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Preface

The roots of the Power ISA  (Instruction Set Architec-
ture) extend back over a quarter of a century, to IBM
Research. The POWER (Performance Optimization
With Enhanced RISC) Architecture was introduced with
the RISC System/6000 product family in early 1990. In
1991, Apple, IBM, and Motorola began the collabora-
tion to evolve to the PowerPC  Architecture, expanding
the architecture’s applicability. In 1997, Motorola and
IBM began another collaboration, focused on optimiz-
ing PowerPC for embedded systems, which produced
Book E.

In 2006, Freescale and IBM collaborated on the cre-
ation of the Power ISA Version 2.03, which represented
the reunification of the architecture by combining Book
E content with the more general purpose PowerPC Ver-
sion 2.02. A significant benefit of the reunification is the
establishment of a single, compatible, 64-bit program-
ming model. The combining also extends explicit archi-
tectural endorsement and control to Auxiliary
Processing Units (APUs), units of function that were
originally developed as implementation- or product fam-
ily-specific extensions in the context of the Book E allo-
cated opcode space. With the resulting architectural
superset comes a framework that clearly establishes
requirements and identifies options.

To a very large extent, application program compatibil-
ity has been maintained throughout the history of the
architecture, with the main exception being application
exploitation of APUs. The framework identifies the
base, pervasive, part of the architecture, and differenti-
ates it from “categories” of optional function (see
Section 1.3.5 of Book I). Because of the substantial dif-
ferences in the supervisor (privileged) architecture that
developed as Book E was optimized for embedded sys-
tems, the supervisor architectures for embedded and
general purpose implementations are represented as
mutually exclusive categories. Future versions of the
architecture will seek to converge on a common solu-
tion where possible.

This document defines the Power ISA Version 2.04. It is
comprised of five books and a set of appendices. 

Book I, Power ISA User Instruction Set Architecture,
covers the base instruction set and related facilities
available to the application programmer. It includes five
new chapters derived from APU function, including the
vector extension also known as Altivec.

Book II, Power ISA Virtual Environment Architecture,
defines the storage model and related instructions and
facilities available to the application programmer.

Book III-S, Power ISA Operating Environment Architec-
ture, defines the supervisor instructions and related
facilities used for general purpose implementations. It
consists mainly of the contents of Book III from Pow-
erPC  Version 2.02, with the addition of significant new
large page and big segment support.

Book III-E, Power ISA Operating Environment Architec-
ture, defines the supervisor instructions and related
facilities used for embedded implementations. It was
derived from Book E and extended to include APU
function.

Book VLE, Power ISAVariable Length Encoded Instruc-
tions Architecture, defines alternative instruction
encodings and definitions intended to increase instruc-
tion density for very low end implementations. It was
derived from an APU description developed by Frees-
cale Semiconductor.

As used in this document, the term “Power ISA” refers
to the instructions and facilities described in Books I, II,
III-S, III-E, and VLE.

Usage of the phrase “Book III” refers to both Book III-S
and Book III-E. An exception to this rule is when, at the
beginning of a Section or Book, it is specified that
usage of the phrase “Book III” implies only either “Book
III-S” or “Book III-E”.

Change bars have been included to indicate changes
from Version 2.03. 
 Preface iii
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Summary of Changes in Version 2.04

Version 2.04 of this document differs from the previous
version primarily by containing the definitions of the fol-
lowing facilities:

New Server Page Protection States. An additional state
of the page protection bits in the page table entry is
defined  which can be used to provide privileged pro-
grams read only access and problem state programs
no access to a virtual page.

Server Virtualized Partition Memory. Several new fea-
tures are added to enable virtualization of a partition’s
memory in order to support more partitions and addi-
tional concurrent maintenance procedures transpar-
ently to operating system code.

Server Virtual Page Class Key Protection. A KEY field
in the page table entry and associated features are
added for the Server environment to facilitate quick
modification of access permission for multiple pages at
once.

Server Time Base Facility - TBU40. Support is added
for time base synchronization via this new time base
facility, in which only the upper 40 bits of the time base
are accessed.

 Version Verification

See the Power ISA representative for your company.
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1.1 Overview
This chapter describes computation modes, document
conventions, a processor overview, instruction formats,
storage addressing, and instruction fetching.

1.2 Instruction Mnemonics and 
Operands
The description of each instruction includes the mne-
monic and a formatted list of operands.  Some exam-
ples are the following.

stw RS,D(RA)

addis RT,RA,SI

Power ISA-compliant Assemblers will support the mne-
monics and operand lists exactly as shown. They
should also provide certain extended mnemonics, such
as the ones described in Appendix D of Book I.

1.3 Document Conventions

1.3.1 Definitions
The following definitions are used throughout this docu-
ment.

� program
A sequence of related instructions.
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� application program
A program that uses only the instructions and
resources described in Books I and II.

� quadwords, doublewords, words, halfwords, 
and bytes
128 bits, 64 bits, 32 bits, 16 bits, and 8 bits,
respectively.

� positive
Means greater than zero.

� negative
Means less than zero.

� floating-point single format (or simply single 
format)
Refers to the representation of a single-precision
binary floating-point value in a register or storage.

� floating-point double format (or simply double 
format)
Refers to the representation of a double-precision
binary floating-point value in a register or storage.

� system library program
A component of the system software that can be
called by an application program using a Branch
instruction.

� system service program
A component of the system software that can be
called by an application program using a System
Call instruction.

� system trap handler
A component of the system software that receives
control when the conditions specified in a Trap
instruction are satisfied.

� system error handler
A component of the system software that receives
control when an error occurs.  The system error
handler includes a component for each of the vari-
ous kinds of error.  These error-specific compo-
nents are referred to as the system alignment error
handler, the system data storage error handler,
etc.

� latency
Refers to the interval from the time an instruction
begins execution until it produces a result that is
available for use by a subsequent instruction.

� unavailable
Refers to a resource that cannot be used by the
program. For example, storage is unavailable if
access to it is denied. See Book III.

� undefined value
May vary between implementations, and between
different executions on the same implementation,
and similarly for register contents, storage con-
tents, etc., that are specified as being undefined.

� boundedly undefined
The results of executing a given instruction are
said to be boundedly undefined if they could have
been achieved by executing an arbitrary finite
sequence of instructions (none of which yields
boundedly undefined results) in the state the pro-
cessor was in before executing the given instruc-
tion. Boundedly undefined results may include the
presentation of inconsistent state to the system
error handler as described in Section 1.8.1 of Book
II. Boundedly undefined results for a given instruc-
tion may vary between implementations, and
between different executions on the same imple-
mentation.

� “must”
If software violates a rule that is stated using the
word “must” (e.g., “this field must be set to 0”), the
results are boundedly undefined unless otherwise
stated.

� sequential execution model
The model of program execution described in
Section 2.2, “Instruction Execution Order” on
page 25.

� Auxiliary Processor
An implementation-specific processing unit. Previ-
ous versions of the architecture use the term Auxil-
iary Processing Unit (APU) to describe this
extension of the architecture. Architectural support
for auxiliary processors is part of the Embedded
category.

1.3.2 Notation
The following notation is used throughout the Power
ISA documents.

� All numbers are decimal unless specified in some
special way.

- 0bnnnn means a number expressed in binary
format.

- 0xnnnn means a number expressed in hexa-
decimal format.

Underscores may be used between digits.

� RT, RA, R1, ... refer to General Purpose Registers.

� FRT, FRA, FR1, ... refer to Floating-Point Regis-
ters.

� VRT, VRA, VR1, ... refer to Vector Registers.

� (x) means the contents of register x, where x is the
name of an instruction field.  For example, (RA)
means the contents of register RA, and (FRA)
means the contents of register FRA, where RA
and FRA are instruction fields.  Names such as LR
and CTR denote registers, not fields, so parenthe-
ses are not used with them.  Parentheses are also
Power ISA™ -- Book I4



   Version 2.04
omitted when register x is the register into which
the result of an operation is placed.

� (RA|0) means the contents of register RA if the RA
field has the value 1-31, or the value 0 if the RA
field is 0.

� Bits in registers, instructions, fields, and bit strings
are specified as follows. In the last three items
(definition of Xp etc.), if X is a field that specifies a
GPR, FPR, or VR (e.g., the RS field of an instruc-
tion), the definitions apply to the register, not to the
field.

- Bits in instructions, fields, and bit strings are
numbered from left to right, starting with bit 0

- For all registers except the Vector category,
bits in registers that are less than 64 bits start
with bit number 64-L, where L is the register
length; for the Vector category, bits in registers
that are less than 128 bits start with bit num-
ber 128-L.

- The leftmost bit of a sequence of bits is the
most significant bit of the sequence.

- Xp means bit p of register/instruction/field/
bit_string X.

- Xp:q means bits p through q of register/instruc-
tion/field/bit_string X.

- Xp q ... means bits p, q, ... of register/instruc-
tion/field/bit_string X.

� ¬(RA) means the one’s complement of the con-
tents of register RA.

 

� A period (.) as the last character of an instruction
mnemonic means that the instruction records sta-
tus information in certain fields of the Condition
Register as a side effect of execution.

� The symbol || is used to describe the concatena-
tion of two values. For example, 010 || 111 is the
same as 010111.

� xn means x raised to the nth power.

� nx means the replication of x, n times (i.e., x con-
catenated to itself n-1 times).  (n)0 and (n)1 are
special cases:

- n0 means a field of n bits with each bit equal to
0.  Thus 50 is equivalent to 0b00000.

- n1 means a field of n bits with each bit equal to
1.  Thus 51 is equivalent to 0b11111.

� Each bit and field in instructions, and in status and
control registers (e.g., XER, FPSCR) and Special
Purpose Registers, is either defined or reserved.
Some defined fields contain reserved values.  In
such cases when this document refers to the spe-
cific field, it refers only to the defined values,
unless otherwise specified.

�  /, //, ///, ... denotes a reserved field, in a register,
instruction, field, or bit string.

� ?, ??, ???, ... denotes an implementation-depen-
dent field in a register, instruction, field or bit string.

1.3.3 Reserved Fields and 
Reserved Values
Reserved fields in instructions are ignored by the pro-
cessor. This is a requirement in the Server environment
and is being phased into the Embedded environment.

In some cases a defined field of an instruction has cer-
tain values that are reserved. This includes cases in
which the field is shown in the instruction layout as con-
taining a particular value; in such cases all other values
of the field are reserved. In general, if an instruction is
coded such that a defined field contains a reserved
value the instruction form is invalid; see Section 1.8.2
on page 19. The only exception to the preceding rule is
that it does not apply to portions of defined fields that
are specified, in the instruction description, as being
treated as reserved fields. 

To maximize compatibility with future architecture
extensions, software must ensure that reserved fields
in instructions contain zero and that defined fields of
instructions do not contain reserved values.

The handling of reserved bits in System Registers (e.g.,
XER, FPSCR) is implementation-dependent. Unless
otherwise stated, software is permitted to write any
value to such a bit. A subsequent reading of the bit
returns 0 if the value last written to the bit was 0 and
returns an undefined value (0 or 1) otherwise.

In some cases a defined field of a System Register has
certain values that are reserved. Software must not set
a defined field of a System Register to a reserved
value.

References elsewhere in this document to a defined
field (in an instruction or System Register) that has
reserved values assume the field does not contain a
reserved value, unless otherwise stated or obvious
from context.

  

Assemblers should report uses of reserved values
of defined fields of instructions as errors.

Assembler Note
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It is the responsibility of software to preserve bits
that are now reserved in System Registers,
because they may be assigned a meaning in some
future version of the architecture.

In order to accomplish this preservation in imple-
mentation-independent fashion, software should do
the following.

� Initialize each such register supplying zeros for
all reserved bits.

� Alter (defined) bit(s) in the register by reading
the register, altering only the desired bit(s),
and then writing the new value back to the reg-
ister.

The XER and FPSCR are partial exceptions to this
recommendation. Software can alter the status bits
in these registers, preserving the reserved bits, by
executing instructions that have the side effect of
altering the status bits.  Similarly, software can alter
any defined bit in the FPSCR by executing a Float-
ing-Point Status and Control Register instruction.
Using such instructions is likely to yield better per-
formance than using the method described in the
second item above.

Programming Note
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1.3.4 Description of Instruction 
Operation
Instruction descriptions (including related material such
as the introduction to the section describing the instruc-
tions) mention that the instruction may cause a system
error handler to be invoked, under certain conditions, if
and only if the system error handler may treat the case
as a programming error. (An instruction may cause a
system error handler to be invoked under other condi-
tions as well; see Chapter 6 of Book III-S and Chapter 5
of Book III-E).

A formal description is given of the operation of each
instruction. In addition, the operation of most instruc-
tions is described by a semiformal language at the reg-
ister transfer level (RTL). This RTL uses the notation
given below, in addition to the notation described in
Section 1.3.2. Some of this notation is also used in the
formal descriptions of instructions. RTL notation not
summarized here should be self-explanatory.

The RTL descriptions cover the normal execution of the
instruction, except that “standard” setting of status reg-
isters, such as the Condition Register, is not shown.
(“Non-standard” setting of these registers, such as the
setting of the Condition Register by the Compare
instructions, is shown.)  The RTL descriptions do not
cover cases in which the system error handler is
invoked, or for which the results are boundedly unde-
fined.

The RTL descriptions specify the architectural transfor-
mation performed by the execution of an instruction.
They do not imply any particular implementation.

Notation Meaning
� Assignment
�iea Assignment of an instruction effective

address.  In 32-bit mode the high-order 32
bits of the 64-bit target address are set to
0.

¬ NOT logical operator
+ Two’s complement addition
- Two’s complement subtraction, unary

minus
× Multiplication
×si Signed-integer multiplication
×ui Unsigned-integer multiplication
/ Division
÷ Division, with result truncated to integer
√ Square root
=, ≠ Equals, Not Equals relations
<, ≤, >, ≥ Signed comparison relations
<u, >u Unsigned comparison relations
? Unordered comparison relation
&, | AND, OR logical operators
⊕ , ≡ Exclusive OR, Equivalence logical opera-

tors ((a≡b) = (a⊕ ¬b))
ABS(x) Absolute value of x

CEIL(x) Least integer ≥ x
DCR(x) Device Control Register x
DOUBLE(x) Result of converting x from floating-point

single format to floating-point double for-
mat, using the model shown on page 111

EXTS(x) Result of extending x on the left with sign
bits

FLOOR(x) Greatest integer ≤ x
GPR(x) General Purpose Register x
MASK(x, y) Mask having 1s in positions x through y

(wrapping if x > y) and 0s elsewhere
MEM(x, y) Contents of a sequence of y bytes of stor-

age. The sequence depends on the byte
ordering used for storage access, as fol-
lows.
Big-Endian byte ordering:
The sequence starts with the byte at
address x and ends with the byte at
address x+y-1.
Little-Endian byte ordering:  
The sequence starts with the byte at
address x+y-1 and ends with the byte at
address x.

ROTL64(x, y)
Result of rotating the 64-bit value x left y
positions

ROTL32(x, y)
Result of rotating the 64-bit value x||x left y
positions, where x is 32 bits long

SINGLE(x) Result of converting x from floating-point
double format to floating-point single for-
mat, using the model shown on page 114

SPR(x) Special Purpose Register x
TRAP Invoke the system trap handler
characterization

Reference to the setting of status bits, in a
standard way that is explained in the text

undefined An undefined value.

CIA Current Instruction Address, which is the
64-bit address of the instruction being
described by a sequence of RTL. Used by
relative branches to set the Next Instruc-
tion Address (NIA), and by Branch instruc-
tions with LK=1 to set the Link Register.
Does not correspond to any architected
register.

NIA Next Instruction Address, which is the
64-bit address of the next instruction to be
executed.  For a successful branch, the
next instruction address is the branch tar-
get address:  in RTL, this is indicated by
assigning a value to NIA.  For other
instructions that cause non-sequential
instruction fetching (see Book III), the RTL
is similar. For instructions that do not
branch, and do not otherwise cause
instruction fetching to be non-sequential,
Chapter 1. Introduction 7
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the next instruction address is CIA+4 (VLE
behavior is different; see Book VLE). Does
not correspond to any architected register.

if... then... else...   
Conditional execution, indenting shows
range; else is optional.

do Do loop, indenting shows range.  “To” and/
or “by” clauses specify incrementing an
iteration variable, and a “while” clause
gives termination conditions.

leave Leave innermost do loop, or do loop
described in leave statement.

for For loop, indenting shows range.  Clause
after “for” specifies the entities for which to
execute the body of the loop.

The precedence rules for RTL operators are summa-
rized in Table 1. Operators higher in the table are
applied before those lower in the table. Operators at the
same level in the table associate from left to right, from
right to left, or not at all, as shown. (For example, -
associates from left to right, so a-b-c = (a-b)-c.)
Parentheses are used to override the evaluation order
implied by the table or to increase clarity; parenthe-
sized expressions are evaluated before serving as
operands.

Table 1: Operator precedence

Operators Associativity

subscript, function evaluation left to right

pre-superscript (replication), 
post-superscript (exponentiation)

right to left

unary -, ¬ right to left

×, ÷ left to right

+, -, left to right

|| left to right

=, ≠, <, ≤, >, ≥,<u, >u, ? left to right

&, ⊕ , ≡ left to right

| left to right 

: (range) none

�,�iea none
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1.3.5 Categories
Each facility (including registers and fields therein) and
instruction is in exactly one of the categories listed in
Figure 1.

A category may be defined as a dependent category.
These are categories that are supported only if the cat-
egory they are dependent on is also supported. Depen-

dent categories are identified by the “.” in their category
name, e.g., if an implementation supports the Float-
ing-Point.Record category,  then the Floating-Point cat-
egory is also supported.

An implementation that supports a facility or instruction
in a given category, except for the two categories
described in Section 1.3.5.1, supports all facilities and
instructions in that category. 

Figure 1. Category Listing  

Category Abvr. Notes

Base B Required for all implementations

Server S Required for Server implementations

Embedded E Required for Embedded implementations

Alternate Time Base ATB An additional Time Base; see Book II

Cache Specification CS Specify a specific cache for some instructions; see Book II

Embedded.Cache Debug E.CD Provides direct access to cache data and directory content

Embedded.Cache Initialization E.CI Instructions that invalidate the entire cache

Embedded.Enhanced Debug E.ED Embedded Enhanced Debug facility; see Book III-E

Embedded.External PID E.PD Embedded External PID facility; see Book III-E

Embedded.Little-Endian E.LE Embedded Little-Endian page attribute; see Book III-E

Embedded.MMU Type FSL E.MF Embedded MMU example Type FSL; see Book III-E

Embedded.Performance Monitor E.PM Embedded performance monitor example; see Book III-E

Embedded.Processor Control E.PC Processor control facility; see Book III-E

Embedded Cache Locking ECL Embedded Cache Locking facility; see Book III-E

External Control EC External Control facility; see Book II

External Proxy EXP External Proxy facility; see Book III-E

Floating-Point
   Floating-Point.Record

FP
FP.R

Floating-Point Facilities
   Floating-Point instructions with Rc=1

Legacy Move Assist LMV Determine Left most Zero Byte instruction

Legacy Integer Multiply-Accumulate1 LMA Legacy Integer Multiply-accumulate instructions

Load/Store Quadword LSQ Load/Store Quadword instructions; see Book III-S

Memory Coherence MMC Requirement for Memory Coherence; see Book II

Move Assist MA Move Assist instructions

Server.Performance Monitor S.PM Performance monitor example for Servers; see Book III-S

Signal Processing Engine1, 2

 SPE.Embedded Float Scalar Double
 SPE.Embedded Float Scalar Single
 SPE.Embedded Float Vector

SP
SP.FD
SP.FS
SP.FV

Facility for signal processing 
  GPR-based Floating-Point double-precision instruction set
  GPR-based Floating-Point single-precision instruction set
  GPR-based Floating-Point Vector instruction set

Stream STM Stream variant of dcbt instruction; see Book II

Trace TRC Trace Facility; see Book III-S

Variable Length Encoding VLE Variable Length Encoding facility; see Book VLE

Vector1

 Vector.Little-Endian
V
V.LE

Vector facilities
Little-Endian support for Vector storage operations.

Wait WT wait instruction; see Book II

64-Bit 64 Required for 64-bit implementations; not defined for 32-bit impl’s
1  Because of overlapping opcode usage, SPE is mutually exclusive with Vector and with Legacy Integer Multi-

ply-Accumulate, and Legacy Integer Multiply-Accumulate is mutually exclusive with Vector.
2 The SPE-dependent Floating-Point categories are collectively referred to as SPE.Embedded Float_* or SP.*.
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An instruction in a category that is not supported by the
implementation is treated as an illegal instruction or an
unimplemented instruction on that implementation (see
Section 1.7.2).

For an instruction that is supported by the implementa-
tion with field values that are defined by the architec-
ture, the field values defined as part of a category that
is not supported by the implementation are treated as
reserved values on that implementation (see Section
1.3.3 and Section 1.8.2).

Bits in a register that are in a category that is not sup-
ported by the implementation are treated as reserved.

1.3.5.1 Phased-In/Phased-Out
There are two special dependent categories, Phased-In
and Phased-Out, defined below. These categories
have the exception that an implementation may support
a subset of the instructions or facilities defined as being
part of the category. 

  

1.3.5.2 Corequisite Category
A corequisite category is an additional category that is
associated with an instruction or facility, and must be
implemented if the instruction or facility is implemented. 

1.3.5.3 Category Notation
Instructions and facilities are considered part of the
Base category unless otherwise marked.  If a section is
marked with a specific category tag, all material in that
section and its subsections are considered part of the
category, unless otherwise marked. Overview sections
may contain discussion of instructions and facilities
from various categories without being explicitly marked.

An example of a category tag is: [Category: Server].

An example of a dependent category is: 
[Category: Server.Phased-In]

The shorthand <E> and <S> may also be used for Cat-
egory: Embedded and Server respectively.

1.3.6 Environments
All implementations support one of the two defined
environments, Server or Embedded. Environments
refer to common subsets of instructions that are shared
across many implementations. The Server environment
describes implementations that support Category:
Base and Server. The Embedded environment
describes implementations that support Category:
Base and Embedded.

Phased-In These are facilities and instructions
that, in some future version of the
architecture, will be required as part of
the category they are dependent on.

Phased-Out These are facilities and instructions
that, in some future version of the
architecture, will be dropped out of the
architecture. System developers should
develop a migration plan to eliminate
use of them in new systems.

Warning: Instructions and facilities being phased
out of the architecture are likely to perform poorly
on future implementations.  New programs should
not use them.

Programming Note
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1.4 Processor Overview
The processor implements the instruction set, the stor-
age model, and other facilities defined in this docu-
ment. There are four basic classes of instructions:

� branch instructions (Chapter 2)
� fixed-point instructions (Chapter 3), and other

instructions that use the fixed-point registers
(Chapters 6, 7, 8, and 9)

� floating-point instructions (Chapter 4)
� vector instructions (Chapter 5)

Fixed-point instructions operate on byte, halfword,
word, and doubleword operands. Floating-point instruc-
tions operate on single-precision and double-precision
floating-point operands. Vector instructions operate on
vectors of scalar quantities and on scalar quantities
where the scalar size is byte, halfword, word, and quad-
word. The Power ISA uses instructions that are four
bytes long and word-aligned (VLE has different instruc-
tion characteristics; see Book VLE). It provides for byte,
halfword, word, and doubleword operand fetches and
stores between storage and a set of 32 General Pur-
pose Registers (GPRs). It provides for word and dou-
bleword operand fetches and stores between storage
and a set of 32 Floating-Point Registers (FPRs). It also
provides for byte, halfword, word, and quadword oper-
and fetches and stores between storage and a set of 32
Vector Registers (VRs).

Signed integers are represented in two’s complement
form.

There are no computational instructions that modify
storage; instructions that reference storage may refor-
mat the data (e.g. load halfword algebraic). To use a
storage operand in a computation and then modify the
same or another storage location, the contents of the
storage operand must be loaded into a register, modi-
fied, and then stored back to the target location.
Figure 2 is a logical representation of instruction pro-
cessing. Figure 3 shows the registers of the Power ISA
User Instruction Set Architecture.

Figure 2. Logical processing model

Branch
Processing

Fixed-Point 
Instructions

Fixed-Pt
Processing

Category:
Floating-Point
Instructions

Category:
Vector
Instructions

Float-Pt
Processing

Vector
Processing

Data to/from
Storage

Storage
Instructions
from Storage
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“Condition Register” on page 26

“Link Register” on page 27

“Count Register” on page 27

“General Purpose Registers” on page 38

“Fixed-Point Exception Register” on page 38

Category: Embedded:

“Software-use SPRs” on page 39.

Category: Embedded and Vector

“VR Save Register” on page 136

Category: Floating-Point:

“Floating-Point Registers” on page 95

“Floating-Point Status and Control Register” on
page 95

Category: Vector:

“Vector Registers” on page 135

“Vector Status and Control Register” on page 135

Category: SPE:

“Accumulator” on page 202

“Signal Processing and Embedded Floating-Point Status
and Control Register” on page 202

Figure 3. Power ISA user register set

CR
32                                                    63

LR
0                                                                                                                   63

CTR
0                                                                                                                     63

GPR 0

GPR 1

. . .

. . .

GPR 30

GPR 31

0                                                                                                                     63

XER
0                                                                                                                     63

SPRG4
SPRG5
SPRG6

SPRG7
0                                                                                                                     63

VRSAVE
32                                                    63

FPR 0

FPR 1

. . .

. . .

FPR 30

FPR 31

0                                                                                                                     63

FPSCR
32                                                   63

VR 0

VR 1

...

...

VR 30

VR 31
0                                                                                                                  127

VSCR
96                                                  127

Accumulator
0                                                                                                                     63

SPEFSCR
32                                                    63
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1.5 Computation modes

1.5.1 Modes [Category: Server]
Processors provide two execution modes, 64-bit mode
and 32-bit mode. In both of these modes, instructions
that set a 64-bit register affect all 64 bits. The computa-
tional mode controls how the effective address is inter-
preted, how status bits are set, how the Link Register is
set by Branch instructions in which LK=1, and how the
Count Register is tested by Branch Conditional instruc-
tions. Nearly all instructions are available in both
modes (the only exceptions are a few instructions that
are defined in Book III-S). In both modes, effective
address computations use all 64 bits of the relevant
registers (General Purpose Registers, Link Register,
Count Register, etc.) and produce a 64-bit result. How-
ever, in 32-bit mode the high-order 32 bits of the com-
puted effective address are ignored for the purpose of
addressing storage; see Section 1.10.3 for additional
details.

1.5.2 Modes [Category: Embed-
ded]
Processors may provide 32-bit mode, or both 64-bit
mode and 32-bit mode. The modes differ in the follow-
ing ways.

� In 64-bit mode, the processor behaves as
described for 64-bit mode in the Server environ-
ment; see Section 1.5.1.

� In 32-bit mode, instructions other than SP,
SP.Embedded Float Scalar Double, and
SP.Embedded Float Vector use only the lower 32
bits of a GPR and produce a 32-bit result. Results
written to the GPRs write only the lower 32-bits
and the upper 32 bits are undefined except for
SP.Embedded Float Scalar Single instructions
which leave the upper 32-bits unchanged. SP,
SP.Embedded Float Scalar Double, and
SP.Embedded Float Vector instructions use all 64
bits of a GPR and produce a 64-bit result regard-
less of the mode.

Instructions that set condition bits do so based on
the 32-bit result computed. Effective addresses
and all SPRs operate on the lower 32 bits only
unless otherwise stated. The instructions in the
64-Bit category are not necessarily available; if
they are not available, attempting to execute such
an instruction causes the system illegal instruction
error handler to be invoked.

Floating-Point and Vector instructions operate on FPRs
and VPRs, respectively, independent of modes.

1.6 Instruction formats
All instructions are four bytes long and word-aligned
(except for VLE instructions; see Book VLE). Thus,
whenever instruction addresses are presented to the
processor (as in Branch instructions) the low-order two
bits are ignored.  Similarly, whenever the processor
develops an instruction address the low-order two bits
are zero.

Bits 0:5 always specify the opcode (OPCD, below).
Many instructions also have an extended opcode (XO,
below).  The remaining bits of the instruction contain
one or more fields as shown below for the different
instruction formats.

The format diagrams given below show horizontally all
valid combinations of instruction fields.  The diagrams
include instruction fields that are used only by instruc-
tions defined in Book II or in Book III. 

Split Field Notation
In some cases an instruction field occupies more than
one contiguous sequence of bits, or occupies one con-
tiguous sequence of bits that are used in permuted
order.  Such a field is called a split field.  In the format
diagrams given below and in the individual instruction
layouts, the name of a split field is shown in small let-
ters, once for each of the contiguous sequences.  In the
RTL description of an instruction having a split field,
and in certain other places where individual bits of a
split field are identified, the name of the field in small
letters represents the concatenation of the sequences
from left to right.  In all other places, the name of the
field is capitalized and represents the concatenation of
the sequences in some order, which need not be left to
right, as described for each affected instruction.

1.6.1 I-FORM

Figure 4. I instruction format

1.6.2 B-FORM

Figure 5. B instruction format

0 6 30 31

OPCD LI AA LK

0 6 11 16 30 31

OPCD BO BI BD AA LK
Chapter 1. Introduction 13



   Version 2.04
1.6.3 SC-FORM

Figure 6. SC instruction format

1.6.4 D-FORM

Figure 7. D instruction format

1.6.5 DS-FORM

Figure 8. DS instruction format

1.6.6 DQ-FORM

Figure 9. DQ instruction format

1.6.7 X-FORM

Figure 10. X instruction format

0 6 11 16 20 27 30 31

OPCD /// /// // LEV // 1 /

OPCD /// /// /// /// // 1 /

0 6 11 16                                                                       31

OPCD RT RA D
OPCD RT RA SI
OPCD RS RA D

OPCD RS RA UI
OPCD BF / L RA SI
OPCD BF / L RA UI

OPCD TO RA SI
OPCD FRT RA D
OPCD FRS RA D

0 6 11 16 30        31

OPCD RT RA DS XO

OPCD RS RA DS XO

0 6 11 16 28                 31

OPCD RT RA DQ PT

0 6 11 16 21 31

OPCD RT RA /// XO /

OPCD RT RA RB XO /
OPCD RT RA NB XO /
OPCD RT / SR /// XO /

OPCD RT /// RB XO /
OPCD RT /// /// XO /
OPCD RS RA RB XO Rc

OPCD RS RA RB XO 1
OPCD RS RA RB XO /
OPCD RS RA NB XO /

OPCD RS RA SH XO Rc
OPCD RS RA /// XO Rc
OPCD RS RA /// XO /

OPCD RS / SR /// XO /
OPCD RS /// RB XO /
OPCD RS /// /// XO /

OPCD RS /// L /// XO /
OPCD BF / L RA RB XO /
OPCD BF // FRA FRB XO /

OPCD BF // BFA // /// XO /
OPCD BF // /// U / XO Rc
OPCD BF // /// /// XO /

OPCD / TH RA RB XO /
OPCD / CT /// /// XO /
OPCD / CT RA RB XO /

OPCD /// L RA RB XO /
OPCD /// L /// RB XO /
OPCD /// L /// /// XO /

OPCD TO RA RB XO /
OPCD FRT RA RB XO /
OPCD FRT /// FRB XO Rc

OPCD FRT /// /// XO Rc
OPCD FRS RA RB XO /
OPCD BT /// /// XO Rc

OPCD /// RA RB XO /
OPCD /// /// RB XO /
OPCD /// /// /// XO /

OPCD /// /// E /// XO /
OPCD ??? RA RB XO ?
OPCD ??? ??? ??? XO /

OPCD VRT RA RB XO /
OPCD VRS RA RB XO /
OPCD MO /// /// XO /
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1.6.8 XL-FORM

Figure 11. XL instruction format

1.6.9 XFX-FORM

Figure 12. XFX instruction format

1.6.10 XFL-FORM

Figure 13. XFL instruction format

1.6.11 XS-FORM

Figure 14. XS instruction format

1.6.12 XO-FORM

Figure 15. XO instruction format

1.6.13 A-FORM

Figure 16. A instruction format

1.6.14 M-FORM

Figure 17. M instruction format

1.6.15 MD-FORM

Figure 18. MD instruction format

1.6.16 MDS-FORM

Figure 19. MDS instruction format

1.6.17 VA-FORM

Figure 20. VA instruction format

1.6.18 VC-FORM

Figure 21. VC instruction format

0 6 11 16 21 31

OPCD BT BA BB XO /

OPCD BO BI /// BH XO LK
OPCD BF // BFA // /// XO /
OPCD /// /// /// XO /

0 6 11 21 31

OPCD RT spr XO /

OPCD RT tbr XO /
OPCD RT 0 /// XO /
OPCD RT 1 FXM / XO /

OPCD RT dcr XO /
OPCD RT pmrn XO /
OPCD DUI DUIS XO /

OPCD RS 0 FXM / XO /
OPCD RS 1 FXM / XO /
OPCD RS spr XO /

OPCD RS dcr XO /
OPCD RS pmrn XO /

0 6 7 15 16 21 31

OPCD / FLM / FRB XO Rc

0 6 11 16 21 30 31

OPCD RS RA sh XO sh Rc

0 6 11 16 21 22 31

OPCD RT RA RB OE XO Rc
OPCD RT RA RB / XO Rc

OPCD RT RA /// OE XO Rc

0 6 11 16 21 26 31

OPCD FRT FRA FRB FRC XO Rc

OPCD FRT FRA FRB /// XO Rc
OPCD FRT FRA /// FRC XO Rc
OPCD FRT /// FRB /// XO Rc

OPCD RT RA RB BC XO /

0 6 11 16 21 26 31

OPCD RS RA RB MB ME Rc
OPCD RS RA SH MB ME Rc

0 6 11 16 21 27 30 31

OPCD RS RA sh mb XO sh Rc
OPCD RS RA sh me XO sh Rc

0 6 11 16 21 27 31

OPCD RS RA RB mb XO Rc

OPCD RS RA RB me XO Rc

0 6 11 16 21 26 31

OPCD VRT VRA VRB VRC XO
OPCD VRT VRA VRB / SHB XO

0 6 11 16 21 22 31

OPCD VRT VRA VRB Rc XO
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1.6.19 VX-FORM

Figure 22. VX instruction format

1.6.20 EVX-FORM

Figure 23. EVX instruction format

1.6.21 EVS-FORM

Figure 24.  EVS instruction format

1.6.22 Instruction Fields

AA (30)
Absolute Address bit.

0 The immediate field represents an
address relative to the current instruction
address.  For I-form branches the effective
address of the branch target is the sum of
the LI field sign-extended to 64 bits and
the address of the branch instruction.  For
B-form branches the effective address of
the branch target is the sum of the BD
field sign-extended to 64 bits and the
address of the branch instruction.

1 The immediate field represents an abso-
lute address.  For I-form branches the
effective address of the branch target is
the LI field sign-extended to 64 bits.  For

B-form branches the effective address of
the branch target is the BD field
sign-extended to 64 bits.

BA (11:15)
Field used to specify a bit in the CR to be used as
a source.

BB (16:20)
Field used to specify a bit in the CR to be used as
a source.

BC (21:25)
Field used to specify a bit in the CR to be used as
a source.

BD (16:29)
Immediate field used to specify a 14-bit signed
two’s complement branch displacement which is
concatenated on the right with 0b00 and
sign-extended to 64 bits.

BF (6:8)
Field used to specify one of the CR fields or one of
the FPSCR fields to be used as a target.

BFA (11:13 or 29:31)
Field used to specify one of the CR fields or one of
the FPSCR fields to be used as a source.

BH (19:20)
Field used to specify a hint in the Branch Condi-
tional to Link Register and Branch Conditional to
Count Register instructions. The encoding is
described in Section 2.4, “Branch Instructions”.

BI (11:15)
Field used to specify a bit in the CR to be tested by
a Branch Conditional instruction.

BO (6:10)
Field used to specify options for the Branch Condi-
tional instructions. The encoding is described in
Section 2.4, “Branch Instructions”.

BT (6:10)
Field used to specify a bit in the CR or in the
FPSCR to be used as a target.

CT (7:10)
Field used in X-form instructions to specify a cache
target (see Section 3.2.2 of Book II).

D (16:31)
Immediate field used to specify a 16-bit signed
two’s complement integer which is sign-extended
to 64 bits.

DCR (11:20)
Field used by the Move To/From Device Control
Register instructions (see Book III-E).

DS (16:29)

0 6 11 16 21 31

OPCD VRT VRA VRB XO
OPCD VRT /// VRB XO
OPCD VRT UIM VRB XO
OPCD VRT / UIM VRB XO
OPCD VRT // UIM VRB XO
OPCD VRT /// UIM VRB XO
OPCD VRT SIM /// XO
OPCD VRT /// XO
OPCD /// VRB XO

0 6 11 16 21 31

OPCD RS RA RB XO
OPCD RS RA UI XO
OPCD RT /// RB XO
OPCD RT RA RB XO
OPCD RT RA /// XO
OPCD RT UI RB XO
OPCD BF // RA RB XO
OPCD RT RA UI XO
OPCD RT SI /// XO

0 6 11 16 21 29 31

OPCD RT RA RB XO BFA
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Immediate field used to specify a 14-bit signed
two’s complement integer which is concatenated
on the right with 0b00 and sign-extended to 64
bits.

DUI (6:10)
Field used by the dnh instruction (see Book II).

DUIS (11:20)
Field used by the dnh instruction (see Book II).

E (16)
Field used by the Write MSR External Enable
instruction (see Book III-E).

FLM (7:14)
Field mask used to identify the FPSCR fields that
are to be updated by the mtfsf instruction.

FRA (11:15)
Field used to specify an FPR to be used as a
source.

FRB (16:20)
Field used to specify an FPR to be used as a
source.

FRC (21:25)
Field used to specify an FPR to be used as a
source.

FRS (6:10)
Field used to specify an FPR to be used as a
source.

FRT (6:10)
Field used to specify an FPR to be used as a tar-
get.

FXM (12:19)
Field mask used to identify the CR fields that are to
be written by the mtcrf and mtocrf instructions, or
read by the mfocrf instruction.

L (10 or 15)
Field used to specify whether a fixed-point Com-
pare instruction is to compare 64-bit numbers or
32-bit numbers.

Field used by the Data Cache Block Flush instruc-
tion (see Section 3.2.2 of Book II).

Field used by the Move To Machine State Register
and TLB Invalidate Entry instructions (see Book
III).

L (9:10)
Field used by the Synchronize instruction (see
Section 3.3.1 of Book II).

LEV (20:26)
Field used by the System Call instruction.

LI (6:29)

Immediate field used to specify a 24-bit signed
two’s complement integer which is concatenated
on the right with 0b00 and sign-extended to 64
bits.

LK (31)
LINK bit.

0 Do not set the Link Register.
1 Set the Link Register.  The address of the

instruction following the Branch instruction
is placed into the Link Register.

MB (21:25) and ME (26:30)
Fields used in M-form instructions to specify a
64-bit mask consisting of 1-bits from bit MB+32
through bit ME+32 inclusive and 0-bits elsewhere,
as described in Section 3.3.13, “Fixed-Point Rotate
and Shift Instructions” on page 77.

MB (21:26)
Field used in MD-form and MDS-form instructions
to specify the first 1-bit of a 64-bit mask, as
described in Section 3.3.13, “Fixed-Point Rotate
and Shift Instructions” on page 77.

ME (21:26)
Field used in MD-form and MDS-form instructions
to specify the last 1-bit of a 64-bit mask, as
described in Section 3.3.13, “Fixed-Point Rotate
and Shift Instructions” on page 77.

MO (6:10)
Field used in X-form instructions to specify a sub-
set of storage accesses.

NB (16:20)
Field used to specify the number of bytes to move
in an immediate Move Assist instruction.

OPCD (0:5)
Primary opcode field.

OE (21)
Field used by XO-form instructions to enable set-
ting OV and SO in the XER.

PMRN (11:20)
Field used to specify a Performance Monitor  Reg-
ister for the mfpmr and mtpmr instructions.

RA (11:15)
Field used to specify a GPR to be used as a
source or as a target.

RB (16:20)
Field used to specify a GPR to be used as a
source.

Rc (21 OR 31)
RECORD bit.

0 Do not alter the Condition Register.
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1 Set Condition Register Field 0, Field 1, or
Field 6 as described in Section 2.3.1,
“Condition Register” on page 26.

RS (6:10)
Field used to specify a GPR to be used as a
source.

RT (6:10)
Field used to specify a GPR to be used as a target.

SH (16:20, or 16:20 and 30)
Field used to specify a shift amount.

SHB (22:25)
Field used to specify a shift amount in bytes.

SI (16:31)
Immediate field used to specify a 16-bit signed
integer.

SIM (11:15)
Immediate field used to specify a 5-bit signed inte-
ger.

SPR (11:20)
Field used to specify a Special Purpose Register
for the mtspr and mfspr instructions.

SR (12:15)
Field used by the Segment Register Manipulation
instructions (see Book III-S).

TBR (11:20)
Field used by the Move From Time Base instruc-
tion (see Section 4.2.1 of Book II).

TH (7:10) 
Field used by the data stream variant of the dcbt
and dcbtst instructions (see Section 3.2.2 of Book
II).

TO (6:10)
Field used to specify the conditions on which to
trap. The encoding is described in Section 3.3.10,
“Fixed-Point Trap Instructions” on page 69.

U (16:19)
Immediate field used as the data to be placed into
a field in the FPSCR.

UI (11:15, 16:20, or 16:31)
Immediate field used to specify an unsigned inte-
ger.

UIM (11:15, 12:15, 13:15, 14:15)
Immediate field used to specify an unsigned inte-
ger.

VRA (11:15)
Field used to specify a VR to be used as a source.

VRB (16:20)
Field used to specify a VR to be used as a source.

VRC (21:25)
Field used to specify a VR to be used as a source.

VRS (6:10)
Field used to specify a VR to be used as a source.

VRT (6:10)
Field used to specify a VR to be used as a target.

XO (21:28, 21:29, 21:30, 21:31, 22:30, 22:31,  26:30, 
26:31, 27:29, 27:30, or 30:31)

Extended opcode field.

1.7 Classes of Instructions
An instruction falls into exactly one of the following
three classes:

Defined
Illegal
Reserved

The class is determined by examining the opcode, and
the extended opcode if any.  If the opcode, or combina-
tion of opcode and extended opcode, is not that of a
defined instruction or of a reserved instruction, the
instruction is illegal.

1.7.1 Defined Instruction Class
This class of instructions contains all the instructions
defined in this document.

A defined instruction can have preferred and/or invalid
forms, as described in Section 1.8.1, “Preferred Instruc-
tion Forms” and Section 1.8.2, “Invalid Instruction
Forms”. Instructions that are part of a category that is
not supported are treated as illegal instructions.

1.7.2 Illegal Instruction Class
This class of instructions contains the set of instruc-
tions described in Appendix D of Book Appendices. Ille-
gal instructions are available for future extensions of
the Power ISA ; that is, some future version of the
Power ISA may define any of these instructions to per-
form new functions.

Any attempt to execute an illegal instruction will cause
the system illegal instruction error handler to be
invoked and will have no other effect.

An instruction consisting entirely of binary 0s is guaran-
teed always to be an illegal instruction.  This increases
the probability that an attempt to execute data or unini-
tialized storage will result in the invocation of the sys-
tem illegal instruction error handler.
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1.7.3 Reserved Instruction Class
This class of instructions contains the set of instruc-
tions described in Appendix E of Book Appendices.

Reserved instructions are allocated to specific pur-
poses that are outside the scope of the Power ISA.

Any attempt to execute a reserved instruction will:

� perform the actions described by the implementa-
tion if the instruction is implemented; or

� cause the system illegal instruction error handler to
be invoked if the instruction is not implemented.

1.8 Forms of Defined Instruc-
tions

1.8.1 Preferred Instruction Forms
Some of the defined instructions have preferred forms.
For such an instruction, the preferred form will execute
in an efficient manner, but any other form may take sig-
nificantly longer to execute than the preferred form.

Instructions having preferred forms are:

� the Condition Register Logical instructions
� the Load/Store Multiple instructions
� the Load/Store String instructions
� the Or Immediate instruction (preferred form of

no-op)
� the  Move To Condition Register Fields instruction

1.8.2 Invalid Instruction Forms
Some of the defined instructions can be coded in a
form that is invalid.  An instruction form is invalid if one
or more fields of the instruction, excluding the opcode
field(s), are coded incorrectly in a manner that can be
deduced by examining only the instruction encoding.

In general, any attempt to execute an invalid form of an
instruction will either cause the system illegal instruc-
tion error handler to be invoked or yield boundedly
undefined results.  Exceptions to this rule are stated in
the instruction descriptions. 

Some instruction forms are invalid because the instruc-
tion contains a reserved value in a defined field (see
Section 1.3.3 on page 5); these invalid forms are not
discussed further. All other invalid forms are identified
in the instruction descriptions.

References to instructions elsewhere in this document
assume the instruction form is not invalid, unless other-
wise stated or obvious from context.

  

1.9 Exceptions
There are two kinds of exception, those caused directly
by the execution of an instruction and those caused by
an asynchronous event. In either case, the exception
may cause one of several components of the system
software to be invoked.

The exceptions that can be caused directly by the exe-
cution of an instruction include the following:

� an attempt to execute an illegal instruction, or an
attempt by an application program to execute a
“privileged” instruction (see Book III) (system ille-
gal instruction error handler or system privileged
instruction error handler)

� the execution of a defined instruction using an
invalid form (system illegal instruction error handler
or system privileged instruction error handler)

� an attempt to execute an instruction that is not pro-
vided by the implementation (system illegal
instruction error handler)

� an attempt to access a storage location that is
unavailable (system instruction storage error han-
dler or system data storage error handler)

� an attempt to access storage with an effective
address alignment that is invalid for the instruction
(system alignment error handler)

� the execution of a System Call instruction (system
service program)

� the execution of a Trap instruction that traps (sys-
tem trap handler)

� the execution of a floating-point instruction that
causes a floating-point enabled exception to exist
(system floating-point enabled exception error han-
dler)

� the execution of an auxiliary processor instruction
that causes an auxiliary processor enabled excep-
tion to exist (system auxiliary processor enabled
exception error handler)

The exceptions that can be caused by an asynchro-
nous event are described in Book III.

The invocation of the system error handler is precise,
except that the invocation of the auxiliary processor
enabled exception error handler may be imprecise, and
if one of the imprecise modes for invoking the system
floating-point enabled exception error handler is in
effect (see page 103), then the invocation of the system
floating-point enabled exception error handler may also
be imprecise. When the system error handler is invoked

Assemblers should report uses of invalid instruc-
tion forms as errors.

Assembler Note
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imprecisely, the excepting instruction does not appear
to complete before the next instruction starts (because
one of the effects of the excepting instruction, namely
the invocation of the system error handler, has not yet
occurred).

Additional information about exception handling can be
found in Book III.

1.10 Storage Addressing
A program references storage using the effective
address computed by the processor when it executes a
Storage Access or Branch instruction (or certain other
instructions described in Book II and Book III), or when
it fetches the next sequential instruction.

Bytes in storage are numbered consecutively starting
with 0. Each number is the address of the correspond-
ing byte. 

The byte ordering (Big-Endian or Little-Endian) for a
storage access is specified by the operating system.  In
the Embedded environment this ordering is a page
attribute (see Book II) and is specified independently
for each virtual page, while in the Server environment it
is a mode (see Book III-S) and applies to all storage.

1.10.1 Storage Operands
Storage operands may be bytes, halfwords, words,
doublewords, or quadwords (see book III), or, for the
Load/Store Multiple and Move Assist instructions, a
sequence of bytes or words. The address of a storage
operand is the address of its first byte (i.e., of its low-
est-numbered byte). 

Operand length is implicit for each instruction.

The operand of a single-register Storage Access
instruction, or of a quadword Load or Store instruction,
has a “natural” alignment boundary equal to the oper-
and length. In other words, the “natural” address of an
operand is an integral multiple of the operand length. A
storage operand is said to be aligned if it is aligned at
its natural boundary; otherwise it is said to be
unaligned. See the following table.  

The concept of alignment is also applied more gener-
ally, to any datum in storage. For example, a 12-byte
datum in storage is said to be word-aligned if its
address is an integral multiple of 4.

Some instructions require their storage operands to
have certain alignments. In addition, alignment may
affect performance. For single-register Storage Access
instructions, and for quadword Load and Store instruc-
tions, the best performance is obtained when storage
operands are aligned. Additional effects of data place-

Operand Length Addr60:63 if aligned
 Byte  8 bits  xxxx

 Halfword  2 bytes  xxx0

 Word  4 bytes  xx00

 Doubleword  8 bytes  x000

 Quadword  16 bytes  0000

Note:  An “x” in an address bit position indicates that 
the bit can be 0 or 1 independent of the contents of 
other bits in the address.
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ment on performance are described in Chapter 2 of
Book II.

When a storage operand of length N bytes starting at
effective address EA is copied between storage and a
register that is R bytes long (i.e., the register contains
bytes numbered from 0, most significant, through R-1,
least significant), the bytes of the operand are placed
into the register or into storage in a manner that
depends on the byte ordering for the storage access as
shown in Figure 25, unless otherwise specified in the
instruction description. 

Figure 25. Storage operands and byte ordering

Figure 26 shows an example of a C language
structure s containing an assortment of scalars and
one character string. The value assumed to be in each
structure element is shown in hex in the C comments;
these values are used below to show how the bytes
making up each structure element are mapped into
storage. It is assumed that structure s is compiled for
32-bit mode or for a 32-bit implementation. (This affects
the length of the pointer to c.)

C structure mapping rules permit the use of padding
(skipped bytes) in order to align the scalars on desir-
able boundaries. Figures 27 and 28 show each scalar
aligned at its natural boundary. This alignment intro-
duces padding of four bytes between a and b, one byte
between d and e, and two bytes between e and f. The
same amount of padding is present for both Big-Endian
and Little-Endian mappings.

The Big-Endian mapping of structure s is shown in
Figure 27. Addresses are shown in hex at the left of
each doubleword, and in small figures below each byte.
The contents of each byte, as indicated in the C exam-
ple in Figure 26, are shown in hex (as characters for the
elements of the string).

The Little-Endian mapping of structure s is shown in
Figure 28. Doublewords are shown laid out from right to
left, which is the common way of showing storage maps
for processors that implement only Little-Endian byte
ordering.

Figure 26. C structure ‘s’, showing values of
elements

Figure 27. Big-Endian mapping of structure ‘s’

Figure 28. Little-Endian mapping of structure ‘s’

Big-Endian Byte Ordering
 Load Store

for i=0 to N-1:
RT(R-N)+i� MEM(EA+i,1)

for i=0 to N-1:
MEM(EA+i,1) � (RS)(R-N)+i

 Little-Endian Byte Ordering
 Load Store

for i=0 to N-1:
RT(R-1)-i � MEM(EA+i,1)

for i=0 to N-1:
MEM(EA+i,1) � (RS)(R-1)-i

Notes:
1. In this table, subscripts refer to bytes in a register 

rather than to bits as defined in Section 1.3.2.
2. This table does not apply to the lvebx, lvehx, 

lvewx, stvebx, stvehx, and stvewx instructions.

struct {
int a; /*  0x1112_1314 word */
double b; /*  0x2122_2324_2526_2728 doubleword */
char * c; /*  0x3132_3334 word */
char d[7]; /*  ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’ array of bytes */
short e; /*  0x5152 halfword */
int f; /*  0x6162_6364 word */

} s;

12
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01 02 03 04 05 06 07

21 22 23 24 25 26 27 28

08 09 0A 0B 0C 0D 0E 0F

31 32 33 34 ‘A’ ‘B’ ‘C’ ‘D’

10 11 12 13 14 15 16 17
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18 19 1A 1B 1C 1D 1E 1F
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06 05 04 03 02 01 00

21 22 23 24 25 26 27 28
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‘D’ ‘C’ ‘B’ ‘A’
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1F 1E 1D 1C 1B 1A 19 18
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23 22 21 20

00

08

10

18

20

31 32 33 34
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1.10.2 Instruction Fetches
Instructions are always four bytes long and
word-aligned (except for VLE instructions; see Book
VLE).

When an instruction starting at effective address EA is
fetched from storage, the relative order of the bytes
within the instruction depend on the byte ordering for
the storage access as shown in Figure 29. 

Figure 29. Instructions and byte ordering

Figure 30 shows an example of a small assembly lan-
guage program p.

loop:
cmplwi r5,0
beq done
lwzux r4,r5,r6
add r7,r7,r4
subi r5,r5,4
b loop

done:
stw r7,total

Figure 30. Assembly language program ‘p’

The Big-Endian mapping of program p is shown in
Figure 31 (assuming the program starts at address 0).

Figure 31. Big-Endian mapping of program ‘p’

The Little-Endian mapping of program p is shown in
Figure 32.

Figure 32. Little-Endian mapping of program ‘p’
Big-Endian Byte Ordering

for i=0 to 3:
insti � MEM(EA+i,1)

 Little-Endian Byte Ordering

for i=0 to 3:
inst3-i  � MEM(EA+i,1)
Note: In this table, subscripts refer to 

bytes of the instruction rather than 
to bits as defined in Section 1.3.2.

08 09 0A 0B 0C 0D 0E 0F

00

08

00 01 02 03 04 05 06 07

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

10

18

loop: cmplwi r5,0 beq done

lwzux r4,r5,r6 add r7,r7,r4

subi r5,r5,4 b loop

done: stw r7,total

0F 0E 0D 0C 0B 0A 09 08

00

08
07 06 05 04 03 02 01 00

17 16 15 14 13 12 11 10

1F 1E 1D 1C 1B 1A 19 18

10

18

loop: cmplwi r5,0beq done

lwzux r4,r5,r6add r7,r7,r4

subi r5,r5,4b loop

done: stw r7,total
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Programming Note

The terms Big-Endian and Little-Endian come from
Part I, Chapter 4, of Jonathan Swift’s Gulliver’s Travels.
Here is the complete passage, from the edition printed
in 1734 by George Faulkner in Dublin.

... our Histories of six Thousand Moons make no
Mention of any other Regions, than the two great
Empires of Lilliput and Blefuscu. Which two mighty
Powers have, as I was going to tell you, been
engaged in a most obstinate War for six and thirty
Moons past. It began upon the following Occasion.
It is allowed on all Hands, that the primitive Way of
breaking Eggs before we eat them, was upon the
larger End: But his present Majesty’s Grand-father,
while he was a Boy, going to eat an Egg, and
breaking it according to the ancient Practice, hap-
pened to cut one of his Fingers. Whereupon the
Emperor his Father, published an Edict, command-
ing all his Subjects, upon great Penalties, to break
the smaller End of their Eggs. The People so
highly resented this Law, that our Histories tell us,
there have been six Rebellions raised on that
Account; wherein one Emperor lost his Life, and
another his Crown. These civil Commotions were
constantly fomented by the Monarchs of Blefuscu;
and when they were quelled, the Exiles always fled
for Refuge to that Empire. It is computed that
eleven Thousand Persons have, at several Times,
suffered Death, rather than submit to break their
Eggs at the smaller End. Many hundred large Vol-
umes have been published upon this Controversy:
But the Books of the Big-Endians have been long

forbidden, and the whole Party rendered incapable
by Law of holding Employments. During the
Course of these Troubles, the Emperors of Ble-
fuscu did frequently expostulate by their Ambassa-
dors, accusing us of making a Schism in Religion,
by offending against a fundamental Doctrine of our
great Prophet Lustrog, in the fifty-fourth Chapter of
the Brundrecal, (which is their Alcoran.) This, how-
ever, is thought to be a mere Strain upon the text:
For the Words are these; That all true Believers
shall break their Eggs at the convenient End: and
which is the convenient End, seems, in my humble
Opinion, to be left to every Man’s Conscience, or at
least in the Power of the chief Magistrate to deter-
mine. Now the Big-Endian Exiles have found so
much Credit in the Emperor of Blefuscu’s Court;
and so much private Assistance and Encourage-
ment from their Party here at home, that a bloody
War has been carried on between the two Empires
for six and thirty Moons with various Success; dur-
ing which Time we have lost Forty Capital Ships,
and a much greater Number of smaller Vessels,
together with thirty thousand of our best Seamen
and Soldiers; and the Damage received by the
Enemy is reckoned to be somewhat greater than
ours. However, they have now equipped a numer-
ous Fleet, and are just preparing to make a
Descent upon us: and his Imperial Majesty, placing
great Confidence in your Valour and Strength, hath
commanded me to lay this Account of his Affairs
before you.

1.10.3 Effective Address Calcula-
tion
An effective address is computed by the processor
when executing a Storage Access or Branch instruction
(or certain other instructions described in Book II, Book
III, and Book VLE) when fetching the next sequential
instruction, or when invoking a system error handler.
The following provides an overview of this process.
More detail is provided in the individual instruction
descriptions.

Effective address calculations, for both data and
instruction accesses, use 64-bit two’s complement
addition. All 64 bits of each address component partici-
pate in the calculation regardless of mode (32-bit or
64-bit). In this computation one operand is an address
(which is by definition an unsigned number) and the
second is a signed offset. Carries out of the most signif-
icant bit are ignored.

In 64-bit mode, the entire 64-bit result comprises the
64-bit effective address. The effective address arith-
metic wraps around from the maximum address,
264 - 1, to address 0, except that if the current instruc-
tion is at effective address 264 - 4 the effective address
of the next sequential instruction is undefined.

In 32-bit mode, the low-order 32 bits of the 64-bit result,
preceded by 32 0 bits, comprise the 64-bit effective
address for the purpose of addressing storage. When
an effective address is placed into a register by an
instruction or event, the value placed into the high-order
32 bits of the register differs between the Server envi-
ronment and the Embedded environment.
� Server environment:

- Load with Update and Store with Update
instructions set the high-order 32 bits of regis-
ter RA to the high-order 32 bits of the 64-bit
result. 

- In all other cases (e.g., the Link Register when
set by Branch instructions having LK=1, Spe-
cial Purpose Registers when set to an effec-
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tive address by invocation of a system error
handler) the high-order 32 bits of the register
are set to 0s except as described in the last
sentence of this paragraph.

� Embedded environment:
The high-order 32 bits of the register are set to an
undefined value.

As used to address storage, the effective address arith-
metic appears to wrap around from the maximum
address, 232 - 1, to address 0, except that if the current
instruction is at effective address 232 - 4 the effective
address of the next sequential instruction is undefined.

The 64-bit current instruction address is not affected by
a change from 32-bit mode to 64-bit mode, but is
affected by a change from 64-bit mode to 32-bit mode.
In the latter case, the high-order 32 bits are set to 0.
The same is true for the 64-bit next instruction address,
except as described in the last item of the list below.

RA is a field in the instruction which specifies an
address component in the computation of an effective
address.  A zero in the RA field indicates the absence
of the corresponding address component.  A value of
zero is substituted for the absent component of the
effective address computation.  This substitution is
shown in the instruction descriptions as (RA|0).

Effective addresses are computed as follows. In the
descriptions below, it should be understood that “the
contents of a GPR” refers to the entire 64-bit contents,
independent of mode, but that in 32-bit mode only bits
32:63 of the 64-bit result of the computation are used to
address storage.

� With X-form instructions, in computing the effective
address of a data element, the contents of the
GPR designated by RB (or the value zero for lswi
and stswi) are added to the contents of the GPR
designated by RA or to zero if RA=0.

� With D-form instructions, the 16-bit D field is
sign-extended to form a 64-bit address compo-
nent.  In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0.

� With DS-form instructions, the 14-bit DS field is
concatenated on the right with 0b00 and
sign-extended to form a 64-bit address compo-
nent.  In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0.

� With I-form Branch instructions, the 24-bit LI field is
concatenated on the right with 0b00 and
sign-extended to form a 64-bit address compo-
nent. If AA=0, this address component is added to
the address of the Branch instruction to form the
effective address of the next instruction. If AA=1,

this address component is the effective address of
the next instruction.

� With B-form Branch instructions, the 14-bit BD field
is concatenated on the right with 0b00 and
sign-extended to form a 64-bit address compo-
nent.  If AA=0, this address component is added to
the address of the Branch instruction to form the
effective address of the next instruction.  If AA=1,
this address component is the effective address of
the next instruction.

� With XL-form Branch instructions, bits 0:61 of the
Link Register or the Count Register are concate-
nated on the right with 0b00 to form the effective
address of the next instruction.

� With sequential instruction fetching, the value 4 is
added to the address of the current instruction to
form the effective address of the next instruction,
except that if the current instruction is at the maxi-
mum instruction effective address for the mode
(264 - 4 in 64-bit mode, 232 - 4 in 32-bit mode) the
effective address of the next sequential instruction
is undefined. (There is one other exception to this
rule; this exception involves changing between
32-bit mode and 64-bit mode and is described in
Section 5.3.2 of Book III-S and Section 4.3.2 of
Book III-E.)

If the size of the operand of a storage access instruc-
tion is more than one byte, the effective address for
each byte after the first is computed by adding 1 to the
effective address of the preceding byte.
Power ISA™ -- Book I24



   Version 2.04
Chapter 2.  Branch Processor

2.1 Branch Processor Overview . . . . . . 25
2.2 Instruction Execution Order  . . . . . . 25
2.3 Branch Processor Registers . . . . . . 26
2.3.1 Condition Register . . . . . . . . . . . . 26
2.3.2 Link Register . . . . . . . . . . . . . . . . 27
2.3.3 Count Register. . . . . . . . . . . . . . . 27
2.4 Branch Instructions. . . . . . . . . . . . . 27

2.5 Condition Register Instructions . . . . 33
2.5.1 Condition Register Logical Instruc-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.2 Condition Register Field Instruction . 

34
2.6  System Call Instruction  . . . . . . . . . 35

2.1 Branch Processor Overview
This chapter describes the registers and instructions
that make up the Branch Processor facility.

2.2 Instruction Execution Order
In general, instructions appear to execute sequentially,
in the order in which they appear in storage.  The
exceptions to this rule are listed below.

� Branch instructions for which the branch is taken
cause execution to continue at the target address
specified by the Branch instruction.

� Trap instructions for which the trap conditions are
satisfied, and System Call instructions, cause the
appropriate system handler to be invoked.

� Exceptions can cause the system error handler to
be invoked, as described in Section 1.9, “Excep-
tions” on page 19.

� Returning from a system service program, system
trap handler, or system error handler causes exe-
cution to continue at a specified address.

The model of program execution in which the processor
appears to execute one instruction at a time, complet-
ing each instruction before beginning to execute the
next instruction is called the “sequential execution
model”.  In general, the processor obeys the sequential
execution model.  For the instructions and facilities
defined in this Book, the only exceptions to this rule are
the following.

� A floating-point exception occurs when the proces-
sor is running in one of the Imprecise floating-point
exception modes (see Section 4.4). The instruction

that causes the exception need not complete
before the next instruction begins execution, with
respect to setting exception bits and (if the excep-
tion is enabled) invoking the system error handler.

� A Store instruction modifies one or more bytes in
an area of storage that contains instructions that
will subsequently be executed.  Before an instruc-
tion in that area of storage is executed, software
synchronization is required to ensure that the
instructions executed are consistent with the
results produced by the Store instruction.

  

This software synchronization will generally be
provided by system library programs (see
Section 1.8 of Book II). Application programs
should call the appropriate system library pro-
gram before attempting to execute modified
instructions.

Programming Note
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2.3 Branch Processor Registers

2.3.1 Condition Register
The Condition Register (CR) is a 32-bit register which
reflects the result of certain operations, and provides a
mechanism for testing (and branching).

Figure 33. Condition Register

The bits in the Condition Register are grouped into
eight 4-bit fields, named CR Field 0 (CR0), ..., CR Field
7 (CR7), which are set in one of the following ways.

� Specified fields of the CR can be set by a move to
the CR from a GPR (mtcrf, mtocrf).

� A specified field of the CR can be set by a move to
the CR from another CR field (mcrf), from
XER32:35 (mcrxr),  or from the FPSCR (mcrfs).

� CR Field 0 can be set as the implicit result of a
fixed-point instruction.

� CR Field 1 can be set as the implicit result of a
floating-point instruction.

� CR Field 6 can be set as the implicit result of a
vector instruction.

� A specified CR field can be set as the result of  a
Compare instruction.

Instructions are provided to perform logical operations
on individual CR bits and to test individual CR bits.

For all fixed-point instructions in which Rc=1, and for
addic., andi., and andis., the first three bits of CR Field
0 (bits 32:34 of the Condition Register) are set by
signed comparison of the result to zero, and the fourth
bit of CR Field 0 (bit 35 of the Condition Register) is
copied from the SO field of the XER.  “Result” here
refers to the entire 64-bit value placed into the target
register in 64-bit mode, and to bits 32:63 of the 64-bit
value placed into the target register in 32-bit mode.

if (64-bit mode)
  then M � 0
  else M � 32
if      (target_register)M:63 < 0 then c � 0b100
else if (target_register)M:63 > 0 then c � 0b010
else                                     c � 0b001
CR0 � c || XERSO

If any portion of the result is undefined, then the value
placed into the first three bits of CR Field 0 is unde-
fined.

The bits of CR Field 0 are interpreted as follows.

Bit Description

0 Negative (LT)
The result is negative.

1 Positive (GT)
The result is positive.

2 Zero (EQ)
The result is zero.

3 Summary Overflow (SO)
This is a copy of the contents of XERSO at the
completion of the instruction.

The stwcx. and stdcx. instructions (see Section 3.3.2,
“Load and Reserve and Store Conditional Instructions”,
in Book II) also set CR Field 0.

For all floating-point instructions in which Rc=1, CR
Field 1 (bits 36:39 of the Condition Register) is set to
the Floating-Point exception status, copied from bits 0:3
of the Floating-Point Status and Control Register. This
occurs regardless of whether any exceptions are
enabled, and regardless of whether the writing of the
result is suppressed (see Section 4.4, “Floating-Point
Exceptions” on page 102). These bits are interpreted
as follows.

Bit Description

0 Floating-Point Exception Summary (FX)
This is a copy of the contents of FPSCRFX at
the completion of the instruction.

1 Floating-Point Enabled Exception Sum-
mary (FEX)
This is a copy of the contents of FPSCRFEX at
the completion of the instruction.

2 Floating-Point Invalid Operation Exception
Summary (VX)
This is a copy of the contents of FPSCRVX at
the completion of the instruction.

3 Floating-Point Overflow Exception (OX)
This is a copy of the contents of FPSCROX at
the completion of the instruction.

For Compare instructions, a specified CR field is set to
reflect the result of the comparison. The bits of the
specified CR field are interpreted as follows. A com-
plete description of how the bits are set is given in the
instruction descriptions in Section 3.3.9, “Fixed-Point
Compare Instructions” on page 67, Section 4.6.7,
“Floating-Point Compare Instructions” on page 129,
and Section 6.3.9, “SPE Instruction Set” on page 208.

Bit Description

0 Less Than, Floating-Point Less Than (LT,
FL)
For fixed-point Compare instructions, (RA) <
SI or (RB) (signed comparison) or (RA) <u UI
or (RB) (unsigned comparison).  For floating-
point Compare instructions, (FRA) < (FRB).

CR
32                                                    63
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1 Greater Than, Floating-Point Greater Than
(GT, FG)
For fixed-point Compare instructions, (RA) >
SI or (RB) (signed comparison) or (RA) >u UI
or (RB) (unsigned comparison).  For floating-
point Compare instructions, (FRA) > (FRB).

2 Equal, Floating-Point Equal (EQ, FE)
For fixed-point Compare instructions, (RA) =
SI, UI, or (RB).  For floating-point Compare
instructions, (FRA) = (FRB).

3 Summary Overflow, Floating-Point Unor-
dered (SO,FU)
For fixed-point Compare instructions, this is a
copy of the contents of XERSO at the comple-
tion of the instruction. For floating-point Com-
pare instructions, one or both of (FRA) and
(FRB) is a NaN.

2.3.2 Link Register
The Link Register (LR) is a 64-bit register. It can be
used to provide the branch target address for the
Branch Conditional to Link Register instruction, and it
holds the return address after Branch instructions for
which LK=1.

Figure 34. Link Register

2.3.3 Count Register
The Count Register (CTR) is a 64-bit register. It can be
used to hold a loop count that can be decremented dur-
ing execution of Branch instructions that contain an
appropriately coded BO field. If the value in the Count
Register is 0 before being decremented, it is -1 after-
ward. The Count Register can also be used to provide
the branch target address for the Branch Conditional to
Count Register instruction.

Figure 35. Count Register

2.4 Branch Instructions
The sequence of instruction execution can be changed
by the Branch instructions.  Because all instructions are
on word boundaries, bits 62 and 63 of the generated
branch target address are ignored by the processor in
performing the branch.

The Branch instructions compute the effective address
(EA) of the target in one of the following four ways, as
described in Section 1.10.3, “Effective Address Calcu-
lation” on page 23.

1. Adding a displacement to the address of the
Branch instruction (Branch or Branch Conditional
with AA=0).

2. Specifying an absolute address (Branch or Branch
Conditional with AA=1).

3. Using the address contained in the Link Register
(Branch Conditional to Link Register).

4. Using the address contained in the Count Register
(Branch Conditional to Count Register).

In all four cases, in 32-bit mode the final step in the
address computation is setting the high-order 32 bits of
the target address to 0.

For the first two methods, the target addresses can be
computed sufficiently ahead of the Branch instruction
that instructions can be prefetched along the target
path.  For the third and fourth methods, prefetching
instructions along the target path is also possible pro-
vided the Link Register or the Count Register is loaded
sufficiently ahead of the Branch instruction.

Branching can be conditional or unconditional, and the
return address can optionally be provided.  If the return
address is to be provided (LK=1), the effective address
of the instruction following the Branch instruction is
placed into the Link Register after the branch target
address has been computed; this is done regardless of
whether the branch is taken.

For Branch Conditional instructions, the BO field speci-
fies the conditions under which the branch is taken, as
shown in Figure 36. In the figure, M=0 in 64-bit mode
and M=32 in 32-bit mode.

LR
0                                                                                                                   63

CTR
0                                                                                                                     63
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Figure 36. BO field encodings

The “a” and “t” bits of the BO field can be used by soft-
ware to provide a hint about whether the branch is likely
to be taken or is likely not to be taken, as shown in
Figure 37.

