
Buffer Overflows
Christian Klein <kleinc@cs.bonn.edu>

What is a
buffer overflow?

• filling a buffer beyond its bounds

• typically a char[] (“c-string”)

char[]

• C datatypes: numbers, pointers, vectors,
structs, but no character strings

• Length information is inbound

stack based
buffer overflows

• known (at least) since 1988 (Morris Worm)

• most common security vulnerability (more
than 1000 hits on Bugtraq)

• hard to automatically spot, easy to exploit

• exploits the fact that the stack is executable

stack 101

• what is the stack?

• the memory area where automatic
variables are stored

• a LIFO structure with pop and push
operations

• grows from 0xBFFFFFFF down

• (remind: sub enlarges the stack, add
shortens it)

registers

• the stack pointer (esp) points to
the top of stack, (TOS)

• the base pointer (ebp) points to
the top of the current stack frame

• the instruction pointer (eip)
points to the next machine
instruction

stackframe
allocation

• function prologue

• the eip is saved on the stack (call)

• the ebp is saved on the stack (push %ebp)

• the new frame is created (mov l%esp, %ebp)

• stack space is allocated (subl $0x0c, %esp)

stackframes
deallocation

• function epilogue:

• stack space is deallocated (addl $0x0c, %esp)

• the stack frame is deleted (movl %ebp, %esp)

• the saved base pointer is loaded (pop %ebp)

• the saved instruction pointer is loaded and
program flow continues (ret)

stack overflow,
example 1

• what’s happening in memory?

• the buffer is allocated to hold 8 bytes

• the next 4 bytes are the long int

• the next 4 bytes are the saved ebp

• the next 4 bytes are the saved eip

• so, our strcpy() overwrites the saved eip!

stack overflow,
example 2

• what’s happening in memory?

• in myfunc, a variable is declared and
initialized with the address of itself - two
word sizes (8 bytes)

• that word is incremented by 10

• that word was the saved instruction
pointer and we just skipped a instruction

conclusion
so far

• saved base pointer and saved instruction
pointer are overwritten

• instruction pointer is filled with information
from stack

• we can change the control flow

• can we do something useful with that? YES!

shellcode
quick and dirty

• it’s machine code that is injected into the
memory

• platform dependent

• “a science on its own”

• compact size

• zero byte free

• available on the internet ;-)

shellcode
an example

char shellcode[]=
 "\x31\xc0" /* xorl %eax,%eax */
 "\x50" /* pushl %eax */
 "\x68""//sh" /* pushl $0x68732f2f */
 "\x68""/bin" /* pushl $0x6e69622f */
 "\x89\xe3" /* movl %esp,%ebx */
 "\x50" /* pushl %eax */
 "\x53" /* pushl %ebx */
 "\x89\xe1" /* movl %esp,%ecx */
 "\x99" /* cdql */
 "\xb0\x0b" /* movb $0x0b,%al */
 "\xcd\x80" /* int $0x80 */

stack overflow
the exploit

• todo:

• insert shell code (easy)

• set return address to the address of the
shellcode (tricky)

• let the process jump into shellcode (just
sit down and watch)

how to find the address
of the shellcode?

• described by Aleph One in
“Smashing the stack for fun and profit”

• helps us to guess: __asm__(“movl %
esp, %eax”)

• nop-sled for not-so-acurate guessing

• works for local and remote exploits

how to calculate the
address of the shellcode
• little trick: put shellcode in environment

variable

• advantage:

• fixed address

• works with tiny buffers

• address = 0xbfffffff - (4 + strlen(argv[0]) + 1
+ strlen(envp[n]))

• disadvantage: works only local

stack overflow
example 3

• the first exploit

the usual suspects

• all string manipulating functions

• gets, strcpy, strcat, sprintf

• always use the safer version: fgets, strncpy,
strncat, snprintf

• memcpy with unchecked length

your task

• review source code.

• also / especially operating system code.

heap based overflows

• there is not a standard way

• different approaches

• less in focus of security software
(StackGuard, protect_stack)

heap based overflows

• the heap is an area of memory that is
dynamically allocated by the application.

• the data section is initialized at compile
time

• the bss section is initialized at run time
(zero filled)

• also heap is RWX on most architectures

heap based overflows

• the heap grows up from a low address

• memory is usually (historically?) allocated
with the brk() system call, which readjusts
the end_data_segment variable

heap based overflows

• not as “standard” as stack based overflows

• usually no direct influence of the code flow

• might be even harder to detect

heap based overflows

• example 1:

heap based overflows

• variables are allocated on the heap

• filename is overwritten by comment

• we can append a single line of code to an
arbitrary file by controlling the filename

• other possibilities: authentication state,
permissions, shell scripts (startup scripts), ...

heap based overflows

• example 2:

heap based overflows

• like other variables, function pointers can be
overwritten

• it’s also possible to call shellcode:

• place shellcode in environment

• overwrite function pointer with address of
shellcode

endangered data

• data on heap is usually more sensitive:

• static buffers of libc functions

• FILE structures, DIR structures

• exit handlers

• meta data of malloc

lab session

• write your own exploit

• master gera’s challenges:
http://community.core-sdi.com/~gera/
InsecureProgramming/

• create documentation for everything

links

• http://untergrund.bewaff.net/~chris/bo/

• http://www.enderunix.org/docs/eng/bof-eng.txt

• http://www.insecure.org/stf/smashstack.txt

• http://www.w00w00.org/files/articles/heaptut.txt

• http://community.core-sdi.com/~gera/
InsecureProgramming/

