
Preboot Execution Environment
(PXE) Specification

Version 2.1

September 20, 1999
Intel Corporation
with special contributions from

SYSTEMSOFT

Preboot Execution Environment (PXE) Specification

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

This document is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS OR
IMPLIED, IN THIS DOCUMENT.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. The furnishing of this document does
not give you any license to the patents, trademarks, copyrights, or other intellectual property rights except
as expressly provided in any written license agreement from Intel Corporation.

Intel does not make any representation or warranty regarding specifications in this document or
any product or item developed based on these specifications. INTEL DISCLAIMS ALL EXPRESS
AND IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OR
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND FREEDOM FROM
INFRINGEMENT. Without limiting the generality of the foregoing, Intel does not make any warranty
of any kind that any item developed based on these specifications, or any portion of a
specification, will not infringe any copyright, patent, trade secret or other intellectual property
right of any person or entity in any country. It is your responsibility to seek licenses for such
intellectual property rights where appropriate. Intel shall not be liable for any damages arising out
of or in connection with the use of these specifications, including liability for lost profit, business
interruption, or any other damages whatsoever. Some states do not allow the exclusion or
limitation of liability or consequential or incidental damages; the above limitation may not apply to
you.

† Other product and corporate names may be trademarks of other companies and are used only for
explanation and to the owners’ benefit, without intent to infringe.

Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Preboot Execution Environment (PXE) Specification i

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Table of Contents

1. INTRODUCTION..4

1.1 Structure of this Document..5
1.2 Related Documents ...5

1.2.1 Wired for Management ..5
1.2.2 BIOS Specifications..6
1.2.3 UUID Documents ...6
1.2.4 Other PC System Documents ...6

1.3 Data Types and Terms Used in This Guide..6
1.4 Required vs. Recommended Features ..9
1.5 Overview..10

1.5.1 PXE Protocol ..10
1.5.2 PXE APIs ..11

2. PXE CLIENT / SERVER PROTOCOL ..12

2.1 Relationship to the Standard DHCP Protocol ...12
2.2 Protocol Details ...12

2.2.1 PXE Boot...13
2.2.2 Protocol Timeouts...15
2.2.3 Proxy DHCP ...16

2.3 DHCP Tags used for PXE Protocol ..18
2.4 Client Behavior ...23

2.4.1 PXE Option Precedence ...23
2.4.2 DHCPDISCOVER..23
2.4.3 DHCPOFFER ..24
2.4.4 Boot Server Discovery ..25
2.4.5 Boot Server Reply ...26
2.4.6 Network Bootstrap Program (NBP) Download...28
2.4.7 NBP Authentication ...28
2.4.8 Boot Server Credentials Reply ...29
2.4.9 NBP Execution ...31
2.4.10 MTFTP Operation..31

2.5 Server Behavior ..35
2.5.1 Redirection Service Behavior...35
2.5.2 Boot Service Behavior ..35
2.5.3 Response to DHCPREQUEST...35

3. PXE APIS ...39

3.1 PXE Installation Check..40
3.1.1 Real mode (Int 1Ah Function 5650h) ...40
3.1.2 PXENV+ Structure ...40
3.1.3 Protected mode (Scanning base memory) ...41
3.1.4 !PXE Structure ...42

3.2 PXE API Calling Convention ..44
3.3 Early UNDI API Usage ..45
3.4 PXE API Service Descriptions...47

3.4.1 Preboot API Service Descriptions..47
3.4.2 TFTP API Service Descriptions...52

Preboot Execution Environment (PXE) Specification ii

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

3.4.3 UDP API Service Descriptions ..55
3.4.4 UNDI API Service Descriptions ..57

3.5 PXE Return Status Definitions..69

4. PXE INITIAL PROGRAM LOAD (IPL)..71

4.1 Overview..71
4.2 PXE Split ROM Architecture..74
4.3 PXE Option ROM Components ..75

4.3.1 Option ROM header ...75
4.3.2 Initialization Routine ...76
4.3.3 IPL Routine ..76
4.3.4 Loader Routine ...76
4.3.5 UNDI Driver ...76

4.4 PXE Boot Sequence ..76
4.4.1 Option ROM Scan and Initialization...77
4.4.2 UNDI Initial Program Load (IPL) ..83
4.4.3 BC Loader Routine...85
4.4.4 BC Runtime ..86
4.4.5 Client State at Bootstrap Execution Time (Remote.0) ..86
4.4.6 Client State at Bootstrap Execution Time (Remote.1) ..89

4.5 Requirements on individual PXE participants ..90
4.5.1 UNDI Option ROM ..90
4.5.2 BUSD Option ROM..93
4.5.3 Base-Code (BC) Option ROM..96
4.5.4 Network Bootstrap Program ..98

5. PXE BIOS SUPPORT ...99

5.1 BIOS Support..99
5.1.1 BIOS Requirements..99
5.1.2 BIOS Recommendations ..99

5.2 PXE Support ...100
5.2.1 UUID Support...100
5.2.2 Remote Wake Up Source..101
5.2.3 Bootstraps ...101
5.2.4 Memory Management ..101
5.2.5 Boot Integrity Services ...101

Preboot Execution Environment (PXE) Specification iii

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

List of Tables

Table 1-1 Data Type Definitions.. 9
Table 2-1 PXE DHCP Options (Full List) ... 19
Table 2-2 DHCPDISCOVER Packet to DHCP/Proxy DHCP Server .. 24
Table 2-3 DHCPOFFER Packet from DHCP/Proxy DHCP Server ... 25
Table 2-4 Boot Server Request Packet... 26
Table 2-5 Boot Server ACK Packet ... 27
Table 2-6 Boot Server Credentials Request Packet.. 29
Table 2-7 Boot Server Credentials ACK Packet .. 30
Table 2-8 DHCP/Proxy DHCPACK to Boot Service .. 37
Table 3-1 PXENV+ Structure .. 41
Table 3-2 !PXE Structure... 43
Table 4-1 Option ROM Header for PXE ROMs.. 76
Table 4-2 Memory Map after video initialization .. 78
Table 4-3 Memory Map after UNDI ROM Transferred to UMB from BIOS ROM.. 79
Table 4-4 Memory Map after UNDI ROM Initialized ... 80
Table 4-5 Memory Map after BUSD ROM Transferred to UMB from BIOS ROM... 81
Table 4-6 Memory Map after BUSD ROM Initialized .. 81
Table 4-7 Memory Map after BC ROM Transferred to UMB from BIOS ROM .. 82
Table 4-8 Memory Map after BC Option ROM Initialized.. 83
Table 4-9 Memory Map after PXE BC Runtime Loaded... 86
Table 4-10 Memory Map after REMOTE.0 Downloaded ... 88
Table 4-11 Memory Map after REMOTE.1 Downloaded ... 89
Table 4-12 Memory Map after REMOTE.1 Started .. 90
Table 4-13 UNDI ROM ID Structure .. 91
Table 4-14 BUSD ROM ID Structure.. 94
Table 4-15 BC ROM ID Structure ... 97
Table 5-1 Format of SYSID Entry Point Structure .. 100
Table 5-2 Format of the SYSID BIOS structures... 100
Table 5-3 Format of the UUID BIOS structure.. 100

List of Figures

Figure 1-1 PXE APIs ... 11
Figure 2-1 PXE Boot ... 13
Figure 2-2 PXE Client Timeouts.. 16
Figure 2-3 PXE Client Response to DHCP Server Containing a Proxy DHCP Service .. 17
Figure 2-4 PXE Client Response to DHCP Server Supplying Boot Service Discovery Code 18
Figure 2-5 MTFTP Listen .. 32
Figure 2-6 MTFTP Open ... 33
Figure 2-7 MTFTP Receive .. 34
Figure 3-1 PXE Stack–Before and After Remote Boot.. 39
Figure 3-2 PXE API Calling Sequence .. 45
Figure 3-3 Early UNDI API Usage .. 46
Figure 3-4 Unloading the base code... 48
Figure 3-5 Interrupt Service Routine Operation... 68
Figure 4-1 Pre-Split ROM PXE Architecture .. 74
Figure 4-2 Split Base Code and UNDI Code ... 75
Figure 4-3 PXE IPL ... 77
Figure 4-4 UNDI Option ROM Initialization... 79
Figure 4-5 Base-Code Option ROM Initialization ... 82
Figure 4-6 UNDI Option ROM Boot ... 85

Preboot Execution Environment (PXE) Specification 4

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

1. Introduction

A common problem faced by IT managers is to ensure that client systems in their enterprises can
boot appropriate software images using appropriate configuration parameters. These selected boot
images and configuration parameters must be acquired from selected servers in the enterprise as
dictated by the needs of the particular environment, the capabilities or mission of the user, the
resources available within the client, etc. Furthermore, these clients should boot consistently and in
an interoperable manner regardless of the sources or vendors of the software and the hardware of
both client and server machines.

This goal can be accomplished only through a uniform and consistent set of pre-boot protocol
services within the client that ensure that network-based booting is accomplished through industry
standard protocols used to communicate with the server. In addition, to ensure interoperability, the
downloaded Network Bootstrap Program (NBP) must be presented with a uniform and consistent
pre-boot operating environment within the booting client, so it can accomplish its task independent
of, for example, the type of network adapter implemented in the system. This capability is useful in
enhancing the manageability of the client machine in several situations; for example:

! Remote new system setup. If the client does not have an OS installed on its hard disk, or the
client has no hard disk at all, downloading an NBP from a server can help automate the OS
installation and other configuration steps.

! Remote emergency boot. If the client machine fails to boot due to a hardware or software
failure, downloading an executable image from a server can provide the client with a specific
executable that enables remote problem notification and diagnosis.

! Remote network boot. In instances where the client machine has no local storage, it can
download its system software image from the server in the course of normal operation.

This document specifies the Preboot Execution Environment (PXE). PXE embodies three
technologies that will establish a common and consistent set of pre-boot services within the boot
firmware of Intel Architecture systems:

! A uniform protocol for the client to request the allocation of a network address and
subsequently request the download of an NBP from a network boot server.

! A set of APIs available in the machine’s pre-boot firmware environment that constitutes a
consistent set of services that can be employed by the NBP or the BIOS.

! A standard method of initiating the pre-boot firmware to execute the PXE protocol on the
client machine.

In summary, using the capabilities described above, a newly installed networked client machine
should be able to enter a heterogeneous network, acquire for itself a network address from a DHCP
server, and then download an NBP to set itself up. This sets the stage to enable IT managers to
customize the manner in which their network client machines go through a network-based booting
process.

Preboot Execution Environment (PXE) Specification 5

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

1.1 Structure of this Document

This document is organized in a top down manner from the point of view of the PXE client “boot
behavior”. This section contains an overview. The next two sections specify the external behavior of
PXE in platform architecture independent terms, so both sections specify the functionality PXE
provides, and are of interest to all system providers regardless of platform or BIOS type. The last two
sections specify implementation details and required platform support for PXE in the Intel
Architecture PC platform.

Section 2 begins with a description of the network protocol used by the booting PXE client and the
Redirection and Boot servers that provide the client with boot information and files. This section
covers the network visible behavior of PXE and is defined in terms of network protocol.

Section 3 describes the PXE APIs available to the boot program(s) downloaded from the Boot
Server. This section specifies the standard interface provided by PXE to the downloaded boot
program. With the exception of finding the API entry point, this section is platform architecture
independent.

Section 4 specifies the procedure a standard Intel Architecture PC BIOS uses to find and load the
boot ROM code (the PXE Initial Program Load) and the PXE loader behavior in this environment.

Section 5 PXE BIOS Support, specifies the BIOS support required to support PXE in a standard
Intel® Architecture PC.

Three new capabilities, described for the first time in this document, have been added to the PXE
specification:

! Boot Server Discovery.
! Protected Remote Boot.
! The ability to split PXE Base Code and UNDI code into separate ROMs.

1.2 Related Documents

After referring to a related specification the first time, this document uses the [TAG] reference from
this section to refer to related specifications.

1.2.1 Wired for Management

Wired for Management (WfM) Baseline [WFM]
Version 2.0, December 23, 1998
http://developer.intel.com/ial/wfm/wfmspecs.htm

PXE PDK
http://www.intel.com/ial/wfm/tools/pxe/index.htm

PXE Powerpoint Presentation
http://www.intel.com/ial/wfm/class/index.htm

Preboot Execution Environment (PXE) Specification 6

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Boot Integrity Services API Specification [BIS]
Version 1.0

http://www.intel.com/ial/wfm/wfmspecs.htm

1.2.2 BIOS Specifications

System Management BIOS Reference Specification [SM BIOS]
Version 2.2, March 16, 1998
ftp://download.intel.com/ial/wfm/smbios.pdf
http://www.phoenix.com/techs/specs.html

BIOS Boot Specification [BBS]
Version 1.01, January 11, 1996
http://www.phoenix.com/techs/specs.html

POST Memory Manager Specification [PMM]
Version 1.01, January 8, 1998
http://www.phoenix.com/techs/specs.html

Plug and Play BIOS Specification [PnP BIOS]
Version 1.0A, May 5, 1994
http://www.phoenix.com/techs/specs.html

1.2.3 UUID Documents

CAE Specification [UUID]
DCE 1.1: Remote Procedure Call
Document Number: C706
Universal Unique Identifier Appendix
Copyright (c) 1997 The Open Group
http://www.opengroup.org/onlinepubs/9629399/toc.htm

1.2.4 Other PC System Documents

PC 9x System Design Guide, v1.0 [PC98]
http://developer.intel.com/design/pc98
Network PC Design Guidelines, v1.0b [NETPC]
http://developer.intel.com/design/netpc/netovr.htm
ftp://download.intel.com/ial/wfm/netpc.pdf

1.3 Data Types and Terms Used in This Guide

The following conventions and terms are used in this specification:

!PXE Acronym for the !PXE structure. This structure is used by protocol
drivers that need to locate and use PXE services.

BAID Acronym for a BIOS Aware IPL Device. The BIOS contains all code
required to IPL from the device.

Base Memory The first 640K bytes of memory in the system.

BCV Acronym for Boot Connection Vector. A field in the PnP header for a
device with an associated option ROM

http://developer.intel.com/solutions/tech/pc98.htm
http://developer.intel.com/design/netpc/netovr.htm
ftp://download.intel.com/ial/wfm/netpc.pdf

Preboot Execution Environment (PXE) Specification 7

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

BEV Acronym for Boot Entry Vector. A field in the Plug and Play (PnP)
Header of a device with an associated option ROM. PXE is
implemented as a BEV option ROM.

BIOS Acronym for Basic Input/Output System, also known as ROM BIOS
when resident in Read Only Memory or ROM.

BOOTP This is an earlier IETF-defined booting protocol that is much less
flexible than DHCP. However, DHCP has been defined to be
upwardly compatible with BOOTP and both these protocols can co-
exist and function simultaneously in the same network. RFC 1534
defines how DHCP and BOOTP must be implemented to ensure they
can co-exist in the same network and inter-operate

Bootstrap Also known as the Initial Program Load (IPL). The initial code
loaded by the BIOS to initiate a client operating environment.

BUSD Bus/Device. A BUSD option ROM may contain code to locate and
initialize devices on a bus that is not supported in the BIOS Core.
The BUSD API calls are used by the UNDI IPL routine and NBPs to
enable and disable bus components and devices.

Client In this document, the Client is usually the machine receiving the
NBP. The client machine hosts the PXE boot ROM.

DDIM Device Driver Initialization Model. Under this model, all Option
ROMs installed in a Plug and Play system which indicate that they
support DDIM will be copied into RAM by the System BIOS.
Documented in the [PnP] specification

DHCP Dynamic Host Configuration Protocol. An industry standard Internet
protocol defined by the IETF. DHCP was defined to dynamically
provide communications-related configuration values such as
network addresses to network client computers at boot time. DHCP is
specified by IETF RFCs 1534, 2131, and 2132

Extended Memory Typically used to describe memory on an Intel architecture system
above 1 MB.

GUID Globally unique identifier; a synonym for UUID.

IETF Internet Engineering Task Force. The open industry body that owns
the technical specifications for Internet standards (protocols, APIs,
etc.)

IPL Acronym for Initial Program Load, also known as the bootstrap or
boot process

MTFTP Multicast Trivial File Transfer Protocol. PXE implements a
proprietary implementation of MTFTP.

NBP Acronym for Network Bootstrap Program. The remote boot image
downloaded by the PXE client via TFTP or MTFTP.

Option ROM ROM associated with a plug and play device. May be located on the
device or in non-volatile storage on a system.

Preboot Execution Environment (PXE) Specification 8

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

POST Acronym for Power On Self-Test. POST processing in the BIOS is
responsible for initializing the system hardware and starting IPL.

PXE Acronym for Pre-boot Execution Environment

PXENV+ Acronym for the PXENV+ structure. This structure was used by
protocol drivers that need to locate and use PXE services. New
protocol drivers must be written to use !PXE.

RFC Request for Comment. This is a class of document used by the IETF
for proposing technologies for adoption by the IETF and setting these
technologies on a standards track. Each RFC is assigned a unique
integer document number. When a technology is adopted by the IETF
as a standard, the corresponding RFC becomes the document that
formally specifies the technology.

ROM Acronym for Read-Only Memory

Shadow A technique for mapping RAM into UMB space, potentially on top of
ROM already occupying this space. Shadow memory may be write
protected after initialization.

System The host computer

TFTP Trivial File Transfer Protocol. An industry standard Internet protocol
defined by the IETF to enable the transmission of files across the
Internet. Trivial File Transfer Protocol (TFTP, Revision 2) to support
NBP download is specified by IETF RFC 1350.

UDP User Datagram Protocol.

UNDI Universal Network Device Interface.

Upper Memory An area of system memory between the video buffers and the system
ROM BIOS. Typically between real mode segments C000 and F000.

UUID Universally Unique ID. This is a 128-bit identifier generated via a
specific algorithm that is extremely unlikely to be generated by the
algorithm in another place or at another time. Thus UUIDs can safely
be used to uniquely name entities in computer systems (e.g. software
images, APIs, machines, sessions, etc.). It is specified in [UUID].

Preboot Execution Environment (PXE) Specification 9

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Table 1-1 Data Type Definitions

Data Type Description

ADDR32 Physical 32-bit address.
Typedef UINT32 ADDR32;

IP4 Network address.
#define IP_ADDR_LEN 4
Typedef union u_IP4 {
UINT32 num;
UINT8 array[IP_ADDR_LEN];
} IP4;

MAC_ADDR Hardware address.
#define MAC_ADDR_LEN 16
Typedef UINT8 MAC_ADDR[MAC_ADDR_LEN];

OFF16 Unsigned 16-bit offset.
Typedef UINT16 OFF16;

PXENV_EXIT Unsigned 16-bit PXE exit code.
Typedef UINT16 PXENV_EXIT;

PXENV_STATUS Unsigned 16-bit PXE status code.
Typedef UINT16 PXENV_STATUS;

SEGDESC Protected mode segment descriptor.
Typedef struct s_SEGDESC {
UINT16 segment_address;
UINT32 Physical_address;
UINT16 Seg_Size;
} t_SEGDESC;

SEGOFF16 Segment/Selector and 16-bit offset.
Typedef struct s_SEGOFF16 {
OFF16 offset;
SEGSEL segment;
} SEGOFF16;

SEGSEL Unsigned 16-bit segment address or protected mode selector.
Typedef UINT16 SEGSEL;

UDP_PORT Communication port/socket number.
Typedef UINT16 UDP_PORT;

UINT8 Unsigned 8-bit integer.
Typedef unsigned char UINT8;

UINT16 Unsigned 16-bit integer.
Typedef unsigned short UINT16;

UINT32 Unsigned 32-bit integer.
Typedef unsigned long UINT32;

1.4 Required vs. Recommended Features

Required, Recommended, and Optional are used in these guidelines to define the disposition of PXE
features. The terms are described below:

Required These are the basic features that must be implemented.

Recommended These features provide improved capabilities to the end-user, improve

Preboot Execution Environment (PXE) Specification 10

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

manageability, or add functionality supported by the operating systems
or software layers below the operating system, such as the BIOS. They
are not required, but it is strongly suggested that they be implemented.
It is generally expected that “Recommended” features may become
“Required” in future revisions of this specification.

Optional These features are not required.

Must Required

Should Recommended

May Optional

1.5 Overview

1.5.1 PXE Protocol

PXE is defined on a foundation of industry-standard Internet protocols and services that are widely
deployed in the industry, namely TCP/IP, DHCP, and TFTP. These standardize the form of the
interactions between clients and servers. To ensure that the meaning of the client-server interaction is
standardized as well, certain vendor option fields in DHCP protocol are used, which are allowed by
the DHCP standard. The operations of standard DHCP and/or BOOTP servers (that serve up IP
addresses and/or NBPs) will not be disrupted by the use of the extended protocol. Clients and servers
that are aware of these extensions will recognize and use this information, and those that do not
recognize the extensions will ignore them.

In brief, the PXE protocol operates as follows. The client initiates the protocol by broadcasting a
DHCPDISCOVER containing an extension that identifies the request as coming from a client that
implements the PXE protocol. Assuming that a DHCP server or a Proxy DHCP server implementing
this extended protocol is available, after several intermediate steps, the server sends the client a list
of appropriate Boot Servers. The client then discovers a Boot Server of the type selected and receives
the name of an executable file on the chosen Boot Server. The client uses TFTP to download the
executable from the Boot Server. Finally, the client initiates execution of the downloaded image. At
this point, the client’s state must meet certain requirements that provide a predictable execution
environment for the image. Important aspects of this environment include the availability of certain
areas of the client’s main memory, and the availability of basic network I/O services.

1.5.1.1 Deployment of servers

On the server end of the client-server interaction there must be available services that are responsible
for providing redirection of the client to an appropriate Boot Server. These redirection services may
be deployed in two ways:

1. Combined standard DHCP and redirection services. The DHCP servers that are supplying IP
addresses to clients are modified to become, or are replaced by servers that serve up IP addresses
for all clients and redirect PXE-enabled clients to Boot Servers as requested.

2. Separate standard DHCP and redirection services. PXE redirection servers (Proxy DHCP
servers) are added to the existing network environment. They respond only to PXE-enabled
clients, and provide only redirection to Boot Servers.

Each PXE Boot Server must have one or more executables appropriate to the clients that it serves.

Preboot Execution Environment (PXE) Specification 11

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

1.5.1.2 Deployment of Clients

PXE does not specify the operational details and functionality of the NBP that the client receives
from the server. However, the intent is that running this executable will result in the system’s being
ready for use by its user. At a minimum, this means installing an operating system, drivers, and
software appropriate to the client’s hardware configuration. It might also include user-specific system
configuration and application installation.

PXE specifies the protocols by which a client requests and downloads an executable image from a
Boot Server and the minimum requirements on the client execution environment when the
downloaded image is executed.

1.5.2 PXE APIs

To enable the interoperability of clients and downloaded bootstrap programs, the client PXE code
provides a set of services for use by the BIOS or a downloaded NBP.

The API services provided by PXE for use by the BIOS or NBP are:

! Preboot Services API. Contains several global control and information functions.
! Trivial File Transport Protocol (TFTP) API. Enables opening and closing of TFTP

connections, and reading packets from and writing packets to a TFTP connection.
! User Datagram Protocol (UDP) API. Enables opening and closing UDP connections, and

reading packets from and writing packets to a UDP connection.
! Universal Network Driver Interface (UNDI) API. Enables basic control of and I/O through

the client’s network interface device. This allows the use of universal protocol drivers such
that the same universal driver can be used on any network interface that implements this API.

The following diagram illustrates the relationship between the NBP (the remote boot program) and
the PXE APIs.

PXE
Pre-Boot API

Network Bootstrap Programs

TFTP API UDP API

 UNDI API

BIOS Network Interface HW

Figure 1-1 PXE APIs

Preboot Execution Environment (PXE) Specification 12

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

2. PXE Client / Server Protocol

The description of PXE Client / Server Protocol assumes knowledge of the standard DHCP/BOOTP
protocols.

2.1 Relationship to the Standard DHCP Protocol

The initial phase of this protocol piggybacks on a subset of the DHCP protocol messages to enable
the client to discover a Boot Server, that is, a server that delivers executables for new system setup.
The client may use the opportunity to obtain an IP address, which is the expected behavior, but it is
not required. Clients that do obtain an IP address using DHCP or BOOTP must implement the
protocol as specified in RFC 2131, even though not all possible messages and states of that protocol
are described or mentioned in this protocol specification. The points at which this protocol
piggybacks or otherwise interacts with the standard DHCP protocol are also noted.

The second phase of this protocol takes place between the client and a Boot Server, and uses the
DHCP message format simply as a convenient format for communication. This second phase of the
protocol is otherwise unrelated to the standard DHCP services.

2.2 Protocol Details

The protocol is a combination of an extension of DHCP (through the use of several new DHCP
Option tags) and the definition of simple packet transactions that use the DHCP packet format and
options to pass additional information between the client and server. This added complexity is
introduced by the requirement to operate without disturbing existing DHCP services.

In this protocol, DHCP options fields are used to do the following:

! Distinguish between DHCPDISCOVER and DHCPREQUEST packets sent by a client as part
of this extended protocol from other packets that the DHCP server or Boot Server might
receive.

! Distinguish between DHCPOFFER and DHCPACK packets sent by a DHCP or Proxy DHCP
server as part of this extended protocol from other packets that the client may receive.

! Convey the client system’s ID to the DHCP and Boot Server (in other words, UUID).
! Convey the client system’s architecture type to the DHCP and Boot Server.
! Convey the Boot Server type from which the client is requesting a response.

Based on any or all of the client network adapter type, system architecture type, and client system ID,
the Boot Server returns to the client the file name (on the server) of an appropriate executable. The
client downloads the specified executable into memory and executes it. The function of this
executable is not specified by these guidelines.

Preboot Execution Environment (PXE) Specification 13

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

2.2.1 PXE Boot

This section gives a step-by-step synopsis of the PXE protocol. A detailed description of packet
formats and client and server actions appears later in this section. Note that this version of the PXE
specification introduces remote-boot authentication. PXE remote-boot authentication relies on the
presence of platform security capabilities as described in the [BIS] specification.

DHCP / Proxy
DHCP Server

PXE Client Boot Server

PXE
Client

DHCP/
Proxy
DHCP
Service

DHCP Discover to Port 67
Contains "PXEClient" extension tags

Extended DHCP Offer to port 68 contains:
 PXE server extension tags +
[Other DHCP option tags] +

Client IP addr

Boot
Service

M/TFTP
Service

Network Bootstrap Program Download to
Client's port

PXE
Client

PXE
Client

Execute
Downloaded
 Boot Image

DHCP/
Proxy
DHCP

Service

DHCP Request to Installation Server port 67
Contains "PXEClient" extension tags

+ [Other DHCP option tags]

DHCP Ack reply to Port 68

PXE
Client

PXE
Client

Step 1

Step 3

Step 2

Step 4

Step 5

Step 6

Step 9

Step 7

Boot Service Discover to port 67 or 4011
Contains: “PXEClient” extension tags

+ [Other DHCP option tags]

Boot Service Ack reply to client source port
Contains: [PXE Server extension tags]

(contains Network Bootstrap Program file name)

Network Bootstrap Program download
request to TFTP port 69 or MTFTP port

(from Boot Service Ack)

Figure 2-1 PXE Boot

Step 1. The client broadcasts a DHCPDISCOVER message to the standard DHCP port (67). An
option field in this packet contains the following:

! A tag for client identifier (UUID).
! A tag for the client UNDI version.
! A tag for the client system architecture.
! A DHCP option 60, Class ID, set to “PXEClient:Arch:xxxxx:UNDI:yyyzzz”.

