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Abstract Universal compression algorithms can detect recurring patterns in any
type of temporal data—including financial data—for the purpose of compression.
The universal algorithms actually find a model of the data that can be used for either
compression or prediction. We present a universal Variable Order Markov (VOM)
model and use it to test the weak form of the Efficient Market Hypothesis (EMH).
The EMH is tested for 12 pairs of international intra-day currency exchange rates for
one year series of 1, 5, 10, 15, 20, 25 and 30 min. Statistically significant compression
is detected in all the time-series and the high frequency series are also predictable
above random. However, the predictability of the model is not sufficient to generate
a profitable trading strategy, thus, Forex market turns out to be efficient, at least most
of the time.
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1 Introduction and Motivation

In this paper we test the validity of the weak form of the Efficient Market Hypothesis
(abbreviated henceforth as EMH) by trying to predict the Forex Intra-day Trading
series. Our prediction is based on the Variable Order Markov (VOM) model (Rissanen
1983). The VOM model generalizes a wide variety of finite-memory models, in par-
ticular, the conventionally-used Markov Chain models (Ben-Gal et al. 2005). Unlike
the Markov Chain model, the order of the VOM model is not necessarily fixed and
it is not defined a priori to the learning stage, but rather the order is variable and it
depends on the particular observed data-sequences that are found to be statistically
significant. In other words, for certain observations the VOM model can represent a
“flat” distribution of independent data, while for other observations the model can
represents a conditional distribution of a higher order.

The VOM model has been developed as a universal prediction model aiming to pre-
dict an arbitrary sequence of symbols from an unknown stationary stochastic process
(Rissanen 1984). Originally, the VOM model was closely related to data-compression
applications, in which the prediction has been used to compress1 an unknown sequence
of discrete symbols (e.g., Ziv and Lempel 1978; Feder et al. 1992). In these cases, pre-
diction was obtained by estimating the conditional probabilities of symbols given
their conditioning (observed) sequences. A known measure of the compression of a
sequence is its log-loss score, which is simply the inverse of the log-likelihood of the
sequence given a representing model. The optimal average log-loss value represents
the highest compression rate2 of the data that, for long sequences, attain the entropy
lower bound (Begleiter et al. 2004). Thus, constructing a data-compression model that
minimizes the average log-loss score of a sequence is equivalent to constructing a
prediction model that maximizes the likelihood of a sequence. Therefore, in this study
the terms “compression” and “prediction” are often considered as equivalent terms.
Note that although other universal-compression algorithms can be used for prediction,
the used VOM model—a variation of Rissanen’s (1983) context tree—has been shown
to attain the best asymptotic convergence rate for a given sequence (Ziv 2001, 2002;
Begleiter et al. 2004).

The significance of universal prediction Models is well recognized in applications
such as time-series forecasting (Feder et al. 1992), branch prediction (Federovsky
et al. 1998), error corrections of textual data (Vert 2001), Statistical Process Control
(Ben-Gal et al. 2003), machine learning and bioinformatics (Shmilovici and Ben-Gal

1 As an intuitive explanation, the compression of the data is obtained by assigning short codes to frequently
re-occurring subsequences, depending on their likelihood to appear in the data.
2 For long sequences, the universal coding approaches the optimal compression rate—the entropy of the
sequence—without prior knowledge on the generating model. The crucial essence in compression is esti-
mating the conditional probability for the next outcome given the past observations, so those symbols (and
sub-sequences) with high conditional probabilities are assigned short codes.
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2007; Zaidenraise et al. 2007). Yet, the powerful insights to be gained from these
models in financial econometric series were not well studied (Shmilovici and Ben-Gal
2006).

The first contribution of this paper is the use of the Variable Order Markov (VOM)
model, as a universal prediction model of time-series. Given the trend of lowering
transaction costs in recent years because of technological improvements in trading, the
need for enhanced models for prediction is greater then ever. The second contribution of
this paper is the implication of a familiar example—the EMH—to show how universal
prediction can be applied in general to financial econometrics and in particular to the
Forex Intra-day Trading series.

In this empirical study, the VOM model was used to predict the outcome of the
Forex Intra-day trading series. Based on these forecasts, we tested the weak form
of the EMH for twelve pairs of international intra-day currency exchange rates, for
one-year series that were sampled each 1, 5, 10, 15, 20, 25 and 30 min. This is the
most comprehensive Intraday Forex research we know of in terms of the number of
investigated data series. To the best of our knowledge, this is the first time where
the compressibility-predictability relation (Feder et al. 1992) is implemented to an
empirical financial study. Statistically significant compression was detected in all
the time-series and predictability above a random prediction was found for all the
high-frequency series. On the other hand, the significant predictability of the VOM
model was not sufficient to generate a profitable trading strategies and excess return,
thus, in the use of a generalized model is consistent with Timmermann and Granger
(2004) argument that a good forecasting approach is to conduct a search across many
prediction models employed to short data window.

The rest of the paper is organized as follows. Section 2 gives some background on
the EMH and the Forex Market. Section 3 introduces the VOM model as a universal
prediction model (some illustrative examples of the VOM are given in the Appendix).
Section 4 reports on the experiment details and results and Section 5 concludes with a
short discussion.

2 Background and Related Work

2.1 The Weak Form Efficient Market Hypothesis

According to Jensen (1978), a market is efficient with respect to an information set
�t if it is impossible to make economic profits by trading on the basis of �t . Most
studies in the literature of financial market returns restrict �t to comprise only past
and current asset prices3 (Timmermann and Granger 2004). We follow this restriction,
which is known as the weak form of the Efficient Market Hypothesis, and abbreviate it
as the EMH. The EMH implies the absence of consistent profitable opportunities, but,
it does not rule out all forms of predictability of returns for certain periods. Predictions

3 The semi-strong form of the EMH expands �t to include all publicly available information. Restricting
the information set in such a way is designed to rule out private information which may be expensive to
acquire and is harder to measure.
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of returns invalidate the EMH only once they are significant enough to consistently
generate economic profits that cover trade and transaction costs.

The EMH has been investigated in numerous papers (Mills 2002; Lo 2007).
Thorough surveys, such as Fama (1991, 1998), Hellstrom and Holmstrom (1998) and
Timmermann and Granger (2004) present conflicting conclusions regarding the valid-
ity of the EMH. Most of the arguments that justify the EMH argue that different tested
models were unable to obtain a statistically-significant prediction of economic series.
Albeit, the question regarding the adequacy of these tested prediction models and, as
a result, the validation of the EMH, remains unclear in many of these publications.