Figure 37. “at” bit encodings

  

For Branch Conditional to Link Register and Branch
Conditional to Count Register instructions, the BH field

provides a hint about the use of the instruction, as
shown in Figure 38.

Figure 38. BH field encodings

  

Extended mnemonics for branches
Many extended mnemonics are provided so that
Branch Conditional instructions can be coded with por-
tions of the BO and BI fields as part of the mnemonic
rather than as part of a numeric operand. Some of
these are shown as examples with the Branch instruc-
tions. See Appendix D for additional extended mne-
monics.

  

BO Description

0000z Decrement the CTR, then branch if the dec-
remented CTRM:63≠0 and CRBI=0

0001z Decrement the CTR, then branch if the dec-
remented CTRM:63=0 and CRBI=0

001at Branch if CRBI=0

0100z Decrement the CTR, then branch if the dec-
remented CTRM:63≠0 and CRBI=1

0101z Decrement the CTR, then branch if the dec-
remented CTRM:63=0 and CRBI=1

011at Branch if CRBI=1

1a00t Decrement the CTR, then branch if the dec-
remented CTRM:63≠0

1a01t Decrement the CTR, then branch if the dec-
remented CTRM:63=0

1z1zz Branch always

Notes:
1. “z” denotes a bit that is ignored.
2. The “a” and “t” bits are used as described below.

at Hint

00 No hint is given

01 Reserved

10 The branch is very likely not to be taken

11 The branch is very likely to be taken

Many implementations have dynamic mechanisms
for predicting whether a branch will be taken.
Because the dynamic prediction is likely to be very
accurate, and is likely to be overridden by any hint
provided by the “at” bits, the “at” bits should be set
to 0b00 unless the static prediction implied by
at=0b10 or at=0b11 is highly likely to be correct.

Programming Note

BH Hint

00 bclr[l]: The instruction is a subroutine
return

bcctr[l]: The instruction is not a subroutine
return; the target address is likely to
be the same as the target address
used the preceding time the branch
was taken

01 bclr[l]: The instruction is not a subroutine
return; the target address is likely to
be the same as the target address
used the preceding time the branch
was taken

bcctr[l]: Reserved

10 Reserved

11 bclr[l] and bcctr[l]: The target address is not 
predictable

The hint provided by the BH field is independent of
the hint provided by the “at” bits (e.g., the BH field
provides no indication of whether the branch is
likely to be taken).

The hints provided by the “at” bits and by the BH
field do not affect the results of executing the
instruction.

The “z” bits should be set to 0, because they may
be assigned a meaning in some future version of
the architecture.

Programming Note

Programming Note
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Programming Note

Many implementations have dynamic mechanisms for
predicting the target addresses of bclr[l] and bcctr[l]
instructions.  These mechanisms may cache return
addresses (i.e., Link Register values set by Branch
instructions for which LK=1 and for which the branch
was taken) and recently used branch target addresses.
To obtain the best performance across the widest range
of implementations, the programmer should obey the
following rules.

� Use Branch instructions for which LK=1 only as
subroutine calls (including function calls, etc.).

� Pair each subroutine call (i.e., each Branch instruc-
tion for which LK=1 and the branch is taken) with a
bclr instruction that returns from the subroutine
and has BH=0b00.

� Do not use bclrl as a subroutine call.  (Some
implementations access the return address cache
at most once per instruction; such implementations
are likely to treat bclrl as a subroutine return, and
not as a subroutine call.)

� For bclr[l] and bcctr[l], use the appropriate value
in the BH field.

The following are examples of programming conven-
tions that obey these rules.  In the examples, BH is
assumed to contain 0b00 unless otherwise stated. In
addition, the “at” bits are assumed to be coded appro-
priately.

Let A, B, and Glue be specific programs.

� Loop counts:
Keep them in the Count Register, and use a bc
instruction (LK=0) to decrement the count and to
branch back to the beginning of the loop if the dec-
remented count is nonzero.

� Computed goto’s, case statements, etc.:
Use the Count Register to hold the address to
branch to, and use a bcctr instruction (LK=0, and
BH=0b11 if appropriate) to branch to the selected
address.

� Direct subroutine linkage:
Here A calls B and B returns to A.  The two
branches should be as follows.
- A calls B: use a bl or bcl instruction (LK=1).
- B returns to A: use a bclr instruction (LK=0)

(the return address is in, or can be restored to,
the Link Register).

� Indirect subroutine linkage:
Here A calls Glue, Glue calls B, and B returns to A
rather than to Glue.  (Such a calling sequence is
common in linkage code used when the subroutine
that the programmer wants to call, here B, is in a
different module from the caller; the Binder inserts
“glue” code to mediate the branch.)  The three
branches should be as follows.

- A calls Glue: use a bl or bcl instruction
(LK=1).

- Glue calls B: place the address of B into the
Count Register, and use a bcctr instruction
(LK=0).

- B returns to A: use a bclr instruction (LK=0)
(the return address is in, or can be restored to,
the Link Register).

� Function call:
Here A calls a function, the identity of which may
vary from one instance of the call to another,
instead of calling a specific program B.  This case
should be handled using the conventions of the
preceding two bullets, depending on whether the
call is direct or indirect, with the following differ-
ences.

- If the call is direct, place the address of the
function into the Count Register, and use a
bcctrl instruction (LK=1) instead of a bl or bcl
instruction.

- For the bcctr[l] instruction that branches to
the function, use BH=0b11 if appropriate.
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The bits corresponding to the current “a” and “t”
bits, and to the current “z” bits except in the “branch
always” BO encoding, had different meanings in
versions of the architecture that precede Version
2.00.
� The bit corresponding to the “t” bit was called

the “y” bit. The “y” bit indicated whether to use
the architected default prediction (y=0) or to
use the complement of the default prediction
(y=1).  The default prediction was defined as
follows.

- If the instruction is bc[l][a] with a negative
value in the displacement field, the branch
is taken.  (This is the only case in which
the prediction corresponding to the “y” bit
differs from the prediction corresponding
to the “t” bit.)

- In all other cases (bc[l][a] with a nonnega-
tive value in the displacement field, bclr[l],
or bcctr[l]), the branch is not taken.

� The BO encodings that test both the Count
Register and the Condition Register had a “y”
bit in place of the current “z” bit.  The meaning
of the “y” bit was as described in the preceding
item.

� The “a” bit was a “z” bit.

Because these bits have always been defined
either to be ignored or to be treated as hints, a
given program will produce the same result on any
implementation regardless of the values of the bits.
Also, because even the “y” bit is ignored, in prac-
tice, by most processors that comply with versions
of the architecture that precede Version 2.00, the
performance of a given program on those proces-
sors will not be affected by the values of the bits.

Compatibility Note
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Branch I-form

b target_addr (AA=0 LK=0)
ba target_addr (AA=1 LK=0)
bl target_addr (AA=0 LK=1)
bla target_addr (AA=1 LK=1)

if AA then NIA �iea EXTS(LI || 0b00)
else       NIA �iea CIA + EXTS(LI || 0b00)
if LK then LR �iea CIA + 4

target_addr specifies the branch target address.

If AA=0 then the branch target address is the sum of
LI || 0b00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch tar-
get address set to 0 in 32-bit mode.

If AA=1 then the branch target address is the value
LI || 0b00 sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
LR (if LK=1)

Branch Conditional B-form

bc BO,BI,target_addr (AA=0 LK=0)
bca BO,BI,target_addr (AA=1 LK=0)
bcl BO,BI,target_addr (AA=0 LK=1)
bcla BO,BI,target_addr (AA=1 LK=1)

if (64-bit mode)
  then M � 0
  else M � 32
if ¬BO2 then CTR � CTR - 1
ctr_ok � BO2 | ((CTRM:63 ≠ 0) ⊕  BO3)
cond_ok � BO0 | (CRBI+32 ≡ BO1)
if ctr_ok & cond_ok then
  if AA then NIA �iea EXTS(BD || 0b00)
  else       NIA �iea CIA + EXTS(BD || 0b00)
if LK then LR �iea CIA + 4

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 36. target_addr specifies the branch target
address.

If AA=0 then the branch target address is the sum of
BD || 0b00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch tar-
get address set to 0 in 32-bit mode.

If AA=1 then the branch target address is the value
BD || 0b00 sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO2=0)
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional:

18 LI AA LK
0 6 30 31

16 BO BI BD AA LK
0 6 11 16 30 31

Extended: Equivalent to:
blt target bc 12,0,target
bne cr2,target bc 4,10,target
bdnz target bc 16,0,target
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Branch Conditional to Link Register
XL-form

bclr BO,BI,BH (LK=0)
bclrl BO,BI,BH (LK=1)

if (64-bit mode)
  then M � 0
  else M � 32
if ¬BO2 then CTR � CTR - 1
ctr_ok � BO2 | ((CTRM:63 ≠ 0) ⊕  BO3
cond_ok � BO0 | (CRBI+32 ≡ BO1)
if ctr_ok & cond_ok then NIA �iea LR0:61 || 0b00
if LK then LR �iea CIA + 4

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 36. The BH field is used as described in
Figure 38. The branch target address is LR0:61 || 0b00,
with the high-order 32 bits of the branch target address
set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO2=0)
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional to Link Register:

  

Branch Conditional to Count Register
XL-form

bcctr BO,BI,BH (LK=0)
bcctrl BO,BI,BH (LK=1)

cond_ok � BO0 | (CRBI+32 ≡ BO1)
if cond_ok then NIA �iea CTR0:61 || 0b00
if LK then LR �iea CIA + 4

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 36. The BH field is used as described in
Figure 38. The branch target address is
CTR0:61 || 0b00, with the high-order 32 bits of the
branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

If the “decrement and test CTR” option is specified
(BO2=0), the instruction form is invalid.

Special Registers Altered:
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional to Count Register.

19 BO BI /// BH 16 LK
0 6 11 16 19 21 31

Extended: Equivalent to:
bclr 4,6 bclr 4,6,0
bltlr bclr 12,0,0
bnelr cr2 bclr 4,10,0
bdnzlr bclr 16,0,0

bclr, bclrl, bcctr, and bcctrl each serve as both a
basic and an extended mnemonic. The Assembler
will recognize a bclr, bclrl, bcctr, or bcctrl mne-
monic with three operands as the basic form, and a
bclr, bclrl, bcctr, or bcctrl mnemonic with two
operands as the extended form. In the extended
form the BH operand is omitted and assumed to be
0b00.

Programming Note

19 BO BI /// BH 528 LK
0 6 11 16 19 21 31

Extended: Equivalent to:
bcctr 4,6 bcctr 4,6,0
bltctr bcctr 12,0,0
bnectr cr2 bcctr 4,10,0
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2.5 Condition Register Instructions

2.5.1 Condition Register Logical Instructions
The Condition Register Logical instructions have pre-
ferred forms; see Section 1.8.1. In the preferred forms,
the BT and BB fields satisfy the following rule.
� The bit specified by BT is in the same Condition

Register field as the bit specified by BB.

Extended mnemonics for Condition 
Register logical operations
A set of extended mnemonics is provided that allow
additional Condition Register logical operations,
beyond those provided by the basic Condition Register
Logical instructions, to be coded easily. Some of these
are shown as examples with the Condition Register
Logical instructions. See Appendix D for additional
extended mnemonics.

Condition Register AND XL-form

crand BT,BA,BB

CRBT+32 � CRBA+32 & CRBB+32

The bit in the Condition Register specified by BA+32 is
ANDed with the bit in the Condition Register specified
by BB+32, and the result is placed into the bit in the
Condition Register specified by BT+32.

Special Registers Altered:
CRBT+32

Condition Register NAND XL-form

crnand BT,BA,BB

CRBT+32 � ¬(CRBA+32 & CRBB+32)

The bit in the Condition Register specified by BA+32 is
ANDed with the bit in the Condition Register specified
by BB+32, and the complemented result is placed into
the bit in the Condition Register specified by BT+32.

Special Registers Altered:
CRBT+32

Condition Register OR XL-form

cror BT,BA,BB

CRBT+32 � CRBA+32 | CRBB+32

The bit in the Condition Register specified by BA+32 is
ORed with the bit in the Condition Register specified by
BB+32, and the result is placed into the bit in the Con-
dition Register specified by BT+32.

Special Registers Altered:
CRBT+32

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter OR:

Condition Register XOR XL-form

crxor     BT,BA,BB

CRBT+32 � CRBA+32 ⊕  CRBB+32

The bit in the Condition Register specified by BA+32 is
XORed with the bit in the Condition Register specified
by BB+32, and the result is placed into the bit in the
Condition Register specified by BT+32.

Special Registers Altered:
CRBT+32

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter XOR:

19 BT BA BB 257 /
0 6 11 16 21 31

19 BT BA BB 225 /
0 6 11 16 21 31

19 BT BA BB 449 /
0 6 11 16 21 31

Extended: Equivalent to:
crmove Bx,By cror     Bx,By,By

19 BT BA BB 193 /
0 6 11 16 21 31

Extended: Equivalent to:
crclr    Bx crxor  Bx,Bx,Bx
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Condition Register NOR XL-form

crnor BT,BA,BB

CRBT+32 � ¬(CRBA+32 | CRBB+32)
The bit in the Condition Register specified by BA+32 is
ORed with the bit in the Condition Register specified by
BB+32, and the complemented result is placed into the
bit in the Condition Register specified by BT+32.

Special Registers Altered:
CRBT+32

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter NOR:

Condition Register Equivalent XL-form

creqv BT,BA,BB

CRBT+32 � CRBA+32 ≡ CRBB+32
The bit in the Condition Register specified by BA+32 is
XORed with the bit in the Condition Register specified
by BB+32, and the complemented result is placed into
the bit in the Condition Register specified by BT+32.

Special Registers Altered:
CRBT+32

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter Equivalent:

Condition Register AND with Complement 
 XL-form

crandc BT,BA,BB

CRBT+32 � CRBA+32 & ¬CRBB+32
The bit in the Condition Register specified by BA+32 is
ANDed with the complement of the bit in the Condition
Register specified by BB+32, and the result is placed
into the bit in the Condition Register specified by
BT+32.

Special Registers Altered:
CRBT+32

Condition Register OR with Complement
XL-form

crorc BT,BA,BB

CRBT+32 � CRBA+32 | ¬CRBB+32
The bit in the Condition Register specified by BA+32 is
ORed with the complement of the bit in the Condition
Register specified by BB+32, and the result is placed
into the bit in the Condition Register specified by
BT+32.

Special Registers Altered:
CRBT+32

2.5.2 Condition Register Field Instruction

Move Condition Register Field XL-form

mcrf BF,BFA

CR4×BF+32:4×BF+35 � CR4×BFA+32:4×BFA+35

The contents of Condition Register field BFA are copied
to Condition Register field BF.

Special Registers Altered:
CR field BF

19 BT BA BB 33 /
0 6 11 16 21 31

Extended: Equivalent to:
crnot   Bx,By crnor   Bx,By,By

19 BT BA BB 289 /
0 6 11 16 21 31

Extended: Equivalent to:
crset   Bx creqv  Bx,Bx,Bx

19 BT BA BB 129 /
0 6 11 16 21 31

19 BT BA BB 417 /
0 6 11 16 21 31

19 BF // BFA // /// 0 /
0 6 9 11 14 16 21 31
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2.6  System Call Instruction

This instruction provides the means by which a pro-
gram can call upon the system to perform a service.

System Call SC-form

sc LEV 

This instruction calls the system to perform a service. A
complete description of this instruction can be found in
Book III.

The use of the LEV field is described in Book III. The
LEV values greater than 1 are reserved, and bits 0:5 of
the LEV field (instruction bits 20:25) are treated as a
reserved field.

When control is returned to the program that executed
the System Call instruction, the contents of the regis-
ters will depend on the register conventions used by the
program providing the system service.

This instruction is context synchronizing (see Book III).

Special Registers Altered:
Dependent on the system service

  

17 /// /// // LEV // 1 /
0 6 11 16 20 27 30 31

sc serves as both a basic and an extended mne-
monic.  The Assembler will recognize an sc mne-
monic with one operand as the basic form, and an
sc mnemonic with no operand as the extended
form.  In the extended form the LEV operand is
omitted and assumed to be 0.

In application programs the value of the LEV oper-
and for sc should be 0.

Programming Note
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3.1 Fixed-Point Processor Overview

This chapter describes the registers and instructions
that make up the Fixed-Point Processor facility.  
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3.2 Fixed-Point Processor Registers

3.2.1 General Purpose Registers
All manipulation of information is done in registers inter-
nal to the Fixed-Point Processor. The principal storage
internal to the Fixed-Point Processor is a set of 32 Gen-
eral Purpose Registers (GPRs). See Figure 39.

Figure 39. General Purpose Registers

Each GPR is a 64-bit register.

3.2.2 Fixed-Point Exception Reg-
ister
The Fixed-Point Exception Register (XER) is a 64-bit
register.

Figure 40. Fixed-Point Exception Register

The bit definitions for the Fixed-Point Exception Regis-
ter are shown below.  Here M=0 in 64-bit mode and
M=32 in 32-bit mode.

The bits are set based on the operation of an instruc-
tion considered as a whole, not on intermediate results
(e.g., the Subtract From Carrying instruction, the result
of which is specified as the sum of three values, sets
bits in the Fixed-Point Exception Register based on the
entire operation, not on an intermediate sum).

Bit(s Description

0:31 Reserved

32 Summary Overflow (SO)
The Summary Overflow bit is set to 1 when-
ever an instruction (except mtspr) sets the
Overflow bit. Once set, the SO bit remains set
until it is cleared by an mtspr instruction
(specifying the XER) or an mcrxr instruction.
It is not altered by Compare instructions, nor
by other instructions (except mtspr to the
XER, and mcrxr) that cannot overflow. Exe-
cuting an mtspr instruction to the XER, sup-
plying the values 0 for SO and 1 for OV,

causes SO to be set to 0 and OV to be set to
1.

33 Overflow (OV)
The Overflow bit is set to indicate that an over-
flow has occurred during execution of an
instruction. 
XO-form Add, Subtract From, and Negate
instructions having OE=1 set it to 1 if the carry
out of bit M is not equal to the carry out of bit
M+1, and set it to 0 otherwise.
XO-form Multiply Low and Divide instructions
having OE=1 set it to 1 if the result cannot be
represented in 64 bits (mulld, divd, divdu) or
in 32 bits (mullw, divw, divwu), and set it to 0
otherwise. The OV bit is not altered by Com-
pare instructions, nor by other instructions
(except mtspr to the XER, and mcrxr) that
cannot overflow.

[Category: 
Legacy Integer Multiply-Accumulate]
XO-form Legacy Integer Multiply-Accumulate
instructions set OV when OE=1 to reflect over-
flow of the 32-bit result. For signed-integer
accumulation, overflow occurs when the add
produces a carry out of bit 32 that is not equal
to the carry out of bit 33. For unsigned-integer
accumulation, overflow occurs when the add
produces a carry out of bit 32.

34 Carry (CA)
The Carry bit is set as follows, during execu-
tion of certain instructions. Add Carrying, Sub-
tract From Carrying, Add Extended, and
Subtract From Extended types of instructions
set it to 1 if there is a carry out of bit M, and
set it to 0 otherwise. Shift Right Algebraic
instructions set it to 1 if any 1-bits have been
shifted out of a negative operand, and set it to
0 otherwise. The CA bit is not altered by Com-
pare instructions, nor by other instructions
(except Shift Right Algebraic, mtspr to the
XER, and mcrxr) that cannot carry.

35:56 Reserved

57:63 This field specifies the number of bytes to be
transferred by a Load String Indexed or Store
String Indexed instruction.

[Category: Legacy Move Assist]
This field is used as a target by dmlzb to indi-
cate the byte location of the leftmost zero byte
found.

GPR 0

GPR 1

. . .

. . .

GPR 30

GPR 31

0                                                                                                                     63

XER
0                                                                                                                     63
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3.2.3 Program Priority Register 
[Category: Server]
The Program Priority Register (PPR) is a 64-bit register
that controls the program’s priority. The layout of the
PPR is shown in Figure 41.

Bit(s) Description

11:13 Program Priority (PRI)

010   low
011   medium low
100   medium (normal)

44:63 implementation-specific (read-only; values
written to this field by software are ignored)

All other fields are reserved.

Figure 41. Program Priority Register

  

  

  

3.2.4 Software Use SPRs [Cate-
gory: Embedded]
Software Use SPRs are 64-bit registers that have no
defined functionality. SPRG4-7 can be read by applica-

tion programs. Additional Software Use SPRs are
defined in Book III. 

Figure 42. Software-use SPRs

The VRSAVE is a 32-bit register that also can be used
as a software use SPR. VRSAVE is also defined as
part of Category: Embedded and Vector (see Section
5.3.3)

  

3.2.5 Device Control Registers 
[Category: Embedded]
Device Control Registers (DCRs) are on-chip registers
that exist architecturally outside the processor and thus
are not actually part of the processor architecture. This
specification simply defines the existence of a Device
Control Register ‘address space’ and the instructions to
access them and does not define the Device Control
Registers themselves.

Device Control Registers may control the use of
on-chip peripherals, such as memory controllers (the
definition of specific Device Control Registers is imple-
mentation-dependent).

The contents of user-mode-accessible Device Control
Registers can be read using mfdcrux and written using
mtdcrux.

/// PRI /// ???
0 11 14 44                             63

By setting the PRI field, a programmer may be able
to improve system throughput by causing system
resources to be used more efficiently. 

E.g., if a program is waiting on a lock (see
Section B.2 of Book II), it could set low priority, with
the result that more processor resources would be
diverted to the program that holds the lock. This
diversion of resources may enable the lock-holding
program to complete the operation under the lock
more quickly, and then relinquish the lock to the
waiting program. 

or Rx,Rx,Rx can be used to modify the PRI field;
see Section 3.3.14.

When the system error handler is invoked, the PRI
field may be set to an undefined value.

Programming Note

Programming Note

Programming Note

SPRG4
SPRG5

SPRG6
SPRG7

0                                                                                                                     63

USPRG0 was made a 32-bit register and renamed
to VRSAVE; see Section 5.3.3

Programming Note
Chapter 3. Fixed-Point Processor 39



   Version 2.04
3.3 Fixed-Point Processor Instructions

3.3.1 Fixed-Point Storage Access Instructions
The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.10.3 on page 23.

  

  

3.3.1.1 Storage Access Exceptions
Storage accesses will cause the system data storage
error handler to be invoked if the program is not allowed
to modify the target storage (Store only), or if the pro-
gram attempts to access storage that is unavailable.

3.3.2 Fixed-Point Load Instructions
The byte, halfword, word, or doubleword in storage
addressed by EA is loaded into register RT.

Many of the Load instructions have an “update” form, in
which register RA is updated with the effective address.
For these forms, if RA≠0 and RA≠RT, the effective
address is placed into register RA and the storage ele-
ment (byte, halfword, word, or doubleword) addressed
by EA is loaded into RT.

  

The la extended mnemonic permits computing an
effective address as a Load or Store instruction
would, but loads the address itself into a GPR
rather than loading the value that is in storage at
that address.

Programming Note

The DS field in DS-form Storage Access instruc-
tions is a word offset, not a byte offset like the D
field in D-form Storage Access instructions.  How-
ever, for programming convenience, Assemblers
should support the specification of byte offsets for
both forms of instruction.

Programming Note

In some implementations, the Load Algebraic and
Load with Update instructions may have greater
latency than other types of Load instructions.
Moreover, Load with Update instructions may take
longer to execute in some implementations than
the corresponding pair of a non-update Load
instruction and an Add instruction.

Programming Note
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Load Byte and Zero  D-form

lbz RT,D(RA)

if RA = 0 then b � 0
else           b � (RA)
EA � b + EXTS(D)
RT � 560 || MEM(EA, 1)

Let the effective address (EA) be the sum (RA|0)+ D.
The byte in storage addressed by EA is loaded into
RT56:63. RT0:55 are set to 0.

Special Registers Altered:
None

Load Byte and Zero Indexed X-form

lbzx RT,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
RT � 560 || MEM(EA, 1)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The byte in storage addressed by EA is
loaded into RT56:63. RT0:55 are set to 0.

Special Registers Altered:
None

Load Byte and Zero with Update D-form

lbzu RT,D(RA)

EA � (RA) + EXTS(D)
RT � 560 || MEM(EA, 1)
RA � EA

Let the effective address (EA) be the sum (RA)+ D. The
byte in storage addressed by EA is loaded into RT56:63.
RT0:55 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Byte and Zero with Update Indexed
 X-form

lbzux RT,RA,RB

EA � (RA) + (RB)
RT � 560 || MEM(EA, 1)
RA � EA

Let the effective address (EA) be the sum (RA)+ (RB).
The byte in storage addressed by EA is loaded into
RT56:63. RT0:55 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

34 RT RA D
0 6 11 16                                                    31

31 RT RA RB 87 /
0 6 11 16 21 31

35 RT RA D
0 6 11 16                                                    31 31 RT RA RB 119 /

0 6 11 16 21 31
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Load Halfword and Zero  D-form

lhz RT,D(RA)

if RA = 0 then b � 0
else           b � (RA)
EA � b + EXTS(D)
RT � 480 || MEM(EA, 2)

Let the effective address (EA) be the sum (RA|0)+ D.
The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are set to 0.

Special Registers Altered:
None

Load Halfword and Zero Indexed X-form

lhzx RT,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
RT � 480 || MEM(EA, 2)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The halfword in storage addressed by
EA is loaded into RT48:63. RT0:47 are set to 0.

Special Registers Altered:
None

Load Halfword and Zero with Update
 D-form

lhzu RT,D(RA)

EA � (RA) + EXTS(D)
RT � 480 || MEM(EA, 2)
RA � EA

Let the effective address (EA) be the sum (RA)+ D. The
halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Halfword and Zero with Update 
Indexed  X-form

lhzux RT,RA,RB

EA � (RA) + (RB)
RT � 480 || MEM(EA, 2)
RA � EA

Let the effective address (EA) be the sum (RA)+ (RB).
The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

40 RT RA D
0 6 11 16                                                    31

31 RT RA RB 279 /
0 6 11 16 21 31

41 RT RA D
0 6 11 16                                                    31

31 RT RA RB 311 /
0 6 11 16 21 31
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Load Halfword Algebraic  D-form

lha RT,D(RA)

if RA = 0 then b � 0
else           b � (RA)
EA � b + EXTS(D)
RT � EXTS(MEM(EA, 2))

Let the effective address (EA) be the sum (RA|0)+ D.
The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are filled with a copy of bit 0 of the
loaded halfword.

Special Registers Altered:
None

Load Halfword Algebraic Indexed X-form

lhax RT,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
RT � EXTS(MEM(EA, 2))

Let the effective address (EA) be the sum
(RA|0)+ (RB). The halfword in storage addressed by
EA is loaded into RT48:63. RT0:47 are filled with a copy
of bit 0 of the loaded halfword.

Special Registers Altered:
None

Load Halfword Algebraic with Update  
D-form

lhau RT,D(RA)

EA � (RA) + EXTS(D)
RT � EXTS(MEM(EA, 2))
RA � EA

Let the effective address (EA) be the sum (RA)+ D. The
halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are filled with a copy of bit 0 of the
loaded halfword.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Halfword Algebraic with Update 
Indexed X-form

lhaux RT,RA,RB

EA � (RA) + (RB)
RT � EXTS(MEM(EA, 2))
RA � EA

Let the effective address (EA) be the sum (RA)+ (RB).
The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are filled with a copy of bit 0 of the
loaded halfword.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

42 RT RA D
0 6 11 16                                                    31

31 RT RA RB 343 /
0 6 11 16 21 31

43 RT RA D
0 6 11 16                                                    31

31 RT RA RB 375 /
0 6 11 16 21 31
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Load Word and Zero D-form

lwz RT,D(RA) 

if RA = 0 then b � 0
else           b � (RA)
EA � b + EXTS(D)
RT � 320 || MEM(EA, 4)

Let the effective address (EA) be the sum (RA|0)+ D.
The word in storage addressed by EA is loaded into
RT32:63. RT0:31 are set to 0.

Special Registers Altered:
None

Load Word and Zero Indexed X-form

lwzx RT,RA,RB 

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
RT � 320 || MEM(EA, 4)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The word in storage addressed by EA is
loaded into RT32:63. RT0:31 are set to 0.

Special Registers Altered:
None

Load Word and Zero with Update D-form

lwzu RT,D(RA) 

EA � (RA) + EXTS(D)
RT � 320 || MEM(EA, 4)
RA � EA

Let the effective address (EA) be the sum (RA)+ D. The
word in storage addressed by EA is loaded into
RT32:63. RT0:31 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Word and Zero with Update Indexed 
 X-form

lwzux RT,RA,RB 

EA � (RA) + (RB)
RT � 320 || MEM(EA, 4)
RA � EA

Let the effective address (EA) be the sum (RA)+ (RB).
The word in storage addressed by EA is loaded into
RT32:63. RT0:31 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

32 RT RA D
0 6 11 16                                                    31

31 RT RA RB 23 /
0 6 11 16 21 31

33 RT RA D
0 6 11 16                                                    31 31 RT RA RB 55 /

0 6 11 16 21 31
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3.3.2.1 64-bit Fixed-Point Load Instructions [Category: 64-Bit]

Load Word Algebraic DS-form

lwa RT,DS(RA)

if RA = 0 then b � 0
else           b � (RA)
EA � b + EXTS(DS || 0b00)
RT � EXTS(MEM(EA, 4))

Let the effective address (EA) be the sum
(RA|0)+ (DS||0b00). The word in storage addressed by
EA is loaded into RT32:63. RT0:31 are filled with a copy
of bit 0 of the loaded word.

Special Registers Altered:
None

Load Word Algebraic Indexed   X-form

lwax RT,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
RT � EXTS(MEM(EA, 4))

Let the effective address (EA) be the sum
(RA|0)+ (RB). The word in storage addressed by EA is
loaded into RT32:63. RT0:31 are filled with a copy of bit 0
of the loaded word.

Special Registers Altered:
None

Load Word Algebraic with Update Indexed 
 X-form

lwaux RT,RA,RB

EA � (RA) + (RB)
RT � EXTS(MEM(EA, 4))
RA � EA

Let the effective address (EA) be the sum (RA)+ (RB).
The word in storage addressed by EA is loaded into
RT32:63. RT0:31 are filled with a copy of bit 0 of the
loaded word.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

58 RT RA DS 2
0 6 11 16 30 31

31 RT RA RB 341 /
0 6 11 16 21 31

31 RT RA RB 373 /
0 6 11 16 21 31
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Load Doubleword  DS-form

ld RT,DS(RA)

if RA = 0 then b � 0
else           b � (RA)
EA � b + EXTS(DS || 0b00)
RT � MEM(EA, 8)

Let the effective address (EA) be the sum
(RA|0)+ (DS||0b00). The doubleword in storage
addressed by EA is loaded into RT.

Special Registers Altered:
None

Load Doubleword Indexed  X-form

ldx RT,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
RT � MEM(EA, 8)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The doubleword in storage addressed by
EA is loaded into RT.

Special Registers Altered:
None

Load Doubleword with Update  DS-form

ldu RT,DS(RA)

EA � (RA) + EXTS(DS || 0b00)
RT � MEM(EA, 8)
RA � EA

Let the effective address (EA) be the sum
(RA)+ (DS||0b00). The doubleword in storage
addressed by EA is loaded into RT.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Doubleword with Update Indexed 
 X-form

ldux RT,RA,RB

EA � (RA) + (RB)
RT � MEM(EA, 8)
RA � EA

Let the effective address (EA) be the sum (RA)+ (RB).
The doubleword in storage addressed by EA is loaded
into RT.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

58 RT RA DS 0
0 6 11 16 30 31

31 RT RA RB 21 /
0 6 11 16 21 31

58 RT RA DS 1
0 6 11 16 30 31 31 RT RA RB 53 /

0 6 11 16 21 31
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3.3.3 Fixed-Point Store Instructions
The contents of register RS are stored into the byte,
halfword, word, or doubleword in storage addressed by
EA.

Many of the Store instructions have an “update” form, in
which register RA is updated with the effective address.
For these forms, the following rules apply.

� If RA≠0, the effective address is placed into regis-
ter RA.

� If RS=RA, the contents of register RS are copied
to the target storage element and then EA is
placed into RA (RS).

Store Byte  D-form

stb RS,D(RA)

if RA = 0 then b � 0
else           b � (RA)
EA � b + EXTS(D)
MEM(EA, 1) � (RS)56:63

Let the effective address (EA) be the sum (RA|0)+ D.
(RS)56:63 are stored into the byte in storage addressed
by EA.

Special Registers Altered:
None

Store Byte Indexed  X-form

stbx RS,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
MEM(EA, 1) � (RS)56:63

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)56:63 are stored into the byte in stor-
age addressed by EA.

Special Registers Altered:
None

Store Byte with Update  D-form

stbu RS,D(RA)

EA � (RA) + EXTS(D)
MEM(EA, 1) � (RS)56:63
RA � EA

Let the effective address (EA) be the sum (RA)+ D.
(RS)56:63 are stored into the byte in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Byte with Update Indexed  X-form

stbux RS,RA,RB

EA � (RA) + (RB)
MEM(EA, 1) � (RS)56:63
RA � EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS)56:63 are stored into the byte in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

38 RS RA D
0 6 11 16                                                    31

31 RS RA RB 215 /
0 6 11 16 21 31

39 RS RA D
0 6 11 16                                                    31

31 RS RA RB 247 /
0 6 11 16 21 31
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Store Halfword  D-form

sth RS,D(RA)

if RA = 0 then b � 0
else           b � (RA)
EA � b + EXTS(D)
MEM(EA, 2) � (RS)48:63

Let the effective address (EA) be the sum (RA|0)+ D.
(RS)48:63 are stored into the halfword in storage
addressed by EA.

Special Registers Altered:
None

Store Halfword Indexed  X-form

sthx RS,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
MEM(EA, 2) � (RS)48:63

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)48:63 are stored into the halfword in
storage addressed by EA.

Special Registers Altered:
None

Store Halfword with Update   D-form

sthu RS,D(RA)

EA � (RA) + EXTS(D)
MEM(EA, 2) � (RS)48:63
RA � EA

Let the effective address (EA) be the sum (RA)+ D.
(RS)48:63 are stored into the halfword in storage
addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Halfword with Update Indexed 
 X-form

sthux RS,RA,RB

EA � (RA) + (RB)
MEM(EA, 2) � (RS)48:63
RA � EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS)48:63 are stored into the halfword in storage
addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

44 RS RA D
0 6 11 16                                                    31

31 RS RA RB 407 /
0 6 11 16 21 31

45 RS RA D
0 6 11 16                                                    31 31 RS RA RB 439 /

0 6 11 16 21 31
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Store Word   D-form

stw RS,D(RA) 

if RA = 0 then b � 0
else           b � (RA)
EA � b + EXTS(D)
MEM(EA, 4) � (RS)32:63

Let the effective address (EA) be the sum (RA|0)+ D.
(RS)32:63 are stored into the word in storage addressed
by EA.

Special Registers Altered:
None

Store Word Indexed  X-form

stwx RS,RA,RB 

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
MEM(EA, 4) � (RS)32:63

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)32:63 are stored into the word in stor-
age addressed by EA.

Special Registers Altered:
None

Store Word with Update  D-form

stwu RS,D(RA) 

EA � (RA) + EXTS(D)
MEM(EA, 4) � (RS)32:63
RA � EA

Let the effective address (EA) be the sum (RA)+ D.
(RS)32:63 are stored into the word in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Word with Update Indexed  X-form

stwux RS,RA,RB 

EA � (RA) + (RB)
MEM(EA, 4) � (RS)32:63
RA � EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS)32:63 are stored into the word in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

36 RS RA D
0 6 11 16                                                    31

31 RS RA RB 151 /
0 6 11 16 21 31

37 RS RA D
0 6 11 16                                                    31

31 RS RA RB 183 /
0 6 11 16 21 31
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3.3.3.1 64-bit Fixed-Point Store Instructions [Category: 64-Bit]

Store Doubleword  DS-form

std RS,DS(RA)

if RA = 0 then b � 0
else           b � (RA)
EA � b + EXTS(DS || 0b00)
MEM(EA, 8) � (RS)

Let the effective address (EA) be the sum
(RA|0)+ (DS||0b00). (RS) is stored into the doubleword
in storage addressed by EA.

Special Registers Altered:
None

Store Doubleword Indexed  X-form

stdx RS,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
MEM(EA, 8) � (RS)

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS) is stored into the doubleword in
storage addressed by EA.

Special Registers Altered:
None

Store Doubleword with Update  DS-form

stdu RS,DS(RA)

EA � (RA) + EXTS(DS || 0b00)
MEM(EA, 8) � (RS)
RA � EA

Let the effective address (EA) be the sum
(RA)+ (DS||0b00). (RS) is stored into the doubleword in
storage addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Doubleword with Update Indexed 
X-form

stdux RS,RA,RB

EA � (RA) + (RB)
MEM(EA, 8) � (RS)
RA � EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS) is stored into the doubleword in storage
addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

62 RS RA DS 0
0 6 11 16 30 31

31 RS RA RB 149 /
0 6 11 16 21 31

62 RS RA DS 1
0 6 11 16 30 31 31 RS RA RB 181 /

0 6 11 16 21 31
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3.3.4 Fixed-Point Load and Store with Byte Reversal Instructions
   

Load Halfword Byte-Reverse Indexed 
X-form

lhbrx RT,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
load_data � MEM(EA, 2)
RT � 480 || load_data8:15 || load_data0:7

Let the effective address (EA) be the sum (RA|0)+(RB).
Bits 0:7 of the halfword in storage addressed by EA are
loaded into RT56:63. Bits 8:15 of the halfword in storage
addressed by EA are loaded into RT48:55. RT0:47 are
set to 0.

Special Registers Altered:
None

Store Halfword Byte-Reverse Indexed 
X-form

sthbrx RS,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
MEM(EA, 2) � (RS)56:63 || (RS)48:55

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)56:63 are stored into bits 0:7 of the
halfword in storage addressed by EA. (RS)48:55 are
stored into bits 8:15 of the halfword in storage
addressed by EA.

Special Registers Altered:
None

Load Word Byte-Reverse Indexed  X-form

lwbrx RT,RA,RB 

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
load_data � MEM(EA, 4)
RT � 320 || load_data24:31 || load_data16:23
         || load_data8:15 || load_data0:7

Let the effective address (EA) be the sum
(RA|0)+ (RB). Bits 0:7 of the word in storage addressed
by EA are loaded into RT56:63. Bits 8:15 of the word in
storage addressed by EA are loaded into RT48:55. Bits
16:23 of the word in storage addressed by EA are
loaded into RT40:47. Bits 24:31 of the word in storage
addressed by EA are loaded into RT32:39. RT0:31 are
set to 0.

Special Registers Altered:
None

Store Word Byte-Reverse Indexed X-form

stwbrx RS,RA,RB 

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
MEM(EA, 4) � (RS)56:63 || (RS)48:55 || (RS)40:47
               ||(RS)32:39

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)56:63 are stored into bits 0:7 of the
word in storage addressed by EA. (RS)48:55 are stored
into bits 8:15 of the word in storage addressed by EA.
(RS)40:47 are stored into bits 16:23 of the word in stor-
age addressed by EA. (RS)32:39 are stored into bits
24:31 of the word in storage addressed by EA.

Special Registers Altered:
None

These instructions have the effect of loading and
storing data in the opposite byte ordering from that
which would be used by other Load and Store
instructions.

Programming Note

In some implementations, the Load Byte-Reverse
instructions may have greater latency than other
Load instructions.

Programming Note

31 RT RA RB 790 /
0 6 11 16 21 31

31 RS RA RB 918 /
0 6 11 16 21 31

31 RT RA RB 534 /
0 6 11 16 21 31

31 RS RA RB 662 /
0 6 11 16 21 31
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3.3.5 Fixed-Point Load and Store Multiple Instructions
The Load/Store Multiple instructions have preferred
forms; see Section 1.8.1, “Preferred Instruction Forms”
on page 19. In the preferred forms, storage alignment
satisfies the following rule.

� The combination of the EA and RT (RS) is such
that the low-order byte of GPR 31 is loaded
(stored) from (into) the last byte of an aligned
quadword in storage.

For the Server environment, the Load/Store Multiple
instructions are not supported in Little-Endian mode. If
they are executed in Little-Endian mode, the system
alignment error handler is invoked.

Load Multiple Word  D-form

lmw RT,D(RA) 

if RA = 0 then b � 0
else           b � (RA)
EA � b + EXTS(D)
r � RT
do while r ≤ 31

GPR(r) � 320 || MEM(EA, 4)
r � r + 1
EA � EA + 4

Let n = (32-RT). Let the effective address (EA) be the
sum (RA|0)+ D.

n consecutive words starting at EA are loaded into the
low-order 32 bits of GPRs RT through 31. The
high-order 32 bits of these GPRs are set to zero.

If RA is in the range of registers to be loaded, including
the case in which RA=0, the instruction form is invalid.

Special Registers Altered:
None

46 RT RA D
0 6 11 16                                                     31
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Store Multiple Word  D-form

stmw RS,D(RA)

if RA = 0 then b � 0
else           b � (RA)
EA � b + EXTS(D)
r � RS
do while r ≤ 31

MEM(EA, 4) � GPR(r)32:63
r � r + 1
EA � EA + 4

Let n = (32-RS). Let the effective address (EA) be the
sum (RA|0)+ D.

n consecutive words starting at EA are stored from the
low-order 32 bits of GPRs RS through 31.

Special Registers Altered:
None

47 RS RA D
0 6 11 16                                                     31
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3.3.6 Fixed-Point Move Assist Instructions [Category: Move Assist]
The Move Assist instructions allow movement of data
from storage to registers or from registers to storage
without concern for alignment. These instructions can
be used for a short move between arbitrary storage
locations or to initiate a long move between unaligned
storage fields.

The Load/Store String instructions have preferred
forms; see Section 1.8.1, “Preferred Instruction Forms”
on page 19. In the preferred forms, register usage sat-
isfies the following rules.

� RS = 4 or 5

� RT = 4 or 5
� last register loaded/stored ≤ 12

For some implementations, using GPR 4 for RS and RT
may result in slightly faster execution than using GPR
5.

For the Server environment, the Move Assist instruc-
tions are not supported in Little-Endian mode. If they
are executed in Little-Endian mode, the system align-
ment error handler may be invoked or the instructions
may be treated as no-ops if the number of bytes speci-
fied by the instruction is 0.
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Load String Word Immediate  X-form

lswi RT,RA,NB 

if RA = 0 then EA � 0
else           EA � (RA)
if NB = 0 then n � 32
else           n � NB
r � RT - 1
i � 32
do while n > 0

if i = 32 then
  r � r + 1 (mod 32)
  GPR(r) � 0
GPR(r)i:i+7 � MEM(EA, 1)
i � i + 8
if i = 64 then i � 32
EA � EA + 1
n � n - 1

Let the effective address (EA) be (RA|0). Let n = NB if
NB≠0, n = 32 if NB=0; n is the number of bytes to load.
Let nr=CEIL(n/4); nr is the number of registers to
receive data.

n consecutive bytes starting at EA are loaded into
GPRs RT through RT+nr-1.  Data are loaded into the
low-order four bytes of each GPR; the high-order four
bytes are set to 0.

Bytes are loaded left to right in each register.  The
sequence of registers wraps around to GPR 0 if
required.  If the low-order four bytes of register
RT+nr-1 are only partially filled, the unfilled low-order
byte(s) of that register are set to 0.

If RA is in the range of registers to be loaded, including
the case in which RA=0, the instruction form is invalid.

Special Registers Altered:
None

Load String Word Indexed  X-form

lswx RT,RA,RB 

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
n � XER57:63
r � RT - 1
i � 32
RT � undefined
do while n > 0

if i = 32 then
 r � r + 1 (mod 32)
 GPR(r) � 0
GPR(r)i:i+7 � MEM(EA, 1)
i � i + 8
if i = 64 then i � 32
EA � EA + 1
n � n - 1

Let the effective address (EA) be the sum
(RA|0)+ (RB). Let n=XER57:63; n is the number of bytes
to load. Let nr=CEIL(n/4); nr is the number of registers
to receive data.

If n>0, n consecutive bytes starting at EA are loaded
into GPRs RT through RT+nr-1.  Data are loaded into
the low-order four bytes of each GPR; the high-order
four bytes are set to 0.

Bytes are loaded left to right in each register.  The
sequence of registers wraps around to GPR 0 if
required.  If the low-order four bytes of register
RT+nr-1 are only partially filled, the unfilled low-order
byte(s) of that register are set to 0.

If n=0, the contents of register RT are undefined.

If RA or RB is in the range of registers to be loaded,
including the case in which RA=0, the instruction is
treated as if the instruction form were invalid. If RT=RA
or RT=RB, the instruction form is invalid.

Special Registers Altered:
None

31 RT RA NB 597 /
0 6 11 16 21 31

31 RT RA RB 533 /
0 6 11 16 21 31
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Store String Word Immediate  X-form

stswi RS,RA,NB 

if RA = 0 then EA � 0
else           EA � (RA)
if NB = 0 then n � 32
else           n � NB
r � RS - 1
i � 32
do while n > 0
  if i = 32 then r � r + 1 (mod 32)
  MEM(EA, 1) � GPR(r)i:i+7
   i � i + 8
  if i = 64 then i � 32
  EA � EA + 1
  n � n - 1

Let the effective address (EA) be (RA|0). Let n = NB if
NB≠0, n = 32 if NB=0; n is the number of bytes to store.
Let nr =CEIL(n/4); nr is the number of registers to sup-
ply data.

n consecutive bytes starting at EA are stored from
GPRs RS through RS+nr-1.  Data are stored from the
low-order four bytes of each GPR.

Bytes are stored left to right from each register.  The
sequence of registers wraps around to GPR 0 if
required.

Special Registers Altered:
None

Store String Word Indexed  X-form

stswx RS,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
n � XER57:63
r � RS - 1
i � 32
do while n > 0
  if i = 32 then r � r + 1 (mod 32)
  MEM(EA, 1) � GPR(r)i:i+7
    i � i + 8
  if i = 64 then i � 32
  EA � EA + 1
  n � n - 1

Let the effective address (EA) be the sum
(RA|0)+ (RB). Let n = XER57:63; n is the number of
bytes to store. Let nr = CEIL(n/4); nr is the number of
registers to supply data.

If n>0, n consecutive bytes starting at EA are stored
from GPRs RS through RS+nr-1.  Data are stored from
the low-order four bytes of each GPR.

Bytes are stored left to right from each register.  The
sequence of registers wraps around to GPR 0 if
required.

If n=0, no bytes are stored.

Special Registers Altered:
None

31 RS RA NB 725 /
0 6 11 16 21 31

31 RS RA RB 661 /
0 6 11 16 21 31
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3.3.7 Other Fixed-Point Instructions
The remainder of the fixed-point instructions use the
contents of the General Purpose Registers (GPRs) as
source operands, and place results into GPRs, into the
Fixed-Point Exception Register (XER), and into Condi-
tion Register fields.  In addition, the Trap instructions
test the contents of a GPR or XER bit, invoking the sys-
tem trap handler if the result of the specified test is true.

These instructions treat the source operands as signed
integers unless the instruction is explicitly identified as
performing an unsigned operation.

The X-form and XO-form instructions with Rc=1, and
the D-form instructions addic., andi., and andis., set
the first three bits of CR Field 0 to characterize the
result placed into the target register. In 64-bit mode,

these bits are set by signed comparison of the result to
zero.  In 32-bit mode, these bits are set by signed com-
parison of the low-order 32 bits of the result to zero.

Unless otherwise noted and when appropriate, when
CR Field 0 and the XER are set they reflect the value
placed into the target register.

  

Instructions with the OE bit set or that set CA may
execute slowly or may prevent the execution of sub-
sequent instructions until the instruction has com-
pleted.

Programming Note
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3.3.8 Fixed-Point Arithmetic Instructions
The XO-form Arithmetic instructions with Rc=1, and the
D-form Arithmetic instruction addic., set the first three
bits of CR Field 0 as described in Section 3.3.7, “Other
Fixed-Point Instructions”.

addic, addic., subfic, addc, subfc, adde, subfe,
addme, subfme, addze, and subfze always set CA, to
reflect the carry out of bit 0 in 64-bit mode and out of bit
32 in 32-bit mode.  The XO-form Arithmetic instructions
set SO and OV when OE=1 to reflect overflow of the
result.  Except for the Multiply Low and Divide instruc-
tions, the setting of these bits is mode-dependent, and
reflects overflow of the 64-bit result in 64-bit mode and
overflow of the low-order 32-bit result in 32-bit mode.
For XO-form Multiply Low and Divide instructions, the
setting of these bits is mode-independent, and reflects
overflow of the 64-bit result for mulld, divd, and divdu,
and overflow of the low-order 32-bit result for mullw,
divw, and divwu.

  

Extended mnemonics for addition and 
subtraction
Several extended mnemonics are provided that use the
Add Immediate and Add Immediate Shifted instructions
to load an immediate value or an address into a target
register.  Some of these are shown as examples with
the two instructions.

The Power ISA supplies Subtract From instructions,
which subtract the second operand from the third. A set
of extended mnemonics is provided that use the more
“normal” order, in which the third operand is subtracted
from the second, with the third operand being either an
immediate field or a register. Some of these are shown
as examples with the appropriate Add and Subtract
From instructions.

See Appendix D for additional extended mnemonics.

Add Immediate  D-form

addi RT,RA,SI 

if RA = 0 then RT � EXTS(SI)
else           RT � (RA) + EXTS(SI)

The sum (RA|0) + SI is placed into register RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Add Immediate:

  

Add Immediate Shifted  D-form

addis RT,RA,SI

if RA = 0 then RT � EXTS(SI || 160)
else           RT � (RA) + EXTS(SI || 160)

The sum (RA|0) + (SI || 0x0000) is placed into register
RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Add Immediate
Shifted:

Notice that CR Field 0 may not reflect the “true”
(infinitely precise) result if overflow occurs.

Programming Note

14 RT RA SI
0 6 11 16                                                    31

Extended: Equivalent to:
li Rx,value addi     Rx,0,value
la Rx,disp(Ry) addi     Rx,Ry,disp
subi Rx,Ry,value addi     Rx,Ry,-value

addi, addis, add, and subf are the preferred
instructions for addition and subtraction, because
they set few status bits.

Notice that addi and addis use the value 0, not the
contents of GPR 0, if RA=0.

Programming Note

15 RT RA SI
0 6 11 16                                                    31

Extended: Equivalent to:
lis Rx,value addis Rx,0,value
subis Rx,Ry,value addis Rx,Ry,-value
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Add  XO-form

add RT,RA,RB (OE=0 Rc=0)
add. RT,RA,RB (OE=0 Rc=1)
addo RT,RA,RB (OE=1 Rc=0)
addo. RT,RA,RB (OE=1 Rc=1) 

RT � (RA) + (RB)

The sum (RA) + (RB) is placed into register RT.

Special Registers Altered:
CR0 (if Rc=1)
SO OV (if OE=1)

Subtract From  XO-form

subf RT,RA,RB  (OE=0 Rc=0)
subf. RT,RA,RB  (OE=0 Rc=1)
subfo RT,RA,RB  (OE=1 Rc=0)
subfo. RT,RA,RB  (OE=1 Rc=1)

RT � ¬(RA) + (RB) + 1
The sum ¬(RA) + (RB) +1 is placed into register RT.

Special Registers Altered:
CR0 (if Rc=1)
SO OV (if OE=1)

Extended Mnemonics:

Example of extended mnemonics for Subtract From:

Add Immediate Carrying   D-form

addic RT,RA,SI 

RT � (RA) + EXTS(SI)

The sum (RA) + SI is placed into register RT.

Special Registers Altered:
CA

Extended Mnemonics:

Example of extended mnemonics for Add Immediate
Carrying:

Add Immediate Carrying and Record 
 D-form

addic. RT,RA,SI 

RT � (RA) + EXTS(SI)

The sum (RA) + SI is placed into register RT.

Special Registers Altered:
CR0 CA

Extended Mnemonics:

Example of extended mnemonics for Add Immediate
Carrying and Record:

31 RT RA RB OE 266 Rc
0 6 11 16 21 22 31

31 RT RA RB OE 40 Rc
0 6  11 16 21 22 31

Extended: Equivalent to:
sub Rx,Ry,Rz subf Rx,Rz,Ry

12 RT RA SI
0 6 11 16                                                     31

Extended: Equivalent to:
subic Rx,Ry,value addic Rx,Ry,-value

13 RT RA SI
0 6 11 16                                                    31

Extended: Equivalent to:
subic. Rx,Ry,value addic. Rx,Ry,-value
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Subtract From Immediate Carrying 
 D-form

subfic RT,RA,SI 

RT � ¬(RA) + EXTS(SI) + 1

The sum ¬(RA) + SI + 1 is placed into register RT.

Special Registers Altered:
CA

Add Carrying   XO-form

addc RT,RA,RB (OE=0 Rc=0)
addc. RT,RA,RB (OE=0 Rc=1)
addco RT,RA,RB (OE=1 Rc=0)
addco. RT,RA,RB (OE=1 Rc=1) 

RT � (RA) + (RB)

The sum (RA) + (RB) is placed into register RT.

Special Registers Altered:
CA
CR0 (if Rc=1)
SO OV (if OE=1)

Subtract From Carrying  XO-form

subfc RT,RA,RB (OE=0 Rc=0)
subfc. RT,RA,RB (OE=0 Rc=1)
subfco RT,RA,RB (OE=1 Rc=0)
subfco. RT,RA,RB (OE=1 Rc=1) 

RT � ¬(RA) + (RB) + 1
The sum ¬(RA) + (RB) + 1 is placed into register RT.

Special Registers Altered:
CA
CR0 (if Rc=1)
SO OV (if OE=1)

Extended Mnemonics:

Example of extended mnemonics for Subtract From
Carrying:

8 RT RA SI
0 6 11 16                                                    31

31 RT RA RB OE 10 Rc
0 6 11 16 21 22 31

31 RT RA RB OE 8 Rc
0 6 11 16 21 22 31

Extended: Equivalent to:
subc Rx,Ry,Rz subfc     Rx,Rz,Ry
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Add Extended  XO-form

adde RT,RA,RB (OE=0 Rc=0)
adde. RT,RA,RB (OE=0 Rc=1)
addeo RT,RA,RB (OE=1 Rc=0)
addeo. RT,RA,RB (OE=1 Rc=1)

RT � (RA) + (RB) + CA

The sum (RA) + (RB) + CA is placed into register RT.

Special Registers Altered:
CA
CR0 (if Rc=1)
SO OV (if OE=1)

Subtract From Extended   XO-form

subfe RT,RA,RB (OE=0 Rc=0)
subfe. RT,RA,RB (OE=0 Rc=1)
subfeo RT,RA,RB (OE=1 Rc=0)
subfeo. RT,RA,RB  (OE=1 Rc=1) 

RT � ¬(RA) + (RB) + CA
The sum ¬(RA) + (RB) + CA is placed into register RT.

Special Registers Altered:
CA
CR0 (if Rc=1)
SO OV (if OE=1)

Add to Minus One Extended   XO-form

addme RT,RA (OE=0 Rc=0)
addme. RT,RA (OE=0 Rc=1)
addmeo RT,RA  (OE=1 Rc=0)
addmeo. RT,RA (OE=1 Rc=1) 

RT � (RA) + CA - 1

The sum (RA) + CA + 641 is placed into register RT.

Special Registers Altered:
CA
CR0 (if Rc=1)
SO OV (if OE=1)

Subtract From Minus One Extended 
 XO-form

subfme RT,RA (OE=0 Rc=0)
subfme. RT,RA  (OE=0 Rc=1)
subfmeo RT,RA (OE=1 Rc=0)
subfmeo. RT,RA (OE=1 Rc=1)

RT � ¬(RA) + CA - 1

The sum ¬(RA) + CA + 641 is placed into register RT.

Special Registers Altered:
CA
CR0 (if Rc=1)
SO OV (if OE=1)

31 RT RA RB OE 138 Rc
0 6 11 16 21 22 31

31 RT RA RB OE 136 Rc
0 6 11 16 21 22 31

31 RT RA /// OE 234 Rc
0 6 11 16 21 22 31 31 RT RA /// OE 232 Rc

0 6 11 16 21 22 31
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Add to Zero Extended   XO-form

addze RT,RA (OE=0 Rc=0)
addze. RT,RA (OE=0 Rc=1)
addzeo RT,RA (OE=1 Rc=0)
addzeo. RT,RA (OE=1 Rc=1)

RT � (RA) + CA

The sum (RA) + CA is placed into register RT.

Special Registers Altered:
CA
CR0 (if Rc=1)
SO OV (if OE=1)

Subtract From Zero Extended   XO-form

subfze RT,RA (OE=0 Rc=0)
subfze. RT,RA (OE=0 Rc=1)
subfzeo RT,RA (OE=1 Rc=0)
subfzeo. RT,RA (OE=1 Rc=1)

RT � ¬(RA) + CA
The sum ¬(RA) + CA is placed into register RT.

Special Registers Altered:
CA
CR0 (if Rc=1)
SO OV (if OE=1)

  

Negate   XO-form

neg RT,RA (OE=0 Rc=0)
neg. RT,RA (OE=0 Rc=1)
nego RT,RA (OE=1 Rc=0)
nego. RT,RA (OE=1 Rc=1)

RT � ¬(RA) + 1
The sum ¬(RA) + 1 is placed into register RT.

If the processor is in 64-bit mode and register RA con-
tains the most negative 64-bit number (0x8000_
0000_0000_0000), the result is the most negative num-
ber and, if OE=1, OV is set to 1.  Similarly, if the proces-
sor is in 32-bit mode and (RA)32:63 contain the most
negative 32-bit number (0x8000_0000), the low-order
32 bits of the result contain the most negative 32-bit
number and, if OE=1, OV is set to 1.

Special Registers Altered:
CR0 (if Rc=1)
SO OV (if OE=1)

31 RT RA /// OE 202 Rc
0 6 11 16 21 22 31

31 RT RA /// OE 200 Rc
0 6 11 16 21 22 31

The setting of CA by the Add and Subtract From
instructions, including the Extended versions
thereof, is mode-dependent.  If a sequence of
these instructions is used to perform extended-pre-
cision addition or subtraction, the same mode
should be used throughout the sequence.

31 RT RA /// OE 104 Rc
0 6 11 16 21 22 31

Programming Note
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Multiply Low Immediate   D-form

mulli RT,RA,SI 

prod0:127 � (RA) × EXTS(SI)
RT � prod64:127

The 64-bit first operand is (RA).  The 64-bit second
operand is the sign-extended value of the SI field.  The
low-order 64 bits of the 128-bit product of the operands
are placed into register RT.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
None

Multiply Low Word   XO-form

mullw RT,RA,RB (OE=0 Rc=0)
mullw. RT,RA,RB (OE=0 Rc=1)
mullwo RT,RA,RB (OE=1 Rc=0)
mullwo. RT,RA,RB (OE=1 Rc=1)

RT � (RA)32:63 × (RB)32:63
The 32-bit operands are the low-order 32 bits of RA
and of RB.  The 64-bit product of the operands is
placed into register RT.

If OE=1 then OV is set to 1 if the product cannot be rep-
resented in 32 bits.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CR0 (if Rc=1)
SO OV (if OE=1)

  

Multiply High Word   XO-form

mulhw RT,RA,RB (Rc=0)
mulhw. RT,RA,RB (Rc=1)

prod0:63 � (RA)32:63 × (RB)32:63
RT32:63 � prod0:31
RT0:31 � undefined

The 32-bit operands are the low-order 32 bits of RA
and of RB.  The high-order 32 bits of the 64-bit product
of the operands are placed into RT32:63.  The contents
of RT0:31 are undefined.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CR0 (bits 0:2 undefined in 64-bit mode) (if Rc=1)

Multiply High Word Unsigned  XO-form

mulhwu RT,RA,RB (Rc=0)
mulhwu. RT,RA,RB (Rc=1)

prod0:63 � (RA)32:63 × (RB)32:63
RT32:63 � prod0:31
RT0:31 � undefined

The 32-bit operands are the low-order 32 bits of RA
and of RB.  The high-order 32 bits of the 64-bit product
of the operands are placed into RT32:63.  The contents
of RT0:31 are undefined.

Both operands and the product are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero.

Special Registers Altered:
CR0 (bits 0:2undefined in 64-bit mode) (if Rc=1)

7 RT RA SI
0 6 11 16                                                    31

31 RT RA RB OE 235 Rc
0 6 11 16 21 22 31

For mulli and mullw, the low-order 32 bits of the
product are the correct 32-bit product for 32-bit
mode.

For mulli and mulld, the low-order 64 bits of the
product are independent of whether the operands
are regarded as signed or unsigned 64-bit integers.
For mulli and mullw, the low-order 32 bits of the
product are independent of whether the operands
are regarded as signed or unsigned 32-bit integers.

Programming Note

31 RT RA RB / 75 Rc
0 6 11 16 21 22 31

31 RT RA RB / 11 Rc
0 6 11 16 21 22 31
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Divide Word   XO-form

divw RT,RA,RB (OE=0 Rc=0)
divw. RT,RA,RB (OE=0 Rc=1)
divwo RT,RA,RB (OE=1 Rc=0)
divwo. RT,RA,RB (OE=1 Rc=1)

dividend0:63 � EXTS((RA)32:63)
divisor0:63 � EXTS((RB)32:63)
RT32:63 � dividend ÷ divisor
RT0:31 � undefined

The 64-bit dividend is the sign-extended value of
(RA)32:63.  The 64-bit divisor is the sign-extended value
of (RB)32:63.  The 64-bit quotient is formed.  The
low-order 32 bits of the 64-bit quotient are placed into
RT32:63.  The contents of RT0:31 are undefined.  The
remainder is not supplied as a result.

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < |divisor| if the dividend is nonnegative,
and -|divisor| < r ≤ 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

   0x8000_0000 ÷ -1
   <anything> ÷ 0

then the contents of register RT are undefined as are
(if Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV is set to 1.

Special Registers Altered:
CR0 (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO OV (if OE=1)

  

Divide Word Unsigned   XO-form

divwu RT,RA,RB (OE=0 Rc=0)
divwu. RT,RA,RB (OE=0 Rc=1)
divwuo RT,RA,RB (OE=1 Rc=0)
divwuo. RT,RA,RB (OE=1 Rc=1)

dividend0:63 � 320 || (RA)32:63
divisor0:63 � 320 || (RB)32:63
RT32:63 � dividend ÷ divisor
RT0:31 � undefined

The 64-bit dividend is the zero-extended value of
(RA)32:63.  The 64-bit divisor is the zero-extended value
of (RB)32:63.  The 64-bit quotient is formed.  The
low-order 32 bits of the 64-bit quotient are placed into
RT32:63.  The contents of RT0:31 are undefined.  The
remainder is not supplied as a result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero.  The quotient is the unique unsigned inte-
ger that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < divisor.

If an attempt is made to perform the division

    <anything> ÷ 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In this case, if OE=1 then OV is set to 1.

Special Registers Altered:
CR0 (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO OV (if OE=1)

  

31 RT RA RB OE 491 Rc
0 6 11 16 21 22 31

The 32-bit signed remainder of dividing (RA)32:63
by (RB)32:63 can be computed as follows, except in
the case that (RA)32:63 = -231 and (RB)32:63 = -1.

divw RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotient×divisor
subf RT,RT,RA # RT = remainder

Programming Note

31 RT RA RB OE 459 Rc
0 6 11 16 21 22 31

The 32-bit unsigned remainder of dividing (RA)32:63
by (RB)32:63 can be computed as follows.

divwu RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotient×divisor
subf RT,RT,RA # RT = remainder

Programming Note
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3.3.8.1 64-bit Fixed-Point Arithmetic Instructions [Category: 64-Bit]

Multiply Low Doubleword  XO-form

mulld RT,RA,RB  (OE=0 Rc=0)
mulld. RT,RA,RB  (OE=0 Rc=1)
mulldo RT,RA,RB  (OE=1 Rc=0)
mulldo. RT,RA,RB  (OE=1 Rc=1)

prod0:127 � (RA) × (RB)
RT � prod64:127

The 64-bit operands are (RA) and (RB).  The low-order
64 bits of the 128-bit product of the operands are
placed into register RT.

If OE=1 then OV is set to 1 if the product cannot be rep-
resented in 64 bits.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CR0 (if Rc=1)
SO OV (if OE=1)

  

Multiply High Doubleword  XO-form

mulhd RT,RA,RB (Rc=0)
mulhd. RT,RA,RB (Rc=1)

prod0:127 � (RA) × (RB)
RT � prod0:63

The 64-bit operands are (RA) and (RB).  The
high-order 64 bits of the 128-bit product of the oper-
ands are placed into register RT.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CR0 (if Rc=1)

Multiply High Doubleword Unsigned 
XO-form

mulhdu RT,RA,RB (Rc=0)
mulhdu. RT,RA,RB (Rc=1)

prod0:127 � (RA) × (RB)
RT � prod0:63

The 64-bit operands are (RA) and (RB).  The
high-order 64 bits of the 128-bit product of the oper-
ands are placed into register RT.

Both operands and the product are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero.

Special Registers Altered:
CR0 (if Rc=1)

31 RT RA RB OE 233 Rc
0 6 11 16 21 22 31

The XO-form Multiply instructions may execute
faster on some implementations if RB contains the
operand having the smaller absolute value.

Programming Note

31 RT RA RB / 73 Rc
0 6 11 16 21 22 31

31 RT RA RB / 9 Rc
0 6 11 16 21 22 31
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Divide Doubleword  XO-form

divd RT,RA,RB (OE=0 Rc=0)
divd. RT,RA,RB  (OE=0 Rc=1)
divdo RT,RA,RB  (OE=1 Rc=0)
divdo. RT,RA,RB (OE=1 Rc=1)

dividend0:63 � (RA)
divisor0:63 � (RB)
RT � dividend ÷ divisor

The 64-bit dividend is (RA).  The 64-bit divisor is (RB).
The 64-bit quotient of the dividend and divisor is placed
into register RT.  The remainder is not supplied as a
result.

Both operands and the quotient are interpreted as
signed integers.  The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < |divisor| if the dividend is nonnegative,
and -|divisor| < r ≤ 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

   0x8000_0000_0000_0000 ÷ -1
   <anything> ÷ 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV is set to 1.

Special Registers Altered:
CR0 (if Rc=1)
SO OV (if OE=1)

  

Divide Doubleword Unsigned   XO-form

divdu RT,RA,RB (OE=0 Rc=0)
divdu. RT,RA,RB (OE=0 Rc=1)
divduo RT,RA,RB (OE=1 Rc=0)
divduo. RT,RA,RB (OE=1 Rc=1)

dividend0:63 � (RA)
divisor0:63 � (RB)
RT � dividend ÷ divisor

The 64-bit dividend is (RA).  The 64-bit divisor is (RB).
The 64-bit quotient of the dividend and divisor is placed
into register RT.  The remainder is not supplied as a
result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero.  The quotient is the unique unsigned inte-
ger that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < divisor.

If an attempt is made to perform the division

    <anything> ÷ 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In this case, if OE=1 then OV is set to 1.

Special Registers Altered:
CR0 (if Rc=1)
SO OV (if OE=1)

  

31 RT RA RB OE 489 Rc
0 6 11 16 21 22 31

The 64-bit signed remainder of dividing (RA) by
(RB) can be computed as follows, except in the
case that (RA) = -263 and (RB) = -1.

divd RT,RA,RB # RT = quotient
mulld RT,RT,RB # RT = quotient×divisor
subf RT,RT,RA # RT = remainder

Programming Note

31 RT RA RB OE 457 Rc
0 6 11 16 21 22 31

The 64-bit unsigned remainder of dividing (RA) by
(RB) can be computed as follows.

divdu RT,RA,RB # RT = quotient
mulld RT,RT,RB # RT = quotient×divisor
subf RT,RT,RA # RT = remainder

Programming Note
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3.3.9 Fixed-Point Compare Instructions
The fixed-point Compare instructions compare the con-
tents of register RA with (1) the sign-extended value of
the SI field, (2) the zero-extended value of the UI field,
or (3) the contents of register RB.  The comparison is
signed for cmpi and cmp, and unsigned for cmpli and
cmpl.

The L field controls whether the operands are treated
as 64-bit or 32-bit quantities, as follows: 

L=1 is part of Category: 64-Bit.

When the operands are treated as 32-bit signed quanti-
ties, bit 32 of the register (RA or RB) is the sign bit.

The Compare instructions set one bit in the leftmost
three bits of the designated CR field to 1, and the other

two to 0. XERSO is copied to bit 3 of the designated CR
field. 

The CR field is set as follows

.

Extended mnemonics for compares
A set of extended mnemonics is provided so that com-
pares can be coded with the operand length as part of
the mnemonic rather than as a numeric operand. Some
of these are shown as examples with the Compare
instructions. See Appendix D for additional extended
mnemonics.