Step 2. The DHCP or Proxy DHCP Service responds by sending a DHCPOFFER message to the
client on the standard DHCP reply port (68). If this is a Proxy DHCP Service, then the client IP
address field is null (0.0.0.0). If this is a DHCP Service, then the returned client IP address field is
valid.

At this point, other DHCP Services and BOOTP Services also respond with DHCP offers or BOOTP
reply messages to port (68). Each message contains standard DHCP parameters: an IP address for the

Preboot Execution Environment (PXE) Specification 14

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

client and any other parameters that the administrator might have configured on the DHCP or Proxy
DHCP Service.

The timeout for a reply from a DHCP server is standard. The timeout for re-broadcasting to receive a
DHCPOFFER with PXE extensions, or a Proxy DHCPOFFER is based on the standard DHCP
timeout but is substantially shorter to allow reasonable operation of the client in standard BOOTP or
DHCP environments that do not provide a DHCPOFFER with PXE extensions. (See below.)

Step 3. From the DHCPOFFER(s) that it receives, the client records the following:

! The Client IP address (and other parameters) offered by a standard DHCP or BOOTP Service.
! The Boot Server list from the Boot Server field in the PXE tags from the DHCPOFFER.
! The Discovery Control Options (if provided).
! The Multicast Discovery IP address (if provided).

Step 4. If the client selects an IP address offered by a DHCP Service, then it must complete the
standard DHCP protocol by sending a request for the address back to the Service and then waiting for
an acknowledgment from the Service. If the client selects an IP address from a BOOTP reply, it can
simply use the address.

Step 5. The client selects and discovers a Boot Server. This packet may be sent broadcast (port 67),
multicast (port 4011), or unicast (port 4011) depending on discovery control options included in the
previous DHCPOFFER containing the PXE service extension tags. This packet is the same as the
initial DHCPDISCOVER in Step 1, except that it is coded as a DHCPREQUEST and now contains
the following:

! The IP address assigned to the client from a DHCP Service.
! A tag for client identifier (UUID)
! A tag for the client UNDI version.
! A tag for the client system architecture.
! A DHCP option 60, Class ID, set to “PXEClient:Arch:xxxxx:UNDI:yyyzzz”.
! The Boot Server type in a PXE option field

Step 6. The Boot Server unicasts a DHCPACK packet back to the client on the client source port.
This reply packet contains:

! Boot file name.
! MTFTP1 configuration parameters.
! Any other options the NBP requires before it can be successfully executed.

Step 7. The client downloads the executable file using either standard TFTP (port69) or MTFTP
(port assigned in Boot Server Ack packet). The file downloaded and the placement of the
downloaded code in memory is dependent on the client’s CPU architecture.

Step 8. The PXE client determines whether an authenticity test on the downloaded file is required. If
the test is required, the client sends another DHCPREQUEST message to the boot server requesting a
credentials file for the previously downloaded boot file, downloads the credentials via TFTP or
MTFTP, and performs the authenticity test.

Step 9. Finally, if the authenticity test succeeded or was not required, then the PXE client initiates
execution of the downloaded code

1 Multicast Trivial File Transfer Protocol as defined by this document through the use of DHCP encapsulated
vendor options.

Preboot Execution Environment (PXE) Specification 15

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

2.2.2 Protocol Timeouts

The following flow chart specifies the required timeouts at various stages of the remote boot process.
The DHCP timeouts are specified in RFC 2131 and are noted for reference in the diagram. The
timeouts specific to the PXE boot process must be implemented as specified in Figure 2-2 PXE
Client Timeouts.

The purpose of the timeouts is to ensure the PXE client gives precedence to servers supplying
“PXEClient” specific configuration tags. The PXE boot ROM must function as a normal DHCP boot
ROM in the absence of a PXE specific response. However, the PXE boot ROM must wait for
specified times to see if a PXE response is available before using a non-PXE configuration.

Preboot Execution Environment (PXE) Specification 16

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Broadcast DHCP
Discover packet.

Wait for
DHCPOFFER

and/or
ProxyDHCP

Offer.

DHCP Discover will be retried four times. The four
timeouts are 4, 8, 16 and 32 seconds respectively.

If a DHCPOFFER is received without an Option #60 tag
"PXEClient", DHCP Discover will be retried on the 4-
and 8-second timeouts in an attempt to receive a
PXE response.

Bootserver / BINL
Request.

Wait for
Bootserver / BINL

Reply.

Bootserver Request will be
retried four times. The four
timeouts are 1, 2, 3, and 4
seconds respectively

Are
we doing
MTFTP?

MTFTP Listen

MTFTP Open

Did
we hear our

file?

Yes

No

MTFTP Read

More
packets
needed?

Yes

TFTP Open

TFTP Read

No

The MTFTP Listen timeout
is controlled by DHCP
options.
PXE PDK uses 1 second.

The MTFTP Open timeout
is controlled by DHCP
options.
PXE PDK uses 2 seconds.

Done

Did
MTFTP Open

fail?

No

Yes

MTFTP Open will retry six
times. Each retry uses the
same timeout. After this,
TFTP Open will be tried.

TFTP Open will retry six
times. Each retry uses the
same timeout (4 seconds).
After the first three retries,
TFTP will use the default
TFTP IP port (69).

Done

No

Yes

Figure 2-2 PXE Client Timeouts

2.2.3 Proxy DHCP

The PXE DHCP options may be supplied by the DHCP service or a Proxy DHCP service. This Proxy
DHCP service may reside on the same server as the DHCP service, or it may be located on a separate
server. A Proxy DHCP service on the same server as the DHCP service is illustrated in Figure 2-3. In
this case, the Proxy DHCP service is listening to UDP port (4011), and communication with the

Preboot Execution Environment (PXE) Specification 17

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Proxy DHCP service occurs after completing the standard DHCP protocol. Proxy DHCP uses port
(4011) because it cannot share port (67) with the DHCP service. The PXE client knows to interrogate
the Proxy DHCP service because the DHCPOFFER from the DHCP service contains an Option #60
“PXEClient” tag without corresponding Option #43 tags or a boot file name.

Proxy DHCP
Server

Proxy
DHCP
Service

PXE Client Boot Server

PXE
Client

Extended DHCP Offer to client port contains:
 PXE client extension tags

Boot Service Discovery
Contains "PXEClient" extension tags

+ [Other DHCP option tags]
Boot

Service
Boot Service Ack reply to Client's Port
Contains: PXE Client extension tags

+ NBP file name

M/TFTP
Service

NBP Download
Request to TFTP port 69

NBP Download to
Client's port

PXE
Client

PXE
Client

Execute
Downloaded
 Boot Image

DHCP
ServiceDHCP Request to Installation Server port 67

Contains [Other DHCP option tags]

DHCP Ack reply to Port 68

PXE
Client

PXE
Client

DHCP
Service

DHCP Discover to Port 67
Contains "PXEClient" extension tags

DHCP Offer to port 68 contains:
 [Other DHCP option tags] +

Client IP addr +
PXE Opt 60 "PXEClient"

DHCP Request to Port 4011
Contains "PXEClient" extension tags

PXE
Client

Figure 2-3 PXE Client Response to DHCP Server Containing a Proxy DHCP Service

Figure 2-4 illustrates the case of a Proxy DHCP service and the DHCP service on different servers. In
this case, the Proxy DHCP service listens to UDP port (67) and responds in parallel with the DHCP
service.

Preboot Execution Environment (PXE) Specification 18

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

DHCP Server

Proxy DHCP
Server

Proxy
DHCP
Service

PXE Client

PXE
Client

M/TFTP
Service

PXE
Client

DHCP
Service

PXE
Client

PXE
Client

DHCP
Service

Proxy
DHCP
Service

Boot Server

Boot
Service

M/TFTP
Service

PXE
Client

PXE
Client

PXE
Client

DHCP Discover to port 67
Contains “PXEClient” extension

DHCP Offer to port 68
Contains [other DHCP option tags] +

Client IP addr

DHCP Request to port 67

DHCP Ack to port 68

DHCP Discover to port 67
Contains “PXEClient” extension

DHCP Offer to port 68
Client IP addr set to 0.0.0.0

DHCP Request to port 4011
Contains “PXEClient” extension

DHCP Ack reply to port client’s port
Contains “PXEClient” extension tags +

BStrap.0 file

BStrap.0 download request to TFTP
port 69 or MTFTP port assigned in

DHCP Ack w/ BStrap.0 file.

BStrap.0 download to client’s port

Boot Service Discover to port 67 or 4011
Contains: “PXEClient” extension tags +

[Other DHCP option tags]

Boot Service Ack reply to port 68 or client’s port
Contains: “PXEClient” extension tags +

NBP file name

NBP Download request to TFTP port 69 or
MTFTP port assigned in Boot Service Ack

NBP Download to client’s port

Figure 2-4 PXE Client Response to DHCP Server Supplying Boot Service Discovery Code

2.3 DHCP Tags used for PXE Protocol

Table 2-1 lists all the PXE DHCP tags used by the Client, the Boot Server or the DHCP or Proxy
DHCP service. Subsequent sections break out the tag use for each participant.

Preboot Execution Environment (PXE) Specification 19

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Table 2-1 PXE DHCP Options (Full List)

Tag Name Tag # Length Type Data Field

Client machine
identifier (UUID).

97 & 61 17 Type (1) = 0 UUID(16) Required
Note #1

Client network
interface identifier.

94 3 Type (1) = 1 UNDI – Major ver(1), Minor
ver(1)

Client system
architecture.

93 2 0 = IA x86 PC(2)
1 = NEC/PC98(2)
2 = IA64 PC.(2)
3 = DEC Alpha (2)
4 = ArcX86 (2)
5 = Intel Lean Client (2)

Parameter Request
List

55 Varies This parameter request list is the minimum that must
be implemented by PXE Base-Code option ROMs.
subnet(1), router(3), vendor(43), class(60)
vendor options (128 through 135).

Required

Class Identifier 60 32 “PXEClient:Arch:xxxxx:UNDI:yyyzzz” – used for
transactions between client and server.
“PXEServer” – used for transactions between servers.
(These strings are case sensitive. This field must not
be null terminated.)
The information from tags 93 and 94 is embedded in
the Class Identifier string
xxxxx = Client Sys Architecture 0 – 65535
yyy = UNDI Major version 0 – 255
zzz = UNDI Minor version 0 – 255
Delimiter is “:” (colon)

Required

Vendor Options 43 Varies Encapsulated options below.
Multiple DHCP_VENDOR options can be used.

Message Type 53 1 1=DHCPDISCOVER, 2=DHCPOFFER,
3=DHCPREQUEST, 4=DHCPDECLINE, 5=DHCPACK,
6=DHCPNAK, 7=DHCPRELEASE, 8=DHCPINFORM

Required

Server ID 54 4 a1, a2, a3, a4

Message Length 57 2 Max DHCP message length(2) Required

End of Options 255 None None Required

PXE Options 1-63 varies Reserved for PXE use
PXE_MTFTP_IP 1 4 Multicast IP Address(4)

Multicast IP address of boot file.

Recom-
mended
Note #2

PXE_MTFTP_
CPORT

2 2 UDP Port Number Intel order(2)
UDP port that client should monitor for MTFTP
responses.

PXE_MTFTP_
SPORT

3 2 UDP Port Number Intel order(2)
UDP port that MTFTP servers are using to listen for
MTFTP open requests.

PXE_MTFTP_
TMOUT

4 1 Open Timeout(1)
Number of seconds a client must listen for activity
before trying to start a new MTFTP transfer.

Preboot Execution Environment (PXE) Specification 20

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Tag Name Tag # Length Type Data Field

PXE_MTFTP_
DELAY

5 1 Reopen Timeout(1)
Number of seconds a client must listen before trying to
restart a MTFTP transfer.

PXE_DISCOVERY_
CONTROL

6 1 (Bit field. Bit 0 is the least significant bit.)(1)
bit 0 = If set, disable broadcast discovery.
bit 1 = If set, disable multicast discovery.
bit 2 = If set, only use/accept servers in

PXE_BOOT_SERVERS.
bit 3 = If set, and a boot file name is present in the

initial DHCP or ProxyDHCP offer packet,
download the boot file (do not
prompt/menu/discover).

bit 4-7 = Must be 0.
If this tag is not supplied all bits assumed to be 0

Required
Note #3

DISCOVERY_
MCAST_ADDR

7 4 Multicast IP-addr(4)
Boot Server discovery multicast IP address. Boot
Servers capable of multicast discovery must listen on
this multicast address.
This option is required if the multicast discovery
disable bit (bit 1) in the PXE_DISCOVERY_CONTROL
option is not set.

Recom-
mended

PXE_BOOT
_SERVERS

8 varies Boot Server type(2)
Type 0 = PXE bootstrap server

Type 1 = Microsoft Windows†
NT† Boot Server

Type 2 = Intel LCM Boot
Server
Type 3 = DOS/UNDI Boot
Server

Type 4 = NEC ESMPRO†
Boot Server
Type 5 = IBM WSoD Boot
Server

Type 6 = IBM LCCM† Boot
Server

Type 7 = CA Unicenter† TNG
Boot Server

Type 8 = HP OpenView† Boot
Server
Type 9 through 32767 =
reserved
Type 32768 through 65534 =
vendor use
Type 65535 =
PXE API Test server

IPcnt(1), IP-addr-
list(IPcnt*4),
type(2)….
If IPcnt is zero for a
server type, the client
may accept offers
from any boot server
of that type.

Boot Servers must not
respond to discovery
requests of types they
do not support.

Required
for PXE
client.

Note #3

PXE_BOOT_MENU 9 varies Boot Server type(2)
Type 0 = Local boot (remove
base-code and UNDI from
RAM, if possible)

desclen(1),
“description”, Boot
Server type(2)….
Boot “order” is implicit
in the menu order.
“desclen” is length of
“description”
“desclen” cannot be 0.

Required
Note #4

Preboot Execution Environment (PXE) Specification 21

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Tag Name Tag # Length Type Data Field

PXE_MENU_
PROMPT

10 varies timeout(1), “prompt”
The timeout is the number of seconds to wait before
auto-selecting the first boot menu item. The prompt is
displayed followed by the number of seconds
remaining before the first item in the boot menu is
auto-selected. If <F8> is pressed, the menu must be
displayed. If this option is not provided, the menu must
be displayed without prompt and timeout. If the timeout
is 0, the first item in the menu must be auto-selected. If
the timeout is 255, the menu and prompt must be
displayed without auto-selecting or timeout.

PXE_MCAST_
ADDRS_ALLOC

11 8 McastIPbase(4), MIPblock(2), MIPrange(2)
McastIPBase is the starting address for multicast
addresses.
MIPblock = total size of multicast block.
MIPrange = max number of multicast addresses
available to any one Boot Server.
MIPrange may equal MIPblock.
The Boot service must randomly pick an address
within the range defined by McastIPBase through
McastIPBase+MIPblock-MIPrange as the base number
for their MIPrange number of IP addresses.
The Boot service manages base addresses for each
boot tree internally.

Recom-
mended
for boot
servers,
not used
by clients.

PXE_CREDENTIAL_
TYPES

12 varies Credentials type(4), …
The credential types retrieved from the security sub-
system are to be stored in this option field in network
order. This option is required for security requests and
acknowledgments between the client and the server.
There is no default or assumed value for this option.

Required
for
security.
Note #5

Loader Options 64-127 varies (Boot Server specific)
PXE_BOOT_ITEM 71 4 Boot Server type(2), layer(2)

Layer 0 = First file of selected Boot Server type.
MSbit of layer field indicates credentials for the of
selected file (for example, layer 8000h is credentials
for layer 0000h.)
If this tag is missing, type 0 and layer 0 is assumed.

Required
Note #6

Vendor Options 128-254 varies (Vendor NBP specific)
PXE_END 255 None Required

Note #1

The Client UUID field specifies a universally unique ID (UUID), retrieved from the client system.
The client must have a UUID and must report it in tag #97 and #61.

See UUID programming notes in Section 5.2.1 UUID Support.

The Client Network Interface Identifier specifies the version of the UNDI API (described below) that
will support a universal network driver. The UNDI interface must be supported and its version
reported in tag #94.

The UNDI type field must have a major version of 2 and a minor version of 1 for this version of the
protocol. (Future versions may recognize more tags based on this version number.)

The Client System Architecture identifier specifies the system architecture of the client. This
identifier is required and must be reported in tag #93.

Preboot Execution Environment (PXE) Specification 22

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Note #2

MTFTP is recommended. These options define the client/server port numbers and open/re-open
timeouts that must be used in MTFTP open/read requests.

MTFTP IP Addr is the multicast IP address the client must use to receive the image file.

MTFTP Client UDP is the port the client must listen on to receive the image file.

MTFTP Server UDP is the port the client must use to communicate with the MTFTP service. The
client binds to the MTFTP UDP port and waits for the duration of the MTFTP transmission start
delay to receive packets.

MTFTP Start Delay is the timeout to begin receiving image file packets before attempting to become
the MTFTP acknowledging client (master client) upon initial connection to the MTFTP service.

MTFTP Timeout Delay is the delay multiplied by the percentage of the file received, the client must
wait before attempting to become the MTFTP acknowledging client (master client) upon cessation of
packet transmissions during an ongoing MTFTP transfer.

Note #3

These options control the type of boot server discovery mechanisms used by clients. Clients must use
discovery methods in this order:

1. Multicast. If the client supports multicast discovery and multicast discovery is enabled
(PXE_DISCOVERY_CONTROL, option #43 tag #6 does exist OR it does exist and bit1 is not
set.) and a multicast discovery IP address is available. (DISCOVERY_MCAST_ADDR exists.)

2. Broadcast. If broadcast discovery is enabled, (PXE_DISCOVERY_CONTROL, option #43 tag
#6 doesn’t exist OR it does exist and bit 0 is not set).

3. Unicast. If a Boot Server list is available, (PXE_BOOT_SERVERS, Option #43 tag #8).

If PXE_DISCOVERY_CONTROL bit 2 is set, the client may still use multicast and broadcast
discovery (if it is permitted by bits 0 and 1); but the client may only accept replies from servers that
are identified in the PXE_BOOT_SERVERS option.

Note #4

These options define the information, if any, displayed by the client during a network boot.

Note #5

The client must fill in this option when requesting credentials (MSbit in layer number is set). Boot
servers must not respond if they do not support the requested credential type. Clients requesting
credentials must ignore any server response that does not have the credential option. Clients must
include all the supported credential types when doing a layer zero discovery. Clients must use the
same credential type, selected in the layer zero discovery, for all subsequent layers. If the client lists
more than one credential type in the discover request, the boot server must respond with the one
credential type that will be used.

Note #6

This option is required to discover Boot Servers. Only the client may change the type field; either the
client or the server may change the layer field. Layer 0 always indicates the first boot file for a
particular Boot Server type. Boot Servers capable of providing the boot file requested in the
PXE_BOOT_ITEM must respond. Boot Servers not capable of providing the boot file requested
must not respond.

Preboot Execution Environment (PXE) Specification 23

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

2.4 Client Behavior

Client behavior for initiation, discovery reply, Boot Service request, Boot Service reply, and NBP
download and execution are summarized in this section.

Sending a PXE Client message requires the use of DHCP Option fields. All PXE Client packets
provide the same extended DHCP information in these options. This includes DHCPREQUEST
messages used to communicate with the server to which the PXE Client has been redirected. Other
fields and options may be different between the packets, based on the standard DHCP protocol.

2.4.1 PXE Option Precedence

Depending on the configuration of the system it is possible for the client to receive the same PXE
DHCP option type from multiple sources. For example, the client could receive a PXE DHCP Offer
from both a DHCP server and a Proxy server. The precedence from high to low that the client must
apply is:

DHCP – takes precedence over all other sources of an option.

Proxy – takes precedence over Boot Servers.

Within a level the client may choose any one of the replies it receives, but must select all options
from the same reply (e.g. When receiving three proxy replies, the client is free to use any of them,
buy it may not select options from more than one of them.).

Boot Servers are the lowest precedence. As such, options in the DHCP and Proxy may be used to
override any options a boot server may send. Further, a boot server is unable to override any options
set by the DHCP and Proxy.

2.4.2 DHCPDISCOVER

To initiate the interchange between the client and server, the client broadcasts a DHCPDISCOVER
packet to the standard DHCP server UDP port (67). The contents of this message must be as
described in RFC 2131 for a DHCPDISCOVER message, with the addition of PXE Client option
fields. The format of these options is specified in Table 2-2; fields marked with an asterisk contain
unspecified values.

Preboot Execution Environment (PXE) Specification 24

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Table 2-2 DHCPDISCOVER Packet to DHCP/Proxy DHCP Server

DHCP Header

Field (length) Value Comment
op (1) 1 Code for BOOTP REQUEST

htype (1) *

hlen (1) *

hops (1) *

xid (4) *

secs (2) *

flags (2) *

ciaddr (4) 0.0.0.0 PXE client always sets this value to 0.0.0.0

yiaddr (4) * Client’s IP address. Provided by server

siaddr (4) * Next bootstrap server IP address

giaddr (4) *

chaddr (16) xx-xx-xx-xx-xx-xx-xx-xx Client’s MAC address

sname (64) * Can be overloaded if using Opt 66

bootfile (128) * Can be overloaded if using Opt 67

99.130.83.99 (Magic Cookie)

DHCP Options

Tag Name Tag # Length Data Field
Client UUID/GUID 97 & 61 17 Type(1)

0 = UUID
UUID(16)

Client Network Type 94 3 1 = UNDI

Client System
Architecture

93 2 Architecture Type(2)

Parameter Request
List

9 Varies This parameter request list is the minimum that must be
implemented by PXE BC option ROMs.
subnet(1), router(3), vendor(43), class(60)

DHCP Message Type 53 1 1 = DHCPDISCOVER

Message Length 57 2 Max DHCP message length(2)

Class Identifier 60 32 “PXEClient:Arch:xxxxx:UNDI:yyyzzz”

After sending the DHCPDISCOVER message, the client must be prepared to receive replies as
described in the following section.

2.4.3 DHCPOFFER

In this state, the client is prepared to receive one or more extended DHCPOFFER replies from
servers on the standard DHCP client UDP port (68). Sending a PXE Server message requires the use
of DHCP Options. The format of these options is shown in Table 2-3; fields marked with an asterisk
contain unspecified values.

Preboot Execution Environment (PXE) Specification 25

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Table 2-3 DHCPOFFER Packet from DHCP/Proxy DHCP Server

DHCP Header

Field (length) Value Comment
op (1) 2 Code for BOOTP REPLY

htype (1) *

hlen (1) *

hops (1) *

xid (4) *

secs (2) *

flags (2) *

ciaddr (4) 0.0.0.0 Server always sets this value to 0.0.0.0

yiaddr (4) a0, a1, a2, a3 Client’s IP address. Provided by server

siaddr (4) a0, a1, a2, a3 Next bootstrap server IP address

giaddr (4) *

chaddr (16) * Client’s MAC address

sname (64) * Can be overloaded if using Opt 66

bootfile (128) * Can be overloaded if using Opt 67

99.130.83.99

DHCP Options

Tag Name Tag # Length Data Field

DHCP Message Type 53 1 2= DCHPOFFER

Server Identifier 54 4 a1, a2, a3, a4

Client Machine
Identifier

97 17 Type(1)
0 = UUID

UUID(16)

Class Identifier 60 9 “PXEClient”

Vendor Options 43 Varies Encapsulated options below.

PXE_DISCOVERY_C
ONTROL

6 1

DISCOVERY_
MCAST_ADDR

7 4 Multicast IP-addr(4)

PXE_BOOT_
SERVERS

8 varies Boot Server type(2), IPcnt(1), IP-addr-list(IPcnt*4),
Boot Server type(2)…

PXE_BOOT_
MENU

9 varies Boot Server type(2), desclen(1), “description”, Boot
Server type(2)….

PXE_MENU_
PROMPT

10 varies timeout(1), “prompt”

PXE_END 255 None None

In this state, the client must also be prepared to receive one or more standard DHCPOFFER
messages from servers. Each of these messages will contain configuration information as specified in
RFC 2131. Each extended DHCPOFFER message can also contain configuration information as
specified in RFC 2132. Which, of these configurations, if any, is used by the client is not defined by
this specification. If the client decides to accept one of the configurations offered, then it must
engage in further communications with the server as specified in RFC 2132.

2.4.4 Boot Server Discovery

To enter the Boot Server Discovery state, the client must have an IP address. Also, the client must
have received one or more extended DHCPOFFER messages, and therefore, know the type of one or

Preboot Execution Environment (PXE) Specification 26

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

more Boot Servers. The client discovers one of these Boot Servers by sending a DHCPREQUEST
message to the boot server using either unicast, multicast, or broadcast per the discovery instructions
in Option #43, Tag #6 (PXE_DISCOVERY_CONTROL). Table 2-4 lists the required values in the fields
of this message; fields marked with an asterisk contain unspecified values.

Table 2-4 Boot Server Request Packet

DHCP Header

Field (length) Value Comment
op (1) 1 Code for BOOTP REQUEST

htype (1) *

hlen (1) *

hops (1) *

xid (4) *

secs (2) *

flags (2) *

ciaddr (4) a0, a1, a2, a3 PXE client sets this value to the clients IP address if
the client has an IP address

yiaddr (4) 0.0.0.0 Must be 0.

siaddr (4) 0.0.0.0 Must be 0.

giaddr (4) 0.0.0.0

chaddr (16) *xx-xx-xx-xx-xx-xx-xx-
xx

Client’s MAC address

sname (64) * Can be overloaded if using Opt 66

bootfile (128) * Can be overloaded if using Opt 67

99.130.83.99

DHCP Options

Tag Name Tag # Length Type Data Field
Client UUID/GUID 97 & 61 17 Type (1)

0 = UUID
UUID(16)

Client Network
Device Interface
Type

94 3 Type (1) = 1 UNDI – Major Ver(1), Minor Ver(1)

Message Type 53 1 3 = DHCPREQUEST
8 = DHCPINFORM

Client System
Architecture

93 2

Class Identifier 60 32 “PXEClient Arch:xxxxx:UNDI:yyyzzz”

Vendor Options 43 varies Encapsulated options below

PXE_BOOT_ITEM 71 4 Boot Server type(2), layer(2)

PXE_END 255 None

2.4.5 Boot Server Reply

In the Boot Server Reply state, the client must be prepared to receive an extended DHCPACK
message from the Boot Service. Table 2-5 lists the values the boot server may send to the client:

Preboot Execution Environment (PXE) Specification 27

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Table 2-5 Boot Server ACK Packet

DHCP Header

Field (length) Value Comment

op (1) 2 Code for BOOTP REPLY

htype (1) *

hlen (1) *

hops (1) *

xid (4) *

secs (2) *

flags (2) *

ciaddr (4) 0.0.0.0 Server always sets this value to 0.0.0.0

yiaddr (4) a0, a1, a2, a3 Client’s IP address. Provided by server

siaddr (4) a0, a1, a2, a3 Next bootstrap server IP address

giaddr (4) *

chaddr (16) * Client’s MAC address

sname (64) * Can be overloaded if using Opt 66

bootfile (128) * Can be overloaded if using Opt 67

99.130.83.99

DHCP Options

Tag Name Tag # Length Type Data Field
DHCP Message Type 53 1 5 = DHCPACK

Server Identifier 54 4 a1, a2, a3, a4

Client UUID/GUID 97 & 61 17 Type (1)
0 = UUID

UUID(16)

Class Identifier 60 9 “PXEClient”

Vendor Options 43 varies Encapsulated options below

MTFP IP Addr 1 4 a0, a1, a2, a3

MTFTP Client UDP 2 2 Port Number (Intel order)

MTFTP Server UDP 3 2 Port Number (Intel order)

MTFTP Start Delay 4 1

MTFTP Timeout Delay 5 1

PXE_BOOT_ITEM 71 4 Boot Server type(2), layer(2)

PXE_END 255 None

The options fields in this message must, at a minimum, include the following:

! The siaddr field should be null. (The Boot Server should include the MTFTP service. If not, it
is the responsibility of the boot server to insure the availability of the MTFTP server to which
the client has been redirected. In general it is strongly recommended that the MTFTP service
reside on the bootserver to insure that a response to a client will inherently include the
guarantee of boot file availability.)

