (3F), and perror (3F).

call unlink('tunlink.data')
end

demo% f77 -silent tunlink.f
demo% ls tunl*
tunlink.f tunlink.data
demo% a.out
demo% ls tunl*
tunlink.f
demo%

n = wait(status)

status INTEGER Output Termination status of the child process

Return value INTEGER Output n>0: Process ID of the child process
n<0: n=System error code; see wait (2).

integer n, status, wait
…
n = wait(status)
if (n .lt. 0) stop ’wait: error’
…
end

 431

VMS Language Extensions 8

This chapter describes the VMS language extensions that FORTRAN 77
supports. It is organized into the following sections:

These extensions are all, of course, nonstandard. ♦

8.1 Background
This FORTRAN 77 compiler includes the VMS extensions to make it as easy as
possible to port FORTRAN 77 programs from VMS environments to Solaris
environments. The compiler provides almost complete compatibility with VMS
FORTRAN. These extensions are included in two systems:

• Compiler command: f77
• Debugger commands: debugger , dbx

Background page 431

VMS Language Features You Get Automatically page 432

VMS Language Features that Require -xl page 436

Unsupported VMS FORTRAN page 439

 432 FORTRAN 77 Reference Manual

8

8.2 VMS Language Features You Get Automatically
This list is a summary of the VMS features that are included in f77 . Details are
elsewhere in this manual.

• Namelist I/O

• Unlabeled DO…END DO

• Indefinite DO WHILE…END DO

• BYTE data type

• Logical operations on integers, and arithmetic operations on logicals

• Additional field and edit descriptors for FORMAT statements:
• Remaining characters (Q)
• Carriage Control ($)
• Octal (O)
• Hexadecimal (X)
• Hexadecimal (Z)

• Default field indicators for w, d, and e fields in FORMAT statements

• Reading into Hollerith edit descriptors

• APPEND option for OPEN

• Long names (32 characters)

• _ and $ in names

• Long source lines (132-character), if the -e option is on

• Records, structures, unions, and maps

• Getting addresses by the %LOC function

• Passing arguments by the %VAL function

• End-of-line comments

• OPTIONS statement

• VMS Tab-format source lines are valid.

VMS Language Extensions 433

8

• Initialize in common

You can initialize variables in common blocks outside of BLOCK DATA
subprograms. You can initialize portions of common blocks, but you cannot
initialize portions of one common block in more than one subprogram.

• Radix-50

Radix-50 constants are implemented as f77 bit-string constants, that is, no
type is assumed.

• IMPLICIT NONE is treated as IMPLICIT UNDEFINED (A-Z)

• VIRTUAL is treated as DIMENSION.

• Initialize in declarations

Initialization of variables in declaration statements is allowed. Example:

• Noncharacter format specifiers

If a runtime format specifier is not of type CHARACTER, the compiler accepts
that too, even though the FORTRAN 77 Standard requires the CHARACTER
type.

• Omitted arguments in subprogram calls

The compiler accepts omitted actual argument in a subroutine call, that is,
two consecutive commas compile to a null pointer. Reference to that dummy
argument gives a segmentation fault.

• REAL*16

(SPARC only) The compiler treats variables of type REAL*16 as quadruple
precision.

• Noncharacter variables

The FORTRAN 77 Standard requires the FILE= specifier for OPEN and
INQUIRE to be an expression of type CHARACTER. f77 accepts a numeric
variable or array element reference.

CHARACTER*10 NAME /'Nell'/

 434 FORTRAN 77 Reference Manual

8

• Consecutive operators

f77 allows two consecutive arithmetic operators when the second operator
is a unary + or - . Here are two consecutive operators:

The above statement is treated as follows:

• Illegal real expressions

When the compiler finds a REAL expression where it expects an integer
expression, it truncates and makes a type conversion to INTEGER.

Examples: Contexts for illegal real expressions that f77 converts to integer:
• Alternate RETURN
• Dimension declarators and array subscripts
• Substring selectors
• Computed GO TO
• Logical unit number, record number, and record length

• Typeless numeric constants

Binary, hexadecimal and octal constants are accepted in VMS form.

Example: Constants–Binary (B), Octal (O), Hexadecimal (X or Z):

• Function length on function name, rather than on the word FUNCTION

The compiler accepts nonstandard length specifiers in function declarations.

Example: Size on function name, rather than on the word FUNCTION:

X = A ** -B

X = A ** (-B)

DATA N1 /B'0011111'/, N2/O'37'/, N3/X'1f'/, N4/Z'1f'/

INTEGER FUNCTION FCN*2 (A, B, C)

VMS Language Extensions 435

8

• TYPE and ACCEPT statements are allowed.

• Alternate return

The nonstandard & syntax for alternate-return actual arguments is treated as
the standard FORTRAN 77 * syntax. Example:

• The ENCODE and DECODE statements are accepted.

• Direct I/O with 'N record specifier

The nonstandard record specifier 'N for direct-access I/O statements is OK.

Example: A nonstandard form for record specifier:

The above is treated as:

The logical unit number is K and the number of the record is N.

• NAME, RECORDSIZE, and TYPE options—OPEN has the following alternative
options:
• NAME is treated as FILE
• RECORDSIZE is treated as RECL
• TYPE is treated as STATUS

• DISPOSE=p

The DISPOSE=p clause in the CLOSE statement is treated as STATUS=p.

• Special Intrinsics

The compiler processes certain special intrinsic functions:
• %VAL is OK as is
• %LOC is treated as LOC

CALL SUBX (I, *100, Z) ! Standard (OK)
CALL SUBX (I, &100, Z) ! Nonstandard (OK)

READ (K ' N) LIST

READ (UNIT=K, REC=N) LIST

 436 FORTRAN 77 Reference Manual

8

• %REF(expr) is treated as expr (with a warning if expr is CHARACTER)
• %DESCR is reported as an untranslatable feature

• Variable Expressions in FORMAT Statements

In general, inside a FORMAT statement, any integer constant can be replaced
by an arbitrary expression; the single exception is the n in an nH… edit
descriptor. The expression itself must be enclosed in angle brackets.

Example: The 6 in the following statement is a constant:

6 can be replaced by the variable N, as in:

8.3 VMS Language Features that Require -xl

You get most VMS features automatically without any special options. For a
few of them, however, you must add the -xl option on the f77 command line.

In general, you need this -xl option if a source statement can be interpreted
for either a VMS way of behavior or an f77 way of behavior, and you want the
VMS way of behavior. The -xl option forces the compiler to interpret it as
VMS FORTRAN.

Summary of Features That Require -xl[d]

You must use -xl[d] to access the following features:

• Unformatted record size in words rather than bytes (-xl)
• VMS-style logical file names (-xl)
• Quote (") character introducing octal constants (-xl)
• Backslash (\) as ordinary character within character constants (-xl)
• Nonstandard form of the PARAMETER statement (-xl)
• Debugging lines as comment lines or FORTRAN 77 statements (-xld)
• Align structures as in VMS FORTRAN (-xl)

1 FORMAT(3F6.1)

1 FORMAT(3F<N>.1)

VMS Language Extensions 437

8

Details of Features That Require -xl[d]

Here are the details:

• Unformatted record size in words rather than bytes

In f77 , direct-access, unformatted files are always opened with the logical
record size in bytes.

If the –xl[d] option is not set, then the argument n in the OPEN option
RECL=n is assumed to be the number of bytes to use for the record size.

If the –xl[d] option is set, then the argument n in the OPEN option RECL=n
is assumed to be the number of words, so the compiler uses n*4 as the
number of bytes for the record size.

If the –xl[d] option is set, and if the compiler cannot determine if the file
is formatted or unformatted, then it issues a warning message that the
record size may need to be adjusted. This result could happen if the
information is passed in variable character strings.

The record size returned by an INQUIRE statement is not adjusted by the
compiler; that is, INQUIRE always returns the number of bytes.

These record sizes apply to direct-access, unformatted files only.

• VMS-style logical file names

If the –xl[d] option is set, then the compiler interprets VMS logical file
names on the INCLUDE statement if it finds the environment variable,
LOGICALNAMEMAPPING, to define the mapping between the logical names
and the UNIX path name.

You set the environment variable to a string of the form:

Remember these rules for VMS style logical file names:
• Each lname is a logical name and each path1, path2, and so forth, is the path

name of a directory (without a trailing /).
• It ignores all blanks when parsing this string.
• It strips any trailing /[no]list from the file name in the INCLUDE

statement.

" lname1=path1; lname2=path2; … "

 438 FORTRAN 77 Reference Manual

8

• Logical names in a file name are delimited by the first : in the VMS file
name.

• It converts file names from lname1:file to the path1/file form.
• For logical names, uppercase and lowercase are significant. If a logical

name is encountered on the INCLUDE statement which is not specified in
the LOGICALNAMEMAPPING, the file name is used, unchanged.

• Quote (") character introducing octal constants

If the –xl[d] compiler option is on, a VMS FORTRAN octal integer
constant is treated as its decimal form.

Example: VMS octal integer constant:

The above statement is treated as:

If the –xl[d] option is not on, then the "703 is an error.

With –xl[d] , the VMS FORTRAN notation "703 signals f77 to convert
from the integer octal constant to its integer decimal equivalent, 451 in this
case. In VMS FORTRAN, "703 cannot be the start of a character constant,
because VMS FORTRAN character constants are delimited by apostrophes,
not quotes.

• Backslash (\) as ordinary character within character constants

If the –xl[d] option is on, a backslash in a character string is treated as an
ordinary character; otherwise, it is treated as an escape character.