Compare Immediate D-form

cmpi BF,L,RA,SI

if L = 0 then a � EXTS((RA)32:63)
         else a � (RA)
if      a < EXTS(SI) then c � 0b100
else if a > EXTS(SI) then c � 0b010
else                      c � 0b001
CR4×BF+32:4×BF+35 � c || XERSO

The contents of register RA ((RA)32:63 sign-extended to
64 bits if L=0) are compared with the sign-extended
value of the SI field, treating the operands as signed
integers. The result of the comparison is placed into CR
field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare Imme-
diate:

Compare   X-form

cmp BF,L,RA,RB

if L = 0 then a � EXTS((RA)32:63)
                b � EXTS((RB)32:63)
           else a � (RA)
                b � (RB)
if      a < b then c � 0b100
else if a > b then c � 0b010
else               c � 0b001
CR4×BF+32:4×BF+35 � c || XERSO

The contents of register RA ((RA)32:63 if L=0) are com-
pared with the contents of register RB ((RB)32:63 if
L=0), treating the operands as signed integers. The
result of the comparison is placed into CR field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare:

L Operand length
0 32-bit operands
1 64-bit operands

Bit Name Description
0 LT (RA) < SI or (RB) (signed comparison)

(RA) <u UI or (RB) (unsigned comparison)
1 GT (RA) > SI or (RB) (signed comparison)

(RA) >u UI or (RB) (unsigned comparison)
2 EQ (RA) = SI, UI, or (RB)
3 SO Summary Overflow from the XER

11 BF / L RA SI
0 6 9 10 11 16                                              31

Extended: Equivalent to:
cmpdi Rx,value cmpi 0,1,Rx,value
cmpwi cr3,Rx,value cmpi 3,0,Rx,value

31 BF / L RA RB 0 /
0 6 9 10 11 16 21 31

Extended: Equivalent to:
cmpd Rx,Ry cmp 0,1,Rx,Ry
cmpw cr3,Rx,Ry cmp       3,0,Rx,Ry
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Compare Logical Immediate   D-form

cmpli BF,L,RA,UI

if L = 0 then a � 320 || (RA)32:63
         else a � (RA)
if      a <u (480 || UI) then c � 0b100
else if a >u (480 || UI) then c � 0b010
else                         c � 0b001
CR4×BF+32:4×BF+35 � c || XERSO

The contents of register RA ((RA)32:63 zero-extended to
64 bits if L=0) are compared with 480 || UI, treating the
operands as unsigned integers. The result of the com-
parison is placed into CR field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare Logical
Immediate:

Compare Logical   X-form

cmpl BF,L,RA,RB

if L = 0 then a � 320 || (RA)32:63
              b � 320 || (RB)32:63
         else a � (RA)
              b � (RB)
if      a <u b then c � 0b100
else if a >u b then c � 0b010
else                c � 0b001
CR4×BF+32:4×BF+35 � c || XERSO

The contents of register RA ((RA)32:63 if L=0) are com-
pared with the contents of register RB ((RB)32:63 if
L=0), treating the operands as unsigned integers. The
result of the comparison is placed into CR field BF.

Special Registers Altered:
CR field BF 

Extended Mnemonics:

Examples of extended mnemonics for Compare Logi-
cal:

10 BF / L RA UI
0 6 9 10 11 16                                        31

Extended: Equivalent to:
cmpldi Rx,value cmpli 0,1,Rx,value
cmplwi cr3,Rx,value cmpli 3,0,Rx,value

31 BF / L RA RB 32 /
0 6 9 10 11 16 21 31

Extended: Equivalent to:
cmpld Rx,Ry cmpl 0,1,Rx,Ry
cmplw cr3,Rx,Ry cmpl 3,0,Rx,Ry
Power ISA™ -- Book I68



   Version 2.04
3.3.10 Fixed-Point Trap Instructions
The Trap instructions are provided to test for a specified
set of conditions.  If any of the conditions tested by a
Trap instruction are met, the system trap handler is
invoked.  If none of the tested conditions are met,
instruction execution continues normally.

The contents of register RA are compared with either
the sign-extended value of the SI field or the contents
of register RB, depending on the Trap instruction. For
tdi and td, the entire contents of RA (and RB) partici-
pate in the comparison; for twi and tw, only the con-
tents of the low-order 32 bits of RA (and RB) participate
in the comparison.

This comparison results in five conditions which are
ANDed with TO. If the result is not 0 the system trap
handler is invoked. These conditions are as follows.

TO Bit ANDed with Condition
0 Less Than, using signed comparison
1 Greater Than, using signed comparison
2 Equal
3 Less Than, using unsigned comparison
4 Greater Than, using unsigned comparison

Extended mnemonics for traps
A set of extended mnemonics is provided so that traps
can be coded with the condition as part of the mne-
monic rather than as a numeric operand. Some of
these are shown as examples with the Trap instruc-
tions. See Appendix D for additional extended mne-
monics.

Trap Word Immediate D-form

twi TO,RA,SI

a � EXTS((RA)32:63)
if (a < EXTS(SI)) & TO0  then TRAP
if (a > EXTS(SI)) & TO1  then TRAP
if (a = EXTS(SI)) & TO2  then TRAP
if (a <u EXTS(SI)) & TO3 then TRAP
if (a >u EXTS(SI)) & TO4 then TRAP

The contents of RA32:63 are compared with the
sign-extended value of the SI field.  If any bit in the TO
field is set to 1 and its corresponding condition is met
by the result of the comparison, the system trap han-
dler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book III).

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Word
Immediate:

Trap Word  X-form

tw TO,RA,RB

a � EXTS((RA)32:63)
b � EXTS((RB)32:63)
if (a < b) & TO0 then TRAP
if (a > b) & TO1 then TRAP
if (a = b) & TO2 then TRAP
if (a <u b) & TO3 then TRAP
if (a >u b) & TO4 then TRAP

The contents of RA32:63 are compared with the con-
tents of RB32:63. If any bit in the TO field is set to 1 and
its corresponding condition is met by the result of the
comparison, the system trap handler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book III).

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Word:

3 TO RA SI
0 6 11 16                                                    31

Extended: Equivalent to:
twgti Rx,value twi 8,Rx,value
twllei Rx,value twi 6,Rx,value

31 TO RA RB 4 /
0 6 11 16 21 31

Extended: Equivalent to:
tweq Rx,Ry tw 4,Rx,Ry
twlge Rx,Ry tw 5,Rx,Ry
trap tw 31,0,0
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3.3.10.1 64-bit Fixed-Point Trap Instructions [Category: 64-Bit]

Trap Doubleword Immediate  D-form

tdi TO,RA,SI

a � (RA)
if (a < EXTS(SI)) & TO0 then TRAP
if (a > EXTS(SI)) & TO1 then TRAP
if (a = EXTS(SI)) & TO2 then TRAP
if (a <u EXTS(SI)) & TO3 then TRAP
if (a >u EXTS(SI)) & TO4 then TRAP

The contents of register RA are compared with the
sign-extended value of the SI field. If any bit in the TO
field is set to 1 and its corresponding condition is met
by the result of the comparison, the system trap han-
dler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book III).

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Doubleword
Immediate:

Trap Doubleword  X-form

td TO,RA,RB

a � (RA)
b � (RB)
if (a < b) & TO0 then TRAP
if (a > b) & TO1 then TRAP
if (a = b) & TO2 then TRAP
if (a <u b) & TO3 then TRAP
if (a >u b) & TO4 then TRAP

The contents of register RA are compared with the con-
tents of register RB. If any bit in the TO field is set to 1
and its corresponding condition is met by the result of
the comparison, the system trap handler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book III).

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Double-
word:

3.3.11 Fixed-Point Select [Category: Base.Phased-In]

Integer Select  A-form

isel RT,RA,RB,BC

if RA=0 then a �0 else a � (RA)
if CRBC+32=1 then RT � a
else           RT � (RB)

If the contents of bit BC+32 of the Condition Register
are equal to 1, then the contents of register RA (or 0)

are placed into register RT. Otherwise, the contents of
register RB are placed into register RT.

Special Registers Altered:
None

2 TO RA SI
0 6 11 16                                                     31

Extended: Equivalent to:
tdlti Rx,value tdi 16,Rx,value
tdnei Rx,value tdi 24,Rx,value

31 TO RA RB 68 /
0 6 11 16 21 31

Extended: Equivalent to:
tdge Rx,Ry td 12,Rx,Ry

tdlnl Rx,Ry td 5,Rx,Ry
Extended: Equivalent to:

31 RT RA RB BC 15 /
0 6 11 16 21 26 31
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3.3.12 Fixed-Point Logical Instructions
The Logical instructions perform bit-parallel operations
on 64-bit operands.

The X-form Logical instructions with Rc=1, and the
D-form Logical instructions andi. and andis., set the
first three bits of CR Field 0 as described in
Section 3.3.7, “Other Fixed-Point Instructions” on
page 57. The Logical instructions do not change the
SO, OV, and CA bits in the XER.

Extended mnemonics for logical oper-
ations
An extended mnemonic is provided that generates the
preferred form of “no-op” (an instruction that does noth-
ing).  This is shown as an example with the OR Immedi-
ate instruction.

Extended mnemonics are provided that use the OR
and NOR instructions to copy the contents of one regis-
ter to another, with and without complementing.  These
are shown as examples with the two instructions.

See Appendix D, “Assembler Extended Mnemonics” on
page 317 for additional extended mnemonics.

AND Immediate   D-form

andi. RA,RS,UI 

RA � (RS) & (480 || UI)

The contents of register RS are ANDed with 480 || UI
and the result is placed into register RA.

Special Registers Altered:
CR0

AND Immediate Shifted  D-form

andis. RA,RS,UI 

RA � (RS) & (320 || UI || 160)

The contents of register RS are ANDed with
320 || UI || 160 and the result is placed into register RA.

Special Registers Altered:
CR0

OR Immediate   D-form

ori RA,RS,UI

RA � (RS) | (480 || UI)

The contents of register RS are ORed with 480 || UI and
the result is placed into register RA.

The preferred “no-op” (an instruction that does nothing)
is:

ori 0,0,0

Special Registers Altered:
None

Extended Mnemonics:

Example of extended mnemonics for OR Immediate:

28 RS RA UI
0 6 11 16                                        31

29 RS RA UI
0 6 11 16                                        31

24 RS RA UI
0 6 11 16                                                    31

Extended: Equivalent to:
nop ori 0,0,0
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OR Immediate Shifted  D-form

oris      RA,RS,UI

RA � (RS) | (320 || UI || 160)

The contents of register RS are ORed with
320 || UI || 160 and the result is placed into register RA.

Special Registers Altered:
None

XOR Immediate  D-form

xori RA,RS,UI 

RA � (RS) XOR (480 || UI)

The contents of register RS are XORed with 480 || UI
and the result is placed into register RA.

Special Registers Altered:
None

XOR Immediate Shifted  D-form

xoris RA,RS,UI

RA � (RS) XOR (320 || UI || 160)

The contents of register RS are XORed with
320 || UI || 160 and the result is placed into register RA.

Special Registers Altered:
None

25 RS RA UI
0 6 11 16                                                    31

26 RS RA UI
0 6 11 16                                                    31

27 RS RA UI
0 6 11 16                                                    31
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AND  X-form

and RA,RS,RB (Rc=0)
and. RA,RS,RB (Rc=1)

RA � (RS) & (RB)

The contents of register RS are ANDed with the con-
tents of register RB and the result is placed into register
RA.

Special Registers Altered:
CR0 (if Rc=1)

XOR   X-form

xor RA,RS,RB (Rc=0)
xor.  RA,RS,RB (Rc=1)

RA � (RS) ⊕  (RB)

The contents of register RS are XORed with the con-
tents of register RB and the result is placed into register
RA.

Special Registers Altered:
CR0 (if Rc=1)

NAND  X-form

nand RA,RS,RB (Rc=0)
nand. RA,RS,RB (Rc=1)

RA � ¬((RS) & (RB))
The contents of register RS are ANDed with the con-
tents of register RB and the complemented result is
placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

  

OR  X-form

or RA,RS,RB (Rc=0)
or. RA,RS,RB (Rc=1)

RA � (RS) | (RB)

The contents of register RS are ORed with the contents
of register RB and the result is placed into register RA.

For implementations that support the PPR (see Section
3.2.3), or Rx,Rx,Rx can be used to set PPRPRI as
shown in Figure 43. or. Rx,Rx,Rx does not set PPRPRI.

Figure 43. Priority levels for or Rx,Rx,Rx

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for OR:

  

31 RS RA RB 28 Rc
0 6 11 16 21 31

31 RS RA RB 316 Rc
0 6 11 16 21 31

31 RS RA RB 476 Rc
0 6 11 16 21 31

nand or nor with RS=RB can be used to obtain the
one’s complement.

Programming Note

31 RS RA RB 444 Rc
0 6 11 16 21 31

Rx PPRPRI Priority

1 010 low

6 011 medium low

2 100 medium (normal)

Extended: Equivalent to:
mr Rx,Ry or Rx,Ry,Ry

Warning: Other forms of or Rx,Rx,Rx that are not
described in Figure 43 may also cause program
priority to change. Use of these forms should be
avoided except when software explicitly intends to
alter program priority. If a no-op is needed, the pre-
ferred no-op (ori 0,0,0) should be used.

Programming Note
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NOR   X-form

nor RA,RS,RB (Rc=0)
nor. RA,RS,RB (Rc=1)

   RA � ¬((RS) | (RB))
The contents of register RS are ORed with the contents
of register RB and the complemented result is placed
into register RA.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for NOR:

Equivalent  X-form

eqv RA,RS,RB (Rc=0)
eqv. RA,RS,RB (Rc=1)

RA � (RS) ≡ (RB)

The contents of register RS are XORed with the con-
tents of register RB and the complemented result is
placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

AND with Complement   X-form

andc RA,RS,RB (Rc=0)
andc. RA,RS,RB (Rc=1)

RA � (RS) & ¬(RB)

The contents of register RS are ANDed with the com-
plement of the contents of register RB and the result is
placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

OR with Complement  X-form

orc RA,RS,RB (Rc=0)
orc. RA,RS,RB (Rc=1)

RA � (RS) | ¬(RB)

The contents of register RS are ORed with the comple-
ment of the contents of register RB and the result is
placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

Extend Sign Byte  X-form

extsb RA,RS (Rc=0)
extsb. RA,RS (Rc=1)

s � (RS)56
RA56:63 � (RS)56:63
RA0:55 � 56s

(RS)56:63 are placed into RA56:63.  Bit 56 of register RS
is placed into RA0:55.

Special Registers Altered:
CR0 (if Rc=1)

Extend Sign Halfword  X-form

extsh RA,RS (Rc=0)
extsh. RA,RS (Rc=1) 

s � (RS)48
RA48:63 � (RS)48:63
RA0:47 � 48s

(RS)48:63 are placed into RA48:63.  Bit 48 of register RS
is placed into RA0:47.

Special Registers Altered:
CR0 (if Rc=1)

Count Leading Zeros Word  X-form cntlzw RA,RS (Rc=0)

31 RS RA RB 124 Rc
0 6 11 16 21 31

Extended: Equivalent to:
not Rx,Ry nor Rx,Ry,Ry

31 RS RA RB 284 Rc
0 6 11 16 21 31

31 RS RA RB 60 Rc
0 6 11 16 21 31

31 RS RA RB 412 Rc
0 6 11 16 21 31

31 RS RA /// 954 Rc
0 6 11 16 21 31

31 RS RA /// 922 Rc
0 6 11 16 21 31
Power ISA™ -- Book I74



   Version 2.04
cntlzw. RA,RS (Rc=1) 

n � 32
do while n < 64
   if (RS)n = 1 then leave
   n � n + 1
RA � n - 32

A count of the number of consecutive zero bits starting
at bit 32 of register RS is placed into register RA.  This
number ranges from 0 to 32, inclusive.

If Rc=1, CR Field 0 is set to reflect the result.

Special Registers Altered:
CR0 (if Rc=1)

  

31 RS RA /// 26 Rc
0 6 11 16 21 31

For both Count Leading Zeros instructions, if Rc=1
then LT is set to 0 in CR Field 0.

Programming Note
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3.3.12.1 64-bit Fixed-Point Logical 
Instructions [Category: 64-Bit]

Extend Sign Word   X-form

extsw RA,RS (Rc=0)
extsw. RA,RS (Rc=1)

s � (RS)32
RA32:63 � (RS)32:63
RA0:31 � 32s

(RS)32:63 are placed into RA32:63.  Bit 32 of register RS
is placed into RA0:31.

Special Registers Altered:
CR0 (if Rc=1)

Count Leading Zeros Doubleword  X-form

cntlzd RA,RS (Rc=0)
cntlzd. RA,RS (Rc=1)

n � 0
do while n < 64
  if (RS)n = 1 then leave
  n � n + 1
RA � n

A count of the number of consecutive zero bits starting
at bit 0 of register RS is placed into register RA.  This
number ranges from 0 to 64, inclusive.

If Rc=1, CR Field 0 is set to reflect the result.

Special Registers Altered:
CR0 (if Rc=1)

3.3.12.2 Phased-In Fixed-Point Logical 
Instructions [Category: Base.Phased-In]

Population Count Bytes   X-form

popcntb RA, RS

do i = 0 to 7
   n � 0
   do j = 0 to 7
      if (RS)(i×8)+j = 1 then
          n � n+1
   RA(i×8):(i×8)+7 � n

A count of the number of one bits in each byte of regis-
ter RS is placed into the corresponding byte of register
RA. This number ranges from 0 to 8, inclusive.

Special Registers Altered:
None

  

31 RS RA /// 986 Rc
0 6 11 16 21 31

31 RS RA /// 58 Rc
0 6 11 16 21 31

31 RS RA /// 122 /
0 6 11 16 21 31

The total number of one bits in register RS can be
computed as follows. In this example it is assumed
that register RB contains the value
0x0101_0101_0101_0101

popcntb RA,RS
mulld RT,RA,RB
srdi RT,RT,56     # RT = population count

Programming Note
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3.3.13 Fixed-Point Rotate and Shift Instructions
The Fixed-Point Processor performs rotation operations
on data from a GPR and returns the result, or a portion
of the result, to a GPR.

The rotation operations rotate a 64-bit quantity left by a
specified number of bit positions.  Bits that exit from
position 0 enter at position 63.

Two types of rotation operation are supported.

For the first type, denoted rotate64 or ROTL64, the value
rotated is the given 64-bit value.  The rotate64 operation
is used to rotate a given 64-bit quantity.

For the second type, denoted rotate32 or ROTL32, the
value rotated consists of two copies of bits 32:63 of the
given 64-bit value, one copy in bits 0:31 and the other in
bits 32:63.  The rotate32 operation is used to rotate a
given 32-bit quantity.

The Rotate and Shift instructions employ a mask gen-
erator.  The mask is 64 bits long, and consists of 1-bits
from a start bit, mstart, through and including a stop bit,
mstop, and 0-bits elsewhere.  The values of mstart and
mstop range from 0 to 63.  If mstart > mstop, the 1-bits
wrap around from position 63 to position 0.  Thus the
mask is formed as follows:

      if mstart ≤ mstop then
         maskmstart:mstop = ones
         maskall other bits = zeros
      else
         maskmstart:63 = ones
         mask0:mstop = ones
         maskall other bits = zeros

There is no way to specify an all-zero mask.

For instructions that use the rotate32 operation, the
mask start and stop positions are always in the
low-order 32 bits of the mask.

The use of the mask is described in following sections.

The Rotate and Shift instructions with Rc=1 set the first
three bits of CR field 0 as described in Section 3.3.7,
“Other Fixed-Point Instructions” on page 57. Rotate and
Shift instructions do not change the OV and SO bits.
Rotate and Shift instructions, except algebraic right
shifts, do not change the CA bit.

Extended mnemonics for rotates and 
shifts
The Rotate and Shift instructions, while powerful, can
be complicated to code (they have up to five operands).
A set of extended mnemonics is provided that allow
simpler coding of often-used functions such as clearing
the leftmost or rightmost bits of a register, left justifying
or right justifying an arbitrary field, and performing sim-
ple rotates and shifts. Some of these are shown as
examples with the Rotate instructions. See Appendix D,
“Assembler Extended Mnemonics” on page 317 for
additional extended mnemonics.

3.3.13.1 Fixed-Point Rotate Instructions

These instructions rotate the contents of a register.
The result of the rotation is

� inserted into the target register under control of a
mask (if a mask bit is 1 the associated bit of the
rotated data is placed into the target register, and if
the mask bit is 0 the associated bit in the target
register remains unchanged); or

� ANDed with a mask before being placed into the
target register.

The Rotate Left instructions allow right-rotation of the
contents of a register to be performed (in concept) by a
left-rotation of 64-n, where n is the number of bits by
which to rotate right.  They allow right-rotation of the
contents of the low-order 32 bits of a register to be per-
formed (in concept) by a left-rotation of 32-n, where n
is the number of bits by which to rotate right.
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Rotate Left Word Immediate then AND 
with Mask  M-form

rlwinm RA,RS,SH,MB,ME (Rc=0)
rlwinm. RA,RS,SH,MB,ME (Rc=1)

n � SH
r � ROTL32((RS)32:63, n)
m � MASK(MB+32, ME+32)
RA � r & m

The contents of register RS are rotated32 left SH bits.
A mask is generated having 1-bits from bit MB+32
through bit ME+32 and 0-bits elsewhere.  The rotated
data are ANDed with the generated mask and the
result is placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Examples of extended mnemonics for Rotate Left Word
Immediate then AND with Mask:

  

21 RS RA SH MB ME Rc
0 6 11 16 21 26 31

Extended: Equivalent to:
extlwi Rx,Ry,n,b rlwinm Rx,Ry,b,0,n-1
srwi Rx,Ry,n rlwinm Rx,Ry,32-n,n,31
clrrwi Rx,Ry,n rlwinm Rx,Ry,0,0,31-n

Let RSL represent the low-order 32 bits of register
RS, with the bits numbered from 0 through 31.

rlwinm can be used to extract an n-bit field that
starts at bit position b in RSL, right-justified into the
low-order 32 bits of register RA (clearing the
remaining 32-n bits of the low-order 32 bits of RA),
by setting SH=b+n, MB=32-n, and ME=31.  It can
be used to extract an n-bit field that starts at bit
position b in RSL, left-justified into the low-order 32
bits of register RA (clearing the remaining 32-n bits
of the low-order 32 bits of RA), by setting SH=b,
MB = 0, and ME=n-1.  It can be used to rotate the
contents of the low-order 32 bits of a register left
(right) by n bits, by setting SH=n (32-n), MB=0, and
ME=31.  It can be used to shift the contents of the
low-order 32 bits of a register right by n bits, by set-
ting SH=32-n, MB=n, and ME=31.  It can be used
to clear the high-order b bits of the low-order 32 bits
of the contents of a register and then shift the result
left by n bits, by setting SH=n, MB=b-n, and
ME=31-n.  It can be used to clear the low-order n
bits of the low-order 32 bits of a register, by setting
SH=0, MB=0, and ME=31-n.

For all the uses given above, the high-order 32 bits
of register RA are cleared.

Extended mnemonics are provided for all of these
uses; see Appendix D, “Assembler Extended Mne-
monics” on page 317.

Programming Note
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Rotate Left Word then AND with Mask  
M-form

rlwnm RA,RS,RB,MB,ME (Rc=0)
rlwnm. RA,RS,RB,MB,ME (Rc=1)

n � (RB)59:63
r � ROTL32((RS)32:63, n)
m � MASK(MB+32, ME+32)
RA � r & m

The contents of register RS are rotated32 left the num-
ber of bits specified by (RB)59:63.  A mask is generated
having 1-bits from bit MB+32 through bit ME+32 and
0-bits elsewhere.  The rotated data are ANDed with the
generated mask and the result is placed into register
RA.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Word
then AND with Mask:

  

Rotate Left Word Immediate then Mask 
Insert  M-form

rlwimi RA,RS,SH,MB,ME (Rc=0)
rlwimi. RA,RS,SH,MB,ME (Rc=1)

n � SH
r � ROTL32((RS)32:63, n)
m � MASK(MB+32, ME+32)
RA � r&m | (RA)&¬m

The contents of register RS are rotated32 left SH bits.
A mask is generated having 1-bits from bit MB+32
through bit ME+32 and 0-bits elsewhere.  The rotated
data are inserted into register RA under control of the
generated mask.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Word
Immediate then Mask Insert:

  

23 RS RA RB MB ME Rc
0 6 11 16 21 26 31

Extended: Equivalent to:
rotlw Rx,Ry,Rz rlwnm Rx,Ry,Rz,0,31

Let RSL represent the low-order 32 bits of register
RS, with the bits numbered from 0 through 31.

rlwnm can be used to extract an n-bit field that
starts at variable bit position b in RSL, right-justified
into the low-order 32 bits of register RA (clearing
the remaining 32-n bits of the low-order 32 bits of
RA), by setting RB59:63=b+n, MB=32-n, and
ME=31.  It can be used to extract an n-bit field that
starts at variable bit position b in RSL, left-justified
into the low-order 32 bits of register RA (clearing
the remaining 32-n bits of the low-order 32 bits of
RA), by setting RB59:63=b, MB = 0, and ME=n-1.  It
can be used to rotate the contents of the low-order
32 bits of a register left (right) by variable n bits, by
setting RB59:63=n (32-n), MB=0, and ME=31.

For all the uses given above, the high-order 32 bits
of register RA are cleared.

Extended mnemonics are provided for some of
these uses; see Appendix D, “Assembler Extended
Mnemonics” on page 317.

Programming Note

20 RS RA SH MB ME Rc
0 6 11 16 21 26 31

Extended: Equivalent to:
inslwi Rx,Ry,n,b rlwimi Rx,Ry,32-b,b,b+n-1

Let RAL represent the low-order 32 bits of register
RA, with the bits numbered from 0 through 31.

rlwimi can be used to insert an n-bit field that is
left-justified in the low-order 32 bits of register RS,
into RAL starting at bit position b, by setting
SH=32-b, MB=b, and ME=(b+n)-1.  It can be used
to insert an n-bit field that is right-justified in the
low-order 32 bits of register RS, into RAL starting at
bit position b, by setting SH=32-(b+n), MB=b, and
ME=(b+n)-1.

Extended mnemonics are provided for both of
these uses; see Appendix D, “Assembler Extended
Mnemonics” on page 317.

Programming Note
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3.3.13.1.1 64-bit Fixed-Point Rotate Instructions [Category: 64-Bit]

Rotate Left Doubleword Immediate then 
Clear Left  MD-form

rldicl RA,RS,SH,MB (Rc=0)
rldicl. RA,RS,SH,MB (Rc=1)

n � sh5 || sh0:4
r � ROTL64((RS), n)
b � mb5 || mb0:4
m � MASK(b, 63)
RA � r & m

The contents of register RS are rotated64 left SH bits.
A mask is generated having 1-bits from bit MB through
bit 63 and 0-bits elsewhere.  The rotated data are
ANDed with the generated mask and the result is
placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Examples of extended mnemonics for Rotate Left Dou-
bleword Immediate then Clear Left:

  

Rotate Left Doubleword Immediate then 
Clear Right  MD-form

rldicr RA,RS,SH,ME (Rc=0)
rldicr. RA,RS,SH,ME (Rc=1)

n � sh5 || sh0:4
r � ROTL64((RS), n)
e � me5 || me0:4
m � MASK(0, e)
RA � r & m

The contents of register RS are rotated64 left SH bits.
A mask is generated having 1-bits from bit 0 through bit
ME and 0-bits elsewhere.  The rotated data are ANDed
with the generated mask and the result is placed into
register RA.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Examples of extended mnemonics for Rotate Left Dou-
bleword Immediate then Clear Right:

  

30 RS RA sh mb 0 sh Rc
0 6 11 16 21 27 30 31

Extended: Equivalent to:
extrdi Rx,Ry,n,b rldicl Rx,Ry,b+n,64-n
srdi Rx,Ry,n rldicl Rx,Ry,64-n,n
clrldi Rx,Ry,n rldicl Rx,Ry,0,n

rldicl can be used to extract an n-bit field that starts
at bit position b in register RS, right-justified into
register RA (clearing the remaining 64-n bits of
RA), by setting SH=b+n and MB=64-n.  It can be
used to rotate the contents of a register left (right)
by n bits, by setting SH=n (64-n) and MB=0.  It can
be used to shift the contents of a register right by n
bits, by setting SH=64-n and MB=n.  It can be used
to clear the high-order n bits of a register, by setting
SH=0 and MB=n.

Extended mnemonics are provided for all of these
uses; see Appendix D, “Assembler Extended Mne-
monics” on page 317.

Programming Note

30 RS RA sh me 1 sh Rc
0 6 11 16 21 27 30 31

Extended: Equivalent to:
extldi Rx,Ry,n,b rldicr Rx,Ry,b,n-1
sldi Rx,Ry,n rldicr Rx,Ry,n,63-n
clrrdi Rx,Ry,n rldicr Rx,Ry,0,63-n

rldicr can be used to extract an n-bit field that
starts at bit position b in register RS, left-justified
into register RA (clearing the remaining 64-n bits
of RA), by setting SH=b and ME=n-1.  It can be
used to rotate the contents of a register left (right)
by n bits, by setting SH=n (64-n) and ME=63.  It
can be used to shift the contents of a register left by
n bits, by setting SH=n and ME=63-n.  It can be
used to clear the low-order n bits of a register, by
setting SH=0 and ME=63-n.

Extended mnemonics are provided for all of these
uses (some devolve to rldicl); see Appendix D,
“Assembler Extended Mnemonics” on page 317.

Programming Note
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Rotate Left Doubleword Immediate then 
Clear  MD-form

rldic RA,RS,SH,MB (Rc=0)
rldic. RA,RS,SH,MB (Rc=1)

n � sh5 || sh0:4
r � ROTL64((RS), n)
b � mb5 || mb0:4
m � MASK(b, ¬n)
RA � r & m

The contents of register RS are rotated64 left SH bits.
A mask is generated having 1-bits from bit MB through
bit 63-SH and 0-bits elsewhere.  The rotated data are
ANDed with the generated mask and the result is
placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Dou-
bleword Immediate then Clear:

  

Rotate Left Doubleword then Clear Left 
 MDS-form

rldcl RA,RS,RB,MB (Rc=0)
rldcl. RA,RS,RB,MB (Rc=1)

n � (RB)58:63
r � ROTL64((RS), n)
b � mb5 || mb0:4
m � MASK(b, 63)
RA � r & m

The contents of register RS are rotated64 left the num-
ber of bits specified by (RB)58:63.  A mask is generated
having 1-bits from bit MB through bit 63 and 0-bits else-
where.  The rotated data are ANDed with the generated
mask and the result is placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Dou-
bleword then Clear Left:

  

30 RS RA sh mb 2 sh Rc
0 6 11 16 21 27 30 31

Extended: Equivalent to:
clrlsldi Rx,Ry,b,n rldic Rx,Ry,n,b-n

rldic can be used to clear the high-order b bits of
the contents of a register and then shift the result
left by n bits, by setting SH=n and MB=b-n.  It can
be used to clear the high-order n bits of a register,
by setting SH=0 and MB=n.

Extended mnemonics are provided for both of
these uses (the second devolves to rldicl); see
Appendix D, “Assembler Extended Mnemonics” on
page 317.

Programming Note

30 RS RA RB mb 8 Rc
0 6 11 16 21 27 31

Extended: Equivalent to:
rotld Rx,Ry,Rz rldcl Rx,Ry,Rz,0

rldcl can be used to extract an n-bit field that starts
at variable bit position b in register RS, right-justi-
fied into register RA (clearing the remaining 64-n
bits of RA), by setting RB58:63=b+n and MB=64-n.
It can be used to rotate the contents of a register
left (right) by variable n bits, by setting RB58:63=n
(64-n) and MB=0.

Extended mnemonics are provided for some of
these uses; see Appendix D, “Assembler Extended
Mnemonics” on page 317.

Programming Note
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Rotate Left Doubleword then Clear Right 
 MDS-form

rldcr RA,RS,RB,ME (Rc=0)
rldcr. RA,RS,RB,ME (Rc=1)

n � (RB)58:63
r � ROTL64((RS), n)
e � me5 || me0:4
m � MASK(0, e)
RA � r & m

The contents of register RS are rotated64 left the num-
ber of bits specified by (RB)58:63.  A mask is generated
having 1-bits from bit 0 through bit ME and 0-bits else-
where.  The rotated data are ANDed with the generated
mask and the result is placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

  

Rotate Left Doubleword Immediate then 
Mask Insert  MD-form

rldimi RA,RS,SH,MB (Rc=0)
rldimi. RA,RS,SH,MB (Rc=1)

n � sh5 || sh0:4
r � ROTL64((RS), n)
b � mb5 || mb0:4
m � MASK(b, ¬n)
RA � r&m | (RA)&¬m

The contents of register RS are rotated64 left SH bits.
A mask is generated having 1-bits from bit MB through
bit 63-SH and 0-bits elsewhere.  The rotated data are
inserted into register RA under control of the generated
mask.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Dou-
bleword Immediate then Mask Insert:

  

30 RS RA RB me 9 Rc
0 6 11 16 21 27 31

rldcr can be used to extract an n-bit field that starts
at variable bit position b in register RS, left-justified
into register RA (clearing the remaining 64-n bits
of RA), by setting RB58:63=b and ME=n-1.  It can
be used to rotate the contents of a register left
(right) by variable n bits, by setting RB58:63=n
(64-n) and ME=63.

Extended mnemonics are provided for some of
these uses (some devolve to rldcl); see
Appendix D, “Assembler Extended Mnemonics” on
page 317.

Programming Note

30 RS RA sh mb 3 sh Rc
0 6 11 16 21 27 30 31

Extended: Equivalent to:
insrdi Rx,Ry,n,b rldimi Rx,Ry,64-(b+n),b

rldimi can be used to insert an n-bit field that is
right-justified in register RS, into register RA start-
ing at bit position b, by setting SH=64-(b+n) and
MB=b.

An extended mnemonic is provided for this use;
see Appendix D, “Assembler Extended Mnemon-
ics” on page 317.

Programming Note
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3.3.13.2 Fixed-Point Shift Instructions

The instructions in this section perform left and right
shifts.

Extended mnemonics for shifts
Immediate-form logical (unsigned) shift operations are
obtained by specifying appropriate masks and shift val-
ues for certain Rotate instructions. A set of extended
mnemonics is provided to make coding of such shifts
simpler and easier to understand. Some of these are
shown as examples with the Rotate instructions. See
Appendix D, “Assembler Extended Mnemonics” on
page 317 for additional extended mnemonics.

  

  

Shift Left Word  X-form

slw RA,RS,RB (Rc=0)
slw. RA,RS,RB  (Rc=1)

n � (RB)59:63
r � ROTL32((RS)32:63, n)
if (RB)58 = 0 then
     m � MASK(32, 63-n)
else m � 640
RA � r & m

The contents of the low-order 32 bits of register RS are
shifted left the number of bits specified by (RB)58:63.
Bits shifted out of position 32 are lost.  Zeros are sup-
plied to the vacated positions on the right.  The 32-bit
result is placed into RA32:63.  RA0:31 are set to zero.
Shift amounts from 32 to 63 give a zero result.

Special Registers Altered:
CR0 (if Rc=1)

Shift Right Word  X-form

srw RA,RS,RB (Rc=0)
srw. RA,RS,RB (Rc=1)

n � (RB)59:63
r � ROTL32((RS)32:63, 64-n)
if (RB)58 = 0 then
    m � MASK(n+32, 63)
else m � 640
RA � r & m

The contents of the low-order 32 bits of register RS are
shifted right the number of bits specified by (RB)58:63.
Bits shifted out of position 63 are lost.  Zeros are sup-
plied to the vacated positions on the left.  The 32-bit
result is placed into RA32:63.  RA0:31 are set to zero.
Shift amounts from 32 to 63 give a zero result.

Special Registers Altered:
CR0 (if Rc=1)

Any Shift Right Algebraic instruction, followed by
addze, can be used to divide quickly by 2n.  The
setting of the CA bit by the Shift Right Algebraic
instructions is independent of mode.

Multiple-precision shifts can be programmed as
shown in Section E.1, “Multiple-Precision Shifts” on
page 331.

Programming Note

Programming Note

31 RS RA RB 24 Rc
0 6 11 16 21 31

31 RS RA RB 536 Rc
0 6 11 16 21 31
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Shift Right Algebraic Word Immediate 
 X-form

srawi RA,RS,SH (Rc=0)
srawi. RA,RS,SH (Rc=1) 

n � SH
r � ROTL32((RS)32:63, 64-n)
m � MASK(n+32, 63)
s � (RS)32
RA � r&m | (64s)&¬m
CA � s & ((r&¬m)32:63≠0)
The contents of the low-order 32 bits of register RS are
shifted right SH bits.  Bits shifted out of position 63 are
lost.  Bit 32 of RS is replicated to fill the vacated posi-
tions on the left.  The 32-bit result is placed into
RA32:63.  Bit 32 of RS is replicated to fill RA0:31.  CA is
set to 1 if the low-order 32 bits of (RS) contain a nega-
tive number and any 1-bits are shifted out of position
63; otherwise CA is set to 0.  A shift amount of zero
causes RA to receive EXTS((RS)32:63), and CA to be
set to 0.

Special Registers Altered:
CA
CR0 (if Rc=1)

Shift Right Algebraic Word  X-form

sraw RA,RS,RB (Rc=0)
sraw.  RA,RS,RB (Rc=1) 

n � (RB)59:63
r � ROTL32((RS)32:63, 64-n)
if (RB)58 = 0 then
    m � MASK(n+32, 63)
else m � 640
s � (RS)32
RA � r&m | (64s)&¬m
CA � s & ((r&¬m)32:63≠0)

The contents of the low-order 32 bits of register RS are
shifted right the number of bits specified by (RB)58:63.
Bits shifted out of position 63 are lost.  Bit 32 of RS is
replicated to fill the vacated positions on the left.  The
32-bit result is placed into RA32:63. Bit 32 of RS is repli-
cated to fill RA0:31.  CA is set to 1 if the low-order 32
bits of (RS) contain a negative number and any 1-bits
are shifted out of position 63; otherwise CA is set to 0.
A shift amount of zero causes RA to receive
EXTS((RS)32:63), and CA to be set to 0. Shift amounts
from 32 to 63 give a result of 64 sign bits, and cause
CA to receive the sign bit of (RS)32:63.

Special Registers Altered:
CA
CR0 (if Rc=1)

31 RS RA SH 824 Rc
0 6 11 16 21 31

31 RS RA RB 792 Rc
0 6 11 16  21 31
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3.3.13.2.1 64-bit Fixed-Point Shift Instructions [Category: 64-Bit]

Shift Left Doubleword  X-form

sld RA,RS,RB (Rc=0)
sld. RA,RS,RB (Rc=1)

n � (RB)58:63
r � ROTL64((RS), n)
if (RB)57 = 0 then
     m � MASK(0, 63-n)
else m � 640
RA � r & m

The contents of register RS are shifted left the number
of bits specified by (RB)57:63.  Bits shifted out of posi-
tion 0 are lost. Zeros are supplied to the vacated posi-
tions on the right.  The result is placed into register RA.
Shift amounts from 64 to 127 give a zero result.

Special Registers Altered:
CR0 (if Rc=1)

Shift Right Doubleword  X-form

srd RA,RS,RB (Rc=0)
srd. RA,RS,RB (Rc=1)

n � (RB)58:63
r � ROTL64((RS), 64-n)
if (RB)57 = 0 then
    m � MASK(n, 63)
else m � 640
RA � r & m

The contents of register RS are shifted right the num-
ber of bits specified by (RB)57:63.  Bits shifted out of
position 63 are lost. Zeros are supplied to the vacated
positions on the left.  The result is placed into register
RA.  Shift amounts from 64 to 127 give a zero result.

Special Registers Altered:
CR0 (if Rc=1)

Shift Right Algebraic Doubleword 
Immediate XS-form

sradi RA,RS,SH (Rc=0)
sradi. RA,RS,SH (Rc=1)

n � sh5 || sh0:4
r � ROTL64((RS), 64-n)
m � MASK(n, 63)
s � (RS)0
RA � r&m | (64s)&¬m
CA � s & ((r&¬m)≠0)

The contents of register RS are shifted right SH bits.
Bits shifted out of position 63 are lost.  Bit 0 of RS is
replicated to fill the vacated positions on the left.  The
result is placed into register RA. CA is set to 1 if (RS) is
negative and any 1-bits are shifted out of position 63;
otherwise CA is set to 0.  A shift amount of zero causes
RA to be set equal to (RS), and CA to be set to 0.

Special Registers Altered:
CA
CR0 (if Rc=1)

Shift Right Algebraic Doubleword  X-form

srad RA,RS,RB (Rc=0)
srad. RA,RS,RB (Rc=1)

n � (RB)58:63
r � ROTL64((RS), 64-n)
if (RB)57 = 0 then
    m � MASK(n, 63)
else m � 640
s � (RS)0
RA � r&m | (64s)&¬m
CA � s & ((r&¬m)≠0)

The contents of register RS are shifted right the num-
ber of bits specified by (RB)57:63.  Bits shifted out of
position 63 are lost. Bit 0 of RS is replicated to fill the
vacated positions on the left. The result is placed into
register RA.  CA is set to 1 if (RS) is negative and any
1-bits are shifted out of position 63; otherwise CA is set
to 0.  A shift amount of zero causes RA to be set equal
to (RS), and CA to be set to 0.  Shift amounts from 64
to 127 give a result of 64 sign bits in RA, and cause CA
to receive the sign bit of (RS).

Special Registers Altered:
CA
CR0 (if Rc=1)

31 RS RA RB 27 Rc
0 6 11 16 21 31

31 RS RA RB 539 Rc
0 6 11 16 21 31

31 RS RA sh 413 sh Rc
0 6 11 16 21 30 31

31 RS RA RB 794 Rc
0 6 11 16 21 31
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3.3.14 Move To/From System Register Instructions
The Move To Condition Register Fields instruction has
a preferred form; see Section 1.8.1, “Preferred Instruc-
tion Forms” on page 19. In the preferred form, the FXM
field satisfies the following rule.
� Exactly one bit of the FXM field is set to 1.

Extended mnemonics
Extended mnemonics are provided for the mtspr and
mfspr instructions so that they can be coded with the

SPR name as part of the mnemonic rather than as a
numeric operand. An extended mnemonic is provided
for the mtcrf instruction for compatibility with old soft-
ware (written for a version of the architecture that pre-
cedes Version 2.00) that uses it to set the entire
Condition Register. Some of these extended mnemon-
ics are shown as examples with the relevant instruc-
tions. See Appendix D, “Assembler Extended
Mnemonics” on page 317 for additional extended mne-
monics.
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Move To Special Purpose Register 
 XFX-form

mtspr SPR,RS

n � spr5:9 || spr0:4
if length(SPR(n)) = 64 then
  SPR(n) � (RS)
else
  SPR(n) � (RS)32:63

The SPR field denotes a Special Purpose Register,
encoded as shown in the table below.  The contents of
register RS are placed into the designated Special Pur-
pose Register.  For Special Purpose Registers that are
32 bits long, the low-order 32 bits of RS are placed into
the SPR.

If the SPR field contains any value other than one of the
values shown above then one of the following occurs.
� The system illegal instruction error handler is

invoked.
� The system privileged instruction error handler is

invoked.
� The results are boundedly undefined.

A complete description of this instruction can be found
in Book III.

Special Registers Altered:
See above

Extended Mnemonics:

Examples of extended mnemonics for Move To Special
Purpose Register:

  

31 RS spr 467 /
0 6 11 21 31

decimal
SPR1 Register

Name      spr5:9  spr0:4
1 00000 00001 XER
8 00000 01000 LR
9 00000 01001 CTR

256 01000 00000 VRSAVE2

512 10000 00000 SPEFSCR3

896 11100 00000 PPR4

1 Note that the order of the two 5-bit  halves 
of the SPR number is reversed.

2 Category: Embedded and Vector (<E> 
see Programming Note in Section 3.2.4).

3 Category: SPE.
4 Category: Server.

Extended: Equivalent to:
mtxer Rx mtspr 1,Rx
mtlr Rx mtspr 8,Rx
mtctr Rx mtspr 9,Rx

For the mtspr and mfspr instructions, the SPR
number coded in assembler language does not
appear directly as a 10-bit binary number in the
instruction. The number coded is split into two 5-bit
halves that are reversed in the instruction, with the
high-order 5 bits appearing in bits 16:20 of the
instruction and the low-order 5 bits in bits 11:15. 

Compiler and Assembler Note
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Move From Special Purpose Register 
XFX-form

mfspr RT,SPR

n � spr5:9 || spr0:4
if length(SPR(n)) = 64 then
  RT � SPR(n)
else
  RT � 320 || SPR(n)

The SPR field denotes a Special Purpose Register,
encoded as shown in the table below.  The contents of
the designated Special Purpose Register are placed
into register RT.  For Special Purpose Registers that
are 32 bits long, the low-order 32 bits of RT receive the
contents of the Special Purpose Register and the
high-order 32 bits of RT are set to zero.  

If the SPR field contains any value other than one of the
values shown above then one of the following occurs.

� The system illegal instruction error handler is
invoked.

� The system privileged instruction error handler is
invoked.

� The results are boundedly undefined.

A complete description of this instruction can be found
in Book III.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Move From Spe-
cial Purpose Register:

. 

31 RT spr 339 /
0 6 11 21 31

decimal
            SPR1

        spr5:9  spr0:4  
Register

Name
1 00000 00001 XER
8 00000 01000 LR
9 00000 01001 CTR

256 01000 00000 VRSAVE2

260 01000 00100 SPRG43

261 01000 00101 SPRG53

262 01000 00110 SPRG63

263 01000 00111 SPRG73

268 01000 01100 TB4

269  01000 01101 TBU4

512 10000 00000 SPEFSCR5

526 10000 01110 ATB4,6

527 10000 01111 ATBU4,6

896 11100 00000 PPR7

1 Note that the order of the two 5-bit halves 
of the SPR number is reversed.

2 Category: Embedded and Vector (<E> 
see Programming Note in Section 3.2.4).

3 Category: Embedded.
4 See Chapter 4 of Book II.
5 Category: SPE.
6 Category: Alternate Time Base.
7 Category: Server.

Extended: Equivalent to:
mfxer Rx mfspr Rx,1
mflr Rx mfspr Rx,8
mfctr Rx mfspr Rx,9

See the Notes that appear with mtspr.

Note
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Move To Condition Register Fields
 XFX-form

mtcrf FXM,RS

mask � 4(FXM0) || 
4(FXM1) || ... 

4(FXM7)
CR � ((RS)32:63 & mask) | (CR & ¬mask)

The contents of bits 32:63 of register RS are placed
into the Condition Register under control of the field
mask specified by FXM. The field mask identifies the
4-bit fields affected.  Let i be an integer in the range
0-7.  If FXMi=1 then CR field i (CR bits 4×i+32:4×i+35)
is set to the contents of the corresponding field of the
low-order 32 bits of RS.

Special Registers Altered:
CR fields selected by mask

Extended Mnemonics:

Example of extended mnemonics for Move To Condi-
tion Register Fields:

  

Move From Condition Register  XFX-form

mfcr RT

   RT � 320 || CR

The contents of the Condition Register are placed into
RT32:63. RT0:31 are set to 0.

Special Registers Altered:
None

31 RS 0 FXM / 144 /
0 6 11 12 20 21 31

Extended: Equivalent to:
mtcr Rx mtcrf 0xFF,Rx

In the preferred form of this instruction (mtocrf),
only one Condition Register field is updated.

Programming Note

31 RT 0 /// 19 /
0 6 11 12 21 31
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Move To One Condition Register Field
 XFX-form

mtocrf FXM,RS
[Category: Phased-In]  

count � 0
do i = 0 to 7
  if FXMi = 1 then
    n � i
    count � count + 1
if count = 1 then

CR4×n+32:4×n+35 � (RS)4×n+32:4×n+35
else CR � undefined

If exactly one bit of the FXM field is set to 1, let n be the
position of that bit in the field (0 ≤ n ≤ 7). The contents
of bits 4×n+32:4×n+35 of register RS are placed into
CR field n (CR bits 4×n+32:4×n+35). Otherwise, the
contents of the Condition Register are undefined.

Special Registers Altered:
CR field selected by FXM

  

Move From One Condition Register Field 
 XFX-form

mfocrf RT,FXM
[Category: Phased-In]   

RT � undefined
count � 0
do i = 0 to 7
  if FXMi = 1 then
    n � i
    count � count + 1
if count = 1 then

RT4×n+32:4×n+35 � CR4×n+32:4×n+35

If exactly one bit of the FXM field is set to 1, let n be the
position of that bit in the field (0 ≤ n ≤ 7). The contents
of CR field n (CR bits 4×n+32:4×n+35) are placed into
bits 4×n+32:4×n+35 of register RT and the contents of
the remaining bits of register RT are undefined. Other-
wise, the contents of register RT are undefined.

Special Registers Altered:
None

31 RS 1 FXM / 144 /
0 6 11 12 20 21 31

These forms of the mtcrf and mfcr instructions are
intended to replace the old forms of the instructions
(the forms shown in page 89), which will eventually
be phased out of the architecture. The new forms
are backward compatible with most processors that
comply with versions of the architecture that pre-
cede Version 2.00. On those processors, the new
forms are treated as the old forms.

However, on some processors that comply with ver-
sions of the architecture that precede Version 2.00
the new forms may be treated as follows:

mtocrf: may cause the system illegal instruction
error handler to be invoked

mfocrf: may place an undefined value into register
RT

Programming Note

31 RT 1 FXM / 19 /
0 6 11 12 20 21 31
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3.3.14.1 Move To/From System Registers [Category: Embedded]

Move to Condition Register from XER
X-form

mcrxr BF

CR4×BF+32:4×BF+35 � XER32:35
XER32:35 � 0b0000

The contents of XER32:35 are copied to Condition Reg-
ister field BF.  XER32:35 are set to zero.

Special Registers Altered:
CR field BF  XER32:35

Move From APID Indirect X-form

mfapidi RT,RA

RT � implementation-dependent value based on (RA)

The contents of RA are provided to any auxiliary pro-
cessors that may be present. A value, that is implemen-
tation-dependent, is placed in RT.

Special Registers Altered:
None

  

Move To Device Control Register 
User-mode Indexed X-form

mtdcrux RS,RA

DCRN � (RA)
DCR(DCRN) � RS

Let the contents of register RA denote a Device Control
Register. (The supported Device Control Registers are
implementation-dependent.)

The contents of RS are placed into the designated
Device Control Register. For 32-bit Device Control Reg-
isters, the contents of bits 32:63 of RS are placed into
the Device Control Register. 

See “Move To Device Control Register Indexed X-form”
on page 526 in Book III for more information on this
instruction.

Special Registers Altered:
Implementation-dependent

 

Move From Device Control Register 
User-mode Indexed X-form

mfdcrux RT,RA

DCRN � (RA)
RT � DCR(DCRN)

Let the contents of register RA denote a Device Control
Register. (The supported Device Control Registers are
implementation-dependent.)

The contents of the designated Device Control Register
are placed into RT. For 32-bit Device Control Registers,
the contents of bits 32:63 of the designated Device
Control Register  are placed into RT.

See “Move From Device Control Register Indexed
X-form” on page 527 in Book III for more information on
this instruction.

Special Registers Altered:
Implementation-dependent

31 BF // /// /// 512 /
0 6 9 11 16 21 31

31 RT RA /// 275 /
0 6 11 16 21 31

This instruction is provided as a mechanism for
software to query the presence and configuration of
one or more auxiliary processors. See the imple-
mentation for details on the behavior of this instruc-
tion.

Programming Note

31 RS RA /// 419 /
0 6 11 16 21 31

31 RT RA /// 291 /

0 6 11 16 21 31
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Chapter 4.  Floating-Point Processor [Category: 
Floating-Point]
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4.1 Floating-Point Processor 
Overview
This chapter describes the registers and instructions
that make up the Floating-Point Processor facility.

The processor (augmented by appropriate software
support, where required) implements a floating-point

system compliant with the ANSI/IEEE Standard
754-1985, "IEEE Standard for Binary Floating-Point
Arithmetic" (hereafter referred to as "the IEEE stan-
dard"). That standard defines certain required "opera-
tions" (addition, subtraction, etc.). Herein, the term
"floating-point operation" is used to refer to one of these
required operations and to additional operations
defined (e.g., those performed by Multiply-Add or
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Reciprocal Estimate instructions). A Non-IEEE mode is
also provided. This mode, which may produce results
not in strict compliance with the IEEE standard, allows
shorter latency. 

Instructions are provided to perform arithmetic, round-
ing, conversion, comparison, and other operations in
floating-point registers; to move floating-point data
between storage and these registers; and to manipu-
late the Floating-Point Status and Control Register
explicitly.

These instructions are divided into two categories.

� computational instructions

The computational instructions are those that per-
form addition, subtraction, multiplication, division,
extracting the square root, rounding, conversion,
comparison, and combinations of these opera-
tions. These instructions provide the floating-point
operations. They place status information into the
Floating-Point Status and Control Register. They
are the instructions described in Sections 4.6.5
through 4.6.7.

� non-computational instructions

The non-computational instructions are those that
perform loads and stores, move the contents of a
floating-point register to another floating-point reg-
ister possibly altering the sign, manipulate the
Floating-Point Status and Control Register explic-
itly, and select the value from one of two float-
ing-point registers based on the value in a third
floating-point register. The operations performed
by these instructions are not considered float-
ing-point operations. With the exception of the
instructions that manipulate the Floating-Point Sta-
tus and Control Register explicitly, they do not alter
the Floating-Point Status and Control Register.
They are the instructions described in Sections
4.6.2 through 4.6.4, and 4.6.9.

A floating-point number consists of a signed exponent
and a signed significand. The quantity expressed by
this number is the product of the significand and the
number 2exponent. Encodings are provided in the data
format to represent finite numeric values, ±Infinity, and
values that are “Not a Number” (NaN). Operations
involving infinities produce results obeying traditional
mathematical conventions. NaNs have no mathemati-
cal interpretation. Their encoding permits a variable
diagnostic information field. They may be used to indi-
cate such things as uninitialized variables and can be
produced by certain invalid operations.

There is one class of exceptional events that occur dur-
ing instruction execution that is unique to the Float-
ing-Point Processor: the Floating-Point Exception.
Floating-point exceptions are signaled with bits set in
the Floating-Point Status and Control Register
(FPSCR). They can cause the system floating-point

enabled exception error handler to be invoked, pre-
cisely or imprecisely, if the proper control bits are set.

Floating-Point Exceptions
The following floating-point exceptions are detected by
the processor:

� Invalid Operation Exception  (VX)
SNaN (VXSNAN)
Infinity-Infinity (VXISI)
Infinity÷Infinity (VXIDI)
Zero÷Zero (VXZDZ)
Infinity×Zero (VXIMZ)
Invalid Compare (VXVC)
Software-Defined Condition (VXSOFT)
Invalid Square Root (VXSQRT)
Invalid Integer Convert (VXCVI)

� Zero Divide Exception (ZX)
� Overflow Exception (OX)
� Underflow Exception (UX)
� Inexact Exception (XX)

Each floating-point exception, and each category of
Invalid Operation Exception, has an exception bit in the
FPSCR. In addition, each floating-point exception has a
corresponding enable bit in the FPSCR. See
Section 4.2.2, “Floating-Point Status and Control Reg-
ister” on page 95 for a description of these exception
and enable bits, and Section 4.4, “Floating-Point
Exceptions” on page 102 for a detailed discussion of
floating-point exceptions, including the effects of the
enable bits.

4.2 Floating-Point Processor 
Registers

4.2.1 Floating-Point Registers
Implementations of this architecture provide 32 float-
ing-point registers (FPRs). The floating-point instruction
formats provide 5-bit fields for specifying the FPRs to
be used in the execution of the instruction. The FPRs
are numbered 0-31. See Figure 44 on page 95.

Each FPR contains 64 bits that support the float-
ing-point double format. Every instruction that inter-
prets the contents of an FPR as a floating-point value
uses the floating-point double format for this interpreta-
tion.

The computational instructions, and the Move and
Select instructions, operate on data located in FPRs
and, with the exception of the Compare instructions,
place the result value into an FPR and optionally (when
Rc=1) place status information into the Condition Reg-
ister. Instruction forms with Rc=1 are part of Category:
Floating-Point.Record.
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Load Double and Store Double instructions are pro-
vided that transfer 64 bits of data between storage and
the FPRs with no conversion. Load Single instructions
are provided to transfer and convert floating-point val-
ues in floating-point single format from storage to the
same value in floating-point double format in the FPRs.
Store Single instructions are provided to transfer and
convert floating-point values in floating-point double for-
mat from the FPRs to the same value in floating-point
single format in storage.

Instructions are provided that manipulate the Float-
ing-Point Status and Control Register and the Condition
Register explicitly. Some of these instructions copy data
from an FPR to the Floating-Point Status and Control
Register or vice versa.

The computational instructions and the Select instruc-
tion accept values from the FPRs in double format. For
single-precision arithmetic instructions, all input values
must be representable in single format; if they are not,
the result placed into the target FPR, and the setting of
status bits in the FPSCR and in the Condition Register
(if Rc=1), are undefined.

Figure 44. Floating-Point Registers

4.2.2 Floating-Point Status and 
Control Register
The Floating-Point Status and Control Register
(FPSCR) controls the handling of floating-point excep-
tions and records status resulting from the float-
ing-point operations. Bits 32:55 are status bits. Bits
56:63 are control bits.

The exception bits in the FPSCR (bits 35:44, 53:55) are
sticky; that is, once set to 1 they remain set to 1 until
they are set to 0 by an mcrfs, mtfsfi, mtfsf, or mtfsb0
instruction. The exception summary bits in the FPSCR
(FX, FEX, and VX, which are bits 32:34) are not consid-
ered to be “exception bits”, and only FX is sticky.

FEX and VX are simply the ORs of other FPSCR bits.
Therefore these two bits are not listed among the
FPSCR bits affected by the various instructions.

Figure 45. Floating-Point Status and Control
 Register

The bit definitions for the FPSCR are as follows.

Bit(s) Description

32 Floating-Point Exception Summary (FX)
Every floating-point instruction, except mtfsfi
and mtfsf, implicitly sets FPSCRFX to 1 if that
instruction causes any of the floating-point
exception bits in the FPSCR to change from 0
to 1. mcrfs, mtfsfi, mtfsf, mtfsb0, and
mtfsb1 can alter FPSCRFX explicitly.

 

33 Floating-Point Enabled Exception Sum-
mary (FEX)
This bit is the OR of all the floating-point
exception bits masked by their respective
enable bits. mcrfs, mtfsfi, mtfsf, mtfsb0, and
mtfsb1 cannot alter FPSCRFEX explicitly.

34 Floating-Point Invalid Operation Exception
Summary (VX)
This bit is the OR of all the Invalid Operation
exception bits. mcrfs, mtfsfi, mtfsf, mtfsb0,
and mtfsb1 cannot alter FPSCRVX explicitly.

35 Floating-Point Overflow Exception (OX)
See Section 4.4.3, “Overflow Exception” on
page 105.

36 Floating-Point Underflow Exception (UX)
See Section 4.4.4, “Underflow Exception” on
page 106.

37 Floating-Point Zero Divide Exception (ZX)
See Section 4.4.2, “Zero Divide Exception” on
page 105.

38 Floating-Point Inexact Exception (XX)
See Section 4.4.5, “Inexact Exception” on
page 107.

FPR 0

FPR 1

. . .

. . .

FPR 30

FPR 31

0                                                                                                                     63

FPSCR
32                                                    63

FPSCRFX is defined not to be altered
implicitly by mtfsfi and mtfsf because
permitting these instructions to alter
FPSCRFX implicitly could cause a para-
dox. An example is an mtfsfi or mtfsf
instruction that supplies 0 for FPSCRFX
and 1 for FPSCROX, and is executed
when FPSCROX=0. See also the Pro-
gramming Notes with the definition of
these two instructions.

Programming Note
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FPSCRXX is a sticky version of FPSCRFI (see
below). Thus the following rules completely
describe how FPSCRXX is set by a given
instruction.

� If the instruction affects FPSCRFI, the
new value of FPSCRXX is obtained by
ORing the old value of FPSCRXX with
the new value of FPSCRFI.

� If the instruction does not affect
FPSCRFI, the value of FPSCRXX is
unchanged.

39 Floating-Point Invalid Operation Exception
(SNaN) (VXSNAN)
See Section 4.4.1, “Invalid Operation Excep-
tion” on page 104.

40 Floating-Point Invalid Operation Exception
(∞∞∞∞ - ∞∞∞∞) (VXISI)
See Section 4.4.1.

41 Floating-Point Invalid Operation Exception
(∞∞∞∞ ÷ ∞∞∞∞) (VXIDI)
See Section 4.4.1.

42 Floating-Point Invalid Operation Exception
(0 ÷0) (VXZDZ)
See Section 4.4.1.

43 Floating-Point Invalid Operation Exception
(∞∞∞∞ ×0) (VXIMZ)
See Section 4.4.1.

44 Floating-Point Invalid Operation Exception
(Invalid Compare) (VXVC)
See Section 4.4.1.

45 Floating-Point Fraction Rounded (FR)
The last Arithmetic or Rounding and Conver-
sion instruction incremented the fraction dur-
ing rounding. See Section 4.3.6, “Rounding”
on page 101. This bit is not sticky.

46 Floating-Point Fraction Inexact (FI)
The last Arithmetic or Rounding and Conver-
sion instruction either produced an inexact
result during rounding or caused a disabled
Overflow Exception. See Section 4.3.6. This
bit is not sticky.

See the definition of FPSCRXX, above,
regarding the relationship between FPSCRFI
and FPSCRXX.

47:51 Floating-Point Result Flags (FPRF)
Arithmetic, rounding, and Convert From Inte-
ger instructions set this field based on the
result placed into the target register and on
the target precision, except that if any portion
of the result is undefined then the value
placed into FPRF is undefined. Floating-point
Compare instructions set this field based on
the relative values of the operands being com-
pared. For Convert To Integer instructions, the

value placed into FPRF is undefined. Addi-
tional details are given below.

 

47 Floating-Point Result Class Descriptor (C)
Arithmetic, rounding, and Convert From Inte-
ger instructions may set this bit with the FPCC
bits, to indicate the class of the result as
shown in Figure 46 on page 97.

48:51 Floating-Point Condition Code (FPCC)
Floating-point Compare instructions set one of
the FPCC bits to 1 and the other three FPCC
bits to 0. Arithmetic, rounding, and Convert
From Integer instructions may set the FPCC
bits with the C bit, to indicate the class of the
result as shown in Figure 46 on page 97. Note
that in this case the high-order three bits of the
FPCC retain their relational significance indi-
cating that the value is less than, greater than,
or equal to zero.

48 Floating-Point Less Than or Negative (FL
or <)

49 Floating-Point Greater Than or Positive
(FG or >)

50 Floating-Point Equal or Zero (FE or =)

51 Floating-Point Unordered or NaN (FU or ?)

52 Reserved

53 Floating-Point Invalid Operation Exception
(Software-Defined Condition)
(VXSOFT)
This bit can be altered only by mcrfs, mtfsfi,
mtfsf, mtfsb0, or mtfsb1. See Section 4.4.1.

 

54 Floating-Point Invalid Operation Exception
(Invalid Square Root) (VXSQRT)
See Section 4.4.1.

A single-precision operation that produces
a denormalized result sets FPRF to indi-
cate a denormalized number.  When pos-
sible, single-precision denormalized
numbers are represented in normalized
double format in the target register.

FPSCRVXSOFT can be used by software
to indicate the occurrence of an arbitrary,
software-defined, condition that is to be
treated as an Invalid Operation Exception.
For example, the bit could be set by a pro-
gram that computes a base 10 logarithm if
the supplied input is negative.

Programming Note

Programming Note
Power ISA™ -- Book I96



   Version 2.04
 55 Floating-Point Invalid Operation Exception
(Invalid Integer Convert) (VXCVI)
See Section 4.4.1.

56 Floating-Point Invalid Operation Exception
Enable (VE)
See Section 4.4.1.

57 Floating-Point Overflow Exception Enable
(OE)
See Section 4.4.3, “Overflow Exception” on
page 105.

58 Floating-Point Underflow Exception Enable
(UE)
See Section 4.4.4, “Underflow Exception” on
page 106.

59 Floating-Point Zero Divide Exception
Enable (ZE)
See Section 4.4.2, “Zero Divide Exception” on
page 105.

60 Floating-Point Inexact Exception Enable
(XE)
See Section 4.4.5, “Inexact Exception” on
page 107.

61 Floating-Point Non-IEEE Mode (NI)
Floating-point non-IEEE mode is optional. If
floating-point non-IEEE mode is not imple-
mented, this bit is treated as reserved, and the
remainder of the definition of this bit does not
apply.

If floating-point non-IEEE mode is imple-
mented, this bit has the following meaning.
0 The processor is not in floating-point

non-IEEE mode (i.e., all floating-point
operations conform to the IEEE standard).

1 The processor is in floating-point
non-IEEE mode.

When the processor is in floating-point
non-IEEE mode, the remaining FPSCR bits
may have meanings different from those given
in this document, and floating-point operations
need not conform to the IEEE standard. The
effects of executing a given floating-point
instruction with FPSCRNI=1, and any addi-
tional requirements for using non-IEEE mode,
are implementation-dependent. The results of
executing a given instruction in non-IEEE
mode may vary between implementations,
and between different executions on the same
implementation.

 

62:63 Floating-Point Rounding Control (RN) See
Section 4.3.6, “Rounding” on page 101.

00 Round to Nearest
01 Round toward Zero
10 Round toward +Infinity
11 Round toward -Infinity

Figure 46. Floating-Point Result Flags

4.3 Floating-Point Data

4.3.1 Data Format
This architecture defines the representation of a float-
ing-point value in two different binary fixed-length for-
mats. The format may be a 32-bit single format for a
single-precision value or a 64-bit double format for a
double-precision value. The single format may be used
for data in storage. The double format may be used for
data in storage and for data in floating-point registers.

The lengths of the exponent and the fraction fields differ
between these two formats. The structure of the single
and double formats is shown below.

Figure 47.  Floating-point single format

When the processor is in floating-point
non-IEEE mode, the results of float-
ing-point operations may be approximate,
and performance for these operations
may be better, more predictable, or less
data-dependent than when the processor
is not in non-IEEE mode.  For example, in
non-IEEE mode an implementation may
return 0 instead of a denormalized num-
ber, and may return a large number
instead of an infinity.

Result 
Flags Result Value Class

C  <  >  =  ?
  1  0  0  0  1      Quiet NaN
  0  1  0  0  1    - Infinity
  0  1  0  0  0    - Normalized Number
  1  1  0  0  0    - Denormalized Number
  1  0  0  1  0    - Zero
  0  0  0  1  0    + Zero
  1  0  1  0  0    + Denormalized Number
  0  0  1  0  0    + Normalized Number
  0  0  1  0  1    + Infinity

S EXP FRACTION
32 33 41                              63

Programming Note
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Figure 48. Floating-point double format

Values in floating-point format are composed of three
fields:

S sign bit
EXP exponent+bias
FRACTION fraction

Representation of numeric values in the floating-point
formats consists of a sign bit (S), a biased exponent
(EXP), and the fraction portion (FRACTION) of the sig-
nificand. The significand consists of a leading implied
bit concatenated on the right with the FRACTION. This
leading implied bit is 1 for normalized numbers and 0
for denormalized numbers and is located in the unit bit
position (i.e., the first bit to the left of the binary point).
Values representable within the two floating-point for-
mats can be specified by the parameters listed in
Figure 49.

Figure 49. IEEE floating-point fields

The architecture requires that the FPRs of the Float-
ing-Point Processor support the floating-point double
format only.

4.3.2 Value Representation
This architecture defines numeric and non-numeric val-
ues representable within each of the two supported for-
mats. The numeric values are approximations to the
real numbers and include the normalized numbers,
denormalized numbers, and zero values. The
non-numeric values representable are the infinities and
the Not a Numbers (NaNs). The infinities are adjoined
to the real numbers, but are not numbers themselves,
and the standard rules of arithmetic do not hold when
they are used in an operation. They are related to the
real numbers by order alone. It is possible however to
define restricted operations among numbers and infini-

ties as defined below. The relative location on the real
number line for each of the defined entities is shown in
Figure 50.

Figure 50. Approximation to real numbers

The NaNs are not related to the numeric values or infin-
ities by order or value but are encodings used to convey
diagnostic information such as the representation of
uninitialized variables.

The following is a description of the different float-
ing-point values defined in the architecture:

Binary floating-point numbers
Machine representable values used as approximations
to real numbers. Three categories of numbers are sup-
ported: normalized numbers, denormalized numbers,
and zero values.

Normalized numbers (± NOR)
These are values that have a biased exponent value in
the range:

1 to 254 in single format
1 to 2046 in double format

They are values in which the implied unit bit is 1. Nor-
malized numbers are interpreted as follows:

NOR = (-1)s x 2E x (1.fraction)

where s is the sign, E is the unbiased exponent, and
1.fraction is the significand, which is composed of a
leading unit bit (implied bit) and a fraction part.

The ranges covered by the magnitude (M) of a normal-
ized floating-point number are approximately equal to:

Single Format:

1.2x10-38 ≤ M ≤ 3.4x1038

Double Format:

2.2x10-308 ≤ M ≤ 1.8x10308

Zero values (± 0)
These are values that have a biased exponent value of
zero and a fraction value of zero. Zeros can have a pos-
itive or negative sign. The sign of zero is ignored by
comparison operations (i.e., comparison regards +0 as
equal to -0).

Denormalized numbers (± DEN)
These are values that have a biased exponent value of
zero and a nonzero fraction value. They are nonzero
numbers smaller in magnitude than the representable
normalized numbers. They are values in which the
implied unit bit is 0. Denormalized numbers are inter-
preted as follows:

DEN = (-1)s x 2Emin x (0.fraction)

S EXP FRACTION
0 1 12                                                                                  63

Format
Single Double

Exponent Bias +127 +1023
Maximum Exponent +127 +1023
Minimum Exponent -126 -1022

Widths (bits)
Format 32 64
Sign 1 1
Exponent 8 11
Fraction 23 52
Significand 24 53

+0-DEN -0-NOR +NOR+DEN-INF +INF
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where Emin is the minimum representable exponent
value (-126 for single-precision, -1022 for double-pre-
cision).

Infinities (± ∞)
These are values that have the maximum biased expo-
nent value:

255 in single format
2047 in double format

and a zero fraction value. They are used to approxi-
mate values greater in magnitude than the maximum
normalized value.

Infinity arithmetic is defined as the limiting case of real
arithmetic, with restricted operations defined among
numbers and infinities. Infinities and the real numbers
can be related by ordering in the affine sense:

- ∞ < every finite number < + ∞

Arithmetic on infinities is always exact and does not sig-
nal any exception, except when an exception occurs
due to the invalid operations as described in
Section 4.4.1, “Invalid Operation Exception” on
page 104.

For comparison operations, +Infinity compares equal to
+Infinity and -Infinity compares equal to -Infinity.