! The boot file name (PXE_BOOT_ITEM) must be included.
! DHCP message type (DHCPACK).
! The Server Identifier (address of the responding Boot Server) must be included.
! Class Identifier (“PXEClient”).
! Boot Server Type and Layer the server is providing to the client.

The MTFTP options must be included if the client is to perform a multicast file transfer. After
receiving this message, the client moves to the executable download state.

Preboot Execution Environment (PXE) Specification 28

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

2.4.6 Network Bootstrap Program (NBP) Download

In the NBP download state, the client is to download all or some portion of the NBP using the
standard TFTP. The portion of the file downloaded and the placement of the downloaded code in
memory is dependent on the client’s CPU architecture.

For systems based on Intel Architecture, the entire NBP is downloaded into the client PC starting at
location 07C00h. The TFTP/MTFTP session that was used to download the NBP is terminated and
the logical network connection to the TFTP server is closed.

2.4.7 NBP Authentication

After downloading the NBP, the client must perform the NBP authentication procedure. PXE remote-
boot authentication relies on the presence of platform security capabilities as described in the [BIS]
specification. The PXE client must perform the following procedure to determine whether
authentication of the NBP (Network Bootstrap Program, i.e. the remote boot file) is required, and to
perform the authenticity test.

1. Determine whether an implementation of the Boot Integrity Services (BIS) API is present by
searching for an SMBIOS structure of the appropriate type as described in [BIS]. If the structure
is not present, then the authentication test is not required and the remaining steps in this
procedure are not required.

2. Use the appropriate BIS function to determine the current setting of the BIS Boot Object
Authorization Check Flag. If the flag is set to FALSE, then the authentication test is not required
and the remaining steps in this procedure are not required. If the flag is set to TRUE, then the
client must perform steps 3 and 4.

3. Obtain credentials for the NBP from the boot server.

4. Call the BIS function VerifyBootObject, supplying the downloaded NBP and credentials as input.
If the output from VerifyBootObject indicates that an error occurred or that verification failed,
then the NBP authentication fails and the PXE client must not initiate execution of the NBP. If
the output from VerifyBootObject indicates that the verification succeeded, then NBP
authentication succeeds.

To obtain credentials for the NBP from the boot server during this procedure, the client sends a
unicast DHCPREQUEST message to the boot server from which the NBP was downloaded. (Note:
The client must not send this request as a multicast or broadcast.) The following table lists the
required values in the fields of this message; fields marked with an asterisk contain unspecified
values. After sending this message, the client moves to the Boot Server Credentials Reply state.

Preboot Execution Environment (PXE) Specification 29

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Table 2-6 Boot Server Credentials Request Packet

DHCP Header

Field (length) Value Comment
op (1) 1 Code for BOOTP REQUEST

htype (1) *

hlen (1) *

hops (1) *

xid (4) *

secs (2) *

flags (2) *

ciaddr (4) a0.a1.a2.a3 PXE client sets this value to the client’s IP
address if the client has an IP address

yiaddr (4) a0, a1, a2, a3 Client’s IP address. Provided by DHCP
server

siaddr (4) a0, a1, a2, a3 Server’s IP address

giaddr (4) 0.0.0.0

chaddr (16) *xx-xx-xx-xx-xx-xx-xx-
xx

Client’s MAC address

sname (64) * Can be overloaded if using Opt 66

bootfile (128) bootfile name NBP name sent by boot server

99.130.83.99

DHCP Options

Tag Name Tag # Length Type Data Field
Client UUID/GUID 97 17 Type (1)

0 = UUID
UUID(16)

Client Network
Device Interface
Type

94 3 1 = UNDI Type 1 = Major Ver(1),
Minor Ver(1)

DHCP Message
Type

53 1 3 = DHCPREQUEST

Client System
Architecture

93 2

Class Identifier 60 9 “PXEClient:Arch:xxxxx:UNDI:yyyzzz”

DHCP_VENDOR 43 Varies Encapsulated options below

PXE_PAD 0 None None

PXE_BOOT_ITEM 71 4 Boot Server type(2), layer(2)
PXE_CREDENTIAL
_TYPES

12 Varies Credential types (4)

PXE_END 255 None

Note: In the PXE_BOOT_ITEM option in this message, the MSB of the layer data field is 1. This
distinguishes a request for credentials from a request for the boot file itself.

Note: The bootfile field of this message must contain the boot file name exactly as the client received
it from the boot server.

2.4.8 Boot Server Credentials Reply

The client enters the Boot Server Credentials Reply state only if it determines that a boot file
authenticity test is needed and sends a credentials request to the boot server. In the Boot Server

Preboot Execution Environment (PXE) Specification 30

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Credentials Reply state, the client must be prepared to receive an extended DHCPACK message from
the Boot Service. The following table lists the required values in the fields of this message:

Table 2-7 Boot Server Credentials ACK Packet

DHCP Header

Field (length) Value Comment

op (1) 2 Code for BOOTP REPLY

htype (1) *

hlen (1) *

hops (1) *

xid (4) *

secs (2) *

flags (2) *

ciaddr (4) 0.0.0.0 Server always sets this value to
0.0.0.0

yiaddr (4) a0, a1, a2, a3 Client’s IP address. Provided by server

siaddr (4) a0, a1, a2, a3 Next bootstrap server IP address

giaddr (4) *

chaddr (16) * Client’s MAC address

sname (64) * Can be overloaded if using Opt 66

bootfile (128) * Can be overloaded if using Opt 67

99.130.83.99

DHCP Options

Tag Name Tag # Length Type Data Field
DHCP Message Type 53 1 5 = DHCPACK

Server Identifier 54 4 a1, a2, a3, a4

Client UUID/GUID 97 & 61 17 Type (1)
0 = UUID

UUID(16)

Class Identifier 60 9 “PXEClient”

DHCP_VENDOR 43 Varies Encapsulated options below

PXE_PAD 0 None None

MTFP IP Addr 1 4 a0, a1, a2, a3

MTFTP Client UDP 2 2 Port Number (Intel order)

MTFTP Server UDP 3 2 Port Number (Intel order)

MTFTP Start Delay 4 1

MTFTP Timeout Delay 5 1

PXE_BOOT_ITEM 71 4 Boot Server type(2), layer(2)

PXE_CREDENTIAL_TY
PES

12 4 Credential types (4)

PXE_END 255 None

The options fields in this message must include the following:

! The siaddr field must be null. (The Boot Server must include the MTFTP service.)
! Server Identifier (address of the responding Boot Server).
! The name of the credentials file in the bootfile field.

After receiving this message, the client downloads the credentials file and performs the authenticity
test on the boot file as described previously. If the client is unable to obtain a credentials file, the
authenticity test is deemed to have failed.

Preboot Execution Environment (PXE) Specification 31

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

2.4.9 NBP Execution

If the authenticity test succeeds or is not required, then control is passed to the NBP. The way this is
done is dependent on the client’s CPU type.

2.4.9.1 NBP Execution for x86 PC/AT

For systems based on x86 PC/AT Intel Architecture, the NBP image is downloaded to 0:7C00h. The
PXE ROM code executes a far call to location 0:7C00h.

2.4.10 MTFTP Operation

Implementation of MTFTP in the client is strongly recommended. If the server sends MTFTP
parameters, and the client supports MTFTP, then the client must proceed as described in this section.
In this case the client goes through four phases: listen, open, receive, and close, with an error
recovery phase that can be entered at any point. Because there is no standard IETF implementation of
MTFTP; this is a PXE proprietary implementation.

To enable multicast file transfers, the boot server provides the client with the following information.
This information is provided in the boot server reply packet.:

! Client boot file name (Read from DHCP option 67 (bootfile name), if present. Otherwise, read
from DHCP bootfile field.)

! Boot server IP address (Read from the DHCP option 54 (server identifier), if not found, use the
siaddr field.)

! MTFTP Server UDP port number (Read from PXE option 3 (PXE_MTFTP_CPORT).)
! MTFTP Client UDP port number (Read from PXE option 2 (PXE_MTFTP_SPORT).)
! MTFTP multicast IP address (Read from PXE option 1 (PXE_MTFTP_IP).)
! MTFTP transmission listen delay (Read from PXE option 5 (PXE_MTFTP_DELAY).)
! MTFTP transmission time-out delay (Read from PXE option 4 (PXE_MTFTP_TMOUT).)

2.4.10.1 MTFTP listen

MTFTP sessions always begin with the client listening for a matching MTFTP session already in
progress. If a matching MTFTP session is in progress, the client must collect all valid packets
without acknowledging them. If the client collects all of the packets in the session, it is done and
does not need to go on to the MTFTP open step.

Preboot Execution Environment (PXE) Specification 32

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Begin MTFTP
Listen

Get MTFTP
session data from
boot server reply.

MTFTP data needed
" Client bootfile name (First look for DHCP option 67 (bootfile name),

if it is not found use the BOOTFILE field.)
" Boot server IP address (First look for DHCP option 54 (server

identifier), if it is not found use the SIADDR field.)
" MTFTP client UDP port (PXE option 2)
" MTFTP server UDP port (PXE option 3)
" MTFTP multicast IP address (PXE option 1)
" MTFTP transmission listen delay (PXE option 5)
" MTFTP transmission timeout delay (PXE option 4)

Compute listen
delay value.

Start listen timer.

Has
listen timer
expired?

Was a packet
received?

Did packet
belong to our

session?

No

Yes

No

No

Yes

Yes

The following items must match
" IP destination address must match MTFTP

multicast IP address.
" MTFTP destination port must match MTFTP

client UDP port.
" IP source address must match boot server IP

address.

Call
MTFTP
Open

Read all packets
that belong to our

session. The longest delay between packets belonging to
this MTFTP session is the MTFTP transmission
timeout delay. After each session packet is
received start a timer based on this timeout delay.
If no more packets are received before the timer
expires, go on to the next step.

The MTFTP listen delay value is calculated by subtracting the number of
missed packets from MTFTP transmission listen delay. Do not count
packets at the beginning of your session as missed packets. If you
started your session with packet 13 and got all packets after that, you did
not miss any packets. If you missed packets 15 and 16, you missed two
packets. If the resulting delay is <= zero, use zero.

Are any
packets
missing?

Yes

No, MTFTP is completed.

End MTFTP
Listen

Is listen to be
continued?

Cont

Goto
Cont

Inside
MTFTP
Open

Yes

No

Return
from

MTFTP
Open

The format of a MTFTP data packet is the same
as the TFTP data packet defined in RFC 1350.
 ---------+---------+---------
 | 2 bytes | 2 bytes | n bytes |
 | Opcode | Block # | Data |
 ---------+---------+---------
OpCode is 0x0003.

Figure 2-5 MTFTP Listen

2.4.10.2 MTFTP open

The MTFTP open state is transferred to if the client does not collect any packets during the listen
phase AND the client receives a UNICAST MTFTP data packet from the MTFTP server. If the client
receives a MULTICAST MTFTP data packet, the client transitions back to the MTFTP listen state.

Preboot Execution Environment (PXE) Specification 33

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Send MTFTP
open request

packet to MTFTP
server UDP port.

The format of a MTFTP open request packet is the same as the TFTP RRQ packet
defined in RFC 1350.
 ---------+----------+--------+---------+--------
 | 2 bytes | n bytes | 1 byte | n bytes | 1 byte |
 | OpCode | Filename | 0x00 | Mode | 0x00 |
 ---------+----------+--------+---------+--------
OpCode is 0x0001. Filename is the client bootfile name. Mode is "Octet".

Start a MTFTP
transmission
timeout delay

timer.

Was a unicast
data packet
received?

Was a
multicast data

packet
received?

Has the timer
expired?

Goto
MTFTP
Receive

Return to
MTFTP
Listen

No

No

Yes

No

Yes

Yes Retry MTFTP?

Retry MTFTP open two more
times. If you do not get any
replies, switch to TFTP.

Return
from

MTFTP
Receive

MTFTP
Open

Have all
packets been

received?

The format of a MTFTP data packet is the same
as the TFTP data packet defined in RFC 1350.
 ---------+---------+---------
 | 2 bytes | 2 bytes | n bytes |
 | Opcode | Block # | Data |
 ---------+---------+---------
OpCode is 0x0003.

Inside
MTFTP
Receive

Yes

No

Return to
MTFTP
Listen

Do not continue
MTFTP Listen.

No

Yes

Yes

Have all
packets been

received?

No

Continue
MTFTP
Listen.

Do not continue
MTFTP Listen.

Do not continue
MTFTP Listen.

Figure 2-6 MTFTP Open

2.4.10.3 MTFTP receive

When the client enters the MTFTP receive state, the client must ACKnowledge all of the MTFTP data
packets, including all packets that the client received during the MTFTP listen state. If an error occurs
and the client must terminate the connection, the client must try to send an MTFTP error packet to the
server (an MTFTP error packet uses the same format and error codes as the TFTP error packets defined
in RFC 1350).

Preboot Execution Environment (PXE) Specification 34

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Start MTFTP
transmission
timeout delay

timer.

Send MTFTP ack
packet to MTFTP

server session
port.

Has the timer
expired?

Was this the
last packet?

Was a packet
received?

NoNo

No

Yes

Send MTFTP ack
packet to MTFTP

server session
port.

Yes

Yes
Resend ack

packet?

Yes

No

Return to
MTFTP
Open

MTFTP
Receive

The format of a MTFTP ack packet is the same as
the TFTP ack packet defined in RFC 1350.
 ---------+---------
 | 2 bytes | 2 bytes |
 | Opcode | Block # |
 ---------+---------
OpCode is 0x0004.

Retry ack three times.

All packets have not
been received.

All packets have
been received.

Return to
MTFTP
Open

The format of a MTFTP data packet is the same
as the TFTP data packet defined in RFC 1350.
 ---------+---------+---------
 | 2 bytes | 2 bytes | n bytes |
 | Opcode | Block # | Data |
 ---------+---------+---------
OpCode is 0x0003.

Figure 2-7 MTFTP Receive

Preboot Execution Environment (PXE) Specification 35

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

2.4.10.4 MTFTP close

The MTFTP session ends when a listening client has received all of the packets it needs OR a receiving client
ACKnowledges the last packet in the session. When either of these two cases occurs, the client drops out of the
session, and no further action is required by the client.

2.5 Server Behavior

The server behavior needed for the extended protocol comprises two pieces of functionality: a
Redirection service, and a Boot Service.

! The Redirection Service receives extended DHCPDISCOVER messages (generated by the
client Initiation step) on the standard DHCP server port (67) and responds with DHCPOFFER
messages containing a list of the Boot Server types and Boot Server discovery configuration
tags.

! The Boot Service receives extended DHCPREQUEST and DHCPINFORM messages
(generated by the client Boot Service Discovery step) and responds with DHCPACK messages
containing the file name of an executable appropriate to the client.

A standard DHCP service may be extended to include the functionality of either the redirection
service and/or the Boot Service. In this case, this extended DHCP service must implement all
behaviors specified for the service included.

2.5.1 Redirection Service Behavior

This section summarizes the behavior of the redirection service to the DHCPDISCOVER message
and other DHCP messages.

2.5.1.1 Response to DHCPDISCOVER

The redirection service must always be prepared to receive extended DHCPDISCOVER on UDP port
(67) or an extended DHCPREQUEST on UDP port(4011). The format of these messages are
described earlier in the DHCPDISCOVER section. The redirection service must only respond to
messages that include DHCP Option #60 with the value of “PXEClient”.

If the redirection service responds to a message, it must respond by sending to the initiating client a
DHCPOFFER message containing options as described earlier in the DHCPOFFER section.

If a Proxy DHCP server responds, the client IP address field of the message must be null (0.0.0.0).

If the redirection service is also a standard DHCP configuration service, then the DHCPOFFER
message sent to the client must be as specified in RFC 2131.

2.5.2 Boot Service Behavior

This section summarizes the behavior of the Boot Service to the DHCPREQUEST message and
TFTP service messages.

2.5.3 Response to DHCPREQUEST

The Boot Service must always be prepared to receive either a DHCPREQUEST or DHCPINFORM
message with contents as described in the Boot Server Discovery section or as described in the NBP
Authentication section. The Boot Service must distinguish between these cases on the basis of the
MSB of the layer data field in the PXE_BOOT_ITEM option in the received message.

Preboot Execution Environment (PXE) Specification 36

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

If the MSB of the layer data field is 0, then the Boot Service must respond by sending to the
initiating client a DHCPACKNOWLEDGE message as described in the Boot Server Reply section.
The file name in this message must be the complete path name of an executable appropriate to the
client. The client must download the file from the Boot Server using MTFTP.

If the MSB of the layer data field is 1, then the Boot Service must respond by sending to the
initiating client a DHCPACKNOWLEDGE message as described in the Boot Server Reply section.
The file name in this message must be the complete path name of a file containing credentials for the
boot file previously downloaded by the client. The format of the credentials file must be as described
in [BIS]. The server must select the credentials file on the basis of

! The boot file name sent by the client in the bootfile field of the received message; and
! The appropriate credentials type. The Boot Service must determine the appropriate credentials

type by examining the received message for a PXE_CREDENTIALS_TYPES option. If a
PXE_CREDENTIALS_TYPES option is found, then Boot Service must examine the list of
types in the data field of the option. In this case, the appropriate credentials type is the first
type in the list that is among the types supported by the Boot Service. If no
PXE_CREDENTIALS_TYPES option is found, then the appropriate credentials type is 1024-
bit DSA / SHA-1, as described in [BIS].

The Boot Service must support at least the following credentials types as described in [BIS]:

! 1024-bit DSA / SHA-1; and
! 512-bit RSA / MD5.

The client must download the file credentials from the Boot Server using MTFTP

The Boot Service must be prepared to receive unicast, multicast, or broadcast messages. Multicast
should be supported if a Multicast Boot Server Discovery address is provided.

The Boot Server may attempt to configure itself with a Multicast Boot Server Discovery address by
executing a DHCPREQUEST or DHCPINFORM with an Option tag #60 set to “PXEServer”. The
boot server should expect to receive an Option tag #60 “PXEServer” followed by tag #43 and subtag
#7 (DISCOVERY_MCAST_ADDR) and subtag #11 (PXE_MCAST_ADDRS_ALLOC).

Preboot Execution Environment (PXE) Specification 37

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Table 2-8 DHCP/Proxy DHCPACK to Boot Service

DHCP Header

Field (length) Value Comment
op (1) 2 Code for BOOTP REPLY

htype (1) *

hlen (1) *

hops (1) *

xid (4) *

secs (2) *

flags (2) *

ciaddr (4) 0.0.0.0 Server always sets this value to 0.0.0.0

yiaddr (4) a0, a1, a2, a3 Client’s IP address. Provided by DHCP server

siaddr (4) a0, a1, a2, a3 Server IP address

giaddr (4) 0.0.0.0

chaddr (16) *xx-xx-xx-xx-xx-xx-xx-
xx

Client’s MAC address

sname (64) * Can be overloaded if using Opt 66

bootfile (128) * Can be overloaded if using Opt 67

99.130.83.99

DHCP Options

Tag Name Tag # Length Type Data Field
DHCP Message Type 53 1 5 = DHCPACK

Client System
Architecture

93 2

Class Identifier 60 9 “PXEServer”

DHCP_VENDOR 43 varies Encapsulated options below

PXE_PAD 0 None None

DISCOVERY_
MCAST_ADDR

7 4 Multicast IP-addr
Boot Server discovery multicast IP address.
Boot Servers capable of multicast discovery must
listen on this multicast address.

PXE_MCAST_
ADDRS_ALLOC

11 8 McastIPbase(4), MIPblock(2), MIPrange(2)
McastIPBase is the starting address for multicast
addresses.
MIPblock = total size of multicast block.
MIPrange = max number of multicast addresses
available to any one Boot Server.
MIPrange MAY equal MIPblock.
Boot service must randomly pick an address within the
range defined by McastIPBase through
McastIPBase+MIPblock-MIPrange as the base
number for their MIPrange number of IP addresses.
The Boot service manages base addresses for each
boot tree internally.

PXE_END 255 None

Preboot Execution Environment (PXE) Specification 38

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

2.5.3.1 TFTP Service

The Boot Server must provide the TFTP service and should provide the MTFTP service, as described
in the previous section. Redirection by the Boot Service to a TFTP service on a remote server should
not be done as it is not reasonably possible for the redirecting server to know for certain that the
TFTP server being redirected to is truly available.

Preboot Execution Environment (PXE) Specification 39

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

3. PXE APIs

To enable the interoperability of clients and downloaded bootstrap programs, the client PXE code
must provide a set of services for use by a downloaded bootstrap. (It also must ensure certain aspects
of the client state at the point in time when the bootstrap begins executing, which is discussed in
Section 4 PXE Initial Program Load (IPL).) The API services that must be provided by PXE for use
by the bootstrap program are as follows:

! Preboot API. Contains several global control and information functions.
! Trivial File Transport Protocol (TFTP) API. Enables opening and closing of TFTP

connections, and reading packets from and writing packets to a TFTP connection.
! User Datagram Protocol (UDP) API. Enables opening and closing UDP connections, and

reading packets from and writing packets to a UDP connection.
! Universal Network Driver Interface (UNDI) API. Enables basic control of and I/O through

the client’s network interface device.
In a PXE Split ROM implementation, the Preboot, TFTP, and UDP APIs are provided in the BC
(Base-Code) ROM. The UNDI API is provided in the UNDI ROM. (The BUSD ROM provides the
BUSD API. These APIs are covered in Section 4.4.1.2 CardBus ROM Scan & Init, and section
4.4.2.2 Enable BUSD.

Universal
Protocol Drivers
(NDIS 2.0, 4.0, etc.)

��
��
��
��

UNDI API

���������
���������
���������

Universal Network Driver

���������
���������
���������

Universal Network Driver

���
���
���
���

UNDI API

Base Code
Protocol Driver

IP, ARP

UDP, IGMP

TFTP/MTFTP
DHCP

BINL

TFTP/UDP/Pre-Boot APIs

ISR

Handler

PXE ROM Runtime

TCP, UDP, ICMP, IGMP, etc.

Socket Layer

DHCP, FTP, TFTP, MTFTP, etc.

User/System Applications

ISR

Handler

IP, ARP, etc.

Figure 3-1 PXE Stack–Before and After Remote Boot

Preboot Execution Environment (PXE) Specification 40

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

The PXE APIs are available to the bootstrap only if the Option #60 "PXEClient" is present in the
DHCPOFFER message

Note: The descriptions in subsequent sections are specific to Intel-architecture PCs. A processor
architecture-independent description of these interface and state specifications is probably possible,
but has not been attempted.

3.1 PXE Installation Check

PXE installation check procedures are architecture-dependent. The methods described in this section
are for PC/AT x86 clients.

In general, a PXE installation can be discovered using either of two methods. The first method
(which can only be used in real mode) is to use the installation check interrupt, Int 1Ah. The second
is to scan base memory for the !PXE or PXENV+ structure.

The primary users of these installation check methods are protocol drivers designed to use the PXE
APIs. NBPs do not need to use these installation check procedures because the address of the !PXE
structure is passed to them on the stack.

Note: For backward compatibility with existing applications, the address of the PXENV+ structure
must also be passed in the ES:BX register pair. Since support for the PXENV+ structure is not
planned for future versions, new applications (for example, universal protocol drivers) should be
written to !PXE.

3.1.1 Real mode (Int 1Ah Function 5650h)
Enter:

AX := 5650h (VP)
Exit:

AX := 564Eh (VN)
ES := 16-bit segment address of the PXENV+ structure.
BX := 16-bit offset of the PXENV+.
EDX := may be trashed by the UNDI INT 1Ah handler.
All other register contents are preserved.
CF is cleared.
IF is preserved.
All other flags are undefined.

3.1.2 PXENV+ Structure

This structure is supported for backward compatibility with NBPs. New NBPs must be written to use
the !PXE structure. The !PXE structure can be found using the far pointer at the end of the PXENV+
structure.

The PXENV+ structure must be paragraph-aligned and reside in the UNDI code segment.

Preboot Execution Environment (PXE) Specification 41

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Table 3-1 PXENV+ Structure

Offset Type
(bytes)

Name Contents

0x00 UINT8 Signature “PXENV+”

0x06 UNIT16 Version API version number. MSB=major LSB=minor. NBPs and OS
drivers must check for this version number. If the API version
number is 0x0201 or higher, use the !PXE structure. If the API
version number is less than 0x0201, then use the PXENV+
structure.

0x08 UNIT8 Length Length of this structure in bytes. This length must be used when
computing the checksum of this structure.

0x09 UNIT8 Checksum Used to make 8-bit checksum of this structure equal zero.

0x0A SEGOFF16 RMEntry Far pointer to real-mode PXE/UNDI API entry point. May be
CS:0000h.

0x0E UNIT32 PMOffset 32-bit offset to protected-mode PXE/UNDI API entry point. Do not
use this entry point. For protected-mode API services, use the
!PXE structure.

0x12 SEGSEL PMSelector Protected-mode selector of protected-mode PXE/UNDI API entry
point. Do not use this entry point. For protected-mode API
services, use the !PXE structure.

0x014 SEGSEL StackSeg Stack segment address. Must be set to 0 when removed from
memory.

0x016 UNIT16 StackSize Stack segment size in bytes.

0x018 SEGSEL BC_CodeSeg BC code segment address. Must be set to 0 when removed from
memory.

0x1A UNIT16 BC_CodeSize BC code segment size. Must be set to 0 when removed from
memory.

0x1C SEGSEL BC_DataSeg BC data segment address. Must be set to 0 when removed from
memory.

0x1E UNIT16 BC_DataSize BC data segment size. Must be set to 0 when removed from
memory.

0x20 SEGSEL UNDIDataSeg UNDI data segment address. Must be set to 0 when removed
from memory.

0x22 UNIT16 UNDIDataSize UNDI data segment size. Must be set to 0 when removed from
memory.

0x24 SEGSEL UNDICodeSeg UNDI code segment address. Must be set to 0 when removed
from memory.

0x26 UNIT16 UNDICodeSize UNDI code segment size. Must be set to 0 when removed from
memory.

0x28 SEGOFF16 PXEPtr Real mode segment offset pointer to !PXE structure. This field is
only present if the API version number is 2.1 or greater.

3.1.3 Protected mode (Scanning base memory)

The !PXE structure must be placed on a paragraph boundary in the UNDI code segment. Scan base
memory between the top of free base memory (FBM) and 0A0000h (640 Kbytes). If the top of FBM
cannot be determined, start scanning paragraph boundaries from the top of base memory, 0A0000h
(640K), down to 10000h (64K). Base-code runtime and UNDI drivers will almost always end up
between 80000h (512K) and 0A0000h (640K).

Preboot Execution Environment (PXE) Specification 42

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

3.1.4 !PXE Structure

The !PXE structure defines the location and size of the PXE and UNDI runtime segments. This
structure must not be considered valid, and its contents must not be used, if the signature and
checksum are not correct.

Preboot Execution Environment (PXE) Specification 43

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Table 3-2 !PXE Structure

Offset Type (bytes) Name Description

0x00 UINT8(0x04) Signature ‘!PXE’

0x04 UINT8 StructLength Length of this structure in bytes. This length must be
used when computing the checksum of this structure.

