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We discuss a Pareto macro-economy (a) in a closed system
with fixed total wealth and (b) in an open system with average
mean wealth and compare our results to a similar analysis in
a super-open system (c) with unbounded wealth [1]. Wealth
condensation takes place in the social phase for closed and
open economies, while it occurs in the liberal phase for super-
open economies. In the first two cases, the condensation is
related to a mechanism known from the balls-in-boxes model,
while in the last case to the non-integrable tails of the Pareto
distribution. For a closed macro-economy in the social phase,
we point to the emergence of a “corruption” phenomenon: a
sizeable fraction of the total wealth is always amassed by a
single individual.

PACS numbers: 02.50.-r, 05.70.Fh.

1. Power law distributions permeate a number of
phenomena in statistical physics and critical phenom-
ena. They are an important manifestation of scale in-
variance as observed in fractals, self-organized critical-
ity and percolating structures. Generically, they are the
consequence of the central limit theorem for scale free
processes where a random Lévy walk replaces Brownian
motion [2].

Power law distributions have also been suggested to de-
scribe social and economic statistics. While the bulk of
the income distribution in most societies follows a log-
normal distribution, about a century ago Pareto sug-
gested that the wealthy are outliers. The distribution
of large wealths follow a power law

p(w) ∼ w−1−α for w À w0 . (1)

with α typically between 1-2. This distribution is referred
to as Pareto’s distribution [3,4]. Power-like tails also gov-
ern the distribution of income and size of firms, and the
behavior of financial time series over intermediate time
horizons [5]. The scale free character of this distribu-
tion implies that the chance of an already rich individual
(w À w0) to further increase his wealth by an additional
factor λ is p(λw)/p(w) ≈ 1/λ1+α, independently of his
current wealth and the wealth of the less fortunate. For
the rich part of the ensemble what matters is only the
index α and, as we will argue, the total wealth of the
society.

A social engineer may attempt to use the value of α to
control the likelihood of large wealths in general, for in-
stance by increasing the global character of trade through
interest rates or decreasing it through taxation. The
larger α, the stronger the suppression of large wealths.
One can distinguish between two separate regimes, the
liberal economies with α ≤ 1 and the social ones with
α > 1. As we will see, the possibilities for a condensa-
tion of wealth to occur are very different in both.

The total wealth W of an economy, or alternatively
the average wealth per individual W/N , can become im-
portant as an upper bound on the individual wealths w.
For example, it is clear that there will be no rich indi-
viduals in an uniformly poor society, even if the economy
is liberal (α ≤ 1). Conversely, one can ask about what
happens in a rich society with a restrictive social econ-
omy (α > 1). As we will show, a Pareto macro-economy
becomes unstable in this case and favors a “corrupt” sce-
nario where one individual amasses almost all the avail-
able wealth.

To better understand the role of the macro-economic
parameter W/N , we now define the three advertised en-
sembles: (a) a closed economy with a total wealth W
fixed; (b) an open economy in equilibrium with external
economies where W adjusts to the equilibrium mean; (c)
a super-open economy where W can grow unrestricted.
¿From the point of view of rich individuals, the essential
parameters of the respective ensembles are the number
N of individuals in the society which is kept fixed in all
cases and: (a) the Pareto index α and the average indi-
vidual wealth w = W/N beyond a critical value w∗ (see
below); (b) the Pareto index α and a stability parameter
µ (see below); (c) the Pareto index α only.

2. The authors of [1] recently proposed a simple the-
oretical model of a dynamical process of wealth flows
which in equilibrium becomes a Pareto macro-economy
for the ensemble (c). In brief, the model is given by a set
of stochastic equations that describe the flow of wealth in
an ensemble of N individuals. Specifically, the time evo-
lution of each individual’s wealth wi(t), i = 1, . . . , N , is
assumed to be described by a linear differential equation:

dwi(t)
dt

= ηi(t)wi(t) +
N∑

j( 6=i)

Jijwj(t) −
N∑

j( 6=i)

Jjiwi(t) . (2)
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Here, trading between individuals is encoded in the
buy/sell flow channels Jij that describe an internal
macro-economical network. In addition, each individ-
ual is subjected to an economical background which is
given by a multiplicative random source ηi(t), represent-
ing the spontaneous increase or decrease of wealth related
to investments, gains and losses on the market, etc. By
construction, the equations are invariant under change in
monetary unit, wi → λwi.