• Nonstandard form of the PARAMETER statement

The alternate PARAMETER statement syntax is allowed, if the –xl[d] option
is on.

JCOUNT = ICOUNT + "703

JCOUNT = ICOUNT + 451

VMS Language Extensions 439

8

Example: VMS alternate form of PARAMETER statement omits the
parentheses:

• Debugging lines as comment lines or FORTRAN 77 statements (-xld)

The compiler interprets debugging lines as comment lines or FORTRAN 77
statements, depending on whether the –xld option is set. If set, they are
compiled; otherwise, they are treated as comments.

Example: Debugging lines:

With -xld , this code prints I and X. Without -xld , it does not print them.

• Align structures as in VMS FORTRAN

Use this feature if your program has some detailed knowledge of how VMS
structures are implemented. If you need to share structures with C, you
should use the default: no -xl

8.4 Unsupported VMS FORTRAN
Most VMS FORTRAN extensions are incorporated into the f77 compiler. The
compiler writes messages to standard error for any unsupported statements in
the source file. The following is a list of the few VMS statements that are not
supported.

• DEFINE FILE statement

• DELETE statement

• UNLOCK statement

PARAMETER FLAG1 = .TRUE.

REAL A(5) / 5.0, 6.0, 7.0, 8.0, 9.0 /
DO I = 1, 5

X = A(I)**2
D PRINT *, I, X

END DO
PRINT *, 'done'
END

 440 FORTRAN 77 Reference Manual

8

• FIND statement

• REWRITE statement

• KEYID and key specifiers in READ statements

• Nonstandard INQUIRE specifiers
• CARRIAGECONTROL
• DEFAULTFILE
• KEYED
• ORGANIZATION
• RECORDTYPE

• Nonstandard OPEN specifiers
• ASSOCIATEVARIABLE
• BLOCKSIZE
• BUFFERCOUNT
• CARRIAGECONTROL
• DEFAULTFILE
• DISP[OSE]
• EXTENDSIZE
• INITIALSIZE
• KEY
• MAXREC
• NOSPANBLOCKS
• ORGANIZATION
• RECORDTYPE
• SHARED
• USEROPEN

• The intrinsic function, %DESCR

• The following parameters on the OPTIONS statement:
• [NO]G_FLOATING
• [NO]F77
• CHECK=[NO]OVERFLOW
• CHECK=[NO]UNDERFLOW

• Some of the INCLUDE statement

Some aspects of the INCLUDE statement are converted. The INCLUDE
statement is operating system–dependent, so it cannot be completely
converted automatically. The VMS version allows a module-name and a
LIST control directive that are indistinguishable from a continuation of a

VMS Language Extensions 441

8

UNIX file name. Also, VMS ignores alphabetic case, so if you are
inconsistent about capitalization, distinctions are made where none are
intended.

• Getting a long integer—expecting a short

In VMS FORTRAN, you can pass a long integer argument to a subroutine
that expects a short integer. This feature works if the long integer fits in 16
bits, because the VAX addresses an integer by its low-order byte. This
feature does not work on SPARC systems.

• Those VMS system calls that are directly tied to that operating system

• Initializing a common block in more than one subprogram

• Alphabetizing common blocks so you can rely or depend on the order in
which blocks are loaded. You can specify the older with the -M mapfile
option to ld .

• If you use the defaults for both of the following:
• The OPEN option BLANK=

• The BN/BZ/B format edit specifiers

then formatted numeric input ignores imbedded and trailing blanks. The
corresponding VMS defaults treat them as zeros.

 442 FORTRAN 77 Reference Manual

8

 443

ASCII Character Set A

This appendix contains two tables: ASCII character sets and control characters.

 444 FORTRAN 77 Reference Manual

A

Table A-1 ASCII Character Set

Dec Oct Hex Name Dec Oct Hex Name Dec Oct Hex Name Dec Oct Hex Name

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037

00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

SP
!
"
#
$
%
&
’
(
)
*
+
,
–
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

‘
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~
DEL

ASCII Character Set 445

A

Table A-2 Control Characters

Dec Oct Hex Name Keys Meaning

^=Control key
s^=Shift and control keys

0
1
2
3

000
001
002
003

00
01
02
03

NUL
SOH
STX
ETX

s^P
^A
^B
^C

Null or time fill character
Start of heading
Start of text
End of text (EOM)

4
5
6
7

004
005
006
007

04
05
06
07

EOT
ENQ
ACK
BEL

^D
^E
^F
^G

End of transmission
Enquiry (WRU)
Acknowledge (RU)
Bell

8
9
10
11

010
011
012
013

08
09
0A
0B

BS
HT
LF
VT

^H
^I
^J
^K

Backspace
Horizontal tab
Line feed (newline)
Vertical tab

12
13
14
15

014
015
016
017

0C
0D
0E
0F

FF
CR
SO
SI

^L
^M
^N
^O

Form Feed
Carriage Return
Shift Out
Shift In

16
17
18
19

020
021
022
023

10
11
12
13

DLE
DC1
DC2
DC3

^P
^Q
^R
^S

Data link escape
Device control 1 (X-ON)
Device control 2 (TAPE)
Device control 3 (X-OFF)

20
21
22
23

024
025
026
027

14
15
16
17

DC4
NAK
SYN
ETB

^T
^U
^V
^W

Device control 4 (TAPE)
Negative acknowledge
Synchronous idle
End of transmission blocks

24
25
26
27

030
031
032
033

18
19
1A
1B

CAN
EM
SS
ESC

^X
^Y
^Z
s^K

Cancel
End Of medium
Special sequence
Escape (^ [)

28
29
30
31

034
035
036
037

1C
1D
1E
1F

FS
GS
RS
US

s^L
s^M
s^N
s^O

File separator (^ \)
Group separator (^])
Record separator (^ ‘)
Unit separator (^ /)

127 177 7F DEL s^0 Delete or rubout (^ _)

 446 FORTRAN 77 Reference Manual

A

 447

Sample Statements B

This appendix shows a table that contains selected samples of the f77
statement types. The purpose is to provide a quick reference for syntax details
of the more common variations of each statement type.

In the table, the following conventions are used:

C Character variable N Numeric variable

CA Character array L Logical variable

I Integer variable S Switch variable

U External unit ♦ Nonstandard feature

R Real variable

 448 FORTRAN 77 Reference Manual

B

Table B-1 FORTRAN 77 Statement Samples

Name Examples Comments

ACCEPT ♦ ACCEPT *, A, I Compare to READ.

ASSIGN ASSIGN 9 TO I

ASSIGNMENT C = 'abc'
C = "abc"
C = S // 'abc'
C = S(I:M)

Character ♦

L = L1 .OR. L2
L = I .LE. 80

Logical

N = N+1
X = '7FF00000'x

Arithmetic
Hex ♦

CURR = NEXT
NEXT.ID = 82

Compare to RECORD.

AUTOMATIC♦ AUTOMATIC A, B, C
AUTOMATIC REAL P, D, Q
IMPLICIT AUTOMATIC REAL (X-Z)

BACKSPACE BACKSPACE U
BACKSPACE(UNIT=U, IOSTAT=I, ERR=9)

BLOCK DATA BLOCK DATA
BLOCK DATA COEFFS

BYTE♦ BYTE A, B, C
BYTE A, B, C(10)
BYTE A /'x'/, B /255/, C(10) Initialize A and B

CALL CALL P(A, B)
CALL P(A, B, *9)
CALL P(A, B, &9)
CALL P

Alternate return
Alternate return ♦

CHARACTER CHARACTER C*80, D*1(4)
CHARACTER*18 A, B, C
CHARACTER A, B*3 /'xyz'/, C /'z'/ Initialize B and C ♦

CLOSE CLOSE (UNIT=I)
CLOSE(UNIT=U, ERR=90, IOSTAT=I)

COMMON COMMON / DELTAS / H, P, T
COMMON X, Y, Z
COMMON P, D, Q(10,100)

Sample Statements 449

B

COMPLEX COMPLEX U, V, U(3,6)
COMPLEX U*16
COMPLEX U*32
COMPLEX U / (1.0,1.0) /, V /(1.0,10.0) /

Double complex ♦
Quad complex ♦ (SPARC)
Initialize U and V ♦

CONTINUE 100 CONTINUE

DATA DATA A, C / 4.01, 'z' /
DATA (V(I),I=1,3) /.7, .8, .9/
DATA ARRAY(4,4) / 1.0 /
DATA B,O,X,Y /B'0011111', O'37', X'1f',
Z'1f'/

♦

DECODE♦ DECODE (4, 1, S) V

DIMENSION DIMENSION ARRAY(4, 4)
DIMENSION V(1000), W(3)

DO DO 100 I = INIT, LAST, INCR
…
100 CONTINUE

DO I = INIT, LAST
…
END DO

Unlabeled DO♦

DO WHILE (DIFF .LE. DELTA)
…
END DO

DO WHILE ♦

DO 100 WHILE (DIFF .LE. DELTA)
…
100 CONTINUE

♦

DOUBLE COMPLEX♦ DOUBLE COMPLEX U, V
DOUBLE COMPLEX U, V
COMPLEX U / (1.0,1.0D0) /, V / (1.0,1.0D0) /

COMPLEX*16♦
COMPLEX♦
Initialize U and V

DOUBLE PRECISION DOUBLE PRECISION A, D, Y(2)
DOUBLE PRECISION A, D / 1.2D3 /, Y(2)