0x05 UINT8 StructCksum Used to make structure byte checksum equal zero.

0x06 UINT8 StructRev Revision of this structure is zero. (0x00)

0x07 UINT8 reserved Must be zero.

0x08 SEGOFF16 UNDIROMID Real mode segment:offset of UNDI ROM ID structure.
Check this structure if you need to know the UNDI API
revision level. Filled in by UNDI loader module.

0x0C SEGOFF16 BaseROMID Real mode segment:offset of BC ROM ID structure. Must
be set to zero if BC is removed from memory. Check this
structure if you need to know the BC API revision level.
Filled in by base-code loader module.

0x10 SEGOFF16 EntryPointSP PXE API entry point for 16-bit stack segment. This API
entry point is in the UNDI code segment and must not be
CS:0000h. Filled in by UNDI loader module.

0x14 SEGOFF16 EntryPointESP PXE API entry point for 32-bit stack segment. May be
zero. This API entry point is in the UNDI code segment
and must not be CS:0000h. Filled in by UNDI loader
module.

0x18 SEGOFF16 StatusCallout Far pointer to DHCP/TFTP status call-out procedure. If
this field is –1, DHCP/TFTP will not make status calls. If
this field is zero, DHCP/TFTP will use the internal status
call-out procedure. StatusCallout defaults to zero.
Note: The internal status call-out procedure uses BIOS
I/O interrupts and will only work in real mode. This field
must be updated before making any base-code API calls
in protected mode.

0x1C UINT8 reserved Must be zero.

0x1D UINT8 SegDescCnt Number of segment descriptors needed in protected
mode and defined in this table. UNDI requires four
descriptors. UNDI plus BC requires seven.

0x1E SEGSEL FirstSelector First protected mode selector assigned to PXE.
Protected mode selectors assigned to PXE must be
consecutive. Not used in real mode. Filled in by
application before switching to protected mode.

0x20
0x28
0x30
0x38
0x40
0x48
0x50

SEGDESC(0x08)
SEGDESC(0x08)
SEGDESC(0x08)
SEGDESC(0x08)
SEGDESC(0x08)
SEGDESC(0x08)
SEGDESC(0x08)

Stack
UNDIData
UNDICode
UNDICodeWrite
BC_Data
BC_Code
BC_CodeWrite

The first two bytes of these segment descriptors contain
the real mode segment or the protected mode selector.
The next four bytes contain the physical address of the
segment, and the last two bytes contain the size of the
segment.
Some implementations may need more selectors. The
first seven are required to be implemented in this order.
Note: These descriptors always contain the physical
addresses of the segments and the protected mode
driver must not overwrite them with the virtual
addresses. Filled in by UNDI and base-code loader
modules before any API calls are made.

Preboot Execution Environment (PXE) Specification 44

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

3.2 PXE API Calling Convention

The !PXE APIs use the Microsoft 16-bit C/C++ __cdecl parameter format. This allows the PXE APIs
to be used from most commercial 16-bit C/C++ compilers without using assembly language, or
special compiler extensions.

The first two examples below show how a !PXE API is called from C and assembly. The third
example shows how a PXENV+ API was called from assembly.

Both API styles are supported in this version of the specification for backwards compatibility.
PXENV+ support will be dropped in a future version of this specification.

Network bootstrap programs (NBPs), UNDI OS drivers and application programs must use the !PXE
APIs if they are available.

Example-1: !PXE API call from Microsoft 16-bit C/C++ v1.52c, using __cdecl parameter convention
(16-bit stack segment):

(far __cdecl * PXE->EntryPointSP)(PXENV_TFTP_OPEN, &tftp_open_param);

Example-2: !PXE API call from Microsoft 16-bit Assembler v6.12, using __cdecl parameter
convention (16- or 32-bit stack segments):

Note: When using a 32-bit stack segment do not push 32-bit words onto the stack. The PXE API
services will not work, unless there are three 16-bit parameters pushed onto the stack.
push DS ;Far pointer to parameter structure
push offset tftp_open_param ;is pushed onto stack.
push PXENV_TFTP_OPEN ;UINT16 is pushed onto stack.
call dword ptr (s_PXE ptr es:[di]).EntryPointSP
add sp, 6 ;Caller cleans up stack.

Example-3: PXENV+ call from Microsoft 16-bit Assembler v6.12:
mov word ptr PXENV_API, 0
mov word ptr PXENV_API + 2, UNDI-CS
...
mov bx, PXENV_TFTP_OPEN
les di, tftp_open_param
call dword ptr PXENV_API

Figure 3-2 shows an example Base-Code (BC) API call being made from an NBP into the UNDI API
dispatch routine and then being passed into the BC API dispatch routine.

Preboot Execution Environment (PXE) Specification 45

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

UNDI Driver

Set segment
registers for UNDI

Is
this an UNDI

API# ?

Far return to caller

Is
Base-Code info in

!PXE correct?

Perform UNDI API

Save registers on
caller's stack

Restore registers
from stack

Set AX register
and Status field

Yes

No

UNDI API
entry point

Far call to
Base-Code API

entry point

No

Setup stack for
Base-Code API

call

Yes

Base-Code Runtime

Perform
Base-Code API

Set AX register
and Status field

Is this
a Base-Code

API #?

Base-Code API
entry point

Set segment
registers for Base-

Code

Far return to caller

Yes

No

Calling Program
Could be:
" NBP (e.g. REMOTE.0)

" BC Loader
" BC Runtime

(only makes UNDI calls)

" Protocol driver
(e.g. Universal NDIS)

" BIOS Core
(e.g. early UNDI usage)

Far call to PXE
API entry point

Check result in AX
and Status field

Setup stack for
PXE API call

The calling
must provide the
Interrupt Service
Routine

Figure 3-2 PXE API Calling Sequence

Example-4: API call being transferred from the UNDI driver to the BC runtime using Microsoft 16-
bit C/C++ v1.52c, using __cdecl parameter convention:

PXEptr = MK_FP(sreg.cs, PXEoffset);
(far __cdecl * PXE->EntryPointSP)(PXENV_TFTP_OPEN, (void far
*)&tftp_open_param, PXEptr);

Example-5: API call being transferred from the UNDI driver to the BC runtime using Microsoft 16-
bit Assembler v6.12, using __cdecl parameter convention:

push CS ;UNDI code segment
push offset cs:PXE ;!PXE offset
push DS ;UNDI data segment
push offset ds:tftp_open_param ;Param offset
push PXENV_TFTP_OPEN ;UINT16 is pushed onto stack.
call dword ptr (s_PXE ptr es:[di]) ;EntryPointSP
add sp, 10 ;Caller cleans up stack.

3.3 Early UNDI API Usage

The BIOS Core may make use of the UNDI option ROM to gain network access for the BIOS. In
general, the BIOS is responsible for establishing a suitable environment for the UNDI API. The
‘Early UNDI API Usage’ flowchart below outlines the sequence the BIOS uses to load and use UNDI
outside of the normal IPL sequence defined in Section 4.

Preboot Execution Environment (PXE) Specification 46

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Prepare for
Early UNDI

Early UNDI
ROM Scan

Release
Early
UNDI

Device
Resources

Release
Base

Memory

Shutdown
UNDI

Prepare UNDI for
Transmit/Receive

Provide ISR

Verify
!PXE Structure

Call UNDI
Loader Routine

Allocate
Base Memory

Verify UNDI
ROM ID Structure

Continue
POST

Finish POST

BIOS must locate and allocate resources (IRQ,
memory, I/O) to an UNDI supported device. Once
initialized, the UNDI option ROM initialization image
must be copied to UMB.

UNDI option ROMs must have a static ROM ID
structure and UNDI Loader routine within the option
ROM initialization image.

Push the seg16:off16 pointer to the UNDI Loader
parameter structure. Call the UNDI Loader routine.
Clean up stack. Verify the result in AX and the Status
field in the parameter structure.

A pointer to the !PXE structure is returned in the
parameter structure. Verify the pointer and the !PXE
structure contents before use.

Call PXENV_START_UNDI,
PXENV_UNDI_STARTUP and
PXENV_UNDI_INITIALIZE, in that order. Call
PXENV_UNDI_GET_INFORMATION. Use the
returned information to enable an ISR routine.

Call PXENV_UNDI_OPEN and any other packet and
address filtering APIs needed in your
implementation.

Compute the amount of base memory needed to
install the UNDI runtime code and data segments.
Also, if the BIOS does not have enough free space in
the stack segment, now is the time to allocate a
larger stack segment.

Completely shutdown Early
UNDI device so it can be
initialized as a normal device for
IPL.

Fill used base memory with zero.

Call PXENV_UNDI_CLOSE,
PXENV_UNDI_SHUTDOWN

Do transmit/receive as needed.

Unhook
ISR

Cleanup
UNDI

Call PXENV_UNDI_CLEANUP,
PXENV_STOP_UNDI

Figure 3-3 Early UNDI API Usage

Preboot Execution Environment (PXE) Specification 47

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

3.4 PXE API Service Descriptions

3.4.1 Preboot API Service Descriptions

All the fields in the Preboot API Service parameter structures are to be stored in little endian (Intel)
format unless otherwise specified.

UNLOAD BASE CODE STACK
Op-Code: PXENV_UNLOAD_STACK (0070h)

Input: Far pointer to a t_PXENV_UNLOAD_STACK parameter structure that has been initialized by the
caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the
PXENV_STATUS_xxx constants.

Description: This API prepares the base code for unloading by unhooking the IRQ and filling the base code
and CPU stack segment entries in the PXENV+ and !PXE structures with zero. The original
interrupt vector will be restored. This API does not change the amount of free base memory.

Note:

If PXENV_STATUS_UNDI_KEEP_ALL is returned, the !PXE and PXENV+ structures are NOT
changed. The base code cannot be removed because the NIC interrupt vector has been changed.
The base code interrupt service routine has been disabled and will no longer call the
PXENV_UNDI_ISR API.

If PXENV_STATUS_SUCCESS or PXENV_STATUS_FAILURE are returned, the !PXE and
PXENV+ structures are changed. The CPU stack and base code segments can be re-used. Do
not adjust the size of free base memory if PXENV_STATUS_FAILURE is returned.

Increasing the size of free base memory:

The size of free base memory is stored in a 16-bit word at 0x40:0x13. This word contains the size
of free base memory in Kbytes. To increase the size of free base memory, increase the value
stored in this memory location. This can only be done before an OS has been started.

To remove only the base code and keep the UNDI, compare the UNDI code and data segment
addresses. Keep the smaller of the two segment addresses. Shift this address right six bits. This
is the new size of free base memory.

To remove both the base code and UNDI, compare the UNDI code and data segment addresses.
Keep the larger of the two segment addresses. Add to this the length of the kept segment in
paragraphs (shift right four bits). Shift the sum right six bits, this is the new size of free base
memory.

Inserting the unused memory back into the memory chain:

This can only be done after an OS has already started. There is no memory chain in base memory
before an OS is started. How this is done is OS-dependent and is outside the scope of this
document.

typedef struct s_PXENV_UNLOAD_STACK {

PXENV_STATUS Status;

UINT8 reserved[10];

} t_PXENV_UNLOAD_STACK;

Set before calling API service
N/A

Returned from API Service

Status:

Possible status codes:

PXENV_STATUS_SUCCESS: base-code is ready to be
removed.

PXENV_STATUS_FAILURE: the size of free base memory has
been changed.

PXENV_STATUS_UNDI_KEEP_ALL: the NIC interrupt vector
has been changed.

The following flowchart shows how to unload to the base code.

Preboot Execution Environment (PXE) Specification 48

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Start

Save contents of
base-code and

CPU stack
segment

descriptors.

Unload
base-code.

Restore free base
memory size.

Success?

Failure?

Keep all?

Insert unused
memory into

memory chain.

Memory cannot
be released.

Stop

No

No

Yes

Yes

Yes

Unexpected
error.

Memory cannot
be released.

No

This information is needed to restore the size of free
base memory (or insert the unused memory back
into the memory chain).

Call PXENV_UNLOAD_STACK.

Check the exit and status codes. It is possible that
the memory cannot be freed or re-used.

Figure 3-4 Unloading the base code

GET CACHED INFO
Op-Code: PXENV_GET_CACHED_INFO (0071h)

Input: Far pointer to a t_PXENV_GET_CACHED_INFO parameter structure that has been initialized by
the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the
PXENV_STATUS_xxx constants. The buffer specified in the parameter structure must be filled
with the requested information.

Preboot Execution Environment (PXE) Specification 49

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Description: This service returns one of three buffers:

1. The client’s DHCPDISCOVER packet

2. The DHCP server’s DHCPACK packet

3. The Boot Server’s Discover Reply packet, which contains Option #60 set to “PXEClient”, a
valid boot file name, and may contain MTFTP options

In the downloaded NBP, the information that is returned by this service is used to configure client
INI and CFG files. These files are then used to complete a valid network connection back to the
configuration server.

When an NBP does a Discover Request and gets a Discover Reply, it must replace the cached
Discover Reply packet

Note: This service cannot be used with a 32-bit stack segment.

typedef struct s_PXENV_GET_CACHED_INFO

{

PXENV_STATUS Status;

UINT16 PacketType;

#define PXENV_PACKET_TYPE_DHCP_DISCOVER 1

#define PXENV_PACKET_TYPE_DHCP_ACK 2

#define PXENV_PACKET_TYPE_CACHED_REPLY 3

UINT16 BufferSize;

SEGOFF16 Buffer;

UINT16 BufferLimit

} t_PXENV_GET_CACHED_INFO;

Set before calling API service
PacketType: Type of cached packet being requested.

BufferSize: Maximum number of bytes of data that can be
copied into Buffer.

Buffer: Segment:Offset address of storage to be filled in by
API service

Returned from API Service
Status: See the PXENV_STATUS_xxx constants.

BufferSize: Number of bytes of data that have been copied
into Buffer. If BufferSize and Buffer were both set to zero,
this field will contain the amount of data stored in Buffer in
the BC data segment.

Buffer: If BufferSize and Buffer were both set to zero, this
field will contain the segment:offset address of the Buffer in
the BC data segment.

BufferLimit: Maximum size of the Buffer in the BC data
segment.

Preboot Execution Environment (PXE) Specification 50

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

typedef struct bootph

{

UINT8 opcode;

#define BOOTP_REQ 1

#define BOOTP_REP 2

UINT8 Hardware;

UINT8 Hardlen;

UINT8 Gatehops;

UINT32 ident;

UINT16 seconds;

UINT16 Flags;

#define BOOTP_BCAST 0x8000

IP4 cip;

IP4 yip;

IP4 sip;

IP4 gip;

MAC_ADDR CAddr;

UINT8 Sname[64];

UINT8 bootfile[128];

Union

 {

 UINT8 d[BOOTP_DHCPVEND];

 Struct

 {

 UINT8 magic[4];

#define VM_RFC1048 0x63825363L

 UINT32 flags;

 UINT8 pad[56];

 } v;

 } vendor;
} BOOTPLAYER;

Cached packet format
Opcode: Message opcode.

Hardware: Hardware type. See ARP section in “Assigned
Numbers” RFC.

Hardlen: Hardware address length.

Gatehops: Client sets to zero. Optionally used by relay
agent when booting via a relay agent.

Ident: Transaction ID. Random number chosen by client.

Seconds: Filled in by client. Seconds elapsed since client
began address acquisition/renewal process.

Flags: BOOTP/DHCP broadcast flags.

CIP: Client IP address.

YIP: ‘Your’ IP address.

SIP: IP address of next server in boot process.

GIP: Relay agent IP address.

CAddr: Client hardware address.

SName: Optional server host name. Null terminated string.

Bootfile: Boot file name. Null terminated string.

Vendor: Vendor/DHCP parameter options.

Vendor.d: Array of bytes encompassing all of the
Vendor/DHCP options.

Vendor.v.magic: DHCP magic cookie.

Vendor.v.flags: BOOTP flags/opcodes.

Vendor.v.pad: End of BOOTP vendor extensions

RESTART TFTP
Op-Code: PXENV_RESTART_TFTP (0073h)

Input: Far pointer to a t_PXENV_RESTART_TFTP parameter structure that has been initialized by the
caller. The t_PXENV_RESTART_TFTP parameter structure is identical to the
t_PXENV_TFTP_OPEN parameter structure.

Output: If TFTP cannot be restarted, PXENV_EXIT_FAILURE must be returned and CF must be set. The
status field in the parameter structure must be set to one of the values represented by the
PXENV_STATUS_xxx constants. If TFTP is restarted, control is never returned to the caller.

Description: This service tries to establish a new TFTP connection with the server and to start a download of a
new NBP. The NBP to be downloaded will be determined by the previously downloaded NBP.

Once the NBP is downloaded into memory, control is passed to the NBP entry point.

The download address and entry point for x86 PC/AT architecture is 0:7C00h. No other system
memory is changed or initialized.

Note: It is the responsibility of the caller to make sure the network connection is in a valid state before
trying to restart TFTP. The existing network connection with the server needs to be maintained or
restored. The existing TFTP connection needs to be closed.

Service cannot be used in protected mode.

Preboot Execution Environment (PXE) Specification 51

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

typedef struct s_PXENV_TFTP_READ_FILE

{

PXENV_STATUS Status;

UINT8 FileName[128];

UINT32 BufferSize;

ADDR32 Buffer;

IP4 ServerIPAddress;

IP4 GatewayIPAddress;

IP4 McastIPAddress;

UDP_PORT TFTPClntPort;

UDP_PORT TFTPSrvPort;

UINT16 TFTPOpenTimeOut;

UINT16 TFTPReopenDelay;
} t_PXENV_TFTP_READ_FILE;

Set before calling API Service
FileName: Name of file to be downloaded. Null terminated.

BufferSize: Size of the receive buffer in bytes.

Buffer: Physical address of receive buffer.

ServerIPAddress: IP address of TFTP server in network order.

GatewayIPAddress: IP address of relay agent in network order.

McastIPAddress: File multicast IP address in network order.

TFTPClntPort: Client multicast listening port.

TFTPSrvPort: Server multicast listening port.

TFTPOpenTimeOut: Timeout value, in seconds, to be used for
receiving data or ACK packets. If zero, default TFTP timeout is used.

TFTPReopenDelay: Maximum time, in seconds, between ACK of
last packet and new MTFTP open request.

Returned from API service
Status: See PXENV_STATUS_xxx constants.

BufferSize: Number of bytes written into the receive buffer.

START UNDI
Op-Code: PXENV_START_UNDI (0000h)

Input: Far pointer to a t_PXENV_START_UNDI parameter structure that has been initialized by the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants.

Description: This service is used to pass the BIOS parameter registers to the UNDI driver. The UNDI driver is
responsible for saving the information it needs to communicate with the hardware.

This service is also responsible for hooking the Int 1Ah service routine

Note: This API service must be called only once during UNDI Option ROM boot.

The UNDI driver is responsible for saving this information and using it every time
PXENV_UNDI_STARTUP is called.

Service cannot be used in protected mode.

typedef struct s_PXENV_START_UNDI {

PXENV_STATUS Status;

UINT16 AX;

UINT16 BX;

UINT16 DX;

UINT16 DI;

UINT16 ES;

} t_PXENV_START_UNDI;

Set before calling API service
AX, BX, DX, DI, ES: BIOS initialization parameter registers. These
fields should contain the same information passed to the option ROM
initialization routine by the Host System BIOS. Information about the
contents of these registers can be found in the [PnP], [PCI] and
[BBS] specifications.

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

STOP UNDI
Op-Code: PXENV_STOP_UNDI (0015h)

Input: Far pointer to a t_PXENV_STOP_UNDI parameter structure that has been initialized by the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants.

Description: This routine is responsible for unhooking the Int 1Ah service routine.

Note: This API service must be called only once at the end of UNDI Option ROM boot. One of the valid
status codes is PXENV_STATUS_KEEP. If this status is returned, UNDI must not be removed from
base memory. Also, UNDI must not be removed from base memory if BC is not removed from base
memory.

Service cannot be used in protected mode.

Preboot Execution Environment (PXE) Specification 52

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

typedef struct s_PXENV_STOP_UNDI
{

PXENV_STATUS Status;
} t_PXENV_STOP_UNDI;

Set before calling API service
N/A

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

START BASE
Op-Code: PXENV_START_BASE (0075h)

Input: Far pointer to a t_PXENV_START_BASE parameter structure that has been initialized by the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants.

Description: This API service is used to start the BC. The BC will make calls to UNDI as needed to implement
an IP stack and start the DHCP client software.

Service cannot be used in protected mode.

Note: The UNDI driver must be started first. Refer to the START UNDI API call.
typedef struct s_PXENV_START_BASE
{

PXENV_STATUS Status;
} t_PXENV_START_BASE;

Set before calling API service
N/A

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

STOP BASE
Op-Code: PXENV_STOP_BASE (0076h)

Input: Far pointer to a t_PXENV_STOP_BASE parameter structure that has been initialized by the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants.

Description: This API service is used to stop the BC. The BC will make calls to UNDI as needed.

Note: The BC must be started first. Refer to the START_BASE API call. One of the valid status codes is
PXENV_STATUS_KEEP. If this status is returned, BC must not be removed from base memory.

Service cannot be used in protected mode.
typedef struct s_PXENV_STOP_BASE
{

PXENV_STATUS Status;
} t_PXENV_STOP_BASE;

Set before calling API service
N/A

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

3.4.2 TFTP API Service Descriptions

All the fields in the TFTP API parameter structures are to be stored in little endian (Intel) format
unless otherwise specified.

TFTP OPEN
Op-Code: PXENV_TFTP_OPEN (0020h)

Input: Far pointer to a t_PXENV_TFTP_OPEN parameter structure that has been initialized by the caller.
The IP addresses and port numbers in this structure are to be stored in big endian (Motorola)
format.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants.

Description: Opens a TFTP connection for reading/writing. At any one time there can be only one open
connection. The connection must be closed before another can be opened.

Preboot Execution Environment (PXE) Specification 53

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Note: Service cannot be used if an MTFTP or UDP connection is active.

Service cannot be used in protected mode if the StatusCallout field in the !PXE structure is set to
zero.

Service cannot be used with a 32-bit stack segment.

typedef struct s_PXENV_TFTP_OPEN

{

PXENV_STATUS Status;

IP4 ServerIPAddress;

IP4 GatewayIPAddress;

UINT8 FileName[128];

UDP_PORT TFTPPort;

UINT16 PacketSize;

} t_PXENV_TFTP_OPEN;

Set before calling API service
ServerIPAddress: TFTP server IP address in network order.

GatewayIPAddress: Relay agent IP address in network order. If this
address is set to zero, the IP layer will resolve this using its own
routing table. The IP layer should provide space for a minimum of
four routing entries obtained from default router and static route
DHCP option tags in the DHCPackr message, plus any non-zero
GIADDR field from the DHCPOffer message(s) accepted by the
client.

Filename: Name of file to be downloaded. Null terminated.

TFTPPort: UDP port TFTP server is listening to requests on.

PacketSize: Requested size of TFTP packet, in bytes; with a
minimum of 512 bytes.

Returned from API service
PacketSize: Negotiated size of TFTP packet, in bytes; less than or
equal to the requested size

Status: See PXENV_STATUS_xxx constants.

TFTP CLOSE
Op-Code: PXENV_TFTP_CLOSE (0021h)

Input: Far pointer to a t_PXENV_TFTP_CLOSE parameter structure that has been initialized by the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants.

Description: Closes the previously opened TFTP connection.

Note: Service cannot be used if there is not an active MTFTP connection.

Service cannot be used in protected mode if the StatusCallout field in the !PXE structure is set to
zero.

Service cannot be used with a 32-bit stack segment.
typedef struct s_PXENV_TFTP_CLOSE
{

PXENV_STATUS Status;
} t_PXENV_TFTP_CLOSE;

Set before calling API service
N/A

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

TFTP READ
Op-Code: PXENV_TFTP_READ (0022h)

Input: Far pointer to a t_PXENV_TFTP_READ parameter structure that has been initialized by the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants. When a read is successful, the PacketNumber and Packet Lengths must also be filled
in.

Description: Reads one packet from the open TFTP connection.

Note: Service cannot be used if there is not an active MTFTP connection.

Service cannot be used in protected mode if the StatusCallout field in the !PXE structure is set to
zero.

Service cannot be used with a 32-bit stack segment.

Preboot Execution Environment (PXE) Specification 54

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

typedef struct s_PXENV_TFTP_READ

{

PXENV_STATUS Status;

UINT16 PacketNumber;

UINT16 BufferSize;

SEGOFF16 Buffer;

} t_PXENV_TFTP_READ;

Set before calling API service
Buffer: Segment:Offset address of packet buffer.

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

PacketNumber: Packet number (1-65535) sent from the TFTP
server.

BufferSize: Number of bytes written to the packet buffer. Last packet
if this is less thanthe size negotiated in TFTP_OPEN. Zero is valid.

TFTP/MTFTP READ FILE
Op-Code: PXENV_TFTP_READ_FILE (0023h)

Input: Far pointer to a t_PXENV_TFTP_READ_FILE parameter structure that has been initialized by the
caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants. When a read is successful, the PacketCount and Packet Lengths must also be filled in.

Description: This service will open a TFTP, or MTFTP, connection, download the entire file and close the
connection. It is up to the caller to make sure that there is enough free memory to download the file
into. For example, you cannot download a 2 MB file into base memory (below 640K).

Note: UDP open must be called before UDP read or write can be used after transferring a file with this
service.

Service cannot be used if a MTFTP or UDP connection is active.

Service cannot be used in protected mode if the StatusCallout field in the !PXE structure is set to
zero.

Service cannot be used with a 32-bit stack segment.

typedef struct s_PXENV_TFTP_READ_FILE

{

PXENV_STATUS Status;

UINT8 FileName[128];

UINT32 BufferSize;

ADDR32 Buffer;

IP4 ServerIPAddress;

IP4 GatewayIPAddress;

IP4 McastIPAddress;

UDP_PORT TFTPClntPort;

UDP_PORT TFTPSrvPort;

UINT16 TFTPOpenTimeOut;

UINT16 TFTPReopenDelay;

} t_PXENV_TFTP_READ_FILE;

Set before calling API service
FileName: Name of file to be downloaded. Null terminated.

BufferSize: Size of the receive buffer in bytes.

Buffer: Physical address of receive buffer.

ServerIPAddress: IP address of TFTP server in network order.

GatewayIPAddress: IP address of relay agent in network order. If
this address is set to zero, the IP layer will resolve this using its own
routing table.

McastIPAddress: File multicast IP address in network order.

TFTPClntPort: Client multicast listening port.

TFTPSrvPort: Server multicast listening port.

TFTPOpenTimeOut: Timeout value, in seconds, to be used for
receiving data or ACK packets. If zero, default TFTP timeout is used.

TFTPReopenDelay: Maximum time, in seconds, between ACK of
last packet and new MTFTP open request.

Returned from API service
Status: See PXENV_STATUS_xxx constants.

BufferSize: Number of bytes written into the receive buffer.

TFTP_GET_FILE_SIZE
Op-Code: PXENV_TFTP_GET_FSIZE (0025h)

Input: Far pointer to a t_PXENV_TFTP_GET_FSIZE parameter structure that has been initialized by the
caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in the
parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants. When the call is successful, the FileSize field must be filled in.

Preboot Execution Environment (PXE) Specification 55

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Description This service will query the server for the size of the given file using TFTP option extension protocol.
This service will not and hence must not be used to open a TFTP connection for the given file.

Note: Service cannot be used if a MTFTP or UDP connection is active.

Service cannot be used in protected mode if the StatusCallout field in the !PXE structure is set to
zero.

