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Static analysis within industrial applications 
provides a means of gaining higher assurance 
for critical software. This survey notes several 
problems, such as the lack of adequate 
standards, difficulty in assessing benefits, 
validation of the model used and acceptance 
by regulatory bodies. It concludes by outlining 
potential solutions and future directions. 

1 Introduction 
Static analysis tools are gaining ground as a complemen- 
tary technique to conventional dynamic testing in order to 
obtain additional assurance on critical items of software. 
Unfortunately, the exact benefits of static analysis are hard 
to quantify. In addition, the absence of any effective stan- 
dards in the area implies that there is no yardstick against 
which to measure benefits. 

Two major safety-critical software standards give support 
for static analysis: the CJK Interim Defence Standard 00-55 
[l], in which the support is detailed and specific, and the 
international civil avionics standard in which design 
analysis forms a key role 121. In the UK, 00-55 has had a 
significant impact, not only on the defence area, but in 
other related critical software, such as in the nuclear 
sector. 

For a UK Nuclear Power Plant 131, the responsibility for 
demonstrating safety rests with the operator. Four main 
elements are being used to justify new software-based 
safety systems : 

s the standard and quality of the design and production 
processes. 

independent assessments, including extensive static 
analysis of the code. 

a challenging dynamic test to give confidence on reli- 
ability. 
0 a one year trial before operation. 

The analysis performed by Nuclear Electric for the Dunge- 
ness 'B Single Channel Trip system and the Siiewell B 
Primary Protection System provides a good illustration of 
the current industrial application of static analysis tech- 
niques (see Sections 2.2 and 2.4). 

In other application areas, the examples given here 
demonstrate that industry is increasingly using static 

analysis for quality assurance purposes. However, the 
encouragement of further adoption requires that the basic 
issues and the benefits clearly justity the costs. In this 
paper, we highlight the issues and indicate likely develop 
ments. 

2 Current experience 
Static analysis has two essential characteristics which must 
be bome in mind when studymg any specific application. 
These two characteristic are 

0 nature; this is the broad objecthe of the analysis 
which could be portability against a language standard or 
correctness of some aspect against a program specifi- 
cation, 

depth; this indicates the semantic depth of the 
analysis. For example, analysis of program layout is very 
shallow (and hardly worth even mentioning) whereas 
program proof is very deep. 

It is important to note that depth is not just a single dimen- 
sional measure; the fact that an algorithm has been 
proved to be mathematically correct does not guarantee 
other properties which may be of interest such as  main- 
tainability, portability or efficiency. 

We now consider some examples to illustrate current 
practice. 

2.1 Language code auditing 
The idea that computer software should be used to 
analyse source programs rather than compile them, has a 
history of at least 25 years. The PFORT program was 
designed to locate potential problems with the portability 
of Fortran code. Vendors had distinct dialects, and normal 
compilation did not indicate the program was correct 
according to the standard. 

All high-level language code is audited by at least one 
compiler. In consequence, the requirement is to analyse 
the code in ways the compiler does not such that signifi- 
cant benefit is obtained. 

This implies that the auditing that is useful depends on 
the requirements of the corresponding language stan- 
dards. Implicit declaration in Fortran can lead to unde- 
tected program errors, and therefore a tool to list implicitly 
declared variables can be useful (although this feature is 
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included with better quality compilers). On the other hand, 
such analysis is not required with most other languages, as 
declarations must be explicit. 

The nature of several features of language auditing 
tools varies as follows: 

0 layout analysis and reformatting. 
0 identification of language constructs known to be non- 
portable. 
0 error detection not performed by compilers. 
0 flow-control analysis. 
0 detection of the use of data before a value has been 
assigned to it (an important special case of error 
detection). 

For the deeper analysis features, many commercial pro- 
ducts use a common analysis phase after converting the 
source into a standard form. This allows the tools to 
support several languages, but may reduce their effec. 
tiveness on aspects that are specific to just one language. 
(An interesting example of a language-specific analysis is 
that of exception propagation in Ada given elsewhere [4). 

