
FreeTTS - A Performance Case Study

Willie Walker
Paul Lamere
Philip Kwok

M/S MTV29-01
901 San Antonio Road
Palo Alto, CA 94303-4900

FreeTTS - A Performance Case Study

Willie Walker
Paul Lamere
Philip Kwok

SMLI TR-2002-114 August 2002

Abstract:

The Java™ platform has a stigma of being a poor performer and has often been
shunned as an environment for developing speech engines. We decided to better
understand this stigma by writing a speech synthesis engine entirely in the Java pro-
gramming language.

Remarkably, we were able to get better performance from our engine than one using
similar algorithms written in C. Our team, composed of three engineers with significant
backgrounds in the C and Java programming languages, also found it easier to make
algorithm modifications using the Java programming language than using C.

email addresses:
william.walker@sun.com
paul.lamere@sun.com
philip.kwok@sun.com

© 2002 Sun Microsystems, Inc.. All rights reserved. The SML Technical Report Series is published by Sun Microsystems Laboratories, of Sun
Microsystems, Inc. Printed in U.S.A.

Unlimited copying without fee is permitted provided that the copies are not made nor distributed for direct commercial advantage, and credit to the
source is given. Otherwise, no part of this work covered by copyright hereon may be reproduced in any form or by any means graphic, electronic,
or mechanical, including photocopying, recording, taping, or storage in an information retrieval system, without the prior written permission of the
copyright owner.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, the Solaris Operating Environment, Java, Java HotSpot, Java 2 Platform, JVM, Javadoc, and J2SE are trade-
marks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based
upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered trademark in the United States and other countries, exclusively
licensed through X/Open Company, Ltd.

For information regarding the SML Technical Report Series, contact Jeanie Treichel, Editor-in-Chief <jeanie.treichel@eng.sun.com>.All technical
reports are available online on our Website, http://research.sun.com/techrep/.

FreeTTS - A Performance Case Study

Willie Walker
Paul Lamere
Philip Kwok

Sun Microsystems Laboratories
Burlington, Massachusetts

{William.Walker, Paul.Lamere, Philip.Kwok}@sun.com

1. Introduction
The JavaTM platform has a stigma of being a poor performer and has often been shunned
as an environment for developing speech engines. We decided to better understand this
stigma by writing a speech synthesis engine entirely in the Java programming language.

Remarkably, we were able to get better performance from our engine than an engine
using similar algorithms written in C. Our team, which is composed of three engineers
with significant backgrounds in the C and Java programming languages, also found it
easier to make algorithm modifications in the Java programming language than in C. In
addition, we were able to create an engine with more flexibility and our engine generated
intelligible speech only four weeks after we wrote our first line of code.

Our work, named FreeTTS, is based upon two speech synthesizers: the Festival Speech
Synthesis System [festival2001], and Flite [flite2001]. Festival, which Sun Microsystems
funded through collaborative research, is an extremely flexible speech synthesis research
environment written using Scheme and C++, with no particular attention paid to
performance. Flite (Festival Lite) was written at Carnegie Mellon University (CMU), and
is based upon Festival. Flite is written entirely in C with great detail paid to size and
performance on embedded platforms. The size and performance requirements of Flite,
however, drastically reduce its flexibility. To get the best of both worlds, we based
FreeTTS's algorithms on Flite, but the architecture on Festival.

In this document, we briefly describe the overall process FreeTTS uses to convert general
text into synthesized speech. We then describe the performance issues raised by such a
system and how we addressed those issues.

Summary of the Synthesis Process
To synthesize speech, FreeTTS breaks the input text into sets of phonemes1 and then
converts those phonemes into audible speech. FreeTTS does this by performing
successive operations on the input text. FreeTTS stores the the cumulative results of each
operation in an utterance structure that holds the complete analysis of the text.

Figure 1 shows the overall architecture for FreeTTS. The core of FreeTTS is an engine
that contains a voice and an output thread. The voice consists of a set of utterance

1 A phoneme is a member of the set of the smallest units of speech that serve to distinguish one utterance
from another in a language or dialect.

1

processors that create, process, and annotate an utterance structure. Associated with the
voice is a data set that is used by each of the utterance processors. The output thread is
responsible for two actions: synthesizing an utterance into audio data and then directing
this data to the appropriate audio playback mechanism.