REAL*8 ♦
Initialize D ♦

ELSE ELSE Compare to IF (Block)

ELSE IF ELSE IF

ENCODE♦ ENCODE(4, 1, T) A, B, C

END END

END DO ♦ END DO Compare to DO

Table B-1 FORTRAN 77 Statement Samples (Continued)

Name Examples Comments

 450 FORTRAN 77 Reference Manual

B

ENDFILE ENDFILE (UNIT=I)
ENDFILE I
ENDFILE(UNIT=U, IOSTAT=I, ERR=9)

END IF END IF

END MAP ♦ END MAP Compare to MAP

END STRUCTURE END STRUCTURE Compare to STRUCTURE

END UNION ♦ END UNION Compare to UNION

ENTRY ENTRY SCHLEP(X, Y)
ENTRY SCHLEP(A1, A2, *4)
ENTRY SCHLEP

EQUIVALENCE EQUIVALENCE (V(1), A(1,1))
EQUIVALENCE (V, A)
EQUIVALENCE (X,V(10)), (P,D,Q)

EXTERNAL EXTERNAL RNGKTA, FIT

FORMAT 10 FORMAT(// 2X, 2I3, 3F6.1, 4E12.2, 2A6,3L2
)
10 FORMAT(// 2D6.1, 3G12.2)
10 FORMAT(2I3.3, 3G6.1E3, 4E12.2E3)

X I F E A L
D G
w

10 FORMAT('a quoted string', " another", I2)
10 FORMAT(18Ha hollerith string, I2)
10 FORMAT(1X, T10, A1, T20, A1)

Strings ♦
Hollerith
Tabs

10 FORMAT(5X, TR10, A1, TR10, A1, TL5, A1)
10 FORMAT(" Init=", I2, :, 3X, "Last=", I2)
10 FORMAT(1X, "Enter path name ", $)

Tab right, left
:
$

10 FORMAT(F4.2, Q, 80 A1)
10 FORMAT('Octal ', O6, ', Hex ' Z6)
10 FORMAT(3F<N>.2)

Q♦
Octal, hex ♦
Variable expression ♦

FUNCTION FUNCTION Z(A, B)
FUNCTION W(P,D, *9)
CHARACTER FUNCTION R*4(P,D,*9)
INTEGER*2 FUNCTION M(I, J) Short integer ♦

GO TO GO TO 99 Unconditional

GO TO I, (10, 50, 99)
GO TO I

Assigned

GO TO (10, 50, 99), I Computed

Table B-1 FORTRAN 77 Statement Samples (Continued)

Name Examples Comments

Sample Statements 451

B

IF IF (I -K) 10, 50, 90 Arithmetic IF

IF (L) RETURN LOGICAL IF

IF (L) THEN
 N=N+1
 CALL CALC
ELSE
 K=K+1
 CALL DISP
ENDIF

BLOCK IF

IF (C .EQ. 'a') THEN
 NA=NA+1
 CALL APPEND
ELSE IF (C .EQ. 'b') THEN
 NB=NB+1
 CALL BEFORE
ELSE IF (C .EQ. 'c') THEN
 NC=NC+1
 CALL CENTER
END IF

BLOCK IF
With ELSE IF

IMPLICIT IMPLICIT COMPLEX (U-W,Z)
IMPLICIT UNDEFINED (A-Z)

INCLUDE ♦ INCLUDE 'project02/header'

INQUIRE INQUIRE(UNIT=3, OPENED=OK)
INQUIRE(FILE='mydata', EXIST=OK)
INQUIRE(UNIT=3, OPENED=OK, IOSTAT=ERRNO)

INTEGER INTEGER C, D(4)
INTEGER C*2
INTEGER*4 A, B, C

Short integer ♦

INTEGER A/ 100 /, B, C / 9 / Initialize A and C ♦

INTRINSIC INTRINSIC SQRT, EXP

LOGICAL LOGICAL C
LOGICAL B*1, C*1
LOGICAL*1 B, C
LOGICAL*4 A, B, C

♦
♦
♦

LOGICAL B / .FALSE. /, C Initialize B ♦

Table B-1 FORTRAN 77 Statement Samples (Continued)

Name Examples Comments

 452 FORTRAN 77 Reference Manual

B

Map ♦ MAP
 CHARACTER *18 MAJOR
END MAP
MAP
 INTEGER*2 CREDITS
 CHARACTER*8 GRAD_DATE
END MAP

Compare to STRUCTURE and UNION

NAMELIST ♦ NAMELIST /CASE/ S, N, D

OPEN OPEN(UNIT=3, FILE="data.test")
OPEN(UNIT=3, IOSTAT=ERRNO)

OPTIONS ♦ OPTIONS /CHECK /EXTEND_SOURCE

PARAMETER PARAMETER (A="xyz"), (PI=3.14)
PARAMETER (A="z", PI=3.14)
PARAMETER X=11, Y=X/3 ♦

PAUSE PAUSE

POINTER ♦ POINTER (P, V), (I, X)

PRAGMA♦ EXTERNAL RNGKTA, FIT !$PRAGMA C(RNGKTA, FIT) C() directive

PROGRAM PROGRAM FIDDLE

PRINT PRINT *, A, I List-directed

PRINT 10, A, I Formatted

PRINT 10, M Array M

PRINT 10, (M(I),I=J,K) Implied-DO

PRINT 10, C(I:K) Substring

PRINT '(A6,I3)', A, I
PRINT FMT='(A6,I3)', A, I

Character constant format

PRINT S, I
PRINT FMT=S, I

Switch variable has format number

PRINT G Namelist ♦

READ READ *, A, I List-directed

READ 1, A, I Formatted

READ 10, M Array M

READ 10, (M(I),I=J,K) Implied-DO

READ 10, C(I:K) Substring

READ '(A6,I3)', A, I Character constant format

Table B-1 FORTRAN 77 Statement Samples (Continued)

Name Examples Comments

Sample Statements 453

B

READ(1, 2) X, Y
READ(UNIT=1, FMT=2) X,Y
READ(1, 2, ERR=8,END=9) X,Y
READ(UNIT=1, FMT=2, ERR=8,END=9) X,Y

Formatted read from a file

READ(*, 2) X, Y Formatted read from standard input

READ(*, 10) M Array M

READ(*, 10) (M(I),I=J,K) Implied-DO

READ(*, 10) C(I:K) Substring

READ(1, *) X, Y
READ(*, *) X, Y

List-directed from file—from standard
input

READ(1, '(A6,I3)') X, Y
READ(1, FMT='(A6,I3)') X, Y

Character constant format

READ(1, C) X, Y
READ(1, FMT=C) X, Y

READ(1, S) X, Y
READ(1, FMT=S) X, Y

Switch variable has format number

READ(*, G)
READ(1, G)

Namelist read ♦
Namelist read from a file ♦

READ(1, END=8, ERR=9) X, Y Unformatted direct access

READ(1, REC=3) V
READ(1 ' 3) V

Unformatted direct access

READ(1, 2, REC=3) V Formatted direct access

READ(CA, 1, END=8, ERR=9) X, Y Internal formatted sequential

READ(CA, *, END=8, ERR=9) X, Y Internal list-directed sequential access ♦

READ(CA, REC=4, END=8, ERR=9) X, Y Internal direct access ♦

REAL REAL R, M(4)
REAL R*4
REAL*8 A, B, C
REAL*16 A, B, C

♦
Double precision ♦
Quad precision ♦ (SPARC only)

REAL A / 3.14 /, B, C / 100.0 / Initialize A and C ♦

RECORD♦ RECORD /PROD/ CURR,PRIOR,NEXT

RETURN RETURN
RETURN 2

Standard return
Alternate return

Table B-1 FORTRAN 77 Statement Samples (Continued)

Name Examples Comments

 454 FORTRAN 77 Reference Manual

B

REWIND REWIND 1
REWIND I
REWIND (UNIT=U, IOSTAT=I, ERR=9)

SAVE SAVE A, /B/, C
SAVE

STATIC ♦ STATIC A, B, C
STATIC REAL P, D, Q
IMPLICIT STATIC REAL (X-Z)

STOP STOP
STOP "all gone"

STRUCTURE STRUCTURE /PROD/
 INTEGER*4 ID / 99 /
 CHARACTER*18 NAME
 CHARACTER*8 MODEL / 'XL' /
 REAL*4 COST
 REAL*4 PRICE
END STRUCTURE

SUBROUTINE SUBROUTINE SHR(A, B, *9)
SUBROUTINE SHR(A, B, &9)
SUBROUTINE SHR(A, B)
SUBROUTINE SHR

Alternate return ♦

TYPE ♦ TYPE *, A, I Compare to PRINT

UNION ♦ UNION
 MAP
 CHARACTER*18 MAJOR
 END MAP
 MAP
 INTEGER*2 CREDITS
 CHARACTER*8 GRAD_DATE
 END MAP
END UNION

Compare to STRUCTURE

VIRTUAL ♦ VIRTUAL M(10,10), Y(100)

VOLATILE ♦ VOLATILE V, Z, MAT, /INI/

WRITE WRITE(1, 2) X, Y }
WRITE(UNIT=1, FMT=2) X, Y
WRITE(1, 2, ERR=8, END=9) X, Y
WRITE(UNIT=1, FMT=2, ERR=8, END=9) X, Y

Formatted write to a file

Table B-1 FORTRAN 77 Statement Samples (Continued)