Not a Numbers (NaNs)
These are values that have the maximum biased expo-
nent value and a nonzero fraction value. The sign bit is
ignored (i.e., NaNs are neither positive nor negative). If
the high-order bit of the fraction field is 0 then the NaN
is a Signaling NaN; otherwise it is a Quiet NaN.

Signaling NaNs are used to signal exceptions when
they appear as operands of computational instructions.

Quiet NaNs are used to represent the results of certain
invalid operations, such as invalid arithmetic operations
on infinities or on NaNs, when Invalid Operation Excep-
tion is disabled (FPSCRVE=0). Quiet NaNs propagate
through all floating-point operations except ordered
comparison, Floating Round to Single-Precision, and
conversion to integer. Quiet NaNs do not signal excep-
tions, except for ordered comparison and conversion to
integer operations. Specific encodings in QNaNs can
thus be preserved through a sequence of floating-point
operations, and used to convey diagnostic information
to help identify results from invalid operations.

When a QNaN is the result of a floating-point operation
because one of the operands is a NaN or because a
QNaN was generated due to a disabled Invalid Opera-
tion Exception, then the following rule is applied to
determine the NaN with the high-order fraction bit set to
1 that is to be stored as the result.

if (FRA) is a NaN
     then FRT � (FRA)
     else if (FRB) is a NaN
          then if instruction is frsp

                 then FRT � (FRB)0:34 || 290
                 else FRT � (FRB)
          else if (FRC) is a NaN
                 then FRT � (FRC)
                 else if generated QNaN
                        then FRT � generated QNaN

If the operand specified by FRA is a NaN, then that
NaN is stored as the result. Otherwise, if the operand
specified by FRB is a NaN (if the instruction specifies
an FRB operand), then that NaN is stored as the result,
with the low-order 29 bits of the result set to 0 if the
instruction is frsp. Otherwise, if the operand specified
by FRC is a NaN (if the instruction specifies an FRC
operand), then that NaN is stored as the result. Other-
wise, if a QNaN was generated due to a disabled
Invalid Operation Exception, then that QNaN is stored
as the result. If a QNaN is to be generated as a result,
then the QNaN generated has a sign bit of 0, an expo-
nent field of all 1s, and a high-order fraction bit of 1 with
all other fraction bits 0. Any instruction that generates a
QNaN as the result of a disabled Invalid Operation
Exception generates this QNaN (i.e.,
0x7FF8_0000_0000_0000).

A double-precision NaN is considered to be represent-
able in single format if and only if the low-order 29 bits
of the double-precision NaN’s fraction are zero.

4.3.3 Sign of Result
The following rules govern the sign of the result of an
arithmetic, rounding, or conversion operation, when the
operation does not yield an exception. They apply even
when the operands or results are zeros or infinities.

� The sign of the result of an add operation is the
sign of the operand having the larger absolute
value. If both operands have the same sign, the
sign of the result of an add operation is the same
as the sign of the operands. The sign of the result
of the subtract operation x-y is the same as the
sign of the result of the add operation x+(-y).

When the sum of two operands with opposite sign,
or the difference of two operands with the same
sign, is exactly zero, the sign of the result is posi-
tive in all rounding modes except Round toward
-Infinity, in which mode the sign is negative.

� The sign of the result of a multiply or divide opera-
tion is the Exclusive OR of the signs of the oper-
ands.

� The sign of the result of a Square Root or Recipro-
cal Square Root Estimate operation is always pos-
itive, except that the square root of -0 is -0 and
the reciprocal square root of -0 is -Infinity.

� The sign of the result of a Round to Single-Preci-
sion, or Convert From Integer, or Round to Integer
operation is the sign of the operand being con-
verted.
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For the Multiply-Add instructions, the rules given above
are applied first to the multiply operation and then to the
add or subtract operation (one of the inputs to the add
or subtract operation is the result of the multiply opera-
tion).

4.3.4 Normalization and
Denormalization
The intermediate result of an arithmetic or frsp instruc-
tion may require normalization and/or denormalization
as described below. Normalization and denormalization
do not affect the sign of the result.

When an arithmetic or rounding instruction produces
an intermediate result which carries out of the signifi-
cand, or in which the significand is nonzero but has a
leading zero bit, it is not a normalized number and must
be normalized before it is stored. For the carry-out
case, the significand is shifted right one bit, with a one
shifted into the leading significand bit, and the exponent
is incremented by one. For the leading-zero case, the
significand is shifted left while decrementing its expo-
nent by one for each bit shifted, until the leading signifi-
cand bit becomes one. The Guard bit and the Round bit
(see Section 4.5.1, “Execution Model for IEEE Opera-
tions” on page 107) participate in the shift with zeros
shifted into the Round bit. The exponent is regarded as
if its range were unlimited.

After normalization, or if normalization was not
required, the intermediate result may have a nonzero
significand and an exponent value that is less than the
minimum value that can be represented in the format
specified for the result. In this case, the intermediate
result is said to be “Tiny” and the stored result is deter-
mined by the rules described in Section 4.4.4, “Under-
flow Exception”. These rules may require
denormalization.

A number is denormalized by shifting its significand
right while incrementing its exponent by 1 for each bit
shifted, until the exponent is equal to the format’s mini-
mum value. If any significant bits are lost in this shifting
process then “Loss of Accuracy” has occurred (See
Section 4.4.4, “Underflow Exception” on page 106) and
Underflow Exception is signaled.

4.3.5 Data Handling and Precision
Most of the Floating-Point Processor Architecture,
including all computational, Move, and Select instruc-
tions, use the floating-point double format to represent
data in the FPRs. Single-precision and integer-valued
operands may be manipulated using double-precision
operations. Instructions are provided to coerce these
values from a double format operand. Instructions are
also provided for manipulations which do not require
double-precision. In addition, instructions are provided

to access a true single-precision representation in stor-
age, and a fixed-point integer representation in GPRs.

4.3.5.1 Single-Precision Operands
For single format data, a format conversion from single
to double is performed when loading from storage into
an FPR and a format conversion from double to single
is performed when storing from an FPR to storage. No
floating-point exceptions are caused by these instruc-
tions. An instruction is provided to explicitly convert a
double format operand in an FPR to single-precision.
Floating-point single-precision is enabled with four
types of instruction.

1. Load Floating-Point Single

This form of instruction accesses a single-preci-
sion operand in single format in storage, converts it
to double format, and loads it into an FPR. No
floating-point exceptions are caused by these
instructions.

2. Round to Floating-Point Single-Precision

The Floating Round to Single-Precision instruction
rounds a double-precision operand to single-preci-
sion, checking the exponent for single-precision
range and handling any exceptions according to
respective enable bits, and places that operand
into an FPR in double format. For results produced
by single-precision arithmetic instructions, sin-
gle-precision loads, and other instances of the
Floating Round to Single-Precision instruction, this
operation does not alter the value.

3. Single-Precision Arithmetic Instructions

This form of instruction takes operands from the
FPRs in double format, performs the operation as
if it produced an intermediate result having infinite
precision and unbounded exponent range, and
then coerces this intermediate result to fit in single
format. Status bits, in the FPSCR and optionally in
the Condition Register, are set to reflect the sin-
gle-precision result. The result is then converted to
double format and placed into an FPR. The result
lies in the range supported by the single format.

All input values must be representable in single for-
mat; if they are not, the result placed into the target
FPR, and the setting of status bits in the FPSCR
and in the Condition Register (if Rc=1), are unde-
fined.

4. Store Floating-Point Single

This form of instruction converts a double-preci-
sion operand to single format and stores that oper-
and into storage. No floating-point exceptions are
caused by these instructions. (The value being
stored is effectively assumed to be the result of an
instruction of one of the preceding three types.)
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When the result of a Load Floating-Point Single, Float-
ing Round to Single-Precision, or single-precision arith-
metic instruction is stored in an FPR, the low-order 29
FRACTION bits are zero.

 

 

4.3.5.2 Integer-Valued Operands
Instructions are provided to round floating-point oper-
ands to integer values in floating-point format. To facili-
tate exchange of data between the floating-point and
fixed-point processors, instructions are provided to con-
vert between floating-point double format and
fixed-point integer format in an FPR. Computation on
integer-valued operands may be performed using arith-
metic instructions of the required precision. (The results
may not be integer values.) The two groups of instruc-
tions provided specifically to support integer-valued
operands are described below.

1. Floating Round to Integer

The Floating Round to Integer instructions round a
double-precision operand to an integer value in
floating-point double format. These instructions
may cause Invalid Operation (VXSNAN) excep-
tions. See Sections 4.3.6 and 4.5.1 for more infor-
mation about rounding. 

2. Floating Convert To/From Integer

The Floating Convert To Integer instructions con-
vert a double-precision operand to a 32-bit or
64-bit signed fixed-point integer format. Variants
are provided both to perform rounding based on
the value of FPSCRRN and to round toward zero.
These instructions may cause Invalid Operation
(VXSNaN, VXCVI) and Inexact exceptions. The
Floating Convert From Integer instruction converts
a 64-bit signed fixed-point integer to a double-pre-
cision floating-point integer. Because of the limita-
tions of the source format, only an Inexact
exception may be generated.

4.3.6 Rounding
The material in this section applies to operations that
have numeric operands (i.e., operands that are not
infinities or NaNs). Rounding the intermediate result of
such an operation may cause an Overflow Exception,
an Underflow Exception, or an Inexact Exception. The
remainder of this section assumes that the operation
causes no exceptions and that the result is numeric.
See Section 4.3.2, “Value Representation” and
Section 4.4, “Floating-Point Exceptions” for the cases
not covered here.

The Arithmetic and Rounding and Conversion instruc-
tions round their intermediate results. With the excep-
tion of the Estimate instructions, these instructions
produce an intermediate result that can be regarded as
having infinite precision and unbounded exponent
range. All but two groups of these instructions normal-
ize or denormalize the intermediate result prior to
rounding and then place the final result into the target
FPR in double format. The Floating Round to Integer
and Floating Convert To Integer instructions with
biased exponents ranging from 1022 through 1074 are
prepared for rounding by repetitively shifting the signifi-
cand right one position and incrementing the biased
exponent until it reaches a value of 1075. (Intermediate
results with biased exponents 1075 or larger are
already integers, and with biased exponents 1021 or
less round to zero.) After rounding, the final result for
Floating Round to Integer is normalized and put in dou-
ble format, and for Floating Convert To Integer is con-
verted to a signed fixed-point integer.

FPSCR bits FR and FI generally indicate the results of
rounding. Each of the instructions which rounds its
intermediate result sets these bits. If the fraction is
incremented during rounding then FR is set to 1, other-
wise FR is set to 0. If the result is inexact then FI is set
to 1, otherwise FI is set to zero. The Round to Integer
instructions are exceptions to this rule, setting FR and
FI to 0. The Estimate instructions set FR and FI to
undefined values. The remaining floating-point instruc-
tions do not alter FR and FI.

Four user-selectable rounding modes are provided
through the Floating-Point Rounding Control field in the

The Floating Round to Single-Precision instruction
is provided to allow value conversion from dou-
ble-precision to single-precision with appropriate
exception checking and rounding.  This instruction
should be used to convert double-precision float-
ing-point values (produced by double-precision
load and arithmetic instructions and by fcfid) to sin-
gle-precision values prior to storing them into single
format storage elements or using them as oper-
ands for single-precision arithmetic instructions.
Values produced by single-precision load and arith-
metic instructions are already single-precision val-
ues and can be stored directly into single format
storage elements, or used directly as operands for
single-precision arithmetic instructions, without pre-
ceding the store, or the arithmetic instruction, by a
Floating Round to Single-Precision instruction.

A single-precision value can be used in double-pre-
cision arithmetic operations. The reverse is true
only if the double-precision value is representable
in single format.

Some implementations may execute single-preci-
sion arithmetic instructions faster than double-pre-
cision arithmetic instructions. Therefore, if
double-precision accuracy is not required, sin-
gle-precision data and instructions should be used.

Programming Note

Programming Note
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FPSCR. See Section 4.2.2, “Floating-Point Status and
Control Register”. These are encoded as follows.

Let Z be the intermediate arithmetic result or the oper-
and of a convert operation. If Z can be represented
exactly in the target format, then the result in all round-
ing modes is Z as represented in the target format. If Z
cannot be represented exactly in the target format, let
Z1 and Z2 bound Z as the next larger and next smaller
numbers representable in the target format. Then Z1 or
Z2 can be used to approximate the result in the target
format.

Figure 51 shows the relation of Z, Z1, and Z2 in this
case. The following rules specify the rounding in the
four modes. “LSB” means “least significant bit”.

Figure 51. Selection of Z1 and Z2

Round to Nearest
Choose the value that is closer to Z (Z1 or Z2).
In case of a tie, choose the one that is even
(least significant bit 0).

Round toward Zero
Choose the smaller in magnitude (Z1 or Z2).

Round toward +Infinity
Choose Z1.

Round toward -Infinity
Choose Z2.

See Section 4.5.1, “Execution Model for IEEE Opera-
tions” on page 107 for a detailed explanation of round-
ing.

4.4 Floating-Point Exceptions
This architecture defines the following floating-point
exceptions:

� Invalid Operation Exception
SNaN
Infinity-Infinity
Infinity÷Infinity
Zero÷Zero
Infinity×Zero
Invalid Compare
Software-Defined Condition
Invalid Square Root
Invalid Integer Convert

� Zero Divide Exception
� Overflow Exception
� Underflow Exception
� Inexact Exception

These exceptions, other than Invalid Operation Excep-
tion due to Software-Defined Condition, may occur dur-
ing execution of computational instructions. An Invalid
Operation Exception due to Software-Defined Condi-
tion occurs when a Move To FPSCR instruction sets
FPSCRVXSOFT to 1.

Each floating-point exception, and each category of
Invalid Operation Exception, has an exception bit in the
FPSCR. In addition, each floating-point exception has a
corresponding enable bit in the FPSCR. The exception
bit indicates occurrence of the corresponding excep-
tion. If an exception occurs, the corresponding enable
bit governs the result produced by the instruction and,
in conjunction with the FE0 and FE1 bits (see
page 103), whether and how the system floating-point
enabled exception error handler is invoked. (In general,
the enabling specified by the enable bit is of invoking
the system error handler, not of permitting the excep-
tion to occur. The occurrence of an exception depends
only on the instruction and its inputs, not on the setting
of any control bits. The only deviation from this general
rule is that the occurrence of an Underflow Exception
may depend on the setting of the enable bit.)

A single instruction, other than mtfsfi or mtfsf, may set
more than one exception bit only in the following cases:
� Inexact Exception may be set with Overflow

Exception.
� Inexact Exception may be set with Underflow

Exception.
� Invalid Operation Exception (SNaN) is set with

Invalid Operation Exception (∞×0) for Multiply-Add
instructions for which the values being multiplied
are infinity and zero and the value being added is
an SNaN.

� Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Compare)
for Compare Ordered instructions.

� Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Integer
Convert) for Convert To Integer instructions.

RN Rounding Mode
00 Round to Nearest
01 Round toward Zero
10 Round toward +Infinity
11 Round toward -Infinity

0

Positive valuesNegative values

By Incrementing LSB of Z
Infinitely Precise Value
By Truncating after LSB

Z2
Z
Z1 Z2

Z
Z1
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When an exception occurs the writing of a result to the
target register may be suppressed or a result may be
delivered, depending on the exception.

The writing of a result to the target register is sup-
pressed for the following kinds of exception, so that
there is no possibility that one of the operands is lost:

� Enabled Invalid Operation
� Enabled Zero Divide

For the remaining kinds of exception, a result is gener-
ated and written to the destination specified by the
instruction causing the exception. The result may be a
different value for the enabled and disabled conditions
for some of these exceptions. The kinds of exception
that deliver a result are the following:

� Disabled Invalid Operation
� Disabled Zero Divide
� Disabled Overflow
� Disabled Underflow
� Disabled Inexact
� Enabled Overflow
� Enabled Underflow
� Enabled Inexact

Subsequent sections define each of the floating-point
exceptions and specify the action that is taken when
they are detected.

The IEEE standard specifies the handling of excep-
tional conditions in terms of “traps” and “trap handlers”.
In this architecture, an FPSCR exception enable bit of 1
causes generation of the result value specified in the
IEEE standard for the “trap enabled” case; the expecta-
tion is that the exception will be detected by software,
which will revise the result. An FPSCR exception
enable bit of 0 causes generation of the “default result”
value specified for the “trap disabled” (or “no trap
occurs” or “trap is not implemented”) case; the expecta-
tion is that the exception will not be detected by soft-
ware, which will simply use the default result. The result
to be delivered in each case for each exception is
described in the sections below.

The IEEE default behavior when an exception occurs is
to generate a default value and not to notify software. In
this architecture, if the IEEE default behavior when an
exception occurs is desired for all exceptions, all
FPSCR exception enable bits should be set to 0 and
Ignore Exceptions Mode (see below) should be used.
In this case the system floating-point enabled exception
error handler is not invoked, even if floating-point
exceptions occur: software can inspect the FPSCR
exception bits if necessary, to determine whether
exceptions have occurred.

In this architecture, if software is to be notified that a
given kind of exception has occurred, the correspond-
ing FPSCR exception enable bit must be set to 1 and a
mode other than Ignore Exceptions Mode must be
used. In this case the system floating-point enabled
exception error handler is invoked if an enabled float-

ing-point exception occurs. The system floating-point
enabled exception error handler is also invoked if a
Move To FPSCR instruction causes an exception bit
and the corresponding enable bit both to be 1; the
Move To FPSCR instruction is considered to cause the
enabled exception.

The FE0 and FE1 bits control whether and how the sys-
tem floating-point enabled exception error handler is
invoked if an enabled floating-point exception occurs.
The location of these bits and the requirements for
altering them are described in Book III. (The system
floating-point enabled exception error handler is never
invoked because of a disabled floating-point exception.)
The effects of the four possible settings of these bits
are as follows.

In all cases, the question of whether a floating-point
result is stored, and what value is stored, is governed
by the FPSCR exception enable bits, as described in
subsequent sections, and is not affected by the value of
the FE0 and FE1 bits.

In all cases in which the system floating-point enabled
exception error handler is invoked, all instructions

FE0 FE1 Description

0 0 Ignore Exceptions Mode
Floating-point exceptions do not cause
the system floating-point enabled excep-
tion error handler to be invoked.

0 1 Imprecise Nonrecoverable Mode
The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused
the enabled exception. It may not be pos-
sible to identify the excepting instruction
or the data that caused the exception.
Results produced by the excepting
instruction may have been used by or may
have affected subsequent instructions
that are executed before the error handler
is invoked.

1 0 Imprecise Recoverable Mode
The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused
the enabled exception. Sufficient informa-
tion is provided to the error handler that it
can identify the excepting instruction and
the operands, and correct the result. No
results produced by the excepting instruc-
tion have been used by or have affected
subsequent instructions that are executed
before the error handler is invoked.

1 1 Precise Mode
The system floating-point enabled excep-
tion error handler is invoked precisely at
the instruction that caused the enabled
exception.
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before the instruction at which the system floating-point
enabled exception error handler is invoked have com-
pleted, and no instruction after the instruction at which
the system floating-point enabled exception error han-
dler is invoked has begun execution. The instruction at
which the system floating-point enabled exception error
handler is invoked has completed if it is the excepting
instruction and there is only one such instruction. Oth-
erwise it has not begun execution (or may have been
partially executed in some cases, as described in Book
III).

 

In order to obtain the best performance across the wid-
est range of implementations, the programmer should
obey the following guidelines.

� If the IEEE default results are acceptable to the
application, Ignore Exceptions Mode should be
used with all FPSCR exception enable bits set to 0.

� If the IEEE default results are not acceptable to the
application, Imprecise Nonrecoverable Mode
should be used, or Imprecise Recoverable Mode if
recoverability is needed, with FPSCR exception
enable bits set to 1 for those exceptions for which
the system floating-point enabled exception error
handler is to be invoked.

� Ignore Exceptions Mode should not, in general, be
used when any FPSCR exception enable bits are
set to 1.

� Precise Mode may degrade performance in some
implementations, perhaps substantially, and there-
fore should be used only for debugging and other
specialized applications.

4.4.1 Invalid Operation Exception

4.4.1.1 Definition
An Invalid Operation Exception occurs when an oper-
and is invalid for the specified operation. The invalid
operations are:
� Any floating-point operation on a Signaling NaN

(SNaN)
� For add or subtract operations, magnitude subtrac-

tion of infinities (∞ - ∞)
� Division of infinity by infinity (∞ ÷ ∞)
� Division of zero by zero (0 ÷ 0)
� Multiplication of infinity by zero (∞ × 0)
� Ordered comparison involving a NaN (Invalid Com-

pare)
� Square root or reciprocal square root of a negative

(and nonzero) number (Invalid Square Root)
� Integer convert involving a number too large in

magnitude to be represented in the target format,
or involving an infinity or a NaN (Invalid Integer
Convert)

An Invalid Operation Exception also occurs when an
mtfsfi, mtfsf, or mtfsb1 instruction is executed that
sets FPSCRVXSOFT to 1 (Software-Defined Condition).

4.4.1.2 Action
The action to be taken depends on the setting of the
Invalid Operation Exception Enable bit of the FPSCR.

When Invalid Operation Exception is enabled
(FPSCRVE=1) and an Invalid Operation Exception
occurs, the following actions are taken:

1. One or two Invalid Operation Exceptions are set
FPSCRVXSNAN (if SNaN)
FPSCRVXISI (if ∞ - ∞)
FPSCRVXIDI (if ∞ ÷ ∞)
FPSCRVXZDZ (if 0 ÷ 0)
FPSCRVXIMZ (if ∞ × 0)
FPSCRVXVC (if invalid comp)
FPSCRVXSOFT (if sfw-def cond)
FPSCRVXSQRT (if invalid sqrt)
FPSCRVXCVI (if invalid int cvrt)

2. If the operation is an arithmetic, Floating Round to
Single-Precision, Floating Round to Integer, or
convert to integer operation,

the target FPR is unchanged
FPSCRFR FI are set to zero
FPSCRFPRF is unchanged

3. If the operation is a compare,
FPSCRFR FI C are unchanged
FPSCRFPCC is set to reflect unordered

4. If an mtfsfi, mtfsf, or mtfsb1 instruction is exe-
cuted that sets FPSCRVXSOFT to 1,

The FPSCR is set as specified in the instruc-
tion description.

In any of the three non-Precise modes, a Float-
ing-Point Status and Control Register instruction
can be used to force any exceptions, due to
instructions initiated before the Floating-Point Sta-
tus and Control Register instruction, to be recorded
in the FPSCR.  (This forcing is superfluous for Pre-
cise Mode.)

In either of the Imprecise modes, a Floating-Point
Status and Control Register instruction can be used
to force any invocations of the system floating-point
enabled exception error handler, due to instructions
initiated before the Floating-Point Status and Con-
trol Register instruction, to occur.  (This forcing has
no effect in Ignore Exceptions Mode, and is super-
fluous for Precise Mode.)

The last sentence of the paragraph preceding this
Programming Note can apply only in the Imprecise
modes, or if the mode has just been changed from
Ignore Exceptions Mode to some other mode.  (It
always applies in the latter case.)

Programming Note
Power ISA™ -- Book I104



   Version 2.04
When Invalid Operation Exception is disabled
(FPSCRVE=0) and an Invalid Operation Exception
occurs, the following actions are taken:

1. One or two Invalid Operation Exceptions are set
FPSCRVXSNAN (if SNaN)
FPSCRVXISI (if ∞ - ∞)
FPSCRVXIDI (if ∞ ÷ ∞)
FPSCRVXZDZ (if 0 ÷ 0)
FPSCRVXIMZ (if ∞ × 0)
FPSCRVXVC (if invalid comp)
FPSCRVXSOFT (if sfw-def cond)
FPSCRVXSQRT (if invalid sqrt)
FPSCRVXCVI (if invalid int cvrt)

2. If the operation is an arithmetic or Floating Round
to Single-Precision operation,

the target FPR is set to a Quiet NaN
FPSCRFR FI are set to zero
FPSCRFPRF is set to indicate the class of the

result (Quiet NaN)
3. If the operation is a convert to 64-bit integer opera-

tion,
the target FPR is set as follows:

FRT is set to the most positive 64-bit integer
if the operand in FRB is a positive number
or + ∞, and to the most negative 64-bit inte-
ger if the operand in FRB is a negative num-
ber, - ∞, or NaN

FPSCRFR FI are set to zero
FPSCRFPRF is undefined

4. If the operation is a convert to 32-bit integer opera-
tion,

the target FPR is set as follows:
FRT0:31 � undefined
FRT32:63 are set to the most positive 32-bit
integer if the operand in FRB is a positive
number or +infinity, and to the most nega-
tive 32-bit integer if the operand in FRB is a
negative number, -infinity, or NaN

FPSCRFR FI are set to zero
FPSCRFPRF is undefined

5. If the operation is a compare,
FPSCRFR FI C are unchanged
FPSCRFPCC is set to reflect unordered

6. If an mtfsfi, mtfsf, or mtfsb1 instruction is exe-
cuted that sets FPSCRVXSOFT to 1,

The FPSCR is set as specified in the instruc-
tion description.

4.4.2 Zero Divide Exception

4.4.2.1 Definition
A Zero Divide Exception occurs when a Divide instruc-
tion is executed with a zero divisor value and a finite
nonzero dividend value. It also occurs when a Recipro-
cal Estimate instruction (fre[s] or frsqrte[s]) is exe-
cuted with an operand value of zero.

4.4.2.2 Action
The action to be taken depends on the setting of the
Zero Divide Exception Enable bit of the FPSCR.

When Zero Divide Exception is enabled (FPSCRZE=1)
and a Zero Divide Exception occurs, the following
actions are taken:

1. Zero Divide Exception is set
FPSCRZX � 1

2. The target FPR is unchanged
3. FPSCRFR FI are set to zero
4. FPSCRFPRF is unchanged

When Zero Divide Exception is disabled (FPSCRZE=0)
and a Zero Divide Exception occurs, the following
actions are taken:

1. Zero Divide Exception is set
FPSCRZX � 1

2. The target FPR is set to ± Infinity, where the sign is
determined by the XOR of the signs of the oper-
ands

3. FPSCRFR FI are set to zero
4. FPSCRFPRF is set to indicate the class and sign of

the result (± Infinity)

4.4.3 Overflow Exception

4.4.3.1 Definition
An Overflow Exception occurs when the magnitude of
what would have been the rounded result if the expo-
nent range were unbounded exceeds that of the largest
finite number of the specified result precision.

4.4.3.2 Action
The action to be taken depends on the setting of the
Overflow Exception Enable bit of the FPSCR.

When Overflow Exception is enabled (FPSCROE=1)
and an Overflow Exception occurs, the following
actions are taken:

1. Overflow Exception is set
FPSCROX � 1

2. For double-precision arithmetic instructions, the
exponent of the normalized intermediate result is
adjusted by subtracting 1536

3. For single-precision arithmetic instructions and the
Floating Round to Single-Precision instruction, the
exponent of the normalized intermediate result is
adjusted by subtracting 192

4. The adjusted rounded result is placed into the tar-
get FPR

5. FPSCRFPRF is set to indicate the class and sign of
the result (± Normal Number)

When Overflow Exception is disabled (FPSCROE=0)
and an Overflow Exception occurs, the following
actions are taken:
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1. Overflow Exception is set
FPSCROX � 1

2. Inexact Exception is set
FPSCRXX � 1

3. The result is determined by the rounding mode
(FPSCRRN) and the sign of the intermediate result
as follows:

- Round to Nearest
Store ± Infinity, where the sign is the sign
of the intermediate result

- Round toward Zero
Store the format’s largest finite number
with the sign of the intermediate result

- Round toward + Infinity
For negative overflow, store the format’s
most negative finite number; for positive
overflow, store +Infinity

- Round toward -Infinity
For negative overflow, store -Infinity; for
positive overflow, store the format’s larg-
est finite number

4. The result is placed into the target FPR
5. FPSCRFR is undefined
6. FPSCRFI is set to 1
7. FPSCRFPRF is set to indicate the class and sign of

the result  (± Infinity or ± Normal Number)

4.4.4 Underflow Exception

4.4.4.1 Definition
Underflow Exception is defined separately for the
enabled and disabled states:

� Enabled:
Underflow occurs when the intermediate result is
“Tiny”.

� Disabled:
Underflow occurs when the intermediate result is
“Tiny” and there is “Loss of Accuracy”.

A “Tiny” result is detected before rounding, when a non-
zero intermediate result computed as though both the
precision and the exponent range were unbounded
would be less in magnitude than the smallest normal-
ized number.

If the intermediate result is “Tiny” and Underflow
Exception is disabled (FPSCRUE=0) then the interme-
diate result is denormalized (see Section 4.3.4, “Nor-
malization and Denormalization” on page 100) and
rounded (see Section 4.3.6, “Rounding” on page 101)
before being placed into the target FPR.

“Loss of Accuracy” is detected when the delivered
result value differs from what would have been com-
puted were both the precision and the exponent range
unbounded.

4.4.4.2 Action
The action to be taken depends on the setting of the
Underflow Exception Enable bit of the FPSCR.

When Underflow Exception is enabled (FPSCRUE=1)
and an Underflow Exception occurs, the following
actions are taken:

1. Underflow Exception is set
FPSCRUX � 1

2. For double-precision arithmetic instructions, the
exponent of the normalized intermediate result is
adjusted by adding 1536

3. For single-precision arithmetic instructions and the
Floating Round to Single-Precision instruction, the
exponent of the normalized intermediate result is
adjusted by adding 192

4. The adjusted rounded result is placed into the tar-
get FPR

5. FPSCRFPRF is set to indicate the class and sign of
the result (± Normalized Number)
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When Underflow Exception is disabled (FPSCRUE=0)
and an Underflow Exception occurs, the following
actions are taken:

1. Underflow Exception is set
FPSCRUX � 1

2. The rounded result is placed into the target FPR
3. FPSCRFPRF is set to indicate the class and sign of

the result  (± Normalized Number, ± Denormalized
Number, or ± Zero)

4.4.5 Inexact Exception

4.4.5.1 Definition
An Inexact Exception occurs when one of two condi-
tions occur during rounding:

1. The rounded result differs from the intermediate
result assuming both the precision and the expo-
nent range of the intermediate result to be
unbounded. In this case the result is said to be
inexact. (If the rounding causes an enabled Over-
flow Exception or an enabled Underflow Exception,
an Inexact Exception also occurs only if the signifi-
cands of the rounded result and the intermediate
result differ.)

2. The rounded result overflows and Overflow Excep-
tion is disabled.

4.4.5.2 Action
The action to be taken does not depend on the setting
of the Inexact Exception Enable bit of the FPSCR.

When an Inexact Exception occurs, the following
actions are taken:

1. Inexact Exception is set
FPSCRXX � 1

2. The rounded or overflowed result is placed into the
target FPR

3. FPSCRFPRF is set to indicate the class and sign of
the result

 

4.5 Floating-Point Execution 
Models
All implementations of this architecture must provide
the equivalent of the following execution models to
ensure that identical results are obtained.

Special rules are provided in the definition of the com-
putational instructions for the infinities, denormalized
numbers and NaNs. The material in the remainder of
this section applies to instructions that have numeric
operands and a numeric result (i.e., operands and
result that are not infinities or NaNs), and that cause no
exceptions. See Section 4.3.2 and Section 4.4 for the
cases not covered here.

Although the double format specifies an 11-bit expo-
nent, exponent arithmetic makes use of two additional
bits to avoid potential transient overflow conditions.
One extra bit is required when denormalized dou-
ble-precision numbers are prenormalized. The second
bit is required to permit the computation of the adjusted
exponent value in the following cases when the corre-
sponding exception enable bit is 1:

� Underflow during multiplication using a denormal-
ized operand.

� Overflow during division using a denormalized divi-
sor.

The IEEE standard includes 32-bit and 64-bit arith-
metic. The standard requires that single-precision arith-
metic be provided for single-precision operands. The
standard permits double-precision floating-point opera-
tions to have either (or both) single-precision or dou-
ble-precision operands, but states that single-precision
floating-point operations should not accept double-pre-
cision operands. The Power ISA follows these guide-
lines; double-precision arithmetic instructions can have
operands of either or both precisions, while single-pre-
cision arithmetic instructions require all operands to be
single-precision. Double-precision arithmetic instruc-
tions and fcfid produce double-precision values, while
single-precision arithmetic instructions produce sin-
gle-precision values.

For arithmetic instructions, conversions from dou-
ble-precision to single-precision must be done explicitly
by software, while conversions from single-precision to
double-precision are done implicitly.

4.5.1 Execution Model for IEEE 
Operations
The following description uses 64-bit arithmetic as an
example. 32-bit arithmetic is similar except that the
FRACTION is a 23-bit field, and the single-precision
Guard, Round, and Sticky bits (described in this sec-
tion) are logically adjacent to the 23-bit FRACTION
field.

The FR and FI bits are provided to allow the system
floating-point enabled exception error handler,
when invoked because of an Underflow Exception,
to simulate a “trap disabled” environment. That is,
the FR and FI bits allow the system floating-point
enabled exception error handler to unround the
result, thus allowing the result to be denormalized.

In some implementations, enabling Inexact Excep-
tions may degrade performance more than does
enabling other types of floating-point exception.

Programming Note

Programming Note
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IEEE-conforming significand arithmetic is considered to
be performed with a floating-point accumulator having
the following format, where bits 0:55 comprise the sig-
nificand of the intermediate result.

Figure 52. IEEE 64-bit execution model

The S bit is the sign bit.

The C bit is the carry bit, which captures the carry out
of the significand.

The L bit is the leading unit bit of the significand, which
receives the implicit bit from the operand.

The FRACTION is a 52-bit field that accepts the frac-
tion of the operand.

The Guard (G), Round (R), and Sticky (X) bits are
extensions to the low-order bits of the accumulator. The
G and R bits are required for postnormalization of the
result. The G, R, and X bits are required during round-
ing to determine if the intermediate result is equally
near the two nearest representable values. The X bit
serves as an extension to the G and R bits by repre-
senting the logical OR of all bits that may appear to the
low-order side of the R bit, due either to shifting the
accumulator right or to other generation of low-order
result bits. The G and R bits participate in the left shifts
with zeros being shifted into the R bit. Figure 53 shows
the significance of the G, R, and X bits with respect to
the intermediate result (IR), the representable number
next lower in magnitude (NL), and the representable
number next higher in magnitude (NH). 

Figure 53. Interpretation of G, R, and X bits

Figure 54 shows the positions of the Guard, Round,
and Sticky bits for double-precision and single-preci-
sion floating-point numbers relative to the accumulator
illustrated in Figure 52. 

Figure 54. Location of the Guard, Round, and 
Sticky bits in the IEEE execution model

The significand of the intermediate result is prepared
for rounding by shifting its contents right, if required,
until the least significant bit to be retained is in the
low-order bit position of the fraction. Four user-select-
able rounding modes are provided through FPSCRRN
as described in Section 4.3.6, “Rounding” on page 101.
Using Z1 and Z2 as defined on page 101, the rules for
rounding in each mode are as follows.

� Round to Nearest

Guard bit = 0
The result is truncated. (Result exact (GRX=000)
or closest to next lower value in magnitude
(GRX=001, 010, or 011))

Guard bit = 1
Depends on Round and Sticky bits:

Case a
If the Round or Sticky bit is 1 (inclusive), the
result is incremented. (Result closest to next
higher value in magnitude (GRX=101, 110,
or 111))

Case b
If the Round and Sticky bits are 0 (result
midway between closest representable val-
ues), then if the low-order bit of the result is
1 the result is incremented. Otherwise (the
low-order bit of the result is 0) the result is
truncated (this is the case of a tie rounded
to even).

� Round toward Zero
Choose the smaller in magnitude of Z1 or Z2. If the
Guard, Round, or Sticky bit is nonzero, the result is
inexact.

� Round toward + Infinity
Choose Z1.

� Round toward - Infinity
Choose Z2.

If rounding results in a carry into C, the significand is
shifted right one position and the exponent is incre-
mented by one. This yields an inexact result, and possi-
bly also exponent overflow. If any of the Guard, Round,
or Sticky bits is nonzero, then the result is also inexact.
Fraction bits are stored to the target FPR. For Floating
Round to Integer, Floating Round to Single-Precision,
and single-precision arithmetic instructions, low-order
zeros must be appended as appropriate to fill out the
double-precision fraction.

S C L FRACTION G R X
0 1 53 54 55

G R X  Interpretation

0 0 0 IR is exact

0 0 1
IR closer to NL0 1 0

0 1 1

1 0 0 IR midway between NL and NH

1 0 1
IR closer to NH1 1 0

1 1 1

Format Guard Round Sticky
Double G bit R bit X bit
Single 24 25 OR of 26:52, G, R, X
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4.5.2 Execution Model for
Multiply-Add Type Instructions
The Power ISA provides a special form of instruction
that performs up to three operations in one instruction
(a multiplication, an addition, and a negation). With this
added capability comes the special ability to produce a
more exact intermediate result as input to the rounder.
32-bit arithmetic is similar except that the FRACTION
field is smaller.

Multiply-add significand arithmetic is considered to be
performed with a floating-point accumulator having the
following format, where bits 0:106 comprise the signifi-
cand of the intermediate result.

Figure 55. Multiply-add 64-bit execution model

The first part of the operation is a multiplication. The
multiplication has two 53-bit significands as inputs,
which are assumed to be prenormalized, and produces
a result conforming to the above model. If there is a
carry out of the significand (into the C bit), then the sig-
nificand is shifted right one position, shifting the L bit
(leading unit bit) into the most significant bit of the
FRACTION and shifting the C bit (carry out) into the L
bit. All 106 bits (L bit, the FRACTION) of the product
take part in the add operation. If the exponents of the
two inputs to the adder are not equal, the significand of
the operand with the smaller exponent is aligned
(shifted) to the right by an amount that is added to that
exponent to make it equal to the other input’s exponent.
Zeros are shifted into the left of the significand as it is
aligned and bits shifted out of bit 105 of the significand
are ORed into the X’ bit. The add operation also pro-
duces a result conforming to the above model with the
X’ bit taking part in the add operation.

The result of the addition is then normalized, with all
bits of the addition result, except the X’ bit, participating
in the shift. The normalized result serves as the inter-
mediate result that is input to the rounder.

For rounding, the conceptual Guard, Round, and Sticky
bits are defined in terms of accumulator bits. Figure 56
shows the positions of the Guard, Round, and Sticky
bits for double-precision and single-precision float-
ing-point numbers in the multiply-add execution model.

Figure 56. Location of the Guard, Round, and
Sticky bits in the multiply-add execution
model

The rules for rounding the intermediate result are the
same as those given in Section 4.5.1.

If the instruction is Floating Negative Multiply-Add or
Floating Negative Multiply-Subtract, the final result is
negated.

S C L FRACTION X’
0 1 2 3 106

Format Guard Round Sticky
Double 53 54 OR of 55:105, X’

Single 24 25 OR of 26:105, X’
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4.6 Floating-Point Processor Instructions

For each instruction in this section that defines the use
of an Rc bit, the behavior defined for the instruction cor-
responding to Rc=1 is considered part of the Float-
ing-Point.Record category.
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4.6.1 Floating-Point Storage Access Instructions
The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.10.3, “Effective Address Calcu-
lation” on page 23.

 

4.6.1.1 Storage Access Exceptions
Storage accesses will cause the system data storage
error handler to be invoked if the program is not allowed
to modify the target storage (Store only), or if the pro-
gram attempts to access storage that is unavailable.

4.6.2 Floating-Point Load Instructions
There are two basic forms of load instruction: sin-
gle-precision and double-precision. Because the FPRs
support only floating-point double format, single-preci-
sion Load Floating-Point instructions convert sin-
gle-precision data to double format prior to loading the
operand into the target FPR. The conversion and load-
ing steps are as follows.

Let WORD0:31 be the floating-point single-precision
operand accessed from storage.

Normalized Operand
if WORD1:8 > 0 and WORD1:8 < 255 then

FRT0:1 � WORD0:1
FRT2 � ¬WORD1
FRT3 � ¬WORD1
FRT4 � ¬WORD1
FRT5:63 � WORD2:31 || 290

Denormalized Operand
if WORD1:8 = 0 and WORD9:31 ≠ 0 then
sign � WORD0
exp � -126
frac0:52 � 0b0 || WORD9:31 || 290
normalize the operand
      do while frac0 = 0
             frac0:52 � frac1:52 || 0b0

             exp � exp - 1
FRT0 � sign
FRT1:11 � exp + 1023
FRT12:63 � frac1:52

Zero / Infinity / NaN
if WORD1:8 = 255 or WORD1:31 = 0 then

FRT0:1 � WORD0:1
FRT2 � WORD1
FRT3 � WORD1
FRT4 � WORD1
FRT5:63 � WORD2:31 || 290

For double-precision Load Floating-Point instructions
no conversion is required, as the data from storage are
copied directly into the FPR.

Many of the Load Floating-Point instructions have an
“update” form, in which register RA is updated with the
effective address. For these forms, if RA≠0, the effec-
tive address is placed into register RA and the storage
element (word or doubleword) addressed by EA is
loaded into FRT.

Note: Recall that RA and RB denote General Purpose
Registers, while FRT denotes a Floating-Point Register.

The la extended mnemonic permits computing an
effective address as a Load or Store instruction
would, but loads the address itself into a GPR
rather than loading the value that is in storage at
that address. This extended mnemonic is
described in Section D.9, “Miscellaneous Mnemon-
ics” on page 327.

Programming Note
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Load Floating-Point Single  D-form

lfs FRT,D(RA)

if RA = 0 then b � 0
else           b � (RA)
EA � b + EXTS(D)
FRT � DOUBLE(MEM(EA, 4))

Let the effective address (EA) be the sum (RA|0)+D.

The word in storage addressed by EA is interpreted as
a floating-point single-precision operand. This word is
converted to floating-point double format (see
page 111) and placed into register FRT.

Special Registers Altered:
None

Load Floating-Point Single Indexed
X-form

lfsx FRT,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
FRT � DOUBLE(MEM(EA, 4))

Let the effective address (EA) be the sum (RA|0)+(RB).

The word in storage addressed by EA is interpreted as
a floating-point single-precision operand. This word is
converted to floating-point double format (see
page 111) and placed into register FRT.

Special Registers Altered:
None

Load Floating-Point Single with Update
D-form

lfsu FRT,D(RA)

EA � (RA) + EXTS(D)
FRT � DOUBLE(MEM(EA, 4))
RA � EA

Let the effective address (EA) be the sum (RA)+D.

The word in storage addressed by EA is interpreted as
a floating-point single-precision operand. This word is
converted to floating-point double format (see
page 111) and placed into register FRT.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Load Floating-Point Single with Update 
Indexed  X-form

lfsux FRT,RA,RB

EA � (RA) + (RB)
FRT � DOUBLE(MEM(EA, 4))
RA � EA

Let the effective address (EA) be the sum (RA)+(RB).

The word in storage addressed by EA is interpreted as
a floating-point single-precision operand. This word is
converted to floating-point double format (see
page 111) and placed into register FRT.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

48 FRT RA D
0 6 11 16                                                    31 31 FRT RA RB 535 /

0 6 11 16 21 31

49 FRT RA D
0 6 11 16                                                    31

31 FRT RA RB 567 /
0 6 11 16 21 31
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Load Floating-Point Double  D-form

lfd FRT,D(RA)

if RA = 0 then b � 0
else           b � (RA)
EA � b + EXTS(D)
FRT � MEM(EA, 8)

Let the effective address (EA) be the sum (RA|0)+D.

The doubleword in storage addressed by EA is placed
into register FRT.

Special Registers Altered:
None

Load Floating-Point Double Indexed
X-form

lfdx FRT,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
FRT � MEM(EA, 8)

Let the effective address (EA) be the sum (RA|0)+(RB).

The doubleword in storage addressed by EA is placed
into register FRT.

Special Registers Altered:
None

Load Floating-Point Double with Update 
 D-form

lfdu FRT,D(RA)

EA � (RA) + EXTS(D)
FRT � MEM(EA, 8)
RA � EA

Let the effective address (EA) be the sum (RA)+D.

The doubleword in storage addressed by EA is placed
into register FRT.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Load Floating-Point Double with Update 
Indexed  X-form

lfdux FRT,RA,RB

EA � (RA) + (RB)
FRT � MEM(EA, 8)
RA � EA

Let the effective address (EA) be the sum (RA)+(RB).

The doubleword in storage addressed by EA is placed
into register FRT.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

50 FRT RA D
0 6 11 16                                                    31 31 FRT RA RB 599 /

0 6 11 16 21 31

51 FRT RA D
0 6 11 16                                                    31

31 FRT RA RB 631 /
0 6 11 16 21 31
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4.6.3 Floating-Point Store Instructions
There are three basic forms of store instruction: sin-
gle-precision, double-precision, and integer. The inte-
ger form is provided by the Store Floating-Point as
Integer Word instruction, described on page 117.
Because the FPRs support only floating-point double
format for floating-point data, single-precision Store
Floating-Point instructions convert double-precision
data to single format prior to storing the operand into
storage. The conversion steps are as follows.

Let WORD0:31 be the word in storage written to.

No Denormalization Required (includes Zero / Infin-
ity / NaN)
if FRS1:11 > 896 or FRS1:63 = 0 then

WORD0:1 � FRS0:1
WORD2:31 � FRS5:34

Denormalization Required
if 874 ≤ FRS1:11 ≤ 896 then

sign � FRS0
exp � FRS1:11 - 1023
frac0:52 � 0b1 || FRS12:63
denormalize operand
       do while exp < -126
             frac0:52 � 0b0 || frac0:51
             exp � exp + 1
WORD0 � sign
WORD1:8 � 0x00
WORD9:31 � frac1:23

else WORD � undefined

Notice that if the value to be stored by a single-preci-
sion Store Floating-Point instruction is larger in magni-
tude than the maximum number representable in single
format, the first case above (No Denormalization
Required) applies.  The result stored in WORD is then
a well-defined value, but is not numerically equal to the
value in the source register (i.e., the result of a sin-

gle-precision Load Floating-Point from WORD will not
compare equal to the contents of the original source
register).

For double-precision Store Floating-Point instructions
and for the Store Floating-Point as Integer Word
instruction no conversion is required, as the data from
the FPR are copied directly into storage.

Many of the Store Floating-Point instructions have an
“update” form, in which register RA is updated with the
effective address. For these forms, if RA≠0, the effec-
tive address is placed into register RA.

Note: Recall that RA and RB denote General Purpose
Registers, while FRS denotes a Floating-Point Regis-
ter.
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Store Floating-Point Single  D-form

stfs FRS,D(RA)

if RA = 0 then b � 0
else           b � (RA)
EA � b + EXTS(D)
MEM(EA, 4) � SINGLE((FRS))

Let the effective address (EA) be the sum (RA|0)+D.

The contents of register FRS are converted to single
format (see page 114) and stored into the word in stor-
age addressed by EA.

Special Registers Altered:
None

Store Floating-Point Single Indexed 
X-form

stfsx FRS,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
MEM(EA, 4) � SINGLE((FRS))

Let the effective address (EA) be the sum (RA|0)+(RB).

The contents of register FRS are converted to single
format (see page 114) and stored into the word in stor-
age addressed by EA.

Special Registers Altered:
None

Store Floating-Point Single with Update 
 D-form

stfsu FRS,D(RA)

EA � (RA) + EXTS(D)
MEM(EA, 4) � SINGLE((FRS))
RA � EA

Let the effective address (EA) be the sum (RA)+D.

The contents of register FRS are converted to single
format (see page 114) and stored into the word in stor-
age addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Floating-Point Single with Update 
Indexed  X-form

stfsux FRS,RA,RB

EA � (RA) + (RB)
MEM(EA, 4) � SINGLE((FRS))
RA � EA

Let the effective address (EA) be the sum (RA)+(RB).

The contents of register FRS are converted to single
format (see page 114) and stored into the word in stor-
age addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

52 FRS RA D
0 6 11 16                                                    31 31 FRS RA RB 663 /

0 6 11 16 21 31

53 FRS RA D
0 6 11 16                                                    31

31 FRS RA RB 695 /
0 6 11 16 21 31
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Store Floating-Point Double  D-form

stfd FRS,D(RA)

if RA = 0 then b � 0
else           b � (RA)
EA � b + EXTS(D)
MEM(EA, 8) � (FRS)

Let the effective address (EA) be the sum (RA|0)+D.

The contents of register FRS are stored into the dou-
bleword in storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Double Indexed
X-form

stfdx FRS,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
MEM(EA, 8) � (FRS)

Let the effective address (EA) be the sum (RA|0)+(RB).

The contents of register FRS are stored into the dou-
bleword in storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Double with Update 
D-form

stfdu FRS,D(RA)

EA � (RA) + EXTS(D)
MEM(EA, 8) � (FRS)
RA � EA

Let the effective address (EA) be the sum (RA)+D.

The contents of register FRS are stored into the dou-
bleword in storage addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Floating-Point Double with Update 
Indexed  X-form

stfdux FRS,RA,RB

EA � (RA) + (RB)
MEM(EA, 8) � (FRS)
RA � EA

Let the effective address (EA) be the sum (RA)+(RB).

The contents of register FRS are stored into the dou-
bleword in storage addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

54 FRS RA D
0 6 11 16                                        31 31 FRS RA RB 727 /

0 6 11 16 21 31

55 FRS RA D
0 6 11 16                                                    31

31 FRS RA RB 759 /
0 6 11 16 21 31
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Store Floating-Point as Integer Word 
Indexed  X-form

stfiwx FRS,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
MEM(EA, 4) � (FRS)32:63

Let the effective address (EA) be the sum (RA|0)+(RB).

The contents of the low-order 32 bits of register FRS
are stored, without conversion, into the word in storage
addressed by EA.

If the contents of register FRS were produced, either
directly or indirectly, by a Load Floating-Point Single
instruction, a single-precision Arithmetic instruction, or
frsp, then the value stored is undefined.  (The contents
of register FRS are produced directly by such an
instruction if FRS is the target register for the instruc-
tion.  The contents of register FRS are produced indi-
rectly by such an instruction if FRS is the final target
register of a sequence of one or more Floating-Point
Move instructions, with the input to the sequence hav-
ing been produced directly by such an instruction.)

Special Registers Altered:
None

31 FRS RA RB 983 /
0 6 11 16 21 31
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4.6.4 Floating-Point Move Instructions
These instructions copy data from one floating-point
register to another, altering the sign bit (bit 0) as
described below for fneg, fabs, and fnabs.  These
instructions treat NaNs just like any other kind of value

(e.g., the sign bit of a NaN may be altered by fneg,
fabs, and fnabs).  These instructions do not alter the
FPSCR.

Floating Move Register   X-form

fmr FRT,FRB (Rc=0)
fmr. FRT,FRB (Rc=1)

The contents of register FRB are placed into register
FRT.

Special Registers Altered:
CR1 (if Rc=1)

Floating Negate   X-form

fneg FRT,FRB (Rc=0)
fneg. FRT,FRB (Rc=1)

The contents of register FRB with bit 0 inverted are
placed into register FRT.

Special Registers Altered:
CR1 (if Rc=1)

Floating Absolute Value  X-form

fabs FRT,FRB (Rc=0)
fabs. FRT,FRB (Rc=1)

The contents of register FRB with bit 0 set to zero are
placed into register FRT.

Special Registers Altered:
CR1 (if Rc=1)

Floating Negative Absolute Value  X-form

fnabs FRT,FRB (Rc=0)
fnabs. FRT,FRB (Rc=1)

The contents of register FRB with bit 0 set to one are
placed into register FRT.

Special Registers Altered:
CR1 (if Rc=1)

63 FRT /// FRB 72 Rc
0 6 11 16 21 31

63 FRT /// FRB 40 Rc
0 6 11 16 21 31

63 FRT /// FRB 264 Rc
0 6 11 16 21 31

63 FRT /// FRB 136 Rc
0 6 11 16 21 31
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4.6.5 Floating-Point Arithmetic Instructions

4.6.5.1 Floating-Point Elementary Arithmetic Instructions

Floating Add [Single]   A-form

fadd FRT,FRA,FRB  (Rc=0)
fadd. FRT,FRA,FRB  (Rc=1) 

fadds FRT,FRA,FRB (Rc=0)
fadds. FRT,FRA,FRB (Rc=1)

The floating-point operand in register FRA is added to
the floating-point operand in register FRB.

If the most significant bit of the resultant significand is
not 1, the result is normalized.  The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

Floating-point addition is based on exponent compari-
son and addition of the two significands.  The expo-
nents of the two operands are compared, and the
significand accompanying the smaller exponent is
shifted right, with its exponent increased by one for
each bit shifted, until the two exponents are equal.  The
two significands are then added or subtracted as
appropriate, depending on the signs of the operands, to
form an intermediate sum.  All 53 bits of the significand
as well as all three guard bits (G, R, and X) enter into
the computation.

If a carry occurs, the sum’s significand is shifted right
one bit position and the exponent is increased by one.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1.

Special Registers Altered:
FPRF  FR  FI
FX  OX  UX  XX
VXSNAN  VXISI
CR1 (if Rc=1)

Floating Subtract [Single]  A-form

fsub FRT,FRA,FRB (Rc=0)
fsub. FRT,FRA,FRB (Rc=1) 

fsubs FRT,FRA,FRB (Rc=0)
fsubs. FRT,FRA,FRB (Rc=1)

The floating-point operand in register FRB is subtracted
from the floating-point operand in register FRA.

If the most significant bit of the resultant significand is
not 1, the result is normalized.  The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

The execution of the Floating Subtract instruction is
identical to that of Floating Add, except that the con-
tents of FRB participate in the operation with the sign
bit (bit 0) inverted.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1.

Special Registers Altered:
FPRF  FR  FI
FX  OX  UX  XX
VXSNAN  VXISI
CR1 (if Rc=1)

63 FRT FRA FRB /// 21 Rc
0 6 11 16 21 26 31

59 FRT FRA FRB /// 21 Rc
0 6 11 16 21 26 31

63 FRT FRA FRB /// 20 Rc
0 6 11 16 21 26 31

59 FRT FRA FRB /// 20 Rc
0 6 11 16 21 26 31
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Floating Multiply [Single]  A-form

fmul FRT,FRA,FRC (Rc=0)
fmul. FRT,FRA,FRC (Rc=1)

fmuls FRT,FRA,FRC (Rc=0)
fmuls. FRT,FRA,FRC (Rc=1)

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC.

If the most significant bit of the resultant significand is
not 1, the result is normalized.  The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

Floating-point multiplication is based on exponent addi-
tion and multiplication of the significands.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1.

Special Registers Altered:
FPRF  FR  FI
FX  OX  UX  XX
VXSNAN  VXIMZ
CR1 (if Rc=1)

Floating Divide [Single]  A-form

fdiv FRT,FRA,FRB (Rc=0)
fdiv. FRT,FRA,FRB (Rc=1) 

fdivs FRT,FRA,FRB (Rc=0)
fdivs. FRT,FRA,FRB (Rc=1)

The floating-point operand in register FRA is divided by
the floating-point operand in register FRB.  The remain-
der is not supplied as a result.

If the most significant bit of the resultant significand is
not 1, the result is normalized.  The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

Floating-point division is based on exponent subtrac-
tion and division of the significands.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1 and Zero Divide Exceptions when
FPSCRZE=1.

Special Registers Altered:
FPRF  FR  FI
FX  OX  UX  ZX  XX
VXSNAN  VXIDI  VXZDZ
CR1 (if Rc=1)

63 FRT FRA /// FRC 25 Rc
0 6 11 16 21 26 31

59 FRT FRA /// FRC 25 Rc
0 6 11 16 21 26 31

63 FRT FRA FRB /// 18 Rc
0 6 11 16 21 26 31

59 FRT FRA FRB /// 18 Rc
0 6 11 16 21 26 31
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Floating Square Root [Single]  A-form

fsqrt FRT,FRB  (Rc=0)
fsqrt. FRT,FRB  (Rc=1)

fsqrts FRT,FRB (Rc=0)
fsqrts. FRT,FRB  (Rc=1)

The square root of the floating-point operand in register
FRB is placed into register FRT.

If the most significant bit of the resultant significand is
not 1, the result is normalized.  The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

Operation with various special values of the operand is
summarized below.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1.

Special Registers Altered:
FPRF  FR  FI
FX  XX
VXSNAN  VXSQRT
CR1 (if Rc=1)

Floating Reciprocal Estimate [Single]
A-form

fre FRT,FRB  (Rc=0)
[Category:Floating-Point.Phased-In]

fre. FRT,FRB  (Rc=1)
[Category: Floating-Point.Record.Phased-In]

fres FRT,FRB  (Rc=0)
fres. FRT,FRB  (Rc=1)

A estimate of the reciprocal of the floating-point oper-
and in register FRB is placed into register FRT.  The
estimate placed into register FRT is correct to a preci-
sion of one part in 256 of the reciprocal of (FRB), i.e.,

where x is the initial value in FRB.

Operation with various special values of the operand is
summarized below.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1 and Zero Divide Exceptions when
FPSCRZE=1.

The results of executing this instruction may vary
between implementations, and between different exe-
cutions on the same implementation.

Special Registers Altered:
FPRF  FR (undefined)  FI (undefined)
FX  OX  UX  ZX  XX (undefined)
VXSNAN
CR1 (if Rc=1)

63 FRT /// FRB /// 22 Rc
0 6 11 16 21 26 31

59 FRT /// FRB /// 22 Rc
0 6 11 16 21 26 31

Operand Result Exception
-∞ QNaN1 VXSQRT
< 0 QNaN1 VXSQRT
-0 -0 None
+∞ +∞ None
SNaN QNaN1 VXSNAN
QNaN QNaN None
1 No result if FPSCRVE = 1

63 FRT /// FRB /// 24 Rc
0 6 11 16 21 26 31

59 FRT /// FRB /// 24 Rc
0 6 11 16 21 26 31

Operand Result Exception
-∞ -0 None
-0 -∞1 ZX
+0 +∞1 ZX
+∞ +0 None
SNaN QNaN2 VXSNAN
QNaN QNaN None
1 No result if FPSCRZE = 1.
2 No result if FPSCRVE = 1.

ABS estimate 1 x⁄–
1 x⁄

---------------------------------------( )
1

256
----------≤
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Floating Reciprocal Square Root Estimate 
[Single]     A-form

frsqrte FRT,FRB (Rc=0)
[Category:Floating-Point.Phased-In]

frsqrte. FRT,FRB (Rc=1)
[Category:Floating-Point.Record.Phased-In]

frsqrtes FRT,FRB (Rc=0)
frsqrtes. FRT,FRB (Rc=1)

A estimate of the reciprocal of the square root of the
floating-point operand in register FRB is placed into
register FRT.  The estimate placed into register FRT is
correct to a precision of one part in 32 of the reciprocal
of the square root of (FRB), i.e.,

where x is the initial value in FRB.  

Operation with various special values of the operand is
summarized below.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1 and Zero Divide Exceptions when
FPSCRZE=1.

The results of executing this instruction may vary
between implementations, and between different exe-
cutions on the same implementation.

Special Registers Altered:
FPRF  FR (undefined)  FI (undefined)
FX  ZX  XX (undefined)
VXSNAN  VXSQRT
CR1 (if Rc=1)

63 FRT /// FRB /// 26 Rc
0 6 11 16 21 26 31

59 FRT /// FRB /// 26 Rc
0 6 11 16 21 26 31

Operand Result Exception
-∞ QNaN2 VXSQRT
< 0 QNaN2 VXSQRT
-0 -∞1 ZX
+0 +∞1 ZX
+∞ +0 None
SNaN QNaN2 VXSNAN
QNaN QNaN None
1 No result if FPSCRZE = 1.
2 No result if FPSCRVE = 1.

ABS estimate 1 x( )⁄–

1 x( )⁄
------------------------------------------------( )

1
32
------≤
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4.6.5.2 Floating-Point Multiply-Add Instructions

These instructions combine a multiply and an add oper-
ation without an intermediate rounding operation.  The
fraction part of the intermediate product is 106 bits wide
(L bit, FRACTION), and all 106 bits take part in the add/
subtract portion of the instruction.

Status bits are set as follows.

� Overflow, Underflow, and Inexact Exception bits,
the FR and FI bits, and the FPRF field are set

based on the final result of the operation, and not
on the result of the multiplication.

� Invalid Operation Exception bits are set as if the
multiplication and the addition were performed
using two separate instructions (fmul[s], followed
by fadd[s] or fsub[s]).  That is, multiplication of
infinity by 0 or of anything by an SNaN, and/or
addition of an SNaN, cause the corresponding
exception bits to be set.

Floating Multiply-Add [Single]  A-form

fmadd FRT,FRA,FRC,FRB (Rc=0)
fmadd. FRT,FRA,FRC,FRB (Rc=1) 

fmadds FRT,FRA,FRC,FRB (Rc=0)
fmadds. FRT,FRA,FRC,FRB (Rc=1)

The operation
FRT � [(FRA)×(FRC)] + (FRB)

is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC.  The
floating-point operand in register FRB is added to this
intermediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized.  The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1.

Special Registers Altered:
FPRF  FR  FI
FX  OX  UX  XX
VXSNAN  VXISI  VXIMZ
CR1 (if Rc=1)

Floating Multiply-Subtract [Single] A-form

fmsub FRT,FRA,FRC,FRB (Rc=0)
fmsub. FRT,FRA,FRC,FRB (Rc=1) 

fmsubs FRT,FRA,FRC,FRB  (Rc=0)
fmsubs. FRT,FRA,FRC,FRB  (Rc=1)

The operation
FRT � [(FRA)×(FRC)] - (FRB)

is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC.  The
floating-point operand in register FRB is subtracted
from this intermediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized.  The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1.

Special Registers Altered:
FPRF  FR  FI
FX  OX  UX  XX
VXSNAN  VXISI  VXIMZ
CR1 (if Rc=1)

63 FRT FRA FRB FRC 29 Rc
0 6 11 16 21 26 31

59 FRT FRA FRB FRC 29 Rc
0 6 11 16 21 26 31

63 FRT FRA FRB FRC 28 Rc
0 6 11 16 21 26 31

59 FRT FRA FRB FRC 28 Rc
0 6 11 16 21 26 31
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Floating Negative Multiply-Add [Single]  
A-form

fnmadd FRT,FRA,FRC,FRB (Rc=0)
fnmadd. FRT,FRA,FRC,FRB (Rc=1)

fnmadds FRT,FRA,FRC,FRB (Rc=0)
fnmadds. FRT,FRA,FRC,FRB (Rc=1)

The operation
FRT � - ( [(FRA)×(FRC)] + (FRB) )

is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC.  The
floating-point operand in register FRB is added to this
intermediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized.  The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR, then negated
and placed into register FRT.

This instruction produces the same result as would be
obtained by using the Floating Multiply-Add instruction
and then negating the result, with the following excep-
tions.

� QNaNs propagate with no effect on their “sign” bit.
� QNaNs that are generated as the result of a dis-

abled Invalid Operation Exception have a “sign” bit
of 0.

� SNaNs that are converted to QNaNs as the result
of a disabled Invalid Operation Exception retain the
“sign” bit of the SNaN.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1.

Special Registers Altered:
FPRF  FR  FI
FX  OX  UX  XX
VXSNAN  VXISI  VXIMZ
CR1 (if Rc=1)

Floating Negative Multiply-Subtract 
[Single]  A-form

fnmsub FRT,FRA,FRC,FRB (Rc=0)
fnmsub. FRT,FRA,FRC,FRB (Rc=1) 

fnmsubs FRT,FRA,FRC,FRB (Rc=0)
fnmsubs. FRT,FRA,FRC,FRB (Rc=1)

The operation
FRT � - ( [(FRA)×(FRC)] - (FRB) )

is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC.  The
floating-point operand in register FRB is subtracted
from this intermediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized.  The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR, then negated
and placed into register FRT.

This instruction produces the same result as would be
obtained by using the Floating Multiply-Subtract
instruction and then negating the result, with the follow-
ing exceptions.

� QNaNs propagate with no effect on their “sign” bit.
� QNaNs that are generated as the result of a dis-

abled Invalid Operation Exception have a “sign” bit
of 0.

� SNaNs that are converted to QNaNs as the result
of a disabled Invalid Operation Exception retain the
“sign” bit of the SNaN.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1.

Special Registers Altered:
FPRF  FR  FI
FX  OX  UX  XX
VXSNAN  VXISI  VXIMZ
CR1 (if Rc=1)

63 FRT FRA FRB FRC 31 Rc
0 6 11 16 21 26 31

59 FRT FRA FRB FRC 31 Rc
0 6 11 16 21 26 31

63 FRT FRA FRB FRC 30 Rc
0 6 11 16 21 26 31

59 FRT FRA FRB FRC 30 Rc
0 6 11 16 21 26 31
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4.6.6 Floating-Point Rounding and Conversion Instructions
  

4.6.6.1 Floating-Point Rounding 
Instruction

Floating Round to Single-Precision
X-form

frsp FRT,FRB (Rc=0)
frsp. FRT,FRB (Rc=1)

The floating-point operand in register FRB is rounded
to single-precision, using the rounding mode specified
by FPSCRRN, and placed into register FRT.

The rounding is described fully in Section A.1, “Float-
ing-Point Round to Single-Precision Model” on
page 299.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1.

Special Registers Altered:
FPRF  FR  FI
FX  OX  UX  XX
VXSNAN
CR1 (if Rc=1)

4.6.6.2 Floating-Point Convert To/From 
Integer Instructions

Floating Convert To Integer Doubleword 
 X-form

fctid FRT,FRB (Rc=0)
fctid. FRT,FRB (Rc=1)

The floating-point operand in register FRB is converted
to a 64-bit signed fixed-point integer, using the rounding
mode specified by FPSCRRN, and placed into register
FRT.

If the operand in FRB is greater than 263 - 1, then FRT
is set to 0x7FFF_FFFF_FFFF_FFFF.  If the operand in
FRB is less than -263, then FRT is set to
0x8000_0000_0000_0000.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 303.

Except for enabled Invalid Operation Exceptions,
FPSCRFPRF is undefined.  FPSCRFR is set if the result
is incremented when rounded.  FPSCRFI is set if the
result is inexact.

Special Registers Altered:
FPRF (undefined)  FR  FI
FX  XX
VXSNAN VXCVI
CR1 (if Rc=1)

Examples of uses of these instructions to perform
various conversions can be found in Section E.2,
“Floating-Point Conversions [Category: Float-
ing-Point]” on page 334.

Programming Note

63 FRT /// FRB 12 Rc
0 6 11 16 21 31

63 FRT /// FRB 814 Rc
0 6 11 16 21 31
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Floating Convert To Integer Doubleword 
with round toward Zero X-form

fctidz FRT,FRB (Rc=0)
fctidz. FRT,FRB (Rc=1)

The floating-point operand in register FRB is converted
to a 64-bit signed fixed-point integer, using the rounding
mode Round toward Zero, and placed into register FRT.

If the operand in FRB is greater than 263 - 1, then FRT
is set to 0x7FFF_FFFF_FFFF_FFFF.  If the operand in
FRB is less than -263, then FRT is set to
0x8000_0000_0000_0000.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 303.

Except for enabled Invalid Operation Exceptions,
FPSCRFPRF is undefined.  FPSCRFR is set if the result
is incremented when rounded.  FPSCRFI is set if the
result is inexact.

Special Registers Altered:
FPRF (undefined)  FR  FI
FX  XX
VXSNAN VXCVI
CR1 (if Rc=1)

Floating Convert To Integer Word  X-form

fctiw FRT,FRB  (Rc=0)
fctiw. FRT,FRB (Rc=1) 

The floating-point operand in register FRB is converted
to a 32-bit signed fixed-point integer, using the rounding
mode specified by FPSCRRN, and placed into
FRT32:63.  The contents of FRT0:31 are undefined.

If the operand in FRB is greater than 231 - 1, then bits
32:63 of FRT are set to 0x7FFF_FFFF.  If the operand
in FRB is less than -231, then bits 32:63 of FRT are set
to 0x8000_0000.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 303.

Except for enabled Invalid Operation Exceptions,
FPSCRFPRF is undefined.  FPSCRFR is set if the result
is incremented when rounded.  FPSCRFI is set if the
result is inexact.

Special Registers Altered:
FPRF (undefined)  FR  FI
FX  XX
VXSNAN VXCVI
CR1 (if Rc=1)

63 FRT /// FRB 815 Rc
0 6 11 16 21 31

63 FRT /// FRB 14 Rc
0 6 11 16 21 31
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Floating Convert To Integer Word with 
round toward Zero  X-form

fctiwz FRT,FRB  (Rc=0)
fctiwz. FRT,FRB (Rc=1) 

The floating-point operand in register FRB is converted
to a 32-bit signed fixed-point integer, using the rounding
mode Round toward Zero, and placed into FRT32:63.
The contents of FRT0:31 are undefined.

If the operand in FRB is greater than 231 - 1, then bits
32:63 of FRT are set to 0x7FFF_FFFF.  If the operand
in FRB is less than -231, then bits 32:63 of FRT are set
to 0x8000_0000.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model”.

Except for enabled Invalid Operation Exceptions,
FPSCRFPRF is undefined.  FPSCRFR is set if the result
is incremented when rounded.  FPSCRFI is set if the
result is inexact.

Special Registers Altered:
FPRF (undefined)  FR  FI
FX  XX
VXSNAN VXCVI
CR1 (if Rc=1)

Floating Convert From Integer 
Doubleword  X-form

fcfid FRT,FRB (Rc=0)
fcfid. FRT,FRB (Rc=1)

The 64-bit signed fixed-point operand in register FRB is
converted to an infinitely precise floating-point integer.
The result of the conversion is rounded to double-preci-
sion, using the rounding mode specified by FPSCRRN,
and placed into register FRT.

The conversion is described fully in Section A.3, “Float-
ing-Point Convert from Integer Model”.

FPSCRFPRF is set to the class and sign of the result.
FPSCRFR is set if the result is incremented when
rounded.  FPSCRFI is set if the result is inexact.

Special Registers Altered:
FPRF  FR  FI
FX  XX
CR1 (if Rc=1)

4.6.6.3 Floating Round to Integer 
Instructions [Category: Float-
ing-Point.Phased-In]
The Floating Round to Integer instructions provide
direct support for rounding functions found in high level
languages. For example, frin, friz, frip, and frim imple-
ment C++ round(), trunc(), ceil(), and floor(), respec-
tively. Note that frin does not implement the IEEE
Round to Nearest function, which is often further
described as “ties to even.” The rounding performed by
these instructions is described fully in Section A.4,
“Floating-Point Round to Integer Model” on page 307. 