Several commercial products are available for the 
analysis of C code. However, the weak type checking and 
lack of dynamic checking in C implies that modest tools 
are of benefit here. Such tools would not be useful for the 
more strongly typed languages such as Pascal, Ada and 
Modula.2; hence the importance of the choice of language 
for critical systems choice [51. The fact that the primary 
purpose of one tool for C code is to detect the overwriting 
of the operating system indicates the difficulty of proving 
the integrity of such code. 

For languages with insecure compilation of com- 
ponents, a very useful tool is one that checks whether the 
components of a program, prior to their integration, are 
compatible at the language level. This clearly requires 
source text control of the components, and an appropriate 
inter-procedural analysis. For C, make performs part of 
this, but even with function prototypes in ANSI-C, the 
analysis is far from complete. In contrast Ada and Modula- 
2 require that this analysis is performed as part of the 
compilation process. The impact of languages on 
program quality is analysed in more detail elsewhere [6]. 

The industrial use of language source code auditing is 
mixed. Use of tools to establish portability is very wide- 
spread as users accept that testing on a large number of 
different platforms is impossible. However, the use of static 
analysis to establish the ‘quality’ of the source code is quite 
rare. A major area of concem is that there seems to be 
little appreciation of the differences in the strength of the 
various tools on offer. 

2.2 Sizewell code analysis 

This example of static analysis is an overview of the work 
undertaken to assess the conformity of a large PUM 
program with i t s  specification. Using the terminology 
above, this analysis is quite deep. The software is the 
Primary Protection System for the Sizewell Pressurized 
Water Reactor. This Section has been summarised from 
previous work [7]. 

The software contains about 100000 lines of PUM, 
which were to be checked against an English specification. 

It is therefore clear that the process could not be entirely 
automatic. The primary analysis makes use of the 
MALPAS tools, which were developed in the UK initially at 
RSRE Malvem (now DRA) and then at TA Consultancy Ser- 
vices Ltd. MALPAS is a tool kit which is capable of quite 
deep analysis, including formal proof (the compliance 
analyser). 

The MALPAS tools require that the source code is trans- 
lated into an intermediate code for subsequent analysis. 
For Siewell, the analysis was undertaken bottom-up, start. 
ing from those procedures which called no others. To 
each procedure was added a specification of its input and 
output parameters, which involved some information not 
necessarily directly available from the source code. The 
analysis then produced the output values as functions of 
the input values for each procedure. 

A number of problems were faced with this analysis. 

0 There is no precise definition of the PUM language 
which would have provided a better foundation for the 
PUM to intermediate language translator. 
0 MALPAS was unable to handle certain PUM construc- 
ts directly, such as pointers (see below). 
0 The complete system was too large to handle in one 
analysis, and therefore the results from individual pro- 
cedures had to be combined. 
0 As the requirements were informally expressed, 
manual analysis of the MALPAS results was required (with 
some subjective judgement). 

All deep analysis tools have problems with pointers, due to 
the potential for aliasing. This problem is compounded 
with PUN as references are used for parameter passing. 
Fortunately, many such uses can be shown to involve the 
input of a value or the output of a result However, a major 
use of explicit references in the PUM source code is to 
refer to large tables giving the configuration of the system. 
These references can be handled by replacing the refer- 
ences by the object being referenced (as they are 
constant). 

The first stage of the analysis involved the less deep 
methods: control flow, data use and information flow 
analyses. The first two are conventional and the last one 
reveals those inputs that affect each given output 

The deepest analysis is that for compliance against the 
specifications. Here, manual input is required to provide 
pre- and postconditions for procedures, and assert state- 
ments to cut loops (i.e. provide loop invariants so that the 
property of the loop can be verified). 

Areas that have proved difficult to handle were double 
length arithmetic and the use of shared memory. Natu- 
rally, some areas were not been assessed with the 
MALPAS tool, and hence have been addressed by other 
means. 

The validation required that all potential issues were 
handled formally. No errors were found that would have 
made the system unsafe, and only 6% of issues were cate- 
gorised as a non-critical code change with the rest being 
documentation anomalies. 

2.3 Sizewell object code validation analysis 

For some applications, total dependence on the compiler 
is inappropriate. In such cases, some means must be 
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introduced to validate the object code produced by the 
compiler. As compilers are known to contain errors, some 
protection against these would appear to be a wise precau- 
tion. 