The Voice and Utterance Structures

The heart of FreeTTS lies in its voice and utterance structures. The voice maintains the
global information about the synthesis process: the locale, the pronunciation lexicon, the
unit database,2 and the wave synthesizer. The voice also maintains the set of utterance
processors used to create and annotate the utterance structure.

The utterance structure is a temporary object the voice creates for each audio wave it
generates. The voice initializes the utterance structure with the input text and then passes
the utterance structure to a set of utterance processors in sequence. Once the input text is
processed (e.g., sent to an audio output device), the voice discards the utterance structure.

Each utterance processor adds additional items to the utterance structure in an
hierarchical and relational manner. For example, one utterance processor creates a
relation in the utterance structure consisting of items holding the words for the input text.
Another utterance processor creates a relation that consists of items describing the
syllables for the words, with each syllable item pointing back to the individual word
items created by the other utterance processor.

By arranging the utterance structure using relations, the utterance processors can perform
sophisticated relational queries on the utterance structure. An example query text is

2 A 'unit' is a single portion of speech which may range in size from a whole phrase down to a phoneme.

2

Figure 1 – FreeTTS Architecture

Voice Data

Lexicon

 CARTS

UnitData

 Utterance Processors Voice

Wave Synthesizer
Audio Output

 Output
 Thread

Speakable

Javax.soundFile Socket

Audio

Utterance Queue
FreeTTS
Engine

JSAPI

Text JSML Text

 Applications

"R:SylStructure.parent.parent.word_numsyls." Reading from right to left, this
means "find the number of syllables in the word that's the parent of the parent of the
syllable relation for the particular item of interest." These types of queries are used
throughout FreeTTS by the various utterance processors.

Synthesis Steps

There are a number of steps in the synthesis process. Many of these steps need to be
customized depending upon the locale and the type of synthesis employed. A typical
FreeTTS voice will perform the following steps to convert written text to speech:

� Text Normalization – Performed via an utterance processor that converts the input
text into a stream of words. For example, the text “Dr. Smith lives on 33 Garden Dr.”
would be converted to “doctor smith lives on thirty three garden drive.” The text
normalization process deals with a wide variety of cases including numbers, dates,
times, titles, and place names.

� Linguistic Analysis – Performed via an utterance processor that determines semantic
information such as phrasing and part-of-speech information.

� Lexical Analysis – Performed via an utterance processor that determines the
pronunciation, syllable identification, and stress for each word of the utterance.
Typically, FreeTTS will use a lexicon to determine this information. If a word is not in
the lexicon, however, FreeTTS falls back to a set of sophisticated letter-to-sound rules.

� Prosody Generation – Performed via an utterance processor that determines
parameters for pauses, pitch, duration, tone, stress, and amplitude. These processors
will typically use classification and regression trees (CARTS) [brieman84] to generate
this prosody information.

� Speech Synthesis – Generates audio data, typically by concatenating speech units
based on diphones or other units of speech. Synthesis can be particularly CPU
intensive since it involves a great number of floating point operations.

When broken down into these discrete steps, the synthesis process is relatively
straightforward. The process, however, pushes performance bounds in two dimensions.
First, there are large data sets to contend with, with the lexicon and the unit database
comprising the largest amount of data. Second, there is a significant amount of floating
point computation involved. Not surprisingly, the audio synthesis processing takes the
longest of all the steps.

In the following sections, we describe the performance issues in more detail, and also
describe how we addressed those issues in FreeTTS.

2. Execution Time Base Lines
For our first pass at FreeTTS, we decided to keep everything as simple as possible. Our
primary concentration was to design the overall architecture and just get it to talk. As a
result, we did not pay much attention to performance. For example, instead of
concentrating on the time to load the lexicon and diphone database, we just parsed the
data sets from separate ASCII files. After our wonderful experience of hearing FreeTTS
speak for the first time, we then examined the performance of the engine.

3

Our first performance work on FreeTTS involved reducing the execution time in two
dimensions: the first was the time it took to load the data sets, and the second was the
time it took FreeTTS to synthesize speech once it was given text. Before doing any
performance work, however, we took a number of baseline measurements.

Data Set Loading Baseline
FreeTTS's C-based counterpart, Flite, does not load the data sets it uses from files.
Instead, Flite defines all of its data as static constants directly in the source code. As a
result, the data and code are loaded simultaneously, and thus Flite's effective load time is
zero. FreeTTS, however, loads its data sets from files, so we gathered metrics on how
long it took FreeTTS to load the data sets. Table 1 shows the load times for the larger
data sets used by FreeTTS.