The EMH is considered as a “backbreaker” for many forecasting methods
(Timmermann and Granger 2004). Moreover, Timmermann and Granger (2004) sug-
gest that forecasting models are “self-destructive” in an efficient market, since any
advantage due to a new forecasting technique that becomes ‘public knowledge’ is
expected to disappear in future samples. Bellgard (2002), Schwert (2003) and Sullivan
et al. (1999) demonstrated a lag between the introduction time of a new forecasting
procedure (or the detection of a market anomaly) and the time when this procedure
is no longer useful. Thus, it may be easier to detect market inefficiencies with a new
forecasting algorithm as we attempt to do here. The use of a generalized (universal)
prediction model is also consistent with Timmermann and Granger’s argument that
a good forecasting approach is to conduct a search across many prediction models
employed to short data window.

Claims for successful predictions of economic series based on nonlinear models,
such as neural networks (e.g., Zhang 1994; Deboeck 1994; Lebaron 1999; Baetaens
et al. 1996; Yu et al. 2005; Kaashoek and Van Dijk 2002) do not necessarily contradict
the EMH if the trading community is not exposed to these new methods and cannot
assimilate them immediately. In this paper, we test the validity of the EMH based on
the Variable Order Markov (VOM) model. This model generalizes a wide variety of
finite-memory models (Ben-Gal et al. 2005), thus, it is potentially more adequate for
such investigation. The use of a generalized model is consistent with Timmermann
and Granger (2004) argument that a good forecasting approach is to conduct a search
across many prediction models employed to short data window.

2.2 Predicting the Forex Intra-day Trading Series

The currency exchange market—also referred as the Forex market—is the world’s
largest market (Millman 1995), having a daily trading volume in excess of one trillion
dollars. There is no single unified foreign exchange market. Trading is executed via
telephone and computer links between dealers in different centers. The main trad-
ing centers are located in London, New York, and Tokyo, however, many secondary
dealers, such as local banks throughout the world, participate in this on-going trad-
ing of 24 h a day (except for weekends). Currencies are traded against one another.4

4 Each pair of currencies thus constitutes an individual product and is traditionally denoted as “XXXYYY”
(Neely 1997). For instance, EURUSD is the price of the euro expressed in US dollars, as in 1 euro =
1.2045 dollar.
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The bid/ask spread5 is the difference between the price at which a bank or market maker
will sell (“ask”, or “offer”) and the price at which a market-maker will buy (“bid”) from
a wholesale customer. Competition has greatly increased with pip spreads shrinking
on the majors currencies to as little as 1–1.5 pips (basis points).

The daily efficiency of Forex markets has been examined extensively (Chung and
Hong 2007 and its references). However, there is not much research on high-frequency
financial series, such as the intraday Forex trading, since the plentiful trade records
(tick by tick) are not uniformly distributed (Dacorogna et al. 2001; Tsay 2002). Clas-
sical linear models such as the Purchasing Power Parity model (Bahmani-Oskooee
et al. 2006; Choong et al. 2003; Taylor and Taylor 2004) fail to explain the temporal
currency fluctuations. It is demonstrated that nonlinear forecasting methods, as the one
we propose here, are often better than linear ones for predicting the Forex trading series
(Kamruzzaman and Sarker 2004; Boero and Marrocu 2002). Dempster et al. (2001)
investigated three currency pairs and concluded that the highest frequency available
should be used for forecasting. Goldschmidt and Bellgrad (1999) compared several
forecasting models for a single currency pair.

Papageorgiou (1997) conducted a similar research to the one presented here by using
a Markov model (which is a particular instance of the VOM) to predict a future ternary-
state (‘Increase’, ‘Decrease’, and ‘Stability’) of a single currency series (CHFUSD).
Shmilovici et al. (2003) and Shmilovici and Ben-Gal (2006) applied the VOM model
to a simple binary series (having either an ‘Increase’ or a ‘Decrease’ states) to test
the compressibility of daily stock series. In this paper, we extend the above works
by applying the VOM model to numerous ternary-state series in the intra-day Forex
market.

3 Introduction to the VOM

The VOM model was first suggested by Rissanen (1983) as the “context tree” for
data compression purpose. Variants of the model were used in applications such as
genetic text modeling (Orlov et al. 2002), classification of protein families (Bejerano
and Yona 2001), and statistical process control (Ben-Gal et al. 2003). Ziv (2001) proves
that in contrast to other models the convergence of the context tree model to the ‘true
distribution’ model is fast and does not require an infinite sequence length. The VOM
model which we used here is a variant of the Prediction by Partial Match (PPM) tree,
which was found in Begleiter et al. (2004) to outperform other variants of the VOM
model. Our version of the VOM model is different in its parameterization, growth,
smoothing procedure and pruning stages from the previous versions of the model.
These differences might be significant, especially when applying the model to small
datasets (Buhlmann and Wyner 1999; Ziv 2001; Begleiter et al. 2004).

5 This spread is minimal for actively traded pairs of currencies, usually in the order of only 1–3 pips. For
example, the bid/ask quote of EURUSD might be 1.2200/1.2203. The minimum trading size for most deals
is usually $1,000,000. These spreads might not apply to retail customers at banks, which will routinely mark
up the difference to say 1.2100/1.2300 for transfers. Spot prices at market makers vary, but on EUR/USD
are usually no more than 5 pips wide (i.e., 0.0005).
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The VOM model represents a collection of statistically-significant patterns in time
series by a parsed tree. Each node in the tree contains the conditional distribution
of symbols given a pattern that is represented by the branch (path) from the root to
the node. The branches are labeled by the ternary symbols (‘Increase’, ‘Decrease’,
and ‘Stability’ in our study) representing the reoccurring patterns in the series. The
branches are not necessarily equal in length—a main difference between this context-
specific model and conventional fixed-order Markov models. Therefore, the algorithm
is particularly effective for predicting relatively short series, such as the ones available
in economic datasets. The algorithm reduces the number a-priori statistical assump-
tions that are usually required by conventional models on the model structure and the
distribution of the data (for example, it does not require to fix the order of the model as
required by conventional Markov chains). While the advantages of such a class of mod-
els become evident in machine learning, it has not been well analyzed in econometrics.

Next, we shortly present the VOM model that we used in our experiments. We
follow the explanations and style in Begleiter et al. (2004) and Ben-Gal et al. (2003)
that contain further details on the model and its construction.

Let
∑

be a finite alphabet of size |∑ |. For example,
∑

= {Stability, Increase,
Decrease} and |∑ | = 3. Consider a sequence σ n

1 = σ1σ2 . . . σn where σi ∈ � is the
symbol at position i , with 1 ≤ i ≤ n in the sequence and σiσi+1 is the concatenation
of σi and σi+1. Based on a training set σ n

1 , the VOM construction algorithm learns
a model P̂ that provides a likelihood assignment for any future symbol given its
past (previously observed) symbols. Specifically, the VOM generates a conditional
probability distribution P̂(σ |s) for a symbol σ ∈ � given a context s ∈ �∗, where the
* sign represents a context of any length, including the empty context (for unconditional
distribution of symbols in the root of the tree). VOM models attempt to estimate
conditional distributions of the form P̂(σ |s), where the context length |s| ≤ D varies
depending on the available statistics. In contrast, conventional Markov models attempt
to estimate these conditional distributions by assuming a fixed contexts’ length |s| =
D and, hence, can be considered as special cases of the VOM models. Effectively,
for a given training sequence, the VOM models are found to obtain better model
parameterization than the fixed-order Markov models (Ben-Gal et al. 2005).

