
ORIGINAL ARTICLE

Guttorm Sindre Æ Andreas L. Opdahl

Eliciting security requirements with misuse cases

Received: 15 February 2002 / Accepted: 5 March 2004 / Published online: 24 June 2004
� Springer-Verlag London Limited 2004

Abstract Use cases have become increasingly common
during requirements engineering, but they offer limited
support for eliciting security threats and requirements.
At the same time, the importance of security is growing
with the rise of phenomena such as e-commerce and
nomadic and geographically distributed work. This pa-
per presents a systematic approach to eliciting security
requirements based on use cases, with emphasis on
description and method guidelines. The approach ex-
tends traditional use cases to also cover misuse, and is
potentially useful for several other types of extra-func-
tional requirements beyond security.

Keywords Security requirements Æ Use cases Æ
Scenarios Æ Extra-functional requirements Æ
Requirements elicitation Æ Requirements
determination Æ Requirements specification Æ
Requirements analysis

1 Introduction

Use cases [1–3] have become popular for determining,
communicating, specifying, and documenting require-
ments [4, 5]. Many groups of stakeholders turn out to
be more comfortable with descriptions of operational
action sequences than with declarative specifications of
software requirements [5]. An industrial survey [6]
reports that scenarios are useful for determining and
validating requirements, and for making them concrete,
agreed-on, and consistent.

But there are also problems with use-case-based ap-
proaches to requirements engineering, such as over-
simplified assumptions about the problem domain [7]
and premature design decisions [2, 8]. Use cases are
suitable for most functional requirements, but may lead
to neglect of extra-functional requirements, such as
security requirements. Alarmingly, such practices have
also been observed in projects developing software sys-
tems with substantial security needs, such as e-commerce
software [9]. Compounding the problems with use-case-
based approaches, security requirements may be poorly
treated because traditional methods and standards for
security engineering [10, 11] are heavyweight and hard to
understand. It has also been observed that industrial
security approaches derive from the solution world
rather than the problem world [12], whereas good
requirements engineering practice mandates a thorough
understanding of the problem before suggesting solu-
tions. Hence, both use-case-based and other approaches
to requirements engineering would benefit from a closer
integration between informal and formal approaches,
and between functional and extra-functional require-
ments work [13–16].

It turns out that, with slight modifications, use cases
can aid the integration of functional and extra-func-
tional requirements work when considering security
requirements: in our previous work, we have extended
positive (regular) use case diagrams with negative use
cases—misuse cases—that specify behavior not wanted
in the proposed system for the purpose of eliciting
security requirements [17, 18]. After all, even an
unwanted interaction sequence is still an interaction
sequence, and many security breaches can be described
in a stepwise fashion that resembles ordinary use cases
[17–24]. The major difference is that a use case
achieves something of value for the system owner
and its stakeholders, whereas the security breach is
harmful.

In this paper, we first explain the basic concepts and
notation for misuse cases (Sect. 2). We then present
guidelines for how to describe misuse cases in detail using

G. Sindre (&)
Department of Computer and Information Science,
Norwegian University of Science and Technology (NTNU),
Trondheim, Norway
E-mail: guttors@idi.ntnu.no

A. L. Opdahl
Department of Information Science and Media Studies,
University of Bergen, Norway
E-mail: Andreas.Opdahl@uib.no

Requirements Eng (2005) 10: 34–44
DOI 10.1007/s00766-004-0194-4



textual templates (Sect. 3) and method guidelines for
eliciting security requirements with misuse cases
(Sect. 4). Next, we review the practical use of misuse case
analysis (Sect. 5), discuss the strengths and weaknesses of
misuse cases (Sect. 6), and compare them to related work
[19–22, 25, 26] (Sect. 7). Finally, we conclude the paper
and suggest paths for further work (Sect. 8) [17, 22].
The main contribution of the paper is to present, in a
coherent manner, all of the past individual contributions
and to emphasize description and method guidelines in
particular.

2 Concepts and notation

In line with the UML definitions of use case and actor
[27], we define misuse cases and misusers as follows1:

Misuse case A sequence of actions, including variants,
that a system or other entity can perform, interacting
with misusers of the entity and causing harm to some
stakeholder if the sequence is allowed to complete2.

Misuser An actor that initiates misuse cases, either
intentionally or inadvertently.

Figure 1 uses inverted graphics to show misuse cases
together with regular use cases in a high-level specifica-

tion of part of an e-shop software system. Compared to
regular use cases, the inverted notation indicates both
similarity (because the same symbol shapes are used)
and negation (because of the inverted graphics). Use and
misuse cases can, thereby, be shown in the same diagram
without confusion.

Ordinary use case relationships such as include, ex-
tend, and generalize can be used between misuse cases
too, and ordinary association relationships can be used
between misusers and their misuse cases. There are also
more specific relationships between use and misuse
cases:

Use case mitigate misuse case The use case is a coun-
termeasure against a misuse case, i.e., the use case re-
duces the misuse case’s chance of succeeding. An
example is ‘‘protect info’’, which mitigates ‘‘steal credit
card info’’, as shown in Fig. 1.

Misuse case threaten use case The use case is exploited
or hindered by a misuse case. For example, the ‘‘register
customer’’ use case is threatened by a denial-of-service
attack, ‘‘flood system’’, that prevents legitimate users
from accessing internet services, including customer
registration.

Figure 2 shows a metamodel of the basic misuse-case
concepts and their relation to the UML metamodel [27].
In addition to Actors and Use cases, the model intro-
duces Misusers and Misuse Cases, so that misuse cases
may Threaten regular use cases. The model also identi-
fies ‘‘Security Use Cases’’, which may Mitigate misuse
cases. Hence, whereas regular use cases represent
requirements in general, misuse cases represent security

Fig. 1 Example use and misuse
cases for an e-store

1Although the definitions and the metamodel in this section are
aligned with the UML, misuse cases do not inherently depend on
the UML and can augment other use case techniques equally well.
2For simplicity, we will use the term action sequence in this paper,
although we often talk about sequences of both actions and inter-
actions. Some authors prefer the term ‘‘step’’ where we use action.