Data Set Bytes Load Time (seconds)
All CARTS 36,496 0.41
Lexicon 1,705,833 6.25
Letter to sound rules 261,318 0.65
Unit database 7,828,514 13.76
Total 9,832,161 21.07

Table 1 - Initial Data Set Load Times

As can be seen by the table, the lexicon and unit database took a significant amount of
time to load.

Execution Speed Baseline
We decided that if we could not make FreeTTS run quickly, then other performance
improvements would not be worth the effort. Before working on the execution speed, we
established a performance baseline comparing the processing speed of FreeTTS to Flite.
For the baseline, we ran both the Flite and FreeTTS synthesis engines using the “Alice”
test: a large input text consisting of an abbreviated version of Lewis Carroll's "Alice in
Wonderland." The input text contains 4293 words, with an approximate total speaking
time of nearly 22 minutes. Table 2 shows the timings in seconds for each of the utterance
processors when run on a single SPARC® processor (v9) operating at 296 MHz with
128MB. All FreeTTS classes and data were directly in the CLASSPATH (i.e., JAR3 files
were not used).

3 The JavaTM Archive (JAR) file format allows multiple files, including class files and related resources,
into a single archive file.

4

Processor Flite (secs) FreeTTS (secs) FreeTTS:Flite (ratio)
Tokenization 0.216 0.393 1.819
Normalization 0.260 0.801 3.081
Phrasing 0.537 0.371 0.691
Segmentation 2.592 1.349 0.520
Pause Identification 0.060 0.083 1.383
Intonation 7.704 10.401 1.350
Post Lexical Analysis 0.838 0.777 0.927
Duration 7.749 6.860 1.350
F0 Contour 10.350 11.119 1.074
Unit Selection 1.058 1.576 1.490
Wave Synthesis 11.206 47.399 4.230
Total 42.570 81.129 1.906

Table 2 - Initial Flite and FreeTTS Processing Metrics

From this table, it can be seen that our first version of FreeTTS spent a significant
amount of time synthesizing the wave data. This time contributed greatly to the result of
FreeTTS being nearly twice as slow as Flite.

3. Data Set Loading Improvements
We found it unacceptable that FreeTTS took 21 seconds to load the data sets. Although
this was a one-time penalty to incur when running FreeTTS, we would frequently start
and stop FreeTTS during the development phase. As such, any improvements we could
make in this area would directly benefit us by reducing development turnaround time.

For our first attempt at reducing the load time, we experimented with defining the data as
static final constants directly in the code, but uncovered some unexpected results:

� The JavaTM virtual machine4 limits the constant pool to 64K entries per class
[lindholm97]. In addition, the amount of code per class is also restricted to 64K
bytes. As a result, we needed to break the larger data sets into several classes.

� The resulting class files were much larger than expected. This is due to the fact
that when an array of primitive types is defined in an application written using
the Java programming language, the compiler generates a sequence of code
that initializes each member of the array. For example the code:

private static float[] floatArry = {
 1.0f, 2.0f, 3.0f, 4.0f, 5.0f
};

4 As used in this document, the terms "JavaTM virtual machine" or "JVMTM" mean a virtual machine for
the Java platform.

5

 Results in code that looks like this:

newarray float # allocate the array
dup
iconst_0 # store the first value
fconst_0
fastore
dup
iconst_1 # store the second value
fconst_1
fastore
etc.

Thus, each element of the array consumes four bytes for the value itself, plus
four bytes of code to store the value in the array, plus a four byte array index.
This results in three times the amount of space required to initialize the array
as compared to the native-C counterpart.

� It took longer to load the resulting class files than it took to read and parse the
data from a file. It took longer not only because there were three times the
amount of data to read, but also because the byte code verifier [lindholm97]
needed to check a large amount of extra code.

As a result, we abandoned these experiments early and instead focused on alternative
methods for loading our data sets.

Lazy Tokenization
When analyzing a run of FreeTTS, we determined that much of the load time was spent
parsing the ASCII data sets. To experiment with performance improvements in this area,
we chose to delay as much parsing of the data until absolutely necessary.

For example, an entry in the lexicon data set looks like the following:

abdicating0 ae1 b d ih k ey1 t ih ng

Each word is encoded with its part of speech and is followed by a list of phonemes. Our
initial pass at loading the lexicon completely parsed each line as it was read: the
combined word and part of speech became a key for a HashMap and the phoneme list was
stored as an array of strings.

