
CACHE_8WAY_SET

Generic 8-way Set-Associative read Cache
Rev. 1.0

Key Design Features

● Synthesizable, technology independent VHDL Core

● Fully pipelined non-stalling architecture

● 8-way associativity

● Pseudo-random line replacement scheme

● Cache Flush functionality and cache done flag to indicate the
end of a flush sequence

● Register or RAM-based storage1

● Configurable address width, word size, line size and number of
cache lines

● Fully configurable FIFO buffering to hide the latency of a
memory access

● Fully configurable FIFO buffering on all input and output
interfaces

● Cache performance metrics: hit/miss flags and buffer full/empty
signalling

● Simple valid/ready pipeline protocol on all interfaces

● 8 cycle cache hit latency

Applications

● Level-2 or Level-3 caches where memory writes are not
necessary or infrequent

● Processor instruction caches

● Pixel caches for graphics pipelines

1 Type of inferred storage depends on synthesis tool configuration.

Block Diagram

Pin-out Description

SYSTEM SIGNALS AND CACHE CONTROL
Pin name I/O Description Active state

clk in Synchronous clock rising edge

reset in Asynchronous reset low

flush in Initiate a cache flush high

flush_done out Cache flush finished flag high

cache_flags [1:0] out Bit 0 : Cache miss flag
Bit 1 : Cache hit flag

high

fifo_flags [9:0] out Bit 0 : Input FIFO full
Bit 1 : Input FIFO empty
Bit 2 : Bypass FIFO full
Bit 3 : Bypass FIFO empty
Bit 4 : Miss FIFO full
Bit 5 : Miss FIFO empty
Bit 6 : Read FIFO full
Bit 7 : Read FIFO empty
Bit 8 : Output FIFO full
Bit 9 : Output FIFO empty

high

Copyright © 2008 ZIPcores.com Download this VHDL Core Page 1 of 5

Figure 1: 8-way set-associative cache architecture

http://www.zipcores.com/generic-8-way-set-associative-read-cache.html

CACHE_8WAY_SET

Generic 8-way Set-Associative read Cache
Rev. 1.0

INTERFACE WITH CACHE MEMORY
Pin name I/O Description Active state

cache_addr
[addr_width-1:0]

in Cache memory
read address

address

cache_addr_val out Cache memory
read address valid

high

cache_addr_rdy out Cache memory
read address ready

high

cache_data
[word_width-1:0]

out Cache memory
read data

data

cache_data_val out Cache memory
read data valid

high

cache_data_rdy in Cache memory
read data ready

high

CACHE INTERFACE WITH EXTERNAL MEMORY
Pin name I/O Description Active state

mem_addr
[addr_width -
log2_words_per_line-1:0]

out External memory
address

address

mem_addr_val out External memory
address valid

high

mem_addr_rdy in External memory
address ready

high

mem_data
[word_width *
words_per_line-1:0]

in External memory
read data

data

mem_data_val in External memory
read data valid

high

mem_data_rdy out External memory
read data ready

high

Generic Parameters

CACHE SPECIFICATION
Generic name Description Type Valid range

addr_width Memory
address width

integer > (log2_lines_
per_set +
log2_words_
per_line)

word_width Memory word
width

integer ≥ 8 (must be
multiple of 8)

words_per_line No. of words in
a cache line

integer ≥ 2 (must be power
of 2)

log2_words_per_line Log2 no. of
words per line

integer Log2
(words_per_line)

num_lines No. of cache
lines

integer ≥ 16 (must be
multiple of 8)

log2_num_lines Log2 no. of
cache lines

integer Log2
(num_lines)

lines_per_set No. of cache
lines in a set

integer (num_lines) / 8

log2_lines_per_set Log2 no. of
cache lines in a
set

integer Log2
(lines_per_set)

BUFFER CONFIGURATION
Generic name Description Type Valid range

bp_fifo_depth Bypass FIFO
depth

integer ≥ 2

bp_fifo_depth_log2 Log2 depth of
Bypass FIFO

integer Log2
(bp_fifo_depth)

in_fifo_depth Input FIFO
depth

integer ≥ 2

in_fifo_depth_log2 Log2 depth of
Input FIFO

integer Log2 (in_fifo_depth)

out_fifo_depth Output FIFO
depth

integer ≥ 4

out_fifo_depth_log2 Log2 depth of
Output FIFO

integer Log2
(out_fifo_depth)

miss_fifo_depth Miss FIFO
depth

integer ≥ 2

miss_fifo_depth_log2 Log2 depth of
Miss FIFO

integer Log2
(miss_fifo_depth)

read_fifo_depth Read FIFO
depth

integer ≥ 2

read_fifo_depth_log2 Log2 Read
FIFO depth

integer Log2
(read_fifo_depth)

General Description

CACHE_8WAY_SET is a fully generic 8-way set-associative read cache.
It has a fully pipelined architecture and permits consecutive hits and
misses to be serviced sequentially without stalling2. A cache hit has a
nominal latency of 8 clock cycles. A cache miss has a latency of 10 clock
cycles plus the latency of the memory access.