35



threats and ‘‘security use cases’’ represent security
requirements, i.e., countermeasures that mitigate the
threats.

The metamodel does not propose ‘‘Security Use

Cases’’ as a new abstract metaclass in the UML meta-
model at this time, hence the quotation marks. Also,
although we could have introduced a new abstract
metaclass, ‘‘Use Or Misuse Case’’, to account for attri-
butes that are shared between use and misuse cases, we
leave this to be decided in further work3. In further
work, the Threaten relationship could also be defined as
a specialization of the UML’s regular Extend relation-
ship4. Finally, the metamodel does not explicitly show
UML Generalizations, which can be used between two
GeneralizableElements, or Associations, which can be
used between two or more Classifiers.

3 Textual specification of misuse cases

A use-case diagram only gives an overview of the re-
quired system functionality, so the essence of a use case
is usually captured in the associated textual description
[3]. Textual descriptions also play an important part
when representing misuse cases. This section presents
templates for describing misuse cases textually [18, 28]
and discusses how to use the templates to elicit security
requirements. Templates are important because they
encourage developers to write clear and simple action
sequences. They are also interesting for researchers be-
cause they offer support for controlled and repeatable
empirical evaluation of description and method guide-
lines. We identify two ways of expressing misuse cases

textually; a lightweight description that is embedded in
the textual description of a use case, and an extensive
description of misuse cases on equal terms with ordinary
use cases.

3.1 Lightweight misuse case description

The lightweight approach embeds the description of
misuse within a regular use-case template, such as the
templates proposed by Kulak and Guiney [5], Cockburn
[3], or RUP [29], by extending them with a field called
Threats. In Table 1, the Threats field of the ‘‘register
customer’’ use case contains a threat, T1, which twists
the customer’s form submission (action 3) so that the
information entered does not describe the person actu-
ally entering it. The last of the three possible outcomes
of T1 corresponds to the ‘‘reveal customer’’ misuse case
of Fig. 1.

For those who prefer writing use cases with separate
columns for the user and system interactions, threats can
conveniently be represented as an additional, third col-
umn instead of an additional field. Table 2 extends
Constantine and Lockwood’s [2] essential use case, get-
tingCash, with a Threats column. This representation
makes it even clearer against which action in the
sequence the threat is directed.

For systems where security is important, the regular
use-case template should be extended with either a
Threats field or a column: a filled-in threats field/column
makes the information easy to detect, whereas an empty
threats field/column indicates that security issues still
need to be investigated. When all of the possible threats
to a use case have been explicitly considered and found
unimportant, this should, therefore, be expressed
explicitly in the Threats field, e.g., ‘‘probability of misuse
considered extremely low’’ or ‘‘impact of potential
misuse assumed harmless’’.

3.2 Extensive misuse case description

To support detailed determination and analysis of
security threats, we propose to describe misuse cases
extensively—on equal terms with regular use case-
s—based on a template of fields that are mostly de-
scribed using text, such as triggers, preconditions, basic,
and alternative paths. Most of the fields in the use-case
templates of Kulak and Guiney [5], Cockburn [3], and
RUP [29] are also relevant for describing misuse cases,
but some adaptations are necessary and some new fields
must be introduced. For a detailed discussion, see [18].

In an extensive misuse-case description, the fields
Name, Summary, Author, and Date retain the same
meaning as in regular use cases. The Basic and Alter-

native path fields for misuse cases now describe the
sequences of actions that the misuser(s) and the pro-
posed system go through to cause harm. The other fields
in extensive misuse-case descriptions are explained in

UML-Generalizable Element 
(from core) 

UML-Classifier 
(from core) UML-Actor Misuser 

UML-Use Case Threatens Misuse Case 

”Security Use Case” Mitigates UML-Relationship 
(from core) 

Fig. 2 A metamodel of the basic concepts presented in this section
and their relation to the UML metamodel [28]. Existing constructs
in the metamodel are prefixed with UML-

3A corresponding abstract metaclass Actor Or Misuser is also
possible.
4‘‘Mitigate’’ replaces the ‘‘prevent’’ and ‘‘detect’’ relationships, and
‘‘threaten’’ replaces the ‘‘extend’’ and ‘‘include’’ relationships de-
fined in [17], following a suggestion made by Alexander [22] in both
cases.

36



Table 3. The next section presents guidelines for
describing misuse cases in detail, pointing out that the
full set of fields is only advocated for misuse cases that
describe security-critical parts of the proposed system in
fine detail.

Table 4 shows an extensive description of the misuse
case, ‘‘Tamper with database by web query manipula-
tion’’, which specializes the general ‘‘Tamper with data’’
from Fig. 1. ‘‘Tamper with data’’ cannot be described as
a single coherent action sequence because it can be
achieved in several different ways.

4 Working with misuse cases

Misuse-case diagrams and the associated textual tem-
plates inform developers only about which security-re-
lated information they should specify and not about

how and when to do so. Also, misuse-case diagrams and
templates say nothing about how the security require-
ments process is related to other software development
activities, nor about when to use lightweight and when
to use extensive misuse-case specifications. This section,
therefore, provides guidelines for working with misuse
cases. In addition to being useful for developers, the
method guidelines are important for research on misuse
cases because they are starting points for evaluating
misuse cases empirically.

4.1 The security requirements process

We propose the following five steps for eliciting security
requirements with misuse cases [30]:

1. Identify critical assets in the system, where an asset is
either information that the enterprise possesses, vir-
tual locations that the enterprise controls, or com-
puterized activities that the enterprise performs [30].