In general, both ηi(t) and Jij can be very complicated
functions. Following [1], here we will discuss only the
simplest case, where we assume that the ηi(t) are just
uncorrelated random variables with a Gaussian distribu-
tion, and that all interactions between individuals are
the same, Jij = J/N for all i 6= j (mean-field). As a
result, the corresponding equilibrium probability distri-
bution has the following large-w asymptotics:

p(w) ∼ w−1−α (3)

where α = 1 + J/σ2 > 1 and σ2 is the variance of the
Gaussian distribution of η(t). The normalization factor,
which we left out of (3) for simplicity, depends on α only.
For large values of w, this solution gives a power law
with α > 1, i.e. we are in the generic situation of a
social Pareto macro-economy. However, by modifying
the mean field assumptions – considering, for example,
a non-trivial network of connections Jij – one could also
obtain a solution for a liberal economy, α ≤ 1 [1].

If one calculates the average of the distribution (3),
which corresponds to the average wealth of the individ-
ual, one sees that the basic difference between a social
and a liberal economy is that it is finite in the former
case and infinite in the latter. Thus, for α ≤ 1 one would,
due to the non-integrable tail of the distribution, expect
the appearance of rich individual in the ensemble, with
a wealth N1/α times larger than the typical value. The
authors of [1] interpreted this result as a condensation
phenomenon.

3. In reality, this is not the case and the total wealth
of the society W is in general fixed, thereby upsetting
overall scale invariance and giving us a closed system
of type (a). How would the condensation phenomenon
change in this case? One way to address this issue is to
solve the equations of the type (2) on the hypersurface
W = w1 + ...+wN . This problem is reminiscent of Kac’s
master equation [6] on the sphere (fixed energy) for which
a factorizable and stationary solution was derived in the
thermodynamic limit under mild assumptions.

Here, we follow a more phenomenological treatment
and assume that p(w) ∼ 1/w1+α characterizes the single
wealth-distributions in the ensemble (a) with the indi-
vidual wealths adding to W = w1 + ... + wN . In this
way, we have an asymptotic Pareto macro-economy with
a factorizable N-distribution of wealths constrained on
the hypersurface of fixed wealth W . For convenience,
we assume that each individual wealth wi is an integer
given in units of the smallest available currency unit. The
probability of a certain distribution of wi’s is:

P (w1, ., wN ) =
1

Z(W,N)

∏
i

p(wi) δ

(
W −

N∑
i=1

wi

)
,

(4)

where Z(W,N) is the appropriate normalization factor,

Z(W,N) =
∑

{wi≥0}

∏
i

p(wi) δ

(
W −

N∑
i=1

wi

)
. (5)

This model is known as the balls-in-boxes or backgam-
mon model [7] where it has been applied to various con-
densation and glassy phenomena. It can be solved in the
limit of an infinite number of boxes N and fixed density
of balls per box ρ = W/N (thermodynamical limit) by
introducing the integral representation of the delta func-
tion

Z(N, ρ) =
∑

{wi≥0}

∏
i

p(wi)

× 1
2π

π∫
−π

dλe−iλ(w1+···+wN−ρN)

=
1
2π

π∫
−π

dλeiλρN

(∑
w

p(w)e−iλw

)N

=
1
2π

π∫
−π

dλ exp (N(iλρ + K(iλ)) (6)

where K is a generating function given by K(σ) =
ln

∑∞
w=1 p(w)e−σw. Evaluating the integral using steep-

est descent gives

f(ρ) = σ∗(ρ)ρ + K(σ∗(ρ)) , (7)

where σ∗(ρ) is a solution of the saddle point equation
ρ + K ′(σ∗) = 0 and f(ρ) is a free energy density per
box, Z(W,N) = eNf(ρ)+.... For a suitable choice of the
weights p(w) ∼ 1/w1+α the system displays a two phase
structure as the density is varied with a critical density
ρcr. When ρ approaches ρcr from below, σ∗ approaches
σcr from above. When ρ is larger than ρcr , σ becomes
equal to the critical value σcr and the free energy is linear
in ρ

