
Page 1

The Technical Development of Internet Email

Craig Partridge
BBN Technologies

Abstract
The development and evolution of the technologies and standards for Internet email took over
twenty years, and arguably is still underway today. The protocols to move email between
systems and the rules for formatting messages have evolved, and have each been largely replaced
at least once. This paper is the story of that evolution, with a focus on why things look the way
they do today.
Keywords: Electronic mail, Internet, multimedia communication, protocols

1 Introduction
The explosive development of networked electronic mail (email) has been one of the major
technical and sociological developments of the past forty years. A number of authors have
already looked at the development of email from various perspectives.1 The goal of this paper is
to explore a perspective that, surprisingly, has not been thoroughly examined: namely, how the
details of the technology that implements email in the Internet have evolved.
This is a detailed history of email’s plumbing. One might imagine, therefore, that it is only of
interest to a plumber. It turns out, however, that much of how email has evolved has depended
on seemingly obscure decisions. Writing this paper has been a reminder of how little decisions
have big consequences and I have sought to highlight those decisions in the narrative.

2 The Architecture of Email
As the story of this paper is how email came to look the way it does today, we start by describing
(in broad strokes) today’s world, so that the steps in the evolution can be marked more clearly.
Today’s email system can be divided into two distinct subsystems. One subsystem, the message
handling system (MHS), is responsible for moving email messages from sending users to
receiving users, and is built on a set of servers called message transfer agents (MTAs). The other
subsystem, which we will call the user agent (UA), works with the user to receive, manage (e.g.
delete, archive, or print), and create email messages and interacts with the MHS to cause
messages to be delivered. Readers may recognize this terminology as being roughly that
developed by the X.400 email standardization process.
Each subsystem internally has a rich set of protocols and services to perform its job. For
instance, the UA typically includes network protocols to manage mailboxes kept on remote
storage at a user’s Internet Service Provider or place of work. The MHS includes protocols to
reliably move email messages from one MTA to another, and to determine how to route a
message through the MTAs to its recipient(s).

Page 2

The UA and MHS must also have some standards in common. In particular, they need to agree
on the format of email messages and the format of the meta-data (the so-called envelope) that
accompanies each message on its path through the network.
The focus of this paper is how these different pieces incrementally came into being and
exploring why each one emerged and how its emergence affected the larger email system. In the
interests of space, this survey stops around the end of 1991. That termination date leaves out at
least four stories: (1) the development of graphics based user interfaces for personal computers
and the incorporation of those interfaces into web browsers; (2) the rise of UA protocols such as
the Post Office Protocol (POP)2 and IMAP3 (these protocols existed prior to 1991, but much of
their evolution occurred later); (3) the continuing efforts to further internationalize email (e.g.,
allowing non-ASCI characters in email addresses); and (4) the rise of unwanted email (dubbed
“spam”) and tools that sought to diminish it. Furthermore, in the interests of space, we do not
consider the development of technical standards for the support of email lists.

3 First Steps
Electronic mail existed before networks did. In the 1960s, time-shared operating systems
developed local email systems delivering mail between users on a single system.4 The
importance of this work is that email requires a certain amount of local infrastructure. There
needs to be a place to put each user’s email. There needs to be a way for a user to discover that
he or she has new email. By the early 1970s, many operating systems had these facilities.
In July of 1971, Dick Watson of SRI International published an Internet Request for Comments5

(RFC-196) describing what he called “A Mail Box Protocol,” The idea was to provide a
mechanism where the new Network Information Center (NIC) could distributed documents to
sites on the ARPANET. Watson described a way to send files (documents) to a teletype printer,
with different mailboxes for different types of printers. Mailbox 0 was a teletype

“assumed to have a print line 72 characters wide, and a page of 66 lines. The new
line convention will be carriage return (X’0D’) followed by line feed (X’0A’)…
The standard printer will accept form feed (X’0C’) as meaning move paper to the
top of a new page.”6

Ray Tomlinson of Bolt Beranek and Newman (now BBN Technologies or BBN) read Watson’s
memo and reacted that “it was overly complicated because it tried to deal with printing ink on
paper with a line printer and delivered the paper to numbered mailboxes.”7 In Tomlinson’s view,
the correct approach was to send documents to a user’s electronic mailbox and let the user decide
if the document merited printing.8 So Tomlinson set out to see if he could send email this way
between two TENEX systems9 over the ARPANET. His approach was simple.
TENEX already had an existing local email program called SNDMSG10, which, given a message,
appended that message to a file called MAILBOX in a user’s directory. TENEX also had a
homegrown file transfer service called CPYNET (written by Tomlinson). In a passive mode,
CPYNET listened at a particular address for requests to read, write or append to a particular local
file. Email was achieved by incorporating CPYNET into SNDMSG. If SNDMSG was given a
message addressed to user at a remote host, it opened a CPYNET connection to the remote host
and instructed CPYNET to append the message to the user’s mailbox on that host.

Page 3

Users learned that they had received network email the same way they learned they had received
local email. In TENEX, they got a “You have mail” message when they logged in. Mail was
read by viewing or printing the mailbox file, usually with the TYPE command. (Almost
immediately, TYPE MAILBOX was replaced with a TENEX macro READMAIL). Messages
were deleted by deleting the relevant lines with a text editor.
Tomlinson made two important contributions. First, he found a way to express the networked
email address. He chose to use the “@” sign to divide the user’s account name from the name of
the host where the account resided, resulting in the now ubiquitous user@remote format.11

Second, SNDMSG was the first MTA – it took a message and delivered it (using the CPYNET
protocol) to a remote user’s mailbox.
Observe that the last contribution is a surprise. We might imagine that the first program was
more of a user agent (UA) rather than a message transfer agent (MTA). But SNDMSG could
only deliver mail, it could not receive mail, and it delivered the email all the way to the
recipient’s mailbox. Therefore, SNDMSG was much closer in spirit to an MTA (and, indeed, as
we shall see, was used as an MTA for a number of years). At the same time, SNDMSG was
primitive. If there were multiple email recipients on the same host, it copied the message once
for each recipient. If the remote host was down, SNDMSG simply returned a failure message –
it made no effort to retransmit.
Despite its primitive nature, Tomlinson’s creation took off. The next few years saw it mature
from a fun idea to a central feature of the ARPANET (and later the Internet).

4 From Primitive to Production
By late 1973, email was widely used on the ARPANET. What happened after Tomlinson’s
experiment to make this happen? Obviously email met a need. But there were also technical
steps: standardization of the transfer protocol and the development of user interfaces.

4.1 A Standard Transfer Protocol
First, the community replaced CPYNET with a standardized file transfer service, the first
generation of the File Transfer Protocol (FTP). This process took a while. In 1971, FTP was
simply a set of rather complex ideas written up in a set of RFCs by a team led by Abhay Bhushan
of MIT.12 The goal of these ideas was to create a general tool to manage files (including deleting
and renaming files) on remote machines and to do it in a way that met the needs of any
envisioned application.13

At the same time, Dick Watson’s mailbox idea was continuing to mature. In November of 1971,
a team including Watson proposed a way to enhance (the still nascent) FTP with an explicit
“MAIL” command to support appending a file to a mailbox. They further proposed that email be
simply ASCII strings of text (no binary images) and that mailbox numbers be replaced with text
user identifiers. The identifiers were “NIC handles.” NIC handles were given out by the
Network Information Center to authorized network users (and were used as login IDs on
ARPANET terminal servers, called TIPS). This idea, of course, meant that every host would
need to maintain a table mapping NIC handles of local users to the location of their mailbox file.
Retaining Watson’s original idea of accessing printer, the MAIL command could be given the
name “PRINTER” instead of a NIC handle and the file would be printed.

Page 4

Concurrently, Tomlinson distributed SNDMSG to other TENEX systems and people began to
get hands-on experience with email. TENEX was the most common operating system on the
ARPANET at the time and so probably at least half the ARPANET users had access to
SNDMSG.
In April of 1972, most of the interested parties, including both Tomlinson and Watson, met at
MIT to discuss revisions to the File Transfer Protocol. The meeting made several decisions at
least one of which proved to have a long-term impact: they agreed to use text (ASCII)
commands and replies (previous versions of FTP had used binary commands) to aid interactive
use14. To this day, the Internet uses text commands to transfer email (and the tradition lives on in
much later protocols, such as the web’s transfer protocol, HTTP). A new version of the FTP
specification, based on these ideas and written by Bhushan, came out in July.15

The new specification envisioned that email would be delivered via the APPEND command,
which appended data to a file. Discussions about FTP and email continued however, and a
month later, Bhushan issued a revision to the FTP specification16 to include a new command,
MLFL (Mail File). It is said Bhushan came up with MLFL because, one evening while he was
writing the revision, a fellow graduate student at MIT stopped by to suggest a better solution was
required for email.17

MLFL took one argument, a user id, which could either be a NIC handle or a local user name
(local to the remote host). The user id could also be left out, in which case the mail was to be
delivered to a printer. After the MLFL command was accepted, the email file was transmitted
over an FTP data channel (with the end of the file indicating the end of message). The file was
required to be in ASCII. A separate copy of the file was sent for each recipient at a host.
MLFL was an important step. A key flaw in Tomlinson’s prototype email was that you had to
know where in the receiving host’s file system a user’s mailbox was located, so that you could
append to it.18 This limitation probably explains why most of the email activity in 1971 and
1972 appears to have taken place between TENEX systems, where the file name for the mailbox
was consistent. MLFL adopted Watson’s notion that mailboxes are symbolic names that the
receiving system translates into an appropriate user mailbox file and thereby freed email from
system specific limitations.
An interactive MAIL command was also defined, so that users logged into a TIP could type in an
email message using only FTP’s control connection. In this case, a line with a single dot (“.”) on
it marked the end of the message. Ending a message with a single dot is still how email is
moved over the Internet today.
The MAIL and, more important, MLFL commands remained the way email was delivered
between systems for several years.
In the fall of 1972 Bob Clements of BBN updated SNDMSG to use the new commands. Several
other email cognizant FTP implementations appeared. The most notable is probably the system
for MIT’s Multics. Ken Pogran wrote the FTP implementation and Mike Padlipsky wrote the
NETML program that handled email. 19 Multics was exceptional for the time because it had
good security including user file privileges, so Padlipsky had to invent a special user
(ANONYMOUS) to receive email and distribute it to users.20 The concept of an anonymous
login account caught on as a way to permit FTP access to users who did not have an account and
remains a central feature of FTP to this day.

Page 5

4.2 First User Agents
The second development of 1972 and 1973 was the creation of tools to create and manage email.
Here the center of innovation was within the Advanced Research Projects Agency (ARPA) itself.
Larry Roberts, head of the ARPA office funding ARPANET, was an early and aggressive user of
email. Early in 1972, Stephen Lukasik, the head of ARPA, also began using email and that
induced a number of others, including the ARPA department heads, to use email too.21

Soon Lukasik became frustrated with READMAIL, which forced him read through all the
messages in his mailbox in order. Lukasik liked to keep copies of email he received, which
made the problem worse. He appealed to Roberts for something better.
One night in July, Roberts wrote a tool using macros for the TECO (Text Editor and COrrector22)
text editor to manage a mailbox.23 The tool was dubbed RD. RD made it possible to list the
messages in the mailbox, to pick which message to read next, and to print individual messages.
Roberts’ colleague at ARPA, Barry Wessler, promptly rewrote RD as a standalone program in
the programming language SAIL and added additional features for usability. Improvements in
Wessler’s “New RD” or NRD included the ability to manage more than one file of messages,
and mechanisms to file, retrieve, and delete messages. RD and NRD were the first mailbox
management tools, the first true User Agents.
Wessler’s NRD was not distributed outside ARPA. (RD was.) In early 1973, Martin Yonke was
a graduate student intern at the University of Southern California’s Information Sciences
Institute (ISI) and looking for something to do. Steve Crocker of ARPA gave Yonke a copy of
Wessler’s code (which ran on TENEX) and suggested Yonke look at improving it. Yonke added
command completion (type the first letter or two of a command and the rest of the name would
be filled in) and a help interface. A user could type a question mark in most places in a
command to learn what the choices were. The revised NRD was dubbed BANANARD.24 (At
the time, “banana” was technical slang for “cool” or “better”). Yonke distributed and maintained
BANANARD for a bit less than a year though it remained in use for several years more.
There is at least one fun story from that year. BANANARD kept an index of messages in a file
so Yonke had to estimate how big the index (which was read into memory) might be. Yonke
estimated the largest possible mailbox size, doubled that, and concluded that assuming a mailbox
was never larger than 5,000 messages was safe. Steve Crocker exceeded the limit within a few
months. So did John Vittal.25

One of the challenges in RD and NRD was that there was still no standard format for email
messages. Headers varied. It was hard to find where one message ended and the next one
started. Wessler remembers trying to get NRD to find the start of headers but it was too hard
because messages routinely had other messages embedded in them. Therefore, NRD (and RD
and BANANARD) relied on the receiving system to place a start-of-message delimiter before
each message in the mailbox.26 The delimiter had four SOH (Start Of Header, also known as
Control-A) bytes followed by information about the message (initially just a byte count, later
somewhat more information).27 In one of those odd quirks, part of the start-of-message delimiter
has lived on. While some present-day email systems parse for a header, others still expect
messages separated by a line with four consecutive SOH bytes.