2. Define security goals for each asset, preferably aided
by a standard typology of security goals, such as the
one inherent in the common criteria for IT security
evaluation [10]5

Table 1 A lightweight misuse case description embedded in the use case, ‘‘register customer’’, from Fig. 1. (Of course, more threats can be
described in addition to T1)

Name: Register customer
Iteration: Filled
Summary: The customer registers for the e-shop, giving name, address, email, and phone
Basic path: bp–1. The customer selects to register

bp–2. The system provides the registration form
bp–3. The customer completes the form and submits
bp–4. The system acknowledges registration, returning a customer reference number

Alternative paths: [...]
Exception paths: E1. In action 3, the customer submits with mandatory information missing.

Return to action 3 to provide more info
E2. In action 3, the submitted info matches an already registered customer.
The system notifies the user that registration is abandoned because the customer
is already registered. This ends the use cases

Extension points: [...]
Triggers: [...]
Assumptions: [...]
Preconditions: [...]
Postconditions: The customer is now registered, and will be enabled to order goods from

the e-shop without providing contact info anew
Related business rules: [...]
Threats: T1: The customer is not registering with his own name and address, but with

an assumed identity. Possible outcomes:
T1–1. A non-existing person is registered as customer
T1–2. An existing person is unwillingly and unknowingly registered as a customer
T1–3. It is revealed to a third party that the named person is a customer
of the e-shop (see exception path E2 above)T2: [...]

Author: John Davis
Date: 2001.05.23

Table 2 A lightweight misuse-case description embedded in the
regular use case, gettingCash from an ATM

gettingCash

User intention System response Threats

Identify self Identity spoofedIdentification
spied on

Verify identity ATM tampered with
Offer choices

Choose
Dispense cash

Take cash Customer is robbed

5The common criteria is intended as a security evaluation standard,
but because it is organized according to classes, families, and
components of security criteria, and because security criteria can be
seen as operational security goals, the common criteria also entails
a typology of security goals.

37



3. Identify threats to each security goal by identifying
stakeholders that may intentionally harm the system
or its environment and/or identifying sequences of
actions that may result in intentional harm6

4. Identify and analyze risks for the threats using stan-
dard techniques for risk analysis and costing from the
security and safety engineering fields [31–33]

5. Define security requirements for the threats to match
risks and protection costs, preferably aided by a
taxonomy of security requirements, such as [10, 11].
This process of identifying critical assets, threats, and
security requirements (or countermeasures) is cycli-
cal. On the one hand, critical assets defined in the
larger process drive the identification of threats in the
security process. On the other hand, the threats
identified in the security process drive the definition

Table 3 The full list of text fields for describing misuse cases extensively. Most extensive misuse case descriptions will only use a subset of
fields from this list

Name, Summary, Author,
and Date:

These fields retain the same meaning as in regular use cases

Basic path: This field describes the actions that the misuser(s) and the system go through to harm the
proposed system

Alternative paths: This field describes ways to harm the proposed system that are not accounted for by the basic path,
but are still sufficiently similar to be described as variants of the basic path

Mitigation points: This field identifies those actions in a basic or alternative path where misuse can be mitigated.
Several ways to mitigate misuse of a particular action can be described in the same field and
each of them may be further described in a separate security use case. As for extension
points, the misuse case must eventually have a mitigate relationship to a corresponding
security use case. However, the detailed description of security use cases is optional, because
it is often closer to design, requiring detailed analysis of risks and implementation
costs that go beyond use and misuse cases

Extension points: In some cases, a misuse case may be extended with optional paths whose details are described
in a separate extension misuse case. This field lists the actions in the main or alternative paths
where optional paths may be inserted. As for extension points in regular use cases, the misuse
case must have an extend relationship to the misuse case that contains the optional path

Trigger: This field describes the states or events in the system or its environment that may initiate the
misuse case. For some misuse cases, the trigger is just the predicate True, indicating
a permanently present danger

Assumptions: This field describes the states in the system’s environment that make the misuse case possible
Preconditions: This field describes the system states that make the misuse case possible
Mitigation guarantee: This field describes the guaranteed outcome of mitigating a misuse case. If the mitigation points

are not yet specified in detail, the mitigation guarantee describes the level of security required
from the mitigating security use cases that will be designed later. When the mitigation points
in the misuse case have been detailed by security use cases, this field describes the strongest
possible security guarantee that can be made, regardless of how the misuse case is mitigated

Related business rules: Typically, business rules will be violated by the misuse. This field contains links to
such rules, maybe along with links to rules that enable the threat or that limit
how it could be mitigated or eliminated

Misuser profile: This field describes whatever can be assumed about the misuser, for example, whether the misuser
acts intentionally or inadvertently; whether the misuser is an insider or outsider; and how
technically skilled the misuser must be

Scope: This field indicates whether the proposed system in a misuse case is, e.g., an entire business,
a system of both users and computers, or just a software system

Iteration: As for regular use cases, it is useful to allow both initial and detailed descriptions of misuse
cases. This field indicates the misuse case’s iteration level, usually taken from the set of
iteration levels used for the use cases in the project

Level: As for regular use cases, misuse cases can be specified at a general or specific
abstraction level. This field indicates whether the misuse case is, e.g., a summary,
a user goal, or a sub-function, following [3]

Stakeholders and risks: This field specifies the major risks for each stakeholder involved in the misuse case. On an abstract
level, risks can be described textually, e.g., ‘‘the system is unavailable for several hours’’ or
‘‘a competitor gets hold of sensitive medical data about an applicant’’. On a concrete level,
the likelihood and cost of each misuse variant can be estimated, where the cost includes potential
losses, should the threats come true

Technology and data variations: A misuser may carry out a misuse case from a variety of technical platforms, such as a PC
or a WAP phone and, since only a few equipment-related actions will differ in each case,
it is unnecessary to specify two separate paths. Instead, this field lists the candidate types
of equipment and explains how they differ in particular actions

Terminology and explanations: This field contains explanations of technical terms and other issues

6Most of the techniques and methods proposed in this paper may
apply equally well to unintentional harm, but that would lead us
into the area of safety requirements. The definition of misuse cases
given in Sect. 2 explicitly allows for both intentional and inadver-
tent—or unintentional—misuse.