All interfaces with the cache share a common valid/ready pipeline
protocol. Data transfer occurs on a rising clock-edge when val is high
and rdy is high.

FIFO buffering

In total, the cache architecture uses 5 distinct FIFOs. Figure 1 shows the
situation of these FIFOs within the cache architecture. The input and
output FIFOs respectively buffer the input addresses and output read data
from the cache. The miss and read FIFOs respectively buffer cache miss
addresses to external memory and the returning read data. The bypass
FIFO buffers control information between the front-end and back-end of
the cache and it's depth should be sufficient to hide the latency of a
memory access. If the depth of this FIFO is less than the number of clock
cycles taken for an external memory read, then the performance of the
cache will be severely degraded.

The cache will function correctly with all FIFOs set to a depth of 2 or more
entries with the exception of the output FIFO, which must be at least 4
entries deep for correct operation of the cache.

The output signal fifo_flags may be used during the set-up of the cache in
order to determine which FIFOs are full/empty during operation. The
depths of the FIFOs may then be adjusted accordingly to achieve optimal
performance.

TAG compare block

Input addresses to the cache are partitioned into tag, index and word
offset. The word offset is the offset of a word within a cache line, the
index is the address of a cache line within a set, and the tag is the unique

2 Assuming the FIFO buffering is set up correctly.

Copyright © 2008 ZIPcores.com Download this VHDL Core Page 2 of 5

http://www.zipcores.com/generic-8-way-set-associative-read-cache.html

CACHE_8WAY_SET

Generic 8-way Set-Associative read Cache
Rev. 1.0

address in memory of the cache line. As an example, consider a 128
kbyte cache with a 64-byte line size having access to a 8 Mbyte external
memory. An example set of generic parameters would be:

Generic name Value Notes

addr_width 20 Total addressable external memory =
2^20 x 64-bit = 8 Mbytes

word_width 64 64-bit word width

words_per_line 8 64-bit x 8 = 64-byte line size

log2_words_per_line 3 2^3 = 8

num_lines 2048 2048 lines x 64 bytes per line = 128
kbytes

log2_num_lines 11 2^11 = 2048

lines_per_set 256 Total of 2048 lines shared between 8
sets = 256 lines per set

log2_lines_per_set 8 2^8 = 256

With the above configuration, the tag, index and offset are respectively 9-
bits, 8-bits and 3-bits wide. Figure 2 demonstrates how the tag RAM
would be organized in this example.

On receipt of an input address, the index selects a row of 8 tags - one
per set - and compares the input tag address with each of the stored tags.
If one of the stored tags matches the input tag and the tag valid bit is set
then there is a cache hit, otherwise there is a cache miss.

In the event of a miss, then the memory address that missed is sent via
the miss FIFO to main memory. In addition, 1 of the 8 tags must be
replaced by the tag that missed. In order to decide which tag address to
replace, a pseudo-random line replacement scheme is used.

A 3-bit random number is generated using a Linear Feedback Shift
Register (LFSR) of order 32. The LFSR is free running and generates a
random bit every clock cycle in accordance with the polynomial:

 x32x7x5x3 x2x1 x0

The 3 LSBs of the LFSR are used as an address to replace the victim tag.
In addition, once a tag has been updated, the tag valid bit is set to true.

Whether the input address is a hit or miss, in both instances, a unique ID
of the line that hit or the line that is to be replaced is sent via the bypass
FIFO to the cache-controller.

Cache Controller

The cache controller services the hits and misses from the bypass FIFO.
In the event of a cache hit, then the controller must read a cache line from
the cache RAM and multiplex the correct word before presenting it to the
output FIFO. In the event of a cache miss, the cache line read data is
taken directly from the read FIFO and the cache RAM is updated
accordingly.

Cache Flush Control

In the event that the contents of the cache become incoherent with the
contents of main memory (due to memory writes etc.) then the contents of
the cache may be invalidated using the flush command. The flush signal
must be asserted for at least one clock-cycle to initiate the internal flush
state machine. Once initiated, the signal cache_addr_rdy is disabled and
no further cache accesses are permitted until the flush operation is
compete3. When the cache flush has finished, the state machine asserts
flush_done high for one clock cycle. Cache operation may then proceed
as normal. Tags are invalidated in in rows of 8 tags so the total delay of a
cache flush operation is approximately equal to the generic parameter
lines_per_set plus the time taken for any existing requests to be flushed
out of the pipeline.

Note that it is recommended that a cache flush operation is performed at
least once after a system reset and before the cache is accessed for the
first time. This ensures the tag valid bits are are all reset.

Functional Timing Diagrams

The following timing diagrams are valid for all cache configurations. Note
that data is only transferred at the cache interfaces on a rising clock edge
when valid and ready are both active high. For detailed analysis of the
valid/ready protocol see ZIPcores application note: app_note_zc001.pdf.

Figure 3 shows a cache hit. The nominal latency for a cache hit is 8 clock
cycles (assuming no misses are pending in the pipeline).