Name Examples Comments

Sample Statements 455

B

WRITE(*, 2) X, Y
WRITE(*, 10) M

Formatted write to stdout
Array M

WRITE(*, 10) (M(I),I=J,K) Implied-DO

WRITE(*, 10) C(I:K) Substring

WRITE(1, *) X, Y
WRITE(*, *) X, Y

List-directed write to a file
List-directed write to standard output

WRITE(1, '(A6,I3)') X, Y
WRITE(1, FMT='(A6,I3)') X, Y

Character constant format

WRITE(1, C) X, Y
WRITE(1, FMT=C) X, Y

Character variable format

WRITE(1, S) X, Y
WRITE(1, FMT=S) X, Y

Switch variable has format number

WRITE(*, CASE)
WRITE(1, CASE)

Namelist write ♦
Namelist write to a file ♦

WRITE(1, END=8, ERR=9) X, Y Unformatted sequential access

WRITE(1, REC=3) V
WRITE(1 ' 3) V

Unformatted direct access

WRITE(1, 2, REC=3) V Formatted direct access

WRITE(CA, 1, END=8, ERR=9) X, Y Internal formatted sequential

WRITE(CA, *, END=8, ERR=9) X, Y Internal list-directed sequential access ♦

WRITE(CA, REC=4, END=8, ERR=9) X, Y Internal direct access ♦

Table B-1 FORTRAN 77 Statement Samples (Continued)

Name Examples Comments

 456 FORTRAN 77 Reference Manual

B

 457

Data Representations C

Whatever the size of the data element in question, the most significant bit of
the data element is always stored in the lowest-numbered byte of the byte
sequence required to represent that object.

This appendix is a brief introduction to data representation. For more in-depth
explanations, see the FORTRAN 77 4.0 User's Guide and the Numerical
Computation Guide.

This appendix is organized into the following sections:

C.1 Real, Double, and Quadruple Precision
Real, double precision, and quadruple precision number data elements are
represented according to the IEEE standard by the following form, where f is
the bits in the fraction. The quad is SPARC only.

 (-1)sign * 2exponent-bias *1.f

Real, Double, and Quadruple Precision page 457

Extreme Exponents page 458

IEEE Representation of Selected Numbers page 459

Arithmetic Operations on Extreme Values page 459

Bits and Bytes by Architecture page 462

 458 FORTRAN 77 Reference Manual

C

C.2 Extreme Exponents
 The representations of extreme exponents are as follows.

Zero (signed)

Zero (signed) is represented by an exponent of zero and a fraction of zero.

Subnormal Number

The form of a subnormal number is:

 (-1) sign * 2 1-bias *0.f

where f is the bits in the significand.

Signed Infinity

Signed infinity—that is, affine infinity—is represented by the largest value that
the exponent can assume (all ones), and a zero fraction.

Not a Number (NaN)

Not a Number (NaN) is represented by the largest value that the exponent can
assume (all ones), and a nonzero fraction.

Table C-1 Floating-point Representation

 Single Double Quadruple

Sign Bit 31 Bit 63 Bit 127

Exponent Bits 30–23
Bias 127

Bits 62–52
Bias 1023

Bits 126-112
Bias 16583

Fraction Bits 22–0 Bits 51–0 Bits 111-0

Range approx. 3.402823e+38
1.175494e-38

 1.797693e+308
 2.225074e-308

3.362E-4932
1.20E+4932

Data Representations 459

C

Normalized REAL and DOUBLE PRECISION numbers have an implicit leading
bit that provides one more bit of precision than is stored in memory. For
example, IEEE double precision provides 53 bits of precision: 52 bits stored in
the fraction, plus the implicit leading 1.

C.3 IEEE Representation of Selected Numbers
The values here are as shown by dbx , in hexadecimal.

C.4 Arithmetic Operations on Extreme Values
This section describes the results of basic arithmetic operations with extreme
and ordinary values. We assume all inputs are positive, and no traps, overflow,
underflow, or other exceptions happen.

Table C-2 IEEE Representation of Selected Numbers

Value Single-Precision Double-Precision

+0 00000000 0000000000000000

-0 80000000 8000000000000000

+1.0 3F800000 3FF0000000000000

-1.0 BF800000 BFF0000000000000

+2.0 40000000 4000000000000000

+3.0 40400000 4008000000000000

+Infinity 7F800000 7FF0000000000000

-Infinity FF800000 FFF0000000000000

NaN 7Fxxxxxx 7FFxxxxxxxxxxxxx

 460 FORTRAN 77 Reference Manual

C

In the above table, for Inf ± Inf: Inf + Inf = Inf, and Inf - Inf = NaN.

In the above table, NS means either Num or Sub result possible.

Table C-3 Extreme Value Abbreviations

Abbreviation Meaning

Sub Subnormal number

Num Normalized number

Inf Infinity (positive or negative)

NaN Not a Number

Uno Unordered

Table C-4 Extreme Values: Addition and Subtraction

Left Operand

Right Operand

 0 Sub Num Inf NaN

0 0 Sub Num Inf NaN

Sub Sub Sub Num Inf NaN

Num Num Num Num Inf NaN

Inf Inf Inf Inf Read Note NaN

NaN NaN NaN NaN NaN NaN

Table C-5 Extreme Values: Multiplication

Left Operand

 Right Operand

0 Sub Num Inf NaN

0 0 0 0 NaN NaN

Sub 0 0 NS Inf NaN

Num 0 NS Num Inf NaN

Inf NaN Inf Inf Inf NaN

NaN NaN NaN NaN NaN NaN

Data Representations 461

C

Note:

• If either X or Y is NaN, then X.NE.Y is .TRUE. , and the others (.EQ. ,
.GT. , .GE. , .LT. , .LE.) are .FALSE.

• +0 compares equal to -0.

• If any argument is NaN, then the results of MAX or MIN are undefined.

Table C-6 Extreme Values: Division

Left Operand

Right Operand

0 Sub Num Inf NaN

0 NaN 0 0 0 NaN

Sub Inf Num Num 0 NaN

Num Inf Num Num 0 NaN

Inf Inf Inf Inf NaN NaN

NaN NaN NaN NaN NaN NaN

Table C-7 Extreme Values: Comparison

Left Operand

Right Operand

0 Sub Num Inf NaN

0 = < < < Uno

Sub > < < Uno

Num > > < Uno

Inf > > > = Uno

NaN Uno Uno Uno Uno Uno

 462 FORTRAN 77 Reference Manual

C

C.5 Bits and Bytes by Architecture
The order in which the data—the bits and bytes—are arranged differs between
VAX computers on the one hand, and SPARC computers on the other.

The bytes in a 32-bit integer, when read from address n, end up in the register
as shown in the following tables.

The bits are numbered the same on these systems, even though the bytes are
numbered differently.

Following are some possible problem areas:

• Passing binary data over the network. Use External Data Representation
(XDR) format or another standard network format to avoid problems.

• Porting raster graphics images between architectures. If your program uses
graphics images in binary form, and they have byte ordering that is not the
same as for images produced by SPARC system routines, you must convert
them.

• If you convert character-to-integer or integer-to-character between
architectures, you should use XDR.

• If you read binary data created on an architecture with a different byte
order, then you must filter it to correct the byte order.

See also the man page, xdr (3N).

Table C-8 Bits and Bytes for Intel and VAX Computers

Byte n+3 Byte n+2 Byte n+1 Byte n

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Most Significant Least significant

Table C-9 Bits and Bytes for 680x0 and SPARC Computers

Byte n Byte n+1 Byte n+2 Byte n+3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Most Significant Least significant

Index-463

Index

Symbols
! , 3, 4, 10
" , 3, 4
$, 3, 4, 5

edit descriptor, 267
NAMELIST delimiter, 309

%, 3, 4
%DESCR, 435
%FILL , 51, 233
%LOC, 435
%REF, 435
%VAL, 435
&, 3, 4, 100, 101, 309, 435
', 435
' , 3, 26
(e**x)-1, 381, 386
* , 3, 4, 103, 105, 435

alternate return, 100, 101
comments, 10

+, 3, 4, 268
, , 3, 4
. , 3, 4, 52
/ , 3, 4, 295, 301
// concatenate string, 74
: , 3, 4

array bounds, 41

character constants, 28
edit descriptor, 295
substring operator, 46

<>, 4, 152, 154
=, 3, 4, 87
?, 3, 4, 313
\ , 3, 4
_, 3, 5, 12

Numerics
0, 1, + vertical format control, 268

A
A format specifier, 270
abort , 339
ACCEPT, 85, 435
access, 253

append option in open, 189
modes, 253
options in OPEN, 189
SEQUENTIAL in OPEN, 189
time, 410

access , 339
ACCESS in OPEN, 189
ACHAR, 319
action for signal, change, signal , 408

Index-464 FORTRAN 77 Reference Manual

address
assignment, pointers, 59, 200
loc , 390
malloc , 60, 201

adjustable array bounds, 42
alarm , 340
alignment

data types, 23
structures, as in VMS, 436, 439
summary of, 23
variables, 16

allocation of storage, 16
allowed I/O combinations, 253
alpha editing, 270
alternate

octal notation, 31
return, 222, 435

ampersand, alternate return, 100, 101, 435
and , 342
anonymous field, 51, 233
ANSI X3.9-1978 FORTRAN 77 standard, 2
AnswerBook system, xxiv
apostrophe

character constants, 26, 28
direct-access record, 211, 259, 435
format specifier, 265

append on open
ioinit , 374
open , 189

arc
cosh, 380, 386
cosine, 386
sine, 386
sinh, 386
tangent, 386
tanh, 380

arc tangent, 386
arguments

command line, getarg , 360
dummy, not OK in NAMELIST

list, 306
fields, 52, 220

omitted, 433
records, 52, 220

arithmetic
assignment, 72
assignment statement, 91
expression, 66, 67
IF , 162
intrinsic functions, 316
operations on extreme values, 459
operator, 66
right shift, rshift , 342

array
adjustable bounds, 42
assumed size, 43
bounds, 41
character, 42, 104
complex numbers, 113
declarators, 40
definition, 40
dimensions, 41
double-complex, 131
double-precision, 133
elements

data types, 14
not OK in NAMELIST list, 306

input by NAMELIST, 312
integer, 181
names with no subscripts, 43
ordering, 45
real, 219
subscripts, 44