  

63 FRT /// FRB 15 Rc
0 6 11 16 21 31

63 FRT /// FRB 846 Rc
0 6 11 16 21 31

These instructions set FPSCRFR FI to 0b00 regard-
less of whether the result is inexact or rounded
because there is a desire to preserve the value of
FPSCRXX.  Furthermore, it is believed that most
programs do not need to know whether these
rounding operations produce inexact or rounded
results.  If it is necessary to determine whether the
result is inexact or rounded, software must com-
pare the result with the original source operand.

Programming Note
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Floating Round to Integer Nearest X-form

frin FRT,FRB  (Rc=0)
frin. FRT,FRB (Rc=1)

The floating-point operand in register FRB is rounded
to an integral value as follows, with the result placed
into register FRT. If the sign of the operand is positive,
(FRB) + 0.5 is truncated to an integral value, otherwise
(FRB) - 0.5 is truncated to an integral value. 

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE = 1. 

Special Registers Altered: 
FPRF FR (set to 0) FI (set to 0) 
FX 
VXSNAN 
CR1  (if Rc = 1)

Floating Round to Integer Plus X-form

frip FRT,FRB  (Rc=0)
frip. FRT,FRB (Rc=1)

The floating-point operand in register FRB is rounded
to an integral value using the rounding mode round
toward +infinity, and the result is placed into register
FRT. 

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE = 1.

Special Registers Altered: 
FPRF FR (set to 0) FI (set to 0) 
FX 
VXSNAN 
CR1  (if Rc = 1)

Floating Round to Integer Toward Zero
X-form

friz FRT,FRB  (Rc=0)
friz. FRT,FRB (Rc=1)

The floating-point operand in register FRB is rounded
to an integral value using the rounding mode round
toward zero, and the result is placed into register FRT. 

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE = 1.

Special Registers Altered: 
FPRF FR (set to 0) FI (set to 0) 
FX 
VXSNAN 
CR1  (if Rc = 1)

Floating Round to Integer Minus  X-form

frim FRT,FRB  (Rc=0)
frim. FRT,FRB (Rc=1)

The floating-point operand in register FRB is rounded
to an integral value using the rounding mode round
toward -infinity, and the result is placed into register
FRT. 

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE = 1.

Special Registers Altered: 
FPRF FR (set to 0) FI (set to 0) 
FX 
VXSNAN 
CR1  (if Rc = 1)

63 FRT /// FRB 392 Rc
0 6 11 16 21 31

63 FRT /// FRB 456 Rc
0 6 11 16 21 31

63 FRT /// FRB 424 Rc
0 6 11 16 21 31

63 FRT /// FRB 488 Rc
0 6 11 16 21 31
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4.6.7 Floating-Point Compare Instructions
The floating-point Compare instructions compare the
contents of two floating-point registers. Comparison
ignores the sign of zero (i.e., regards +0 as equal to
-0). The comparison can be ordered or unordered.

The comparison sets one bit in the designated CR field
to 1 and the other three to 0. The FPCC is set in the
same way.

The CR field and the FPCC are set as follows.

Floating Compare Unordered  X-form

fcmpu BF,FRA,FRB

if (FRA) is a NaN or
   (FRB) is a NaN then c � 0b0001
else if (FRA) < (FRB) then c � 0b1000
else if (FRA) > (FRB) then c � 0b0100
else                       c � 0b0010
FPCC � c
CR4×BF:4×BF+3 � c
if (FRA) is an SNaN or
   (FRB) is an SNaN then
     VXSNAN � 1

The floating-point operand in register FRA is compared
to the floating-point operand in register FRB.  The
result of the compare is placed into CR field BF and the
FPCC.

If either of the operands is a NaN, either quiet or signal-
ing, then CR field BF and the FPCC are set to reflect
unordered. If either of the operands is a Signaling NaN,
then VXSNAN is set.

Special Registers Altered:
CR field BF
FPCC
FX
VXSNAN

Floating Compare Ordered  X-form

fcmpo BF,FRA,FRB

if (FRA) is a NaN or
   (FRB) is a NaN then c � 0b0001
else if (FRA) < (FRB) then c � 0b1000
else if (FRA) > (FRB) then c � 0b0100
else                       c � 0b0010
FPCC � c
CR4×BF:4×BF+3 � c
if (FRA) is an SNaN or
   (FRB) is an SNaN then
     VXSNAN � 1
     if VE = 0 then VXVC � 1
else if (FRA) is a QNaN or
   (FRB) is a QNaN then VXVC � 1

The floating-point operand in register FRA is compared
to the floating-point operand in register FRB.  The
result of the compare is placed into CR field BF and the
FPCC.

If either of the operands is a NaN, either quiet or signal-
ing, then CR field BF and the FPCC are set to reflect
unordered. If either of the operands is a Signaling NaN,
then VXSNAN is set and, if Invalid Operation is dis-
abled (VE=0), VXVC is set. If neither operand is a Sig-
naling NaN but at least one operand is a Quiet NaN,
then VXVC is set.

Special Registers Altered:
CR field BF
FPCC
FX
VXSNAN VXVC

Bit Name Description
0 FL (FRA) < (FRB)
1 FG (FRA) > (FRB)
2 FE (FRA) = (FRB)
3 FU (FRA) ? (FRB) (unordered)

63 BF // FRA FRB 0 /
0 6 9 11 16 21 31

63 BF // FRA FRB 32 /
0 6 9 11 16 21 31
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4.6.8 Floating-Point Select 
Instruction

Floating Select  A-form

fsel FRT,FRA,FRC,FRB (Rc=0)
fsel. FRT,FRA,FRC,FRB (Rc=1)

if (FRA) ≥ 0.0 then FRT � (FRC)
else FRT � (FRB)

The floating-point operand in register FRA is compared
to the value zero.  If the operand is greater than or
equal to zero, register FRT is set to the contents of reg-
ister FRC.  If the operand is less than zero or is a NaN,
register FRT is set to the contents of register FRB. The
comparison ignores the sign of zero (i.e., regards +0 as
equal to -0).

Special Registers Altered:
CR1 (if Rc=1)

  

4.6.9 Floating-Point Status and 
Control Register Instructions
Every Floating-Point Status and Control Register
instruction synchronizes the effects of all floating-point
instructions executed by a given processor.  Executing
a Floating-Point Status and Control Register instruction
ensures that all floating-point instructions previously ini-
tiated by the given processor have completed before
the Floating-Point Status and Control Register instruc-
tion is initiated, and that no subsequent floating-point
instructions are initiated by the given processor until the
Floating-Point Status and Control Register instruction
has completed.  In particular:

� All exceptions that will be caused by the previously
initiated instructions are recorded in the FPSCR
before the Floating-Point Status and Control Reg-
ister instruction is initiated.

� All invocations of the system floating-point enabled
exception error handler that will be caused by the
previously initiated instructions have occurred
before the Floating-Point Status and Control Reg-
ister instruction is initiated.

� No subsequent floating-point instruction that
depends on or alters the settings of any FPSCR
bits is initiated until the Floating-Point Status and
Control Register instruction has completed.

(Floating-point Storage Access instructions are not
affected.)

63 FRT FRA FRB FRC 23 Rc
0 6 11 16 21 26 31

Examples of uses of this instruction can be found in
Sections E.2, “Floating-Point Conversions [Cate-
gory: Floating-Point]” on page 334 and E.3, “Float-
ing-Point Selection [Category: Floating-Point]” on
page 336.

Warning: Care must be taken in using fsel if IEEE
compatibility is required, or if the values being
tested can be NaNs or infinities; see Section E.3.4,
“Notes” on page 336.

Programming Note
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Move From FPSCR  X-form

mffs FRT (Rc=0)
mffs. FRT (Rc=1)

The contents of the FPSCR are placed into FRT32:63.
The contents of FRT0:31 are undefined.

Special Registers Altered:
CR1 (if Rc=1)

Move to Condition Register from FPSCR 
 X-form

mcrfs BF,BFA

The contents of FPSCR field BFA are copied to Condi-
tion Register field BF.  All exception bits copied are set
to 0 in the FPSCR.  If the FX bit is copied, it is set to 0
in the FPSCR.

Special Registers Altered:
CR field BF
FX  OX (if BFA=0)
UX  ZX  XX  VXSNAN (if BFA=1)
VXISI  VXIDI  VXZDZ  VXIMZ (if BFA=2)
VXVC (if BFA=3)
VXSOFT VXSQRT VXCVI (if BFA=5)

Move To FPSCR Field Immediate  X-form

mtfsfi BF,U  (Rc=0)
mtfsfi. BF,U (Rc=1)

The value of the U field is placed into FPSCR field BF.

FPSCRFX is altered only if BF=0.

Special Registers Altered:
FPSCR field BF
CR1 (if Rc=1)

  

Move To FPSCR Fields  XFL-form

mtfsf FLM,FRB (Rc=0)
mtfsf. FLM,FRB (Rc=1)

The contents of bits 32:63 of register FRB are placed
into the FPSCR under control of the field mask speci-
fied by FLM. The field mask identifies the 4-bit fields
affected. Let i be an integer in the range 0-7. If FLMi=1
then FPSCR field i (FPSCR bits 4×i+32:4×i+35) is set
to the contents of the corresponding field of the
low-order 32 bits of register FRB.

FPSCRFX is altered only if FLM0 = 1.

Special Registers Altered:
FPSCR fields selected by mask
CR1 (if Rc=1)

  

  

63 FRT /// /// 583 Rc
0 6 11 16 21 31

63 BF // BFA // /// 64 /
0 6 9 11 14 16 21 31

63 BF // /// U / 134 Rc
0 6 9 11 16 20 21 31

When FPSCR32:35 is specified, bits 32 (FX) and 35
(OX) are set to the values of U0 and U3 (i.e., even if
this instruction causes OX to change from 0 to 1,
FX is set from U0 and not by the usual rule that FX
is set to 1 when an exception bit changes from 0 to
1). Bits 33 and 34 (FEX and VX) are set according
to the usual rule, given on page 95, and not from
U1:2.

Programming Note

63 / FLM / FRB 711 Rc
0 6 7 15 16 21 31

Updating fewer than all eight fields of the FPSCR
may have substantially poorer performance on
some implementations than updating all the fields.

When FPSCR32:35 is specified, bits 32 (FX) and 35
(OX) are set to the values of (FRB)32 and (FRB)35
(i.e., even if this instruction causes OX to change
from 0 to 1, FX is set from (FRB)32 and not by the
usual rule that FX is set to 1 when an exception bit
changes from 0 to 1). Bits 33 and 34 (FEX and VX)
are set according to the usual rule, given on
page 95, and not from (FRB)33:34.

Programming Note

Programming Note
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Move To FPSCR Bit 0  X-form

mtfsb0 BT (Rc=0)
mtfsb0. BT (Rc=1)

Bit BT+32 of the FPSCR is set to 0.

Special Registers Altered:
FPSCR bit BT+32
CR1 (if Rc=1)

  

Move To FPSCR Bit 1  X-form

mtfsb1 BT (Rc=0)
mtfsb1. BT (Rc=1)

Bit BT+32 of the FPSCR is set to 1.

Special Registers Altered:
FPSCR bits BT+32 and FX
CR1  (if Rc=1)

   

63 BT /// /// 70 Rc
0 6 11 16 21 31

Bits 33 and 34 (FEX and VX) cannot be explicitly
reset.

Programming Note

63 BT /// /// 38 Rc
0 6 11 16 21 31

Bits 32 and 34 (FEX and VX) cannot be explicitly
set.

Programming Note
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5.1 Vector Processor Overview
This chapter describes the registers and instructions
that make up the Vector Processor facility.

5.2 Chapter Conventions

5.2.1 Description of Instruction 
Operation
The following notation, in addition to that described in
Section 1.3.2, is used in this chapter. Additional RTL
functions are described in Appendix B.

Notation Meaning
x ? y : z if the value of x is true, then the value of y,

otherwise the value z.
+int Integer addition.
+fp Floating-point addition.
–fp Floating-point subtraction.
×sui Multiplication of a signed-integer (first

operand) by an unsigned-integer (second
operand).

×fp Floating-point multiplication.
=int Integer equals relation.
=fp Floating-point equals relation.
<ui, ≤ui, >ui,  ≥ui

Unsigned-integer comparison relations.
<si, ≤si, >si, ≥si

Signed-integer comparison relations.
<fp, ≤fp, >fp, ≥fp

Floating-point comparison relations.
LENGTH( x ) Length of x, in bits. If x is the word “ele-

ment”, LENGTH( x ) is the length, in bits,
of the element implied by the instruction
mnemonic.

x << y Result of shifting x left by y bits, filling
vacated bits with zeros.
b � LENGTH(x)
result � (y < b) ? (xy:b-1 ||y0) : b0

x >>ui y Result of shifting x right by y bits, filling
vacated bits with zeros.
b � LENGTH(x)
result � (y < b) ? (y0 || x0:(b-y)-1) : 

b0
x >> y Result of shifting x right by y bits, filling

vacated bits with copies of bit 0 (sign bit)
of x.
b � LENGTH(x)
result � (y<b) ? (yx0 ||x0:(b-y)-1) : 

bx0
x <<< y Result of rotating x left by y bits.

b � LENGTH(x)
result � xy:b-1 || x0:y-1

Chop(x, y) Result of extending the right-most y bits of
x on the left with zeros.
result � x & ((1<<y)-1)

EXTZ(x) Result of extending x on the left with zeros.
b � LENGTH(x)
result � x & ((1<<b)-1)

Clamp(x, y, z)
x is interpreted as a signed integer. If the
value of x is less than y, then the value y is
returned, else if the value of x is greater
than z, the value z is returned, else the
value x is returned.
if (x < y) then
   result � y
   VSCRSAT � 1
else if (x > z) then
   result � z
   VSCRSAT � 1
else result � x

RoundToSPIntCeil(x)
The value x if x is a single-precision float-
ing-point integer; otherwise the smallest
single-precision floating-point integer that
is greater than x.

RoundToSPIntFloor(x)
The value x if x is a single-precision float-
ing-point integer; otherwise the largest sin-
gle-precision floating-point integer that is
less than x.

RoundToSPIntNear(x)
The value x if x is a single-precision float-
ing-point integer; otherwise the single-pre-
cision floating-point integer that is nearest
in value to x (in case of a tie, the even sin-
gle-precision floating-point integer is
used).

RoundToSPIntTrunc(x)
The value x if x is a single-precision float-
ing-point integer; otherwise the largest sin-
gle-precision floating-point integer that is
less than x if x>0, or the smallest sin-
gle-precision floating-point integer that is
greater than x if x<0.

RoundToNearSP(x)
The single-precision floating-point number
that is nearest in value to the infinitely-pre-
cise floating-point intermediate result x (in
case of a tie, the single-precision float-
ing-point value with the least-significant bit
equal to 0 is used).

ReciprocalEstimateSP(x)
A single-precision floating-point estimate
of the reciprocal of the single-precision
floating-point number x.

ReciprocalSquareRootEstimateSP(x)
A single-precision floating-point estimate
of the reciprocal of the square root of the
single-precision floating-point number x.

LogBase2EstimateSP(x)
A single-precision floating-point estimate
of the base 2 logarithm of the single-preci-
sion floating-point number x.

Power2EstimateSP(x)
A single-precision floating-point estimate
of the 2 raised to the power of the sin-
gle-precision floating-point number x.
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Figure 57. Vector Register elements

5.3 Vector Processor Registers

5.3.1 Vector Registers
There are 32 Vector Registers (VRs), each containing
128 bits. See Figure 58. All computations and other
data manipulation are performed on data residing in
Vector Registers, and results are placed into a VR.

Figure 58. Vector Registers

Depending on the instruction, the contents of a Vector
Register are interpreted as a sequence of equal-length
elements (bytes, halfwords, or words) or as a quad-
word. Each of the elements is aligned at its natural
boundary within the Vector Register, as shown in
Figure 57. Many instructions perform a given operation
in parallel on all elements in a Vector Register. Depend-
ing on the instruction, a byte, halfword, or word element
can be interpreted as a signed-integer, an
unsigned-integer, or a logical value; a word element
can also be interpreted as a single-precision float-
ing-point value. In the instruction descriptions, phrases
like “signed-integer word element” are used as short-
hand for “word element, interpreted as a signed-inte-
ger”.

Load and Store instructions are provided that transfer a
byte, halfword, word, or quadword between storage
and a Vector Register.

5.3.2 Vector Status and Control 
Register
The Vector Status and Control Register (VSCR) is a
special 32-bit register (not an SPR) that is read and
written in a manner similar to the FPSCR in the Power

ISA scalar floating-point unit. Special instructions
(mfvscr and mtvscr) are provided to move the VSCR
from and to a vector register. When moved to or from a
vector register, the 32-bit VSCR is right justified in the
128-bit vector register. When moved to a vector regis-
ter, bits 0-95 of the vector register are cleared (set to 0).

Figure 59. Vector Status and Control Register

The bit definitions for the VSCR are as follows.

Bit(s) Description

96:110 Reserved

111 Vector Non-Java Mode (NJ)

This bit controls how denormalized values are
handled by Vector Floating-Point instructions.
0 Denormalized values are handled as

specified by Java and the IEEE standard;
see Section 5.6.1.

1 If an element in a source VR contains a
denormalized value, the value 0 is used
instead. If an instruction causes an Under-
flow Exception, the corresponding ele-
ment in the target VR is set to 0. In both
cases the 0 has the same sign as the
denormalized or underflowing value.

112:126 Reserved

127 Vector Saturation (SAT)

Every vector instruction having “Saturate” in
its name implicitly sets this bit to 1 if any result
of that instruction “saturates”; see Section 5.8.
mtvscr can alter this bit explicitly. This bit is
sticky; that is, once set to 1 it remains set to 1
until it is set to 0 by an mtvscr instruction.

After the mfvscr instruction executes, the result in the
target vector register will be architecturally precise.
That is, it will reflect all updates to the SAT bit that could
have been made by vector instructions logically preced-
ing it in the program flow, and further, it will not reflect
any SAT updates that may be made to it by vector
instructions logically following it in the program flow. To
implement this, processors may choose to make the
mfvscr instruction execution serializing within the vec-

Quadword

Word 0 Word 1 Word 2 Word 3

Halfword 0 Halfword 1 Halfword 2 Halfword 3 Halfword 4 Halfword 5 Halfword 6 Halfword 7

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

VR0

VR1

...

...

VR30

VR31
0                                                                                                                  127

VSCR
96                                                 127
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tor unit, meaning that it will stall vector instruction exe-
cution until all preceding vector instructions are
complete and have updated the architectural machine
state. This is permitted in order to simplify implementa-
tion of the sticky status bit (SAT) which would otherwise
be difficult to implement in an out-of-order execution
machine. The implication of this is that reading the
VSCR can be much slower than typical Vector instruc-
tions, and therefore care must be taken in reading it, as
advised in Section 5.5.1, to avoid performance prob-
lems.

The mtvscr is context synchronizing. This implies that
all Vector instructions logically preceding an mtvscr in
the program flow will execute in the architectural con-
text (NJ mode) that existed prior to completion of the
mtvscr, and that all instructions logically following the
mtvscr will execute in the new context (NJ mode)
established by the mtvscr.

5.3.3 VR Save Register
The VR Save Register (VRSAVE) is a 32-bit register
provided for application and operating system use.  

Figure 60. VR Save Register

  

5.4 Vector Storage Access 
Operations
The Vector Storage Access instructions provide the
means by which data can be copied from storage to a
Vector Register or from a Vector Register to storage.
Instructions are provided that access byte, halfword,
word, and quadword storage operands. These instruc-
tions differ from the fixed-point and floating-point Stor-
age Access instructions in that vector storage operands
are assumed to be aligned, and vector storage
accesses are performed as if the appropriate number
of low-order bits of the specified effective address (EA)
were zero. For example, the low-order bit of EA is
ignored for halfword Vector Storage Access instruc-
tions, and the low-order four bits of EA are ignored for
quadword Vector Storage Access instructions. The
effect is to load or store the storage operand of the
specified length that contains the byte addressed by
EA.

If a storage operand is unaligned, additional instruc-
tions must be used to ensure that the operand is cor-
rectly placed in a Vector Register or in storage.
Instructions are provided that shift and merge the con-
tents of two Vector Registers, such that an unaligned
quadword storage operand can be copied between
storage and the Vector Registers in a relatively efficient
manner.

As shown in Figure 57, the elements in Vector Regis-
ters are numbered; the high-order (or most significant)
byte element is numbered 0 and the low-order (or least
significant) byte element is numbered 15. The number-
ing affects the values that must be placed into the per-
mute control vector for the Vector Permute instruction in
order for that instruction to achieve the desired effects,
as illustrated by the examples in the following subsec-
tions.

A vector quadword Load instruction for which the effec-
tive address (EA) is quadword-aligned places the byte
in storage addressed by EA into byte element 0 of the
target Vector Register, the byte in storage addressed by
EA+1 into byte element 1 of the target Vector Register,
etc. Similarly, a vector quadword Store instruction for
which the EA is quadword-aligned places the contents
of byte element 0 of the source Vector Register into the
byte in storage addressed by EA, the contents of byte
element 1 of the source Vector Register into the byte in
storage addressed by EA+1, etc.

Figure 61 shows an aligned quadword in storage.
Figure 62 shows the result of loading that quadword
into a Vector Register or, equivalently, shows the con-
tents that must be in a Vector Register if storing that
Vector Register is to produce the storage contents
shown in Figure 61.

When an aligned byte, halfword, or word storage oper-
and is loaded into a Vector Register, the element (byte,

VRSAVE
32                                                   63

The VRSAVE register can be used to indicate
which VRs are currently being used by a program.
If this is done, the operating system could save
only those VRs when an “interrupt” occurs (see
Book III), and could restore only those VRs when
resuming the interrupted program.

If this approach is taken it must be applied rigor-
ously; if a program fails to indicate that a given VR
is in use, software errors may occur that will be dif-
ficult to detect and correct because they are tim-
ing-dependent.

Some operating systems save and restore
VRSAVE only for programs that also use other vec-
tor registers.

Programming Note
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halfword, or word respectively) that receives the data is
the element that would have received the data had the
entire aligned quadword containing the storage oper-
and addressed by EA been loaded. Similarly, when a
byte, halfword, or word element in a Vector Register is
stored into an aligned storage operand (byte, halfword,
or word respectively), the element selected to be stored
is the element that would have been stored into the
storage operand addressed by EA had the entire Vector
Register been stored to the aligned quadword contain-
ing the storage operand addressed by EA. (Byte stor-
age operands are always aligned.)

For aligned byte, halfword, and word storage operands,
if the corresponding element number is known when
the program is written, the appropriate Vector Splat and
Vector Permute instructions can be used to copy or rep-
licate the data contained in the storage operand after
loading the operand into a Vector Register. An example
of this is given in the Programming Note for Vector
Splat; see page 156. Another example is to replicate
the element across an entire Vector Register before
storing it into an arbitrary aligned storage operand of
the same length; the replication ensures that the cor-
rect data are stored regardless of the offset of the stor-
age operand in its aligned quadword in storage.

Figure 61. Aligned quadword storage operand

Figure 62. Vector Register contents for aligned quadword Load or Store

Figure 63. Unaligned quadword storage operand

Figure 64. Vector Register contents

00 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 00 01 02 03 04

10 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0 1 2 3 4 5 6 7 8 9 A B C D E F

Vhi 00 01 02 03 04

Vlo 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Vt,Vs 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0 15
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5.4.1 Accessing Unaligned Storage Operands
Figure 63 shows an unaligned quadword storage oper-
and that spans two aligned quadwords. In the remain-
der of this section, the aligned quadword that contains
the most significant bytes of the unaligned quadword is
called the most significant quadword (MSQ) and the
aligned quadword that contains the least significant
bytes of the unaligned quadword is called the least sig-
nificant quadword (LSQ). Because the Vector Storage

Access instructions ignore the low-order bits of the
effective address, the unaligned quadword cannot be
transferred between storage and a Vector Register
using a single instruction. The remainder of this section
gives examples of accessing unaligned quadword stor-
age operands. Similar sequences can be used to
access unaligned halfword and word storage operands.

Programming Note

The sequence of instructions given below is one
approach that can be used to load the unaligned quad-
word shown in Figure 63 into a Vector Register. In
Figure 64 Vhi and Vlo are the Vector Registers that will
receive the most significant quadword and least signifi-
cant quadword respectively. VRT is the target Vector
Register.

After the two quadwords have been loaded into Vhi and
Vlo, using Load Vector Indexed instructions, the align-
ment is performed by shifting the 32-byte quantity Vhi ||
Vlo left by an amount determined by the address of the
first byte of the desired data. The shifting is done using
a Vector Permute instruction for which the permute
control vector is generated by a Load Vector for Shift
Left instruction. The Load Vector for Shift Left instruc-
tion uses the same address specification as the Load
Vector Indexed instruction that loads the Vhi register;
this is the address of the desired unaligned quadword.

The following sequence of instructions copies the
unaligned quadword storage operand into register Vt.

# Assumptions:
# Rb != 0 and contents of Rb = 0xB
lvx Vhi,0,Rb # load MSQ
lvsl Vp,0,Rb     # set permute control vector
addi Rb,Rb,16 # address of LSQ
lvx Vlo,0,Rb # load LSQ
vperm Vt,Vhi,Vlo,Vp # align the data

The procedure for storing an unaligned quadword is
essentially the reverse of the procedure for loading one.
However, a read-modify-write sequence is required that
inserts the source quadword into two aligned quad-
words in storage. The quadword to be stored is
assumed to be in Vs; see Figure 64 The contents of Vs
are shifted right and split into two parts, each of which

is merged (using a Vector Select instruction) with the
current contents of the two aligned quadwords (MSQ
and LSQ) that will contain the most significant bytes
and least significant bytes, respectively, of the
unaligned quadword. The resulting two quadwords are
stored using Store Vector Indexed instructions. A Load
Vector for Shift Right instruction is used to generate the
permute control vector that is used for the shifting. A
single register is used for the “shifted” contents; this is
possible because the “shifting” is done by means of a
right rotation. The rotation is accomplished by specify-
ing Vs for both components of the Vector Permute
instruction. In addition, the same permute control vec-
tor is used on a sequence of 1s and 0s to generate the
mask used by the Vector Select instructions that do the
merging.

The following sequence of instructions copies the con-
tents of Vs into an unaligned quadword in storage.

# Assumptions:
# Rb != 0 and contents of Rb = 0xB
lvx Vhi,0,Rb # load current MSQ
lvsr Vp,0,Rb  # set permute control vector
addi Rb,Rb,16 # address of LSQ
lvx Vlo,0,Rb # load current LSQ
vspltisb V1s,-1  # generate the select mask bits
vspltisb V0s,0
vperm Vmask,V0s,V1s,Vp 

# generate the select mask
vperm Vs,Vs,Vs,Vp # right rotate the data
vsel Vlo,Vs,Vlo,Vmask # insert LSQ component
vsel Vhi,Vhi,Vs,Vmask # insert MSQ component
stvx Vlo,0,Rb # store LSQ
addi Rb,Rb,-16 # address of MSQ
stvx Vhi,0,Rb # store MSQ

Figure 65. Vector Register contents after Vector
OR

Vt 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0 15
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5.5 Vector Integer Operations

Many of the instructions that produce fixed-point inte-
ger results have the potential to compute a result value
that cannot be represented in the target format. When
this occurs, this unrepresentable intermediate value is
converted to a representable result value using one of
the following methods.

1. The high-order bits of the intermediate result that
do not fit in the target format are discarded.  This
method is used by instructions having names that
include the word "Modulo".

2. The intermediate result is converted to the nearest
value that is representable in the target format (i.e.,
to the minimum or maximum representable value,
as appropriate). This method is used by instruc-
tions having names that include the word "Satu-
rate". An intermediate result that is forced to the
minimum or maximum representable value as just
described is said to "saturate".

An instruction for which an intermediate result sat-
urates causes VSCRSAT to be set to 1; see Section
5.3.2.

3. If the intermediate result includes non-zero fraction
bits it is rounded up to the nearest fixed-point inte-
ger value. This method is used by the six Vector
Average Integer instructions and by the Vector
Multiply-High-Round-Add Signed Halfword Satu-
rate instruction. The latter instruction then uses
method 2, if necessary.

  

5.5.1 Integer Saturation
Saturation occurs whenever the result of a saturating
instruction does not fit in the result field. Unsigned satu-
ration clamps results to zero (0) on underflow and to
the maximum positive integer value (2n-1, e.g. 255 for
byte fields) on overflow. Signed saturation clamps
results to the smallest representable negative number
(-2n-1, e.g. -128 for byte fields) on underflow, and to the
largest representable positive number (2n-1-1, e.g.
+127 for byte fields) on overflow.

In most cases, the simple maximum/minimum satura-
tion performed by the vector instructions is adequate.
However, sometimes, e.g. in the creation of very high
quality images, more complex saturation functions must
be applied. To support this, the Vector facility provides a
mechanism for detecting that saturation has occurred.
The VSCR has a bit, the SAT bit, which is set to a one
(1) anytime any field in a saturating instruction satu-
rates. The SAT bit can only be cleared by explicitly writ-
ing zero to it. Thus SAT accumulates a summary result
of any integer overflow or underflow that occurs on a
saturating instruction.

Because VSCRSAT is sticky, it can be used to
detect whether any instruction in a sequence of
“Saturate”-type instructions produced an inexact
result due to saturation. For example, the contents
of the VSCR can be copied to a VR (mfvscr), bits
other than the SAT bit can be cleared in the VR
(vand with a constant), the result can be compared
to zero setting CR6 (vcmpequb.), and a branch
can be taken according to whether VSCRSAT was
set to 1 (Branch Conditional that tests CR field 6).

Testing VSCRSAT after each “Saturate”-type
instruction would degrade performance consider-
ably.  Alternative techniques include the following:

� Retain sufficient information at "checkpoints"
that the sequence of computations performed
between one checkpoint and the next can be
redone (more slowly) in a manner that detects
exactly when saturation occurs. Test VSCRSAT
only at checkpoints, or when redoing a
sequence of computations that saturated.

� Perform intermediate computations using an
element length sufficient to prevent saturation,
and then use a Vector Pack Integer Saturate
instruction to pack the final result to the
desired length. (Vector Pack Integer Saturate
causes results to saturate if necessary, and
sets VSCRSAT to 1 if any result saturates.)

Programming Note
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Borderline cases that generate results equal to satura-
tion values, for example unsigned 0+0=0 and unsigned
byte 1+254=255, are not considered saturation condi-
tions and do not cause SAT to be set.

The SAT bit can be set by the following types of instruc-
tions:

� Move To VSCR
� Vector Add Integer with Saturation
� Vector Subtract Integer with Saturation
� Vector Multiply-Add Integer with Saturation
� Vector Multiply-Sum with Saturation
� Vector Sum-Across with Saturation
� Vector Pack with Saturation
� Vector Convert to Fixed-point with Saturation

Note that only instructions that explicitly call for “satura-
tion” can set SAT. “Modulo” integer instructions and
floating-point arithmetic instructions never set SAT.

  

5.6 Vector Floating-Point Opera-
tions

5.6.1 Floating-Point Overview
Unless VSCRNJ=1 (see Section 5.3.2), the float-
ing-point model provided by the Vector Processor con-
forms to The Java Language Specification (hereafter
referred to as “Java”), which is a subset of the default
environment specified by the IEEE standard (i.e., by
ANSI/IEEE Standard 754-1985, “IEEE Standard for
Binary Floating-Point Arithmetic”). For aspects of float-
ing-point behavior that are not defined by Java but are
defined by the IEEE standard, vector floating-point con-
forms to the IEEE standard. For aspects of float-
ing-point behavior that are defined neither by Java nor
by the IEEE standard but are defined by the “C9X
Floating-Point Proposal” (hereafter referred to as
“C9X”), vector floating-point conforms to C9X.

The single-precision floating-point data format, value
representations, and computational models defined in
Chapter 4. “Floating-Point Processor [Category: Float-
ing-Point]” on page 93 apply to vector floating-point
except as follows.

� In general, no status bits are set to reflect the
results of floating-point operations. The only
exception is that VSCRSAT may be set by the Vec-
tor Convert To Fixed-Point Word instructions.

� With the exception of the two Vector Convert To
Fixed-Point Word instructions and three of the four
Vector Round to Floating-Point Integer instruc-
tions, all vector floating-point instructions that
round use the rounding mode Round to Nearest.

� Floating-point exceptions (see Section 5.6.2) can-
not cause the system error handler to be invoked.

  

5.6.2 Floating-Point Exceptions
The following floating-point exceptions may occur dur-
ing execution of vector floating-point instructions.

� NaN Operand Exception
� Invalid Operation Exception
� Zero Divide Exception
� Log of Zero Exception
� Overflow Exception
� Underflow Exception

The SAT state can be tested and used to alter pro-
gram flow by moving the VSCR to a vector register
(with mfvscr), then masking out bits 0:126 (to clear
undefined and reserved bits) and performing a vec-
tor compare equal-to unsigned byte w/record
(vcmpequb.) with zero to get a testable value into
the condition register for consumption by a subse-
quent branch.

Since mfvscr will be slow compared to other Vec-
tor instructions, reading and testing SAT after each
instruction would be prohibitively expensive. There-
fore, software is advised to employ strategies that
minimize checking SAT. For example: checking
SAT periodically and backtracking to the last
checkpoint to identify exactly which field in which
instruction saturated; or, working in an element size
sufficient to prevent any overflow or underflow dur-
ing intermediate calculations, then packing down to
the desired element size as the final operation (the
vector pack instruction saturates the results and
updates SAT when a loss of significance is
detected).

Programming Note

If a function is required that is specified by the IEEE
standard, is not supported by the Vector Processor,
and cannot be emulated satisfactorily using the
functions that are supported by the Vector Proces-
sor, the functions provided by the Floating-Point
Processor should be used; see Chapter 4.

Programming Note
Power ISA™ -- Book I140



   Version 2.04
If an exception occurs, a result is placed into the corre-
sponding target element as described in the following
subsections. This result is the default result specified by
Java, the IEEE standard, or C9X, as applicable.

Recall that denormalized source values are treated as
if they were zero when VSCRNJ=1.  This has the follow-
ing consequences regarding exceptions.

� Exceptions that can be caused by a zero source
value can be caused by a denormalized source
value when VSCRNJ=1.

� Exceptions that can be caused by a nonzero
source value cannot be caused by a denormalized
source value when VSCRNJ=1.

5.6.2.1 NaN Operand Exception
A NaN Operand Exception occurs when a source value
for any of the following instructions is a NaN.

� A vector instruction that would normally produce
floating-point results

� Either of the two Vector Convert To Fixed-Point
Word instructions

� Any of the four Vector Floating-Point Compare
instructions

The following actions are taken:

If the vector instruction would normally produce float-
ing-point results, the corresponding result is a source
NaN selected as follows. In all cases, if the selected
source NaN is a Signaling NaN it is converted to the
corresponding Quiet NaN (by setting the high-order bit
of the fraction field to 1) before being placed into the
target element.

if the element in VRA is a NaN
   then the result is that NaN
   else if the element in VRB is a NaN

then the result is that NaN
else if the element in VRC is a NaN

then the result is that NaN
else if Invalid Operation exception
   (Section 5.6.2.2)
then the result is the QNaN 0x7FC0_0000

If the instruction is either of the two Vector Convert To
Fixed-Point Word instructions, the corresponding result
is 0x0000_0000. VSCRSAT is not affected.

If the instruction is Vector Compare Bounds Float-
ing-Point, the corresponding result is 0xC000_0000.

If the instruction is one of the other Vector Float-
ing-Point Compare instructions, the corresponding
result is 0x0000_0000.

5.6.2.2 Invalid Operation Exception
An Invalid Operation Exception occurs when a source
value or set of source values is invalid for the specified
operation.  The invalid operations are:

� Magnitude subtraction of infinities
� Multiplication of infinity by zero
� Reciprocal square root estimate of a negative,

nonzero number or -infinity.
� Log base 2 estimate of a negative, nonzero num-

ber or -infinity.

The corresponding result is the QNaN 0x7FC0_0000.

5.6.2.3 Zero Divide Exception
A Zero Divide Exception occurs when a Vector Recipro-
cal Estimate Floating-Point or Vector Reciprocal
Square Root Estimate Floating-Point instruction is exe-
cuted with a source value of zero.

The corresponding result is an infinity, where the sign is
the sign of the source value.

5.6.2.4 Log of Zero Exception
A Log of Zero Exception occurs when a Vector Log
Base 2 Estimate Floating-Point instruction is executed
with a source value of zero.

The corresponding result is -Infinity.

5.6.2.5 Overflow Exception
An Overflow Exception occurs under either of the fol-
lowing conditions.

� For a vector instruction that would normally pro-
duce floating-point results, the magnitude of what
would have been the result if the exponent range
were unbounded exceeds that of the largest finite
floating-point number for the target floating-point
format.

� For either of the two Vector Convert To Fixed-Point
Word instructions, either a source value is an infin-
ity or the product of a source value and 2UIM is a
number too large in magnitude to be represented
in the target fixed-point format.

The following actions are taken:

1. If the vector instruction would normally produce
floating-point results, the corresponding result is
an infinity, where the sign is the sign of the inter-
mediate result.

2. If the instruction is Vector Convert To Unsigned
Fixed-Point Word Saturate, the corresponding
result is 0xFFFF_FFFF if the source value is a
positive number or +infinity, and is 0x0000_0000 if
the source value is a negative number or -infinity.
VSCRSAT is set to 1.
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3. If the instruction is Vector Convert To Signed
Fixed-Point Word Saturate, the corresponding
result is 0x7FFF_FFFF if the source value is a pos-
itive number or +infinity., and is 0x8000_0000 if the
source value is a negative number or -infinity.
VSCRSAT is set to 1.

5.6.2.6 Underflow Exception
An Underflow Exception can occur only for vector
instructions that would normally produce floating-point
results. It is detected before rounding. It occurs when a
nonzero intermediate result computed as though both
the precision and the exponent range were unbounded
is less in magnitude than the smallest normalized float-
ing-point number for the target floating-point format.

The following actions are taken:

1. If VSCRNJ=0, the corresponding result is the value
produced by denormalizing and rounding the inter-
mediate result.

2. If VSCRNJ=1, the corresponding result is a zero,
where the sign is the sign of the intermediate
result.

5.7 Vector Storage Access 
Instructions
The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.10.3, “Effective Address Calcu-
lation” on page 23. The low-order bits of the EA that
would correspond to an unaligned storage operand are
ignored.

The Load Vector Element Indexed and Store Vector
Element Indexed instructions transfer a byte, halfword,
or word element between storage and a Vector Regis-
ter. The Load Vector Indexed and Store Vector Indexed
instructions transfer an aligned quadword between
storage and a Vector Register.

5.7.1 Storage Access Exceptions
Storage accesses will cause the system data storage
error handler to be invoked if the program is not allowed
to modify the target storage (Store only), or if the pro-
gram attempts to access storage that is unavailable.
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5.7.2 Vector Load Instructions
The aligned byte, halfword, word, or quadword in stor-
age addressed by EA is loaded into register VRT. 

 

Load Vector Element Byte Indexed X-form

lvebx VRT,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA  � b + (RB)
eb  � EA60:63
 
VRT � undefined
if Big-Endian byte ordering then 
   VRT8×eb:8×eb+7 � MEM(EA,1)
else
   VRT120-(8×eb):127-(8×eb) � MEM(EA,1)

Let the effective address (EA) be the sum (RA|0)+(RB).

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access, the contents of the byte in storage at address
EA are placed into byte eb of register VRT. The remain-
ing bytes in register VRT are set to undefined values.

If Category: Vector.Little-Endian is supported, then if
Little-Endian byte ordering is used for the storage
access, the contents of the byte in storage at address
EA are placed into byte 15-eb of register VRT. The
remaining bytes in register VRT are set to undefined
values.

Special Registers Altered:
None

Load Vector Element Halfword Indexed
X-form

lvehx VRT,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA  � (b + (RB)) & 0xFFFF_FFFF_FFFF_FFFE
eb � EA60:63
 
VRT � undefined
if Big-Endian byte ordering then 
   VRT8×eb:8×eb+15 � MEM(EA,2)
else
   VRT112-(8×eb):127-(8×eb) � MEM(EA,2)

Let the effective address (EA) be the result of ANDing
0xFFFF_FFFF_FFFF_FFFE with the sum
(RA|0)+(RB).

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access, 

- the contents of the byte in storage at address
EA are placed into byte eb of register VRT,

- the contents of the byte in storage at address
EA+1 are placed into byte eb+1 of register
VRT,  and

- the remaining bytes in register VRT are set to
undefined values.

If Category: Vector.Little-Endian is supported, then if
Little-Endian byte ordering is used for the storage
access, 

- the contents of the byte in storage at address
EA are placed into byte 15-eb of register VRT,

- the contents of the byte in storage at address
EA+1 are placed into byte 14-eb of register
VRT,  and

- the remaining bytes in register VRT are set to
undefined values.

Special Registers Altered:
None

The Load Vector Element instructions load the
specified element into the same location in the tar-
get register as  the location into which it would be
loaded using the Load Vector instruction.

Programming Note

31 VRT RA RB 7 /
0 6 11 16 21 31 31 VRT RA RB 39 /

0 6 11 16 21 31
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Load Vector Element Word Indexed
X-form

lvewx VRT,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA  � (b + (RB)) & 0xFFFF_FFFF_FFFF_FFFC
 
eb  � EA60:63
VRT � undefined
if Big-Endian byte ordering then 
   VRT8×eb:8×eb+31 � MEM(EA,4)
else
   VRT96-(8×eb):127-(8×eb) � MEM(EA,4)

Let the effective address (EA) be the result of ANDing
0xFFFF_FFFF_FFFF_FFFC with the sum
(RA|0)+(RB).

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access, 

- the contents of the byte in storage at address
EA are placed into byte eb of register VRT, 

- the contents of the byte in storage at address
EA+1 are placed into byte eb+1 of register
VRT, 

- the contents of the byte in storage at address
EA+2 are placed into byte eb+2 of register
VRT,

- the contents of the byte in storage at address
EA+3 are placed into byte eb+3 of register
VRT,  and

- the remaining bytes in register VRT are set to
undefined values.

If Category: Vector.Little-Endian is supported, then if
Little-Endian byte ordering is used for the storage
access, 

- the contents of the byte in storage at address
EA are placed into byte 15-eb of register VRT,

- the contents of the byte in storage at address
EA+1 are placed into byte 14-eb of register
VRT,

- the contents of the byte in storage at address
EA+2 are placed into byte 13-eb of register
VRT,

- the contents of the byte in storage at address
EA+3 are placed into byte 12-eb of register
VRT,  and

- the remaining bytes in register VRT are set to
undefined values.

Special Registers Altered:
None

Load Vector Indexed X-form

lvx VRT,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA  � b + (RB)
VRT � MEM(EA & 0xFFFF_FFFF_FFFF_FFF0, 16)

Let the effective address (EA) be the sum (RA|0)+(RB).
The quadword in storage addressed by the result of EA
ANDed with 0xFFFF_FFFF_FFFF_FFF0 is loaded into
VRT. 

Special Registers Altered:
None

Load Vector Indexed LRU X-form

lvxl VRT,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA  � b + (RB)
VRT � MEM(EA & 0xFFFF_FFFF_FFFF_FFF0, 16)
mark_as_not_likely_to_be_needed_again_anytime_soon
( EA )

Let the effective address (EA) be the sum (RA|0)+(RB).
The quadword in storage addressed by the result of EA
ANDed with 0xFFFF_FFFF_FFFF_FFF0 is loaded into
VRT. 

lvxl provides a hint that the quadword in storage
addressed by EA will probably not be needed again by
the program in the near future.

Special Registers Altered:
None

31 VRT RA RB 71 /
0 6 11 16 21 31

31 VRT RA RB 103 /
0 6 11 16 21 31

31 VRT RA RB 359 /
0 6 11 16 21 31
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On some implementations, the hint provided by the
lvxl instruction and the corresponding hint provided
by the stvxl, lvepxl, and stvepxl instructions are
applied to the entire cache block containing the
specified quadword. On such implementations, the
effect of the hint may be to cause that cache block
to be considered a likely candidate for replacement
when space is needed in the cache for a new block.
Thus, on such implementations, the hint should be
used with caution if the cache block containing the
quadword also contains data that may be needed
by the program in the near future. Also, the hint
may be used before the last reference in a
sequence of references to the quadword if the sub-
sequent references are likely to occur sufficiently
soon that the cache block containing the quadword
is not likely to be displaced from the cache before
the last reference.

Programming Note
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5.7.3 Vector Store Instructions
Some portion or all of the contents of VRS are stored
into the aligned byte, halfword, word, or quadword in
storage addressed by EA. 

 

Store Vector Element Byte Indexed
X-form

stvebx VRS,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA  � b + (RB)
eb  � EA60:63
if Big-Endian byte ordering then 
   MEM(EA,1) � VRS8×eb:8×eb+7
else
   MEM(EA,1) � VRS120-(8×eb):127-(8×eb)

Let the effective address (EA) be the sum (RA|0)+(RB).

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access, the contents of byte eb of register VRS are
placed in the byte in storage at address EA.

If Category: Vector.Little-Endian is supported, then if
Little-Endian byte ordering is used for the storage
access, the contents of byte 15-eb of register VRS are
placed in the byte in storage at address EA.

Special Registers Altered:
None

 

Store Vector Element Halfword Indexed
X-form

stvehx VRS,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA  � (b + (RB)) & 0xFFFF_FFFF_FFFF_FFFE
eb  � EA60:63
if Big-Endian byte ordering then 
   MEM(EA,2) � VRS8×eb:8×eb+15
else
   MEM(EA,2) � VRS112-(8×eb):127-(8×eb)

Let the effective address (EA) be the result of ANDing
0xFFFF_FFFF_FFFF_FFFE with the sum
(RA|0)+(RB). 

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access, 

- the contents of byte eb of register VRS are
placed in the byte in storage at address EA,
and

- the contents of byte eb+1 of register VRS are
placed in the byte in storage at address EA+1.

If Category: Vector.Little-Endian is supported, then if
Little-Endian byte ordering is used for the storage
access, 

- the contents of byte 15-eb of register VRS are
placed in the byte in storage at address EA,
and

- the contents of byte 14-eb of register VRS are
placed in the byte in storage at address EA+1.

Special Registers Altered:
None

 

 

The Store Vector Element instructions store the
specified element into the same storage location as
the location into which it would be stored using the
Store Vector instruction.

Programming Note

31 VRS RA RB 135 /
0 6 11 16 21 31

Unless bits 60:63 of the address are known to
match the byte offset of the subject byte element in
register VRS, software should use Vector Splat to
splat the subject byte element before performing
the store.

Programming Note

31 VRS RA RB 167 /
0 6 11 16 21 31

Unless bits 60:62 of the address are known to
match the halfword offset of the subject halfword
element in register VRS software should use Vec-
tor Splat to splat the subject halfword element
before performing the store.

Programming Note
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Store Vector Element Word Indexed
X-form

stvewx VRS,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA  � (b + (RB)) & 0xFFFF_FFFF_FFFF_FFFC
eb  � EA60:63
if Big-Endian byte ordering then 
   MEM(EA,4) � VRS8×eb:8×eb+31
else
   MEM(EA,4) � VRS96-(8×eb):127-(8×eb)

Let the effective address (EA) be the result of ANDing
0xFFFF_FFFF_FFFF_FFFC with the sum
(RA|0)+(RB). 

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access, 

- the contents of byte eb of register VRS are
placed in the byte in storage at address EA,

- the contents of byte eb+1 of register VRS are
placed in the byte in storage at address EA+1,

- the contents of byte eb+2 of register VRS are
placed in the byte in storage at address EA+2,
and

- the contents of byte eb+3 of register VRS are
placed in the byte in storage at address EA+3.

If Category: Vector.Little-Endian is supported, then if
Little-Endian byte ordering is used for the storage
access,

- the contents of byte 15-eb of register VRS are
placed in the byte in storage at address EA,

- the contents of byte 14-eb of register VRS are
placed in the byte in storage at address EA+1,

- the contents of byte 13-eb of register VRS are
placed in the byte in storage at address EA+2,
and

- the contents of byte 12-eb of register VRS are
placed in the byte in storage at address EA+3.

Special Registers Altered:
None

 

Store Vector Indexed X-form

stvx VRS,RA,RB (L=0)

if RA = 0 then b � 0
else           b � (RA)
EA  � b + (RB)
MEM(EA & 0xFFFF_FFFF_FFFF_FFF0, 16) � (VRS)

Let the effective address (EA) be the sum (RA|0)+(RB).
The contents of VRS are stored into the quadword in
storage addressed by the result of EA ANDed with
0xFFFF_FFFF_FFFF_FFF0. 

Store Vector Indexed LRU X-form

stvxl VRS,RA,RB (L=1)

if RA = 0 then b � 0
else           b � (RA)
EA  � b + (RB)
MEM(EA & 0xFFFF_FFFF_FFFF_FFF0, 16) � (VRS)
mark_as_not_likely_to_be_needed_again_anytime_soon
(EA)

Let the effective address (EA) be the sum (RA|0)+(RB).
The contents of VRS are stored into the quadword in
storage addressed by the result of EA ANDed with
0xFFFF_FFFF_FFFF_FFF0. 

stvxl provides a hint that the quadword in storage
addressed by EA will probably not be needed again by
the program in the near future.

Special Registers Altered:
None

31 VRS RA RB 199 /
0 6 11 16 21 31

Unless bits 60:61 of the address are known to
match the word offset of the subject word element
in register VRS, software should use Vector Splat
to splat the subject word element before performing
the store.

Programming Note

31 VRS RA RB 231 /
0 6 11 16 21 31

31 VRS RA RB 487 /
0 6 11 16 21 31

See the Programming Note for the lvxl instruction
on page 144.

Programming Note
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5.7.4 Vector Alignment Support 
Instructions
  

  

Load Vector for Shift Left Indexed X-form

lvsl VRT,RA,RB

if RA = 0 then b � 0
else           b � (RA)
sh  � (b + (RB))60:63
switch(sh)
 case(0x0): VRT�0x000102030405060708090A0B0C0D0E0F
 case(0x1): VRT�0x0102030405060708090A0B0C0D0E0F10
 case(0x2): VRT�0x02030405060708090A0B0C0D0E0F1011
 case(0x3): VRT�0x030405060708090A0B0C0D0E0F101112
 case(0x4): VRT�0x0405060708090A0B0C0D0E0F10111213
 case(0x5): VRT�0x05060708090A0B0C0D0E0F1011121314
 case(0x6): VRT�0x060708090A0B0C0D0E0F101112131415
 case(0x7): VRT�0x0708090A0B0C0D0E0F10111213141516
 case(0x8): VRT�0x08090A0B0C0D0E0F1011121314151617
 case(0x9): VRT�0x090A0B0C0D0E0F101112131415161718
 case(0xA): VRT�0x0A0B0C0D0E0F10111213141516171819
 case(0xB): VRT�0x0B0C0D0E0F101112131415161718191A
 case(0xC): VRT�0x0C0D0E0F101112131415161718191A1B
 case(0xD): VRT�0x0D0E0F101112131415161718191A1B1C
 case(0xE): VRT�0x0E0F101112131415161718191A1B1C1D
 case(0xF): VRT�0x0F101112131415161718191A1B1C1D1E

Let sh be bits 60:63 of the sum (RA|0)+(RB). Let X be
the 32 byte value 0x00 || 0x01 || 0x02 || … || 0x1E ||
0x1F.

Bytes sh to sh+15 of X are placed into VRT.

Special Registers Altered:
None

Load Vector for Shift Right Indexed
X-form

lvsr VRT,RA,RB

if RA = 0 then b � 0
else           b � (RA)
sh  � (b + (RB))60:63
switch(sh)
 case(0x0): VRT�0x101112131415161718191A1B1C1D1E1F
 case(0x1): VRT�0x0F101112131415161718191A1B1C1D1E
 case(0x2): VRT�0x0E0F101112131415161718191A1B1C1D
 case(0x3): VRT�0x0D0E0F101112131415161718191A1B1C
 case(0x4): VRT�0x0C0D0E0F101112131415161718191A1B
 case(0x5): VRT�0x0B0C0D0E0F101112131415161718191A
 case(0x6): VRT�0x0A0B0C0D0E0F10111213141516171819
 case(0x7): VRT�0x090A0B0C0D0E0F101112131415161718
 case(0x8): VRT�0x08090A0B0C0D0E0F1011121314151617
 case(0x9): VRT�0x0708090A0B0C0D0E0F10111213141516
 case(0xA): VRT�0x060708090A0B0C0D0E0F101112131415
 case(0xB): VRT�0x05060708090A0B0C0D0E0F1011121314
 case(0xC): VRT�0x0405060708090A0B0C0D0E0F10111213
 case(0xD): VRT�0x030405060708090A0B0C0D0E0F101112
 case(0xE): VRT�0x02030405060708090A0B0C0D0E0F1011
 case(0xF): VRT�0x0102030405060708090A0B0C0D0E0F10

Let sh be bits 60:63 of the sum (RA|0)+(RB). Let X be
the 32-byte value 0x00 || 0x01 || 0x02 || … || 0x1E ||
0x1F.

Bytes 16-sh to 31-sh of X are placed into VRT.

Special Registers Altered:
None

The lvsl and lvsr instructions can be used to cre-
ate the permute control vector to be used by a sub-
sequent vperm instruction (see page 157). Let X
and Y be the contents of register VRA and VRB
specified by the vperm. The control vector created
by lvsl causes the vperm to select the high-order
16 bytes of the result of shifting the 32-byte value X
|| Y left by sh bytes. The control vector created by
lvsr causes the vperm to select the low-order 16
bytes of the result of shifting X || Y right by sh
bytes.

Programming Note

Examples of uses of lvsl, lvsr, and vperm to load
and store unaligned data are given in Section 5.4.1.

These instructions can also be used to rotate or
shift the contents of a Vector Register left (lvsl) or
right (lvsr) by sh bytes. For rotating, the Vector
Register to be rotated should be specified as both
register VRA and VRB for vperm. For shifting left,
VRB for vperm should be a register containing all
zeros and VRA should contain the value to be
shifted, and vice versa for shifting right.

Programming Note

31 VRT RA RB 6 /
0 6 11 16 21 31 31 VRT RA RB 38 /

0 6 11 16 21 31
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5.8 Vector Permute and Formatting Instructions

5.8.1 Vector Pack and Unpack Instructions

Vector Pack Pixel VX-form

vpkpx VRT,VRA,VRB

do i�0 to 63 by 16
VRTi         � (VRA)i×2+7
VRTi+1:i+5   � (VRA)i×2+8:i×2+12
VRTi+6:i+10  � (VRA)i×2+16:i×2+20
VRTi+11:i+15 � (VRA)i×2+24:i×2+28
VRTi+64      � (VRB)i×2+7
VRTi+65:i+69 � (VRB)i×2+8:i×2+12
VRTi+70:i+74 � (VRB)i×2+16:i×2+20
VRTi+75:i+79 � (VRB)i×2+24:i×2+28

Let the source vector be the concatenation of the con-
tents of VRA followed by the contents of VRB. 

For each vector element i from 0 to 7, do the following.

Word element i in the source vector is packed to
produce a 16-bit value as described below.

- bit 7 of the first byte (bit 7 of the word)
- bits 0:4 of the second byte (bits 8:12 of

the word)
- bits 0:4 of the third byte (bits 16:20 of the

word)
- bits 0:4 of the fourth byte (bits 24:28 of

the word)

The result is placed into halfword element i of VRT.

Special Registers Altered:
None

  

4 VRT VRA VRB 782
0 6 11 16 21                                                31

Each source word can be considered to be a 32-bit
"pixel", consisting of four 8-bit "channels". Each tar-
get halfword can be considered to be a 16-bit pixel,
consisting of one 1-bit channel and three 5-bit
channels.  A channel can be used to specify the
intensity of a particular color, such as red, green, or
blue, or to provide other information needed by the
application.

Programming Note
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Vector Pack Signed Halfword Signed 
Saturate VX-form

vpkshss VRT,VRA,VRB

do i=0 to 63 by 8
   VRTi:i+7 � 

Clamp(EXTS((VRA)i×2:i×2+15 ), -128, 127)24:31
   VRTi+64:i+71� 

Clamp(EXTS((VRB)i×2:i×2+15 ), -128, 127)24:31

Let the source vector be the concatenation of the con-
tents of VRA followed by the contents of VRB.

For each vector element i from 0 to 15, do the following.

Signed-integer halfword element i in the source
vector is converted to an signed-integer byte.

- If the value of the element is greater than
127 the result saturates to 127

- If the value of the element is less than
-128 the result saturates to -128. 

The low-order 8 bits of the result is placed into byte
element i of VRT.

Special Registers Altered:
SAT

Vector Pack Signed Halfword Unsigned 
Saturate VX-form

vpkshus VRT,VRA,VRB

do i=0 to 63 by 8
VRTi:i+7 
�� Clamp(EXTS((VRA)i×2:i×2+15), 0, 255)24:31
VRTi+64:i+71
�� Clamp(EXTS((VRB)i×2:i×2+15), 0, 255)24:31

Let the source vector be the concatenation of the con-
tents of VRA followed by the contents of VRB.

For each vector element i from 0 to 15, do the following.

Signed-integer halfword element i in the source
vector is converted to an unsigned-integer byte.

- If the value of the element is greater than
255 the result saturates to 255

- If the value of the element is less than 0
the result saturates to 0. 

The low-order 8 bits of the result is placed into byte
element i of VRT.

Special Registers Altered:
SAT

Vector Pack Signed Word Signed Saturate
VX-form

vpkswss VRT,VRA,VRB

do i=0 to 63 by 16
VRTi:i+15 
���Clamp(EXTS((VRA)i×2:i×2+31, -2

15, 215-1)16:31
VRTi+64:i+79
�� Clamp(EXTS((VRB)i×2:i×2+31, -2

15, 215-1)16:31

Let the source vector be the concatenation of the con-
tents of VRA followed by the contents of VRB.

For each vector element i from 0 to 7, do the following.

Signed-integer word element i in the source vector
is converted to an signed-integer halfword.

- If the value of the element is greater than
215-1 the result saturates to 215-1

- If the value of the element is less than
-215 the result saturates to -215. 

The low-order 16 bits of the result is placed into
halfword element i of VRT.

Special Registers Altered:
SAT

Vector Pack Signed Word Unsigned 
Saturate VX-form

vpkswus VRT,VRA,VRB

do i=0 to 63 by 16
VRTi:i+15 
�� Clamp(EXTS((VRA)i×2:i×2+31), 0, 2

16-1)16:31
VRTi+64:i+79
�� Clamp(EXTS((VRB)i×2:i×2+31), 0, 2

16-1 )16:31

Let the source vector be the concatenation of the con-
tents of VRA followed by the contents of VRB.

For each vector element i from 0 to 7, do the following.

Signed-integer word element i in the source vector
is converted to an unsigned-integer halfword.

- If the value of the element is greater than
216-1 the result saturates to 216-1

- If the value of the element is less than 0
the result saturates to 0. 

The low-order 16 bits of the result is placed into
halfword element i of VRT.

Special Registers Altered:
SAT

4 VRT VRA VRB 398
0 6 11 16 21                                                31

4 VRT VRA VRB 270
0 6 11 16 21                                                31

4 VRT VRA VRB 462
0 6 11 16 21                                                31

4 VRT VRA VRB 334
0 6 11 16 21                                                31
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Vector Pack Unsigned Halfword Unsigned 
Modulo VX-form

vpkuhum VRT,VRA,VRB

do i=0 to 63 by 8
VRTi:i+7     � (VRA)i×2+8:i×2+15
VRTi+64:i+71 � (VRB)i×2+8:i×2+15

Let the source vector be the concatenation of the con-
tents of VRA followed by the contents of VRB.

For each vector element i from 0 to 15, do the following.

The contents of bits 8:15 of halfword element i in
the source vector is placed into byte element i of
VRT.

Special Registers Altered:
None

Vector Pack Unsigned Halfword Unsigned 
Saturate VX-form

vpkuhus VRT,VRA,VRB

do i=0 to 63 by 8
VRTi:i+7    
�� Clamp( EXTZ((VRA)i×2:i×2+15), 0, 255 )24:31
VRTi+64:i+71
�� Clamp( EXTZ((VRB)i×2:i×2+15), 0, 255 )24:31

Let the source vector be the concatenation of the con-
tents of VRA followed by the contents of VRB.

For each vector element i from 0 to 15, do the following.

Unsigned-integer halfword element i in the source
vector is converted to an unsigned-integer byte.

- If the value of the element is greater than
255 the result saturates to 255.

The low-order 8 bits of the result is placed into byte ele-
ment i of VRT.

Special Registers Altered:
SAT

Vector Pack Unsigned Word Unsigned 
Modulo VX-form

vpkuwum VRT,VRA,VRB

do i=0 to 63 by 16
   VRTi:i+15    � (VRA)i×2+16:i×2+31
   VRTi+64:i+79 � (VRB)i×2+16:i×2+31

Let the source vector be the concatenation of the con-
tents of VRA followed by the contents of VRB.

For each vector element i from 0 to 7, do the following.

The contents of bits 16:31 of word element i in the
source vector is placed into halfword element i of
VRT.

Special Registers Altered:
None

Vector Pack Unsigned Word Unsigned 
Saturate VX-form

vpkuwus VRT,VRA,VRB

do i=0 to 63 by 16
VRTi:i+15    
�� Clamp( EXTZ((VRA)i×2:i×2+31 ), 0, 2

16-1 )16:31
VRTi+64:i+79
�� Clamp( EXTZ((VRB)i×2:i×2+31 ), 0, 2

16-1 )16:31

Let the source vector be the concatenation of the con-
tents of VRA followed by the contents of VRB.

For each vector element i from 0 to 7, do the following.

Unsigned-integer word element i in the source vec-
tor is converted to an unsigned-integer halfword.

- If the value of the element is greater than
216-1 the result saturates to 216-1.

The low-order 16 bits of the result is placed into
halfword element i of VRT.

Special Registers Altered:
SAT

4 VRT VRA VRB 14
0 6 11 16 21                                                31

4 VRT VRA VRB 142
0 6 11 16 21                                                31

4 VRT VRA VRB 78
0 6 11 16 21                                                31

4 VRT VRA VRB 206
0 6 11 16 21                                                31
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Vector Unpack High Pixel VX-form

vupkhpx VRT,VRB

do i=0 to 63 by 16
   VRTi×2:i×2+7     � EXTS((VRB)i        )
   VRTi×2+8:i×2+15  � EXTZ((VRB)i+1:i+5  )
   VRTi×2+16:i×2+23 � EXTZ((VRB)i+6:i+10 )
   VRTi×2+24:i×2+31 � EXTZ((VRB)i+11:i+15)

For each vector element i from 0 to 3, do the following.

Halfword element i in VRB is unpacked as follows.
- sign-extend bit 0 of the halfword to 8 bits
- zero-extend bits 1:5 of the halfword to 8

bits
- zero-extend bits 6:10 of the halfword to 8

bits
- zero-extend bits 11:15 of the halfword to

8 bits

The result is placed in word element i of VRT.

Special Registers Altered:
None

  

  

Vector Unpack High Signed Byte VX-form

vupkhsb VRT,VRB

do i=0 to 63 by 8
   VRTi×2:i×2+15 � EXTS((VRB)i:i+7)

For each vector element i from 0 to 7, do the following.

Signed-integer byte element i in VRB is
sign-extended to produce a signed-integer half-
word and placed into halfword element i in VRT.

Special Registers Altered:
None

Vector Unpack High Signed Halfword
VX-form

vupkhsh VRT,VRB

do i=0 to 63 by 16
   VRTi×2:i×2+31 � EXTS((VRB)i:i+15)

For each vector element i from 0 to 3, do the following.

Signed-integer halfword element i in VRB is
sign-extended to produce a signed-integer word
and placed into word element i in VRT.

Special Registers Altered:
None

4 VRT /// VRB 846
0 6 11 16 21                                                31

The source and target elements can be considered
to be 16-bit and 32-bit “pixels” respectively, having
the formats described in the Programming Note for
the Vector Pack Pixel instruction on page 149.

Notice that the unpacking done by the Vector
Unpack Pixel instructions does not reverse the
packing done by the Vector Pack Pixel instruction.
Specifically, if a 16-bit pixel is unpacked to a 32-bit
pixel which is then packed to a 16-bit pixel, the
resulting 16-bit pixel will not, in general, be equal to
the original 16-bit pixel (because, for each channel
except the first, Vector Unpack Pixel inserts
high-order bits while Vector Pack Pixel discards
low-order bits).

Programming Note

Programming Note

4 VRT /// VRB 526
0 6 11 16 21                                                31

4 VRT /// VRB 590
0 6 11 16 21                                                31
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Vector Unpack Low Pixel VX-form

vupklpx VRT,VRB

do i=0 to 63 by 16
   VRTi×2:i×2+7     � EXTS((VRB)i+64     )
   VRTi×2+8:i×2+15  � EXTZ((VRB)i+65:i+69)
   VRTi×2+16:i×2+23 � EXTZ((VRB)i+70:i+74)
   VRTi×2+24:i×2+31 � EXTZ((VRB)i+75:i+79)

For each vector element i from 0 to 3, do the following.

Halfword element i+4 in VRB is unpacked as fol-
lows.
- sign-extend bit 0 of the halfword to 8 bits
- zero-extend bits 1:5 of the halfword to 8 bits
- zero-extend bits 6:10 of the halfword to 8 bits
- zero-extend bits 11:15 of the halfword to 8 bits

The result is placed in word element i of VRT.

Special Registers Altered:
None

Vector Unpack Low Signed Byte VX-form

vupklsb VRT,VRB

do i=0 to 63 by 8
   VRTi×2:i×2+15 � EXTS((VRB)i+64:i+71)

For each vector element i from 0 to 7, do the following.

Signed-integer byte element i+8 in VRB is
sign-extended to produce a signed-integer half-
word and placed into halfword element i in VRT.

Special Registers Altered:
None

Vector Unpack Low Signed Halfword
VX-form

vupklsh VRT,VRB

do i=0 to 63 by 16
   VRTi×2:i×2+31 � EXTS((VRB)i+64:i+79)

For each vector element i from 0 to 3, do the following.

Signed-integer halfword element i+4 in VRB is
sign-extended to produce a signed-integer word
and placed into word element i in VRT.

Special Registers Altered:
None

4 VRT /// VRB 974
0 6 11 16 21                                                31

4 VRT /// VRB 654
0 6 11 16 21                                                31

4 VRT /// VRB 718
0 6 11 16 21                                                31
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5.8.2 Vector Merge Instructions

Vector Merge High Byte VX-form

vmrghb VRT,VRA,VRB

do i=0 to 63 by 8
   VRTi×2:i×2+7    � (VRA)i:i+7
   VRTi×2+8:i×2+15 � (VRB)i:i+7

For each vector element i from 0 to 7, do the following.

Byte element i in VRA is placed into byte element
2×i in VRT.

Byte element i in VRB is placed into byte element
2×i+1 in VRT.

Special Registers Altered:
None

Vector Merge High Halfword VX-form

vmrghh VRT,VRA,VRB

do i=0 to 63 by 16
   VRTi×2:i×2+15    � (VRA)i:i+15
   VRTi×2+16:i×2+31 � (VRB)i:i+15

For each vector element i from 0 to 3, do the following.

Halfword element i in VRA is placed into halfword
element 2×i in VRT.

Halfword element i in VRB is placed into halfword
element 2×i+1 in VRT.

Special Registers Altered:
None

Vector Merge High Word VX-form

vmrghw VRT,VRA,VRB

do i=0 to 63 by 32
   VRTi×2:i×2+31    � (VRA)i:i+31
   VRTi×2+32:i×2+63 � (VRB)i:i+31

For each vector element i from 0 to 1, do the following.

Word element i in VRA is placed into word element
2×i in VRT.

Word element i in VRB is placed into word element
2×i+1 in VRT.

The word elements in the high-order half of VRA are
placed, in the same order, into the even-numbered
word elements of VRT. The word elements in the
high-order half of VRB are placed, in the same order,
into the odd-numbered word elements of VRT.

Special Registers Altered:
None

4 VRT VRA VRB 12
0 6 11 16 21                                                31

4 VRT VRA VRB 76
0 6 11 16 21                                                31

4 VRT VRA VRB 140
0 6 11 16 21                                                31
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Vector Merge Low Byte VX-form

vmrglb VRT,VRA,VRB

do i=0 to 63 by 8
VRTi×2:i×2+7    � (VRA)i+64:i+71
VRTi×2+8:i×2+15 � (VRB)i+64:i+71

For each vector element i from 0 to 7, do the following.

Byte element i+8 in VRA is placed into byte ele-
ment 2×i in VRT.

Byte element i+8 in VRB is placed into byte ele-
ment 2×i+1 in VRT.

Special Registers Altered:
None

Vector Merge Low Halfword VX-form

vmrglh VRT,VRA,VRB

do i=0 to 63 by 16
   VRTi×2:i×2+15    � (VRA)i+64:i+79
   VRTi×2+16:i×2+31 � (VRB)i+64:i+79

For each vector element i from 0 to 3, do the following.

Halfword element i+4 in VRA is placed into half-
word element 2×i in VRT.

Halfword element i+4 in VRB is placed into half-
word element 2×i+1 in VRT.

Special Registers Altered:
None

Vector Merge Low Word VX-form

vmrglw VRT,VRA,VRB

do i=0 to 63 by 32
VRTi×2:i×2+31    � (VRA)i+64:i+95
VRTi×2+32:i×2+63 � (VRB)i+64:i+95

For each vector element i from 0 to 1, do the following.

Word element i+2 in VRA is placed into word ele-
ment 2×i in VRT.

Word element i+2 in VRB is placed into word ele-
ment 2×i+1 in VRT.

