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Absrracr-Pup  is the  name of an  internet  packet  format (PARC Universal 
Puckesr), a  hierarchy  of protocols, and  a  style of internetwork com- 
munication.  The fundamental  abstraction is an end-to-end media-in. 
dependent internetwork datagram. Higher  levels of functionality  are 
achieved by end-to-end  protocols that are  strictly a  matter of agreement 
among  the  communicating  end processes. 

This report explores important  design issues,  sets forth  principles that 
have  guided the  Pup design, discusses  the  present  implementation in 
moderate  detail,  and summarizes  experience  with  an  operational  inter- 
network.  This work serves  as the  basis  for  a  functioning  internetwork 
system that provides  service  to about IO00 computers, on 25 networks of 5 
different  types, using 20 internetwork gateways. 

R 
I. INTRODUCTION 

ESEARCH  in network  interconnection  techniques  has 
been  motivated by  the desire to  permit  communication 

among diverse,  geographically distributed  computing resources 
and users interconnected  by a wide variety of  network  tech- 
nologies. 

It is the  purpose  of  an  internetwork  architecture t o  provide 
a uniform  framework  for  communication  within a heterog- 
eneous  computing,  communication,  and  applications environ- 
ment.  The  work  described in this  paper represents one  inter- 
network  architecture,  known as Pup, in  widespread regular 
use within  Xerox.  The  name referred  originally to  the abstract 
design of a standard  internetwork  datagram  (the PARC Uni- 
versal Packet), but  has  expanded  in usage to include  the whole 
hierarchy  of  internetwork  protocols as well as a general 
style  for  internetwork  communication. 

To assist in  understanding  the design of  the  Pup  protocols, 
it is useful to characterize briefly the  environment  in  which 
this  architecture  has evolved. 

The  computational  environment includes  a  large number  of 
“Alto”  minicomputers [ 111 , [3 11, and  other personal com- 
puters capable of  high-quality  interaction  with  human users. 
Supporting these  are  various specialized server systems  that 
are shared among  many users and provide access to  expensive 
peripherals such as large disks,  magnetic tapes,  and high- 
quality  printers.  Additionally,  there  are several general-purpose 
time sharing systems providing customary services for  terminal 
users. 

The  communications  environment includes several different 
individual network designs. The  dominant  one is the  “Ethernet” 
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communications  network, a  local-area  broadcast channel  with 
a bandwidth of 3 Mbits/s [ 151 . Long-haul communication facili- 
ties include the ARPANET, the ARPA  packet  radio network, 
and a collection of leased lines implementing an  ARPANET- 
style  store-and-forward  network. These facilities have distinct 
native protocols  and  exhibit  as  much as three  orders  of magni- 
tude  difference  in  bandwidth. 

The  applications to  be  supported include  a wide range of 
activities: terminal access to the  time sharing services, elec- 
tronic mail, file transfer, access to  specialized data bases, 
document transmission, software  distribution,  and  packet 
voice, to name  just a  few. We would also  like t o  facilitate 
more  ambitious  explorations  into  the area  generally  referred 
to  as  “distributed computing.” 

This  paper is organized as follows. In  Section I1 we discuss 
some  of  the design issues which have emerged in  the  formula- 
tion  of  the  Pup  architecture, while Section 111 provides more 
detail  on  the  protocols themselves. Section  IV describes 
briefly some of our  operational experience with  the  present 
implementation.  The final section presents  a retrospective 
critique of the  work, highlighting some areas which  merit 
further  attention. 

11. DESIGN PRINCIPLES AND ISSUES 

Constructing an architecture for internetwork  protocols 
is,  first and  foremost,  an exercise in design: identifying indi- 
vidual issues, exploring  alternative  solutions,  and  then  knitting 
these pieces together to form  the final  result.  Along the  way, 
many compromises  are made as one  trades  off  among  dif- 
ferent  criteria:  functionality,  efficiency, generality, ease of 
implementation,  extensibility,  and  others. 

In  this  section we enumerate  some  of  ‘the  major design 
issues confronted in the  development  of a network archi- 
tecture  and describe,  in  general terms,  the choices made  in  the 
development of Pup. (Several of  these  and  other issues are 
enumerated  in  [2]  and [ 171 ). From  this discussion the  broad 
outlines  of  Pup will emerge; the  section  that follows  provides 
more specific detail  about  the  actual design. 

A .  The Basic Model:  Individual  Networks  Connected  with 
Gateways 

As with most internetwork  models,  one envisions  a col- 
lection  of  heterogeneous  networks,  connected  with a  set of 
internetwork  gateways to  form a  loosely coupled  system 
known generally as  an internet [ l ]  , [2] ,   [26] .  An internet 
should provide the ability for  any  two  hosts  to  communicate, 
so long  as  their  own local networks  are  interconnected. 
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An important  feature  of  the  Pup  internet  model is that  the 
hosts are the  internet. Most hosts  connect  directly  to a local 
network,  rather  than  connecting  to a network switch .such 
as an IMP,  so subtracting all the  hosts  would leave little  more 
than wire. Gateways are  simply hosts in the  internet  that 
are willing to forward packets  among  constituent  networks. 
Thus,  most  of  the  properties  of  the  internet are  primarily 
artifacts  of  host  software.  The  architecture must scale grace- 
fully, and  in  particular must allow for  the existence of a 
degenerate internet consisting of a single local network  and  no 
gateways. 

B. Simplicity 

One  of  the guiding principles  in designing Pup has  been 
the desire for simplicity. Pup is a framework  for  computer 
communications  resealch,  and simplicity is one  of  the  best 
ways to minimize restrictions  and maximize  flexibility for 
experimentation.  Attempting deliberately to eliminate un- 
needed complexity helps to  keep  the design open-ended. 
This  in turn  makes  it easier to incorporate  the existing diverse 
collection  of  networks  and  hosts  and to accommodate new 
alternatives as the  technology  matures. Keeping the design 
simple helps to avoid building in technological  anachronisms. 

A  second motivation  for  this principle is the desire to foster 
efficient implementations of the  protocols in the  host 
machines,  which are typically quite small. Software overhead 
must be  kept  low in order  to sustain high-bandwidth local 
communication, which constitutes  the  bulk  of  the  traffic; 
yet  the same software must support  the full  generality  of 
internetwork  communication. 

C Datagrams  versus  Virtual  Circuits 

There are two  major  approaches  to providing an  interface 
to packet-switched communications:  accepting individual 
datagrums or providing  a  higher level of service in the  form  of 
a virtual circuit. The  two  interfaces are not  unrelated, since  a 
virtual  circuit interface is usually implemented  within a 
network  by  the use of datagrams. In  some sense, datagrams 
provide access to a network  at a  lower level, closer to  its 
underlying  capabilities.  Datagrams  are  particularly  useful  in 
many  kinds  of  transaction-oriented  protocols.  Furthermore, 
the  task  of  the  internet is significantly  simplified if it need 
only  transport  independent, individually-addressed data- 
grams, without having to maintain  the  state required to 
support virtual  circuits. If the  internet provides  a  datagram 
interface, virtual circuit  interfaces  can  be provided by  adding 
appropriate mechanisms at  the  end points. 

Therefore,  the basic function provided by  the  Pup  internet 
is the  transport  of  datagrams; this  simple abstraction is the 
foundation  of  Pup.  The  internet  does  not  guarantee reliable 
delivery of datagrams (called “Pups”); it simply gives its 
“best efforts” to  deliver each  one,  and allows the  end  proc- 
esses to  build protocols which  provide reliable communica- 
tions  of  the  quality  they themselves  desire [14] . The  internet 
has  no  notion  of a connection.  It  transports each Pup  inde- 
pendently,  and leaves construction  of a  connection-if that is 

the  appropriate  interprocess  communication model-to the 
end processes. Keeping fragile end-to-end  state  out  of  the 
packet transport system contributes  to reliability and simplic- 
ity. 