38



of new security requirements which, when imple-
mented, may create new vulnerable assets (of the
computerized activity type). This cycle has been
investigated by Alexander [22].

The security requirements process can be supported
by a repository of reusable security threats and associ-
ated security requirements represented, respectively, as
misuse cases and security use cases, or in other ways [30].

4.2 Misuse cases in the larger development process

The five-step security requirements process does not
stand alone, but must be embedded in a software
development process, which provides a context for
defining security goals and identifying and analyzing
risk. Misuse cases feature most prominently in three of
the five steps:

– In step 3, the security threats identified can be de-
scribed as misuse cases and misusers, although, in
general, the above steps are independent of particu-
lar ways of representing security threats and

requirements [30]. The best way to specify security
threats depends on the situation, as is discussed later
in this section.

– In step 4, the relationships identified between misuse
cases can aid risk analysis. For example, [28] points
out that extend/include relationships and generaliza-
tion relationships, respectively, are analogous to
AND and OR nodes in fault trees and similar trees.

– In step 5, the security requirements defined are
specified either as independent security use cases or
in the mitigation fields of extensively described mis-
use cases [30]. Again, the best way to specify security
requirements depends on the situation and is dis-
cussed later. There are many ways to determine and
specify requirements with use cases, and it is not the
purpose of this paper to tie misuse cases tightly to
one of them. On the contrary, given the contingent
and opportunistic nature of early requirements
determination [34], overly detailed prescriptive
method guidelines are inappropriate for both use and
misuse cases. Instead, developers must be ready to
use the available techniques differently, depending on
the situation.

Table 4 The misuse case, ‘‘Tamper with database by web query manipulation’’

Misuse case name: Tamper with database by web query manipulation
Summary: A crook manipulates the web query, submitted from a search form, to update or delete information,

or to reveal confidential information
Author: David Jones
Date: 2001.02.23
Basic path: bp–1. The crook provides some values on a product search form and submitsbp–2. The system

displays the product(s) matching the querybp–3. The crook alters the submitted URL, introducing
a query error, and resubmitsbp–4. The query fails and the system displays the database error
message to the crook, revealing more about the database structurebp–5. The crook alters the query
further, for instance adding a nested query to reveal secret data or update or delete data, and
submitsbp–6. The system executes the altered query, changing the database or revealing content
that should have been secret

Alternative paths: ap1. In action 3 or 5, the crook does not alter the URL in the address window, but introduces errors
or nested queries directly into form input fields

Mitigation points: mp1. In action 4, the exact database error message is not revealed to the client. This will not entirely
prevent the misuse, but the crook will have a harder time guessing table and field names in action 5mp2.
In action 6, the system does not execute the altered query because all queries submitted from forms
are explicitly checked in accordance with what should be expected from that form. This prevents
the misuse case

Extension points: [...]
Triggers: tr1. Always true. This can happen at any time
Preconditions: pc1. The crook is able to search for products, either because this function is publicly available, or

by having registered as a customer
Assumptions: as1. The system has search forms feeding input into database queries
Mitigation guarantee: The crook is unable to access the database in an unauthorized manner through a publicly available

web form (see mp2)
Related business rules: The services of the e-shop shall be available to customers over the internet
Potential misuser profile: Skilled. Knowledge of databases and query language, or at least able to understand published

exploits on cracker web sites
Stakeholders and threats: st1. e-shop: loss of data if deleted. Potential loss of revenue if customers are unable to Order Product,

or if prices have been altered. Bad will resulting from customer problems in st2st2. customers:
potentially losing money (at least temporarily) if crook has increased product prices. Unable to order
if data lacking, wasting time. Also, more far-reaching issues of loss of privacy (if misuser reveals
confidential information about customers) or even money loss (if misuser reveals, e.g., credit
card numbers)

Terminology and explanations:[...]
Scope: Entire business and business environment
Abstraction level: Misuser subgoal
Precision level: Focused

39



4.3 Specifying misuse cases in detail

Guidelines are also needed for using the textual templates
presented in Sect. 3, in particular, regarding the choice
between lightweight and extensive descriptions. Although
the lightweight approach offers a quick, simple, and
systematic way of eliciting security threats, it does not aid
developers in analyzing those threats in detail. As a
consequence, it becomes difficult to find appropriate
bundles of security requirements—possibly expressed as
security use cases—that best match each threat.

Lightweight descriptions are, therefore, better early in
development, when brainstorming to get an overview of
the threats faced by the system. Lightweight descriptions
are also more appropriate for misuse cases believed to be
less critical for overall security and for misuse cases that
are slight ‘‘twists’’ on a regular use case. Such twists can be
described in much the same way as exceptional use-case
paths, as long as they remain uniquely identified, search-
able, and traceable elements in the specification. Extensive
descriptions are better for later development stages and
when specifying that a particular misuse case is mitigated
by certain corresponding requirements use cases. Inmany
cases, threats that are first specified lightly will later be
described extensively. Finally, the choice between light-
weight and extensive description depends onhowcomplex
the misuse is. Simple misuse involving just a single mali-
cious action can be described in lightweight format,
whereas misuse involving intricate action sequences and
alternative paths calls for extensive description.

