
612

Absrracr-Pup is the name of an internet packet format (PARC Universal
Puckesr), a hierarchy of protocols, and a style of internetwork com-
munication. The fundamental abstraction is an end-to-end media-in.
dependent internetwork datagram. Higher levels of functionality are
achieved by end-to-end protocols that are strictly a matter of agreement
among the communicating end processes.

This report explores important design issues, sets forth principles that
have guided the Pup design, discusses the present implementation in
moderate detail, and summarizes experience with an operational inter-
network. This work serves as the basis for a functioning internetwork
system that provides service to about IO00 computers, on 25 networks of 5
different types, using 20 internetwork gateways.

R
I. INTRODUCTION

ESEARCH in network interconnection techniques has
been motivated by the desire to permit communication

among diverse, geographically distributed computing resources
and users interconnected by a wide variety of network tech-
nologies.

It is the purpose of an internetwork architecture t o provide
a uniform framework for communication within a heterog-
eneous computing, communication, and applications environ-
ment. The work described in this paper represents one inter-
network architecture, known as Pup, in widespread regular
use within Xerox. The name referred originally to the abstract
design of a standard internetwork datagram (the PARC Uni-
versal Packet), but has expanded in usage to include the whole
hierarchy of internetwork protocols as well as a general
style for internetwork communication.

To assist in understanding the design of the Pup protocols,
it is useful to characterize briefly the environment in which
this architecture has evolved.

The computational environment includes a large number of
“Alto” minicomputers [111 , [3 11, and other personal com-
puters capable of high-quality interaction with human users.
Supporting these are various specialized server systems that
are shared among many users and provide access to expensive
peripherals such as large disks, magnetic tapes, and high-
quality printers. Additionally, there are several general-purpose
time sharing systems providing customary services for terminal
users.

The communications environment includes several different
individual network designs. The dominant one is the “Ethernet”

Manuscript received May 29, 1979; revised November 2. 1979.
D. R. Boggs, J . F. Shoch, and E. A: Taft are with the Palo Alto

Research Center, Xerox Corporation, Palo Alto, CA 94304.
R. M . Metcalfe was with the Palo Alto Research Center, Xerox,

Corporation, Palo Alto, CA 94304. He is now with the Computer Sys-
tems Laboratory, Stanford University, Stanford, CA 94305 and 3Com
Corporation, 3000 Sand Hill Road #1, Menlo Park, CA 94025.

communications network, a local-area broadcast channel with
a bandwidth of 3 Mbits/s [151 . Long-haul communication facili-
ties include the ARPANET, the ARPA packet radio network,
and a collection of leased lines implementing an ARPANET-
style store-and-forward network. These facilities have distinct
native protocols and exhibit as much as three orders of magni-
tude difference in bandwidth.

The applications to be supported include a wide range of
activities: terminal access to the time sharing services, elec-
tronic mail, file transfer, access to specialized data bases,
document transmission, software distribution, and packet
voice, to name just a few. We would also like t o facilitate
more ambitious explorations into the area generally referred
to as “distributed computing.”

This paper is organized as follows. In Section I1 we discuss
some of the design issues which have emerged in the formula-
tion of the Pup architecture, while Section 111 provides more
detail on the protocols themselves. Section IV describes
briefly some of our operational experience with the present
implementation. The final section presents a retrospective
critique of the work, highlighting some areas which merit
further attention.

11. DESIGN PRINCIPLES AND ISSUES

Constructing an architecture for internetwork protocols
is, first and foremost, an exercise in design: identifying indi-
vidual issues, exploring alternative solutions, and then knitting
these pieces together to form the final result. Along the way,
many compromises are made as one trades off among dif-
ferent criteria: functionality, efficiency, generality, ease of
implementation, extensibility, and others.

In this section we enumerate some of ‘the major design
issues confronted in the development of a network archi-
tecture and describe, in general terms, the choices made in the
development of Pup. (Several of these and other issues are
enumerated in [2] and [171). From this discussion the broad
outlines of Pup will emerge; the section that follows provides
more specific detail about the actual design.

A . The Basic Model: Individual Networks Connected with
Gateways

As with most internetwork models, one envisions a col-
lection of heterogeneous networks, connected with a set of
internetwork gateways to form a loosely coupled system
known generally as an internet [l] , [2] , [26] . An internet
should provide the ability for any two hosts to communicate,
so long as their own local networks are interconnected.

0090-6778/80/0400-0612$00.75 0 1980 IEEE

An important feature of the Pup internet model is that the
hosts are the internet. Most hosts connect directly to a local
network, rather than connecting to a network switch .such
as an IMP, so subtracting all the hosts would leave little more
than wire. Gateways are simply hosts in the internet that
are willing to forward packets among constituent networks.
Thus, most of the properties of the internet are primarily
artifacts of host software. The architecture must scale grace-
fully, and in particular must allow for the existence of a
degenerate internet consisting of a single local network and no
gateways.

B. Simplicity

One of the guiding principles in designing Pup has been
the desire for simplicity. Pup is a framework for computer
communications resealch, and simplicity is one of the best
ways to minimize restrictions and maximize flexibility for
experimentation. Attempting deliberately to eliminate un-
needed complexity helps to keep the design open-ended.
This in turn makes it easier to incorporate the existing diverse
collection of networks and hosts and to accommodate new
alternatives as the technology matures. Keeping the design
simple helps to avoid building in technological anachronisms.

A second motivation for this principle is the desire to foster
efficient implementations of the protocols in the host
machines, which are typically quite small. Software overhead
must be kept low in order to sustain high-bandwidth local
communication, which constitutes the bulk of the traffic;
yet the same software must support the full generality of
internetwork communication.

C Datagrams versus Virtual Circuits

There are two major approaches to providing an interface
to packet-switched communications: accepting individual
datagrums or providing a higher level of service in the form of
a virtual circuit. The two interfaces are not unrelated, since a
virtual circuit interface is usually implemented within a
network by the use of datagrams. In some sense, datagrams
provide access to a network at a lower level, closer to its
underlying capabilities. Datagrams are particularly useful in
many kinds of transaction-oriented protocols. Furthermore,
the task of the internet is significantly simplified if it need
only transport independent, individually-addressed data-
grams, without having to maintain the state required to
support virtual circuits. If the internet provides a datagram
interface, virtual circuit interfaces can be provided by adding
appropriate mechanisms at the end points.

Therefore, the basic function provided by the Pup internet
is the transport of datagrams; this simple abstraction is the
foundation of Pup. The internet does not guarantee reliable
delivery of datagrams (called “Pups”); it simply gives its
“best efforts” to deliver each one, and allows the end proc-
esses to build protocols which provide reliable communica-
tions of the quality they themselves desire [14] . The internet
has no notion of a connection. It transports each Pup inde-
pendently, and leaves construction of a connection-if that is

the appropriate interprocess communication model-to the
end processes. Keeping fragile end-to-end state out of the
packet transport system contributes to reliability and simplic-
ity.

D. Individual Networks as Packet Transport Mechanisms

Individual networks within the internet can be viewed
simply as packet transport mechanisms. As links in the inter-
ne&@ey give their best efforts to deliver internet packets,
but. they do not guarantee reliable delivery. Packets may be
lost, duplicated, delivered out of order, after a great delay,
and with hidden damage. A network can have any combina-
tion of bandwidth, delay, error characteristics, topology, and
economics; the routing algorithm should attempt to take
these characteristics into consideration.

Encapsulation is an invertible, network-dependent trans-
formation performed on a Pup to permit it to be carried
transparently through a network: an abstract Pup is presented
at one end, encapsulated for transmission through the net,
and decapsulated at the other end, yielding the original Pup.
For some networks, encapsulation consists merely of adding
headers and trailers. More elaborate transformations may be
necessary to pass a Pup through other networks (for example,
using low-level acknowledgments or error correction because
the network has a high loss rate). Encapsulation and decapsula-
tion take place in a network-specific driver in which is vested
all knowledge of the encapsulation technique. The internet
specification has nothing to say about encapsulation except
that it be invisible.