D. Individual Networks as Packet Transport  Mechanisms 

Individual networks  within  the  internet can be viewed 
simply as packet transport  mechanisms. As links in the  inter- 
ne&@ey give their best efforts to deliver internet  packets, 
but.  they  do  not  guarantee reliable delivery. Packets may be 
lost,  duplicated, delivered out  of  order,  after a  great delay, 
and with  hidden damage.  A network  can have any  combina- 
tion  of  bandwidth,  delay,  error characteristics, topology,  and 
economics;  the  routing algorithm  should attempt  to  take 
these characteristics into  consideration. 

Encapsulation is an invertible, network-dependent  trans- 
formation  performed  on a Pup  to permit it to  be carried 
transparently  through a network:  an  abstract  Pup is presented 
at  one  end, encapsulated for transmission through  the  net, 
and  decapsulated  at  the  other  end, yielding the original Pup. 
For  some  networks,  encapsulation consists  merely of  adding 
headers and trailers. More elaborate  transformations  may  be 
necessary to  pass a Pup  through  other  networks  (for  example, 
using low-level acknowledgments or  error  correction because 
the  network has  a  high  loss  rate).  Encapsulation and decapsula- 
tion  take place in a network-specific  driver in which is vested 
all knowledge of  the  encapsulation  technique.  The  internet 
specification  has nothing  to say about  encapsulation  except 
that  it  be invisible. 

E. Internetwork  Gateways 

We distinguish two  kinds of  gateways: media translators 
and protocol translators. Media gateways  are hosts  with 
interfaces to  two  or  more packet transport mechanisms 
among which they forward internet datagrams, using the 
appropriate  encapsulation  for  each. These are the  heart  of  any 
datagram-based internet.  Protocol gateways  are hosts which 
speak two or more  functionally similar but  incompatible 
higher-level protocols used to  transport  information  within 
networks, mapping one higher level abstraction  into  the  other. 
(It is clear that a  media  gateway is just  doing  protocol  trans- 
lation  at  the  link level, but  the  distinction is useful given the 
importance  of  internet datagrams in  this  architecture.) 

In  the  Pup  internet, media  gateways  are by  definition 
simple, since all that is required of  the  translation process is 
that  it preserve the semantics of  internetwork datagrams. 
Protocol gateways  are  usually more  difficult, even when the 
protocols are similar, since such higher level protocols provide 
richer and more specialized semantics and  it is not always 
clear how  one should map  the  functionality  of  one  protocol 
into  another. Development of higher level protocol trans- 
lators  between  different  network  and  internet  architectures, 
e.g., between the ARPANET file transfer  protocol (FTP) and  the 
Pup-based FTP, is a thorny  task,  but  one  that  must  be  con- 
fronted  when  interconnecting systems that  do  not share the 
necessary lower level primitives. 
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F. A  Layered Hierarchy of Protocols 

Layering of  protocols is one  of  the  most effective means 
for  structuring a network design: each level uses the  functions 
of  the lower level, and  adds some functionality  of  its  own  for 
possible use by  the  next level. Provided that suitable inter- 
faces are  maintained,  an  implementation  at  one level can  be 
modified  without  impacting  the overall structure; this  helps 
to simplify both  the design and  the  implementation. 

Pup  protocols are organized in a hierarchy, as shown in 
Fig. 1;  the  details  of  this figure will be presented  in Section 
111. A level represents an abstraction, to  be realized in  dif- 
ferent ways in  different  hosts.  There are four levels of  interest, 
but  there  may  be  more  than  one  protocol  at  any level except 
level 1, representing  a different use of the  underlying layers. 
(The  numbering  of layers-and, indeed,  the choice of  points 
at  which to divide the layers-is arbitrary;  there is no relation- 
ship  between Pup's numbering  and  that  of  other designs such 
as the  Open Systems Architecture.) 

The level 0 abstraction is a packet  transport mechanism. 
There are many realizations: an  Ethernet channel, the 
ARPANET, the ARPA  packet  radio network,  our  store-and- 
forward leased line network,  and  others. Level 0 protocols  in- 
clude specifications such as hardware  interfaces,  electrical and 
timing characteristics, bit  encoding, line control  procedures, 
and  network-dependent  packet  formatting conventions. As- 
sociated  with  each  packet  transport mechanism is a convection 
for encapsulating  Pups. 

The level 1 abstraction is an  internet  datagram.  The realiza- 
tion  of  this abst.raction  consists of  the  format  of a Pup, a 
hierarchical  addressing scheme,  and  an  internetwork  routing 
algorithm.  There is only  one  box  at level 1: the  internet  data- 
gram protocol; it is this  layer  of  commonality  which unifies 
all of  the  different  networks  that might be used at level 0, 
and which makes available a uniform interface to all of the 
layers  above. It is the  purpose  of  this level to provide  media 
independence while maintaining  the  common  properties  of 
the  underlying  packet  networks. 

The level 2 abstraction is an  interprocess  communication 
mechanism: a  way to  move bits  without saying much  about 
their  form or content.  Various level 2 protocols provide many 
combinations  of reliability, throughput,  delay,  and  complexity. 
These protocols can be divided into  two classes according to 
the  amount  and  lifetime  of  state  information  kept  by  the 
communicating  end processes. Connectionless ,. protocols 
support short-lived interactions;  the  end processes maintain 
little  state,  and usually only during the exchange of a few 
Pups-no more  than a few seconds.  Connection-based proto- 
cols support sustained interactions, generally requiring  sub- 
stantial  state t o  be  maintained  at  both  ends,  and  for longer 
periods-minutes to hours. 

Level 3 adds  structure  to  the  data moved at level 2 ,  as well 
as conventions  for  how processes interact.  For  example,  the 
file transfer  protocol  (FTP) consists of a set  of  conventions 
for talking about files and a format  for sending them  through 
a level 2 byte  stream  protocol  connection. These  are some- 
times referred to as function-oriented  protocols [4]. 

Above level 3 the dividing lines become  blurred,  and 
individual applications evolve with  their  own  natural  de- 

' Levels 4 and above 

Application-defined protocols - _ _ _ - _ - - - - - - - - - - -  
Level 3 

Conventions lor 
data structurmg and 
process mteractlon . . .  

Internet packet format 
Internet addressing 
Internet routing 

Internetwork datagram (Pup) 

Level 0 / I I \ 

Fig. 1. The Pup protocol hierarchy. 

composition  into  additional layers. With respect to layering 
of  protocols,  Pup is similar in  many ways to  the ARPA inter- 
net  and  TCP design [ I ]  and  the Open  Systems Architecture 
[32] . Unlike the  Open Systems Architecture (and others), 
Pup  often has several alternative boxes which all rest on a 
lower level and  offer  different  functionality  and  interfaces 
to  the  next higher level. 

G. Naming,  Addressing, and Routing 

Names,  addresses, and  routes are three  important  and 
distinct  entities  in  an  internet [ 191 : 

The name of a  resource is what one seeks, 
an address indicates where it is, and 
a route is how  to  get there. 

A name is a symbol,  such as  a human-readable  text string, 
identifying  some resource  (process,  device, service, etc.). An 
address is a data  structure whose format is understood  by 
level 1 of  the  internet,  and which is used to specify the  desti- 
nation  of a Pup. A route is the  information  needed  to  forward 
a Pup to its specified  address.  Each of these  represents  a 
tighter  binding of information: names are  mapped  into  ad- 
dresses, and addresses  are mapped  into  routes.  Error recovery 
should successively fall back to find  an  alternate  route,  then  an 
alternate address, and  then  an  alternate name. 

The  mapping  from names to addresses is necessarily applica- 
tion-specific,  since the  syntax  and semantics of names depend 
entirely on  what  types  of  entities are  being  named and  what 
use is being  made  of  them. This is dealt  with  at  the  appropriate 
higher levels of  protocol. 

