March 1980 Third Edition 50p ’1“"—|

LIVERPOOL =&

LOFTWARE GAZETT

Liverpool Software Gazette March 1980

During the Autumn of 1979 a small group consisting of successful publishers and acclaimed

computer experts sat down to plan a new
all-round computer magazine on the market.
It's name?

publication. Their brief? To produce the best
Three months later the publication was born.

ComputerAge

Computer Age is still only four issues old but already it is acknowledged by thousands to
have achieved its original aim. Each new issue is enjoying increased sales and advertising
revenue — but that's only part of the success story. More and more respected professionals
are adding their names to the list of contributors and, one supposes, to an ongoing success

story.

Whatever your interest in computers, the Publishers of Computer Age are confident you will

be satisfied with the publication.

Why not put them to the test and see a sample copy? Just send 60p (to include postage and
packing), the issue you would like to see (listed below) and full details to: COMPUTER
AGE, 4 VALENTINE PLACE, LONDON S.E.1. A small price to pay for keeping in touch

with the computerage!

ISSUE 2

The government's views on comput-
ers. Cultural energy and the personal
computer. Tribute to Christopher
Evans. Microcomputers in the legal
professions. Accountants' guide to
microcomputers. The peripheral
connection. Topics in artificial intelli-
gence. Why not a computer in your
school? Brand news, and much more.

Computer ?

!

-

ISSUE 1

Clive Jenkins and the unions' views.
Are games playing programs intelli-
?ent? Artificial intelligence and the
ayman. Micro computers in educat-
ion. Algorithmic designs. How
mighty micros can aid super sales.
Why not a computer in your busi-
ness? Some microcomputer uses in
psychology. Learning FORTH. Office
of the future, and much more.

ISSUE 4

The microcomputer and the teacher.
Computer retailing. Using a digital
ring. Desert island floppy discs.
Computers for the smaller firm.
Systems for small businesses. Keeping
your computer busy. New technolog-
ies for education. More on FORTH.

ISSUE 3

Faceless bureaucrats — an invasion
of privacy? Buying a personal com-
puter. Statistical analysis on a micro.
Doing it in binary. The small systems
market hots up. Book reviews. When
we're all ten years older. Database.
The modular approach. Optimising
employment.

" Thisperiodical canbehighlyrecommended ontheevidenceof itsfir st

twoissues. It containsfor thebusnessman, professonal firm, teacher

and individual ardiableguidealmos equivalent to acomputer Which on
theins-and-outsof buyingandusingcomputers."

The Times Monday February 18

Liverpool Software Gazette March 1980

CONTENTS

Page 4 EDITOR AND PUBLISHERS LETTER
The Editor airs his views, not too contentious this month we hope.

Page 6 PETS CORNER
John Stout continues his excellent regular series applicable to 20% of al micros in
use in the U.K.

Page 16 NASCOM NOTES
Michael Shanahan airs his views and helps Nas-sys users to test their memory.

Page 21 CARTOON

Page 22 APPLE PIPS) .) _
Our regular series on Apple is alittle smaller this month but articles elsewhere more
than make up for this.

Page 24 AIM 65 ASSEMBLER]) .
Find out more about this vastly under-rated piece of kit and 6502 programming in

general.

Page 31 GRAPHICS SHAPE SCALING
Our contributing Editor will have more to say on this next month

Page 32 PILOT TAKES OFF
A full listing of a Pilot Assembler in BASIC

Page 42 LETTER FROM AMERICA
The first of Dave Smith's regular features on the latest West Coast computer gossip.

Page 44 PASCAL-AN INTRODUCTION
Dr. Andrew Veronis starts his lucid explanation on this structured high level lan-
guage.

Page 48 PROGRAMMING PRACTICES AND TECHNIQUES
This regular series continues this month with a look at editors.

Page 51 CARTOON

Page 52 ALGO 68C ON THE Z80
In this article Raymond Anderson seeks to point out that Pascal is not the only
structured high level language that will run on a micro.

Page 58 MICROCOMPUTERS AND BIO-CHEMISTRY _ ‘
This application article helps to show that microcomputers are tools for a wide ! :my
variety of possible useages. ‘\.

Page 62 SHARP MACHINE LANGUAGE
An introduction to using the Z80 within your Sharp

Page 65 ERRATA

Page 66 SUPER SORT

Roy Stringer thoroughly dissects the workings of his sort programme published in
issue 2 of this magazine.

Page 70 SOFTWARE AND ACORN

The only regular feature for Acorn owners continues this month with a look at
interfacing.

Page 74 NUMERICAL ACCURACY i i i
Dr. Allan continues from last month on this essential topic.

Page 78 ETC.
It looks like hardware is infiltrating into the Gazette.

4 Liverpool Software Gazette March 1980
e
”/////w '/7///////////// // M/////// /?; = §\\\ \\\\\\\\\\\ \\\\\\
: ‘uulu| m” ” o '(1////////, //////”;: \ §1)\\\}?\\\\\\l \”] \]Hlm " \n\‘n n "” \\\[Il\llnm
[] |l1‘ |||| i :::I T |l\| o i‘H 1§ IH‘ (\\‘ ‘H\ I Wit I]
Hul“l \lnn‘“um l “ \l lvm\\\\\\kkt \\\\\ \\kl\\\\ iﬂ ////)%/ //////// /)}////1// /)/}l/ // " 1} m e ’}‘”1“”/"! H'l /I ”.’
///////’//////// ////////éé:z
% i, 7;;////“7;;/;' 0 i /’,j
\\:‘ we N L, / ‘// %/ /// / il
\\ \\\ \\\ \\\\\\\\\\\\\\\\\“\\\\\\\\ W \\\\\\\ \\\\\\-t = //;/// / //// //// //// // / / /// wlly
%\

\\\\ ARy S R

NI
\“ ‘\ \\\\\\\\\\\
\\ W N \ .

oD N
RN \\\\\\%

\\\\\\\\\\ o

NN

v

RN RN

/

YRR

Ny’
// u
i
///
1. !

T e e iy

Editor
0.0

WHAT an amazingindustry thisis, afew short years ago
computers were the preserve of 'professionals, looked
upon by outsiders in awe and deference. The advent of
the micro has liberated the computer, amost overnight
computer time has gone from being a precious commod-
ity to being freely and cheaply available to anyone who
wants. The result has been a broad base of computer
literacy and nothing demonstrates this better than the
fact that the authors of articles in this magazine include
an architect, a biochemist and even a saesman. We
welcome this democratisation of computing as it is
resulting in an almost infinite variety of ideas and appli-
cations that can only be good for the industry and thus
for society as a whole. Certainly we look forward to
Pubhshl ng many more articles from non-computer pro-
essonals.

0.1

THIS issue of the magazine sees the introduction of two
more regular features, both by American authors. Letter
from Americaiswritten by Dave Smith who has been in
micro-computers from the beginning, in Southern
Cdifornia and who has his finger on the pulse of the
Orange County computer scene. His monthly contribu-
tion will do much to keep out readers aware of the way
the industry is going. Andrew Vernois is a computer
professona who has worked for severa of the. Ameri-
can microdectronic giants and who has written quite a
few books on computing / microeectronics. We hope
that bringing his professionalism to spreading the Pascdl
gospd will help more people redlise that BASIC is not
the ultimate way to use their machine.

With successive issues we hope to carry more regular
features. The next issue should see a 6800 section and a
regular home for news and information on the Sharp MZ

80K, we hopetoo to find sufficient material for aregu-
lar 1802 feature as we feel this excellent processor has
not received the coverage it deserves.

0.2

A highlevel languageisatool for doing ajob andjust
as a hammer is unsuitable for putting In a screw, so
different languages are suitable for different jobs anda
programmer needs a tool box of different languages to
apply to the different tasks. In this issue are articles
about two of the tools that are available, Algol, as
well asour regular serieson Pascal. Infutureissuesthere
will be further articles on these and other languages,
whilst obviously continuing to support BASIC asthisis
the microcomputer language in the most widespread
use.
Further up and coming goodies are an application
article about microcomputers in architecture, a look at
Crystas superb Z80 BASIC, an anadlysis of the Socid
Effects of Microcomputers and articles on the various
Sorcerer Pacs, among many others. To maintain and
even enhance the quality of thisjournal we need reader
feedback, even if just to complain, so don't hesitate in
taking pen to paper.

Publisher
1.0

LIVERPOOL Software Gazette is a company in its
own right, separate from Microdigita, thoughit is neces-
sary for usto continue using Microdigital's resources for
a while. This should make no difference, our editorial
content has not favoured Microdigital in any way aswe
have adways regarded the Gazette being a separate
entity. We hope this change will encourage more adver-
tisng in the Gazette, because advertising revenue is the

P

Liverpool Software Gazette March 1980

lifeblood of a magazine. As a further inducement to
advertise we are giving every advertiser (even % page)
50 free copies of the issue they advertise in, sdling these
will help recoup part of the advertising cost.

11

IF you are at an academic institution or a member of a
computer club or any other group that can get together a
regular bulk order for the Gazette youwill be ableto buy
at 'trade’ price from:-

Computer Bookshop,

43-45 Temple Strest,

Birmingham.

First Edition 52 pages
Second Edition 68 pages
This Edition 84 pages
Next Edition 100 pages???

This magazine has more pages of articles than any
other microcomputer magazine published in the U.K.

@\ MCE EVERISS

SHAIRP Computer

A personal computer that
opens the world of programming
to your own fresh ideas!

SHARP CRT Display

MZBOK This unit is equipped with a 25cm (10)
monochrome CRT for up to 1 000 letters
(40 letters * 25 lines) Processing results can
be displayed on the CRT and it is possible
to program and edit (addition deletion etc)
while watching the operation tor
confirmation

A Technical Masterpiece

A personal computer

that makes full use of the muilti functions of

78 Keys
ACIl standard
Alphabet (capital and small letters)

Graphic symbols

Built-in Clock

Clock circuit time is displayed according to
program:

an 8 bit microcomputer (Z 80) this model is
certainly one of the most advanced anywhere
It employs BASIC language a feature which
provides easy programming even to those
totally unfamiliar with computer operation

SHARPMZ80KSOFTWARE

LIVERPOOL
SOFTWARE
GAZETTE

Editor/Publisher: Bruce Everiss
Editorial Assstant: Nikki Devereux.

Straker.
Advertisng/Subscriptions: Nikki Devereux.
Artwork: Peter Croft, John Burrows.

Agency discount 10%

would like further details.
made as to its truth or validity"'.
Temple Street, Birmingham, 021-643 4577.

101 West, Peterborough, NH 03458.

(c) LIVERPOOL SOFTWARE GAZETTE 1980

like to start a subscription with!

Contributing Editors John Shout, Dr Martin Beer, Dave

ADVERTISING:

Full page (17.5 cm x 24 cm) £180.00
Half page (Upright 8.5 cm x 24 cm) £ 95.00
Half page (Landscape 17.5 cm x 11.75 cm) £ 95.00
Quarter page (8.5 cm x 11.75 cm) £ 52.00

Please contact Nikki Devereux on 051-227 2535 if you

DISCLAIMER: 'All theinformation in the magazine has been
throughly debugged and tested. However, no guarantees are

TRADE DISTRIBUTION:— Computer Bookshop. 43-45

U.S. DISTRIBUTION:— Bits Inc., P.O. Box 428. 25 Route

THE LIVERPOOL SOFTWARE GAZETTE is published bi
monthly by Liverpool Software Gazette Limited, 14 Castle
Street, Liverpool L2 OTA. Registered in England No 1477285

Subscriptions: Within Great Britain, £6.00 for 12 issues.
Individual copies, by post 60p. Pleasetel | ustheissueyouwould

BREAKOUT £5.00 SUPER SIMON £5.00
MASTERMIND £5.00 MIZ-MAZE £8.00
SHAPE MATCH £5.00 GRAPHICS/MUSIC £5.00
LUNAR LANDER £5.00 BOMBER £5.00
SNAKES & FIREBALLS £5.00

LADDERS £5.00 DONKEY DERBY £5.00

HB COMPUTERS LTD

22 NEWLAND STREET, KETTERING, NORTHANTS.

Tel. (0536) 83922 & 520910 Telex 341297 §

REPRINTS: Articles that are explicitly marked as having
restricted reproduction rights may not be copied or reprinted
withoutwrittenpermissionfromMicrodigital. All otherarticles
may be reprinted for any non-commercial purpose provided a
credit line isincluded stating that said material was reprinted
from the Liverpool Software Gazette, 14 Castle Street, Liver-
pool, L2 OTA. Please send copies of any reprints to Liverpool
Software Gazette, attention of Bruce Everiss. i

Liverpool Software Gazette March 1980

Pets Corner

ol [
= J3out

Department of Architecture
Liverpool Polytechnic
53 Victoria Street

IN the last issue a routine was given which, when passed
the first byte of 6502 machine code instruction in the
accumulator, returned the number of bytes in that
instruction (1 . .3). It did not check the instruction for
being a valid instruction (103 out of the 256 possible
instructions are invalid instructions) and so could not be
used for an application such as a single step program.

The short routine below, using 50 bytes, returns with
the carry bit set if the byte passed to it in the accumulator
represents avalid machine code instruction, otherwiseit
returns with the carry bit clear. It uses 32 bytes of data,
wherethei'th byte of data (0<=i<=31) hasa 1 in bit]j
(0< =j <=7, bit 0 being the least significant bit) if the
machine code instruction represented by (8* i + j) isa
valid one. In the next issue a relocator using both of
these routines will be listed, and details given for linking
it into the Commodore provided machine code
monitors, either in ROM or from tape.

VALID: 48 PHA ;save op-code

2907 AND #$07 ‘mask for low order
bits. (A) now equiv-
dent toj above,
giving bit number
within byte i

AA TAX

E8 INX X)=j+1

68 PLA ;0et op-code again

4A LSR A

4A LSR A

4A LSR A :bits 7..5 now zero,
last 3 instructions
.divide op-code by 8

A8 TAY :(Y) now eguivalent
to] above

B94C 03 LDA TABLE)Y ;theonly instruction

in the routine which
;iSNOT relocatable

Liverpool
L1 6EY
SHIFT: 4A LSR A ;if valid/invalid bit

:‘wasinbit Oitisnow
;incarry? whichis
‘wherewewant it

CA DEX

DO FC BNE SHIFT ;if (X) non-zero then
;needto shift again

60 RTS :done so return

TABLE: 63 67 63

637377

63 63 63

77 63 63

63 77 63

6372 75

732777

777377

7377 63

637377

63 63

The routine above is assembled to occupy the first 50
bytes of the second cassette buffer (033A . .03F9),
which gives a value of 034C for the address TABLE. If
the routine is to be moved elsewhere the instruction
LDA TABLE,Y will of course need altering, since we
have not at the moment written a relocator program to
do it for us.

Searching

IN the last issue the topics of searching and sorting were
brought up, and an expansion promised for this issue.
Rather than try and deal with both topics at once we will
deal with the searching problem first, and start with a
description of the problem we are attempting to solve.

A variable KEY isgiven, together with an array FILE,
which contains NE number of elements. The task is to
find that index IN such that FILE (IN) = KEY. The

Liverpool Software Gazette March 1980

definition of FILE will have occurred in a statement
such as DIM FILE (NE) at the start of the problem,
where NE may either have been assigned a value as the
result of an INPUT statement or of an assignment
statement. Wherever the routines presented refer to the
sze of the array they will use NE, so that the problem
does not depend on a particular value of NE (not that
users of PETswith old ROMs must have NE less than or
equal to 255).

A typica application might be to find the location in
the array which contains the number KEY , then use that
position to retrieve other information linked to that
number, e.g. a description of a part with that given part
number, where that extra information may be stored in
another array, eg. DES$(NE).

In the specia case where the range of possible values
for KEY is 1.NE then of course our task is much
simplified, since al we would need to do is to look
straightaway at DES$(KEY). The problem of searching
simple 'squashes’ KEY to fit into the range of possible
values for an array. At the end of this article we shall
present an application which takes acommand | etter, or
group of letters, and generates an index IN which can be
used as the subject of an ON GO TO (GOSUB).

In the case when KEY is not an element of FILE (),
then we return a value of IN = 0. This means that we
cannot use the zero'th element of FILE, but should it be
necessary the algorithms presented can be adapted to
return -1, or some other distinguishable value.

Firs effort (Listing 1)

The slightly unusual construct in line 1020 makes sure
that the FOR loop is properly terminated. In some cases
it may not be needed (and may well not work for other
implementationsof BASIC orinother languages) but it
is always better to be safe than sorry. If the program
terminates in line 1040 we know that FILE
(D<> KEY, I =1 . .NE, and so IN=0 (or -1, or what-
ever value is chosen to represent failure). If FILE
(N=KEY, thenIN issettothatvalueof I, the FOR loop
terminated and the routine ended.

Second effort (Listing 2)

To cut down on the size of the routine we might notice
that wehavetwooccurrencesof NEXTI:RETURN. We
cannot simply delete the first occurrence from line 1020,
since the routine would then always return IN = 0. How-
ever, if we move the IN = 0 to before the start of the FOR
loop, then the algorithm works and is slightly shorter.
This method of assigning avalueto avariable beforea
test which if true assignsanother valueto it can be used
to replace some IF .. THEN ...ELSE ...statements,
encountered when moving programs from one
implementation of BASIC to another. Thus IF (X =0)
THEN A =B ELSE A =Ccan bewrittenasA=C: IF
(X =0) THEN and for true compatibility every state-
ment beforethe | F must have acorresponding oneinthe
THEN section.
Note: a) we could remove the | = NE statement from

line 1020, but this has two effects:

i) if KEY occurs more than once in FILE, IN returns
the highest value of | such that FILE(l) = KEY

ii) the loop is not terminated once the value KEY is
found, so that the routine takes longer to execute
when KEY is found.

b) itisunlikely that we have speeded the routine up by
much, since the alterations have only been to statements
that are only executed once. If the subroutine were
repeatedly called it might be worthwhile, but al we have
done so far is to perhaps reduce the size of the routine
and perhaps make it slightly more efficient.

Third effort (Ligting 3)

If one isunable to use a FOR loop to control the number
of iterations of the main part of the subroutine, but must
implement one using IFs and GOTOs, perhaps when
searching through a linked list (another source for at
least one article), then a straight ‘translation’ of the
second effort might be Listing 3i.

However notice that two |F statements will be
executed each time round the loop. One way to reduce
this is to make use of the zero'th element in FILE as
follows in Listing 3ii.

At some time the condition in line 1020 must be false,
since if the element KEY was not in FILE(NE) ..FILE
(2) it is definitely in FILE(O) by reason of the second
statement in line 1010. If KEY was in FILE(NE)

. .FILE(l) then the loop will exit with IN equal to the
relevant value, which iswhat we want.

Thistechnique of using aparticular element to act asa
'sentinel’ for the loop, is equivalent to using a variable
with an abnormal value to signal the end of alist of data.
It's basic use isto simplify the terminating condition of
the routine, or as we have seen, to remove one or more
of the terminating conditions altogether. It has a certain
elegance in that we generate the value of IN = 0 auto-
matically, without having to assign it especialy.

Often a long sequence of |IF statements occurs in a
program, where avariable isbeing tested against alarge
number of possihilities, and the one whichiis truly being
used to either GOTO a different portion of the program
or to assign different values to other variables. The
linear search al gorithmsintroduced above can be used to
simplify this type of programming quite easily. Perhaps
the best way to demonstrate it is to consider the action of
a combined text editor and formatter program, which
enables the user to input text to the program, inters-
persed with formatting commands, e.g. to set the left
margin, centre a line, set the number of characters per
line and so on. One convention used in Kernighan and
Plaugher's Software Tools (Addison Wedey) is that a
formatting directive begins with a .and is thefirst thing
on aline. They are two letter commands, eg. .bp, .br,

.ce, .Ul and so on. The first task is to determine that a
formatting command is to be obeyed, and then to get the
two letter string which then compared with the possble
range of values for the formatting command, these pos-
sibilities having been loaded into an array earlier on in
the program. One of the search algorithms above is then

R

8

Liverpool Software Gazette March 1980

used to see if the command obtained is one of the legd
commands. If it is then we return IN= a value in the
range 1 .. NC, where NC is the number of commands.
This value of IN can then be used in an ON IN GOTO
(GOsUB) command.

There are a number of dight variations on this techni-
gue. When using strings the target strings may be con-
catenated into one long string and the command string
compared agai nst substrings of this string. Thisnormally
needs some sentinel string at the end, e.g. XX, or the
idea of tacking the command string onto the end, as in
the routine in Listing 3ii.

What we are doing is to create a form of CASE state-
ment, equivalent to an ON GOTO (GOSUB) where the
argument is not numerical. The search is being used to
map the possible range of values of the command string
onto the integers 1 . .NC. Listing 4 demonstrates the
technique for Kernighan and Plaugher's 14 formatting
commands, using the one long string technique.

Sofar we have concentrated on altering the routinesin
ways which are unlikely to confer much benefit on the
timing of the routines. On average, assuming the values
to be evenly distributed in FILE, we will do NE/2 com-
parisons before finding KEY (if it isin the array), other-
wise we will do NE (+ 1 in the sentinel version). Thus
the effort of the routineis proportional to the number of
elementsin thefile, double the number of elements and
you double the number of comparisons. Given that the
array is sorted we can do much better than this with a
technique known as the binary search.

Binary Search (Ligting 5)

This method works by approximately halving the range
of the array to be looked at for each comparison, and
looking at the middle element (or the element nearest
the middle). Since we assume the array is ordered (such
that i less than j implies FILE (i) less than or equal to
FILE (j)), there are three possibilities for the result of
the comparison. Firstly the comparison could yield true,
in which case we have found the element we were look-
ing for. Secondly the middle element is less than KEY .
Inthis case we know that if KEY isinthearray it must be
in the top half of the array, and we can repeat the
technique onthe top half of the array. Thirdly themiddle
element isgreater than KEY in which case we repeat the
technique on the lower haf of the array. The important
thing to note is that at each iteration we halve the range
under consideration, so that the number of comparisons
will be of the order of log”(NE). Thus double the number
of elements and we add a constant number of compari-
sons, the number necessary to determine whether we
have found the element, must search the lower half of
the range or the upper hdf.

As we have said, this technique depends on the array
being sorted, but for large arrays its performance is so
much better than the linear search that it will often repay
the extraeffort made. It shows that to speed a process up
gainswill not be made from removing spaces, comments
etc which can even approximate those made by atering
the algorithm. If a program is not fast enough one's first

question should be 'Is there a better algorithm?

There exists an even faster method of searching
(thoughitisnot useful in every situation) which depends
not on the data being sorted but on it exhibiting a pecul-
iar form of randomness. The technique of hashing will be
covered in the next issue aong with the problem of
sorting (the Supersort presented in the last issue uses a
form of hashing to achieve its spectacular performance,
adong with a large amount of memory).

A USEFUL RANDOM NUMBER GENERATOR

Sometimes it can be useful to generate random num-
bers in such a way that one is sure of getting al the
possible values, e.g. in agame. For real numbers thisis
impossible, but in the situation where the numbersin the
range 0. .2™- areto be generated the random number
generator in listing 6 can be useful (and we will returnto
it in next issue's discussion of hashing).

The generator works as follows:

1) start with initial 'seed’ R =5.

2) multiply R by 5 and place the result in R.

3) mask out al but the lowest m+ 2 bits of R (equival-
ent tg taking the remainder when dividing by
2M+7).

4) the next random number is INT(R/4).

5) repeat from step 2.

Theroutinein listing 6 generates 6, 7, 4, 5, 2, 3, 0 and
1, and then repeats.

Recurson

Recursion is the process of defining something in
terms of itself. The usual and overworked example is
that of the factorial function, which can be defined as

factoria (n) =n*factorial (n-1), and factorial (0) = 1.

Since we can caculate factorial (n) using iteration
(F=1.FORI=2TON:F=F*N:NEXT I), we could do
with a better example of the power of recursion. Con-
sider the game THE TOWER OF HANOI (or The
Trilogic Game to old Doctor Who fans). Given 3 poles
with no disks of ascending size (biggest at the bottom)
dipped over pole 1, move them to pole 3, moving only 1
at atime, and at no time having alarger disk on top of a
smaller (pole 2 can be used as an intermediate one). A
formula for the number of moves is not hard to find, 2
disks-3 moves, 3 disks-7 moves, 4 disks-15 moves,
but a BASIC program not using recursion is rather dif-
ficult to write and is rather difficult to follow. Consider
instead the recursive procedure written in Pascal:

procedure move (numberofdisks,from,on-
to,via integer)\
begin if numberofdisks 1 then writeln (‘(Move disk
from', from, 'to',onto)
else begin move (numberofdisks-1,from,via,onto);
writeln (‘Move disk from,'from,'to’, onto);

—

Liverpool Software Gazette March 1980

The Petsoft Gold Cassette..
.. presented to Oliver Bulmer,
author of "Mailing List"

Developed by ACT, Britain's leading computing group, to run on a
32K PET with Anadex or Datac BD80 printers. Commodore Disk
versions available price £115.

These systems provide full facilities for ledger maintenance,
preparation of lists of outstanding balances, printing of
statements and remittance advices. Full audit trail Send for
details.

Disk Payroll £50 for up to 200 employees

Disk Stock Control £50 handling 2,500
'stock items (Petsoft/CompuThink Disk) or
400 stock items (Commaodore Disk)

AND

We celebrated by slashing
Ledger systems prices by over 60%:

SALES one W |
Mailing List £15 VAT Pack £17.50 Microchess £14

LEDGER two Word Processor £25 Invoicing £20 Super Startrek £8
PURCHASE £95 PET BASIC Tutorial £15 Forth £30 Eliza Doctor £8

Assembler/Editor £25 Statistics £7 Backgammon 8
LEDGER

— Prices exclude VAT. Credit card orders accepted by
telephone. All programs available through your

PET s the trademark @fGommatiore (\fe [g local PET dealer or direct from: %2
r etS O Radclyffe House 66-68 Hagley Road Edgbaston Birmingham
iy 3 B16 8PFTelephone 021-455 8585 Telex 339396

All prices correct at the time of going to Press

, I

Please Mynameis |

rush me your latest catalogue | live at |
of over 170 PET programs

Postcode |

1 haveanew/old ROM PET [haveNOPET '

10

Liverpool Software Gazette March 1980

move (numberofdisks-1,via,onto,from)
end

End

What the procedure says is that to move 5 disks from
pole 1 to pole 3 wefirstly move 4 disks to pole 2 (via),
move the remaining disk on 1 (from) to 3 (onto), then
move the 4 diskson 2 (via) to 3 (onto) using 1 (from) as
the intermediary. Thus the procedure reduces a problem
to adlightly easier version of itself. Eventually the task
will be to move 1 disk, in which case the procedure can
handle that itself without calling on itself with aslightly
eader problem.

All recursion must exhibit these two main features, a
cal to asmpler version of itself and a section which does
not include a cal to itself. If the second part is missing
the recursive process will never end. In our example the
number of disksbeing movedis 1 lesseach timearecur-
sve cdl is made, so that eventually (assuming num-
berofdisks to be positive) a call will be made to move
which does not result in a recursive call.

There is nothing magical about recursion, and it can
be performed in BASIC, but we need to explicitly write
some of the housekeeping routineswhich are performed
automatically insystemssupporting recursion. Themain
task is to make sure that the recursive call does not
destroy any values which will be needed upon return
fromthecall, and the natural mechanismfor doingthisis
astack, which we simulate in BASIC with an array (of
reals, integers and/or strings, depending on what type of
variables we need to save) and a pointer to that array.
This pointer isincremented by 1 (or as many spaces as
we need) upon entry to the routine and the save vari-
ables put into the space allocated. Upon exit from the
subroutine the pointer is decremented and the saved
variables (or rather their values) restored.

Theselection of subroutines(listing 7) exhibitindirect
recursion, where routine A calls B which calls A. Their
purpose is to convert an expression written in standard
algebraic notation into Reverse Polish notation (familiar
to users of HP, Novus and the early Scientific cal-
culators). In R. P. notation A + B becomes AB +
(A+B)*(C-D) becomes AB+CD-* and A +B*C
becomes ABC* + (assuming normal precedence). The
main use for R. P. isthat the evaluation of an expression
is very easy, and is performed in the following way:

1) start at the left most character of the expression, set
SP=0

2) get the next character. If it isthe end-of-line marker
exit

3) ifitisavariable put the value associated with it into
the array RE at element SP and increment SP by 1

4) if it is an operator perform that operation on the top
operands in array RE (i.e. RE(SP-2)operatorRE
(SPE)I),)put the result in RE (SP-2) and decrement
SPby 1

5) moveto the next character in the expression and goto
step 2

upon exit the result of the expression will be in RE(0).

If SP doesn't equal 1 then there was an error in the

origina expression.

Compilers (and probably interpreters) convert the
algebraic form of an expression into R. P. (interpreters
implicitly generatetheresult at the sametimeasconvert-
ingit), andtheroutinesare presented asan aidtowriting
a calculator package, or perhaps adding calculator
facilities to a PILOT interpreter.

We describe the syntax of the expressions the routines
will convert by using syntax diagrams, which are mostly
commonly used to describe the syntax of Pascal, but
which will display very neatly the relationship between
the syntax of the expressions and the routines which
convert to R. P.

Atthemomentwewill only maketheroutinesconvert
simple expressions, that is only expressions involving
single letter variables (A . .Z) and the 4 operators *, /,
+ and -, together with (and) for altering precedence,
intoR. P.. Thegeneral principleisthat onentry tooneof
the routines we have in CH$ the first character of the
stringwhichitistotranslate. Thusistheinputis(A = B)
on calling the routine at 2000 CH$=")". From the
syntax diagramsthefirst component of an expressionisa
term, so we call subroutine 3000.

Sinceaterm consists of afactor thefirst job of 3000is
to call 4000 which then checksfor the presenceof a"(".
If there is one then factor knows that it is being called
upon to evaluate an expression, which it does by calling
the expression subroutine, 4000, after first finding the
first character of the expression by calling 1000. The
structure of the routines modelsvery closely that of the
syntax diagrams, and it will be noticed that the only
places where a stack is needed to hold the value of a
variable is where there are two or more possible entry
points to a recursive call, e.qg. in the expression sub-
routine, where if the first term has been dealt with and
either + or - has been met, in which case whichever it
was must be remembered so that on return the relevant
operator may be added to the end of the R. P. expres-
sion. Since every element to be dealt with is a single
character we are stacking them by concatenating the
character on to the end of a string and on return remov-
ing the character from the string.

