
69

An OpenOffice Spelling and Grammar Checker
Add-in Using an Open Source External Engine

as Resource Manager and Parser
 Editha D. Dimalen, Davis Muhajereen D. Dimalen
eddimalen@yahoo.com, d_dimalen@yahoo.com

Information Technology Department
School of Computer Studies

MSU- Iligan Institute of Technology
Iligan City, Philippines

ABSTRACT
In this paper we explored a different approach in developing
a spelling and grammar checker add-in for OpenOffice
Writer. The typical approach uses a file as lexicon with
parser and stemmer embedded directly to the OpenOffice
Writer. On the other hand, we used postgresSQL, an open
source database management system (DBMS), as storage for
our lexicon. The parser and stemmer was developed using
postgreSQLs stored procedures. With our architecture, the
spelling and grammar checker engine is independent of
OpenOffice Writer and can be used in other NLP
applications. PostgreSQL is capable of storing and
processing large wordlist and can be installed in both Unix
and Windows platform. Our lexicon contains 14,000.00
Tagalog root words and can still be updated up to the number
of records of data a hard disk can handle. The inclusion of a
Tagalog stemmer (TagSa) increases the number of words that
can be corrected by our spell checker. TagSa is used to
minimize the inclusion of inflicted words in the lexicon.
Before a lexicon look-up is done the TagSa module is
executed first to check if the word is a root word or not. If it
is not a root word, the word will be stemmed into its root
word and finally be checked if it is found in the lexicon.
Words that are found in the lexicon are flagged as correct.
We were also able to develop an on-the-fly grammar checker,
a feature which is still an on-going research by
OpenOffice.org. Both the spelling and grammar checker add-
in are for Tagalog, a widely spoken language in the
Philippines. The system has been evaluated using a separate
program to calculate the execution time in spell checking and
grammar checking. The evaluation showed faster return of
results that effectively checked the text and gave adequate
suggestions.

1. INTRODUCTION
The effort in obtaining an error-free spell checking of words
and automatically suggests possible match is a great research
challenge [3]. Several issues are being addressed to give an
appropriate resolution to a spell checker in varied natural
languages. According to O'Neill, et. al., 2003 [11], “spelling
checkers have looked for four possible errors: a wrong letter
(“wird”), an inserted letter (“woprd”), an omitted letter
(“wrd”), or a pair of adjacent transposed letters (“wrod”)”.
This process can be resolve by means of a simple dictionary
lookup. However, the notion of having languages with high

degree of inflection (like Tagalog) requires additional
computational work such as morphological analysis and
stemming.

Current developments of open source spell checkers are the
following: Bahasa Melayu (BM) Spell Checker for Malay
language [8], Fijian Spell Checker developed for Fijian
language [16], Divvun a spell checker research for Sami
language [9]. Other variations of existing open source spell
checkers family are the ISpell, Myspell and HunSpell. ISpell
is a unix-based system, MySpell and Hunspell support spell
checking in OpenOffice.org [6]. The dictionary and the affix
files are stored in a file. The parser and stemmer engine are
embedded in OpenOffice.org.

Developing a spell checker and grammar checker as add-in
for OpenOffice.org from scratch is complex especially for a
language with words rich in affixations like Tagalog. A
word processor add-in is a supplemental program that
extends the capabilities and functionalities of a word
processing application [7]. Aside from the formulation of an
effective algorithm that can process a bunch of text and
lexicon to produce good results, storage optimization and
management should also be considered to compliment the
algorithm. Development will be focused on how these
elements would compliment each other and can be time
consuming. Issues in building hash tables, memory
optimization is still an open problem in developing spell
checker and grammar checker for OpenOffice [5]. Thus, we
employed postgreSQL wherein hashing, storage management
and memory optimization is not an issue [13]. There are no
current researches that use postgreSQL as a resource and
spell checker and grammar checker engine for OpenOffice.

2. CONCEPTUAL FRAMEWORK
The following sections describe the underlying theories used
in the development of the spell checker and grammar
checker for OpenOffice Writer.