An address  field, as contained in  a Pup, is one  of  the 
important  elements  of  commonality in the  internet design. An 
end process  sends and receives Pups  through a port identified 
by a  hierarchical  address  consisting of three parts:  a network 
number, a host  number, and a socket  number. This  structure 
reflects the  attitude  that  the  communicating  parties are the 
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end processes, not  the hosts' protocol  handlers;  among  other 
things, this permits alternate  implementations of a higher 
level protocol  to coexist in a single machine. (In contrast, 
the ARPA internet Project [I71 takes  the position that  the 
socket abstraction does not  belong  at  the  internet level,; 
therefore, ARPA Internet addresses contain  only  network and 
host numbers. When a  packet arrives, it is first  demultiplexed 
by the protocol type field in the  internet fieader;  higher level 
protocols such as the TCP, datagram protocol,  and packe;! 
voice protocol  then impose their  own  concept  of socket if 
they  find  it useful, which,  as  a practical matter,  they all do.) 

The  actual process of  routing  a  packet  through  the Pup 
internet uses a  distributed adaptive routing  procedure.  The 
source process specifies only  the destination address and not 
the path from source to  destination.  The  internetwork gate- 
ways route Pups to  the  proper  network,  a  network  then 
routes Pups to  the  proper  host,  and  a  host  routes Pups to  the 
proper  socket. 

This routing process is associated with level 1 in the  proto- 1 col hierarchy,  the level at which packet  formats  and  internet 
addresses are standardized.  The  software  implementing level 
1 is sometimes referred to  as a router. Thus,  the  routing  table 
itself is kept  at level 1; a very simple host  (or gateway)  would 
need only levels 0 and 1 in order to  route Pups.  But the  rout- 
ing table also requires  periodic updating, as gateways  exchange 
and  distribute  their  current  routing  information;  this routing 
table maintenance protocol is found logically at level 2 of  the 
hierarchy. 

Gateways provide internet  routing tables to  individual 
hosts as well as to  each  other. Hosts use this  routing  informa- 
tion  to decide  where to send outgoing  packets destined other 
than  to  a  directly-connected  network. 

H. Flow Control and Congestion  Control 
Although  the  terms are often  confused, flow control and 

congestion control attack  two very different  problems in 
packet-switched communication. Flow control is a mechanism 
used to  regulate the behavior of  a specific source  and  destina- 
tion  pair, so that  the source does  not send data  at  a  rate 
greater than  the receiver can process it. In an  internet archi- 
tecture, flow control remains the responsibility of  the  end- 
to-end  protocols, particularly those  at level 2 supporting 
regular stream  traffic. 

Congestion control is a  network-wide mechanism, used to  
control  the  number  and  distribution  of  packets in the  network 
so as to  prevent system overload. Internet congestion control 
is necessary to  help  protect  the gateways from being burdened 
with excessive traffic. 

The  Pup datagram-based 'internet  model  does  not require 
that  the  internet successfully deliver every packet  that has 
been  accepted.  Therefore,  an  intermediate gateway  which 
suddenly  encounters  a period of severe congestion is free to  
discard packets,  although  the system should  be engineered to  
make  this  an  uncommon  event. 

If a gateway is forced  'to discard an incoming packet  be- 
cause of  congestion,  it  should  attempt t o  return  some  informa- 
to the source: an error  Pup (negative acknowledgment) in- 
dicating  that  a  packet  had  to  be discarded  in midroute. This 

error  Pup is simply returned to  the  source  port, a s  identified 
in the discarded Pup;  this is a good illustration  of the value of 
including the  socket  number as part  of  the  standard  internet 
address. The source  process can use this  information  to  modify 
its transmission  strategies, for  example, to  reduce its  offered 
load (the  rate  .at which it  attempts  to send Pups along the 
congested path) and thereby  help  to relieve the congestion. 

Long-term  congestion  should  eventually be reflected in 
the  routing.  information exchanged among gateways, dis- 
couraging subsequent  traffic  from  attempting  to pass through 
a badly  congested  area. 

I. Reliable Transport 
Defining datagrams to be less than  perfectly reliable is 

realistic since it reflects the characteristics of  many existing 
packet  transport mechanisms.  Probabilistic  transmission is 
basic to  the  theory  of  operation  of  network designs such as 
Ethernet. Even in networks nominally designed to  deliver 
correctly  sequenced,  error-free  packets, occasional  anomalies 
may result from  certain' hardware or  software failures: an 
ARPANET IMP may crash while loading the  only  copy  of  a 
packet, or an X.25 virtual circuit may be reset. 

As mentioned previously, the  Pup  internet always has  the 
option  of discarding packets  to relieve congestion, although 
this is ceitainly  not  an  optimal  strategy. This point is of 
considerable  practical importance when one considers the 
complicatkd  measures  required to  avoid deadlock  conditions 
in the A@ANET, conditions which are a  direct consequence of 
attempting  to provide reliable delivery of every packet in a 
store-and-fonGard network [ 131 , [ 141 . Packet  management 
strategies that  attempt to guarantee  perfect reliability must  be 
designed to  operate  correctly  under worst  case conditions, 
whereas  strategies that have the  option  of discarding packets 
when necessary need operate  correctly only under most 
conditions.  The idea is to sacrifice the  guarantee of reliable 
delivery of individual packets  and to  capitalize on the resulting 
simplicity to  produce higher reliability  and performance 
overall. 

For  some applications, perfectly reliable transport is 
unnecessary and possibly even undesirable, especially if  it is 
obtained  at  the  cost of increased delay. For example,  in reai- 
time speech applications, loss of an occasional packet is of 
little  consequence,  but even short delays (or worse, highly 
variable ones)  can  cause  significant degradation [3] ,  [24]. 

Reliable delivery requires  maintaining state  information  at 
the source and  destination.  The  actions  of  a large class of 
simple servers, such  as giving out  routing tables or converting 
names into addresses,  are idempotent (i.e., may be repeated 
without  incremental effects), and  a client of  that service can 
simply retransmit a request if no response arrives. These 
protocols reduce to  a simple  exchange of  Pups,  with an 
occasional  retransmission  by the  client,  but  with  no  state 
retained by  the server. (The server may  choose to  retain 
answers to  the last few requests to  improve response time, 
but  this  optimization is invisible to  the protocol.) 

On the  other  hand,  many  applications  such  as file  transfer 
and  terminal  connection do  depend  upon fully reliable trans- 
mission. In these cases, it is perfectly reasonable to  build a 
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reliable end-to-end  protocol on top  of  the  internet datagrams. 
Ultimately, reliability (by  some  definition) is always required; 
the issue is where it should be provided. The  Pup  attitude is 
that  it is the responsibility of  the  end processes to define 
and  implement whatever form  of reliable transport is appro- 
priate to the  situation. 

J. Packet Fragmentation 

It is inevitable that some  process will want to send an  inter- 
net  packet  which is too large to be directly encapsulated for 
transmission through  an  intermediate  network  that has a 
smaller maximum  packet size. This problem is usually 
approached  with  one  of  two  forms  of packet fragmentation 

With internetwork  fragmentation, an  internet-wide design 
specifies the  operations  to  be  performed on a  packet  that is 
too large for  a  network  it is about  to  enter.  The  internet 
datagram is fragmented  into  a  number of smaller internet 
datagrams, thereafter to  be  transported  independently  and 
reassembled at  the  ultimate  destination. This is the  approach 
taken,  for  example, in the ARPA internet design. It  requires 
every destination to have procedures  for reassembly. 

Alternatively, one  may use intranetwork fragmentation 
(or network-specific  fragmentation): when  presented  with 
an oversize packet,  the network-specific  driver undertakes to 
fragment  the  packet  in  a  manner specific to  that  network, to 
be reassembled by  the  corresponding driver as the  packet 
exits  the  network  (eg.,  at  the  next gateway).  This approach 
confines  the  fragmentation  and reassembly procedures to  the 
level 0 modules  of  hosts  directly  connected  to  the  network 
in  which  fragmentation is required. 

The  Pup design does  not  attempt  to provide any  form  of 
general internetwork  fragmentation. This complex issue has 
been simply legislated out of existence by requiring that every 
agent in  the  internet  handle  Pups  up  to  a  standard  maximum 
size,  using  network-specific fragmentation  where necessary. 

K.  Broadcast Packets 

1201. 

