
Perl version 5.12.2 documentation - perlintro

Page 1http://perldoc.perl.org

NAME
perlintro -- a brief introduction and overview of Perl

DESCRIPTION
This document is intended to give you a quick overview of the Perl
 programming language, along with
pointers to further documentation. It
 is intended as a "bootstrap" guide for those who are new to the

language, and provides just enough information for you to be able to
 read other peoples' Perl and
understand roughly what it's doing, or
 write your own simple scripts.

This introductory document does not aim to be complete. It does not
 even aim to be entirely accurate.
In some cases perfection has been
 sacrificed in the goal of getting the general idea across. You are
strongly advised to follow this introduction with more information
 from the full Perl manual, the table of
contents to which can be found
 in perltoc.

Throughout this document you'll see references to other parts of the
 Perl documentation. You can
read that documentation using the perldoc
 command or whatever method you're using to read this
document.

What is Perl?
Perl is a general-purpose programming language originally developed for
 text manipulation and now
used for a wide range of tasks including
 system administration, web development, network
programming, GUI
 development, and more.

The language is intended to be practical (easy to use, efficient,
 complete) rather than beautiful (tiny,
elegant, minimal). Its major
 features are that it's easy to use, supports both procedural and

object-oriented (OO) programming, has powerful built-in support for text
 processing, and has one of
the world's most impressive collections of
 third-party modules.

Different definitions of Perl are given in perl, perlfaq1 and
 no doubt other places. From this we can
determine that Perl is different
 things to different people, but that lots of people think it's at least
 worth
writing about.

Running Perl programs
To run a Perl program from the Unix command line:

 perl progname.pl

Alternatively, put this as the first line of your script:

 #!/usr/bin/env perl

... and run the script as /path/to/script.pl. Of course, it'll need
 to be executable first, so chmod
 755 script.pl (under Unix).

(This start line assumes you have the env program. You can also put
 directly the path to your perl
executable, like in #!/usr/bin/perl).

For more information, including instructions for other platforms such as
 Windows and Mac OS, read
perlrun.

Safety net
Perl by default is very forgiving. In order to make it more robust
 it is recommended to start every
program with the following lines:

 #!/usr/bin/perl
 use strict;
 use warnings;

Perl version 5.12.2 documentation - perlintro

Page 2http://perldoc.perl.org

The two additional lines request from perl to catch various common
 problems in your code. They
check different things so you need both. A
 potential problem caught by use strict; will cause your
code to stop
 immediately when it is encountered, while use warnings; will merely
 give a warning
(like the command-line switch -w) and let your code run.
 To read more about them check their
respective manual pages at strict
 and warnings.

Basic syntax overview
A Perl script or program consists of one or more statements. These
 statements are simply written in
the script in a straightforward
 fashion. There is no need to have a main() function or anything of
 that
kind.

Perl statements end in a semi-colon:

 print "Hello, world";

Comments start with a hash symbol and run to the end of the line

 # This is a comment

Whitespace is irrelevant:

 print
 "Hello, world"
 ;

... except inside quoted strings:

 # this would print with a linebreak in the middle
 print "Hello
 world";

Double quotes or single quotes may be used around literal strings:

 print "Hello, world";
 print 'Hello, world';

However, only double quotes "interpolate" variables and special
 characters such as newlines (\n):

 print "Hello, $name\n"; # works fine
 print 'Hello, $name\n'; # prints $name\n literally

Numbers don't need quotes around them:

 print 42;

You can use parentheses for functions' arguments or omit them
 according to your personal taste.
They are only required
 occasionally to clarify issues of precedence.

 print("Hello, world\n");
 print "Hello, world\n";

More detailed information about Perl syntax can be found in perlsyn.

Perl variable types
Perl has three main variable types: scalars, arrays, and hashes.

Scalars

Perl version 5.12.2 documentation - perlintro

Page 3http://perldoc.perl.org

A scalar represents a single value:

 my $animal = "camel";
 my $answer = 42;

Scalar values can be strings, integers or floating point numbers, and Perl
 will automatically
convert between them as required. There is no need
 to pre-declare your variable types, but
you have to declare them using
 the my keyword the first time you use them. (This is one of the
requirements of use strict;.)

