
Adobe Acrobat 7.0.5

Programming Acrobat
JavaScript Using Visual
Basic

October 21, 2005

 Adobe Solutions Network — http://partners.adobe.com

http://partners.adobe.com
http://partners.adobe.com

Copyright 2005 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this publication (whether in hardcopy or
electronic form) may be reproduced or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of the Adobe Systems Incorporated.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name PostScript in the text are references to the
PostScript language as defined by Adobe Systems Incorporated unless otherwise stated. The name PostScript also is used as a product
trademark for Adobe Systems’ implementation of the PostScript language interpreter.

Except as otherwise stated, any reference to a “PostScript printing device,” “PostScript display device,” or similar item refers to a printing device,
display device or item (respectively) that contains PostScript technology created or licensed by Adobe Systems Incorporated and not to devices
or items that purport to be merely compatible with the PostScript language.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Acrobat Capture, Distiller, PostScript, the PostScript logo and Reader are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Apple, Macintosh, and Power Macintosh are trademarks of Apple Computer, Inc., registered in the United States and other countries. PowerPC
is a registered trademark of IBM Corporation in the United States. ActiveX, Microsoft, Windows, and Windows NT are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Verity is a registered trademark of Verity,
Incorporated. UNIX is a registered trademark of The Open Group. Verity is a trademark of Verity, Inc. Lextek is a trademark of Lextek
International. All other trademarks are the property of their respective owners.

This publication and the information herein is furnished AS IS, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies,
makes no warranty of any kind (express, implied, or statutory) with respect to this publication, and expressly disclaims any and all warranties
of merchantability, fitness for particular purposes, and noninfringement of third party rights.

Programming Acrobat JavaScript Using Visual Basic 3

Programming Acrobat JavaScript
Using Visual Basic

Acrobat 7.0 provides a rich set of JavaScript programming interfaces that are designed to
be used from within the Acrobat environment. It also provides a mechanism (known as
JSObject) that allows external clients to access the same functionality from environments
such as Visual Basic.

This document gives you the information you need to get started using the extended
functionality of JavaScript from a Visual Basic programming environment. It provides a set
of examples to illustrate the key concepts.

What is JSObject?

In precise terms, JSObject is an interpretation layer between an OLE Automation client such
as a Visual Basic application and the JavaScript functionality provided by Acrobat. From a
programmer's point of view, the end result is that programming JSObject from a Visual
Basic environment is quite similar to programming in JavaScript using the Acrobat console.

Getting Started

The following steps get you set up to run the examples:

1. Install Acrobat 7.0 and Visual Basic .NET, since both are required for the examples in this
document.

2. Open a new Visual Basic.NET project. That gets you started with a blank form and
project workspace.

3. To access the Acrobat Automation APIs, including JSObject, you need to add a reference
to Acrobat's type library. From the UI, select Project > Add Reference, then the COM tab,
and from the list of available references, click on the item labeled “Adobe Acrobat 7.0
Type Library." Click Select. Click OK.

Programming Acrobat JavaScript Using Visual Basic
A Simple Example

4 Programming Acrobat JavaScript Using Visual Basic

A Simple Example

This example describes the bare minimum required to display “Hello, Acrobat!” in Acrobat's
JavaScript console.

1. Bring up the source code window for this form by selecting View > Code from the UI.

2. Select (Form1 Events) from the selection box in the upper left corner of that window.

The selection box in the upper right shows all the functions available to the Form object.

3. Select Load from that box, which creates an empty function stub. The Form's Load
function is called when the Form is first displayed, so it's a good place to add the
initialization code.

This program uses some global variables for data that are required for its lifetime, and
initializes them in the Form1_Load routine.

Programming Acrobat JavaScript Using Visual Basic 5

Programming Acrobat JavaScript Using Visual Basic
A Simple Example

EXAMPLE 1 “Hello, Acrobat!”

Dim gApp As Acrobat.CAcroApp
Dim gPDDoc As Acrobat.CAcroPDDoc
Dim jso As Object

Private Sub Form1_Load(ByVal sender As Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 gApp = CreateObject("AcroExch.App")
 gPDDoc = CreateObject("AcroExch.PDDoc")
 If gPDDoc.Open("c:\adobe.pdf") Then
 jso = gPDDoc.GetJSObject
 jso.console.Show
 jso.console.Clear
 jso.console.println ("Hello, Acrobat!")
 gApp.Show
 End If
End Sub

Note that you need a file called adobe.pdf at the root level of your C: drive.

With this code in place, the Visual Basic program attaches to Acrobat's Automation
interface using the CreateObject call, then shows the main window using the App
object's Show command.