2.1. Tagalog Stemming
Affixation in Tagalog language is complex especially on
verbs and nouns. TagSA [1], a dictionary-based stemming
algorithm for Tagalog considered a procedure in reducing all
words (inflected) with the same root to a common form.
This is basically done by stripping each word with
appropriate affixes (derivational and inflectional affixes).

70

The Tagalog morphological combination includes
prefixation, infixation, suffixation, circumfixation and
reduplication. Prefixation involves the process of attaching a
bound morpheme before the root word. An example is maG
+ Aral � mag-aral, in which a consonant G is attached to
vowel A with a hyphen. Infixation is attaching a bound
morpheme within the root word. Example the word
“kinuha” has the infix /-in-/ wherein the root word is “kuha”.
In suffixation, bound morpheme is attached at the end of the
root word. For example, harap + in � harapin. In
circumfixation, bound morpheme may occur as in any order
(prefix, infix and suffix). The example pa + in + punta + han
� pinapuntahan, morphemes appear anywhere within the
word. Tagalog reduplication can either be partial or full.
Partial includes certain syllables that are duplicated to
project the form of the stem. Full reduplication includes the
entire stem to be repeated.

TagSA consists of several routines in handling different
affixation. The main routines are the following [1]:
1.0 Hyphen-Search Routine
2.0 Dictionary-Search Routine
3.0 /-in-/ Removal Routine
4.0 Prefix Removal Routine
5.0 /-um-/ Removal Routine
6.0 Partial Reduplication Routine
7.0 Suffix Removal Routine
8.0 Full Reduplication/Compounding Routine

2.2. N-gram Theory
The suggestion strategy employed in the system is based on
n-gram. N-gram is a result of removing spaces from a given
string. In a given string, n items can be generated from a
given sequence. The sub-sequence of these items can be
compared to other sequences [17].

An n-gram can also be seen as an n-character slice of a
longer string in which a string is sliced into sets of
overlapping n-grams. However, blanks are appended at the
beginning and end of the string before the string is sliced [2].
Example,

2.3. Lexicon Development Issues
In Natural Language Processing, lexical knowledge
(knowledge about individual words) is essential. Lexical
knowledge is encoded through a lexicon in strictly formal
structure. A lexicon has long been recognized as a critical
system resource [4]. A basic lexicon typically includes
explicit and specific linguistic information about the word.
It includes the morphology either by enabling the generation
of all potential word-forms or by simply listing all associated
pertinent morphosyntactic features. Lexicons are
traditionally been built by hand specifically for the purpose
of language analysis and generation. It is typically encoded
in a text file for lookup.

2.3. Grammar Checking Issues
Grammar components include grammar rules, lexical entries,
principles and parts-of-speech specifications of each lexical

entry. The input text is passed through a series of filter:
preprocessing, segmentation, tokenization, lookup, chunking,
disambiguation, rules and recourse.
Preprocessing stage converts the text into the native
character if the default text is in different encoding. The
segmentation step involves breaking text into sentences and
split the sentence into words. The next step is to looked up
each word in the lexicon in which each word is tagged with
its part-of-speech (POS). Words that are not found in the
lexicon will be processed by the morphology engine to be
able to recognize the known root word. In this stage, phrases
will be grouped together to form a single units by the
grammar checker. The text that has been analyzed will be
matched against the built-in rules [14].

It turns out that there are basically three ways to implement a
grammar checker: syntax-based checking, statistics-based
checking and rule-based checking. Rule-based checking is
the most common method used. It comprises a set of rules
that is matched against a text which has been at least tagged
with POS. In this approach, all the rules are developed
manually [10].

3. METHODOLOGY

3.1. Data Gathering, Review and Analysis
A thorough research, review and analysis of existing works
on spell checking and grammar checking was conducted.
Computational issues on lexicon development, stemming
(which includes morphological and syntactic information)
and complexities in add-in development were considered.
Existing add-ins are examined to be able to determine the
most effective implementation process.

3.2. Design of the System
An architectural design of the system which includes the
internal process of spell checking and grammar checking
process was developed and is discussed in detail in section
4.2. Another architectural design which describes the
components of the add-in is also discussed in section 4.2.

