
Perl Golf

Dave Hoover, dave@redsquirreldesign.com

Abstract

Prior Perl Golf columns focused exclusively on winning solutions. A number of golfers requested
coverage of a more down-to-earth solution. This month’s deconstruction covers a solution near the
middle of the field. May’s challenge featured the Kolakoski sequence, a series of self-describing numbers.

1 The Challenge

The Kolakoski sequence is an infinite series of alternating self-describing numbers.

% perl kola.pl 2 3 20
22332223332233223332

The string’s first digit (2) determines the length of the first block (22). The second digit (2) determines
the length of the second block (33). The third digit determines the length of the third block. Blocks
alternate between the two different digits. This continues indefinately. Solutions need only handle at least
500 characters in the sequence, however

Programs take three numbers from the command line—two digits which determine the construction of the
sequence (e.g. 2 & 3) and the length of the output string (e.g. 20).

2 The Deconstruction

Philippe ’BooK’ Bruhat finished with a 75 stroke Kolokoski solution which put him slightly ahead of the
median 79 stroke solution. He submitted 25 working versions over 6 days, which gives us an excellent history
on the development of his final solution:

#!perl -l
$@.=($.=$ARGV[$_%2])x(substr$@,$_,1 or$.)for 0..500;
print substr$@,0,pop

When golfers test several algorithms, they better understand the options available. Novice golfers frequently
trap themselves in their own cleverness hindering them when they quickly discover a working solution and
become emotionally attached to the algorithm. A distinguishing factor between good and great golfers is
the ability to throw away an algorithm after golfing it to its limit.

1

Perl Golf

We reformatted the final solution to make it easier to read. The special variables $@ (eval error) and $.
(input line number) become $string and $first, respectively. Next, we reformat the foreach loop by breaking
it down into four explicit statements with comments, and add clarifying whitespace.

#!perl -l
$first = $ARGV[0]; # Copy the first argument.
foreach $i (0..500) { # 501 iterations.

$digit = $ARGV[$i % 2]; # Alternate digits.
$length = (substr $string, $i, 1 # Get block length from string.

or $first); # If no string, use first arg.
$string .= $digit x $length; # Build the output string.

}
print substr $string, 0, pop; # Output the correct length.

With this reformatting, the underlying algorithm becomes more recognizable. As Perl Golf progresses,
veteran golfers recognize the importance of compressible algorithms and place as much value on them as
they do on other techniques.

The shebang line contains the -l switch which causes all print statements to automatically append a newline.
XXX: reference to earlier column.

The loop has to determine two things to output the next part of the sequence—the digit to use and the
length. Philippe determines the length of the next block by reading from the specified location in the string
he simultaneously builds. On the first iteration, the string is not yet defined, so substr returns false. The
short circuit or operator returns the value of $first which he assigns to $length. On subsequent iterations,
the second digit in $string is the length of the second block, the third digit the length of the third block,
and so on until the loop finishes.

$i % 2 is a simple way to test whether a number is odd or even. It returns 1 if $i is odd and 0 if even.
With each iteration, $i will switch from odd to even, so Phillipe uses it to alternate between $ARGV[0] and
$ARGV[1]. This value is the next digit to use.

Once Phillipe has the next digit and the length, he can add to the string. The repetition operator, x, repeats
its left operand (the next digit) by the number its right operand (the length) specifies. He adds this to
$string, and loops again.

Philippe admits that he is emotionally attached to the substr function. In this solution, both instances of
substr take three arguments—the first argument is the string to operate on, the second is the starting point
within the string, and the third is the length of the substring to extract. He uses substr to output the string
with the correct length (from $ARGV[2]), which pop returns. A pop without arguments in the main body of
the program removes the last element from @ARGV (though in subroutines it operates on @) and returns
it—in this case using it as the third argument to substr. With the same input as the fist example, Phillipe
constructs a string 1250 characters long, although he only needs the first 20. The substr function extracts
the first 20 characters and he never uses the rest of the string, affirming that brevity, not efficiency, was his
primary concern.

With the mechanics explained, we begin to return the solution to its original form by removing unnecessary
white space, shortening variable names, and replacing foreach with its shorter synonym, for. We shorten the
variable names $first, $digit, $length, and $string to only their first letters, $f, $d, $l, and $s.

The Perl Review (0 , 4) · 2

Perl Golf

#!perl -l
$f=$ARGV[0];
for$i(0..500){
$d=$ARGV[$i%2];
$l=(substr$s,$i,1 or$f);
$s.=$d x$l;
}
print substr$s,0,pop;

Next, we replace the $d and $l of the string-building statement $a.=$d x$l with the expressions that define
them. This consolidation reduces the for loop’s block to one line. We discard $i since we can use the default
index variable $.

#!perl -l
$f=$ARGV[0];
for(0..500){
$s.=$ARGV[$_%2]x(substr$s,$_,1 or$f);
}
print substr$s,0,pop;

Since the for loop has a single statetemt, we can rewrite the loop as a statement modifier.

#!perl -l
$f=$ARGV[0];
$s.=$ARGV[$_%2]x(substr$s,$_,1 or$f)for 0..500;
print substr$s,0,pop

Explicitly using @ARGV two times should tip off a golfer that he can still make improvements. On the first
pass, $ARGV[$ %2] is equivalent to $ARGV[0], meaning we can use it to define $f. The parentheses around
$f=$ARGV[$ %2] force x to evaluate the result of that statement. The result of an assignment is the value
assigned,

#!perl -l
$s.=($f=$ARGV[$_%2])x(substr$s,$_,1 or$f)for 0..500;
print substr$s,0,pop

Finally, we replace the reader-friendly $s and $f with Philippe’s original $@ and $..

#!perl -l
$@.=($.=$ARGV[$_%2])x(substr$@,$_,1 or$.)for 0..500;
print substr$@,0,pop

3 References

Kolakoski sequence – http://mathworld.wolfram.com/KolakoskiSequence.html

The Perl Review (0 , 4) · 3

Perl Golf

Perl Golf web site – http://perlgolf.sourceforge.net/

Kolakoski Perl Golf – http://perlgolf.sourceforge.net/TPR/0/3/

The Perl Review (0 , 4) · 4

