
Python Metaclasses: Who? Why? When?

[Metaclasses] are deeper magic than 99% of
users should ever worry about. If you
wonder whether you need them, you
don't (the people who actually need them
know with certainty that they need them,
and don't need an explanation about why).

Tim Peters (c.l.p post 2002-12-22)

Python Metaclasses: Who? Why? When?

So let's stop wondering if we need them...

Metaclasses are about meta-programming

● Programming where the clients are programmers
– Language development (python-dev crowd)
– Framework development

● Zope
● Twisted
● PEAK/PyProtocols

● Programming to enable new metaphors/approaches to
programming
– Aspect-oriented
– Interface-oriented
– Prototype-based

Meta-programming with classes

● Extending the language with new “types of classes”
● Altering the nature of classes

– Adding functionality (e.g. metaclass-methods)
– Creating class-like objects (e.g. prototypes) which can be

instantiated
– Enforcing constraints on classes

● Automating complex tasks
– Registration, annotation and introspection
– Interactions with services/utilities

Meta-programming goals

● Create natural programming patterns for end-programmers
– Generally for use within an application domain
– Programming with the framework should map between

Python and domain semantics closely
● Allow clients to use standard Python programming features

– Fit Python semantics as closely as possible (take advantage
of Python knowledge)

– Make domain-specific features feel “built-in”
– Integrate nicely with generic systems; introspection,

pickling, properties

Meta-programming goals (cont.)

● Enable declarative approach (arguable)
– “This is a that”, not necessarily “register this as a that”
– “This implements that”
– “This is persistent”
– “This uses that join point”

● Simplify and beautify APIs
● While doing this, avoid the dangers of “too much magic”

– The converse of fitting Python semantics closely
– Going too far can make the system opaque

Metaclasses as a tool for meta-programming

● There's little you can't do some other way
– Factory classes
– Stand-in objects used in a class-like manner
– Function calls to process classes after they are created
– Function calls to register classes with the system

● Metaclasses just make it easier and more elegant
● Basis of Python 2.2+'s type system; standard, and reliable
● Meta-methods and meta-properties (more on those later)

– You can't do these any other way

So what are they good for?

Let's see some use-cases for metaclasses...

What can you do with them? Class registration

You want all classes registered with the system...
● Provide interface registration (IOP)

– Automate discovery of class features (see next slide)
● Provide join-point/aspect registration (AOP)

– Register all classes with given join-points
– Register all classes providing given aspect

● Allow discovery of classes based on class metadata (of any
type) via registration and lookup

Class registration – Interface Oriented Programming

For IOP, we want to register...
● Utilities and services

– Find class-based services (e.g. classmethods, singletons)
● Implemented interfaces (incl. partial implementation)

– Allow search based on supported interface
– Give me something which does “that”

● Adapters
– Adapt from interface to interface
– Give me a way to make “this” do “that”
– Need global registration to plan appropriate adaptation

Class registration – Aspect Oriented Programming

● Register join-points for each domain object class
– Functional operations which may be serviced by any

number of different aspects every class must be registered
or the cross-cutting doesn't work

● Accesses to methods or properties, for instance
– “Declare that objects of a class use a given join-point”

● Register aspects for servicing the domain objects (less likely)
– Aspects implement join-points
– “Show all aspects which can implement a given join-

point” or “Lookup all loaded aspects for a given join-
point”

Class registration – Use case summary

● In a more general sense, you can automatically register
information about an end-programmer's classes at the time the
class is created

● Registration is normally fairly benign, it may affect class-
object lifetimes, but it's not normally terrible intrusive in
client's day-to-day experience of your system

Class registration – Traditional approach

● Define a helper function/method in the framework
● Mandate that all user-defined classes have the helper method

called on the user-defined class
● Provide checking in the system to watch for unregistered

classes and complain and/or call the registration method
● Depends on the end-developer remembering to register and/or

being able to catch all usage in the system

Class registration traditional sample code

Required for every Product class, registers
constructors, interfaces, icon, container
filters, and visibility. If you forget me
you shall be forever cursed!

class MyClass(Folder):
 """Example of registration function client"""

ah, if only we could call this automatically
at the end of the class-definition statement!
ProductContext.registerClass(MyClass)