3.3 Implementation of the System
The implementation of the system is based on the final
architectural designs discussed in the later sections.
StarOffice Basic programming language and UNO
(Universal Network Object) [12] was used to develop the
add-in. SDBC (StarOffice Database Connectivity) and
ODBC (Open Database Connectivity) was used to bridge the
postgreSQL engine with the OpenOffice document.

4. RESULTS AND DISCUSSIONS
Research results and its corresponding discussions are
discussed in the succeeding sections. The discussion follows
from the design up to the evaluation of the system.

4.1. Architectural Design

String = “text” bi-grams (N=2) = _t, te, ex, xt, t_

Token = “_text_” tri-grams (N=3) = _te, tex, ext, xt_, t_

 quad-grams (N=4) = _tex, text, ext_,

71

This section describes the architectural designs of the Spell
Checker, Grammar Checker, and the overall architecture of
the entire add-in system.

4.1.1. Spell Checker
Figure 1illustrates the spell checker architecture of the add-
in. It describes the processes in spell checking a document
how suggestions are listed.

Figure 1: Spell Checker Architecture.

Consider a document D with number of words equal to n
where n-1 is equal to the index of the last word in document
D. Let i=0 be the index of the first word found in document
D and D[i] be the word pointed to by the index i. Let i+1 be
the index of the next word. Let checkSpell(w) be the
function that will accept a parameter w wherein w can be the
word D[i]. The function will return true if the word w is
spelled correctly. Correctly spelled word means that the root
word of the input word w is found in the lexicon after
stemming is done. Let suggestionList(m) be the function that
will return a list of suggested word as replacement for the
miss spelled word m.

The following steps describe the algorithm shown in the
architectural design of the spell checker in Figure 1.

The checkSpell(D[i]) is lexicon based. It uses TagSa as an
initial subroutine that will check if a root word can be
extracted from an input word before a final lexicon look-up
is done. Words are tagged as miss-spelled if after it has been
stemmed to its root word, it is still not found in the lexicon.

The suggestionList(D[i]) uses an n-gram approach and at the
same time uses a lexicon based approach to look-up
generated n-grams of input words to the lexicon. What is
compared to the input word n-gram is not the entire word
from the lexicon but the substring of the words found in the
lexicon that matches the n-gram of the word. In this case
there is no need to maintain an n-gram profile since the
algorithm is more of a direct string pattern matcher. No
statistical analysis involved in the algorithm unlike an n-
gram based algorithm that makes use of a n-gram profile
table.

4.1.3. Grammar Checker

In Figure 2, the architectural design of the grammar checker
is shown.

Step 1: At i=0, get the word D[i]

Step 2: if checkSpell(D[i]) returns true, consider the next word i
wherein i=i+1 and repeat Step 2 if i is equal to n goto Step 5. If
checkSpell(D[i]) returns false then continue to Step 3.

Step 3: Display a list of word suggestions returned by the function
suggestionList(D[i]). Select a word from the list returned by
suggestionList(D[i]) (the process can be pre-empted or manually
terminated by jumping to Step 5 or continue to Step 4).

Step 4: if i < n then consider next word D[i] wherein i=i+1 and
repeat Step 2 else goto step 5.

Step 5: terminate algorithm.

OpenOffice
Document (D)

D[i] D[n] . . .

true
checkGrammar(D[i
])

i=i+1

false

suggestionStrat(D[i])

n=i

i=i+1

true

false

Terminate Pre-empted

termination

OpenOffice
Document (D)

D[i] D[n] . . .

true
checkSpell(D[i]

i=i+1

false

suggestionList (D[i])

n=i

i=i+1

true

false

Terminate

Pre-empted
termination

72

Figure 2: Grammar Checker Architecture.

Consider a document D with number of sentences equal to n
where n-1 is equal to the index of the last sentence in
document D. Let i=0 be the index of the first sentence found
in document D and D[i] be the sentence pointed to by the
index i. Let i+1 be the index of the next sentence. Let
checkGrammar(s) be the function that will accept a
parameter s wherein s can be the sentence D[i]. The
function will return true if the sentence s is grammatically
correct. Let suggestionStrat(m) be the function that will
return a sentence with appended POS of missing word or
words in the sentence that would make the sentence correct.

4.1.4. Add-in System Architecture
The different components used in the implementation of the
add-in are depicted in Figure 3.