E. Internetwork Gateways

We distinguish two kinds of gateways: media translators
and protocol translators. Media gateways are hosts with
interfaces to two or more packet transport mechanisms
among which they forward internet datagrams, using the
appropriate encapsulation for each. These are the heart of any
datagram-based internet. Protocol gateways are hosts which
speak two or more functionally similar but incompatible
higher-level protocols used to transport information within
networks, mapping one higher level abstraction into the other.
(It is clear that a media gateway is just doing protocol trans-
lation at the link level, but the distinction is useful given the
importance of internet datagrams in this architecture.)

In the Pup internet, media gateways are by definition
simple, since all that is required of the translation process is
that it preserve the semantics of internetwork datagrams.
Protocol gateways are usually more difficult, even when the
protocols are similar, since such higher level protocols provide
richer and more specialized semantics and it is not always
clear how one should map the functionality of one protocol
into another. Development of higher level protocol trans-
lators between different network and internet architectures,
e.g., between the ARPANET file transfer protocol (FTP) and the
Pup-based FTP, is a thorny task, but one that must be con-
fronted when interconnecting systems that do not share the
necessary lower level primitives.

614 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980

F. A Layered Hierarchy of Protocols

Layering of protocols is one of the most effective means
for structuring a network design: each level uses the functions
of the lower level, and adds some functionality of its own for
possible use by the next level. Provided that suitable inter-
faces are maintained, an implementation at one level can be
modified without impacting the overall structure; this helps
to simplify both the design and the implementation.

Pup protocols are organized in a hierarchy, as shown in
Fig. 1; the details of this figure will be presented in Section
111. A level represents an abstraction, to be realized in dif-
ferent ways in different hosts. There are four levels of interest,
but there may be more than one protocol at any level except
level 1, representing a different use of the underlying layers.
(The numbering of layers-and, indeed, the choice of points
at which to divide the layers-is arbitrary; there is no relation-
ship between Pup's numbering and that of other designs such
as the Open Systems Architecture.)

The level 0 abstraction is a packet transport mechanism.
There are many realizations: an Ethernet channel, the
ARPANET, the ARPA packet radio network, our store-and-
forward leased line network, and others. Level 0 protocols in-
clude specifications such as hardware interfaces, electrical and
timing characteristics, bit encoding, line control procedures,
and network-dependent packet formatting conventions. As-
sociated with each packet transport mechanism is a convection
for encapsulating Pups.

The level 1 abstraction is an internet datagram. The realiza-
tion of this abst.raction consists of the format of a Pup, a
hierarchical addressing scheme, and an internetwork routing
algorithm. There is only one box at level 1: the internet data-
gram protocol; it is this layer of commonality which unifies
all of the different networks that might be used at level 0,
and which makes available a uniform interface to all of the
layers above. It is the purpose of this level to provide media
independence while maintaining the common properties of
the underlying packet networks.

The level 2 abstraction is an interprocess communication
mechanism: a way to move bits without saying much about
their form or content. Various level 2 protocols provide many
combinations of reliability, throughput, delay, and complexity.
These protocols can be divided into two classes according to
the amount and lifetime of state information kept by the
communicating end processes. Connectionless ,. protocols
support short-lived interactions; the end processes maintain
little state, and usually only during the exchange of a few
Pups-no more than a few seconds. Connection-based proto-
cols support sustained interactions, generally requiring sub-
stantial state t o be maintained at both ends, and for longer
periods-minutes to hours.

Level 3 adds structure to the data moved at level 2 , as well
as conventions for how processes interact. For example, the
file transfer protocol (FTP) consists of a set of conventions
for talking about files and a format for sending them through
a level 2 byte stream protocol connection. These are some-
times referred to as function-oriented protocols [4].

Above level 3 the dividing lines become blurred, and
individual applications evolve with their own natural de-

' Levels 4 and above

Application-defined protocols - _ _ _ - _ - - - - - - - - - - -
Level 3

Conventions lor
data structurmg and
process mteractlon . . .

Internet packet format
Internet addressing
Internet routing

Internetwork datagram (Pup)

Level 0 / I I \

Fig. 1. The Pup protocol hierarchy.

composition into additional layers. With respect to layering
of protocols, Pup is similar in many ways to the ARPA inter-
net and TCP design [I] and the Open Systems Architecture
[32] . Unlike the Open Systems Architecture (and others),
Pup often has several alternative boxes which all rest on a
lower level and offer different functionality and interfaces
to the next higher level.

G. Naming, Addressing, and Routing

Names, addresses, and routes are three important and
distinct entities in an internet [191 :

The name of a resource is what one seeks,
an address indicates where it is, and
a route is how to get there.

A name is a symbol, such as a human-readable text string,
identifying some resource (process, device, service, etc.). An
address is a data structure whose format is understood by
level 1 of the internet, and which is used to specify the desti-
nation of a Pup. A route is the information needed to forward
a Pup to its specified address. Each of these represents a
tighter binding of information: names are mapped into ad-
dresses, and addresses are mapped into routes. Error recovery
should successively fall back to find an alternate route, then an
alternate address, and then an alternate name.

The mapping from names to addresses is necessarily applica-
tion-specific, since the syntax and semantics of names depend
entirely on what types of entities are being named and what
use is being made of them. This is dealt with at the appropriate
higher levels of protocol.

An address field, as contained in a Pup, is one of the
important elements of commonality in the internet design. An
end process sends and receives Pups through a port identified
by a hierarchical address consisting of three parts: a network
number, a host number, and a socket number. This structure
reflects the attitude that the communicating parties are the

BOGGS e t al . : Pup: INTERNETWORK ARCHITECTURE 615

end processes, not the hosts' protocol handlers; among other
things, this permits alternate implementations of a higher
level protocol to coexist in a single machine. (In contrast,
the ARPA internet Project [I71 takes the position that the
socket abstraction does not belong at the internet level,;
therefore, ARPA Internet addresses contain only network and
host numbers. When a packet arrives, it is first demultiplexed
by the protocol type field in the internet fieader; higher level
protocols such as the TCP, datagram protocol, and packe;!
voice protocol then impose their own concept of socket if
they find it useful, which, as a practical matter, they all do.)

The actual process of routing a packet through the Pup
internet uses a distributed adaptive routing procedure. The
source process specifies only the destination address and not
the path from source to destination. The internetwork gate-
ways route Pups to the proper network, a network then
routes Pups to the proper host, and a host routes Pups to the
proper socket.

This routing process is associated with level 1 in the proto- 1 col hierarchy, the level at which packet formats and internet
addresses are standardized. The software implementing level
1 is sometimes referred to as a router. Thus, the routing table
itself is kept at level 1; a very simple host (or gateway) would
need only levels 0 and 1 in order to route Pups. But the rout-
ing table also requires periodic updating, as gateways exchange
and distribute their current routing information; this routing
table maintenance protocol is found logically at level 2 of the
hierarchy.

Gateways provide internet routing tables to individual
hosts as well as to each other. Hosts use this routing informa-
tion to decide where to send outgoing packets destined other
than to a directly-connected network.

H. Flow Control and Congestion Control
Although the terms are often confused, flow control and

congestion control attack two very different problems in
packet-switched communication. Flow control is a mechanism
used to regulate the behavior of a specific source and destina-
tion pair, so that the source does not send data at a rate
greater than the receiver can process it. In an internet archi-
tecture, flow control remains the responsibility of the end-
to-end protocols, particularly those at level 2 supporting
regular stream traffic.

Congestion control is a network-wide mechanism, used to
control the number and distribution of packets in the network
so as to prevent system overload. Internet congestion control
is necessary to help protect the gateways from being burdened
with excessive traffic.

The Pup datagram-based 'internet model does not require
that the internet successfully deliver every packet that has
been accepted. Therefore, an intermediate gateway which
suddenly encounters a period of severe congestion is free to
discard packets, although the system should be engineered to
make this an uncommon event.