What can you do with them? Class verification

● Automated constraints
– “Ensure classes provide all declared interfaces”
– “Check for internal coherence of class declaration”
– “Complain on attempt to subclass a 'final' class”
– “Complain on overriding of 'final' method”

● Class-format checking
– “Enforce coding standards (complain if improper)”

● Docstrings, method names, inheritance depth, etc.
– “Enforce inclusion of security declarations”
– “Enforce definition of given method/property (abstract)”

What can you do with them? Class verification

● In a more general sense, you can check end-programmer's
classes for conformance to any pattern required by your
system and refuse to load incorrectly formed classes

● Careful not to be too rigid
– More intrusive than registration, likely to be used more

sparingly than registration as a result
– Normally you'll be raising errors and preventing

application or plug-in loading
– Have to code to watch for abstract intermediate classes

Class verification – Traditional approach

● As with registration, define a utility function/method
– You rely on the end-programmer calling the function
– You need defensive programming throughout system to

check for un-verified classes being used
● Or have each instance verify class on instantiation (inelegant,

class gets verified potentially thousands of times and/or needs
bookeeping for verification)

Class verification – Traditional code example

"""Traditional verification sample code"""
class Mojo:
 pass
Egads, do my clients really have to remember all this?
If only, if only there were some way to hook this
end-of-class-statement point in my code!
package.verifyInterfaces(Mojo)
package.verifyAspects(Mojo)
package.verifyConstraints(Mojo)

What can you do with them? Class construction

We want to rewrite a class definition at run-time...
● Modify declared methods, properties or attributes

– Precondition/postcondition wrappers
– Method wrapping in general
– Adding (e.g. injecting a “save to database” method for all

domain classes if a database is configured, otherwise not)
– Renaming (e.g. as part of creating a property wrapper)
– Processing human friendly declarative structures (such as

security information) into machine-friendly structures
● Cache or short-circuit class creation

Class construction – More use cases

● Load/create bases/methods/descriptors from system state:
– Declarative structures in the class definition
– Databases or data files
– Application plug-ins or registered aspects
– Calculations based on the current phase of the moon

● Load/create bases/methods/descriptors from non-python
definitions:
– XML DTDs, VRML PROTOs, DB Connections, IDL
– User interactions (e.g. choosing features from a GUI)
– Only use-case described where we're not asking clients to

write Python code

Class construction – Use case summary

● In a more general sense, you can use arbitrarily complex code
to alter a class at instantiation without the end-programmer
needing to know anything about the process.

● Again, the caveat applies, too much magic can kill your
usability

Class construction – Traditional approach

● Create factory function to produce a class
– From a partially-constructed class (mix-in) or

● Awkward due to the creation of two different classes
(mix-in and final)

● For instance, tricks are needed to make the final class
pickleable

– From name, base-classes and a dictionary
● Hard to use; no longer looks like a class definition

● Suffers the same problems as verification and registration
functions (must be remembered, and must therefor be guarded
against)

Class construction – Traditional mix-in example

"""A Traditional mix-in approach"""
def myFactory(mixIn):
 newSpace = {}
 newSpace.update(replaceMethods(mixIn))
 newSpace.update(loadPropertiesFromFile(mixIn.propertyFile))
 newSpace['module'] = hackToGetModuleName() # icky, always
 return type(mixIn.__name__, (mixIn, Base), newSpace)

class X:
 propertiesFile = 'someprops.prop'
 def r(self):
 pass
X = myFactory(X) # note re-binding

Class construction – Traditional deconstructed ex.

"""A "de-constructed" factory-function approach"""
def myFactory(name, bases, dictionary):
 dictionary.update(replaceMethods(dictionary))
 dictionary.update(loadPropertiesFromFile(dictionary['propertyFile']))
 dictionary['module'] = hackToGetModuleName() # icky, always
 return type(name, bases, dictionary)

ick, methods at module scope
def r(self):
 pass
even ickier and annoying, lots of
duplicated code...
_d = {
 'propertiesFile': 'someprops.prop', 'r': r,
}
X = myFactory('X', (Base,), _d)

Class construction – Traditional approach (alternate)

● Directly manipulate the class object with a function
– A “mutator” function
– Violates the encapsulation of the class
– Seen, for instance in Zope security-declarations