Service cannot be used with a 32-bit stack segment.

typedef struct s_PXENV_TFTP_GET_FSIZE

{

PXENV_STATUS Status;

IP4 ServerIPAddress;

IP4 GatewayIPAddress;

UINT8 FileName[128];

UINT32 FileSize;
} t_PXENV_TFTP_GET_FSIZE;

Set before calling API service
ServerIPAddress: IP address of TFTP server.

GatewayIPAddress: IP address of relay agent. If this address is set
to zero, the IP layer will resolve this using its own routing table.

Filename: Name of file on TFTP server. Null terminated.

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

Filesize: Size of the file in bytes.

3.4.3 UDP API Service Descriptions

UDP OPEN
Op-Code: PXENV_UDP_OPEN (0030h)

Input: Far pointer to a t_PXENV_UDP_OPEN parameter.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants.

Description: Opens a UDP connection for reading and writing. There can only be one open connection at a time.

Note: Service cannot be used if a MTFTP or UDP connection is active.

Service cannot be used in protected mode if the StatusCallout field in the !PXE structure is set to
zero.

Service cannot be used with a 32-bit stack segment.

typedef struct s_PXENV_UDP_OPEN

{

PXENV_STATUS status;

IP4 src_ip;
} t_PXENV_UDP_OPEN;

Set before calling API service
SrcIP: IP address of this station.

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

UDP CLOSE
Op-Code: PXENV_UDP_CLOSE (0031h)

Input: Far pointer to a t_PXENV_UDP_CLOSE parameter.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants.

Description: Closes the previously opened UDP connection.

Note: Service cannot be used if a MTFTP is active, or if there is no active UDP connection.

Service cannot be used in protected mode if the StatusCallout field in the !PXE structure is set to
zero.

Service cannot be used with a 32-bit stack segment.

typedef struct s_PXENV_UDP_CLOSE

{

PXENV_STATUS status;

} t_PXENV_UDP_CLOSE;

Set before calling API service
N/A

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

Preboot Execution Environment (PXE) Specification 56

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

UDP WRITE
Op-Code: PXENV_UDP_WRITE (0033h)

Input: Far pointer to a t_PXENV_UDP_WRITE parameter structure that has been initialized by the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants.

Description: Writes one packet to the specified IP address on the open UDP connection.

Note: Service cannot be used if a MTFTP is active, or if there is no active UDP connection.

Service cannot be used in protected mode if the StatusCallout field in the !PXE structure is set to
zero.

Service cannot be used with a 32-bit stack segment.

typedef struct s_PXENV_UDP_WRITE

{

PXENV_STATUS status;

IP4 ip;

IP4 gw;

UDP_PORT src_port;

UDP_PORT dst port;

UINT16 buffer_size;

SEGOFF16 buffer;

} t_PXENV_UDP_WRITE;

Set before calling API service
IP: Destination IP address.

GW: IP address of relay agent. If this address is set to zero, the IP
layer will resolve this using its own routing table.

SrcPort: Source UDP port. Assigned 2069 if set to zero.

DstPort: Destination UDP port.

BufferSize: Length of the packet in bytes.

Buffer: Segment:Offset of the packet buffer.

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

UDP READ
Op-Code: PXENV_UDP_READ (0032h)

Input: Far pointer to a t_PXENV_UDP_READ parameter structure that has been initialized by the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants.

This API function is non-blocking and returns the same values as
PXENV_UNDI_TRANSMIT_PACKET.

PXENV_EXIT_SUCCESS/PXENV_STATUS_SUCCESS is returned if a packet has been
transferred into the caller’s buffer.

PXENV_EXIT_FAILURE/PXENV_STATUS_FAILURE is returned if no packet is available to
transfer.

Description: Reads one packet from the opened UDP connection.

Note: Service cannot be used if a MTFTP is active, or if there is no active UDP connection.

Service cannot be used in protected mode if the StatusCallout field in the !PXE structure is set to
zero.

Service cannot be used with a 32-bit stack segment.

Preboot Execution Environment (PXE) Specification 57

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

typedef struct s_PXENV_UDP_READ

{

PXENV_STATUS status;

IP4 src_ip;

IP4 dest_ip;

UDP_PORT s_port;

UDP_PORT d_port;

UINT16 buffer_size;

SEGOFF16 buffer;

} t_PXENV_UDP_READ;

Set before calling API service
DestIP: Only accept packets sent to this IP address. If this is zero,
packets sent to any IP address are accepted.

DestPort: Only accept packets sent to this UDP port. If this is zero,
all packets sent to this station are accepted.

BufferSize: Size of the packet buffer in bytes.

Buffer: Segment:Offset of the packet buffer.

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

SrcIP: IP address of the sender.

SrcPort: UDP source port of the sender.

BufferSize: Number of bytes written into the packet buffer.

3.4.4 UNDI API Service Descriptions

UNDI STARTUP
Op-Code: PXENV_UNDI_STARTUP (0001h)

Input: Far pointer to a t_PXENV_UNDI_STARTUP parameter structure that has been initialized by the
caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the
PXENV_STATUS_xxx constants.

Description: This API is responsible for initializing the contents of the UNDI code & data segment for proper
operation. Information from the !PXE structure and the first PXENV_START_UNDI API call is used
to complete this initialization. The rest of the UNDI APIs will not be available until this call has
been completed.

Note: PXENV_UNDI_STARTUP must not be called again without first calling
PXENV_UNDI_SHUTDOWN.

PXENV_UNDI_STARTUP and PXENV_UNDI_SHUTDOWN are no longer responsible for
chaining interrupt 1Ah. This must be done by the PXENV_START_UNDI and
PXENV_STOP_UNDI API calls.

This service cannot be used in protected mode.
typedef struct s_PXENV_UNDI_STARTUP
{

PXENV_STATUS Status;
} t_PXENV_UNDI_STARTUP;

Set before calling API service
N/A

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

UNDI CLEANUP
Op-Code: PXENV_UNDI_CLEANUP (0002h)

Input: Far pointer to a t_PXENV_UNDI_CLEANUP parameter structure.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field
in the parameter structure must be set to one of the values represented by the
PXENV_STATUS_xxx constants.

Description: This call will prepare the network adapter driver to be unloaded from memory. This call must be
made just before unloading the Universal NIC Driver. The rest of the API will not be available
after this call executes.

This service cannot be used in protected mode.
typedef struct s_PXENV_UNDI_CLEANUP {

PXENX_STATUS Status;
} t_PXENV_UNDI_CLEANUP;

Set before calling API service
N/A

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

Preboot Execution Environment (PXE) Specification 58

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

UNDI INITIALIZE
Op-Code: PXENV_UNDI_INITIALIZE (0003h)

Input: Far pointer to a t_PXENV_UNDI_INITIALIZE parameter structure that has been initialized by the
caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants.

Description: This call resets the adapter and programs it with default parameters. The default parameters used
are those supplied to the most recent UNDI_STARTUP call. This routine does not enable the
receive and transmit units of the network adapter to readily receive or transmit packets. The
application must call PXENV_UNDI_OPEN to logically connect the network adapter to the network.

This call must be made by an application to establish an interface to the network adapter driver.

Note: When the PXE code makes this call to initialize the network adapter, it passes a NULL pointer for
the Protocol field in the parameter structure.

typedef struct

s_PXENV_UNDI_INITIALIZE {

PXENV_STATUS Status;

ADDR32 ProtocolIni;

UINT8 reserved[8];

} t_PXENV_UNDI_INITIALIZE;

Set before calling API service
ProtocolIni: Physical address of a memory copy of the driver
module from the ‘protocol.ini’ file obtained from the protocol manager
driver (refer to the NDIS 2.0 specification). This parameter is
supported for the universal NDIS driver to pass the information
contained in the ‘protocol.ini’ file to the NIC driver for any specific
configuration of the NIC. (Note that the module identification in the
‘protocol.ini’ file was done by NDIS.) This value can be NULL for any
other application interfacing to the universal NIC driver

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

UNDI RESET ADAPTER
Op-Code: PXENV_UNDI_RESET_ADAPTER (0004h)

Input: Far pointer to a t_PXENV_UNDI_RESET_ADAPTER parameter structure that has been initialized
by the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants.

Description: This call resets and reinitializes the network adapter with the same set of parameters supplied to
Initialize Routine. Unlike Initialize, this call opens the adapter that is, it connects logically to the
network. This routine cannot be used to replace Initialize or Shutdown calls.

typedef struct s_PXENV_UNDI_RESET

{

PXENV_STATUS Status;

t_PXENV_UNDI_MCAST_ADDRESS

R_Mcast_Buf;

} t_PXENV_UNDI_RESET;

#define MAXNUM_MCADDR 8

typedef struct

s_PXENV_UNDI_MCAST_ADDRESS

{

UINT16 MCastAddrCount;

MAC_ADDR McastAddr[MAXNUM_MCADDR];

} t_PXENV_UNDI_MCAST_ADDRESS;

Set before calling API service

R_Mcast_Buf: This is a structure of MCastAddrCount and
McastAddr.

MCastAddrCount: Number of multicast MAC addresses in the
buffer.

McastAddr: List of up to MAXNUM_MCADDR multicast MAC
addresses.

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

UNDI SHUTDOWN
Op-Code: PXENV_UNDI_SHUTDOWN (0005h)

Preboot Execution Environment (PXE) Specification 59

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Input: Far pointer to a t_PXENV_UNDI_SHUTDOWN parameter.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants.

Description: This call resets the network adapter and leaves it in a safe state for another driver to program it.

Note: The contents of the PXENV_UNDI_STARTUP parameter structure need to be saved by the
Universal NIC Driver in case PXENV_UNDI_INITIALIZE is called again.

typedef struct s_PXENV_UNDI_SHUTDOWN
{

PXENV_STATUS Status;
} t_PXENV_UNDI_SHUTDOWN;

Set before calling API service
N/A

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

UNDI OPEN
Op-Code: PXENV_UNDI_OPEN (0006h)

Input: Far pointer to a t_PXENV_UNDI_OPEN parameter structure that has been initialized by the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants.

Description: This call activates the adapter’s network connection and sets the adapter ready to accept packets
for transmit and receive.

typedef struct s_PXENV_UNDI_OPEN

{

PXENV_STATUS Status;

UINT16 OpenFlag;

UINT16 PktFilter;

#define FLTR_DIRECTED 0x0001

#define FLTR_BRDCST 0x0002

#define FLTR_PRMSCS 0x0004

#define FLTR_SRC_RTG 0x0008

t_PXENV_UNDI_MCAST_ADDRESS

R_Mcast_Buf;

} t_PXENV_UNDI_OPEN;

Set before calling API service
OpenFlag: This is an adapter specific input parameter. This is
supported for the universal NDIS 2.0 driver to pass in the open flags
provided by the protocol driver. (See the NDIS 2.0 specification.)
This can be zero.

PktFilter: Filter for receiving packets. This can be one, or more, of
the FLTR_xxx constants. Multiple values are arithmetically or-ed
together.

“Directed” packets are packets that may come to your MAC address
or the multicast MAC address.

R_Mcast_Buf: See definition in UNDI RESET ADAPTER (0004h).

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

UNDI CLOSE
Op-Code: PXENV_UNDI_CLOSE (0007h)

Input: Far pointer to a t_PXENV_UNDI_CLOSE parameter.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants.

Description: This call disconnects the network adapter from the network. Packets cannot be transmitted or
received until the network adapter is open again.

typedef struct s_PXENV_UNDI_CLOSE
{

PXENV_STATUS Status;
} t_PXENV_UNDI_CLOSE;

Set before calling API service
N/A

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

UNDI TRANSMIT PACKET
Op-Code: PXENV_UNDI_TRANSMIT (0008h)

Input: Far pointer to a t_PXENV_UNDI_TRANSMIT parameter structure that has been initialized by the
caller.

Preboot Execution Environment (PXE) Specification 60

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status code
must be set to one of the values represented by the PXENV_STATUS_xxx constants.

Description: This call transmits a buffer to the network. The media header for the packet can be filled by the
calling protocol, but it might not be. The network adapter driver will fill it if required by the values in
the parameter block. The packet is buffered for transmission provided there is an available buffer,
and the function returns PXENV_EXIT_SUCCESS. If no buffer is available the function returns
PXENV_EXIT_FAILURE with a status code of PXE_UNDI_STATUS__OUT OF_RESOURCE. The
number of buffers is implementation-dependent. An interrupt is generated on completion of the
transmission of one or more packets. A call to PXENV_UNDI_TRANSMIT is permitted in the
context of a transmit complete interrupt.

typedef struct s_PXENV_UNDI_TRANSMIT

{

PXENV_STATUS Status;

UINT8 Protocol;

#define P_UNKNOWN 0

#define P_IP 1

#define P_ARP 2

#define P_RARP 3

UINT8 XmitFlag;

#define XMT_DESTADDR 0x0000

#define XMT_BROADCAST 0x0001

SEGOFF16 DestAddr;

SEGOFF16 TBD;

UINT32 Reserved[2];

} t_PXENV_UNDI_TRANSMIT;

#define MAX_DATA_BLKS 8

typedef struct s_PXENV_UNDI_TBD

{

UINT16 ImmedLength;

SEGOFF16 Xmit;

UINT16 DataBlkCount;

 struct DataBlk

 {

 UINT8 TDPtrType;

 UINT8 TDRsvdByte;

 UINT16 TDDataLen;

 SEGOFF16 TDDataPtr;

 } DataBlock[MAX_DATA_BLKS];
 t_PXENV_UNDI_TBD;

Set before calling API service
Protocol: This is the protocol of the upper layer that is calling UNDI
TRANSMIT call. If the upper layer has filled the media header, this
field must be P_UNKNOWN.

XmitFlag: If this flag is XMT_DESTADDR, the NIC driver expects a
pointer to the destination media address in the field DestAddr. If
XMT_BROADCAST, the NIC driver fills the broadcast address for the
destination.

TBD: Segment:Offset address of the transmit buffer descriptor.

ImmedLength: Length of the immediate transmit buffer: Xmit.

Xmit: Segment:Offset of the immediate transmit buffer.

DataBlkCount: Number of blocks in this transmit buffer.

TDPtrType:

0 => 32-bit physical address in TDDataPtr (not supported in this
version of PXE)

1 => segment:offset in TDDataPtr which can be a real mode or 16-bit
protected mode pointer

TDRsvdByte: Reserved must be zero.

TDDatalen: Data block length in bytes.

TDDataPtr: Segment:Offset of the transmit block.

DataBlock: Array of transmit data blocks.

Returned from API service
Status: See the PXENV_STATUS_xxx constants

UNDI SET MULTICAST ADDRESS
Op-Code: PXENV_UNDI_SET_MCAST_ADDRESS (0009h)

Input: Far pointer to a t_PXENV_TFTP_SET_MCAST_ADDRESS parameter structure that has been
initialized by the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants.

Description: This call changes the current list of multicast addresses to the input list and resets the network
adapter to accept it. If the number of multicast addresses is zero, multicast is disabled.

Preboot Execution Environment (PXE) Specification 61

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

typedef struct

s_PXENV_UNDI_SET_MCAST_ADDRESS

{

PXENV_STATUS Status;

t_PXENV_UNDI_MCAST_ADDRESS

R_Mcast_Buf;

} t_PXENV_UNDI_SET_MCAST_ADDR;

Set before calling API service
R_Mcast_Buf: See description in the UNDI RESET ADAPTER
(0004h) API.

Returned from API service
Status: See the PXENV_STATUS_xxx constants

UNDI SET STATION ADDRESS
Op-Code: PXENV_UNDI_SET_STATION_ADDRESS (000Ah)

Input: Far pointer to a t_PXENV_UNDI_SET_STATION_ADDRESS parameter structure that has been
initialized by the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants.

Description: This call sets the MAC address to be the input value and is called before opening the network
adapter. Later, the open call uses this variable as a temporary MAC address to program the
adapter’s individual address registers.

typedef struct

s_PXENV_UNDI_SET_STATION_ADDRESS

{

PXENV_STATUS Status;

MAC_ADDR StationAddress;

} t_PXENV_UNDI_SET_STATION_ADDR;

Set before calling API service
StationAddress: Temporary MAC address to be used for
transmit and receive.

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

UNDI SET PACKET FILTER
Op-Code: PXENV_UNDI_SET_PACKET_FILTER (000Bh)

Input: Far pointer to a t_PXENV_UNDI_SET_PACKET_FILTER parameter structure that has been
initialized by the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants.

Description: This call resets the adapter’s receive unit to accept a new filter, different from the one provided with
the open call.

typedef struct s_PXENV_UNDI_SET_PACKET_FILTER

{

PXENV_STATUS Status;

UINT8 filter;

} t_PXENV_UNDI_SET_PACKET_FILTER;

Set before calling API service
Filter: See the receive filter values in the UNDI OPEN
(0006h) API description.

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

UNDI GET INFORMATION
Op-Code: PXENV_UNDI_GET_INFORMATION (000Ch)

Input: Far pointer to a t_PXENV_UNDI_GET_INFORMATION parameter structure that has been
initialized by the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the
PXENV_STATUS_xxx constants.

Description: This call copies the network adapter variables, including the MAC address, into the input buffer.

Note: The PermNodeAddress field must be valid after PXENV_START_UNDI and
PXENV_UNDI_STARTUP have been issued. All other fields must be valid after
PXENV_START_UNDI, PXENV_UNDI_STARTUP and PXENV_UNDI_INITIALIZE have been
called.

Preboot Execution Environment (PXE) Specification 62

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

typedef struct s_PXENV_UNDI_GET_INFORMATION

{

PXENV_STATUS Status;

UINT16 BaseIo;

UINT16 IntNumber;

UINT16 MaxTranUnit;

UINT16 HwType;

#define ETHER_TYPE 1

#define EXP_ETHER_TYPE 2

#define IEEE_TYPE 6

#define ARCNET_TYPE 7

UINT16 HwAddrLen;

MAC_ADDR CurrentNodeAddress;

MAC_ADDR PermNodeAddress;

SEGSEL ROMAddress;

UINT16 RxBufCt;

UINT16 TxBufCt;

} t_PXENV_UNDI_GET_INFORMATION;

Set before calling API service
N/A

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

BaseIO: Adapter base I/O address.

IntNumber: Adapter IRQ number.

MaxTranUnit: Adapter maximum transmit unit.

HWType: Type of protocol at the hardware level.

HWAddrLen: Length of the hardware address.

CurrentNodeAddress: Current hardware address.

PermNodeAddress: Permanent hardware address.

ROMAddress: Real mode ROM segment address.

RxBufCnt: Receive queue length.

TxBufCnt: Transmit queue length.

UNDI GET STATISTICS
Op-Code: PXENV_UNDI_GET_STATISTICS (000Dh)

Input: Far pointer to a t_PXENV_UNDI_GET_STATISTICS parameter structure that has been initialized
by the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants.

Description: This call reads statistical information from the network adapter, and returns.

typedef struct s_PXENV_UNDI_GET_STATISTICS

{

PXENV_STATUS Status;

UINT32 XmtGoodFrames;

UINT32 RcvGoodFrames;

UINT32 RcvCRCErrors;

UINT32 RcvResourceErrors;

} t_PXENV_UNDI_GET_STATISTICS;

Set before calling API service
N/A

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

XmtGoodFrames: Number of successful transmissions.

RcvGoodFrames: Number of good frames received.

RcvCRCErrors: Number of frames received with CRC
error.

RcvResourceErrors: Number of frames discarded
because receive queue was full.

UNDI CLEAR STATISTICS
Op-Code: PXENV_UNDI_CLEAR_STATISTICS (000Eh)

Input: Far pointer to a t_PXENV_UNDI_CLEAR_STATISTICS parameter.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the
PXENV_STATUS_xxx constants.

Description: This call clears the statistical information from the network adapter.
typedef struct s_PXENV_UNDI_CLEAR_STATISTICS
{

PXENV_STATUS Status;
} t_PXENV_UNDI_CLEAR_STATISTICS;

Set before calling API service
N/A

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

UNDI INITIATE DIAGS
Op-Code: PXENV_UNDI_INITIATE_DIAGS (000Fh)

Preboot Execution Environment (PXE) Specification 63

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Input: Far pointer to a t_PXENV_UNDI_INITIATE_DIAGS parameter.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the
PXENV_STATUS_xxx constants.

Description: This call can be used to initiate the run-time diagnostics. It causes the network adapter to run
hardware diagnostics and to update its status information.

typedef struct s_PXENV_UNDI_INITIATE_DIAGS

{

PXENV_STATUS Status;

} t_PXENV_UNDI_INITIATE_DIAGS;

Set before calling API service
N/A

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

UNDI FORCE INTERRUPT
Op-Code: PXENV_UNDI_FORCE_INTERRUPT (0010h)

Input: Far pointer to a t_PXENV_UNDI_FORCE_INTERRUPT parameter structure that has been
initialized by the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants.

Description: This call forces the network adapter to generate an interrupt. When a receive interrupt occurs, the
network adapter driver usually queues the packet and calls the application’s callback receive
routine with a pointer to the packet received. Then, the callback routine either can copy the packet
to its buffer or can decide to delay the copy to a later time. If the packet is not immediately copied,
the network adapter driver does not remove it from the input queue. When the application wants to
copy the packet, it can call the PXENV_UNDI_FORCE_INTERRUPT routine to simulate the receive
interrupt.

typedef struct s_PXENV_UNDI_FORCE_INTERRUPT

{

PXENV_STATUS Status;

} t_PXENV_UNDI_FORCE_INTERRUPT;

Set before calling API service
N/A

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

UNDI GET MULTICAST ADDRESS
Op-Code: PXENV_UNDI_GET_MCAST_ADDRESS (0011h)

Input: Far pointer to a t_PXENV_GET_MCAST_ADDRESS parameter structure that has been initialized
by the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants.

Description: This call converts the given IP multicast address to a hardware multicast address.

typedef struct s_PXENV_UNDI_GET_MCAST_ADDRESS

{

PXENV_STATUS Status;

IP4 InetAddr;

MAC_ADDR MediaAddr;

} t_PXENV_UNDI_GET_MCAST_ADDR;

Set before calling API service
InetAddr: IP multicast address.

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

MediaAddr: MAC multicast address.

UNDI GET NIC TYPE
Op-Code: PXENV_UNDI_GET_NIC_TYPE (0012h)

Input: Far pointer to a t_ PXENV_UNDI_GET_NIC_TYPE parameter structure that has been initialized by
the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants. If the PXENV_EXIT_SUCCESS is returned the parameter structure must contain the
NIC information.

Preboot Execution Environment (PXE) Specification 64

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Description: This call, if successful, provides the NIC-specific information necessary to identify the network
adapter that is used to boot the system.

Note: The application first gets the DHCPDISCOVER packet using GET_CACHED_INFO and checks if
the UNDI is supported before making this call. If the UNDI is not supported, the NIC-specific
information can be obtained from the DHCPDISCOVER packet itself.

PXENV_START_UNDI, PXENV_UNDI_STARTUP and PXENV_UNDI_INITIALIZE must be called
before the information provided is valid.

typedef s_PXENV_UNDI_GET_NIC_TYPE

{

PXENV_STATUS Status;

UINT8 NicType;

#define PCI_NIC 2

#define PnP_NIC 3

#define CardBus_NIC 4

 Union {

 Struct {

 UINT16 Vendor_ID;

 UINT16 Dev_ID;

 UINT8 Base_Class;

 UINT8 Sub_Class;

 UINT8 Prog_Intf;

 UINT8 Rev;

 UINT16 BusDevFunc;

 UINT16 SubVendor_ID;

 UINT16 SubDevice_ID;

 } pci, cardbus;

 struct {

 UINT32 EISA_Dev_ID;

 UINT8 Base_Class;

 UINT8 Sub_Class;

 UINT8 Prog_Intf;

 UINT16 CardSelNum;

 } pnp;

 } info;

} t_PXENV_UNDI_GET_NIC_TYPE;

Set before calling API service
N/A

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

NICType: Type of NIC information stored in the parameter
structure.

Info: Information about the fields in this union can be found
in the [PnP] and [PCI] specifications

UNDI GET IFACE INFO
Op-Code: PXENV_UNDI_GET_IFACE_INFO (0013h)

Input: Far pointer to a t_ PXENV_UNDI_GET_IFACE_INFO parameter structure that has been initialized
by the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants. If the PXENV_EXIT_SUCCESS is returned, the parameter structure must contain the
interface specific information.

Description: This call, if successful, provides the network interface specific information such as the interface
type at the link layer (Ethernet, Tokenring) and the link speed. This information can be used in the
universal drivers such as NDIS or Miniport to communicate to the upper protocol modules.

Note: UNDI follows the NDIS2 specification in giving this information. It is the responsibility of the
universal driver to translate/convert this information into a format that is required in its specification
or to suit the expectation of the upper level protocol modules.

PXENV_START_UNDI, PXENV_UNDI_STARTUP and PXENV_UNDI_INITIALIZE must be called
before the information provided is valid.

Preboot Execution Environment (PXE) Specification 65

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

typedef struct s_PXENV_UNDI_GET_IFACE_INFO

{

PXENV_STATUS Status

UINT8 IfaceType[16];

UINT32 LinkSpeed;

UINT32 ServiceFlags;

UINT32 Reserved[4];

} t_PXENV_UNDI_GET_NDIS_INFO;

Set before calling API service
N/A

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

IfaceType: Name of MAC type in ASCIIZ format. This is
used by the universal NDIS driver to specify its driver type
to the protocol driver.

LinkSpeed: Defined in the NDIS 2.0 specification.

ServiceFlags: Defined in the NDIS 2.0 specification.

Reserved: Must be zero.

UNDI GET STATE
Op-Code: PXENV_UNDI_GET_STATE (0015h)

Input: Far pointer to a t_PXENV_UNDI_GET_STATE parameter.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants. The UNDI_STATE field in the parameter structure must be set to one of the valid state
constants

Description: This call can be used to obtain state of the UNDI engine in order to avoid issuing adverse call
sequences

typedef struct s_PXENV_UNDI_GET_STATE

{

#define PXE_UNDI_GET_STATE_STARTED 1

#define PXE_UNDI_GET_STATE_INITIALIZED 2

#define PXE_UNDI_GET_STATE_OPENED 3

PXENV_STATUS Status;

UINT8 UNDIstate;

} t_PXENV_UNDI_GET_STATE;

Set before calling API service
N/A

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

State: See definitions of the state constants.

Note. UNDI implementation is responsible for maintaining
internal state machine.

UNDI ISR
Op-Code: PXENV_UNDI_ISR (0014h)

Input: Far pointer to a t_PXENV_UNDI_ISR parameter structure that has been initialized by the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status field in
the parameter structure must be set to one of the values represented by the PXENV_STATUS_xxx
constants.

Description: This API function will be called at different levels of processing the interrupt. The FuncFlag field in
the parameter block indicates the operation to be performed for the call. This field is filled with the
status of that operation on return.

Preboot Execution Environment (PXE) Specification 66

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Note: Interrupt Service Routine Operation:

In this design the UNDI does not hook the interrupt for the Network Interface. Instead, the
application or the protocol driver hooks the interrupt and calls UNDI with the PXENV_UNDI_ISR
API call for interrupt verification (PXENV_UNDI_ISR_IN_START) and processing
(PXENV_UNDI_ISR_IN_PROCESS and PXENV_UNDI_ISR_GET_NEXT).

When the Network Interface HW generates an interrupt the protocol driver’s interrupt service
routine (ISR) gets control and takes care of the interrupt processing at the PIC level. The ISR then
calls the UNDI using the PXENV_UNDI_ISR API with the value PXENV_UNDI_ISR_IN_START for
the FuncFlag parameter. At this time UNDI must disable the interrupts at the Network Interface
level and read any status values required to further process the interrupt. UNDI must return as
quickly as possible with one of the two values, PXENV_UNDI_ISR_OUT_OURS or
PXENV_UNDI_ISR_OUT_NOT_OURS, for the parameter FuncFlag depending on whether the
interrupt was generated by this particular Network Interface or not.