ASCII character set, 443
ask for namelist names, 313
ASSIGN, 86
assignment

arithmetic, 72, 91
character, 76, 77
logical, 79
statement, 87

assumed size array, 43
asterisk

alternate return, 100, 435
hex and octal output, 278

Index-465

audience for this manual, xxiii
AUTOMATIC, 93
automatic structure not allowed, 94

B
B

constant indicator, 35
format specifier, 266

backslash, 3, 4, 26, 436, 438
BACKSPACE, 95
backspace character, 28
basic terms, 2
bessel, 381, 386, 388
bic , 342
binary

constants, 35
initialization, 35
operator, 66

bis , 342
bit

functions, 342
manipulation functions, 325, 333
move bits, mvbits , 395

bit , 342
bit and byte order, 462
bitwise

and, 342
complement, 342
exclusive or, 342
inclusive or, 342
operators, 72

blank
column one, 255, 302
control, 266
fields in octal or hex input, 277, 278
line comments, 10
not significant in words, 6

BLANK OPEN specifier, 190
BLOCK DATA, 97

initialize, 433
names, 5

block IF , 163

blocks allocated, 410
blocksize, 410
BN format specifier, 266
boldface font conventions, xxv
boundary for variable alignment, 16
bounds on arrays, 41
box

clear, xxv
indicates nonstandard, xxv

BS 6832 standard, 2
BYTE, 98
byte and bit order, 462
BYTE data type, 16
BZ format specifier, 266

C
c

comments, 10
directive, 11, 12

C$pragma sun unroll= n pragma, 12
CALL, 99
carriage control, 255, 268

$, 267
all files, 257
blank, 0, 1, 268
first character, 268
initialize, ioinit , 374
space, 0, 1 , 268

carriage return, $ edit descriptor, 267
ceiling, 386
change

action for signal, signal , 408
default directory, chdir , 345

CHAR, 92, 319
CHARACTER

data type, 16
statement, 102

character
array, 42
assignment, 76, 77, 78, 92
boundary, 16
concatenate, 74

Index-466 FORTRAN 77 Reference Manual

constant
delimiter, 310
NAMELIST, 311

constants, 26
declared length, 105
declaring the length, 104
dummy argument, 104
expression, 74
format specifier, 433
function, 92
functions, 324
get a character getc , fgetc , 361
join, 74
null constants, 27
operator, 74
packing, 103
put a character, putc , fputc , 399
set, 3
string declared length, len , 372
strings, 104
substring, 46
valid characters in names, 5

characters, special, 4
chdir , 345
clear

bit, 342
box, xxv

CLOSE, 105
CMPLX, 319
colon (:)

array bounds, 41
edit descriptor, 295
substring operator, 46

column one formatting, 255
combinations of I/O, 253
command-line argument, getarg , 360
commas in formatted input, 290
comments, 10

! , 10
* , 10
blank-line, 10
C, 10
embedded, 432
end-of-line, 10, 432

COMMON, 5, 108, 433
complement, 342
complex

array, 113
constant in NAMELIST, 311
constants, 28
data type, 17
statement, 110

COMPLEX*16, 18, 29
COMPLEX*32, 18, 29
COMPLEX*8, 17
computed GO TO, 159
concatenate strings, 74
concatenation operator, 74
conditional termination control, 295
consecutive

commas, NAMELIST, 311
operators, 434

constant
expression, 81
names (symbolic constants), 5
null character constants, 27
octal, 434
radix-50, 433
typeless numeric, 434
values in NAMELIST, 311

constants, 25
binary, 35
characters, 26
complex, 28
COMPLEX*16, 29
COMPLEX*32, 29
double complex, 29
double-precision real, 33
hex, 35
integer, 30
logical, 31
octal, 35
quad complex, 29
quad real, 34
real, 32
REAL*16 , 34
REAL*4, 32
REAL*8, 33

Index-467

typeless, 35
continuation lines, 8, 9
CONTINUE, 113
control characters, 3, 36, 75

in assignment, 77, 92
meanings, 445

conversion by long , short , 390
copy

NAMELIST, 312
process via fork , 357

core file, 339
Courier font, xxv
ctime , convert system time to

character, 414, 416
cube root, 386
current working directory, getcwd , 363

D
d comments, 10
D format specifier, 284
d_acos(x) , 380, 381
d_acosd(x) , 380, 381
d_acosh(x) , 380, 381
d_acosp(x) , 380, 381
d_acospi(x) , 380, 381
d_addran() , 381
d_addrans() , 381
d_asin(x) , 380
d_asind(x) , 380
d_asinh(x) , 380
d_asinp(x) , 380
d_asinpi(x) , 380
d_atan(x) , 380
d_atan2(x) , 380
d_atan2d(x) , 380
d_atan2pi(x) , 380, 381
d_atand(x) , 380
d_atanh(x) , 380
d_atanp(x) , 380
d_atanpi(x) , 380

d_cbrt(x) , 381
d_ceil(x) , 381
d_erf(x) , 381
d_erfc(x) , 381
d_expml(x) , 381
d_floor(x) , 381
d_hypot(x) , 381
d_infinity() , 381
d_j0(x) , 381
d_j1(x) , 381
d_jn(n,x) , 381
d_lcran() , 381
d_lcrans() , 381
d_lgamma(x) , 381
d_log1p(x) , 381
d_log2(x) , 381
d_logb(x) , 381
d_max_normal() , 382
d_max_subnormal() , 382
d_min_normal() , 382
d_min_subnormal() , 382
d_nextafter(x,y) , 382
d_quiet_nan(n) , 382
d_remainder(x,y) , 382
d_rint(x) , 382
d_scalbn(x,n) , 382
d_shufrans() , 381
d_signaling_nan(n) , 382
d_significand(x) , 382
d_sin(x) , 382
d_sincos(x,s,c) , 382
d_sincosd(x,s,c) , 382
d_sincosp(x,s,c) , 382
d_sincospi(x,s,c) , 382
d_sind(x) , 382
d_sinh(x) , 382
d_sinp(x) , 382
d_sinpi(x) , 382
d_tan(x) , 382
d_tand(x) , 382

Index-468 FORTRAN 77 Reference Manual

d_tanh(x) , 382
d_tanp(x) , 382
d_tanpi(x) , 382
d_y0(x) , bessel, 382
d_y1(x) , bessel, 382
d_yn(n,x) , 382
DATA, 114
data

namelist syntax, 309, 313
representation

double precision, 457
real number, 457
signed infinity, 458

type
BYTE, 16
CHARACTER, 16
COMPLEX, 17
COMPLEX*16, 18
COMPLEX*32, 18
COMPLEX*8, 17
DOUBLE COMPLEX, 18
DOUBLE PRECISION, 18
INTEGER, 19
INTEGER*4, 20
LOGICAL, 20
LOGICAL*1 , 16, 21
LOGICAL*2 , 21
LOGICAL*4 , 21
of an expression, 71
properties, 16
quad real , 22
REAL, 22
REAL*16 , 22
REAL*4, 22
REAL*8, 22
short integer, 19

types, 13
date

and time, as characters, fdate , 355
as integer, idate , 369

DBLE, 318
DBLEQ, 318
DCMPLX, 319
deallocate memory by free , 60, 201, 357

debug statement, 439
decimal points not allowed in octal or hex

input, 277
declaration

field, 49, 184, 232
initialize in, 433
map, 56, 241
record, 51, 219
structure, 49
union, 56

declared length of character string,
len , 372

DECODE, 117
default

directory change, chdir , 345
inquire options, 176

degree-based trigonometric
functions, 333

delay execution, alarm , 340
delimiter

character constant, 310
NAMELIST: $ or &, 309

descriptor, get file, getfd , 364
device name, type, size, 410
DFLOAT, 318
diamond indicates nonstandard, xxv
differences, VMS and f77 , 431
DIMENSION, 119
dimension arrays, 41
direct

I/O, 259
I/O record specifier, 213, 259, 435
option for access in open, 189

directives
explicit parallelization, 12
general, 11

directory
default change, chdir , 345
get current working directory,

getcwd , 363
DISPOSE option for CLOSE, 435
DO, 122
DO WHILE, 127

Index-469

DOALL directive, 12
documents on-line, xxiv
dollar sign

edit descriptor, 267
in names, 5
NAMELIST delimiter, 309

DOSERIAL directive, 12
DOSERIAL* directive, 12
DOUBLE COMPLEX, 18, 130
DOUBLE PRECISION, 18, 131
double quote, 436, 438

character constants, 26
preceding octal constants, 31

double spacing print, 255
double-complex

arrays, 131
constants, 29
data type, 18

double-precision
arrays, 133
complex, 18
complex functions, 332
data representation, 457
editing, 284
functions, 379
real constants, 33

drand , 404
DREAL, 318
dummy arguments not OK in NAMELIST

list, 306

E
-e , 9
E format specifier, 286
edit descriptor

/ , 295
: , 295
A, 270
D, 284
E, 286
F, 288
G, 290
I , 274

L, 275
P, 292
positional, 279
Q, 291
S, 294
SP, 294
SS, 294
SU, 294
T, 279
X, 279