If a gateway is forced 'to discard an incoming packet be-
cause of congestion, it should attempt t o return some informa-
to the source: an error Pup (negative acknowledgment) in-
dicating that a packet had to be discarded in midroute. This

error Pup is simply returned to the source port, a s identified
in the discarded Pup; this is a good illustration of the value of
including the socket number as part of the standard internet
address. The source process can use this information to modify
its transmission strategies, for example, to reduce its offered
load (the rate .at which it attempts to send Pups along the
congested path) and thereby help to relieve the congestion.

Long-term congestion should eventually be reflected in
the routing. information exchanged among gateways, dis-
couraging subsequent traffic from attempting to pass through
a badly congested area.

I. Reliable Transport
Defining datagrams to be less than perfectly reliable is

realistic since it reflects the characteristics of many existing
packet transport mechanisms. Probabilistic transmission is
basic to the theory of operation of network designs such as
Ethernet. Even in networks nominally designed to deliver
correctly sequenced, error-free packets, occasional anomalies
may result from certain' hardware or software failures: an
ARPANET IMP may crash while loading the only copy of a
packet, or an X.25 virtual circuit may be reset.

As mentioned previously, the Pup internet always has the
option of discarding packets to relieve congestion, although
this is ceitainly not an optimal strategy. This point is of
considerable practical importance when one considers the
complicatkd measures required to avoid deadlock conditions
in the A@ANET, conditions which are a direct consequence of
attempting to provide reliable delivery of every packet in a
store-and-fonGard network [131 , [141 . Packet management
strategies that attempt to guarantee perfect reliability must be
designed to operate correctly under worst case conditions,
whereas strategies that have the option of discarding packets
when necessary need operate correctly only under most
conditions. The idea is to sacrifice the guarantee of reliable
delivery of individual packets and to capitalize on the resulting
simplicity to produce higher reliability and performance
overall.

For some applications, perfectly reliable transport is
unnecessary and possibly even undesirable, especially if it is
obtained at the cost of increased delay. For example, in reai-
time speech applications, loss of an occasional packet is of
little consequence, but even short delays (or worse, highly
variable ones) can cause significant degradation [3] , [24].

Reliable delivery requires maintaining state information at
the source and destination. The actions of a large class of
simple servers, such as giving out routing tables or converting
names into addresses, are idempotent (i.e., may be repeated
without incremental effects), and a client of that service can
simply retransmit a request if no response arrives. These
protocols reduce to a simple exchange of Pups, with an
occasional retransmission by the client, but with no state
retained by the server. (The server may choose to retain
answers to the last few requests to improve response time,
but this optimization is invisible to the protocol.)

On the other hand, many applications such as file transfer
and terminal connection do depend upon fully reliable trans-
mission. In these cases, it is perfectly reasonable to build a

6 16 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4 , APRIL 1980

reliable end-to-end protocol on top of the internet datagrams.
Ultimately, reliability (by some definition) is always required;
the issue is where it should be provided. The Pup attitude is
that it is the responsibility of the end processes to define
and implement whatever form of reliable transport is appro-
priate to the situation.

J. Packet Fragmentation

It is inevitable that some process will want to send an inter-
net packet which is too large to be directly encapsulated for
transmission through an intermediate network that has a
smaller maximum packet size. This problem is usually
approached with one of two forms of packet fragmentation

With internetwork fragmentation, an internet-wide design
specifies the operations to be performed on a packet that is
too large for a network it is about to enter. The internet
datagram is fragmented into a number of smaller internet
datagrams, thereafter to be transported independently and
reassembled at the ultimate destination. This is the approach
taken, for example, in the ARPA internet design. It requires
every destination to have procedures for reassembly.

Alternatively, one may use intranetwork fragmentation
(or network-specific fragmentation): when presented with
an oversize packet, the network-specific driver undertakes to
fragment the packet in a manner specific to that network, to
be reassembled by the corresponding driver as the packet
exits the network (eg., at the next gateway). This approach
confines the fragmentation and reassembly procedures to the
level 0 modules of hosts directly connected to the network
in which fragmentation is required.

The Pup design does not attempt to provide any form of
general internetwork fragmentation. This complex issue has
been simply legislated out of existence by requiring that every
agent in the internet handle Pups up to a standard maximum
size, using network-specific fragmentation where necessary.

K. Broadcast Packets

1201.

Broadcast packets are a particularly useful means for
locating available resources or distributing information to
many hosts at once. Some local networks, such as the Ethernet,
directly support transmission of broadcast packets. In store-
and-forward systems, however, specialized algorithms are
required to propagate a packet efficiently to all hosts [SI,
[6] ; no existing store-and-foyard networks support any
technique besides brute-force transmission of a packet to
every node, although such a capability is now being imple-
mented in the ARPANET.

Broadcasts may also be expensive since every host that
receives one must expend some resources, if only to discard
it. In networks where a broadcast involves generating more
than one packet, there is the additional cost of creating and
transporting the extra copies. Because of their potentially
high cost, internet-wide broadcasts are not presently supported
in the Pup design. Nor is it clear that such a capability would
be desirable, since it would not extend well to a very large
internet. The problem of locating distant resources in the
internet at reasonable cost is a topic of current research.

But Pups can be broadcast on a single network; they are
frequently used to locate nearby resources, or to permit gate-
ways to announce their presence on a network. Implementa-
tion of the broadcast procedure is left to the network-specific
driver, using the best technique available on that net.

L. Privacy and Security

It must be recognized that in practical internet environ-
ments, packets may be delivered to the wrong host, inter-
cepted by another host, or generated by a host masquerading
as some other host. To prevent this would require one to
interpose some agent between hosts and the internet and to
specify a secure access control procedure. This would sig-
nificantly increase the complexity of the internet, and truly
suspicious users would probably not trust it anyway.

Processes are encouraged, however, to ensure the privacy
and authenticity of their communication by whatever end-to-
end encryption techniques seem appropriate [161 . Particularly
vulnerable components, such as gateways and servers, should
take precautions to protect their own integrity, but ultimate
responsibility rests with the end processes. The Pup internet
does not attempt to protect users from traffic analysis or
from malicious replay of previous traffic.

111. IMPLEMENTATION

The preceding section has outlined some of the important
properties of the Pup architecture and the internetworking
issues it addresses. What. follows is a more detailed description
of the present design of the four major layers in the system.

A. Level 0: Packet Transport

An individual network moves network-specific packets
among hosts; the addressing schemes, error characteristics,
maximum packet sizes, and other attributes of networks vary
greatly. An internetwork packet transport mechanism, how-
ever, moves Pups between hosts. The level 0 code which
transforms a network into an internet packet transport mech-
anism is called a network driver.

A machine connected to a single network, therefore, has
one level 0 network driver; a gateway has one driver for each
directly-connected network. Only the driver knows about the
peculiarities of a network's hardware interface and low-level
protocol.

The interface between levels 0 and 1 is very simple. Level 1
passes down a Pup and a network-specific host address, and
the driver encapsulates the Pup and does its best to deliver it
to the specified host. When a Pup arrives at a host, the driver
decapsulates it and passes it up to level 1 ; if for any reason the
Pup looks suspicious (as determined by network-specific
error checking), the driver discards it.

Every packet transport mechanism must be able to accept
a maximum-size Pup; if the actual network cannot directly
encapsulate a packet of that size for transmission, the driver
must include some form of intranetwork fragmentation.

A network driver may also be asked to broadcast a packet
to all other hosts on that net. On some networks this is straight-

BOGGS e t al. : Pup: INTERNETWORK ARCHITECTURE

forward; on others it may require use of a reverse-path for-
warding algorithm [6] or brute-force replication of the packet
to each destination.

The transport mechanisms do not have to be perfectly
reliable, but they should be successful most of the time-a
packet loss rate of less than 1 percent is usually accept87ble.
A network operating for a short time in a degraded mode with
a higher loss rate is harmless, so long as the’probability is low
that Pups will transit more than one net that is in this condition.
However, if a network’s inherent error characteristics are
unfavorable, the driver should take steps to improve its per-
formance, perhaps by incorporating a network-specific low-
level acknowledgment and retransmission protocol.