● Suffers the same problems as for verification and registration
functions, but tends to be prefered because it's the least
intrusive of the constructive approaches

Class construction – Traditional mutator example

def myMutator(cls):
 replaceMethodsIn(cls)
 for key, value in loadPropertiesFromFile(cls.propertyFile):
 setattr(cls, key, value)

class X(Base):
 propertiesFile = 'someprops.prop'
 def r(self):
 pass
Wouldn't it be nice if there were a hook here
at the end of the class definition statement
that let us call our mutator function on the
new class?
myMutator(X)

What can you do with them? First-class classes

● Customise behaviour of class-objects with OO features
(noting that normally classes are not particularly active)
– Attach attributes to class objects (not visible to instances

of the class, potentially property objects)
– Attach methods which can be called on the class-object

but are not visible to class-instances
– Alter basic behaviour such as __str__

● Define class-like objects which have instances, but are
themselves data to be processed; providing introspection, data
storage and encapsulated functionality

● Use inheritance patterns to minimize code duplication among
these object-types

 First-class classes – Use-case summary

● Model systems with class-like behaviour
– XML DTDs and XML tags
– VRML97 Prototypes and Nodes
– Object-Relational Mappers (Tables and Rows)

● In a more general sense, allow you to treat a class-object very
much like a regular instance object, letting your programs
reason about classes and their functionality naturally.

First-class classes – Traditional approaches

● Store methods and properties external to class
– e.g. global weakref-based dictionary
– Use utility functions to process classes

● Store methods and properties in data-classes
– Inject the features into individual classes, (cluttering the

namespace of the instances as you do)
● Create stand-in objects which act much like classes and to

which instances delegate much of their operation (via
__getattr__ hooks and the like)

What can you do with them? Summary

● Register classes at creation-time
● Verify classes at creation-time
● (Re-)construct class definitions
● Treat classes as first-class objects about which your systems

can reason effectively

Okay, enough already, they can be useful...

● What are they?

Quicky definitions:

● The type of a type, type(type(instance))
● instance.__class__.__class__
● Objects similar to the built-in “type” metaclass
● Objects which provide a type-object interface for objects

which themselves provide a type-object interface
● Factories for classes
● Implementation definitions for class-objects
● Classes implementing the first-class class-objects in Python
● A way of describing custom functionality for entire categories

of classes/types
● A way of customising class-object behaviour

About instances and classes

● An instance object's relationship to its class object is solely
via the “class interface”
– Instance knows which object is playing the role of its class
– Normally has no other dependencies on the class (e.g. no

special internal layout, no cached methods or properties)
● Built-in types and __slots__ are exceptions, they do

have internal format dependencies
● Class of an object is whatever object plays the role of the

class
– Can be changed by assigning new class to __class__.

(Save where there's special dependencies on the class (see
above))

More about class-instance relationships...

● Interactions are generally implemented in the interpreter
● Classes are normally callable to create new instances

– Default __call__ provides 2 hooks, __new__ and __init__
for customisation of new instances

– There's nothing special about this functionality, any Python
object with a __call__ method is callable

More about class-instance relationships...

● The interpreter “asks” questions about the class to answer
questions about the instance (methods, attributes, isinstance
queries), but it generally doesn't “ask” the class itself.
– A class-object's attributes are normally stored in the class's

dictionary, just like regular instance attributes
– The interpreter retrieves values from class.__dict__

directly – it doesn't go through attribute lookup on the
class to get an instance's attribute

– The class-object's dictionary is normally fully of class
attributes and descriptors to customise the behaviour of
instances

About super-classes...

● The super-classes of a class-object are just other class-objects
with a role “superclass” (basically “being in the
__bases__/__mro__ of the class”)
– Used by interpreter to lookup attributes for instances
– Can be any object(s) implementing the class API
– Don't need to be same type of object as the sub-class
– Don't alter the functionality of the class object itself

● The interpreter implements chaining attribute lookup
(inheritance) for classes w/out going through class-attribute
lookup, that is, the interpreter doesn't ask the class how to
lookup instance attributes in superclasses

So, then, a normal class-object is...