Page 6

4.3 Transitions
In March 1973, another meeting about FTP was held, to try to clarify issues lingering from the
April 1972 meeting. It marks a subtle transition.
Originally, clarifying and improving the support for email in FTP was part of the agenda.28 Yet
the meeting was ambivalent. Prodded by a late-in-the-meeting arrival of Steve Crocker of
ARPA, who asked how they were doing on email support, the group decided to formally
incorporate the MLFL and MAIL commands into the new specification29 (Recall the commands
had previously been in a separate addendum). Between the meeting and the issuances of the new
FTP specification, it was decided that email should really be a separate, auxiliary protocol.30

Email had become important enough (or complex enough) to merit distinction.
Second, the community was shifting. Though both meetings had over twenty attendees, they
were different sets of people. Only five people31 attended both meetings.32 Abhay Bhushan, who
had been driving the development of and writing the specifications for FTP, would soon move on
to other things. Nancy Neigus of BBN wrote the new FTP specification.
The research focus was also changing. By year’s end, Larry Roberts (probably email’s most
important early adopter) would leave ARPA, and under his successor, Bob Kahn, ARPA’s
networking focus would change to developing networks over media other than telephone wires
(e.g. satellites and radios) and the problems of interconnecting those networks.
Finally, at least from a standards perspective, the protocol for delivering email enters a kind of
limbo. The auxiliary protocol specification for email envisioned in the new FTP specification
never appeared. After three years, Jon Postel wrote a two page memo which never appeared on-
line, documenting the, by then well-established, practice of using MAIL and MLFL. The memo
suggests some sites had not bothered to update their FTP from before the 1973 FTP meeting.33

There were multiple attempts to allow FTP to send a single copy of a message to multiple
recipients. All of them apparently failed.34 It would take seven years from the FTP meeting
before the community seriously returned to the problems of a new email protocol.35 Innovation
over the next few years would come from user agents and a long-running debate over the format
of email messages, especially email headers.

5 The Rise of the User Agent
In early 1974, John Vittal worked in the office next door to Martin Yonke’s office at ISI. Vittal
had helped Yonke with BANANARD, and about the time Yonke stopped working on
BANANARD so he could finish his graduate degree, Vittal took a copy of the code and began to
think about building an improved user agent.

5.1 MSG
Vittal called his new program MSG. In it he sought to write a user agent that was simple yet did
all the things a user needed it to do. It had roughly the same functionality as BANANARD, but
the structure of its commands reflected feedback Vittal sought out from users about how they
wanted to manage their email. MSG was a personal effort by Vittal (writing code on nights and
weekends) and when he left ISI for BBN in 1976, he took MSG with him.

Page 7

MSG was, in fact, surprisingly simple. It was a stand-alone program with its own set of
commands. There were just 30 commands, named such that their first letter uniquely identified
all but six. Combined with a command-completion scheme, this usually-unique-on-first letter
approach permitted concise typing by experienced users. (Many early computer users were hunt-
and-peck typists, so keeping commands to a letter or two in length was a big timesaver).
Of these 30 commands, several were new from BANANARD. Some were minor, such as a
command to toggle the user interface between a concise and a verbose mode. However, three
commands reflect important changes:

 move reflected Vittal’s attention to user behavior. He noticed that one of the most
common activities was to save a message in a file and then delete the message from the
inbound mailbox. Vittal created the combined save/delete command, move.

 answer (now usually called “reply”) is widely held to be Vittal’s most insightful and
important invention. Answer examined a received message to determine to whom a reply
should be sent, it then placed these addresses, along with a copy of the original
SUBJECT field, in a responding message. Among the challenges Vittal had to solve
were the varying email addressing standards and what options to give a user (reply to
everyone? reply only to the sender of the note?). It took three implementations to get
right.36

The wonder of answer is that it suddenly made replying to email easy. Rather than
manually copying the addresses, the user could just type answer and reply. Users of the
time remember the creation of answer as transforming – converting email from a system
of receiving memos into a system for conversation. (There are anecdotal reports that
email traffic grew sharply shortly after answer appeared37).

 forward provided the mechanism to send an email message to a person who was not
already a recipient. How much of an innovation forward was is unclear. Barry Wessler
had to struggle with messages embedded in messages in NRD. But the formalization of
the idea was new.

MSG became the ARPANET’s most popular user agent and remained so for several years.

5.2 HERMES and MH
About the same time Vittal was starting work on MSG, Steve Walker at ARPA created a new
committee called the “Message Services Committee,” charged with thinking about email issues.
Its focus was on user agents (Al Vezza of MIT remembers a push to get user agents to support
command completion) and email headers. In the summer of 1975, Walker also created the
MSGGROUP mailing list, to encourage greater discussion.38

Motivating these efforts was an ARPA program called the Military Message Experiment (MME)
to make email into a useful service to the military. As part of this program, between 1975 and
1979, ISI, BBN and MIT (in an advisory role) sought to create user agents designed for the needs
of the military. The initial goal was a system for personnel at the office of the Navy Commander
in Chief for the Pacific (CINCPAC)39. In a related effort, RAND Corporation was funded to
develop a UNIX email user agent.40

Page 8

Hermes (a BBN project) and MH (at RAND) were products of this program. Another system,
called SIGMA was developed by ISI for CINCPAC but never used elsewhere. They illustrate
some of the diversity of user agents of the time. (An interesting side note is that John Vittal
worked on both SIGMA and Hermes, while continuing his work on MSG. So Vittal’s personal
project was competing with the in-house official product. At both ISI and BBN, MSG won.)
Hermes was designed for an office (or command) environment where much of the email received
was kept for reference. It contained a sophisticated set of mechanisms for filing and searching
for messages, including a database that recorded key fields from each message to make searches
fast. Hermes also provided a high degree of customization. Readers could create a template of
how messages should be displayed, how they should be printed, and even how they should be
created (what fields a user should be prompted for). To support this customization, Hermes had
a per-user configuration file (called a profile) remembered as having been large and complex,
though documentation suggests it was far simpler than the MH profile file became by the mid-
1980s.41 Initially known as the MAILSYS project, the Hermes team at various times included
Jerry Burchfiel, Ted Meyer, Austin Henderson, Doug Dodds, Debbie Deutsch, Charlotte Mooers
and John Vittal.
MH (“Mail Handler”) was the successor and response to an earlier RAND system, called MS.
MS was a user agent for the UNIX operating system (apparently the first UNIX user agent). MS
was funded by Steve Walker at ARPA and was created by William Crosby, Steven Tepper and
Dave Crocker.42 MS’s defining characteristic appears to have been that it supported multiple
user interfaces, including one that sought to mimic a UNIX command shell and another that
mimicked MSG.
Soon after MS was working in 1977, Stock Gaines and Norm Shapiro of RAND wrote an
internal memo suggesting that MS was inconsistent with the style of other UNIX programs.43

UNIX encouraged the use of many small programs each of which did something well and
creating meta-programs by combining the small programs together using a mechanism called
“pipes.”44 Gaines and Shapiro suggested the same approach for email: a set of small programs
that managed email, where email messages were stored as separate files in a user’s directory.
Two years after the memo, a new RAND employee, Bruce Bordon, was assigned to upgrade MS.
He recommended to his management that rather than upgrade MS, he should implement Gaines
and Shapiro’s idea. The result was MH.
The virtue of MH is that it makes email part of the user’s larger environment.45 Output of email
display programs can be filtered through search programs such as grep or simply sent to the
printing program. MH, in some ways anticipated today’s world, where clicking on an
attachment opens the correct program. Culturally, in UNIX, rather than clicking on an
attachment, one pipes data from one program to the next to produce the desired result.
Because MH puts every message in a separate file in a folder (directory), it is easy to manipulate
both individual messages and folders. Accordingly, MH (unlike MS46) has powerful tools to sort
folders and to search, mark, and label messages.
Through most of the 1980s, MH was maintained by Marshall Rose, with help from a number of
people, most notably John Romine, Jerry Sweet and Van Jacobson.47 Others have picked up the
task since and MH (much evolved in its code, but still recognizable as Bordon’s suite of
programs) continues to be widely used today.

Page 9

6 Message Formats and Headers
When Ray Tomlinson sent his email between TENEX systems, he used a format similar to a
business memo. But there was no standard format for email messages and creating and revising
standards for email message formats would consume a tremendous amount of effort over the
next several years.

6.1 First Message Format Standard
Abhay Bhushan, Ken Pogran, Ray Tomlinson and Jim White (of SRI) took the first step to
standardize email headers in RFC-561, published in September 1973.48 Their proposal was mild.
Every email message should have three fields (FROM, SUBJECT and DATE) at the start.
Additional fields were permitted, one per line, with each line starting with a single word (no
spaces) followed by a colon (:). The end of this header section was marked by a single blank
line, after which came the contents of the message.
The proposed standard was both forward looking and lacked some basic features. The ability to
make any word into a header field was progressive and left plenty of room for experimentation.
The date field was surprisingly precise, specifying the time to the minute and the time zone. The
blank line after the header remains a feature of email today. Yet there was no TO field, so a
recipient wouldn’t necessarily know who else was to receive the message and, while use of the
@ sign was already common, the address format required using the word “at”, as in
TOMLINSON AT BBN-TENEX, with the odd consequence that for several years, people would
send emails using “at” in the FROM (and soon, TO) field and yet within the message itself list
their email address with an “@”.

6.2 Partial Progress
In 1975, a team of people working on email systems at BBN sought to update RFC-561 with
RFC-680.49 The work was produced under the auspices ARPA’s Message Services Committee.50

The RFC authors were Ted Meyer and Austin Henderson but email on the MSGGROUP mailing
list suggests Charlotte Mooers51 also played a major role. RFC-680 set out to document a large
number of fields, many of which were already in widespread but informal use, and to standardize
their formats in a way that computer programs (e.g. User Agents) could easily parse.
That the header standard needed updating was becoming increasingly clear. Jack Haverty
offered the following example from his time maintaining the MIT-ITS mailer.

“[A] field like ‘To: PDL, Cerf@ISIA’ was ambiguous was ‘PDL’ really
‘PDL@ISIA’ (picking up the host from the end of the line)? Or was it
‘PDL@MIT-DMS’ (picking up the host from the ‘From: JFH@MIT-DMS’
elsewhere in the header)?
Various mail programs adopted different such ‘abbreviations’ which drove me
crazy…. To handle all of this protocol chaos, I wrote (and rewrote, and tweaked)
a sizable (for a LISPish world) chunk of code to try to deduce the precise meaning
of each message header contents and semantics based on where the message came
from. Different mail programs had different ideas about the interpretation of
fields in the headers.

Page 10

That code first tried to figure out where an incoming message had come from.
This was not so obvious as it might seem because of redistribution and forwarding
of messages, and differences in behavior of various versions of the other guy's
software. So it wasn't enough to just look to see if you were talking to MIT-
MULTICS. I remember having conditional clauses that in essence said ‘If I see a
pattern like such-and-such in the headers, this is probably a message from version
xx.yy of Ken Pogran's Multics mailer.’ With enough such tests, it formed an
opinion about which mail daemon it was talking with, and which mail UI program
had created a message.
Having hopefully figured out the other guy's genealogy (and therefore protocol
dialect), the code then acted based on a painfully collected set of observations
about how that system behaved.”52

RFC-680 is notable for documenting the increase in header fields that had taken place over two
years. It defined a number of widely used but not standardized header fields, including most
notably, the TO field, but also CC (carbon copy), BCC (blind carbon copy), IN-REPLY-TO,
SENDER and Message-ID. Introduction of the TO field meant a format needed to be chosen for
sending to multiple recipients. The proposal called for multiple email addresses in a field
separated by commas. The RFC also documented the use of @ instead of “at”.
RFC-680 was a clear step forward from RFC-561. Still, RFC-680 had limitations. It was based
on practices on TENEX systems, which were not always representative of the ARPANET
community as a whole. (For example, the decision to separate addresses in the TO field with
commas was a TENEX convention). Its syntax had bugs (it unintentionally permitted “@” and
comma in mailbox names). Furthermore, pragmatically, RFC-680, while intended to become a
standard, was never officially issued as a standard.53

In addition, RFC-680 revealed a philosophical split between members of the Message Services
Committee. The MIT members (Al Vezza and Jack Haverty) felt email headers were primarily
of use to the email handling programs and should be designed to be machine-readable. Others
felt that headers should focus on being human readable. RFC-680 tried to strike a compromise,
which apparently pleased neither side.54

The result was confusion. Some sites updated their mailers to conform to RFC-680 while others
continued to follow RFC-561.