For the Sizewell Primary Protection System, an analysis 
of the PROM contents was undertaken [8] against the cor. 
responding source text (mainly PUM-86 code, as used in 
Section 2.2). This summary provides information which will 
be available shortly in a conference proceedings. Here, the 
two sources of information (source file and PROM) were 
unambiguous, and hence, at least potentially, the compari- 
son could have been entirely automatic. 

The analysis used the same MALPAS tools, but in a 
slightly different way. The PROM contents were analysed 
by a number of tools to restore a near equivalent of 
assembly language. This output contained the source 
code names of locations, deduced from the assembler 
tables produced with the PROM and checked independent. 
ly by variable placement based on source code analysis. 

The PUM and the assembler listings were separately 
translated into MALPAS Intermediate Language (IL). These 
forms of IL should be the 'same' when analysed by the 
algebraic simplifier. However, the comparison had to be 
undertaken at code segment level, which requires that 
nodes in the code were marked as boundaries between 
segments. The marking of nodes sometimes required 
manual assistance, but the comparison of simpler pro- 
cedures was entirely automatic. 

This process was used on 100000 lines of PUM code 
to reveal two 'bugs', in the sense that the PUM did not 
match the object code. In both cases, the incorrect object 
code would not have made the system unsafe. One of the 
bugs was in register handling, a common cause of com- 
piler bugs. The other bug was that the PUM compiler 
accepted the comparison of two pointers (p t rl c p t 1-2). 
even though this did not seem to be allowed according to 
the user guide. Interestingly, this compiler bug would have 
been detected by the conventional compiler validation ser- 
vices used for Pascal or Ada. A number of aspects of the 
code comparison needed to be carefully considered in the 
context of critical systems. A successful comparison would 
not guarantee that the object code was correct. For 
example, the algebraic comparison did not model all fea- 
tures of the finite arithmetic used in the actual code. Work 
by Pavey and Winsborrow 181 should be consulted for 
details of the modelling method and for a deeper under- 
standing of the strength of the comparison. 

2.4 Dungeness 'B' Single-Channel Trip System 

The Single-Channel Trip System (SCTS) for the Dunge- 
ness ' B  Advanced Gas.cooled Reactors is a small 
microprocessor-based protection system designed by AEA 
Technology and based on the Inherently Safe Automatic 
Trip (ISAT) concept [3, 91. Full static analysis including 
compliance analysis (formal proof) was performed using 
the MALPAS toolset by Rolls Royce G Associates under 
the direction of Nuclear Electric. An informal specification 
was available and it was necessary to derive a formal spe- 
cification from this in order to proceed with full static 
analysis. 

In this paper, we are not considering the validation of 
the formal specification itself, but the subsequent of 
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showing that the software conforms to the formal specifi- 
cation. The software was coded in Intel 8086 and 6809 
assembly language, with the advantage that static analysis 
was performed at a level very close to the machine code 
and the disadvantage that, because the code under 
analysis was low-level, the modelling was necessarily 
detailed and complex. No anomalies compromising safety 
were found. A path in the code was revealed which would 
have activated the SCTS trip if the cubicle temperature 
had fallen below freezing. As the cubicles are kept warm 
by the reactor, this would only have been a problem if the 
reactor had been shut down for some while and start-up 
was required on a very cold day. This error had already 
been found independently by AEA Technology. 

In addition, a full comparison was performed between 
source code and PROM files using purpose-built source/ 
code comparison tools written by Nuclear Electric. This 
was more straightforward than the source/code compari- 
son on the Sizewell 'B PPS code described in the Section 
2.3, as  the mapping between source and code was one-to- 
one. 

The results of the static analysis described above were 
incorporated as part of the safety case of the SCTS and 
contributed to Nuclear Electric's successful submission to 
the Nuclear Installation Inspectorate. The SCTS is now in 
use; it is the first microprocessor-based protection system 
to be licensed for use in one of Nuclear Electric's power 
stations. 