To date, there have been five major types of networks
integrated into the Pup architecture, each with a different
level 0 driver.

Ethernet: Local Ethernet facilities can very easily serve as
transport mechanisms for Pups: a Pup fits in an Ethernet
packet with only a few additional words of encapsulation
(see Fig. 2), and requires no fragmentation. These systems
have good reliability, high .speed, and can send broadcast
packets [15], [21], [22].

MCA: The Multiprocessor Communications Adapter (MCA),
a parallel TDM bus, serves as a local network tying together
a limited number of Nova computers [7] . It has good reliability
and requires no fragmentation, but does not support broadcast
packets. Broadcasts are accomplished by the brute-force
method, sending a copy of a broadcast packet to each of the
possible hosts.

ARPANET: To cover longer distances, Pups can be routed
through the ARPANET; the format for encapsulating a Pup in
an ARPANET message is shown in Fig. 2. (Note that ARPANET
Pup transport is based on host-IMP protocol messages, not on
host-host protocol streams.) Because the standard maximum
Pup length is less than that of an ARPANET message, the driver
itself need not fragment Pups; however, the ARPANET does
perform network-specific fragmentation internally: one
“message” containing a Pup may become multiple “packets”
within the ARPANET. Furthermore, the ARPANET provides
increased reliability through the use of its own internal ac-
knowledgment and retransmission protocols. The ARPANET
does not presently support broadcast packets; rather than
sending packets to all possible ARPANET hosts, the network
driver does not implement broadcasts at all.

Leased Line Store-and-Forward Network: More frequently,
different local networks are interconnected over long distances
through the use of a private store-and-forward network con-
structed using leased telephone circuits. Similar in spirit to the
ARPANET, this system is used to connect internetwork gate-
ways. Unlike the ARPANET, the system does not use separate
packet switches (IMP’S), but instead switches packets through
the hosts themselves; that is, the connected hosts include
network-specific drivers that implement a store-and-forward
network, This network has its own adaptive routing procedure,
independent of the internetwork routing. The system is
fairly reliable and does not require low-level acknowledgments.
At present, the network drivers do not fragment Pups, but
they do promote small packets to the front of transmission

4 bytes

20 bytes

532 bytes

2 bytes

Ethernet Encapsulation

: lt

Arpanet Encapsulation

Pup lnterrlel Header
20 bytes

Pup Internet Data
532 bytes

Pup InternetChecksum

i

Pup Internet Datagral
(maximum lenglh)

617

-1

Packet Radio Encapsulation

Fig. 2. Pup encapsulation in various networks.

queues at intermediate points to help improve performance
for interactive traffic.

Packet Radio Network: On an experimental basis, the
ARPA packet radio network [lo] has been used to carry
traffic among local networks in the San Francisco Bay area.
The packet radio network was integrated into the system by
building a suitable level 0 network driver [23]. The system
provides good reliability; but due to the relatively small
maximum packet size (232 bytes), the driver must perform
fragmentation and reassembly (see Fig. 2). Though using a
broadcast medium, the packet radio protocols do not support
broadcast packets. In this case, the low-level driver includes a
procedure to periodically identify packet radio hosts that
might be running Pup software; when asked to broadcast a
packet, the driver sends copies of it to all such hosts.

To date we have not used any public packet-switched net-
works, such as Telenet, as packet transport mechanisms.
These systems usually provide only a virtual circuit interface
(X.25) that requires a user to pay for functionality that may
not be needed. Compared to our existing leased line network,
a Telenet-based packet transport mechanism would not be
cost-effective except under conditions of very light traffic
volume. We would prefer to use a service that provided simple,
unreliable datagrams; if there were an appropriate interface,
we could dismantle our leased line store-and-forward network.

B. Level 1: Internetwork Datagrams

This is the level at which packet formats and internetwork
addresses are standardized. It is the lowest level of process-to’-
process communication.

1) Pup Format: The standard format for a Pup is shown in
Fig. 3. The following paragraphs highlight the sorts of informa-
tion required at the internet datagram level.

618 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. C O M - ~ ~ , NO. 4, APRIL 1980

Pup Iieadet
(20 bytes)

I Pup Length

Transport Control PUP Type

- Pup ldenttfier

Destination Network Destination Host

- Destination Socket

Source Network Source Host

Source Socket

(0 to 532 bytes)
Data

I Pup Software Checksum

Destination
Port

Source
Port

- Two Bytes _____+

Fig. 3. The Pup internet datagram.

The Pup length is the number of 8-bit bytes in the Pup,
including internetwork header (20 bytes), contents, and
checksum (2 bytes).

The transport control field is used for two purposes: as a
scratch area for use by gateways and as a way for source proc-
esses to tell the internet how to handle the packet. (Other
networks call this the “facilities” oi “options” field.) The
hob count subfield is incremented each time the packet is
forwarded by a gateway. If this ever overflows, the packet is
presumed to be traveling in a loop and is discarded. A trace
bit is specified, for potential use in monitoring the path taken
by a packet.

The Pup type is assigned by the source process for inter-
pretation by the destination process and defines the forniat
of the Pup contents. The 256 possible types are divided into
two groups. Some types are registered and have a single
meaning across all protocols; Pups generated or interpreted
within the internet (eg., by gateways) have types assigned
in this space. Interpretation of the remaining unregistered
types is strictly a matter of agreement between the source
and destination processes.

The Pup identifier is used by most protocols to hold a
sequence number, Its presence in the internetwork header is
to permit a response generated within the internet (e g , error
or trace information) to identify the Pup that triggered it in a
manner that does not depend on knowledge of the higher
level protocols used by the end processes.

Pups contain two addresses: a source port and a destination
port. These hierarchical addresses include an 8-bit network
number, an 8-bit host number, and a 32-bit socket number.
Hosts are expected to know their own host addresses, to
discover their network numbers by locating a gateway and
asking for this information, and to assign socket numbers in
some systematic way not legislated by the internet protocol.

There are some important conventions associated with the
use of network addresses. A distinguished value of the network
number field refers to “this network” without identifying it.
Such a capability is necessary for host initialization (since
most hosts have no permanent local storage and consequently
no a priori knowledge of the connected network number),
and to permit communication to take place within a degenerate
internet consisting of an unidentified local network with no
gateways. A distinguished value of the destination host address
is used to request a broadcast. Certain values of the socket
number field refer, by convention, t o “well-known sockets”
associated. with standard, widely-used services, as is done in
the ARPANET.

The data field contains up to 532 data bytes. The selection
of a standard maximum packet length must reflect many
considerations: error rates, buffer requirements, and needs
of specific applications. A reasonable value might range any-
where from 100 to 4000 bytes. In practice, much of the
itlternet traffic consists of packets containing individual
“pages” of 512 bytes each, reflecting the quantization of
memory in most of our computers. But just carrying the data
is not enough, since the packet should accommodate higher
level protocol overhead and some identifying information as
well. Allowing 20 additional bytes for such purposes, we
arrive at 532 bytes as the maximum size of the data field (a
somewhat unconventional value in that it is not a power of
two). Thus, there may be between 0 and 532 content bytes
in a Pup, so its total length will range from 22 to 554 bytes.
Pups loilger than 554 bytes are not prohibited and may be
carried by some networks, but no internetwork gateway is
required to handle larger ones.

The optional software checksum is used for complete
end-to-end coverage-it is computed as close to the source of
the data and checked as close to the ultimate destination as
is possible. This checksum protects a Pup when it is not
covered by some network-specific technique, such as when.it
is sitting in a gateway’s memory or passing through a parallel
1/0 path. Most networks employ some sort of error checking
on the serial parts of the channel, but parallel data paths in
the interface and the I/O system often are not checked.