Figure 3. Architectural Design of Add-in System
 Components.

To be able to create an add-in feature to OpenOffice Writer,
a programming language that supports UNO must be used to
access and manipulate the elements of the OpenOffice writer

document. There are four programming languages to choose
from but Star Office Basic is the easiest to use compared to
the other three. To be able to communicate with
postgreSQL, Open Database Connectivity (ODBC) must be
used. ODBC is a multi-platform driver that connects
applications to supported DBMS and applications.
Unfortunately, Open Office does not support ODBC because
it has its own DBMS connectivity driver exclusive to Open
Office applications. However, the Star Office Database
Connectivity (SDBC) driver can connect to a registered
ODBC definition making it possible for Open Office
applications to communicate with postgreSQL via ODBC
thru SDBC.

4.3. Evaluation Metrics
In the evaluation process, the input text is categorized having
two types of words: correct and incorrect. Correct words are
words that are accepted by Tagalog (excluding proper nouns
not unless they are added to the lexicon). The system
identifies a word as correctly spelled, if after stemming is
applied the resulting root word is found in the lexicon.

The system finds misspelled words and flagged it with a pink
wavy line. The evaluation is done using a separate program
that automatically computes the total number of words found
as correct and the words found as misspelled. It also
computes the total execution time. Table 1 depicts the
automated evaluation results in spell checking Tagalog
documents having large number of words (example, books in
the Bible).

Table 1. Automated Evaluation Results

TIME (in seconds) Test
Data Start End End -

Start

Total
Number
of Words

Correct Error
(Misspelled)

Book of
Genesis

03:23:16

03:37:43

14 min
and 27

sec

35,739

31,398

4,341
words or
12.14 %

Book of
 Obadiah

08:37:48

08:38:28

40 sec

671 625 46 words

or 7.36%

The book of Genesis consists of 35,739: the system found
31,398 correct words and the 4,341 mispelled words or
12.14%. In Obadiah, the system found 671 words correct,
and 46 mispelled words or 7.36%. The errors (misspelled)
are caused by the lack of conformity with the lexical entries
(that is, proper noun or absence of the root words in the
lexicon). Misspelled words also include words that are over-
stemmed and under-stemmed by TagSa. The only solution is
to recognize words that cannot be handled by TagSa is to add
the over-stemmed and under-stemmed words to the lexicon.

5. SUMMARY AND CONCLUSION
A Tagalog spell Checker and grammar checker was
developed for OpenOffice Writer to aid in writing documents
in Tagalog. The system’s capability in handling large
wordlist in the lexicon, powerful parsing and stemming
power is due to the third party engine employed and
enhancement made in TagSA, respectively.

Step 1: At i=0, get the sentence D[i]

Step 2: if checkGrammar(D[i]) returns true, consider the next
sentence i wherein i=i+1 and repeat Step 2 if i is equal to n goto
Step 5. If checkGrammar(D[i]) returns false then continue to
Step 3.

Step 3: The function suggestionList(D[i]) will display a
corrected sentence with appended POS of missing words or
display recommendation to rephrase sentence if needed. Apply
the suggestion to sentence and do the necessary word
replacement. (the process can be pre-empted or manually
terminated by jumping to Step 5 or continue to Step 4)

Step 4: if i < n then consider next word D[i] wherein i=i+1 and
repeat Step 2 else goto step 5.

Step 5: terminate algorithm.

Universal Network Objects
(UNO)

Star Office Basic

C++ Java

C#

StarOffice
DB

Connectivity

Database
Management

System

Open DB
Connectiv

ity

Writer Objects (i.e.
text in document and
position of words in
document etc.)

Writer

73

The grammar checking that was incorporated in the system is
capable of handling basic sentence structures of Tagalog.
There is no program re-compilation needed since the
program, as stored procedures, can be edited on the fly on
the third party software’s end without restarting Open Office
or even the operating system. Currently, no grammar checker
has been incorporated in OpenOffice Writer. It is still a
research proposal for the up coming season by Sun
Microsystems which was presented in Summer of Code
Project 2006 [15].