One possible problem with recursion, especially with
the PET and all 6502 based machinesisthat BASIC uses
the stack internal to the 6502 to store return addresses,
and since the 6502 stack is limited to 256 bytes this
places alimit on the number of recursive calls that can be
made. A smple program:

ION=0
20N=N +1: GOSUB 20

reveals that when the out of memory error occurs
N = 26. If the out of memory error occurs when a PRINT
FRE (0) reveals many bytes free then thisis usually the
problem, GOSUBSs using up the entire stack space avail-
able. FOR loops aso use up stack space so in certain
programs less than 26 levels of subroutines can cause the
error. For a particular application the only real way to
find out whether an application can work isto try it. The
Tiny Pascal compiler mentioned in the first issue runs

Liverpool Software Gazette March 1980

, THE PET USERS MAGAZINE, hits the streets 10times a year

bringing you the very latest news, reviews and pictures of PET products and software,
plus programming tips and listings in a glossy professionally produced format.

Already PRINTOUT'S worldwide network of
correspondents have broken exclusive
stories on the next generation of PET com-
puters and peripherals currently under
development

In the past four issues PRINTOUT

* Consumer tested and reported on over
one hundred games programs

* Looked at a low cost speech synthesis

system and reported on Commodore's

upcoming voice synthesiser

Evaluated the pros and cons of both

Commodore and CompuThink disk

systems

* Carried an exclusive report on Com-

modore's new colour PET

Printed detailed stories on PET applica-

*

*

*

*

*

*

tions in Education, Model Railways and
Public Relations

Test rated programming aids and utilities
Evaluated Word Processors for the PET
Published a full length article on Modular
Programming and complete listing of the
MPAK program

Examined the workings of PET's key-
board and video logic

Printed excerpts from two authoritative
new books-The Hitchhikers Guide to the
PETand PET Revealed 2nd edition

Published complete program listing and
documentation for high density plotting on
the PET

Surveyed Business software packages
Reported on input routines for the PET

COMING SOON

* Which Printer? Consumer report
String Handling

The Ultimate Assembler

Hard disk systems-The Pros and Cons
Micro Networking-The Good News
Are you ready for Stringy Floppy?
Human Engineering for your programs

* % % %

*

PRINTOUT, a single source for what you
need to know about PET computing
Because we are independent, we can bring
you the news first, honestly and without bias
Already PRINTOUT is quoted and reprinted
in the other magazines as the authority on
PET matters J*_ PET n

is
irademark of Commodore

11

SUBSCRIBETO: PRINTOUT

PRINTOUT, Greenacre House, North Street, Theale, Berkshire RG7 SEX
Please enter my subscription for one year (10 issues)

| enclose £950 U K £10 50 Eire £14 50 Overseas 95p Sample Issue

My name is

My address is

Postcode

PET Configuration

12

Liverpool Software Gazette March 1980

without encountering this problem so most applications

should have no trouble.

NOTES: There is no error checking, but this could be
added, eg. testing that CH$ = ")" in line 4010 after
GOSUB 2000. If the input routine 1000 were
replaced by calls to the scanner of the last issue then
multiple character variables could be coped with,
together with : = ,<>, > = etc. The basic idea for
these routines comes from the Pascal User Manual
and Report, page 73 . .75.

Timeout in INPUT

One possible use of the line input routine listed in last
issue, lines 50100 to 50220, is to return to the calling
routine with a variable set if the user does not reply
within a certain time. This could be especially useful for
computer aided instruction packages where if the user of
the package does not reply to an answer within acertain
time the program is able to recognise this and perhaps
provide aprompt or hint. Should all the hints have been
provided the program could then give the answer and an
explanation of how this was arrived at. The length of
timeallowed could be made afunction of the hardness of
the problem. Even on simple business programs the
timing out could be considered to indicate that the user

VARIABLE

does not know how to respond to the question and
results in an explanation of what input is required.

The changes are only small, and are summarised
below:

50110 L$="":TS=TI : TT=0: REM LINE ISINITIALLY
NULL, TSISTIMEON ENTRY, TT=0 INDICATES
NO TIMEOUT.

50120 POKE 167,0: GETKY$: IF (KY $<>"") THEN
50130

50122 IF (TI-TS)> TC) THEN TT=| :RETURN: REM TT=-1
INDICATES TIMEQUT.

50124 GOTO 50120:REMTCISTHE LENGTH OF TIME
ALLOWED FOR RESPONSE IN JIFFIES.

Ifonreturn TT =-1 then atimeout hasoccurred (note
that thiscan betested by simply IFTT THEN ...). If the
timeout isto beignoredif the user hastyped anything at
al then the condition in 50122 should become ((TI-
TS > TC)AND (L$="").

| can be reached at the following address:

6 College Ave., Formby, Merseyside. L37 3JJ.

For telephoning during working hours please try 051
236 0598.

letter

FACTOR

lvariablg

— ~smple |
K L) * expresson

v

TERM
factor hut
Fa.('tof‘
SIMPLE
EXPRESSION o
‘ter‘m >
+ -
term

Liverpool Software Gazette March 1980 ‘
O R

LISTING 1

1000 REM search FOR KEY IN FILE<NE>.
1010 FOR I=1 TO NE
1020 IF (FILE<I)=KEY> THEN IN=I:I=NE:NEXT I:GOTO 1040: REM FOUND.
1030 NEXT TI:IN=0:REM NOT FOUND.
1040 RETURN
READY.

LISTING?3

1000 REM search FOR KEY IN FILE<NE>.
1010 IN=0:FOR I=1 TO NE

1020 IF (FILE()=KEY) THEN IN=L:I=NE
1030 NEXT I:RETURN:REM IN=0=>NOT FOUND.
READY.

LISTINGSII

1000 REM search FOR KEY IN FILE(NE).

1010 IN=0:1=1

1020 IF (FILE()=KEY) THEN IN=I:GOTO 1940
1930 | =1+1: IF (I<=NE) THEN 1920

1040 RETURN

READY.

LISTING3II

1900 REM SEARCH FOR KEY IN FILE<NE>.
1010 IN=NE:FILE (0)=KEY
1920 IF (FILE(IN)<>KEY) THEN IN=IN-1:GOTO 1020
1030 RETURN
READY .

LISTING 4

19 NC=14:FC$="":FOR I =1 TO NC : READ CD$:FCS$=FC$+CDS :NEXT I
29 DATA BP,BR,CE,FI,FO,HE, IN,LS,NF,PL,RM,SP,TI,UL:REM SET UP COMMAND STRING.
39 INPUT -OMMAND»1.1»r"; KEYS

49 GOSUB 1000:IF (IN=0) THEN PRINT "-RROR-: COMMAND NOT RECOGNISED.":PRINT:GOTO
30

59 PRINT "-OMMAND NUMBER"; IN° PRINT' GOTO 30 A

1000 REM SEARCH FOR 2 LETTER COMMAND KEY$ IN FC$. SINCE COMMANDS ORDERED COULD COULD
1919 REM USE BINARY SEARCH, SEE LISTING 5.
1020 1IN=0

1030 FOR CN=1 TO NC
1040 IF (MIDS (FCS,CN*2-1,2)=KEYS$) THEN IN=CN:CN=NC
1050 NEXT CN: RETURN

READY.

LISTING 5

1000 REM BINARY SEARCH FOR KEY IN FILE (NE), ASSUMES SORTED.

1010 IN=0:LEFT=1 :RIGHT=NE:REM FIRST SECTION TO SEARCH IS ENTIRE ARRAY.
1020 IF (LEFT>RIGHT> THEN 1979 REM NOT FOUND.

1030 MIDDLE=INT ((LEFT+RIGHT)/2):TRY=FILE (MIDDLE)

1040 IF <KEY=TRY> THEN IN=MIDDLE:GOTO 1070

1050 IF <KEY<TRY> THEN RIGHT=MIDDLE-1:GOTO 1020

1060 LEFT=MIDDLE+1:GOTO 1020

1070 RETURN
READY .

14 , Liverpool Software Gazette March 1980

L . R N —————
LISTIHG &

- 18 R=3:M=3'REM SET SEED AWD FAMGE OF HUMBERS WAHTED.
20 FOR I=8 TO (Z2M-1
38 GOSUER 1960 :FRINT FM.
48 MEXT I:PRIWNT:FPRIMT:GOTO 26
1666 REM GEMERATE HEXT RAHDOM HUMEER IM RH.
1818 E=FR#5: REEM STEF 2.
1020 R=JRIAMDCITIM+20-10 REM ZTEF 3.
1636 EN=IHT(R- 4 REM STEF 4,
1ede . FETURM L
READY.

LIESTIHG a

16 POKE S5458, 14 PRINT "T-OMVERSION T0 EVERSE LIS PRINT FRINT
26 GOSUE 5808 FEM READ IH EXFF

30 GOSUE 10G0:REM FIND FIRST Ok

45 L,Ff—ll":'E;—" ll:"'rf-ll ; -
S8 REM EXPRESSIOHM,

£8 PRINT OF$:IF (CHECH". ") THEW 29
7@ EMD

1866 REM GET HEXT HOM-SFACE.
18918 CP=CP+1 IF i {
1628 CHE=MID$LIFE. CF, 1)
1836 RETURN:REM MITH CH

"FIIB
92‘.1 Ir (o)
B30 SE$=SES+CHE

ﬁEf’ -1

GOTO Zaze
FETURM :REM £
1 FEH TEPH

9 GOTO 2026
3 RETLIRHN
REM FACTOR.
IF (CH#E="(")» THEW GOSUER 18065 GOSUR ZEE6H:GOTO
¢P$~HP$+1H$:F:M HOT © S0 -
GOSUER 14060 RET CREM 'HHLD E ;
IHPUT "THFRE: lllllP'IFf IFg= IFI*’*"'_
18 REM COMCATEMATIMNG IFE WITH ¥+ I3 MEEDEL S0

Liverpool Software Gazette March 1980

15

Reach thepeoplewho matter
withthe
LIVERPOOL SOFTWARE GAZETTE

The microcomputer magazinethatis

POPULAR?
J
N -~ STRANGE?

Ay
Y474

Aninformal poll of our readership (3 samples) showed that
they were well educated, normal, responsible people who
buy things.

It therefore obviously paysto advertise. ..

Ridiculously reasonable rates high quality editorial and
production standards make us unbeatable media in which to
advertise your product, however mythical it may be. Advertise
that Z-8000 board here, the £325 1200 CPS impact Printer, or
Hard Disk sub-systemfor SC/MP.

Notes

Full page g17.5 cmx24cm). ... £180.00

Half Page Upright85cmx24cm). £95.00
Landscape 175 cm x 11.75 cm).... £95.00

Quarter Page (85cmx 11.75cm). £52.00

Agency discount 10%

Copy Date for the May issueis April 18
Copy Date for the July issue is June 20

14 Castle Street
ALL ADVERTISERS RECEIVE 50)
COPIES OF THE ISSUE THEY Liverpool L2 OTA
ADVERTISE IN, FREE OF CHARGE Tel: 051-227 2535/6/7/8

16

NASCOM |
NOTES

AT the present moment Nascom are gtill supplying Nas-
com 2's with free 16K R.A.M. Kits. This has caused
some problems. Firgtly, as mentioned in Nascom Notes
last time, the recommended postion for the four
EPROM'S in the Memory Map wasFOOO to FFFF. This
was to fit in with Tiny Basc and Super Tiny Basic.
But on aNascom 2 the 8K Basic liesfrom EOOOH to
FFFFH. There is a one line note somewhere in the
Nascom 2 documentation telling you to relocate the
EPROMS a DOOOH to DFFF but I'm il getting Nas-
com's back because due to this error they won't run 8K
Basic (obvioudy from foolswho don't buy the Gazette)!
The second problem is that the two memory test prog-
rams in the back of the memory board construction
notes were written to run under Nasbug T2 or T4. They
cdl three monitor subroutines as part of the error
routine. The addresses of these must be changed to run
under Nas-Sys 1. Re-assembled versons of the two

0010

0020 *
0030 "
0040 *
0050 *
0060 "
0070 "
0080 "
0090 "
0100 ¥
o110 *
0120 *
0130 *
0140 "

ook ok kX o X g F 3 ¥ ok g

Liverpool Software Gazette March 1980

pr?\?rams are shown below.

B. If you have a pefect RAM Board (some
chance!) and have run these programs you probably
won't have had any problems, snce thewrong addresses
only occur in the error routine, which is never called if
there are no RAM faults!

Incidentally the programs were listed on one of the
New Nascome Imp Printers (our specimen was a hit
drunk at thetime!) Talking of which, if youtry torunan
IMP off aNascom 1 you will runinto problems by just
following the stepsinthe manua (. ol' Nascom). It's
al very well feeding the external UART clock from the
printer into the Nascom 1's external clock pin, but it
wont go anywhere unless the on board UART clock
sect link is changed to external! Since it needs to be
changed back to internal for reading cassettesit might be
aswdl tofita SPOT switchinstead of alink. (Try writing
to Nascom for one under Warranty)

KK 3 KK 3K 3K KOk 3K K XK A K KK K K AR R4k k% o ok KK K kK KK
MEMORY TEST PROGRAM FOR NASCOM.
THIS IS THE SAME PROGRAM AS
IN THE BACK OF THE CONSTRUCTION
NOTES,
CHANGED TO WORK WITH NAS-SYS 1.

BUT WITH SUBROUTINES

PROGRAM WRITTEN USING ZEAP AND
PRINTED USING NASCOM IMP PRINTER

ZEAP IS £30.06 PLUS VAT
IMP IS £325.00 PLUS VAT

DR LGP LT 7 T
“’?,,m’ i y Fiv)

el 3

0319

0306

0311

0DO00

ODO0O 0600
0D02 3E4F
0D04 32E00B
ODO7 2A0EOC
ODOA ED5B100C
ODOE 13
ODOF 7D
OD10 AC
OD11 A8
obD12 77
0D13 23
0D14 B7
0D15 ED52
oD17 19
0D18 20F5
OD1A 2AO0EOC

oD1D 7D
OD1E AC
OD1F A8
0D20 4F
oD21 7E
ob22 B9
0D23 C43CO0D
0D26 23
ob27 B7
0D28 ED52
OD2A 19
D528~ ~20F0

O R

) 1 " 4

l;*’)) !
4 Software Gazette March 1980
[0 0 T T T T R A R e e

0150 ; * MICRODIGITAL LTD

o160 ; * 25 BRUNSWICK STREET
0170 ; * LIVERPOOL L2 OPJ

0180 ; *

0190 ; = MIKE SHANAHAN 28/2/80
0200 : Fededededodo o Aot vhaiade shaabande abacdeabante adacde shoate sdande slole sloaticvkeate sieniscde st lloale s sbe sr
0210 ;

0220 ; TEST PROGRAM ONE
0230 ; TESTS IF EACH BYTE IS UNIQUELY
0240 ADDRESSABLE

0250 ; ‘
0260 B2HEX EQU £0319

0261 ;

0262 ; B2HEX PRINTS CONTENTS OF ACC.
0263 ; ASTWOHEXDIGITS.

0264 ;

0270 SPACE EQU £0306

0271 ;

0272 ; SPACE PRINTS A SPACE
0273 ;

0280 CRLF EQU £0311

0281 ;

0282 ; CRLF PRINTS A CARR. RETURN /
0283 ; LINE FEED

0284 ;

0290 ORG £0DO00

0300 TEST LD B,00

0310 LD AE4F

0320 LD (EOBEO),A

0330 LOOP LD HL,(EOCOE)

0340 LD DE,(E0C10)

0350 INC DE

0360 PUTIN LD AL

0370 XOR H

0380 XOR B

0390 , LD (HL),A

0400 . INC HL

0410 OR A

0420 SBC HL,DE

0430 ADD HL,DE

0440 JR NZ, PUTIN

0450 LD HL,(£0COE)

0460 RDBACK LD AL

0470 XOR H

0480 XOR B

0490 LD CA

0500 LD A,(HL)

0510 CP C

0520 CALL NZ, ERROR

0530 INC HL

0540 OR A

0550 SBC HL,DE

0560 ADD HL,DE

0570 JR NZ, RDBACK

18

' |

Liverpool Software Gazette March 1980

0b2D
0D30
0D32
0D35
0D37
0D38
0D39
OD3A

3AEO00B
EE40
32E00B
10D0O

EF

2A

00
18C4

0D3C
0D3D
OD3E
OD3F F5
0D40 7C
0D41CD 1903
ob44 7D
0D45 CD1903
0D48 CDO0603
obD4B 79
0D4C CD1903
OD4F CDO0603
0D52 F1
0D53 CD1903
0OD56 CD1103
OD59 010000
0OD5C 0B
0oD5D 78
ODS5E BI
OD5F 20FB
0D61 C1
0D62 D1

0D63 EI
oD64 C9

ES
D5
C5

0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700

0710

0720

0730
0740
0750
0760
0770
078(3
0790
0800

0810

0820
0830
0840
0850
0860
0870
0880

0890
0900
0910

0920
0930
0940

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140

LD
XOR
LD
DJINZ
RST

DEFM

DEFB
JR

; ERROR

? THE FORMAT

; ADDRESS

ERROR PUSH
PUSH
PUSH
PUSH
LD
CALL
LD
CALL
CALL
LD
CALL
CALL
POP
CALL
CALL
LD
DEC
LD
OR
JR
POP
POP
POP
RET

WAIT

A, (£0BEO)
£40
(£0BEO), A
LOOP
£28
1/
£00
TEST

PRINTOUT

IS -

EXPECTED FOUND

HL

DE

BC

AF
AH
B2HEX
AL
B2HEX
SPACE
AC
B2HEX
SPACE
AF
B2HEX
CRLF
BC,00
BC
AB

C

NZ WAIT
BC

DE

HL

S EEE T NEMORY T TEST PROGRAM ™ FOR™ "NA3COM:™

P * THIS IS THE SAME PROGRAM AS

;¥ IN THE BACK OF THE CONSTRUCTION 7 ION
;x NOTES BUT WITH SUBROUTINES

;* CHANGED TO WORK WITH NAS-SYS 1.

3 PROGRAM WRITTEN USING ZEAP AND

o ZEAP
* IMP

* PRINTED USING NASCOM

IMP PRINTER

IS £30.00 PLUS VAT
IS £325.00 PLUS VAT

Liverpool Software Gazette March 1980 19

- L]

0150 ; * MICRODIGITAL. LTD
0160 ; * 25 BRUNSWICK STREET
0170 ; * LIVERPOOL. L2 OPJ
0180 ; *
o190 ; * MIKE SHANAHAN 28/2/80
0200 ; AEAIAAIAIAAAIAAAIAIAAIAIAAAIAAAIAIAAAIAAIAIAIAAAdAK
0210 ;
0220 5 TEST PROGRAM TWO
0230 ; TESTS IF EACH BIT CAN BE SET
0240 5 AND RESET
0250 ;

0319 0260 B2HEX EQU £0319
0261 2
0262 ; B2HEX PRINTS CONTENTS OF ACC,,
0263 ; AS TWO HEX DIGITS.
0264 ;

0306 0270 SPACE EQU £0306
0271 ;
0272 ? SPACE PRINTS A SPACE
0273 ;

0311 0280 CRLF EQU £0311
0281 ;
0282 ; CRLF PRINTS A CARR.. RETURN /
0283 2 LINE FEED
0284 ;

0DO0O0 0290 ORG £0D00

0DOO OEO0O0 0300 MTEST 1D C, 00

0D02 2A0EO0C 0310 OUTER LD HL, (£0COE)

0DO5 ED5B100C 0320 I.D DE, (£0C10)

0D09 13 0330 INC DE

ODOA 79 0340 INNER ID A,C

ODOB 77 0350 LD (HL) ,A

0DOC 46 0360 ID B, (HL)

ODOD B8 0370 CcP B

ODOE C4220D 0380 CALL NZ, ERROR

0D11 23 0390 INC HL

oD12 B7 0400 OR A

0D13 ED52 0410 SBC HL,DE

0D15 19 0420 ADD HL,DE

0D16 20F2 0430 JR NZ, INNER

0oD18 oC 0440 INC C

0D19 79 0450 ID A, C

OD1AB7 0460 OR A

OD1B 20E5 0470 JR NZ, OUTER

OD1DEF 0480 RST £28

O0D1E 2A 0490 DEFM /*/

OD1F 00 0500 DEFB 00

0D20 18EO 0510 JR OUTER
0520 ;
0530 ; ERROR PRINTOUT

0540 ; THE FORMAT IS :-
0550 ; ADDRESS EXPECTED FOUND

20 Liverpool Software Gazette March 1930

0560 ;
0D22 ES5 0570 ERROR PUSH HL
0D23 D5 0580 PUSH DE
0D24 C5 0590 PUSH BC
0D25 7C 0600 ID A,H
0D26 CD1903 0610 CALL B2HEX
0D29 7D 0620 ID A,L
OD2A CD 1903 0630 CALL B2HEX
0D2D CD 0603 0640 CALL SPACE
0D30 79 0650 ID A,C
0D31 CD 1903 0660 CALL B2HEX
0D34 CDO603 0670 CALL SPACE
0D37 78 0680 ID a,B
0D38 CD 1903 0690 CALL B2HEX
OD3B CD 1103 0700 CALL CRLF
OD3E 01 0000 0710 LD BC,00
0D41 OB 0720 WAIT DEC BC
0D42 78 0730 ID A,B
0D43 Bl 0740 OR C
0D44 20FB 0750 JR NZ,WAIT
oD46 C1 0760 POP BC
0D47 D1 0770 POP- DpE
0D48 El 0780 POP HL
0D49 C9 0790 RET

You've heard about it
Read about it — HERE IT IS

AVAILABLE EX-STOCK 4k~ %X
COMPLETE KIT AS PER AANY«* CU
MANUFACTURER'S SPECIFICATION ~. OV Cy

CRYSTAL ELECTRONICS
CC ELECTRONICS

The newest Z80 Basic!

XT A L B aS i C 2 - 2 With provision for 8K on board expansion.Excludes 4118*8* "k
e, %

INCLUDES FREE 16K EXPANSION "‘ @

HAS to be the best yet for your Nascom 1or 2 VALUE £140 includes ALL parts with every kit /(4 ~

AI" the usual features é)f/(f)ther 8K floatigg-point BéSIC; NASCOM-2 Wil Ze
Plus: Extra commands/functions- INCH, KBD, CMD - £05 VAT FReF 7,
ON ERR GOTO, ERR, PI, CLOAD? (tape verify) ﬁ ON DEMONSTRATION NOW | 16K EXPANSION WORTH £140 "'q.?b

And Add up to 64 reserved words of your

Choosing —Now put your own disc, tape, ControL AVAILABLE ONLY FROM US ON THE COUPON BELOW

1giraph_i_cs commands, etc for the ULTIMATE in BASIC OPTIONAL EXTRAS S OFF 4118

exibility! Fully upward compatible with version 2.1 3 AMP POWER For NASCOM-2

(see earlier Ads). Can be easily adapted to most Z80 SUPPLY VAT 15% PLR Chaser*

systems. Wo.rk_s with TZ, B-BUG, T4 and NAS-SYS £2950 Post £1- 50 £8P EDEgIIK/er

mpnltolrs. Ex(llstlng ver5|0|r)1 2:1h ugers—RetLérn yoqlrI For NASCOM-2 Y

original tape (less manual) with 50p P& P and we wi

update it FREE of charge! RS232 COMPATIBLE Our PRICE

- Price: still only £35 + VAT! 80 COLUMN PRINTER brand new £395 + VAT
CREED PRINTER INTERFACE List price £550 |If sent by carrier £5 extra 15%

For NASCOM or APPLE-lowest cost hard copy! MANUFACTURER'S WARRANTY DONT DELAY. ORDER TODAY _

Complete kit of parts (with software) £18 + VAT " Please send me my NASCOM-2 KIT with the FREE 16K EXPANSION®
16 CHANNEL RELAY BOARD for £295 + VAT.

Now in stock for NASCOM 1/2. For £49.95 + VAT I enclose remittance to cover

Sixteen switched (isolated) channels for many control Name & Address

applications. This kit will greatly increase the flexibili
oPgour NASCOM. 9 Y v

Members of Computer Retailers Association & Apple Dealers Association Also in stock NASCOM-1 - ELF - TRS80 as previously advertised

w
Shop open 0930-1730 except Wed. & Sun. ”m‘”s
40 Magdalene Road, Torquay, Devon, England. Tel 080322699 l MI
B twath \...*I \

e |
Computer Kit Division \

Access and Barclaycard welcome. 5 B m 404 Edgware Road, London, W2, England
01-4026822

Liverpool Software Gazette March 1980 21

Re-locate your editor

22 Liverpool Software Gazette March 188

IN last issues Apple Pips we omitted to give the address For those of you who have been victims of the Apples
of Owl Computers who are responsible for LISP on the reset key there is the heartening news that all new
Apple I1I. Apples now being imported into the U.K. have a sepas
For those who are interested in this package here is rate'Encoder’ board directly underneath the keyboard
the address:- This Encoder Board has a 2 position switch, in on
Owl Computers, position the reset functions normally and in the other
41 Stortford Hall Park, position control reset isrequired to get any action.

Bishops Stortford,
Hertfordshire,

CM23 5AJ.
->SYNTAX ERROR

LIST
20 REM ** DATE VET PROGRAM **
25 REM ** o
20 REM ** BY G JONES "

40 REM *kkkkkhhkhhkkhhkhhhhhkrhkhhhs
50 DIM A(1l2) REM A= MONTHS AS NUMBERS

60 DATA 31, 28, 31, 30, 31, 30, 31, 31 , 20, 21, 20, 21 REM NO OF DAYS PER MONTH

70 FOR I = 1 TO 12 READ A(I) NEXT I REM SET UP MONTH ARRAY

100 HOME VTAB 10 INPUT "WHAT IS TODAY'S DATE(DD/MM/yvY; @, x*+ |F LEN (x$) <> > 8 THEN 100
110 REM INPUT DATE AS 8 CHARACTER STRING

115 A(2) = 28

120 DD% = VAL (LEFT$ (X$, 2)) REM DAY VALUE

120 MM% ValL (MID$ (X$, 4,)) REM MONTH VALUE

140 YY% = VAL (RIGHTS$ (X$, 2)) REM YEAR VALUE

150 IF YY% < 80 THEN 100 REM CHECK YEAR >= 80

160 IF MM% < 1 OR MM% > 12 THEN 100 REM CHECK MONTH

170 FOR I = 0 TO 99 STEP 4

172 IF I = YY% THEN A(2) = 29

174 NEXT I

176 REM ALLOW FOR LEAP YEAR

180 IF DD% < 1 OR DD% > A(MM%) THEN 180 REM CHECK DAY FOR MONTH
200 VTAB 20 PRINT "DATE OK " END

FROM APPLE MAGAZINE NUMBER 3 they grow. Plant growth will be recorded with a vid-
The Apple 11 will have the responsibility for one of €otapecameraandother pertinentinformation, sucha
many experiments aboard the 15 x 60 foot NASA Space temperature and illumination, will be transmitted back
Lab. It will monitor a plant-growing experiment, from to scientists on earth. Each phase of the experiment will
which NASA hopes to piece together a scientific puzzle be controlled and monitored by the Apple I1. The over
determining what effect gravity has on the mysterious riding goal is to sharpen up on our experimental techni

'Helical' spiraling patch followed by plant seedlingsas ques in space.

Liverpool Software Gazette March 1980

2

UCLA Counts Sheep—
For Mom's Sake

Researchersare hooking up expectant mothersto an
Appleandkeepingthemtherefor 30 daysatthe UCLA
‘University of California, Los Angeles) Medical School.

Soundsinhuman? It is. The mothers are sheep, not
humans, and the purpose of the experiments, is to find
out more about the role of the endocin system in the
birth process.

The computer setup—which goes under the unwieldy
name of Biophysical Variable Signal Processing
System—assistsin the monitoring of variousprocessesin
both the foetus and the mother, according to Dr. Kitch
Wilson, a faculty member in the Department of
Paediatrics and the father of the computer system.
Transducers, hesaid, are implanted in the foetusandin
the mother's uterus and blood veins to monitor every-
thing from blood and inter-utherine pressureto oxygen
and blood flow.

The sensors are attached to a black box that converts
pressure readings into electrical signals and finally into
digital numberswhich are analysed by the computer and
then stored on a disk and used later in correlatum
analyses. Various experiments are performed before
and during labour, while the sensors continue their
monitoring function.

The final correlation analyses will be done by alarger
minicomputer, butthe Applell doesall thesignal pro-
cessing and the real -time acquisition and dataanalysis. It
does it especially well. Wilson said, because it's inter-
ruptable.

‘It'slike having two computers. First, it does monitor-
ing and housekeeping chores; then, every 10 mil-
lisecondsit'sinterrupted and goesdownintotheassem-
bly language program where the input is processed.
Whenthat'sfinishedit goesback tothe BASI C program
of monitoring.'

General Telephone of Pennsylvania—has come up
with a solution to the problem of testing lines frequently
enough a a reasonable cogt. It uses an Apple Il in a
system developed by one of its employees, Ed Didion.
Didion has programmed the Apple to test each of the
company's 2000 trunks and produce a printout telling
what the expected volume was on each, what the actua
level was, the percentage of trunksthat passed and failed
the standard volume, and what the projected failure
time is. This enables them to better plan their mainte-
nance schedules.

from The Apple Shoppe No 4.

APPLEKEYPAD

Advanced Business Technology has announced the
Keypad; a 13 key keypad for the Apple computer. The
keypad is in a molded plastic case matching the Apple
case, and includes'.',"-', and 'return' keysin addition to
the 10 key numerics. The pad interfaces with the normal
Apple keypad in piggy-back fashion and costs $125.00.
It is being distributed to Apple deders in Southern
California by the Apple distributor OB-1, and should be
available at your local Apple dedler.