3 Any existing requests in the pipeline will be serviced before a cache
flush commences.

Copyright © 2008 ZIPcores.com Download this VHDL Core Page 3 of 5

Figure 2: Organization of Tag RAM and compare logic

Figure 3: Cache hit

http://www.zipcores.com/generic-8-way-set-associative-read-cache.html

CACHE_8WAY_SET

Generic 8-way Set-Associative read Cache
Rev. 1.0

Figure 4 shows a cache miss (not to scale). Here we can see that the
cache miss provokes an external memory read. The latency of a miss is
10 clock cycles plus the latency of the memory access.

Finally, in Figure 5 we see a cache flush operation (again not to scale).
Note that the signal cache_addr_rdy is held low until the flush operation is
complete.

Source File Description

All source files are provided as text files coded in VHDL. The following
table gives a brief description of each file.

Source file Description

pipeline_reg.vhd Pipeline register

fifo_sync.vhd Synchronous FIFO

ram_dp_w_r_bp.vhd Dual-port RAM for tag storage

ram_sp.vhd Single-port RAM for main cache
storage

rom_sp_16384x64bit.vhd ROM test bench model

rom_sp_32768x16bit.vhd ROM test bench model

rom_sp_65536x16bit.vhd ROM test bench model

rom_sp_131072x8bit.vhd ROM test bench model

mem_model_16384x64bit.vhd Main memory test bench model

cache_8way_set.vhd Top-level block

cache_8way_set_bench.vhd Top-level test bench

Functional Testing

An example VHDL test bench is provided for use in a suitable VHDL
simulator. The compilation order of the source code is as follows:

1. pipeline_reg.vhd
2. fifo_sync.vhd
3. ram_dp_w_r_bp.vhd
4. ram_sp.vhd
5. rom_sp_16384x64bit.vhd
6. rom_sp_32768x32bit.vhd
7. rom_sp_65536x16bit.vhd
8. rom_sp_131072x8bit.vhd
9. mem_model_16384x64bit.vhd
10. cache_8way_set.vhd
11. cache_8way_set_bench.vhd

The VHDL test bench instantiates the cache component, a memory model
and a ROM model. In the example provided, the cache is configured with
a 64-bit line size and a 16-bit word width. The memory model is
organized as 16384x64-bit and the ROM is 65536x16-bit. Various ROM
models are provided in case the user wishes to configure the test bench
with different word widths. The word width of the memory model is fixed.

The simulation must be run for at least 10 ms during which time a series
of randomized cache accesses will be performed. In parallel, each
access to the cache is mirrored by an identical access to a ROM. By
capturing the output data from the cache and the output data from the
ROM, the correct operation of the cache may be verified4.

In addition to randomized cache read accesses, the test bench also
generates randomized valid/ready handshake signals at the cache output.
The memory model also has a generic stalling function. A stall factor may
be set ranging from 0 to 4 where 0 signifies no stalling and 4 signifies
heavy stalling.

The simulation generates two text files: cache_8way_set0_out.txt and
cache_8way_set_out1.txt. These files respectively contain the read data
from the cache and ROM captured during the course of the test. If these
files match then the test has been successful.

Synthesis

The files required for synthesis and the design hierarchy is shown below:

● cache_8way_set
○ pipeline_reg.vhd
○ ram_dp_w_r_bp.vhd
○ ram_sp.vhd
○ fifo_sync.vhd

■ pipeline_reg.vhd

The VHDL core is designed to be technology independent. However, as a
benchmark, synthesis results have been provided for the Xilinx Virtex 5
and the Altera Stratix III series of FPGA devices. The lowest and highest
speed grade devices have been chosen in both cases for comparison.

It is important to note that the systhesis results will largely depend on the
choice of generic parameters. As a general rule, the critical timing path
resides in the tag compare logic. As the tag width increases then the
maximum attainable clock-speed generally decreases.

4 The memory model and ROM models contain the same data

Copyright © 2008 ZIPcores.com Download this VHDL Core Page 4 of 5

Figure 4: Cache miss

Figure 5: Cache flush

http://www.zipcores.com/generic-8-way-set-associative-read-cache.html

CACHE_8WAY_SET

Generic 8-way Set-Associative read Cache
Rev. 1.0

Trial synthesis results are shown with the generic parameters set to:
addr_width = 16, word_width = 16, words_per_line = 4, num_lines =
4096, lines_per_set = 512, bp_fifo_depth = 32. All the other FIFOs have
the minimum allowed FIFO depth. These generic settings represent a 32
kbyte cache.

Resource usage is specified after Place and Route.

VIRTEX 5
Resource type Quantity used

Slice register 355

Slice LUT 541

Block RAM 12

DSP48 0

Clock frequency (worst case) 177 MHz

Clock frequency (best case) 230 MHz

STRATIX III
Resource type Quantity used

Register 1187

ALUT 626

Block Memory bit 286,720

DSP block 18 0

Clock frequency (worse case) 151 MHz

Clock frequency (best case) 213 MHz

Revision History

Revision Change description Date

1.0 Initial revision 24/04/2008

Copyright © 2008 ZIPcores.com Download this VHDL Core Page 5 of 5

http://www.zipcores.com/generic-8-way-set-associative-read-cache.html