Most VOM learning algorithms include three phases: counting, smoothing, and
context selection (Begleiter et al. 2004). In the counting phase, the algorithm constructs
an initial context tree T of maximal depth D, which defines an upper bound on the
dependence order6 (i.e., the contexts’ length). The tree has a root node, from which
the branches are developed. A branch from the root to a node represents a context
that appears in the training set in a reversed order. Thus, an extension of a branch by
adding a node represents an extension of a context by an earlier observed symbol.
Each node has at most |∑ | children. The tree is not necessarily balanced (i.e., not all
the branches need to be of the same length) nor complete (i.e., not all the nodes need
to have | ∑ | children). The algorithm constructs the tree as follows. It incrementally
parses the sequence, one symbol at a time. Each parsed symbol σi and its D-sized
context, σ i−1

i−D , define a potential path in T , which is constructed if it does not yet exist.

6 We use D ≤ log (n + 1) / log (|�|), where n denotes the lengths of the training sequences. In our
experiments D = 8.

123



Measuring the Efficiency of the Intraday Forex Market

Note that after parsing the first D symbols, each newly constructed path is of length
D. Each node contains |∑ | counters of symbols given the context. The algorithm
updates the contexts by the following rule: traverse the tree along the path defined by
the context σ i−1

i−D and increment the count of the symbol σi in all the nodes until the
deepest node is reached. The count Nσ (s) denotes the number of occurrences where
symbol σ ∈ � follows context s in the training sequence. These counts are used to
calculate the probability estimates of the predictive model. Appendix A illustrates an
example of the VOM learning algorithm.

The purpose of the second phase of the VOM construction is to use the counts as a
basis for generating the predictor P̂(σ |s). The following equation is used to smooth
the probability to account also for events of zero frequency (Ben-Gal et al. 2005)

P̂(σ |s) =
1
2 + Nσ (s)

|�|
2 + ∑

σ ′∈�

Nσ ′(s)
.

The purpose of the third phase of the algorithm is to reduce the model size in order
to avoid an over-fitting of the model to the training sequence and enhance memory
usage and computation time. Given a long training set, the second phase of the algo-
rithm might results in a context tree having contexts that occurred only a small number
of times, and thus, are not statistically significant. If s = σkσk−1 . . . σ1 marks a leaf
node, then its “parent node” is its longest suffix s′ = σk−1 . . . σ1. The algorithm prunes
any leaves that do not contribute “additional information” in predicting σ relative to
its “parent” node. This additional information is measured by the Kullback-Leibler
(KL) divergence of the distribution of symbols between all leaves of depth k and their
parent node of depth k − 1:

K L(leaf(s)) =
∑

σ ′∈�

P̂(σ |s) log2

(
P̂(σ |s)
P̂(σ |s′)

)

.

A leaf is pruned if K L(leaf(s)) ≤ C(|�|+1) log2(n+1).7 Practically, this pruning
step keeps the leaf only if its symbols ‘distribution is sufficiently different from the
symbols’ distribution in its parent node. The pruning process can continue recursively
to deeper nodes in the context tree.8

Once the VOM tree is constructed it can be used to derive the likelihood scores
of test sequences, P̂(σ T

1 ) = ∏T
i=1 P̂(σi |σ1 . . . σi−1), were σ0 denotes the empty

set. Sequences with similar statistical properties to sequences from the training set
(i.e., sequences that belong to the same class of the training dataset) are expected to
obtain a higher likelihood score, or equivalently a lower log-loss which is the loga-
rithm of the inverse likelihood, − log2 P̂(σi |σ1 . . . σi−1). The log-loss is known to be
the ideal compression or “code length” of σi , in bits per symbol, with respect to the
conditional distribution P̂(σ |σ1 . . . σi−1) (Begleiter et al. 2004). That is, a good com-
pression model that minimizes the log-loss can be used as a good prediction model
that maximizes the likelihood and vice-versa (Feder and Merhav 1994).

7 Rissanen (1983) recommends a default of C = 2. In our experiments C=0.5 produced better results.
8 Further details about the truncation process and partial leaves are given in Ben-Gal et al. (2005).
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The VOM model is used to predict a symbol as follows: Given a sequence s, one
can predict the next symbol σ̂ in the series as the symbol that maximize the likelihood
σ̂ = arg maxσ ′ {P̂(σ ′|s)}, where P̂(σ |s) denotes the estimated likelihood of the VOM
model.

As noted above, the existence of recurring patterns in a sequence enables data com-
pression. Each branch in the tree represents a recurring pattern (sub-sequence) called a
“context”. The entire series can then be coded by these contexts. If the length (in bits) of
the coded sequence is shorter than the length of the original sequence, then compression
is obtained. Reoccurring patterns in the data enhance its predictability—sequences that
are highly compressible are easy to predict and, conversely, incompressible sequences
are difficult to predict.9

The imbalance in the context tree (i.e., having shorter and longer branches) reflects
the fact that some patterns do not affect future predictions, while others do. In general,
the deeper the leaf in the tree, the higher is the “reliability” of its prediction.10 Since
practically most contexts do not point to a deep leaf (and since most trees in a noisy and
random sequence are rather flat), the predictions are expected to be reliable only for a
fraction of the time (in this study it means that the market is efficient most of the time).
In our experiments, we investigated what happens if we carry out a prediction only
for those scenarios in which the likelihood (expected probability) is above a certain
threshold. The results are given in the next section.

4 Numerical Experiments

The purpose of this section is to present part of the experiments that tested the EMH for
the Forex market by using the VOM model (Kahiri 2004). We start by presenting the
used datasets and the pre-processing procedures and follow by describing three sets of
experiments: the series compression experiments, the series prediction experiments,
and the simulated investment experiments.