Many of the other concerns when specifying misuse
cases in detail are similar to those for regular use cases.
As for use cases, developers should describe each misuse
case independently of particular technological solutions
whenever this is possible. For example, misuse-case ac-
tions should not mention particular security mechanisms
like passwords, firewalls, and encryption [26]. Also, as
for use cases, developers should first describe each mis-
use case in little detail and then gradually make the
description more detailed, concentrating effort on the
higher-risk misuse cases. It is hard to provide more
precise guidelines on granularity because some misuse
cases will threaten the entire software system, and others
just single use cases or single use-case actions.

5 Validation

The misuse case notation has already been validated in
several research and industrial projects:

– The authors have used misuse cases to elicit and ini-
tiate discussion about functional, security, and safety
requirements for a knowledge map application in an
EU-funded research project7. The approach has, so

far, turned out to be easy-to-understand and useful
for eliciting requirements both for the planned soft-
ware and for organizational use guidelines.

– Another EU-project8 embedded misuse cases in an
integrated model-based framework for risk manage-
ment to investigate whether a design is secure against
identified threats. The framework was used in six
projects in the e-shop and telemedicine domains
[35, 36].

– Breivik [37] has used misuse cases to represent security
threats (‘‘attack components’’) from the Open Web
Application Security Project (OWASP) [38] in pattern
form. The patterns were validated in interviews with a
variety of stakeholders, indicating that the notation
was easy to understand and might be useful to facili-
tate communication and understanding about security
in the early development stages. Breivik’s [37] inves-
tigation has raised a host of other issues for further
research.

– Alexander [22] has used misuse cases to analyze
requirements trade-offs. He reports that misuse case
diagrams contributed to successful determination of
threats and requirements, and to subsequent resolu-
tion of design conflicts. The notation was easy to
understand. There is still a need for more conclusive
validation of misuse cases in large-scale industrial
settings.

6 Discussion

Although misuse cases is an interesting new approach, it
is only one of many ways to elicit security requirements,
is an approach that is not always appropriate, that must
be adapted to the situation at hand, and that must often
be used in combination with other techniques. In order
to know when to use misuse cases, how to adapt them to
the situation, and with which other techniques to com-
bine them, it is necessary to understand their strengths
and weaknesses.

6.1 Strengths

As indicated by the validations, misuse cases allow early
focus on security by describing security threats and then
requirements, without going into design. In particular,
the informal nature of misuse cases encourages analyst
and stakeholder creativity and promotes user/customer
assurance and education by omitting technical security
details, thereby letting stakeholders at different levels of
technical competence discuss threats in a way that they
can all understand. Looking at the system from a

7Project 508011 INTEROP (Interoperability Research for net-
worked enterprises, applications, and software) is a network of
excellence under the sixth framework program (IST). It has 50
partners from various European countries.

8The CORAS project (IST-2000-25031) addressed risk assessment
of security critical systems. It had 11 partners from four countries
(UK, Germany, Greece, and Norway). The technical coordinator
was SINTEF (N) and the administrative coordinator was Telenor
(N). The project was successfully completed in September 2003.

40



misuser perspective further increases the chance of dis-
covering threats that would otherwise have been ignored.
Moreover, while formal methods certainly have a place
in safety and security engineering, the expert interview
study reported by Hickey and Davis [39] did not rec-
ommend formal methods for elicitation: even for safety-
critical systems, formal methods were considered to
distance stakeholders too much from the elicitation
process. Coughlan and Macredie [40] also stress the
importance of using representations that may be
understood by the stakeholders, because effective com-
munication is crucial to the successful outcome of the
requirements process.

The visualization of links between use cases and
misuse cases will help organize the requirements specifi-
cation so that related functional and extra-functional
requirements are linked to one another [15]. When
functional requirements are specified with use cases, the
challenge is to link each use case to its related extra-
functional requirements [5]. Misuse cases solve this
problem for security (and perhaps also, safety) require-
ments because functional and extra-functional require-
ments are represented in similar ways and because
misuse-case diagrams link regular use cases to both
threats and potential countermeasures. This will also aid
the prioritization of requirements because the real cost of
implementing a use case includes the protection needed
to mitigate all serious threats to it. If security is dealt
with later, or documented separately from use cases,
prioritization might not properly consider the induced
security costs.

Also, the links will support the tracing of security
requirements to the threats that motivated them. In
addition to explaining requirements and design choices,
traces are important for proper change management [15],
which is particularly important for continuous security
management [32] when threat situations change quickly
and unpredictably as new software vulnerabilities are
published and new cracker software is distributed on the
web.

When use and misuse cases are represented at a
generic level, they can be easily reused to give new
development projects a flying start in identifying security
threats and corresponding security requirements. Reus-
ing misuse cases and security requirements is discussed
further in [30].

6.2 Weaknesses

Misuse cases and misuse-case-supported security
requirements analysis also suffer from a number of
weaknesses. Most importantly, the open-ended method
guidelines mean that developers will have to improvise.
This is a potential problem in security engineering,
where formal methods are recommended [33]. Until
more detailed and formal guidelines are offered, security
defects may be introduced by the security requirements
process itself, by the integration of the security process

within the embedding software development process,
and by the detailed textual descriptions of use and
misuse cases.

A particular problem introduced by weak method
guidelines is that the potentially large number of threats
that must be considered may lead to analysis paralysis.
This weakness is more of a problem with the security
requirements process in Sect. 4 than with the concept of,
and notation for, misuse cases. Reuse of security threats
and requirements may alleviate the problem somewhat,
but the guidelines for how to prioritize and when to stop
the security analysis must also be developed further.

In addition, misuse cases are not equally suitable for
all kinds of threats, focusing mainly on misuse where an
identifiable attacker performs a harmful sequence of
actions by exploiting another sequence of actions sup-
ported by the system:

– Firstly, the misuse is not always an identifiable se-
quence of actions, like when misuse is achieved in a
single operation such as e-mailing a virus. Although
this kind of misuse can still be described as a misuse
case with many template fields filled in, the path fields
will remain empty, making the detailed description
less informative and automated pattern retrieval more
difficult.