APPLE AND THE VIDEO DISK

Utah State University has combined the Apple com-
puter with the new video disk to create the ultimate
teaching machine. Each side of the disk stores 54,000
screens of information. The information is retrieved
using laser technology and any frame may be randomly
accessed in 2.5 seconds. A full search of the disk takes
only 5 seconds. A single side of the disk will thushold the
equivalent of 7.5 million bytes of storage. The
December issue of Interface Age has an excdlent article
on this new technology, which eventually will
revolutionize education if read/write capability can be
economically produced.

24

9
Liverpool Software Gazette March 198(#

THE AIM-65 has been around for some time now. It
was originaly designed by Rockwell as a system design
kit to allow engineers who were interested in using the
6502, which they were second-sourcing from MOS
Technology to gain some experience in programming
the microprocessor before designing their own systems.
Although it is approximately twice the cost of similar
design kits, it provides many additional facilities which
make it suitable for use by the sophisticated amateur, as
a home computer.

For abasic price of £265 (+ VAT) you obtain amain
printed circuit board, containing the microprocessor, 1K
of RAM, a 4K monitor in ROM a twenty character
display, various 1/0 controllersfrom the 6502 range, and
a little thermal printer. Input can be from a full ASCII
keyboard supplied with the AIM-65, or from a 20 ma,
current loop teletype connected to the peripheral port.
As can be expected from a component manufacturer, a
full set of 6502 manuals together with a complete circuit
diagram, a very comprehensive User Manual and an
Assembler Ligting of the Monitor are adso included.
Sockets are provided to expand the RAM to 4K, and to
ingal another three 4K x 8 ROMs, which can be used
either for additional software provided by Rockwell, or,
by the user's own PROMSs.

Fecilities are available for connecting up to two tape
recorders for the storage of programs and data through
the periphera connector at the rear of the main board.
Software is included in the monitor to load and store
programs and data on the cassette tapes, and to turn the
recorders on and off if the remote control leads are
connected correctly. Should further memory, or 1/0 be
required, it can be connected to the expansion connec-
tor, aso at the rear of the computer. Rockwell have, very
sensibly, made the peripheral and expansion connectors
compatible with two other 6502 based single-board mic-
rocomputer systems. This means that there are already a
wide range of expanson cards available which are, at
least, hardware compatible with the AIM-65. In addi-
tion Rockwel | have added afew interesting ones of their

Dr Martin D. Beer

ComputerLaboratory
University of Liverpool
P.O. Box147
LiverpoolL693BX.

own, notably a Bubble Memory board.

As can be expected with a 4K monitor, a full ASCII
keyboard, a built-in character display and a printer the
programming facilities available on the basc AIM-65
arevery extensive. Not only arethe standard features of
displaying and changing the contents of both registers
and memory locations and the execution of user prog-
rams fully supported, but there are aso a number of
other more unusual facilities. Breakpoint can be set at
desiredinstructions within the program. The breakpoint
facility can be turned on and off without clearing the
breakpoint settings.

Thisisavery useful facility sinceit is often necessary
to run the program through to check for correct opera-
tion before finaly clearing them. Separate ingtructions
are included to trace instruction codes, the register con-
tents, or the contents of the program counter. This is
very useful since, usually, trace output is routed to the
printer and the generation of unnecessary trace informa-
tion would waste a lot of paper.

As an additional debugging aid a single-step facility is
provided through a dide switch on the main computer
board. Software isincluded to read and write to cassette
tapesin both KIM 1 format, as used by the other single
board computers, and the AIM-65's own format which
gives a better transfer rate and is more reliable. Also
within the monitor are a mnemonic instruction input

+ mode and a disassembler.

These two instructions allow the user to input his
programs directly as assembler codes, and avoid the
necessity of hand-assembling programs. The disassem-
bler can be used to check the contents of program mem-
ory and output is in the same form as the instructions
were entered. Once developed user programs can be
caled, if desired, by pressing one of three extra keys on
the keyboard, provided jump addresses are provided in
certain memory locations. '

Not only have Rockwell provided this extensve
monitor, but they aso make certain software available
as extra ROM sets, which plug into the additional sock-

Liverpool Software Gazette March 1980

25

ets on the main computer board. At present two sets are
available, one of two ROMSs containing an 8K BASIC
interpreter, and the other consisting of one ROM con-
tains a two-pass Symbolic Assembler. Either one, or
both, of these ROM sets can be installed, since the
Assembler and the BASIC interpreter occupy different
memory aress.

The version of BASIC supported is that supplied by
MICROSOFT, and gives full floating point calculation
capability. It is similar in its essentids to the BASICs
available on such machines as the APPLE, TANDY
TRS 80 and PET. The small on-board random-access
capability is a little limiting, but 4K bytes should be
sufficient for the types of application that the AIM-65
would usually be used. It certainly cannot be recom-
mended that you try to run BASIC on a machine with
only 1K byte of RAM. A useful feature is that when
BASIC is entered, the interpreter asks the user what
memory areaisavailableforitsusefor programand data
storage.

The rest of memory is then available to the program-
mer to use for assembler subroutinesetc. A comprehen-
sive BASIC manual is provided when the ROMs are
purchased, which describes the facilities available.

Although the Symbolic Assembler is provided sepa-
rately, afairly extensive Text Editor is included in the
Monitor ROM. This is primarily a Line Editor, with
commands added to search for the nextoccurrenceof a
particular string, and replace it, if desired. The Editor
formsan integral part of the Assembler package, asitis
required to enter and maintain the source program
before it is assembled.

On entering the Text Editor for the first time the
memory area in which the source text is to be stored
must be defined. The program text can then be input
from the keyboard, cassette tape, the teletype paper
tape reader, or a user defined device. Once entered the
text can be manipulated using the Editor Commands.
Line numbers need not be stored within the text.

The pointer can be st to the top, or the bottom, line,
and it can then be moved up, or down, onelineat atime.
Lines can be added before the current line, or it can be
deleted. Filescan be merged, if necessary, by readingthe
file inwith the pointer set to the right point in the text.
Thecurrently activelinecanbedisplayed, orany desired
number of lines can be listed from the current pointer
position. Should the Editor be | eft for any reason it can
bere-entered without clearing the text buffer by using the
warm-entry command. I nthisway assembler programs
can be developed completely within the computer's
main memory.

Thetwostring orientated commandsallow the user to
searchforthenextoccurrenceof agivenstring,andeither
changeit, or simply makethat linethecurrent line. The
stringchangecommandhasaninterestingfacility inthat
when the Editor finds the next line containing the search
string it displaysit and waits for confirmation. If the line
is the one which requires changing the programmer
replies by pressing the 'return' key and the line is
changed. If itisnot thelinewhich requireschanging any
other key is pressed, and the Editor continues the

search, stopping at the next line in which the string
oCCurs.

This means that the whole text can be scanned for a
particular string with no fear of changing thewrong line.

The Symbolic Assembler is of conventional two-pass
operation. During the first pass a Symbol Table is built
up in which all the symbols used are stored, together
with their values. The Object Code and program listing
are produced during the second pass. The Assembler
uses the usual 6502 mnemonics and formatting conven-
tions and is initiated by using a special Monitor com-
mand. The Source Code can be taken directly from the
Text Editor buffer in memory, or from cassette tape,
having been saved there by the Editor. The Object Code
can be stored in memory, at the desired address, or may
be stored on cassette tape for later use.

If both the source of the program and the Object Code
are to be stored on cassette tape two recorders are
required. This is necessary for programs of any consid-
erable length, since there is not enough room to store
both the source and object codes in the 4K bytes of
memory available. The Assembler uses an area of Ran-
dom Access Memory as workspace, to hold the Symbol
Table, and again, this must be dlocated by the prog-
rammer before assembly begins. It must not conflict with
the source and object code buffers, if these are held in
memory. It isadvisable, therefore, to organise the mem-
ory allocation of all the workspaces required before
coding commences so that the most efficient use of
memory is achieved.

No Macro or Conditional Assembly facilities are pro-
vided, but these can hardly be expected on a machine of
this size. The arithmetic operations alowed on data
items in the Address Field of the instruction codes are
also very limited. Of the normal arithmetic and logicdl
operations only addition and subtraction are supported,
together with specia operators to select either the high,
or low byte of a sixteen-bit address.

| havenot, infact, foundthisareal l[imitation since, in
practice, the usual reason for using the other arithmetic
operatorsisto split addresses up into individual bytesfor
storage so that they can be used later for indirect jumps
etc. It would have been useful to have the logicd
operators AND, OR and NOT, but these can be simu-
lated with those provided. After all the Assembler
Source is not the place to engage in complicated arith-
metic computation. Numerical data can be entered in
Binary, Octal, Decima and Hexadecimal formats.

Rockwell have, very sensibly, included the Text
Editor and Assembler documentation in the AIM-65
User Manual. Not only isreference material includedin
this comprehensive manual, but there is dso consider-
able tutorial material both on the use of the facilities
provided on the AIM-65, and on 6502 programming in
general. There is aso an advanced tutorial on the use of
the 6522 Versdtile Interface Adaptor, a very useful
peripheral controller, which dso includes two timer cir-
cuits. Both the hardware and software are described in
detail in the reference sections.

| have used the AIM-65 both for the development of
6502 programs, and for the teaching of Assembler Prog-

26

Liverpool Software Gazette March 1980

ramming for some time now. Students appreciate the
two-pass Assembler in ROM, where it is aways avail-
able without the time-consuming necessity of loading it
in from cassette tape. They are introduced to the
Assembler in the first practical, and use it for all their
programs. There is little temptation to use either the
Mnemonic Instruction Entry facility, or to enter to prog-
ram as hexadecimal Object Code.

The Disassembler can be used to check that programs
have not been overwritten, without resorting to the
interﬁretation of hexadecima dumps. The printer is also
much appreciated since it allows the student to take a
listing of his program away with him to study before the
next practical sesson. For most student practical tape
recorders are unnecessary, since the programs written
are in general, very short.

Itisbetter to avoid the complexity of extra equipment
at what is usually an early stage in their microcomputer
programming career. They are, of course, essential for
advanced practicals and programming projects when
more complex programs are developed over an
extended period. The AIM-65 can be used successfully
to develop programsnot only for itself, but alsofor other

LISTING-1 N
ASSEMBLER
FROM=50G TI=3FF
IN=

LISTM
LIST-OUT=N

An Example
of an AIM-65
Assembler Listing

OBJ !

ASSEMBLEP
FROM=600 TOGEFF

IN=M
LIST Y
LIST-O0UT=;

GBI "N
PASS 1

FRZ

=

==0088

) t=fif-C
==610cC
4C0002 JMP €
==010F OUTFijT=|Ea7Hh

==010F CLP=fEB44

==010F
t=f200

==0200 F1

2044EB JSP CLP

R2FF ID" #£FF
==0205 LOOP

ES INX

BD1402 Lbfi MSGi. 'I
C9ZB CMP #'.

F006 BEG PET
207RE3 JSP OUTPUT
4C0502 JMP LOOP
==0213 PET

60 PTS

==0214 MSGI

554C BVTE ULCL M
ICRO'

204C BYTE " LflB.

END
EP.RQRS= 6000

TVTV<LX>

DA HFE

6502 based microcomputers, such as the PET, APPLE
or ACORN. The resulting Object Code must usually be
retyped into the target microcomputer, or PROM prog-
rammer, unlessasuitableteletypeinterfaceis available.

To be used as a personal or home computer the
AIM-65 really needs to be fitted into a box, with a
suitable power supply. Apart from protecting the
mechanica and electronic components from dust, dirt,
probing fingers etc. it makes the computer much more
manageable.

Although the cost of the compl ete package is compar-
able with that of a minimum configuration PET or
TRS-80 different facilities are offered. It would cost
several hundred pounds, for instance, to connect even
the cheapest printer to on of the other machines.

Also it is possible to connect a wide range of
peripheral devices directly to the AIM-65 through
either the peripheral, or the expansion connectors.
The AIM-65 can ds0 be used in conjunction with a
cheap controller-type single-board computer, such as
the ACORN to develop a number of useful projects
around the home.

TABLE 1
AIM 65 MONITOR COMMANDS

MAJOR FUNCTION ENTRY COMMANDS
(RESET) — Enter and Initialize Monitor

E — Enter and Initialize Editor

T — Re-enter Text Editor at Top of Text
N — Enter Assembler

5 — Enter and Initialize BASIC Interpreter
6 — Re-enter BASIC Interpreter

INSTRUCTION ENTRY AND DISASSEMBLY COM-

MANDS

| — Enter
Mode

K — Disassemble Memory

Mnemonic Instruction Entry

DISPLAY/ALTER REGISTER COMMANDS
— Alter Program Counter

— Alter Accumulator

— Alter X Register

— Alter Y Register

— Alter Processor Status

— Alter Stack Pointer

— Display Register Values

DISPLAY/ALTER MEMORY CONTENTS
M — Display Specified Memory Locations

SPACE — Display Next 4 Memory Locations
/ — Alter Current Memory Locations
LOAD/DUMP MEMORY COMMANDS

L — Load Object Code into Memory
D — Dump Memory

BREAKPOINT MANIPULATION COMMANDS
— Clear All Breakpoints
— Toggle Breakpoint Enable

— Set/Clear Breakpoint Address

— Display Breakpoint Addresses

Liverpool Software Gazette March 1980

EXECUTION/TRACE CONTROL COMMANDS

G — Start Execution of User's Program
Z — Toggle Instruction Trace Mode
\% — Toggle Register Trace Mode
H — Trace Program Counter History
CONTROL PERIPHERAL DEVICES

CTRL PRINT — Toggle Printer On/Off
PRINT — Print Display Contents
LF — Advance Printer Paper
1 _ Toggle Tape 1 Control On/Off
2 — Toggle Tape 2 Contral On/Off
3 — Tape Verify Block Checksum

TABLE 2

AIM 65 TEXT EDITOR COMMAND SUMMARY
ENTER AND EXIT EDITOR COMMANDS

E — Enter and Initialize Editor

Q — Exit the Text Editor and Return to
M onitor

LINE ORIENTED COMMANDS

R — Read Lines into Text Buffer from Input
Device

— Insart One Line of Text Ahead of Active
Line

K — Delete Current Line of Text

U — Move the Text Pointer Up One Line

T — Move the Text Pointer to the Top of the
Text

B — Move the Text Pointer to the Bottom of
the Text

L — List Lines of Text to Output Device

SPACE — Display the Active Line

STRING ORIENTED COMMANDS

F — Find a Character String

C — Change a Character String

Table 3

Asembler Psaudo Operations

= — Assigns the value of an operand containing no
forward references to either a symbol or the
location counter.

.BYTE — Assigns multiple ASCII srings or expres
sions to consecutive single byte memory loca-
tions in high-byte, low-byte order.

WORD — Assigns multiple expression operands to
consecutive memory locations in low-byte,
high-byte order.

.DBYTE — Asdgns multiple expression operands to
consecutive double byte (16 bits) memory loca-
tions.

.PAGE — Generates a title under a dashed line.

SKIP — Generates one blank line.

.OPT — Controls assembly listings. All are optional
and can be specified in any order or in separate
statements.

FILE — Last record in amultiplefile source program
(except the last file) which points to the con-
tinuation file.

.END — Lastrecordinasngleor multiple source file.

NOT AKIT
Works the day you buy it

JAPANESE

Thesamequality they have putintocarsand Hi-Fi

SINGLE UNIT

No trailing leads and wires

Moreregistersand instructionsthan other processors.

TAPEBASIC

You don't get left with obsolete ROMs.

TAPE COUNTER

Know whereyou areonthetape.

SOUND

Built-in music synthesiser with 3 octaves.

FASTLOADING

Cassetteinterface runs at 1200 bps.

Other features — 79 keyboard, up to 48K RAM, on screen
editing, real time clock, 256 different characters, 10 inch
video display 80 x 50 bit mapped graphics.

DISKDRIVEANDPRINTERCOMINGSOON
Memory after loading
14K Basic Nett VAT
6K 2800 800
10K 4 08
18K 200

22K 640.00
34K 74000

All pricesincludecourierdeliverywithinUK.
AccessandBarclaycardWelcome.

U
MICRODIGITAL

25 Brunswick Street, Liverpool L2 OBJ
Td: 051-236 0707 (24 hour Mail Order)
051-227 2535 (All other Depts
Mail ordersto MICRODIGITAL LIMITED
FREEPOST (No Stamp Required) Liverpool L2 2AB.

Liverpool Software Gazstte March 1980

Figure 1
Aim — 65 MEMORY MAP

PAGE @

STACK

RAM <

User

I/0 and
AIM - 65 RAM

Assembler
ROM

Monitor
ROM

$0¢0p
po19d
$0200

$3FFF

$A000

$AFFF

$Ddpd

§E000

$FFFF

FIGURE 2

A suggested Use of RAM on the AIM—65 when string the
2—Pass Assemblers

User Normally used for variable
Page 0 storage

%gDg

AIM—6S5 system space and
6502 stack space

0200

Space for

Program
under
Text

400

Editor
Text

800

Assembler
Symbol
Table

900

OFFF

Liverpool Software Gazette March 1980

PROGRAM

ENTRY

DATA

EDITOR

SOURCE
TEXT

ASSEMBLER

BINARY
CODE

BINARY

ASSEMBLER
LISTING

PROGRAM

FIGURE 3

ENTERING AND ASSEMBLING A PROGRAM

RESULTS

Liverpool Software Gazette March 19

write
Program

Y

Enter Program
using
EDITOR

T

| I -

ASSEMBLE
it

YES . ﬁ
find errors
and correct
Run using EDITOR
Program
Ran NO
Correctly
FIGURE 4

DEVELOPING AN ASSEMBLER PROGRAM

Liverpool Software Gazette March 1980

31

pave

@

IN computer graphics separate shapes are often used,
such asfor drawing spaceshipsin star-games. It isdesire-
able to be able to make the shape reduce or expand to
give the impression of travelling away from or towards
the V.D.U. Screen, (Fig. 1). This article describes the
theory of how to do just this. It assumes shapes are
drawn as successions of points upon the display device.

In order to scale ashape, adl points on that shape must
be moved towards or away from a given origin in an
equal ratio.

Hence shape ABCD in Fig. 2 reduces towards origin
O, and becomes A'B'CD' such that
X _
oX

where X isany point on ABCD and X' is the corres-
ponding point on A'B'CD'.

K isthe constant scaing factor such that: if K is less
than 1, then reduction occurs; if K isequal to 1 then no
gze change occurs; if K isgreater than 1 then expansion
OCCUrs.

Each point may be described asacartesian (x,y) value
from the origin, and the co-ordinates (x', y') of the
corresponding position are divided in the same ratio.

Thus, considering one point, P, in Fig. 3:

Kk =.OF X' -X.
OoP X y

gives the new co-ordinates as (Kx, Ky).

To avoid propagated errors, al scaling should be done
from the original shape. Thus the Nth position of P is
given by (KI x K2 x K3 x...xKn) Xx,
(KIxK2xK3x. . .xKn)y), whereKl| ,K2...Knaresuc-
cessve scaling factors. . .

With constant scaling factor, K, this position will be
(Knx,Kny)

End stops must be catered for i.e. when the shape
expands off the screen, or reduces to a point.

With expansion, the points will separate, and a line
will become a series of dots. This may be countered
either by drawing lines between adjacent points, or by

e

s

sirake’

ensuring that the scaling factor does not exceed 1.
Motion on the screen of the shape is very simple to
implement, astheshapeisbeing redefined, it can easily
beredefinedin any positionby movingtheorigintothat
position—i.e. move the origin and the rest of the shape
will follow! Various methods of moving shapeswill be
described in a following article (publishers willing!)

chig: 1 .

ing of atriangle

to give apparent motion
in the z-direction

Fig.2
scaling of shape ABCD

\\ﬂ|
~ /
\\ /
-~ ’
//ﬁ\\
X

~

D

X

Fig.3
co-ordinate scaling

- —

Liverpool Software Gazette March 1980J

< /,/;/
/ \ - ;// -
e/ Eevovnd -
Vo 7 R
Qp : ‘-/’”a\, .‘
Z - “E it T ” -~
- /
/ - -
DaveStraker
INTRODUCTION THE EDITOR

IN my last articleon PILOT, | outlinedthelanguageasa
simple-to-use method of writing text—orientated edu-
cational programs. Now teachers (and would-be
teachers) can write programs in PILOT using the
BASIC program that | have written below.

DESIGN PHILOSOPHY

Why BASIC? Why not Assembler? After al, an
Assembler implementation would be both smaller and
faster! The obvious question must be answered. BASIC
is a language that is commonly available, both on
micros and in schools (often on time-sharing terminals
linked to a county mainframe). Hence, in order to prop-
agate the language further, it must be in the most useable
form. Theorigina waswrittenin Applesoft, andthushas
BASIC instructions unique to that particular dialect. In
order to fecilitate trandation to your particular verson
Table 1 give equivaents to severa other BASICS, ds0
remarks in the program Apple-specific sections.

Theprogramis deliberately written as an understand-
able, modifiable, extendable unit. Commenting is fairly
thoroughwithintheprogram. In animplementation
tion, this may e extirattad to shanen and speed the
system. Structuring has been used, with major sections
starting at a new number group, thus new routines may
be added and existing ones changed or removed.

In operation the base level is menu-driven, i.e. a
selection is made from a displayed 'menu’ and a branch
made to the relevant subroutine. These are:

(a) Editor—allows PILOT programs to be input and
modified.

(b) Runner—runsthe PILOT programinterpretively.

(¢) Loader—Iloads a PILOT program from magnetic
backing storage.

(d) Saver—saves a PILOT program onto magnetic
backing storage.

(e) Ender—returns the user to BASIC.

numbering: PILOT lines are not numbered, as in
BASIC, but the editor still needs to be able to refer to
individual lines, so it numbers the lines by itself—the
first being 1), the second 2) etc. Note the ') used as a
separator, hence

12) T:HELLO

isthe 12th line, which is T:HELLO. The line number is
aso used as a prompt, so the request for line 13 is

13)

NOTE that if aline is inserted between lines 12 and
13, then this will now be line 13, the old line 13 will be
14, the old line 14 will be 15 etc. To overcome the loss of
lines due to confusion, editing from the bottom up is
recommended.

Editor commands are prompted with 'E?, and are:

INPUT NEW PROGRAMME]
typing | will dicit the response:
NEW PROGRAM, OK?

this allows for accidentaly hitting the wrong key, as
this command erases any existing programs.

I ':IQ N etc. will return control to Editor command
ev
YES, Y or smply < return > will start input with the first
line prompt:

1)

Lines are now input as prompted. A line may be 80
cgdaracters long, lineswith detected errors are repromp-
ted.

]

Liverpool Software Gazette March 1980

33

To indicate the end of the program and return to
Editor command level, type ' #'.

LIST LINES: L m-n
This is similar to the BASIC lig instruction, eg.

L: will list dl lines
L-12 will list lines 1 to 12
L5-: will list from line 5 to the end

If aline beyond the given line is used, then the actual
line limit of the PILOT program is used.

Thereis an extrabonusfor APPLE users—paddie Ois
used as alist speed controller. At zero setting, the listing
will halt, and rotating it clockwise will increase the speed
at which lines are displayed.

DELETE LINES: Dm-n

This deletes lines (specified in the same manner as
lit' above) and renumbers lines to maintain the incre-
mental order within the editor, hence

1) T: HOW ARE YOU?
2) T:0K?
3) A:

—with the command D2 become

1) T: HOW ARE YOU?
2) A:

APPEND FROM LINE Am

This alowsinsertion of any number of new lines after
line m. Each new line will be asked for with a prompt.
Existing lines will be renumbered to accommodate the
new lines. To return to Editor command level, just type
(return). Note: if #istyped, this makesthis thefina line
in the program, deletes al lines after it and returns to
Editor command level. To insert before line 1, append
from 0, AOQ.

CHANGE LINES: Cm-n
This performs adelete plus append. Specified lines (as

in'list'" above) are replaced with new lines. See rules for
append for inputting new lines.

SEARCH FOR STRING: Sdiring

To facilitate locating lines you may search using any
given sequence of characters within that line, so

SHELL

will give with the first line with HELL somewherein
it, eg.

35) M:HELL! PURGATORY

if the end of the program is reached without finding a
match,

END OF PROGRAM
is displayed.

The search is cyclic, so if Sisagain typed, the search
will start again from line 1.

QUIT: Q

This returns control to the menu mode.
THE RUNNER

Torunacurrent programtype Rwhilstin menumode.
When the programfinishes, theline, n, it stoppedatis
displayed in the message.

*#x%% PILOT LANDED AT LINE n *****

To return to menu mode afterwards, simply hit
<return>.To stop at program whilst it is running, type
<CTRL-L>.

THE LANGUAGE
STATEMENT LAYOUT
This is of the form:

<instruction> <modifier> : <operand>
<instruction> asingleletter indicating instruction type,
eg. TypeisT.
<modifier>an optional (signified by the square brack-
ets) boolean condition, whichif fal se, causesthisinstruc-
tion to be ignored. There are two types of modifiers.
() Once anumeric variable has been definedin acom-
pute statement, it may be tested against any number in
round brackets in the modifier, i.e.

T(X < 6):WELL DONE!
Types WELL DONE! only if X is less than 6. Other
conditions that may be tested are equal (=), lessthan
(<), or greater than (>).
(b) Whenamatch statement, M, isperformed aflagisset
if amatch isfound, and reset if no matchisfound. This
flag may be tested with Y (true if flag is set) or N (true if
flag isreset), i.e.

TN:WRONG AGAIN... types WRONG
AGAIN ... only if the last match was unsuccessful.
<operand>=described under each instruction heading.

LABELS

These have '*' as the first character. They are refer-
enced without the *' in Jump and routine (U) instruc-
tions.

Liverpool Software Gazette March 1980

EDUCATIONAL '
COMPUTING isthe '}
new magazine for
everybody who has
ever wondered what
the microcomputer
revolution has
meant to educa-

courses, examin-
ations, and career
> options;andan
authoritative range of
© reviews of equip-
ment, software,
programs,and
books currently

tion. Here's your
chancetofind !
chancetofindouteverything

about the use -

and study - of computers and their peri-
pherals in schools, colleges and universities.

Computer services have an obvious part
to play in the educational process itself.
Aswellas providingimportantopportunities
for your students to learn many skills which
could be vitaltotheirfutures, you will benefit
personally by greater familiarity with the
one subject that's undeniably changing
everyone's life.

This unique magazine will offer pen-
etrating investigations into the educational
applications and implications of data pro-
cessing systems; full details of available

= onthe market.

|

"Beginners'’

_ ~Guide" really
does start right at the beginning, with advice
on raising the finance for your hardware,
and how to be sure you're choosing the
right system for your needs.

Teachers and students alike will want to
use EDUCATIONAL COMPUTING to keep
them abreast of the latest technological
developments. As one of the ECC family of
top computer publications, you'd be rightto
expect a knowledgeable and entirely un-
partisan - editorial approach. This is a com-
plex and challenging new field, where there
IS always something newto learn. So don't
risk being leftbehind. Send the coupontoday.

l Please enter my subscription for ten issues at the annual rate of £5.1 enclose a cheque/PO.

B Please charge my credit card (delete as applicable).
g Name o Title
i School/College/University
Address
|
|| Signature
B Type of card No. 7

B Send to: EDUCATIONAL COMPUTING, ECC Publications Ltd., 30/31 Isiington Green, London N1 8BJ.

Liverpool Software Gazette March 1980

35

eg. JFRED

*FRED
INSTRUCTIONS
TYPET:
Prints the operand text. Extra formatting may
include:
(a) accepted string variables of the form:
<single character >$

This alows such as Christian names to be used to
deformalise programs e.g

T:HELLO, WHAT'S YOUR NAME?

A: XS

T:HELLO X8
(b)l HScreen clear. If the first two characters are
eg.

T:!H ** CHAPTER 2* *

MATCH M:

Searches the last Accepted string (see below) for a
match with the operand, and sets the match flag, if
successful. Speciad characters are '&' and "', logicd
operators 'AND' and 'OR' respectively, eg.

M:NIT&IDE!NITRO

This will successfully match with NITRIDE, NITRIC
OXIDE, NITROGEN, etc.

It will fail to match with NITRATE, NITRE, NIT-
RITE, etc.

ACCEPT A:

Halts the program and prompts the user for an input
with '?, i.e.

A:

will give'? and wait for astring input, which may then
be checked with a match statement.

A string variable may be used (see Type, above) and
the repg}y is assigned to that variable, eg.

A:P

COMPUTE C:

Note that this is not a full compute statement — it is
only for loop and modifier control. It assigns anumber to
anumeric variable or increments or decrements a vari-
able by a given amount — thus the formats alowed are:

(@ C:<numeric variable>=l<number>

eg. CX=7

(b) C: <numeric variable >= <same variable> +

<number>

(c) C: <numeric variable >= <same variable> -

<number>

eg. C X=X-5
(note that C:P = R+I will increment P, not R)

JUMP J:

This causes a jump, conditiona if modifiers are used,
to the named label line eg.

J(P=3): NEXT

*NEXT
causes ajump to *NEXT isthe numeric variable Pis
equal to 3.

SUBROUTINE JUMP U:

This is used like jump J:;, only a return to the next
instruction line may be made with an E: instruction.

SUBROUTINE RETURN E:

There is no operand for this instruction. Execution
continues on the line following the last U: instruction
encountered.

eg.

T THIS
U:NEXTONE
T:FUN

*NEXTONE
TS

E:
this prints
THIS

IS

FUN

REMARK R:

Thisisignored by the interpreter, and is for the prog-
rammer to comment his listing e.g.
R:THIS SECTION DEALS WITH HORSE-PLAY

QUIT Q:

The pilot interpreter will halt at the last line of the
program. This instruction allows termination at any
point within the program e.g.

Q(C < 0):
a. PROGRAM OPERATION
The program is divided thus

0 - dimensioning and menu selector
10000 - :Editor

20000 - interpreter

30000 - Saves Routines

40000 - Load Routines

50000 - End

36

Liverpool Software Gazette March 1980

The Variable Table gives the variables used. The
dimensioning on lines 110 to 140 arbitrarily set a max-
imum of 100 PILOT lines, with 20 labels, 20 numeric
and 20 string variables, and a stack size of 10. Lines
210—320 format the menu. The reply is returned by a
get causing an immediate jam via lines 410—450. An
invalidinput will cause the menu to blink and reprompt.