If the value returned in FuncFlag is PXENV_UNDI_ISR_OUT_NOT_OURS, then the interrupt was
not generated by our NIC, and interrupt processing is complete.

If the value returned in FuncFlag is PXENV_UNDI_ISR_OUT_OURS, the protocol driver must start
a handler thread and send an end-of-interrupt (EOI) command to the PIC. Interrupt processing is
now complete.

The protocol driver strategy routine will call UNDI using this same API with FuncFlag equal to
PXENV_UNDI_ISR_IN_PROCESS. At this time UNDI must find the cause of this interrupt and
return the status in the FuncFlag. It first checks if there is a frame received and if so it returns the
first buffer pointer of that frame in the parameter block.

The protocol driver calls UNDI repeatedly with the FuncFlag equal to
PXENV_UNDI_ISR_IN_GET_NEXT to get all the buffers in a frame and also all the received
frames in the queue. On this call, UNDI must remember the previous buffer given to the protoco,l
remove it from the receive queue and recycle it. In case of a multi-buffered frame, if the previous
buffer is not the last buffer in the frame it must return the next buffer in the frame in the parameter
block. Otherwise it must return the first buffer in the next frame.

If there is no received frame pending to be processed, UNDI processes the transmit completes and
if there is no other interrupt status to be processed, UNDI re-enables the interrupt at the
NETWORK INTERFACE level and returns PXENV_UNDI_ISR_OUT_DONE in the FuncFlag.

IMPORTANT: It is possible for the protocol driver to be interrupted again while in the
strategy routine when the UNDI re-enables interrupts.

Preboot Execution Environment (PXE) Specification 67

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

typedef struct s_PXENV_UNDI_ISR

{

PXENV_STATUS Status;

UINT16 FuncFlag;

UINT16 BufferLength;

UINT16 FrameLength;

UINT16 FrameHeaderLength;

SEGOFF16 Frame;

UINT8 ProtType;

UINT8 PktType;

} t_PXENV_UNDI_ISR;

#define PXENV_UNDI_ISR_IN_START 1

#define PXENV_UNDI_ISR_IN_PROCESS 2

#define PXENV_UNDI_ISR_IN_GET_NEXT 3

/* One of these will be returned for

PXENV_UNDI_ISR_IN_START */

#define PXENV_UNDI_ISR_OUT_OURS 0

#define PXENV_UNDI_USR_OUT_NOT_OURS 1

/* One of these will be returned for

PXENV_UNDI_ISR_IN_PROCESS and

PXENV_UNDI_ISR_IN_GET_NEXT */

#define PXENV_UNDI_ISR_OUT_DONE 0

#define PXENV_UNDI_ISR_OUT_TRANSMIT 2

#define PXENV_UNDI_ISR_OUT_RECEIVE 3

#define PXENV_UNDI_ISR_OUT_BUSY 4

Set before calling API service
FuncFlag: One of the PXENV_UNDI_ISR_IN_xxx
constants.

Returned from API service
Status: See the PXENV_STATUS_xxx constants.

FuncFlag: One of the PXENV_UNDI_ISR_OUT_xxx
constants.

BufferLength: This parameter contains the length of the
data in the buffer given by Frame.

FrameLength: This parameter contains the total length of
the receive frame. A receive frame may contain more than
one data buffer. If FrameLength is not the same as
BufferLength, the application will have to call
PXENV_UNDI_ISR several times to receive the complete
frame. In the case of the multi buffered frame, all buffers
(except the last one) must contain at least 512 bytes of data
(this does not include the media header). In other words,
the minimum buffer size is 512 bytes plus the size of the
media header.

FrameHeaderLength: This field contains the length of the
media header in the buffer given in Frame. This field must
be zero if the buffer is not the first one in a multi buffered
frame.

Frame: This field defines the pointer to a buffer in the
receive frame. In protected mode, the selector must be
same as the UNDI data segment. This is required to obtain
the virtual address in the protected mode protocol drivers.

ProtType: This field contains the protocol identifier (1=IP,
2=ARP, 3=RARP and 4=OTHER) for the received packet.

PktType: This field contains the type of frame received (0-
directed/promiscuous, 1-broadcast and 2-multicast).

The following flowchart shows how a protocol driver (for example Base-Code and NDIS.DOS)
interfaces with UNDI when servicing interrupts.

Preboot Execution Environment (PXE) Specification 68

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Protocol Driver Strategy Thread
(Implemented in PXE base-code,

protocol manager or universal driver)

UNDI Driver
(PXENV_UNDI_ISR API)

UNDI Driver
(PXENV_UNDI_ISR API)

Protocol Driver Interrupt Routine
(Implemented in PXE base-code,

protocol manager or universal driver)

H/W Interrupt
Occurs

Interrupt Complete

Make PXENV_UNDI_ISR call with
PXENV_UNDI_ISR_IN_START

No

Is this our
interrupt?

Is this our
interrupt?

flag=1
(not ours)

Send EOI to PIC.
Flag strategy thread

to start

Yes

" Disable NIC interrupts.
" Ack device interrupt.
" Save status for stratagy routine.

Yes

flag=0
(ours)

Strategy thread
started by

Protocol Driver

Strategy thread
stops

Make PXENV_UNDI_ISR call with
PXENV_UNDI_ISR_IN_PROCES

Is UNDI ISR
being re-entered?

yes
flag=4
(busy)

Exit strategy
thread.

Is
this a receive

int?

Is
this a transmit

int?

Copy data.
yes

flag=3
(receive)

No

No

Release transmit
buffer (if any)

Yes
flag=2

(transmit
complete)

Enable device
interrupts.

No

Make PXENV_UNDI_ISR call with
PXENV_UNDI_ISR_IN_GET_NEX

Exit strategy
thread.

flag=0
(done)

Figure 3-5 Interrupt Service Routine Operation

Preboot Execution Environment (PXE) Specification 69

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

3.5 PXE Return Status Definitions

Important: The code provided in this section is provided for information purposes only.
/*
 *
* Copyright(c) 1997/1998 by Intel Corporation. All Rights Reserved.
 *
/* Parameter/Result structure storage types.
 */
typedef unsigned char UINT8;
typedef unsigned short UINT16;
typedef unsigned long UINT32;
typedef signed char INT8;
typedef signed short INT16;
typedef signed long INT32;

/* =*/
/* Exit codes returned in AX by a PXENV API service.
 */
#define PXENV_EXIT_SUCCESS 0x0000
#define PXENV_EXIT_FAILURE 0x0001

/* = */
/* Status codes returned in the status word of PXENV API parameter
 * structures. Some of these codes are also used to return status
 * from an NBP to the boot ROM. */

/* Generic API status & error codes that are reported by the loader */

#define PXENV_STATUS_SUCCESS 0x00
#define PXENV_STATUS_FAILURE 0x01
/* General failure. */

#define PXENV_STATUS_BAD_FUNC 0x02
/* Invalid function number. */

#define PXENV_STATUS_UNSUPPORTED 0x03
/* Function is not yet supported. */

#define PXENV_STATUS_KEEP_UNDI 0x04
/* UNDI must not be unloaded from base memory. */

#define PXENV_STATUS_KEEP_ALL 0x05

#define PXENV_STATUS_OUT_OF_RESOURCES 0x06
/* Base-code and UNDI must not be unloaded from base memory. */

/* ARP errors (0x10 to 0x1F) */
#define PXENV_STATUS_ARP_TIMEOUT 0x11

/* Base-Code state errors */
#define PXENV_STATUS_UDP_CLOSED 0x18
#define PXENV_STATUS_UDP_OPEN 0x19
#define PXENV_STATUS_TFTP_CLOSED 0x1A
#define PXENV_STATUS_TFTP_OPEN 0x1B

/* BIOS/system errors (0x20 to 0x2F) */
#define PXENV_STATUS_MCOPY_PROBLEM 0x20
#define PXENV_STATUS_BIS_INTEGRITY_FAILURE 0x21
#define PXENV_STATUS_BIS_VALIDATE_FAILURE 0x22
#define PXENV_STATUS_BIS_INIT_FAILURE 0x23
#define PXENV_STATUS_BIS_SHUTDOWN_FAILURE 0x24
#define PXENV_STATUS_BIS_GBOA_FAILURE 0x25
#define PXENV_STATUS_BIS_FREE_FAILURE 0x26
#define PXENV_STATUS_BIS_GSI_FAILURE 0x27
#define PXENV_STATUS_BIS_BAD_CKSUM 0x28

/* TFTP/MTFTP errors (0x30 to 0x3F) */
#define PXENV_STATUS_TFTP_CANNOT_ARP_ADDRESS 0x30
#define PXENV_STATUS_TFTP_OPEN_TIMEOUT 0x32

Preboot Execution Environment (PXE) Specification 70

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

#define PXENV_STATUS_TFTP_UNKNOWN_OPCODE 0x33
#define PXENV_STATUS_TFTP_READ_TIMEOUT 0x35
#define PXENV_STATUS_TFTP_ERROR_OPCODE 0x36
#define PXENV_STATUS_TFTP_CANNOT_OPEN_CONNECTION 0x38
#define PXENV_STATUS_TFTP_CANNOT_READ_FROM_CONNECTION 0x39
#define PXENV_STATUS_TFTP_TOO_MANY_PACKAGES 0x3A
#define PXENV_STATUS_TFTP_FILE_NOT_FOUND 0x3B
#define PXENV_STATUS_TFTP_ACCESS_VIOLATION 0x3C
#define PXENV_STATUS_TFTP_NO_MCAST_ADDRESS 0x3D
#define PXENV_STATUS_TFTP_NO_FILESIZE 0x3E
#define PXENV_STATUS_TFTP_INVALID_PACKET_SIZE 0x3F

/* Reserved errors 0x40 to 0x4F) */

/* DHCP/BOOTP errors (0x50 to 0x5F) */
#define PXENV_STATUS_DHCP_TIMEOUT 0x51
#define PXENV_STATUS_DHCP_NO_IP_ADDRESS 0x52
#define PXENV_STATUS_DHCP_NO_BOOTFILE_NAME 0x53
#define PXENV_STATUS_DHCP_BAD_IP_ADDRESS 0x54

/* Driver errors (0x60 to 0x6F) */
/* These errors are for UNDI compatible NIC drivers. */
#define PXENV_STATUS_UNDI_INVALID_FUNCTION 0x60
#define PXENV_STATUS_UNDI_MEDIATEST_FAILED 0x61
#define PXENV_STATUS_UNDI_CANNOT_INIT_NIC_FOR_MCAST 0x62
#define PXENV_STATUS_UNDI_CANNOT_INITIALIZE_NIC 0x63
#define PXENV_STATUS_UNDI_CANNOT_INITIALIZE_PHY 0x64
#define PXENV_STATUS_UNDI_CANNOT_READ_CONFIG_DATA 0x65
#define PXENV_STATUS_UNDI_CANNOT_READ_INIT_DATA 0x66
#define PXENV_STATUS_UNDI_BAD_MAC_ADDRESS 0x67
#define PXENV_STATUS_UNDI_BAD_EEPROM_CHECKSUM 0x68
#define PXENV_STATUS_UNDI_ERROR_SETTING_ISR 0x69
#define PXENV_STATUS_UNDI_INVALID_STATE 0x6A
#define PXENV_STATUS_UNDI_TRANSMIT_ERROR 0x6B
#define PXENV_STATUS_UNDI_INVALID_PARAMETER 0x6C

/* ROM and NBP Bootstrap errors (0x70 to 0x7F) */
#define PXENV_STATUS_BSTRAP_PROMPT_MENU 0x74
#define PXENV_STATUS_BSTRAP_MCAST_ADDR 0x76
#define PXENV_STATUS_BSTRAP_MISSING_LIST 0x77
#define PXENV_STATUS_BSTRAP_NO_RESPONSE 0x78
#define PXENV_STATUS_BSTRAP_FILE_TOO_BIG 0x79

/* Environment NBP errors (0x80 to 0x8F) */

/* Reserved errors (0x90 to 0x9F) */

/* Misc. errors (0xA0 to 0xAF) */
#define PXENV_STATUS_BINL_CANCELED_BY_KEYSTROKE 0xA0
#define PXENV_STATUS_BINL_NO_PXE_SERVER 0xA1
#define PXENV_STATUS_NOT_AVAILABLE_IN_PMODE 0xA2
#define PXENV_STATUS_NOT_AVAILABLE_IN_RMODE 0xA3

/* BUSD errors (0xB0 to 0xBF) */
#define PXENV_STATUS_BUSD_DEVICE_NOT_SUPPORTED 0xB0

/* Loader errors (0xC0 to 0xCF) */
#define PXENV_STATUS_LOADER_NO_FREE_BASE_MEMORY 0xC0
#define PXENV_STATUS_LOADER_NO_BC_ROMID 0xC1
#define PXENV_STATUS_LOADER_BAD_BC_ROMID 0xC2
#define PXENV_STATUS_LOADER_BAD_BC_RUNTIME_IMAGE 0xC3
#define PXENV_STATUS_LOADER_NO_UNDI_ROMID 0xC4
#define PXENV_STATUS_LOADER_BAD_UNDI_ROMID 0xC5
#define PXENV_STATUS_LOADER_BAD_UNDI_DRIVER_IMAGE 0xC6
#define PXENV_STATUS_LOADER_NO_PXE_STRUCT 0xC8
#define PXENV_STATUS_LOADER_NO_PXENV_STRUCT 0xC9
#define PXENV_STATUS_LOADER_UNDI_START 0xCA
#define PXENV_STATUS_LOADER_BC_START 0xCB

/* Vendor errors (0xD0 to 0xFF) */

Preboot Execution Environment (PXE) Specification 71

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

4. PXE Initial Program Load (IPL)

4.1 Overview

Understanding the Initial Program Load (IPL) process requires some background on the evolution of
Intel Processor Architecture because the IPL process has evolved and become more complex over
time. This section identifies the initial system architecture and the evolutionary steps related to IPL
that have occurred since the first IBM PC was introduced in 1981.

The original IBM PC used an Intel 8088 processor with a 20-bit addressable memory space or 1MB.
This processor uses a segmented architecture where a segment may begin on any 16-byte boundary.
To reach a particular memory location requires two 16-bit registers within the processor: a segment
register and an offset register. The segment register is set to the upper 16-bits of a 20-bit address and
the offset register is used to access anywhere within a 64KB address range from the base address set
by the segment register.

The 1MB address space is also subdivided into several functional areas. When an x86 processor is
reset, it begins execution 16 bytes from the top of memory. To handle reset vectoring, a ROM-based
Basic Input Output System or BIOS is placed at the top of memory. Since the BIOS is typically in
Read-Only Memory it is often referred to as ROM BIOS. The BIOS provides a standard software
interface to system hardware and Power On Self Test or POST processing. Initially, the top 64KB
were reserved for the BIOS.

The first 1KB of address space is used as vectors for the 256 levels of interrupts supported by Intel
x86 processors. Several of these vectors are used for traditional hardware event notification. The x86
processor also supports the concept of a software interrupt invoked explicitly by the software INT
instruction.

The software interrupt feature permits a process in one area of memory to invoke a second process in
another area without having to know the address of the second process. In addition, if the second
process performs a well-defined function, another process may replace the interrupt vector with the
address of a local routine to filter or completely replace the first process. The ROM BIOS uses
software interrupts as the method for entering most BIOS-provided services.

After power-on or reset, the ROM BIOS POST process first initializes BIOS-aware system hardware
to a known state. POST also establishes a number of system interrupt vectors, both hardware and
software. The software vectors serve as a means of invoking BIOS services using the INT instruction.

After the interrupt vectors, the rest of the lower 640KBof address space is typically used for BIOS
scratch pad storage, the operating system and temporary program space. The next 128KB are set
aside for memory mapped video buffers. The remaining address space below the ROM BIOS and
above the video buffers was initially reserved for the use of Option ROMs. Over time this area has
come to be called Upper Memory.

An Option ROM is used to extend the services or capabilities of the BIOS prior to IPL. It is the only
way, other than directly modifying the BIOS, that new devices may be added to the IPL process.
During POST, the BIOS scans the Upper Memory area for Option ROMs that have been mapped into

Preboot Execution Environment (PXE) Specification 72

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

this space by adapter cards plugged into a system expansion bus. A valid Option ROM begins on a
2KB boundary and contains a data structure with a signature, the length of the Option ROM and an
entry point for initialization code.

If a valid Option ROM is located by the BIOS, the ROM’s initialization code is invoked. Option
ROMs replace or filter standard BIOS services by replacing the BIOS initialized interrupt vectors.

The original IPL sources for the first Intel architecture system (the IBM PC) included cassette tape
and floppy drives. Fixed disks were added to the standard IPL process with the introduction of the
IBM XT, though several vendors had previously provided proprietary approaches. The IBM XT used
an Option ROM on the fixed disk controller to re-vector the diskette support routine in the BIOS and
install additional routines for supporting partitioned fixed disk drives. Within the IBM definition of
IPL, only the first floppy drive or the first fixed drive was bootable.

The IBM AT followed the IBM XT. The IBM AT introduced a new Intel processor, the 80286. This
processor was backward compatible with the 8086 when operated in what was called real mode. Real
mode was the default mode when the processor was reset or first powered-on. The 80286 also offered
an additional mode of operation called protected mode. Protected mode expanded the addressable
memory space to 24 bits or 16MB. Support for protected mode on the 80286 was limited, but it did
allow simple storage of data above 1 megabyte in what was termed extended memory. Routines
added to the ROM BIOS and still available today provide simple methods to access Extended
Memory.

Subsequent Intel Architecture systems have added more powerful processors with even larger
address spaces of 32 bits or 4GB and new modes of operation. However, for backward compatibility,
real mode continues to be used for IPL.

Until the widespread acceptance of Windows, most operating systems also continued to use real
mode. This meant most applications were limited to the amount of system memory left after loading
the operating system and any additional device drivers into System Memory. As the operating system
and associated device drivers became more complex they required more System Memory. To relieve
what came to be called RAM cram, the Upper Memory area became the location where hardware
“windows” were created to bank switch Expansion Memory, really an entirely separate address
space, into the 1 megabyte address space of real mode. Initially, this required special hardware and
worked best for data storage. As the technology evolved, Expansion Memory began to be used to
store executable programs, especially device drivers that had been taking up precious system
memory.

At some point, system vendors realized that copying Option ROMs into RAM improved overall
system performance. This was due to the fact that the access speed for RAM devices was much faster
than ROM devices. So ROM BIOS was again extended, this time to copy Option ROMs into special
Shadow RAM that was then mapped over the Option ROM. After copying, the Shadow RAM was
write-protected to make sure it exhibited the same characteristics as the original Option ROM.

It became apparent that Shadow RAM could also be used to provide some of the same benefits of
Expansion Memory. In particular, if Shadow RAM was mapped into a vacant Upper Memory space,
the same device drivers previously moved into Expansion Memory could be moved into Shadow
RAM without requiring the specialized Expansion Memory hardware.

At the same time systems were increasing in memory size and processor speed, more and faster
peripherals were being added and the expansion bus was becoming a limiting factor for system
performance. The speed of the initial Industry Standard Architecture or ISA bus was increased from
4.77 MHz to 6 MHz and beyond and then replaced or augmented by a range of buses known as Micro

Preboot Execution Environment (PXE) Specification 73

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Channel, EISA and VESA. Though these expansion busses may have been electrically different, the
IPL process remained the same, until the Peripheral Component Interconnect or PCI bus.

The PCI bus affected IPL in two ways. First, Option ROMs were no longer hardware-mapped into
the Upper Memory area. Instead, Option ROM images on PCI cards were copied into Shadow RAM
for initialization. This allowed the image copied into Shadow RAM to shrink by discarding
initialization code after initialization. The initialization code simply updates the length in the Option
ROM header also copied into Shadow RAM. The BIOS POST also provided bus specific information
about the device to the initialization code. This allowed multiple devices of the same type to be
resident in the system, each with their own Option ROM support.

The [PnP] Specification also defines a method for Option ROMs on non-PCI devices to indicate they
support being copied into Shadow RAM in Upper Memory. The Device Driver Interface Module
(DDIM) is a single page at the end of the [PnP] specification that describes how an Option ROM can
identify this capability.

The second way the PCI bus affected IPL was the corresponding [PnP] Specification. This
specification defined Plug and Play headers in the Option ROM. These headers provide additional
information that includes IPL-related information. In particular, there are two fields that contain
pointers to special extended initialization routines:

! Boot Connection Vector (BCV)
! Bootstrap Entry Vector (BEV)

The BCV is used for devices that replace or supplement the BIOS disk IPL services to be a bootable
device. The BEV is used for devices that have an alternative IPL method not related to the BIOS disk
services. Thus, PCI and the Plug and Play BIOS specification provided some of the initial framework
required to organize bootable devices. In 1996, Compaq, Intel and Phoenix introduced the [BBS]
Specification. The [BBS] uses information from the multiple specifications related to IPL and
attempts to present a unified definition for BIOS Boot technology. The [BBS] identifies different
categories of boot devices:

! BIOS Aware IPL Devices (BAID)
! Boot Connection Vector (BCV) devices
! Bootstrap Entry Vector (BEV) devices

The BIOS maintains an IPL Table listing all of the possible IPL sources. BIOS Aware IPL Devices
have all the code necessary to perform IPL resident in the system BIOS. BAID devices include
floppy or fixed drives.

BCV and BEV devices use Option ROMs associated with the IPL device to extend the IPL Table.
These Option ROMs may be resident on the associated device or in non-volatile storage on the
motherboard. PXE is implemented as a BEV device.

The BIOS adds IPL devices to the BBS IPL Table already containing the BAIDs. These devices are
identified during the BIOS Option ROM scan process. If the device hardware is detected and the rest
of Option ROM initialization is successful (in other words, the Option ROM initialization code and
loader code are placed in upper memory), control is returned to the BIOS indicating the Option ROM
manages an IPL device. Within the ROM, a Plug and Play Expansion header will be present for each
bootable device supported by the Option ROM. Each PnP Expansion header for a PXE IPL device
will have a non-zero BEV.

Once Option ROM scan is complete, the BIOS builds a list of bootable devices using the information
obtained during the scan. According to the [BBS], the priority list for these devices is established by
the enduser through BIOS setup.

Preboot Execution Environment (PXE) Specification 74

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

4.2 PXE Split ROM Architecture

Prior to this specification, all PXE Option ROMs were implemented as a monolithic Option ROM
with an option ROM header that encapsulates three components (see Figure 4-1). However, there are
a number of advantages to implementing each component separately and providing a method for the
components to find each other and bind at run time. (This type of implementation is an
implementation of the PXE Split ROM Architecture.)

The first advantage of separating the ROM components is that through re-use of common
components it is possible for a platform to support more than one PXE device without linearly
increasing the code storage requirements for each new device.

Monolithic
PXE

(~ 29K)

0xAAh, 0x55h

PXE
Base Code

(~ 15K)

PXE
NIC Specific

Code
(~ 9K)

PXE
PCI

Init & Loader
Code
(~ 6K)

0xAAh, 0x55h

Figure 4-1 Pre-Split ROM PXE Architecture

Second, by providing access to the NIC specific code (the UNDI driver) by breaking out the code and
allowing it to be loaded independently from the other components, the BIOS may make direct use of
the Network Interface for sending alerts.

Finally, implementing the components separately allows the UNDI driver to be carried on the NIC,
while the BIOS can supply the Base-Code. Figure 4-2 illustrates this implementation.

The PXE Split ROM Architecture specifies three different Option ROMs that work cooperatively to
create a working PXE that supports one or more network interfaces. The three Option ROMs are, the
Base-Code ROM (BC ROM), the UNDI ROM, and the BUSD ROM.

The Base-Code Option ROM is common code to support one or more instances of the other ROMs.
The BC ROM provides the protocol stack in addition to various loader and initialization code. A
Base-Code ROM is required.

The UNDI ROM provides the network interface specific code. An UNDI ROM is specific to
particular network interface hardware. UNDI provides a set of APIs that allow the remotely booted
program to use universal protocol drivers. (A universal protocol driver is a driver written to interface
to the UNDI API.) A system must contain at least one (but may contain several) UNDI ROMs, where
each ROM would support one network interface.

Preboot Execution Environment (PXE) Specification 75

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

The BUSD ROM provides bus support for CardBus-based network interface cards. BUSD is only
required if supporting CardBus. Unlike the Base-Code and UNDI ROMs, BUSD’s call mechanism
must be added to the BIOS.

UNDI Option ROMs
The top portion of these ROMs is
static and must reside within the
memory defined in the option ROM
header.

Base-code
option ROM.

BC Runtime
(~15K)

0xAAh, 0x55h
Offset of ROMID

'BC' ROMID
BC Loader

BC Initialize

UNDI
HeaderStruct

Pointers

UNDI
Header Struct

Pointers

Base-code
Header

StructuresStructures

" 0xAAh, 0x55h
" Offset of ROMID
" Offset of $PnP

" $PnP Struct
" 'UNDI' ROMID Struct

" UNDI Loader Code
" UNDI Init Code

UNDI IPL Routine

UNDI Driver
(~9K)

" 0xAAh, 0x55h
" Offset of ROMID

" 'BUSD' ROMID
Struct

" BUSD Init Code

BUSD API
(~1K)

" 0xAAh, 0x55h
" Offset of ROMID
" Offset of $PnP

" $PnP Struct
" 'UNDI' ROMID Struct

" UNDI Loader Code
" UNDI Init Code

UNDI IPL Routine

UNDI Driver
(~9K)

BUSD
Option
ROM

BUSD
Header

Structure

Figure 4-2 Split Base Code and UNDI Code

4.3 PXE Option ROM Components

There are several required ROM components that a compliant PXE Option ROM must have to
guarantee the ability to boot in the PXE environment.

4.3.1 Option ROM header

A compliant PXE Option ROM header contains a pointer to a PXE ROM ID structure at offset 16h
as depicted in Table 4-1.

Preboot Execution Environment (PXE) Specification 76

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Table 4-1 Option ROM Header for PXE ROMs

Offset Size Name Contents

00h 02h Signature PC/AT option ROM signature. 55h, 0AAh

02h 01h ROMLength Size of this Option ROM is 512-byte blocks

03h 04h InitEntryPointer Initialization entry point for all implementations. This is usually
a jump to the initialization routine.

07h 15h Reserved Varies

16h 02h PXEROMID Offset of the PXE ROM ID Structure for this PXE Split Option
ROM. BC, UNDI, BUSD ROM structures are defined in the
specification. If this is not a split ROM implementation then this
field is zero.

18h 02h PCIRHeader Offset of the PCI Expansion Header

1Ah 02h PnPHeader Offset of the Plug and Play Expansion Header.

4.3.2 Initialization Routine

For option ROMs that are also boot ROMs, the initialization routine is responsible for registering the
IPL routine with the system BIOS. The initialization routine is also used to prepare the UMB and
save initialization parameters for later use.

4.3.3 IPL Routine

UNDI option ROMs have an IPL routine. The IPL routine is registered with the PXE-compliant
BIOS by an offset in the PnP expansion header. Information about the PnP expansion header contents
can be found in [PnP] and [BBS].

4.3.4 Loader Routine

UNDI split ROMs must have a loader routine that will install the UNDI driver into base memory so it
can be used.

Base-Code split ROMs must have a loader routine that will allocate base memory, call the UNDI
loader routine, install the base-code runtime into base memory and start the UNDI driver and base-
code runtime.

4.3.5 UNDI Driver

The UNDI driver may be included within the memory defined by the option ROM header.