4.1 Used Data and Preprocessing Procedures

The data used for this research is the “tick by tick” bid prices of 12 currency pairs for
the year 2002.11 Table 1 lists the currencies and the number of available minutes for
each currency.12 The following and experimental procedures were used:

9 Note that different sequences can have the same compressibility, so the compressibility of a sequence
does not uniquely determine its predictability.
10 Error bounds for several universal predictors are introduced in Feder and Federovski (1999) for binary
series and in Hutter (2001) for non-binary series. Merhav and Feder (1998) present further results, such as
the relation between the number of leaves in the context tree and the information content in the sequence.
11 Data received from www.forexite.com
12 Apparently some currencies are not traded 24 h per day. We ignore the “gaps” in the trade. The number
of gaps is small compared to the size of the data, and it can only “weaken” the conclusions.
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Table 1 Currency data from
2002 used for this research

Currency pair No. of minutes

EURUSD 250,608
GBPUSD 241,368
USDJPY 269,154
AUDUSD 150,546
CHFJPY 248,997
EURCAD 251,800
EURCHF 276,609
EURGBP 194,433
EURJPY 278,678
GBPCHF 305,573
GBPJPY 297,378
USDCHF 269,154

• The series were sampled by using 1, 5, 10, 15, 20, 25, or 30 min intervals.
• The series were discretized a priori since the proposed VOM model handles only

discrete data.13 The difference series were quantized to ternary-symbols series,
such that an increase (decrease) of 3 pips (i.e., 0.0003) or more was coded by “1”
(or respectively by “3”). Any change less than 2 pips14 was considered insignificant
and coded by the stability symbol “2”. Obviously, the high-frequency sampling
series (1 and 5 min) obtained a different distribution of symbols than the low-
frequency sampling series (25 and 30 min). For example, in the latter series the
stability symbol “2” is much more frequent.

• Temporal patterns can be of short duration as one can not assume stationarity in
data dependence. Accordingly, we constructed a VOM model15 for each temporal
(‘sliding’) window and used three window lengths16: 50, 75, and 100 symbols.
Thus, each experiment was conducted 12 × 7 × 3 = 252 times,17 averaging the
statistics of thousands of VOM models per each experiment.

• The implementation procedure was written in the MATLAB script language. An
important user-defined parameter in the construction algorithm of the VOM model

13 For example, the EURUSD 5-min series starts as follows (0.8891, 0.8890, 0.8890, 0.8891, 0.8888,
0.8889, 0.8883, 0.8883, 0.8882, 0.8888, 0.8886, 0.8884, 0.8885, 0.8887, 0.8889, 0.8892). Using a ternary
quantization, the coded series looks like (N/A, 2, 2, 2, 3, 2, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1).
14 The commission paid by a retail trader is later considered to be 2 pips, thus, the above pips ranges are
meaningful from a prediction point of view. It could be smaller for the more volatile currencies.
15 Each VOM model was then used to analyze the data in that temporal window and predict the next data
point following that window. A “too short” window may not capture sufficient repetitions of a pattern for
the construction of a deep tree, while a “too long” window may capture meaningless transient events that
do not affect to the conditional distribution of the predicted data.
16 A window covered between 50 and 100 trading minutes for the 1-min series; and 25–50 consecutive
trading hours for the 30 min series. The sliding windows differ by one sample each, and a unique VOM
model was constructed for each window.
17 Currency-pair × sampling frequency × sequence length.
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is the truncation coefficient18 (denoted by C) that determines the size of the model.
Further details of the algorithm are described in Ben-Gal et al. (2003).

4.2 Experiment 1: Compressibility Above Random

In this section we describe the first set experiments that focus on the compressibility of
the series, with respect to a compressibility benchmark that is derived from a random
series.

4.2.1 Methodological Note

As well known, a random series contains almost no recurring patterns, and therefore,
it can not be well compressed19 (Cover and Thomas 1991; Feder et al. 1992). Accord-
ingly, we used a “random compression” value as a benchmark (lower bound) for the
compressibility of series. In particular, we measured the compressibility of different
series by the ratios of compressed sequence-windows with respect to a random series.
We used this compressibility measure to indirectly analyze the validity of the EMH.
The experiments test the following null hypothesis with a 90% confidence level:

H0: Compressibility of the series is random—accept the EMH.
H1: Compressibility of the series is above random—reject the EMH.

Note that even for “almost random” sequences, such as a financial series in efficient
market, there is some probability that recurring patterns will occur randomly and some
(short) sequences will be compressible. In order to minimize the effect of this Type-I
statistical error, we followed a simple empirical procedure:

• An independent (uncorrelated) series can be generated from any given marginal
distribution (of ternary symbols in our case). This distribution represents20 in this
study the uncorrelated distribution of each currency-pair and frequency sampling.
This distribution can be used to derive the benchmark threshold of compressibility
for the series.

18 A selection of a “too small” truncation coefficient produces an over-fitting model, while a selection of a
“too large” truncation coefficient produces an under-fitting model. In this work we did not optimize the value
of the truncation coefficient for each sequence. Instead, we roughly tested the following three truncation
coefficients: 0.25, 0.5, 1.0 for a sample of four currencies (USDJPY, GBPUSD, EURUSD, EURCHF) and
computed a measure for the efficiency of the VOM model to correctly predict the symbols “1”,“3” with
respect to the basic trinomial distribution of these symbols in the same series (e.g., if the unconditional
frequency of the symbol “1” in the data was 20%, then predicting it correctly in 35% of the cases was
considered an improvement over unconditional prediction). It was found that the value of the truncation
coefficient that produced VOM models with the best prediction efficiency was C = 0.5. Accordingly, this
value was used in all the experiments.
19 Consider for example the large size of a compressed JPEG file for a picture having pixels with a random
color distribution.
20 To avoid excessive computations, we computed a single distribution for each frequency sampling. We
use the same distribution for all the currency pairs, which was computed by averaging the distribution over
four currency pairs (EURUSD, USDJPY, EURCHF, GBPUSD). For example, the resulting distribution of
symbols for a 20-min sampling series was (0.324, 0.344, 0.332).
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• Based on the above generated distributions, 150,000 uncorrelated strings of length
50, 75 and 100 symbols were generated for each of the seven sampling intervals.

• A VOM model was then constructed for each uncorrelated sequence, and was used
to obtain representing distribution of compressibility21 values. A percentile of this
distribution can be used as a benchmark value to determine if a sequence is indeed
uncorrelated.

• We used the 10th percentile of the (empirical) compressibility distribution (i.e., the
compression value which is found to be smaller than 90% of the empirical com-
pression values) to define a rejection region22 and a type I error, as conventionally
done in hypothesis testing.

• For each sequence of the 252 combinations of currency-pair, sampling frequency
and sequence length, we counted23 the number of sequences with a compression
value below the 10th percentile. This count was used as a statistic in the hypothesis
testing and determine if the VOM model compress the sequence above the random
threshold.

4.2.2 Results

In 248 cases out of the 252 combinations of currency-pair, sampling frequency and
sequence length, the compressibility of the respective VOM model was above the crit-
ical value that is expected from a random sequence. Thus, in this statistical hypothesis
testing, which is based on compressibility statistic of a random series, one can reject
the EMH.