The advantage of having postgreSQL as parsing engine for
NL applications is its ability to store, manage and manipulate
very large data. It is independent to applications like Open
Office, thus avoiding interference to the functionality of
Open Office applications. The disadvantage on the other
hand is that you need to install postgreSQL along with Open
Office and setup database connectivity to bridge the two.

While running on a corpus of 14,000 root words (plus the
root words extracted from words with affixes processed by
TagSa), we found that our system works with high accuracy.
The misspelled words are all correctly detected. They are
mainly due to the presence of proper nouns and non-existent
of the root words in the lexicon. We are planning to take care
of euphony and assimilation in near future.

6. IMPLICATIONS AND RECOMMENDATIONS
The wordlist in the lexicon can be further incorporated with
more Tagalog root words. To include more grammar rules
and enhanced suggestion strategy is also a necessary
improvement for the grammar checker.

Other Philippine-type languages can be incorporated in the
system which could be used for a web web-based document
processing applications. An example of these applications is
the google docs.

7. LITERATURE CITED
[1] Bonus, Don Erick J. (2003). A Stemming Algorithm for

Tagalog Words. MS Thesis. De La Salle University,
Manila.

[2] Dimalen, Davis (2004). AutoCor: Automatic Acquisition

of Corpora of Closely-Related Languages from a Closed
Corpus (MS Thesis). De la Salle University - Manila.

[3] Chaudhuri, Bidyut Baran (2004). Reversed Word

Dictionary and Phonetically Similar Word Grouping
Based Spell-checker to Bangla Text. Proc. 2nd
International Conference on Information Technology for
Applications (ICITA), China.
Available at:
 http://www.emille.lancs.ac.uk/lesal/bangla.pdf

[4] Grishman, R., & Calzolari, N. New York University,
New York, USA. Istituto di Linguistica Computazionale
del CNR, Pisa, Italy.

 Available at: http://cslu.cse.ogi.edu/
 HLTsurvey/ch12node6.html

[5] Hendricks, Kevin B. The Mail Archive.
 Available at: http://www.mail-archive.com/
 dev@lingucomponent.openoffice.org/msg01312.html

[6] Lingucomponent Project (2001). OpenOffice.Org
 Available at: http://lingucomponent.openoffice.org/

[7] Microsoft Corp., 2005.

Available at:
http://msdn.microsoft.com/office/technologyinfo/develop
ing/overview/default.aspx.

[8] MIMOS Open Source R&D Group (2004).
 Available at: http://opensource.mimos.my/
 ?main=mimos/openoffice_spellchecker

[9] Moshagen, S., Pieski, T. & Trosterud, T.
 (2005). OpenSource Speller Technical
 Documentation.
 Available at: http://www.divvun.no/doc/proof/
 Spelling/X-spell/index.html#MySpell

[10] Naber, Daniel (2003). A Rule-Based Style and
 Grammar Checker. Technische Fakultät,
 Universität Bielefeld.
 Available at: www.danielnaber.de/languagetool/
 download/style_and_grammar_checker.pdf

[11] O'Neill, M.E. & Connelly, C.M. (2003). Spell
 Checking Using Hash Tables.
 Available at: http://www.cs.hmc.edu/courses/
 mostRecent/cs70/homework/cs70ass9.pdf

[12] OSTG (Open Source Technology Group),
 (2006).
 Available at: http://sourceforge.net/docman/

 display_doc.php?docid=29374&group_id=143754

[13] PostgreSQL
 Available at: http://www.postgresql.org/

[14] Scannel, Kevin. (2005). An Gramadóir.
 Available at: http://borel.slu.edu/gramadoir/

[15] SummerOfCode2006.
 Available at: http://wiki.services.openoffice.org/
 wiki/SummerOfCode2006

[16] UNDP APDIP (2007). Fijian Spell Checker for
 OpenOffice.org.
 Available at: http://www.apdip.net/news/
 fijianspellchecker/view

[17] Wikipedia (2006).
 Available at: http://en.wikipedia.org/wiki/N-gram

9. ACKNOWLEDGEMENT
This research is being funded by the Philippine Council for
Advanced Science and Technology Research and
Development (or PCASTRD) under the Department of
Science and Technology (DOST), Philippines.