● Something which plays the role of a class for another object
● Passive

– Data-storage for instances queried by the interpreter to
implement instance attribute-lookup semantics

● A very simple object with a few common attributes
– __name__, __bases__, __module__ and __dict__
– __mro__ and a few other goodies in new-style classes
– __call__, __repr__, __cmp__ etceteras

Metaclasses implement class-objects

● Something has to implement those (simple) class-objects
– In Python, objects are normally implemented by classes
– So there should be a class which implements classes
– There is, it's called the metaclass

● All metaclasses have to implement the same C-level interface
– Internal layout allows fast/easy C coding
– Requires inheriting from a built-in metaclass
– Normally you inherit from “type”

● The interpreter does most of the real implementation work
– Provides a few hooks for hanging code (coming up...)

Metaclasses implement class-objects (cont)

● Because almost everything is implemented by the interpreter,
there's not much to customise
– Initialisers, __new__ and __init__
– String representation of classes, __repr__ and __str__
– Attributes and properties on the class objects
– Methods on the class objects

● Most metaclass work focuses on initialisation of the class
– Registration, verification and construction use-cases

● But classes are just special cases of objects, so properties,
methods, etceteras can be created as well
– First-class class use-cases

Alternate conception: Metaclasses create classes

● Since most metaclass work focuses on initialisation, we could
think of metaclass in another way:
Code run at class-definition time which creates first-class
class-objects
– Normally implemented as class initialisers for sub-classes

of type
● A class definition is just code getting run in a namespace
● The interpreter takes the end of a class statement as a signal to

find and call a registered metaclass code to create the class-
object
– Focuses on the __metaclass__ hook more than the

implementation...

Metaclasses in Python – Examining their role

● Python defines two common metaclasses
– type (a.k.a. types.TypeType)

● implementation for new-style classes
● object.__class__

– types.ClassType, the implementation for old-style classes
● Both of these are very minimal implementations

– They are the implementation of simple, generic classes, so
they need to be very generic themselves

Metaclasses in Python – Examining their role (cont)

● Hook(s) allow you to specify the metaclass to use for creating
the class-object for a given class definition.
– Call metaclasses directly to create new classes (normally

only seen in “construction” use-cases)
– Class-level __metaclass__ assignment
– Module-level __metaclass__ assignment
– Inherited from superclasses

● By default, the backward-compatible types.ClassType is used
● The class “object” is an instance of “type”, so sub-classes of

object will use the type metaclass (inheriting it from the
super-class) to create new-style classes

Metaclasses in Python – Examining their role (cont)

● Metaclasses have basically nothing to do with normal instance
operation
– Don't affect name-space lookup
– Don't affect method-resolution order
– Don't affect descriptor retrieval (i.e. creation of

instancemethods or the like)
● Are normally run implicitly by import statements

Customising metaclasses: Hooks to hang code

● Initialisation
– __metaclass__ hook intercepts the interpreter's call to

create a class object from a class declaration
– Calls __new__ and __init__ methods, as with any class

● Descriptors and attribute-access for classes
– Methods for class-objects are looked up in metaclass
– Properties work for class-objects (with some restrictions)
– Do not show up in instances, (interpreter uses only

__dict__ for instance-attribute lookup)
– Can use most regular class-instance features to customise

the behaviour of class-objects (inheritance, etceteras)

The metaclass hook: Class statement hook

● Invoked when a class-statement in a namespace is executed
(at the end of the entire class statement (isn't that convenient))
– The declared metaclass is asked to create a new class
– The metaclass can customise the creation and initialisation

of the class-object, returning whatever object is desired
– That object is assigned the declared name in the

namespace where the statement occurred
● The class-statement is turned into a name, a set of bases, and

a dictionary, and these are passed to the metaclass to allow it
to create a new class-object instance.

What the class statement does when you aren't looking

class X(Y, Z):
 x = 3
--> Here the interpreter calls:
metaclass('X', (Y, Z), {'x': 3, '__module__': '__main__'})

Notice how this happens at exactly the time when we'd want to
implement our registration/verification/construction use-
cases...

>>> type('X', (object,), {'__module__': '__main__'})
<class '__main__.X'>

The metaclass hook: Class statement hook (cont.)

● Metaclass declaration can be in module or class scope
– Resolved by the interpreter before trying to create the class
– Can be inherited from super-classes and overridden in sub-

classes
Technical note: Because __call__ is a “special method”, it is

looked up in class of an object, so for metaclasses, it is the
__call__ in the dictionary of their metaclass (the meta-
metaclass) which is called to create new class instances
(we'll see how that works a little later)

The metaclass hook: Class statement hook (cont.)