ELSE, 133
ELSE IF , 134
embedded

blanks, initialize, ioinit , 374
comments, 432

empty spaces in structures, 51, 233
ENCODE, 117, 136
END, 137
END DO, 138
END FILE , 139
END IF , 141
END MAP, 142
end of text, 75
END STRUCTURE, 142
END UNION, 143
end-of-line comments, 10, 432
ENTRY, 144
environment variables, getenv , 364
environmental inquiry functions, 326
EOF reset status for tapeio, 424
epbase , 326
ephuge , 326
epmax, 326
epmin , 326
epmrsp , 326
epprec , 326
eptiny , 326
equals statement, 87
EQUIVALENCE, 147
ERR

INQUIRE, 174
OPEN specifier, 190

Index-470 FORTRAN 77 Reference Manual

READ, 213
WRITE, 246

error
function, 386
I/O, 252
messages, perror , gerror ,

ierrno , 396
errors and interrupts, longjmp , 392
escape sequences, 28
evaluation of expressions, 83
exclusive or, 342
executable statements, 7
execute an OS command, system , 407,

413
existence of file, access , 339
exit , 350
exponential editing, 286
exponents not allowed in octal or hex

input, 277
expression

arithmetic, 66, 67
character, 74
constant, 81
evaluation, 83
logical, 78
variable format, 152

extended source lines, 9
EXTERNAL, 149
external C functions, 12
extract substring, 46
extreme

exponent data representation, 458
values for arithmetic operations, 459

F
F format specifier, 288
f77_floatingpoint IEEE

definitions, 350
f77_ieee_environment , 353
fdate , 355
fgetc , 362

field, 49
argument that is a field, 52, 220
COMMON with a field, 52, 220
declaration, 49, 184, 232
DIMENSION with a field, 52, 220
dimensioning in type statements, 50,

233
EQUIVALENCE, not allowed in, 52,

220
list, 50
list of a structure, 49, 232, 233
map with a field, 57, 242
name, %FILL , 51, 233
NAMELIST, not allowed in, 52, 220
offset, 51, 233
reference, 52
SAVE, not allowed in, 52, 220
type, 51, 233

file, 191
carriage control on all files, 257
connection, automatic, ioinit , 374
descriptor, get, getfd , 364
get file pointer, getfilep , 365
INQUIRE, 173
internal, 260
mode, access , 339
names, VMS logical, 436, 437
permissions, access , 339
preattached, 257
properties, 173
query, 173
remove, unlink , 429
rename, 405
scratch, 256
status, stat , 410

FILE , OPEN specifier, 188
FILE= specifier, 433
files open, 252
filling with asterisks or spaces, hex and

octal output, 278
find substring, index , 371
FIPS 69-1 standard, 2
first character carriage control, 268
FLOAT, 318

Index-471

floating-point
Goldberg white paper, xxiv
IEEE definitions, 350

floor, 386
flush , 356
font

boldface, xxv
conventions, xxv
Courier, xxv
italic, xxv

fork , 357
form feed character, 28
FORM specifier in OPEN, 189
FORM='PRINT' , 255
FORMAT, 151
format

$, 267
/ , 295
: , 295
A, 270
B, 266
BN, 266
BZ, 266
D, 284
defaults for field descriptors, 265
E, 286
F, 288
G, 290
I , 274
L, 275
nT, 279
O, 276
of source line, 8
P, 292
Q, 291
R, 284
read into hollerith edit

descriptor, 273
S, 294
SP, 294
specifier, 433
SS, 294
standard fixed, 8

SU, 294
T, 279
tab, 9
TLn, 279
TRn, 279
variable expressions, 152, 154
vertical control, 267, 268
X, 279
Z, 276

format specifier " , 283
formats, 296

runtime, 208, 212, 246, 273, 296
variable format expressions, 298

formatted
I/O, 261
output, 255

formatted I/O, 261
forms of I/O, 253
FORTRAN statements, 8
fputc , 399
FREE, 327
free , 60, 201, 357
FREE() subroutine, 60, 201
fseek , 358
fstat , 410
ftell , 358
FUNCTION, 155
function

length specifier, 434
malloc , 60, 201
names, 5
types, 14

functions
bit-manipulation, 333
degree-based trigonometric, 333
double-precision, 380
double-precision complex, 332
external C, 12
integer, 335
intrinsic, 316
quadruple-precision, libm_

quadruple , 383

Index-472 FORTRAN 77 Reference Manual

single-precision, libm_single , 386
type coercing, 336
zero-extend, 338

G
G format specifier, 290
general real editing, 290
gerror , 396
get

character getc , fgetc , 361
current working directory,

getcwd , 363
environment variables, getenv , 364
file descriptor, getfd , 364
file pointer, getfilep , 365
group id, getgid , 368
login name, getlog , 367
process id, getpid , 367
user id, getuid , 367

getarg , 360
getc , 361
getcwd , 363
getenv , 364
getfd , 364
getfilep , 365
getgid , 368
getlog , 367
getpid , 367
getuid , 367
gmtime , 414
gmtime() , GMT, 418
GO TO, 157, 161
GO TO assigned, 157
GO TO unconditional, 161
GO TO, computed, 159
Goldberg, floating-point white

paper, xxiv
Greenwich Mean Time, gmtime , 414
group, 410
group ID, get, getgid , 368
GSA validation, 2

H
hard links, 410
hex and octal

format, 276
format samples, 277
input, 277
output, 278

hexadecimal
constants, 35
initialization, 35

hollerith, 91, 273
horizontal positioning, 279
host name, get, hostnm , 368
hostnm , 368
hyperbolic cos, 386
hyperbolic tan, 382, 388
hypotenuse, 386

I
I format specifier, 274
I/O, 253

direct, 259
errors, 252
forms, 253
random, 259
summary, 254

-i2 , 19, 23
IACHAR, 319
iargc , 360
ICHAR, 319
id, process, get, getpid , 367
id_finite(x) , 381
id_fp_class(x) , 381
id_irint(x) , 381
id_isinf(x) , 381
id_isnan(x) , 381
id_isnormal(x) , 381
id_issubnormal(x) , 381
id_iszero(x) , 381
id_logb(x) , 381
id_signbit(x) , 381

Index-473

IDINT , 318
IEEE, 350, 459

754, 2
environment, 353

ieee_flags , 353
ieee_handler >, 353
ierrno , 396
IF , 162, 163, 166
IFIX , 318
illegal REAL expressions, 434
IMPLICIT , 167
implicit

none data typing, 433
statement, 14
typing, 14

INCLUDE, 170, 437
inclusive or, 342
index , 371
initial line, 8
initialize

I/O, ioinit , 374
in BLOCK DATA, 433
in COMMON, 433
in declaration, 433

inmax , 373
inode, 410
input commas, 290
INQUIRE, 173, 178
inquire

by file, 178
by unit, 173, 178
options summary, 177

inquire option
ACCESS, 175
BLANK, 176
defaults, 176
DIRECT, 175
ERR, 174
EXIST , 174
FILE , 174
FORM, 175
FORMATTED, 175
IOSTAT, 174

NAME, 175
NAMED, 175
NEXTREC, 176
none for permissions, 174
NUMBER, 175
OPENED, 175
RECL, 176
SEQUENTIAL, 175
UNFORMATTED, 175
UNIT , 174

INT , 318
INTEGER, 19, 179
integer

and logical, 72
arrays, 181
conversion by long , short , 390
editing, 274
functions, 335
logical, mixed expressions, 71
long, 31
operand with logical operator, 72
short, 31

integer constants, 30
INTEGER*2, 19
INTEGER*4, 20
INTEGER*8, 20
internal files, 260
interrupts and errors, longjmp , 392
INTRINSIC , 181
intrinsic function malloc , 60, 201
intrinsic functions, 332

arithmetic, 316
character, 324
environmental inquiry, 326
mathematical, 322
memory allocation and

deallocation, 327
special VMS, 435
trigonometric, 320
type conversions, 318

invalid characters for data, 3
ioinit , 257, 374
IOSTAT OPEN specifier, 190

Index-474 FORTRAN 77 Reference Manual

iq_finite(x) , 384
iq_fp_class(x) , 384
iq_isinf(x) , 384
iq_isnan(x) , 384
iq_isnormal(x) , 384
iq_issubnormal(x) , 384
iq_iszero(x) , 384
iq_logb(x) , 384
iq_signbit(x) , 384
IQINT , 318
ir_finite(x) , 387
ir_fp_class(x) , 387
ir_irint(x) , 387
ir_isinf(x) , 387
ir_isnan(x) , 387
ir_isnormal(x) , 387
ir_issubnormal(x) , 387
ir_iszero(x) , 387
ir_logb(x) , 387
ir_signbit(x) , 387
irand , 404
isatty , 428
isetjmp , 391
ishift , 332
italic font conventions, xxv