f(ρ) = σcrρ + κcr , (8)

where κcr = K(σcr). The change of regimes at ρcr corre-
sponds to a condensation transition, in which an exten-
sive fraction of the balls is in a single box. The critical
value σcr is equal to the logarithm of the radius of con-
vergence of the series in the generating function K(σ).
In particular, for purely power-like weights

p(w) =
1

ζ(1 + α)
w−1−α , w = 1, 2, . . . , (9)
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σcr = 0. The normalization factor is given by the Rie-
mann Zeta function. At the end of this section we will
comment on the case when the radius of convergence of
the series K(σ) differs from one.

The transition to a condensed phase happens when
W/N becomes larger than a critical density w∗, which is
nothing but the mean wealth

w∗ =
∑
w

w p(w) . (10)

Since we can change the small w part of the distribution
by tuning the appropriate macro-economical parameters
without affecting the large w behavior of p(w), we have
some control over where the threshold w∗ will lie. We
can define an effective probability distribution of wealth:

p̂(w) =
1
N

〈
N∑
i

δ(wi − w)

〉
P

(11)

which now, unlike the original p(w), takes into account
the finite total wealth W . Below threshold w∗, the sys-
tem is in a phase in which the effective probability distri-
bution p̂(w) has an additional scale factor in comparison
with the old distribution p(w)

p̂(w) ∼ e−σwp(w) . (12)

Here, σ depends only on the difference W/N−w∗. It van-
ishes at threshold, so that the old Pareto tails are restored
at this point. Above threshold, the macro-economy re-
sponds to the increasing average wealth by creating a
single individual with a wealth proportional to the total
wealth W , namely wmax = W − Nw∗

p̂(w) ∼ p(w) +
1
N

δw,W−Nw∗ . (13)

The behavior of p̂(w) versus w is shown in Fig. 1, for
index α = 3, N = 128, 512, 2048 and a density W/N >
w∗. At threshold the inverse participation ratio

Y2 =
1

N2

〈∑
i

w2
i

〉
P

=
1
N

∑
w

w2p̂(w) , (14)

changes, in the large N limit, from 0 to (W/N − w∗)2,
signaling the appearance of a wealth condensation. Ba-
sically, everything in excess of the critical wealth Nw∗
ends up in the portfolio of a single individual. We call
this the surplus anomaly. It can appear only in a social
economy (α > 1), because only in this case do we have a
finite critical wealth per individual w∗.

In a liberal economy, w∗ is obviously infinite, mean-
ing that the system remains always below threshold and
there is never any condensation. Note that these results
for the closed model (a) do not contradict the results of
the previous section for the super-open model (c) since
we now have a well-defined average wealth W/N which

prevents the appearance of individuals with a wealth
w ∼ N1/α growing faster than linearly.

The behavior we have discussed here for closed systems
is not restricted to power-law weights p(w). The saddle
point equation for the generating function ρ + K ′(σ∗) =
0, can have similar properties for other functional forms
of the weights. For instance, one can easily check that
a change of weights p(w) → e−σ̄wp(w) merely leads to
a change σcr → σcr + σ̄ leaving the phase structure of
the model intact. In particular, if the weights (9) had
an exponential pre-factor p(w) ∼ e−σ̄w/w1+α, we would
have σcr = σ̄, but the critical density:

ρcr =
ζ(α)

ζ(α + 1)
(15)

would be independent of σ̄. Clearly, the critical proper-
ties of the model are encoded in the sub-exponential be-
havior of the weights p(w) for large w. Solving the saddle
point equation one can check that for weights with power-
like sub-exponential behavior, the most-singular part of
the free energy f(ρ) has a branch point singularity when
∆ρ = ρcr − ρ → 0+:

f(ρ) =
{

∆ρα/(α−1) for 1 < α < 2
∆ρα for α ≥ 2 . (16)

For integer values, the power-like singularity changes to
a singularity of the type integer power times logarithm.