Broadcast packets  are  a particularly  useful means  for 
locating available resources or  distributing  information to 
many  hosts  at  once.  Some local networks,  such as the  Ethernet, 
directly  support transmission of  broadcast  packets. In store- 
and-forward systems,  however, specialized algorithms  are 
required to propagate  a  packet efficiently to all hosts [SI, 
[ 6 ]  ; no existing store-and-foyard  networks  support  any 
technique besides brute-force transmission of a  packet  to 
every node,  although such a  capability is now being  imple- 
mented  in  the ARPANET. 

Broadcasts may also be expensive since every host  that 
receives one  must  expend  some resources, if only  to discard 
it. In networks  where  a  broadcast involves generating more 
than  one  packet,  there is the  additional  cost  of  creating  and 
transporting  the  extra copies. Because of  their  potentially 
high cost,  internet-wide  broadcasts  are  not  presently  supported 
in  the  Pup design. Nor is it clear that  such  a  capability would 
be desirable,  since it would not  extend well to a very large 
internet.  The  problem  of  locating  distant resources in the 
internet  at reasonable cost is a  topic of current research. 

But Pups can be  broadcast on a single network;  they are 
frequently used to locate nearby  resources, or  to permit  gate- 
ways to announce  their presence on a  network.  Implementa- 
tion  of  the  broadcast procedure is left  to  the network-specific 
driver, using the  best  technique available on that  net. 

L. Privacy  and Security 

It  must  be recognized that  in practical internet environ- 
ments, packets may  be delivered to  the wrong host,  inter- 
cepted  by  another  host,  or generated by  a  host masquerading 
as some other  host. To prevent  this  would  require one to 
interpose some  agent between  hosts  and  the  internet  and to 
specify a secure access control  procedure. This  would sig- 
nificantly increase the  complexity of the  internet,  and  truly 
suspicious users would probably  not  trust  it  anyway. 

Processes are encouraged, however, to ensure the privacy 
and  authenticity  of  their  communication by whatever end-to- 
end encryption  techniques seem appropriate [ 161 . Particularly 
vulnerable components,  such as gateways and servers, should 
take  precautions to  protect  their  own  integrity,  but  ultimate 
responsibility  rests with  the  end processes. The  Pup  internet 
does not  attempt to protect users from  traffic analysis or 
from malicious  replay of previous traffic. 

111. IMPLEMENTATION 

The preceding section  has  outlined  some  of  the  important 
properties  of  the  Pup  architecture  and  the  internetworking 
issues it addresses. What.  follows is a  more  detailed  description 
of  the  present design of  the  four  major layers in  the  system. 

A. Level 0: Packet Transport 

An  individual  network  moves  network-specific  packets 
among  hosts;  the addressing schemes, error characteristics, 
maximum  packet sizes, and  other  attributes  of  networks vary 
greatly. An internetwork  packet  transport mechanism, how- 
ever,  moves Pups  between  hosts.  The level 0 code  which 
transforms  a  network  into  an  internet  packet  transport  mech- 
anism is called a network driver. 

A machine connected to a single network,  therefore,  has 
one level 0 network  driver;  a gateway has  one driver for  each 
directly-connected  network. Only the driver knows  about  the 
peculiarities of  a network's hardware  interface  and low-level 
protocol. 

The  interface  between levels 0 and  1 is very simple. Level 1 
passes down  a  Pup  and  a network-specific host address, and 
the driver encapsulates the  Pup  and  does  its best to deliver it 
to  the specified host. When a  Pup arrives at  a  host,  the driver 
decapsulates it  and passes it  up  to level 1 ; if for  any reason the 
Pup  looks suspicious (as determined  by network-specific 
error checking), the driver discards it. 

Every packet  transport mechanism must  be able to accept 
a maximum-size Pup; if the  actual  network  cannot  directly 
encapsulate a  packet  of  that size for transmission, the driver 
must  include some form  of  intranetwork  fragmentation. 

A  network driver  may also be asked to broadcast  a  packet 
to all other  hosts  on  that  net.  On some networks  this is straight- 
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forward;  on  others  it  may require use of a  reverse-path  for- 
warding algorithm  [6] or brute-force  replication  of  the packet 
to  each  destination. 

The  transport mechanisms do  not have to  be perfectly 
reliable, but  they  should  be successful most of  the time-a 
packet loss rate  of less than 1 percent is usually accept87ble. 
A network  operating  for a short  time in  a  degraded mode  with 
a  higher  loss rate is harmless, so long as the’probability is low 
that Pups will transit  more  than  one  net  that is in this  condition. 
However, if a  network’s inherent  error characteristics  are 
unfavorable, the driver should  take  steps to  improve its per- 
formance, perhaps by  incorporating a  network-specific  low- 
level acknowledgment and retransmission protocol. 

To  date,  there have been five major types  of  networks 
integrated into  the  Pup  architecture, each with a different 
level 0 driver. 

Ethernet: Local Ethernet facilities can very easily serve as 
transport mechanisms for Pups:  a Pup fits in an  Ethernet 
packet  with  only a few additional  words  of  encapsulation 
(see Fig. 2), and  requires no  fragmentation. These  systems 
have good  reliability, high .speed,  and can  send  broadcast 
packets [15],  [21],  [22]. 

MCA: The Multiprocessor Communications Adapter (MCA), 
a parallel TDM bus, serves as a  local network  tying  together 
a limited  number  of Nova computers  [7] . It  has good  reliability 
and  requires no  fragmentation,  but  does  not  support  broadcast 
packets.  Broadcasts  are  accomplished by  the  brute-force 
method, sending  a copy  of a broadcast  packet to  each of  the 
possible hosts. 

ARPANET: To cover longer distances, Pups can be routed 
through  the ARPANET; the  format  for encapsulating  a Pup in 
an  ARPANET message is shown in Fig. 2. (Note  that ARPANET 
Pup  transport is based on host-IMP protocol messages, not  on 
host-host protocol streams.) Because the  standard  maximum 
Pup  length is less than  that of an ARPANET message, the driver 
itself need not fragment  Pups;  however, the ARPANET  does 
perform network-specific fragmentation  internally:  one 
“message” containing a Pup may become  multiple “packets” 
within the ARPANET. Furthermore,  the ARPANET  provides 
increased  reliability through  the use of  its  own  internal  ac- 
knowledgment  and retransmission  protocols. The ARPANET 
does not presently support  broadcast  packets;  rather  than 
sending  packets to all possible ARPANET hosts,  the  network 
driver does  not  implement  broadcasts  at all. 

Leased Line Store-and-Forward Network: More frequently, 
different local networks are interconnected over long distances 
through  the use of a  private store-and-forward  network  con- 
structed using leased telephone  circuits. Similar in spirit to  the 
ARPANET, this  system is used to  connect  internetwork gate- 
ways. Unlike the ARPANET, the  system does not use separate 
packet switches (IMP’S), but instead  switches packets  through 
the  hosts themselves; that is, the  connected  hosts include 
network-specific  drivers that  implement a store-and-forward 
network, This network  has  its  own adaptive routing  procedure, 
independent  of  the  internetwork  routing.  The system is 
fairly reliable and  does  not require low-level acknowledgments. 
At present,  the  network drivers do  not fragment Pups,  but 
they do promote small packets to  the  front  of transmission 
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Fig. 2. Pup encapsulation in various networks. 

queues at  intermediate  points to  help improve performance 
for  interactive  traffic. 

Packet  Radio Network: On an experimental basis, the 
ARPA packet  radio network [ lo ]  has been used to carry 
traffic  among local networks in the San Francisco Bay area. 
The  packet  radio  network was integrated  into  the system by 
building  a suitable level 0 network driver [23].  The system 
provides  good  reliability; but  due  to  the relatively small 
maximum  packet size (232  bytes),  the driver must  perform 
fragmentation  and reassembly (see Fig. 2). Though using a 
broadcast medium,  the  packet radio protocols  do  not  support 
broadcast  packets. In this case, the low-level driver includes  a 
procedure to periodically identify packet  radio hosts  that 
might be  running  Pup  software;  when asked to  broadcast  a 
packet,  the driver sends copies of it  to all such  hosts. 