● This pattern of intercepting statement completion is unique at
the moment within Python
– It's reminiscent of first-class suites/blocks as seen in Ruby
– You could imagine a similar __listclass__, __dictclass__,

or __strclass__ hook being introduced (but I certainly
wouldn't hold your breath)

– It's likely to show up again with function decorators,
though in a different form (i.e. not __funcclass__ taking
statement components, but a series of post-processing
functions to wrap a function)

Metaclass module hook (metamodulehook.py)

type is a meta-class

This statement affects all class statements in this scope
which are *not* otherwise explicitly declared
__metaclass__ = type

class X:
 pass
assert type(X) is type
print 'Type of X', type(X)

Metaclass class namespace hook (metaclasshook.py)

Meta, not surprisingly is a metaclass
class Meta(type):
 x = 3

type is still a meta-class
__metaclass__ = type
class Y:
 # the class-local declaration overrides the
 # module-level declaration
 __metaclass__ = Meta
#Meta('Y', (), {'__metaclass__':Meta, '__module__':'__main__'})

assert type(Y) is Meta

class Z(Y):
 # the inherited declaration overrides the
 # module level definition as well...
 pass
#Meta('Z', (Y,), {'__module__':'__main__'})

assert type(Z) is Meta

Metaclass hook with function (functionalmeta.py)

It's not actually necessary that the metaclass hook point to a
class, it can just as easily point to, for instance, a factory
function.

Warning, the following may be disturbing to some viewers:

def functionalMeta(name, bases, dict):
 print 'egads, how evil!'
 return type(name, bases, dict)

class R:
 __metaclass__ = functionalMeta

Of course, no-one would ever do that, would they???
 They would; check out the advise method in PyProtocols, it does

a lot of fancy footwork to alter the calling class/module and
curry various features for use by the eventual metaclass

Metaclass class-initialisation hooks

● On class-statement completion, interpreter asks metaclass to
create instance
– metaclass(name, bases, dictionary)
– __call__ method is from meta-metaclass

● normally not customised (though it is on the next page)
● Meta-metaclass __call__ creates a new class instance with

__new__ and and initialises it with __init__
– These become our primary customisation points for

initialising a metaclass instance (a class)
– __new__(metacls, name, bases, dictionary)
– __init__(cls, name, bases, dictionary)

Metaclass initialisation (metainitialisation.py)

"""Example showing how metaclass initialisation occurs"""
def printDict(d):
 forkey, value in d.iteritems():
 print ' %r --> %r'%(key, value)
 print

class MetaMeta(type):
 """An example of a meta-metaclass/meta-type object"""
 def __call__(metacls, name, bases, dictionary):
 """Calling the metaclass creates and initialises the new class"""
 print 'metametaclass call:', name, bases
 printDict(dictionary)
 return super(MetaMeta, metacls).__call__(name, bases, dictionary)

Continued...

Metaclass initialisation (metainitialisation.py) (cont)

class Meta(type):
 __metaclass__ = MetaMeta
 def __new__(metacls, name, bases, dictionary):
 """Create a new class-object of the given metaclass

 metacls -- the final metaclass for the new class
 name -- class-name for the class
 bases -- tuple of base classes for the class
 dictionary -- the dictionary __dict__ for the new class

 returns a new, un-initialised class object
 """
 print 'metaclass new:', metacls, name, bases
 printDict(dictionary)
 newClass = super(Meta, metacls).__new__(metacls, name, bases, dictionary)
 return newClass

Continued...

Metaclass initialisation example (cont)

 def __init__(cls, name, bases, dictionary):
 """Initialise the class object

 By default does nothing, it's just a customisation point
 """
 print 'metaclass init', name, bases
 printDict(dictionary)

Continued...