– Secondly, there is not always an identifiable misuser,
like when a virus spreads from computer to computer
independently of its creator, who is no longer in
control of the process. Although there are no clearly
identifiable misusers in these situations, there are
possible solutions: either the virus itself is considered
the misuser—a solution that could be used for other
kinds of software too, e.g., attack script engines and
automated agents—or the naı̈ve user who inadver-
tently runs the virus is considered the misuser—a
solution that would extend to inadvertent misuse in
general and, thereby, to safety requirements.

– Thirdly, the misuse does not always exploit an iden-
tifiable sequence of actions and, although the misuse
case and the misuser may be identifiable, it is not
possible to identify a regular use case that is threa-
tened by the misuse. A virus attack is again a case in
point, because the virus may, in principle, enter the
system through any kind of data transmission into the
system and may, afterwards, affect any action taken
by the system. Finally, the fairly limited experience
with practical applications of the misuse case tech-
nique is itself a weakness that must be addressed by
further work.

7 Related work

Several other authors have suggested or discussed neg-
ative use cases or scenarios in relation to security. Elli-
son et al. [25] introduce ‘‘intruders’’ and ‘‘intrusion
scenarios’’ in their case study of part of a large-scale
distributed healthcare system. Their study focuses on

41



survivability requirements analysis, an area that sub-
sumes security, safety, and reliability. Intruders and
intrusion scenarios are similar to misusers and misuse
cases, respectively, but Ellison et al. [25] do not provide a
diagram notation, a description template, or general
method guidelines for intrusion scenarios.

McDermott and Fox [19, 20] propose ‘‘abuse cases’’,
which are similar to our proposal. Abuse cases are
complementary to misuse cases, because McDermott
and Fox [19] focus specifically on security requirements
and their relation to design9 and testing, whereas our
approach focuses on elicitation of security requirements
in relation to other requirements. McDermott and Fox
[19] do not show ‘‘use’’ and ‘‘abuse cases’’ in the same
diagram, so no relationships between use and abuse can
be depicted either. They also define an abuse case as a
family of cases that can be achieved in different ways,
whereas our approach would use generalization10.

Potts [21] distinguishes between ‘‘abuse cases’’ that
violate policies and ‘‘misuse cases’’ that willfully under-
mine a policy, e.g., using information for another pur-
pose than it was gathered for. Potts thereby suggests a
more fine-grained terminology than ours. In the context
of goal-oriented requirements engineering, Potts [41]
also introduces ‘‘obstacles’’, i.e., exceptional conditions
that prevent goal fulfillment. In relation to our work,
security goals can be seen as a kind of general goal and
security threats as a kind of obstacle. Obstacles are
investigated more closely in relation to security policies
by Anton and Earp [42], and they are elaborated and
formalized by Lamsweerde and Letier [43], who propose
heuristics for obstacle identification and strategies for
adding new goals to resolve obstacles. In relation to our
work, adding new goals to resolve obstacles is similar to
adding security use cases to mitigate misuse cases.
However, Lamsweerde and Letier [43] do not propose a
diagram notation or a template for the textual repre-
sentation of obstacles, which are, instead, represented as
formal logic assertions—an approach that complements
our focus on actors and the action sequences they per-
form to achieve their goals.

Alexander [22] has used misuse cases as presented in
this paper in a practical setting, providing useful expe-
rience and suggesting paths for further work. Although
Alexander used our diagram notation, his way of
working with misuse cases was different. Whereas [17,
18] focused on misuse cases, how they threaten regular
use cases, and how they are mitigated by security use
cases, Alexander also considers how the security use
cases can, in turn, be threatened by new misuse cases.
On the other hand, Alexander does not consider a
structured description of misuse cases in detail.

Firesmith [26] proposes a template for ‘‘security use
cases’’, which are different from misuse cases because
they represent security-related requirements rather than
threats. Firesmith’s [26] security use cases have been
adopted by us, although we have not yet included his
template. Sindre et al. [30] proposes an approach to
reusing security requirements that uses security use cases
and misuse cases together.

8 Conclusion and further work

Use cases are popular tools for eliciting functional
requirements but less suited for extra-functional
requirements—such as security requirements—that de-
scribe behaviors not wanted in the system. This paper
has proposed two new concepts—misuse cases and mis-
users—along with suitable relationships, a diagram
notation, templates for textual descriptions, and method
guidelines. The approach has been tested on examples
and in realistic settings [22, 35, 36], and it is currently
used in research on risk management and on security
patterns.

Compared to other similar approaches, misuse cases
integrate more closely with regular use cases and,
thereby, facilitate better analysis of how functional
requirements relate to security threats and requirements.
The proposed template is also more comprehensive than
comparable approaches. Method guidelines are pro-
vided to ensure that the approach is helpful in the early
elicitation of security requirements. Important strengths
of the proposed approach include ensuring early focus
on security, encouraging analyst and stakeholder crea-
tivity, promoting user/customer assurance and educa-
tion, supporting explicit prioritization, better
organization and better tracing of requirements, facili-
tating proper change management, and providing sup-
port for reusing misuse cases and associated security
requirements. However, the method guidelines provided
are still too general and imprecise; the number of
potentially critical assets and associated threats that
must be considered is, therefore, large, and the misuse-
case approach itself is not equally suitable for all kinds
of threats, specifically because misuse does not always
involve or exploit an identifiable sequence of actions nor
an identifiable misuser. Whereas some of these weak-
nesses reflect inherent trade-offs that must be judged
according to the situation at hand, other weaknesses
mainly call for more work—in particular on providing
more detailed method guidelines.