J
join strings, 74
jump, longjmp , isetjmp , 392

K
key word, 2
kill , send signal, 378

L
L format specifier, 275
label of statement, 3
leading spaces or zeros, hex and octal

output, 278

left shift, lshift , 342
left-to-right

exception, 68
precedence, 68

len , declared length, 105, 372
length

character string, len , 372
function length specifier, 155, 157,

434
LEN function, 105
line of source code, 9
names, 5
string, 105
variable length records, 190, 300

libm_double , 379
libm_quadruple , 383
libm_single , 385
line

formats, 8
length, 9
tab-format, 8, 432

line feed, 75
link , 388
link to an existing file, link , 388
linked list, 206
list-directed

I/O, 301
input, 301
output, 302
output to a print file, 255

literal constant, 2
literals type REAL*16 , 433
lnblnk , 372
LOC, 327
local time zone, lmtime() , 417
location of

a variable loc , 390
scratch files, 191

log gamma, 387
LOGICAL, 20, 182
logical

assignment, 79, 91
constants, 31

Index-475

editing, 275
expression, 78
expression meaning, 79
file names in the INCLUDE, 171
file names, VMS, 436, 437
IF , 166
integer, mixed, 72
left shift, lshift , 342
LOGICAL*1 data type, 16
operator precedence, 79
unit preattached, 257
units, 252

LOGICAL*1 , 21
LOGICAL*2 , 21
LOGICAL*4 , 21
LOGICAL*8 , 21
login name, get getlog , 366
long , 390
long integers, 31
long lines in source code, 9
longjmp , 391
lrshft , 332
lshift , 342
lstat , 410
ltime , 414
ltime() , local time zone, 417

M
malloc , 60, 201
MAP, 56, 57, 184, 241, 242
maximum

number of open files, 252
positive integer, inmax , 373

memory
deallocate by free , 357
get by malloc , 60, 201
release by free , 60, 201

memory allocation and deallocation
functions, 327

MIL-STD-1753 standard, 2

mixed
integer and logical, 71, 72
mode, 70

mixed mode, 71
mixing format of source lines, 9
MMALLOC, 327
mode

IEEE, 353
of file, access , 339

modifying
carriage control, 267
time, 410

mvbits , move bits, 395

N
name

login, get, getlog , 366
of scratch file, 191
terminal port, ttynam , 428

NAME option for OPEN, 435
NAMELIST, 185, 306, 310, 311

$, 308
&, 309
ask for names, 313
namelist-specifier, 307
NML=, 307
prompt for names, 313
WRITE, 306

namelist
data, 309, 313
data syntax, 310
END, 309
I/O, 305

names, 5
NBS validation, 2
negative values, hex and octal output, 278
nested substructure, 54
newline character, 28, 75
NIST validation, 2
NML=, 308
noncharacter runtime format

specifier, 433

Index-476 FORTRAN 77 Reference Manual

none, implicit data typing, 433
nonexecutable statements, 7
nonstandard

features, indicated by diamond, xxv
PARAMETER, 436, 438

not , 342
notation octal alternate, 31
null

character, 28
character constants, 27
data item, NAMELIST, 311

number of
continuation lines, 9
open files, 252

numeric constant, typeless, 434

O
O

constant indicator, 35
edit descriptor, 276

octal
alternate notation, 31
constant, 434
constants, 35
initialization, 35

octal and hex
format, 276
format samples, 277
input, 277
output, 278

off the underscores, 12
offset of fields, 51, 233
omitted arguments, 433
on-line documents, xxiv
OPEN

options, 435
print file, 255
specifier

ACCESS, 189
BLANK, 190
ERR, 190
FILE , 188
FORM, 189

IOSTAT, 190
RECL, 190
STATUS, 190
UNIT , 188

statement, 187, 191
open files, limit of, 252
operand, 66
operator, 65

** , 66
// concatenate string, 74
: substring, 46
character, 74
concatenation, 74
precedence, 68
relational, 80
two consecutive operators, 68, 434
with extreme values, 459

optimization problems with pointers, 61,
202

option
DISPOSE for CLOSE, 435
-e , 9
i2 short integer, 19
long lines, 9
NAME for OPEN, 435
number of continuation lines, 9

OPTIONS, 193
or , 342
order bit and byte, 462
OS command, execute, system , 407, 413

P
P edit descriptor, 292
packing character, 103
padding, 10
parallel directives, 12
PARAMETER

nonstandard alternate, 436, 438
statement, 50, 195, 233

parameter name, 5
PAUSE, 198
permissions

access function, 339

Index-477

ACCESS in INQUIRE, 174
perror , 396
pid , process id, getpid , 367
POINTER, 200
pointer, 58, 200

address assignment, 59, 200
address by LOC, 59, 203
get file pointer, getfilep , 365
linked list, 206
not OK in NAMELIST list, 306
problems with optimization, 61, 202
restrictions, 61, 202

pointer-based variable, 61, 202, 306
position file by fseek , ftell , 358
positional

edit descriptor, 279
format editing, 279

preattached
files, 257
logical units, 257

precedence
logical operator, 79
operators, 68

prerequisites for using this manual, xxiii
PRINT, 207
print file, 189, 255, 302
procedures, 7
process

copy via fork , 357
id, get, getpid , 367
send signal to, kill , 378
wait for termination, wait , 430

PROGRAM, 210
program, 2

names, 5
units, 7

promote types, 70
prompt

conventions, xxv
for namelist names, 313

properties, file, 173
protection, 410
purpose of this manual, xxiii

put a character, putc , fputc , 399
putc , 399

Q
Q edit descriptor, 291
q_atan2pi(x) , 384
q_fabs(x) , 384
q_fmod(x) , 384
q_infinity() , 384
q_max_normal() , 384
q_max_subnormal() , 384
q_min_normal() , 384
q_min_subnormal() , 384
q_nextafter(x,y) , 384
q_quiet_nan(n) , 384
q_remainder(x,y) , 384
q_scalbn(x,n) , 384
q_signaling_nan(n) , 384
QCMPLX, 319
QEXT, 318
QEXTD, 318
QFLOAT, 318
QREAL, 318
qsort , 401
quad

complex, 18
complex constants, 29
exponent, 34
real constants, 34
real data type, 22
type REAL*16 literals, 433

quadruple precision, See quad
quadruple-precision functions, libm_

quadruple , 383
quick sort, qsort , 401
quote, 436, 438

character constants, 26
format specifier, 283
preceding octal constants, 31

Index-478 FORTRAN 77 Reference Manual

R
r_acos(x) , 386
r_acosd(x) , 386
r_acosh(x) , 386
r_acosp(x) , 386
r_acospi(x) , 386
r_addran() , 387
r_addrans() , 387
r_asin(x) , 386
r_asind(x) , 386
r_asinh(x) , 386
r_asinp(x) , 386
r_asinpi(x) , 386
r_atan(x) , 386
r_atan2(x) , 386
r_atan2d(x) , 386
r_atan2pi(x) , 386
r_atand(x) , 386
r_atanh(x) , 386
r_atanp(x) , 386
r_atanpi(x) , 386
r_cbrt(x) , 386
r_ceil(x) , 386
r_erf(x) , 386
r_erfc(x) , 386
r_expml(x) , 386
r_floor(x) , 386
r_hypot(x) , 386
r_infinity() , 386
r_j0(x) , 386
r_j1(x) , 386
r_jn(n,x) , 386
r_lcran() , 387
r_lcrans() , 387
r_lgamma(x) , 387
r_log1p(x) , 387
r_log2(x) , 387
r_logb(x) , 387
r_max_normal() , 387
r_max_subnormal() , 387

r_min_normal() , 387
r_min_subnormal() , 387
r_nextafter(x,y) , 387
r_quiet_nan(n) , 387
r_remainder(x,y) , 387
r_rint(x) , 387
r_scalbn(x,n) , 387
r_shufrans() , 387
r_signaling_nan(n) , 387
r_significand(x) , 387
r_sin(x) , 387
r_sincos(x,s,c) , 388
r_sincosd(x,s,c) , 388
r_sincosp(x,s,c) , 388
r_sincospi(x,s,c) , 388
r_sind(x) , 387
r_sinh(x) , 387
r_sinp(x) , 387
r_sinpi(x) , 387
r_tan(x) , 388
r_tand(x) , 388
r_tanh(x) , 388
r_tanp(x) , 388
r_tanpi(x) , 388
r_y0(x) , bessel, 388
r_y1(x) , bessel, 388
r_yn(n,x) , bessel, 388
-r4 , 24
radix, 284
radix-50 constant, 433
rand , 404
random

I/O, 259
number, 387
values, rand , 404

READ, 211
read

character getc , fgetc , 361
into hollerith edit descriptor, 273

Index-479

REAL, 22, 217
expressions, illegal, 434
intrinsic, 318

real
arrays, 219
constants, 32
data representation of reals, 457
editing, 284, 288

REAL*16 , 22, 34, 433
REAL*4, 22, 32
REAL*8, 22, 33
RECL specifier in OPEN, 190
recl=1 , variable length records, 190, 300
RECORD, 219
record, 49

argument that is a record, 52, 220
assignment, 92
AUTOMATIC, not allowed in, 220
COMMON with a record, 52, 220
DATA, not allowed in, 52, 220
DIMENSION with a record, 52
EQUIVALENCE, not allowed in, 52,

220
NAMELIST, not allowed in, 52, 220
not OK in NAMELIST list, 306
PARAMETER, not allowed in, 220
reference, 52
SAVE, not allowed in, 52, 220
size, unformatted, 436, 437
specifier, direct-access, 211, 259, 435
statement, 51
STATIC, not allowed in, 220
variable length, 190, 300

recursive, 93, 156, 228
reference

field, 52
record, 52

relational operator, 80
release memory by free , 60, 201
remove a file, unlink , 429
repeat NAMELIST, 312
reposition file by fseek , ftell , 358
representation of data, 457

requesting namelist names, 313
reset EOF status for tapeio, 424
restrictions

fields, 51, 233
hex and octal output, 278
NAMELIST, 306
names, 5
pointers, 61, 202
Q edit descriptor, 292
records, 52, 220
structures, 50, 232
substructures, 56