Metaclass initialisation example (cont)

print 'About to create a new class...'

class SomeClass(object):
 """A class declaring a metaclass"""
 __metaclass__ = Meta
now SomeClass is created

print
print 'And another one...'
class EndProgrammerClass(SomeClass):
 """A class inheriting a metaclass"""
now EndProgrammerClass is created

Metaclass initialisation example results

P:\mcsamples>metainitialisation.py
About to create a new class...
metametaclass call: <class '__main__.Meta'> SomeClass (<type 'object'>,)
 '__module__' --> '__main__'
 '__metaclass__' --> <class '__main__.Meta'>
 '__doc__' --> 'A class declaring a metaclass'

metaclass new: <class '__main__.Meta'> SomeClass (<type 'object'>,)
 '__module__' --> '__main__'
 '__metaclass__' --> <class '__main__.Meta'>
 '__doc__' --> 'A class declaring a metaclass'

metaclass init <class '__main__.SomeClass'> SomeClass (<type 'object'>,)
 '__module__' --> '__main__'
 '__metaclass__' --> <class '__main__.Meta'>
 '__doc__' --> 'A class declaring a metaclass'

Continued...

Metaclass initialisation example (results cont)

And another one...
metametaclass call: <class '__main__.Meta'> EndProgrammerClass (<class
'__main__.SomeClass'>,)
 '__module__' --> '__main__'
 '__doc__' --> 'A class inheriting a metaclass'

metaclass new: <class '__main__.Meta'> EndProgrammerClass (<class
'__main__.SomeClass'>,)
 '__module__' --> '__main__'
 '__doc__' --> 'A class inheriting a metaclass'

metaclass init <class '__main__.EndProgrammerClass'> EndProgrammerClass (<class
'__main__.SomeClass'>,)
 '__module__' --> '__main__'
 '__doc__' --> 'A class inheriting a metaclass'

Metaclass __new__ – What to do with it?

● Basically any of construction, verification or registration is
possible in __new__, though if you follow normal Python
patterns, only the construction use-case is “normal”

● Rewrite a class definition at run-time
● Modify the base classes
● Modify the class name
● Cache or short-circuit class creation (e.g. from a cache)
● Modify the dictionary directly
● Modify declared methods, properties or attributes
● Load/create methods, properties or attributes based on

systemic mechanisms

Example – Class-definition caching (meta__new__.py)

class Meta(type):
 def __new__(metacls, name, bases, dictionary):
 print 'new:', metacls, name, bases
 if name == 'Z':
 return X
 return super(Meta, metacls).__new__(metacls, name, bases, dictionary)

__metaclass__ = Meta

class X:
 pass
class Y(X):
 pass
class Z:
 pass
print 'Z', Z
assert Z is X

Metaclass __init__ – What to do with it?

● Verification or registration are our two main use-cases
– You can still do a lot of “construction”, but you can't

change name, or bases or directly change the dictionary
● Enforce constraints
● Check class format
● Register join-points/aspects
● Register utilities and services
● Register implemented interfaces
● Register adapter classes
● Do initialisation for “first-class” class operation (as with any

normal object)

Example – Verify and register (meta__init__.py)

class Meta(type):
 centralRegistry = {}
 def __init__(cls, name, bases, dictionary):
 """Initialise the new class-object"""
 asserthasattr(cls, 'fields')
 assertisinstance(cls.fields, tuple)
 # note that centralRegistry is a class attribute
 # of the metaclass, which is accessed through the
 # instantiated class "cls" via normal attribute
 # lookup for an instance (in this case of Meta)
 cls.centralRegistry[cls] = cls.fields

__metaclass__ = Meta

class X:
 fields = ('x', 'y,', 'z')
class Y:
 fields = ('q', 'r')
class Z:
 pass

Metaclass attribute and descriptor hooks

● What's left is our “first-class” class use-cases
– Customise behaviour of class-objects with OO features

(properties, methods, special-methods)
– Define objects which have instances, but are themselves

data to be processed
– Use normal inheritance patterns to minimize code

duplication (among the metaclasses)
– Model systems with class-like behaviour
– Treat a class-object like a regular instance object

● As noted a few slides ago, __init__ is used for initialisation of
first-class classes just as for regular objects

Metaclass attribute and descriptor hooks (cont)

● Modify attribute-access patterns for the class object itself
– Properties (or, more generally, descriptors)
– __getattr__ and/or __getattribute__
– __setattr__

● Operations on instances do not go through the class's
attribute-access mechanisms