4.2.3 Discussion Note

Previous statistically oriented research works (e.g., Chung and Hong 2007 and related
references) managed to detect anomalies in daily Forex series. Therefore, it is not
surprising that anomalies were detected also in intraday series. Yet, it was unexpected
to find so many series with non-random patterns (for example in comparison to interday
stock series in the study of Shmilovici and Ben-Gal 2006). One possible explanation
for this phenomenon is that large buy/sell transactions (that are common in the Forex
market) are typically executed as multiple small transactions over a short period of

21 For example, the mean representation of a random ternary sequence of length 75 with 20-min sampling
distribution is approximately 75 · log2 3 ≈ 119 bits. If the log-likelihood (to the base 2) of a specific random
sequence, as computed by its VOM model, is 112 bits, then this specific sequence attains a compression
value of 112/119 ≈ 0.941.
22 For example, for the window of length 75 with a 20-min sampling, 90% of the compression values for
the random sequences were above 0.998 that was defined as the critical value for the hypothesis testing.
If a specific ternary coded Forex sequence of length 75 (taken from a 20-min sampling series) obtains a
compression smaller than the compression threshold of 0.998 (e.g., the series obtained a compression of
0.991), then, it is assumed that there is less than 10% probability that the sequence is random.
23 For example, 99.97% of the sequences for the EURCAD series, using windows of length 75 and a 20-min
sampling, were compressed below the compressibility threshold 0.998. This is far more than the expected
10%.
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Table 2 Confusion matrix for EURUSD series for a 30-min sampling frequency and window length of
100 symbols

Observed values Stability Decrease Increase

Predicted values
Stability 0.0712 0.0597 0.0573
Decrease 0.1920 0.2804 0.2903
Increase 0.0129 0.0158 0.0204
Marginal 0.2761 0.3559 0.3680

time, therefore, generating non-random temporal patterns that influence significantly
the compressibility statistic.

4.3 Experiment 2: Predictability Above Random

The purpose of this sub-section is to describe how we test the capability of the VOM
to predict24 the next outcome in a financial sequence.

4.3.1 Methodological Note

The statistics of predictions can be well represented in the case of ternary-symbol series
by a 3 × 3 confusion matrix. Let us consider, for example, the confusion matrix in
Table 2 for the prediction of the EURUSD series for a 30-min sampling and a window
length of 100 symbols. Note that in 7.12% of the sequences, a “stability” symbol
is predicted, when the observation was “stability”, as defined above. Accordingly,
the prediction accuracy of “stability” can be defined by the estimated conditional
probability for observing “stability” given a prediction of “stability”. This accuracy
can be evaluated by applying Bayes rule as follows,

Pr (observe “stability” |predict “stability” ) = 0.0712

0.0712 + 0.0597 + 0.0573
≈ 37.83%

of the cases. Since stability occurred in 27.61% of the cases, the VOM-based prediction
can improve a random guess based on a uniform distribution (with probability of
33.33%) or a naive guess based on the past percentages of “stability” symbols in the
data (with probability of 27.61%).

The experiments test the following null hypothesis with a 90% confidence level:

H0: Prediction of observations in the series is random—accept the EMH.
H1: Prediction of observations in the series is above random (e.g., better than a naïve

prediction, which is based on historical distribution)—reject the EMH.

24 For example, for a series of length 100, a VOM model can be constructed and used to predict the
(discretized) data point at position 101. This prediction can be then compared to the observed data point at
position 101 to find if the prediction is correct or erroneous and update the confusion matrix accordingly.
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The test statistics was defined as the proportion of correct predictions (called also the
“success rate”), which is compared to the expected proportion of correct predictions
based on a random Bernoulli process.25

4.3.2 Results

• The predictability test was conducted for 252 × 3 times. The EMH for the
1-min sampling series was rejected for all the experiments and all the predic-
tion possibilities. For the 5-min sampling series the EMH was rejected for most
of the experiments, and for the 30-min sampling series the EMH was rejected for
about half of the experiments. Thus, as expected, it seems that the higher frequency
series are more predictable by the VOM model than the lower frequency series.

• A higher success rate (proportion of correct predictions) was obtained when pre-
dicting “stability” than the success rate when predicting an increase or a decrease
value in the series.

4.4 The Kappa Statistic Test

4.4.1 Methodological Note

Another measure that was used for testing the degree of agreement between forecasted
data and observed data is the Kappa26 statistic (Sim and Wright 2005). We used the
implementation of Annette27 (1997) to compute the value of Kappa and its confidence
interval. The experiments test the following null hypothesis with a 95% confidence
level:

H0: K appa = 0 (prediction is random)—accept the EMH.
H1: K appa > 0 (prediction is better than random)—reject the EMH.

25 The distribution of the “success rate” of a symbol in a random series can be approximated by a Gaussian
distribution with mean p and standard deviation S.D. ≈ √

p(1 − p)/N , where p denotes the probability
of the symbol in the series. We use this approximation to compute the single-sided 90% confidence interval,
or the acceptance region (with a quantile Z0.90 = 1.285) for the fraction of correct predictions. For
example, consider the EURUSD series with a windows size of 100 data points. It results in a sample size of
N = 250,608−100=250,508 predictions from windows of length 100. Note from Table 2 that the marginal
probability of increase is 0.368. The standard deviation of a random process with the same length is equal
to S.D. ≈ √

0.368 × 0.632/250, 508 ≈ 0.00096. This results in a single sided 90% threshold for random
success rate which is equal to 0.368+1.285×0.00096 = 36.9%. Now, note that the observed proportion of
correct predictions for this EURUSD series is (see Table 2) is 0.0204/(0.0129+0.0158+0.0204) ≈ 41.5%,
thus, outside the acceptance region—leading to the rejection of the EMH in this case.
26 The value of Kappa is between 0 and 1 and used to measure the degree of compatibility in a confusion
matrix. A value of 0 indicates no compatibility, while a value of 1.0 indicates perfect compatibility. It is
generally regarded as a more robust measure than the simple success rate since the kappa measure takes
into account the probability to obtain an agreement as a result of random events.
27 We used the MedCalc software from www.madlogic.com/madcalc.html.
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Table 3 The Kappa coefficient for several currency series

Currency 1 Min 10 Min

Window Kappa 95% CI Kappa 95% CI

EURUSD 100 0.010 −0.015 to 0.04 0.056 0.046 to 0.065
75 0.014 −0.015 to 0.043 0.052 0.042 to 0.062
50 0.021 −0.007 to 0.05 0.054 0.045 to 0.064

GBPUSD 100 0.007 −0.019 to 0.033 0.039 0.03 to 0.049
75 0.011 −0.011 to 0.036 0.027 0.018 to 0.036
50 0.017 −0.008 to 0.043 0.034 0.024 to 0.043