6.3 A New Standard
Sometime in 1976, the Message Services Committee was replaced by the ARPA Committee on
Human-Aided Communication.55 One of the new committee’s early actions was to seek to
clarify the state of standards for email message formats. A vigorous email discussion on the
HEADER-PEOPLE mailing list in the fall of 1976 led to a new proposed standard in RFC-724
(“Proposed Standard for Message Format”) written by Ken Pogran (MIT), John Vittal (now at
BBN), Dave Crocker and Austin Henderson.56 It came out in early 1977.
The RFC-724 authors, like the RFC-680 authors, sought mostly to document current practice.
Vittal nicely summarized the goals as:

“to take RFC680 plus what we felt were things which people were already doing
that were useful to most, take out some things that weren’t terribly useful and

Page 11

probably shouldn’t have been in 680 in the first place, and come up with a new
specification. There were several things that some systems were already doing:
comments (e.g. the day of week in parentheses), association of people names
with user names (like at places like Stanford, CMU and MIT, also using
parenthesization), random date format preferences (Multics vs Tenex, etc.), and so
on. Elements of 680 which were not perceived as necessary were mostly the
military-like field names such as precedence, as well as syntactic inconsistencies
(bugs), and syntactic limitations. These could all be accomplished by using the
notion of user-defined fields.”57

RFC-724 defined a text-only message format. The message header and contents were
ASCII. The authors observed that, at some point in the future, clearly email would use
richer binary formats, but that was beyond the immediate need.
The new RFC provoked a tremendous amount of debate on HEADER-PEOPLE and a more
focused (and very distinct) discussion on MSGGROUP.
The MSGGROUP discussion raised two issues. First, was the new RFC going to cause much
longer message headers that users would have to see? Second, wasn’t the major issue simply a
desire to embed user’s real names into TO and FROM fields and, in that light, were all the other
header fields necessary? The conclusion was that extra header information simply reflected the
reality of what had already happened, and the desire not to see them pointed to a need for user
agents to edit header information, and that yes, adding names mattered.
The HEADER-PEOPLE debate was rooted in specification details. The best example of the
tenor of discussion is a multi-day argument (rich with ad-hominem remarks) about whether to
use twelve-hour or twenty-four-hour times in the DATE field, with much debate about whether
12am, 12pm or 12m was the correct abbreviation for midnight. The upshot was to eliminate
support for twelve-hour times.58

The result was RFC-733, a revision (by the same authors) of RFC-724. The major improvement
in the revision (beyond the date field) was a clear statement of how to include names with email
addresses. The format was to put the email address in angle brackets (<>) as in “David H.
Crocker” <crocker@rand-unix> and if the text before the brackets contained any special
characters such as punctuation or control characters, it had to be in quotes. The RFC also made
clear that mailing lists looked like any other mailbox. Issued in November 1977, RFC-733 was
the official standard for message formats for five years, and a defacto standard well into the mid-
1980s.

 Mailing lists had an odd history in the message format standardization process. No later than
1975, there were mailing lists as we know them today, in which email to, say,
MSGGROUP@ISI was delivered to host ISI. Host ISI then redistributed the message to the
members of the list. Yet there seem to have been a number of different practices intended to
show that the message was to a mailing list. So, at one time, ISI would rewrite the outbound TO
field of MSGGROUP messages to read “[ISI]MSGGROUP:”.

Page 12

6.4 Today’s Standard
In 1982, as the email community was preparing to transition to the Internet, the authors of RFC-
733 were asked to update it. The authors of 733 had several conversations about what the
changes should be, but only Dave Crocker (who had become a graduate student at the University
of Delaware) had the time to actually undertake the revisions. Several features of RFC-733 that
had failed to win popular acceptance were deleted, and three new field, FORWARDED,
RESENT-FROM and RESENT-TO, were added (to support the common practice of forwarding
an email message to someone else).
A more startling feature (in retrospect) was the addition of the RECEIVED field. RECEIVED is
odd because it, alone of all the fields in the message header, was created by MTAs rather than
UAs. Every MTA was required to insert a RECEIVED field into the message, to track the
message’s path through the network. Looking back, this is an odd and subtle architectural
change which made MTAs responsible for understanding the format of messages, which
previously (ignoring the practical problem of address rewriting, see section 7) MTAs had not
needed to understand.
The result, written by Crocker and published in August 1982, was RFC-822. RFC-822, or more
commonly, simply 822 format, remains the basic standard a quarter century later. (An updated
version appeared as RFC-2822 in 2001, but the basic format is unchanged).59

Before we leave the discussion of the evolution of message formats, a few observations are in
order. First, developing a message format was a difficult intellectual problem. RFC-822 is 47
pages long and a combination of an augmented Backus-Naur notation that defined the format of
each field and a short statement of each field’s semantics. It is comparable in complexity to the
computer language specifications of the time. Second, it is hard to understate the importance of
RFC-733. RFC-733 came out early enough to become the defacto standard for email message
format throughout much of the world. The UUCP network, the Computer Science Network
(CSNET) and BITNET all ended up using RFC-733 format for their email messages.60

7 Evolving the MTA
SNDMSG was the earliest MTA. It simply delivered the message or returned an immediate error
message saying it had failed. After about a year, Bob Clements enhanced SNDMSG to
retransmit messages if the remote host was down.61 About two years later, SNDMSG was
updated to place each message in a file in the user’s directory (one file per email) and a new
program, called MAILER, would periodically pick up and deliver email files in the user’s
directory.62 (Observe that this change converted SNDMSG to a User Agent, with MAILER
taking on the role of MTA).
In a nutshell, that incremental evolution describes the experience of developing MTAs in the
1970s. Each operating system would implement an MTA, which was then refined over the years
to deal with environmental conditions.
Unfortunately, the different MTAs evolved differently. The underlying problem was that email
via FTP was underspecified. (It is useful to observe that the specification for email delivery with
FTP was two pages long, while the SMTP specification, when it appeared, was 68 pages long).
Implementers had considerable latitude, and they used it.63 By the mid-70s, implementing an
MTA was getting harder, not because email had become more difficult, but because the

Page 13

profusion of slightly different MTAs meant that everyone’s MTA had to be programmed to deal
with the differences.
For example, there was considerable disagreement about whether one had to login to the remote
system (FTP had a login command called USER) before trying to deliver email with MLFL.
Multics required a login. TENEX did not. So MTAs had to include code to recognize when they
were talking to Multics and when to TENEX and adapt their behavior accordingly.
SMTP, because it was well-specified, eventually solved this problem (see section 8).
Unfortunately, by this point, a new problem had arisen: multiple email networks.

7.1 BITNET, CSNET and UUCP
Between 1978 and 1981, three major email networks were created. While the Internet remained
the largest network throughout the 1980s, these three networks (UUCP, CSNET and BITNET)
would grow big enough to influence email standards. The UUCP network was comparable to the
Internet in size. And, almost from the start, the four networks were interconnected64, creating
massive challenges for MTAs of routing between four networks (not counting the smaller
networks that appeared) with different address formats.

7.1.1 The UUCP Network
The UUCP network (named for the Unix-to-Unix CoPy program over which it was built) began
inside AT&T in 1978.65 It used dial-up telephone links to exchange files and within a few
months was moving email. AT&T soon distributed the software and the UUCP network, made
up of cooperating sites, was off and running. Over the next decade it grew at a prodigious rate,
such that by 1990, its population was estimated at a million users – comparable to the Internet’s
population.66

The UUCP network was a multi-hop network. To reach machine V, an email from machine M,
might have to pass through intermediate systems Q and T. The motivation for this approach was
to minimize phone bills. In the 1970s and early 1980s, long distance calls were expensive, and
the rates differed by hour (with evening and night rates being sharply lower). Modems were
slow (a couple of hundred bytes per second was considered good) and files were (relatively
speaking) large. So the typical operating mode at any UUCP site was to save up all email until
5pm, and then to call a nearby UUCP site to forward email along and receive inbound email.
Indeed, over the course of the night, several phone calls would be made to push outbound mail
and receive inbound mail. Depending on the calling schedules and the connectivity of the
machines, email could travel a few or several hops before the nightly calling frenzy ended.
Initially, the person composing the email had to spell out the entire path a piece of email needed
to take through the network. In the UUCP network, the hops were separated by exclamation
points (“!”, pronounced “bang”). So, someone mailing the author via UUCP from UC Berkeley
in the 1980s would send it to ucbvax!ihnp4!harvard!bbn!craig.
In 1982, Steve Bellovin wrote pathalias, a tool designed to compute paths from a network map.
He refined it with Peter Honeyman.67 Pathalias was distributed widely. Now, by keeping a map
of regional connectivity, it became possible to email via landmark sites and have them fill in the
missing hops. So, for instance, the author’s address could be reduced to ihnp4!bbn!craig and the
harvard hop would be dynamically inserted.

Page 14

In 1984, Mark Horton began an effort to create a complete UUCP network map, which reached
fruition about 1986. After that, UUCP users could simply type sitename!user and pathalias
would compute a path to sitename for them. An even fancier trick was to add a network domain
to the sitename, such as bbn.arpa!craig and pathalias would compute a path to an email gateway
between the UUCP network and the Internet.

7.1.2 CSNET
By the late 1970s, the computer science research community realized that the ARPANET was
changing how people did research. Researchers who had access to a network got information
more quickly, and could collaborate and share work more easily. Thus was identified the first
“digital divide” – between computer science departments that had access to ARPANET and
those that did not.68

The goal of the Computer Science Network (CSNET) was to bridge that gap. Created in 1981 by
the National Science Foundation in cooperation with ARPA, CSNET linked computer science
departments and industrial research laboratories to the ARPANET (and then the Internet).69

CSNET was designed to become self-supporting. The ARPA and NSF funding was only to
provide startup capital and an initial operations budget. For the first two years, operations of
CSNET were distributed between the University of Wisconsin and the University of Delaware,
with help from the RAND Corporation (which ran a gateway on the west coast). Beginning in
1983, the network was operated by BBN, where a team of roughly ten people provided technical
support (including writing or maintaining much of the email software used by CSNET
members), user services, and did marketing and sales. By 1988, CSNET was self-supporting
and had approximately 180 members, most of them computer science departments in North
America.
Technologically, CSNET did everything possible to make its members feel part of the Internet-
community. Initially, connectivity was almost entirely email only, using dialup phone service.
Over time, direct access via IP was also supported over a variety of media, including IP over
X.2570 and the first dialup IP network.71

After 1983, email in CSNET all went through a single email gateway, CSNET-RELAY, which
sat on both CSNET and the Internet. Email was routed by addressing it to the relay, with the user
address being the target address on the other network. The syntax used a percent sign (%) to
divide the next hop user name from relay address. So, to get from the Internet to a CSNET host,
one emailed to user%host.csnet@csnet-relay.arpa. From CSNET, one emailed
user%host.arpa@csnet-relay.csnet. Email was formatted according to RFC-733 and 822
standards.

7.1.3 BITNET
BITNET was established in the same year as CSNET, but with a different driving force.
BITNET (“Because It’s There” or, later, “Because It’s Time”) was created by university
computer centers (now information technology offices) to interconnect their computing facilities
with email and file transfer. Because the centers typically used IBM mainframes running the
VM operating system, BITNET was constructed from low-speed leased lines running IBM
networking software, on which email was overlaid.

Page 15

Like CSNET, BITNET used Internet email standards (with the %-hack in the email address for
gatewaying). Unlike CSNET, BITNET did not have a central management or support center.
Instead, most functions were volunteer activities, with coordination provided by EDUCOM. In
mid-1988, BITNET had nearly 400 member sites.
The boards of BITNET and CSNET overlapped and the two networks eventually merged, so one
may wonder why they were distinct in the first place. The distinction lies in the relationship,
often contentious, between computer science departments and computing centers in the 1970s
and 1980s. Computer science departments typically maintained their own computing facilities,
to enable research by computer science faculty. Computing centers were university-wide
resources that sought to provide stable computing environments for researchers in other
disciplines. The stereotype was that computer science departments ran cutting-edge operating
systems on mini-computers and workstations while computing centers ran established
commercial operating systems on mainframes. More important, from an institutional
perspective, the computer science department typically provided a haven for those on campus
who were (for whatever reason) disgruntled with the computing center. Neither party
particularly wanted to rely on the other for network access: with the result that there were two
networks, one for each community.

7.1.4 Email addressing across networks
The four networks (including the Internet) periodically viewed themselves as competitors. Yet
the four networks were also committed to making email work among them. A number of sites
brought up gateways between the networks. Even more sites made a point of residing on more
than one network, to ensure ease of mailing for their users.
It is widely agreed that, by the early-1980s, email addresses were a disaster both for users trying
to email across networks, and network administrators trying to keep the email flowing.
The disaster had two dimensions. First, one had to know which network a user was on. For
instance, if someone told you he was bob@princeton, one had to immediately ask “which
network” because princeton.bitnet and princeton.csnet were different machines and were not
interconnected. If a user forgot, or her email software removed the network appellation (e.g
.csnet) the email would be delivered to the bob@princeton in whichever network the sender was
in.
The second problem was that, even if one knew which network an email address was in, getting
it there was not easy. To take a relatively common example, consider the following four
addresses:

ihnp4!ucbvax!bob%princeton.csnet@csnet-relay.arpa
bob%princeton.csnet%csnet-relay.arpa@wiscvm

bob%princeton.csnet@csnet-relay.arpa
bob@princeton

These represent the four likely addresses for reaching bob at Princeton’s CSNET host, from the
UUCP network, BITNET, the Internet and CSNET respectively. If the examples are not painful
enough, consider the first address and how it would be handled in transit.
It starts in the UUCP network and is passed to ihnp4 (a key UUCP relay at Bell Labs in
Naperville). Ihnp4 must puzzle out ucbvax!bob%princeton.csnet@csnet-relay.arpa and decide

Page 16

if the email address is to the left of the @ sign (Internet style) or to the right of the bang (UUCP
style). As ihnp4 is a UUCP-only system, it knows to use UUCP addressing and passes the
message to ucbvax at the University of California at Berkeley. Ucbvax is a gateway on both the
Internet and UUCP networks so it must puzzle out bob%princeton.csnet@csnet-relay.arpa.
Thankfully, ucbvax was not on CSNET and clearly not the same system as csnet-relay.arpa, so
bob%princeton.csnet is no good. Thus the message must be send to the CSNET relay (and,
because ARPANET did not strip mailing information, it remains bob%princeton.csnet@csnet-
relay.arpa). CSNET’s relay in turn extracts the address to the left of the @ sign, to get
bob%princeton.csnet and delivers the email to Princeton.
Observe that there’s ample chance for confusion. Another nasty problem was that each mailer
had to make sure that the FROM address in the email was updated (and sometimes the TO and
CC addresses as well) so that the recipient of the email could successfully reply to it. Yet
another challenge was that, for a period, the United Kingdom decided to reverse the order of
labels in a domain name (so Kirstein@uk.ac.ucl.cs) with the result that some mailers had to parse
names backwards and forwards (“bothways” mode) to see if they made sense.
It is no surprise that the people who made major contributions to email MTAs at this time were
people closely affiliated with email gateways.