● Properties normally store their data in the instance dictionary
– For metaclass instances (classes), the dictionary is the

dictionary of the class
– Storing objects there makes them visible to instances!
– You can't alter __dict__ directly

Example – Meta-property definition (metaproperty.py)

"""Simple example of a metaproperty"""
class Meta(type):
 def get_word(cls):
 return cls.__dict__["_word"]
 def set_word(cls, value):
 type.__setattr__(cls, '_word', value)
 word = property(get_word, set_word)

class X:
 __metaclass__ = Meta
 _word = "Venn"

this uses the meta-property for lookup
print X.word
x = X()
print x
instances don't see the meta-property
assert not hasattr(x, 'word')
they can see things stored in the class dictionary,
however, as is always the case...
assert hasattr(x, '_word')

Example – All-attribute lookup (metagetattribute.py)

class Meta(type):
 def __getattribute__(cls, key):
 print 'Meta: getattribute:', cls, key
 return 42

class SomeClass(object):
 __metaclass__ = Meta
 x = 4

this will print 42, as it's going through __getattribute__
print SomeClass.x

v = SomeClass()
x=4 is in SomeClass' dictionary,
so it provide's the instance' value,
if it weren't there we'd get an AttributeError

There's no call to __getattribute__ here!
the interpreter doesn't use metaclass attribute lookup
to find an instance' attributes
print v.x

Example – Failed-attribute lookup (metagetattr.py)

class Meta(type):
 """Meta-class with getattr hook"""
 def __getattr__(cls, name):
 return 42

class X:
 __metaclass__ = Meta

all 42's
print X.x, X.y, X.this
print X().x # raises attribute error

Example – All-attribute setting (metasetattr.py)

class Meta(type):
 def __setattr__(cls, name, value):
 raise TypeError("""Attempt to set attribute: %r to %r"""%(
 name, value,
))

class X:
 __metaclass__ = Meta

try:
 X.this = 42
exceptTypeError, err:
 print err

v = X()
v.this = 42
print v.this

Metaclass descriptors

● There's little that's special about metaclass descriptors
– They have to deal with class instances (no assign to dict)
– They have to watch out for clobering regular class

descriptors/attributes in the class dictionary
● Allow you to define utility methods on the class object

– For example storage mechisms (such as seen in the eGenix
XML tools)

– Meta-methods for operating on a class-object without
being visible to instances... as distinct from classmethods,
which are simply instance descriptors that allow you to
apply a function to the class of the target

Metaclass descriptors example (metamethod.py)

"""Utility meta-method sample-code"""
class Meta(type):
 """Meta-class with a meta-method"""
 someMappingOrOther = {}
 def registerMeGlobally(cls, key):
 """Register cls for global access by key"""
 # Note that someMappingOrOther is in the metaclass
 # dictionary, not the class dictionary, normal
 # attribute lookup finds it
 cls.someMappingOrOther[key] = cls
 def getRegistered(metacls, key):
 """Get cls registered w/ registerMeGlobally"""
 return metacls.someMappingOrOther.get(key)
 getRegistered = classmethod(getRegistered)

Continued...

Metaclass descriptors example (cont)

class X:
 __metaclass__ = Meta
class Y:
 __metaclass__ = Meta

X.registerMeGlobally('a')
Y.registerMeGlobally('b')

print 'a', Meta.getRegistered('a')
print 'b', Meta.getRegistered('b')
we don't have any polution of the instance namespace
assert not hasattr(Y(), 'registerMeGlobally')
assert not hasattr(Y(), 'getRegistered')

Silly customisation example (metaclassrepr.py)

"""Simple example of changing class repr"""
class Meta(type):
 def __repr__(cls):
 return '<OhLookAMetaClass>'
class X:
 __metaclass__ = Meta

this uses the meta-property for lookup
assert repr(X) == '<OhLookAMetaClass>'

Future possibilities

● Provide hook for customising instance-attribute lookup
● Hooks for instantiating other syntactic constructs

– Functions, methods, modules, if-statements, for-statements
– List comprehensions, lists, dictionaries, strings
(then chain them all together, passing results up the chain)

● Way to cleanly chain hooks for any given hook
– See advise in PyProtocols for why...

● Way to implement meta-properties cleanly
– Low-level setattr hook for classes

Questions?

Who knows, maybe we'll have finished on time.