AUDUSD 100 0.011 −0.038 to 0.059 0.044 0.03 to 0.058
75 0.012 −0.036 to 0.06 0.040 0.026 to 0.054
50 0.021 −0.026 to 0.068 0.044 0.031 to 0.058

CHFJPY 100 0.003 −0.03 to 0.037 0.019 0.009 to 0.029
75 0.007 −0.026 to 0.041 0.015 0.006 to 0.025
50 0.015 −0.018 to 0.047 0.015 0.006 to 0.025

Positive numbers indicate predictability. Bold numbers indicates statistically significant compatibility (at
95%)

4.4.2 Results

Table 3 illustrates the results of the kappa test for some of the considered series. Note
the following facts:

• In all the series, the obtained value of Kappa was very small. The bold styled
numbers in Table 3 indicate that the 95% confidence interval for the 10 min series
is strictly positive (i.e., do not contain the value of zero), thus, indicating that the
compatibility between observed and predicted values in the confusion matrix is
statistically significant at a confidence level of 95%.

• For the all the 10-min sampling series, and for some of the 30-min sampling series,
the Kappa coefficient is statistically significant.

We can conclude that even when a compatibility is found between the predicted
data and the observed data, this difference is very small. Note that unlike the previous
hypothesis testing, this test lumps together the three prediction states.

4.4.3 Discussion Note

The above hypothesis testing indicate that the VOM model can be used for prediction
with a success rate which is higher than the naïve, historic-based prediction. This
is especially true, when using the higher frequency sampling series. This fact is in
agreement with previous results that indicate that the dependence between values in
financial time series decrease in the lag size between the observations.

Chung and Hong (2007) used a model-free evaluation procedure for daily direc-
tional Forex predictability for six currencies and also found significant evidence on
directional predictability. It is an empirically-challenging task to find whether the
direction of Forex change is predictable. Technical trading rules are built on the fun-
damental assumption that patterns in the Forex market are regular and repeatable.
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Technical trading rules widely used by Forex dealers are heavily based on forecasts of
the direction of change (Pring 1991; Taylor and Allen 1992). Our results demonstrate
that although prediction above random is potentially available, the Forex series are
“almost” random; therefore, it may be very difficult to generate profit on the basis of
predictability rules alone.

4.5 Testing the Reliability of the VOM Model Prediction

4.5.1 Methodological Note

As indicated in the section above, the VOM-based prediction provides an improvement
over a random or a naïve (historic based) guess. Note that, unfortunately, partially due
to the ternary structure of the series—the predictions were correct in less than 50%
of the cases. Yet, one might indicate that the VOM model can provide not only a
“directional” prediction, but also an estimate for the “reliability” of a prediction.28

This reliability is based on the likelihood to obtain a particular symbol given a context
of past observations. For example, if the likelihood to obtain an “increase” symbol is
70% in one leaf and 55% in another leaf, than an “increase” prediction in the first case
is considered as more reliable. Accordingly, one might suggest to limit the predictions
only to cases were the likelihood (the reliability) is higher than a certain threshold.

Since the data is of high frequency, one may be satisfied with making predictions
(and trades) only for a fraction of the time, as long as the likelihood29 of the predictions
is higher than a predefined value, say 50%.

The purpose of this subsection is to test the following hypothesis regarding the
effects of the prediction likelihood30 on the test statistics.

H0: The prediction likelihood does not impact the prediction success.
H1: The use of prediction of higher likelihood improves the success rate.

To test this hypothesis, we recomputed a confusion matrix (such as the one in
Table 2) but now we considered only those predictions with likelihood higher than 0.5
(and respectively higher than 0.7 and 0.8). In practical investments we are mostly
interested in predicting an increase (decrease). Thus, we reformulated the above
hypothesis testing (with a 90% confidence interval, ignoring predictions of “stability”),

28 Typically, deeper leaves in the VOM tree (such as branch ‘311’ in Fig. A.1) correspond to predictions
with higher reliability since in the construction stage leaving a deeper leaf requires a higher statistical
significance. However, most VOM models do not have deep leaves when using conventional values for the
truncation coefficient C , and even when a deep leaf is detected, it is used for prediction only for a fraction
of the time.
29 As a typical example, consider the 10-min sampling series. Note that only 2.1% of the predictions in
these series obtained a “reliability” higher than 0.7, and only 0.5% of the predictions obtained a “reliability”
higher than 0.8.
30 Prediction reliability (likelihood) higher than 0.5, 0.7 and 0.8.
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such that the difference in the proportion of success rate with and without considering
the likelihood is significant.31

4.5.2 Results

• The null hypothesisH0 was rejected only in one case of the 30-min sampling series
(having a window length of 75). In all other cases, H0 was not rejected.

• Computing the confusion matrix and the Kappa statistic for the samples with high
prediction likelihood reduced the number of cases where the Kappa test indicated
a statistically significant forecasting capability.

4.5.3 Discussion Note

The results indicate that using the likelihood as an indicative value of the prediction is
not sufficient to improve the accuracy of the VOM-based predictions. Note that this is
a surprising result. One possible explanation is that the number of observations with
high prediction likelihood is too small for rejecting H0. A somewhat similar notion
to our prediction likelihood can be found in the Game-Theoretic EMH test proposed
by Wu and Shafer (2007). The authors prove that “above random predictability” is
not sufficient to reject the EMH and a very high degree of reliability is required for a
profitable trading strategy

4.6 Testing a Trading Strategy

In the above sections we found that there are some Forex series that are predictable
“above random” when using the proposed VOM model. Recall that the weak form
EMH implies the absence of consistent profitable opportunities, but it does not rule
out all forms of predictability. Predictable patterns invalidate the EMH only if they
produce excess returns that are consistently large enough to cover for the transaction
costs that are usually associated with such trading. Accordingly, the purpose of the next
sub-section is to test weather the VOM model, in its current form, is powerful enough
for providing a profitable trading strategy that can cover the associated transaction
costs.

4.6.1 Methodological Note

Note that for the experiments in the previous sub-sections we discretized the Forex
series to three levels (three symbols), while the difference between an increase (or a
decrease) and stability was determined to be at least 3 pips. In practice, it may happen
that the prediction of a large increase (i.e., much larger than 3 pips) is more accurate
than the prediction of a small increase (e.g., exactly 3 pips). Therefore, even for series

31 In other words, that the probability of correctly predicting an increase with a likelihood threshold of 0.50
is higher than the probability of correctly predicting while ignoring the likelihood. The acceptance region
is based on the normal approximation for a random proportion of correct predictions.
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Table 4 Summary of the
trading strategy (in pips) for
some currency series and
sampling

Minutes

1 5 10

EURUSD
Profit 1610/17 9080/4 17810/40
Loss 1563/11 9250/20 17760/40
Commission 3586/34 10610/22 15670/22
Net profit −3539/−28 −10780/−38 −15620/−22
GBPUSD
Profit 1947/8 15440/39 32540/51
Loss 1951/4 16270/12 33810/18
Commission 3976/20 15600/32 24840/30
Net profit −3980/−16 −16430/−5 −26110/3

were the predictions were found to be statistically insignificant, the VOM model may
still be useful in devising a trading strategy.