In an attempt to improve the load time, we did not parse the list of phonemes when they
were first read in. Instead, we saved the list as one string, and only parsed it when the
phoneme list for a word was requested. As seen in Table 3, the results were promising.

Times in seconds
Method Load Time (secs) Lookup Time (secs)

Tokenize on Load 6.3 1.1
Tokenize on Lookup 2.7 1.1

Table 3 - Comparison of Tokenization Strategies

In this table, the times represent the total time FreeTTS spent looking up words for the
"Alice" test. As can be seen, lazy tokenization of the lexicon allowed us to cut the load
time by more than one-half without a noticeable degradation in lookup time.

6

Binary Data
Our next attempt at reducing load time involved converting the ASCII files into a binary
form. Representing the data sets as ASCII files is extremely inefficient: not only does it
take more disk space, but it also requires computation time to turn the text into the
appropriate format. For example, the diphone database consists mostly of numerical data.
When the diphone data is represented as an ASCII file, loading it requires parsing over
1.8 million strings, only to turn those strings into their appropriate primitive data types.

We assumed that by reading the primitive types in directly, we would eliminate all the
overhead caused by parsing the data strings before converting it into primitive types.
Because the diphone database was the largest, we focused our efforts on that first. As can
be seen in Table 4, our assumption proved to be correct for the diphone database. We also
tried the new IO (nio) package for loading binary data, and it provided the best
performance overall.

File Format Load Time
ASCII 13.760s
Binary 1.491s
New IO Binary 1.083s

Table 4 - ASCII vs. Binary Load times

Given the success of using a binary format for the diphone data, we revisited the lexicon
to see if we could get similar performance. Unfortunately, we had only a negligible
improvement in performance. Upon further analysis, we discovered during the loading of
the lexicon, the Java virtual machine was spending much of its time creating strings and
populating the HashMap that we were using to hold the lexicon. This time far
overshadowed the improvement we were getting from using a binary form for the data.
As a result, we decided to refrain from using a binary format for the lexicon.

JAR Files
Finally, we were concerned that placing the binary data sets in a JAR file would be
detrimental to the loading performance. As can be seen in Table 5, this is true to an
extent:

 Loading Method Load Time
Raw Classes and binary files 3.4s
Uncompressed JAR Files 5.1s
Compressed JAR files 7.6s

Table 5 - Comparing Different Methods of Loading FreeTTS

Data Set Loading Summary
There are several other performance improvements we could make to load the data. For
example, we could use a different data structure than a HashMap to store our lexicon.
Given our success in reducing the total load time from 21 seconds down to under 4
seconds, however, we decided to focus on lowering the execution time.

7

4. Execution Time Improvements
Computing the audio output for the "Alice" test initially took over 47 seconds. This
compared unfavorably with Flite which took less than 12 seconds to perform the same
task. Profiles of this step showed two areas of possible optimization:

1. Excess time was being spent performing buffer copies.

2. A large amount of time was spent in an inner loop calculation.

Eliminating Buffer Copies
Due to an architectural decision, the audio output classes expect data in the form of byte
arrays, but the audio wave synthesizer generates data as short arrays. In our first
implementation, we wrote the audio wave synthesizer data to an in-memory
ByteArrayOutputStream wrapped in a DataOutputStream, and then finally normalized
the data in yet a third byte buffer. By modifying the wave synthesizer to generate byte
data directly (a simple modification), we eliminated two buffer copies. This reduced the
wave synthesis time for "Alice" by 13 seconds (from 47 to 34), a significant
improvement.

Optimizing the Inner Loops
The final stage of the synthesis process generates the audio samples using a linear
predictive coding (LPC) algorithm. The LPC algorithm generates an output sample by
filtering the last 10 sample outputs with a set of filter coefficients associated with the
sample frame, resulting in 22 floating-point operations per frame. As a result, our "Alice"
test case requires over 225 million floating-point operations to generate the audio data.

Through experimentation, we found that array indexing was responsible for a
considerable fraction of the time spent in the inner loop. Because the Java programming
language specifies that all array indexes are checked at run time, array accesses are
potentially more expensive in the Java programming language than their counterparts in
C.

By maintaining the output buffer in a custom linked list instead of an array, we were able
to eliminate all array indexing from the inner loop. This reduced the wave synthesis time
by 12.5 seconds (from 34 seconds to 21.5). As mentioned later in this document, we
discovered that optimizing compilers such as the Java HotSpotTM server compiler would
have obviated the need to move from arrays to linked lists.