To  date we have not used any public  packet-switched net- 
works, such as Telenet, as packet  transport mechanisms. 
These systems usually  provide only a  virtual circuit  interface 
(X.25) that requires  a user to pay for  functionality  that  may 
not  be  needed. Compared to  our existing leased line network, 
a  Telenet-based packet  transport mechanism  would not  be 
cost-effective except  under  conditions  of very light traffic 
volume. We would  prefer to  use a service that provided  simple, 
unreliable  datagrams; if there were  an appropriate  interface, 
we could  dismantle  our leased line  store-and-forward network. 

B. Level 1: Internetwork Datagrams 

This is the level at which  packet formats  and  internetwork 
addresses are standardized. It is the lowest level of process-to’- 
process communication. 

1) Pup Format: The  standard  format  for a Pup is shown in 
Fig. 3. The following  paragraphs highlight the  sorts  of  informa- 
tion required at  the  internet datagram level. 
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Fig. 3.  The Pup internet datagram. 

The Pup length is the  number  of  8-bit  bytes  in  the  Pup, 
including internetwork  header  (20  bytes),  contents,  and 
checksum (2 bytes). 

The transport control field is used for  two purposes: as a 
scratch area for use by gateways and as a  way for  source  proc- 
esses to tell  the  internet  how  to  handle  the  packet.  (Other 
networks call this  the “facilities” oi “options” field.) The 
hob  count subfield is incremented  each  time  the  packet is 
forwarded by a gateway. If this ever overflows, the  packet is 
presumed to be traveling in  a loop  and is discarded.  A trace 
bit is specified, for  potential use in  monitoring  the  path  taken 
by a packet. 

The Pup type is assigned by  the source  process for  inter- 
pretation  by  the  destination process and defines the  forniat 
of  the  Pup  contents.  The  256 possible types  are divided into 
two groups. Some  types are registered and have a single 
meaning  across all protocols;  Pups generated or  interpreted 
within  the  internet  (eg.,  by gateways) have types assigned 
in  this  space. Interpretation  of  the remaining unregistered 
types is strictly a matter  of agreement between  the  source 
and  destination processes. 

The Pup identifier is used by  most  protocols to hold a 
sequence number,  Its presence  in the  internetwork  header is 
to permit a  response  generated within  the  internet ( e g ,  error 
or trace  information) to identify  the  Pup  that triggered it in  a 
manner  that  does  not  depend  on knowledge of the higher 
level protocols used by  the  end processes. 

Pups contain two addresses: a source port and a destination 
port. These hierarchical addresses include an  8-bit  network 
number,  an  8-bit  host  number,  and a 32-bit  socket  number. 
Hosts are expected  to  know  their  own  host addresses, to 
discover their  network  numbers  by locating  a  gateway and 
asking for  this  information,  and to assign socket  numbers in 
some systematic way not legislated by  the  internet  protocol. 

There are  some important  conventions associated with  the 
use of  network addresses. A  distinguished value of  the  network 
number field refers to “this  network”  without  identifying  it. 
Such  a  capability is necessary for  host initialization (since 
most hosts have no  permanent local  storage and  consequently 
no a priori knowledge of  the  connected  network  number), 
and to permit communication to  take place within a degenerate 
internet consisting of an  unidentified local network  with no  
gateways. A  distinguished value of  the  destination  host address 
is used to request  a broadcast. Certain values of  the  socket 
number field refer,  by  convention, t o  “well-known  sockets” 
associated. with  standard, widely-used services, as  is done  in 
the ARPANET. 

The data field contains up  to  532  data  bytes.  The selection 
of a standard  maximum  packet  length  must reflect many 
considerations: error rates, buffer  requirements,  and  needs 
of specific applications.  A  reasonable value might range any- 
where from 100 to 4000 bytes.  In  practice,  much  of  the 
itlternet  traffic consists of packets containing individual 
“pages” of  512  bytes  each, reflecting the  quantization  of 
memory  in  most  of  our  computers. But just  carrying  the  data 
is not  enough, since the  packet should accommodate higher 
level protocol overhead and some identifying  information as 
well. Allowing 20  additional  bytes  for  such  purposes, we 
arrive at  532  bytes as the  maximum size of  the  data field (a 
somewhat  unconventional value in that  it is not a  power of 
two). Thus,  there  may  be  between 0 and 532 content  bytes 
in a Pup, so its  total  length will range from  22  to 554 bytes. 
Pups loilger than  554  bytes are not  prohibited  and  may  be 
carried by some networks,  but  no  internetwork gateway is 
required to handle larger ones. 

The  optional software checksum is used for  complete 
end-to-end coverage-it is computed as close to  the  source  of 
the  data  and checked as close to  the  ultimate  destination as 
is possible. This  checksum protects a Pup  when  it is not 
covered by some  network-specific technique,  such as when.it 
is sitting  in a gateway’s memory  or passing through a parallel 
1/0 path. Most networks  employ some sort  of  error  checking 
on  the serial parts  of  the  channel,  but parallel data  paths in 
the  interface  and  the I/O system often  are  not  checked. 

The  checksum algorithm is intended to be straightforward 
to implement in software;  it also allows incremental  updating 
so that  intermediate agents  which modify a packet (gateways 
updating  the  hop  count  field,  for example) can quickly  update 
the  checksum  rather  than  recomputing  it.  The  checksum may 
(but need not)  be checked anywhere along  a Pup’s route  in 
order  to  monitor  the internet’s integrity. 

2) Routing: Accompanying the  packet  format  defined  at 
level 1 are the  protocols  for  internetwork routing.  Each host, 
whether  or  not  it is a gateway,  executes a routing  procedure 
on every outgoing  Pup, as  illustrated  in Fig. 4. This procedure 
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Fig. 4. Internetwork routing. 

decides, as a function  of  the  Pup  destination  port  field,  upon 
which directly-connected  network the  Pup is to  be  transmitted 
(if there is more  than  one choice), and  it yields an immediate 
destination  host which is the address on that  network  of 
either  the  ultimate  destination  or  some gateway believed to 
be closer to  the  destination. Each routing  step  employs  the 
same algorithm based on local routing  information,  and  each 
Pup is routed  independently. 

Routing  information is maintained  in a manner very similar 
to  the ARPANET-style  adaptive procedures [ 121. The initial 
metric used for selecting routes is the "hop count,"  the 
number  of  intermediate  networks  between  source  and  destina- 
tion.  The  protocol  for  updating  the  routing tables involves 
exchanging Pups  with neighboring  gateways and rests logically 
at level 2 of  the  protocol  hierarchy. This is an example of a 
connectionless  protocol which does  not require perfectly 
reliable transmission for  correct  operation. Changes in inter- 
network  topology  may cause different gateways' routing 
tables to  become  momentarily  inconsistent,  but  the  algorithm 
is stable in  that  the  routing  tables rapidly converge to  a con- 
sistent state  and remain that way until  another change in 
topology occurs. 

A host which is not a  gateway  still implements a portion 
of  this level 2 routing  update  protocol:  it initially obtains  an 
internetwork  routing  table  from a  gateway on its  directly- 
connected  network,  and it obtains  updated  information 
periodically. If there is more  than  one gateway  providing 
connections  to  other  networks,  the  host  can merge their 
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routing tables  and thus  be able to  select the  best  route  for 
prckets directed to  any  network. 

C. Level 2: Interprocess  Communication 

Given the raw datagram facility  provided at level 1 ,  we can 
begin to  build data  transport  protocols, tailored to  provide 
appropriate levels of reliability or  functionality  for real appli- 
cations. 

These protocols generally fall into  two categories: those in 
which  a connection is established for a  sustained  exchange of 
packets,  and those  in  which  individual  packets  are  exchanged 
0n.a:onnectionless basis. Connection-style  protocols usually 
&msport  data very reliably, and  transparently. 