2.5 SPARK development tools 

The SPARK system is designed to aid the development of 
critical code in Ada 83. The main tool in the system is the 
SPARK examiner, enforcing a small subset of Ada which 
makes some forms of analysis much easier. The tool also 
requires that some annotations are added to the program 
text. These annotations provide a form of weak specifi- 
cation of the functionality of each subprogram, but they 
are also needed to allow important properties of the 
SPARK subset to be checked by simple linear analysis, in 
particular the absence of side-effects in functions and of 
aliasing between parameters of a subprogram. Both alia- 
sing and side-effects may cause Ada programs to be 
erroneous without being detected by an Ada compiler. 
Their absence is also a prerequisite for the validity of the 
later stages of analysis performed by the SPARK Exam- 
iner. 

In essence, the objective with SPARK is to allow proper- 
ties of programs to be composed from the properties of 
the constituent subprograms. For details of SPARK, see 
work by Carre [lo, 1 I] and for an appraisal of some 
aspects of the language, work by Wichmann [ 121. 

SPARK has been quite widely used in the UK, almost 
entirely on safety systems. The benefits are that the less 
deep forms of static analysis are an automatic conse- 
quence of the subset Hence access to an unassigned vari- 
able is impossible. In particular, control flow analysis is no 
longer required (it is subsumed into the grammar), and 
data and information have simple recursive formulations 
allowing them to be performed as  the language is parsed. 
(In fa* data flow is subsumed into information flow [13D. 
The most important property which is needed From a 
SPARK program, although not a consequence of the 
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subset, is that of being exception-free (i.e. not dynamically 
breaking certain language rules). 

Proving that a SPARK program is exception-free would 
be possible with a tool being developed for SPARK [14], 
but this could require additional annotations, and may be 
expensive to undertake. An existing tool can be used to 
verify properties of SPARK code [I 51. 

As SPARK is an Ada subset, a conventional Ada com- 
piler can be used for code generation. Indeed, SPARK 
does provide some escape mechanisms so that a com- 
plete system does not need to be written in the subset. 
One potential problem arises if a design tool is used to 
produce some of the Ada, which then does not fit within 
the subset 
To summarise, SPARK Examiner is very much a 

forward engineering tool (i.e. for program development 
rather than validation after development), and hence 
cannot be applied to arbitrary Ada code. However, the inte- 
gration of the automatic forms of static analysis into the 
development process is claimed both to increase their 
benefit and reduce their cost. 

2.6 Assembly code proof in avionics 

A deep analysis of assembly code subroutines has been 
carried out for a civil aviation manufacturer seeking com- 
pliance to DO-178B. The subroutines, part of an engine 
control unit (FADEC), have been proved to implement a 
specification written in predicate logic using an approach 
essentially similar to Hoare logic. This work, and other 
similar analyses, has been carried out using the SPADE 
tools, developed in the UK initially at Southampton Uni- 
versity and then at Program Validation Ltd. O'Neill et al. 
[ 161 describe the application and the process in detail. 

The steps of this form of analysis are as follows. 

2.6. I : The assembly code subroutine is translated into the 
formal description language (FDL) accepted by the 
SPADE tool, either using a translator specific to the 
assembly code (in this case Zilog 28000) or by hand. (All 
the other steps are independent of the particular assembly 
code.) 

The basis of this translation is a formal model of the 
assembly code specified in FDL. Only a subset of the 
assembly language can be accepted, for two reasons. 
First, some instructions, such as those dealing with inter- 
rupts, cannot be modelled using this approach. Secondly, 
rules must be introduced which allow both the control flow 
of the subroutine and the data variables used by it to be 
identified statically. For example, data may only be referred 
to using symbolic addresses; an annotation may be 
required to describe the properties of the data variable cor- 
responding to each symbol. As these rules are similar to a 
typical 'code of practice' for writing assembly code, their 
adoption is easier than might be imagined; indeed the 
advantages of a tool to check adherence to the code of 
practice are readily accepted. 

Clearly, assembly code programs cannot be written 
without explicit manipulation of memory addresses; this is 
accommodated by requiring an annotation to identify the 
'array' (i.e. a contiguous region of memory) accessed by 
each instruction which uses indirect addressing; the cor- 
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rectness of these annotations are checked during the final 
stage of the process. 