Other minor optimizations reduced the total wave synthesis time by another 1.1 seconds.
We decided we were reaching the point of diminishing returns and went on to other areas
for improvement.

Utterance Structure Modifications
Aside from the computation of the wave, we also found that FreeTTS spends a lot of time
traversing the utterance structure. As mentioned previously, subsequent utterance
processors refer to the results of previous utterance structures, and they do so using a

8

query text (e.g., "R:SylStructure.parent.word_numsyls"). Most of the queries are
relational, and typically refer to the item just before or after a given item.

Our initial implementation of the utterance structure stored utterance items using a
java.util.List, so searching for the item before or after a given item always resulted
in a linear search. We redesigned the storage of our utterance items to use a linked list,
with the end result being a savings of 4 seconds in the overall processing time of "Alice."

Algorithm Improvement
Up to this point, our performance improvements concentrated solely on making our code
run faster, but still kept the algorithms identical to Flite. Although the basic algorithms
were identical to Flite, we were able to take advantage of some of the high performance
data structures such as the HashMap provided by the Java platform. Our improvements
were actually quite successful: for the "Alice" text, we were able to match the overall
total processing time of Flite, including the time it took to load the FreeTTS data sets.

Although we realized there were more performance improvements we could make
without changing the algorithms, we decided there were some algorithmic changes we
could make that would have a significant benefit.

Studying the data from Table 2, we turned our attention to the intonation processor.
Through a simple process of elimination, we discovered that the relational query text
continually used throughout FreeTTS was being parsed each time it was used. Because
the query text is static (there are over 600 instances in the data sets), we looked at
preprocessing the text just once, and then using the processed form in subsequent queries.
The results were dramatic: preprocessing the query text shaved over 12.5 seconds off the
total time to process the "Alice" text. In addition, the results were nearly identical
whether we preprocessed the query text at load time or if we waited until the query was
run the first time. Since the same query text was used by a number of utterance
processors, by improving its performance we not only improved the intonation
processors, but many other processors as well.

We considered making a similar change to Flite to compare the results. We refrained
from doing so because it would have required too much work (e.g., the manual garbage
collection required). Thus, we saw another benefit to using the Java programming
language: it allows us to make significant algorithm changes faster and easier.

A New JavaTM 2 Platform Release
During the development of FreeTTS, the Java team released several beta versions of the
JavaTM 2 Platform, Standard Edition (J2SETM) version 1.4. As each new version was
released, we tested FreeTTS to measure its performance under the new release. We were
pleasantly surprised to find significant performance increases just by upgrading to a new
release. For instance, when upgrading to the beta2 release J2SETM 1.4, the time to
synthesize wave data for the “Alice” text dropped from 21 seconds to 14 seconds. (The
total time dropped from 34 seconds to 24 seconds). Imagine our mixed emotions after
working hard for several days to shave two seconds off the time, but then have 10
seconds eliminated just by a beta upgrade.

9

One notable improvement in the J2SE 1.4 upgrade was improved range check
elimination. The Java HotSpot compiler can detect certain array access idioms,
particularly for loop accesses, and eliminate the range checking on the array index if it
determines the index always falls within range of the array. Some of the aforementioned
optimizations that we performed on FreeTTS to eliminate array accesses to avoid index
range checking became unnecessary because of these Java HotSpot compiler
improvements.

Improving Performance with the Java HotSpotTM Virtual Machine
The Java HotSpot virtual machine is Sun Microsystems' virtual machine for the Java
platform. The J2SE 1.4 release provides two flavors of the Java HotSpot virtual machine:
a client compiler that provides for faster program start times, and a server compiler that
maximizes program speed but with a longer program start time and a larger memory
footprint. The server compiler performs a wide range of optimizations including
aggressive inlining of virtual methods, loop unrolling, dead code elimination, common
sub-expression elimination, and array range check elimination.

Speech applications are often constructed as client/server applications with the
recognition and synthesis engines running as separate servers possibly on separate
machines. This architecture can improve the scalability, flexibility and reliability of a
system. With this in mind, we developed a client/server version of FreeTTS that allows
the synthesis engine to receive synthesis requests via a socket connection, synthesize the
wave data and return it to the client via the socket. When used in contexts such as this
where startup time is less important than overall TTS performance, FreeTTS can be run
using the server compiler with a significant performance boost. Table 6 shows a
comparison of Flite and FreeTTS running with the client and the server compiler.