The checksum algorithm is intended to be straightforward
to implement in software; it also allows incremental updating
so that intermediate agents which modify a packet (gateways
updating the hop count field, for example) can quickly update
the checksum rather than recomputing it. The checksum may
(but need not) be checked anywhere along a Pup’s route in
order to monitor the internet’s integrity.

2) Routing: Accompanying the packet format defined at
level 1 are the protocols for internetwork routing. Each host,
whether or not it is a gateway, executes a routing procedure
on every outgoing Pup, as illustrated in Fig. 4. This procedure

BOGGS e t al. : Pup: INTERNETWORK ARCHITECTURE

Source host

m
I SourceproCess I I Ipllpd':""""""I

I Routing I I

Encapsulation

I Network interlace I Host address s
I on network A
I I I

Decapsulation

host I d

1 -f=dL Network interface Host address B h I

Destination
I

I Netw or i n t e r lace I On network
Host addre% d

Decapsulation
Pupdestination
network = B
host = d
Sockel = p 1-- ____

Routing

I h l Destination Process

I

Fig. 4. Internetwork routing.

decides, as a function of the Pup destination port field, upon
which directly-connected network the Pup is to be transmitted
(if there is more than one choice), and it yields an immediate
destination host which is the address on that network of
either the ultimate destination or some gateway believed to
be closer to the destination. Each routing step employs the
same algorithm based on local routing information, and each
Pup is routed independently.

Routing information is maintained in a manner very similar
to the ARPANET-style adaptive procedures [121. The initial
metric used for selecting routes is the "hop count," the
number of intermediate networks between source and destina-
tion. The protocol for updating the routing tables involves
exchanging Pups with neighboring gateways and rests logically
at level 2 of the protocol hierarchy. This is an example of a
connectionless protocol which does not require perfectly
reliable transmission for correct operation. Changes in inter-
network topology may cause different gateways' routing
tables to become momentarily inconsistent, but the algorithm
is stable in that the routing tables rapidly converge to a con-
sistent state and remain that way until another change in
topology occurs.

A host which is not a gateway still implements a portion
of this level 2 routing update protocol: it initially obtains an
internetwork routing table from a gateway on its directly-
connected network, and it obtains updated information
periodically. If there is more than one gateway providing
connections to other networks, the host can merge their

619

routing tables and thus be able to select the best route for
prckets directed to any network.

C. Level 2: Interprocess Communication

Given the raw datagram facility provided at level 1 , we can
begin to build data transport protocols, tailored to provide
appropriate levels of reliability or functionality for real appli-
cations.

These protocols generally fall into two categories: those in
which a connection is established for a sustained exchange of
packets, and those in which individual packets are exchanged
0n.a:onnectionless basis. Connection-style protocols usually
&msport data very reliably, and transparently.

EFTP-The Easy File Transfer Protocol: This is a very
simple protocol for sending files. Each data Pup gives rise
to an immediate acknowledgment, and there is at most one
Pup outstanding at a time. This protocol is an indirect de-
scendant of the one outlined in [151 . Its simplicity makes
this piece of communication mechanism easy to include under
conditions of very limited resources. For example, we have
implemented a complete EFTP receiver in 256 words of
assembly language, for use in a network-based bootstrap and
down-line loading process.

Rendezvous and Termination Protocol (RTP): This is a
general means to initiate, manage, and terminate connections
in a reliable fashion [28] . In normal use, an RTP user initiates
a connection by communicating with a well-known socket at
some server. That server will spawn a new port to actually
provide the service, and the RTP will establish contact with
this port. It employs a nonreusable connection identifier
to distinguish among multiple instantiations of the same
connection and to cope with delayed packets without making
assumptions about maximum packet lifetimes. RTP also
synchronizes Pup identifiers for use in managing the con-
nection.

Byte Stream Protocol (BSP): This is a relatively sophisticated
protocol for supporting reliable, sequenced streams of data.
It provides for multiple outstanding packets from the source,
and uses a moving window flow control procedure. User proc-
esses can place mark bytes in the stream to identify logical
boundaries and can send out-of-band interrupt signals. RTP
and BSP combined perform a function similar to that of the
TCP, with which they share a certain degree of common
ancestry [l] , [17].

Connectionless protocols do not attempt to maintain any
long-term state; they usually do not guarantee reliability, but
leave it up to the designer to construct the most suitable
system. Their simplicity and ease of implementation make
them extremely useful.

Echo: A very simple protocol can be used to send test
Pups to an echo server process, which will check them and
send back a reply. Such servers are usually embedded in gate-
ways and other server hosts, to aid in network monitoring
and maintenance. The server is trivial to implement on top of
the level 1 facilities.

Name Lookup: Another server provides the mapping from
string names of resources to internetwork addresses; this is
accomplished by a single exchange of packets. This service is

620 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4 , APRIL 1980

often addressed with a broadcast Pup, since it is used as the
first step in locating resources. (The name lookup service
itself, of course, must be located at a well-known address.
TO be useful, it must be widely available; therefore, it is
typically replicated at least once per network.)

Routing Table Maintenance: The internetwork routing
tables are maintained by Pup’s exchanged periodically among
internetwork gateways and broadcast for use by other hosts.

Page-Level Filt Access: The Woodstock file server (WFS),
one of the family of file servers available on the internet,
provides page-at-a-time access to a large file store [29]. The
protocols used for this do not require establishment of a
connection, but merely exchange request and response Pups
that each carry both commands and file data. This arrange-
ment supports random-access, transaction-oriented inter-
actions of very high performance, frequently better than
that obtained using local file storage, because the file server’s
disks are much faster than those typically connected to
personal computers.

Gateway Monitoring and Control: There is no single net-
work control center, but individual gateways may be queried
from a monitoring program run on any user machine. With
suitable authentication, the user may assume remote control
of the gateway so as to perform operations such as changing
parameters and loading new versions of the software.

Other connectionless protocols are used to access a date
and time server, an authentication server, and a mail check
server integrated with an on-line message system. These
protocols are designed to be as cheap as possible to implement
(i.e., without connection overhead) so that such servers may
be replicated extensively and accessed routinely without
consuming excessive resources. For example, instances of some
of these servers are present in all gateway hosts so as to maxi-
mize their availability.

D. Level 3: Application Protocols

Armed with a reasonable collection of data transport proto-
cols at level 2 , one can begin to evolve specific applications
at level 3. These are supported by various function-oriented
protocols [4] .

Telrzet: Terminal access to remote hosts is provided with an
internetwork Telnet protocol, which makes use of the com-
bination of the rendezvous and termination protocol (RTP)
and the byte stream protocol (BSP) at level 2. Using the
notion of a virtual terminal, Telnet implementations map
characteristics of actual terminals into a network-independent
representation; a mark byte in the stream and an out-of-band
interrupt, for example, are used to signal an “attention.”
(This approach is a subset of the ARPANET Telnet protocol,
without any of its options such as RCTE [8], [9] .)

FTP: The RTP and BSP are again combined as the founda-
tion for an internetwork file transfer protocol (FTP), sup-
porting stream-oriented access to files. The underlying byte
streams provide reliable communication, and the major task
of FTP is to communicate commands and responses and to
sort out different representations of data in different file
systems. FTP implementations have been embedded within

existing time-sharing systems, and also constitute the core
of dedicated, high-capacity file servers.

Printing: Among the important shared resources in the
internet are high-quality printing servers. Rather than using
the fully developed BSP and FTP, the specialized task of
sending unnamed, standard format document files t o a printer
makes use of the more restricted but much simpler EFTP.

CopyDisk: Given high-performance networks and simple
gateways that can forward Pups among them efficiently, it
is perfectly reasonable to copy entire disk packs through the
internet. The CopyDisk protocol negotiates between the
participating machines to ensure that the disks are compatible,
and handles error recovery should something break down.

Remote Graphics: Personal display-oriented computers
such as the Alto can be used to provide a convivial front end
for large programming systems such as Interlisp. The Alto
Display protocol is used for exchanging descriptions of graph-
ical structures as well as text;it is similar to the ARE’A network
graphics protocol, but with extensions to support raster-
scanned graphics [24], [25], [30].