An UNDI driver must be capable of executing in real mode and 16:16 protected mode with 16-bit
(SP) or 32-bit (ESP) stack segments. Separate entry points for 16-bit and 32-bit stack segments are
defined in the !PXE structure.

UNDI driver API specifications, parameter passing and status/result codes are covered in other
sections in this document

4.4 PXE Boot Sequence

Figure 4-3 provides a flowchart outlining the system boot timeline. This is followed by detailed
information about the flowchart.

Preboot Execution Environment (PXE) Specification 77

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Remote.1

Base-Code Runtime

BC Loader (UMB portion of Base-Code)

UNDI IPL
(Initial Program Load)

Option ROM
Scan and Init

Power-On

UNDI ROM
Scan & Init

Install & Start
Base-Code

Start UNDI

Switch to PXE
CPU Stack

Base Memory
Allocation

Scan UMB for BC
Loader

Call UNDI IPL

BBS must be supported in a PXE
compliant BIOS.

All PXE UNDIs are IPL devices.

UNDI & BUSD option ROM initialization code does
not know if there will be a Base-Code at this time.

UNDI Boot code scans UMB for the PXE Loader
portion of the Base-Code option ROM.
UNDI may use its own Base-Code if it has one.
Offset 16h in a Base-Code option ROM will point
at the Base-Code ROM ID structure.
If no Base-Code ROM is found, UNDI device fails
the boot and returns control to the BIOS.

Compute amount of memory needed
to install & start Base-Code & UNDI.

Save BIOS CPU stack so control can
be returned if remote boot fails.

PXENV_START_UNDI

PXENV_START_BASE

Restore BIOS
CPU Stack

Stop & Remove
UNDI

Stop & Remove
Base-Code

Return Control to BIOS

CardBus ROM
Scan & Init
(Optional)

Base-Code (BC)
ROM Scan & Init

Call BC Loader

UNDI option ROMs for CardBus devices are
installed into UMB just like PCI option ROMs.

CardBus option ROM will be left in
UMB to provide bridge enable/
disable code to UNDI.

This scan installs the Base-Code option ROM
from the system BIOS ROM. Init places the PXE
Loader portion in UMB and the Runtime portion in
PMM (if available)
Base-Code is not an IPL device.

PXE Loader portion of Base-Code
option ROM will be left in UMB to
provide common boot code used by
UNDIs.

UNDI passes pointer to its ROM ID structure to the
PXE Loader portion of the Base-Code.

PXENV_STOP_BASE

PXENV_STOP_UNDI

BC Loader uses the information in the ROM ID
structures to compute how much memory is
needed.

Use the larger of the stack segment sizes from the
ROM ID structures.

Fill memory with zero before increasing free base
memory size.

Fill memory with zero before increasing base
memory size.

Installation is done by UNDI Loader in the
UNDI UMB image.

DHCP

UNDI H/W init &
enable Interrupt
Service Routine

(ISR)

Discover
Remote.0

Start BStrap.0
Select Remote.0

Discover &
MTFTP Bstrap.0

Download & Call
Remote.0

UNDI H/W init
& enable ISR

Start
Remote.1

Booted

BStrap.0
If needed or
requested

Graceful Failure Path

Call UNDI Loader

Stop &
Remove BUSD

BUSD_DISABLE

Install & Start
BUSD

BUSD_ENABLE

Call Base-Code

Remote.0

Downloaded
to 0:7C00h

Remove UNDI

Remove &
Stop Base-

Code

Execute
Remote.0.
Discover &

MTFTP Remote.1

PXENV_STOP_BASE

PXENV_UNLOAD_STACK

If UNDI is removed,
then Remote.1 will not

be able to use it.

Stop UNDIPXENV_STOP_UNDI

PXENV_RESTART
_TFTP

Base-Code will push a 32bit far
pointer to the !PXE structure and load
ES:BX with the address of the
PXENV+ structure before making a far
call to Remote.0 at 0:7C00h.

Installation
Check

Before the remaining
PXE APIs can be used,
the API entry point must
be found. If UNDI has
not been stopped, Int
1Ah function 5650h may
be used. If UNDI has
been stopped, scan the
top of base memory for
the !PXE structure.

Use PXENV_UNDI
_GET_INFORMATION
to get the IRQ number.
Make calls to
PXENV_UNDI_ISR to
handle the interrupts.

Stop &
Remove BUSD

BUSD_DISABLE

"Dashed" boxes indicate
optional operations

Figure 4-3 PXE IPL

4.4.1 Option ROM Scan and Initialization

Remembering that PXE option ROMs require the video subsystem to be initialized first, the system
memory map is shown in Table 4-2 at this point.

Preboot Execution Environment (PXE) Specification 78

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Table 4-2 Memory Map after video initialization

Base Memory Address Length Description
0h 400h Interrupt vector table

400h 100h System BIOS data segment
(FBM is in number of K and stored in a 16-bit word in the BIOS
data segment at 40:13h)

500h Variable Free base memory (portions may be used by system BIOS)

9F800h Variable Extended BIOS data area
(Not all BIOSes have this. Those that do, have 1K or 2K of data)

Upper Memory Address Length Description
A0000h 20000h Video RAM (typical)

C0000h 8000h Video ROM (typical)

C8000h Variable Option ROMs and upper memory

E0000h 10000h System BIOS (Some BIOSes have 128K of code/data)

F0000h 10000h System BIOS

Extended Memory
Address

Length Description

100000h Variable Free extended memory (portions may be used by system BIOS)

4.4.1.1 UNDI ROM Scan & Init

The BIOS must call the UNDI option ROM initialization routine (offset 03h of the ROM) after the
ROM has been discovered in, or transferred to, upper memory (UMB). The BIOS must pass
initialization parameters (AX, BX, DX, ES:DI) describing the location of the device in the host
system. Refer to [BBS], [PnP] & [PCI] for detailed information on these parameter registers.

The following flowchart provides a guideline for writing an UNDI option ROM initialization routine.
It deals with how the initialization routine should try to detect installed BC runtime images and
which portions of the UNDI should be removed from upper memory before returning control to the
system BIOS.

Preboot Execution Environment (PXE) Specification 79

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

UNDI Option
ROM Init

Save parameter
registers for IPL.

IPL Registration

Conserve UMB

Return control
to BIOS

What is saved (or needs to be saved) here depends on the
hardware being controlled by the UNDI. For PnP, PCI and
CardBus devices, the parameter registers (AX, BX, DX, DI
& ES) must be saved so they can be used during IPL.

If the BIOS and UNDI option ROM support DDIM, the
initialization code should be removed from upper memory.

If the BIOS supports PMM and the UNDI runtime image is
in UMB, the runtime image must be relocated to extended
memory.

Refer to the [BBS] for information on registering an option
ROM as an IPL device.

Checkpoints:

" Offset 0x16 of the option ROM header contains the
offset of the UNDI ROM ID structure.

" The UNDI ROM ID structure contains the offset of
the installation procedure.

" The UNDI installation procedure knows how to load
the UNDI into base memory.

Figure 4-4 UNDI Option ROM Initialization

Table 4-3 Memory Map after UNDI ROM Transferred to UMB from BIOS ROM

Base Memory
Address

Length Description

0h 400h Interrupt vector table

400h 100h System BIOS data segment
(FBM is in number of K and stored in a 16-bit word at 04:13h)

500h Variable Free base memory (portions may be used by system BIOS)

9F800h Variable Extended BIOS data area
(Not all BIOSes have this. Those that do, have 1K or 2K of data)

Upper Memory
Address

Length Description

A0000h 20000h Video RAM (typical)

C0000h 8000h Video ROM (typical)

C8000h 4000h UNDI ROM (Init, IPL, Loader, Driver)

CC000h Variable Option ROMs and upper memory

E0000h 10000h System BIOS (Some BIOSes have 128K of code/data)

F0000h 10000h System BIOS

Extended Memory
Address

Length Description

100000h Variable Free extended memory (portions may be used by system BIOS)

Preboot Execution Environment (PXE) Specification 80

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Table 4-4 Memory Map after UNDI ROM Initialized

Base Memory
Address

Length Description

0h 400h Interrupt vector table

400h 100h System BIOS data segment
(FBM is in number of K and stored in a 16-bit word at 04:13h)

500h Variable Free base memory (portions may be used by system BIOS)

9F800h Variable Extended BIOS data area
(Not all BIOSes have this. Those that do, have 1K or 2K of data)

Upper Memory
Address

Length Description

A0000h 20000h Video RAM (typical)

C0000h 8000h Video ROM (typical)

C8000h 800h UNDI ROM (IPL, Loader)

C8800h Variable Option ROMs and upper memory

E0000h 10000h System BIOS (Some BIOSes have 128K of code/data)

F0000h 10000h System BIOS

Extended Memory
Address

Length Description

PMM+x 4000h UNDI (Driver)

100000h Variable Free extended memory (portions may be used by system BIOS)

4.4.1.2 CardBus ROM Scan & Init

During CardBus option ROM scan, all CardBus bridges are configured and initialized. After the
bridges are configured, boot devices with UNDI option ROMs are discovered and initialized. These
UNDI ROMs should be installed into upper memory and initialized. If no CardBus devices with
UNDI ROMs are discovered during the scan, the CardBus bridge configuration must be returned to
its normal BIOS initialization state.

If the Host System has native support for the BUSD devices and at least one device is discovered, a
BUSD ROM ID structure must be placed in UMB space to publish the BUSD EntryPoint address.
The BUSD ROM ID structure is only needed if the bus containing the network devices needs to be
enabled for the UNDI (and/or base-code) to remote boot. If the UNDI and/or base-code can not find
the BUSD ROM ID structure after scanning the UMB, it should assume the bus is enabled by the
system BIOS. Note that in this case the BUSD ROM APIs (BUSD_ENABLE/BUSD_DISABLE) are
unavailable.

If the Host System utilizes a BUSD driver to initialize and discover BUSD PXE capable devices, the
BUSD driver may be copied to UMB space. The Host System will call the Initialization Vector at
offset [3] to perform initialization and discovery of devices. Following successful discovery of at
least one device, the BUSD initialization code should be discarded, leaving the BUSD ROM ID
structure with BUSD API entry point in UMB space.

Preboot Execution Environment (PXE) Specification 81

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Table 4-5 Memory Map after BUSD ROM Transferred to UMB from BIOS ROM

Base Memory
Address

Length Description

0h 400h Interrupt vector table

400h 100h System BIOS data segment
(FBM is in number of K and stored in a 16-bit word at 40:13h)

500h Variable Free base memory (portions may be used by system BIOS)

9F800h Variable Extended BIOS data area
(Not all BIOSes have this. Those that do, have 1K or 2K of data)

Upper Memory
Address

Length Description

A0000h 20000h Video RAM (typical)

C0000h 8000h Video ROM (typical)

C8000h 800h UNDI ROM (IPL, Loader)

C8800h 8000h BUSD ROM (Initialize,API)

D0800h Variable Option ROMs and upper memory

E0000h 10000h System BIOS (Some BIOSes have 128K of code/data)

F0000h 10000h System BIOS

Extended Memory
Address

Length Description

PMM+x 4000h UNDI (Driver)

100000h Variable Free extended memory (portions may be used by system BIOS)

Table 4-6 Memory Map after BUSD ROM Initialized

Base Memory
Address

Length Description

0h 400h Interrupt vector table

400h 100h System BIOS data segment
(FBM is in number of K and stored in a 16-bit word at 04:13h)

500h Variable Free base memory (portions may be used by system BIOS)

9F800h Variable Extended BIOS data area
(Not all BIOSes have this. Those that do, have 1K or 2K of data)

Upper Memory
Address

Length Description

A0000h 20000h Video RAM (typical)

C0000h 8000h Video ROM (typical)

C8800h 800h BUSD ROM (API)

C9000h Variable Option ROMs and upper memory

E0000h 10000h System BIOS (Some BIOSes have 128K of code/data)

F0000h 10000h System BIOS

Extended Memory
Address

Length Description

PMM+x 4000h UNDI (Driver)

100000h Variable Free extended memory (portions may be used by system BIOS)

4.4.1.3 BC ROM Scan & Init

PXE-compliant BIOSes, with built in NICs, contain an embedded BC option ROM in the BIOS ROM
(similar to built in video and SCSI option ROMs). This BC option ROM is not associated with any

Preboot Execution Environment (PXE) Specification 82

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

hardware. It is to be transferred to UMB and initialized. The BC option ROM requires DDIM
support.

Table 4-7 Memory Map after BC ROM Transferred to UMB from BIOS ROM

Base Memory
Address

Length Description

0h 400h Interrupt vector table

400h 100h System BIOS data segment
(FBM is in number of K and stored in a 16-bit word at 40:13h)

500h Variable Free base memory (portions may be used by system BIOS)

9F800h Variable Extended BIOS data area
(Not all BIOSes have this. Those that do, have 1K or 2K of data)

Upper Memory
Address

Length Description

A0000h 20000h Video RAM (typical)

C0000h 8000h Video ROM (typical)

C8000h 800h UNDI ROM (IPL, Loader)

C8800h 800h BUSD ROM (API)

C9000h 8000h BC ROM (Initialize, Loader, Runtime)

D1000h Variable Option ROMs and upper memory

E0000h 10000h System BIOS (Some BIOSes have 128K of code/data)

F0000h 10000h System BIOS

Extended Memory
Address

Length Description

PMM+x 4000h UNDI (Driver)

100000h Variable Free extended memory (portions may be used by system BIOS)

The flowchart in Figure 4-5 illustrates how a BC option ROM should initialize and install the BC
runtime image and Loader code.

Base-Code
Option ROM Init

Return control
to BIOS

Checkpoints:

" Offset 0x16 of the option ROM header contains
the offset of the Base-Code ROM ID structure.

" The Base-Code ROM ID structure contains the
offset of the installation procedure.

" The installation procedure knows how to load
the Base-Code into base memory.

Conserve UMB

If the BIOS and Base-Code option ROM support
DDIM, the initialization code should be removed from
upper memory.

If the BIOS supports PMM and the Base-Code
runtime image is in UMB, the runtime image must be
relocated to extended memory.

Place BC Loader
portion in UMB

Place Base-Code
Runtime in PMM

if available

Figure 4-5 Base-Code Option ROM Initialization

Preboot Execution Environment (PXE) Specification 83

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Table 4-8 Memory Map after BC Option ROM Initialized

Base Memory
Address

Length Description

0h 400h Interrupt vector table

400h 100h System BIOS data segment
(FBM is in number of K and stored in a 16-bit word at 04:13h)

500h Variable Free base memory (portions may be used by system BIOS)

9F800h Variable Extended BIOS data area
(Not all BIOSes have this. Those that do, have 1K or 2K of data)

Upper Memory
Address

Length Description

A0000h 20000h Video RAM (typical)

C0000h 8000h Video ROM (typical)

C8000h 800h UNDI ROM (IPL, Loader)

C8800h 800h BUSD ROM (API)

C9000h 800h BC ROM (Loader)

C9800h Variable Option ROMs and upper memory

E0000h 10000h System BIOS (Some BIOSes have 128K of code/data)

F0000h 10000h System BIOS

Extended Memory
Address

Length Description

PMM+x 4000h UNDI (Driver)

PMM+y 8000h BC (Runtime)

100000h Variable Free extended memory (portions may be used by system BIOS)

4.4.1.4 IPL Selection

Please refer to [BBS], [PnP] and [PCI] specifications for information on IPL selection.

4.4.2 UNDI Initial Program Load (IPL)

4.4.2.1 Scan UMB for BC Loader Routine

When an UNDI option ROM is selected as a Boot device, and it does not have a BC runtime of its
own, it scans UMB for a Base-Code option ROM. Checking the 16-bit word at offset 16h of valid
option ROMs does this. In BC option ROM this 16-bit word is an offset to the BC ROM ID structure.

Preboot Execution Environment (PXE) Specification 84

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

UNDI Boot

BC and UNDI ROMs have been initialized (scanned) by
system BIOS. An UNDI ROM was selected to be the boot
device.

Call BC Loader

Call
BUSD_ENABLE

If UNDI does not have its own BC, scan UMB for BC
ROM ID structure. Validate the BC ROM ID structure
before calling the BC loader.

UNDI ROM boot code must scan UMB for a BUSD ROM
ID structure with a matching bus ID string. If one is found,
UNDI must call the BUSD_ENABLE

Scan UMB for
matching BUSD

ROM ID structure

Scan memory from 0xC0000 to 0xF0000 for valid option
ROMs. Look inside each option ROM for a BUSD ROM ID
structure. Compare bus list at end of BUSD ROM ID
structure against bus list in UNDI ROM ID structure.

Was matching
BUSD found?

Yes

No

Return from BC
Loader

This will happen if the remote boot fails or the return is
forced by a NBP.

Was matching
BUSD found?

Call
BUSD_DISABLE

Clean up

Return control
to BIOS

Yes

No

Restore size of free base memory (if possible).

Preboot Execution Environment (PXE) Specification 85

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Figure 4-6 UNDI Option ROM Boot

4.4.2.2 Enable BUSD

If the IPL device requires BUSD support, it scans UMB for the BUSD ROM ID Structure and calls
the Enable functionality.

4.4.2.3 Call BC Loader Routine

When a valid BC ROM ID structure is found, the UNDI IPL routine will push the segment:offset
address of its ROM ID structure and the initialization parameter registers onto the stack and make a
far call to the BC loader routine.

4.4.2.4 Disable BUSD

If the IPL device requires BUSD support, it scans UMB for the BUSD ROM ID Structure and calls
the Disable functionality.

4.4.3 BC Loader Routine

The BC ROM ID structure is in the Base-Code option ROM in UMB. The offset of this structure is
stored in the 16-bit word at offset 0x16 of the BC option ROM header. Before information in this
structure is used by the UNDI IPL routine, the signature, length, revision and checksum must be
validated.

4.4.3.1 Base Memory Allocation

Using the runtime size information from the BC and UNDI ROM ID structures, the BC loader
routine computes how much memory is needed for the runtime code, data and stack segments. It then
allocates enough free base memory by reducing the free base memory size (FBMS). (FBMS is a 16-
bit word, at 40:13h, in the BIOS data segment, that contains the amount of free base memory in
Kbytes.)

4.4.3.2 Switch to Runtime CPU Stack

When base memory is allocated and partitioned, BC switches to the runtime CPU stack, saving the
location of the BIOS CPU stack.

4.4.3.3 Install & Start UNDI Driver

When the runtime CPU stack is ready, the segment addresses of the UNDI code and data segments
are pushed onto the stack and the UNDI loader routine is called. If UNDI load completes successfully
(AX == zero == success), PXENV_START_UNDI is called.

4.4.3.4 Install & Start BC

After UNDI is loaded and started, the Base-Code loader routine loads the Base-Code code and data
segments and calls PXENV_START_BASE.

Preboot Execution Environment (PXE) Specification 86

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

4.4.4 BC Runtime

Table 4-9 Memory Map after PXE BC Runtime Loaded

Base Memory
Address

Length Description

0h 400h Interrupt vector table

400h 100h System BIOS data segment
(FBM is in number of K and stored in a 16-bit word at 04:13h)

500h Variable Free base memory (portions may be used by system BIOS)

8D000h 800h PXE CPU Stack

8D800h 4000h BC Data Segment

91800h 6000h BC Code Segment

97800h 4000h UNDI Data Segment

9B800h 4000h UNDI Code Segment

9F800h Variable Extended BIOS data area
(Not all BIOSes have this. Those that do, have 1K or 2K of data)

Upper Memory
Address

Length Description

A0000h 20000h Video RAM (typical)

C0000h 8000h Video ROM (typical)

C8000h 800h UNDI ROM (IPL, Loader)

C8800h 800h Base-Code ROM (Loader)

C9000h Variable Option ROMs and upper memory

E0000h 10000h System BIOS (Some BIOSes have 128K of code/data)

F0000h 10000h System BIOS

Extended Memory
Address

Length Description

PMM+x 4000h UNDI (Driver)

PMM+y 8000h BC (Runtime)

100000h Variable Free extended memory (portions may be used by system BIOS)

4.4.5 Client State at Bootstrap Execution Time (Remote.0)

The entire remote boot NBP is downloaded into base memory starting at location 0:7C00h. The PXE

ROM code must then transfer control to the NBP by executing a far call to the beginning of the NBP.
On entry to the NBP:

! CS:IP must contain the value 0:7C00h.
! ES:BX must contain the address of the PXENV+ structure.
! SS:[SP+4] must contain the segment:offset address of the !PXE structure.
! EDX is no longer used.
! SS:SP is to contain the address of the beginning of the unused portion of the PXE services

stack.
! There must be at least 1.5KB of free stack space for the NBP.

The NBP may abort the network boot by returning control to the boot ROM. The boot ROM may
remove all, some, or none of the PXE modules that have been loaded into base memory.

Listed below are three scenarios for API availability after the network boot is aborted. In each case,
control is passed back to the BIOS which attempts to boot the next device in the BIOS boot order list.
The next bootstrap program may make use of whichever PXE APIs have been left in memory.

Preboot Execution Environment (PXE) Specification 87

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

The three possibilities for PXE API combinations left in memory are:

! Base-Code and UNDI are instructed to be removed from base memory. In this case, the NBP
has returned AX == PXENV_STATUS_SUCCESS.

! Base-Code is instructed to be removed, but UNDI is to be kept in base memory. In this case,
the NBP returned AX == PXENV_STATUS_KEEP_UNDI.

! Base-Code and UNDI are instructed to be kept in base memory. In this case, the NBP returned
AX == PXENV_STATUS_KEEP_ALL.

! Any other value in AX is the same as PXENV_STATUS_SUCCESS.
The initial Network Bootstrap Program (NBP) size should not exceed 32KB. While it is possible to
download a larger program as the initial NBP, the 32K size limit provides the advantage of being
able to clean up and fail gracefully if it is determined the system is not adequate for the intended
application or OS image. For example, when remote booting an operating system, it is strongly
recommended that the load be broken into at least two files, where the first executable is not larger
than 32K. It should be the purpose of this executable to determine whether the client system has
adequate resources to successfully boot the OS in question. If not, this executable should fail the
boot.

This memory map shows the NBP “Remote.0” being loaded into memory (and some memory being
reserved for a subsequent remote DOS boot [“Remote.1”]).

Preboot Execution Environment (PXE) Specification 88

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Table 4-10 Memory Map after REMOTE.0 Downloaded

Base Memory
Address

Length Description

0h 400h Interrupt vector table

400h 100h System BIOS data segment
(FBM is in number of K and stored in a 16-bit word at 04:13h)

500h 7700h Reserved

7C00h 8400h REMOTE.0 (code & data)

10000h Variable Free base memory (portions may be used by system BIOS)

8D000h 800h PXE CPU Stack

8D800h 4000h BC Data Segment

91800h 6000h BC Code Segment

97800h 4000h UNDI Data Segment

9B800h 4000h UNDI Code Segment

9F800h Variable Extended BIOS data area
(Not all BIOSes have this. Those that do, have 1K or 2K of data)

Upper Memory
Address

Length Description

A0000h 20000h Video RAM (typical)

C0000h 8000h Video ROM (typical)

C8000h 800h UNDI ROM (IPL, Loader)

C8800h 800h BUSD ROM (API)

C9000h 800h BC ROM (Loader)

C9800h Variable Option ROMs and upper memory

E0000h 10000h System BIOS (Some BIOSes have 128K of code/data)

F0000h 10000h System BIOS

Extended Memory
Address

Length Description

PMM+x 4000h UNDI (Driver)

PMM+y 8000h Base-Code (Runtime)

100000h Variable Free extended memory (portions may be used by system BIOS)

Preboot Execution Environment (PXE) Specification 89

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

4.4.6 Client State at Bootstrap Execution Time (Remote.1)

Table 4-11 Memory Map after REMOTE.1 Downloaded

Base Memory
Address

Length Description

0h 400h Interrupt vector table

400h 100h System BIOS data segment
(FBM is in number of K and stored in a 16-bit word at 04:13h)

500h 7700h Reserved

7C00h 8400h REMOTE.0 (code & data)

10000h Variable Free base memory (portions may be used by system BIOS)

8D000h 800h PXE CPU Stack

8D800h 4000h BC Data Segment

91800h 6000h BC Code Segment

97800h 4000h UNDI Data Segment

9B800h 4000h UNDI Code Segment

9F800h Variable Extended BIOS data area
(Not all BIOSes have this. Those that do, have 1K or 2K of data)

Upper Memory
Address

Length Description

A0000h 20000h Video RAM (typical)

C0000h 8000h Video ROM (typical)

C8000h 800h UNDI ROM (IPL, Loader)

C8800h 800h BUSD ROM (API)

C900h 800h BC ROM (Loader)

C9800h Variable Option ROMs and upper memory

E0000h 10000h System BIOS (Some BIOSes have 128K of code/data)

F0000h 10000h System BIOS

Extended Memory
Address

Length Description

PMM+x 4000h UNDI (Driver)

PMM+y 8000h BC (Runtime)

100000h Variable Free extended memory (portions may be used by system BIOS)

E98000h 168000h REMOTE.1 (DOS boot diskette image)

Free Base Memory (FBM) Size (BIOS Data Area). When execution of the downloaded bootstrap
begins, the 16-bit word at memory address 40:13h must contain the amount of free base memory in
KB.

PXE CPU Stack. When execution of the downloaded bootstrap is begun, SS:SP is to contain the
address of the top of the unused portion of the PXE services CPU stack. The downloaded NBP
should not modify the used portion of the PXE services CPU stack prior to the time in the boot
sequence when it is certain that the PXE services will not be needed again.

Base and UNDI Code and Data Segments. This memory area is reserved for the code and data that
implement the PXE services. These locations should not be modified by the downloaded NBP prior
to the time in the boot sequence when it is certain that the PXE services will not be needed again.

Extended BIOS Data. If EBDA has been allocated, the downloaded NBP should not modify
memory in the EBDA.

Preboot Execution Environment (PXE) Specification 90

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Table 4-12 Memory Map after REMOTE.1 Started

Base Memory
Address

Length Description

0h 400h Interrupt vector table

400h 100h System BIOS data segment
(FBM is in number of K and stored in a 16-bit word at 04:13h)

500h 97300h DOS does memory

97800h 4000h UNDI Data Segment

9B800h 4000h UNDI Code Segment

9F800h Variable Extended BIOS data area
(Not all BIOSes have this. Those that do, have 1K or 2K of data)

Upper Memory
Address

Length Description

A0000h 20000h Video RAM (typical)

C0000h 8000h Video ROM (typical)

C8000h 800h UNDI ROM (IPL, Loader)

C8800h 800h Base-Code ROM (Loader)

C9000h Variable Option ROMs and upper memory

E0000h 10000h System BIOS (Some BIOSes have 128K of code/data)

F0000h 10000h System BIOS

Extended Memory
Address

Length Description

100000h Variable Free extended memory

E98000h 168000h REMOTE.1 (DOS boot diskette image)

4.4.6.1 Stop & Remove BC Runtime

If control is returned from PXENV_START_BASE, PXENV_STOP_BASE is called. BC runtime
can be removed from memory if an exit code of PXENV_EXIT_SUCCESS (in AX) is returned and
there is not a status code of (PXENV_STATUS_KEEP) in the parameter structure.

4.4.6.2 Stop & Remove UNDI

If BC runtime has been stopped, PXENV_STOP_UNDI is called. UNDI can be removed from
memory if an exit code of PXENV_EXIT_SUCCESS (in AX) returned and there is not a status code
of (PXENV_STATUS_KEEP) in the parameter structure.

4.4.6.3 Restore BIOS CPU Stack

Restore the original BIOS CPU stack and increase the size of free base memory.