EFTP-The Easy  File  Transfer Protocol: This is a very 
simple protocol  for sending files. Each data Pup gives  rise 
to  an  immediate  acknowledgment, and there is at most one 
Pup  outstanding  at a time. This protocol is an  indirect  de- 
scendant  of  the  one  outlined  in [ 151 . Its simplicity makes 
this piece of  communication mechanism easy to  include under 
conditions  of very limited resources. For  example, we have 
implemented a complete  EFTP receiver in 256 words of 
assembly  language, for use in  a network-based  bootstrap  and 
down-line loading  process. 

Rendezvous and Termination  Protocol (RTP): This is a 
general means to  initiate, manage, and  terminate  connections 
in a reliable fashion [28] . In  normal use, an  RTP user initiates 
a connection  by  communicating  with a  well-known socket  at 
some server. That server will spawn  a  new port  to  actually 
provide the service, and  the  RTP will establish contact  with 
this  port.  It  employs a  nonreusable connection  identifier 
to distinguish among  multiple  instantiations  of  the same 
connection  and to  cope  with  delayed  packets  without  making 
assumptions  about  maximum  packet lifetimes. RTP also 
synchronizes  Pup identifiers for use in managing the  con- 
nection. 

Byte Stream  Protocol  (BSP): This is a relatively sophisticated 
protocol  for  supporting reliable,  sequenced streams  of  data. 
It provides for  multiple  outstanding  packets  from  the  source, 
and uses a moving window flow control  procedure. User proc- 
esses can place mark bytes in  the  stream  to  identify logical 
boundaries  and  can send out-of-band interrupt signals. RTP 
and BSP combined  perform a function similar to that  of  the 
TCP, with which they share  a certain degree of  common 
ancestry [ l ] ,  [17]. 

Connectionless protocols  do  not  attempt  to  maintain  any 
long-term state;  they usually do  not  guarantee reliability, but 
leave it  up to the designer to  construct  the  most  suitable 
system.  Their simplicity and ease of  implementation make 
them  extremely useful. 

Echo: A very simple protocol can be used to send test 
Pups to  an echo server process, which will check them  and 
send back a reply.  Such servers are usually embedded  in gate- 
ways and  other server hosts,  to aid in network  monitoring 
and  maintenance.  The server is trivial to implement  on  top  of 
the level 1 facilities. 

Name Lookup: Another server provides the mapping from 
string  names of resources to  internetwork addresses; this is 
accomplished by a single exchange of  packets. This service is 
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often addressed with a broadcast  Pup, since it is used as the 
first step in locating resources. (The name  lookup service 
itself, of course, must be located  at a  well-known  address. 
TO be  useful, it  must be widely available; therefore,  it is 
typically replicated at least once per network.) 

Routing Table Maintenance: The  internetwork  routing 
tables  are maintained  by Pup’s exchanged  periodically among 
internetwork gateways and  broadcast  for use by  other  hosts. 

Page-Level Filt Access: The Woodstock file server (WFS), 
one  of  the family of file servers available on  the  internet, 
provides  page-at-a-time access to a large file store  [29].  The 
protocols used for  this do  not require  establishment of a 
connection,  but merely  exchange  request and response Pups 
that  each  carry  both  commands  and file data. This arrange- 
ment  supports random-access, transaction-oriented  inter- 
actions  of very high performance,  frequently  better  than 
that  obtained using local file storage, because the file server’s 
disks  are much faster than  those  typically  connected  to 
personal computers. 

Gateway Monitoring and Control: There is no single net- 
work  control  center,  but individual  gateways may be queried 
from a monitoring program run  on  any user machine. With 
suitable authentication,  the user may assume remote  control 
of  the gateway so as to  perform  operations  such as changing 
parameters  and loading  new versions of  the  software. 

Other connectionless protocols are used to access a date 
and time server, an authentication server, and a mail check 
server integrated  with an on-line message system.  These 
protocols  are designed to be as cheap as possible to implement 
(i.e., without  connection overhead) so that  such servers may 
be replicated  extensively and accessed routinely  without 
consuming excessive resources. For  example, instances of  some 
of  these servers are  present  in all gateway hosts so as to maxi- 
mize their availability. 

D. Level 3: Application Protocols 

Armed with a  reasonable  collection of  data  transport  proto- 
cols at level 2 ,  one  can begin to evolve specific applications 
at level 3. These  are supported  by various function-oriented 
protocols  [4] . 

Telrzet: Terminal access to  remote  hosts is provided with  an 
internetwork  Telnet  protocol,  which makes use of  the  com- 
bination  of  the rendezvous and  termination  protocol (RTP) 
and  the  byte  stream  protocol (BSP) at level 2. Using the 
notion  of a  virtual terminal,  Telnet  implementations  map 
characteristics of  actual terminals into a network-independent 
representation; a mark  byte in the  stream  and  an  out-of-band 
interrupt,  for  example, are used to signal an “attention.” 
(This approach is a  subset of  the ARPANET  Telnet protocol, 
without  any  of  its  options  such as RCTE [8], [9] .) 

FTP: The  RTP  and BSP are again combined as the  founda- 
tion  for  an  internetwork file transfer  protocol  (FTP),  sup- 
porting  stream-oriented access to files. The underlying byte 
streams provide reliable communication,  and  the major task 
of  FTP is to communicate  commands  and responses and  to 
sort out  different  representations of data in different file 
systems. FTP implementations have been embedded within 

existing time-sharing  systems,  and also constitute  the  core 
of dedicated, high-capacity file servers. 

Printing: Among the  important shared resources in  the 
internet are high-quality  printing servers. Rather  than using 
the fully developed BSP and FTP, the specialized task of 
sending unnamed,  standard  format  document files t o  a printer 
makes use of the  more restricted but  much simpler EFTP. 

CopyDisk: Given high-performance networks and simple 
gateways that can  forward  Pups  among them  efficiently,  it 
is perfectly  reasonable to  copy  entire disk packs through  the 
internet.  The CopyDisk protocol negotiates between  the 
participating  machines to ensure that  the disks are  compatible, 
and  handles error recovery should something  break  down. 

Remote Graphics: Personal  display-oriented computers 
such as the  Alto can be used to provide  a convivial front  end 
for large programming  systems  such as Interlisp. The  Alto 
Display protocol is used for exchanging  descriptions of graph- 
ical structures as well as text;it is similar to  the ARE’A network 
graphics protocol,  but  with  extensions to support raster- 
scanned  graphics [24],  [25],  [30]. 

Additional applications have included cooperative  editing 
of  common  documents  from  multiple machines, audio  com- 
munication  and  packet voice, and  many  others. 

As users create new applications,  these systems tend  to 
develop their  own  natural layering of  function.  Some  may 
require new protocol designs in the existing hierarchy;  the 
Pup  architecture  permits  this degree of flexibility down  to 
the level of  the simple internetwork datagram. As we gain 
experience with new systems, common pieces of design will 
begin to emerge that might be  of  more general use;  they will 
eventually find  their way into  an  appropriate place  in this 
hierarchy  of  communications  protocols. 

IV.  EVOLUTION,  ACTUAL  EXPERIENCE,  AND 
PERFORMANCE 

The  Pup  architecture emerged against a background of 
ARPANET protocols. Many of  its  important ideas-and those 
of  its  key relative, TCP-first appeared  during  the course of a 
series of meeting of  the  International  Network Working 
Group  (IFIP TC-6 WG6.1) during  1973.  Pup  and  TCP share 
a number  of  important principles, most’  notably  that  of 
reliable end-to-end transmission through an internet.  Pup 
subsequently diverged from  TCP as the desire for  implementa- 
tion  within  Xerox required  decoupling it  from TCP’s long  and 
sometimes painful standardization process. 

The  fundamentals  of  the  Pup design crystallized  in 1974 
and have remained  essentially  unchanged since then. During 
this interval many higher level protocols have been developed, 
the  implementations have evolved considerably, and ,the 
internetwork system  has grown to include approximately 
1000  hosts,  attached  to  25  networks of 5 different  types, 
using 20  internetwork gateways. The system is in regular use, 
is quite  stable, and  requires little regular maintenance or 
attention. 