7.2 Delivermail, Sendmail and MMDF
The appearance of new email networks transformed the complexity of the MTA. Now, at least
on systems that were on multiple email networks, the MTA had to understand multiple
addressing formats and routing rules and competently move messages between the various
networks as appropriate. One sign that the problem of writing an MTA had gotten hard was that
it became the subject of serious academic research. The major contributions were made by two
graduate students: Eric Allman at UC Berkeley (delivermail and sendmail) and Dave Crocker
(who had left RAND to study at the University of Delaware, where he wrote mmdf).
Both men were trying to solve essentially the same problem: supporting multiple email networks
in one system. Allman needed an MTA for UC Berkeley’s main email system, which served as
the university’s email gateway between the UUCP network and the ARPANET and local email
delivery. Crocker needed an MTA to support local email, ARPANET email, and a new phone-
based delivery system which eventually became CSNET’s PhoneNet protocol. The two men
solved the problem very differently.

7.2.1 delivermail
Allman’s delivermail was the simplest of these MTAs. Delivermail was written for Berkeley’s
BSD UNIX operating system in 1979 and was a basic program72 not greatly more complex in its
workings than Bob Clements’ 1973-vintage SNDMSG. When invoked by a user agent (or the
inbound FTP server), delivermail expected to be given a message, which it would either deliver
or return an error message. The big difference was that delivermail implemented a layer of
indirection. Rather than delivering the message to a mailbox or a remote system, delivermail
looked at the destination address and then picked a program to deliver the message to. So, for
instance, to deliver ARPANET mail via FTP, delivermail called an auxiliary program called
arpa and passed the mail to the arpa program and waited for a (real-time) response regarding

Page 17

delivery. If, by some mischance, the message had to be queued, arpa (not delivermail) would
queue it.
To parse the address, delivermail used the simple expedient of assuming that an at-sign meant
ARPANET mail, an exclamation point in the address meant UUCP, and a colon meant the local
BERKNET protocols. For each address type, delivermail could be configured either to call a
program to deliver the mail, or call a program to relay the mail to the appropriate gateway (one
email gateway per type).
Delivermail had a powerful aliases features, in which a destination address could be expanded to
a list of email addresses. It also had a first class logging system (a way to record what
delivermail did) called syslog. Email systems were developing increasing sophisticating logging
mechanisms. Syslog was so good, it eventually became a standard part of BSD UNIX and is
now used by a wide range of applications.
One surprising feature of delivermail was that part of its configuration was compiled into the
program. That is, for each machine, one compiled a custom version of delivermail. So, for
instance, if the machine was connected to ARPANET, one compiled delivermail with the
–DHAS_ARPA flag to the C compiler.

7.2.2 MMDF
About the same time that Allman was creating delivermail, Dave Crocker was writing the first
version of mmdf (the Multi-Channel Memo Distribution Facility).73 Rather than seek to process
each message immediately, as delivermail did, Crocker sought to decompose the process into
multiple stages.
When a message arrived (via the network or from a user agent), the message was given to a
program called submit. Submit checked that the message format was correct (here the common
use of 733 format was a big win) and then looked at the address to decide what network the
message was to go out on. The message was assigned to a “channel.” Each channel had its own
queue: a directory where messages and their “envelopes” (control information) were stored.
Submit simply placed the message in the right queue.
Another program, called deliver, was regularly scanning the queues for messages. When a new
message appeared, deliver called on a channel-specific program (e.g. mmdf’s equivalent of
delivermail’s arpa program for ARPANET email) to deliver the message. If message delivery
failed, submit was called to send the message back to its sender. If there was a transient error
(e.g. the remote host was down), the message was left in the queue and deliver would try it again
later.
Mmdf also supported aliases and had a fine logging system.
An important contribution of mmdf was achieving an effective split of the message delivery
process. Diagnosing email problems (whether configuration problems or problems with
particular messages) was cleanly compartmentalized. Submit prevented junk from entering the
system. Deliver handled problems in delivery. An operator knew where the problem was by
seeing which program was complaining in the logs.
Another contribution was restriction of privileges. One of the key problems in any mail system
is that whatever program delivers mail to the user’s mailbox needs special privileges. In mmdf,

Page 18

that was one small program, the local channel delivery process. All the other processes could be
run as a regular user (usually called “mmdf”).
The channel model also proved flexible. A message could go through multiple channels before
leaving a system. Mmdf soon developed a “list” channel to handle mailing lists. A message was
placed in the list channel to have its destination address expanded. It exited the list channel by
being placed in one or more channels to be delivered to members of the mailing list. Later, when
MX resource records were introduced (see section 9.1), they introduced a new error: a domain
name that (because of DNS problems) could not currently be looked up. In mmdf this was
trivially handled by creating a new channel, where submit placed messages whose addresses
could not be resolved at the moment.
A downside of mmdf was that rather than one configuration file, there were several, scattered in
different places. While each configuration file was simple (a list of attribute:value pairs), the
sheer number of them could prove frustrating.

7.2.3 sendmail
Based on experience with delivermail, Eric Allman decided to write a new MTA for release with
the 4.2 version of BSD UNIX. The new MTA was called sendmail.
Culturally, sendmail was similar to delivermail. But from a practical perspective, it was quite
different. Major differences included74:

 Configuration was determined by a file, called sendmail.cf, rather than being compiled in.
 The address parsing rules and message delivery rules were defined by a grammar in the

configuration file.
 sendmail now maintained its own message queue.
 Certain delivery programs (most notably email delivery via SMTP) were compiled into

sendmail instead of client programs (e.g. arpa).
But this list understates the transformation from delivermail to sendmail. Sendmail was almost
an order of magnitude more complex (measured in lines of code) and tremendously more
flexible.
The changes had interesting mix of consequences.
Probably the most importance consequence was flexibility. Placing address parsing and
configuration rules in a grammar made it possible to dynamically configure sendmail for
arbitrarily complex email environments.
Another consequence was a reinforcement of delivermail’s approach of putting all the email
expertise into one program. SMTP was now embedded in sendmail. So too was queue
management. It made sendmail a complex program and hard to change. Allman later noted that
sendmail should have been better decomposed into constituent functions, even if only
internally.75

An unexpected consequence was that crafting and debugging sendmail’s single configuration file
(sendmail.cf) became a central preoccupation (some would say headache) for system
administrators over the next several years. A properly working email system required the
configuration file be right. And sendmail’s grammar (with a fondness for single-letter tokens,

Page 19

which made mnemonic naming impossible) gave administrators many opportunities to make a
mistake.

7.3 Evolution and perspective
Over the 1980s, both sendmail and mmdf prospered.
Mmdf was substantially reworked by Crocker, Doug Kingston (of the Army’s Ballistic Research
Laboratory), Steve Kille (of University College London), and Dan Long and Craig Partridge (of
BBN) into a new release called mmdf2. Mmdf2 was used at a number of major email centers in
the mid and late 1980s.
Mmdf also inspired PMDF, a rewrite of mmdf in PASCAL for the VMS operating system. The
initial implementation was done by Ira Winston at the University of Pennsylvania. It was then
maintained and substantially revised by Mark Vassol and Ned Freed (then at Oklahoma State
University). PMDF became a popular email system for Digital Equipment Corporation’s VMS
operating system and, over time, became the dominant email system on BITNET (where VMS
systems were popular) and eventually became a commercial product.
Sendmail was repeatedly improved in subtle ways. Over time, as BSD UNIX became the most
popular operating system on the Internet, sendmail became the most common MTA, while the
sendmail.cf file continued to build a reputation for being complex.
In the end, sendmail had the last word. When the complex mix of email networks consolidated
into a single email network after 1990, it was no longer necessary to write a sendmail grammar
that could handle multiple email address formats. The sendmail.cf became much simpler.
Sendmail could be recognized for its flexibility without being forced to demonstrate its potential
complexity. It remains a popular MTA on the Internet today.

8 SMTP and Avoiding Second System Syndrome
By 1980, the Internet protocols were rapidly maturing and ARPA (rechristened DARPA some
years earlier) had started to plan the operational transition from ARPANET to Internet protocols.
Initially the expectation was that Internet email would be multimedia and thus a full-scale
replacement of ARPANET email with Internet multimedia email would be made.76 However, by
May of 1980, Vint Cerf of DARPA had concluded multimedia email would come too late for the
Internet transition and that the problem of supporting text mail and bridging email from systems
using the old ARPANET protocols to systems using the Internet protocols needed a solution.77

In September 1980, three RFCs appeared that were intended to start the process of planning the
transition.
The first RFC (RFC-771) was written by Cerf and Jon Postel (at ISI) and was a plan to make the
transition from ARPANET email protocols to Internet email protocols using designated email
gateways that operated using both protocol suites.78

The other two RFCs are more interesting. RFC-773 was an addendum to RFC-771, written by
Cerf, and sketched out some of the key technical issues in the transition. Cerf was concerned to
make the email transition as simple as possible and to defer hard work until multimedia email
was in place on the Internet. One surprising statement followed the observation that FTP-based
transfer passed only the user part of user@host to the remote system, but email gateways needed
to know the host part to effectively gateway email. Rather than bite the bullet and accept an

Page 20

ARPANET change to FTP to pass the host part, Cerf suggested that, for compatibility sake, the
user part be standardized across the ARPANET/Internet – in effect, every system was to know
every user’s email name and where to deliver its mail! This idea seems to have been rapidly
abandoned.
In RFC-772, Suzanne Sluizer and Jon Postel proposed a new “Mail Transfer Protocol” or MTP.79

Its purpose was to serve as the bridge protocol for the email gateways between ARPANET and
Internet email protocols.80 What, precisely, the Internet email protocols would be was not
discussed (though clearly the intent was they would be new protocols capable of supporting
multimedia). Very little thought had been given to email protocols since the 1973 FTP meeting
but MTP tried to take advantage of what little thought had taken place. In particular, MTP
sought to provide better support for delivering email messages to multiple users on a single
system.
In community lore, MTP is remembered as an ugly protocol. In truth, it was not ugly, but it was
complex. It negotiated two different ways to send email. One could either send the message first
and then send the destination address, or one could send the destination address and then the
message. MTP used complex commands, which made understanding error codes difficult. For
instance, it was possible to say MAIL <from@host1> TO <remote@host2> as a single
command, which made it hard to parse error messages about addresses to determine whether the
FROM or TO address [or both] was in error. It had an approach to email forwarding that
permitted an MTA to announce that it didn’t know how to forward a message but would hold
onto the message anyway until the MTA’s operator figured out where the message should go – a
bizarre idea that would have ensured endless work for operators.
Some of these problems were noted at the time.81 Nevertheless, MTP soldiered on. At least four
implementations were made82, and the MTP specification was revised in May 1981. The
revisions appear to be largely cosmetic and the protocol remained complex. The impression is
that the email transition plans were poorly thought through. Some of the Internet researchers of
the time remember that the community viewed email as a distraction – with so many problems in
TCP and IP, who needed to look higher in the stack? They give credit to Cerf for forcing them
to periodically pay attention. Then, late in 1981, things suddenly cleared up.
The continuing criticism caused Postel to rethink MTP and, in November 1981, he wrote an RFC
describing a simpler protocol, the “Simple Mail Transfer Protocol” (SMTP). SMTP was,
indeed, simple. Every command had zero or one arguments. Recipients were always listed
before the message was sent, and each recipient was listed and acknowledged separately. A
slightly revised version of the specification came out as RFC-821.
It is not clear what inspired SMTP’s design, but there is a hint. Sluizer and Postel published two
RFCs documenting their experience implementing MTP83. The first one, RFC-784, observed
that it was convenient to maintain two files for each email message: a control file called the
envelope and the message itself. At this point, the concept of an envelope was still relatively
new. The term envelope had been coined in 1975 as a way of discussing header fields that
MTAs needed to be able to deliver a message84, but by 1979, its meaning had shifted to mean the
meta-data associated with a message85.
The second RFC, RFC-785, detailed the internal structure of the envelope file as it appeared on
TOPS-20. Each item of information (each email recipient, the email sender, etc) was kept on a
separate line. And if one reads the SMTP specification, each command in SMTP corresponds to

Page 21

adding a line of information in the TOPS-20 envelope file. So perhaps that is where Postel got
his ideas for SMTP.
SMTP, with modest changes, remains the way email is transferred today, 25 years later. In that
light, it makes sense to try to assess what has made SMTP so long-lived.
First, we note that SMTP did (and in some cases, still does) have deficiencies. Despite Postel’s
interest in the support of multi-media mail, SMTP was defined to use 7-bit ASCII – a decision
that had to be undone a decade later. SMTP’s request/reply format causes SMTP connections to
follow a pattern of many little data exchanges (command/reply, command/reply) and then a big
transfer of the actual email message. This pattern turns out to be bad both for TCP and on
network paths with long delays. This problem was eventually solved with SMTP pipelining.86

RFC-821 had some SMTP commands to send messages directly to user terminals. These
commands were never implemented widely. In addition, SMTP has a small race condition, such
that email can be duplicated.87

These deficiencies are outweighed by SMTP’s design. Each command has zero or one
arguments. Reply codes are three digit numbers, with the first digit standardized.88 A positive
response or an error can be determined by the first digit, even if the particular error code is novel.
Transmission of a message typically requires just three commands: MAIL FROM, RCPT TO,
and DATA. While SMTP clearly reflects its roots in FTP (which has a similar command style),
the complicating features of FTP (in particular, features for interactive user support) were
removed.