1-CPU 296 MHz SPARC® processor (v9) w/ 128Mb
 Load Time Run Time Total

Flite 0s 44.3s 44.3s
FreeTTS -client 3.4s 24.4s 27.8s
FreeTTS -server 5.9s 32.7s-41.7s 38.6s-47.6s

Table 6 - Comparison of Client and Server compilers

We were puzzled by these results. First of all, the timings with the server compiler were
inconsistent, ranging from 38 to 47 seconds. Secondly, the performance of the server
compiler was worse than the client compiler. Some investigation showed that the Java
HotSpot server compiler needs a longer period of time to identify and compile the hot
spots. We ran the test again replacing the “Alice” input text with the text of Jules Verne's
Journey to the Center of the Earth, which is about 20 times as long. Table 7 shows the
results of this test.

10

1-CPU 296 MHz SPARC® processor (v9) w/ 128Mb
Load Time Run Time Total

Flite 0s 955.4s 955.4s
FreeTTS -client 3.3s 505.5s 508.8s
FreeTTS -server 5.8s 347.0s 352.8s

Table 7 - Client/Server comparison with longer input

Giving the server compiler a longer period of time to optimize the hot spots proved
beneficial: FreeTTS using the server compiler is about 30% faster than running it using
the client compiler.

Multiple CPU Improvements
Flite is a single threaded application and as such cannot take full advantage of a multi-
CPU system. The ease in which threads can be created using the Java programming
language, however, permitted us to quickly make FreeTTS a multi-threaded application.
With one thread producing utterances and a second thread generating wave data from
these utterances, the virtual machine can distribute these threads among the available
CPUs to achieve a further performance boost.

Table 8 shows the results of processing the “Journey” text on a 2-CPU 360 MHz
SPARC® processor (v9) with 512 Mb of memory5.

2-CPU 360 MHz SPARC® processor (v9) w/512 Mb
Load Time Run Time Total

Flite 2-CPU using 1 CPU 0s 803.2s 803.2s
Flite 2-CPU using 2 CPUs 0s 800.4s 800.4s
FreeTTS -server 2-CPU using 1 CPU 5.2s 282.9s 288.1s
FreeTTS -server 2-CPU using 2 CPUs 3.1s 193.1s 196.2s

Table 8 - Single CPU/ Multi-CPU Performance Comparison

This table shows that, as expected, Flite achieves nearly identical run-times when running
on a single or multi-CPU system. FreeTTS, however, shows a 33% improvement in
runtime when running on a 2-CPU system.

Time-to-First-Sample Performance Tuning
A critical benchmark in text-to-speech synthesis engines is the time from when the
synthesizer receives the text to synthesize to the time the first audio sample is generated.
This benchmark is called the time-to-first-sample.

FreeTTS optimizes the time-to-first-sample in two ways. First, it partitions the final wave
synthesis and wave output steps into a separate thread. This allows utterance generation
to occur concurrently with wave synthesis and audio output. Since samples can be
synthesized much faster than they can be output as audio, this partitioning allows
utterance processing to be overlapped with the final audio output time, reducing the

5 The SolarisTM 8 Operating Environment command, psrset, was used to limit the run to a single CPU
for the 1-CPU results.

11

overall processing time. Additionally, since the audio wave synthesis is in a separate
thread, the Java virtual machine can potentially allocate the synthesis thread to its own
CPU, boosting overall performance.

Second, FreeTTS allows audio output to be streamed such that as soon as the first sample
of audio is generated, it is sent to the audio system to be played. This is unlike Flite
which generates the entire wave output for an utterance before sending the resulting data
to the audio system to be played.

Table 9 compares the time-to-first-sample for Flite and FreeTTS while running on single
CPU 296 MHz (1-CPU) system and a dual CPU 360 MHz system (2-CPU).

Flite FreeTTS -client FreeTTS -server
Input Size
(Words) 1-CPU Time 2-CPU Time 1-CPU Time 2-CPU Time 1-CPU Time 2-CPU Time

1 13ms 11ms 5ms 4ms 5ms 3ms
2 22ms 18ms 8ms 6ms 11ms 6ms
5 40ms 34ms 18ms 14ms 27ms 14ms

10 79ms 68ms 38ms 30ms 50ms 26ms
100 1034ms 813ms 864ms 690ms 631ms 485ms

Table 9 - Time-to-first-sample

As with other performance improvements, we attempted making similar changes to Flite
but found that the C programming language made this a very difficult task.