You may have a few questions after studying the code fragment. For example, why is jso
declared as an Object, while gApp and gPDDoc are declared as types found in the Acrobat
type library? Is there a real type for JSObject?

The answer is no, JSObject does not appear in the type library, except in the context of the
CAcroPDDoc.GetJSObject call. The COM interface used to export JavaScript
functionality through JSObject is known as an IDispatch interface, which in Visual Basic is
more commonly known simply as an “Object” type. The upshot of this is that the methods
available to the programmer are not as well-defined as we would like. For example, you
might be surprised to learn that if you replace the call to

 jso.console.clear

 with

 jso.ThisCantPossiblyCompileCanIt("Yes it can!")

the compiler happily compiles the code, but fails rudely at run time. Since Visual Basic has
no type information for JSObject, Visual Basic does not know if a particular call is even
syntactically valid until runtime, and will compile any function call to a JSObject. For that
reason, the programmer must rely on documentation to know what functionality is
available through the JSObject interface. The Acrobat JavaScript Scripting Reference, which
is available from http://partners.adobe.com/links/acrobat, is indispensable as you delve
deeper into the mysteries of JSObject.

You may also wonder why it is necessary to open a PDDoc before creating a JSObject.
Running the program shows that no document appeared onscreen, and showing the
JavaScript console should be possible without a PDDoc in hand. The answer is that
JSObject is designed to work closely with a particular document, since most of the available

http://partners.adobe.com/links/acrobat

Programming Acrobat JavaScript Using Visual Basic
Working with Annotations

6 Programming Acrobat JavaScript Using Visual Basic

features operate at the document level. There are some application-level features in
JavaScript (and therefore in JSObject), but they are of secondary interest. In practice, a
JSObject is always associated with a particular document. When working with a large
number of documents, you must structure your code such that a new JSObject is acquired
for each document, rather than creating a single JSObject to work on every document.

Working with Annotations

The next example is more interesting: a program that allows the user to select a PDF, add a
pre-defined annotation, and save the file back to disk.

1. Create a new Visual Basic.NET project as you did in the first example; be sure to add the
Adobe Acrobat 7.0 Type Library to this project as well.

2. For this example you use the Windows File > Open dialog, so select
Project > Add Component from the UI. This allows you to open the Toolbox on the left
side of the development environment. Select Windows Forms from the Toolbox and
scroll down to and select the OpenFileDialog. Drag it to your form.

3. Use the same technique to add a Button to your form.

Programming Acrobat JavaScript Using Visual Basic 7

Programming Acrobat JavaScript Using Visual Basic
Working with Annotations

4. Now that a minimal user interface is set up, select View > Code from the main menu, and
add the following source code:

EXAMPLE 2 Working with annotations

Dim gApp As Acrobat.CAcroApp

Programming Acrobat JavaScript Using Visual Basic
Working with Annotations

8 Programming Acrobat JavaScript Using Visual Basic

Private Sub Form_Load()
 gApp = CreateObject("AcroExch.App")
End Sub

Private Sub FormName.Closed(Cancel As Integer)
If Not gApp Is Nothing Then

gApp.Exit
End If
gApp = Nothing

End Sub

Private Sub Command1_Click()
 Dim pdDoc As Acrobat.CAcroPDDoc
 Dim page As Acrobat.CAcroPDPage
 Dim jso As Object
 Dim path As String
 Dim point(1) As Integer
 Dim popupRect(3) As Integer
 Dim pageRect As Object
 Dim annot As Object
 Dim props As Object

OpenFileDialog1.ShowDialog()
path = OpenFileDialog1.FileName

 pdDoc = CreateObject("AcroExch.PDDoc")
 If pdDoc.Open(path) Then
 jso = pdDoc.GetJSObject
 If Not jso Is Nothing Then

 ' Get size for page 0 and setup arrays

page = pdDoc.AcquirePage(0)
 pageRect = page.GetSize
 point(0) = 0
 point(1) = pageRect.y
 popupRect(0) = 0
 popupRect(1) = pageRect.y - 100
 popupRect(2) = 200
 popupRect(3) = pageRect.y

 ' Create a new text annot
 annot = jso.AddAnnot
 props = annot.getProps
 props.Type = "Text"
 annot.setProps props

 ' Fill in a few fields
 props = annot.getProps
 props.page = 0
 props.point = point
 props.popupRect = popupRect

Programming Acrobat JavaScript Using Visual Basic 9

Programming Acrobat JavaScript Using Visual Basic
Working with Annotations

 props.author = "Rob McAfee"
 props.noteIcon = "Comment"
 props.strokeColor = jso.Color.red
 props.Contents = "I added this comment from Visual Basic!"
 annot.setProps props
 End If
 pdDoc.Close
 MsgBox "Annotation added to " & path
 Else
 MsgBox "Failed to open " & path
 End If

 pdDoc = Nothing
End Sub

The code in the Form_Load and FormName.Closed routines simply initializes and
shuts down the main Acrobat Automation interface. All the interesting work happens in the
Command button's click routine. The first few lines declare local variables and show the
Windows Open dialog, which allows the user to select a file to annotate. At that point, the
code opens the PDF's PDDoc object, and obtains a JSObject interface to that document.