Scalar values can be used in various ways:

 print $animal;
 print "The animal is $animal\n";
 print "The square of $answer is ", $answer * $answer, "\n";

There are a number of "magic" scalars with names that look like
 punctuation or line noise.
These special variables are used for all
 kinds of purposes, and are documented in perlvar.
The only one you
 need to know about for now is $_ which is the "default variable".
 It's used as
the default argument to a number of functions in Perl, and
 it's set implicitly by certain looping
constructs.

 print; # prints contents of $_ by default

Arrays

An array represents a list of values:

 my @animals = ("camel", "llama", "owl");
 my @numbers = (23, 42, 69);
 my @mixed = ("camel", 42, 1.23);

Arrays are zero-indexed. Here's how you get at elements in an array:

 print $animals[0]; # prints "camel"
 print $animals[1]; # prints "llama"

The special variable $#array tells you the index of the last element
 of an array:

 print $mixed[$#mixed]; # last element, prints 1.23

You might be tempted to use $#array + 1 to tell you how many items there
 are in an array.
Don't bother. As it happens, using @array where Perl
 expects to find a scalar value ("in
scalar context") will give you the number
 of elements in the array:

 if (@animals < 5) { ... }

The elements we're getting from the array start with a $ because
 we're getting just a single
value out of the array; you ask for a scalar,
 you get a scalar.

To get multiple values from an array:

 @animals[0,1]; # gives ("camel", "llama");
 @animals[0..2]; # gives ("camel", "llama",
"owl");
 @animals[1..$#animals]; # gives all except the first
element

This is called an "array slice".

You can do various useful things to lists:

 my @sorted = sort @animals;
 my @backwards = reverse @numbers;

Perl version 5.12.2 documentation - perlintro

Page 4http://perldoc.perl.org

There are a couple of special arrays too, such as @ARGV (the command
 line arguments to your
script) and @_ (the arguments passed to a
 subroutine). These are documented in perlvar.

Hashes

A hash represents a set of key/value pairs:

 my %fruit_color = ("apple", "red", "banana", "yellow");

You can use whitespace and the => operator to lay them out more
 nicely:

 my %fruit_color = (
 apple => "red",
 banana => "yellow",
);

To get at hash elements:

 $fruit_color{"apple"}; # gives "red"

You can get at lists of keys and values with keys() and values().

 my @fruits = keys %fruit_colors;
 my @colors = values %fruit_colors;

Hashes have no particular internal order, though you can sort the keys
 and loop through them.

Just like special scalars and arrays, there are also special hashes.
 The most well known of
these is %ENV which contains environment
 variables. Read all about it (and other special
variables) in perlvar.

Scalars, arrays and hashes are documented more fully in perldata.

More complex data types can be constructed using references, which allow
 you to build lists and
hashes within lists and hashes.

A reference is a scalar value and can refer to any other Perl data
 type. So by storing a reference as
the value of an array or hash
 element, you can easily create lists and hashes within lists and
 hashes.
The following example shows a 2 level hash of hash
 structure using anonymous hash references.

 my $variables = {
 scalar => {
 description => "single item",
 sigil => '$',
 },
 array => {
 description => "ordered list of items",
 sigil => '@',
 },
 hash => {
 description => "key/value pairs",
 sigil => '%',
 },
 };

 print "Scalars begin with a $variables->{'scalar'}->{'sigil'}\n";

Exhaustive information on the topic of references can be found in perlreftut, perllol, perlref and perldsc
.

Perl version 5.12.2 documentation - perlintro

Page 5http://perldoc.perl.org

Variable scoping
Throughout the previous section all the examples have used the syntax:

 my $var = "value";

The my is actually not required; you could just use:

 $var = "value";

However, the above usage will create global variables throughout your
 program, which is bad
programming practice. my creates lexically
 scoped variables instead. The variables are scoped to the
block
 (i.e. a bunch of statements surrounded by curly-braces) in which they
 are defined.

 my $x = "foo";
 my $some_condition = 1;
 if ($some_condition) {
 my $y = "bar";
 print $x; # prints "foo"
 print $y; # prints "bar"
 }
 print $x; # prints "foo"
 print $y; # prints nothing; $y has fallen out of scope

Using my in combination with a use strict; at the top of
 your Perl scripts means that the
interpreter will pick up certain common
 programming errors. For instance, in the example above, the
final print $y would cause a compile-time error and prevent you from
 running the program. Using
strict is highly recommended.

Conditional and looping constructs
Perl has most of the usual conditional and looping constructs. As of Perl
 5.10, it even has a
case/switch statement (spelled given/when). See "Switch statements" in perlsyn for more details.

The conditions can be any Perl expression. See the list of operators in
 the next section for information
on comparison and boolean logic operators,
 which are commonly used in conditional statements.

if

 if (condition) {
 ...
 } elsif (other condition) {
 ...
 } else {
 ...
 }

There's also a negated version of it:

 unless (condition) {
 ...
 }

This is provided as a more readable version of if (!condition).