9 Domains and a New Way to Route
From the early days of the ARPANET, the DDN Network Information Center (NIC) maintained
a file, named HOSTS.TXT, that mapped single-word host names to network addresses. This file
was copied to every host on the ARPANET and later Internet, so users could use character-based
mnemonic host names such as BBN-LOKI rather than numeric addresses such as 128.89.1.178.
Unfortunately, the HOSTS.TXT scheme had several limitations. Updates were difficult. The
NIC needed to be notified when a new host was installed or host information was changed, and
then every host needed to download the new HOSTS.TXT. To minimize the network load
(HOSTS.TXT was a relatively large file and having every host get a copy could cause
considerable network load) HOSTS.TXT was updated just a few times a week. Simply getting
new information propagated could take several days.
Furthermore, the namespace was flat. Only one machine could be named FRODO. Furthermore,
names were relatively short (24 characters max89), so users had to become increasingly creative
about host names as the network grew.
In 1982, the Internet community set out to replace HOSTS.TXT with a distributed database.
Zaw-Sing Su and Jon Postel of ISI wrote a proposal for a new naming structure. The scheme
created hierarchical names, with different portions of the hierarchy, called domains, delimited by
a dot (“.”) in the name.90 For example, under this scheme, F.ISI, would be the name of host F in
the ISI domain. The naming scheme was clearly inspired by the recently developed Grapevine
distributed naming system developed at XEROX PARC.91

In November 1983, Paul Mockapetris of ISI issued two RFCs92 specifying a distributed database
system to support a domain name system (DNS). Reflecting considerable commentary on the

Page 22

NameDroppers mailing list, the proposed DNS supported multiple levels of hierarchy (vs. the
two levels used by Grapevine and suggested by Su and Postel). The DNS stored information as
resource records, where each record mapped a name to a typed value such as an IP address. A
single name could have multiple records (so a host with multiple IP addresses would have one
resource record for each IP address). Work began at ISI and UC Berkeley to implement the
proposed DNS in TOPS-20 and Berkeley UNIX.93

By the summer of 1985, both servers were working (at least experimentally). But several
deployment issues remained unresolved, at least two of which were vital: how email was to work
with the DNS, and how the namespace should be organized.

9.1 Email Routing with Domain Names
In the summer of 1985, Craig Partridge joined the staff of CSNET and was asked to see what
modifications needed to be made to CSNET’s email software to support the (now working)
domain name system. Mockapetris’ specification of the DNS had created two resource records
to support routing of email, but the specification only loosely specified how they would be used.
Initially, Partridge thought the problem would be easy94 only to realize a few weeks later that
there was a serious issue.95

Mockapetris had defined two email routing records for the DNS: a Mail Destination (MD) record
and a Mail Forwarder (MF) record. The notion was to allow a domain name to specify that all
email addressed to the domain was to be delivered to a particular host (an MD), or that the email
could be relayed via one or more email gateways (MFs). The central idea here was new and
powerful: under the DNS, the right side of the @ sign in an email address was no longer the host
to which email was to be delivered, but a name for which email routing was specified.
Partridge eventually realized that if a name had both MD and MF records there were situations
where email could loop or worse, fail to be delivered.96 He wrote a draft RFC describing a
complex set of rules that ensured a such failures would not occur and sent it to Jon Postel and
Mockapetris. Postel and Mockapetris felt the proposed rules were ugly and burdensome to
MTAs. They asked Partridge to work with a small group of people, including Mockapetris, to
find a better solution.97

After a couple of days of discussion, Mockapetris suggested a potential solution was to have one
record for mail routing, called a Mail EXchanger (MX) record. Partridge worked through the
details of the idea and crafted the routing rules for MX resource records. He reported the
resulting specification was indeed, much simpler (about half as long as the previous one). Postel
declared a solution had been found, and asked Mockapetris to update the DNS specification.
Mockapetris’ update and Partridge’s specification appeared in January 1986.98

MX resource records remain the way email is routed today. The basic idea is simple. A name is
associated with one or more MX resource records. Each resource record has the name of one
host and a preference number. To route to a name, a mailer looks up the name’s MX records and
then successively tries to deliver to the hosts, starting with the host with the lowest (best)
preference number, until delivery succeeds or the mailer runs out of MX records. To prevent
loops, if the mailer is one of the MX hosts listed, it may only deliver to MXs with a lower
preference value. Despite the simplicity, the scheme supports most useful types of email routing
easily.99

Page 23

9.2 Defining the Domain Name Space
Another open question in late 1985 was what the top-level domains would be. Top-level
domains are the last part of a domain name: thus in example.com the top-level is .com. As the
DNS began to work, and as email was being modified to use it, the issue of finalizing top-level
domain names became an increasingly vital issue.
It soon became clear that the issue transcended the Internet community. The major email
networks connected to the Internet saw a chance to make their naming schemes consistent.
Indeed, one of the people pushing most vigorously for resolution was Dick Edmiston, who led
CSNET.
Elizabeth “Jake” Feinler, head of the DDN NIC, hosted a two-day meeting at SRI International
in late January 1986 to resolve all outstanding issues. Beyond several Internet representatives,
mostly notably Postel and Mockapetris and Ken Harrenstein (SRI), the meeting included
representation from the UUCP community (Mark Horton), BITNET (Dan Oberst), and CSNET
(Partridge and Laura Breeden), representatives (Kevin Dunlap and Jim Bloom) from the UC
Berkeley BSD UNIX project (which maintained sendmail and the bind DNS software) and Steve
Kille (of University College London)100.
Once the meeting began, it was clear that but for an odd issue about creating .net101, the real issue
at the meeting was email compatibility. CSNET used Internet email standards whenever
possible and planned to implement DNS naming throughout its network. The UUCP network,
limited by its flat namespace, also saw an advantage in adopting domain names. BITNET was
less certain, but still felt domain names were of interest. More generally, a brief discussion of
the routing technologies of the different networks made clear that it was possible to create
seamless support for email addresses of the form user@domain-name that spanned the four
networks. The end of the era of ihnp4!ucbvax!bob%princeton.csnet@csnet-relay.arpa was
visible and exciting. Everyone at the meeting agreed to push to get their respective software
ready.
Except… Except that Mark Horton wanted compatibility with X.400 email addresses too.
(X.400 is described in more detail in section 10.3 below). The X.400 naming system was known
(though not yet working). It used names that were close to domain names. Steve Kille and
Horton had worked out a way to map between X.400 addresses to DNS names, if the DNS
followed certain naming practicies. Horton wanted to make it possible for sites to pick domain
names that would be compatible with X.400. Those questions led to the question of whether
there would be a .us domain. X.400 names were assigned by country, and thus organizations in
the United States, in the X.400 system, would have names ending in .us. If Kille and Horton
were to achieve the goal of compatibility with X.400, there needed to be a .us domain and names
in the .us domain had to be given out according to X.400’s rules.
Jon Postel was adamantly opposed to structuring .us to fit X.400. He felt that forcing people to
add a country code to their email address was much like forcing them to add a network name
such as .arpa or .bitnet to their email address. In his view, both practices were ugly and
restrictive.102 He asked why a university had to make the top-level of its name the country in
which the university was situated, when clearly the most important aspect of the institution was
that it was an educational organization. Equally vigorously, Postel had no interest in assisting a
conversion to X.400. Indeed, he already had taken the step (as the Internet Assigned Numbers

Page 24

Authority) of assigning control of .us to himself and made it clear that his naming structure for
.us would bear no relationship to anything compatible with X.400.
The debate ran, on and off throughout the meeting. In the end, the parties agreed to disagree, but
accept that the decision was Postel’s.
At the time, Postel’s intransigence seemed just a stubborn attempt to delay an inevitable
transition to X.400. In retrospect, several factors were about to converge to make the debate,
arguably, X.400’s high water mark.
By standardizing on domain names, the meeting created a common email addressing and
message format that probably covered over 90% of the email community of the time. Over the
next several years, organizations on CSNET, BITNET, and UUCP, already using domain names
and thus culturally acclimated to the Internet world would begin seamlessly transitioning to the
Internet. SMTP, RFC-822, and domain names were about to become a technical juggernaut that
X.400 would be hard-put to displace. Postel’s decision to keep .us distinct from X.400 made the
process of replacement by X.400 tougher – everyone would have to change email addresses
(precisely the barrier that the meeting had eliminated for organizations on CSNET, BITNET and
UUCP who wished to join the Internet).
If X.400 was to become the next email standard, it now had to pin its hopes on the fact that
X.400 supported multimedia while SMTP/RFC-822 did not.

10 The Long Tough Path to Multi-Media (E)Mail
Multi-media mail is email that contains a richer set of objects than simply ASCII text.
Throughout the 1970s, email on the ARPANET and most other email systems was limited to
ASCII. At the end of the 1970s, researchers and implementers began to think about how email
might be enriched.

10.1 Early Multimedia
In 1977, IFIP created a working group (WG 6.5) to address the need for standards for computer
based message systems. Grossly simplifying its charter (which included dealing with issues such
as networked Telex messages), the working group was to lay the groundwork for an international
standard for email. This effort was eventually to lead to the CCITT/ISO X.400 standards for
email. Real work seems to have begun sometime in 1978 or 1979. As part of this effort, Debbie
Deutsch and John Vittal at BBN were thinking about the format of email messages.
Under the auspices of the National Software Works program103, Jon Postel at ISI, started
investigating protocols to move multimedia messages between systems. In March of 1979,
Postel published ideas for an “Internet Message Protocol.”104

In 1978, the UUCP email network began operation. In 1979, responding to a need for a way to
safely send binary files between systems, Mark Horton (then a grad student at Berkeley) wrote
the uuencode program and it was distributed with the 4.0BSD distribution of the Berkeley UNIX
operating system. Uuencode converted binary files into a formatted ASCII file that could be
included in any email message. A complimentary program, uudecode, could read the formatted
ASCII and extract the binary contents. Uudecode was cleverly designed to skip over any leading
text until it hit the line encoding the start of a uuencoded object. So you could include some
leading text in the email describing the binary object being sent and yet safely feed the entire

Page 25

email to uudecode to extract the binary. Uuencode’s major contribution to multimedia mail was
to demonstrate that people did want to email around binaries – for years, on the Internet,
uuencode was the way binary data was sent.105

Oddly, while the work on uuencode, Postel’s work at ISI and the work at BBN all led to fruitful
results, it is hard to directly trace the work in any of them to the final development of Internet
multimedia mail. But they created a milieu in which multimedia mail was anticipated, and
finally, after long effort, achieved.

10.2 Internet Multimedia – Round One
By 1980, Postel’s work106 on multimedia protocols had created an expectation that the Internet
would shortly transition to multimedia email. As the introduction to the 1980 email transition
plan makes clear:

“This plan covers only the transition from the current text computer mail in the
ARPANET environment to text computer mail in an Internet environment. This
plan does not address a second transition from text only mail to multimedia
mail.”107

Cerf’s commentary on the transition plan noted:
“DARPA is beginning a new phase of research into automatic electronic message
handling systems. Ultimately it is intended that electronic messages incorporate
multiple media such as text, facsimile, compressed digitized voice, graphics and
so on.”108

By the start of 1982, there were at least nine Internet multimedia projects at seven institutions
(CMU, ISI, MIT, COMSAT, BBN, UCL and SRI). The jump in effort was sparked by the
advent of desktop machines with high quality graphics. Several projects were using the new
PERQ workstations, MIT was using Apollo workstations, SRI was using the Foonly F-5 (a
desktop PDP-10 clone) and BBN was using its own graphics workstation called the Jericho.
Most of the research effort was devoted to trying to figure out how to encapsulate voice and
CCITT fax data into email.109

Despite the large number of efforts and the apparent interest in getting multimedia email working
over the Internet, little came of these projects. The most successful appears to have been the
Diamond multimedia project led by Bob Thomas and Harry Forsdick at BBN. (Also on the team
was Ray Tomlinson). By 1985, Diamond had a complete multimedia email system with user
interface, mail transport system, and a multimedia editor to create documents that blended voice,
video, spreadsheets and other data.110 BBN made Diamond into a product (called Slate) and sold
a modest number of systems.
Impressive as Diamond was (and the demos were wonderful), it proved a developmental dead-
end for two reasons. The first was simply that Diamond (like the other multimedia projects) was
too soon. As Cerf’s comments about incorporating voice and fax into regular emails show, there
was a shortage of digital data. The profusion of digital, often graphics-rich, data was still a few
years away. The second problem was that when digital data became available, users turned out to
want to pick their own tools. That is, rather than use Diamond’s built-in spreadsheet editor on a
Diamond document, they wanted to use Excel or Lotus-1-2-3 to create a document and then
email that document to their colleagues. In short, the challenges for multimedia email were not

Page 26

those of creating content, but rather those of packaging binary objects or “attachments” into
regular email, and how to create open interfaces that allowed applications (and email user
agents) to insert and extract those attachments from email easily.
A slightly later (1987) and more successful activity was the messaging system for the Andrew
Project at CMU. The Andrew project was a collaboration between IBM and Carnegie Mellon
University to create a powerful and affordable computing environment for students.111 Andrew
sought to create a seamless computing environment throughout campus, where students could
log into any machine and read and write email, do coursework, or any one of a number of other
activities. The Andrew Message System (AMS) was designed to be a showcase application
demonstrating the utility of Andrew.
In many ways, AMS was very similar to the earlier Internet projects (of which its designers
appear to have been unaware).112 It had its own multimedia editor, a custom graphical user
interface, and was built on top of a sophisticated distributed system. But the AMS System had
one important cultural difference: it was designed to co-exist with existing email services rather
than to replace them. As a result, AMS’ designer, Nathaniel Borenstein, sought to find ways to
make AMS’ multimedia messages compatible with sendmail and SMTP. That mindset was to
prove useful a few years later.