Special Registers Altered:
None

4 VRT VRA VRB 268
0 6 11 16 21                                                31

4 VRT VRA VRB 332
0 6 11 16 21                                                31

4 VRT VRA VRB 396
0 6 11 16 21                                                31
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5.8.3 Vector Splat Instructions  

Vector Splat Byte VX-form

vspltb VRT,VRB,UIM

b � UIM || 0b000
do i=0 to 127 by 8
   VRTi:i+7 � (VRB)b:b+7

For each vector element i from 0 to 15, do the following.
The contents of byte element UIM in VRB are
placed into byte element i of VRT.

Special Registers Altered:
None

Vector Splat Halfword VX-form

vsplth VRT,VRB,UIM

b � UIM || 0b0000
do i=0 to 127 by 16
   VRTi:i+15 � (VRB)b:b+15

For each vector element i from 0 to 7, do the following.
The contents of halfword element UIM in VRB are
placed into halfword element i of VRT.

Special Registers Altered:
None

Vector Splat Word VX-form

vspltw VRT,VRB,UIM 

b � UIM || 0b00000
do i=0 to 127 by 32
   VRTi:i+31 � (VRB)b:b+31

For each vector element i from 0 to 3, do the following.
The contents of word element UIM in VRB are
placed into word element i of VRT.

Special Registers Altered:
None

Vector Splat Immediate Signed Byte
VX-form

vspltisb VRT,SIM

do i=0 to 127 by 8
   VRTi:i+7 � EXTS(SIM, 8)

For each vector element i from 0 to 15, do the following.
The value of the SIM field, sign-extended to 8 bits,
is placed into byte element i  of VRT.

Special Registers Altered:
None

Vector Splat Immediate Signed Halfword
VX-form

vspltish VRT,SIM

do i=0 to 127 by 16
   VRTi:i+15 � EXTS(SIM, 16)

For each vector element i from 0 to 7, do the following.
The value of the SIM field, sign-extended to 16
bits, is placed into halfword element i of VRT.

Special Registers Altered:
None

Vector Splat Immediate Signed Word
VX-form

vspltisw VRT,SIM

do i=0 to 127 by 32
   VRTi:i+31 � EXTS(SIM, 32)

For each vector element i from 0 to 3, do the following.
The value of the SIM field, sign-extended to 32
bits, is placed into word element i of VRT.

Special Registers Altered:
None

The Vector Splat instructions can be used in prepa-
ration for performing arithmetic for which one
source vector is to consist of elements that all have
the same value (e.g., multiplying all elements of a
Vector Register by a constant).

Programming Note

4 VRT / UIM VRB 524
0 6 11 12 16 21                                                31

4 VRT // UIM VRB 588
0 6 11 13 16 21                                                31

4 VRT /// UIM VRB 652
0 6 11 14 16 21                                                31

4 VRT SIM /// 780
0 6 11 16 21                                                31

4 VRT SIM /// 844
0 6 11 16 21                                                31

4 VRT SIM /// 908
0 6 11 16 21                                                31
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5.8.4 Vector Permute Instruction
The Vector Permute instruction allows any byte in two
source Vector Registers to be copied to any byte in the
target Vector Register. The bytes in a third source Vec-
tor Register specify from which byte in the first two
source Vector Registers the corresponding target byte
is to be copied. The contents of the third source Vector
Register are sometimes referred to as the “permute
control vector”.

Vector Permute VA-form

vperm VRT,VRA,VRB,VRC

temp0:255 � (VRA) || (VRB)
do i=0 to 127 by 8
   b � (VRC)i+3:i+7 || 0b000
   VRTi:i+7 � tempb:b+7

Let the source vector be the concatenation of the con-
tents of VRA followed by the contents of VRB. 

For each vector element i from 0 to 15, do the following.

The contents of the byte element in the source
vector specified by bits 3:7 of byte element i of
VRC are placed into byte element i of VRT.

Special Registers Altered:
None

  

5.8.5 Vector Select Instruction

Vector Select VA-form

vsel VRT,VRA,VRB,VRC

do i=0 to 127
   VRTi � ((VRC)i=0) ? (VRA)i : (VRB)i

For each bit in VRC that contains the value 0, the corre-
sponding bit in VRA is placed into the corresponding bit
of VRT. Otherwise, the corresponding bit in VRB is
placed into the corresponding bit of VRT.

Special Registers Altered:
None

4 VRT VRA VRB VRC 43
0 6 11 16 21 26                     31

See the Programming Notes with the Load Vector
for Shift Left and Load Vector for Shift Right instruc-
tions on page 148 for examples of uses of vperm.

Programming Note

4 VRT VRA VRB VRC 42
0 6 11 16 21 26                     31
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5.8.6 Vector Shift Instructions
The Vector Shift instructions rotate or shift the contents
of a Vector Register or a pair of Vector Registers left or
right by a specified number of bytes (vslo, vsro,
vsldoi) or bits (vsl, vsr). Depending on the instruction,
this “shift count” is specified either by the contents of a
Vector Register or by an immediate field in the instruc-
tion. In the former case, 7 bits of the shift count register
give the shift count in bits (0 ≤ count ≤ 127). Of these 7
bits, the high-order 4 bits give the number of complete
bytes by which to shift and are used by vslo and vsro;
the low-order 3 bits give the number of remaining bits
by which to shift and are used by vsl and vsr.

  

Vector Shift Left VX-form

vsl VRT,VRA,VRB

sh � (VRB)125:127
t � 1
do i=0 to 127 by 8
   t � t & ((VRB)i+5:i+7=sh)
if t=1 then VRT � (VRA) << sh
else        VRT � undefined

The contents of VRA are shifted left by the number of
bits specified in (VRB)125:127. 

- Bits shifted out of bit 0 are lost.  
- Zeros are supplied to the vacated bits on the

right. 

The result is place into VRT, except if, for any byte ele-
ment in register VRB, the low-order 3 bits are not equal
to the shift amount, then VRT is undefined.

Special Registers Altered:
None

Vector Shift Left Double by Octet 
Immediate VA-form

vsldoi VRT,VRA,VRB,SHB

VRT � ( (VRA) || (VRB) )8×SHB:8×SHB+127

Let the source vector be the concatenation of the con-
tents of VRA followed by the contents of VRB.  Bytes
SHB:SHB+15 of the source vector are placed into VRT.

Special Registers Altered:
None

Vector Shift Left by Octet VX-form

vslo VRT,VRA,VRB

shb � (VRB)121:124
VRT � (VRA) << ( shb || 0b000 )

The contents of VRA are shifted left by the number of
bytes specified in (VRB)121:124. 

- Bytes shifted out of byte 0 are lost. 
- Zeros are supplied to the vacated bytes on the

right.  

The result is placed into VRT.

Special Registers Altered:
None

A pair of these instructions, specifying the same
shift count register, can be used to shift the con-
tents of a Vector Register left or right by the number
of bits (0-127) specified in the shift count register.
The following example shifts the contents of regis-
ter Vx left by the number of bits specified in register
Vy and places the result into register Vz.

vslo     Vz,Vx,Vy
vsl      Vz,Vz,Vy

Programming Note

4 VRT VRA VRB 452
0 6 11 16 21                                                31 4 VRT VRA VRB / SHB 44

0 6 11 16 21 22 26                     31

4 VRT VRA VRB 1036
0 6 11 16 21                                                31
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Vector Shift Right VX-form

vsr VRT,VRA,VRB

sh � (VRB)125:127
t � 1
do i=0 to 127 by 8
   t � t & ((VRB)i+5:i+7=sh)
if t=1 then VRT � (VRA) >>ui sh
else        VRT � undefined

The contents of VRA are shifted right by the number of
bits specified in (VRB)125:127. 

- Bits shifted out of bit 127 are lost.  
- Zeros are supplied to the vacated bits on the

left. 

The result is place into VRT, except if, for any byte ele-
ment in register VRB, the low-order 3 bits are not equal
to the shift amount, then VRT is undefined.

Special Registers Altered:
None

  

Vector Shift Right by Octet VX-form

vsro VRT,VRA,VRB

shb � (VRB)121:124
VRT � (VRA) >>ui ( shb || 0b000 )

The contents of VRA are shifted right by the number of
bytes specified in (VRB)121:124. 

- Bytes shifted out of byte 15 are lost.
- Zeros are supplied to the vacated bytes on the

left.  

The result is placed into VRT.

Special Registers Altered:
None

4 VRT VRA VRB 708
0 6 11 16 21                                                31

A double-register shift by a dynamically specified
number of bits (0-127) can be performed in six
instructions. The following example shifts Vw || Vx
left by the number of bits specified in Vy and places
the high-order 128 bits of the result into Vz.

vslo  Vt1,Vw,Vy #shift high-order reg left
vsl   Vt1,Vt1,Vy
vsububm Vt3,V0,Vy #adjust shift count ((V0)=0)
vsro  Vt2,Vx,Vt3  #shift low-order reg right
vsr   Vt2,Vt2,Vt3
vor   Vz,Vt1,Vt2  #merge to get final result

Programming Note

4 VRT VRA VRB 1100
0 6 11 16 21                                                31
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5.9 Vector Integer Instructions

5.9.1 Vector Integer Arithmetic Instructions

5.9.1.1 Vector Integer Add Instructions

Vector Add and Write Carry-out Unsigned 
Word VX-form

vaddcuw VRT,VRA,VRB

do i=0 to 127 by 32
aop  � EXTZ((VRA)i:i+31)
bop  � EXTZ((VRB)i:i+31)
VRTi:i+31 � Chop( ( aop +int bop ) >>ui 32,1)

For each vector element i from 0 to 3, do the following.

Unsigned-integer word element i in VRA is added
to unsigned-integer word element i in VRB. The
carry out of the 32-bit sum is zero-extended to 32
bits and placed into word element i of VRT.

Special Registers Altered:
None

Vector Add Signed Byte Saturate VX-form

vaddsbs VRT,VRA,VRB

do i=0 to 127 by 8
aop � EXTS(VRAi:i+7)
bop � EXTS(VRBi:i+7)
VRTi:i+7 � Clamp( aop +int bop, -128, 127 )24:31

For each vector element i from 0 to 15, do the following.

Signed-integer byte element i in VRA is added to
signed-integer byte element i in VRB. 

- If the sum is greater than 127 the result
saturates to 127.

- If the sum is less than -128 the result sat-
urates to -128. 

The low-order 8 bits of the result are placed into
byte element i of VRT.

Special Registers Altered:
SAT

Vector Add Signed Halfword Saturate
VX-form

vaddshs VRT,VRA,VRB

do i=0 to 127 by 16
aop � EXTS((VRA)i:i+15)
bop � EXTS((VRB)i:i+15)
VRTi:i+15 
�� Clamp(aop +int bop, -2

15, 215-1)16:31

For each vector element i from 0 to 7, do the following.

Signed-integer halfword element i in VRA is added
to signed-integer halfword element i in VRB.

- If the sum is greater than 215-1 the result
saturates to 215-1

- If the sum is less than -215 the result satu-
rates to -215. 

The low-order 16 bits of the result are placed into
halfword element i of VRT.

Special Registers Altered:
SAT

Vector Add Signed Word Saturate
VX-form

vaddsws VRT,VRA,VRB

do i=0 to 127 by 32
   aop � EXTS((VRA)i:i+31)
   bop � EXTS((VRB)i:i+31)
   VRTi:i+31 � Clamp(aop +int bop, -2

31, 231-1)

For each vector element i from 0 to 3, do the following.

Signed-integer word element i in VRA is added to
signed-integer word element i in VRB.

- If the sum is greater than 231-1 the result
saturates to 231-1.

- If the sum is less than -231 the result satu-
rates to -231.

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
SAT

4 VRT VRA VRB 384
0 6 11 16 21                                                31

4 VRT VRA VRB 768
0 6 11 16 21                                                31

4 VRT VRA VRB 832
0 6 11 16 21                                                31

4 VRT VRA VRB 896
0 6 11 16 21                                                31
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Vector Add Unsigned Byte Modulo
VX-form

vaddubm VRT,VRA,VRB

do i=0 to 127 by 8
aop � EXTZ((VRA)i:i+7)
bop � EXTZ((VRB)i:i+7)
VRTi:i+7 � Chop( aop +int bop, 8 )

For each vector element i from 0 to 15, do the following.

Unsigned-integer byte element i in VRA is added
to unsigned-integer byte element i in VRB.

The low-order 8 bits of the result are placed into
byte element i of VRT.

Special Registers Altered:
None

  

Vector Add Unsigned Halfword Modulo
VX-form

vadduhm VRT,VRA,VRB

do i=0 to 127 by 16
aop  � EXTZ((VRA)i:i+15)
bop  � EXTZ((VRB)i:i+15)
VRTi:i+15 � Chop( aop +int bop, 16 )

For each vector element i from 0 to 7, do the following.

Unsigned-integer halfword element i in VRA is
added to unsigned-integer halfword element i in
VRB.

The low-order 16 bits of the result are placed into
halfword element i of VRT.

Special Registers Altered:
None

  

Vector Add Unsigned Word Modulo
VX-form

vadduwm VRT,VRA,VRB

do i=0 to 127 by 32
aop  � EXTZ((VRA)i:i+31)
bop  � EXTZ((VRB)i:i+31)
temp � aop +int bop
VRTi:i+31 � Chop( aop +int bop, 32 )

For each vector element i from 0 to 3, do the following.

Unsigned-integer word element i in VRA is added
to unsigned-integer word element i in VRB.

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
None

  

4 VRT VRA VRB 0
0 6 11 16 21                                                31

vaddubm can be used for unsigned or signed-inte-
gers.

Programming Note

4 VRT VRA VRB 64
0 6 11 16 21                                                31

vadduhm can be used for unsigned or signed-inte-
gers.

Programming Note

4 VRT VRA VRB 128
0 6 11 16 21                                                31

vadduwm can be used for unsigned or signed-inte-
gers.

Programming Note
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Vector Add Unsigned Byte Saturate
VX-form

vaddubs VRT,VRA,VRB

do i=0 to 127 by 8
aop � EXTZ((VRA)i:i+7)
bop � EXTZ((VRB)i:i+7)
VRTi:i+7 � Clamp( aop +int bop, 0, 255 )24:31

For each vector element i from 0 to 15, do the following.

Unsigned-integer byte element i in VRA is added
to unsigned-integer byte element i in VRB.

- If the sum is greater than 255 the result
saturates to 255.

The low-order 8 bits of the result are placed into
byte element i of VRT.

Special Registers Altered:
SAT

Vector Add Unsigned Halfword Saturate
VX-form

vadduhs VRT,VRA,VRB

do i=0 to 127 by 16
aop � EXTZ((VRA)i:i+15)
bop � EXTZ((VRB)i:i+15)
VRTi:i+15 � Clamp(aop +int bop, 0, 2

16-1)16:31

For each vector element i from 0 to 7, do the following.

Unsigned-integer halfword element i in VRA is
added to unsigned-integer halfword element i in
VRB.

- If the sum is greater than 216-1 the result
saturates to 216-1.

The low-order 16 bits of the result are placed into
halfword element i of VRT.

Special Registers Altered:
SAT

Vector Add Unsigned Word Saturate
VX-form

vadduws VRT,VRA,VRB

do i=0 to 127 by 32
   aop  � EXTZ((VRA)i:i+31)
   bop  � EXTZ((VRB)i:i+31)
   VRTi:i+31 � Clamp(aop +int bop, 0, 2

32-1)

For each vector element i from 0 to 3, do the following.

Unsigned-integer word element i in VRA is added
to unsigned-integer word element i in VRB.

- If the sum is greater than 232-1 the result
saturates to 232-1.

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
SAT

4 VRT VRA VRB 512
0 6 11 16 21                                                31

4 VRT VRA VRB 576
0 6 11 16 21                                                31

4 VRT VRA VRB 640
0 6 11 16 21                                                31
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5.9.1.2 Vector Integer Subtract Instructions

Vector Subtract and Write Carry-Out 
Unsigned Word VX-form

vsubcuw VRT,VRA,VRB

do i=0 to 127 by 32
   aop  � (VRA)i:i+31
   bop  � (VRB)i:i+31
   temp � (EXTZ(aop) +int EXTZ(¬bop) +int 1) >> 32
   VRTi:i+31 � temp & 0x0000_0001

For each vector element i from 0 to 3, do the following.

Unsigned-integer word element i in VRB is sub-
tracted from unsigned-integer word element i in
VRA. The complement of the borrow out of bit 0 of
the 32-bit difference is zero-extended to 32 bits
and placed into word element i of VRT.

Special Registers Altered:
None

Vector Subtract Signed Byte Saturate
VX-form

vsubsbs VRT,VRA,VRB

do i=0 to 127 by 8
   aop � EXTS((VRA)i:i+7)
   bop � EXTS((VRB)i:i+7)
   VRTi:i+7 � 

      Clamp(aop +int ¬bop +int 1, -128, 127)24:31

For each vector element i from 0 to 15, do the following.

Signed-integer byte element i in VRB is subtracted
from signed-integer byte element i in VRA.

- If the intermediate result is greater than
127 the result saturates to 127.

- If the intermediate result is less than -128
the result saturates to -128.

The low-order 8 bits of the result are placed into
byte element i of VRT.

Special Registers Altered:
SAT

Vector Subtract Signed Halfword Saturate
VX-form

vsubshs VRT,VRA,VRB

do i=0 to 127 by 16
aop � EXTS((VRA)i:i+15)
bop � EXTS((VRB)i:i+15)
VRTi:i+15 
�� Clamp(aop +int ¬bop +int 1, -2

15, 215-1)16:31

For each vector element i from 0 to 7, do the following.

Signed-integer halfword element i in VRB is sub-
tracted from signed-integer halfword element i in
VRA.

- If the intermediate result is greater than
215-1 the result saturates to 215-1.

- If the intermediate result is less than -215

the result saturates to -215.

The low-order 16 bits of the result are placed into
halfword element i of VRT.

Special Registers Altered:
SAT

Vector Subtract Signed Word Saturate
VX-form

vsubsws VRT,VRA,VRB

do i=0 to 127 by 32
   aop � EXTS((VRA)i:i+31)
   bop � EXTS((VRB)i:i+31)
   VRTi:i+31 � Clamp(aop +int ¬bop +int 1,-2

31,231-1)

For each vector element i from 0 to 3, do the following.

Signed-integer word element i in VRB is sub-
tracted from signed-integer word element i in VRA.

- If the intermediate result is greater than
231-1 the result saturates to 231-1.

- If the intermediate result is less than -231

the result saturates to -231.

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
SAT

4 VRT VRA VRB 1408
0 6 11 16 21                                                31

4 VRT VRA VRB 1792
0 6 11 16 21                                                31

4 VRT VRA VRB 1856
0 6 11 16 21                                                31

4 VRT VRA VRB 1920
0 6 11 16 21                                                31
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Vector Subtract Unsigned Byte Modulo
VX-form

vsububm VRT,VRA,VRB

do i=0 to 127 by 8
   aop � EXTZ((VRA)i:i+7)
   bop � EXTZ((VRB)i:i+7)
   VRTi:i+7 � Chop( aop +int ¬bop +int 1, 8 )

For each vector element i from 0 to 15, do the following.

Unsigned-integer byte element i in VRB is sub-
tracted from unsigned-integer byte element i in
VRA. The low-order 8 bits of the result are placed
into byte element i of VRT.

Special Registers Altered:
None

Vector Subtract Unsigned Halfword
 Modulo VX-form

vsubuhm VRT,VRA,VRB

do i=0 to 127 by 16
   aop  � EXTZ((VRA)i:i+15)
   bop  � EXTZ((VRB)i:i+15)
   VRTi:i+16 � Chop( aop +int ¬bop +int 1, 16 )

For each vector element i from 0 to 7, do the following.

Unsigned-integer halfword element i in VRB is
subtracted from unsigned-integer halfword ele-
ment i in VRA. The low-order 16 bits of the result
are placed into halfword element i of VRT.

Special Registers Altered:
None

Vector Subtract Unsigned Word Modulo
VX-form

vsubuwm VRT,VRA,VRB

do i=0 to 127 by 32
   aop  � EXTZ((VRA)i:i+31)
   bop  � EXTZ((VRB)i:i+31)
   VRTi:i+31 � Chop( aop +int ¬bop +int 1, 32 )

For each vector element i from 0 to 3, do the following.

Unsigned-integer word element i in VRB is sub-
tracted from unsigned-integer word element i in
VRA. The low-order 32 bits of the result are placed
into word element i of VRT.

Special Registers Altered:
None

4 VRT VRA VRB 1024
0 6 11 16 21                                                31

4 VRT VRA VRB 1088
0 6 11 16 21                                                31

4 VRT VRA VRB 1152
0 6 11 16 21                                                31
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Vector Subtract Unsigned Byte Saturate
VX-form

vsububs VRT,VRA,VRB

do i=0 to 127 by 8
aop � EXTZ((VRA)i:i+7)
bop � EXTZ((VRB)i:i+7)
VRTi:i+7 � Clamp(aop +int ¬bop +int 1, 0, 255)24:31

For each vector element i from 0 to 15, do the following.

Unsigned-integer byte element i in VRB is sub-
tracted from unsigned-integer byte element i in
VRA.  If the intermediate result is less than 0 the
result saturates to 0. The low-order 8 bits of the
result are placed into byte element i of VRT.

Special Registers Altered:
SAT

Vector Subtract Unsigned Halfword 
Saturate VX-form

vsubuhs VRT,VRA,VRB

do i=0 to 127 by 16
   aop  � EXTZ((VRA)i:i+15)
   bop  � EXTZ((VRB)i:i+15)
   VRTi:i+15 � Clamp(aop +int ¬bop +int 1,0,2

16-1)16:31

For each vector element i from 0 to 7, do the following.

Unsigned-integer halfword element i in VRB is
subtracted from unsigned-integer halfword ele-
ment i in VRA.  If the intermediate result is less
than 0 the result saturates to 0. The low-order 16
bits of the result are placed into halfword element i
of VRT.

Special Registers Altered:
SAT

Vector Subtract Unsigned Word Saturate
VX-form

vsubuws VRT,VRA,VRB

do i=0 to 127 by 32
   aop  � EXTZ((VRA)i:i+31)
   bop  � EXTZ((VRB)i:i+31)
   VRTi:i+31 � Clamp(aop +int ¬bop +int 1, 0, 2

32-1)

For each vector element i from 0 to 7, do the following.

Unsigned-integer word element i in VRB is sub-
tracted from unsigned-integer word element i in
VRA.

- If the intermediate result is less than 0 the
result saturates to 0.

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
SAT

4 VRT VRA VRB 1536
0 6 11 16 21                                                31

4 VRT VRA VRB 1600
0 6 11 16 21                                                31

4 VRT VRA VRB 1664
0 6 11 16 21                                                31
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5.9.1.3 Vector Integer Multiply Instructions

Vector Multiply Even Signed Byte
VX-form

vmulesb VRT,VRA,VRB

do i=0 to 127 by 16
prod � EXTS((VRA)i:i+7) ×si EXTS((VRB)i:i+7)
VRTi:i+15 � Chop( prod, 16 )

For each vector element i from 0 to 7, do the following.

Signed-integer byte element i×2 in VRA is multi-
plied by signed-integer byte element i×2 in VRB.
The low-order 16 bits of the product are placed into
halfword element i VRT.

Special Registers Altered:
None

Vector Multiply Even Signed Halfword
VX-form

vmulesh VRT,VRA,VRB

do i=0 to 127 by 32
  prod � EXTS((VRA)i:i+15) ×si EXTS((VRB)i:i+15)
  VRTi:i+31 � Chop( prod, 32 )

For each vector element i from 0 to 3, do the following.

Signed-integer halfword element i×2 in VRA is
multiplied by signed-integer halfword element i×2
in VRB. The low-order 32 bits of the product are
placed into halfword element i VRT.

Special Registers Altered:
None

Vector Multiply Even Unsigned Byte
VX-form

vmuleub VRT,VRA,VRB

do i=0 to 127 by 16
  prod � EXTZ((VRA)i:i+7) ×ui EXTZ((VRB)i:i+7)
  VRTi:i+15 � Chop(prod, 16)

For each vector element i from 0 to 7, do the following.

Unsigned-integer byte element i×2 in VRA is multi-
plied by unsigned-integer byte element i×2 in VRB.
The low-order 16 bits of the product are placed into
halfword element i VRT.

Special Registers Altered:
None

Vector Multiply Even Unsigned Halfword
VX-form

vmuleuh VRT,VRA,VRB

do i=0 to 127 by 32
  prod � EXTZ((VRA)i:i+15) ×ui EXTZ((VRB)i:i+15)
  VRTi:i+31 � Chop(prod, 32)

For each vector element i from 0 to 3, do the following.

Unsigned-integer halfword element i×2 in VRA is
multiplied by unsigned-integer halfword element
i×2 in VRB. The low-order 32 bits of the product
are placed into halfword element i VRT.

Special Registers Altered:
None

4 VRT VRA VRB 776
0 6 11 16 21                                                31

4 VRT VRA VRB 840
0 6 11 16 21                                                31

4 VRT VRA VRB 520
0 6 11 16 21                                                31

4 VRT VRA VRB 584
0 6 11 16 21                                                31
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Vector Multiply Odd Signed Byte VX-form

vmulosb VRT,VRA,VRB

do i=0 to 127 by 16
  prod � EXTS((VRA)i+8:i+15) ×si EXTS((VRB)i+8:i+15)
  VRTi:i+15 � Chop( prod, 16 )

For each vector element i from 0 to 7, do the following.

Signed-integer byte element i×2+1 in VRA is multi-
plied by signed-integer byte element i×2+1 in VRB.
The low-order 16 bits of the product are placed into
halfword element i VRT.

Special Registers Altered:
None

Vector Multiply Odd Signed Halfword
VX-form

vmulosh VRT,VRA,VRB

do i=0 to 127 by 32
  prod � EXTS((VRA)i+16:i+31) ×si EXTS((VRB)i+16:i+31)
  VRTi:i+31 � Chop( prod, 32 )

For each vector element i from 0 to 3, do the following.

Signed-integer halfword element i×2+1 in VRA is
multiplied by signed-integer halfword element
i×2+1 in VRB. The low-order 32 bits of the product
are placed into halfword element i VRT.

Special Registers Altered:
None

Vector Multiply Odd Unsigned Byte
VX-form

vmuloub VRT,VRA,VRB

do i=0 to 127 by 16
  prod � EXTZ((VRA)i+8:i+15) ×ui EXTZ((VRB)i+8:i+15)
  VRTi:i+15 � Chop( prod, 16 )

For each vector element i from 0 to 7, do the following.

Unsigned-integer byte element i×2+1 in VRA is
multiplied by unsigned-integer byte element i×2+1
in VRB. The low-order 16 bits of the product are
placed into halfword element i VRT.

Special Registers Altered:
None

Vector Multiply Odd Unsigned Halfword
VX-form

vmulouh VRT,VRA,VRB

do i=0 to 127 by 32
  prod � EXTZ((VRA)i+16:i+31)×ui EXTZ((VRB)i+16:i+31)
  VRTi:i+31 � Chop( prod, 32 )

For each vector element i from 0 to 3, do the following.

Unsigned-integer halfword element i×2+1 in VRA
is multiplied by unsigned-integer halfword element
i×2+1 in VRB. The low-order 32 bits of the product
are placed into halfword element i VRT.

Special Registers Altered:
None

4 VRT VRA VRB 264
0 6 11 16 21                                                31 4 VRT VRA VRB 328

0 6 11 16 21                                                31

4 VRT VRA VRB 8
0 6 11 16 21                                                31

4 VRT VRA VRB 72
0 6 11 16 21                                                31
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5.9.1.4 Vector Integer Multiply-Add/Sum Instructions

Vector Multiply-High-Add Signed 
Halfword Saturate VA-form

vmhaddshs VRT,VRA,VRB,VRC

do i=0 to 127 by 16
prod � EXTS((VRA)i:i+15) ×si EXTS((VRB)i:i+15)
sum  � (prod >>si 15) +int EXTS((VRC)i:i+15 
VRTi:i+15 � Clamp(sum, -215, 215-1)16:31

For each vector element i from 0 to 7, do the following.

Signed-integer halfword element i in VRA is multi-
plied by signed-integer halfword element i in VRB,
producing a 32-bit signed-integer product. Bits
0:16 of the product are added to signed-integer
halfword element i in VRC.

- If the intermediate result is greater than
215-1 the result saturates to 215-1.

- If the intermediate result is less than -215

the result saturates to -215.

The low-order 16 bits of the result are placed into
halfword element i of VRT.

Special Registers Altered:
SAT

Vector Multiply-High-Round-Add Signed  
Halfword Saturate VA-form

vmhraddshs VRT,VRA,VRB,VRC

do i=0 to 127 by 16
prod � EXTS((VRA)i:i+15) ×si EXTS((VRB)i:i+15)
sum  � ((prod +int 0x0000_4000) >>si 15) 

 +int EXTS((VRC)i:i+15)
VRTi:i+15 � Clamp(sum, -215, 215-1)16:31

For each vector element i from 0 to 7, do the following.

Signed-integer halfword element i in VRA is multi-
plied by signed-integer halfword element i in VRB,
producing a 32-bit signed-integer product. The
value 0x0000_4000 is added to the product, pro-
ducing a 32-bit signed-integer sum. Bits 0:16 of the
sum are added to signed-integer halfword element
i in VRC.

- If the intermediate result is greater than
215-1 the result saturates to 215-1.

- If the intermediate result is less than -215

the result saturates to -215.

The low-order 16 bits of the result are placed into
halfword element i of VRT.

Special Registers Altered:
SAT

4 VRT VRA VRB VRC 32
0 6 11 16 21 26                     31

4 VRT VRA VRB VRC 33
0 6 11 16 21 26                     31
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Vector Multiply-Low-Add Unsigned 
Halfword Modulo VA-form

vmladduhm VRT,VRA,VRB,VRC

do i=0 to 127 by 16
prod � EXTZ((VRA)i:i+15) ×ui EXTZ((VRB)i:i+15)
sum  � Chop( prod, 16 ) +int (VRC)i:i+15
VRTi:i+15 � Chop( sum, 16 )

For each vector element i from 0 to 3, do the following.

Unsigned-integer halfword element i in VRA is
multiplied by unsigned-integer halfword element i
in VRB, producing a 32-bit unsigned-integer prod-
uct. The low-order 16 bits of the product are added
to unsigned-integer halfword element i in VRC.

The low-order 16 bits of the sum are placed into
halfword element i of VRT.

Special Registers Altered:
None

  

Vector Multiply-Sum Unsigned Byte
Modulo VA-form

vmsumubm VRT,VRA,VRB,VRC

do i=0 to 127 by 32
   temp � EXTZ((VRC)i:i+31)
   do j=0 to 31 by 8

  prod � EXTZ((VRA)i+j:i+j+7) 
    ×ui EXTZ((VRB)i+j:i+j+7)

  temp � temp +int prod
   VRTi:i+31 � Chop( temp, 32 )

For each word element in VRT the following operations
are performed, in the order shown.

- Each of the four unsigned-integer byte ele-
ments contained in the corresponding word
element of VRA is multiplied by the corre-
sponding unsigned-integer byte element in
VRB, producing an unsigned-integer halfword
product.

- The sum of these four unsigned-integer half-
word products is added to the unsigned-inte-
ger word element in VRC.

- The unsigned-integer word result is placed
into the corresponding word element of VRT.

Special Registers Altered:
None

4 VRT VRA VRB VRC 34
0 6 11 16 21 26                     31

vmladduhm can be used for unsigned or
signed-integers.

Programming Note

4 VRT VRA VRB VRC 36
0 6 11 16 21 26                     31
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Vector Multiply-Sum Mixed Byte Modulo
VA-form

vmsummbm VRT,VRA,VRB,VRC

do i=0 to 127 by 32
  temp � (VRC)i:i+31
  do j=0 to 31 by 8

 prod0:15 � (VRA)i+j:i+j+7 ×sui (VRB)i+j:i+j+7
 temp    � temp +int EXTS(prod)

  VRTi:i+31 � temp

For each word element in VRT the following operations
are performed, in the order shown.

- Each of the four signed-integer byte elements
contained in the corresponding word element
of VRA is multiplied by the corresponding
unsigned-integer byte element in VRB, pro-
ducing a signed-integer product.

- The sum of these four signed-integer halfword
products is added to the signed-integer word
element in VRC.

- The signed-integer result is placed into the
corresponding word element of VRT.

Special Registers Altered:
None

Vector Multiply-Sum Signed Halfword
Modulo VA-form

vmsumshm VRT,VRA,VRB,VRC

do i=0 to 127 by 32
temp � (VRC)i:i+31
do j=0 to 31 by 16
  prod0:31 � (VRA)i+j:i+j+15 ×si (VRB)i+j:i+j+15
  temp     � temp +int prod
VRTi:i+31 � temp

For each word element in VRT the following operations
are performed, in the order shown.

- Each of the two signed-integer halfword ele-
ments contained in the corresponding word
element of VRA is multiplied by the corre-
sponding signed-integer halfword element in
VRB, producing a signed-integer product.

- The sum of these two signed-integer word
products is added to the signed-integer word
element in VRC.

- The signed-integer word result is placed into
the corresponding word element of VRT.

Special Registers Altered:
None

4 VRT VRA VRB VRC 37
0 6 11 16 21 26                     31

4 VRT VRA VRB VRC 40
0 6 11 16 21 26                     31
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Vector Multiply-Sum Signed Halfword
Saturate VA-form

vmsumshs VRT,VRA,VRB,VRC

do i=0 to 127 by 32
   temp � EXTS((VRC)i:i+31)
   do j=0 to 31 by 16
      prod � EXTS((VRA)i+j:i+j+15) 

×si EXTS((VRB)i+j:i+j+15)
     temp � temp +int prod
   VRTi:i+31 � Clamp(temp, -231, 231-1)

For each word element in VRT the following operations
are performed, in the order shown.

- Each of the two signed-integer halfword ele-
ments contained in the corresponding word
element of VRA is multiplied by the corre-
sponding signed-integer halfword element in
VRB, producing a signed-integer product.

- The sum of these two signed-integer word
products is added to the signed-integer word
element in VRC.

- If the intermediate result is greater than 231-1
the result saturates to 231-1 and if it is less
than -231 it saturates to -231.

- The result is placed into the corresponding
word element of VRT.

Special Registers Altered:
SAT

Vector Multiply-Sum Unsigned Halfword 
Modulo VA-form

vmsumuhm VRT,VRA,VRB,VRC

do i=0 to 127 by 32
   temp � EXTZ((VRC)i:i+31)
   do j=0 to 31 by 16
      prod � EXTZ((VRA)i+j:i+j+15) 

   ×ui EXTZ((VRB)i+j:i+j+15)
     temp � temp +int prod
   VRTi:i+31 � Chop( temp, 32 )

For each word element in VRT the following operations
are performed, in the order shown.

- Each of the two unsigned-integer halfword
elements contained in the corresponding word
element of VRA is multiplied by the corre-
sponding unsigned-integer halfword element
in VRB, producing an unsigned-integer word
product.

- The sum of these two unsigned-integer word
products is added to the unsigned-integer
word element in VRC.

- The unsigned-integer result is placed into the
corresponding word element of VRT.

Special Registers Altered:
None

4 VRT VRA VRB VRC 41
0 6 11 16 21 26                     31

4 VRT VRA VRB VRC 38
0 6 11 16 21 26                     31
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Vector Multiply-Sum Unsigned Halfword 
Saturate VA-form

vmsumuhs VRT,VRA,VRB,VRC

do i=0 to 127 by 32
   temp � EXTZ((VRC)i:i+31)
   do j=0 to 31 by 16
      prod � EXTZ((VRA)i+j:i+j+15) 

×ui EXTZ((VRB)i+j:i+j+15)
   temp � temp +int prod
   VRTi:i+31 � Clamp(temp, 0, 232-1)

For each word element in VRT the following operations
are performed, in the order shown.

- Each of the two unsigned-integer halfword
elements contained in the corresponding word
element of VRA is multiplied by the corre-
sponding unsigned-integer halfword element
in VRB, producing an unsigned-integer prod-
uct.

- The sum of these two unsigned-integer word
products is added to the unsigned-integer
word element in VRC.

- If the intermediate result is greater than 232-1
the result saturates to 232-1.

- The result is placed into the corresponding
word element of VRT.

Special Registers Altered:
SAT

4 VRT VRA VRB VRC 39
0 6 11 16 21 26                     31
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5.9.1.5 Vector Integer Sum-Across Instructions

Vector Sum across Signed Word Saturate
VX-form

vsumsws VRT,VRA,VRB

temp � EXTS((VRB)96:127)
do i=0 to 127 by 32
   temp � temp +int EXTS((VRA)i:i+31)
VRT0:31   � 0x0000_0000
VRT32:63  � 0x0000_0000
VRT64:95  � 0x0000_0000
VRT96:127 � Clamp(temp, -231, 231-1)

The sum of the four signed-integer word elements in
VRA is added to signed-integer word element 3 of
VRB.

- If the intermediate result is greater than 231-1
the result saturates to 231-1.

- If the intermediate result is less than -231 the
result saturates to -231.

The low-end 32 bits of the result are placed into word
element 3 of VRT.

Word elements 0 to 2 of VRT are set to 0.

Special Registers Altered:
SAT

Vector Sum across Half Signed Word 
Saturate VX-form

vsum2sws VRT,VRA,VRB

do i=0 to 127 by 64
   temp � EXTS((VRB)i+32:i+63)
   do j=0 to 63 by 32
      temp � temp +int EXTS((VRA)i+j:i+j+31)
   VRTi:i+63 � 0x0000_0000 || Clamp(temp, -231, 231-1)

Word elements 0 and 2 of VRT are set to 0.

The sum of the signed-integer word elements 0 and 1
in VRA is added to the signed-integer word element in
bits 32:63 of VRB. 

- If the intermediate result is greater than 231-1
the result saturates to 231-1. 

- If the intermediate result is less than -231 the
result saturates to -231.

The low-order 32 bits of the result are placed into word
element 1 of VRT. 

The sum of signed-integer word elements 2 and 3 in
VRA is added to the signed-integer word element in
bits 96:127 of VRB.

- If the intermediate result is greater than 231-1
the result saturates to 231-1.

- If the intermediate result is less than -231 the
result saturates to -231.

The low-order 32 bits of the result are placed into word
element 3 of VRT.

Special Registers Altered:
SAT

4 VRT VRA VRB 1928
0 6 11 16 21                                                31

4 VRT VRA VRB 1672
0 6 11 16 21                                                31
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Vector Sum across Quarter Signed Byte 
Saturate VX-form

vsum4sbs VRT,VRA,VRB

do i=0 to 127 by 32
   temp � EXTS((VRB)i:i+31)
   do j=0 to 31 by 8
      temp � temp +int EXTS((VRA)i+j:i+j+7)
   VRTi:i+31 � Clamp(temp, -231, 231-1)

For each vector element i from 0 to 3, do the following.

The sum of the four signed-integer byte elements
contained in word element i of VRA is added to
signed-integer word element i in VRB.

- If the intermediate result is greater than
231-1 the result saturates to 231-1.

- If the intermediate result is less than -231

the result saturates to -231.

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
SAT

Vector Sum across Quarter Signed 
Halfword Saturate VX-form

vsum4shs VRT,VRA,VRB

do i=0 to 127 by 32
   temp � EXTS((VRB)i:i+31)
   do j=0 to 31 by 16
      temp � temp +int EXTS((VRA)i+j:i+j+15)
   VRTi:i+31 � Clamp(temp, -231, 231-1)

For each vector element i from 0 to 3, do the following.

The sum of the two signed-integer halfword ele-
ments contained in word element i of VRA is
added to signed-integer word element i in VRB.

- If the intermediate result is greater than
231-1 the result saturates to 231-1.

- If the intermediate result is less than -231

the result saturates to -231.

The low-order 32 bits of the result are placed into
the corresponding word element of VRT.

Special Registers Altered:
SAT

Vector Sum across Quarter Unsigned 
Byte Saturate VX-form

vsum4ubs VRT,VRA,VRB

do i=0 to 127 by 32
   temp � EXTZ((VRB)i:i+31)
   do j=0 to 31 by 8
      temp � temp +int EXTZ((VRA)i+j:i+j+7)
   VRTi:i+31 � Clamp( temp, 0, 232-1 )

For each vector element i from 0 to 3, do the following.

The sum of the four unsigned-integer byte ele-
ments contained in word element i of VRA is
added to unsigned-integer word element i in VRB.

- If the intermediate result is greater than
232-1 it saturates to 232-1.

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
SAT

4 VRT VRA VRB 1800
0 6 11 16 21                                                31

4 VRT VRA VRB 1608
0 6 11 16 21                                                31

4 VRT VRA VRB 1544
0 6 11 16 21                                                31
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5.9.1.6 Vector Integer Average Instructions

Vector Average Signed Byte VX-form

vavgsb VRT,VRA,VRB

do i=0 to 127 by 8
   aop � EXTS((VRA)i:i+7)
   bop � EXTS((VRB)i:i+7)
   VRTi:i+7 � Chop(( aop +int bop +int 1 ) >> 1, 8)

For each vector element i from 0 to 15, do the following.

Signed-integer byte element i in VRA is added to
signed-integer byte element i in VRB. The sum is
incremented by 1 and then shifted right 1 bit.

The low-order 8 bits of the result are placed into
byte element i of VRT.

Special Registers Altered:
None

Vector Average Signed Halfword VX-form

vavgsh VRT,VRA,VRB

do i=0 to 127 by 16
   aop � EXTS((VRA)i:i+15)
   bop � EXTS((VRB)i:i+15)
   VRTi:i+15 � Chop(( aop +int bop +int 1 ) >> 1, 16)

For each vector element i from 0 to 7, do the following.

Signed-integer halfword element i in VRA is added
to signed-integer halfword element i in VRB. The
sum is incremented by 1 and then shifted right 1
bit.

The low-order 16 bits of the result are placed into
halfword element i of VRT.

Special Registers Altered:
None

Vector Average Signed Word VX-form

vavgsw VRT,VRA,VRB

do i=0 to 127 by 32
   aop � EXTS((VRA)i:i+31)
   bop � EXTS((VRB)i:i+31)
   VRTi:i+31 � Chop(( aop +int bop +int 1 ) >> 1, 32)

For each vector element i from 0 to 3, do the following.

Signed-integer word element i in VRA is added to
signed-integer word element i in VRB. The sum is
incremented by 1 and then shifted right 1 bit.

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
None

4 VRT VRA VRB 1282
0 6 11 16 21                                               31

4 VRT VRA VRB 1346
0 6 11 16 21                                                31

4 VRT VRA VRB 1410
0 6 11 16 21                                                31
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Vector Average Unsigned Byte VX-form

vavgub VRT,VRA,VRB

do i=0 to 127 by 8
   aop � EXTZ((VRA)i:i+7)
   bop � EXTZ((VRB)i:i+7 
   VRTi:i+7 � Chop((aop +int bop +int 1) >>ui 1, 8)

For each vector element i from 0 to 15, do the following.

Unsigned-integer byte element i in VRA is added
to unsigned-integer byte element i in VRB. The
sum is incremented by 1 and then shifted right 1
bit.

The low-order 8 bits of the result are placed into
byte element i of VRT.

Special Registers Altered:
None

Vector Average Unsigned Halfword
VX-form

vavguh VRT,VRA,VRB

do i=0 to 127 by 16
   aop � EXTZ((VRA)i:i+15)
   bop � EXTZ((VRB)i:i+15)
   VRTi:i+15 � Chop((aop +int bop +int 1) >>ui 1, 16)

For each vector element i from 0 to 7, do the following.

Unsigned-integer halfword element i in VRA is
added to unsigned-integer halfword element i in
VRB. The sum is incremented by 1 and then
shifted right 1 bit.

The low-order 16 bits of the result are placed into
halfword element i of VRT.

Special Registers Altered:
None

Vector Average Unsigned Word VX-form

vavguw VRT,VRA,VRB

do i=0 to 127 by 32
   aop � EXTZ((VRA)i:i+31)
   bop � EXTZ((VRB)i:i+31)
   VRTi:i+31 � Chop((aop +int bop +int 1) >>ui 1, 32)

For each vector element i from 0 to 3, do the following.

Unsigned-integer word element i in VRA is added
to unsigned-integer word element i in VRB. The
sum is incremented by 1 and then shifted right 1
bit.

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
None

4 VRT VRA VRB 1026
0 6 11 16 21                                                31 4 VRT VRA VRB 1090

0 6 11 16 21                                                31

4 VRT VRA VRB 1154
0 6 11 16 21                                                31
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5.9.1.7 Vector Integer Maximum and Minimum Instructions

Vector Maximum Signed Byte VX-form

vmaxsb VRT,VRA,VRB

do i=0 to 127 by 8
aop � EXTS((VRA)i:i+7)
bop � EXTS((VRB)i:i+7)

   VRTi:i+7 � ( aop >si bop ) 
? (VRA)i:i+7 : (VRB)i:i+7

For each vector element i from 0 to 15, do the following.

Signed-integer byte element i in VRA is compared
to signed-integer byte element i in VRB. The larger
of the two values is placed into byte element i of
VRT.

Special Registers Altered:
None

Vector Maximum Signed Halfword
VX-form

vmaxsh VRT,VRA,VRB

do i=0 to 127 by 16
aop � EXTS((VRA)i:i+15)
bop � EXTS((VRB)i:i+15 
VRTi:i+15 � ( aop >si bop ) 

? (VRA)i:i+15 : (VRB)i:i+15

For each vector element i from 0 to 7, do the following.

Signed-integer halfword element i in VRA is com-
pared to signed-integer halfword element i in VRB.
The larger of the two values is placed into halfword
element i of VRT.

Special Registers Altered:
None

Vector Maximum Signed Word VX-form

vmaxsw VRT,VRA,VRB

do i=0 to 127 by 32
aop � EXTS((VRA)i:i+31)
bop � EXTS((VRB)i:i+31)
VRTi:i+31 � ( aop >si bop ) 

? (VRA)i:i+31 : (VRB)i:i+31

For each vector element i from 0 to 3, do the following.

Signed-integer word element i in VRA is compared
to signed-integer word element i in VRB. The
larger of the two values is placed into word ele-
ment i of VRT.

Special Registers Altered:
None

4 VRT VRA VRB 258
0 6 11 16 21                                                31 4 VRT VRA VRB 322

0 6 11 16 21                                                31

4 VRT VRA VRB 386
0 6 11 16 21                                                31
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Vector Maximum Unsigned Byte VX-form

vmaxub VRT,VRA,VRB

do i=0 to 127 by 8
aop � EXTZ((VRA)i:i+7)
bop � EXTZ((VRB)i:i+7)
VRTi:i+7 � (aop >ui bop) ? (VRA)i:i+7 : (VRB)i:i+7

For each vector element i from 0 to 15, do the following.

Unsigned-integer byte element i in VRA is com-
pared to unsigned-integer byte element i in VRB.
The larger of the two values is placed into byte ele-
ment i of VRT.

Special Registers Altered:
None

Vector Maximum Unsigned Halfword
VX-form

vmaxuh VRT,VRA,VRB

do i=0 to 127 by 16
aop � EXTZ((VRA)i:i+15)
bop � EXTZ((VRB)i:i+15)
VRTi:i+15 � (aop >ui bop) 

? (VRA)i:i+15 : (VRB)i:i+15

For each vector element i from 0 to 7, do the following.

Unsigned-integer halfword element i in VRA is
compared to unsigned-integer halfword element i
in VRB. The larger of the two values is placed into
halfword element i of VRT.

Special Registers Altered:
None

Vector Maximum Unsigned Word VX-form

vmaxuw VRT,VRA,VRB

do i=0 to 127 by 32
aop � EXTZ((VRA)i:i+31)
bop � EXTZ((VRB)i:i+31)
VRTi:i+31 � (aop >ui bop) 

? (VRA)i:i+31 : (VRB)i:i+31

For each vector element i from 0 to 3, do the following.

Unsigned-integer word element i in VRA is com-
pared to unsigned-integer word element i in VRB.
The larger of the two values is placed into word
element i of VRT.

Special Registers Altered:
None

4 VRT VRA VRB 2
0 6 11 16 21                                                31 4 VRT VRA VRB 66

0 6 11 16 21                                                31

4 VRT VRA VRB 130
0 6 11 16 21                                                31
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Vector Minimum Signed Byte VX-form

vminsb VRT,VRA,VRB

do i=0 to 127 by 8
aop � EXTS((VRA)i:i+7)
bop � EXTS((VRB)i:i+7)
VRTi:i+7 � (aop <si bop) ? (VRA)i:i+7 : (VRB)i:i+7

For each vector element i from 0 to 15, do the following.

Signed-integer byte element i in VRA is compared
to signed-integer byte element i in VRB. The
smaller of the two values is placed into byte ele-
ment i of VRT.

Special Registers Altered:
None

Vector Minimum Signed Halfword
VX-form

vminsh VRT,VRA,VRB

do i=0 to 127 by 16
aop � EXTS((VRA)i:i+15)
bop � EXTS((VRB)i:i+15)
VRTi:i+15 � ( aop <si bop ) 

? (VRA)i:i+15 : (VRB)i:i+15

For each vector element i from 0 to 7, do the following.

Signed-integer halfword element i in VRA is com-
pared to signed-integer halfword element i in VRB.
The smaller of the two values is placed into half-
word element i of VRT.

Special Registers Altered:
None

Vector Minimum Signed Word VX-form

vminsw VRT,VRA,VRB

do i=0 to 127 by 32
aop � EXTS((VRA)i:i+31)
bop � EXTS((VRB)i:i+31)
VRTi:i+31 � ( aop <si bop ) 

? (VRA)i:i+31 : (VRB)i:i+31

For each vector element i from 0 to 3, do the following.

Signed-integer word element i in VRA is compared
to signed-integer word element i in VRB. The
smaller of the two values is placed into word ele-
ment i of VRT.

Special Registers Altered:
None

4 VRT VRA VRB 770
0 6 11 16 21                                                31 4 VRT VRA VRB 834

0 6 11 16 21                                                31

4 VRT VRA VRB 898
0 6 11 16 21                                                31
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Vector Minimum Unsigned Byte VX-form

vminub VRT,VRA,VRB

do i=0 to 127 by 8
aop � EXTZ((VRA)i:i+7)
bop � EXTZ((VRB)i:i+7 
VRTi:i+7 � ( aop <ui bop ) 

? (VRA)i:i+7 : (VRB)i:i+7

For each vector element i from 0 to 15, do the following.

Unsigned-integer byte element i in VRA is com-
pared to unsigned-integer byte element i in VRB.
The smaller of the two values is placed into byte
element i of VRT.

Special Registers Altered:
None

Vector Minimum Unsigned Halfword
VX-form

vminuh VRT,VRA,VRB

do i=0 to 127 by 16
aop � EXTZ((VRA)i:i+15)
bop � EXTZ((VRB)i:i+15)
VRTi:i+15 � ( aop <ui bop ) 

? (VRA)i:i+15 : (VRB)i:i+15

For each vector element i from 0 to 7, do the following.

Unsigned-integer halfword element i in VRA is
compared to unsigned-integer halfword element i
in VRB. The smaller of the two values is placed
into halfword element i of VRT.

Special Registers Altered:
None

Vector Minimum Unsigned Word VX-form

vminuw VRT,VRA,VRB

do i=0 to 127 by 32
aop � EXTZ((VRA)i:i+31)
bop � EXTZ((VRB)i:i+31)
VRTi:i+31 � ( aop <ui bop ) 

? (VRA)i:i+31 : (VRB)i:i+31

For each vector element i from 0 to 3, do the following.

Unsigned-integer word element i in VRA is com-
pared to unsigned-integer word element i in VRB.
The smaller of the two values is placed into word
element i of VRT.

Special Registers Altered:
None

4 VRT VRA VRB 514
0 6 11 16 21                                                31 4 VRT VRA VRB 578

0 6 11 16 21                                                31

4 VRT VRA VRB 642
0 6 11 16 21                                                31
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5.9.2 Vector Integer Compare Instructions
The Vector Integer Compare instructions compare two
Vector Registers element by element, interpreting the
elements as unsigned or signed-integers depending on
the instruction, and set the corresponding element of
the target Vector Register to all 1s if the relation being
tested is true and to all 0s if the relation being tested is
false.

If Rc=1 CR Field 6 is set to reflect the result of the com-
parison, as follows.

 

  

Vector Compare Equal To Unsigned Byte
VC-form

vcmpequb VRT,VRA,VRB (Rc=0)
vcmpequb. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 8
   VRTi:i+7 � ((VRA)i:i+7 =int (VRB)i:i+7) ? 

81 : 80
if Rc=1 then do
   t � (VRT=1281)
   f � (VRT=1280)
   CR6 � t || 0b0 || f || 0b0

For each vector element i from 0 to 15, do the following.

Unsigned-integer byte element i in VRA is com-
pared to unsigned-integer byte element i in VRB.
Byte element i in VRT is set to all 1s if
unsigned-integer byte element i in VRA is equal to
unsigned-integer byte element i in VRB, and is set
to all 0s otherwise.

Special Registers Altered:
CR6 (if Rc=1)

Vector Compare Equal To Unsigned 
Halfword VC-form

vcmpequh VRT,VRA,VRB (Rc=0)
vcmpequh. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 16
   VRTi:i+15 �((VRA)i:i+15 =int (VRB)i:i+15) ? 

161 : 160
if Rc=1 then do
   t � (VRT=1281)
   f � (VRT=1280)
   CR6 � t || 0b0 || f || 0b0

For each vector element i from 0 to 7, do the following.

Unsigned-integer halfword element i in VRA is
compared to unsigned-integer halfword element
element i in VRB. Halfword element i in VRT is set
to all 1s if unsigned-integer halfword element i in
VRA is equal to unsigned-integer halfword element
i in VRB, and is set to all 0s otherwise.

Special Registers Altered:
CR6 (if Rc=1)

Bit Description
0 The relation is true for all element pairs

(i.e., VRT is set to all 1s)
1 0
2 The relation is false for all element pairs

(i.e., VRT is set to all 0s)
3 0

vcmpequb[.], vcmpequh[.] and vcmpequw[.] can
be used for unsigned or signed-integers.

Programming Note

4 VRT VRA VRB Rc 6
0 6 11 16 21 22                                     31

4 VRT VRA VRB Rc 70
0 6 11 16 21 22                                     31
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Vector Compare Equal To Unsigned Word
VC-form

vcmpequw VRT,VRA,VRB (Rc=0)
vcmpequw. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 32
   VRTi:i+31 �((VRA)i:i+31 =int (VRB)i:i+31) ? 

321 : 320
if Rc=1 then do
   t � (VRT=1281)
   f � (VRT=1280)
   CR6 � t || 0b0 || f || 0b0

For each vector element i from 0 to 3, do the following.

Unsigned-integer word element i in VRA is com-
pared to unsigned-integer word element i in VRB.
Word element i in VRT is set to all 1s if
unsigned-integer word element i in VRA is equal to
unsigned-integer word element i in VRB, and is set
to all 0s otherwise.

Special Registers Altered:
CR6 (if Rc=1)

Vector Compare Greater Than Signed 
Byte VC-form

vcmpgtsb VRT,VRA,VRB (Rc=0)
vcmpgtsb. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 8
   VRTi:i+7 � ((VRA)i:i+7 >si (VRB)i:i+7) ? 

81 : 80
if Rc=1 then do
   t � (VRT=1281)
   f � (VRT=1280)
   CR6 � t || 0b0 || f || 0b0

For each vector element i from 0 to 15, do the following.

Signed-integer byte element i in VRA is compared
to signed-integer byte element i in VRB. Byte ele-
ment i in VRT is set to all 1s if signed-integer byte
element i in VRA is greater than to signed-integer
byte element i in VRB, and is set to all 0s other-
wise.

Special Registers Altered:
CR6 (if Rc=1)

Vector Compare Greater Than Signed 
Halfword VC-form

vcmpgtsh VRT,VRA,VRB (Rc=0)
vcmpgtsh. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 16
   VRTi:i+15 � ((VRA)i:i+15 >si (VRB)i:i+15) ? 

161 : 160
if Rc=1 then do
   t � (VRT=1281)
   f � (VRT=1280)
   CR6 � t || 0b0 || f || 0b0

For each vector element i from 0 to 7, do the following.

Signed-integer halfword element i in VRA is com-
pared to signed-integer halfword element i in VRB.
Halfword element i in VRT is set to all 1s if
signed-integer halfword element i in VRA is greater
than signed-integer halfword element i in VRB, and
is set to all 0s otherwise.

Special Registers Altered:
CR6 (if Rc=1)

Vector Compare Greater Than Signed 
Word VC-form

vcmpgtsw VRT,VRA,VRB (Rc=0)
vcmpgtsw. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 32
   VRTi:i+31 � ((VRA)i:i+31 >si (VRB)i:i+31) ? 

321 : 320
if Rc=1 then do
   t � (VRT=1281)
   f � (VRT=1280)
   CR6 � t || 0b0 || f || 0b0

For each vector element i from 0 to 3, do the following.

Signed-integer word element i in VRA is compared
to signed-integer word element i in VRB. Word ele-
ment i in VRT is set to all 1s if signed-integer word
element i in VRA is greater than signed-integer
word element i in VRB, and is set to all 0s other-
wise.

Special Registers Altered:
CR6 (if Rc=1)

4 VRT VRA VRB Rc 134
0 6 11 16 21 22                                     31

4 VRT VRA VRB Rc 774
0 6 11 16 21 22                                     31

4 VRT VRA VRB Rc 838
0 6 11 16 21 22                                     31

4 VRT VRA VRB Rc 902
0 6 11 16 21 22                                     31
Power ISA™ -- Book I182



   Version 2.04
Vector Compare Greater Than Unsigned 
Byte VC-form

vcmpgtub VRT,VRA,VRB (Rc=0)
vcmpgtub. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 8
   VRTi:i+7 � ((VRA)i:i+7 >ui (VRB)i:i+7) ? 

81 : 80
if Rc=1 then do
   t � (VRT=1281)
   f � (VRT=1280)
   CR6 � t || 0b0 || f || 0b0

For each vector element i from 0 to 15, do the following.

Unsigned-integer byte element i in VRA is com-
pared to unsigned-integer byte element i in VRB.
Byte element i in VRT is set to all 1s if
unsigned-integer byte element i in VRA is greater
than to unsigned-integer byte element i in VRB,
and is set to all 0s otherwise.

Special Registers Altered:
CR6 (if Rc=1)

Vector Compare Greater Than Unsigned 
Halfword VC-form

vcmpgtuh VRT,VRA,VRB (Rc=0)
vcmpgtuh. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 16
   VRTi:i+15 � ((VRA)i:i+15 >ui (VRB)i:i+15) ? 

161 : 160
if Rc=1 then do
   t � (VRT=1281)
   f � (VRT=1280)
   CR6 � t || 0b0 || f || 0b0

For each vector element i from 0 to 7, do the following.

Unsigned-integer halfword element i in VRA is
compared to unsigned-integer halfword element i
in VRB. Halfword element i in VRT is set to all 1s if
unsigned-integer halfword element i in VRA is
greater than to unsigned-integer halfword element
i in VRB, and is set to all 0s otherwise.

Special Registers Altered:
CR6 (if Rc=1)

Vector Compare Greater Than Unsigned 
Word VC-form

vcmpgtuw VRT,VRA,VRB (Rc=0)
vcmpgtuw. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 32
   VRTi:i+31 � ((VRA)i:i+31 >ui (VRB)i:i+31) ? 

321 : 320
if Rc=1 then do
   t � (VRT=1281)
   f � (VRT=1280)
   CR6 � t || 0b0 || f || 0b0

For each vector element i from 0 to 3, do the following.

Unsigned-integer word element i in VRA is com-
pared to unsigned-integer word element i in VRB.
Word element i in VRT is set to all 1s if
unsigned-integer word element i in VRA is greater
than to unsigned-integer word element i in VRB,
and is set to all 0s otherwise.

Special Registers Altered:
CR6 (if Rc=1)

4 VRT VRA VRB Rc 518
0 6 11 16 21 22                                     31

4 VRT VRA VRB Rc 582
0 6 11 16 21 22                                     31

4 VRT VRA VRB Rc 646
0 6 11 16 21 22                                     31
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5.9.3 Vector Logical Instructions

Extended mnemonics for vector logi-
cal operations
Extended mnemonics are provided that use the Vector
OR and Vector NOR instructions to copy the contents
of one Vector Register to another, with and without
complementing. These are shown as examples with the
two instructions.

Vector Move Register

Several vector instructions can be coded in a way
such that they simply copy the contents of one
Vector Register to another.  An extended mne-
monic is provided to convey the idea that no com-
putation is being performed but merely data
movement (from one register to another).

The following instruction copies the contents of
register Vy to register Vx.

vmr   Vx,Vy    (equivalent to:     vor   Vx,Vy,Vy)

Vector Complement Register

The Vector NOR instruction can be coded in a way
such that it complements the contents of one Vec-
tor Register and places the result into another Vec-
tor Register.  An extended mnemonic is provided
that allows this operation to be coded easily.

The following instruction complements the con-
tents of register Vy and places the result into regis-
ter Vx.

vnot  Vx,Vy    (equivalent to:     vnor  Vx,Vy,Vy)

Vector Logical AND VX-form

vand VRT,VRA,VRB

VRT � (VRA) & (VRB)

The contents of VRA are ANDed with the contents of
VRB and the result is placed into VRT.

Special Registers Altered:
None

Vector Logical AND with Complement
VX-form

vandc VRT,VRA,VRB

VRT � (VRA) & ¬(VRB)

The contents of VRA are ANDed with the complement
of the contents of VRB and the result is placed into
VRT.

Special Registers Altered:
None

Vector Logical NOR VX-form

vnor VRT,VRA,VRB

VRT � ¬( (VRA) | (VRB) )

The contents of VRA are ORed with the contents of
VRB and the complemented result is placed into VRT.

Special Registers Altered:
None

Vector Logical OR VX-form

vor VRT,VRA,VRB

VRT � (VRA) | (VRB)

The contents of VRA are ORed with the contents of
VRB and the result is placed into VRT.

Special Registers Altered:
None

Vector Logical XOR VX-form

vxor VRT,VRA,VRB

VRT � (VRA) ⊕  (VRB)

The contents of VRA are XORed with the contents of
VRB and the result is placed into VRT.

Special Registers Altered:
None

4 VRT VRA VRB 1028
0 6 11 16 21                                                31

4 VRT VRA VRB 1092
0 6 11 16 21                                                31

4 VRT VRA VRB 1284
0 6 11 16 21                                                31

4 VRT VRA VRB 1156
0 6 11 16 21                                                31

4 VRT VRA VRB 1220
0 6 11 16 21                                                31
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5.9.4 Vector Integer Rotate and Shift Instructions

Vector Rotate Left Byte VX-form

vrlb VRT,VRA,VRB

do i=0 to 127 by 8
   sh � (VRB)i+5:i+7
   VRTi:i+7 � (VRA)i:i+7 <<< sh

For each vector element i from 0 to 15, do the following.

Byte element i in VRA is rotated left by the number
of bits specified in the low-order 3 bits of the corre-
sponding byte element i in VRB. 

The result is placed into byte element i in VRT.

Special Registers Altered:
None

Vector Rotate Left Halfword VX-form

vrlh VRT,VRA,VRB

do i=0 to 127 by 16
   sh � (VRB)i+12:i+15
   VRTi:i+15 � (VRA)i:i+15 <<< sh

For each vector element i from 0 to 7, do the following.

Halfword element i in VRA is rotated left by the
number of bits specified in the low-order 4 bits of
the corresponding halfword element i in VRB. 

The result is placed into halfword element i in VRT.

Special Registers Altered:
None

Vector Rotate Left Word VX-form

vrlw VRT,VRA,VRB

do i=0 to 127 by 32
   sh � (VRB)i+27:i+31
   VRTi:i+31 � (VRA)i:i+31 <<< sh

For each vector element i from 0 to 3, do the following.

Word element i in VRA is rotated left by the num-
ber of bits specified in the low-order 5 bits of the
corresponding word element i in VRB. 

The result is placed into word element i in VRT.

Special Registers Altered:
None

4 VRT VRA VRB 4
0 6 11 16 21                                                31

4 VRT VRA VRB 68
0 6 11 16 21                                                31

4 VRT VRA VRB 132
0 6 11 16 21                                                31
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Vector Shift Left Byte VX-form

vslb VRT,VRA,VRB

do i=0 to 127 by 8
   sh � (VRB)i+5:i+7
   VRTi:i+7 � (VRA)i:i+7 << sh

For each vector element i from 0 to 15, do the following.

Byte element i in VRA is shifted left by the number
of bits specified in the low-order 3 bits of byte ele-
ment i in VRB. 

- Bits shifted out of bit 0 are lost. 
- Zeros are supplied to the vacated bits on

the right. 
The result is placed into byte element i of VRT.

Special Registers Altered:
None

Vector Shift Left Halfword VX-form

vslh VRT,VRA,VRB

do i=0 to 127 by 16
   sh � (VRB)i+12:i+15
   VRTi:i+15 � (VRA)i:i+15 << sh

For each vector element i from 0 to 7, do the following.

Halfword element i in VRA is shifted left by the
number of bits specified in the low-order 4 bits of
halfword element i in VRB. 

- Bits shifted out of bit 0 are lost. 
- Zeros are supplied to the vacated bits on

the right. 
The result is placed into halfword element i of VRT.

Special Registers Altered:
None

Vector Shift Left Word VX-form

vslw VRT,VRA,VRB

do i=0 to 127 by 32
   sh � (VRB)i+27:i+31
   VRTi:i+31 � (VRA)i:i+31 << sh

For each vector element i from 0 to 3, do the following.

Word element i in VRA is shifted left by the number
of bits specified in the low-order 5 bits of word ele-
ment i in VRB. 

- Bits shifted out of bit 0 are lost. 
- Zeros are supplied to the vacated bits on

the right. 
The result is placed into word element i of VRT.

Special Registers Altered:
None

4 VRT VRA VRB 260
0 6 11 16 21                                                31

4 VRT VRA VRB 324
0 6 11 16 21                                                31

4 VRT VRA VRB 388
0 6 11 16 21                                                31
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Vector Shift Right Byte VX-form

vsrb VRT,VRA,VRB

do i=0 to 127 by 8
   sh � (VRB)i+5:i+7
   VRTi:i+7 � (VRA)i:i+7 >>ui sh

For each vector element i from 0 to 15, do the following.

Byte element i in VRA is shifted right by the num-
ber of bits specified in the low-order 3 bits of byte
element i in VRB. Bits shifted out of the least-sig-
nificant bit are lost. Zeros are supplied to the
vacated bits on the left. The result is placed into
byte element i of VRT.

Special Registers Altered:
None

Vector Shift Right Halfword VX-form

vsrh VRT,VRA,VRB

do i=0 to 127 by 16
   sh � (VRB)i+12:i+15
   VRTi:i+15 � (VRA)i:i+15 >>ui sh

For each vector element i from 0 to 7, do the following.

Halfword element i in VRA is shifted right by the
number of bits specified in the low-order 4 bits of
halfword element i in VRB. Bits shifted out of the
least-significant bit are lost. Zeros are supplied to
the vacated bits on the left. The result is placed
into halfword element i of VRT.

Special Registers Altered:
None

Vector Shift Right Word VX-form

vsrw VRT,VRA,VRB

do i=0 to 127 by 32
   sh � (VRB)i+27:i+31
   VRTi:i+31 � (VRA)i:i+31 >>ui sh

For each vector element i from 0 to 3, do the following.

Word element i in VRA is shifted right by the num-
ber of bits specified in the low-order 5 bits of word
element i in VRB. Bits shifted out of the least-sig-
nificant bit are lost. Zeros are supplied to the
vacated bits on the left. The result is placed into
word element i of VRT.

Special Registers Altered:
None

4 VRT VRA VRB 516
0 6 11 16 21                                                31

4 VRT VRA VRB 580
0 6 11 16 21                                                31

4 VRT VRA VRB 644
0 6 11 16 21                                                31
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Vector Shift Right Algebraic Byte
VX-form

vsrab VRT,VRA,VRB

do i=0 to 127 by 8
   sh � (VRB)i+5:i+7
   VRTi:i+7 � (VRA)i:i+7 >>si sh

For each vector element i from 0 to 15, do the following.

Byte element i in VRA is shifted right by the num-
ber of bits specified in the low-order 3 bits of the
corresponding byte element i in VRB. Bits shifted
out of bit 7 of the byte element are lost. Bit 0 of the
byte element is replicated to fill the vacated bits on
the left. The result is placed into byte element i of
VRT.

Special Registers Altered:
None

Vector Shift Right Algebraic Halfword
VX-form

vsrah VRT,VRA,VRB

do i=0 to 127 by 16
   sh � (VRB)i+12:i+15
   VRTi:i+15 � (VRA)i:i+15 >>si sh

For each vector element i from 0 to 7, do the following.

Halfword element i in VRA is shifted right by the
number of bits specified in the low-order 4 bits of
the corresponding halfword element i in VRB. Bits
shifted out of bit 15 of the halfword are lost. Bit 0 of
the halfword is replicated to fill the vacated bits on
the left. The result is placed into halfword element i
of VRT.

Special Registers Altered:
None

Vector Shift Right Algebraic Word
VX-form

vsraw VRT,VRA,VRB

do i=0 to 127 by 32
   sh � (VRB)i+27:i+31
   VRTi:i+31 � (VRA)i:i+31 >>si sh

For each vector element i from 0 to 3, do the following.

Word element i in VRA is shifted right by the num-
ber of bits specified in the low-order 5 bits of the
corresponding word element i in VRB. Bits shifted
out of bit 31 of the word are lost. Bit 0 of the word is
replicated to fill the vacated bits on the left. The
result is placed into word element i of VRT.

Special Registers Altered:
None

4 VRT VRA VRB 772
0 6 11 16 21                                                31

4 VRT VRA VRB 836
0 6 11 16 21                                                31

4 VRT VRA VRB 900
0 6 11 16 21                                                31
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5.10 Vector Floating-Point Instruction Set

5.10.1 Vector Floating-Point Arithmetic Instructions

Vector Add Single-Precision VX-form

vaddfp VRT,VRA,VRB

do i=0 to 127 by 32
VRTi:i+31 � 

RoundToNearSP((VRA)i:i+31 +fp (VRB)i:i+31)

For each vector element i from 0 to 3, do the following.