An obvious candidate for further work is to evaluate
misuse cases further in industrial settings. The approach
is well suited for industrial evaluation because it extends
standard OO concepts and it is linked to the UML. It
should be easy to incorporate misuse cases in a use-case-
based software development organization, because the
proposed extensions are small and simple to implement,
and because the proposed template resembles regular
use-case templates.

9The design angle is particularly evident in [20], where assurance
arguments are used to show that the design really satisfies the
requirements.
10Finally, there are differences in the textual templates: our tem-
plate describes misuse case actions, exceptions, mitigations, etc. in
more detail, whereas McDermott and Fox’ [19] templates provide
more detail about the attacker.

42



Another important goal for further work is to facili-
tate broader industrial adoption of misuse cases. For this
to happen, misuse-case analysis must be embedded in
well-documented and tool-supported RE methods that
are use-case-driven (because misuse cases integrate well
with regular use cases), e.g., [44–46], goal-oriented (be-
cause security threats can be considered anti-goals or
obstacles), and/or lightweight (because many software
development organizations already employ, or are con-
sidering employing, agile methods [47] and the misuse
case notation induces little overhead). In particular, the
goal-oriented i* approach has recently been used for
representing trust, attacks, and countermeasures [48].
Industrial adoption of misuse cases is also likely to be
based on reuse of security threats and requirements, and
work is in progress on establishing and evaluating a
library of security misuse case patterns and on using them
to determine security requirements in practical settings.

Another interesting direction is to align misuse cases
with other security approaches. Our approach can be
integrated with existing security standards [10, 11],
which classify threats as separate from other security
issues, such as objectives and requirements. For exam-
ple, the 29 threat categories identified in [11] could
potentially aid in discovering a more complete determi-
nation of security requirements. Because existing stan-
dards are often written in a formal and technical style,
integrating them with our diagram notation and method
may make the standards more readily available to end-
users and developers.

Another possibility is to align misuse cases with tra-
ditional fault-tree analysis methods from the safety area,
such as threat trees [49] or attack trees [50, 51]. Adapted
for security analysis, these trees would decompose
security threats using AND and OR nodes, where OR
nodes correspond directly to misuse case generaliza-
tion—such as when a password can be obtained in sev-
eral ways [28]—and where AND nodes are not explicitly
covered in our notation (but may be implicit in misuse-
case inclusion and preconditions). Extending the misuse
case notation with AND nodes, e.g., using the UML’s
aggregation symbol, may be straightforward, and a
natural next step would be to align the misuse cases with
the NFR framework [52] for analyzing non-functional
requirements.

A further interesting direction is to consider misuse
cases in relation to other types of extra-functional
requirements such as safety, privacy, and usability, all
dealing with behavior not wanted in the proposed sys-
tem. For example, better integration of informal and
formal techniques is necessary for progress in safety
analysis [53]. Misuse cases should also be complemented
with techniques for risk analysis and costing from
security and safety engineering [31–33].

In the meantime, misuse cases can be used as an
informal and integrating front-end to more heavyweight
techniques, making it easier for various stakeholders to
participate in eliciting security requirements for new
information and software systems.

References

1. Jacobson I et al (1992) Object-oriented software engineering:
a use case driven approach. Addison-Wesley, Boston

2. Constantine LL, Lockwood LAD (1999) Software for use:
a practical guide to the models and methods of usage-centered
design. ACM Press, New York

3. Cockburn A (2001) Writing effective use cases. Addison-Wes-
ley, Boston

4. Rumbaugh J (1994) Getting started: using use cases to capture
requirements. J Object Orient Prog 7(5):8–23

5. Kulak D, Guiney E (2000) Use cases: requirements in context.
ACM Press, New York

6. Weidenhaupt K et al (1998) Scenario usage in system develop-
ment: a report on current practice. IEEE Software 15(2):34–45

7. Arlow J (1998) Use cases, UML visual modelling and the
trivialisation of business requirements. Req Eng 3(2):150–152

8. Lilly S (1999) Use case pitfalls: top 10 problems from real
projects using use cases. In: Proceedings of TOOLS USA 1999,
IEEE Computer Society, Santa Barbara, California

9. Anton AI et al (2001) Deriving goals from a use case based
requirements specification. Req Eng 6(1):63–73

10. CCIMB (1999) Common criteria for information technology
security evaluation. Technical report, CCIMB-99–031, Com-
mon Criteria Implementation Board

11. ECMA (1999) ECMA protection profile: E-COFC public
business class. Technical report, TR/78, ECMA International,
Geneva, Switzerland

12. Crook R et al (2002) Security requirements engineering: when
anti-requirements hit the fan. In: Proceedings of the 10th
anniversary IEEE international requirements engineering con-
ference (RE‘02), Essen, Germany

13. Pohl K (1994) The three dimensions of requirements engi-
neering: a framework and its applications. Inform Syst
19(3):243–258

14. Loucopoulos P, Karakostas V (1995) Systems requirements
engineering. McGraw-Hill, London

15. Kotonya G, Sommerville I (1997) Requirements engineering:
processes and techniques. Wiley, Chichester

16. Mylopoulos J, Chung L, Yu E (1999) From object-oriented to
goal-oriented requirements analysis. Commun ACM 42(1):31–
37

17. Sindre G, Opdahl AL (2000) Eliciting security requirements by
misuse cases. In: Proceedings of TOOLS Pacific 2000, Sydney,
Australia

18. Sindre G, Opdahl AL (2001) Templates for misuse case
description. In: Proceedings of the 7th international workshop
on requirements engineering: foundation for software quality
(REFSQ’01), Interlaken, Switzerland

19. McDermott J, Fox C (1999) Using abuse case models for
security requirements analysis. In: Proceedings of the 15th an-
nual computer security applications conference (ACSAC’99),
Phoenix, Arizona