From a functional  point  of view, this  internetwork archi- 
tecture  has been  able to fulfill the  needs  of a very diverse 
community. While the  bulk of all traffic is carried by  means 
of a few standard  protocols,  it has  proven extremely valuable 
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to be  able to define  new protocols-aiming at  different points 
in  the space of  performance,  cost,  and  functionality-and  to 
fit  them  into  the  internet  protocol  hierarchy  at  any  of several 
levels. 

In  terms  of  performance,  the  internetwork gateways  impose 
very little overhead  because they are so simple. In  rew.ns of 
the  internet where multiple  high-bandwidth local networks 
are interconnected  directly  by a single minicomputer-based 
gateway, there is almost no  noticeable difference between 
intranet and internet  performance.  Total  throughput in an 
individual  gateway is high, ranging from 400 to  1000  kbits/s 
(depending on  the particular implementation),  and  the  typical 
delay  experienced by maximum-length  Pups  in the case just 
mentioned is 2 to  5 ms. 

These figures do  not represent limits to what is achievable, 
I even with  the relatively low-powered  machines now being 

used as gateways,  because the gateway software has not  been 
highly tuned  for  this  application  but  rather is based on general- 
purpose  software packages that are  also used in many  other 
hosts. But the  current  performance is adequate because the 
internetwork  traffic  load 1s typically  only a tiny  fraction of 
the  capacity  of  the underlying  local network channels. There 
exists one Alto-based  gateway that  interconnects  three 3-Mbit/s 
Ethernet channels as well as several 9.6-kbit/s leased lines and 
a packet  radio  interface. In general the  bottlenecks are not  the 
gateways but  rather  the slower communication channels; 
discard of  Pups  due  to congestion in gateways is almost 
exclusively due to overload of  the  9.6-kbit/s lines. 

As might be  expected,  most  of  the  traffic in our local 
networks is intranetwork,  that is,  consisting of  Pups whose 
source and  destination are on  the same network.  For  example, 
measurement  of  one  such  network  has  shown a typical volume 
of 2.2  million  packets  per day,  72  percent  of  which  are  intra- 
network packets [22].  Furthermore,  of  the remaining 28 
percent,  more  than half consist of  traffic to  or from  another 
nearby local network  connected via a single gateway. (This 
site is served by  multiple local networks because it is too 
large to  cover with a single one using existing  Ethernet  tech- 
nology,  and also  because it  would  exhaust a single network’s 
address space.) The rest of  the traffic-some 250 000 packets 
per day-is transported  to  or  from  other campuses  in the 
internet,  mostly via the leased line network. 

The higher level protocols,  such as the  byte  stream  and 
FTP,  are generally limited  in performance  by  the processor 
capacity  or  the  secondary storage bandwidth  at  the source 
and  destination.  For  example,  our BCPL implementation  of 
BSP can maintain a data  stream  at  the rate of  about 500 
kbits/s  between  end processes running on Alto minicomputers, 
at which point  both machines are CPU-bound. While it is 
certainly adequate  for  most  applications, we  find this  per- 
formance somewhat disappointing, and we  view it as an 
indication  that BSP-although substantially simpler than, 
say, TCP-is still too  complicated a protocol  for high-per- 
formance  communication. 

The  Pup  architecture allows  individual networks  to  be 
added to  the  internet system on an ad hoc basis, with no need 
for  central  control  or  coordination  except  to assign new 
network  numbers. Users sharing  a  local network  can assemble 

gateways and lease lines to  other  nearby gateways; they  are 
encouraged to  make multiple  intergateway  connections to  
provide alternate  routes  and  thereby reduce the  probability 
of being  isolated. The gateway software  has evolved to  the 
point where if one  starts a copy  of  it  on a host having at 
least  one  connection to  the existing internet,  it will auto- 
matically obtain  the files and other  information  it needs, 
announce  its availability to  the rest of  the  internet,  and begin 
forwardigg  Pups. 

V.  A  RETROSPECTIVE  CRITIQUE, POSSIBLE 
IMPROVEMENTS, AND FUTURE RESEARCH 

While the  architecture works extremely well, there are 
some lessons to  be learned from  this experience. 

A.  Addressing and Routing 
The size of address  fields is a question  of  continuing  contro- 

versy. An 8-bit  network  number  supports  up to  256 nets; 
that is fine for  now,  but eventually it  should  be  made larger. 
To  date,  256  hosts per net has not  been a problem,  though  it 
is likely to become one (for example, when the ARPANET’s 
new 24-bit addressing convention  starts to receive wide use). 
We have avoided  variable-length  address fields in the  Pup 
design because they increase per-packet processing costs. 

If an internetwork system  becomes extremely large, the 
number  of  networks  becomes so great that  it is no longer 
practical for all hosts to  keep  routing  table entries for all 
possible destination  networks. Area routing strategies  may be 
employed to  attack  this problem [12]. Alternatively, one 
may adopt a scheme in which  the local routing  table becomes 
a  cache of  recently used routing  information,  with  routes to 
specific networks  computed  and  maintained as needed.  The 
problem of locating  routes to  distant  parts  of  the  internet is 
an  area of  current research. 

One  could consider revising the  entire  notion of  a hier- 
archical  address space. Under the  current design, it is some- 
times necessary to  change the  host  number  of a  machine 
which is moved from  one  net  to another-an operational 
annoyance.  It is conceivable that every host  could  be given a 
unique address within a flat address space; a more  sophisticated 
mechanism would  then  be needed to  map addresses into 
routes, since there would no longer be a network  number  as 
part  of  the address (except  perhaps as a hint,  to improve 
performance). 

We view with  some disfavor  nonhierarchical  organizations 
in which  internet addresses consist of a concatenation  of 
network-specific addresses [27].  Such arrangements have the 
effect  of fixing the path to  a given destination  and  blur  the 
distinction  between addressing and  routing. 

Socket  numbers, which are now 32 bits  wide,  could easily 
shrink to  16. Originally, 32  bits were assigned to  allow inclusion 
of  a unique subfield to distinguish among multiple instantia- 
tions of  a connection; we now recognize that a better  approach 
is to use a distinct  connection  identifier  at  the  time  of  con- 
nection is established, as mentioned earlier in  the  presentation 
of  the rendezvous and  termination  protocol. 

Using hop  counts as the  metric  for  routing decisions  has 
worked remarkably well. An  obvious drawback, however, is 
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that  it considers  a hop  through a 9.6-kbit/s  phone line  equally 
as good as a hop  through a  3-Mbit/s Ethernet link. As the 
topology  becomes  more richly connected,  this will increasingly 
become a problem. We intend eventually to change the  routing 
algorithms to reflect  some consideration  of  bandwidth  and 
delay, using known  techniques based on research into adaptive 
distributed  routing algorithms in  the ARPANET  and  elsewhere. 

We have ’ given little  consideration  to source routing  or 
other  forms  of advice (e.g., class of service) provided to  the 
internet  routing  procedures  by source processes. In providing 
such facilities, one  must  take great care not to compromise 
the simplicity of  the basic internet  datagrams  or violate the 
layering of  protocols. 
B. Congestion Control and Utilization of Low-Bandwidth 
Channels 

The  current congestion control  techniques  must  be re- 
garded as primitive. Discarding Pups and (where possible) 
notifying  the  source process when congestion occurs  has  the 
virtue of  simplicity,  and we believe it is a good general 
approach;  but  the  present design has several defects.  Insuf- 
ficient  information is returned to  the  source process to enable 
it  to  make  an  informed decision about  how to proceed; 
further,  the discard of  Pups is haphazard,  and no provision is 
made  for fairness.  Congestion occurs  most  often  at  the  entry 
to slow channels,  and  under overload conditions  the perceived 
performance  of  paths  through  those channels is highly variable. 

This is a situation  in  which  it  would be appropriate to 
perform a relatively large amount  of  computation per packet 
in  order to optimize  the  utilization  of  the  communication 
bandwidth.  For  example,  the network-specific  driver for a 
leased telephone circuit could  examine  the  source  and 
destination addresses of  Pups  to  deduce  the existence of 
“conversations,” and use this  information to share  the slow 
channel  more effectively. (The  Arpanet IMP’S deduce  con- 
versations in precisely this  way,  though  for  purposes having 
to  do primarily with flow control  rather  than  congestion, 
control.) 