One may consider other functional sub-exponential
forms of the weights p(w). A criterion for the presence
of the phase transition is that the derivative of the gen-
erating function is finite, −K ′(σcr) < ∞, at the radius
of convergence σcr. Physically this means that the criti-
cal density is finite. For example, stretched exponential
weights

p(w) ∼ e−βwδ

, (17)

with 0 < δ < 1 and β > 0 have this property. As before,
we have a saddle point phase for small density W/N ,
with an exponential suppression of large wealths, and a
condensed phase for large density W/N , with a surplus
anomaly. At the transition point, however, instead of the
Pareto distribution we have (17). The second derivative
of the free energy is discontinuous at the transition. If
the transition is approached from the condensed phase
∆ρ = ρcr − ρ → 0−, f ′′(ρ) = 0, while from the saddle
point one ∆ρ → 0+:

f ′′(ρ) = σ′
∗(ρ) = − 1

K ′′(σcr)
. (18)

For the weights (17) as well as the power-like weights for
α > 2, the derivative K ′′(σcr) is finite. Thus in both cases
the second derivative of the free energy is discontinuous.
In contrast, for 1 < α < 2, K ′′(σcr) = ∞ and f ′′(ρ) = 0
on both sides of the transition. In this case the singularity
yielding the discontinuity of derivatives of the free energy
is given by (16). The transition becomes arbitrarily soft
when α → 1.
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FIG. 1. Effective probability density of wealth. See text.

4. Finally, let us discuss an economy in contact with
one or more external ones (ensemble (b)). The total
wealth W is not fixed in this case, but may adjust dy-
namically to an equilibrium value given by a stability pa-
rameter µ (inverse temperature). The partition function
for this ensemble is given by [8]

Z(µ,N) =
∑
W

Z(W,N) e−µW . (19)

The total wealth in our economy now depends on the
value of µ. The model has a phase transition at µ = 0.
For µ > 0, the average wealth per individual W/N fluctu-
ates according to a Gaussian distribution with a certain
average value w∗(µ) and a width that is inversely pro-
portional to the square root of the system size 1/

√
N .

At the critical point µ = 0, the situation becomes unsta-
ble as the economy starts to attract the attention of the
outside world and W acquires a tendency to grow. In an
idealized situation where the outside world has limitless
wealth, W/N would actually become infinite as soon as
µ < 0. In practice, of course, it remains bounded by an
upper limit.

The order parameter for this transition is r = N/W ,
which in the idealized case is zero for µ < 0 and positive
otherwise. Its critical behavior depends on α as

r ∼ µ1/α for µ → 0+ . (20)

The order of the transition thus depends on the type of
our economy. In a social economy (α > 1), the transition
is of first order and r changes discontinuously at the crit-
ical point. In a liberal economy (α ≤ 1), the transition is
continuous, and becomes arbitrarily soft as α approaches
zero.

The r = 0 phase is one where condensation takes places
not only within the considered economy, but in whole sys-
tem including the outside world. To better illustrate this
situation, consider two mean-field Pareto economies, each

with the same distribution p(w) but possibly different to-
tal wealths W1 and W2. If we bring them into contact
with each other, they will form a larger mean-field econ-
omy with a constrained total wealth W = W1 + W2. For
µ = 0, condensation can take place with equal probabil-
ity in either one of them, so if we look at only one of
the systems, we might observe condensation or we might
not. In other words, there are large fluctuations. But if
µ 6= 0, then one of the subsystems will favor condensa-
tion, and wealth will tend to flow towards it. The other
system then has to adjust to the fact that wealth dis-
appears from it. This leads exactly to the two phases
discussed above.

5. We have shown that in a social economy, conden-
sation may occur if the total wealth of the society exceeds
a certain critical value. In our analysis, the system favors
the occurrence of a single individual in possession of a fi-
nite fraction of the economy’s total available wealth, pro-
viding a physical mechanism for “corruption”. The anal-
ysis we have provided may be improved by considering
(2) in general, using a random network for the flow chan-
nels restricted to a hypersurface of fixed wealth. In this
way, we could learn more about the statistical aspects
underlying the process of fortune creation and propaga-
tion.
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