RETURN, 222
return alternate, 222, 223, 435
reverse solidus, 3, 4
REWIND, 223
right shift, rshift , 342
rindex , 372
rshift , 332, 342
runtime formats, 208, 212, 246, 273, 296,

298

S
S edit descriptor, 294
same line response, 268
sample statements, 447
SAVE, 225
scale

control, 292
factor, 292

scratch files, 191, 256
SCRATCH option for OPEN, 191
secnds , system time, 406
send signal to process, kill , 378
SEQUENTIAL option for ACCESS in

OPEN, 189
setbit , 342
setjmp , See isetjmp

short
integer data type, 19
integers, 31

Index-480 FORTRAN 77 Reference Manual

short , 390
sign control, 294
signal , 408
signal a process, kill , 378
signals, IEEE, 353
signed infinity data representation, 458
signs not allowed in octal or hex

input, 277
sine, 387
single spacing, 255
single-precision functions, libm_

single , 386
size of character string, 105
SIZEOF, 327
sizes, summary of, 23
skip

NAMELIST, 312
tape I/O files and records, 424

slash, 3, 4
editing, 295
list-directed input, 301

sleep , 409
slew control, 255, 268
SNGL, 318
SNGLQ, 318
solidus, 3, 4
sort quick, qsort , 401
source

line formats, 8
lines long, 9
tab-format, 432

SP edit descriptor, 294
space, 3, 4, 6, 268
spaces, leading, hex and octal output, 278
special characters, 3, 4, 28
SS edit descriptor, 294
standard

conformance to standards, 2
fixed format source, 8
units, 252

start of heading and text, 75
stat , 410

statement, 2, 7
function, 226
label, 3
list of all statements, 8
samples, 447

STATIC, 229
status

file, stat , 410
IEEE, 353
termination, exit , 350

STATUS OPEN specifier, 190
stderr , 252
stdin , 252
stdout , 252
STOP, 230
storage allocation, 16
string

assignment, 76
concatenate, 74
in list-directed I/O, 304
join, 74
length, len , 372
NAMELIST, 310

stroke, 3, 4
STRUCTURE, 231
structure, 48

alignment, VMS, 436, 439
dummy field, 51, 233
empty space, 51, 233
name, 49, 50, 232, 233
nested, 54
not allowed as a substructure of

itself, 56
not OK in NAMELIST list, 306
restrictions, 50
substructure, 54
syntax, 49
union, 56, 241

SU edit descriptor, 294
subprogram names, 5
SUBROUTINE, 235
subscript

arrays, 44

Index-481

expressions, 44
substring, 46

find, index , 371
NAMELIST, 310
not OK in NAMELIST list, 306

substructure, 54
map, 56, 241
union, 56, 241

successive operators, 68
summary

data types, 23
I/O, 254
inquire options, 177

suppress carriage return, 267
suspend execution for an interval,

sleep , 409
symbolic

constant name, 5
link to an existing file, symlink , 388
name, 2, 5

symlnk , 388
syntax

field Reference, 52
INQUIRE statement, 173
maps, 56, 241
NAMELIST

input, 308
input data, 309, 313
output, 307
statement, 305

OPEN statement, 187
record reference, 52
records, 51, 219
structure, 49, 231
unions, 56, 241

system , 407, 413
system time

secnds , 406
time , 414

T
T edit descriptor, 279
tab, 3, 4

character, 28
control, 279
format source, 9, 432

tangent, 388
tape I/O, 419

close files, 420
open files, 419
read from files, 422
reset EOF status, 424
rewind files, 423
skip files and records, 424
write to files, 421

tarray() values for various time
routines, 418

tclose , 419
temporary files, 191
terminal

I/O, 268
port name, ttynam , 428

terminate
wait for process to terminate,

wait , 430
with status, exit , 350
write memory to core file, 339

termination control edit descriptor, 295
terms, 2
time

in numerical form, 369
secnds , 406

time(t)
standard version, 414
VMS version, 415

time , get system time, 414
TMPDIR environment variable, 191
top of page, 255
topen , 419
trailing blanks, initialize, ioinit , 374
tread , 419
trewin , 419
triangle as blank space, xxv
tskipf , 419
tstate , 419
ttynam , 428

Index-482 FORTRAN 77 Reference Manual

two consecutive operators, 434
twrite , 419
TYPE, 237, 435
type

coercing functions, 336
field names, 51, 233
REAL*16 , 433
type, 238

typeless
constants, 35
numeric constant, 434

types, 13, 23
array elements, 14
files, 253
functions, 14
summary of, 23

U
unary + or -, 434
unary operator, 67
unconditional GO TO, 161
underscore

do not append to external names, 12
external names with, 12
names with, 5

unformatted
I/O, 298
record size, 436, 437

UNION, 241
union declaration, 56, 241
unit, logical unit preattached, 257
UNIT, OPEN specifier, 188
unlink , 429
user, 410
user ID, get, getuid , 367

V
valid

characters for data, 5
characters in character set, 3
characters in names, 5

values, extreme for arithmetic
operations, 459

variable
alignment, 16
boundary, 16
name, 5

variable formats, 152, 154, 208, 212, 246,
263, 273, 296, 297, 298

variable-length records, 190, 300
variables, 39
vertical format control, 255

$, 267
space,0, 1, +, 268

vertical tab character, 28
VIRTUAL, 243, 433
VMS FORTRAN

align structures, 436
features with -xl

backslash, 5, 28, 303, 438
D or d debug lines, 10
debugging lines, 439
logical file names, 171, 436, 437
parameter form, 195, 197, 438
quotes, 90

octal notation, 31, 438

unavailable for strings, 16,

26
record length, 190, 437

features with -xl
record length, 176

unsupported extensions, 439
VOLATILE, 243

W
wait , 430
width defaults for field descriptors, 265
word boundary, 16
WRITE, 244
write a character putc , fputc , 399

Index-483

X
X

constant indicator, 35
edit descriptor, 279

-xl , 10, 16, 26, 28, 31, 90, 195, 435, 436, 438
-xld , 439
xor , 342

Y
y0(x), y1(x), y(n) , bessel, 388
y0(x), y1(x), yn(x) , bessel, 382

Z
Z

constant indicator, 35
edit descriptor, 276

zero, leading, in hex and octal output, 278
zero-extend functions, 338

Index-484 FORTRAN 77 Reference Manual

Index-485

Copyright 1995 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 U.S.A.

Tous droits réservés. Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
l’utilisation, la copie, et la décompliation. Aucune partie de ce produit ou de sa documentation associée ne peuvent Être
reproduits sous aucune forme, par quelque moyen que ce soit sans l’autorisation préalable et écrite de Sun et de ses bailleurs
de licence, s’il en a.

Des parties de ce produit pourront etre derivees du système UNIX®, licencié par UNIX System Laboratories, Inc., filiale
entierement detenue par Novell, Inc., ainsi que par le système 4.3. de Berkeley, licencié par l’Université de Californie. Le
logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright
et licencié par des fourmisseurs de Sun.

LEGENDE RELATIVE AUX DROITS RESTREINTS: l’utilisation, la duplication ou la divulgation par l’administration
americaine sont soumises aux restrictions visées a l’alinéa (c)(1)(ii) de la clause relative aux droits des données techniques et
aux logiciels informatiques du DFARS 252.227-7013 et FAR 52.227-19. Le produit décrit dans ce manuel peut Être protege par
un ou plusieurs brevet(s) americain(s), etranger(s) ou par des demandes en cours d’enregistrement.

MARQUES

Sun, Sun Microsystems, le logo Sun, SunSoft, le logo SunSoft, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+ et NFS
sont des marques deposées ou enregistrées par Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. UNIX est une
marque enregistrée aux Etats- Unis et dans d’autres pays, et exclusivement licenciée par X/Open Company Ltd. OPEN LOOK
est une marque enregistrée de Novell, Inc. PostScript et Display PostScript sont des marques d’Adobe Systems, Inc.

Toutes les marques SPARC sont des marques deposées ou enregitrées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter,
SPARCserver, SPARCstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, et UltraSPARC sont exclusivement
licenciées a Sun Microsystems, Inc. Les produits portant les marques sont basés sur une architecture développée par Sun
Microsystems, Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de
Xerox sur l’interface d’utilisation graphique, cette licence couvrant aussi les licenciés de Sun qui mettent en place OPEN
LOOK GUIs et qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS
NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

CETTE PUBLICATION PEUT CONTENIR DES MENTIONS TECHNIQUES ERRONEES OU DES ERREURS
TYPOGRAPHIQUES. DES CHANGEMENTS SONT PERIODIQUEMENT APPORTES AUX INFORMATIONS CONTENUES
AUX PRESENTES. CES CHANGEMENTS SERONT INCORPORES AUX NOUVELLES EDITIONS DE LA PUBLICATION.
SUN MICROSYSTEMS INC. PEUT REALISER DES AMELIORATIONS ET/OU DES CHANGEMENTS DANS LE(S)
PRODUIT(S) ET/OU LE(S) PROGRAMME(S) DECRITS DANS DETTE PUBLICATION A TOUS MOMENTS.