The Editor gives al commands available, in line
10110, which is displayed whenever an invalid input
cdls through to line 10350. As List, Change and Delete
directions have the same operand, they are processed
together. Lines 12102—12330 sort out the lines given,
M to N, and validate them. 12510—12590 list the given
lines, with 12540—12560 providing Apple:specific con-
trol. 12710—12770 delete the lines by shifting up the
lines below, and reassigning Pl. 12810—12830 changes
line by deleting then inputting. 13030—13550 appends

tions, first by "', 22120, then by '&', 22400—22490
matches. When a minimum section is reached, Ag is
searched for a match, 22600—22690 23000—23320
accepts, and assigns to a string variable if required,
23150—23320. 24000—24210 jumps to line. 25000—
25130 jumps to subroutine after saving the current line
on the stack, S. 26000—27420 computes by finding the
variable, 27110—27260, then setting or incrementing
the variable 27300, 27420. 29000—29230 is a routine
that removes spaces from the end of a string, and
reduces interior gpaces to one space. 30000—save Pl
and PSf(I) to PS(P1) onto magnetic media. 40000—
reverses this. 50000—50040 clears and end the BASIC
program. '

VARIABLE TABLE

from the given line by inputting aline using the input ~ A$ accepted string '
routines of 14300, then shifting lower lines down oneto C$ genera purpose left half of string
make space for the new line. 14020—14940 inputs lines D $ general purpose right half of string
using 3 routines. 14110—14260 is the control loop, D$ ‘crunch’ routine flag
14330—14560 inputs a line into E$ and does simple E$ inputted string
syntax checks. 14810—14940 replaces 'INPUT Eg' to EI$ ‘got’ string _ _
dlow colons and commas, which otherwise are taken as H$ string of allowed instructions
data separators. Control characters are checked far in |, J, K general purpose string variable
14830 (return) 14850 (ctl-X delete line) and 14880 L(n) label table line number
(lift arrow delete last character) no others are sup- L$(n) label table string number
ported, but extra routines maybe added. 15010—15150 LI |abel table end pointer
are all the error messages used by the editor and the N Editor line number and genera pur-
interpreter. 17100—17200 is the string search routine. pose ,

The actual Interpreter starts by scanning the program P current program line
for labels, and recording their name and line position, P$(n) PILOT line table _
lines 200300—20090. 20100—20130 initidises vari- P end of PILOT program pointer
ables. Each interpreted line starts at 20230. 20230— Q(n) numeric variable value table
20270 check for non-interpreted lines (remarks, label ~ Q$(n) numeric variable name table
and end) and break. 20300. 20620 checks the modifier, Ql end of numeric variable table pointer
andif false jumpsto the next line. 20700—20820 routes ~ S(n) stack _
to the appropriate instruction routine. 21000—21130 Sl stack pointer
types are checking for screen clear. 21012—21018 and V$(n) string variable name and value table
replacing string variables with the actual text, 21040— VI end of string variable table pointer
21110. 22000—22690 matched. This divides into sec- X, X$, Z$ genera purpose variables

CONVERSIONTABLE

ALTERNATIVE

APPLESOFT DESCRIPTION

LEFT $(X$,Y) The Y leftmost characters of X$ X$ &1, Y]

RIGHTS$ (X$, Y) The Y rightmost characters of X$ X$ [LEN(X$)-Y, LEN (X$)]
MID$ (X$, Y) The rightmost characters of X$, from Y X$ [Y, LEN (X9$)]

MID$ (X3, Y, 2) Z characters of X$, from Y X$.[Y,Y +Z]

PEEK (-16384)
value if key is pressed

POKE—16386,4) resets keyboard strobe
PDL(X)

paddie X.
HOME clears screen

strobe keyboard, return value of 127+ key

returns value 0-255 depending upon analogue

FOR 1 =1 TO24:PRINT:
NEXT |

37

Liverpool Software Gazette March 1980

MNALIA N3IHL ww = $3 4l
pasPT 8NSOD

INIT H LNdNT * W3Y

T +d=4d

AZPST NIHL Td < 4 30 @ > d J1

4 MIIHD H0HY¥3 F ASIWKIOFMx W3
($ay WA = d

w JOLS 01 ONIHLS TINM *k W3S

o IHIT WDHEd aNIWE 40 3DHEHD bk L3y
NHN13Y

ABTET 8NS09

T-W=4d

208227 ansoo

4 H 0L W S3INIT 39HBHD *+ W3

NaNL3A

T -N-W+Td=1d

I LA3N

T+=7r
(Iasd = ([+ Wo%d

T4 0L T + M =1 ¥04
8 =1r

w4 M OL W S3INIT LTI A+ WA
HaN134

I 123M

AITI0ELIM0D 93345 40 aM3 + W3A
[LA3M

c@y 79d - G52 0L F = [¥0d
Grozt MAHL £ & €8> 1ad 41

@ 210aHd A8 L3S 3345 *« W3

% 3ddd 3HL #04 ¥3710d1N0D 3345 L5171 W ST STHL # w33
£13%d fu Cufl LNIMd

N OL MW= 1704

M 0L W SINIT LSIT # W3

@aEZT NIHL 2w = $2 41

@a.ZT MIHL o3 = $2 dI1

3 % Q1 3iHAH4IS * W3

Td = N N3HL Td < N 41

@ZRST MIHL T > H 40 T > W dI

GTRST MIHL M < W 41

N OF W NI SHDHH3 HI3IHD + W3
CCT ~ 1°%d) $1437 3 WA = W
cr1 — ©$0» W37 c$A3 ELHDIH > WA = H
BEZIET OLOD (W o= Ni($dd WA =W

I L®3N

PETET NIHL w—w = (T 1 $Q> $AIM 41

¢$a> M31 0L T = I ¥04
(T4 = MICLT - £#A H3T ($dy> $L437 > WA = U
FTTET NIHL n—w < 3 (T'$Q $LHOIN JI
@ZIET OL0T ((4Z 3> $AIM O WA = NT =M
ATTET MIHL w-w € ¥ (T §ay $1437 4I
PEEZT 0109 (Td = MIT = M

99TZT MIHL wu € > $4 41

W % W ALYdEdISH W3

4% AMI H0 LAW1S = TIAN N A0 W 4 W3A

4% M OL M SINIT JONHHD A0 ILIT3DLSTHe+ W3
NaANL13

ATTAT MIHL «B. < > €1 31
Hani13d

@ezatT 0109

2887 ans0n

B5rAT N3HL oSu < > $3 d1
9ezZeT 0109

PaarT 3SNS09

BFEAT NIHL oIn < > $3 4l

ARTIST 0109

BSTET
aPTLT
2233224 4
SCTLET
PCTET
POTET
0ZALT
8TarT
e8aLT
0£8C7
9z82T
ST8ET
oT8CT
Be3c7T
B2LEZT
B92TT
052C7
PPLZT
9LLCT
BT2ZT
BTEY
BBLACT
BESZT
[21-1=ran1
BLSTT
89521
PSSZT
PYSET
ey ~ral]
BISTT
BZSCT
BYSZY
aBseY
BEPET
BTIPET
28+TT
osECT
BELZT
BTEZT
BRLTT
BETZT
88Ty
BPIET
BETIY
[5rel 7l 2
+ITZT
ZIITT
BaTIZT
80TZT
90127
+a12T
ZetetT
PaTET
BATeCT
BOBZT
55207

2SRt
SPEBT

[3220511
creat
etzat
(23R 12
ZELBT
BTzeT

aazZeT 0109

PzEaT

PERZT INSOD CITEaT
AT MNIHL WM. < > $2 4l AzLeT
gRZeT 0100 $TIOT
apasT ansoo ZTEaE
GErET MIHL W0e £ 13 OHd Wde 9 £0 AN W £ > 2 41 eTieT
AHEMLICD 31N0d 4+ W3Y BREHT
D M3 ‘Mu wkIOHm = $J AZI07T
)
,ﬂ ‘$37 £1437 = ¥D @a QH
IMTEd ININd BaZoT
o JR04 IR N G * PZHQQ arietT
Z W FAMNEH L3y S9Tar
W3y L9TST
4 CROEd JH3WYE W34 99TEt
oNIHLS H03 CHDAE3RS K3y SETaT
tW 03137304 WY pETET
Ho LSl W3 TATET
A4 MAM LOdN: M3y TeTwT
4 MOILINHELEHT LN4RT W34 \aRTET
JWOH BIeHt
ook 134 vIeaT
¥533 S.A0LIOR sees W3W 9TRET
W, # W34 BEent

@aas JL0% 85y

[ajnls M3HL 3. = #¥¢ 4dI
[slalsis MIHL W0 = E 41
[s1515) CMIHL WS = $R 4l
fslals) M3IHL wde = F1 dI
Gmrm M3IHL 3. = #8 4l
ok D1 ONILNDH s+ W3Y
#$X 139
S P06 DEHL INIdd © LINIsd
MANLIH 9, 0T »3HL LINIML
o QIDJ J=aA@d 2EHL 1NINS
“ : »adl LNIdd
Wi Z:m »3Hl AMIudd
WHOLTa3: u:‘mmﬂ +AHL LNIdd
AMNTYA
" aaHL ANTHEA INIHd
w HFAHE LS »3dL LNIdd ANIEd
CET dEHL LNINd
wHIIFESAFINTD LI a3HL ANTad
1MTHd 1MHIdg © 3WOH

ik W3y e

CUENLIENES NN3W M3IN e

: M3y Be

£h WIQ @PT

0 WIa BCT

ot

H313444314T L0711

= $H BZT
4 WIQ 8Tt
sk bEA 20T

s gk + W3IN B
4TARELS 3Hd A3 T MOISHTA bk W3 2
bk WA 2
o ' vk WIN QT

1SITC

Liverpool Software Gazette March 1980

I Lx3n
BIFBZ NIHL wiw = (T 4384 $AIM A1
CCd$dy N3T 0L T = 1 and
BAZOE NIHL T = W aME WNw = <T'27cda8d) $AIM 41
BBCOC NIHL 8 = W aNE wha = (T2 "(di%dd $OIM o]
% OFHD H3TSIA0N = L3y
80392 M3IHL aFT = ¥ 41
B 98L9T ~ 3JH0d (PBIST ~ » H3IAd =
sk (1=1L00 HU3HE 404 HI3HD 0L GaH03AIN JT0HLS 4+ W3y
BBZOZ N3HL wdu = 32 §0 ok, = £] AT
282AZ N3HL W%, = 33 JI
CTCdosds $L430 = 7
T+d=4d
e A00T] INIT LHIN 4 W3
BE3HZ H3HL 8@ = T4 41
FaH
a = 1@ = 33
B = WA =4d8 =T
% FEIHILINTG @0k |34
EREE]
4 = <TI0
(20l $AIN = TV
T+ T =T
BEAAS NIHL w#w < > (T CA2$dd 21437 4]
Td 0L T = 4 H§0d
8 = T1
k. QTGHL T3FHT LIS ke WM
[P
Aok NH33 H3INNNA ok B
W3
NsnL3y
WINMDD AN ek, TNTHJ
3= 74
4 Lx3N
I LX3N
HANL3E
4 =24
Cdddd T T fd LNTHd
BLTAT NIHL CC$2) WIT I 0dr$dy $3IM < > $7 41
T+ (F2) M3 - 4dddsdy N3T OL T = I H04
BETLT MIHL <22 W3 > Ccdr¥dy NI 4l
T4 0L T + 84 = 4 #04
B =24
] = 7
BETLT H3HL wa = $4 41
#bt HIHHIS OMIMLS #k% L5
NANLIY “dfy INTT O 13GHT ON sokow, ININJ
NANL3A ‘o f0 3NITHONNT NANLIN INILNONSNS otok,, ININdG
NANL3Y T ¢ 9 W fdfn ANIT HONNT IGHINHA 3LHIINGNG sk, INTND
NANLIY ‘dfu NI HONNT XHLIMAS sk, ININJ
NANL3Y “dfa 3NITH0MNT IIFIHHA ks, INING
*k SHOMNI IWIL-NNY *+ WIA
NANL13Y ©,N0¥¥3 13947 ILIMOIANG ek, ININd
NANLIN 20883 XUINAS sk, (NINd
HANL3Y -, H0¥Y3 3ONUN 40 LNO sk, INING
NENL3Y © . H0H¥3 MIUATI0S sokk, INING

Fhack ILH0DIN NOHWI Aok LTN
Zs+T 0109

N8NL3Y NIHL 52 < ¢$3> M3 41
$T3 INIxd

T3 + $3 = $3

BZ2+T 0L0D 86T - MO

BTEFT NIHL BE < C$TIy ISH 41
az5+T 0109

B5ER
|55 et b

LEBE

BY3Rs
B5a8:2
BPauE
5E8HT
BEans

QRaLT
=344
B+TST
BITST
BZIST
BTTST
BOTST
o+asT
BIOST
BZAsT
a1asT
880sT
areT
BESET

82641
BT6tF
a6t
a5t
BREPT

e YT ———————

(T - <$3> N3IT "$3> 14371 = £33 B63bT

BZ5+T 0109 .. = $3 898K
@6SET NIHL T < <$3> NI1 41 98SHT
NANL3Y T - d = d b88FT
98SFT NIHL B < <$3» NIT I Z8ST
$OSPT NIHL 2 € > C£TI aSW 41 BSevT
MINLIY T - d = d B8FT
wu AINIdd ©98FT
BSSFT N3HL v < > (T3> 2SH 41 BCSET
NIN1Ia Cau LMIND @b8HT
BSSET NIHL £T < > <$T3> 25 4 BIST
$T3 139 0Z8HT
wu = $3 BT8ET
w53 LOANI. SIIHTIASN # LEN BASET
MNANLIA @ICHT
BETET 0400 EIAST ANS0O BSSEHT
L OAM3N OpSHT
BISET NIHL T L #H) $AIM = $3 41 BIGeT
C$H? M3T 0L T = [4904 BISHT
AJIHI MOTLOMHELSMI * W34 0TSt
BITPT OLOD GEPET
: QIOST 9NS0D BIbBT
NAMLIY MNIHL wka = $0 31 GZHET
MAIHD 13T OS NOTIDD OW % WIA BTEET
ATEST M3HL T = <$33 N3 41 SB+bT
I OLH3EN ear+T
BTEET MIHL W iw = <TL 7433 $01W 41 BEIHT
£$3) W3 0L T = [H404 BSTET
MANLIS ‘o = Td DASHT
BIEPT MIHL WF. < > #£2 I BIEET
(T $37 $1437 = $D DSIET
NaNLIY M3HL wu = $3 41 @rIeT
B82+T NS00 GILET
wfd INIdd @LLfkT
#SHIIHD HHLINAS THMIS S300 ANM # W3 BEIET
£3 SINGNI # MW3¥ BTEHT
ANILAOY IMIT-E-LdHT #4+ W3 B0ItT
OTZHT 0LO0D @3THT
T+ d=deszet
N4NL3 NIHL o#. = 3 41 SE2pT
$3 = (di%d BFTHT
BTZPT NIHL wu = $3 41 OIZHT
$3 = (digd GEEEY
BRIFT 8NS0D ATZHT
H007 HIIHI ANE LNAHI #+ U3H 90zET
8 =TT = 4 BTTFT
#% ISIWILINI ## L3d Q5THT
INIHd OvadT
NEMLIY WIHL WM = (T '#3) $1437 dI @epT
$3 70 LH0 WHAD0HES MIML LNGNI BEBHT
WHADONA SANT ¥, % L3N BTeT
otk WEHHOCMD MM LNDMI sk W3d BEEET
HANL3N @SGET
: I L¥3N BIGET
(T - I3%d = (I3%d B2SCT
T- d315 4 0L T+ Td =1 304 @IST

3NIT B NMDG LI 3A0W o+ W3Y @DSTT
S2TET 010D BOZET

T + Td = Td S6TLT

Naniay N3HL W3, = 3 41

BPETET

$3 = (di¢d @3TLT
BOSIT anNsS0D BLTET
* d dl4Y 30UdS 8 DU W3N @9TET

39

Liverpool Software Gazette March 1980

sk QWNE S0 4%k W3dW 000HE PSRBT HAHL 1 < > (FJ» N3N 41 8BSt
MaNl3d Begifc QBTTZ 0L0D <T + I°$Q> $IIM + 3 = %1 38
$d + £a = (TAI$A BTZEE B39TS M3IHL 2 £ > I 41 348
T + Ta = Th 98ZEC ARTTZ 0109 ($3 = #J 56T
o I 143N 82382 JATE WIHL 2 < c$ay M3 AT b
ATTST NIHL <13$n = $0 41 @92ZLC

FhHr FIIW = #3

Th 0L T = 1 d0d OS2I @OTTZ NIHL ¢Z°T - 1°$ar $AIW < 3 (2 C0x$Ar $1437 4l
GTTST M3HL of. £ > (T 3} $LHIIH 40 s ¢$d) M3 41 BPEER Th 0L T = [and
: H3HL B = TA 41 BESEZ BITIZ MIHL B = Ta A0 W%, < > CT1 %1 FIIM 4l
$7 = $1:4Q = $H GTIET # STIGWTHEEA OMIHLS 3267434 + W3
aBEss AnsnD eTee T+l =1
& 4 193N 0L §4 NOISSH + W34 DAZIT I =1
33 = $3:%] = $2 BSTLZ S 0y £3IW = F]
HENL3d BrIse MMALIY HIHL 2 = <$Qy HIT A1
£3 = $H BITE2 M
QOTEE MNIHL we < » &4 41 B2TIZ BTATE MIHL oHia © (Z°F3» $£1d437 A1

PE2FT ANs09 BTTLS PATTS MIHL 2 > oFdr NI JI

fuion JNIEd BBTIZ gk Jd4l L W3AE

ad 143000 W ek W3 00OLE A L3
H4nNL3y 96322 3 o LOIMI

B = W 883c2 wkdok o T FHIT LW QIAMET LOTId sk w INIHd ¢ LMIdd

A L¥3AM @L9Ze BRSEE NIHL 1 41

MA4nL3s 89922 BRAZRT 0L09 ANSO00

Z - FW - £+ A = £W BSIEE BEARZ NIHL &0 Al
T = W BFIZE ARZET 1L0D Z 3Ns00
2,02 NIHL .3, $£1 dI
BL9T T M3HL ARZAZ OLOS an=ne
(T - M - COdEHy $AIM £ 3 (T - EM - LT+ W@ £0IM dI BII=E ALLAE HIHL Wil £ 4l
= 4 ZM + [- ¢$H) HIT1 OL T + W = 3 d0d AT9ZE aezez 0L09 ¢ 2 ansng
& $H NI HILHW 303 #0071 # W3y e93cs BOLAZ M3HL of. < 2 #2341
HANl3d BEbEE ARZAZ OL00 ERBIZ SNS00
APazZ dnNS0D S8FEZ PEAPZ MIHL WHe < T $3 41
£ OI¥3AN BAPET PAZEZ NLOO ABAZE anson
MANL3d N3HL B = W 41 O5PES PEIBZ NIHL Wb € > $3 4dI
£ = 2W SPPEZ BRZBZ 010D @EETZ ans0o
BE9ZE ANS0D OPFEE BESAZ NAML wla < &3 41
@ipZZ NIHL «Fa € > (0 €Y $AIW I BIFEIE CT + I°(dyEdy $AIW = 0 ATL8T
T-10LT+ TW=7F 804 BZHIT okt ONILNOA NOTLOMELSNI kdd W34 GEIEE
T = 2W:B = £W BTESE BAZEZ 0100 62982
+ g4 NI 5.7 #04 X007 * W3Id BOreZ AalAZ NIHL I = (N3 41 97382
NANl34 B8PETZ aRzZEz2 0109 eRznc
PePZE anson BETEE QARLEZ MIHL © > (MxE 41 Askes
I 1¥3N BLI82 AT99E NIHL o2n £ T £3 41 92583
1 = TW 83782 BAZRT NLIOD B.GHE
NYNL3Y N3HL T = W 41 @5TS peseT NIHL [< (Ni@ 4l @958
aBpzz ansno BETIT PICEZ N3IHL WCe < > $Q d1 9SE82
5,9 04 4007 09 * W34 BzTis CCT = 3 — 17T + #°(drsdd $AIMW 3 WA = £ SFE8S
BTZ2 NIHL wiw € > CT7I°$Q> $AIW 41 @ZT2 ATTST OL0T BY3ez

($Gy NIT 0L T = I ¥04 BT

& S,i N0 W00 4 W3d AT N Lk3N - BEsez

arREEs ansng ALvE? SHSB2 NIHL C$d = (T - [- AT + [Cdrdy $AIW Al azsac
8= 2W0 = TW'B = W 92822 TH 0L T = N #34 8T=es
ISTIHILIND * W3¥ BTesZ ATEST NIHL B = To 41 @8&as
stk HOLEW (W ek WD BABE B2TST NLDD BEPRE
NanL3d BLTLe . A L¥3N BSreZ
, 3 INIHd 08I pecee NIHL w<u = $0 ¥0 = $G H0 w=. = $Q 41 BLEAT
PLBTZ NIHL ¢$J3 N31 = > I 41 8TTIs ET A $AIW = #7
L 1$3W 88T I 0L o= 404
BTTIZ 0109 5687 BLAZ 0L
Z - C(L¥$AY N3 4+ I = 1 B8aTE L 1538
PaTTZ OLDD &3a1e PGP@Z NIHL «Du = (T 0 Cdr8dd $IIW 41
(T + 1°$Q> $AIW + £33 = $A 3207 I 6L T =1 d04
$3 + (Z — I°%4> #1437 = $T3 $80T2 # MIIHD SL|AOHET o+ W3H
BOTTZ 0100 :$3 + (2 — I'3A> $1437 = $4 23013 sazaz 0109

Liverpool Software Gazette March 19¢

AWOH BTans

W34 azeo:s

Fhd [43Y

W3
MNAENLIN

¥1437 = #q

i HOOTAHS

CTo— O3y M3

HAMLIE HAHL W o« 3 FIHOIA 41
£ = £
BTZEE MIHL W o ¢ 3 £T £1437 41
ATTES M3HL T = Tq 41
E2 MNIHL ¢ T o BT S)
CT o+ 1% + 0T £1437 = £
nLos Ay FAI = 7
BOTET WAHL T < 1 41
T o= T
BLTES NIHL W o € % oz P oFAIM 41
T+ I =1
HHIH A007T # LIS
A= ['@ =.74
L3 HEHL MIT 4T
S3IM4S 53733 * ;

ATEDD EAIW 3 A+ A
AT LA LMIITYINT

T + I
BETET HAHL

BEFLZ NAHL w-u = 0T <4403 $q14

= 0F - T "%
Tor gL v o= g 4 wtles

* $H ONILSIXKI H0d MNOTIHD » WIN eozLz-
BPZLZ N3IHL 8 = IO 41 @912

B2TST 0109 BSTL2

I LX3IN ebis2

B9TLZ M3HL w=a = ¢TI ‘$Q> $AIW 41 ertee
€303 N3T OL T =1 ¥04d ©2Tle
* w=u QNId * W3Y OTT.2

aNa ot BZTST N3HL £ > <$0> NI 31 @ersz

e #44 BINAWOD 1D ik W3 000LZ

L3 N3NL13d eIT9Z

kg HODGIOHLEE e LT BYTST N3HL 8 > TS 41 82192
BT N = Y] T-1T5 =715 aTT9z

HEn L3 (1S5S = d 90192

CHIANIOS AN L o Aobd JHILO0NANS WOMA NANLIN 03 sekw WIY 8OB92
904d> Td AN CAHHESEH WUADONDY $£4 gHO0T 0L FEIH INT LAY H3N04 LNd + W3 1 NANLIN QLT

IMIBA © LHT s BaBFZ ANS0D 8215z
i

433407 LHTHA d = (I5>S 8TI62

3LH T + TS = TS 88182

13 44 JNILNOHWENS OL 0D N ##* W3N OPBSS

ook AJIH0T NiNL3d @r2ve

(I>1 = d 892pz
BSTST 0L0D @bThZ
.. I I¥3N BTk

(QNY “CHIINIOD WHND0ES 40 N> TA3AHS 0L Fa43H INILOON H00 0 4 NER] G0ZHZ NIHL CIX$7 = $Q 41 92Th2
CLHIEd @ IMIdd BTT TI 0L T =1 904 @0Tb2
o LNINS 00T BPOSZ NS00 B1eLZ

PR A3NS

Liverpool Software Gazette March 1980 41

1/ 24
i ‘\\ -
£ easy olution!

|scecNewton's ((

[/-,r"'

A48K Dis basDed compu ersyste%eTM
for
only

OFHCIAL ORDERS

We Welcome official orders from bona-fide
commercial and government organisations
We require payment 14 days after invoice date

16K byte Apple ' Nett VAT Total
Computer £69500 £10425 £79925

Disk System £34900 £5235 £40135

Totd with 32K

freeextramemory £104400 £15600 £120060

~ AppleBusnessSydems
-ring GrahamJones(b1-227 25356

SoftwarePackages £ Word Processor/Letter £

Stock Control £22500 Writer £13000

General Ledger £29500 Book keeper Package £295 OO

Purchase L edger £295 00 Credit Control

SalesLedger £29500 Package £15000
Payroll £385 00

+ VAT at 15%

Second Disk Drive £29900 £4485 £34385 ms"‘"

Pascal Language

System £299 00 £4485 £343 85 F . N N N B B N J§B | q
Graphics Tablet £462 00 £6930 £531 30 . o
Appletel System £595 00 £8925 £684 25 Please send systems as above at £1200 60 in addition
Black & White I please send

Modul ator £1400 £2 10 £16 10
Eurocolour Card £7900 £1185 £9085 Total Remittance
Joystick £2500 £375 £2875

All Pricesinclude courier delivery within U K . Name
Address

S

/MICR

O

)DIGITAL

25 Brunswick Street Liverpool L2 OBJ Mail ordersto MICRODIGITAL LIMITED]
Td 51 260007 (4 ot Mall Ocer) FREEPOST (NO Samp Reired) Access and Barclaycard welcome
051 227 253S [All other Depts) Liverpool L2 2AB

L---------l‘

T

42

D.Smith

dter from America

Editor, THE APPLE SHOPPE
THE JOURNAL OF APPLE APPLICATIONS
SUBSCRIPTIONS: $24.00 A YEAR.

THE APPLE SHOPPE
P.O. BOX 701
PLACENTIA, CA 92670 USA

HELLO to al my friends in England. This month we
present a new column that will let you know what is
happening here in America so you can keep up with the
latest US trends in small systems computing. We wel-
come your response and hope you will drop us aline and
let us know how devel opments here are affecting you in
England. Just send your comments to the above address,
and we will try to answer as many as we can through this
column. Personal replies only with a self-addressed
stamped envelope please. Postage rates from the US to
England do add up!

NEW COMPUTERS ARRIVE

Severa new computers have arrived on the scene here
and are being received with mixed reactions. Many com-
puter dealers now have the new Atari 400's and 800's
but so far, the Apple look-alikes have not burned up the
marketplace Indications are that the Atari 800 will
become a moderately good sdller, with the 400 much less
0. But the Atari's poor showing in the display window
reportedly has helped Apple sales where the two units
have been displayed sde by side. The Atari is wel
known for having good shielding, having passed the
government FCC regulations for radiation interference.
The troubleis, whileit may not radiate anything, it picks
up everything! So when the Atari is placed next to an
Apple, the Apple screen is sharp and clear, while the
Atari suffers from worms and waves in its display and

redly shows the unit off in a bad light. The reported
cause of this is the poor quality rf modulator that is
built-in to the Atari. The Apple, on the other hand, uses
an externa modulator, s0 some freedom of choice is
available to choose a good modulator. Still, the Atari is
bringingin new customersinto the marketplace and that
isgood for everyone.

TI UNIT SALES DISMAL

Another new unit, the T.I. home computer ishaving a
disma time and dealersarereporting very few takersfor
the unit. It appears that T.l. has guessed wrong about the
strength of the home computer market, and that most
people simply are not willing to spend over $1000 for
what amounts to a sophisticated video game. Rumor has
itthat T.I. will phase out the unitinfavor for anew lower
cost unit, without the color monitor, now that T.l. has
receéved FCC dearance on ther units. Still, both the
Atari units and the T.I. unit suffer from a bad price/
performance ratio when compared with the Apple or
radio shack, because of the relatively high cost of the
peripherals and memory expansion.

H.P. HITSTHE MARK!

Onenew unit that isreceiving enthusiastic responseis
the new H.P. 85 personal computer. This new unit is
everything the T.I. unitis not. It features a built in video
screen, H.P. digital tape unit, thermal printer all in one
small desk top unit. Whilethe price of $3200is abit high
by micro-computer standards, this unit carries al the
quality and backing of the H.P. line. Included is an
impressive graphics capability and scientific oriented
BASIC compiler. Thebuilt-in printer prints anything on
the screen including graphics, and the unit accepts a
wide variety of peripherals including I.E.E.E. 488 or

Liverpool Software Gazette March 1980

43

RS-232 peripherals. It no doubt will become the lowest
cogt bus controller available, and will probably show up
in every engineering department in the country very
quickly. Perhaps it will become the pawn in the up-
coming press for manpower, with companies offering
H.P.85's to attract top engineering talent during the
projected manpower shortage in the next few years.
Dedlers report a very health demand for this unit, with
H.P. aready on allocation until June.

IBM MAKESITSMOVE

IBM is making its long expected move into the mini
and micro field with their new distributed processing
system, the 5120. This unit is actually the same as their
5110 unit which has been on the market for some time,
but features a lower price, with a large video screen. The
cpu is rumored to emulate a 360 which accounts for the
sow speed of the 5110. It is not known if this has been
changed in the new unit. With the desk top processor-
display unit, are built in dual floppies for 1.2 megabytes
on line with hard disk capability optional. Best of all, a
full range of small business accounting software is avail-
able. Now check the price: $13,000 to $23,000 depend-
ing on model and options! This compares very favorably
with many small business micro's which are now inching
up into the 10 to 20 thousand dollar range with hard disk
capability. Now | ask you, if it came to a choice between
a North Star 8080 and an IBM computer, which would
you choose? My guess is that IBM will take a lot of
suffering out of the sals of budding micro business sys-
tems, which seem to be proliferating at an unbelievable
rate. IBM will market the unit at IBM retail outlets,
some 200 which are planned for this year. The unit will
be off the shelf although its weight of over 100 pounds
may make that a bit impractical!