Single-precision floating-point element i in VRA is
added to single-precision floating-point element i in
VRB. The intermediate result is rounded to the
nearest single-precision floating-point number and
placed into word element i of VRT.

Special Registers Altered:
None

Vector Subtract Single-Precision VX-form

vsubfp VRT,VRA,VRB

do i=0 to 127 by 32
   VRTi:i+31 � 

RoundToNearSP((VRA)i:i+31 -fp (VRB)i:i+31)

For each vector element i from 0 to 3, do the following.

Single-precision floating-point element i in VRB is
subtracted from single-precision floating-point ele-
ment i in VRA. The intermediate result is rounded
to the nearest single-precision floating-point num-
ber and placed into word element i of VRT.

Special Registers Altered:
None

4 VRT VRA VRB 10
0 6 11 16 21                                                31

4 VRT VRA VRB 74
0 6 11 16 21                                                31
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Vector Multiply-Add Single-Precision 
VA-form

vmaddfp VRT,VRA,VRC,VRB

do i=0 to 127 by 32
   prod � (VRA)i:i+31 ×fp (VRC)i:i+31
   VRTi:i+31�� RoundToNearSP( prod +fp (VRB)i:i+31 )

For each vector element i from 0 to 3, do the following.

Single-precision floating-point element i in VRA is
multiplied by single-precision floating-point ele-
ment i in VRC. Single-precision floating-point ele-
ment i in VRB is added to the infinitely-precise
product. The intermediate result is rounded to the
nearest single-precision floating-point number and
placed into word element i of VRT.

Special Registers Altered:
None 

 

Vector Negative Multiply-Subtract 
Single-Precision VA-form

vnmsubfp VRT,VRA,VRC,VRB

do i=0 to 127 by 32
   prod0:inf�� (VRA)i:i+31 ×fp (VRC)i:i+31
   VRTi:i+31 � 

-RoundToNearSP(prod0:inf -fp (VRB)i:i+31)

For each vector element i from 0 to 3, do the following.

Single-precision floating-point element i in VRA is
multiplied by single-precision floating-point ele-
ment i in VRC. Single-precision floating-point ele-
ment i in VRB is subtracted from the
infinitely-precise product. The intermediate result
is rounded to the nearest single-precision float-
ing-point number, then negated and placed into
word element i of VRT.

Special Registers Altered:
None

4 VRT VRA VRB VRC 46
0 6 11 16 21 26                     31

To use a multiply-add to perform an IEEE or Java
compliant multiply, the addend must be -0.0. This is
necessary to insure that the sign of a zero result
will be correct when the product is -0.0 (+0.0 + -0.0
≥ +0.0, and -0.0 + -0.0≥ -0.0). When the sign of a
resulting 0.0 is not important, then +0.0 can be
used as an addend which may, in some cases,
avoid the need for a second register to hold a -0.0
in addition to the integer 0/floating-point +0.0 that
may already be available.

Programming Note

4 VRT VRA VRB VRC 47
0 6 11 16 21 26                    31
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5.10.2 Vector Floating-Point Maximum and Minimum Instructions

Vector Maximum Single-Precision
VX-form

vmaxfp VRT,VRA,VRB

do i=0 to 127 by 32
   VRTi:i+31 � ( (VRA)i:i+31 >fp (VRB)i:i+31 ) 

? (VRA)i:i+31 : (VRB)i:i+31

For each vector element i from 0 to 3, do the following.

Single-precision floating-point element i in VRA is
compared to single-precision floating-point ele-
ment i in VRB. The larger of the two values is
placed into word element i of VRT.

The maximum of +0 and -0 is +0. The maximum of any
value and a NaN is a QNaN.

Special Registers Altered:
None

Vector Minimum Single-Precision
VX-form

vminfp VRT,VRA,VRB

do i=0 to 127 by 32
VRTi:i+31 � ( (VRA)i:i+31 <fp (VRB)i:i+31 )

? (VRA)i:i+31 : (VRB)i:i+31

For each vector element i from 0 to 3, do the following.

Single-precision floating-point element i in VRA is
compared to single-precision floating-point ele-
ment i in VRB. The smaller of the two values is
placed into word element i of VRT.

The minimum of +0 and -0 is -0. The minimum of any
value and a NaN is a QNaN.

Special Registers Altered:
None

4 VRT VRA VRB 1034
0 6 11 16 21                                                31

4 VRT VRA VRB 1098
0 6 11 16 21                                                31
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5.10.3 Vector Floating-Point Rounding and Conversion Instructions
See Appendix B, “Vector RTL Functions [Category:
Vector]” on page 309, for RTL function descriptions.

Vector Convert to Signed Fixed-Point 
Word Saturate  VX-form

vctsxs VRT,VRB,UIM

do i=0 to 127 by 32
   VRTi:i+31 � 

ConvertSPtoSXWsaturate((VRB)i:i+31, UIM)

For each vector element i from 0 to 3, do the following.

Single-precision floating-point word element i in
VRB is multiplied by 2UIM. The product is con-
verted to a 32-bit signed fixed-point integer using
the rounding mode Round toward Zero.

- If the intermediate result is greater than
231-1 the result saturates to 231-1.

- If the intermediate result is less than -231

the result saturates to -231. 

The result is placed into word element i of VRT.

Special Registers Altered:
SAT

Extended Mnemonics:

Example of an extended mnemonics for Vector Convert
to Signed Fixed-Point Word Saturate: 

Vector Convert to Unsigned Fixed-Point 
Word Saturate VX-form

vctuxs VRT,VRB,UIM

do i=0 to 127 by 32
   VRTi:i+31 � 

ConvertSPtoUXWsaturate((VRB)i:i+31, UIM)

For each vector element i from 0 to 3, do the following.

Single-precision floating-point word element i in
VRB is multiplied by 2UIM. The product is con-
verted to a 32-bit unsigned fixed-point integer
using the rounding mode Round toward Zero. 

- If the intermediate result is greater than
232-1 the result saturates to 232-1. 

The result is placed into word element i of VRT.

Special Registers Altered:
SAT

Extended Mnemonics:

Example of an extended mnemonics for Vector Convert
to Unsigned Fixed-Point Word Saturate: 

4 VRT UIM VRB 970
0 6 11 16 21                                                31

Extended: Equivalent to:
vcfpsxws VRT,VRB,UIM vctsxs VRT,VRB,UIM

4 VRT UIM VRB 906
0 6 11 16 21                                                31

Extended: Equivalent to:
vcfpuxws VRT,VRB,UIM vctuxs VRT,VRB,UIM
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Vector Convert from Signed Fixed-Point 
Word VX-form

vcfsx VRT,VRB,UIM

do i=0 to 127 by 32
   VRTi:i+31 � 

ConvertSXWtoSP( (VRB)i:i+31 ) ÷fp 2
UIM

For each vector element i from 0 to 3, do the following.

Signed fixed-point word element i in VRB is con-
verted to the nearest single-precision floating-point
value. Each result is divided by 2UIM and placed
into word element i of VRT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Vector Convert
from Signed Fixed-Point Word 

Vector Convert from Unsigned 
Fixed-Point Word VX-form

vcfux VRT,VRB,UIM

do i=0 to 127 by 32
   VRTi:i+31 � 

ConvertUXWtoSP( (VRB)i:i+31 ) ÷fp 2
UIM

For each vector element i from 0 to 3, do the following.

Unsigned fixed-point word element i in VRB is con-
verted to the nearest single-precision floating-point
value. The result is divided by 2UIM and placed into
word element i of VRT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Vector Convert
from Unsigned Fixed-Point Word 

4 VRT UIM VRB 842
0 6 11 16 21                                                31

Extended: Equivalent to:
vcsxwfp VRT,VRB,UIM vcfsx VRT,VRB,UIM

4 VRT UIM VRB 778
0 6 11 16 21                                                31

Extended: Equivalent to:
vcuxwfp VRT,VRB,UIM vcfux VRT,VRB,UIM
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Vector Round to Single-Precision Integer 
toward -Infinity VX-form

vrfim VRT,VRB

do i=0 to 127 by 32
   VRT0:31 � RoundToSPIntFloor( (VRB)0:31 )

For each vector element i from 0 to 3, do the following.

Single-precision floating-point element i in VRB is
rounded to a single-precision floating-point integer
using the rounding mode Round toward -Infinity. 

The result is placed into the corresponding word
element i  of VRT.

Special Registers Altered:
None

 

 

Vector Round to Single-Precision Integer 
Nearest VX-form

vrfin VRT,VRB

do i=0 to 127 by 32
   VRT0:31 � RoundToSPIntNear( (VRB)0:31 )

For each vector element i from 0 to 3, do the following.

Single-precision floating-point element i in VRB is
rounded to a single-precision floating-point integer
using the rounding mode Round to Nearest. 

The result is placed into the corresponding word
element i  of VRT.

Special Registers Altered:
None

Vector Round to Single-Precision Integer 
toward  +Infinity VX-form

vrfip VRT,VRB

do i=0 to 127 by 32
   VRT0:31 � RoundToSPIntCeil( (VRB)0:31 )

For each vector element i from 0 to 3, do the following.

Single-precision floating-point element i in VRB is
rounded to a single-precision floating-point integer
using the rounding mode Round toward +Infinity. 

The result is placed into the corresponding word
element i  of VRT.

Special Registers Altered:
None

Vector Round to Single-Precision Integer 
toward Zero VX-form

vrfiz VRT,VRB

do i=0 to 127 by 32
   VRT0:31 � RoundToSPIntTrunc( (VRB)0:31 )

For each vector element i from 0 to 3, do the following.

Single-precision floating-point element i in VRB is
rounded to a single-precision floating-point integer
using the rounding mode Round toward Zero. 

The result is placed into the corresponding word
element i  of VRT.

Special Registers Altered:
None

4 VRT /// VRB 714
0 6 11 16 21                                                31

The Vector Convert To Fixed-Point Word instruc-
tions support only the rounding mode Round
toward Zero. A floating-point number can be con-
verted to a fixed-point integer using any of the other
three rounding modes by executing the appropriate
Vector Round to Floating-Point Integer instruction
before the Vector Convert To Fixed-Point Word
instruction.

The fixed-point integers used by the Vector Convert
instructions can be interpreted as consisting of
32-UIM integer bits followed by UIM fraction bits.

Programming Note

Programming Note

4 VRT /// VRB 522
0 6 11 16 21                                                31

4 VRT /// VRB 650
0 6 11 16 21                                                31

4 VRT /// VRB 586
0 6 11 16 21                                                31
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5.10.4 Vector Floating-Point Compare Instructions
The Vector Floating-Point Compare instructions com-
pare two Vector Registers word element by word ele-
ment, interpreting the elements as single-precision
floating-point numbers. With the exception of the Vector
Compare Bounds Floating-Point instruction, they set
the target Vector Register, and CR Field 6 if Rc=1, in
the same manner as do the Vector Integer Compare
instructions; see Section 5.9.2.

The Vector Compare Bounds Floating-Point instruction
sets the target Vector Register, and CR Field 6 if Rc=1,
to indicate whether the elements in VRA are within the
bounds specified by the corresponding element in VRB,
as explained in the instruction description. A single-pre-
cision floating-point value x is said to be “within the
bounds” specified by a single-precision floating-point
value y if -y ≤ x ≤ y.

Vector Compare Bounds Single-Precision
VC-form

vcmpbfp VRT,VRA,VRB (Rc=0)
vcmpbfp. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 32
   le � ( (VRA)i:i+31 ≤fp (VRB)i:i+31 )
   ge � ( (VRA)i:i+31 ≥fp -(VRB)i:i+31 )
   VRTi:i+31 � ¬le || ¬ge || 300
if Rc=1 then do
   ib � (VRT=1280)
   CR6 � 0b00 || ib || 0b0

For each vector element i from 0 to 3, do the following.

Single-precision floating-point word element i in
VRA is compared to single-precision floating-point
word element i in VRB. A 2-bit value is formed that
indicates whether the element in VRA is within the
bounds specified by the element in VRB, as fol-
lows.
- Bit 0 of the 2-bit value is set to 0 if the element

in VRA is less than or equal to the element in
VRB, and is set to 1 otherwise.

- Bit 1 of the 2-bit value is set to 0 if the element
in VRA is greater than or equal to the negation
of the element in VRB, and is set to 1 other-
wise.

The 2-bit value is placed into the high-order two
bits of word element i of VRT and the remaining
bits of element i are set to 0.

If Rc=1, CR field 6 is set as follows.

Special Registers Altered:
CR6 (if Rc=1)

 

Vector Compare Equal To
Single-Precision VC-form

vcmpeqfp VRT,VRA,VRB (Rc=0)
vcmpeqfp. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 32
   VRTi:i+31 � ((VRA)i:i+31 =fp (VRB)i:i+31) ? 

321 : 320
if Rc=1 then do
   t � ( VRT=1281 )
   f � ( VRT=1280 )
   CR6 � t || 0b0 || f || 0b0

For each vector element i from 0 to 3, do the following.

Single-precision floating-point element i in VRA is
compared to single-precision floating-point ele-
ment i in VRB. Word element i in VRT is set to all
1s if single-precision floating-point element i in
VRA is equal to single-precision floating-point ele-
ment i in VRB, and is set to all 0s otherwise.

If the source element i in VRA or the source ele-
ment i in VRB is a NaN, VRT is set to all 0s, indi-
cating “not equal to”. If the source element i in VRA
and the source element i in VRB are both infinity
with the same sign, VRT is set to all 1s, indicating
“equal to”. 

Special Registers Altered:
CR6 (if Rc=1)

4 VRT VRA VRB Rc 966
0 6 11 16 21 22                                     31

Bit Description
0 Set to 0
1 Set to 0
2 Set to indicate whether all four elements in VRA

are within the bounds specified by the corre-
sponding element in VRB, otherwise set to 0.

3 Set to 0

Each single-precision floating-point word element
in VRB should be non-negative; if it is negative, the
corresponding element in VRA will necessarily be
out of bounds.

One exception to this is when the value of an ele-
ment in VRB is -0.0 and the value of the corre-
sponding element in VRA is either +0.0 or -0.0.
+0.0 and -0.0 compare equal to -0.0.

4 VRT VRA VRB Rc 198
0 6 11 16 21 22                                     31

Programming Note
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Vector Compare Greater Than or Equal To 
Single-Precision VC-form

vcmpgefp VRT,VRA,VRB (Rc=0)
vcmpgefp. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 32
   VRTi:i+31 �((VRA)i:i+31 ≥fp (VRB)i:i+31) ? 

321 : 320
if Rc=1 then do
   t � ( VRT=1281 )
   f � ( VRT=1280 )
   CR6 � t || 0b0 || f || 0b0

For each vector element i from 0 to 3, do the following.

Single-precision floating-point element i in VRA is
compared to single-precision floating-point ele-
ment i in VRB. Word element i in VRT is set to all
1s if single-precision floating-point element i in
VRA is greater than or equal to single-precision
floating-point element i in VRB, and is set to all 0s
otherwise.

If the source element i in VRA or the source ele-
ment i in VRB is a NaN, VRT is set to all 0s, indi-
cating “not greater than or equal to”. If the source
element i in VRA and the source element i in VRB
are both infinity with the same sign, VRT is set to
all 1s, indicating “greater than or equal to”. 

Special Registers Altered:
CR6 (if Rc=1)

Vector Compare Greater Than 
Single-Precision VC-form

vcmpgtfp VRT,VRA,VRB (Rc=0)
vcmpgtfp. VRT,VRA,VRB (Rc=1)

do i=0 to 127 by 32
   VRTi:i+31 = ((VRA)i:i+31 >fp (VRB)i:i+31) ? 

321 : 320
if Rc=1 then do
   t � ( VRT=1281 )
   f � ( VRT=1280 )
   CR6 � t || 0b0 || f || 0b0

For each vector element i from 0 to 3, do the following.

Single-precision floating-point element i in VRA is
compared to single-precision floating-point ele-
ment i in VRB. Word element i in VRT is set to all
1s if single-precision floating-point element i in
VRA is greater than single-precision floating-point
element i in VRB, and is set to all 0s otherwise.

If the source element i in VRA or the source ele-
ment i in VRB is a NaN, VRT is set to all 0s, indi-
cating “not greater than”. If the source element i in
VRA and the source element i in VRB are both
infinity with the same sign, VRT is set to all 0s, indi-
cating “not greater than”.

Special Registers Altered:
CR6 (if Rc=1)

4 VRT VRA VRB Rc 454
0 6 11 16 21 22                                     31

4 VRT VRA VRB Rc 710
0 6 11 16 21 22                                     31
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5.10.5 Vector Floating-Point Estimate Instructions

Vector 2 Raised to the Exponent Estimate 
Floating-Point VX-form

vexptefp VRT,VRB

do i=0 to 127 by 32
   VRTi:i+31 � Power2EstimateSP( (VRB)i:i+31 )

For each vector element i from 0 to 3, do the following.

The single-precision floating-point estimate of 2
raised to the power of single-precision float-
ing-point element i in VRB is placed into word ele-
ment i of VRT.

Let x be any single-precision floating-point input value.
Unless x< -146 or the single-precision floating-point
result of computing 2 raised to the power x would be a
zero, an infinity, or a QNaN, the estimate has a relative
error in precision no greater than one part in 16. The
most significant 12 bits of the estimate’s significand are
monotonic. An integral input value returns an integral
value when the result is representable.

The result for various special cases of the source value
is given below. 

Special Registers Altered:
None

Vector Log Base 2 Estimate
Floating-Point VX-form

vlogefp VRT,VRB

do i=0 to 127 by 32
   VRTi:i+31 � LogBase2EstimateSP((VRB)i:i+31)

For each vector element i from 0 to 3, do the following.

The single-precision floating-point estimate of the
base 2 logarithm of single-precision floating-point
element i in VRB is placed into the corresponding
word element of VRT. 

Let x be any single-precision floating-point input value.
Unless | x-1 | is less than or equal to 0.125 or the sin-
gle-precision floating-point result of computing the base
2 logarithm of x would be an infinity or a QNaN, the
estimate has an absolute error in precision (absolute
value of the difference between the estimate and the
infinitely precise value) no greater than 2-5. Under the
same conditions, the estimate has a relative error in
precision no greater than one part in 8.

The most significant 12 bits of the estimate’s signifi-
cand are monotonic. The estimate is exact if x=2y,
where y is an integer between -149 and +127 inclusive.
Otherwise the value placed into the element of register
VRT may vary between implementations, and between
different executions on the same implementation.

The result for various special cases of the source value
is given below.  

Special Registers Altered:
None

4 VRT /// VRB 394
0 6 11 16 21                                                31

Value Result
- Infinity +0

-0 +1
+0 +1

+Infinity +Infinity
NaN QNaN

4 VRT /// VRB 458
0 6 11 16 21                                                31

Value Result
- Infinity QNaN

< 0 QNaN
- 0 - Infinity
+0 - Infinity

+Infinity +Infinity
NaN QNaN
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Vector Reciprocal Estimate 
Single-Precision VX-form

vrefp VRT,VRB

do i=0 to 127 by 32
   VRTi:i+31 � ReciprocalEstimateSP( (VRB)i:i+31 )

For each vector element i from 0 to 3, do the following.

The single-precision floating-point estimate of the
reciprocal of single-precision floating-point ele-
ment  i in VRB is placed into word element  i of
VRT.

Unless the single-precision floating-point result of com-
puting the reciprocal of a value would be a zero, an
infinity, or a QNaN, the estimate has a relative error in
precision no greater than one part in 4096.

Note that results may vary between implementations,
and between different executions on the same imple-
mentation.

The result for various special cases of the source value
is given below.  

Special Registers Altered:
None

Vector Reciprocal Square Root Estimate 
Single-Precision VX-form

vrsqrtefp VRT,VRB

do i=0 to 127 by 32
   VRTi:i+31 � ReciprocalSquareRootEstimateSP( 
(VRB)i:i+31 )

For each vector element i from 0 to 3, do the following.

The single-precision floating-point estimate of the
reciprocal of the square root of single-precision
floating-point element i in VRB is placed into word
element i of VRT.

Let x be any single-precision floating-point value.
Unless the single-precision floating-point result of com-
puting the reciprocal of the square root of x would be a
zero, an infinity, or a QNaN, the estimate has a relative
error in precision no greater than one part in 4096.

Note that results may vary between implementations,
and between different executions on the same imple-
mentation.

The result for various special cases of the source value
is given below.  

Special Registers Altered:
None

4 VRT /// VRB 266
0 6 11 16 21                                                31

Value Result
- Infinity -0

- 0 - Infinity
+0 + Infinity

+Infinity +0
NaN QNaN

4 VRT /// VRB 330
0 6 11 16 21                                                31

Value Result
- Infinity QNaN

< 0 QNaN
- 0 - Infinity
+0 + Infinity

+Infinity +0
NaN QNaN
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5.11 Vector Status and Control Register Instructions

Move To Vector Status and Control 
Register VX-form

mtvscr VRB

VSCR � (VRB)96:127

The contents of word element 3 of VRB are placed into
the VSCR.

Special Registers Altered:
None

Move From Vector Status and Control 
Register VX-form

mfvscr VRT

VRT � 960 || (VSCR)

The contents of the VSCR are placed into word ele-
ment 3 of VRT.

The remaining word elements in VRT are set to 0.

Special Registers Altered:
None

4 /// VRB 1604
0 6 16 21                                                31

4 VRT /// 1540
0 6 11 21                                                31
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Chapter 6.  Signal Processing Engine (SPE)
[Category: Signal Processing Engine]
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6.1 Overview
The Signal Processing Engine (SPE) accelerates sig-
nal processing applications normally suited to DSP
operation. This is accomplished using short vectors
(two element) within 64-bit GPRs and using single
instruction multiple data (SIMD) operations to perform
the requisite computations. SPE also architects an
Accumulator register to allow for back to back opera-
tions without loop unrolling.

6.2 Nomenclature and Conven-
tions
Several conventions regarding nomenclature are used
for SPE: 
� The Signal Processing Engine category is abbrevi-

ated as SPE.
� Bits 0 to 31 of a 64-bit register are referenced as

upper word, even word or high word element of the
register. Bits 32:63 are referred to as lower word,
odd word or low word element of the register. Each
half is an element of a 64-bit GPR.

� Bits 0 to 15 and bits 32 to 47 are referenced as
even halfwords. Bits 16 to 31 and bits 48 to 63 are
referenced as odd halfwords. 

� Mnemonics for SPE instructions generally begin
with the letters ‘ev’ (embedded vector).

The RTL conventions in described below are used in
addition to those described in Section 1.3:Additional
RTL functions are described in Appendix C.

Notation Meaning
×sf Signed fractional multiplication. Result of

multiplying 2 signed fractional quantities
having bit length n taking the least signifi-
cant 2n-1 bits of the sign extended product
and concatenating a 0 to the least signifi-
cant bit forming a signed fractional result
of 2n bits. Two 16-bit signed fractional
quantities, a and b are multiplied, as
shown below: 
ea0:31 = EXTS(a)
eb0:31 = EXTS(b)
prod0:63 = ea X eb
eprod0:63 = EXTS(prod32:63)
result0:31 = eprod33:63 || 0b0

×gsf Guarded signed fractional multiplication.
Result of multiplying 2 signed fractional
quantities having bit length 16 taking the
least significant 31 bits of the sign
extended product and concatenating a 0 to
the least significant bit forming a guarded
signed fractional result of 64 bits. Since
guarded signed fractional multiplication
produces a 64-bit result, fractional input
quantities of -1 and -1 can produce +1 in
the intermediate product. Two 16-bit frac-
tional quantities, a and b are multiplied, as
shown below: 
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ea0:31 = EXTS(a)
eb0:31 = EXTS(b)
prod0:63 = ea X eb
eprod0:63 = EXTS(prod32:63)
result0:63 = eprod1:63 || 0b0

<< Logical shift left. x << y shifts value x left
by y bits, leaving zeros in the vacated bits.

>> Logical shift right. x >> y shifts value x
right by y bits, leaving zeros in the vacated
bits.

6.3 Programming Model

6.3.1 General Operation
SPE instructions generally take elements from one
source register and operate on them with the corre-
sponding elements of a second source register (and/or
the accumulator) to produce results. Results are placed
in the destination register and/or the accumulator.
Instructions that are vector in nature (i.e. produce
results of more than one element) provide results for
each element that are independent of the computation
of the other elements. These instructions can also be
used to perform scalar DSP operations by ignoring the
results of the upper 32-bit half of the register file.

There are no record forms of SPE instructions. As a
result, the meaning of bits in the CR is different than for
other categories. SPE Compare instructions specify a
CR field, two source registers, and the type of com-
pare: greater than, less than, or equal. Two bits of the
CR field are written with the result of the vector com-
pare, one for each element. The remaining two bits
reflect the ANDing and ORing of the vector compare
results.

6.3.2 GPR Registers
The SPE requires a GPR register file with thirty-two
64-bit registers. For 32-bit implementations, instruc-
tions that normally operate on a 32-bit register file
access and change only the least significant 32-bits of
the GPRs leaving the most significant 32-bits
unchanged. For 64-bit implementations, operation of
these instructions is unchanged, i.e. those instructions
continue to operate on the 64-bit registers as they
would if the SPE was not implemented. Most SPE
instructions view the 64-bit register as being composed
of a vector of two elements, each of which is 32 bits
wide (some instructions read or write 16-bit elements).
The most significant 32-bits are called the upper word,
high word or even word. The least significant 32-bits
are called the lower word, low word or odd word.

Unless otherwise specified, SPE instructions write all
64-bits of the destination register.

Figure 66. GPR

6.3.3 Accumulator Register
A partially visible accumulator register (ACC) is pro-
vided for some SPE instructions. The accumulator is a
64-bit register that holds the results of the Multiply
Accumulate (MAC) forms of SPE Fixed-Point instruc-
tions. The accumulator allows the back-to-back execu-
tion of dependent MAC instructions, something that is
found in the inner loops of DSP code such as FIR and
FFT filters. The accumulator is partially visible to the
programmer in the sense that its results do not have to
be explicitly read to use them. Instead they are always
copied into a 64-bit destination GPR which is specified
as part of the instruction. Based upon the type of
instruction, the accumulator can hold either a single
64-bit value or a vector of two 32-bit elements.

Figure 67. Accumulator 

6.3.4 Signal Processing Embed-
ded Floating-Point Status and Con-
trol Register (SPEFSCR)
Status and control for SPE uses the SPEFSCR regis-
ter. This register is also used by the SPE.Embedded
Float Scalar Double, SPE.Embedded Float Scalar Sin-
gle, and SPE.Embedded Float Vector categories. Sta-
tus and control bits are shared with these categories.
The SPEFSCR register is implemented as special pur-
pose register (SPR) number 512 and is read and writ-
ten by the mfspr and mtspr instructions. SPE
instructions affect both the high element (bits 32:33)
and low element status flags (bits 48:49) of the SPEF-
SCR.

Figure 68. Signal Processing and Embedded
Floating-Point Status and Control Register

The SPEFSCR bits are defined as shown below.

Bit Description

32 Summary Integer Overflow High (SOVH)
SOVH is set to 1 when an SPE instruction
sets OVH. This is a sticky bit.

GPR Upper Word GPR Lower Word
0 32                                                   63

ACC Upper Word ACC Lower Word
0 32                                                   63

SPEFSCR
32 63
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33 Integer Overflow High (OVH)
OVH is set to 1 to indicate that an overflow
has occurred in the upper element during exe-
cution of an SPE instruction. The bit is set to 1
if a result of an operation performed by the
instruction cannot be represented in the num-
ber of bits into which the result is to be placed,
and is set to 0 otherwise. The OVH bit is not
altered by Modulo instructions, nor by other
instructions that cannot overflow.

34 Embedded Floating-Point Guard Bit High
(FGH) [Category: SP.FV]
FGH is supplied for use by the Embedded
Floating-Point Round interrupt handler. FGH
is an extension of the low-order bits of the
fractional result produced from an
SPE.Embedded Float Vector instruction on
the high word. FGH is zeroed if an overflow,
underflow, or invalid input error is detected on
the high element of an SPE.Embedded Float
Vector instruction.

Execution of an SPE.Embedded Float Scalar
instruction leaves FGH undefined.

35 Embedded Floating-Point Inexact Bit High
(FXH) [Category: SP.FV]
FXH is supplied for use by the Embedded
Floating-Point Round interrupt handler. FXH is
an extension of the low-order bits of the frac-
tional result produced from an SPE.Embed-
ded Float Vector instruction on the high word.
FXH represents the logical ‘or’ of all the bits
shifted right from the Guard bit when the frac-
tional result is normalized. FXH is zeroed if an
overflow, underflow, or invalid input error is
detected on the high element of an
SPE.Embedded Float Vector instruction.

Execution of an SPE.Embedded Float Scalar
instruction leaves FXH undefined.

36 Embedded Floating-Point Invalid Opera-
tion/Input Error High (FINVH) [Category:
SP.FV]
The FINVH bit is set to 1 if any high word
operand of an SPE.Embedded Float Vector
instruction is infinity, NaN, or a denormalized
value, or if the instruction is a divide and the
dividend and divisor are both 0, or if a conver-
sion to integer or fractional value overflows.

Execution of an SPE.Embedded Float Scalar
instruction leaves FINVH undefined.

37 Embedded Floating-Point Divide By Zero
High (FDBZH) [Category: SP.FV]
The FDBZH bit is set to 1 when an
SPE.Embedded Vector Floating-Point Divide
instruction is executed with a divisor of 0 in the
high word operand, and the dividend is a finite
nonzero number.

Execution of an SPE.Embedded Float Scalar
instruction leaves FDBZH undefined.

38 Embedded Floating-Point Underflow High
(FUNFH) [Category: SP.FV]
The FUNFH bit is set to 1 when the execution
of an SPE.Embedded Float Vector instruction
results in an underflow on the high word oper-
ation.

Execution of an SPE.Embedded Float Scalar
instruction leaves FUNFH undefined.

39 Embedded Floating-Point Overflow High
(FOVFH) [Category: SP.FV]
The FOVFH bit is set to 1 when the execution
of an SPE.Embedded Float Vector instruction
results in an overflow on the high word opera-
tion.

Execution of an SPE.Embedded Float Scalar
instruction leaves FOVFH undefined.

40:41 Reserved

42 Embedded Floating-Point Inexact Sticky
Flag (FINXS) [Categories: SP.FV, SP.FD,
SP.FS]
The FINXS bit is set to 1 whenever the execu-
tion of an Embedded Floating-Point instruction
delivers an inexact result for either the low or
high element and no Embedded Float-
ing-Point Data interrupt is taken for either ele-
ment, or if an Embedded Floating-Point
instruction results in overflow (FOVF=1 or
FOVFH=1), but Embedded Floating-Point
Overflow exceptions are disabled (FOVFE=0),
or if an Embedded Floating-Point instruction
results in underflow (FUNF=1 or FUNFH=1),
but Embedded Floating-Point Underflow
exceptions are disabled (FUNFE=0), and no
Embedded Floating-Point Data interrupt
occurs. This is a sticky bit.

43 Embedded Floating-Point Invalid Opera-
tion/Input Sticky Flag (FINVS) [Categories:
SP.FV, SP.FD, SP.FS]
The FINVS bit is defined to be the sticky result
of any Embedded Floating-Point instruction
that causes FINVH or FINV to be set to 1.
That is, FINVS � FINVS | FINV | FINVH. This
is a sticky bit.

44 Embedded Floating-Point Divide By Zero
Sticky Flag (FDBZS) [Categories: SP.FV,
SP.FD, SP.FS]
The FDBZS bit is set to 1 when an Embedded
Floating-Point Divide instruction sets FDBZH
or FDBZ to 1. That is, FDBZS � FDBZS |
FDBZ | FDBZH. This is a sticky bit.

45 Embedded Floating-Point Underflow Sticky
Flag (FUNFS) [Categories: SP.FV, SP.FD,
SP.FS]
The FUNFS bit is defined to be the sticky
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result of any Embedded Floating-Point instruc-
tion that causes FUNFH or FUNF to be set to
1. That is, FUNFS � FUNFS | FUNF | FUNFH.
This is a sticky bit.

46 Embedded Floating-Point Overflow Sticky
Flag (FOVFS) [Categories: SP.FV, SP.FD,
SP.FS]
The FOVFS bit is defined to be the sticky
result of any Embedded Floating-Point instruc-
tion that causes FOVH or FOVF to be set to 1.
That is, FOVFS � FOVFS | FOVF | FOVFH.
This is a sticky bit.

47 Reserved

48 Summary Integer Overflow (SOV)
SOV is set to 1 when an SPE instruction sets
OV to 1. This is a sticky bit.

49 Integer Overflow (OV)
OV is set to 1 to indicate that an overflow has
occurred in the lower element during execu-
tion of an SPE instruction. The bit is set to 1 if
a result of an operation performed by the
instruction cannot be represented in the num-
ber of bits into which the result is to be placed,
and is set to 0 otherwise. The OV bit is not
altered by Modulo instructions, nor by other
instructions that cannot overflow.

50 Embedded Floating-Point Guard Bit (Low/
scalar) (FG) [Categories: SP.FV, SP.FD,
SP.FS]
FG is supplied for use by the Embedded
Floating-Point Round interrupt handler. FG is
an extension of the low-order bits of the frac-
tional result produced from an Embedded
Floating-Point instruction on the low word. FG
is zeroed if an overflow, underflow, or invalid
input error is detected on the low element of
an Embedded Floating-Point instruction.

51 Embedded Floating-Point Inexact Bit (Low/
scalar) (FX) [Categories: SP.FV, SP.FD,
SP.FS]
FX is supplied for use by the Embedded Float-
ing-Point Round interrupt handler. FX is an
extension of the low-order bits of the fractional
result produced from an Embedded Float-
ing-Point instruction on the low word. FX rep-
resents the logical ‘or’ of all the bits shifted
right from the Guard bit when the fractional
result is normalized. FX is zeroed if an over-
flow, underflow, or invalid input error is
detected on Embedded Floating-Point instruc-
tion

52 Embedded Floating-Point Invalid Opera-
tion/Input Error (Low/scalar) (FINV) [Cate-
gories: SP.FV, SP.FD, SP.FS]
The FINV bit is set to 1 if any low word oper-
and of an Embedded Floating-Point instruc-
tion is infinity, NaN, or a denormalized value,

or if the operation is a divide and the dividend
and divisor are both 0, or if a conversion to
integer or fractional value overflows.

53 Embedded Floating-Point Divide By Zero
(Low/scalar) (FDBZ) [Categories: SP.FV,
SP.FD, SP.FS]
The FDBZ bit is set to 1 when an Embedded
Floating-Point Divide instruction is executed
with a divisor of 0 in the low word operand,
and the dividend is a finite nonzero number.

54 Embedded Floating-Point Underflow (Low/
scalar) (FUNF) [Categories: SP.FV, SP.FD,
SP.FS]
The FUNF bit is set to 1 when the execution of
an Embedded Floating-Point instruction
results in an underflow on the low word opera-
tion.

55 Embedded Floating-Point Overflow (Low/
scalar) (FOVF) [Categories: SP.FV, SP.FD,
SP.FS]
The FOVF bit is set to 1 when the execution of
an Embedded Floating-Point instruction
results in an overflow on the low word opera-
tion.

56 Reserved

57 Embedded Floating-Point Round (Inexact)
Exception Enable (FINXE) [Categories:
SP.FV, SP.FD, SP.FS]

0 Exception disabled
1 Exception enabled

The Embedded Floating-Point Round interrupt
is taken if the exception is enabled and if FG |
FGH | FX | FXH (signifying an inexact result)
is set to 1 as a result of an Embedded Float-
ing-Point instruction.

If an Embedded Floating-Point instruction
results in overflow or underflow and the corre-
sponding Embedded Floating-Point Underflow
or Embedded Floating-Point Overflow excep-
tion is disabled then the Embedded Float-
ing-Point Round interrupt is taken.

58 Embedded Floating-Point Invalid Opera-
tion/Input Error Exception Enable (FINVE)
[Categories: SP.FV, SP.FD, SP.FS]

0 Exception disabled
1 Exception enabled

If the exception is enabled, an Embedded
Floating-Point Data interrupt is taken if the
FINV or FINVH bit is set to 1 by an Embedded
Floating-Point instruction.

59 Embedded Floating-Point Divide By Zero
Exception Enable (FDBZE) [Categories:
SP.FV, SP.FD, SP.FS]

0 Exception disabled
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1 Exception enabled

If the exception is enabled, an Embedded
Floating-Point Data interrupt is taken if the
FDBZ or FDBZH bit is set to 1 by an Embed-
ded Floating-Point instruction.

60 Embedded Floating-Point Underflow
Exception Enable (FUNFE) [Categories:
SP.FV, SP.FD, SP.FS]

0 Exception disabled
1 Exception enabled

If the exception is enabled, an Embedded
Floating-Point Data interrupt is taken if the
FUNF or FUNFH bit is set to 1 by an Embed-
ded Floating-Point instruction.

61 Embedded Floating-Point Overflow Excep-
tion Enable (FOVFE) [Categories: SP.FV,
SP.FD, SP.FS]

0 Exception disabled
1 Exception enabled

If the exception is enabled, an Embedded
Floating-Point Data interrupt is taken if the
FOVF or FOVFH bit is set to 1 by an Embed-
ded Floating-Point instruction.

62:63 Embedded Floating-Point Rounding Mode
Control (FRMC) [Categories: SP.FV, SP.FD,
SP.FS]

00 Round to Nearest
01 Round toward Zero
10 Round toward +Infinity
11 Round toward -Infinity

  

6.3.5 Data Formats
The SPE provides two different data formats, integer
and fractional. Both data formats can be treated as
signed or unsigned quantities.

6.3.5.1 Integer Format
Unsigned integers consist of 16, 32, or 64-bit binary
integer values. The largest representable value is 2n-1
where n represents the number of bits in the value. The
smallest representable value is 0. Computations that

produce values larger than 2n-1 or smaller than 0 may
set OV or OVH in the SPEFSCR.

Signed integers consist of 16, 32, or 64-bit binary val-
ues in two’s complement form. The largest represent-
able value is 2n-1-1 where n represents the number of
bits in the value. The smallest representable value is
-2n-1. Computations that produce values larger than
2n-1-1 or smaller than -2n-1 may set OV or OVH in the
SPEFSCR.

6.3.5.2 Fractional Format
Fractional data format is conventionally used for DSP
fractional arithmetic. Fractional data is useful for repre-
senting data converted from analog devices.

Unsigned fractions consist of 16, 32, or 64-bit binary
fractional values that range from 0 to less than 1.
Unsigned fractions place the radix point immediately to
the left of the most significant bit. The most significant
bit of the value represents the value 2-1, the next most
significant bit represents the value 2-2 and so on. The
largest representable value is 1-2-n where n represents
the number of bits in the value. The smallest represent-
able value is 0. Computations that produce values
larger than 1-2-n or smaller than 0 may set OV or OVH
in the SPEFSCR. The SPE category does not define
unsigned fractional forms of instructions to manipulate
unsigned fractional data since the unsigned integer
forms of the instructions produce the same results as
would the unsigned fractional forms.

Guarded unsigned fractions are 64-bit binary fractional
values. Guarded unsigned fractions place the decimal
point immediately to the left of bit 32. The largest repre-
sentable value is 232-2-32. The smallest representable
value is 0. Guarded unsigned fractional computations
are always modulo and do not set OV or OVH in the
SPEFSCR.

Signed fractions consist of 16, 32, or 64-bit binary frac-
tional values in two’s-complement form that range from
-1 to less than 1. Signed fractions place the decimal
point immediately to the right of the most significant bit.
The largest representable value is 1-2-(n-1) where n rep-
resents the number of bits in the value. The smallest
representable value is -1. Computations that produce
values larger than 1-2-(n-1)or smaller than -1 may set
OV or OVH in the SPEFSCR. Multiplication of two
signed fractional values causes the result to be shifted
left one bit to remove the resultant redundant sign bit in
the product. In this case, a 0 bit is concatenated as the
least significant bit of the shifted result.

Guarded signed fractions are 64-bit binary fractional
values. Guarded signed fractions place the decimal
point immediately to the left of bit 33. The largest repre-
sentable value is 232-2-31. The smallest representable
value is -232-1+2-31. Guarded signed fractional compu-
tations are always modulo and do not set OV or OVH in
the SPEFSCR.

Rounding modes 0b10 (+Infinity) and
0b11 (-Infinity) may not be supported by
some implementations. If an implementa-
tion does not support these, Embedded
Floating-Point Round interrupts are gener-
ated for every Embedded Floating-Point
instruction for which rounding is required
when +Infinity or -Infinity modes are set
and software is required to produce the
correctly rounded result

Programming Note
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6.3.6 Computational Operations
The SPE category supports several different computa-
tional capabilities. Both modulo and saturation results
can be performed. Modulo results produce truncation of
the overflow bits in a calculation, therefore overflow
does not occur and no saturation is performed. For
instructions for which overflow occurs, saturation pro-
vides a maximum or minimum representable value (for
the data type) in the case of overflow. Instructions are
provided for a wide range of computational capability.
The operation types can be divided into 4 basic catego-
ries:

� Simple Vector instructions. These instructions use
the corresponding low and high word elements of
the operands to produce a vector result that is
placed in the destination register, the accumulator,
or both.

� Multiply and Accumulate instructions. These
instructions perform multiply operations, optionally
add the result to the accumulator, and place the
result into the destination register and optionally
into the accumulator. These instructions are com-
posed of different multiply forms, data formats and
data accumulate options. The mnemonics for
these instructions indicate their various character-
istics. These are shown in Table 2.

� Load and Store instructions. These instructions
provide load and store capabilities for moving data
to and from memory. A variety of forms are pro-
vided that position data for efficient computation.

� Compare and miscellaneous instructions. These
instructions perform miscellaneous functions such
as field manipulation, bit reversed incrementing,
and vector compares.

Table 2: Mnemonic Extensions for Multiply Accumulate Instructions

Extension Meaning Comments

Multiply Form

he halfword even 16 X 16 → 32

heg halfword even guarded 16 X 16 → 32, 64-bit final accumulate result

ho halfword odd 16 X 16 → 32

hog halfword odd guarded 16 X 16 → 32, 64-bit final accumulate result

w word 32 X 32 → 64

wh word high 32 X 32 → 32 (high-order 32 bits of product)

wl word low 32 X 32 → 32 (low-order 32 bits of product)

Data Format

smf signed modulo fractional modulo, no saturation or overflow

smi signed modulo integer modulo, no saturation or overflow

ssf signed saturate fractional saturation on product and accumulate

ssi signed saturate integer saturation on product and accumulate

umi unsigned modulo integer modulo, no saturation or overflow

usi unsigned saturate integer saturation on product and accumulate

Accumulate Option

a place in accumulator result → accumulator

aa add to accumulator accumulator + result → accumulator

aaw add to accumulator as word elements accumulator0:31 + result0:31 → accumulator0:31
accumulator32:63 + result32:63 → accumulator32:63

an add negated to accumulator accumulator - result → accumulator

anw add negated to accumulator as word 
elements

accumulator0:31 - result0:31 → accumulator0:31
accumulator32:63 - result32:63 → accumulator32:63
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6.3.7 SPE Instructions

6.3.8 Saturation, Shift, and Bit 
Reverse Models
For saturation, left shifts, and bit reversal, the pseudo
RTL is provided here to more accurately describe those
functions that are referenced in the instruction pseudo
RTL.

6.3.8.1 Saturation
SATURATE(ov, carry, sat_ovn, sat_ov, val)
if ov then

if carry then
return sat_ovn

else
return sat_ov

else
return val

6.3.8.2 Shift Left
SL(value, cnt)
if cnt > 31 then

return 0
else

return (value << cnt)

6.3.8.3 Bit Reverse
BITREVERSE(value)
result � 0
mask � 1
shift � 31
cnt � 32
while cnt > 0 then do

t � value & mask
if shift >= 0 then

result � (t << shift) | result
else

result � (t >> -shift) | result
cnt � cnt - 1
shift � shift - 2
mask � mask << 1

return result
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6.3.9 SPE Instruction Set

Bit Reversed Increment EVX-form

brinc RT,RA,RB

n � implementation-dependent number of mask bits
mask � (RB)64-n:63 
a � (RA)64-n:63
d � BITREVERSE(1 + BITREVERSE(a | (¬ mask)))
RT � (RA)0:63-n || (d & mask) 

brinc computes a bit-reverse index based on the con-
tents of RA and a mask specified in RB. The new index
is written to RT.

The number of bits in the mask is implementa-
tion-dependent but may not exceed 32.

Special Registers Altered:
None

Vector Absolute Value EVX-form

evabs RT,RA

RT0:31 � ABS((RA)0:31)
RT32:63 � ABS((RA)32:63)

The absolute value of each element of RA is placed in
the corresponding elements of RT. An absolute value of
0x8000_0000 (most negative number) returns
0x8000_0000.

Special Registers Altered: 
None

Vector Add Immediate Word EVX-form

evaddiw RT,RB,UI

RT0:31 � (RB)0:31 + EXTZ(UI)
RT32:63 � (RB)32:63 + EXTZ(UI)

UI is zero-extended and added to both the high and low
elements of RB and the results are placed in RT. Note
that the same value is added to both elements of the
register.

Special Registers Altered: 
None

Vector Add Signed, Modulo, Integer to 
Accumulator Word EVX-form

evaddsmiaaw RT,RA

RT0:31 � (ACC)0:31 + (RA)0:31
RT32:63 � (ACC)32:63 + (RA)32:63
ACC0:63 � (RT)0:63
Each word element in RA is added to the correspond-
ing element in the accumulator and the results are
placed in RT and into the accumulator.

Special Registers Altered: 
ACC 

4 RT RA RB 527
0 6 11 16 21 31

brinc provides a way for software to access FFT
data in a bit-reversed manner. RA contains the
index into a buffer that contains data on which FFT
is to be performed. RB contains a mask that allows
the index to be updated with bit-reversed address-
ing. Typically this instruction precedes a load with
index instruction; for example,

brinc r2, r3, r4
lhax r8, r5, r2

RB contains a bit-mask that is based on the num-
ber of points in an FFT. To access a buffer contain-
ing n byte sized data that is to be accessed with
bit-reversed addressing, the mask has log2n 1s in
the least significant bit positions and 0s in the
remaining most significant bit positions. If, how-
ever, the data size is a multiple of a halfword or a
word, the mask is constructed so that the 1s are
shifted left by log2 (size of the data) and 0s are
placed in the least significant bit positions.

This instruction only modifies the lower 32 bits of
the destination register in 32-bit implementations.
For 64-bit implementations in 32-bit mode, the con-
tents of the upper 32-bits of the destination register
are undefined.

Execution of brinc does not cause SPE Unavail-
able exceptions regardless of MSRSPV.

Programming Note

Architecture NoteProgramming Note

Programming Note

4 RT RA /// 520
0 6 11 16 21 31

4 RT UI RB 514
0 6 11 16 21 31

4 RT RA /// 1225
0 6 11 16 21 31
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Vector Add Signed, Saturate, Integer to 
Accumulator Word EVX-form

evaddssiaaw RT,RA

temp0:63 � EXTS((ACC)0:31) + EXTS((RA)0:31)
ovh � temp31 ⊕  temp32
RT0:31 � SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63)

temp0:63 � EXTS((ACC)32:63) + EXTS((RA)32:63)
ovl � temp31 ⊕  temp32
RT32:63 � SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63)

ACC0:63 � (RT)0:63
SPEFSCROVH � ovh
SPEFSCROV � ovl
SPEFSCRSOVH � SPEFSCRSOVH | ovh
SPEFSCRSOV � SPEFSCRSOV | ovl

Each signed-integer word element in RA is
sign-extended and added to the corresponding
sign-extended element in the accumulator saturating if
overflow occurs, and the results are placed in RT and
the accumulator. 

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Add Unsigned, Saturate, Integer to 
Accumulator Word EVX-form

evaddusiaaw RT,RA

temp0:63 � EXTZ((ACC)0:31) + EXTZ((RA)0:31)
ovh � temp31
RT0:31 � SATURATE(ovh, temp31, 0xFFFF_FFFF,

0xFFFF_FFFF, temp32:63)

temp0:63 � EXTZ((ACC)32:63) + EXTZ((RA)32:63)
ovl � temp31
RT32:63 � SATURATE(ovl, temp31, 0xFFFF_FFFF,

0xFFFF_FFFF, temp32:63)

ACC0:63 � (RT)0:63

SPEFSCROVH � ovh
SPEFSCROV � ovl
SPEFSCRSOVH � SPEFSCRSOVH | ovh
SPEFSCRSOV � SPEFSCRSOV | ovl

Each unsigned-integer word element in RA is
zero-extended and added to the corresponding
zero-extended element in the accumulator saturating if
overflow occurs, and the results are placed in RT and
the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Add Unsigned, Modulo, Integer to 
Accumulator Word EVX-form

evaddumiaaw RT,RA

RT0:31 � (ACC)0:31 + (RA)0:31
RT32:63 � (ACC)32:63 + (RA)32:63
ACC0:63 � (RT)0:63
Each unsigned-integer word element in RA is added to
the corresponding element in the accumulator and the
results are placed in RT and the accumulator.

Special Registers Altered: 
ACC 

Vector Add Word EVX-form

evaddw RT,RA,RB

RT0:31 � (RA)0:31 + (RB)0:31
RT32:63 � (RA)32:63 + (RB)32:63 

The corresponding elements of RA and RB are added
and the results are placed in RT. The sum is a modulo
sum.

Special Registers Altered:
None

4 RT RA /// 1217
0 6 11 16 21 31

4 RT RA /// 1216
0 6 11 16 21 31

4 RT RA /// 1224
0 6 11 16 21 31

4 RT RA RB 512
0 6 11 16 21 31
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Vector AND EVX-form

evand RT,RA,RB

RT0:31 � (RA)0:31 & (RB)0:31 
RT32:63 � (RA)32:63 & (RB)32:63
The corresponding elements of RA and RB are ANDed
bitwise and the results are placed in the corresponding
element of RT.

Special Registers Altered:
None

Vector AND with Complement EVX-form

evandc RT,RA,RB

RT0:31 � (RA)0:31 & (¬(RB)0:31) 
RT32:63 � (RA)32:63 & (¬(RB)32:63) 

The word elements of RA are ANDed bitwise with the
complement of the corresponding elements of RB. The
results are placed in the corresponding element of RT.

Special Registers Altered:
None

Vector Compare Equal EVX-form

evcmpeq BF,RA,RB

ah � (RA)0:31
al � (RA)32:63
bh � (RB)0:31
bl � (RB)32:63
if (ah = bh) then ch � 1
else ch � 0
if (al = bl) then cl � 1
else cl � 0
CR4×BF+32:4×BF+35 � ch || cl || (ch | cl) || (ch & cl)

The most significant bit in BF is set if the high-order ele-
ment of RA is equal to the high-order element of RB; it
is cleared otherwise. The next bit in BF is set if the
low-order element of RA is equal to the low-order ele-
ment of RB and cleared otherwise. The last two bits of
BF are set to the OR and AND of the result of the com-
pare of the high and low elements.

Special Registers Altered:
CR field BF

Vector Compare Greater Than Signed
EVX-form

evcmpgts BF,RA,RB

ah � (RA)0:31
al � (RA)32:63
bh � (RB)0:31
bl � (RB)32:63
if (ah > bh) then ch � 1
else ch � 0
if (al > bl) then cl � 1
else cl � 0
CR4×BF+32:4×BF+35 � ch || cl || (ch | cl) || (ch & cl)

The most significant bit in BF is set if the high-order ele-
ment of RA is greater than the high-order element of
RB; it is cleared otherwise. The next bit in BF is set if
the low-order element of RA is greater than the
low-order element of RB and cleared otherwise. The
last two bits of BF are set to the OR and AND of the
result of the compare of the high and low elements.

Special Registers Altered:
CR field BF

4 RT RA RB 529
0 6 11 16 21 31

4 RT RA RB 530
0 6 11 16 21 31

4 BF // RA RB 564
0 6 9 11 16 21 31 4 BF // RA RB 561

0 6 9 11 16 21 31
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Vector Compare Greater Than Unsigned
EVX-form

evcmpgtu BF,RA,RB

ah � (RA)0:31
al � (RA)32:63
bh � (RB)0:31
bl � (RB)32:63
if (ah >u bh) then ch � 1
else ch � 0
if (al >u bl) then cl � 1
else cl � 0
CR4×BF+32:4×BF+35 � ch || cl || (ch | cl) || (ch & cl)

The most significant bit in BF is set if the high-order ele-
ment of RA is greater than the high-order element of
RB; it is cleared otherwise. The next bit in BF is set if
the low-order element of RA is greater than the
low-order element of RB and cleared otherwise. The
last two bits of BF are set to the OR and AND of the
result of the compare of the high and low elements.

Special Registers Altered:
CR field BF

Vector Compare Less Than Signed
EVX-form

evcmplts BF,RA,RB

ah � (RA)0:31
al � (RA)32:63
bh � (RB)0:31
bl � (RB)32:63
if (ah < bh) then ch � 1
else ch � 0
if (al < bl) then cl � 1
else cl � 0
CR4×BF+32:4×BF+35 � ch || cl || (ch | cl) || (ch & cl)

The most significant bit in BF is set if the high-order ele-
ment of RA is less than the high-order element of RB; it
is cleared otherwise. The next bit in BF is set if the
low-order element of RA is less than the low-order ele-
ment of RB and cleared otherwise. The last two bits of
BF are set to the OR and AND of the result of the com-
pare of the high and low elements.

Special Registers Altered:
CR field BF

Vector Compare Less Than Unsigned
EVX-form

evcmpltu BF,RA,RB

ah � (RA)0:31
al � (RA)32:63
bh � (RB)0:31
bl � (RB)32:63
if (ah <u bh) then ch � 1
else ch � 0
if (al <u bl) then cl � 1
else cl � 0
CR4×BF+32:4×BF+35 � ch || cl || (ch | cl) || (ch & cl)

The most significant bit in BF is set if the high-order ele-
ment of RA is less than the high-order element of RB; it
is cleared otherwise. The next bit in BF is set if the
low-order element of RA is less than the low-order ele-
ment of RB and cleared otherwise. The last two bits of
BF are set to the OR and AND of the result of the com-
pare of the high and low elements.

Special Registers Altered:
CR field BF

4 BF // RA RB 560
0 6 9 11 16 21 31

4 BF // RA RB 563
0 6 9 11 16 21 31

4 BF // RA RB 562
0 6 9 11 16 21 31
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Vector Count Leading Signed Bits Word 
EVX-form

evcntlsw RT,RA

n � 0
s � (RA)n
do while n < 32

if (RA)n ≠ s then leave
n � n + 1

RT0:31 � n
n � 0
s � (RA)n+32
do while n < 32

if (RA)n+32 ≠ s then leave
n � n + 1

RT32:63 � n

The leading sign bits in each element of RA are
counted, and the respective count is placed into each
element of RT.

Special Registers Altered:
None

Vector Count Leading Zeros Word 
EVX-form

evcntlzw RT,RA

n � 0
do while n < 32

if (RA)n = 1 then leave
n � n + 1

RT0:31 � n
n � 0
do while n < 32

if (RA)n+32 = 1 then leave
n � n + 1

RT32:63 � n

The leading zero bits in each element of RA are
counted, and the respective count is placed into each
element of RT.

Special Registers Altered:
None

Vector Divide Word Signed EVX-form

evdivws RT,RA,RB

ddh � (RA)0:31
ddl � (RA)32:63
dvh � (RB)0:31
dvl � (RB)32:63
RT0:31 � ddh ÷  dvh
RT32:63 � ddl ÷  dvl
ovh � 0
ovl � 0
if ((ddh < 0) & (dvh = 0)) then

RT0:31 � 0x8000_0000
ovh � 1

else if ((ddh >= 0) & (dvh = 0)) then
RT0:31 � 0x7FFFFFFF
ovh � 1

else if (ddh = 0x8000_0000)&(dvh = 0xFFFF_FFFF) 
then

RT0:31 � 0x7FFFFFFF
ovh � 1

if ((ddl < 0) & (dvl = 0)) then
RT32:63 � 0x8000_0000
ovl � 1

else if ((ddl >= 0) & (dvl = 0)) then
RT32:63 � 0x7FFFFFFF
ovl � 1

else if (ddl = 0x8000_0000)&(dvl = 0xFFFF_FFFF) 
then

RT32:63 � 0x7FFFFFFF
ovl � 1

SPEFSCROVH � ovh
SPEFSCROV � ovl
SPEFSCRSOVH � SPEFSCRSOVH | ovh
SPEFSCRSOV � SPEFSCRSOV | ovl

The two dividends are the two elements of the contents
of RA. The two divisors are the two elements of the
contents of RB. The resulting two 32-bit quotients on
each element are placed into RT. The remainders are
not supplied. The operands and quotients are inter-
preted as signed integers.

Special Registers Altered:
OV OVH SOV SOVH

4 RT RA /// 526
0 6 11 16 21 31

evcntlzw is used for unsigned operands; evcntlsw
is used for signed operands.

4 RT RA /// 525
0 6 11 16 21 31

Programming Note

4 RT RA RB 1222
0 6 11 16 21 31

Note that any overflow indication is always set as a
side effect of this instruction. No form is defined
that disables the setting of the overflow bits. In
case of overflow, a saturated value is delivered into
the destination register.

Programming Note
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Vector Divide Word Unsigned EVX-form

evdivwu RT,RA,RB

ddh � (RA)0:31
ddl �(RA)32:63
dvh � (RB)0:31
dvl � (RB)32:63
RT0:31 � ddh ÷  dvh
RT32:63 � ddl ÷  dvl
ovh � 0
ovl � 0
if (dvh = 0) then

RT0:31 � 0xFFFFFFFF
ovh � 1

if (dvl = 0) then
RT32:63 � 0xFFFFFFFF
ovl � 1

SPEFSCROVH � ovh
SPEFSCROV � ovl
SPEFSCRSOVH � SPEFSCRSOVH | ovh
SPEFSCRSOV � SPEFSCRSOV | ovl

The two dividends are the two elements of the contents
of RA. The two divisors are the two elements of the
contents of RB. Two 32-bit quotients are formed as a
result of the division on each of the high and low ele-
ments and the quotients are placed into RT. Remain-
ders are not supplied. Operands and quotients are
interpreted as unsigned integers.

Special Registers Altered:
OV OVH SOV SOVH

Vector Equivalent EVX-form

eveqv RT,RA,RB

RT0:31 � (RA)0:31 ≡ (RB)0:31 
RT32:63 � (RA)32:63 ≡ (RB)32:63 

The corresponding elements of RA and RB are XORed
bitwise, and the complemented results are placed in
RT.

Special Registers Altered:
None

Vector Extend Sign Byte EVX-form

evextsb RT,RA

RT0:31 � EXTS((RA)24:31)
RT32:63 � EXTS((RA)56:63)

The signs of the low-order byte in each of the elements
in RA are extended, and the results are placed in RT.

Special Registers Altered:
None

Vector Extend Sign Halfword EVX-form

evextsh RT,RA

RT0:31 � EXTS((RA)16:31)
RT32:63 � EXTS((RA)48:63)

The signs of the odd halfwords in each of the elements
in RA are extended, and the results are placed in RT.

Special Registers Altered:
None

4 RT RA RB 1223
0 6 11 16 21 31

Note that any overflow indication is always set as a
side effect of this instruction. No form is defined
that disables the setting of the overflow bits. In
case of overflow, a saturated value is delivered into
the destination register.

Programming Note

4 RT RA RB 537
0 6 11 16 21 31

4 RT RA /// 522
0 6 11 16 21 31

4 RT RA /// 523
0 6 11 16 21 31
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Vector Load Double Word into Double 
Word EVX-form

evldd RT,D(RA)

if (RA = 0) then b � 0
else b � (RA)
EA � b + EXTZ(UI×8)
RT � MEM(EA, 8)

D in the instruction mnemonic is UI × 8. The double-
word addressed by EA is loaded from memory and
placed in RT.

Special Registers Altered:
None

Vector Load Double Word into Double 
Word Indexed EVX-form

evlddx RT,RA,RB

if (RA = 0) then b � 0
else b � (RA)
EA � b + (RB)
RT � MEM(EA, 8)

The doubleword addressed by EA is loaded from mem-
ory and placed in RT.

Special Registers Altered:
None

Vector Load Double into Four Halfwords
EVX-form

evldh RT,D(RA)

if (RA = 0) then b � 0
else b � (RA)
EA � b + EXTZ(UI×8)
RT0:15 � MEM(EA, 2)
RT16:31 � MEM(EA+2,2)
RT32:47 � MEM(EA+4,2)
RT48:63 � MEM(EA+6,2)

D in the instruction mnemonic is UI × 8. The double-
word addressed by EA is loaded from memory and
placed in RT.

Special Registers Altered:
None

Vector Load Double into Four Halfwords 
Indexed EVX-form

evldhx RT,RA,RB

if (RA = 0) then b � 0
else b � (RA)
EA � b + (RB)
RT0:15 � MEM(EA, 2)
RT16:31 � MEM(EA+2,2)
RT32:47 � MEM(EA+4,2)
RT48:63 � MEM(EA+6,2)

The doubleword addressed by EA is loaded from mem-
ory and placed in RT.

Special Registers Altered:
None

4 RT RA UI 769
0 6 11 16 21 31

4 RT RA RB 768
0 6 11 16 21 31

4 RT RA UI 773
0 6 11 16 21 31

4 RT RA RB 772
0 6 11 16 21 31
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Vector Load Double into Two Words
EVX-form

evldw RT,D(RA)

if (RA = 0) then b � 0
else b � (RA)
EA � b + EXTZ(UI×8)
RT0:31 � MEM(EA, 4)
RT32:63 � MEM(EA+4, 4)

D in the instruction mnemonic is UI × 8. The double-
word addressed by EA is loaded from memory and
placed in RT.

Special Registers Altered:
None

Vector Load Double into Two Words 
Indexed EVX-form

evldwx RT,RA,RB

if (RA = 0) then b � 0
else b � (RA)
EA � b + (RB)
RT0:31 � MEM(EA, 4)
RT32:63 � MEM(EA+4, 4)

The doubleword addressed by EA is loaded from mem-
ory and placed in RT.

Special Registers Altered:
None

Vector Load Halfword into Halfwords 
Even and Splat EVX-form

evlhhesplat RT,D(RA)

if (RA = 0) then b � 0
else b � (RA)
EA � b + EXTZ(UI×2)
RT0:15 � MEM(EA,2)
RT16:31 � 0x0000
RT32:47 � MEM(EA,2)
RT48:63 � 0x0000

D in the instruction mnemonic is UI × 2. The halfword
addressed by EA is loaded from memory and placed in
the even halfwords of each element of RT. The odd
halfwords of each element of RT are set to 0.

Special Registers Altered:
None

Vector Load Halfword into Halfwords 
Even and Splat Indexed EVX-form

evlhhesplatx RT,RA,RB

if (RA = 0) then b � 0
else b � (RA)
EA � b + (RB)
RT0:15 � MEM(EA,2)
RT16:31 � 0x0000
RT32:47 � MEM(EA,2)
RT48:63 � 0x0000

The halfword addressed by EA is loaded from memory
and placed in the even halfwords of each element of
RT. The odd halfwords of each element of RT are set to
0.

Special Registers Altered:
None

4 RT RA UI 771
0 6 11 16 21 31

4 RT RA RB 770
0 6 11 16 21 31

4 RT RA UI 777
0 6 11 16 21 31

4 RT RA RB 776
0 6 11 16 21 31
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Vector Load Halfword into Halfword Odd 
Signed and Splat EVX-form

evlhhossplat RT,D(RA)

if (RA = 0) then b � 0
else b � (RA)
EA � b + EXTZ(UI×2)
RT0:31 � EXTS(MEM(EA,2))
RT32:63 � EXTS(MEM(EA,2))

D in the instruction mnemonic is UI × 2. The halfword
addressed by EA is loaded from memory and placed in
the odd halfwords sign extended in each element of RT.

Special Registers Altered:
None

Vector Load Halfword into Halfword Odd 
Signed and Splat Indexed EVX-form

evlhhossplatx RT,RA,RB

if (RA = 0) then b � 0
else b � (RA)
EA � b + (RB)
RT0:31 � EXTS(MEM(EA,2))
RT32:63 � EXTS(MEM(EA,2))

The halfword addressed by EA is loaded from memory
and placed in the odd halfwords sign extended in each
element of RT.

Special Registers Altered:
None

Vector Load Halfword into Halfword Odd 
Unsigned and Splat EVX-form

evlhhousplat RT,D(RA)

if (RA = 0) then b � 0
else b � (RA)
EA � b + EXTZ(UI×2)
RT0:31 � EXTZ(MEM(EA,2))
RT32:63 � EXTZ(MEM(EA,2))

D in the instruction mnemonic is UI × 2. The halfword
addressed by EA is loaded from memory and placed in
the odd halfwords zero-extended in each element of
RT.

Special Registers Altered:
None

Vector Load Halfword into Halfword Odd 
Unsigned and Splat Indexed EVX-form

evlhhousplatx RT,RA,RB

if (RA = 0) then b � 0
else b � (RA)
EA � b + (RB)
RT0:31 � EXTZ(MEM(EA,2))
RT32:63 � EXTZ(MEM(EA,2))

The halfword addressed by EA is loaded from memory
and placed in the odd halfwords zero-extended in each
element of RT.

Special Registers Altered:
None

4 RT RA UI 783
0 6 11 16 21 31

4 RT RA RB 782
0 6 11 16 21 31

4 RT RA UI 781
0 6 11 16 21 31

4 RT RA RB 780
0 6 11 16 21 31
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Vector Load Word into Two Halfwords 
Even EVX-form

evlwhe RT,D(RA)

if (RA = 0) then b � 0
else b � (RA)
EA � b + EXTZ(UI×4)
RT0:15 � MEM(EA,2)
RT16:31 � 0x0000
RT32:47 � MEM(EA+2,2)
RT48:63 � 0x0000

D in the instruction mnemonic is UI × 4. The word
addressed by EA is loaded from memory and placed in
the even halfwords of each element of RT. The odd
halfwords of each element of RT are set to 0.

Special Registers Altered:
None

Vector Load Word into Two Halfwords 
Even Indexed EVX-form

evlwhex RT,RA,RB

if (RA = 0) then b � 0
else b � (RA)
EA � b + (RB)
RT0:15 � MEM(EA,2)
RT16:31 � 0x0000
RT32:47 � MEM(EA+2,2)
RT48:63 � 0x0000

The word addressed by EA is loaded from memory and
placed in the even halfwords in each element of RT.
The odd halfwords of each element of RT are set to 0.

Special Registers Altered:
None

Vector Load Word into Two Halfwords 
Odd Signed (with sign extension) 

EVX-form

evlwhos RT,D(RA)

if (RA = 0) then b � 0
else b � (RA)
EA � b + EXTZ(UI×4)
RT0:31 � EXTS(MEM(EA,2))
RT32:63 � EXTS(MEM(EA+2,2))

D in the instruction mnemonic is UI × 4. The word
addressed by EA is loaded from memory and placed in
the odd halfwords sign extended in each element of RT.

Special Registers Altered:
None

Vector Load Word into Two Halfwords 
Odd Signed Indexed (with sign extension)

EVX-form

evlwhosx RT,RA,RB

if (RA = 0) then b � 0
else b � (RA)
EA � b + (RB)
RT0:31 � EXTS(MEM(EA,2))
RT32:63 � EXTS(MEM(EA+2,2))

The word addressed by EA is loaded from memory and
placed in the odd halfwords sign extended in each ele-
ment of RT.

Special Registers Altered:
None

4 RT RA UI 785
0 6 11 16 21 31

4 RT RA RB 784
0 6 11 16 21 31

4 RT RA UI 791
0 6 11 16 21 31

4 RT RA RB 790
0 6 11 16 21 31
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Vector Load Word into Two Halfwords 
Odd Unsigned (zero-extended) EVX-form

evlwhou RT,D(RA)

if (RA = 0) then b � 0
else b � (RA)
EA � b + EXTZ(UI×4)
RT0:31 � EXTZ(MEM(EA,2))
RT32:63 � EXTZ(MEM(EA+2,2))

D in the instruction mnemonic is UI × 4. The word
addressed by EA is loaded from memory and placed in
the odd halfwords zero-extended in each element of
RT.

Special Registers Altered:
None

Vector Load Word into Two Halfwords 
Odd Unsigned Indexed (zero-extended)

EVX-form

evlwhoux RT,RA,RB

if (RA = 0) then b � 0
else b � (RA)
EA � b + (RB)
RT0:31 � EXTZ(MEM(EA,2))
RT32:63 � EXTZ(MEM(EA+2,2))

The word addressed by EA is loaded from memory and
placed in the odd halfwords zero-extended in each ele-
ment of RT.

Special Registers Altered:
None

Vector Load Word into Two Halfwords and 
Splat EVX-form

evlwhsplat RT,D(RA)

if (RA = 0) then b � 0
else b � (RA)
EA � b + EXTZ(UI×4)
RT0:15 � MEM(EA,2)
RT16:31 � MEM(EA,2)
RT32:47 � MEM(EA+2,2)
RT48:63 � MEM(EA+2,2)

D in the instruction mnemonic is UI × 4. The word
addressed by EA is loaded from memory and placed in
both the even and odd halfwords in each element of RT.

Special Registers Altered:
None

Vector Load Word into Two Halfwords and 
Splat Indexed EVX-form

evlwhsplatx RT,RA,RB

if (RA = 0) then b � 0
else b � (RA)
EA � b + (RB)
RT0:15 � MEM(EA,2)
RT16:31 � MEM(EA,2)
RT32:47 � MEM(EA+2,2)
RT48:63 � MEM(EA+2,2)

The word addressed by EA is loaded from memory and
placed in both the even and odd halfwords in each ele-
ment of RT.