In the same  vein, techniques  such as code compression, 
elimination  and regeneration of  identical  internet headers  in 
successive packets, etc., may  be  implemented in the  network- 
specific drivers for  the slow channels, with minimal impact 
on the  end-to-end  protocols.  Such  techniques  are used widely 
in  virtual circuit designs, and  their applicability is sometimes 
cited as an advantage of virtual circuits over datagrams [ 181 . 
But  there is no reason they  cannot  be  employed  in a data- 
gram-based internet, so long as the necessary additional 
computation is done  in  the right  place. 

The  important  point is that  optimizing  the  utilization  of 
the  communication  channel is appropriate  only when the 
channel  bandwidth is scarce compared to  the  computation 
required to perform  such  optimization. Where the processing 
capacity  of  the  end machines is itself the scarce  resource, as 
we have observed in the local network  environment,  such 
techniques are  highly inappropriate. 

C Pup Types in the  Internet Header 
The  distinction  between  regstered  and unregistered Pup 

types  at  the level of  internet  datagrams  has  not  turned  out to 

be particularly  useful, except in a few cases: Pups of  type 
‘‘error’’ and “trace” may  be generated from within the  inter- 
net without knowledge of the higher level protocols being 
employed by  the  end processes. 

D. Perfomzance of Reliable End-to-End Protocols 
Present implementations  of  the  byte  stream  protocol 

include  fairly  sophisticated  adaptive  flow control heuristics 
that also try  to  take  note  of  any  packets  lost  due  to  internet 
congestion.  This approach has worked reasonably well in 
enabling  a  source to  adapt to the  conditions  encountered 
along the  path  to a  particular destination. However, use of 
networks  with highly variable behavior, such as the wide- 
ranging delays  experienced when using the  packet radio 
network, can confound these  heuristics.  Under unusual 
circumstances, the flow control  procedures have been observed 
to move suddenly  into very unfavorable operating regions. 
The  difficulty involving the  radionet  has since been solved, 
but  the general design of simple,  effective  flow control  and 
congestion control  procedures is just a very hard  problem, 
particularly procedures  intended to adapt  dynamically to and 
make good use of  different  networks whose performance  may 
vary by nearly three  orders  of  magnitude. 

The  step  from raw Pups to a byte  stream may be too large. 
The  byte  stream  protocol  does  too  much  for  many applica- 
tions;  it is complex  enough  that few systems have ever imple- 
mented  the  entire specification. As discussed previously, 
performance  of  the BSP, when  compared to some other 
systems, is reasonable; but it does  not give a user the full 
capacity  of  the  underlying  networks.  In a high-bandwidth 
local network  environment, paying attention to per-packet 
processing overhead is of  extreme  importance. 

We have considered,  but have not  yet  implemented, a 
proposal  for  an  intermediate level of functionality: a reliable 
packet  protocol (RPP) that  takes care of connection  estab- 
lishment  and processes flow control  information,  but  tries 
not  to  dictate  how a  client  program  should do  buffer manage- 
ment.  It ensures reliable delivery (i.e., each  packet  once  and 
only  once),  but  may deliver packets to the client out  of 
order, and does  not deliberately attempt to hide  packet 
boundaries.  A BSP connection, where that is what is desired, 
may then  be reimplemented  as  a veneer on  top of an RPP 
connection. 

E. Access to  the Internet 
The present Pup  architecture can be  characterized as 

“open”: users and  applications are permitted, and indeed 
encouraged,  to  take advantage of  the  internet  for  routine 
communication. Access to  the  internet is uncontrolled; as in 
many  network designs, responsibility for access control rests 
with  the  host  systems,  and whatever accounting is performed 
is for  the services rendered by individual servers. In our research 
and  development  environment  this is ideal, but obviously  in 
.some other  environments  it might not  be. 

F. Conclusions 
The success of  Pup as an internetwork  architecture  depends 

on a number of important principles. Key among these is the 
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1 layering of  function in such  a way that  applications may make 
use of  the  internet  at  any of several levels, with  the  ability 
to  choose  among alternative protocols  at  each level or to  
develop new ones where  necessary. Simple internetwork 
datagrams constitute  the level at which  media independence 
(through  encapsulation) is achieved; they are also the  unit  of 
direct process-to-process communication. This is crucial both 
to flexibility and to performance,  particularly in an  internet- 
work environment  dominated  by relatively lightweight hosts 
and high-bandwidth local networks. 

During 1976, the  Pup  internet reached a level of  functions 
ality  roughly  equivalent to  that provided by  the  standard 
ARPANET protocols-byte streams,  Telnet,  and FTP. From  that 
time  to  the present  we have concentrated  on building servers 
and  constructing  applications to access them  through  the 
internet. We are just beginning to  explore  that area of  inter- 
process communication  traditionally considered the  domain 
of multiprocessors. Some  interesting  opportunities arise from 
the availability of 100 or so minicomputers  interconnected 
by  a 3-Mbit/s  broadcast channel,  and  by  ten or so similar 
clusters, all interconnected  by  a store-and-forward network. 
We believe that  the  Pup  architecture serves as a good founda- 
tion for such investigations. 
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Formal Methods  in  Communication  Protocol  Design 
GREGOR V. BOCHMANN AND CARL  A.  SUNSHINE 

(Invited Paper). 

Abstrucr-While early protocol  design efforts had to rely  largely on As they develop, Protocob  must be described for  many 
seat-of-the-pants  methods, a  variety ofmore rigorous  techniques  have  been purposes. Early descriptions provide a  reference for  coopera- 
developed  recently.  This PapersurveYstheformalmethodsbeingaPPliedto tion  among designers of  different parts of a protocol  system. 
the  problems  of protocol specification, verification,  and  implementation. The design must be checked  for logical correctness. Then  the 
its users  and  the internal operations  of the entities that  compose  the  layer protocol must be imp1emented, and if the protocol is in wide 
must  bedefined. Verification thenconsistsofademonstration that  the  layer use, many  different  implementations may have to be checked 
will meet its service specification  and  that  each of the  components  is for ComDliance with a standard. Although  narrative  &scrip- 

In  the  specification  area, both the service  that  a  protocol  layer  provides to 

- 
correctly implemented. Formal methods for accomplishing these tasks are tions and informal walk-throu&s are invaluable elements of 
discussed, including state transition models, program  verification, 
symbolic  execution,  and design rules. this process, painful  experience has shown that by them- 

selves they are inadequate. 

A 
I. INTRODUCTION 

S evidenced  by the earlier  papers of this  issue, increasingly 
numerous  and  complex  communication  protocols are 

being employed in distributed systems and  computer  networks 
of various types.  The  informal  techniques used to  design these 
protocols have been largely successful, but have also yielded 
a disturbing  number  of  errors or unexpected  and undesirable 
behavior  in most  protocols. This  paper  describes  some of  the 
more  formal  techniques which  are  being  developed to facilitate 
design of correct  protocols. 
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Council  of  Canada  and  the  United  States  Advanced  Research  Projects 
Aeencv. 

In the~following  sections, we shall discuss the use of  formal 
techniques in each of the major design steps of specification, 
verification, and  implementation.  Section I1 clarifies the 
meaning of specification  in the  context of a layered  protocol 
architecture, identifies  what  a protocol specification should 
include,  and describes the major approaches  to  protocol 
specification. Section 111 defines the meaning of verification, 
discusses what can be verified, and describes the main verifi- 
cation  methods.  Section IV provides pointers to some impor- 
tant case histories of  the use of these techniques.  For detailed 
examples, we refer to  the  subsequent papers of this issue 
which generally provide additional  support  for  the  points 
which we have had  to  treat briefly in this survey. A complete 
bibliography may be found in [ 181 , and  complementary 
surveys  in [44], [8], [33],  [43]. 
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