HARD DISKSARE IN!

This is the year of the hard disk, with many vendors
offering an assortment of hard disk capability for their
systems. Corvus is marketing a 10 megabyte 8 inch
Winchester hard disk for the Apple, TRS-80 and S-100
bus computers. The company claims to have solved the
back-up problem with a tape drive unit for around
$1500 that will back-up the hard disk in just a few
minutes. The Apple version is very impressive running
Apple Pascal. The Pascal driver is supplied with the
drive and allows the entire 10 megabytes to be addressed
as asingle block or broken up into smaller blocks. Com-
plete compatibility is maintained with both DOS 3.2 and
with the 280 block Apple Pascal disk format. An Apple
pascal systemwith 10 megabytesonlineisavery power-
ful systemindeed and would rival many mini'sin proces-
sing power for a fraction of the cost. The corvus unit is
$5350.

Look for alot of activity in this area, since Shugart has
announced a 2 megabyte hard disk that fitsinto an 8inch
floppies, why not? It won't take long for the Shugart unit
and others from Japan to open up the 1 to 2 megabyte

market, which if the cost is down around $2500, will be
extensive.

NEW APPL E USERS GROUP

A new Apple users group is being organized as the
club-to-end-all clubs! Called the International Apple
Core, the club will actually be a user group for Apple
user groups! Val Golding of Call—A.P.P.L.E. famewill
be editing the club magazine, called the Apple Orchard,
which promises to be sent to every Apple owner world
wide. Apple has already supplied the new user group
with mountains of technical material, which has been
sent to member user groupsfor distribution. Check with
your loca user group for details on how you can join.
Only user groups can actually become members of the
International Apple Core.

NETWORKING TAKESOFF

The latest craze here is networking with micros. Two
national networks have realy caught on with nearly
every micro vendor. These are The Source, and Mic-
ronet. With these systems, you can call afriend on your
computer from L.A. to N.Y. for just $2.90 an hour! This
will really open up personal computing. In fact, rumor
has it that GTE and the other big telephone companies
are aiming to do just that, by getting in on the band-
wagon and offering the personal computer telephone
that will serve both communication and computing
needs in the home. In light of this, some people are
projecting a serious manpower shortage in the telecom-
municationsindustry for skilled technical people. One of
the really neat things about systems like The Source, is
that your micro can tie into the huge news gathering
srvices of AP and UPI, not to mention the DOW
JONES stock information! Maybe a London—New
York link can be established?!

MICRO NEWS

In the personal computing news, look for Programm
International to release anew version of Lisaand Apple
Pi. The new Apple Pi text editor is supposed to be better
than anything on the market including Easywriter.
Speaking of Easywriter from Information Unlimited,
they have announced anew plug in board for the Apple
that gives upper and lower case from the Apple
keyboard, and 80 columns display on the screen! It is
rumored to be Apple Pasca compatible, but that has
not been verifiedyet. Ifitis, it meansthe excellent Pascal
editor will beavailablefor text editing without havingto
buy an external terminal. More on this development
next time. Please feel free towrite and let me know how
thingsarein England. And | hope you Apple ownerswill
take advantage of my APPL E SHOPPE publication, as|
am sure you will find it a great help to you. That's all

from Americal ’ 7

ﬂg,‘
i

Liverpool Software Gazette March 1980

PASCAL is fast becoming one of the most popular
programming languages for microcomputers. It is for
this reason | developed the urge to write along series of
articles, and to describe this fascinating language.

ELEMENTS OF PASCAL

Pascal, like any other programming language, has its
own syntax that determines the way Pascal identifiers
and symbols are put together to form statements
oriented to Pascal Computational processes.

NOTIONS

The basic Pascal vocabulary consists of keywords plus
special symbols used as operators and delimiters. Inthis
series of articles, Pascal keywords are always capitalized.
For example, the following are Pascal keywords as they
might appear throughout the articles. WHILE, DO,
BEGIN, ARRAY, CASE. An example of syntax is

WHILE expression DO
statement:

In syntax, when items are to be replaced with values
supplied by the user, these items are lower case, and the
name suggests the type of value to be supplied. In the
example above, expression and statement are supplied
as appropriate by the programmer. An actual program
example might look like this:

WHILE N>5 DO
Begin
SUM:= SUM +I/N;

N: =N-1
END;

Dr Andrew Veronis

President AGFA Inc.
P.O Box 1070 Glen Burnie

f‘:: Maryland21061

USA

% AN INTRODUCTION

In syntax, optional items appear enclosed in vertical
bars. For example:

REPEAT statement /statement/ . . .
UNTIL booleanexpression

One or more repetitions of asingle syntactical itemis
indicated by asuccession of three periods (...) asinthe
example above.

CONSTANTS

A constant is aliteral representation of fixed, unvary-
ing value, asociated with some data type. A Pascd
constant can be a decimal integer with no decimal point
For example:

652

-25

A constant can be a character enclosed in apos
trophes. For example:

IAI

IBI

6$’

A constant can be a character string enclosed in apos-
trophes. For example:

'CHARACTER STRING', 'ANOTHER STRING'

Note that the range of values for decimal consxantsi
is — 32768.<decinteger<.32768. Also, character strings '
must be 255 or fewer in length.
IDENTIFIERS

Identifiers are names chosen by the programmer to
denote constants, types, files, variables, procedures and

ey

Liverpool Software Gazette March 1980

functions. The first character of an identifier must be a
letter. Any number of letters and digits can follow.
However, identifiersmust differ inthefirst 8 characters
to be distinct.

Most of Pascal compilersin use today recognise the set
of standard identifiers specified below. These identifiers
can be redefined localy or globally:

Standard congtants are:

FALSE MAXINT TRUE
Standard types are:

BOOLEAN CHAR INTEGER
REAL TEXT

Standard files are:
INPUT OUTPUT

Standard Functions are;
ABS ARCTAN CHR
COoSs EOF EOLN
EXP LN ODD
ORD PRED ROUND
SIN SOR SORT
SUCC TRUNC

Standard procedures are:

GET NEW PAGE
PUT READ READLN
RESET REWRITE WRITE
WRITELN

Punctuation symbols

Almost half of the Pascd punctuation symbols (includ-
ing mathematical operators) are the same asin any order
programming language. However, quite a few more

have a different meaning, and are described briefly
below:

AND Boolean conjunction.
OR Boolean inclusive disjunction.

NOT Boolean complement
= becomes (replacement)
, separates the items in a list
; separates statements
: separates variable name and its type
, delimits character string literals
Decima point, record sdlector, program ter-

minator
.. subrange specifier
A indicates file or pointer variable
(starts parameter list or nested expression
) end parameter list or nested expression

starts subscript list or set expression

ends subscript list or set expression
*) starts a comment
* ends a comment

{ starts acomment

ends a comment

RESERVED KEYWORDS

The following are standard Pascal keywordswhich are
reserved and each keyword is considered a distinct spe-
cia symbol that cannot be usedin any context other than
in the explicit definition of Pascal:

AND ARRAY BEGIN
CASE CONST DIV

DO DOWNTO END
ELSE FILE FOR
FUNCTION GOTO IF

IN LABEL MOD
NIL NOT OF

OR PACKED PROCEDURE
PROGRAM RECORD REPEAT
SET THEN TO
TYPE UNTIL VAR
WHILE WITH

COMMENTS

Comments can be added to a Pascal program and can
be inserted between any too identifiers, numbers, or
specid symbols. The general format is:

Examples: ()

(* THISIS A COMMENT¥)
{ ANGTHERCOUMEENT

When the compiler encounters aleft-hand comment
symbol, it scans the text for the matching right-hand
comment symbol. Do not intermix the two types of
commentdesignators.

TERMSAND DEFINITIONS

Thefollowing terms are often usedin place of formal
parameters in dummy declaration headers:

ARRAY A PACKED ARRAY OF
CHARACTERS

BLOCK one disk block (512 bytes)

BLOCKS an INTEGER number of blocks

BOOLEAN any BOOLEAN value

CHARACTER any expression which evaluates to
a character

DESTINATION a PACKED ARRAY OF

CHARACTERS to writeinto or
STRING, context dependent.

46

Liverpool Software Gazette March 1980

EXPRESSION part or all of an expres-
sion, to be specified
FILEID afileidentifier, must be
VAR filed: FILE OF<type>;
or: TEXT;
or: INTERACTIVE;
or: FILE;
INDEX an index into a STRING or
PACKED ARRAY of
CHARACTERS context
dependent or as specified.
NUMBER a literal or identifier whose
t%EeAis either INTEGER or
L.
RELBLOCK a relative disk block address,

relative to the start of the filein
context, the first block being
block zero.

any declared Pasca variable
which is BOOLEAN, CHAR,
REAL, STRING, or
PACKED ARRAY [. .] OF
CHAR

SIZE an INTEGER number of bytes
or characters; any integer
value

a STRING or PACKED
ARRAY OF CHARacters to
be used as a read-only array,
context dependent or as
specified

any STRING, cal-by-value
unless otherwise specified, i.e,
can be a string variable, or a
function which evaluates to a
string.

a STRING consisting of a
filename

physical device number used
to determine device handler
used by the interpreter

PROGRAM STRUCTURE

Every Pascal program has two required parts, a prog-
ram heading and a block. The first word of all Pascal
programsis’PROGRAM®. The block containstwo main
sections:

SIMPLEVARIABLE

SOURCE

STRING

TITLE
UNITNUMBER

Declaration/definition Section specifies dl objects
locd to the program. Consists of five specific parts
which are described as the discussion proceeds.

Label declaration part.

Constant definition part

Variable declaration part
Procedure/function declaration part

The State Section gedifies al actions to be performed
upon the above declared objects.

PROGRAM HEADING PART

The program heading gives the program a name. For
example:

PROGRAM ADD;
PROGRAM INVENTORY;
LABEL DECLARATION PART

The label declaration part sets up statement labels for
reference by GOTO statements. Each label must be an
unsigned integer of four digits or less. For example:

LABEL 214, 56, 5;
CONSTANT DEFINITION

The constant definition part gives program constants a
name (identifier) to be used within the program as a
synonym. Constants can be numbers, astring, or another
constant. For example:

CONST

ROW LENGTH =17;
MAXVAL = 145
QUESTMARK "7,

If the particular Pascal compiler you are to use emp-
loys values that are known before program execution,
you can write each value two different ways, as a con-
stant or a literal. Actually a constant is a literal with a
name. Constants are given names in the CONST decla-
ration section. The following are program segments
using literals:

WHILE X< 15 DO ...
FOR INDEX: =1 TO 25 DO ...

Following are some examples using constants set by
CONST:

CONST
MAX = 20;
HIGH* 25;
Pl =3.141593;
WHILE X<MAX DO...
FOR INDEX: =1 TO HIGH DO ...

In the second example, literals are given namesin the
CONST declaration section which defines the entity to
have a name and avalue. Well-written programs rarely
use literals outside the CONST declaration section. This
makes program changes easier.

Each dataitemin a Pascal program is either a constant
or avariable; constants remain the same during program
execution, but variables can vary. Constants are
declared in the CONST section. Variables are declared
inthe VAR section. Each dataitem is of aspecifiedtype,

Liverpool Software Gazette March 1980

47

and its type determines the kind of operations that can
be performed oniit. In Pascal, the four standard types of
data are INTEGER, REAL, BOOLEAN, and CHAR.

Examples of the four standard data types are:

INTEGER REAL BOOLEAN CHAR
—20 —20.5 TRUE ‘A
15 15.274 FALSE 2'

When you declare constants in the CONST section,
their type isimplicit in the declaration and you need not
specify the type. When you declare variablesin the VAR
section, you must specify the type by using INTEGER,
REAL, BOOLEAN, or CHAR. For example:

VAR

X: INTEGER,;

MAX, COUNT, AZIMUTH: REAL,;
FLAG, ENDFILE: BOOLEAN,;
SIGNAL: CHAR,

Nascoms
Programs &

Information
a book by

Merseyside Nascom
Users Group

-~
FE2.25

Including P & P

Yours at ...
Microdigital Limited
25 Brunswick Street
Liverpool
L20PJ

Note that numerous variables can be typed at the
same time and that the VAR section does not assign
actual values to the variables. The actual value of a
variableisdetermined by the execution of an assignment
statement of the form:

variable: = expression
For example:

X: =20;

AZIMUTH: =75.92 * MAX + COUNT;
FLAG: =TRUE;

SIGNAL: ='M";

COUNT: = COUNT+ 2.4;

To review then, data items are either CONSTants or
VARIiables, andtheir type can be of one or of the foll ow-
ing: INTEGER, REAL, BOOLEAN, CHAR. These
are standard Pascal data types; others are possible by
explicit definition with the TYPE Statement.

Next month, wewill continuewithmoredescription of
the interesting world of Pascal.

SUPPORT MEMBERS OF THE
COMPUTER RETAILERS
ASSOCIATION.. ..

THEY WILL SUPPORT YOU.

For further details on the associations aims,
membership, code of conduct etc.

Please contact: Mrs Gibbons, .
Owles Hall, Butingford,
Hertfordshire, SE99PL.
Tel. (0763) 71209

48

1
Liverpool Software Gazette March 1980
)

Technics
MICROCOMPUTER

TEXT EDITORS
Martin D. Beer,

P.O. Box 147
Liverpool,
L69 3BX

Part 11l

FROM the earliest days of electronic computers, it was
realised that they could be used for the manipul ation of
textual information. Although the earliest machines
were used, primarily for numerical work, they were also
required to read, and generate textual information in the
form of program data, and results. The earliest comput-
erswerevery expensive, and computer time was strictly
rationed. No-one would therefore consider the use of
precious computer time for the preparation of either
programs or data. All this was done offline, and prog-
rammers queued up to feed their punched cards, or
paper tapes into the computer, and obtain their results.
The programswere written directly in machine code, so
program changes were difficult, and time consuming to
introduce. Only once computers were introduced into
the commercial world, was any rea consideration given
to how the computer could help make the programmer's
task easier.

With the introduction of first, assemblers, and later
compilers, it became necessary to create, and maintain
|largeamountsof machine-readabl etextual information,
in the form of program sources. At first, these were held
either on paper tape, or on punched cards, in the same
way as machine-code programs, and data had been
before. The program text was ammended by removing
the relevent punched cards, and replacing them with
new ones holding the requiredtext, or by repunchingthe
whole paper tape, making the necessary corrections, as
you went. It was possible, if your computer had aforgiv-
ing paper-tape reader, to cut out the sections of tape to
be corrected, and splice in new sections, suitably cor-
rected. Although paper tapewasmoredifficulttohandle
than punched cards, it had the advantages that it was
lighter, and more compact, and could not be mixed up,
when dropped. Because punched card equipment, such
as mechanical sorters, required the data to be held in
fixed fields, assemblers, and high-level languages,
designed to be used on computers with, primarily, card
based input/output required that the programmer used

Programm né? Practices |
an &

PROGRAMMING TECHNIQUES

Computer Laboratory
University of Liverpool.

particular columnsfor different purposes. The computer
was very unforgiving, and would reject any card which
did not precisely fit the predefined conventions. It was
aso usual to follow the convention of numbering each
card, inaspecid field, sothat if acard deck was dropped,
it could be put back together again, in the correct order,
with the help of an automatic sorter. The strict field
conventions of most assemblers, and some high-level
languages, notably FORTRAN, are a throw-back to
these days.

As computers became cheaper, and more common,
consideration was given to the connection of mass stor-
age devices, such as magnetic tape units, and later,
magnetic drums and disks. At first these storage units
were used to store the operating system and programs
which were run frequently, such as the assemblers and
compilers. They were then used to store the programs,;
and data, temporarily, so that throughput could be
improved. It was then realised that the information;
required could be held permanently on the mass-storage
medium, and manipulated using specia utility prog-
rams. These were the first true text editors. Early editors
were able to insert, replace and delete complete lines,
which the programmer identified by their line numbers,
stored within the text. As computers became yet more
powerful, and users amassed considerable quantities of
data, the primitive facilitiesthen available became woe-
fully inadequate. Editors were developed, which not
only allowed the programmer to manipulate individual |
lines of text, but also allowed him to insert whole blocks|
of information into the centre of histext. To do this thel
line numbers could no longer be stored as part of the]
text, but had to be computed by the editor when reading!
the source. Thisisa principlewhich has beenfollowed b
amost al text editors since. These early editors wereg
developed aspartsof primitive filing systems, and wer
used in batch mode operation. The ammendments till
had to be entered into the computer, either on punch
cards, or on paper tape. It was common practice to hol

Liverpool Software Gazette March 1980

49

the initial source of a large program on tape, and to
ammend the card deck, or paper tape containing the
editor commands manually, until it, too became
unwieldy. A copy of the corrected source was then
stored on tape, and the process was completed, until a
satisfactory text was obtained.

It was realised at an early stage that the programmer
was not redly interested in the line numbers of the text
which he wished to modify. He was, of course, interested
in the text which the line contained. Also, by requiring
that the complete line was retyped the editor commands
included a lot of information which was not strictly
necessary. Experiments were conducted into the use of
context editors, using the text itself to identify the posi-
tions of the information to be atered during the mid-
60's. It was now possible to change single characters, or
groups of characters within a line without retyping the
whole line. Two different types of editor were now
developing, one contextual, and the other based on
whole line operations. Users were unhappy and con-
fused by the availability of two different editors,
intended to perform exactly the same function. It was
therefore decided to combine the functions of both
editors, and so obtain the full benefit of both. Lines
could be defined by absolute line number, or by its
postion relative to the current line, or by the characters
which it contained. Character strings could be inserted,
deleted or exchanged within the current line. By intro-
ducing the concept of a character pointer it was possible
to handle lines containing repetitions of the same string
more easily.

All the editors discussed so far were intended to be
used either in batch mode, or in peripheras, such as
teletypes, which supported seguential input/output.
With the coming of interactive computer systems, and
visud digplay units which dlowed the computer to dis-
play characters at any position on the screen it was
possible to display a section of the file on the screen, and
alow the user to identify the characters to be altered by
moving a specid character, caled a cursor, to the desired
position. Commands are required to move the text 'win-
dow' up and down the file, manipulate the cursor, and to
perform the editing operation required. Editors were
being used to manipulate program and date files on line
in an ad hoc manner. Most editors available for use on
microcomputers are of this type. They are intended for
use under immediate control, from the keyboard.
Commands are few, and are designed to allow the user to
define the changes he requires with the minimum
number of keystrokes. Usually the user issues one com-
mand and waits for the computer to inform him of the
result before issuing the next. He can then carry on, or
re-edit to correct the text, if his last command did not do
what he wished. One useful facility which has been
introduced into this type of editor is the ability to scan
the whole, or part, of the text for a particular character
string, and to edit every occurrenceof it. This allows you,
for instance, to change the name of a variable identifier
everywhere it occurs, very easily. Systematic spelling
corrections can be dealt with in the same way.

More recently, with the rapid increase in the power of

modern computers, very sophisticated editors have been
used to search text files in a systematic way. This is
amost always done in batch mode operation, with the
programmer using the editor commands as, in effect, a
specia text handling language. Theeditor can be usedto
find error messagesin acompilation listing, or toisolate
the results of a large program which are of immediate
interest, leaving the rest to be analysed at leisure. It is
possible, using an editor, tolocate, and print out thefinal
resultsof acalculation, to set up adatafilefor analysisby
another program, and to obtain the intermediate results
on microfiche, for storage. To do this the editor must
have powerful macro, looping and conditional prog-
ramming in a traditional computer language. These
facilities would be for too complicated for all but the
most experienced programmer to use from the
Keyboard. On large mainframes, however, it is more
economical to implement all the required facilities in
one large package, since those parts which are not used
will remain on disk, and will not be loaded into the
computer'smain memory. Thisisnot possible with most
microcomputers, which do not have enough memory, or
backing store to do this. It is therefore necessary to
mount several different editors, eachintendedfor usein
adifferent area. The main editor will be required for the
manipulation of programs and data before they can be
processed by the microcomputer. Indeed some interac-
tive computer languages, such asBASIC, include avery
smple line editor as part of their specification. This is
sufficient for most program editing needs, but is useless
for handling data, and other text files. If a compiler, or
assembler, isto be used astand-al oneassembler will also
be required.

The copy for this article was produced on a popular
microcomputer, using a very sophisticated text editor
and formatting system, which provides many of the
facilities available on commercial word processing sys-
tems costing many thousands of pounds. Although it is
eminently suitable for generating letters, and articles, it
cannot be used to generate program and data files, which
areto beinputinto assemblers, compilersand user prog-
rams since it automatically formats the text to fill the
desired page size. Commands are included to centre
lines, for headings etc., split the text into paragraphs,
andto assistinthelaying out of tables. Blocksof text can
be moved around, as desired, so that the writer can
re-organise his work, should this be necessary. All this
makes the writer's task a lot easier.

Text editors are now far more sophisticated than in
the earliest versions. The price to be paid is that, unlike
in the early days, many programs designed to perform
the same basic function, that is manipulating textual
information, arerequired, eachto be usedin adifferent
context. Most microcomputer owners will have several
text editors, each designed to be used in a different
context. Care must be taken to choose programs, which
are similar in use, otherwise you will become confused
when using the different editors. Each text editor should
be selected to provide a different facility, and not to
duplicate functions, which are already adequately
covered by other programs. Typicaly an editor will be

50 Liverpool Software Gazette March 1980

required to generate files to be read by any assemblers

and compilersthat you use, and a text editor/formatter SUPPORT MEMBERS OF THE

to be used as a smple world processing system.
NOTE COMPUTER RETAILERS
Thefollowingarticledescribesthedevel opment of the ASSOCIATION . ..
various editors used at one major site over a period of
fourteen years, and will be of interest to anyone
interested in seeing how a major item of software
develops over such an extended period.
P. Hazel, 'The Development of Text Editing at Cam-
bridge', IUCC Bulletin, 1, pp155-118 (1979).

THEY WILL SUPPORT YOU.

For further details on the associations aims,
membership, code of conduct etc.

Please contact: Mrs Gibbons,
Owles Hall, Butingford,
Hertfordshire, CE9 9PL
Tel. (0763) 71209

UNIVERSITY OF LIVERPOOL.
MICROPROCESSOR LABORATORY.
MICROCOMPUTER ASSEMBLER PROGRAMMING.

5 AFTERNOONS, STARTING TUESDAY 20TH MAY
1980.

This course gives a practical introduction to assembler level programming
of microcomputer sysems, particularly those based on the extremey popular
6502 processor. Practicals are arranged around the AIM-65 single-board
computer, but the principles discussed can be applied with equal easeto the
APPLE and PET, which are also basad on the 6502.

For prices and further information, Please contact:

DR. M. D. Beer,
Computer Laboratory,
University of Liverpool,
P.O. Box 147,
LIVERPOOL.

L69 3BX.

Liverpool Software Gazette March 1980

51

Disassemble your monitor

A TR AANAD
; .

\?.... : 4

52

Liverpool Software Gazette March 1980

Raymond Anderson

THIS article outlines an implementation of
ALGOLG68C on a Z80 microcomputer. The project is
being carried out by the author during his degree course
a Cambridge University to dlow users of Z80 systems
at Cambridge to write large programs quickly, and aso
to write large programs for his Nascom 1.

ALGOLG68C [1] is a sublanguage of Algol 68 [2, 3]
with some extensions. Algol68 is a powerful generd
purpose language based on the principles of Algol 60 but
with greater power and flexibility. Readers unfamiliar
with the language are urged to read a primer on the
language, but most programs included here are quite
readable and can be understood by reading the com-
ments and the text. The language is well checked at
compile time, and this, combined with the ease of accu-
rate expression in the language means that run-time
errorsarelessfrequent than with most languages. Thisis
of course a useful feature if reliable software is to be
produced.

The Algol68C compiler is written in ALGOL68C and
produces an intermediate code called Z-CODE [4] (see
appendix 2). The Z-CODE must be interpreted or com-
piled into machine code for a particular machine. In this
implementation the Z-CODE is compiled into machine
code by a 'Trandator' written in ALGOLG8C.

ALGOLG68C alows hashes (#'s) as comment sym-
bols. Remarks enclosed by hashes are ignored by the
compiler in the examples that follow.

The normal way of transferring ALGOL68C to a new
type of machine is as follows:

1) Write a translator in ALGOLG8C.

2) Trandate the Compiler and Trandator.

3) Write runtime library code for the target machinein
machine code, Z-CODE or ALGOL68C and translate
it

4) You now have a working compiler and translator on
the new machinel

Unfortunately, the standard ALGOLG68C compiler is

avery large program which requires aminimum of about
120K bytes of store on an IBM370. This means that until
asmaller version of the compiler iswritten, the compiler
must be run on a larger ‘host’ machine—usualy the
Cambridge 'CAP research computer. Initially therefore
the tranglator is run on the same machine, and the szeis
not a critica factor in its design. The code generated by
the cross-compilation is linked with a small library of
routines for transput (1/C), storage allocation and com-
mon utilities (e.g. multiply). This means that it will run
on machines with as little as 4K bytes of store.

The Trandator

Z-CODE is a simple assembly language for an abstract
machine. The compiler is told details of the instructions
available on the target machine, and it produces
Z-CODE which is eadsly translated into machine
instructions. The translator reads the Z-CODE from a
file, and produces outputin INTEL hex formatinwhatis
essentialy a one pass process.

Program segments may be compiled separately, allow-
ing a user to prepare a library of useful procedures for
use with his programs.

The main aim of the trandator is to produce compact
code without too much sacrifice of runtime speed. Thisis
achieved by the following techniques:

1) Rdative jumps are used wherever posshble.

2) Standard subroutines taking parameters on the hard-
ware stack are used where inline code would be bulky.
3) Some Z-CODE instructions are optimised to simpler
ones. For example HL:= HL *4 becomes ADD HL,
HL; ADD HL, HL etc.

4) The translator tries to keep track of what isin each
register, and does not perform redundant or useless
operations if it can avoid doing so.

5) The general Z-CODE registers are not firmly assodi-
ated with real machine registers—allowing some opera
tions to be done with the most suitable register, without
continually swapping registers.

s M e Boaii

Liverpool Software Gazette March 1980

53

The translator does not at present allow the use of
REAL or COMPLEX numbers, mainly in order to simp-
lify the runtime system, and also because most of the
work carried out on Z80's at Cambridge does not
involve real numbers. It is possible to write routines to
simulate floating point arithmetic to arbitrary precision
in Algol68 of course.

The basic modes (types) available are:

INT 16 bit integer

CHAR 8 bit character

BOOL 8 bit boolean (TRUE OR FALSE)
BUTS 16 bit value—machine word.

STRING 0-255 characters

These can be built up into structures and arrays or
‘'united values', without any extra work being done by
the translator. For example, a mode can be declared:

MODE PERSON = STRUCT (STRING first name,
second name,
INT age,
BOOL sex);

Then a PERSON can be declared (and initialised) thus:
PERSON subject :=(‘Anne', 'Stafford’, 21, female);

Assuming 'female' is a boolean value such as TRUE
(male being FALSE!).

Second name OF subject: = 'Smith’ would be a valid
operation in this instance.

The Translator program itself is about 5000 lines of
well commented ALGOL68C which runs quite quickly.
To apply optimisation, it reads the Z-CODE in 'Basic-
Blocks—sections of code in which there is no flow of
control to or from other places. Each basic block is
scanned to determine the ideal register usage, and then
translated into machine code. Extensive error checking
during translation means that faulty Z-CODE is
detected, andthis means users can safely write directly in
Z-CODE if the fancy takes them.

Runtime System

Algol 68 alows recursion in procedures and dynamic
declaration of array bounds. This complicates the run-
time system compared with simpler languages.

Consider the program:

BEGIN print (‘How much space?, newline);
INT space; read (space, newling;
[O: space] INT array;
#gleclaring a vector if integers#
etc....

END

The amount of space required for the array is not
known until runtime, so it has to be allocated dynami-
caly.

In addition to the above, there is a form of storage
known asthe HEAP. This allows objectsto be generated
inside a procedure (for example) and to remain in exis-
tence aslong as some reference to them exists. Thistype
of storage is useful in list processing, and is also used by
STRINGS, which may change in length during their
lifetime.

There are seven areas of storein Z80 implementation:

Program code— allocated beforerunning (constant).

Read only data — combined with program code.

The Z80 stack — allocated about 40 bytes before the
program starts.

Global variables — Allocated places in store during
translation.

Local variables — local to procedures which may be
recursive. They are accessed relative to |X (the local
stack) which is advanced when a procedure is entered.

Arrays (Global or Local)—A description of the array
is kept on the Loca or global stack, but elements are
held on the 'Dynamic stack' so they may be released
when needed no longer.

Heap Storage — is allocated by a routine 'heapgen'
when required. It isin aseparate area of store called the
HEAP area.

Store_Map:
TOP

I
I H E AP |

| Stack

IX 2L, e e e e e L
1 [
I Globals |
S |
1 Z80 Stack I
| ——————————— |
1 Program I
1 Code i
I -—— —— m— —— G e

BOTTOM

54

Liverpool Software Gazette March 1980

The top of the dynamic stack is pointed to by a word
on the locd stack. When space for an array is required,
theroutine'dyngen’ is called to give the space required.
This adjusts the pointer to the top of the dynamic stack
anoéorleturns the address at which the array may be allo-
cated.

If there is insufficient space, then a runtime error
routine is called.

When aprocedureisentered, anew set of variablesis
required, and also a record of the return address must be
kept. To accomplish this, al variables local to a proce-
dure are accessed as of fsetsfrom the I X register, whichis
used as a stack pointer.

The first two words on the locd stack are used by the
system. The first holds the address that the procedure
was called from, and the second is used to chain back to
the stack frame of the next enclosing textual level in
order to access variables which are neither loca to the
current procedure or global.

Procedure Calls

Algol 68 procedures always return a result although
sometimes the result is known as VOID, which meansno
value is really passed back. In thisimplementation, the
parameters for the procedure are copied up the stack
into locations where they will be accessible when the
stack pointer moves forward on entering the routine.
The result from the procedure cal isreturnedin the HL
register pair. In some cases the HL register will contain
the address of a result if it cannot be held in 16 bits.