10.3 X.400
Interestingly, the people working on the CCITT/ISO email standard, called X.400, better
understood the multimedia challenges and set out to create an email standard designed to carry
third-party documents. In many respects, X.400 was one of the best CCITT/ISO networking
standards activities. This success may be attributed to several email-savvy people who worked
on it including John Vittal and Debbie Deutsch (both at BBN) and Jim White (by then at
XEROX).
The X.400 team sought to design a completely new email system, built on top of the emerging
ISO standards for data networking. To that end, they created an email delivery architecture
(defining user agents and message transfer agents), and developed protocols for delivering email
from end-point to end-point, and formats for email addresses and email messages.
A good example of the work, and an illustration of its quality and some of the challenges of the
time, is the work on encoding data in messages.113 X.400 chose to standardize on a binary data
format for messages. That decision created a number of challenges including:

 How to represent binary data efficiently on the network. At the time, network capacity
was extremely expensive, so there was a motivation to save every possible byte (and bit).
The X.400 team sought a compact data representation.

 How did applications embed data in messages? The issue here is that data formats on
different computers may be incompatible. They were certainly incompatible in the early
1980s, when a byte could be 5, 6, 7, 8, 9, or 10 bits long depending on the system. Data
to be sent over the network needs a standard, “external” format that is computer
independent. In the early 1980s this concept was alien to most programmers.114 The
X.400 approach was to encourage programmers to define how to move their data into and
out of a generic format called an external data format.

Page 27

 Data and not garbage. X.400 envisioned a world in which user agents developed new
features and new applications would embed data in a document and so the receiving user
agent might receive an email message that contained header fields it did not understand
and application data from an application it had never seen before. How to ensure the user
agent didn’t simply report it had received garbage? The solution that X.400 chose to this
problem was to make the data self-describing.

The result was a conceptually elegant encoding. Every piece of data is encoded as a triplet of a
type (for self description), a length (which permitted compressing data into its shortest
representation), and a value. The encoding is recursive, so a structured type is a triplet, whose
value field contained triplets for the individual fields in the type.
This general, self-describing, external data format initially was issued as the CCITT X.409
standard but soon became the standard known as Abstract Syntax Notation 1 (ASN.1). The
compact self-describing data format was designed by Debbie Deutsch, Bob Resnick, John Vittal
and Jan Walker, working under a contract to the National Bureau of Standards.115 To the
encoding, Jim White added a formal language intended to make it easy to specify a data
representation without having to actually write out the bit-by-bit descriptions.
While X.400 did not survive, X.409/ASN.1 is widely used in network protocols. The communal
concensus is that the formal language is a nuisance and the focus on encoding efficiently made
the formatting overly complex. But the self-describing triples are elegant and solve many
problems.
The X.400 community was justly proud of their work. An obvious question is why did not
X.400, partly completed in 1984 and updated in 1988, become the Internet multimedia email
standard?
The short answer is that it could have.116 Steve Kille, who had been on the UCL multimedia
project, concluded X.400 was the way to go and invested considerable effort in trying to make
X.400 Internet-ready. However, there were challenges. X.400 was tightly embedded in the ISO
standards (which were intentionally different from the Internet standards) and fitting X.400 into
the Internet’s email system was hard.
In addition, as the Horton-Postel debate of the previous section shows, there were political
issues. The ISO/CCITT community was acutely aware that in X.400 they had produced a cutting
edge data networking standard for the Internet’s key application (email) and hoped to ride the
success of X.400 to convince (force) the Internet community to adopt the rest of the ISO “Open
Systems Interconnection” (OSI) protocol suite in place of TCP/IP. Conversely, the Internet
community was willing (sometimes grudgingly) to admit that X.400 was a nice piece of work.
But most members of the Internet community also tarred X.400 as a component of the unpopular
OSI protocol suite.

10.4 Internet Multimedia – Round Two
As the 1990s began, the Andrew Messaging System was in use at CMU and a derivative was
available from NeXT computers as NeXTMail. X.400 had undergone a round of revisions in
1988. But the Internet still lacked any way to send multimedia email. Binary data were,
however, being routinely sent using uuencode.

Page 28

In its meeting of December 1990, the Internet Engineering Task Force (IETF) decided to
investigate the possibility of making SMTP “8-bit friendly,” that is, making it possible to move
binary information via SMTP.117 Much of the interest in this change came from Europe. The
European portion of the Internet was growing rapidly and Europeans very much wanted to be
able to send email in their own languages and character sets. At the time, SMTP limited them to
(essentially) US ASCII.
At its next meeting in March 1991, the IETF effort both made tremendous progress and
stumbled. 118

The progress was to realize that the job was to extend SMTP and to extend RFC-822’s email
message format to support national character sets and binary (multimedia) material.119 A group to
study RFC-822 extensions was created. It promptly coalesced around a proposal from a team led
by Nat Borenstein and Ned Freed. Borenstein, now working at Bellcore, had both the experience
and credibility of having built the Andrew Messaging System. Freed brought several years of
experience maintaining PMDF.
The IETF’s stumble came in extending SMTP. By March 1991, there was uncertainty about the
goal of the upgrade. The motivation in December 1990 had been to meet European needs, but
now the new SMTP group (distinct from the 822 group) seemed to think enabling a transition to
X.400 was a more important goal. Further, the details of upgrading the existing SMTP
infrastructure to support 8-bit transfers were difficult and fraught with transition challenges,
which worried vendors.
Over the summer of 1991, the two groups’ paths diverged.
The group working on 822 extensions arguably had the harder problem. It had decided to adopt
a scheme where binary objects were encoded as separate sections of the body of an RFC-822
message. This solution required devising a scheme for identifying the separate sections (the core
idea of the Borenstein/Freed proposal) and then coming up with a uniform naming scheme that
made it possible to identify what each binary object was and how it was encoded. The group had
to resolve problems such as naming schemes for 200+ character sets! Yet, the group made swift
progress and by late 1991 was making largely minor changes to a suite of documents
recognizably defining the Multipurpose Internet Mail Extensions (MIME) standard that is used
today. (In one amusing moment, the group agreed it did not want to support uuencode coding as
it was distasteful, even though uuencode was the default way to send binary documents at the
time.120)
In contrast, the group working on 8-bit friendly SMTP floundered. Every solution presented
challenges and the group was struggling to make a choice. Furthermore, a significant part of the
group felt that it was time to replace SMTP (the “new protocol” approach) or transition to X.400.
The effort lacked focus.
At the November 1991 IETF, senior members of the community stepped forward to force a
solution. John Klensin, whose networking experience stretched back to early Internet days, was
induced to step in as the group’s chair.121 Klensin had the seniority and credibility to issue an
ultimatum: either the group converged immediately on an approach or the 8-bit SMTP effort
would be terminated. The ultimatum effectively excluded X.400 and new protocols from the
agenda, leaving the group to grapple with the challenges of extending SMTP.

Page 29

There were two key issues. First, how to transition from 7-bit to 8-bit gracefully. There was
much discussion about how 7-bit MTAs should interact with 8-bit MTAs and vice-versa,
including questions of whether 8-bit MTAs needed to be able to convert messages from 8-bit to
7-bit representations (a painful idea). In the end, the decision was that 7-bit MTAs would refuse
8-bit email, and the 8-bit MTA had the choice of converting from 8-bit MIME to 7-bit MIME or
returning the email as undeliverable. The choice to permit email to be returned assumed that the
general transition to 8-bit SMTP wouldn’t take very long (as, indeed, it didn’t).
The second issue was how to mark email messages as being 8-bit. Initially the idea was that
SMTP would acquire a new set of commands to support 8-bit email (distinct from the 7-bit
commands). During the winter of 1992, the group discussed the meanings of commands named
CPBL and EMAL to support delivery of 8-bit emails.122 Sometime in the spring of 1992,
encouraged by Marshall Rose to find a simpler solution, the group members realized that these
commands were superfluous.123 The existing SMTP commands could be made to work with 8-
bit email and all that was needed was a message at the start of an SMTP interaction to confirm
that both ends of the conversation were 8-bit capable. The EHLO (extended HELO) message
was promptly invented and the problem of SMTP extensions was then, largely, solved. RFC-
1426 written by Klensin, Freed, Rose, Einar Stefferud and Dave Crocker appeared in February
1993.124 With modest modifications it defines what is today’s standard.
A subtext to the IETF process is how many senior email experts were pulled into the process.
While the December 1990 decision to update SMTP was made by a group with limited email
expertise125, subsequent meetings were typically filled with email experts such as Nathaniel
Borenstein, Mark Crispin, Dave Crocker, Erik Fair, Ned Freed, Christian Huitema, John Klensin
and Einar Stefferud.126

11 Closing Thoughts
One of the interesting things about the history of ARPANET/Internet email is how often little
issues were redirected into bigger, more important results. Dick Watson wanted to print memos
on remote printers. Instead, Ray Tomlinson created networked email. Vint Cerf and Jon Postel
wanted to make sure email was gatewayed between ARPANET and Internet protocols, yet the
result was replacing FTP with SMTP. A desire to support European character sets started a
process that, finally, caused the Internet to support multimedia email and attachments. A subtext
to this process is the willingness to discard partial solutions such as MTP, or MD and MF
resource records, for a better solution.
Another observation is the exceptional talent that was often involved. Several people mentioned
have received the IEEE Internet Award (Dave Crocker, Steve Crocker, Paul Mockapetris and
Ray Tomlinson), the IEEE Kobayashi Award (Vint Cerf and Van Jacobson) or the ACM
SIGCOMM Award (Cerf, Jacobson, Mockapetris, Jon Postel and Larry Roberts) for their
contributions. Many more are IEEE or ACM fellows.

Acknowledgements
In the 1970s, many key ideas never made it into an RFC or even an email archive. Thus writing
this paper required help from several people (in the form of interviews or reviews) to fill in the
blanks. Thanks are due to Eric Allman, Steve Bellovin, Bob Braden, Jerry Burchfiel, Noel
Chiappa, Dave Crocker, Steve Crocker, John Day, Peter Denning, Jake Feinler, Ken Harrenstein,

Page 30

Mary Ann Horton, Steve Kille, John Klensin, Alex McKenzie, Mike Padlipsky, Suzanne Sluizer,
Ray Tomlinson, Al Vezza, John Vittal, Steve Walker, Barry Wessler, and Martin Yonke.
In some situations, recollections differ and I have been unable to find contemporary
documentation to sort out the differences. Where the recollections are matters of nuance, I
sought to present a middle ground. Where the differences seemed likely to be material to a
future historian, I have documented differences in the notes. Any errors are, of course, my fault.
I am intensely grateful to the BBN Library staff (Jennie Connolly and Penny Steele-Perkins) for
their invaluable assistance finding older references.
Biography
Craig Partridge is Chief Scientist for Networking at BBN Technologies, where has worked on
data networking problems since 1983. He is best known for his work on email routing, TCP
round-trip time estimation, and high performance router design. He received an MSc and a PhD,
both in computer science, from Harvard University. Craig is the former editor in chief of IEEE
Network Magazine and ACM Computer Communication Review and is an IEEE Fellow.
Contact Information
Craig Partridge, BBN Technologies, 10 Moulton St, Cambridge MA 02183. Email:
craig@bbn.com. Phone: 517-324-3425. FAX: 517-324-3495

1 J.S. Quarterman, The Matrix: Computer Networks and Conferencing Systems Worldwide,
Digital Press, 1990. P.H. Salus, Casting the Net: from ARPANET to Internet and beyond,
Addison Wesley, 1995. K. Hafner and M. Lyon, Where Wizards Stay up Late, Simon &
Schuster, 1996. I.R. Hardy, The Evolution of ARPANET email, U.C. Berkeley Master’s Thesis,
1996. J. Abbate, Inventing the Internet, MIT Press, 1999. Quarterman’s book sought to
document the state of networking in the world in 1990 and is a tremendously valuable testament
to a time just before the Internet took over. Salus, Hafner & Lyon and Abbate are general
histories in which email plays a modest part – this paper is, in some sense, the fine grained
version of email’s history. Hardy’s paper seeks to understand the social dynamics of the
community in which email developed and is a useful complement to this work.
2 J.K. Reynolds, “Post Office Protocol,” Internet Requests for Comments, No. 918, October
1984. J. Myers and M. Rose, “Post Office Protocol – Version 3,” Internet Requests for
Comments, No. 1939, May 1996. (For information on retrieving RFCs on-line, see note 5).
3 M.R. Crispin, “Interactive Mail Access Protocol: Version 2,” Internet Requests for Comments,
No. 1064, Jul 1988.
4 T. Van Vleck, “The History of Electronic Mail,” http://www.multicians.org/thvv/mail-
history.html.
5 The Internet Request for Comments series is maintained on-line. To retrieve a particular RFC,
use ftp://ftp.rfc-editor.org/in-notes/rfc#.txt, where # is replaced with the one, two, three or four
digit RFC number.
6 R.W. Watson, “A Mail Box Protocol,” Internet Requests for Comments No. 196, 20 July 1971.
7 R. Tomlinson, personal communication of 13 April 2006.