2.6.2: Analysis of the control, data and information flow of 
the subroutine is then carried out on the FDL model of the 
subroutine, using the SPADE flow analysers. This step is 
important for two reasons: first, flow anawls is largely 
automatic and so provides an inexpensive way to reject 
code with gross errors at an early stage. Secondly, the later 
(deeper) steps of the analysis may not be valid in the pres- 
ence of certain forms of flow error. 

2.6.3: The functionality of the routine can now be speci- 
fied using a precondition and postcondition written in a 
formal notation (essentially a first-order predicate logic with 
a simple type system). Typically, these formal specifi- 
cations must be derived from informally written functional 
specifications, which may require some dialogue with the 
originator of the code. Until formal specification is more 
widely practised as  part of the development process, the 
difficulty of this step limits the applicability of this form of 
analysis. 

2.6.4: The SPADE Verification Condition Generator is 
then used to generate the theorems, which must be 
proved to show that the routine correctly implements the 
specification. If the routine includes loops, invariant predi- 
cates must first be added using annotations. This step 
differs from the previous one because these invariants 
form the first stage of the correctness proof rather than 
being part of the specification of the routine. 

2.6.5: A complete machinechecked proof of each cor- 
rectness theorem is then constructed interactively, using 
the SPADE Proof Checker. 

So far applications of these techniques have analysed only 
single subroutines without subroutine calls. There is 
nothing preventing their application to multiple levels of 
subroutine except the point already noted; the difficulty of 
formally specifying pre-existing programs. 

The validity of the analysis relies on a precise under- 
standing of the semantics of the particular processor; as 
manufacturers do not het) publish formal descriptions of 
bnctionality, the formal model has to be derived from 
informal documentation. 

Even more critically, the analysis relies on the definition 
of the subset the enforcement of its  rules and the accu- 
racy of its model. For example, it is well known that the 
standard rules of a Hoare logic are not valid in the pres- 
ence of aliasing (i.e. the use of multiple names for the 
same variable). As not all the assumptions of the model 
can be enforced automatically, a rigorous process with 
appropriate review is a vital component of the analysis. 

Similar forms of analysis have also been carried out on 
industrial software for Motorola 68020 and other pro- 
cessors. A somewhat more formal approach, using the 
Boyer-Moore theorem prover, is described elsewhere [ 171. 

2.7 Accredited testing 

There is a key question posed by potential users: 'is the 
software appropriate for this critical context?' The context 
for the most critical software, for which static analysis is 
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often used, is either safety or security. To provide any basis 
for the answer to such a question requires a deep under- 
standing of the software and the context of its use. Inevita. 
bly, the answer must be a matter of professional 
judgement. However, if major features of the software can 
be determined by objective testing, then the subjective 
nature of the final judgement will be easier to justify and 
defend (which could involve the courts in the case of sig- 
nificant damages for safety systems). 

International standards for the accreditation of testing 
involve assessment of the operations of testing labor- 
atories, according to IS0 Guide 25, or EN45001 (or 
NAMASIMIO in the UK). These standards ensure that 
testing (or measurement) is carried out in an objective, 
repeatable fashion, which therefore allows other 
(accredited) laboratories to compete without jeopardising 
the quality of the work 

NAMAS has recently awarded ERA Technology the first 
accreditation for testing safety-critical software. Five of the 
procedures used by ERA fulfil the requirements of NAMAS 
for objectivity, although none of them are defined in exist. 
ing standards. Laboratories may test products to in-house 
procedures when suitable standards do not exist. 

Four of the five procedures within the scope of the ERA 
accreditation involve static analysis as follows: 

0 identification of unstructured constructs. 
0 static analysis of data use. 
0 determination of worst case execution times. 
0 static analysis of module calling. 
0 dynamic testing, not relevant to this survey. 

In the ERA case, there are relationships between the prc- 
cedures in use. Hence the data analysis depends on the 
absence of unstructured constructs and having analysed 
the module calling structure. In addition, the information 
gained from the static analysis is used in the dynamic 
testing. The methods used involve much manual analysis 
and therefore are complex to administer for larger items of 
software. Nevertheless, there is scope for automation using 
simple techniques which can themselves be checked rigor- 
ously. 