Note that the braces are required in Perl, even if you've only got one
 line in the block.
However, there is a clever way of making your one-line
 conditional blocks more English like:

 # the traditional way
 if ($zippy) {
 print "Yow!";

Perl version 5.12.2 documentation - perlintro

Page 6http://perldoc.perl.org

 }

 # the Perlish post-condition way
 print "Yow!" if $zippy;
 print "We have no bananas" unless $bananas;

while

 while (condition) {
 ...
 }

There's also a negated version, for the same reason we have unless:

 until (condition) {
 ...
 }

You can also use while in a post-condition:

 print "LA LA LA\n" while 1; # loops forever

for

Exactly like C:

 for ($i = 0; $i <= $max; $i++) {
 ...
 }

The C style for loop is rarely needed in Perl since Perl provides
 the more friendly list scanning
foreach loop.

foreach

 foreach (@array) {
 print "This element is $_\n";
 }

 print $list[$_] foreach 0 .. $max;

 # you don't have to use the default $_ either...
 foreach my $key (keys %hash) {
 print "The value of $key is $hash{$key}\n";
 }

For more detail on looping constructs (and some that weren't mentioned in
 this overview) see perlsyn.

Builtin operators and functions
Perl comes with a wide selection of builtin functions. Some of the ones
 we've already seen include
print, sort and reverse. A list of
 them is given at the start of perlfunc and you can easily read

about any given function by using perldoc -f functionname.

Perl operators are documented in full in perlop, but here are a few
 of the most common ones:

Arithmetic

 + addition
 - subtraction
 * multiplication
 / division

Perl version 5.12.2 documentation - perlintro

Page 7http://perldoc.perl.org

Numeric comparison

 == equality
 != inequality
 < less than
 > greater than
 <= less than or equal
 >= greater than or equal

String comparison

 eq equality
 ne inequality
 lt less than
 gt greater than
 le less than or equal
 ge greater than or equal

(Why do we have separate numeric and string comparisons? Because we don't
 have special
variable types, and Perl needs to know whether to sort
 numerically (where 99 is less than 100)
or alphabetically (where 100 comes
 before 99).

Boolean logic

 && and
 || or
 ! not

(and, or and not aren't just in the above table as descriptions
 of the operators. They're also
supported as operators in their own
 right. They're more readable than the C-style operators,
but have
 different precedence to && and friends. Check perlop for more
 detail.)

Miscellaneous

 = assignment
 . string concatenation
 x string multiplication
 .. range operator (creates a list of numbers)

Many operators can be combined with a = as follows:

 $a += 1; # same as $a = $a + 1
 $a -= 1; # same as $a = $a - 1
 $a .= "\n"; # same as $a = $a . "\n";

Files and I/O
You can open a file for input or output using the open() function.
 It's documented in extravagant
detail in perlfunc and perlopentut,
 but in short:

 open(my $in, "<", "input.txt") or die "Can't open input.txt: $!";
 open(my $out, ">", "output.txt") or die "Can't open output.txt: $!";
 open(my $log, ">>", "my.log") or die "Can't open my.log: $!";

You can read from an open filehandle using the <> operator. In
 scalar context it reads a single line
from the filehandle, and in list
 context it reads the whole file in, assigning each line to an element of

the list:

 my $line = <$in>;
 my @lines = <$in>;

Perl version 5.12.2 documentation - perlintro

Page 8http://perldoc.perl.org

Reading in the whole file at one time is called slurping. It can
 be useful but it may be a memory hog.
Most text file processing
 can be done a line at a time with Perl's looping constructs.

The <> operator is most often seen in a while loop:

 while (<$in>) { # assigns each line in turn to $_
 print "Just read in this line: $_";
 }

We've already seen how to print to standard output using print().
 However, print() can also
take an optional first argument specifying
 which filehandle to print to:

 print STDERR "This is your final warning.\n";
 print $out $record;
 print $log $logmessage;

When you're done with your filehandles, you should close() them
 (though to be honest, Perl will
clean up after you if you forget):

 close $in or die "$in: $!";

Regular expressions
Perl's regular expression support is both broad and deep, and is the
 subject of lengthy documentation
in perlrequick, perlretut, and
 elsewhere. However, in short:

Simple matching

 if (/foo/) { ... } # true if $_ contains "foo"
 if ($a =~ /foo/) { ... } # true if $a contains "foo"

The // matching operator is documented in perlop. It operates on $_ by default, or can be
bound to another variable using the =~
 binding operator (also documented in perlop).

Simple substitution

 s/foo/bar/; # replaces foo with bar in $_
 $a =~ s/foo/bar/; # replaces foo with bar in $a
 $a =~ s/foo/bar/g; # replaces ALL INSTANCES of foo with
bar in $a

The s/// substitution operator is documented in perlop.