Some standard Acrobat Automation methods are used to determine the size of the first
page in the document. These numbers are critical to achieving the correct layout, because
the PDF coordinate system is based in the lower-left corner of the page, but the annotation
will be anchored at the upper left corner of the page.

The lines following the "Create a new text annot" comment do exactly that, but
this block of code bears additional explanation. First of all, addAnnot looks as if it were a
method of JSObject, but the JavaScript reference shows that the method is associated with
the doc object. In that case, you might expect the syntax to be jso.doc.addAnnot—
however, jso is the Doc object, so jso.addAnnot is correct. All of the properties and
methods in the Doc object are used in this manner.

The second item of note is the use of annot.getProps and annot.setProps. The
Annot object is implemented with a separate properties object, meaning that you cannot
set the properties directly. For example, you cannot do the following:

annot = jso.AddAnnot
annot.Type = "Text"
annot.page = 0
...

Instead, you must obtain the Annot’s properties object using annot.getProps, and use
that object for read or write access. To save changes back to the original Annot, call
annot.setProps with the modified properties object, as in the original example.

Finally, note the use of JSObject's color property. This object defines several simple colors
such as red, green, and blue. In working with colors, you may need a greater range of colors
than is available through this object. Also, there is a performance hit associated with every
call to JSObject. To set colors more efficiently, you can use code such as the following,
which sets the annot's strokeColor to red directly, bypassing the color object.

dim color(0 to 3) as Variant

Programming Acrobat JavaScript Using Visual Basic
Spell-Checking a Document

10 Programming Acrobat JavaScript Using Visual Basic

color(0) = "RGB"
color(1) = 1#
color(2) = 0#
color(3) = 0#
annot.strokeColor = color

You can use this technique anywhere a color array is needed as a parameter to a JSObject
routine. The example sets the colorspace to RGB, and specifies floating point values
ranging from 0 to 1 for red, green, and blue. Note the use of the # character following the
color values. These are required, since they tell Visual Basic that the array element should be
set to a floating point value, rather than an integer. It is also important to declare the array
as containing Variants, since it contains both strings and floating point values. The other
color spaces ("T", "G", "CMYK") have varying requirements for array length. Refer to the
Color object in the Acrobat JavaScript Scripting Reference for more details.

Spell-Checking a Document

Acrobat 7.0 includes a plug-in that can scan a document for spelling errors. This plug-in also
provides JavaScript methods that can be accessed using a JSObject. In this example, you’ll
start with the source code from Example 2, and make the following changes:

1. Add a List View control to the main form. Keep the default name ListView1 for the
control.

2. Replace the code in the existing Command1_Click routine with the following:

EXAMPLE 3 Spell-checking a document

Private Sub Button1_Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Button1.Click
 Dim pdDoc As Acrobat.CAcroPDDoc
 Dim jso As Object
 Dim path As String
 Dim count As Integer
 Dim i As Integer, j As Integer
 Dim word As Variant
 Dim result As Variant
 Dim foundErr As Boolean

OpenFileDialog1.ShowDialog()
path = OpenFileDialog1.FileName

 foundErr = False
 pdDoc = CreateObject("AcroExch.PDDoc")

 If pdDoc.Open(path) Then
 jso = pdDoc.GetJSObject
 If Not jso Is Nothing Then
 count = jso.getPageNumWords(0)

Programming Acrobat JavaScript Using Visual Basic 11

Programming Acrobat JavaScript Using Visual Basic
Spell-Checking a Document

 For i = 0 To count - 1
 word = jso.getPageNthWord(0, i)
 If VarType(word) = vbString Then
 result = jso.spell.checkWord(word)
 If IsArray(result) Then
 foundErr = True
 ListView1.Items.Add (word & " is misspelled.")
 ListView1.Items.Add ("Suggestions:")
 For j = LBound(result) To UBound(result)
 ListView1.Items.Add (result(j))
 Next j
 ListView1.Items.Add ("")
 End If
 End If
 Next i
 jso = Nothing
 pdDoc.Close

 If Not foundErr Then
 ListView1.Items.Add ("No spelling errors found in " &

path)
 End If
 End If
 Else
 MsgBox "Failed to open " & path
 End If

 pdDoc = Nothing
End Sub

In this example, note the use of the Spell object’s check method. According to the Acrobat
JavaScript Scripting Reference, this method takes a word as input, and returns a null object if
the word is found in the dictionary, or an array of suggested words if the word in not found.
As always, the safest approach when storing the return value of a JSObject method call is to
use a Variant. You can use the IsArray function to determine if the Variant is an array, and
act accordingly. In this simple example, if the program sees an array of suggested words, it
dumps them out to the List View control.