Clearly, other procedures, which are likely to be more 
subjective, are needed to determine the suitability of an 
item of software for a safety-critical application. If pro- 
cedures such as these could be standardised, then regula- 
toly agencies would have a better foundation for the 
certification of systems, or authorising their use. In the 
context of the Single Market, a European scheme is 
needed, which should build on the widely recognised 
Germany scheme based on VDE801. 

For the systems provider, testing undertaken by an 
accredited, independent testing laboratory has the advan- 
tage of providing third party assessment of the testing 
process, which must afford a degree of legal protection. 

3 Problems and future trends 

The absence of adequate standards or definitions for static 
analysis is a barrier to any comparison of the effectiveness 
of its use in producing critical systems. Unfortunately, 
producing an accurate, effective standard would not be 

easy. To illustrate this, consider a basic question on which 
much subsequent analysis can depend: 

7s the control flow of the program well defined?’ 

For the very simplest programs, this question can be 
answered with modest analysis. Now consider the Pascal 
fragment: 

v a r  
B Boo lean ;  

. . .  
c a s e  B o f  
true: . . .  
f a l s e :  . . .  

end ; 

This example can cause some systems to crash due to a 
flow control problem. The reason is that if B has not been 
assigned a value and the bit-pattern is neither true nor 
false, the program counter for the case statement makes 
an uncontrolled jump. An inspection of the code gener. 
ated by the compiler would reveal this problem but that is 
not the natural method of resolving such issues. This 
example shows that analysis of control flow can depend on 
data flow. 

The above example raises the issue of analysis at differ- 
ent levels, in this case, at programming language level or 
machine code level. Compilers often insert code that is not 
actually required in an application, because the compiler 
does not have the information needed to remove i t  Static 
analysis may then reveal the unnecessaly code, which can 
cause a conflict if the programming rules require that no 
such code is present [2]. Some compilation systems are 
specifically designed to exclude unnecessary code [le]. 

Program analysis will depend on the semantics of the 
language and, as noted above, the strength of the analysis 
may well depend on subtle features of the language. Even 
apart from the language, the strength of static analysis 
tools varies considerably. Hence even a means of quantify- 
ing the depth would be helpful. 

From the perspective of the application, the concerns 
are different For example, design and development 
methods could be rigorous enough to avoid the use of a 
conventional language, as with the B-Methodology 1191. 
Some safety and security standards do have requirements 
on languages; details are to be found elsewhere (201. 

3.1 Ada 9X safety and security annex 

The production of the Ada 9X Safety and Security Annex 
[21] required a study of how static analysis could be made 
more effective. First, some of the known insecurities in Ada 
83 were simply removed in Ada 9X [22]. Secondly, fea- 
tures were added to the Annex to aid validation: 

0 The user can state that certain language features are 
not being used in the entire program. This aids static 
analysis and also provides the compiler with information to 
avoid including unwanted machine code. 
0 A requirement to provide transparency between the 
Ada 9X source code and the actual machine code has 
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been added. It is then easier to relate an analysis at one 
level to the program at the other level. 

3.2 Effective formal definition of programming 
languages 

Accurate static analysis of a program text depends on a 
precise definition of the programming language in ques- 
tion. Unfortunately, interpreting the semantics of all current 
programming language standards depends, to a certain 
extent on subjective judgement. This can create uncer- 
tainty which can make static analysis less effective, or 
worse, mean that the software does not have a well defined 
behaviour. You can produce a description of a language 
just for the purpose of program validation [23], but such a 
description should be part of the standard or at least 
widely reviewed. Currently, a formal definition (241 of the 
SPARK subset of Ada 83 is being developed specifically 
with the aim of overcoming such problems. 

3.3 Objective assessment of validity of analysis 

Many forms of analysis, especially the deeper types, are 
carried out on a model of the program, intended to r ep  
resent only the properties required for the analysis. For 
example, all binary arithmetic operators can generally be 
considered equivalent for flow analysis. We need to be able 
to assess objectively the adequacy of this model for the 
intended anatysis. 