More complex regular expressions

You don't just have to match on fixed strings. In fact, you can match
 on just about anything
you could dream of by using more complex regular
 expressions. These are documented at
great length in perlre, but for
 the meantime, here's a quick cheat sheet:

 . a single character
 \s a whitespace character (space, tab, newline,
...)
 \S non-whitespace character
 \d a digit (0-9)
 \D a non-digit
 \w a word character (a-z, A-Z, 0-9, _)
 \W a non-word character
 [aeiou] matches a single character in the given set
 [^aeiou] matches a single character outside the given
set
 (foo|bar|baz) matches any of the alternatives specified

Perl version 5.12.2 documentation - perlintro

Page 9http://perldoc.perl.org

 ^ start of string
 $ end of string

Quantifiers can be used to specify how many of the previous thing you
 want to match on,
where "thing" means either a literal character, one
 of the metacharacters listed above, or a
group of characters or
 metacharacters in parentheses.

 * zero or more of the previous thing
 + one or more of the previous thing
 ? zero or one of the previous thing
 {3} matches exactly 3 of the previous thing
 {3,6} matches between 3 and 6 of the previous thing
 {3,} matches 3 or more of the previous thing

Some brief examples:

 /^\d+/ string starts with one or more digits
 /^$/ nothing in the string (start and end are
adjacent)
 /(\d\s){3}/ a three digits, each followed by a whitespace
 character (eg "3 4 5 ")
 /(a.)+/ matches a string in which every odd-numbered
letter
 is a (eg "abacadaf")

 # This loop reads from STDIN, and prints non-blank lines:
 while (<>) {
 next if /^$/;
 print;
 }

Parentheses for capturing

As well as grouping, parentheses serve a second purpose. They can be
 used to capture the
results of parts of the regexp match for later use.
 The results end up in $1, $2 and so on.

 # a cheap and nasty way to break an email address up into parts

 if ($email =~ /([^@]+)@(.+)/) {
 print "Username is $1\n";
 print "Hostname is $2\n";
 }

Other regexp features

Perl regexps also support backreferences, lookaheads, and all kinds of
 other complex details.
Read all about them in perlrequick, perlretut, and perlre.

Writing subroutines
Writing subroutines is easy:

 sub logger {
 my $logmessage = shift;
 open my $logfile, ">>", "my.log" or die "Could not open my.log:
$!";
 print $logfile $logmessage;
 }

Now we can use the subroutine just as any other built-in function:

Perl version 5.12.2 documentation - perlintro

Page 10http://perldoc.perl.org

 logger("We have a logger subroutine!");

What's that shift? Well, the arguments to a subroutine are available
 to us as a special array called
@_ (see perlvar for more on that).
 The default argument to the shift function just happens to be @_.

So my $logmessage = shift; shifts the first item off the list of
 arguments and assigns it to
$logmessage.

We can manipulate @_ in other ways too:

 my ($logmessage, $priority) = @_; # common
 my $logmessage = $_[0]; # uncommon, and ugly

Subroutines can also return values:

 sub square {
 my $num = shift;
 my $result = $num * $num;
 return $result;
 }

Then use it like:

 $sq = square(8);

For more information on writing subroutines, see perlsub.

OO Perl
OO Perl is relatively simple and is implemented using references which
 know what sort of object they
are based on Perl's concept of packages.
 However, OO Perl is largely beyond the scope of this
document.
 Read perlboot, perltoot, perltooc and perlobj.

As a beginning Perl programmer, your most common use of OO Perl will be
 in using third-party
modules, which are documented below.

Using Perl modules
Perl modules provide a range of features to help you avoid reinventing
 the wheel, and can be
downloaded from CPAN (http://www.cpan.org/). A
 number of popular modules are included with the
Perl distribution
 itself.

Categories of modules range from text manipulation to network protocols
 to database integration to
graphics. A categorized list of modules is
 also available from CPAN.

To learn how to install modules you download from CPAN, read perlmodinstall.

To learn how to use a particular module, use perldoc Module::Name.
 Typically you will want to
use Module::Name, which will then give
 you access to exported functions or an OO interface to the
module.

perlfaq contains questions and answers related to many common
 tasks, and often provides
suggestions for good CPAN modules to use.

perlmod describes Perl modules in general. perlmodlib lists the
 modules which came with your Perl
installation.

If you feel the urge to write Perl modules, perlnewmod will give you
 good advice.

Perl version 5.12.2 documentation - perlintro

Page 11http://perldoc.perl.org

AUTHOR
Kirrily "Skud" Robert <skud@cpan.org>