Additional applications have included cooperative editing
of common documents from multiple machines, audio com-
munication and packet voice, and many others.

As users create new applications, these systems tend to
develop their own natural layering of function. Some may
require new protocol designs in the existing hierarchy; the
Pup architecture permits this degree of flexibility down to
the level of the simple internetwork datagram. As we gain
experience with new systems, common pieces of design will
begin to emerge that might be of more general use; they will
eventually find their way into an appropriate place in this
hierarchy of communications protocols.

IV. EVOLUTION, ACTUAL EXPERIENCE, AND
PERFORMANCE

The Pup architecture emerged against a background of
ARPANET protocols. Many of its important ideas-and those
of its key relative, TCP-first appeared during the course of a
series of meeting of the International Network Working
Group (IFIP TC-6 WG6.1) during 1973. Pup and TCP share
a number of important principles, most’ notably that of
reliable end-to-end transmission through an internet. Pup
subsequently diverged from TCP as the desire for implementa-
tion within Xerox required decoupling it from TCP’s long and
sometimes painful standardization process.

The fundamentals of the Pup design crystallized in 1974
and have remained essentially unchanged since then. During
this interval many higher level protocols have been developed,
the implementations have evolved considerably, and ,the
internetwork system has grown to include approximately
1000 hosts, attached to 25 networks of 5 different types,
using 20 internetwork gateways. The system is in regular use,
is quite stable, and requires little regular maintenance or
attention.

From a functional point of view, this internetwork archi-
tecture has been able to fulfill the needs of a very diverse
community. While the bulk of all traffic is carried by means
of a few standard protocols, it has proven extremely valuable

BOGGS e t al .: Pup: INTERNETWORK ARCHITECTURE 62 1

to be able to define new protocols-aiming at different points
in the space of performance, cost, and functionality-and to
fit them into the internet protocol hierarchy at any of several
levels.

In terms of performance, the internetwork gateways impose
very little overhead because they are so simple. In rew.ns of
the internet where multiple high-bandwidth local networks
are interconnected directly by a single minicomputer-based
gateway, there is almost no noticeable difference between
intranet and internet performance. Total throughput in an
individual gateway is high, ranging from 400 to 1000 kbits/s
(depending on the particular implementation), and the typical
delay experienced by maximum-length Pups in the case just
mentioned is 2 to 5 ms.

These figures do not represent limits to what is achievable,
I even with the relatively low-powered machines now being

used as gateways, because the gateway software has not been
highly tuned for this application but rather is based on general-
purpose software packages that are also used in many other
hosts. But the current performance is adequate because the
internetwork traffic load 1s typically only a tiny fraction of
the capacity of the underlying local network channels. There
exists one Alto-based gateway that interconnects three 3-Mbit/s
Ethernet channels as well as several 9.6-kbit/s leased lines and
a packet radio interface. In general the bottlenecks are not the
gateways but rather the slower communication channels;
discard of Pups due to congestion in gateways is almost
exclusively due to overload of the 9.6-kbit/s lines.

As might be expected, most of the traffic in our local
networks is intranetwork, that is, consisting of Pups whose
source and destination are on the same network. For example,
measurement of one such network has shown a typical volume
of 2.2 million packets per day, 72 percent of which are intra-
network packets [22]. Furthermore, of the remaining 28
percent, more than half consist of traffic to or from another
nearby local network connected via a single gateway. (This
site is served by multiple local networks because it is too
large to cover with a single one using existing Ethernet tech-
nology, and also because it would exhaust a single network’s
address space.) The rest of the traffic-some 250 000 packets
per day-is transported to or from other campuses in the
internet, mostly via the leased line network.

The higher level protocols, such as the byte stream and
FTP, are generally limited in performance by the processor
capacity or the secondary storage bandwidth at the source
and destination. For example, our BCPL implementation of
BSP can maintain a data stream at the rate of about 500
kbits/s between end processes running on Alto minicomputers,
at which point both machines are CPU-bound. While it is
certainly adequate for most applications, we find this per-
formance somewhat disappointing, and we view it as an
indication that BSP-although substantially simpler than,
say, TCP-is still too complicated a protocol for high-per-
formance communication.

The Pup architecture allows individual networks to be
added to the internet system on an ad hoc basis, with no need
for central control or coordination except to assign new
network numbers. Users sharing a local network can assemble

gateways and lease lines to other nearby gateways; they are
encouraged to make multiple intergateway connections to
provide alternate routes and thereby reduce the probability
of being isolated. The gateway software has evolved to the
point where if one starts a copy of it on a host having at
least one connection to the existing internet, it will auto-
matically obtain the files and other information it needs,
announce its availability to the rest of the internet, and begin
forwardigg Pups.

V. A RETROSPECTIVE CRITIQUE, POSSIBLE
IMPROVEMENTS, AND FUTURE RESEARCH

While the architecture works extremely well, there are
some lessons to be learned from this experience.

A. Addressing and Routing
The size of address fields is a question of continuing contro-

versy. An 8-bit network number supports up to 256 nets;
that is fine for now, but eventually it should be made larger.
To date, 256 hosts per net has not been a problem, though it
is likely to become one (for example, when the ARPANET’s
new 24-bit addressing convention starts to receive wide use).
We have avoided variable-length address fields in the Pup
design because they increase per-packet processing costs.

If an internetwork system becomes extremely large, the
number of networks becomes so great that it is no longer
practical for all hosts to keep routing table entries for all
possible destination networks. Area routing strategies may be
employed to attack this problem [12]. Alternatively, one
may adopt a scheme in which the local routing table becomes
a cache of recently used routing information, with routes to
specific networks computed and maintained as needed. The
problem of locating routes to distant parts of the internet is
an area of current research.

One could consider revising the entire notion of a hier-
archical address space. Under the current design, it is some-
times necessary to change the host number of a machine
which is moved from one net to another-an operational
annoyance. It is conceivable that every host could be given a
unique address within a flat address space; a more sophisticated
mechanism would then be needed to map addresses into
routes, since there would no longer be a network number as
part of the address (except perhaps as a hint, to improve
performance).

We view with some disfavor nonhierarchical organizations
in which internet addresses consist of a concatenation of
network-specific addresses [27]. Such arrangements have the
effect of fixing the path to a given destination and blur the
distinction between addressing and routing.

Socket numbers, which are now 32 bits wide, could easily
shrink to 16. Originally, 32 bits were assigned to allow inclusion
of a unique subfield to distinguish among multiple instantia-
tions of a connection; we now recognize that a better approach
is to use a distinct connection identifier at the time of con-
nection is established, as mentioned earlier in the presentation
of the rendezvous and termination protocol.

Using hop counts as the metric for routing decisions has
worked remarkably well. An obvious drawback, however, is

622 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980

that it considers a hop through a 9.6-kbit/s phone line equally
as good as a hop through a 3-Mbit/s Ethernet link. As the
topology becomes more richly connected, this will increasingly
become a problem. We intend eventually to change the routing
algorithms to reflect some consideration of bandwidth and
delay, using known techniques based on research into adaptive
distributed routing algorithms in the ARPANET and elsewhere.

We have ’ given little consideration to source routing or
other forms of advice (e.g., class of service) provided to the
internet routing procedures by source processes. In providing
such facilities, one must take great care not to compromise
the simplicity of the basic internet datagrams or violate the
layering of protocols.
B. Congestion Control and Utilization of Low-Bandwidth
Channels

The current congestion control techniques must be re-
garded as primitive. Discarding Pups and (where possible)
notifying the source process when congestion occurs has the
virtue of simplicity, and we believe it is a good general
approach; but the present design has several defects. Insuf-
ficient information is returned to the source process to enable
it to make an informed decision about how to proceed;
further, the discard of Pups is haphazard, and no provision is
made for fairness. Congestion occurs most often at the entry
to slow channels, and under overload conditions the perceived
performance of paths through those channels is highly variable.