20. McDermott J (2001) Abuse-case-based assurance arguments.
In: Proceedings of the 17th annual computer security applica-
tions conference (ACSAC’01), New Orleans, Los Angeles

21. Potts C (2001) Scenario noir (panel statement, p 2). In: Pro-
ceedings of the symposium on requirements engineering for
information security (SREIS’01), Indianapolis

22. Alexander IF (2002) Initial industrial experience of misuse
cases in trade-off analysis. In: Proceedings of the 10th anni-
versary IEEE international requirements engineering confer-
ence (RE’02), Essen, Germany

23. Alexander IF (2002) Modelling the interplay of conflicting
goals with use and misuse cases. In: Proceedings of the 8th
international workshop on requirements engineering: founda-
tion for software quality (REFSQ’02), Essen, Germany

24. Alexander IF (2003) Misuse cases, use cases with hostile intent.
IEEE Software 20(1):58–66

25. Ellison R et al (1999) Survivable network system analysis:
a case study. IEEE Software 16(4):70–77

43



26. Firesmith D (2003) Security use cases. J Object Tech 2(3):53–64
27. OMG (2003) Unified modeling language, version 1.5. Object

Management Group, Inc. http://www.uml.org. Cited 21 Nov
2003

28. Sindre G, Opdahl AL, Breivik GF (2002) Generalization/spe-
cialization as a structuring mechanism for misuse cases. In:
Proceedings of the 2nd symposium on requirements engineering
for information security (SREIS’02), Raleigh, North Carolina

29. Kruchten P (2000) The rational unified process—an introduc-
tion. Addison-Wesley, Boston

30. Sindre G, Firesmith D, Opdahl AL (2003) A reuse-based ap-
proach to determining security requirements. In: Proceedings of
the 9th international workshop on requirements engineering:
foundation for software quality (REFSQ’03), Klagenfurt,
Austria

31. Viega J, McGraw G (2002) Building secure software: how to
avoid security problems the right way. Addison-Wesley, Boston

32. Andress M (2002) Surviving security: how to integrate people,
process, and technology. Sams Publishing, Indianapolis

33. Devanbu PT, Stubblebine S (2000) Software engineering for
security: a roadmap. In: Proceedings of the 22nd international
conference on software engineering (ICSE 2000), future of
software engineering track, Limerick, Ireland

34. Carroll JM, Swatman PA (1999) Managing the RE process:
lessons from commercial practice. In: Proceedings of the 5th
international workshop on requirements engineering: founda-
tions of software quality (REFSQ’99), Heidelberg, Germany

35. den Braber F et al (2002) Model-based risk management using
UML and UP. In: Proceedings of the 13th IRMA international
conference: issues and trends of information technology man-
agement in contemporary organizations (IRMA’2002), Seattle,
Washington

36. Houmb S-H et al (2002) Towards a UML profile for model-
based risk assessment. In: Proceedings of the UML’2002
satellite workshop on critical systems development with UML
(CSD-UML’02), Dresden, Germany

37. Breivik GF (2002) Abstract misuse patterns—a new approach
to security requirements. Masters thesis, Department of
Information Science, University of Bergen

38. OWASP (2001) Application security attack components. The
open web application security project. http://www.owasp.org/
asac/. Cited 21 Sept 2002

39. Hickey A, Davis AM (2003) Elicitation technique selection:
how do experts do it? In: Proceedings of the 11th IEEE inter-
national requirements engineering conference (RE’03), Mon-
terey, California

40. Coughlan J, Macredie RD (2002) Effective communication in
requirements elicitation: a comparison of methodologies. Req
Eng 7:47–60

41. Potts C (1995) Using schematic scenarios to understand user
needs. In: Proceedings of the ACM symposium on designing
interactive systems: processes, practices, and techniques
(DIS’95), Ann Arbor, Michigan

42. Anton AI, Earp JB (2000) Strategies for developing policies
and requirements for secure electronic commerce systems.
In: Proceedings of the 1st ACM workshop on security and
privacy in e-commerce, Athens, Greece

43. van Lamsweerde A, Letier E (2000) Handling obstacles in goal-
oriented requirements engineering. IEEE T Software Eng
26(10):978–1005

44. Maiden NAM et al (1998) CREWS-SAVRE: systematic sce-
nario generation and use. In: Proceedings of the 3rd IEEE
international conference on requirements engineering
(ICRE’98), Colorado Springs, Colorado

45. Rolland C, Souveyet C, Achour-Salinesi CB (1998) Guiding
goal models using scenarios. IEEE T Software Eng
24(12):1055–1071

46. Achour-Salinesi CB et al (1999) Guiding use case authoring:
results from an empirical study. In: Proceedings of the 4th
international symposium on requirements engineering (RE’99),
Limerick, Ireland

47. Abrahamsson P et al (2003) New directions on agile methods: a
comparative analysis. In: Proceedings of the 25th international
conference on software engineering (ICSE’03), Portland, Ore-
gon

48. Liu L et al (2003) Security and privacy requirements analysis
within a social setting. In: Proceedings IEEE international
conference on requirements engineering (RE’03), Monterey,
California

49. Amoroso EJ (1994) Fundamentals of computer security tech-
nology. Prentice-Hall, Englewood Cliffs

50. Schneier B (2000) Secrets and lies: digital security in a net-
worked world. Wiley, Chichester

51. Moberg F (2000) Security analysis of an information system
using an attack tree-based methodology. Masters thesis,
Chalmers University of Technology

52. Chung L et al (2000) Non-functional requirements in software
engineering. Kluwer, Boston

53. Lutz RR (2000) Software engineering for safety: a roadmap. In:
Finkelstein A (ed) The future of software engineering, ACM
Press, New York

44