Execution Time Summary
With all of the performance improvements described previously, we were able not only to
improve the performance of FreeTTS, but also to make FreeTTS run considerably faster
than Flite. Table 10 shows a comparison of utterance processing times of the “Journey”
text for Flite and FreeTTS running on single CPU and multiple CPU systems.

� 1-CPU - Single CPU, 296 MHz SPARC® processor (v9) with 128 MB
memory

� 2-CPU - Dual CPU, 360 MHz SPARC® processor (v9) with 512 MB memory

12

Process Flite 1-CPU Flite 2-CPU FreeTTS 1-CPU FreeTTS 2-CPU
Tokenization 4.444 3.981 8.219 6.211
Normalization 5.493 4.665 8.359 6.750
Phrasing 18.497 15.476 3.255 1.646
Segmentation 19.415 16.921 18.697 13.026
Pause Identification 7.607 6.340 0.981 1.002
Intonation 175.041 145.803 24.500 17.152
Post Lexical Analysis 19.706 16.159 2.336 1.167
Duration 183.933 153.418 36.041 28.370
F0 Contour 257.752 214.969 39.749 29.194
Unit Selection 26.097 23.897 35.250 34.167
Wave Synthesis 203.002 189.633 167.620 54.979
Total 920.990 791.265 345.050 193.723

Table 10 - Processing “Journey” with the Java HotSpotTM server compiler
 (times in seconds)

Our original performance goal was to make FreeTTS run as fast as Flite. However, with
only minor algorithm changes, FreeTTS can now run more than 4 times faster than its
native-C counterpart.

5. Memory Footprint Analysis
Since our primary goal in developing FreeTTS was to investigate the performance
characteristics of a text-to-speech engine written in the Java programming language, we
were primarily concerned with the previously discussed performance metrics of overall
processing time and the time-to-first-sample. We spent very little effort trying to reduce
the memory footprint of FreeTTS. As such, Flite currently has a much smaller memory
footprint than FreeTTS.

6. Helpful Features of the JavaTM platform
During the development of FreeTTS, we increasingly appreciated the many features of
the Java platform that made our job as programmers easier.

� Object Oriented Language - Object-oriented languages are well suited to
support the 'pluggable' and 'configurable' requirements of speech synthesis
engines.

� Dynamic Loading of Code - Since the Java programming language allows
code to be loaded dynamically at runtime, extending the speech synthesis
engine with new voices is easy. As a result, voices can be packaged into JAR
files and deployed separately from the engine.

� Multi-threaded Language - We were able to easily add multithreading to
FreeTTS, resulting in faster execution speeds and reduced time to first sound.

� Garbage Collection - Since we did not have to explicitly manage memory,
writing code was easier and the resulting code was less complex.

13

� Vast API - The large set of APIs that are part of the J2SE platform made
developing FreeTTS much easier. In addition, because J2SE provided high-
quality implementations of data structures and algorithms, we were able to get
a significant performance boost "out of the box." In particular, the collections
API, regular expressions API, and the Java Sound API were much appreciated.

� Portability - We are able to use our FreeTTS JAR files on the SolarisTM 8
Operating Environment, Windows, and Linux systems without making any
changes. This compares favorably to Flite which must be ported and built
specifically for each supported environment.

� Documentation - By conforming to the JavadocTM documentation standards
when writing FreeTTS, we were able to generate high-quality API
documentation for the FreeTTS synthesis system directly from the source code.

7. Summary
When we started our study of the performance characteristics of a speech synthesis
engine programmed in the Java programming language, our expectations were that it
would hopefully be able to run nearly as fast as the native-C counterpart. Through using
some straightforward optimizations and relying on the aggressive optimizations
performed by the Java HotSpot compiler, we were pleased to find that FreeTTS runs two
to four times faster than its native-C counterpart, Flite.

Clearly, it would be possible for us to roll some of these optimizations back into Flite
with the likely result of improving Flite's performance to levels similar to FreeTTS. The
lack of Java platform features such as garbage collection and high-performance collection
utilities, however, makes performing these optimizations in Flite much more time
consuming from a programming point of view.