This is a situation in which it would be appropriate to
perform a relatively large amount of computation per packet
in order to optimize the utilization of the communication
bandwidth. For example, the network-specific driver for a
leased telephone circuit could examine the source and
destination addresses of Pups to deduce the existence of
“conversations,” and use this information to share the slow
channel more effectively. (The Arpanet IMP’S deduce con-
versations in precisely this way, though for purposes having
to do primarily with flow control rather than congestion,
control.)

In the same vein, techniques such as code compression,
elimination and regeneration of identical internet headers in
successive packets, etc., may be implemented in the network-
specific drivers for the slow channels, with minimal impact
on the end-to-end protocols. Such techniques are used widely
in virtual circuit designs, and their applicability is sometimes
cited as an advantage of virtual circuits over datagrams [181 .
But there is no reason they cannot be employed in a data-
gram-based internet, so long as the necessary additional
computation is done in the right place.

The important point is that optimizing the utilization of
the communication channel is appropriate only when the
channel bandwidth is scarce compared to the computation
required to perform such optimization. Where the processing
capacity of the end machines is itself the scarce resource, as
we have observed in the local network environment, such
techniques are highly inappropriate.

C Pup Types in the Internet Header
The distinction between regstered and unregistered Pup

types at the level of internet datagrams has not turned out to

be particularly useful, except in a few cases: Pups of type
‘‘error’’ and “trace” may be generated from within the inter-
net without knowledge of the higher level protocols being
employed by the end processes.

D. Perfomzance of Reliable End-to-End Protocols
Present implementations of the byte stream protocol

include fairly sophisticated adaptive flow control heuristics
that also try to take note of any packets lost due to internet
congestion. This approach has worked reasonably well in
enabling a source to adapt to the conditions encountered
along the path to a particular destination. However, use of
networks with highly variable behavior, such as the wide-
ranging delays experienced when using the packet radio
network, can confound these heuristics. Under unusual
circumstances, the flow control procedures have been observed
to move suddenly into very unfavorable operating regions.
The difficulty involving the radionet has since been solved,
but the general design of simple, effective flow control and
congestion control procedures is just a very hard problem,
particularly procedures intended to adapt dynamically to and
make good use of different networks whose performance may
vary by nearly three orders of magnitude.

The step from raw Pups to a byte stream may be too large.
The byte stream protocol does too much for many applica-
tions; it is complex enough that few systems have ever imple-
mented the entire specification. As discussed previously,
performance of the BSP, when compared to some other
systems, is reasonable; but it does not give a user the full
capacity of the underlying networks. In a high-bandwidth
local network environment, paying attention to per-packet
processing overhead is of extreme importance.

We have considered, but have not yet implemented, a
proposal for an intermediate level of functionality: a reliable
packet protocol (RPP) that takes care of connection estab-
lishment and processes flow control information, but tries
not to dictate how a client program should do buffer manage-
ment. It ensures reliable delivery (i.e., each packet once and
only once), but may deliver packets to the client out of
order, and does not deliberately attempt to hide packet
boundaries. A BSP connection, where that is what is desired,
may then be reimplemented as a veneer on top of an RPP
connection.

E. Access to the Internet
The present Pup architecture can be characterized as

“open”: users and applications are permitted, and indeed
encouraged, to take advantage of the internet for routine
communication. Access to the internet is uncontrolled; as in
many network designs, responsibility for access control rests
with the host systems, and whatever accounting is performed
is for the services rendered by individual servers. In our research
and development environment this is ideal, but obviously in
.some other environments it might not be.

F. Conclusions
The success of Pup as an internetwork architecture depends

on a number of important principles. Key among these is the

BOGGS et al.: Pup: INTERNETWORK ARCHITECTURE 623

1 layering of function in such a way that applications may make
use of the internet at any of several levels, with the ability
to choose among alternative protocols at each level or to
develop new ones where necessary. Simple internetwork
datagrams constitute the level at which media independence
(through encapsulation) is achieved; they are also the unit of
direct process-to-process communication. This is crucial both
to flexibility and to performance, particularly in an internet-
work environment dominated by relatively lightweight hosts
and high-bandwidth local networks.

During 1976, the Pup internet reached a level of functions
ality roughly equivalent to that provided by the standard
ARPANET protocols-byte streams, Telnet, and FTP. From that
time to the present we have concentrated on building servers
and constructing applications to access them through the
internet. We are just beginning to explore that area of inter-
process communication traditionally considered the domain
of multiprocessors. Some interesting opportunities arise from
the availability of 100 or so minicomputers interconnected
by a 3-Mbit/s broadcast channel, and by ten or so similar
clusters, all interconnected by a store-and-forward network.
We believe that the Pup architecture serves as a good founda-
tion for such investigations.

ACKNOWLEDGMENT

A large systems effort such as the development of Pup
reflects the efforts of many different participants. Other
people who have implemented parts of Pup and contributed
ideas include W. Crowther, Y. Dalal; H. Murray, B. Sproull,
L. Stewart, J. White, and G. Williams.

We also wish to thank D. Cohen, D. Crocker, B. Kahn,
J. Postel, and C. Sunshine for their careful reading of an
earlier draft of this paper.

REFERENCES
[I] V. G. Cerf and R. E. Kahn, “A protocol for packet network inter-

communication,” IEEE Trans. Commun.. vol. COM-22, pp. 637448,
May 1974.

[I31 J. M. McQuillan and D. C. Walden, “The ARPANET design
decisions.” Comput. Networks, vol. I, Aug. 1977.

[141 R. M. Metcalfe, “Packet communication,” Ph.D. dissertation, Harvard
Univ.. Cambridge, MA, M.I.T. Project MacTR- 114. Dec. 1973.

[151 R. Metcalfe and D. Boggs. “Ethernet: Distributed packet switching for
local computer networks,” Comm. Ass. Comput. Mach., vol. 19, July
1976.

[161 R. Needham and M. Schroeder, “Using encryption for authentication in
large networks of computers,” Comm. Ass. Comput. Mach., vol. 2 I,
Dec. 1978.

1 17) I . Postel. “Internetwork protocols.” this issue. pp, W 1 1 .
[181 L. G. Roberts. “The evolution of packet switching.” Proc. IEEE. vol.

[I91 J . F. Shwh, “Internetwork naming, addressing, and routing.” in ProC.

[20] -“Packet fragmentation in internetwork protocols,” Comput. Net-

66. pp. 1307-13 13. Nov. 1978.

17th IEEE Comput. Soc. Int. Conf. (CompCon), Sept. 1978.

works. vol. 3, Feb. 1979.

dissertation, Stanford Univ., Stanford, CA, University Microfilms. Aug.
1979.

[X] J. F. Shoch and J. A. Hupp, “Performance of an Ethernet local

Boston, MA, May 1979.
network-A preliminary report.” in Proc. Local Area Network Symp.,

[23] J. F. Shoch and L. Stewart. ”Interconnecting local networks via the
packet radio network,” in P roc. 6th Data Comm. Symp., Pacific Grove.
CA, Nov. 1979.

I241 .R. F. Sproull and D. Cohen, “High-level protocols.” Proc. IEEE. vol.

[25] R. Sproull and E. Thomas, “A network graphics protocol,” Comput.
Graphics, vol. 8. Fall 1974.

[26] C. Sunshine, “Interconnection of computer networks.” Comput.
Networks, vol. I . Jan. 1977.

[27] c. Sunshine, “Source routing in computer networks.” ACM Comput.
Comrnun. Rev.. vol. 7. Jan. 1977.

[28] C. Sunshine and Y. Dalal. “Connection management in transport
protocols,” Cornput. Nefworks, vol. 2 , Dec. 1978.

1291 D. Swinehait. G. McDaniel. and D. Boggs, “WFS: A simple shared file
system for a distributed environment.” Oper. Svst. Rev.. vol. 13. Nov.
1979.