Entry to a normal procedure is as follows:

The space used by the current stack frame is added to
the I X register, and the return addressis saved at offset
0. If achain value is provided in the DE register, it is
stored at offset 2 on IX. The code of the procedure is
now executed. At the end of the procedure, the return
addressistaken from offset 0, and the stack isretracted
toitsoriginal state. In practice these actions are done by
aroutine cal to ENTERS and ajump to LEAVE. The
procedure word giving the increase in stacksize
required. Thiswordisaccessibleindirectly viathereturn
addressfor useinretracting the stack, sotheoldValue of
the 1X register need not be saved on routine call.

Example:

Consider the program:

PROC add two numbers = (INT a,b) INT: a+ b;
INT x,y, z; #Declare three integers #
x:=3; y:=4; z:=add two numbers (X, y)

After assignment of 'x' and 'y', the stack will look like:

vl

Where each box represents two bytes. Just before the
cal, x and y are copied up as parameters:

Now the procedure is'called', setting IX to point to the
base of the procedure loca workspace. The return
address is placed in offsets 2 & 3 as described above.

S G2, S-S, 1

The routine now accesses its parameters as offsets from
IX. The sum of the parametersis calculated and held in
HL over the procedure return. The actual code pro-
duced is given in Appendix 1.

The stack after completing the routine call and assign-
ment of 'Z' will be

Runtime Errors

EVEN the best programs occasondly encounter run-
time situations that they either do not expect or cannot
handle. A clear indication of what has gone wrong is
useful, and if the place in the code where the error
occurred can be indicated, the message is even more
useful. Obvioudly the code has to be fairly compact so
the amount of data available when an error happens is
limited. In the Z80 implementation, it is possble to
follow back the routines which are currently using the
stack, and determine the start address of each one.
When the code for a routine is output, the first seven
characters of the routine name are generated before the
body of the routine. This enables the error routine to
print the names of the routines which have invoked the
routine which cased the error. In addition, the paramet-
ersof theroutines are thefirst few itemson the stack, so
the diagnostic message can print them out.

An example of a runtime error message is as follows:

++++ALGOL68C run time error: non digit detected in
‘read int’
stack: C832 heap: D6FO, dyn-stack: D220, top:D800

routine sgment ags

sysreadint ZLIB 2672 12 FF ED AD AA AA AA
readint BASE 26722064 AA 26 72 12 FF
nexnum MAIN 67546789 00 AA FD AA 21
(mainline) (no name)

This runtime error dump showsthat 'nexnum'’ routine
in the MAIN segment of the program called the 'readint'
routine in the sysem 'BASE' library, which in turn
caled the system machine code routine 'systreadint’
which detected a character which was not a digit while
reading an integer from the input file. The hexadecimal
numbers give the first 9 parameters on the locd stack
which may be useful of debugging. In this case they are
not very helpful, but the error message is explicit.

Typical Usss

Many useful programsare available in ALGOL68C at

]

Liverpool Software Gazette March 1980

55

Cambridge. The disassembler used in thisarticle will run
out on Z80, although it needs quite a lot of store. A
sequential logic simulator, a symbolic differentiator, a
turing machine simulator, several sorting routines, a
simple compiler for the 'A" language, and several games
programs in ALGOL68C are aso usable on the Z80.

Although programs written in ALGOL68C tend to
take up more space than hand coded programs, the ease
of programmingin AL gol68 more than makes up for this
in most cases

The system described would be very useful for writing
large commercid packages. There would be no source
code to pirate, and no overhead of BASIC interpreter.

ALGOLG68C allows the user to write CODE sections
in most places a BEGIN—END block would be accept-
able. These allow the user to write sections of machine
code or Z-CODE in aprogram when specia features are
required. System programmers use such features
extensively—indeed some the STRING operations are
written in ALGOL68C but with CODE sections where
the Z80 'block-move' instruction is appropriate. The
operating system for the Cambridge CAP computer is

; TITLE Output code for program

written in ALGOL68C, and the language has proved
suitable for the job.

Appendix |—Sample Programs

THE following programsaresimple programsto show
the type of code produced by the translator. The code
produced by the translator has been disassembled by
another program and commentshavebeen added. Some
of the calls to external routines will be to strange loca
tions as these are usually assigned by the link editor.

Example 1. The program in the text above
PROC add two numbers = (INT a, b) INT: a+ b;
INT X, v, z

X :=3; y :=4; z = add two numbers (X, y)

store 3 at x viaHL

00 store 4 at y via DE
store x at parameter 1
00 store y at parameter 2

ORG 00100H
START LD HL,3 010021 03 00
010322 7A 00
0106 11 04 Q0

LD (x),HL 0109ED 53 7C
LD EE 4 010D22 84 00
Lo (y),DE 0110ED 53 86
LD (L132)HL 0114CD 27 01
LD (L134),DE 0117 80 00 increasein stack sze
CALL ADDT 011922 7E 00
DW L128 011CC3 00 00
LD (z)HL 011F 07 name of next routine
P STOP 0127CD 02 FF
DB7,'addtwon' 012ADD 6E 04

ADDT CALL ENTERS 012DDD 66 05
1D L,(IX+004H) 0130 DD 4E 06
LD H,(IX+005H) 0133 DD 46 07
LD C,(IX+006H) 0136 09 add them into HL
LD B,(IX+007H) 0137 and return to caller
ADD HL.BC
JP LEAVE

store result in z

advance 1X and save

return addr.
HL:= parameter 1

BC:= parameter 2

Liverpool Software Gazette March 1980

The code produced by this program is.

START

FACT

L318

L384

#
™ Example 2: A recursive factorial program ™

PROC factorial = (INT i) INT: IFi = 0

INT a,b;

a = factorial (2);

LD HL,2

LD (parl),HL
CALL FACT

bW L126

LD (a),HL

LD (parl),HL
CALL FACT

DW L126

LD (b),HL

LD (par2),HL
CALL PRINTINT
DW L128

JP STOP

DB 07, "factori”
CALL ENTERS

LD L,%IX+OO4H§
LD H,(IX+005H
LD AL

OR H
JRNZ,L318

LD HL.L1

JR L348

LD L,(IX+004H)
LD H,(IX+005H)
DEC HL

LD (IX+OOCH),L
LD (IX+OODH),H
CALL FACT

DW L8

PUSH HL

LD L,(1X+004H)
LD H,(IX+005H)
PUSH HL

CALL MUL16

POP HL

JP LEAVE

s e wr e N we wr e e e W W ws e M e W W M e e W WY WS e MY W M W M M M us e wr owe

THEN1
ELSE i*factorial(i-1)
FI;

b: = factorial (a);

21 02 00

22 82 00 store parameter for fac.
CD 2C 01

7E 00 increase in stack size

22 7A 00 put result at a

22 82 00 and pass it to fac.

CD 2C 01

7E 00

22 7C 00 put result at b

22 84 00 parameter for next call
CD 00 00 0000 filled by link editor
80 00

C3 00 00 0000 filled by link editor
— name of routine.

CD 02 FF

DD 6E 04

DD 66 05getiinto HL

7D

B4 seif 0

20 05

21 01 00 set HL to result

18 1E and jump to end

DD6E 04

DD 66 05 geti back

2B subtract 1

DD 75 0C

DD 74 0D parameter for next call
CD 2C 01

08 00

ES result of call

EE 6E 04

DD 66 05

ES pushi

CD OF FF and multiply them

E1 into HL

Liverpool Software Gazette March 1980

57

Appendix 2—Examples of Z-CODE T237 146 0 0

S331 factoria *Z

IN case the reader is interested to see what Z-CODE T246 327 331 0
lookslike, here isthe Z-CODE for the second example F20 10 7 +4

above: F500 10 O +0

K10

H711 0 P332
B330 326 1 145 0 7 +172 *Z BASE*Z RO
FO 10 0 +2 FO 10 0 +1
F40 10 6 +202 H1 16 0 P333
K10 L332
1255 6 0 P327 7 +176 RO
Rl 10 1 F20 10 7 +4
F40 10 6 +172 F2 10 0 +1
K10 F40 10 7 +14
F20 10 6 +172 K10
F40 10 6 +202 1255 6 0 P327 7 +10
K10 R 10 1
1255 6 0 P327 7 +176 F4 10 7 +4
Rl 10 1 L333
F40 10 6 +174 R 10 1
K10 L334
F20 10 6 +174 R 10 1
F40 10 6 +204 T247 327 331 0
K10 U330 334
1255 6 0 P277 7 +200 Z

References

[1] SR. Bourne et a. ALGOL68C reference manual,
Cambridge University 1975

[2] van Wijngaarden et al. Revised Report on the
Algorithmic Language Algol 68, Springer-Verlag 1976

[3] CH. Lindsey and S.G. van der Meulen, Informal
Introduction to Algol 68 (Revised), North-Holland
1977

[4 Bourne, Cheyney et a. Z-CODE—a simple
machine, Cambridge University 1979

Liverpool Software Gazette March 1980

@ \VICROCOMPUTERS&BIOCHESTRY

Dr R.J.Beynon Lecturerin Veterinary Biochemistry
University of Liverpool

P.O. Box 147

Liverpool L693BX

Introduction

AS a highly specidised subject, Biochemistry has been
restricted in genera to the Universities and Polytechn-
ics, research ingitutes and large industrial laboratories.
Atall of theselocations, large, mai nframe computersare
well established, and access to high-quality computing
facilities has been available to most biochemids for
many years. The number of biochemists who have made
use of these facilities has been limited, in my opinion for
several reasons.

Firstly, biochemistry is closer to being a descriptive
than amathemati cal science—we understand solittle of
thewaysinwhich avast array of complex moleculesare
assembled into a structure as complicated as a living
human cdl. (As a life scientist | take exception to
Lauries recent editorial in 'Practical Computing'
[1]—when his idol—the ‘wonder chip' produces a self
replicating, adaptive, cognitive and independent
machine in 70 kg (c.f. the human body); then he can
make derisive references to ‘butcher's shop
materials—until then, due respect to nature and her 3.0
billion years of research and development.) Conse
quently, modds tend to be smple and are analysed
readily without recourse to the application of mainframe
facilities.

Secondly, the centrdised mainframe with its aggres-
sive operating system and slow turnroundis areal deter-
rent to its use for small jobs—sometimes it's just not
worth the walk to the nearest data centre.

Finaly, biochemistry is an experimental science and
the biochemist must be aware of the partition between
acquisition and analysis of data—there is a danger of
computersleading a'gloss of sophitication’ to adescrip-
tive science.

And now, biochemists note the arrival of the mic-
rocomputer, replete with its entourage of attendant
adjectives, ‘'approachable, affordable, local, per-
sonal ..." We have to ask ourselves whether these mic-
rocomputers offer anything new that mainframes

couldn't deliver. What | hopeto achievein thisarticleis
to describe, using persona experiences to illustrate
cases, the potential value that these machines possessin
an experimental science. | doubt if I am particularly well
qualified to provide much enlightenment and | shall not
include any programs. | take full responsibility for my
opinions and will be pleased to communicate with any-
one who wishes to raise any points from this article.

Anoverview

There are three major areas where microcomputers
could be used effectively in biochemistry:

() Teaching

(2) Andysis of 'hand input datal

(3) On-line analysis of output from analytical instru-
ments. Trying to decide on a configuration that is suit-
ablefor dl three areasisdifficult, but atypical specifica-
tion might include:

Hardware Software
Disk drives . Accuratefloating point
Hard copy—idedlly graphic routines

Easy interfacing to instru-
ments
High-resolution graphics

Graphic routines

High level language

M tachi necodeenvironm-
en

This specification is demanding and is probably met
by few systems currently available. The configuration
that we are using at present is shown in Fig 1, is based on
an Apple Il plus and cogt in the region of £3,500 (Fig 1,
Table 1). In addition, the biochemistry department at
Liverpool has an 8k (shortly to become 32k) PET and
printer.

Teaching applications
Noble thoughts of teaching the principles of, say,

enzyme kinetics, through the use of a microcomputer are
best forgotten, unless the department is willing to gt

Liverpool Software Gazette March 1980

59

down for afew months and write first class software to
run on the machines. Whilst | enjoy writing programsin
BASIC, | am primarily abiochemist and make no aspira-
tions to being a programmer. Even the expensive
Chelsea Science Simulation program on enzyme kinetics
is easily crashed, and | wouldn't like to present it to a
naive user.

The potential for the use of microcomputers in
biochemistry lies in the illustration of biochemical con-
cepts. Demonstrations in tutorials, particularly with a
decent size monitor and graphics, but under the control
of the tutor, can make a valuable demonstration of an
important principle. One fascinating area in which such
a demonstration would be of considerable value lies in
the illustration of the genetic code. (Forgive the brief
tutorial that follows).

The bass of modern molecular biology resides in what
is called 'the central dogma'. This states that the genetic
material that is passed from one generation to the
next—nuclei c acid, codes for the major determinants of
bi ochemical function—the proteins. Simply, the codeis
as follows: nucleic acid contains 4 bases, represented by
the letters A, U, G and C. These 4 bases code for the 20
different'buildingblocks' of proteins—theaminoacids.

Consider the nature of this code; clearly it cannot be
on the level of one base: one amino acid—because then
the 4 bases could only codefor 4 amino acids. Similarly,
apair of bases, suchas AU, AG, CC etc could only code
for 4% amino acids (= 16), and would not be sufficient for
the twenty acids. In fact, triplets (or codons) of bases are
used, giving 4* = 64 possible codes for 20 amino acids.
Since there are now more codes than amino acids the
code becomes degenerate, with more than one codon
specifying one type of amino acid. There are also two
'start of message' codons, AUG and GUG and three
‘end of message' codons, UAA, UAG and UGA. Inci-
dentally, each human cell contains approximately 800
million codons (equivalent to 600 megabytes of infor-
mation) packed into avolume of 65 cubic microns—puts
64K RAM into shame doesn't it?

The process of taking a sequence of bases, looking for
'start' codons and deci phering the subsequent code until
an 'end' codon is apparent is called 'translation’. Nor-
mally, thisbiochemical processistaught statically, but
here is an area where a microcomputer would be of
considerable value. We are preparing a program that
allows the student to i nput a sequence of bases or use a
computer generated random sequence and then trans-
late it. The program could then alter one of the bases in
thesequenceandretranslateit (inbiological termsthisis
a mutation) for example, mutation of UCA to UGA
would cause premature termination of the process—
UGA is an 'end' codon. Other work using computer
generated sequences of bases have been described [2].
(We hope to have our program running for student use
by October 1980).

Programsfor the PET which simulate the experiments
for sequencing of a chain of amino acids have been
described [3] and the Chelsea Science Simulation pro-
jecton enzymekineticsispublished by Edward Arnold
[4|. For an introduction to the use of computers in

biologica education the reader is referred to the recent
papers by Smythe and Lovatt [5] and Morgan [7].

On a more mundane level we shall provide statistical
routines on the PET for use by students of Veterinary
Biochemistry during their practical work—therearefew
better ways of teaching datigtics than by the application
of tests to the students own data.

From an administrative aspect we are using the Apple
Il to maintain marks of veterinary science students
throughout their two years of biochemistry. The use of a
minicomputer to maintain a 'bank' of multiple choice
examination guestions has been described [6] but | sus-
pect that storage limitations might impede such
developments on microcomputers.

Analysis of hand input data and 'personal computing'.

There are a number of advantages associated with the
acquisition of a microcomputer as part of the research
equipment available to the biochemist. A series of prog-
rams that are designed within the requirements of a
limited research group or which provide frequently-
referenced information could remain in the machine (or
on the disk in the drive) all day, and be accessed as
needed. The software for this type of 'laboratory utility'
program hasto be elegant, however, asit will be used by
many people, from the original author to students. Boot-
ing procedures and commands impede the user if he
knows little about the machine or BASIC and are best
circumvented. Many microcomputers with disk drives
allow automatic loading and running of an application
program immediately after power-up with no interven-
ing steps. | consider that this is an essentia element in
building up sets of utility programs. Use of the computer
then becomes very secondary to use of the programs—
all the user needs to know is how to insert the disk and
switch on the machine. If the software is of sufficiently
high quality it should be impossible for the user to escape
from the environment of the program and should never
'see’ the interpreter or command level—the program
should be crashproof.

The design of crashproof programs often seems to
consume far more memory than the central mathemati-
cal routines. All input should be entered as strings—
many tests are possible on string data, including scansfor
‘end of data markers or 'help!" requests. More difficult
are overflow errors, but with the BASIC interpreter
available on the Apple Il and several other machinesthe
'ONERR' function alows control of such erors. All
that is needed is a jump to some routine that tells the
user that an overflow problem is apparent before
RESUMEIing execution. We generally find that the
mathematical routines are the simplest part of the prog-
ram to write—embedding those routines into an error-
proof program can take much longer. The following
criteria are those that we try to apply when producing
utility software for generad use.

1. The program should resist attempts to crash if by the
entry of mismatched or ridiculous data.

2. The program should resist ‘control C' type attempts
to half execution (I don't have a method for resisting

60

Liverpool Software Gazette March 1980

'RESET on the Apple—any suggestions?)

3. The program should respond to a specified 'HELP!'
key (e.g.'?") and should give appropriate assistance
according to the position in the program.

4. If the program goes away to perform long calcula-
tions it should inform the user. (Have you ever been
asked to hold on during a telephone cal and ended
up replacing the handset because you don't know
whether the silence at the other end means that you
have been disconnected?)

| know that these are all obvious—but by writing them
in—a 4k set of marks routines quickly becomes a 16k
program. Some readers may be interested in the routine
in Fig 2—this does some of what | feel is necessary—but
does not include the ONERR overflow and control C
checks. The subroutine would return with RF st to a
value dictated by the keys pressed, and with valid asves
inTSsand TV if RF = 1. A routinein the main program
including an ON RF GOTO could then deal appropri-
ately with the response of the user.

The types of programs that we are using or developing
include routinesfor the design of buffer solutions, which
maintain hydrogen ion concentrations at defined levels
in experiments, statistical routines for group analysis or
regression and routines for driving the plotter to pro-
ducefully annotated and drawn graphsfor thesesand for
publication. Incidentally, | am against the common type
of regression program that allows the user to fit a curve
to data according to each of six relationships—you
should decide which relationship your data conform to
before performing any curve fitting.

Findly, within this context we use a database system
on the Apple Il to allow limited access to the scientific
literature appropriate to our research. The program
allows limited subject guided searching and gives abrief
citation, a reference to a card index containing more
information and a brief summary of the subject of the
work. Thisis helpful in providing reading lists for new
students or for running a rapid search through, say, the
file containing the set of the 600 references of interest in
1975.

'On-lin€ analyss of data

Many manufacturers are now releasing sophisticated
microprocessor controlled analytical instrumentswhich
boast an impressive repertoire of capabilities that may
be user-defined. (One spectrophotometer has a locking
key that disabled the control panel and prevents casual
button pushers from altering instrument settings!) These
machines are expensive (especialy in the face of dimin-
ishing research funding) and are limited to the flexibility
designed into the instrument. The alternative
approach—to interface a microprocessor to an existing
instrument—is attracitve. This is especidly so with a
microcomputer, as the availability of a high level lan-
guage will dlow the user to write his own analytical
routines.

The majority of analytical instruments output infor-
mation as an analogue signal—posing the first problem
of interfacing to a microcomputer. The majority of mic-

rocomputers that are currently available use 8 bit
micro-processors and so can handle data best in 8 hit
chunks. The use of an analogue/digital converter that
produces 8 bit digital data has limited application in
analytical research, as the range of numbers represent-
ing the whole of the analogue signal can only be from 0O
to 255—an effective resolution of about 0.5%. Again,
one of the reasons that promoted us to acquire an Apple
was the availability of 12 bit A/D converters—giving a
resolution of 0.25%. Obvioudy, software is needed to
take the 12 bit signal, stored in two consecutive locations
in the scratchpad RAM for the converter, to a form
represented in 8 bits—but in machine code thisis appar-
ently very rapid.

The application that we are planning is the interfacing
of the Applel to aspectrophotometer— an instrument
that measures the absorption of light by different
molecules. The spectrophotometer would normally be
controlled by TTL level signals which are available on
one of the ports of the Apple. The analogue signal from
the spectrophotometer would be passed through the 12
bit A/D converter to the Apple which would initially do
little more than store the data. Subsequent analysis, with
trial output onto the monitor at a resolution of 0.6% or
eventual output onto the plotter, could then be per-
formed at leisure. (Fig 3). The software to drive the
set-up would permit repeated, timed scans, subtraction
of one scan from another, averaging of data, and would
allow dumping of datato disc, output to the screen or to
the plotter. All of this could be performed within the
experimental limits defined at the outset (or brought in
from disc) by the person currently using the machine.

One a more sophisticated level, differentiation of
changing anal ogue signals or integration of areas under
curveswould befeasible. The major disadvantageof this
application isthat the microcomputer iscommittedto an
instrument, precluding its use for other applications.

Conclusons

Withoutintroducingtoomuchbiochemistry, 1 hopeto
have indicated the ways in which microcomputers can
find application inteaching and research in this science.
Theideas presented here are not new, but indicate what
wearedoing currently to make use of the new machines.
Progressisinvariably slow, and afew of theapplications
have progressed little beyond the paper stage. Perhaps
in acoyde of yearstime we will be able to claim to have
integrated the microcomputer into our laboratory—
demoting it from its somewhat exalted position to an
important tool in teaching and research.

REFERENCES
[1.] Laurie, P. (1980). Practical Computing, 3: editorial-para.

2-J Bryce, C.F.A. (1977). J. Biol. Ed., | 1, 140-142.

3] Cunningham, P. (1979). Biochem. Ed., 7, 83.

[4.] ENZKIN-Edward Arnold Publishers Ltd., 25 Hill Street,
London, WI1X8LL.

[5-1 Smythe, R. and Lovatt, K. F. (1979). J. Biol. Ed., 13,
207-220.

[6.] Bryce, C.F.A. (1979). Biochem. Ed., 7, 17-18.

\7.] Morgan, M.R.J. (1979). Biochem. Ed., 7, 84-85.

Liverpool Software Gazette March 1980 61
Table 1 FIG1
An Apple I1-based microcomputer sysem Monitor (b/w)
Computer : Apple Il, 48k RAM, BASIC, 9 digit Line printer

floating point routines, graphics. 1
Disk storage : Single drive + controller 110 k/Di sk, —> APPLE II

DOS 32 D LBK
Hard copy : Centronics 779 matrix printer + parallel Disk-100K

interface

Y
Houston Instruments plotter + seria Plotter

interface

AN Apple-based microcomputer system in use at the
Department of Biochemistry at Liverpool.

FIG 2 %61 (REM SUBROUTINE FOR NUMERIC INPUT
-£,£="" TV=0 FEM RESET'', 'HFIH3LES
1020 GETP.* IFfif=""THEN1020
1P3@ IFf1SCe Pj >=1UTHEN1 140 FEM FETUF'N 'e
IFf1f="""'0Ffi|-=", '""rriBfJ1150 FEM i-ELF '
1040 IFri-N"."QORP.f="+"&FPf="-"THEN11r0
1050 FOP L=0TC? FEM NUMERIC"

:.Il. IF HSC<. PI- #=4S’-LTHEMI 160
1 & HE..T L

OTO 1020
1140 RF=1 GOTO1190
1150 PF=2 GOTO 1200
1160 TSf=To5+R3

15 - ehP

1190 TV=VAL(TSS$)

1200 RETURN REM RETURNS WITH FF.T%.T&#
READY.

AN inescapable numeric input routine The subroutine
returns with 1 numeric value in TV and RF - 1 or
alternatively ifthe help' key was pressed RF = 2 Note
that negative or real numbers could have been excluded
by altering line 1050

/g—:\ Spectrophotometer

\
o oo [

Control signals v _
~~= " 12pit AID
converter

FIG 3

| Apple 1l

A

__JV

‘ ‘] Plotter

\/

Use of a microcomputer for on-line analysis.

62

Liverpool Software Gazette March 1980

Sharp 4R

"‘t:’)h

The Machine Language Program SP-1002 is the | atest
software from the Sharp stable for their MZ-80K Per-
sonal Computer. It allows the user to write, debug and
save on tape machine code programs, to be used either
by themselves, or in time critical parts of high level
language programs.

The software comes in the form of a cassette tape
which is loaded into the machine, and an instruction
manual, which explains both the commands of the prog-
ram and the instruction set of the Z80 microprocessor,
which is the CPU in the Sharp MZ-80K.

The programs availability on tape, rather than in
R.O.M. follows Sharp's policy with their BASIC Lan-
guage tape. They claim it has the advantage of easier and
cheaper updating of the software in the future.

Certainly the disadvantage of waiting for the tape to
load inisnot great. It takesjust under 30 seconds for the
tape to be read in, and the amount of free R.A.M. on
board to be checked. The program lies from 1200 H
through 2000 H and like the BASIC program the cold
start is at 1200 H. On start up the program announces
itself on screen and then proceeds to check the amount
of R.A.M. present in the machine. In so doing it sets all
this area to zero, thus destroying any data present.

Therefore if the Machine Code Program is to be re-
executed, after jumping back to the monitor, say, then
the warm start at 1260 H can be used. This does not
perform a R.A.M. check and consequently any data in
the free area from 2000 H upwards is safe.

Incidentally, since the Machine Language Program lies
in the same areain memory as the BASIC program, the
BASIC load command cannot be used to load this tape,
|oading must be done viathe monitor or an overlay error
will be detected. Once the tape is loaded we are ready to
do some machine code programming. All the commands
in this program use single character codes followed by
hexadecimal arguments as appropriate.

A printer command implemented by typing a
character, enables anything printed on screen to be
duplicated on an external printer (not available as yet).
A second# character will disable the printer drive. Note
that trying to use this command without a printer

‘@~ aching Wgwag,e?rogw SP-(002

Mike Shannon

Engineering Dept
Microdigital Ltd

attached will give an error message and terminate the
command.

Typing 1" as a command will return control to the
monitor. When using this command take note of what
was said earlier if ajump back to the Machine Code
Program is to be performed.

The first command to use for actually placing your
own program in memory is the Memory Write Com-
mand or W for short. After pressing W, the program
insertsits own space and waits for afour digit hexadeci-
mal address to start the writing operation. Any invalid
characters (non hexadecimal) typed in for the address
are not accepted and the 'bell’ is sounded.

If the format of the arguments is not correct i.e. car-
riage return is pressed before typing the full argument,
then several bells are sounded and the command is ter-
minated, with the message 'INVALID' being displayed.
If any of the arguments fall outside the free memory
area, some question marksare printed and the command
isagain terminated.

These features, along with the auto spacing appliesto
most of the commands and takes a bit of getting used to,
compared to 'dumb’ executive programs on other
machines. Once the start address has been specified,
hexadecimal datamay be typed in with the display show-
ing 8 bytes to aline. The start address of each block of 8
bytesis shown at the |eft of the line. The command may
be terminated by pressing Carriage Return.

One annoying feature is that the Delete Key is
ignored. Thus if the wrong address is typed by mistake
the command must be terminated and re-given. This
problem does not occur with incorrectly typed data
entries. This is because the 'cursor left' key can be used
to step back up memory and make corrections. Another
useful feature of this command is that if relative jumps
are being used in a program, there is no need to work out
the offsets yourself.

When the point has been reached where the offset
must be typed, a full stop followed by the four digit
actual address may be typed instead. The program will
automatically calculate the relative offset in 2's compli-
ment and insert it at the relevant point in the program.

Liverpool Software Gazette March 1980

63

Once your program has been typed in it may be
checked before executing or saving to tape, by using the
memory dump or M command. This requires two four
digit arguments the start and finish addresses of the
block to be looked at. The block is displayed in the same
format as the W command, the start address and then a
block of 8 bytes to a line. The dump may be broken at
any time using the break key. On screen editing may be
performed using the cursor control keys. The command
is terminated with the CR key.

A useful related command is the transfer X' com-
mand which can be used for moving a block of data
around in memory. It requires 3 arguments before it is
executed, the start address of the originating block, the
end address of the originating block and the start address
of the destination block.

Thenext usual stepinwriting amachine code program
is to save it on tape. Thisis a safety step. For, unlike
programmes written in high level languages like BASIC,
if there is one incorrect byte in a M/C program the
processor can go tearing off up memory destroying
everything in its path, never to be seen again, (I speak
from bitter experience)... At least with a copy on tape
(albeit with a bug in it) there is a fighting chance of
spotting the error by reloading the tape and examining a
dump of the program on screen.

The tape save command'S' asksfor afilename for the
program to be saved under. This may be any combina-
tion of characters up to a maximum of 16. (It's a pity
other manufacturer's monitor programs don't have
morethansinglecharacter filenames. Areyoureceiving
me NASCOM?!!) The start and finish address of the
block to be saved are then asked for.

After saving a program it may be verified using the V
command. A file name may be specified to be searched
for, or CR may be pressed and the verification done on
the first program found on the tape. If any mismatches
are found an error message is displayed.

A similar action istaken to the above when'yanking' a
program from tape at a later date using the 'V com-
mand. A filename may or may not be specified and any
checksum errors are flagged on screen, otherwise the
programisloadedintothesamesectionof R.A.M.itwas
saved from originally.

Once the program has been safely saved on tape, the
program may be executed. This is done using the 'G'
command. Thisis the same as the GOTO $ command of
the monitor and requires a four digit hexadecimal
address at the start of the program.

If there are no bugs in the program every thing will
work correctly, but if something iswrong, results will be
very unpredictable. Thisiswhere the remaining com-
mands come | eaping to the rescue. Four commands are
available to display the contents of the Z-80's on board
registers. The 'A' command displays the Main register
set (AF BC DE and HL) and allows modification by
cursor control.

The'C command displaysthecomplimentary register
set (AFBCDE' and HL'") in the same format. The 'F
command displays the Specia Purpose registers PC SP
IX 1Y and | and aso alows modification.

Finally the 'R' command displays al the above three
sets of registers but does not alow their contents to be
modified.

The breakpoint or 'B' command allows you to set up
to 9 breakpoints in your program with each being
executed an individual number of times up to a max-
imum of 14. Thisisvery useful for analysing conditional
jumps out of loops. On typing 'B' all the current break-
point addresses and execution counters are displayed.
They may be modified or added to using the cursor
controls.