Acknowledgments
The authors of this document would not have been able to create FreeTTS if Alan Black
at CMU had not written the Flite synthesis engine. We greatly appreciate his work and
his depth of knowledge in this area. Furthermore, we thank our management for allowing
us to tackle this problem.

14

References
[black96] Black, A., and Hunt, A., 1996. "Generating F0 Contours from ToBI Labels
Using Linear Regression." ICSLP96, Volume 3, pp 1385-1388.

[brieman84] Breiman, L., Friedman, J. H., Olshen, R.A., and C. J. Stone. 1984.
"Classification and Regression Trees." Wadsworth, Belmont, CA.

[cmulex] "The CMU Pronouncing Dictionary," Version 0.6. Unpublished content
available at http://www.speech.cs.cmu.edu/cgi-bin/cmudict/.

[festival2000] Black, A., Lenzo, K., 2000. “Building Voices in the Festival Speech
Synthesis System Processes and issues in building speech synthesis voices Edition
1.2:beta, for Festival version 1.4.1” Unpublished content available at
 http://www.festvox.org/festvox.

[festival2001] Black, A., Taylor, P., and Caley, R., 2001. "The Festival Speech Synthesis
System, Version 1.4.2." Unpublished document available via
http://www.cstr.ed.ac.uk/projects/festival.html.

[flite2001] Black, A., and Lenzo, K., 2001. "Flite," Version 0.91. Unpublished source
code available via http://www.cmuflite.org/.

[hunt89] Hunt, M., Zwiernyski, D., and Carr, R., 1989. "Issues in High Quality LPC
Analysis and Synthesis." Eurospeech89, Volume 2, pp 348-351.

[lindholm97] Lindholm, T., and Yellin, F., 1997. "The JavaTM Virtual Machine
Specification." Addison Wesley, Section 4.10.

[ostendorf1995] Ostendorf, M., Price, P., Shattuck-Hufnagel, S., 1995. "The Boston
University Radio News Corpus." Technical Report ECS-95-001, Electrical, Computer
and Systems Engineering Department, Boston University.

[silverman1996] Silverman, K., Beckman, M., Petrelli, J., Ostendorf, M., Wightman, C.,
Price, P., Pierrehumbert, J., and Hirschberg, J., 1996. "ToBI: A standard for labeling
English prosody." Proceedings of ICSLP 92, Volume 2, pp. 867-870.

15

About the Authors
Willie Walker joined Sun Microsystems Laboratories in 1998 and became the principal
investigator for the Speech Group in 2000. He is currently helping create a voice
architecture for Sun and is also leading the migration of the Carnegie Mellon University
Sphinx speech recognition system to the Java platform. Willie also led the effort to create
FreeTTS. Before joining the Speech Group, Willie worked on the Java Foundation
Classes. His major contributions to that effort include the design and implementation of
the Java Accessibility API and the Multiplexing Look and Feel for Swing. Prior to
joining Sun, Willie worked for Digital Equipment Corporation on the X Window System
and Motif. His work on X/Motif included the XKB keyboard extension as well as
methods to make the X Window System more accessible to people with disabilities.
While at DEC, he also helped found DACX, the Disability Action Committee for X.

Paul Lamere has been writing software for the last twenty years. He spent much of that
time developing real-time, embedded systems. His software can be found embedded in
medical instrumentation, manufacturing equipment, and even the U2 spy plane (although
he can't talk about that too much). Paul switched over to developing in the Java
programming language about five years ago and he hasn't looked back since. Paul joined
the Sun Microsystems Laboratories Speech Group in the summer of 2000. His current
software interests are developing speech applications, speech engines, and extreme
programming.

Philip Kwok joined the Sun Microsystems Laboratories Speech Group in the summer of
2000. He graduated with a degree in Computer Science from Hampshire College in May
2000. His thesis involved building a network visualization system for the SSF Network.
He was previously employed as a research intern at the DIMACS Research Center where
he carried out large-scale networks simulation research. There, he built the first Java
platform version of the SSF Net, and implemented the OSPF routing protocol on top of it.
He also interned at the IBM TJ Watson Research Center, where he worked on a software
library system for internal use.

16

	FreeTTS - A Performance Case Study
	Abstract
	Copyright
	1. Introduction
	2. Execution Time Base Lines
	3. Data Set Loading Improvements
	4. Execution Time Improvements
	5. Memory Footprint Analysis
	6. Helpful Features of the Java TM platform
	7. Summary
	Acknowledgments
	References
	About the Authors