Page 31

8 A similar line of thinking had led to email in Multics. Louis Pouzin wanted a way to send a
message to an operator and that idea morphed into sending messages between users. J. Klensin,
personal communication, 10 June 2006.
9 D. G. Bobrow, J.D. Burchfiel, D.L. Murphy and R.S. Tomlinson, “TENEX, a paged
timesharing system for the PDP-10,” Communications of the ACM, Vol 15, No 3, March 1972.
10 SNDMSG’s origins are uncertain. Tomlinson ported SNDMSG to TENEX from another
operating system. He believed the operating system was Berkeley’s SDS-940 system, but the
SDS-940 veterans report it did not have an email program.
11 The choice of @ did cause some controversy. It turned out that @ was a reserved character in
Multics that caused all input to that point on a line to be deleted.
12 A. Bhushan, “File Transfer Protocol,” Internet Requests for Comments, No. 114, 10 April
1971. A. Bhushan, B. Braden, W. Crowther, E. Harslem, J. Heafner, A. McKenzie, B. Sundberg,
D. Watson, and J. White, “The File Transfer Protocol,” Internet Requests for Comments, No.
265, 17 November 1971.
13 A side note. The problem of developing a general distributed file system (which was the goal
of the initial FTP work) turned out to be excruciatingly hard and was not solved until the early
1980s and required the development of the concept of remote procedure call (see B.J. Nelson,
Remote Procedure Call, Ph.D. Thesis, Carnegie-Mellon University, 1981) and distributed
transactions (c.f. W.E. Weihl, “Transaction Processing Techniques” in S. Mullender, ed.,
Distributed Systems [2nd ed], Addison Wesley, 1993).
14 A.K. Bhushan, “Data and file transfer workshop notes,” Internet Requests for Comments No.
327, 27 April 1972.
15 A.K. Bhushan, “File Transfer Protocol,” Internet Requests for Comments, No. 354, 8 July
1972.
16 A.K. Bhushan, “Comments on the File Transfer Protocol,” Internet Request for Comments, No.
385, 18 August 1972. Despite the title, it is the document that defined MLFL and MAIL and
appears to be have been the standard reference for the next eight years.
17 D. Crocker, personal communication, 26 April 2006.
18 The ARPANET community eventually developed a term for this kind of problem: the nm
rule. The nm rule, paraphrased, says that one should abhor designing systems where the
consequence of adding a new system is that every other system needs to learn how the new
system works (i.e., where the new system places users’ mailboxes).
19 A.K. Bhushan, RFC-385 and M. Padlipsky, personal communication, 14 April 2006.
20 M. Padlipsky, “And They Argued All Night…” note at
http://www.lafn.org/%7Eba213/allnight.html
21 Stephen Lukasik, OH 232, Oral history interview by Judy E. O’Neill, 17 October 1991,
Redondo Beach, CA. Charles Babbage Institute. Lukasik guessed he was using email on
ARPANET by 1971 (p. 11). That is too early, but 1972 is plausible.

Page 32

22 The original name was Tape Editor and COrrector, but by 1973, the acronym had evolved.
Thanks to Dan Murphy (TECO’s author) and John Vittal for tracking down when the name
changed.
23 Lukasik (see his interview cited in note 21) says Roberts produced RD overnight. Roberts
dates the invention of RD to July 1972 in his Internet chronology
(http://www.packet.cc/internet.html).
24 M. Yonke, personal communication, 26 April 2006. There was an intermediate program
between NRD and BANANARD, called WRD (for Wessler’s RD). Yonke recalls it was only
around briefly and was largely Wessler’s code with bugfixes, but otherwise unmodified.
25 M. Yonke, personal communication, 26 April 2006. S. Crocker, personal communication, 31
May 2006. J. Vittal, personal communication, 5 June 2006. Yonke remembers the index size as
5,000 while Crocker remembers it as a much smaller number (a few hundred). Vittal remembers
hitting the limit.
26 B.D. Wessler, personal communication, 17 April 2006.
27 R. Tomlinson, personal communication, 13 April 2006. J. Vittal, personal communication, 5
June 2006.
28 The meeting announcement (A. McKenzie, “File Transfer Protocol – meeting announcement
and a new proposed document”, Internet Requests for Comments, No. 454, 16 February 1973)
contains a draft new specification and includes suggested improvements to MAIL and MLFL.
29 J. Day, personal communications, 14 and 16 April 2006.
30 N. Neigus, “File Transfer Protocol,” Internet Request for Comments, No. 542, 12 August 1973.
31 The common set of attendees was: Abhay Bhushan [MIT], Bob Braden [UCLA], Alex
McKenzie [BBN], Jon Postel [UCLA] and Jim White [SRI].
32 That there were FTP meetings at roughly the same time of year in both 1972 and 1973 has
caused some confusion decades later. People are sometimes confused about which meeting they
attended.
33 J. Postel, “Mail Protocol,” DDN NIC memo 29588, 18 February 1976 in ARPANET Protocol
Handbook, DDN Network Information Center, January 1978.
34 Allowing multiple addresses in a MLFL/MAIL command was proposed in A. Bhushan, “File
Transfer Protocol (FTP) Status and Further Comments,” Internet Requests for Comments, No.
414, 29 November 1972, and again (now using new commands) in K. Harrenstein, “FTP
extension: XRSQ/XRCP,” Internet Requests for Comments, No. 743, 30 December 1977. NIC
29588 suggests that some sites used the RFC-414 scheme but that it was not universally
accepted.
35 There were some proposals for an email protocol (the preface to RFC-724 mentions “”Several
versions of such a protocol have been proposed…”). However none seem to have gotten serious
attention, only one seems to have issued as an RFC (J.E. White, “Proposed Mail Protocol,”
Internet Requests for Comments, No. 524, June 1973) and there’s a strong impression that the
community paid very little attention to the issue.

Page 33

36 J. Vittal, “MSG – A Simple Message System,” in Computer Messaging Systems, R.P. Uhlig,
ed., North Holland Publishing Co, 1981.
37 BBN collected ARPANET traffic measurements monthly during this time, but I have been
unable to find a copy of them and thus could not verify this claim.
38 S. Walker, “Message Group Status,” email to MSGGROUP of 7 June 1975.
39 The Navy was a pioneer in the use of email for operational needs. In 1973, the Navy had
inaugurated the “Navy Communications Processing and Routing System (NAVCOMPARS)”, an
internal email system to distribute orders to shore bases and to ships (messages to ships were
relayed via short-wave radio using human operators). NAVCOMPARS remained a key part of
the Navy’s infrastructure until it was turned off in 2002
(http://www.hnn.navy.mil/archives/020510/NAVCOMPARS_051002.HTM). A good
description of the system as it was operating in 1984 can be found in S. Blumenthal, D. Deutsch,
C. Partridge, H. Rising and B. Woznick, “NAVCAMS LAN Engineering Plan,” BBN Report
5907, March 1985.
40 S. Walker, personal communication, 8 June 2006.
41 D.P. Deutsch and D.W. Dodds, Hermes System Overview, BBN Report No. 4115, May 1979.
42 D.H. Crocker, “Framework and Functions of the ‘MS’ Personal Message System,” Technical
Report R-2134-ARPA, The RAND Corporation, December 1977.
43 A copy of the original memo can be found at
http://www.ics.uci.edu/~mh/book/overall/hiofmh.htm.
44 D.M. Ritchie and K. Tompson, “The UNIX Time-Sharing System,” The Bell System Technical
Journal, July-August 1978, Vol. 57, No. 6, part 2, pp. 1905-1930.
45 Dave Crocker observes the interesting counterpoint that attempts to “enhance” MH, such as
xmh and mhe have sought to move the MH commands back into a monolithic program.
46 Dave Crocker reports that the MS manual, to his surprise, does not describe features for
searching. D. Crocker, personal communication, June 2006.
47 The author interacted with Rose and Jacobson on MH support in the 1980s. Other names
come from J. Peek, MH & xmh: Email for Users & Programmers, O’Reilly and Associates, 3rd

edition, 1995.
48 A. Bhushan, K. Pogran, R. Tomlinson and J. White, “Standardizing Network Mail Headers,”
Internet Requests for Comments, No. 561, 5 September 1973.
49 T.H. Myer and D.A. Henderson, “Message Transmission Protocol,” Internet Requests for
Comments, No. 680, April 1975.
50 See E. Stefferud, “MSGGROUP Situation Report #1,” email to HEADER-PEOPLE of 2
December 1975.
51 In particular, Mooers wrote emails on behalf of the BBN team explaining details of RFC-680.
Years later, Mooers was CSNET’s “postmistress” and internationally known for her expertise in
solving email problems.

Page 34

52 J. Haverty, “Re: [ih] NIC 7104 (ARPANET Protocol Handbook)” email to Internet-History
mailing list of 28 April 2006.
53 See RFC-724 preface.
54 Interview with Albert Vezza on 3 May 2006. He believes his (now lost) memo, “Message
Services Committee Minority Report,” January 1975, expressed the view that headers should be
machine readable. See also the preface to RFC-724, which reflects the continued debate.
55 The initial membership of the new committee was Walker, John Seely-Brown, David Farber,
Ken Pogran and John Vittal. J. Vittal, personal communication, 5 June 2006.
56 For key notes in the discussion see the note from Jack Haverty (JFH @ MIT) on 30 September
1976, “Re: your message to MSGGROUP at from and sender…” and J. Vittal, “Some comments
(RFC-724, etc.)…” of 9 November 1976 both emails to MSGGROUP. Confusing the discussion
is that an early draft of RFC-724 was apparently distributed, with its assigned RFC number, in
1976 (well before its official publication date). K. Pogran, J. Vittal, D. Crocker and A.
Henderson, “Proposed Official Standard for the Format of ARPA Network Messages,” Internet
Requests for Comments, No. 724, 12 May 1977.
57 J. Vittal, “Comments on the state of the world,” email to Header-People mailing list of 29
October 1977.
58 See the numerous emails between October 4th and 11th 1977 in HEADER-PEOPLE.
59 D. Crocker, “Standard for the Format of ARPA Internet Text Messages,” Internet Requests for
Comments, No. 822, August 1982. P. Resnick, “Internet Message Format,” Internet Requests for
Comments, No. 2822, April 2001.
60 CSNET supported 733 format from the start. The UUCP network took somewhat longer. The
driving forces were sendmail (used on many UUCP systems) and netnews B, which intentionally
used 733 format for bulletin boards. Both software systems (plus a desire to easily gateway to
the Internet) pushed the community to informally standardize on 733 for email. (S. Bellovin,
personal communication of 30 May 2006; M. Horton, personal communication of 6 June 2006;
see also, M. Horton, “UUCP Mail Interchange Format Standard,” Internet Requests for
Comments, No. 976, February 1986). BITNET started using a custom VM email format but
soon shifted to 733 (J. Klensin, personal communication, 26 May 2006).
61 A. Bhushan, “File Transfer Protocol (FTP) Status and Further Comments,” Internet Requests
for Comments, No. 414, 29 November 1972, lists the implementation status of various FTP
implementations and observes that Clements has implemented email retransmission.
62 See Deutsch and Dobbs, op. cit., p. 21.
63 Cf. B. Reid, “Let’s hear it for uniform standards,” email to HEADER-PEOPLE of 10 February
1978.
64 This decision to interconnect is, in retrospect, somewhat surprising. The different networks
did view themselves as competing with each other. However, they also viewed themselves as
competing with the postal services (derisively dubbed “Snail Mail”) and prided themselves on
getting email where it belonged faster and more effectively than paper-based mail. Credit should

Page 35

also be given to Prof. Larry Landweber, a member of both CSNET’s and BITNET’s boards, and
a vigorous advocate of interconnecting networks.
65 D.A. Nowitz and M.E. Lesk, “A Dial-up Network of UNIX™ Systems,” 18 April 1978 in
UNIX Programmers Manual, 7th Edition.
66 J.S. Quarterman, The Matrix, pp. 251 and 278.
67 P. Honeyman and S. Bellovin, “PATHALIAS or the Care and Feeding of Relative Addresses,”
Proc. 1987 Summer USENIX Conf., June 1986, pp. 126-141.
68 D. Comer, “The Computer Science Research Network CSNET: A History and Status Report,”
Communications of the ACM, Oct 1983, Vol. 26, No. 10, pp. 747-753.
69 Peter Denning, one of the CSNET principals, remembers that, to make the CSNET proposal
“researchy” enough to be acceptable to the National Science Board, the proposal emphasized
“resource sharing” rather than email, but everyone, including the junior NSF staffers understood
this was a fig-leaf for email. P. Denning, personal communication, 5 June 2006.
70 D.E. Comer and J.T. Korb, “CSNET protocol software: the IP-to-X.25 interface,” Proc. ACM
SIGCOMM ’83, March 1983, pp. 154-159.
71 L. Lanzillo and C. Partridge, “Implementation of Dial-up IP for UNIX Systems,” Proc. 1989
Winter USENIX Conf., San Diego, Calif., pp. 201-208.
72 Surviving source code (version 2.7 from 1981) is about 6,800 lines of C code. There seem to
have been no technical papers describing delivermail. The discussion here comes primarily from
reading the source code and its UNIX manual pages.
73 D. H. Crocker, E.S. Szurkowski and D.J. Farber, “An Internetwork Memo Distribution
Capability – MMDF,” Proc. 6th IEEE Data Communications Symp., Nov 1979.
74 This list is a subset of the list of differences in E. Allman, “Mail Systems and Addressing in
4.2bsd,” Proc. 1983 Winter USENIX Conf., January 1983.
75 E. Allman and M. Amos, “Sendmail Revisited,”Proc. 1985 Summer USENIX Conf., Portland,
OR, June 1985.
76 See J. Postel, “Internet Meeting notes – 4, 5, & 6 February 1980”, Internet Engineering Notes,
No. 134, 29 February 1980, which notes that ISI was working on “”Internet Mail, which includes
the development of mechanisms for delivery of mail in an internet and provision for multi-media
data in the mail.”
77 J. Postel, “Internet Meeting Notes – 14 & 15 May 1980,” Internet Engineering Notes, No. 145,
25 May 1980.
78 V. Cerf and J. Postel, “Mail Transition Plan,” Internet Requests for Comments, No. 771,
September 1980.
79 S. Sluizer and J. Postel, “Mail Transfer Protocol,” Internet Requests for Comments, No. 772,
September 1980. Some people have conflated MTP and MP (the Mail Protocol – see section
10.1) and incorrectly believe that MTP supported multimedia.