Certain limits are put on where a breakpoint can be
placed in a program. For instance, you cannot set a
breakpoint at a DJNZ, an RST7 or a CALL type of
instruction (i.e. one's that save the Program Counter on
the stack. Applicable error messages are displayedif this
is attempted or if more than 9 breakpoints are set. On
executing your program by way of the 'G' command as
so0n as a breakpoint is encountered the 'R' command is
automatically executed and all the CPU registers are
displayed. Also programexecutionishalted. Execution
may be advanced to the next breakpoint by typing'G' if
all proves OK inthe first section of the program. By this
powerful method bugs can usually be erradicated if
breakpointsare set at rel evant pointsinaprogram. Once
aprogram is freed of bugs all breakpoints may be cleared
by executing the clear breakpoint or '&' command.

One command missing from the package is a single
step facility. This could have proved avaluable addition
but since it is usually implemented using the NMI and
some hardware, and the NMI on a MZ-80K is perma-
nently pulled high, this could not be used. Thiscommand
is not missed so much since the breakpoint facility is very
comprehensive.

The manual that comes with the cassette tape has
detailed descriptions of all the commands, along with
other useful tablesof information. Amongst thedatais: -

A Memory Map of the, MZ-80K, although details of
the individual input/output addresses of the ports used
are missing.

An explanation of how to link your machine—code
routines into a BASIC program.

A list of the monitor and user callable monitor sub-
routines.

The Z-80 flags are described in detail and the rear half
of the book includes all the Z-80 instructions listed three
times. One list is by mnemonics in aphabetical order,
one by hex-code in numerical order.

Thefirstlist will prove inval uable when hand assembl-
ing aprogram, and the second is agreat boon when hand
dissassembling someone ese's program! All the instruc-
tions are aso listed grouped by instruction type, with
such details as numbers of clock cycles, no. of bytes and
the way in which each flag is affected. This lit is similar
to that in the Mostek or Zilog 280 CPU Technica
Manuals.

The book is fine (after running through a
Japanese—English cross compiler) for anyone like
myself who is used to Z-80 machine code programming,
but is not conversant with the MZ-80K, but for anyone
starting out on low level programming | feel that addi-

64

Liverpool Software Gazette March 1980

tional guidance is needed. Either Nat Wadworths Z-80
Cookbook (Scelbi), Rodney Zaks Programming the
Z-80 (Sybex) or William Bardens Z80 Microcomputer
Handbook (Sams), (or al three!!!) would offer a good
introduction.

The one Assembly listing, included as atraining prog-
ram, which is well presented with flow charts €ic, is a
start, but brings back memories of trying to figure out
how the 'Write the character set on the screen introduc-
tion to Z80 code' program supplied with Nascom 1 kits
actually managed to work. Mind you at least Nascom
gave you an assembly listing of the monitor R.O.M. and
a technica manual on the PIO.

In conclusion the program offers some very powerful

commandsin assisting with the writing of machine code,
but I do think a little more could have been included in
the manual (at least a list of useful books) to help first
time hex key-pad punchers. Well seasoned Z-80 freaks
should have no trouble using the facilities provided and
we can expect to see some fine programs sent in to the
Gazette, if you get your fingers out!

Finaly most of the commands are prevented from
being used anywhere except in the free area. Thismakes
saving a backup copy of the Machine Code Program (or
taking a peek at it) impossble. However, the short prog-
ram at the end of this article moves the main program
into the free area, so that it may be interrogated by you
a your leisure! Happy hand-dissassembling!

0010 ¢
0020 ' ZEAP ASSEMBLER RUN ON
0030 ¥ NASCOM 1. 29. 2. .86

0040 , LETS ***x*[EAP**** TINTO ACTION

0050

0060 : MIKE SHANAHAN

0070

-z

MICRODIGITAL ENG. DEPT.

0080 ; KKKAK Kok ok kK XK ok 3 K ok A K KKK K NOKOK Nk kK

0090 ; =* SHARP MACHINE LANGUAGE *
0100 * = PACKAGE BACK-UP PROGRAM *
0113 : ******************************#
0120
0130 . THIS PROGRAM IS TYPED IN
0140 * USING THEM MACHINE LANGUAGE
0150 ; PROGRAM. AFTER EXECUTING FROM
0160 ; $2000 THE M/C PROGRAM IS
0170 . MOVED UP IN MEMORY FROM
0180 ¥ $2200 TO S2F00.

2000 0190 ORG £2000

2000 210012 0200 START 1D HL, £1200

2003 110022 0210 IS8T LD DE, £2200

2006 01000D 0220 LENGTH LD EBCy £0D06

2009 EDBO 0230 LDIR

200B C36012 0240 ENID Jp £1260
0250 ;
0260 , THE SECOND PROGRAM CAN BE TYPED IN
0270 " NEXT AT THE SAME LOCATIONS.THIS
0280 ;| IS SAVED ALONG WITH THE MOVED MAIN

0290 | PROGRAM

FROH $2003 TO $3000 BY

0300 ; USING THE 'S' COMMAND.WHEN THIS
0310 ., BLOCK IS RELOADED AT A LATER DATE
0320 ; USING THE MONITOR 'LOAD' COMMAND
0330 ; AND EXECUTED USING GOTO $2000 ' v
0340 ; THE MAIN PROGRAM WILL BE MOVED

0350 ¢ BACK TO

$1200 TO $1F00 AND A COLD

0360 ., START WILL BE DONE AT $1200.

0370 +

0380 *

v g oy vy vEs o Ty g Aoy

0390 . NB. DO NOT RE-EXECUTE AT $2000

Liverpool Software Gazette March 1980 65

0400 ; SINCE THE M/C PROG. NULLS ALL
0410 ; FREE SPACE
0420 Fxkkkkkdkdkkkhhkdkkdokkdkrhhrhdxh kxR F Rk k ok kkkkkkkkkkkkhxd
0430 *
0440 ; THIS PROGRAM MUST ONLY BE USED
0450 ? FOR MAKING A BACK UP COPY OF
0460 v AN ALREADY PURCHASED TAPE **%
2000 0470 ORG £2000
2000 210022 0480 START1 LD HL, £2200
2003 110012 0490 DEST1 LD HL, £1200
2006 01000D 0500 LENG1 LD BC, £0D00
2009 EDBO 0510 LDIR
200B C30012 0520 JP £1200
0530 ? M/C PROG. COLD START
% to January 1980 edition
REVAS AND ZEAP APPLEPIPS
PAGE 20 PAGE 48
Line 6 of the listing should read Third paragraph (listing) lines 9 and 10 should read
8EOO 0060 ORGESEOO ; norma start for 40 DATA %gg 7, 202, 16, 244, 200, 192, 196, 144,
PAGE 21 50 DATA 96, 63
_ o You, our readers, should notice that there were few
Line 4 of ligting should read errorsin our second edition, in comparison to our first.
We can only hope that the saying 'practice makes per-
8F3D20.... 0330 DEFM/ORGE/ fect' appliesto our magazine and that with more experi-
ence in each issue you will find fewer mistakes.
PAGE 23 Again, our apologies for these errors.

Line 28 of second listing should read
OFA2 2A0COC 0085 LDHL, (ARG]) ;first
line requested

Liverpool Software Gazette March 1980

NCA\N
TROUNK

Sales Manager
Microdigital Ltd

/

-

MY first attempt at writing anumerical sort programme
wastypically awful. It seemsthat everyonesfirst attempt
at serious programming after giving up trying to write
the best computer game yet, isto have ago at writing a
programme of one sort or another 'OUCH!

| went straight to it without any researching into sort
algorithms and my first attempt took about three hours
to put 250 randomly generated numbers into correct
ascending order (I've seen worse first attempts since).

As| was using an old R.O.M. Pet at the time, | was
unable to get any sensible results for more than 250
numbers (although | would have hadto sit upal night to
take them anyway), due to the value replicating error in
theold Pet R.O.M. However, it wasn't until | had made a
few attempts that | found out about this fault.

If your not familiar with this problem and can get your
hands on an old ROM Pet, then try opening an array of
500 variables and filling every other one with the num-
bers 1 to 250 in ascending order i.e.

i

10 DIMA (500)
20 FORI=1TO 250

. A(1*2)=1 NEXT
30 FOR|=1TO 500 :

2A() : NEXT

Then on listing them in line 30 you will find that some
weird and wonderful thingshave happenedto thearray.

After overcomingthat little problem | gave up my sort
programme since it was 60 times slower than the only
other sort programme | had seen running.

Thenwhilel wason holiday over Christmas, 1 gradu-
ally realised (I thought) how thisother programme must
have been doing it, and resolved to write one of equal
efficiency. Thanks to my not having read about sort
algorithmshbefore, | hadfound avery obviousbut seem-
ingly unusual algorithm.

'Of course' | thought, 'He's using the random num-
ber itself as an address for it's new position in the array.’
And that, of course, meant that it had only to make one
passthrough the Jumbled Array.

This approach produced a very fast but very simple
programme, the first version of which somehow found
Its way into last month's issue of this magazine.

Thisoriginal version used aneat method of maintain-
ing a record of each number's original position without
havingto usean extraarray whichwould wastevaluable
memory. The usual method, to my knowledge, is to
move each number's position record in a separate array
in paralel with the movements of the number itself.
Then when the completed array islisted, its sister 'posi-
]'Ei on' array islisted asarecord of where the number came

rom.

A dead give away asto how to get around thiswaste of
memory is in line 100 of last months version. Firstly it
prints the number in the original jumbled array pointed
to by the current variable in the sorted array; A(B(1)).
Thisis the next value in the ascending list. It then prints
the current pointer in the sorted array which is of course
the original position of the value; B(l). Findly it prints
the new position; D.

This system received some criticism as it meant that
the numbers themselves were not sorted although their
addresses in the origina array were. Further criticism
was aimed at the fact that these pointers were packed
quite loosdly in an array three times the size of the

Liverpool Software Gazette March 1980

67

original array. (See line 40). For this reason, it was
necessary to vet out the zeroes scattered about in the
pointer array when listing the sorted numbers.

| think that the importance of these featuresis purely a
matter of opinion since just as many people seem to
think that it is the end result that matters and not the
way in which it is obtained.

Anyway, this month | have re-written the programme
so that it can handle user values within any range that the
machine can handle. (In this case an Apple). | have dso
removed the original position feature and instead, relo-
cated the list of variables in ascending order in the origi-
nal array, but | have also provided a list of modifications
for putting the old features back. However, 57 seconds
for sorting 1,000 numbers in a range of 0—21,000 is till
pretty fast and the programme is still linear for a well
distributed set of variables, i.e. 6 seconds for 100 num-
bers and 60 seconds for 1,000 numbers.

To run the programme you will firstly have to answer
the question 'How many numbers do you want to sort?
with a value greater than zero.

Next you have to enter the lowest and highest allow-
able value. If those are entered as the same value then
the highest value will be re-prompted. If they are the
wrong way round then both values will be re-prompted.
These values may be anything between -1E37 and 1E37
provided that the included range does not exceed 5E35.
It uses these two values to determine the modifying
constant needed to obtain an address from each value.

Having successfully got through that lot you will be
asked 'Do you want to input your own numbers?

| suggest that, if your response to the first question was
a humber greater than 50, and you are simply running
the programme to test it, you should answer 'NO' to this
question ('N' will suffice) and let the programme gener-
ae its own random numbers. If you reply 'YES' ('Y")
then you will be prompted with a standard '? for each
value. Once you have entered the required number of
values the sort will automatically begin.

The programme can be converted as mentioned above
by changing the following lines:-

190 B(C)=I:NEXT
230 C=C+1:PRINT A(B(I)), C
240 NEXT:END

300 IF A(B(C)) < =A(l) THEN 280

To conclude, |1 have compiled a ligt for both of the
above version.

LINEARITY TEST VERSION VERSION
1 0
100 numbers from O to 100 6 3
200 numbers from 0 to 200 12 6
300 numbers from O to 300 17 9
400 numbers from 0 to 400 22 13
500 numbers from 0 to 500 29 16
600 numbers from 0 to 600 34 19
700 numbers from 0 to 700 40 22
800 numbers from O to 800 46 25
900 numbers from 0 to 900 51 28
1000 numbers from O to 1000 57 31
ODD TESTS
100 numbers from 0 to 1000 5 3
1000 numbers from O to -1E6 to 1E6 57 30
1000 numbers from O to 5E35 56 30
100 number from 1 to 1 + 1E-8 8 6
500 number from 1 to 1+ 1E-8 104 98
1000 numbers from 1 to 1 + 1E-8 423 400
100 numbers from 1 to 1+ 1E-7 5 3
500 numbers from 1 to 1+ 1E-7 35 24
1000 numbers from 1 to 1 + 1E-7 85 63

SUPER SORT

o)

[INPUT NO OF

VARIABLES-X

INPUT RANGE OF
VALUES-YtoZ

N
DIM. ARRAYS
A(X).B(Xx2)

Liverpool Software Gazette March 1980"'1;
i
1
1

NOTE ADDRESS-

F=C

MOVE UP TO NEXT
ADDRESS

MOVE UP TO NEXT
ADDRESS

SET MOD. VALUE
P=39xX/(20x(Z-Y))

C=C+1 A

TAKE FIRST
VALUE A(l)

M |

MOVE DOWN TO
NEXT ADDRESS

N
c=(AM-Y)x P

F=F-1

B(C)= A1)

LL DONE?

Y

LIST SORTED N9s

.j«l.‘t.,',‘i"vm',‘ - . . -‘ reo e P e B e

" Liverpool Software Gazette March 1960

< JLIST
i@ CALL - 92€
28 PRINT "HOW MAMY NO'S DO YOU WANT TO SORT":
IO IMPUT ¥: IF ¥ <2 14 THEMN VTAE 1: GOTOD 26
48 PRINT
S@ FRIMT "RAMGE FROM ": : IMNPUT %
€8 VTAR 4: PRINT TREC FL0TO . " IMNPUT Z
ya IF Y > Z THEM WTAER <(ZH: GOTO SA
ea IF 2 = % THEM €8
R =2-%
1060 DIM Ay DIM BOS = 20
118 £ = {0E2 % M O (28 sk RID
128 PRINMT . PRINT "DO YOU. WAMT TO INPUT YOUR OMWH MO-SUs o INPUT 23F: IF

LEFTS cOf. 1> = "M" THEM 1£6
1ZE REM USERS MO-S :
143 FOR I = 1 TO ¥: INPUT ACI>: MEMT © GOTO 1246
153 REM RAMLOM HOC=S
1@ FOR I = 1 TO M:ACIY = ¢ RMD C2Y & 02 — %+ Yo PRINT XL 800y MENT
178 REM ADDRESS KOS TO SORTIMG ARRAY
128 FOR I = 4 TO M:C = IMNT C0ACIX ~ Wi o Po: IF BOC <0 - @ THEM Z00
193 BLC> — ACIN: MEST
Lo 2@e REM RETURM TO FIRET ARREAY’

U248 © o= @
220 FOR I = 8 TO X + 2: IF BCIN = & THEN 240
228 C = C + 1:ACy = BT
218 HENT
258 REM LIST SORTED ARRAY
26@ FOR I ~ 1 TO ¥: PRIMT RCIN I NEMT
278 END
220 = 0 + 1

[

2968 IF ECH = 3B THEM 13286
208 IF BoC» 2 o= ACI> THEM 283
18 F = C
=F + 1: IF BJF> < > 8 THEM Z2@
- 1: IF F > C THEM ZZ=0

, 320 F
230 BCF) = B(F - 13:F = F
240 GOTO 19@

70

Liverpool Software Gazette March 1980

SOFTWARE INTERFACEAND ACORN SYSTEMS

COMPUTER programs do not only have to interface
with the outside world, in many cases they havetointer-
face with other programs. This article describes interface
methods and waysin which parts of programs may com-
municatewith each other. Althoughparticul ar reference
is made to the 6502 processor and the interface specifi-
cation of Acorn operating systems, the ideas should be
of general interest to anyone writing programs whether
for fun or for work.

FLAGS

Processor flags provide information about recently
executed instructions and are usually tested to find the
results of compare, load, bit, test or mathematical
instructions. However the flags may aso be used to
provide information on what has happened in larger
sections of code, for example at the end of a subroutine.
This is done in a subroutine available in the Acorn
System One monitor which fetches a key code from the
keyboard. Thisroutinereturnswith the carry flag setif a
control key has pressed or clear for the key of a hex
character, the codefor thepressed key isasoreturnedin
the accumulator. Another exampleisgivenin Listing 1
which converts the ASCII code for a hexadecimal digit
into its binary code and clears the carry flag or if a non
hexadecimal digit is given to it the carry flag is set. The
accumulator contains the ASCII code on entry and the
binary code on exit from the routine.

Having called a subroutine which returns a result in
the status register it is easy to branch dependant on the
condition of the flags to take the appropriate action.
However other operations may be called for before the
conditional branch is made, in which case the state of the
flag must be preserved. If the intermediate instructions
do not affect the relevant flags all iswell, otherwise the
status must be saved, by pushing it onto the stack or by
other suitable means, and restored before the branch
instruction.

When setting or clearing a flag which is to be tested

Laurence Hardwick

later it isworth considering the waysin which the flag's
contents may be destroyed. The overflow flag in the
6502 is affected by only a very few instructions (PLP,
CLV, RTI ADC, SBC) and hence once it has been
cleared it isusually fairly easy to ensure that its status is
not inadvertently altered.

When various tests are being performed it is possible
to store the results in a byte in memory by using the
rotate (ROR) instruction of the 6502. This instruction
shifts the contents of the carry flag into the top bit of a
lr)nemory location, and all bit inthat location right by one

It.
A sequence of instructions something like:—

JSR TEST1 result C* in carry flag
ROR MEM

JSR TEST2* result C? in carry flag
ROR MEM

etc

will build up abytein memory which contains the results
in a sort of minature stack:—

C bit 7 stack gets pushed
C’hit6 down as each new
C bit 5 result is added

" bit4

The results can subsequently be rotated out of the mem-
ory location using the reverse ingtruction (ROL) and
acted upon in order.

The use of flagsis important in good programming, it
is aways useful to know which processor instruction
affected what flags.

REGISTERS

The example program in Listing 1 demonstrates the

transfer of datain the accumulator and the applications
]

Liverpool Software Gazette March 1980

71

of this method are fairly obvious. The other processor
registers may be used, index registers are not only useful
as pointers and may be used to hold data in the same
way.

MEMORY

When index registers are used as pointers they can
point to a region of memory which contains data for a
section of program or subroutine. An example of this is
the routine to display messages on the Acorn display
used in the mastermind program (see Issue 1) which is
shown in Listing 2.

The messages are held in a table of display segment
patterns to be sent to the display buffer by the routine
shown. The X register is loaded with the lower byte of
the address of the required message before the routine is
called. Once the message isin the output buffer the scan
display routine in the Acorn monitor can be used to
show the message.

The use of the display buffer in the Acorn monitor is
an example of data transfer by means of an agreed
section of memory. In this case both the sending and
receiving programs must know exactly what information
will be stored in which memory locations.

PROGRAM MEMORY

Itispossibleto storefixeddatafor use by asubroutine
in sections of program memory. This technique is par-
ticularly useful in the SC/MP program shown in listing 3.

Thedataisstored in memory immediately following
thesubroutinecallinstruction(X PPC3). Thesubroutine

LISTING 1

ASCHEX ACORN 6502 Assembler Page 01

0010 0000 ASCHEX ORG $0000

wg@ .tt****##‘**l*#*‘****t****#‘***lﬁ‘

0030 * ACC contains ASCII on entry :

0040 ¥ ACC contains binary on exit i

0050 ¥ onexit CC — conversion done *

0060 « CSET - error >

(D?O ko e o ke 30 ok oK o e e 0ok o ok ok K R KOk Rk Rk

0030 0000 C9 30 ENTRY CMPIM '0

0090 000290 OF BCC NONUM ASCI 1 code lower than O
0100 0004 C9 3A CMPIM $3A

0110 000690 OB BCC NUMOUT digit 09

0120 0008 E9 07 SBCIM $07

0130 OOOA %0 07 BCC NONUM ASCI 1 code lower than A
0140 00OC C9 40 CMPIM $40

0150 OOCE BO @3 BCS NONUM ASCI 1 code higher! thanF
0160 001029 OF NUMOUT ANDIM $F

0170 001260 RTS

0180 0013 38 NONUM SEC

0190:001460 RTS

ID

scansthrough the data and it usesit as appropriate until
some escape dataentry is encountered, at which time the
pointer (P3) is pointing at the next instruction in the
main program. A second XPPC3 then returns command
to the main program.

DOCUMENTATION

Whatever data transfer techniques are adopted bet-
ween program modules the format used should always
be well documented. Not only will other people pick up
your program and ask 'How do | give it data and where
do the answers come out?, you will do the very same
thing if you pick up an undocumented program two
months after you write it.

Only a small number of idea have been mentioned in
this article and different processors have different
capabilities so some methods are more suitable for some
machines than for others. It is useful to look at other
peoples programs and see what sort of formats the use of
software interface and to maintain adegree of flexibility
in the input and output requirements of your programs.

ACORN SYSTEMS

To demonstrate some of the methods used on a 6502
system, and perhaps as some small step towards a stan-
dard, we can look at the following specification for the
Acorn operating systems. These will support higher
level languages in such away that changes from a tape
cassette to afloppy disk based system etc will not cause
too large an upheaval, and provide a useful set of input/
output facilities whatever the system hardware config-
uration.

LISTING 2
MESOUT ACORN 6502 Assembler Page 01

0010 0000 MESOUT ORG JBOOO

0020 0000 TABLE » $3000

0030 0000 POINT »

0040 t#ltttt#t##tlt#t#ttt##tt#ttt*tlt#t*llt!
0050 i MESSAGE OUTPUT TO DISPLAY *
0060 : ENTRY X -LOWER BYTE OF MESSAGE *
0070 : ADDRESS*
0080 : EXIT Y=$FF :
0090 S T T T T
0100 0000 AO 07 ENTRY LDYIM$07 8digitsto send

0110 0002 B6 20
0120 0004 A9 30
0130.0006B521
0140- O00B Bl 20
0150-O00A99 1000
0160-000D88 DEY

0170-OOOEIOFB BPL LOOPand loop 8 times
0180 001060 RTS

1D

SIX POINT X points to message on entry
LDAIM TABLE /load upper half of pointer
STAPOINT +01

LDAIY POINT load bit pattern

STAAY $0010 storein output buffer

LOOP

72

Liverpool Software Gazette March 1980

LISTING 3
PROGRAM

LDH FREDH
XPAH 3
LDA FREDL
XPAL 3

XPiDC3 CALL FRED EXCHANGE PC + P3

_)
- g DATA TABLE
)
NOP)
.) PROGRAM
) CONTINUES
SUBROUTINE

FRED LDAP3@ 1 LOADAANDINCREMENT P3

EORO08 08 1S CODE FOR NOP
IJNZNORETURN
XPPC 3 EXCHANGEPC+ P3TORETURN

NORETURN EOR 08 RESTORE DATA

0.S SOFTWARE SPECIFICATION

THE OS contains several routines which can be called to
interface between user programs and the system hard-
ware.

Theroutines are definedin such away that they will be
compatible with future acorn operating systems and
higher level software, and are defined as follows.—

OSCL1 This subroutine interprets a string of charac-
ters held at 0100 terminated by a carriage return, as
an operating system command. Detected errors are
met with a brk. All processor registers are used, the
decimal mode flag will be set to binary on exit.

OSWRCH This subroutine sends the byte in A down
the output channel. This channel isusually treated as
ASCIl data and specia action may be taken on
ASCII control characters. In the COS the recognised
control characters are the cursor movement and
printer control characters.

No processor registers are destroyed.

OSCRLF This subroutine generated a line feed and
then a carriage return using OSWRCH. A will con-
tain OD, N will be 0, Z will be 0 all other register will
be as before.

OSECHO This subroutine fetches a byte from
OSRDCH and thenwritesit out using OSWRCH. Ifa
carriage return occurs in OSRDCH both a line feed
and acarriagereturn are sentto asOSWRCH. A will
contain the byte, N, Z and C are unknown, all other
registers are unchanged.

OSRDCH This subroutine fetches a byte from the

RESET

I PROCESS DATA input channel into A. The state of N, Z and C is
; unknown, all other registersare unchanged.
) OSLOAD This subroutine loads all of a file into a
. specified area of memory. On entry X must point to
IMP LOOP the following data in zero page:
INTERRUPTS
The following action is taken on interrupts.
NMI PHA
IMP (NMIVEC)
IRQ/BRK
STA $FF
PLA
PHA
AND #$10 whichinterupt wasit
BNE BRK
LDA $FF
PHA

JMP (IRQVEC) it wasan IRQ
BRK LDA $FF

PLP

PHP

JMP (BRKVEC) it wasaBRK

On reset the operating system is executed starting
with the transfer of the vectors into page two.

The COS uses locations $CO upwards in zero page for
scratch pad memory and these locations should be
altered by user programs.

Liverpool Software Gazette March 1980

73

- string of characters, terminated by
0D, which is the file name.

address in memory of the first byte
of the destination.

bit 7 0 ignore above, use files
address.

The datais copied by the operating system and is not
harmed. All processor registers are used by the statusis
saved. A break will occur if the file cannot be found.

Ininterruptor dmadriven systemsawait until comple-
tion should be performed if the carry flag was st on
entry.

OSSAVE This subroutine saves all of an area of
memory to a specified file. On entry X must point to
the following data in zero page.

Xl string of characters, terminated by
(1 oD, which is the files name.
__ | Whereto put the data when reloaded.
. address of machine code to go to if
datais to be executed.

start address in memory of data

=

end address + 1 of the data

The datais copied by the operating system and is not
harmed. All processor registersare used but the status us
saved.

In interrupt or dma driven operating systems a wait
until completion should be performed if the carry flag
was set on entry. A break should occur if no storage
space large enough can be found.

OSBPUT This subroutine outputs the byte in the
accumulator to a sequential write file, X and Y are
saved, N, Z and C are unknown. In the COS inter-
rupts are disabled during BPUT but the interrupt
status is restored on exit. In other systems the files
sequential byte pointer will be incremented after the
byte has been saved.

OSBGET This subroutine returns the next byte from
asequentia readfilein A. X and Y areretained N, Z
and C areunknown. In the COS interrupts are disabled
during BGET but the interrupt status is restored on
exit. In other systemsthe files sequential byte pointer
will be incremented after the byte has been read.

On reset a set of vectors are moved into RAM in block
zero which point to these routines. These vectors are in
RAM so that they may be changed by a users program to

0200 NMIVEC
0202 BRKVEC
0204IRQVEC
0206 COMVEC

0208 WRCVEC

020A RDCVEC
020C LODVEC
020F SAWEC
0210 RDRVEC
0212 STRVEC

0214 BGTVEC
0216BPTVEC

0218 FNDVEC
021ASHTVEC

point to other routinesie. serial interface etc. the vectors
are as follows.—

NMI routine entry

BRK routine entry

IRQ routine entry

operatingsystemcommandline

interpreter

write character to output
subroutine

readcharacter input subroutine

load program subroutine

save program subroutine

ERROR

ERROR

get byte from tape

put byteto tape

ERROR

ERROR

The vectors which point to error are there to alow for
software expansion to sequential file handling. A cal to
error causes the COS to output.

Com?

a break is then executed.

CALLS

Asthere isno jump to subroutine indirect to use these
vectors the COS has the following callsin it.

FFCB OSSHUT JMP(SHTVEC) unused
FFCE OSFIND JMP (FNDVEC) unused
FFD1 OSBPUT JMP (BPTVEC)

FFD4 OSBGET JMP (BGTVEC)

FFD7 OSSTAR JMP(STRVEC) unused
FFDA OSRDAR JMP (RDRVEC) unused
FFDD OSSAVE JMP (SAWEC)

FFED OSLOAD JMP (LODVEC)

FFE3 OSRDCH JMP (RDCVEC)

FFE6 OSECHO JSR OSRDCH

FFE9 0SASCI CMPIM#$0D

FFEB BNE OSWRCH

FFED OSCRLF LDA#$0A

FFEF RCH

FFF2 D

rrra oswrcH JMP (WRCVEC

rrr7 oscz JMP (COMVE

74

Liverpool Software Gazette March 1980

N+ OO0 'O = rliix
P
@ N A BN
. [T

v ix

VLT
NN e -
oo

.
N
.

by Dr. B. Allan

l‘.l
YR XK.E ¢4
.o

[l . ‘l
Wiwe N
PRI

INTRODUCTION

IN the first article in this series (Allan, 1980), | showed
that microcomputers based on the 6502 processor using
BASIClanguageinterpreterscould produce fairly accu-
rate numerical results. In my conclusionsto the article|
noted that there seemed a possibility that the 'SQR'
function in APPLESOFT (and PETSOFT) BASIC
might not be as efficient asit should. | felt that this could
be the case because the Cholesky inversion routine (aso
called the 'square root method') is sensitive to the effi-
ciency of the implemented sguare root routine, and the
APPLESOFT results were dightly worse than those of
an IBM 7090 which had less bits for its fixed-point part.

| have checked this point and find the 'SQR' in
APPLESOFT BASIC is fairly inaccurate. In the next
section | give a user defined function 'FNS(X)' for find-
ing a square root (accurate to machine limits); | then
give some specimen exampl es of the relative accuracy of
'SQR(X)" and 'FNS(X)'. Following this | discuss the
nature of the Cholesky routine, and reapply the
Cholesky routine with 'FNS(X)' replacing 'SQR(X)' to
the Hilbert Matrix examples of Allan (1980). A coding
for the Cholesky routine and the Hilbert test program is
given in the Appendix.

'FNS—AN IMPROVED 'SQR'

NOBLE (1964:68) notes that ' ... it is worthwhile
devoting a considerable amount of effort to developing
an efficient square-root program ..." (by 'program' he
means a machine-cooled function); unfortunately the
square-root function in APPLESOFT BASIC seems to
besadly lackinginefficiency in efficiency and accuracy.
The last statement can easily be justified by = recourse
to Newton's method (Noble, 1964:26-30, esp Ex 2.2)
and this method is the basis for the new function 'FNS.