Aliasing of variables, which can serve as an example of 
the difficulties which must be faced, occurs when two vari- 
ables refer to the same area of memory (either wholly or 
partly) and therefore behave as  a single variable. Aliasing 
does not affect the validity of control flow analysis; 
however, as  a modification to a variable changes the 
values of all its aliases as well, data flow analysis is 
affected. Two basic approaches tackle this difficulty: 

0 take account of aliasing in the calculation of data 
usage 
0 show that aliasing does not occur as part of the com. 
plete analysis. 

We cannot argue the superiority of one approach against 
the other for all forms of analysis and situations in which it 
may be applied; however, returning to the example, it is 
clear that data flow analysis is not rigorous unless it allows 
for aliasing or excludes i t  

A precise definition of the conditions required to ensure 
the validity of an analysis is complicated because many 
sources of difficulty are specific to different languages. Alia- 
sing, for example, can arise from COMMON blocks in 
Fortran, from multiple forms of addressing (e.g. numeric, 
symbolic, relative) in assembly code and from variant 
records in Pascal. 

Even when it is chosen to exclude a potential difficulty 
from the program under analysis, it may not be possible to 
do so in a fully automatic way; this means that a precise 
understanding of the limits of the analysis is required by all 
involved. 

4 Conclusions 

Our conclusions are as follows. 

0 Static analysis is effective and complementary to 
dynamic testing. Hence its use is to be recommended in 
the context of the majority of critical software. The less 
deep analysis methods which do not require extensive 
design information could be used for almost all software. 
0 There are no appropriate standards. This implies that 
the specification of the static analysis to be performed 
requires care and effort. Equally, the potential benefits 
from such analysis cannot always be readily appreciated. 
0 The depth and nature of an analysis need to be speci- 
fied. To say that static analysis has been undertaken is just 
as meaningless as saying that the software has been 
tested. Hence at least these two issues (of depth and 
nature) need to be specified to some extent The prerequi- 
sites for the validity of different forms of analysis must be 
recognised, in order to allow an objective assessment of 
the validity of a particular application of an analysis tech. 
nique. 
0 The input language influences the depth of the static 
analysis that can be undertaken easily. Languages that are 
essentially dynamic, like C, are more difficult to analyse 
than languages, like Ada, that include strong typing and 
range constraints. Hence, the nature of the input language 
needs to be taken into account in the specification of the 
static analysis to be undertaken. The use of more rigorous 
‘software engineering’ languages and appropriate subsets 
can allow the less deep forms of analysis to be subsumed 
into the rules of the language. Just as type checking is an 
integral part of a modern language, so we should expect 
that separate steps of control and data flow analysis 
should no longer be required. 
0 Problems of scale: unlike compilation, some of the 
deeper static analysis methods are essentially polynomial 
in time (or space). This implies that the effort (both human 
and computer) to analyse a large program can become 
significant; the effort expended on the Sizewell ‘8’ PPS 
demonstrates this. 

Reverse engineering versus forward engineering: the 
deeper analysis methods typically require additional infor- 
mation. Such information gives details of the design not 
immediately apparent from the source, and for the deeper 
forms of analysis, will include the specification. This can be 
planned in advance with tools aimed at supporting devel- 
opment or produced during analysis with tools that use 
reverse engineering. This choice must be made very early 
in development 
0 Ability to exploit design information: an analysis tool 
should be able to check whether functions have side- 
effects as their presence may make further analysis impos- 
sible. Hence, conflicts can arise between the actual code 
and the ability of a specific tool. Such conflicts must be 
resolved very early in the lifecycle. Increased integration of 
certain forms of analysis into the development process is 
required to reduce their cost and increase their benefit. In 
particular, it is widely agreed that the deeper forms of func- 
tional correctness analysis using proof cannot be fully 
exploited retrospectively. 
0 The provision of the program specification in an 
unambiguous machine-processable form is useful. Deep 

74 Software Engineering Journal March 1995 



static analysis can verify aspects of the program specifi- 
cation, but can only be undertaken with reasonable effort if 
the program specification is available in a suitable form. 
0 Objective testing versus assessment: the user often 
pose to a question like 'is it safe to use this signalling soft- 
ware?' The conventional method of assessment is based 
on professional judgement a s  well as  testing (and static 
analysis). Subjective judgement cannot be avoided, but 
more use could be made of objective testing, preferably by 
accredited testing laboratories. 
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