Programming Acrobat JavaScript Using Visual Basic
Tips on Translating JavaScript to JSObject

12 Programming Acrobat JavaScript Using Visual Basic

Tips on Translating Java S cript to JSObjec t

Covering every method available to JSObject is beyond the scope of this document.
However, the Acrobat JavaScript Scripting Reference covers the subject in detail, and much
can be inferred from the reference by keeping a few basic facts in mind:

1. Most of the objects and methods in the reference are available in Visual Basic, but not
all. In particular, any JavaScript object that requires the new operator for construction
cannot be created in Visual Basic. This includes the Report object.

2. The Annots object is unusual in that it requires JSObject to set and get its properties as
a separate object using the getProps and setProps methods.

3. If you are unsure what type to use to declare a variable, declare it as a Variant. This gives
Visual Basic more flexibility for type conversion, and helps prevent runtime errors.

4. JSObject cannot add new properties, methods, or objects to JavaScript. Due to this
limitation, the global.setPersistent property is not meaningful.

5. JSObject is case-insensitive. Visual Basic often capitalizes leading characters of an
identifier and prevents you from changing its case. Don't be concerned about this, since
JSObject ignores case when matching the identifier to its JavaScript equivalent.

6. JSObject always returns values as Variants. This includes property gets as well as return
values from method calls. An empty Variant is used when a null return value is expected.
When JSObject returns an array, each element in the array is a Variant. To determine the
actual data type of a Variant, use the utility functions IsArray, IsNumeric,
IsEmpty, IsObject, and VarType from the Information module of the VBA library.

7. JSObject can process most elemental Visual Basic types for property puts and input
parameters to method calls, including Variant, Array, Boolean, String, Date, Double,
Long, Integer, and Byte. JSObject can accept Object parameters, but only when the
Object was the result of a property get or method call to a JSObject. JSObject fails to
accept values of type Error and Currency.

	Adobe Acrobat 7.0.5
	Programming Acrobat JavaScript Using Visual Basic
	Programming Acrobat JavaScript Using Visual Basic
	What is JSObject?
	Getting Started
	1. Install Acrobat 7.0 and Visual Basic .NET, since both are required for the examples in this document.
	2. Open a new Visual Basic.NET project. That gets you started with a blank form and project workspace.
	3. To access the Acrobat Automation APIs, including JSObject, you need to add a reference to Acrobat's type library. From the UI...

	A Simple Example
	1. Bring up the source code window for this form by selecting View > Code from the UI.
	2. Select (Form1 Events) from the selection box in the upper left corner of that window.
	3. Select Load from that box, which creates an empty function stub. The Form's Load function is called when the Form is first displayed, so it's a good place to add the initialization code.
	Example 1 “Hello, Acrobat!”

	Working with Annotations
	1. Create a new Visual Basic.NET project as you did in the first example; be sure to add the Adobe Acrobat 7.0 Type Library to this project as well.
	2. For this example you use the Windows File > Open dialog, so select Project > Add Component from the UI. This allows you to op...
	3. Use the same technique to add a Button to your form.
	4. Now that a minimal user interface is set up, select View > Code from the main menu, and add the following source code:
	Example 2 Working with annotations

	Spell-Checking a Document
	1. Add a List View control to the main form. Keep the default name ListView1 for the control.
	2. Replace the code in the existing Command1_Click routine with the following:
	Example 3 Spell-checking a document

	Tips on Translating JavaScript to JSObject
	1. Most of the objects and methods in the reference are available in Visual Basic, but not all. In particular, any JavaScript object that requires the new operator for construction cannot be created in Visual Basic. This includes the Report object.
	2. The Annots object is unusual in that it requires JSObject to set and get its properties as a separate object using the getProps and setProps methods.
	3. If you are unsure what type to use to declare a variable, declare it as a Variant. This gives Visual Basic more flexibility for type conversion, and helps prevent runtime errors.
	4. JSObject cannot add new properties, methods, or objects to JavaScript. Due to this limitation, the global.setPersistent property is not meaningful.
	5. JSObject is case-insensitive. Visual Basic often capitalizes leading characters of an identifier and prevents you from changi...
	6. JSObject always returns values as Variants. This includes property gets as well as return values from method calls. An empty ...
	7. JSObject can process most elemental Visual Basic types for property puts and input parameters to method calls, including Vari...