To get afeel for Newton's method try this program:

NUMERICAL ACCURACY OPM ICRbCOI\/I PUTERS

10 INPUT 'NUMBER';Z

20 GUESS = Z/2

30FORI =1TO 30

40 GUESS = 05 * (GUESS + Z/GUESS)

50 PRINT 'GUESS;!;'IS:GUESS

60 NEXT |

70 END
_(&o’;ethat this programisin[abasic a BASIC] as poss
ible).

On running this program you can see just how quickly
the successive guesses converge to the same number, the
square root of the number you input. The key line is
statement 40.

Normally we 'guess' the value of the square root in
BASIC by use of the 'SQR' provided function. That is,

GUESS = SQR(2)
and if 'S denotes an improved estimate of the square
root of 'Z', statement 40 would suggest

S=0.5* (GUESS + Z/UESS),
or

S=05* (SQR(Z) + Z/SQR(Z))

Itispossibleto continue by using' S inafurther stepin
the iteration, but, if statement 20 is altered to

20 GUESS = SQR(2)
and the program is then run, you will see how quickly
successive guesses converge.

This can be utilized as

5H= 0.5

10 DEF FNS(X) = H*(SQR(X) + X/SQR(X))
where 'FNS(X)' gives the exact val ue of the square root.
(If'FNS(X)" does not give the exact value of the square
root, then 'SQR(X)' must be very inaccurate. Try

5H =05

10 DEF FNS(X) = H*(SQR(X) + X/SQR(X))
. 20 INPUT 'NUMBER';Z

30 Gl =H*(G1 + Z/Gl)

40FOR 1=

50G1= H* (Gl + Z/GI)

60 NEXT |

70 G2 = SQR(2)

Liverpool Software Gazette March 1980

75

80 G3 = FNS(2)
90 PRINT 'TRUE ROOT IS;G1

100 PRINT'SQR 1S;G2

110 PRINT TAB(5);'RELATIVE ERROR
I1S;(G2-G1)/G1

120 PRINT 'FNS IS ;G3

130 PRINT TAB(5);'RELATIVE ERROR
1S:(G3-G1/G1)
and not that therelativeerror in'FNSisawayszero. (It
is instructive to note that in SOBS BASIC on the ICL
1902T the relative error in 'SQR' is zero.)

TABLE 1 shows relative errors in 'SQR' (for
APPLESOFT BASIC) over awide range of values of Z:
it can be seen that theerrors (which vary from 7.20 E-1 0
to 3.37E-10) indicate constant inaccuracy in the 'SQR'
function—apart from the four smallest calues of Z. The
implications of these inaccuracies will now be consi-
deredfor the case of thematrix inversion routineusedin
the first article (Allan, 1980), to see how errors in
estimating elements are affected by the use of the
improved squareroot function.

TABLE 1

RELATIVE ERRORS IN 'SQR' FUNCTION FOR
APPLESOFT BASIC

Z RELATIVE ERROR

z 0

5 0

16 0

65 0
326 4.13E-10
1957 3.37E-10
13700 5.09E-10
109601 7.20E-10
986410 4.80E-10
9864101 6.07E-10

THECHOLESKY DECOMPOSITIONROUTINES(2)

IF A isasymmetric positive semi-definite matrix (i.e.
the determinant of A is greater than or equal to zero),
thenitispossibletofindareal lower triangual r matrix L
such that

A=LLT
where L "is the transpose of L. L can be thought of as
the matrix square of root of A, and in fact one needs to
calculate squarerootsto obtain L. In thetest program, of
the Appendix, statements 470 to 640 cal cul ate the lower
triangular matric and stores it in the lower triangular
portion of the matrix 'A(20,20)" including the diagonal .
If the matrix ‘A" issingular (determinant of zero or near
to zero) then a'pivot" A(J,J)' inline 510 will be lessthan
asmall amount 'El' (setin line 200 to be equal to 1E-7),
and so there is ajump around line 520 to lines 540 and
550—Iine 550 outputs a warning.

After thelower triangular matrix isplaced in the lower
triangular portion of'A’, subroutine 360 uses L to calcu-
late the inverse matrix: successive columns of the iden-
tity matrix are placed in X' and subroutine 220 is called
(the routine extends from 220 to 350). The correspond-
ing column of the inverse matrix is returned in the same

vector ‘X' and stored in the appropriate column of 'B'. If
one is performing a solution for a set of linear equations
without needing the inverse matrix ‘X' would contain
the constant in the equation (e.g. in the example in the
first paper the constants were X(I) = 199 and X(2) =
197), and one would use.

1000 GOSUB 470

1010 GOSUB 220

Note that in lines 520 we use the function 'FNS

Statements 660 to 760 calculate the inverse Hilbert
matrix of order N (= 2 to 10) which is then converted to
estimate the Hilbert matrix. 'Q' in statement 870 calcu-
lates the exact value of the I'th Jth element of the
Hilbert matrix, which is then compared to the estimate
'‘B(l,J)" with the relative error being found in 880. ‘MI'
holds the largest relative error.

This coding—suitably adapted, with multi-statement
input per line—has worked successfully on 6502 proces-
sors, Z80 processors, as well as the ICL 1902T. Descrip-
tions of the Cholesky method are referred in Allan
(1980); a good, advanced, discussion is Ralston and
Rabinowitz (1978: 410-437).

THE IMPACT OF 'FNS ON THE CHOLESKY/
HILBERT PROGRAM (3)

TABLE Il shows results for the Cholesky/Hilbert prog-
ram which are given for both the 'SQR' and the 'FNS
functions (partly taken from Allan (1980:TABLE I).
The improvements in accuracy due to the use of 'FNS
are remarkable: the ratio between the relative sizes of
errors is of the order of 1:100, and the 'FNS program is
very accurate up to the 7 x 7 matrix—and reasonably
closefor the 8 x 8 matrix, which could not beinverted by
the 'SQR' program.

In the eariler paper it was noted that for an IBM 7090
the largest error was about 1.9E-4 for the 6 x 6 matrix—
to be compared with the error of 5E-6 for the 6 x 6
matrix given by the 'FNS' program. This shows, | hope,
that present day microcomputers are as accurate as
many earlier macrocomputers but one needs to be
extremely car eful in thecoding of numerical procedures.

TABLE I

LARGEST RELATIVE ERRORS IN HILBERT
MATRICES, APPLESOFT BASIC
Order Using SQR (1) Using FNS
2x2 0 0
3x3 0 0
4x4 0 0
5x5 2.5E-5 0
6x6 5.8E-4 5.0E-6
7x7 1.6E-2 4.6E-4
8x8 *(2) 1.7E-2
9% 9 . 2.3E-1
10x 10 3.2E-1

Notes: (1) Taken from TABLE | of Allan (1980);
(2) Matrix is singular at this point according to
this routine.

76

Liverpool Software Gazette March 1980

CONCLUSIONS

Worries about square roots do not only have an
impact on multivariate procedures. in Lusty (1980) we
are presented with an example of inaccurate square
roots for the RM 380Z. Lusty shows how the square
root of 50.000000* 50.000000 is calculated by the 380Z
to be 49.999993 (a relative error of 1.4E-7). However,
L usty does not try to improve the accuracy of the square
root (sg. root) but notes that, if the true square root is

integral,
INT (SQR(Z) + 0.0001)

will equal the true square root. (He usesthisinformation
in a computer game 'Square Triangles—Solution').
Obvioudly if one does not understand the numerical
basis of errorsin functions such as 'SQR’, then one will
tend to use adhoc solutions to eradicate the errors. This
is poor programming, and with complicated programsis
aso probably wrong. The final article in this series will
discuss how functions can be improved, on the basis of
numerical analysis and not of ad-hoc-ery.

FOOTNOTES
(1) Proof:

Let "T be the square root, and ‘A" be the approxi-
mate square root. Definetherelativeerrorin'A' by

e=(A-T)
T
thus

A=T(l+e)
as'T is the true square root Z = T2 and so
FNS(Z)=0.5* (A +Z/A)

— * 2
=024k rrg+ey)

=05*(T(L+e)+T/(l+€))
and thusifeisvery small (1+e)—1=1—eand so
FNS (2) =05* (T(+e) + T/(I +¢)
=0.5%(T(+e)+T(l-e
32 oo
QED
(2) Technical, can be safely ignored
(3) Non-technical, do not ignore

(4) 0.5*(49.999993 + 2500/49.999993)
= 0.5%(49.999993 + 50.000007) = 0.5*(100)
= 50

REFERENCES

Allan G.JB.

1980 The numerical accuracy of microcomputers (1):
Macrocomputer BASIC compared to mircrocom-
puter BASIC.

Liverpodl Software Gazette, (2)

Lusty T.
1980 Problem page. Computing Today, 1(11).

Noble B.
1964 Numerical Methods. 1 Iteration, Programming

and Algebraic Equations. Edinburgh: Oliver and
Boyd.

Ratton A. and Rabinowitz P.
1978 A Firg Coursein Numerical Analyss
New Y ork: McGraw-Hill

APPENDIX
10 REM
20 REM"**************************************
30 REM
40 REM HILBERT MATRIX TEST PROGRAM
50 REM
60REM AUTHOR-GJBORISALLAN
70 REM
80 REM***************************************
90 REM
100LETH=0.5

110 DEF FNS(X)=H* (SQR(X)+X/SQR(X))
120 DIM A(20, 20), B(20, 20), X (20)

130 PRINT 'MAX ORDER ?;
140 INPUT NI

150 FOR 1=0 TO NI

160 LET X(8=0
170FORI=OTON1
180LETA(I,J)=0

190 NEXT J, |
200LETE1=0. 1E-6

210 GOTO 650

£)ta Definition Section

220 FOR 1=1 TON
230 FOR J=0 TOM

240 LET X(1)=X(1)-X()*A(J, 1)
250 NEXT J

260 LET X(1)=X(1)*A(l, 1)

270 NEXT |

280 LET X(N)=X(N)*A(N, N)
200FORI=N-1TO 1 STEP-1
300FORJ=1+1TON

310 LET X(1)=X(1)-A(l,)*X(J)
320 NEXT J

330 LET X(1)=X(1)*A(l, 1)

340 NEXT |

350 RETURN

Back Subtitution
for array X

360 FOR 11=1 TON
370FORJ1=1 TON i i
380LETX (J1)=0 X isIf Column of Indentity

300 NEXT J Matrix
A00LETX(1)=1
410GOSUB220 ~ Back Subtitution

420FORJ1=1TON
430LETB(11,J1)=X (J1)

440 NEXT J B (II,) isII' th Column of
450 NEXT Il Inverse Matrix
460 RETURN

78 Liverpool Software Gazette March 1980

ETC ETC ETC ETC ETC ETC ETC ETC ETC ETC ETC
ETC' ETC ETC ETC ETC ETC ETC ETC ETC ETC ETC
ETC'

= ERTCETERA =

ETC
ETC
ETC ETC ETC ETC ETC ETC ETC ETC ETC ETC ETC
ETC ETC ETC ETC ETC ETC ETC ETC ETC ETC ETC
ETC ETC ETC ETC ETC ETC ETC ETC ETC ETC ETC

THE COMPUMAX
By Dr. Andrew M. Veronis

MICROCOMPUTERS have become as abundant as
digital wrist-watchesand calculators. When a new mic-
rocomputer is introduced into the market, the people
now say, and rightly so,' Oh, another one of those!" What
the latter statement really meansis that 'unless this new
microcomputer has much more to offer, we don't want
it." A statement which makes it tougher for the designer
to dream up new revolutionary circuits.

The COMPUMAX isindeed a new microcomputer.
Furthermore, the COMPUMAX is indeed built around
new and revolutionary circuitry. The description of the
circuit and a discussion on the computer's software
capabilities will undoubtedly convince even the greatest
unbelievers.

The new microcomputer uses the ever so popular
Motorola MC6809 CPU as its main brain. Actually,
computerists who are not up to par with the 6809 as yet
have a choice of CPU's. The main board provides sock-
ets for either the 6809 or the 6808 (the latter being an
offspring of the MC6802).

The microcomputer offers full color graphics (8 col-
ors), both at low resolution (32 x 64) and at high resolu-
tion (250 x 190). The MC 6847 is used for this purpose,
and a PAL conversion circuit has been designed to fulfill
the needs of European enthusiasts. Color graphics are
generated via a very powerful BASIC language which is
described in the software discussion of this article.

The COMPUMAX is equipped, as standard, with a
super fast cassette system (speeds selectable from 1200
baud to 9600 baud). The cassette system is capable of
driving two recorders, and has motor control capability.
A full description of its software capabilities is again
given in the software discussion.

Additional features of this revolutionary microcom-
puter which came as standard are the following:

16 Dynamic RAM , expandable on board—to 48
K (sockets and decoding are aready provided).
Floppy disk controller circuit (capability up to four

mini drives).

Parallel interface.

Seria Interface.

RS-232/20 ma interface.

2 user PlAs.

1 user ACIA.

10K Extended BASIC in ROM.

4K operating system monitor in ROM (including
cassette and disk monitors).

However, enough said (not hardly!) about the hard-
ware. This is a software oriented publication. So, let us
march onto the software.

THE CASSETTE SYSTEM

The Compumax cassette system is truly unlike any
others. It provides high performance storage for the
computer. The major design goals for the system were
speed and data reliability. In addition to reading and
writinginhighspeedbinary, thesystemisal so capableof
reading cassettes in the Kansas City Standard S1-S9
format without any modifications.

Here are some of its software capabilities:

SAVE: Preservesanamed file on cassette from memory
locations.

DIRECTORY:: Liststheidentification segment of afile
on cassette to the system terminal. If the optional
argument (FILENAM) is used, the tape head is
positioned precisely at the End-Of-File position.

LINK: Preserves a named file on cassette in the same
manner asthe SAV E command except that alink-
age is created to the next file on the cassette.

LOAD: Reads and loads a file from cassette.

RUN: Reads and stores a file from the cassette and
transfers to the address specified by (TRANS-
FER) in the save command.

GO: Executes a memory resident program, either a
previously loaded file or a program which was
entered into memory through the terminal.

VERIFY: Reads a file from the cassette and compares

each byte of thefilewith the corresponding bytein

Liverpool Software Gazette March 1980

I

memory.

MOVE: Copies the absolute binary contents of a block
of memory specified by (FROM BEGIN) through
(FROM END) into a memory block starting at
(TO BEGIN).

COMPARISON: Performs a byte-by-byte comparison
of the absolute binary contents of a block of mem-
ory with the contents of a memory block.

FIND: Searches memory in the range of (BEGIN)
through (END) for all occurrences of (BYTE) or
(WORD) and prints the corresponding addresses
on the system terminal.

EXIT: Returns control to the Operating System
Monitor.

ON: Turns on the cassette drive motor to allow manual
operations (rewind, etc).

DRIVE: The prefix Drive is an integer 1, or 2 which
specifies the cassette drive on which the command
is to be executed.

THE BASIC INTERPRETER

One of the fastest BASIC interpreters in existence
today, if not the fastest is the one written by Technical
Systems Consultants (TSC) of Indiana, and the COM-
PUMAX uses it. It is located in 6 EPROMSs, and is
indeed superfast.

The TSC BASIC incorporates two main color graphics
commands, the PLOT and the DRAW. The screen is
divided into two axes, the X and Y axes, addressable, in
low resolution, into 32 by 64 segments and, in high
resolution, into 250 by 190 segments. The designation of
the various coloursis given by number. A typica exam-
ple for designing a bar graph would be:

10 PLOT (clears the screen)

20 MODE,0 (low resolution graphics)

30 DRAW, 4, 0,0,0,30(this will give you a
perpendicular bar from top to bottom, red in
colour)

By setting various draws with the appropriate colours,
you can easily come with abar graph. The color graphics
in the COMPUMAX are truly excellent.

THE DISK OPERATING SYSTEM

The COMPUMAX uses the TSC FLEX DOS which is
fully equipped with disk BASIC, assembler, dissassem-
bler, relocator, math package, etc. The disk controller
circuit, standard on the main board, accesses the disk
drivesquite easily. All one hasto do, while in the operat-
ing system monitor, hit key P, and he or she is on the
DOS. Then, of course, you will have to wait a few
seconds until FLEX DOS is loaded into memory.

One inter-sting feature of the computer is that, while
you are under DOS, you can actually deactivate the
memory space taken up by the PROM BASIC, and use
that space for your needs.

However, the interesting software arsenal of the
COMPUMAX does not stop here. It will be equipped

with PASCAL, FORTRAN, and COBOL in the 3rd
quarter of 1980.
A truly magnificent system.

NEW SINCLAIR COMPUTER FOR UNDER £100

EXTREMELY portable, measuring 9x 7 x 2 inches max
(218 x 170 x 50mm) and weighing 12 ounces (3409), the
ZX80 is intended for use at home, work, college or
school. Aswell as providing apersonal insight into com-
puter programming and applications for the business
executive, andavital initiationto computersfor students
and school children, the ZX80 is a powerful tool for the
experienced user.

A 130 page instruction manual is provided to simplify
learning by direct response. The manual includes a
course in BASIC programming—the established stan-
dard high level language for personal computers—used
by the ZX80.

To ensure maximum flexibility of use, the ZX80 has
been built without a dedicated VDU (visual display
unit), but with the facility to be plugged directly into the
aerial socket of any domestic colour or black and white
television. This also enabl es screens of avariety of sizes
to be used.

A conventional home cassette player is used to store
programs.

For business or industrial use, the Sinclair ZX80 can
be coupled to any type of computer peripheral, such as a
printer. Itisenvisagedthat the unit will also beincorpo-
rated in a variety of industrial systems—as a machine
tool control, for example.

A key advance is the design of a single super ROM
containing the BASIC interpreter, character set, operat-
ing system and monitor. The ZX80's 1K byte RAM is
equivalent to 4K bytes in a conventional computer.

Programentry isviaatouch-sensitive, typewriter con-
figuration, alpha-numeric keyboard which features
single stroke key word entry eliminating much tiresome

typing.

80

Liverpool Software Gazette March 1980

The Sinclair computer has powerful edit facilities and
every statement line is syntax checked asit is entered at
the bottom of the screen so that only syntactically cor-

rect lines can be added to the program ligt at the top. A .

marker identifies asyntax error and this unique feature
will speed the production of an error-free program and is
seen as of particular value for beginners.

The ZX80 display—black on white for clarity—
consists of 24 lines of 32 characters each.

Featuring high resolution graphics with 24 standard
graphic symbols available, the computer also allows any
alpha-numeric or graphic symbol to be reversed.

The Sinclair ZX80 can be purchased in kit form at
£77.95 from Science of Cambridge Ltd (a Sinclair com-
pany) and built versions will beavailableduring early
March for £99.95 inc VAT. The prices include the man-
ua but exclude mains adaptors at £8.95.

SINCLAIR PERSONAL COMPUTER
TECHNICAL INFORMATION

1. The Sinclair personal computer employs the Z80A
microprocessor chip supplied by the Nippon Electric
Company (NEC).

2. The Sinclar BASIC interpreter provides some
important advantages. Examples include;:—

—Single stroke key word entry. In most computers it
is necessary to type out any key word in full, ie
PRI N T when print is required. Only that key
with the word 'PRINT above it need be hit with the
ZX80, and no shift is required since the machine
anticipates a key word knowing that it follows a line
number. This feature eliminates much tiresome typ-

ing.
—Powerful editfacilities.

—Every statement line is syntax checked as it is
entered and only syntactically correct lines can be
added to the program list. The line being typed in
appears at the bottom of the screen and only joins
those lines at the top if it is free of syntax errors. If
there is asyntax error then a marker identifies it, so
that it may be eliminated. This unique feature helps
ensure the production of an error-free program and
is of particular value for beginners.

—The BASIC has good string handling capability.
There can be up to a maximum of 26 string variables
and the strings can be of any length. All rational tests
may be used on the strings so that, for example,
strings may be compared. The machine has string
input so that the computer canrequesta line of text
(string) when necessary. Strings do not need to be
dimensioned, whichisan unusual benefit,anduptoa
maximum of twenty-six single dimension arrays are
possible.

Nesting for loopsis aso permitted up to a maximum
of twenty-six. Integer variables may be of any length.

The BASIC is capable of handling full Boolean
arithmetic, conditional expressions, etc.

— Built-infunctionsare—
CHR$

STR$

TL $

PEEK

CODE

RND

USR

ABS

—The randomise function is of particular value for
games and secret codes etc., aswell as being powerful
in more serious applications.

—A timer is available under program control.

—PEEK and POKE enable the entry of machine
code instructions and USR causes ajump to a users
machine language sub-routine.

3. The computer has a complete apha-numeric
keyboard using the standard 'typewriter' configura-
tion.

4. It has high resolution graphics with 24 standard
graphic symbols being available. Any apha-numeric
or graphic symbol may be reversed. The display con-
sists of 24 'lines of 32 characters each.

5. An expansion bus available at the back by edge con-
nectors bringsout all linesincluding address and data
lines so that there is no restriction on the extension of
the machine. Plug in boards are available to increase
the memory capacity. Memory expansion boards,
which take up to 3K bytes, are £12.00 each and RAM
memory chips of standard 1K bytes capacity are
£16.00.

NEW APPOINTMENT FOR COMPUTER
RETAILERS ASSOCIATION

THE Computer Retailers Association has appointed
Mrs. Helen M. W. Gibbons as Assistant Secretary,
reporting to the Secretary Mr. T. Moore of Newbear.
This appointment is one of vital importance to the
Association as it will provide it with a full equipped
permanent Secretariat which will giveit asound and well
organised base from which to grow.

Mrs. Gibbons, who has many years experience as an
Association Secretary, sees the newly formed Computer
Retailers Association as one of the most dynamic in the
industry.

At its formation a few months ago, twenty two com-
panies formed the nucleus of its membership and now,
with the appointment of a Secretariat the CRA, whichis
the only body representing the micro-computer industry
issoon to embark on afull programme of activitieswhich
islikely to bring it to the attention of Computer Retailers

Liverpool Software Gazette March 1980

81

al over the country and thereby attract a much larger
membership.

Membership is open to companies in the computer
field who have a significant interest in supplying mic-
rocomputers or related products and services to end
users and who have a permanent display area where
thei ééoroducts and services can be effectively demons-
trated.

Mrs. Gibbonswould be delightedto answer enquiries
from potential members and she may be reached at
Computer Retailers Association, Owles Hall, Bunting-
ford, Hertfordshire, SG9 9PL—Telephone Royston
(0763) 712009.

NASCOM SYSTEM 80

NASCOM Microcomputers launched a desk top mic-
rocomputer system called System 80 which combines
many of the company's widely acknowledged products
with a number of new boards and peripherals.

With the exception of the IMP (impact matrix printer)
which is only supplied built, dl the products can be
suppliedin built or kit form. The new floppy disc system
will be available with one or two drives. The second
drive can be easily added at a later date if the user's
initial resources are limited.

CPU

The new system is based on the now well established
Nascom 2 Microcomputer.

Housing

Within the System 80 housing is aframeracking that
holdsaNAS BUS motherboard, apower supply (3 amp
or 5 amp depending on the choice of boardsto be fitted),
the CPU board, and up to four 8 in x 8 in expansion
boards. Provision is made for external connection direct
to the boards concerned. The Nascom 2 keyboard fits
snugly in the cutout provided.

The housing is moulded from glass reinforced plastic,
which combines lightness with high strength, and is
availablein achoice of colours. A TV or monitor can be
placed on top of the housing—however this surface has
been designed with recesses to accept the feet of an
expansion housing which is being designed to hold five
more boards. Using 78 way cable the two motherboards
may be connected.

Floppy Discs

Another totally new product, the System 80 floppy
disc system will be supplied with built and tested parts
which can be bought individually or as a complete sys-
tem. These include an assembled controller card (con-
trols 4 drives), power supply unit,51/4in doubled sized,
double density drives, enclosure and accessories for
mounting two drives and the PSU. The industry stan-
dard CP/M disc operating system will also be available.

- Each drive provides 280K bytes of formatted storage.

NASCOM PROGRAMMABLE CHARACTER
GENERATOR BOARD

THISproductisonan 8" x 8" P.C.B. whichisNASBUS
compatible. It fits either a Nascom Frame or a'Systems
80" microcomputer housing. There are 2K bytes of 2114
static RAM which is used as a programmabl e character
generator.

The Nascom Graphics ROM may be relocated on this
board. This gives the user the chance of software selec-
tion between the block graphics ROM and his own high
resolution graphics at any time.

The high resolution graphics operate on a cdl struc-
ture. Each Character cdll is made up of

Nascom 1—128 dots
Nascom 2—112 dots

The user can produce 128 different cells to this dot
level in the 2k RAM.

Each cdll, once defined, may be displayed anywhere,
and any number of times, on the screen at the same
moment, up to a maximum screen capacity of 7638 cdls.

82

Liverpool Software Gazette March 1980

(48 x 16)
Dot resolution on the
Nascom 1 384 x 256 98304
Nascom 2 384 x 224 86016

A Z80 port is dlocated to control the operational
functions. These include RAM/ROM select, write pro-
tect etc.

Standard Alpha/Numeric characters and block and
high resolution graphics may be intermixed on the
screen. This board is designed to be compatible with the
colour board.

NASCOM COLOUR BOARD

THIS board has various options.

High or low resolution with PAL, SECAM, NTSC or
RGB output.

High resolution uses 6K Static RAM (4118) and gives
a choice of 16 colours. The foreground and background
colours are definable on a 96 x 48 Matrix giving 4608
definable points.

In conjunction with the Programmable Character
Generator board, and using the foreground and back-
ground capability, it is possible to use colour to an even
higher apparent resolution.

Low resolution reduces the matrix to 48 x 48 and uses
only 3K of Static RAM (MK 4118).

One of the Z80 portsis alocated to control the opera-
tional functions. These include colour on/off, write pro-
tect, high/low resolution.

NASCOM INPUT/OUTPUT BOARD

THIS product is one an 8" x 8" P.C.B. which is NAS
BUS compatible. It fits either a Nascom frame or a
'System 80 microcomputer housing.

h_It is through plated and has al the necessary support
chips.

When it is fully populated it will support.

3 x MK 3881 PIO
1 x MK 3882 Counter Timer
1 x 6402/UART

PIO

The MK 3881 provides 2 x 8 hit wide bi-directional
ports. Each has two handshake lines. It may be fully
interrupt driven and implements the Z80 interrupt
priority daisy chain. The PIO pack includes a 26 way
board connector and cable.

Counter Timer

The MK 3882 contains four counter/timer channels. It
may by fully interrupt driven and implements the Z80
interrupt priority daisy chain.

Liverpool Software Gazette March 1980

83

UART

The 6402 will provide serial communication through the
RS 232C interface. The baud rate is selectable between
110 and 9600. The UART pack includes a 1.8432 Mhz
crystal and an MC 14411 baud rate generator.

The PIO, CTC and UART may be located anywhere in
the Z80 port address space. The required 1/O decode is
fed back for either Nascom 1 or Nascom 2.

NASCOM DYNAMIC RAM CARD

THIS productisonan 8" x 8" P.C.B. whichisNASBUS
compatible. It fits either Nascom frame or a Systems 80'
microcomputer housing.

The user has a choice of three options: 16K bytes, 32K
or 48K or 4116 dynamic RAM.

The4116isal x 16K bitsand will run at 4AMhz with a
'WAIT state.

The board has full decoding, buffering and dynamic
memory support for all packages.

There are three banks of 16K bytes. Each 16K bank is
relocatable to 4K boundaries.

There is an up grade kit for this product with the
following features.

Wkite protect-Each 16K block of memory may be
protected from CPU write by using atoggle switch with
LED indication.

Page Mode-It is possible to use up to four 48K RAM
boards in a system. As the CPU will only access 64K at
one time, the RAM board in use is software selectable
with separate read and write enables.

NASCOM FLOPPY DISC CONTROLLER BOARD

THIS productison an 8" x 8" P.C.B. whichisNAS BUS
compatible. It fits either a Nascom Frame or a 'System
80 microcomputer housing.

The board is capable of driving up to four Siemens
double density, double sided 5/4' Mini FLOPPY drives.
It uses the industry standard 1791 controller chip.

Data Transfer does not rely on CPU interrupts wait
states or D.M.A. The system uses real time loop trans-
fer.

To maximise reliability a phase lock loop technique is
used to synchronise data transfer from the drive to the

1791

The board has simple test links which make the set up
operation extremely simple.

The board has various link optional available. The
user may decide on single or double sided discs and
single or double density. He may also run his CPU at 2
Mhz or 4 Mhz.

1. Systems 80 Box 85.00
3 Amp PSU 30.00
Nascom 2 Board 225.00
32K RAM Board 165.00

505.00

2. System 80 Box 85.00
3 amp PSU 30.00
Nascom 2 Board 225.00
48K RAM Board 225.00
P.C.G. 90.00
Colour Card (Highest Res) 165.00

820.00

3. System 80 Box 85.00
5 amp PSU 40.00
Nascom 2 Board 225.00
48K RAM 225.00
P.C.G. 90.00
Complete Twin Disc Set 690.00

1355.00

4. System 80 Box 85.00
5 amp PSU 40.00
Nascom 2 Board 225.00
3 x 48K RAM Boards 675.00
Complete Twin Disc Set 690.00

1715.00

5. System 80 Box 85.00
5 amp PSU 40.00
Nascom 2 Board 225.00
4 x 48K RAM Board 900.00

1250.00

How to get your
LIVERPOOL SOFTWARE GAZETTE
regularly

Imagine the disastrous effect on your life styleif you missed a
singleissue. The possibility of traumais easily eliminated by the
simple expedient of acquiring a regular subscription at the all
time bargain price of £6.00 for the next twelve scintillating
iSsues.

Don't missthe chance of alifetime

Fill in the form below.

Commercial and educational organisations requiring a large
number of copies can buy in bulk at advantageous rates from:

Computer Bookshop,
43-45 Temple Street,
Birmingham.

.---------------------q

Please send me twelve issues of the Liverpool Software Gazette starting
withthefirst/second/third/fourthissue. Chequesand PO'sshouldbemade

ayable t? Liverpool Software Gazette and sent to us at 14 Castle Strest,
iverpool.

Printed by MERSEY MIRROR LTD., Media House, 34 Stafford Street, Liverpool L3 8LX, Tel: 051-207 7113