Page 36

80 RFC-771 does not explain why it was written. But RFC-772 makes clear that MTP is intended
solely for use for gateways.
81 Suzanne Sluizer recalls Jon Postel “saying people thought that MTP was too complicated.”
C.J. Bennett, “A Simple NIFTP-Based Mail System,” Internet Engineering Notes, No. 169, 23
January 1981, lists issues with MTP on pages 4 and 5.
82 J. Postel, “Internet Meeting Notes – 28-29-30 January 1981,” Internet Engineering Notes, No.
175, 13 March 1981, lists four implementations: MIT, ISI, DCEC, and COMSAT.
83 S. Sluizer and J. Postel, “Mail Transfer Protocol: ISI TOPS-20 Implementation,” Internet
Requests for Comments, No. 784, 1 July 1981. S. Sluizer and J. Postel, “Mail Transfer Protocol:
ISI TOPS-20 File Definitions,” Internet Requests for Comments, No. 785, 1 July 1981.
84 E. Stefferud, “Subdivision of Messages,” email to MSGGROUP of 11 July 1975.
85 The first use of envelope to mean meta-data appears to be by D. Crocker, E. Szurkowski, and
D. Farber, “An Internetwork Memo Distribution Capability – MMDF,” Proc. Sixth Data Comm
Symp., November 1979.
86 The idea for pipelining originated with Phil Karn around 1990, when he told it to the author,
who in turn, repeated the idea to Van Jacobson. Jacobson thought it was a wonderful idea, and
put it into sendmail only to discover that many SMTP implementations failed if pipelining was
turned on. Some of the painful experience is described in P. Karn, email to IETF mailing list of
8 September 1993. Eventually, the IETF approved a pipelining extension to SMTP to make it
official: N. Freed, “SMTP Service Extension for Command Pipelining,” Internet Requests for
Comments, No. 2920, September 2000.
87 C. Partridge, “Duplicate messages and SMTP,” Internet Request for Comments, No. 1047, 1
February 1988.
88 Unfortunately SMTP is no longer quite this simple. Some commands now have additional
parameters (a consequence of the 8-bit enhancements; J. Klensin, “Simple Mail Transfer
Protocol,” Internet Requests for Comments, No. 2821, April 2001) and there’s pressure to
standardize the error codes to avoid dependence on the error message, which may be a local
language (J. Klensin, personal communication, 11 June 2006).
89 E. Feinler, K. Harrenstien, Z.-S. Su, V. White, “DoD Internet Host Table Specification,”
Internet Requests for Comments, No. 810, 1 March 1982.
90 Z. Su and J. Postel, “Domain naming convention for Internet user applications,” Internet
Requests for Comments, No. 819, 1 August 1982.
91 See A.D. Birrell, R. Levin, R.M. Needham, and M.D. Schroeder, “Grapevine: An Exercise in
Distributed Computing,” Communications of the ACM, 25(4):260-274, 1982
92 P. Mockapetris, “Domain names: Concepts and facilities,” Internet Requests for Comments,
No. 882, 1 Nov 1983. P. Mockapetris, “Domain names: implementation specification,” Internet
Requests for Comments, No. 883, 1 November 1983.
93 P. Mockapetris and K.J. Dunlap, “Development of the Domain Name System,” Proc. ACM
SIGCOMM ’88, August 1988, pp. 123-133.

Page 37

94 C. Partridge, “MF in domain database,” message to NameDroppers mailing list of 29 October
1985.
95 C. Partridge, “MD and MF for one host,” message to NameDroppers mailing list of 11
November 1985.
96 The description of the issues is now lost, but it seems useful to reconstruct it from the author’s
memory. If a name could have both MD and MF records associated with it, we needed a set of
rules for delivery in the presence of both records. The obvious answer was that a host that was
neither an MD or an MF for the name could deliver email to either the MD or the MF; a host that
was an MF could only deliver to an MD; and a host that was an MD could do a DNS lookup but,
once it realized it was an MD, had to look in other databases to figure out how to deliver the
message. Now consider the problem of host H, trying to deliver a message to domain name D.
H looks up D in the DNS and gets back a set of email resource records. H must then examine all
the records to see if H is listed as either an MD or an MF for D to behave in accordance with the
delivery rules. Herein lay a problem. It was possible in the DNS to deliver an incomplete list of
MDs and MFs. In particular, the DNS’s caching mechanism (combined with the fact that one
could query for MDs and MFs either individually or using an aggregate MAILA query) allowed
for look up responses to contain either the MDs for D or the MFs for D, or both. And if H did
not get both MDs and MFs, H could make an incorrect decision.
97 These discussions involved both private and public messages. The private messages have been
lost. The key public messages are P. Milazzo, “Re: MD and MF for one host,” message to
NameDroppers on 11 November 1985 in response to the message cited in note 95; C. Partridge,
“Mailers use MD and MF,” message to NameDroppers on 12 November 1985; and P.
Mockapetris, “MD, MF and larger issues,” message to NameDroppers on 15 November 1985. It
is the author’s recollection that the Mockapetris note came after a private email exchange among
Postel, Mockapetris and Partridge. Rudy Nedved (then of CMU) and Jon Crowcroft (then of
University College London) also made important contributions, especially in thinking how MX
RRs interacted with sites that gatewayed email.
98 P. Mockapetris, “Domain Systems Changes and Observations,” Internet Request for
Comments, No. 973, January 1986. C. Partridge, “Mail Routing and the Domain System,”
Internet Request for Comments, No. 974, January 1986. While the RFCs were issued in late
January, the author’s recollection is that the work on RFC-974 was largely done by
Thanksgiving of 1985 (which is remarkable, given the issues with MD and MF surfaced on
November 11th) and the delay until January was to give Mockapetris time to think about how to
address other DNS issues so that RFC-973 could be a comprehensive update.
99 C. Partridge, “Mail Routing Using Domain Names: An Informal Tour,” Proc. 1986 Summer
USENIX Conf., June 1986.
100 No notes of this meeting survive. The attendance list is crafted from the recollections of the
author and Mary Ann Horton. There’s uncertainty about whether Steve Kille was there (he’s not
sure) but it is more likely than not. Kille would have provided an international perspective (he
was at University College London) and an X.400 perspective. The account of the meeting is the
author’s recollection. Horton’s recollections place somewhat more emphasis on finalizing the
list of top level domains.

Page 38

101 The issue surrounding .net was that SRI (operator of the DDN NIC) and BBN (operator of the
CSNET CIC) competed for network operations contracts and differed in their strategies. BBN’s
approach was to build the brand of the entity for which BBN operated the network (so, for
instance, BBNers on the CSNET project had CSNET business cards) on the theory that BBN’s
dedication to building the brand made BBN more attractive to the customer. SRI sought to
strongly link the entity to SRI, on the theory the customer would be more reluctant to change
operators. So CSNET wanted to see a .net top-level domain so that NIC’s name would be, say,
nic.inter.net. SRI wanted the NIC’s name to be nic.sri.com. In the event, .net was created, but
the NIC became nic.ddn.mil.
102 For Postel’s views on .arpa and .uucp and the like, see his email “re: naming and routing” to
the NAMEDROPPERS mailing list on 8 February 1995.
103 R.E. Millstein, “The National Software Works: a distributed processing system,” Proc. ACM
’77 Conference, pp. 44-52.
104 J. Postel, “Internet Message Protocol,” Internet Request for Comments, No. 753, March 1979.
105 Uuencode format was also adopted by several early email tools, notably Microsoft Mail and
Lotus cc:Mail, for packaging attachments. Mary Ann Horton, personal communication, 6 June
2006.
106 J. Postel, “Internet Message Protocol,” Internet Requests for Comments, No. 759, August
1980. J. Postel, “A Structured Format for Transmission of Multi-Media Documents,” Internet
Requests for Comments, No. 767, August 1980.
107 V. Cerf and J. Postel, “Mail Transition Plan,” op. cit.
108 V. Cerf, “Comments on NCP/TCP mail service transition strategy,” op. cit.
109 For a brief overview of the projects, see J. Postel, “Multimedia Mail Meeting Notes,” Internet
Requests for Comments, No. 807, 9 February 1982.
110 R.H. Thomas, H.C. Forsdick, T.R. Crowley, R.W. Schaaf, R.S. Tomlinson, V.M. Travers, and
G.G. Robertson, “Diamond: A Multimedia Message System Built on a Distributed Architecture,”
IEEE Computer, December 1985, pp. 65-78.
111 Concurrently a similar project, Project Athena, was underway at MIT.
112 The first paper on the Andrew Messaging System cites none of the prior Internet-based work.
See J. Rosenberg, C.F. Everhart and N.S. Borenstein, “An Overview of the Andrew Message
System: A Portable, Distributed System for Multi-media Electronic Communication,” Proc.
ACM SIGCOMM ’87, pp. 99-108.

113 For a general overview of work in data encoding for the period, see C. Partridge and M. Rose,
“A Comparison of External Data Formats,” Message Handling Systems and Distributed
Applications (Proc. IFIP Workshop on Message Handling), ed. E. Stefferud and O. Jacobsen,
North Holland (1989).
114 There were some pioneers. The earliest idea the author has seen for an external data format is
J. Haverty, “MSDTP-Message Services Data Transmission Protocol,” Internet Requests for

Page 39

Comments, No. 713, 6 April 1976. It contains a remarkably thorough understanding of the
problem of creating an external data format. Haverty was at BBN when Deutsch and Vittal
were doing their work.
115 D. Deutsch, R. Resnick and J. Vittal, “Specification of a Draft Message Format Standard,”
BBN Report, No. 4486, September 1980. D. Deutsch, R. Resnick, J. Vittal and J. Walker,
“Specification for Message Format for Computer Based Message Systems (Revised),” BBN
Report No 4765R, 23 April 1982. On-line literature generally gives all credit for ASN.1 to Jim
White. As explained to the author (some years ago), Jim White gets credit for ASN.1’s language
for expressing types, but the actual on-the-wire encoding (the Basic Encoding Rules) is the
creation of Deutsch’s group. The dates of these two BBN reports are consistent with that story
(they define what clearly became the encoding rules) and explain why the encoding rules are
completely unlike Courier, which was Jim White’s invention and the XEROX external data
format of the time.
116 There is considerable debate, even today, about how viable X.400 would have been as the
Internet’s email system. Several readers of the paper felt the characterization of X.400 both in
terms of the quality of its technology and its chances for success is far too generous. Some
others felt this was about right.
117 Proceedings of the Nineteenth Internet Engineering Task Force Meeting, pp. 72-76.
118 Proceedings of the Twentieth Internet Engineering Task Force Meeting, Washington
University, March 11-15, 1991, M. Davies and G. Vaudreuil ed., pp. 75-84.
119 There are some hints in the meeting notes that the two groups initially may have been
confused about whether they were complimentary or competing. Participants’ memories vary.
But it is hard to believe that there was much competition, given they had the same chairman.
120 The decision not to support uuencode is noted on p. 62 of Proceedings of the Twenty-Second
Internet Engineering Task Force Meeting, Los Alamos National Laboratory, Sante Fe, New
Mexico, November 18-22, 1991, M. Davies, C. Clark, and D. Legare, ed.
121 Until November 1991, both the SMTP and RFC-822 extensions groups were chaired by Greg
Vaudreuil. Vaudreuil was a good group leader, but also new to the field and quite young and
thus, unlike Klensin, in no position to dictate a solution to a fractious (and senior) group of
techies. Vaudreuil continued as chair of the 822-extensions group and brought it to a successful
conclusion. Klensin remembers Phill Gross, IETF chair, “dragged me, I'm tempted to say
kicking and screaming” into taking on the SMTP problems (J. Klensin, personal communication,
11 June 2006).
122 M. Davies, ed., Proceedings of the Twenty-Third IETF – San Diego, CA, March 15-20, 1992.
123 Recollections differ slightly about how this change of course came about. (J. Klensin,
personal communication, 11 June 2006; D. Crocker, personal communication, 31 May 2006).
Rose pushed for the simplification. What is unclear is whether EHLO was Rose’s idea, or the
reworking of an earlier idea by Klensin that the working group had discarded. I cannot find
documentation pointing to one or the other answer.

Page 40

124 J. Klensin, N. Freed, M. Rose, E. Stefferud and D. Crocker, “SMTP Service Extension for
8bbit-MIME transport,” Internet Requests for Comments, No. 1426, February 1993.
125 Of the December 1990 group, only Bob Braden of ISI had written an MTA or participated in
crafting an email standards document.
126 Borenstein, Freed, Crocker and Klensin’s background is described earlier in the paper.
Stefferud ran the MSG-PEOPLE mailing list in the 1970s and coined the term “envelope.” Fair
was widely respected as an expert at keeping email systems running and, at the time, managed
Apple Computer’s email systems. Huitema was a pioneer in networking in France.