4.5 Requirements on individual PXE participants

4.5.1 UNDI Option ROM

An UNDI Option ROM image is required for each boot device. This Option ROM image may be kept
on a boot device’s local storage (for example, FLASH on a NIC) or built in to the Host System BIOS.

Preboot Execution Environment (PXE) Specification 91

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

4.5.1.1 UNDI ROM ID Structure

The UNDI ROM ID structure (shown below) must be contained within the memory defined by the
Option ROM header. This structure provides information about the UNDI driver revision, memory
requirements and the address of the UNDI loader. This structure must be static.

Table 4-13 UNDI ROM ID Structure

Offset Type(bytes) Name Description

0x00 UINT8(0x04) Signature ‘UNDI’

0x04 UINT8 StructLength Length of this structure in bytes. (0x12 + 0x04 * #bus)

0x05 UINT8 StructCksum Used to make structure byte checksum equal zero.

0x06 UINT8 StructRev Revision of this structure is zero. (0x00)

0x07 UINT8(0x03) UNDIRev UNDI API revision number implemented in the driver. The
least significant byte of the revision number is stored in the
first byte of the field. For UNDI revision 2.1.0, this field
contains (0x00, 0x01, 0x02).

0x0A UINT16 UNDILoader Offset of the UNDI loader in this option ROM. See UNDI
loader description below for more details. This is also the
UNDI loader routine entry point.

0x0C UINT16 StackSize Minimum stack segment size, in bytes, needed for UNDI
driver operation.

0x0E UINT16 DataSize Minimum data segment size, in bytes, needed for UNDI driver
operation.

0x10 UINT16 CodeSize Minimum code segment size, in bytes, needed for UNDI driver
operation.

0x12 UINT8(0x04 *
bus-count)

BusType Type of bus the UNDI driver is written for. There may be more
than one bus type in this field.
‘ISAR’, ‘EISA’, ‘VESA’, ‘PCCR’
'PCCR‘ = PC CardBus

4.5.1.2 UNDI Initialization Routine

An UNDI Option ROM must contain an UNDI initialization routine. The UNDI initialization routine
must be contained within the memory defined by the Option ROM header.

The UNDI initialization routine must perform/provide the following:

! Contain a $PnP expansion header structure.
! Contain an UNDI ROM ID structure. Offset 16h of the option ROM header contains the 16-bit

offset of the UNDI ROM ID structure.
! Contain an UNDI loader routine.
! Save the initialization parameters (AX, BX, DX, ES:DI) from the BIOS. These parameters will

be used by the UNDI loader routine, UNDI IPL routine and UNDI driver.
! Register the UNDI IPL routine with the Host System BIOS.

The UNDI initialization routine should:

! Conserve as much UMB as possible by removing the initialization routine and using PMM, if
available/needed to store the UNDI driver.

! Verify that the initialization parameters identify the correct boot device.

4.5.1.3 UNDI Loader Routine

The UNDI loader routine must be contained within the memory defined by the Option ROM header.

The UNDI loader may be called by the PXE loader or Host System BIOS.

Preboot Execution Environment (PXE) Specification 92

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

The UNDI loader must perform/provide the following:

! Install the UNDI code and data images into base memory.
! Create and/or fill the !PXE structure in the UNDI code segment.
! Set the !PXE structure checksum to zero.
! Fill in the status field in the UNDI Loader parameter structure. (See

PXENV_STATUS_LOADER_xxx #defines)
! Set the exit code in AX to PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE.

The BC (Base-Code) loader or Host System BIOS may call the UNDI loader. The UNDI loader
routine requires:

! The caller to call the BUSD enable API, if needed.
! At least UNDIROMID->StackSize bytes of CPU stack space.
! At least UNDIROMID->DataSize bytes of base memory for the UNDI data segment.
! At least UNDIROMID->CodeSize bytes of base memory for the UNDI code segment.
! A filled-in UNDI Loader parameter structure.
! The caller push a 32-bit far pointer to the UNDI Loader parameter structure onto the CPU

stack.
! The caller make a far call to the UNDI loader entry point.
! The caller clean up the CPU stack after control is returned from the UNDI loader routine.
! A check of the exit code returned in AX.

UNDI Loader Parameter Structure

Typedef struct s_UNDI_LOADER {

PXENV_STATUS Status;

UINT16 AX;

UINT16 BX;

UINT16 DX;

UINT16 DI;

UINT16 ES;

UINT16 UNDI_DS;

UINT16 UNDI_CS;

SEGOFF16 PXEptr;

SEGOFF16 PXENVptr;}

t_UNDI_LOADER;

Pass/Fail status: See PXENV_STATUS_xxx #defines

In: AX passed to UNDI initialization routine

In: BX passed to UNDI initialization routine

In: DX passed to UNDI initialization routine

In: DI passed to UNDI initialization routine

In: ES passed to UNDI initialization routine

In: Address of UNDI data segment to fill in

In: Address of UNDI code segment to fill in

Out: Far pointer to !PXE structure.

Out: Far pointer to PXENV+ structure.

4.5.1.4 UNDI IPL Routine

The UNDI IPL routine may be included within the memory defined by the Option ROM header.

The UNDI IPL routine must perform the following:

! Scan UMB for a Base-Code option ROM.
! Verify the BC ROM ID structure.
! These BUSD-related items are only performed if needed:

! Scan UMB for a BUSD option ROM.
! Verify the BUSD ROM ID structure.
! Create a BUSD_ENABLE parameter structure.
! Push a 32-bit far pointer to the BUSD parameter structure.
! Push a 16-bit constant: PXENV_BUSD_ENABLE.
! Make a far call to the BUSD API entry point.
! Clean up the CPU stack (pop 6 bytes) after control is returned from BUSD.

! Create a BC Loader parameter structure.
! Push a 32-bit far pointer to the BC Loader parameter structure.
! Make a far call to the BC loader routine.

Preboot Execution Environment (PXE) Specification 93

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

! Clean up the CPU stack after control is returned from the BC loader routine.
! Return control to the Host System BIOS.

4.5.1.5 UNDI Driver

The UNDI driver may be included within the memory defined by the option ROM header. An UNDI
driver must be able to:

! Operate in real mode.
! Operate in 16:16 protected mode with a 16-bit (SP) stack segment.
! Operate in 16:16 protected mode with a 32-bit (ESP) stack segment.

An UNDI driver must:

! Always set AX and Status field for all UNDI APIs on success or failure.
! Call the Base-Code API entry point for all non-UNDI APIs.

! Before making this far call, the UNDI driver must push the following parameters (in this
order) onto the stack:
! !PXE segment (16-bit)
! !PXE offset (16-bit)
! Param segment (16-bit)
! Param offset (16-bit)
! Function (16-bit)

! Clean up the stack.
! Return Base-Code AX/Status without changes to caller.

UNDI driver API specifications, parameter passing and status/result codes are covered in other
sections in this document.

4.5.1.6 UNDI Driver Carrying its own Base Code

A PXE implementation provided on a NIC that carries its own Base Code may use it in lieu of the
Base Code provided by the system BIOS. However, it is recommended that NIC PXEs use the Base
Code provide by the system BIOS if it is available, even if the on-NIC PXE implementation includes
a Base Code. The NIC implementation may only provide its Base Code for itself, and may not
replace the Base Code provided by the system BIOS for other network interface devices. If a NIC
provides its own Base Code, the NIC must provide a user-settable mechanism to disable the Base
Code on the NIC.

4.5.2 BUSD Option ROM

Unlike UNDI and BC Option ROMs, BUSD Option ROMs are not a drop-in component. BUSD
ROMs need to interact with Host System BIOS during POST. Bridge components and boot devices
need to be configured during option ROM scan and disabled after option ROMs are transferred to
UMB. How information is transferred between the BUSD ROM and the Host System BIOS is
implementation dependent.

Note: If a BIOS uses an UNDI driver early in the POST process that requires bridge components to
be enabled, the BIOS must initialize the bridge components.

4.5.2.1 BUSD ROM ID Structure

The BUSD ROM ID structure (shown below) must be contained within the memory defined by the
option ROM header. This ROM ID structure is used by the UNDI IPL routine and contains
information about the revision, memory requirements and entry point of the BUSD API.

Preboot Execution Environment (PXE) Specification 94

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Table 4-14 BUSD ROM ID Structure

Offset Type
(bytes)

Name Description

0x00 UINT8(0x04) Signature ‘BUSD’

0x04 UINT8 StructLength Length of this structure in bytes. (0x0E + 0x04 * #bus)

0x05 UINT8 StructCksum Used to make structure byte checksum equal zero.

0x06 UINT8 StructRev Revision of this structure is zero. (0x00)

0x07 UINT8(0x03) BUSDRev BUSD API revision number implemented in the driver. The least
significant byte of the revision number is stored in the first byte
of the field. For BUSD revision 2.1.0, this field contains (0x00,
0x01, 0x02).

0x0A UINT16 EntryPoint Offset of the BUSD API entry point.
Note: This is not the same as the PXE runtime API entry point

0x0C UINT16 StackSize Minimum stack segment size, in bytes, needed for API
operation.

0x0E UINT8(0x04 *
bus-count)

Bus Type Type of bus supported by this BUSD option ROM. There may be
more than one bus type included in this field.
 ‘PCCR’ = CardBus

4.5.2.2 BUSD Initialization Routine

Here are three examples of BUSD initialization routines.

1. The initialization routine only leaves a BUSD option ROM image in UMB. All of the bridge
configuration and device detection code is built into the BIOS.

2. The initialization routine configures and initializes the bridge components. This configuration
information needs to be communicated back to the BIOS. Code to scan for devices with UNDI
option ROM support across these bridges is built into the BIOS.

3. The initialization routine configures and initializes the bridge components and scans for devices
with UNDI option ROM support across these bridges. The configuration and detected device
information needs to be communicated back to the BIOS.

BUSD initialization routines should try to conserve as much UMB as possible. This can be done by
removing initialization code after use and storing any configuration information in PMM allocated
extended memory.

Preboot Execution Environment (PXE) Specification 95

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

4.5.2.3 BUSD APIs

BUSD API Entry Point

The BUSD API entry point is located in the BUSD option ROM image in UMB. Using the segment
address of the BUSD Option ROM image creates the address of this entry point and the 16-bit offset
supplied in the BUSD ROM ID structure.

The BUSD API entry point should only be used by an UNDI IPL routine to initialize bridge
components, or by an NBP that is going to start an OS that needs to have the bridge components
disabled.

The UNDI IPL routine would call BUSD enable before scanning for and calling the BC loader. If the
remote boot is canceled, control is returned to UNDI IPL and BUSD disable is called before
returning control to the BIOS IPL selection routine.

If needed, an NBP would call BUSD disable before starting a downloaded OS image.

BUSD API Functions

If an invalid BUSD API op-code is given to the BUSD API entry point, a status of
PXENV_STATUS_BAD_FUNC will be returned.

If invalid register contents are passed to the BUSD API, a status of PXENV_STATUS_FAILURE
will be returned.

If the UNDI ROM ID structure is not present or valid, a status of
PXENV_STATUS_LOADER_NO_UNDI_ROMID or
PXENV_STATUS_LOADER_BAD_UNDI_ROMID will be returned.

BUSD Disable
Op-Code: BUSD_DISABLE (0000h)

Input: Far pointer to a t_BUSD_DISABLE parameter structure that has been initialized by the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status
field in the parameter structure must be set to one of the values represented by the
PXENV_STATUS_xxx constants.

Description: This service is used to disable a configured bridge. This is done byte the UNDI IPL before
returning control to the BIOS IPL selection routine when a remote boot has been aborted.
NBPs that need to enable a driver that expects to have the bridge disabled can also do this.

Typedef struct s_BUSD_DISABLE {

PXENV_STATUS Status;

UINT16 AX;

UINT16 BX;

UINT16 DX;

UINT16 DI;

UINT16 ES;

SEGOFF16 UNDI_ROMID;

} t_BUSD_DISABLE;

Set before calling API service
AX, BX, DX, DI, ES: Register values passed by the BIOS
to the UNDI option ROM initialization entry point.

UNDI_ROMID: Segment and offset of the UNDI ROMID
structure.

Returned from API service
Status: PXENV_STATUS_SUCCESS or one of the PXE
error codes.

Preboot Execution Environment (PXE) Specification 96

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

BUSD Enable
Op-Code: BUSD_ENABLE (0001h)

Input: Far pointer to a t_PXENV_BUSD_ENABLE parameter structure that has been initialized by
the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be returned in AX. The status
field in the parameter structure must be set to one of the values represented by the
PXENV_STATUS_xxx constants.

Description: This service is used by the UNDI_IPL to reconfigure a bridge at the beginning of the UNDI
IPL. The UNDI loader routine and the UNDI driver expect the bridge to be configured before
they are called.

Typedef struct s_BUSD_ENABLE {

PXENV_STATUS Status;

UINT16 AX;

UINT16 BX;

UINT16 DX;

UINT16 DI;

UINT16 ES;

SEGOFF16 UNDI_ROMID;

} t_BUSD_ENABLE;

Set before calling API service
AX, BX, DX, DI, ES: Register values passed by the BIOS
to the UNDI option ROM initialization entry point.

UNDI_ROMID: Segment and offset of the UNDI ROMID
structure.

Returned from API service
Status: PXENV_STATUS_SUCCESS or one of the PXE
error codes.

4.5.3 Base-Code (BC) Option ROM

A Base-Code Option ROM must be supplied with PXE-compliant BIOSes in machines that have
NIC(s) built into the motherboard. It is recommended that the Base-Code be supplied with machines
supporting transient NICs without the ability to carry the Base-Code themselves.

When a PXE Base-Code (BC) Option ROM is included in the BIOS, it must be scanned/transferred
into UMB and initialized/called before IPL. After initialization, the option ROM image left in UMB
must contain a valid BC ROM ID structure and the BC loader. The actual BC runtime image may be
relocated to [PMM] allocated extended memory or reside in some other local storage.

4.5.3.1 Base-Code ROM ID Structure

The Base-Code ROM ID structure (shown below) provides information about the BC runtime
revision, memory requirements and the address of the BC loader. The BC ROM ID structure must be
present before IPL.

Preboot Execution Environment (PXE) Specification 97

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

Table 4-15 BC ROM ID Structure

Offset Type(bytes) Name Description

0x00 UINT8(0x04) Signature ‘BC’

0x04 UINT8 StructLength Length of this structure in bytes. (0x12)

0x05 UINT8 StructCksum Used to make structure byte checksum equal zero.

0x06 UINT8 StructRev Revision of this structure is zero. (0x00)

0x07 UINT8(0x03) BC_Rev BC API revision number implemented in the driver. The
least significant byte of the revision number is stored in the
first byte of the field. For BC revision 2.1.0, this field
contains (0x00, 0x01, 0x02).

0x0A UINT16 BC_Loader Offset of the BC loader routine in this option ROM. This
routine will be called by UNDI IPL routines.

0x0C UINT16 StackSize Minimum stack segment size, in bytes, needed for BC
runtime operation.

0x0E UINT16 DataSize Minimum data segment size, in bytes, needed for BC
runtime operation.

0x10 UINT16 CodeSize Minimum code segment size, in bytes, needed for BC
runtime operation.

4.5.3.2 Base-Code Initialization Routine

The Base-Code initialization routine is an optional component. If implemented, it must be contained
within the memory defined by the option ROM header.

The BC initialization routine must:

! Not register the BC option ROM as an IPL device.
! Compute amount of base memory needed for BC runtime and UNDI driver.
! Create and/or fill in the BC ROM ID structure, if needed. Offset 16h of the option ROM

header contains the 16-bit offset of the BC ROM ID structure.
! Leave the BC loader routine in UMB.

The BC initialization routine should:

! Conserve as much UMB as possible by removing the initialization routine and using PMM, if
available/needed to store the BC runtime.

4.5.3.3 Base-Code Loader Routine

The Base-Code loader routine must be present before IPL.

The Base-Code loader must:

! Verify the UNDI ROM ID structure contents and checksum.
! Allocate base memory for the BC runtime and UNDI driver code and data segments.
! Allocate base memory for a CPU stack, if needed.
! Create an UNDI loader parameter structure.
! Push a 32-bit far pointer to the UNDI loader parameter structure
! Make a far call to the UNDI loader entry point.
! Clean up the CPU stack after control is returned from the UNDI loader.
! Install the BC runtime code and data into base memory.
! Fill in the BC fields in the !PXE and PXENV+ structures in the UNDI code segment.
! Update the checksums in the !PXE and PXENV+ structures.

Preboot Execution Environment (PXE) Specification 98

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

! Call the following PXE APIs, with the required parameters, in this order:
PXENV_START_UNDI, PXENV_START_BASE, PXENV_STOP_BASE,
PXENV_STOP_UNDI.

! Clean up, and release allocated base memory, if required.
The Base-Code loader requires:

! The UNDI IPL routine to make a far call to the BC loader routine passing a far pointer to the
BC loader parameter structure.

! The UNDI IPL routine is also responsible for removing the parameters from the stack.
BC Loader Parameter Structure

Typedef struct s_BC_LOADER {

PXENV_STATUS Status;

UINT16 AX;

UINT16 BX;

UINT16 DX;

UINT16 DI;

UINT16 ES;

SEGOFF16 UNDI_ROMID;

} t_BC_LOADER;

Pass/Fail status: See PXENV_STATUS_xxx #defines

In: AX passed to UNDI initialization routine

In: BX passed to UNDI initialization routine

In: DX passed to UNDI initialization routine

In: DI passed to UNDI initialization routine

In: ES passed to UNDI initialization routine

In: Offset of UNDI ROMID structure

4.5.3.4 BC Runtime

The BC runtime must be capable of executing in real mode and 16:16 protected mode with a 16-bit
(SP) stack segment. The BC runtime does not need to support a 32-bit (ESP) stack segment.

The BC runtime starts when the PXENV_START_BASE API is called from the BC loader. Control
is not returned to the BC loader unless remote boot fails, at which time PXENV_STOP_BASE and
PXENV_STOP_UNDI will be called.

The BC runtime must:

! Call the PXENV_UNDI_GET_INFORMATION API.
! Provide an ISR that calls PXENV_UNDI_ISR.
! Implement DHCP and TFTP client protocols, as defined in this specification.
! Provide the Preboot, UDP and TFTP APIs.

4.5.4 Network Bootstrap Program

Network bootstrap programs (NBPs) are binary images that will be downloaded by the BC runtime to
0:7C00h. The BC runtime will then make a far call to 0:7C00h after pushing a 32-bit far pointer to
the !PXE structure onto the stack.

Note: For backwards compatibility the BC runtime must also load the address of the PXENV+
structure into the ES:BX register pair.

NBPs can use the PXE APIs to:

! Download other NBPs, applications, or OS images (Pre-boot, UDP and TFTP APIs)
! Communicate on the network (UNDI APIs)
! Shut down and stop the BC runtime and/or the UNDI driver. Once the BC and UNDI are

stopped, one or both may be removed from base memory (UNDI cannot be removed if BC
cannot be removed).

Preboot Execution Environment (PXE) Specification 99

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

5. PXE BIOS Support

This section discusses host system BIOS support required for PXE compliance and how PXE boot
devices (ROMs) and PXE Network Boot Programs (NBPs) use it.

5.1 BIOS Support

5.1.1 BIOS Requirements

PXE-compliant BIOS’s implementations must:

! Locate and configure all PXE-capable boot devices (UNDI Option ROMs) in the system, both
built-in and add-ins.

! Supply a PXE per this specification, if the system includes a built-in network device.
! Implement the following specifications:

! Plug-and-Play BIOS Specification v1.0a or later.
! System Management BIOS (SMBIOS) Reference Specification v2.2 or later.
! The requirements defined in Sections 3 and 4 of the BIOS Boot Specification (BBS) v1.01

or later, to support network adapters as boot devices.
! Supply a valid UUID and Wake-up Source value for the system via the [SMBIOS] structure

table.
Note: An implementation might also choose to supply the UUID via the _SYSID_ structure
(see Section 5.2.1) because [PC98] requires the interface.

5.1.2 BIOS Recommendations

PXE-compliant BIOSes should implement:

! PXE support for CardBus via the PXE BUSD option ROM if the host system supports
CardBus.
PXE support for non-industry standard boot devices, such as CardBus, requires Host System
support for locating and initializing PXE Boot Devices and loading expansion/option ROMs
for those devices.

! POST Memory Manager Specification v1.01 or later

 PMM is strongly recommended. PMM provides a straightforward way for LAN on
Motherboard PXE implementations to move their ROM image from UMB to extended
memory. While methods to do this exist outside of PMM, their use is undefined and unreliable.
Placing PXE ROM images into UMB space reduces the available UMB space by
approximately 32 KB. This is sufficient to compromise or even prevent successful operation of
some downloaded programs

! Boot Integrity Services (BIS) API Specification v1.0 or later

Preboot Execution Environment (PXE) Specification 100

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

5.2 PXE Support

5.2.1 UUID Support

PXE-compliant Boot ROMs must support UUID detection by reading table-based SMBIOS
structures, see [SMBIOS] for details.

PXE-compliant Boot ROMs should support UUID detection for legacy system support by reading:

! Table-based _SYSID_ structures, see below for details.
! SMBIOS structures through the PnP function interface, see [SMBIOS] for details.

5.2.1.1 Reading table-based SYSID structures

The SYSID Entry Point structure, described below, can be located by application software by
searching for the anchor string on paragraph (16-byte) boundaries within the physical memory
address range 000E0000h to 000FFFFFh.

The UUID BIOS structure can be found by walking the list of SYSID BIOS structures in the SYSID
BIOS Structure Table.

Table 5-1 Format of SYSID Entry Point Structure

Element Length Description

Header/Type 7 Bytes _SYSID_

Checksum 1 Byte Checksum of the SYSID BIOS Entry Point Structure

Length 2 Bytes Total length of SYSID BIOS Structure Table (Set to 011h).

SYSID BIOS Structure
Table Address

4 Bytes 32 bit physical address of the beginning of the SYSID BIOS
Structure Table. This value is BYTE Aligned!!

Number of SYSID BIOS
Structures

2 Bytes Total number of structures within the SYSID BIOS Structure
Table.

SYSID BIOS Revision 1 Byte Revision of the SYSID BIOS Extensions (Set to 00h).

Table 5-2 Format of the SYSID BIOS structures

Element Length Description

Header/Type 6 Bytes _????_

Checksum 1 Byte Checksum of the SYSID BIOS Structure

Length 2 Bytes Total length of SYSID BIOS Structure

Variable Data Portion ?? Bytes Depends on SYSID BIOS Structure Header/Type Field

Table 5-3 Format of the UUID BIOS structure

Element Length Description

Header/Type 6 Bytes _UUID_

Checksum 1 Byte Checksum of the UUID BIOS Structure

Length 2 Bytes Total length of UUID BIOS Structure (Set to 0019h).

Variable Data Portion 16 Bytes Actual UUID data (Initially set all bytes to 0FFh).

Preboot Execution Environment (PXE) Specification 101

Version 2.1 September 20, 1999
Copyright © 1998, 1999 Intel Corporation. All rights reserved.

5.2.2 Remote Wake Up Source

5.2.2.1 Detection

PXE-compliant NBPs should implement two methods of Remote Wake-Up source detection to
enable legacy system support.

! Reading table-based SMBIOS structures
! Reading SMBIOS structures through the PnP function interface

5.2.3 Bootstraps

PXE-compliant boot ROMs must support the PnP/BBS bootstrap mechanism. If the PXE
implementation is to reside on a NIC, it should also support Int 18h and Int 19h bootstrap:

Note: Bootstrap interrupts 18h and 19h are mutually exclusive.

5.2.4 Memory Management

5.2.4.1 POST Memory Manager

If PMM is available, it must be used by PXE Option ROMs if using PMM will conserve UMB.

How PMM is detected and used is covered in the [PMM] specification. The PMM functions are only
available prior to INT 19. This means that PMM is available to the Option ROM Initialization (Scan)
process, but not available to the Option ROM Boot (IPL) process.

5.2.5 Boot Integrity Services

PXE Option ROMs must support Remote Boot Authentication if the Platform Boot Integrity Services
are present in the Host system BIOS.

Remote boot authentication requires the BIOS to provide a set of platform security functions.
Generally, the level of detail required to compile code that calls the interface is TBD, and may be
deferred to header files distributed in a future Software Development Kit.

A detailed description of the platform security capabilities may be found in the [BIS] specification.

	Introduction
	Structure of this Document
	Related Documents
	Wired for Management
	BIOS Specifications
	UUID Documents
	Other PC System Documents

	Data Types and Terms Used in This Guide
	Required vs. Recommended Features
	Overview
	PXE Protocol
	Deployment of servers
	Deployment of Clients

	PXE APIs

	PXE Client / Server Protocol
	Relationship to the Standard DHCP Protocol
	Protocol Details
	PXE Boot
	Protocol Timeouts
	Proxy DHCP

	DHCP Tags used for PXE Protocol
	Client Behavior
	PXE Option Precedence
	DHCPDISCOVER
	DHCPOFFER
	Boot Server Discovery
	Boot Server Reply
	Network Bootstrap Program (NBP) Download
	NBP Authentication
	Boot Server Credentials Reply
	NBP Execution
	NBP Execution for x86 PC/AT

	MTFTP Operation
	MTFTP listen
	MTFTP open
	MTFTP receive
	MTFTP close

	Server Behavior
	Redirection Service Behavior
	Response to DHCPDISCOVER

	Boot Service Behavior
	Response to DHCPREQUEST
	TFTP Service

	PXE APIs
	PXE Installation Check
	Real mode (Int 1Ah Function 5650h)
	PXENV+ Structure
	Protected mode (Scanning base memory)
	!PXE Structure

	PXE API Calling Convention
	Early UNDI API Usage
	PXE API Service Descriptions
	Preboot API Service Descriptions
	TFTP API Service Descriptions
	UDP API Service Descriptions
	UNDI API Service Descriptions

	PXE Return Status Definitions

	PXE Initial Program Load (IPL)
	Overview
	PXE Split ROM Architecture
	PXE Option ROM Components
	Option ROM header
	Initialization Routine
	IPL Routine
	Loader Routine
	UNDI Driver

	PXE Boot Sequence
	Option ROM Scan and Initialization
	UNDI ROM Scan & Init
	CardBus ROM Scan & Init
	BC ROM Scan & Init
	IPL Selection

	UNDI Initial Program Load (IPL)
	Scan UMB for BC Loader Routine
	Enable BUSD
	Call BC Loader Routine
	Disable BUSD

	BC Loader Routine
	Base Memory Allocation
	Switch to Runtime CPU Stack
	Install & Start UNDI Driver
	Install & Start BC

	BC Runtime
	Client State at Bootstrap Execution Time (Remote.0)
	Client State at Bootstrap Execution Time (Remote.1)
	Stop & Remove BC Runtime
	Stop & Remove UNDI
	Restore BIOS CPU Stack

	Requirements on individual PXE participants
	UNDI Option ROM
	UNDI ROM ID Structure
	UNDI Initialization Routine
	UNDI Loader Routine
	UNDI IPL Routine
	UNDI Driver
	UNDI Driver Carrying its own Base Code

	BUSD Option ROM
	BUSD ROM ID Structure
	BUSD Initialization Routine
	BUSD APIs

	Base-Code (BC) Option ROM
	Base-Code ROM ID Structure
	Base-Code Initialization Routine
	Base-Code Loader Routine
	BC Runtime

	Network Bootstrap Program

	PXE BIOS Support
	BIOS Support
	BIOS Requirements
	BIOS Recommendations

	PXE Support
	UUID Support
	Reading table-based SYSID structures

	Remote Wake Up Source
	Detection

	Bootstraps
	Memory Management
	POST Memory Manager

	Boot Integrity Services