130) W. Teitelman, “A display-oriented programmer’s assistant,” in Proc.
5th Int. Joint Conf. on Artificial Intelligence, Cambridge, MA, Aug.
1977; also available as Xerox PARC Tech. Rep. CSL-77-3.

I3 I1 C. P. Thacker, E. M. McCreight, B. W. Lampson, R. F. Sproull, and D.
R. Boggs, “Alto: A personal computer,” ComputerStructures: Readings
and Examples. Siewiorek, Bell, andNewel1, Eds., 1980.

(321 H. Zimmermann. “The I S 0 reference model,” this issue. pp. 425-432.

[? I] ~ “Design and performance of local computer networks.” Ph.D.

66, pp. 1371-1386, NOV. 1978.

*

[61

171

V. -G. Cerf and P. T. Kirstein, “Issues in packet-network intercon-
nection,” Proc. IEEE, vol. 66, pp. 1386-1408, Nov. 1978.
D. Cohen, “Issues in transnet packetized voice communication,” pre-
sented at the 5th Data Commun. Symp.. Snowbird. UT. Sept. 1977.
S . D. Crocker. J. F. Heafner. R. M. Metcalfe. and J. B. Postel.
“Function-oriented protocols for the ARPA computer network,” in
AFIPS Conf. Proc: Spring Joint Comput. Conf., vol. 40, 1972.
Y. K. Dalal. “Broadcast protocols in packet switched computer
networks.” Stanford Univ. Digital Syst. Lab.. Tech. Rep. 128.
Stanford, CA. Apr. 1977.
Y. K. Dalal and R. M. Metcalfe. “Reverse path forwarding ofbroadcast
packets.” Commun. Ass. Comput. Mach.. vol. 2 I Dec. 1978.
Data General Cow.. “Type 4038 multiprocessor communications ~.
adapter,’’ Tech. Ref. 0 14-obboo2-0 I , Sept. i97 I.

[X] J . Davidson. W. Hathaway. J. Postel, N. Mimno, R. Thomas, and D.
Walden, “The Arpanet Telnet protocol: Its purpose, principles, imple-
mentation, and impact on host operating system design,’’ in Proc. 5th
Data Commun. Symp.. Snowbird, UT, Sept. 1977.

[9] E. Feinler and J. Postel. Eds.. “Telnet protocol specification,“ in
Arpanet Protocol Handbook, Jan. 1978.

[I O] R. E. Kahn. S. A. Gronemeyer. J. Burchfiel. and R. C. Kunzelman.
“Advances in packet radio technology,” Proc. IEEE. vol. 66. pp.

[I I] A. C. Kay, “Microelectronics and the personal computer,” Sci. Amer.,
vol. 237, Sept. 1977.

[12) J. M . McQuillan “Adaptive routing algorithms for distributed computer
networks,” Ph.D. dissertation, Harvard Univ., Cambridge, MA, 2831,
Bolt Beranek and Newman, Rep. 2831, May 1974.

1468-1496. NOV. 1978.

David R. B e g s (S’69-”75) received the B.S.E.E.
degree from Princeton University, Princeton, NJ.
and the M.S.E.E. degree from Stanford University.
Stanford, CA.

He is presently a Ph.D. candidate at Stanford
University. Since 1973 he has been a member of the
research staff at the Xerox Palo Alto Research
Center. Palo Alto, CA. working in the area of
computercommunication anddistributedcomputing.

Mr. Boggs is a member of the Association for
Computing Machinery and holds amateur and
commercial radio licenses.

*
John F. Shoch (“76) received the B.A. degree in
political science and the MS. and Ph.D. degrees in
computer science from Stanford University, Stan-
ford, CA.

Since 197 I he has been a member of the research
staff at the Xerox Palo Alto Research Center. Palo
Alto. CA. Research interests have included com-
munications protocols, local computer networks.
internetworking. distributed systems, and pro-
gramming language development. He has taught at
Stanford University.

Dr. Shoch is a member of the Association for Computing Machinery and

624 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980

serves as Vice-chairman (United States) of IFIP Working Group 6.4 on Local
Computer Networks.

*
Edward A. Taft received the B.A. degree in applied
mathematics from Harvard University, Cambridge.
MA, in 1973.

Since then he has been a member of the Computer
Science Laboratory of the Xerox Palo Alto Research
Center, Palo Alto, CA. working in the areas of
internetwork protocols. distributed systems, and
personal computing.

Robert M. Metcalfe received the S.B. degree in
electrical engineering and the S.B. degree in
management from the Massachusetts Institute of
Technology. Cambridge. in 1969. and the M.S.
degree in applied mathematics and the P11.D. degree
in computer science from Harvard University.
Cambridge. MA, in 1970and 1973, respectively.

His Ph.D. dissertation is titled "Packet Com-
munication." He is presently President of 3Com
Corporation and Consulting Associate Professor of
Electrical Engineering at Stanford University.

Stanford. CA. where he has been lecturing on distributedcomputing since 1975.
He was with Xerox Corporation, Palo Alto, CA. between 1972 and 1979. where
he worked on ARPANET, Ethernet, Fibernet, Pup, and Laurel. In June 1979 he
formed 3Com Corporation to promote, develop, and exploit communication
compatibility among computers in the office and home.

Formal Methods in Communication Protocol Design
GREGOR V. BOCHMANN AND CARL A. SUNSHINE

(Invited Paper).

Abstrucr-While early protocol design efforts had to rely largely on As they develop, Protocob must be described for many
seat-of-the-pants methods, a variety ofmore rigorous techniques have been purposes. Early descriptions provide a reference for coopera-
developed recently. This PapersurveYstheformalmethodsbeingaPPliedto tion among designers of different parts of a protocol system.
the problems of protocol specification, verification, and implementation. The design must be checked for logical correctness. Then the
its users and the internal operations of the entities that compose the layer protocol must be imp1emented, and if the protocol is in wide
must bedefined. Verification thenconsistsofademonstration that the layer use, many different implementations may have to be checked
will meet its service specification and that each of the components is for ComDliance with a standard. Although narrative &scrip-

In the specification area, both the service that a protocol layer provides to

-
correctly implemented. Formal methods for accomplishing these tasks are tions and informal walk-throu&s are invaluable elements of
discussed, including state transition models, program verification,
symbolic execution, and design rules. this process, painful experience has shown that by them-

selves they are inadequate.

A
I. INTRODUCTION

S evidenced by the earlier papers of this issue, increasingly
numerous and complex communication protocols are

being employed in distributed systems and computer networks
of various types. The informal techniques used to design these
protocols have been largely successful, but have also yielded
a disturbing number of errors or unexpected and undesirable
behavior in most protocols. This paper describes some of the
more formal techniques which are being developed to facilitate
design of correct protocols.

Manuscript received August 8, 1979; revised January 8, 1980. This
work was supported in part by the National Sciences and Engineering
Council of Canada and the United States Advanced Research Projects
Aeencv.

In the~following sections, we shall discuss the use of formal
techniques in each of the major design steps of specification,
verification, and implementation. Section I1 clarifies the
meaning of specification in the context of a layered protocol
architecture, identifies what a protocol specification should
include, and describes the major approaches to protocol
specification. Section 111 defines the meaning of verification,
discusses what can be verified, and describes the main verifi-
cation methods. Section IV provides pointers to some impor-
tant case histories of the use of these techniques. For detailed
examples, we refer to the subsequent papers of this issue
which generally provide additional support for the points
which we have had to treat briefly in this survey. A complete
bibliography may be found in [181 , and complementary
surveys in [44], [8], [33], [43].

11. PROTOCOL SPECIFICATION
- G . i. Bochmann is with the University of Montreal, Montreal, P.Q., noted above, protocol descriptions play a key role in

Canada. all stages of protocol design. This section clarifies the meaning
of Southern California, Marina del Rey, CA 90221. of specification in the domain of communication protocols,

C. A. Sunshine is with the Information Sciences Institute, University

0090-6778/80/0400-0624$00.75 0 1980 IEEE