The purpose of this sub-section is to test the following hypothesis:

H0: No profitable trading strategy is found when using the VOM model—accept the
EMH.

H1: A profitable trading strategy can be found when using the VOM model—reject
the EMH.

To test this hypothesis, we conducted a simulation of “opening” and “closing”
positions of the following trading strategy32: If the VOM model prediction indicates
an increase (decrease33), open a position and close it immediately one time unit later.
We ignored interest rates, and both the profit and the net profit were computed as cumu-
lative pips over 2002. The process was repeated for all 252 Forex series, considering
prediction reliabilities (likelihood values) of 0.5, 0.7 and 0.8.

Table 4 below illustrates an example of some of the simulation results for series of
length 100. In each box, the number to the left of the “/” sign is the number of pips when
the strategy “ignores” the prediction likelihood. The number to the right of the “/” sign
is the number of pips when the strategy was conditioned on a prediction likelihood of
0.8 or higher. For each currency, we calculate separately the profit transactions, the
loss transactions (in pips), and the commission (twice the number of transactions).
The net profit34 was calculated as follows:

Net_Profit = Profit − Loss − Commission

32 To simplify the computation, we assumed a constant bid-ask spread and used only the bid prices. For
example, if the current bid price was 1.0000, and the VOM model predicted an increase, then buy at 1.0000
and sell it one time unit after that. If in the next time unit the price was 1.0051, than the gained profit is
0.0051. The transaction costs were assumed to be 2 pips per transaction. Accordingly, the net profit was
0.0049.
33 Short selling is permitted.
34 For example, for the 1 min EURUSD series with a likelihood threshold of 0.8, the trading strategy
generated 17 transactions with a cumulative commission of 34 pips. The sum of the profitable transactions
was 17 pips and the sum of the loss transactions was 11 pips. When ignoring the transaction that generated
neither a loss nor a profit, the obtained net profit was 17 − 11 − 34 = 28 pips.
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4.6.2 Results

Several patterns can be detected from Table 4 (and from other results that are given in
Kahiri 2004) as follows:

• The number of cases where the profit was larger than the loss is less than 50%.
• The trading strategy demonstrated a tendency for higher profit for the USDJPY

and the EURGBP. Yet, this tendency is not statistically significant.
• Even when the profit was higher than the loss (e.g., in the EURUSD 1-min series),

automatic prediction (without considering the likelihood threshold) generated too
many transactions—that resulted in a net loss.

• Considering the prediction likelihood in the trading strategy reduced significantly
the number of transactions as expected. For a prediction likelihood threshold of
0.8, only 5 cases (out of 252) resulted in a net profit (e.g., GBPUSD, 10 min series,
in Table 4). Unfortunately, even in these cases, the net profit was very small. Recall
that 1 pips is equal to 0.01%, the net profit generates a few percents at most per
year—less than the risk-free interest rate.

Effectively, in none of the tested cases, H0 could be rejected.

4.6.3 Discussion Note

The statistically significant predictability of the VOM model, as found in Section 4.4
is not sufficient to generate a reliable profitable trading strategy. This result is consistent
with previous results in the literature that considered simpler models. For example,
in a similar research, Papageorgiou (1997) used a conventional Markov chain model
(which is a particular instance of the VOM model) to predict a future ternary state
(‘Increase’, ‘Decrease’, and ‘Stability’), for a single currency (CHFUSD). The author
found that prediction based on a shorter observation window is better, yet, he also failed
to construct a profitable trading strategy that consistently covers the trading fees.

5 Discussion

This paper combined a practical econometric problem—forecasting a financial time
series, and a theoretical econometric problem—testing the Efficient Market Hypoth-
esis. The paper introduced a universal data compression algorithm, which is based on
the VOM model, and applied it to test the validity of the EMH for the intraday Forex
market. The VOM model detected statistically-significant patterns in the data (12
series of currency pairs) that result in above-random compressibility for most of the
Forex series. The VOM model was also used to forecast future trends in the currencies
series and produced many examples of forecasts that were found to be statistically
significant—this observation was particularly valid for the low-frequency sampling
series. On the other hand, a trading strategy based on these forecasts failed to obtain
consistent excess returns, even when we ignored the trading fees. In other words,
our experiments demonstrate that the obtained theoretical market’s inefficiencies, as
reflected by hypothesis testing with respect to a random predictability, do not neces-
sarily lead to practical market inefficiencies and profitable arbitrage opportunities.

123



Measuring the Efficiency of the Intraday Forex Market

Based on our experiments, it seems that the intraday Forex market is efficient, at least
most of the time. Recalling that the Forex market is considered as the most volatile
financial market having continuous trading activities around the globe—the above
findings are not surprising.

From its early beginnings, the EMH has woven together two theoretical threads:
the hypothesis that prices incorporate all relevant information, and the hypothesis that
there are no profitable trading strategies (Lo 2007). The experiments in Sections 4.2,
4.3, 4.4 and 4.5 lead to the rejection of the EMH based on the first thread—detecting
statistically-significant information patterns in the Forex time-series. The experiments
in Sect. 4.6 are based on the second thread and confirm the EMH.

There is evidence that Forex rates exhibit mean reversion toward an equilibrium
level and that the degree of mean reversion is stronger when the deviation from the
equilibrium is larger. It is conjectured that transaction costs produce a band of inaction
in which the big traders allow the Forex to float freely. Consequently, the adjustment
process takes place only when the perceived misalignment is large enough to cover
such costs or the rates approach the upper or lower limit of the inaction band (Taylor
and Taylor 2004; Chung and Hong 2007). Therefore, the found predictability could be
attributed to the intervention of the big traders at specific (yet unknown) threshold val-
ues. The EMH is confirmed whenever apparently profitable trading strategies are ruled
out by market friction (Malkiel 2003), in other words, some statistically significant
anomalies are not economically significant. If the level of transaction costs needed to
generate profits from an anomaly (therefore, eliminating it) is far below the level that
actually exists in the market, it could explain why a reasonably efficient market allows
the anomaly to exist (Wu and Shafer 2007).

5.1 Limitations in the Current Research

The main limitation of the VOM model is that it ignores the actual values of the
expected returns. That is, the used version of the algorithm is based on a ternary
alphabet, thus, it is limited to the forecasting of either “positive”, “negative”, or “stable”
returns disregarding the different amounts of the expected returns. This limitation
addresses a “weaker” form of the EMH. Tino et al. (2000) discussed the relation
between the discretization strategy, the sliding window length, and the size of the
model. They concluded that “discretization should be viewed as a form of knowledge
discovery revealing the critical values in the continuous domain”. There are other
“algorithmic learning” aspects of the VOM model that could be further optimized
(such as the truncation coefficient C , or the window length N ) that might increase the
model validity.

Another practical deficiency of the universal prediction algorithm—the limited
number of prediction instances with a high likelihood—can be ameliorated by imple-
menting the universal prediction algorithm for each series in a portfolio of financial
assets. The theory of universal portfolios (Cover 1991) analyses an investment strat-
egy when a prediction is available for each series in the portfolio. Preliminary results
reported in Alon-Brimer (2002) indicate that such a strategy is, in fact, feasible.

Note that the conventional test for the EMH is largely a “one-shot” game—in the
sense that only a single model is selected and then tested. Here, for each running
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window we effectively selected the best model out of all the possible VOM models.
The flexibility of the VOM model that can represent both independent data as well as
non-linear trends enhance further such a selection.

Furthermore, a predictability measure of a time series (such as the rate of correct
predictions or the Kappa statistic that were used in this paper), can be regarded as
a generic econometric feature that is applicable to the analysis of any time series
to measure its “closeness” to a random stochastic process. In a financial series a
predictability measure is considered a more “direct” measure of randomness than a
complexity measure (Chen and Tan 1996, 1999). Econometricians learned similar
ideas from the co-integration analysis, while the latter does not automatically provide
a measure on the time in disequilibrium.

Appendix A—Examples for the VOM Algorithm

We illustrate the VOM learning algorithm by the following toy example. Consider
� ≡ {1, 2, 3}, and a training sequence σ 150

1 composed of 30 consecutive repetitions
of the pattern “11123”. Figure A.1 presents the resulting VOM tree with a maximum
context length (branch depth) of D = 3. Only nodes that were traversed at leased
once (i.e., at least one of the counts is non-zero) are shown. Each node is labeled by

root

 90  30  30
.60 .20 .20

'1'

 60  30  0
.66 .33 .01

'2'

 0  0  30
.02 .02 .97

'3'

 29  0  0
.97 .02 .02

'23'

29 0 0

'123'

29 0 0

'112'

0 0 30

'111'

  0  30  0 
.02 .97 .02

'311'

 29  0  0
.97 .02 .02

'231'

29 0 0

'12'

0 0 30

'31'

 29  0  0
.97 .02 .02

'11'

 30  30  0
.50 .50 .01

Fig. A.1 A VOM model (tree) generated from 30 consecutive repetitions of the pattern “11123”. The first
line of numbers below the node’s (shaded) label present the three counts ordered with respect to symbols
{1,2,3} conditioned on the context that is represented by the label. The second line of numbers below the
node label presents the three predictors. Truncated nodes are shaded
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the context which leads to it. The first line of numbers below each shaded node label
present the three counts Nσ (s). For example, for the node labeled as “11”, the counts
are N1(11) = 30, N2(11) = 30 and N3(11) = 0. This means that from the total of∑

σ ′ Nσ ′(s) = 60 times that the substring “11” appeared in the training sequence, it
was succeeded 30 times by the symbol “1” and 30 times by the symbol “2”.

The following equation is used to smooth the probability to account for events of
zero frequency,

P̂(σ |s) =
1
2 + Nσ (s)

|�|
2 + ∑

σ ′∈�

Nσ ′(s)
.

Based on this equation the second line of numbers below the node label presents the
three predictors, P̂(σ |s), i.e., the conditional probability of symbols given the context,
for example,

P̂(1|11) =
1
2 + 30

3
2 + 30 + 30 + 0

∼= .50.

For illustration purpose Fig. A.1 also shows the shaded nodes that are truncated by
the VOM algorithms. For example, leaf node labeled “112” has exactly the same
count distribution as its parent node “12”, having KL(leaf(112)) = 0. Thus, the longer
context “112” does not add a new information regarding the conditional distribution of
symbols, P̂(σ |112) ≈ P̂(σ |12), and should be truncated by the constructing algorithm
of the VOM model. The truncation process is repeated recursively, and the node labeled
“12” is truncated too from the same reasons with respect to its parent node “2”.

Consider for example the VOM model in Fig. A.1 and a test sequence σ 5
1 = 23112.

The likelihood of this sequence is computed as follows: P(23112) = P(2) × P(3|2) ×
P(1|23) × P(1|231) × P(2|2311) ∼= P(2) × P(3|2) × P(1|3) × P(1|31) × P(2|311) =
0.20 × 0.97 × 0.97 × 0.97 × 0.02 ∼= 0.00365 (represented respectively, by nodes:
“root”, “2”, “3”, “31”, and “311” in Fig. A.1). The number of bits required to represent
this sequence σ 5

1 = 23112 is approximately − log2 (0.00365) ∼= 4.78 bits. Note that
a binary coding of 2 bits per symbol35 would require 10 bits to code this five symbols
sequence. Thus, the VOM model succeeds to compress σ 5

1 . Moreover, the longer the
sequence, the higher is the probability to obtain a better compression.

For illustration, consider the VOM tree in Fig. A.1 and the prediction of the next
symbol in the sequence s = “1121”. Given this tree, the longest context from this
sequence is ‘1’ (node ‘1’ since there is no ‘21’ node) with the symbol ‘1’ obtaining the
maximal likelihood, P(1|1) = 0.66. Therefore, the symbol ‘1’ is selected as the most
probable prediction. Suppose that the symbols {“1”, “2”, “3”} indicate, respectively,
a {Stability, Increase, Decrease} in consecutive value of a certain foreign exchange
ratio. Then, the following prediction rules applies: If there is no information regarding
the previous daily return, the a-priori prediction is for a Stability (zero return) having

35 The most efficient representation of uniformly distributed symbols requires 5 log2(3) ≈ 7.92 bits. In
this example, the VOM provides a better compression since it captured well the reoccurring patterns.
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the highest probability of 0.6 (see the tree root). A Stability is further predicted if
the previous observation was either a Stability (‘1’) or a Decrease (‘3’), or one of
combinations represented by the nodes “11”, “31”, and “311”. A Decrease is predicted
if the previous observation was an Increase (node “2”). Increase is predicted if the last
three consecutive symbols indicated Stability (node “111”). The tie in node “11” can
be broken arbitrarily.

Using the tree in Fig. A.1 and defining a reliability threshold of 0.70, no prediction
is carried out if we only know that the previous observation was Stability. The reason is
that in node “1” the prediction reliability is 0.66, which is below the defined threshold
that is required for making a prediction.
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