Special Registers Altered:
None

4 RT RA UI 789
0 6 11 16 21 31 4 RT RA RB 788

0 6 11 16 21 31

4 RT RA UI 797
0 6 11 16 21 31

4 RT RA RB 796
0 6 11 16 21 31
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Vector Load Word into Word and Splat
EVX-form

evlwwsplat RT,D(RA)

if (RA = 0) then b � 0
else b � (RA)
EA � b + EXTZ(UI×4)
RT0:31 � MEM(EA,4)
RT32:63 � MEM(EA,4)

D in the instruction mnemonic is UI × 4. The word
addressed by EA is loaded from memory and placed in
both elements of RT.

Special Registers Altered:
None

Vector Load Word into Word and Splat 
Indexed EVX-form

evlwwsplatx RT,RA,RB

if (RA = 0) then b � 0
else b � (RA)
EA � b + (RB)
RT0:31 � MEM(EA,4)
RT32:63 � MEM(EA,4)

The word addressed by EA is loaded from memory and
placed in both elements of RT.

Special Registers Altered:
None

Vector Merge High EVX-form

evmergehi RT,RA,RB

RT0:31 � (RA)0:31
RT32:63 � (RB)0:31

The high-order elements of RA and RB are merged and
placed in RT. 

Special Registers Altered:
None

 

Vector Merge Low EVX-form

evmergelo RT,RA,RB

RT0:31 � (RA)32:63
RT32:63 � (RB)32:63

The low-order elements of RA and RB are merged and
placed in RT.

Special Registers Altered:
None

4 RT RA UI 793
0 6 11 16 21 31

4 RT RA RB 792
0 6 11 16 21 31

4 RT RA RB 556
0 6 11 16 21 31

A vector splat high can be performed by specifying
the same register in RA and RB.

Programming Note

4 RT RA RB 557
0 6 11 16 21 31

A vector splat low can be performed by specifying
the same register in RA and RB.

Programming Note
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Vector Merge High/Low EVX-form

evmergehilo RT,RA,RB

RT0:31 � (RA)0:31
RT32:63 � (RB)32:63

The high-order element of RA and the low-order ele-
ment of RB are merged and placed in RT.

Special Registers Altered:
None

Vector Merge Low/High EVX-form

evmergelohi RT,RA,RB

RT0:31 � (RA)32:63
RT32:63 � (RB)0:31

The low-order element of RA and the high-order ele-
ment of RB are merged and placed in RT.

Special Registers Altered:
None

Vector Multiply Halfwords, Even, Guarded, 
Signed, Modulo, Fractional and 
Accumulate EVX-form

evmhegsmfaa RT,RA,RB 

temp0:63 � (RA)32:47 ×gsf (RB)32:47
RT0:63 � (ACC)0:63 + temp0:63 
ACC0:63 � (RT)0:63

The corresponding low even-numbered, halfword
signed fractional elements in RA and RB are multiplied
using guarded signed fractional multiplication produc-
ing a sign extended 64-bit fractional product with the
decimal between bits 32 and 33. The product is added
to the contents of the 64-bit accumulator and the result
is placed in RT and the accumulator

Special Registers Altered:
ACC

 

Vector Multiply Halfwords, Even, Guarded, 
Signed, Modulo, Fractional and 
Accumulate Negative EVX-form

evmhegsmfan RT,RA,RB 

temp0:63 � (RA)32:47 ×gsf (RB)32:47
RT0:63 � (ACC)0:63 - temp0:63
ACC0:63 � (RT)0:63

The corresponding low even-numbered, halfword
signed fractional elements in RA and RB are multiplied
using guarded signed fractional multiplication produc-
ing a sign extended 64-bit fractional product with the
decimal between bits 32 and 33. The product is sub-
tracted from the contents of the 64-bit accumulator and
the result is placed in RT and the accumulator.

Special Registers Altered:
ACC

 

4 RT RA RB 558
0 6 11 16 21 31

With appropriate specification of RA and RB,
evmergehi, evmergelo, evmergehilo, and
evmergelohi provide a full 32-bit permute of two
source operands.

Programming Note

4 RT RA RB 559
0 6 11 16 21 31

A vector swap can be performed by specifying the
same register in RA and RB.

Programming Note

4 RT RA RB 1323
0 6 11 16 21 31

If the two input operands are both -1.0, the interme-
diate product is represented as +1.0.

Note

4 RT RA RB 1451
0 6 11 16 21 31

If the two input operands are both -1.0, the interme-
diate product is represented as +1.0.

Note
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Vector Multiply Halfwords, Even, Guarded, 
Signed, Modulo, Integer and Accumulate
EVX-form

evmhegsmiaa RT,RA,RB 

temp0:31 � (RA)32:47 ×si (RB)32:47
temp0:63 � EXTS(temp0:31)
RT0:63 � (ACC)0:63 + temp0:63
ACC0:63 � (RT)0:63

The corresponding low even-numbered halfword
signed-integer elements in RA and RB are multiplied.
The intermediate product is sign-extended and added
to the contents of the 64-bit accumulator, and the
resulting sum is placed in RT and into the accumulator.

Special Registers Altered:
ACC

Vector Multiply Halfwords, Even, Guarded, 
Signed, Modulo, Integer and Accumulate 
Negative EVX-form

evmhegsmian RT,RA,RB 

temp0:31 � (RA)32:47 ×si (RB)32:47
temp0:63 � EXTS(temp0:31)
RT0:63 � (ACC)0:63 - temp0:63
ACC0:63 � (RT)0:63

The corresponding low even-numbered halfword
signed-integer elements in RA and RB are multiplied.
The intermediate product is sign-extended and sub-
tracted from the contents of the 64-bit accumulator, and
the result is placed in RT and into the accumulator.

Special Registers Altered:
ACC

Vector Multiply Halfwords, Even, Guarded, 
Unsigned, Modulo, Integer and 
Accumulate EVX-form

evmhegumiaa RT,RA,RB 

temp0:31 � (RA)32:47 ×ui (RB)32:47
temp0:63 � EXTZ(temp0:31)
RT0:63 � (ACC)0:63 + temp0:63
ACC0:63 � (RT)0:63

The corresponding low even-numbered halfword
unsigned-integer elements in RA and RB are multi-
plied. The intermediate product is zero-extended and
added to the contents of the 64-bit accumulator. The
resulting sum is placed in RT and into the accumulator.

Special Registers Altered:
ACC

Vector Multiply Halfwords, Even, Guarded, 
Unsigned, Modulo, Integer and 
Accumulate Negative EVX-form

evmhegumian RT,RA,RB 

temp0:31 � (RA)32:47 ×ui (RB)32:47
temp0:63 � EXTZ(temp0:31)
RT0:63 � (ACC)0:63 - temp0:63
ACC0:63 � (RT)0:63

The corresponding low even-numbered unsigned-inte-
ger elements in RA and RB are multiplied. The interme-
diate product is zero-extended and subtracted from the
contents of the 64-bit accumulator. The result is placed
in RT and into the accumulator.

Special Registers Altered:
ACC

4 RT RA RB 1321
0 6 11 16 21 31

4 RT RA RB 1449
0 6 11 16 21 31

4 RT RA RB 1320
0 6 11 16 21 31

4 RT RA RB 1448
0 6 11 16 21 31
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Vector Multiply Halfwords, Even, Signed, 
Modulo, Fractional EVX-form

evmhesmf RT,RA,RB

RT0:31 � (RA)0:15 ×sf (RB)0:15 
RT32:63� (RA)32:47 ×sf (RB)32:47 

The corresponding even-numbered halfword signed
fractional elements in RA and RB are multiplied then
placed into the corresponding words of RT. 

Special Registers Altered: 
None

Vector Multiply Halfwords, Even, Signed, 
Modulo, Fractional to Accumulator

EVX-form

evmhesmfa RT,RA,RB 

RT0:31 � (RA)0:15 ×sf (RB)0:15 

RT32:63� (RA)32:47 ×sf (RB)32:47 
ACC0:63 � (RT)0:63
The corresponding even-numbered halfword signed
fractional elements in RA and RB are multiplied then
placed into the corresponding words of RT and into the
accumulator.

Special Registers Altered: 
ACC

Vector Multiply Halfwords, Even, Signed, 
Modulo, Fractional and Accumulate into 
Words EVX-form

evmhesmfaaw RT,RA,RB 

temp0:31 � (RA)0:15 ×sf (RB)0:15 
RT0:31 � (ACC)0:31 + temp0:31 
temp0:31 � (RA)32:47 ×sf (RB)32:47 
RT32:63 � (ACC)32:63 + temp0:31 
ACC0:63 � (RT)0:63

For each word element in the accumulator, the corre-
sponding even-numbered halfword signed fractional
elements in RA and RB are multiplied. The 32 bits of
each intermediate product are added to the contents of
the accumulator words to form intermediate sums,
which are placed into the corresponding RT words and
into the accumulator.

Special Registers Altered: 
ACC 

Vector Multiply Halfwords, Even, Signed, 
Modulo, Fractional and Accumulate 
Negative into Words EVX-form

evmhesmfanw RT,RA,RB 

temp0:31 � (RA)0:15 ×sf (RB)0:15 
RT0:31 � (ACC)0:31 - temp0:31

temp0:31 � (RA)32:47 ×sf (RB)32:47 
RT32:63� (ACC)32:63 - temp0:31
ACC0:63 � (RT)0:63

For each word element in the accumulator, the corre-
sponding even-numbered halfword signed fractional
elements in RA and RB are multiplied. The 32-bit inter-
mediate products are subtracted from the contents of
the accumulator words to form intermediate differ-
ences, which are placed into the corresponding RT
words and into the accumulator. 

Special Registers Altered: 
ACC 

4 RT RA RB 1035
0 6 11 16 21 31 4 RT RA RB 1067

0 6 11 16 21 31

4 RT RA RB 1291
0 6 11 16 21 31

4 RT RA RB 1419
0 6 11 16 21 31
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Vector Multiply Halfwords, Even, Signed, 
Modulo, Integer EVX-form

evmhesmi RT,RA,RB 

RT0:31 � (RA)0:15 ×si (RB)0:15 
RT32:63 � (RA)32:47 ×si (RB)32:47 

The corresponding even-numbered halfword
signed-integer elements in RA and RB are multiplied.
The two 32-bit products are placed into the correspond-
ing words of RT. 

Special Registers Altered: 
None

Vector Multiply Halfwords, Even, Signed, 
Modulo, Integer to AccumulatorEVX-form

evmhesmia RT,RA,RB

RT0:31 � (RA)0:15 ×si (RB)0:15 
RT32:63 � (RA)32:47 ×si (RB)32:47 
ACC0:63 � (RT)0:63
The corresponding even-numbered halfword
signed-integer elements in RA and RB are multiplied.
The two 32-bit products are placed into the correspond-
ing words of RT and into the accumulator. 

Special Registers Altered: 
ACC 

Vector Multiply Halfwords, Even, Signed, 
Modulo, Integer and Accumulate into 
Words EVX-form

evmhesmiaaw RT,RA,RB 

temp0:31 � (RA)0:15 ×si (RB)0:15 
RT0:31 � (ACC)0:31 + temp0:31
temp0:31 � (RA)32:47 ×si (RB)32:47 
RT32:63 � (ACC)32:63 + temp0:31
ACC0:63 � (RT)0:63

For each word element in the accumulator, the corre-
sponding even-numbered halfword signed-integer ele-
ments in RA and RB are multiplied. Each intermediate
32-bit product is added to the contents of the accumu-
lator words to form intermediate sums, which are
placed into the corresponding RT words and into the
accumulator. 

Special Registers Altered: 
ACC 

Vector Multiply Halfwords, Even, Signed, 
Modulo, Integer and Accumulate Negative 
into Words EVX-form

evmhesmianw RT,RA,RB 

temp0:31 � (RA)0:15 ×si (RB)0:15 
RT0:31 � (ACC)0:31 - temp0:31
temp0:31 � (RA)32:47 ×si (RB)32:47 
RT32:63 � (ACC)32:63 - temp0:31
ACC0:63 � (RT)0:63

For each word element in the accumulator, the corre-
sponding even-numbered halfword signed-integer ele-
ments in RA and RB are multiplied. Each intermediate
32-bit product is subtracted from the contents of the
accumulator words to form intermediate differences,
which are placed into the corresponding RT words and
into the accumulator. 

Special Registers Altered: 
ACC 

4 RT RA RB 1033
0 6 11 16 21 31

4 RT RA RB 1065
0 6 11 16 21 31

4 RT RA RB 1289
0 6 11 16 21 31

4 RT RA RB 1417
0 6 11 16 21 31
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Vector Multiply Halfwords, Even, Signed, 
Saturate, Fractional EVX-form

evmhessf RT,RA,RB

temp0:31 � (RA)0:15 ×sf (RB)0:15 
if ((RA)0:15 = 0x8000) & ((RB)0:15 = 0x8000) then

RT0:31 � 0x7FFF_FFFF 
movh � 1

else
RT0:31 � temp0:31
movh � 0

temp0:31 � (RA)32:47 ×sf (RB)32:47 
if ((RA)32:47 = 0x8000) & ((RB)32:47 = 0x8000) then

RT32:63 � 0x7FFF_FFFF 
movl � 1

else
RT32:63 � temp0:31
movl � 0

SPEFSCROVH � movh
SPEFSCROV � movl
SPEFSCRSOVH � SPEFSCRSOVH | movh
SPEFSCRSOV � SPEFSCRSOV | movl

The corresponding even-numbered halfword signed
fractional elements in RA and RB are multiplied. The 32
bits of each product are placed into the corresponding
words of RT. If both inputs are -1.0, the result saturates
to the largest positive signed fraction. 

Special Registers Altered:
OV OVH SOV SOVH

Vector Multiply Halfwords, Even, Signed, 
Saturate, Fractional to Accumulator

EVX-form

evmhessfa RT,RA,RB 

temp0:31 � (RA)0:15 ×sf (RB)0:15 
if ((RA)0:15 = 0x8000) & ((RB)0:15 = 0x8000) then

RT0:31 � 0x7FFF_FFFF 
movh � 1

else
RT0:31 � temp0:31
movh � 0

temp0:31 � (RA)32:47 ×sf (RB)32:47 
if ((RA)32:47 = 0x8000) & ((RB)32:47 = 0x8000) then

RT32:63 � 0x7FFF_FFFF 
movl � 1

else
RT32:63 � temp0:31
movl � 0

ACC0:63 � (RT)0:63
SPEFSCROVH � movh
SPEFSCROV � movl
SPEFSCRSOVH � SPEFSCRSOVH | movh
SPEFSCRSOV � SPEFSCRSOV | movl

The corresponding even-numbered halfword signed
fractional elements in RA and RB are multiplied. The 32
bits of each product are placed into the corresponding
words of RT and into the accumulator. If both inputs are
-1.0, the result saturates to the largest positive signed
fraction. 

Special Registers Altered: 
ACC OV OVH SOV SOVH

4 RT RA RB 1027
0 6 11 16 21 31 4 RT RA RB 1059

0 6 11 16 21 31
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Vector Multiply Halfwords, Even, Signed, 
Saturate, Fractional and Accumulate into 
Words EVX-form

evmhessfaaw RT,RA,RB 

temp0:31 � (RA)0:15 ×sf (RB)0:15 
if ((RA)0:15 = 0x8000) & ((RB)0:15 = 0x8000) then

temp0:31 � 0x7FFF_FFFF 
movh � 1

else
movh � 0

temp0:63 � EXTS((ACC)0:31) + EXTS(temp0:31)
ovh � (temp31 ⊕  temp32)
RT0:31 � SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 

temp0:31 � (RA)32:47 ×sf (RB)32:47 
if ((RA)32:47 = 0x8000) & ((RB)32:47 = 0x8000) then

temp0:31 � 0x7FFF_FFFF 
movl � 1

else
movl � 0

temp0:63 � EXTS((ACC)32:63) + EXTS(temp0:31)
ovl � (temp31 ⊕  temp32)
RT32:63 � SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
ACC0:63 � (RT)0:63
SPEFSCROVH � ovh | movh
SPEFSCROV � ovl| movl
SPEFSCRSOVH � SPEFSCRSOVH | ovh | movh
SPEFSCRSOV � SPEFSCRSOV | ovl| movl

The corresponding even-numbered halfword signed
fractional elements in RA and RB are multiplied produc-
ing a 32-bit product. If both inputs are -1.0, the result
saturates to 0x7FFF_FFFF. Each 32-bit product is then
added to the corresponding word in the accumulator
saturating if overflow occurs, and the result is placed in
RT and the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Multiply Halfwords, Even, Signed, 
Saturate, Fractional and Accumulate 
Negative into Words EVX-form

evmhessfanw RT,RA,RB 

temp0:31 � (RA)0:15 ×sf (RB)0:15 
if ((RA)0:15 = 0x8000) & ((RB)0:15 = 0x8000) then

temp0:31 � 0x7FFF_FFFF 
movh � 1

else
movh � 0

temp0:63 � EXTS((ACC)0:31) - EXTS(temp0:31)
ovh � (temp31 ⊕  temp32)
RT0:31 � SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
temp0:31 � (RA)32:47 ×sf (RB)32:47 
if ((RA)32:47 = 0x8000) & ((RB)32:47 = 0x8000) then

temp0:31 � 0x7FFF_FFFF 
movl � 1

else
movl � 0

temp0:63 � EXTS((ACC)32:63) - EXTS(temp0:31)
ovl � (temp31 ⊕  temp32)
RT32:63 � SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
ACC0:63 � (RT)0:63
SPEFSCROVH � ovh | movh
SPEFSCROV � ovl| movl
SPEFSCRSOVH � SPEFSCRSOVH | ovh | movh
SPEFSCRSOV � SPEFSCRSOV | ovl| movl

The corresponding even-numbered halfword signed
fractional elements in RA and RB are multiplied produc-
ing a 32-bit product. If both inputs are -1.0, the result
saturates to 0x7FFF_FFFF. Each 32-bit product is then
subtracted from the corresponding word in the accumu-
lator saturating if overflow occurs, and the result is
placed in RT and the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

4 RT RA RB 1283
0 6 11 16 21 31

4 RT RA RB 1411
0 6 11 16 21 31
Chapter 6. Signal Processing Engine (SPE) 225



   Version 2.04
Vector Multiply Halfwords, Even, Signed, 
Saturate, Integer and Accumulate into 
Words EVX-form

evmhessiaaw RT,RA,RB 

temp0:31 � (RA)0:15 ×si (RB)0:15 
temp0:63 � EXTS((ACC)0:31) + EXTS(temp0:31)
ovh � (temp31 ⊕  temp32)
RT0:31 � SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 

temp0:31 � (RA)32:47 ×si (RB)32:47 
temp0:63 � EXTS((ACC)32:63) + EXTS(temp0:31)
ovl � (temp31 ⊕  temp32)
RT32:63 � SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
ACC0:63 � (RT)0:63
SPEFSCROVH � ovh
SPEFSCROV � ovl
SPEFSCRSOVH � SPEFSCRSOVH | ovh
SPEFSCRSOV � SPEFSCRSOV | ovl

The corresponding even-numbered halfword
signed-integer elements in RA and RB are multiplied
producing a 32-bit product. Each 32-bit product is then
added to the corresponding word in the accumulator
saturating if overflow occurs, and the result is placed in
RT and the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Multiply Halfwords, Even, Signed, 
Saturate, Integer and Accumulate 
Negative into Words EVX-form

evmhessianw RT,RA,RB 

temp0:31 � (RA)0:15 ×si (RB)0:15 
temp0:63 � EXTS((ACC)0:31) - EXTS(temp0:31)
ovh � (temp31 ⊕  temp32)
RT0:31 � SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
temp0:31 � (RA)32:47 ×si (RB)32:47 
temp0:63 � EXTS((ACC)32:63) - EXTS(temp0:31)
ovl � (temp31 ⊕  temp32)
RT32:63 � SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
ACC0:63 � RT0:63
SPEFSCROVH � ovh
SPEFSCROV � ovl
SPEFSCRSOVH � SPEFSCRSOVH | ovh
SPEFSCRSOV � SPEFSCRSOV | ovl

The corresponding even-numbered halfword
signed-integer elements in RA and RB are multiplied
producing a 32-bit product. Each 32-bit product is then
subtracted from the corresponding word in the accumu-
lator saturating if overflow occurs, and the result is
placed in RT and the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

4 RT RA RB 1281
0 6 11 16 21 31

4 RT RA RB 1409
0 6 11 16 21 31
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Vector Multiply Halfwords, Even, 
Unsigned, Modulo, Integer EVX-form

evmheumi RT,RA,RB 

RT0:31 � (RA)0:15 ×ui (RB)0:15 
RT32:63 � (RA)32:47 ×ui (RB)32:47 

The corresponding even-numbered halfword
unsigned-integer elements in RA and RB are multi-
plied. The two 32-bit products are placed into the corre-
sponding words of RT.

Special Registers Altered:
None

Vector Multiply Halfwords, Even, 
Unsigned, Modulo, Integer to 
Accumulator EVX-form

evmheumia RT,RA,RB

RT0:31 � (RA)0:15 ×ui (RB)0:15 
RT32:63 � (RA)32:47 ×ui (RB)32:47 
ACC0:63 � (RT)0:63
The corresponding even-numbered halfword
unsigned-integer elements in RA and RB are multi-
plied. The two 32-bit products are placed into RT and
into the accumulator.

Special Registers Altered:
ACC

Vector Multiply Halfwords, Even, 
Unsigned, Modulo, Integer and 
Accumulate into Words EVX-form

evmheumiaaw RT,RA,RB 

temp0:31 � (RA)0:15 ×ui (RB)0:15
RT0:31 � (ACC)0:31 + temp0:31
temp0:31 � (RA)32:47 ×ui (RB)32:47
RT32:63 � (ACC)32:63 + temp0:31
ACC0:63 � (RT)0:63

For each word element in the accumulator, the corre-
sponding even-numbered halfword unsigned-integer
elements in RA and RB are multiplied. Each intermedi-
ate product is added to the contents of the correspond-
ing accumulator words and the sums are placed into
the corresponding RT and accumulator words. 

Special Registers Altered: 
ACC 

Vector Multiply Halfwords, Even, 
Unsigned, Modulo, Integer and 
Accumulate Negative into Words

EVX-form

evmheumianw RT,RA,RB

temp0:31 � (RA)0:15 ×ui (RB)0:15
RT0:31 � (ACC)0:31 - temp0:31
temp0:31 � (RA)32:47 ×ui (RB)32:47
RT32:63 � (ACC)32:63 - temp0:31
ACC0:63 � (RT)0:63

For each word element in the accumulator, the corre-
sponding even-numbered halfword unsigned-integer
elements in RA and RB are multiplied. Each intermedi-
ate product is subtracted from the contents of the corre-
sponding accumulator words. The differences are
placed into the corresponding RT and accumulator
words. 

Special Registers Altered: 
ACC 

4 RT RA RB 1032
0 6 11 16 21 31 4 RT RA RB 1064

0 6 11 16 21 31

4 RT RA RB 1288
0 6 11 16 21 31 4 RT RA RB 1416

0 6 11 16 21 31
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Vector Multiply Halfwords, Even, 
Unsigned, Saturate, Integer and 
Accumulate into Words EVX-form

evmheusiaaw RT,RA,RB 

temp0:31 � (RA)0:15 ×ui (RB)0:15 
temp0:63 � EXTZ((ACC)0:31) + EXTZ(temp0:31)
ovh � temp31
RT0:31 � SATURATE(ovh, 0, 0xFFFF_FFFF, 0xFFFF_FFFF,

temp32:63) 
temp0:31 � (RA)32:47 ×ui (RB)32:47 
temp0:63 � EXTZ((ACC)32:63) + EXTZ(temp0:31)
ovl � temp31
RT32:63 � SATURATE(ovl, 0, 0xFFFF_FFFF,

0xFFFF_FFFF, temp32:63)
ACC0:63 � (RT)0:63
SPEFSCROVH � ovh
SPEFSCROV � ovl
SPEFSCRSOVH � SPEFSCRSOVH | ovh
SPEFSCRSOV � SPEFSCRSOV | ovl

For each word element in the accumulator, correspond-
ing even-numbered halfword unsigned-integer ele-
ments in RA and RB are multiplied producing a 32-bit
product. Each 32-bit product is then added to the corre-
sponding word in the accumulator saturating if overflow
occurs, and the result is placed in RT and the accumu-
lator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Multiply Halfwords, Even, 
Unsigned, Saturate, Integer and 
Accumulate Negative into Words

EVX-form

evmheusianw RT,RA,RB 

temp0:31 � (RA)0:15 ×ui (RB)0:15 
temp0:63 � EXTZ((ACC)0:31) - EXTZ(temp0:31)
ovh � temp31
RT0:31 � SATURATE(ovh, 0, 0x0000_0000, 0x0000_0000,

temp32:63) 
temp0:31 � (RA)32:47 ×ui (RB)32:47 
temp0:63 � EXTZ((ACC)32:63) - EXTZ(temp0:31)
ovl � temp31
RT32:63 � SATURATE(ovl, 0, 0x0000_0000,

0x0000_0000, temp32:63)
ACC0:63 � (RT)0:63
SPEFSCROVH � ovh
SPEFSCROV � ovl
SPEFSCRSOVH � SPEFSCRSOVH | ovh
SPEFSCRSOV � SPEFSCRSOV | ovl

For each word element in the accumulator, correspond-
ing even-numbered halfword unsigned-integer ele-
ments in RA and RB are multiplied producing a 32-bit
product. Each 32-bit product is then subtracted from
the corresponding word in the accumulator saturating if
overflow occurs, and the result is placed in RT and the
accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

4 RT RA RB 1280
0 6 11 16 21 31 4 RT RA RB 1408

0 6 11 16 21 31
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Vector Multiply Halfwords, Odd, Guarded, 
Signed, Modulo, Fractional and 
Accumulate EVX-form

evmhogsmfaa RT,RA,RB 

temp0:63 � (RA)48:63 ×gsf (RB)48:63
RT0:63 � (ACC)0:63 + temp0:63
ACC0:63 � (RT)0:63

The corresponding low odd-numbered, halfword signed
fractional elements in RA and RB are multiplied using
guarded signed fractional multiplication producing a
sign extended 64-bit fractional product with the decimal
between bits 32 and 33. The product is added to the
contents of the 64-bit accumulator and the result is
placed in RT and the accumulator.

Special Registers Altered: 
ACC

 

Vector Multiply Halfwords, Odd, Guarded, 
Signed, Modulo, Fractional and 
Accumulate Negative EVX-form

evmhogsmfan RT,RA,RB 

temp0:63 � (RA)48:63 ×gsf (RB)48:63
RT0:63 � (ACC)0:63 - temp0:63
ACC0:63 � (RT)0:63

The corresponding low odd-numbered, halfword signed
fractional elements in RA and RB are multiplied using
guarded signed fractional multiplication producing a
sign extended 64-bit fractional product with the decimal
between bits 32 and 33. The product is subtracted from
the contents of the 64-bit accumulator and the result is
placed in RT and the accumulator.

Special Registers Altered: 
ACC

 

Vector Multiply Halfwords, Odd, Guarded, 
Signed, Modulo, Integer and Accumulate

EVX-form

evmhogsmiaa RT,RA,RB 

temp0:31 � (RA)48:63 ×si (RB)48:63
temp0:63 � EXTS(temp0:31)
RT0:63 � (ACC)0:63 + temp0:63
ACC0:63 � (RT)0:63

The corresponding low odd-numbered halfword
signed-integer elements in RA and RB are multiplied.
The intermediate product is sign-extended to 64 bits
then added to the contents of the 64-bit accumulator,
and the result is placed in RT and into the accumulator.

Special Registers Altered: 
ACC

Vector Multiply Halfwords, Odd, Guarded, 
Signed, Modulo, Integer and Accumulate 
Negative EVX-form

evmhogsmian RT,RA,RB 

temp0:31 � (RA)48:63 ×si (RB)48:63
temp0:63 � EXTS(temp0:31)
RT0:63 � (ACC)0:63 - temp0:63
ACC0:63 � (RT)0:63

The corresponding low odd-numbered halfword
signed-integer elements in RA and RB are multiplied.
The intermediate product is sign-extended to 64 bits
then subtracted from the contents of the 64-bit accumu-
lator, and the result is placed in RT and into the accu-
mulator.

Special Registers Altered: 
ACC

4 RT RA RB 1327
0 6 11 16 21 31

If the two input operands are both -1.0, the interme-
diate product is represented as +1.0.

Note

4 RT RA RB 1455
0 6 11 16 21 31

If the two input operands are both -1.0, the interme-
diate product is represented as +1.0.

Note

4 RT RA RB 1325
0 6 11 16 21 31

4 RT RA RB 1453
0 6 11 16 21 31
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Vector Multiply Halfwords, Odd, Guarded, 
Unsigned, Modulo, Integer and 
Accumulate EVX-form

evmhogumiaa RT,RA,RB 

temp0:31 � (RA)48:63 ×ui (RB)48:63
temp0:63 � EXTZ(temp0:31)
RT0:63 � (ACC)0:63 + temp0:63
ACC0:63 � (RT)0:63

The corresponding low odd-numbered halfword
unsigned-integer elements in RA and RB are multi-
plied. The intermediate product is zero-extended to 64
bits then added to the contents of the 64-bit accumula-
tor, and the result is placed in RT and into the accumu-
lator.

Special Registers Altered: 
ACC

Vector Multiply Halfwords, Odd, Guarded, 
Unsigned, Modulo, Integer and 
Accumulate Negative EVX-form

evmhogumian RT,RA,RB 

temp0:31 � (RA)48:63 ×ui (RB)48:63
temp0:63 � EXTZ(temp0:31)
RT0:63 � (ACC)0:63 - temp0:63
ACC0:63 � (RT)0:63

The corresponding low odd-numbered halfword
unsigned-integer elements in RA and RB are multi-
plied. The intermediate product is zero-extended to 64
bits then subtracted from the contents of the 64-bit
accumulator, and the result is placed in RT and into the
accumulator.

Special Registers Altered: 
ACC

Vector Multiply Halfwords, Odd, Signed, 
Modulo, Fractional EVX-form

evmhosmf RT,RA,RB 

RT0:31 � (RA)16:31 ×sf (RB)16:31 
RT32:63 � (RA)48:63 ×sf (RB)48:63 

The corresponding odd-numbered, halfword signed
fractional elements in RA and RB are multiplied. Each
product is placed into the corresponding words of RT. 

Special Registers Altered: 
None

Vector Multiply Halfwords, Odd, Signed, 
Modulo, Fractional to Accumulator

EVX-form

evmhosmfa RT,RA,RB 

RT0:31 � (RA)16:31 ×sf (RB)16:31 
RT32:63 � (RA)48:63 ×sf (RB)48:63 
ACC0:63 � (RT)0:63
The corresponding odd-numbered, halfword signed
fractional elements in RA and RB are multiplied. Each
product is placed into the corresponding words of RT.
and into the accumulator.

Special Registers Altered: 
ACC

4 RT RA RB 1324
0 6 11 16 21 31

4 RT RA RB 1452
0 6 11 16 21 31

4 RT RA RB 1039
0 6 11 16 21 31 4 RT RA RB 1071

0 6 11 16 21 31
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Vector Multiply Halfwords, Odd, Signed, 
Modulo, Fractional and Accumulate into 
Words EVX-form

evmhosmfaaw RT,RA,RB

temp0:31 � (RA)16:31 ×sf (RB)16:31 
RT0:31 � (ACC)0:31 + temp0:31
temp0:31 � (RA)48:63 ×sf (RB)48:63 
RT32:63 � (ACC)32:63 + temp0:31
ACC0:63 � (RT)0:63

For each word element in the accumulator, the corre-
sponding odd-numbered halfword signed fractional ele-
ments in RA and RB are multiplied. The 32 bits of each
intermediate product are added to the contents of the
corresponding accumulator word and the results are
placed into the corresponding RT words and into the
accumulator.

Special Registers Altered: 
ACC 

Vector Multiply Halfwords, Odd, Signed, 
Modulo, Fractional and Accumulate 
Negative into Words EVX-form

evmhosmfanw RT,RA,RB 

temp0:31 � (RA)16:31 ×sf (RB)16:31 
RT0:31 � (ACC)0:31 - temp0:31
temp0:31 � (RA)48:63 ×sf (RB)48:63 
RT32:63 � (ACC)32:63 - temp0:31
ACC0:63 � (RT)0:63

For each word element in the accumulator, the corre-
sponding odd-numbered halfword signed fractional ele-
ments in RA and RB are multiplied. The 32 bits of each
intermediate product are subtracted from the contents
of the corresponding accumulator word and the results
are placed into the corresponding RT words and into
the accumulator.

Special Registers Altered: 
ACC 

Vector Multiply Halfwords, Odd, Signed, 
Modulo, Integer EVX-form

evmhosmi RT,RA,RB 

RT0:31 � (RA)16:31 ×si (RB)16:31 
RT32:63 � (RA)48:63 ×si (RB)48:63 

The corresponding odd-numbered halfword
signed-integer elements in RA and RB are multiplied.
The two 32-bit products are placed into the correspond-
ing words of RT. 

Special Registers Altered: 
None

Vector Multiply Halfwords, Odd, Signed, 
Modulo, Integer to AccumulatorEVX-form

evmhosmia RT,RA,RB 

RT0:31 � (RA)16:31 ×si (RB)16:31 
RT32:63 � (RA)48:63 ×si (RB)48:63 
ACC0:63 � (RT)0:63
The corresponding odd-numbered halfword
signed-integer elements in RA and RB are multiplied.
The two 32-bit products are placed into the correspond-
ing words of RT and into the accumulator.

Special Registers Altered: 
ACC 

4 RT RA RB 1295
0 6 11 16 21 31

4 RT RA RB 1423
0 6 11 16 21 31

4 RT RA RB 1037
0 6 11 16 21 31

4 RT RA RB 1069
0 6 11 16 21 31
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Vector Multiply Halfwords, Odd, Signed, 
Modulo, Integer and Accumulate into 
Words EVX-form

evmhosmiaaw RT,RA,RB 

temp0:31 � (RA)16:31 ×si (RB)16:31 
RT0:31 � (ACC)0:31 + temp0:31
temp0:31 � (RA)48:63 ×si (RB)48:63 
RT32:63 � (ACC)32:63 + temp0:31
ACC0:63 � (RT)0:63

For each word element in the accumulator, the corre-
sponding odd-numbered halfword signed-integer ele-
ments in RA and RB are multiplied. Each intermediate
32-bit product is added to the contents of the corre-
sponding accumulator word and the results are placed
into the corresponding RT words and into the accumu-
lator.

Special Registers Altered: 
ACC 

Vector Multiply Halfwords, Odd, Signed, 
Modulo, Integer and Accumulate Negative 
into Words EVX-form

evmhosmianw RT,RA,RB 

temp0:31 �(RA)16:31 ×si (RB)16:31 
RT0:31 � (ACC)0:31 - temp0:31
temp0:31 � (RA)48:63 ×si (RB)48:63 
RT32:63 � (ACC)32:63 - temp0:31
ACC0:63 � (RT)0:63

For each word element in the accumulator, the corre-
sponding odd-numbered halfword signed-integer ele-
ments in RA and RB are multiplied. Each intermediate
32-bit product is subtracted from the contents of the
corresponding accumulator word and the results are
placed into the corresponding RT words and into the
accumulator.

Special Registers Altered: 
ACC

4 RT RA RB 1293
0 6 11 16 21 31

4 RT RA RB 1421
0 6 11 16 21 31
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Vector Multiply Halfwords, Odd, Signed, 
Saturate, Fractional EVX-form

evmhossf RT,RA,RB 

temp0:31 � (RA)16:31 ×sf (RB)16:31 
if ((RA)16:31 = 0x8000) & ((RB)16:31 = 0x8000) then

RT0:31 � 0x7FFF_FFFF 
movh � 1

else
RT0:31 � temp0:31
movh � 0

temp0:31 � (RA)48:63 ×sf (RB)48:63 
if ((RA)48:63 = 0x8000) & ((RB)48:63 = 0x8000) then

RT32:63 � 0x7FFF_FFFF 
movl � 1

else
RT32:63 � temp0:31
movl � 0

SPEFSCROVH � movh
SPEFSCROV � movl
SPEFSCRSOVH � SPEFSCRSOVH | movh
SPEFSCRSOV � SPEFSCRSOV | movl

The corresponding odd-numbered halfword signed
fractional elements in RA and RB are multiplied. The 32
bits of each product are placed into the corresponding
words of RT. If both inputs are -1.0, the result saturates
to the largest positive signed fraction. 

Special Registers Altered: 
OV OVH SOV SOVH

Vector Multiply Halfwords, Odd, Signed, 
Saturate, Fractional to Accumulator

EVX-form

evmhossfa RT,RA,RB 

temp0:31 � (RA)16:31 ×sf (RB)16:31 
if ((RA)16:31 = 0x8000) & ((RB)16:31 = 0x8000) then

RT0:31 � 0x7FFF_FFFF 
movh � 1

else
RT0:31 � temp0:31
movh � 0

temp0:31 � (RA)48:63 ×sf (RB)48:63 
if ((RA)48:63 = 0x8000) & ((RB)48:63 = 0x8000) then

RT32:63 � 0x7FFF_FFFF 
movl � 1

else
RT32:63 � temp0:31
movl � 0

ACC0:63 � (RT)0:63
SPEFSCROVH � movh
SPEFSCROV � movl
SPEFSCRSOVH � SPEFSCRSOVH | movh
SPEFSCRSOV � SPEFSCRSOV | movl

The corresponding odd-numbered halfword signed
fractional elements in RA and RB are multiplied. The 32
bits of each product are placed into the corresponding
words of RT and into the accumulator. If both inputs are
-1.0, the result saturates to the largest positive signed
fraction. 

Special Registers Altered: 
ACC OV OVH SOV SOVH

4 RT RA RB 1031
0 6 11 16 21 31 4 RT RA RB 1063

0 6 11 16 21 31
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Vector Multiply Halfwords, Odd, Signed, 
Saturate, Fractional and Accumulate into 
Words EVX-form

evmhossfaaw RT,RA,RB 

temp0:31 � (RA)16:31 ×sf (RB)16:31 
if ((RA)16:31 = 0x8000) & ((RB)16:31 = 0x8000) then

temp0:31 � 0x7FFF_FFFF 
movh � 1

else
movh � 0

temp0:63 � EXTS((ACC)0:31) + EXTS(temp0:31)
ovh � (temp31 ⊕  temp32)
RT0:31 � SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
temp0:31 � (RA)48:63 ×sf (RB)48:63 
if ((RA)48:63 = 0x8000) & ((RB)48:63 = 0x8000) then

temp0:31 � 0x7FFF_FFFF 
movl � 1

else
movl � 0

temp0:63 � EXTS((ACC)32:63) + EXTS(temp0:31)
ovl � (temp31 ⊕  temp32)
RT32:63 � SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
ACC0:63 � (RT)0:63
SPEFSCROVH � ovh | movh
SPEFSCROV � ovl| movl
SPEFSCRSOVH � SPEFSCRSOVH | ovh | movh
SPEFSCRSOV � SPEFSCRSOV | ovl| movl

The corresponding odd-numbered halfword signed
fractional elements in RA and RB are multiplied produc-
ing a 32-bit product. If both inputs are -1.0, the result
saturates to 0x7FFF_FFFF. Each 32-bit product is then
added to the corresponding word in the accumulator
saturating if overflow occurs, and the result is placed in
RT and the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Multiply Halfwords, Odd, Signed, 
Saturate, Fractional and Accumulate 
Negative into Words EVX-form

evmhossfanw RT,RA,RB 

temp0:31 � (RA)16:31 ×sf (RB)16:31 
if ((RA)16:31 = 0x8000) & ((RB)16:31 = 0x8000) then

temp0:31 � 0x7FFF_FFFF 
movh � 1

else
movh � 0

temp0:63 � EXTS((ACC)0:31) - EXTS(temp0:31)
ovh � (temp31 ⊕  temp32)
RT0:31 � SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
temp0:31 � (RA)48:63 ×sf (RB)48:63 
if ((RA)48:63 = 0x8000) & ((RB)48:63 = 0x8000) then

temp0:31 � 0x7FFF_FFFF 
movl � 1

else
movl � 0

temp0:63 � EXTS((ACC)32:63) - EXTS(temp0:31)
ovl � (temp31 ⊕  temp32)
RT32:63 � SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
ACC0:63 � (RT)0:63
SPEFSCROVH � ovh | movh
SPEFSCROV � ovl| movl
SPEFSCRSOVH � SPEFSCRSOVH | ovh | movh
SPEFSCRSOV � SPEFSCRSOV | ovl| movl

The corresponding odd-numbered halfword signed
fractional elements in RA and RB are multiplied produc-
ing a 32-bit product. If both inputs are -1.0, the result
saturates to 0x7FFF_FFFF. Each 32-bit product is then
subtracted from the corresponding word in the accumu-
lator saturating if overflow occurs, and the result is
placed in RT and the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

4 RT RA RB 1287
0 6 11 16 21 31

4 RT RA RB 1415
0 6 11 16 21 31
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Vector Multiply Halfwords, Odd, Signed, 
Saturate, Integer and Accumulate into 
Words EVX-form

evmhossiaaw RT,RA,RB

temp0:31 � (RA)16:31 ×si (RB)16:31 
temp0:63 � EXTS((ACC)0:31) + EXTS(temp0:31)
ovh � (temp31 ⊕  temp32)
RT0:31 � SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
temp0:31 � (RA)48:63 ×si (RB)48:63
temp0:63 � EXTS((ACC)32:63) + EXTS(temp0:31)
ovl � (temp31 ⊕  temp32)
RT32:63 � SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
ACC0:63 � (RT)0:63
SPEFSCROVH � ovh
SPEFSCROV � ovl
SPEFSCRSOVH � SPEFSCRSOVH | ovh
SPEFSCRSOV � SPEFSCRSOV | ovl

The corresponding odd-numbered halfword
signed-integer elements in RA and RB are multiplied
producing a 32-bit product. Each 32-bit product is then
added to the corresponding word in the accumulator
saturating if overflow occurs, and the result is placed in
RT and the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Multiply Halfwords, Odd, Signed, 
Saturate, Integer and Accumulate 
Negative into Words EVX-form

evmhossianw RT,RA,RB 

temp0:31 � (RA)16:31 ×si (RB)16:31 
temp0:63 � EXTS((ACC)0:31) - EXTS(temp0:31)
ovh � (temp31 ⊕  temp32)
RT0:31 � SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
temp0:31 � (RA)48:63 ×si (RB)48:63
temp0:63 � EXTS((ACC)32:63) - EXTS(temp0:31)
ovl � (temp31 ⊕  temp32)
RT32:63 � SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
ACC0:63 � (RT)0:63
SPEFSCROVH � ovh
SPEFSCROV � ovl
SPEFSCRSOVH � SPEFSCRSOVH | ovh
SPEFSCRSOV � SPEFSCRSOV | ovl

The corresponding odd-numbered halfword
signed-integer elements in RA and RB are multiplied
producing a 32-bit product. Each 32-bit product is then
subtracted from the corresponding word in the accumu-
lator saturating if overflow occurs, and the result is
placed in RT and the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Multiply Halfwords, Odd, 
Unsigned, Modulo, Integer EVX-form

evmhoumi RT,RA,RB 

RT0:31 � (RA)16:31 ×ui (RB)16:31 
RT32:63 � (RA)48:63 ×ui (RB)48:63 

The corresponding odd-numbered halfword
unsigned-integer elements in RA and RB are multi-
plied. The two 32-bit products are placed into the corre-
sponding words of RT. 

Special Registers Altered: 
None

Vector Multiply Halfwords, Odd, 
Unsigned, Modulo, Integer to 
 Accumulator EVX-form

evmhoumia RT,RA,RB 

RT0:31 � (RA)16:31 ×ui (RB)16:31 
RT32:63 � (RA)48:63 ×ui (RB)48:63 
ACC0:63 � (RT)0:63
The corresponding odd-numbered halfword
unsigned-integer elements in RA and RB are multi-
plied. The two 32-bit products are placed into RT and
into the accumulator.

Special Registers Altered: 
ACC 

4 RT RA RB 1285
0 6 11 16 21 31

4 RT RA RB 1413
0 6 11 16 21 31

4 RT RA RB 1036
0 6 11 16 21 31 4 RT RA RB 1068

0 6 11 16 21 31
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Vector Multiply Halfwords, Odd, 
Unsigned, Modulo, Integer and 
Accumulate into Words EVX-form

evmhoumiaaw RT,RA,RB 

temp0:31 � (RA)16:31 ×ui (RB)16:31
RT0:31 � (ACC)0:31 + temp0:31
temp0:31 � (RA)48:63 ×ui (RB)48:63
RT32:63 � (ACC)32:63 + temp0:31
ACC0:63 � (RT)0:63

For each word element in the accumulator, the corre-
sponding odd-numbered halfword unsigned-integer
elements in RA and RB are multiplied. Each intermedi-
ate product is added to the contents of the correspond-
ing accumulator word. The sums are placed into the
corresponding RT and accumulator words. 

Special Registers Altered: 
ACC 

Vector Multiply Halfwords, Odd, 
Unsigned, Modulo, Integer and 
Accumulate Negative into Words
EVX-form

evmhoumianw RT,RA,RB 

temp0:31 � (RA)16:31 ×ui (RB)16:31
RT0:31 � (ACC)0:31 - temp0:31
temp0:31 � (RA)48:63 ×ui (RB)48:63
RT32:63 � (ACC)32:63 - temp0:31
ACC0:63 � (RT)0:63

For each word element in the accumulator, the corre-
sponding odd-numbered halfword unsigned-integer
elements in RA and RB are multiplied. Each intermedi-
ate product is subtracted from the contents of the corre-
sponding accumulator word. The results are placed into
the corresponding RT and accumulator words. 

Special Registers Altered: 
ACC

 

Vector Multiply Halfwords, Odd, 
Unsigned, Saturate, Integer and 
Accumulate into Words EVX-form

evmhousiaaw RT,RA,RB 

temp0:31 � (RA)16:31 ×ui (RB)16:31 
temp0:63 � EXTZ((ACC)0:31) + EXTZ(temp0:31)
ovh � temp31
RT0:31 � SATURATE(ovh, 0, 0xFFFF_FFFF, 0xFFFF_FFFF,

temp32:63) 
temp0:31 � (RA)48:63 ×ui (RB)48:63 
temp0:63 � EXTZ((ACC)32:63) + EXTZ(temp0:31)
ovl � temp31
RT32:63 � SATURATE(ovl, 0, 0xFFFF_FFFF,

0xFFFF_FFFF, temp32:63)
ACC0:63 � (RT)0:63
SPEFSCROVH � ovh
SPEFSCROV � ovl
SPEFSCRSOVH � SPEFSCRSOVH | ovh
SPEFSCRSOV � SPEFSCRSOV | ovl

For each word element in the accumulator, correspond-
ing odd-numbered halfword unsigned-integer elements
in RA and RB are multiplied producing a 32-bit product.
Each 32-bit product is then added to the corresponding
word in the accumulator saturating if overflow occurs,
and the result is placed in RT and the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Multiply Halfwords, Odd, 
Unsigned, Saturate, Integer and 
Accumulate Negative into Words

EVX-form

evmhousianw RT,RA,RB 

temp0:31 � (RA)16:31 ×ui (RB)16:31 
temp0:63 � EXTZ((ACC)0:31) - EXTZ(temp0:31)
ovh � temp31
RT0:31 � SATURATE(ovh, 0, 0x0000_0000, 0x0000_0000,

temp32:63) 
temp0:31 � (RA)48:63 ×ui (RB)48:63 
temp0:63 � EXTZ((ACC)32:63) - EXTZ(temp0:31)
ovl � temp31
RT32:63 � SATURATE(ovl, 0, 0x0000_0000,0x0000_0000,

temp32:63)
ACC0:63 � (RT)0:63
SPEFSCROVH � ovh
SPEFSCROV � ovl
SPEFSCRSOVH � SPEFSCRSOVH | ovh
SPEFSCRSOV � SPEFSCRSOV | ovl

For each word element in the accumulator, correspond-
ing odd-numbered halfword unsigned-integer elements
in RA and RB are multiplied producing a 32-bit product.
Each 32-bit product is then subtracted from the corre-
sponding word in the accumulator saturating if overflow
occurs, and the result is placed in RT and the accumu-
lator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

4 RT RA RB 1292
0 6 11 16 21 31 4 RT RA RB 1420

0 6 11 16 21 31

4 RT RA RB 1284
0 6 11 16 21 31 4 RT RA RB 1412

0 6 11 16 21 31
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Initialize Accumulator EVX-form

evmra RT,RA

ACC0:63 � (RA)0:63
RT0:63 � (RA)0:63
The contents of RA are placed into the accumulator
and RT. This is the method for initializing the accumula-
tor.

Special Registers Altered: 
ACC

Vector Multiply Word High Signed, 
Modulo, Fractional EVX-form

evmwhsmf RT,RA,RB 

temp0:63 � (RA)0:31 ×sf (RB)0:31 
RT0:31 � temp0:31
temp0:63 � (RA)32:63 ×sf (RB)32:63
RT32:63 � temp0:31 

The corresponding word signed fractional elements in
RA and RB are multiplied and bits 0:31 of the two prod-
ucts are placed into the two corresponding words of RT. 

Special Registers Altered: 
None

Vector Multiply Word High Signed, 
Modulo, Fractional to Accumulator

EVX-form

evmwhsmfa RT,RA,RB 

temp0:63 � (RA)0:31 ×sf (RB)0:31 
RT0:31 � temp0:31
temp0:63 � (RA)32:63 ×sf (RB)32:63
RT32:63 � temp0:31 
ACC0:63 � (RT)0:63
The corresponding word signed fractional elements in
RA and RB are multiplied and bits 0:31 of the two prod-
ucts are placed into the two corresponding words of RT
and into the accumulator.

Special Registers Altered: 
ACC 

Vector Multiply Word High Signed, 
Modulo, Integer EVX-form

evmwhsmi RT,RA,RB

temp0:63 � (RA)0:31 ×si (RB)0:31
RT0:31 � temp0:31
temp0:63 � (RA)32:63 ×si (RB)32:63
RT32:63 � temp0:31
The corresponding word signed-integer elements in RA
and RB are multiplied. Bits 0:31 of the two 64-bit prod-
ucts are placed into the two corresponding words of RT. 

Special Registers Altered: 
None 

Vector Multiply Word High Signed, 
Modulo, Integer to AccumulatorEVX-form

evmwhsmia RT,RA,RB 

temp0:63 � (RA)0:31 ×si (RB)0:31
RT0:31 � temp0:31
temp0:63 � (RA)32:63 ×si (RB)32:63
RT32:63 � temp0:31
ACC0:63 � (RT)0:63
The corresponding word signed-integer elements in RA
and RB are multiplied. Bits 0:31 of the two 64-bit prod-
ucts are placed into the two corresponding words of RT
and into the accumulator.

Special Registers Altered: 
ACC 

4 RT RA /// 1220
0 6 11 16 21 31

4 RT RA RB 1103
0 6 11 16 21 31 4 RT RA RB 1135

0 6 11 16 21 31

4 RT RA RB 1101
0 6 11 16 21 31

4 RT RA RB 1133
0 6 11 16 21 31
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Vector Multiply Word High Signed, 
Saturate, Fractional EVX-form

evmwhssf RT,RA,RB 

temp0:63 � (RA)0:31 ×sf (RB)0:31 
if ((RA)0:31 = 0x8000_0000)& ((RB)0:31 = 0x8000_0000)
then

RT0:31 � 0x7FFF_FFFF 
movh � 1

else
RT0:31 � temp0:31
movh � 0

temp0:63 � (RA)32:63 ×sf (RB)32:63 
if ((RA)32:63 = 0x8000_0000 &(RB)32:63 = 0x8000_0000) 
then

RT32:63 � 0x7FFF_FFFF 
movl � 1

else
RT32:63 � temp0:31
movl � 0

SPEFSCROVH � movh
SPEFSCROV � movl
SPEFSCRSOVH � SPEFSCRSOVH | movh
SPEFSCRSOV � SPEFSCRSOV | movl

The corresponding word signed fractional elements in
RA and RB are multiplied. Bits 0:31 of each product are
placed into the corresponding words of RT. If both
inputs are -1.0, the result saturates to the largest posi-
tive signed fraction. 

Special Registers Altered: 
OV OVH SOV SOVH 

Vector Multiply Word High Signed, 
Saturate, Fractional to Accumulator

EVX-form

evmwhssfa RT,RA,RB

temp0:63 � (RA)0:31 ×sf (RB)0:31 
if ((RA)0:31 = 0x8000_0000) & ((RB)0:31 = 0x8000_0000) 
then

RT0:31 � 0x7FFF_FFFF 
movh � 1

else
RT0:31 � temp0:31
movh � 0

temp0:63 � (RA)32:63 ×sf (RB)32:63 
if ((RA)32:63=0x8000_0000)&((RB)32:63=0x8000_0000) 
then

RT32:63 � 0x7FFF_FFFF 
movl � 1

else
RT32:63 � temp0:31
movl � 0

ACC0:63 � (RT)0:63
SPEFSCROVH � movh
SPEFSCROV � movl
SPEFSCRSOVH � SPEFSCRSOVH | movh
SPEFSCRSOV � SPEFSCRSOV | movl

The corresponding word signed fractional elements in
RA and RB are multiplied. Bits 0:31 of each product are
placed into the corresponding words of RT and into the
accumulator. If both inputs are -1.0, the result saturates
to the largest positive signed fraction. 

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Multiply Word High Unsigned, 
Modulo, Integer EVX-form

evmwhumi RT,RA,RB 

temp0:63 � (RA)0:31 ×ui (RB)0:31
RT0:31 � temp0:31
temp0:63 � (RA)32:63 ×ui (RB)32:63
RT32:63 � temp0:31
The corresponding word unsigned-integer elements in
RA and RB are multiplied. Bits 0:31 of the two products
are placed into the two corresponding words of RT.

Special Registers Altered: 
None

Vector Multiply Word High Unsigned, 
Modulo, Integer to AccumulatorEVX-form

evmwhumia RT,RA,RB 

temp0:63 � (RA)0:31 ×ui (RB)0:31
RT0:31 � temp0:31
temp0:63 � (RA)32:63 ×ui (RB)32:63
RT32:63 � temp0:31
ACC0:63 � (RT)0:63
The corresponding word unsigned-integer elements in
RA and RB are multiplied. Bits 0:31 of the two products
are placed into the two corresponding words of RT and
into the accumulator.

Special Registers Altered: 
ACC 

4 RT RA RB 1095
0 6 11 16 21 31 4 RT RA RB 1127

0 6 11 16 21 31

4 RT RA RB 1100
0 6 11 16 21 31

4 RT RA RB 1132
0 6 11 16 21 31
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Vector Multiply Word Low Signed, 
Modulo, Integer and Accumulate into 
Words EVX-form

evmwlsmiaaw RT,RA,RB 

temp0:63 � (RA)0:31 ×si (RB)0:31
RT0:31 � (ACC)0:31 + temp32:63
temp0:63 � (RA)32:63 ×si (RB)32:63
RT32:63 � (ACC)32:63 + temp32:63
ACC0:63 � (RT)0:63
For each word element in the accumulator, the corre-
sponding word signed-integer elements in RA and RB
are multiplied. The least significant 32 bits of each
intermediate product are added to the contents of the
corresponding accumulator words, and the result is
placed in RT and the accumulator.

Special Registers Altered: 
ACC 

Vector Multiply Word Low Signed, 
Modulo, Integer and Accumulate Negative 
in Words EVX-form

evmwlsmianw RT,RA,RB 

temp0:63 � (RA)0:31 ×si (RB)0:31
RT0:31 � (ACC)0:31 - temp32:63
temp0:63 � (RA)32:63 ×si (RB)32:63
RT32:63 � (ACC)32:63 - temp32:63
ACC0:63 � (RT)0:63
For each word element in the accumulator, the corre-
sponding word elements in RA and RB are multiplied.
The least significant 32 bits of each intermediate prod-
uct are subtracted from the contents of the correspond-
ing accumulator words and the result is placed in RT
and the accumulator. 

Special Registers Altered: 
ACC 

Vector Multiply Word Low Signed, 
Saturate, Integer and Accumulate into 
Words EVX-form

evmwlssiaaw RT,RA,RB 

temp0:63 � (RA)0:31 ×si (RB)0:31 
temp0:63 � EXTS((ACC)0:31) + EXTS(temp32:63)
ovh � (temp31 ⊕  temp32)
RT0:31 � SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
temp0:63 � (RA)32:63 ×si (RB)32:63 
temp0:63 � EXTS((ACC)32:63) + EXTS(temp32:63)
ovl � (temp31 ⊕  temp32)
RT32:63 � SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
ACC0:63 � (RT)0:63
SPEFSCROVH � ovh
SPEFSCROV � ovl
SPEFSCRSOVH � SPEFSCRSOVH | ovh
SPEFSCRSOV � SPEFSCRSOV | ovl

The corresponding word signed-integer elements in RA
and RB are multiplied producing a 64-bit product. The
least significant 32 bits of each product are then added
to the corresponding word in the accumulator saturat-
ing if overflow occurs, and the result is placed in RT and
the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Multiply Word Low Signed, 
Saturate, Integer and Accumulate 
Negative in Words EVX-form

evmwlssianw RT,RA,RB 

temp0:63 � (RA)0:31 ×si (RB)0:31 
temp0:63 � EXTS((ACC)0:31) - EXTS(temp32:63)
ovh � (temp31 ⊕  temp32)
RT0:31 � SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
temp0:63 � (RA)32:63 ×si (RB)32:63 
temp0:63 � EXTS((ACC)32:63) - EXTS(temp32:63)
ovl � (temp31 ⊕  temp32)
RT32:63 � SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63) 
ACC0:63 � (RT)0:63
SPEFSCROVH � ovh
SPEFSCROV � ovl
SPEFSCRSOVH � SPEFSCRSOVH | ovh
SPEFSCRSOV � SPEFSCRSOV | ovl

The corresponding word signed-integer elements in RA
and RB are multiplied producing a 64-bit product. The
least significant 32 bits of each product are then sub-
tracted from the corresponding word in the accumulator
saturating if overflow occurs, and the result is placed in
RT and the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

4 RT RA RB 1353
0 6 11 16 21 31

4 RT RA RB 1481
0 6 11 16 21 31

4 RT RA RB 1345
0 6 11 16 21 31

4 RT RA RB 1473
0 6 11 16 21 31
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Vector Multiply Word Low Unsigned, 
Modulo, Integer EVX-form

evmwlumi RT,RA,RB

temp0:63 � (RA)0:31 ×ui (RB)0:31
RT0:31 � temp32:63
temp0:63 � (RA)32:63 ×ui (RB)32:63
RT32:63 � temp32:63
The corresponding word unsigned-integer elements in
RA and RB are multiplied. The least significant 32 bits
of each product are placed into the two corresponding
words of RT.

Special Registers Altered: 
None

Vector Multiply Word Low Unsigned, 
Modulo, Integer to AccumulatorEVX-form

evmwlumia RT,RA,RB

temp0:63 � (RA)0:31 ×ui (RB)0:31
RT0:31 � temp32:63
temp0:63 � (RA)32:63 ×ui (RB)32:63
RT32:63 � temp32:63
ACC0:63 � (RT)0:63
The corresponding word unsigned-integer elements in
RA and RB are multiplied. The least significant 32 bits
of each product are placed into the two corresponding
words of RT and into the accumulator.

Special Registers Altered: 
ACC

Vector Multiply Word Low Unsigned, 
Modulo, Integer and Accumulate into 
Words EVX-form

evmwlumiaaw RT,RA,RB 

temp0:63 � (RA)0:31 ×ui (RB)0:31
RT0:31 � (ACC)0:31 + temp32:63

temp0:63 � (RA)32:63 ×ui (RB)32:63
RT32:63 � (ACC)32:63 + temp32:63
ACC0:63 � (RT)0:63
For each word element in the accumulator, the corre-
sponding word unsigned-integer elements in RA and
RB are multiplied. The least significant 32 bits of each
product are added to the contents of the corresponding
accumulator word and the result is placed in RT and
the accumulator.

Special Registers Altered: 
ACC 

Vector Multiply Word Low Unsigned, 
Modulo, Integer and Accumulate Negative 
in Words EVX-form

evmwlumianw RT,RA,RB 

temp0:63 � (RA)0:31 ×ui (RB)0:31
RT0:31 � (ACC)0:31 - temp32:63
temp0:63 � (RA)32:63 ×ui (RB)32:63
RT32:63 � (ACC)32:63 - temp32:63
ACC0:63 � (RT)0:63
For each word element in the accumulator, the corre-
sponding word unsigned-integer elements in RA and
RB are multiplied. The least significant 32 bits of each
product are subtracted from the contents of the corre-
sponding accumulator word and the result is placed in
RT and the accumulator.

Special Registers Altered: 
ACC 

4 RT RA RB 1096
0 6 11 16 21 31

The least significant 32 bits of the product are inde-
pendent of whether the word elements in RA and
RB are treated as signed or unsigned 32-bit inte-
gers.

Note that evmwlumi can be used for signed or
unsigned integers.

Programming Note

4 RT RA RB 1128
0 6 11 16 21 31

The least significant 32 bits of the product are inde-
pendent of whether the word elements in RA and
RB are treated as signed or unsigned 32-bit inte-
gers.

Note that evmwlumia can be used for signed or
unsigned integers.

Programming Note

4 RT RA RB 1352
0 6 11 16 21 31

4 RT RA RB 1480
0 6 11 16 21 31
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Vector Multiply Word Low Unsigned, 
Saturate, Integer and Accumulate into 
Words EVX-form

evmwlusiaaw RT,RA,RB 

temp0:63 � (RA)0:31 ×ui (RB)0:31 
temp0:63 � EXTZ((ACC)0:31) + EXTZ(temp32:63)
ovh � temp31
RT0:31 � SATURATE(ovh, 0, 0xFFFF_FFFF, 0xFFFF_FFFF,

temp32:63) 
temp0:63 � (RA)32:63 ×ui (RB)32:63 
temp0:63 � EXTZ((ACC)32:63) + EXTZ(temp32:63)
ovl � temp31
RT32:63 � SATURATE(ovl, 0, 0xFFFF_FFFF,

0xFFFF_FFFF, temp32:63)
ACC0:63 � (RT)0:63
SPEFSCROVH � ovh
SPEFSCROV � ovl
SPEFSCRSOVH � SPEFSCRSOVH | ovh
SPEFSCRSOV � SPEFSCRSOV | ovl

For each word element in the accumulator, correspond-
ing word unsigned-integer elements in RA and RB are
multiplied producing a 64-bit product. The least signifi-
cant 32 bits of each product are then added to the cor-
responding word in the accumulator saturating if
overflow occurs, and the result is placed in RT and the
accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Multiply Word Low Unsigned, 
Saturate, Integer and Accumulate 
Negative in Words EVX-form

evmwlusianw RT,RA,RB 

temp0:63 � (RA)0:31 ×ui (RB)0:31 
temp0:63 � EXTZ((ACC)0:31) - EXTZ(temp32:63)
ovh � temp31
RT0:31 � SATURATE(ovh, 0, 0x0000_0000, 0x0000_0000,

temp32:63) 
temp0:63 � (RA)32:63 ×ui (RB)32:63 
temp0:63 � EXTZ((ACC)32:63) - EXTZ(temp32:63)
ovl � temp31
RT32:63 � SATURATE(ovl, 0, 0x0000_0000,

0x0000_0000, temp32:63)
ACC0:63 � (RT)0:63
SPEFSCROVH � ovh
SPEFSCROV � ovl
SPEFSCRSOVH � SPEFSCRSOVH | ovh
SPEFSCRSOV � SPEFSCRSOV | ovl

For each word element in the accumulator, correspond-
ing word unsigned-integer elements in RA and RB are
multiplied producing a 64-bit product. The least signifi-
cant 32 bits of each product are then subtracted from
the corresponding word in the accumulator saturating if
overflow occurs, and the result is placed in RT and the
accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Multiply Word Signed, Modulo, 
Fractional EVX-form

evmwsmf RT,RA,RB

RT0:63 � (RA)32:63 ×sf (RB)32:63 

The corresponding low word signed fractional elements
in RA and RB are multiplied. The product is placed in
RT.

Special Registers Altered: 
None

Vector Multiply Word Signed, Modulo, 
Fractional to Accumulator EVX-form

evmwsmfa RT,RA,RB 

RT0:63 � (RA)32:63 ×sf (RB)32:63 
ACC0:63 � (RT)0:63
The corresponding low word signed fractional elements
in RA and RB are multiplied. The product is placed in
RT and into the accumulator.

Special Registers Altered: 
ACC 

4 RT RA RB 1344
0 6 11 16 21 31

4 RT RA RB 1472
0 6 11 16 21 31

4 RT RA RB 1115
0 6 11 16 21 31

4 RT RA RB 1147
0 6 11 16 21 31
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Vector Multiply Word Signed, Modulo, 
Fractional and Accumulate EVX-form

evmwsmfaa RT,RA,RB 

temp0:63 � (RA)32:63 ×sf (RB)32:63
RT0:63 � (ACC)0:63 + temp0:63
ACC0:63 � (RT)0:63
The corresponding low word signed fractional elements
in RA and RB are multiplied. The intermediate product
is added to the contents of the 64-bit accumulator and
the result is placed in RT and the accumulator.

Special Registers Altered: 
ACC 

Vector Multiply Word Signed, Modulo, 
Fractional and Accumulate Negative

EVX-form

evmwsmfan RT,RA,RB 

temp0:63 � (RA)32:63 ×sf (RB)32:63
RT0:63 � (ACC)0:63 - temp0:63
ACC0:63 � (RT)0:63
The corresponding low word signed fractional elements
in RA and RB are multiplied. The intermediate product
is subtracted from the contents of the accumulator and
the result is placed in RT and the accumulator.

Special Registers Altered: 
ACC

 

Vector Multiply Word Signed, Modulo, 
Integer EVX-form

evmwsmi RT,RA,RB 

RT0:63 � (RA)32:63 ×si (RB)32:63
The low word signed-integer elements in RA and RB
are multiplied. The product is placed in RT. 

Special Registers Altered: 
None

Vector Multiply Word Signed, Modulo, 
Integer to Accumulator EVX-form

evmwsmia RT,RA,RB 

RT0:63 � (RA)32:63 ×si (RB)32:63
ACC0:63 � (RT)0:63
The low word signed-integer elements in RA and RB
are multiplied. The product is placed in RT and the
accumulator. 

Special Registers Altered: 
ACC 

Vector Multiply Word Signed, Modulo, 
Integer and Accumulate EVX-form

evmwsmiaa RT,RA,RB 

temp0:63 � (RA)32:63 ×si (RB)32:63
RT0:63 � (ACC)0:63 + temp0:63
ACC0:63 � (RT)0:63
The low word signed-integer elements in RA and RB
are multiplied. The intermediate product is added to the
contents of the 64-bit accumulator and the result is
placed in RT and the accumulator.

Special Registers Altered: 
ACC 

Vector Multiply Word Signed, Modulo, 
Integer and Accumulate Negative

EVX-form

evmwsmian RT,RA,RB 

temp0:63 � (RA)32:63 ×si (RB)32:63
RT0:63 � (ACC)0:63 - temp0:63
ACC0:63 � (RT)0:63
The low word signed-integer elements in RA and RB
are multiplied. The intermediate product is subtracted
from the contents of the 64-bit accumulator and the
result is placed in RT and the accumulator.

Special Registers Altered: 
ACC 

4 RT RA RB 1371
0 6 11 16 21 31 4 RT RA RB 1499

0 6 11 16 21 31

4 RT RA RB 1113
0 6 11 16 21 31

4 RT RA RB 1145
0 6 11 16 21 31

4 RT RA RB 1369
0 6 11 16 21 31 4 RT RA RB 1497

0 6 11 16 21 31
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Vector Multiply Word Signed, Saturate, 
Fractional EVX-form

evmwssf RT,RA,RB 

temp0:63 � (RA)32:63 ×sf (RB)32:63 
if ((RA)32:63 = 0x8000_0000) & (RB32:63 = 0x8000_0000) 
then

RT0:63 � 0x7FFF_FFFF_FFFF_FFFF 
mov � 1

else
RT0:63 � temp0:63
mov � 0

SPEFSCROVH � 0
SPEFSCROV � mov
SPEFSCRSOV � SPEFSCRSOV | mov

The low word signed fractional elements in RA and RB
are multiplied. The 64-bit product is placed in RT. If
both inputs are -1.0, the result saturates to the largest
positive signed fraction. 

Special Registers Altered: 
OV OVH SOV

Vector Multiply Word Signed, Saturate, 
Fractional to Accumulator EVX-form

evmwssfa RT,RA,RB 

temp0:63 � (RA)32:63 ×sf (RB)32:63 
if ((RA)32:63=0x8000_0000)&((RB)32:63=0x8000_0000) 
then

RT0:63 � 0x7FFF_FFFF_FFFF_FFFF 
mov � 1

else
RT0:63 � temp0:63
mov � 0

ACC0:63 � (RT)0:63
SPEFSCROVH � 0
SPEFSCROV � mov
SPEFSCRSOV � SPEFSCRSOV | mov

The low word signed fractional elements in RA and RB
are multiplied. The 64-bit product is placed in RT and
into the accumulator. If both inputs are -1.0, the result
saturates to the largest positive signed fraction. 

Special Registers Altered: 
ACC OV OVH SOV 

4 RT RA RB 1107
0 6 11 16 21 31

4 RT RA RB 1139
0 6 11 16 21 31
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Vector Multiply Word Signed, Saturate, 
Fractional and Accumulate EVX-form

evmwssfaa RT,RA,RB 

temp0:63 � (RA)32:63 ×sf (RB)32:63 
if ((RA)32:63=0x8000_0000)&((RB)32:63=0x8000_0000) 
then

temp0:63 � 0x7FFF_FFFF_FFFF_FFFF 
mov � 1

else
mov � 0

temp0:64 � EXTS((ACC)0:63) + EXTS(temp0:63)
ov � (temp0 ⊕  temp1)
RT0:63 � temp1:64

ACC0:63 � (RT)0:63
SPEFSCROVH � 0
SPEFSCROV � ov | mov
SPEFSCRSOV � SPEFSCRSOV | ov | mov

The low word signed fractional elements in RA and RB
are multiplied producing a 64-bit product. If both inputs
are -1.0, the product saturates to the largest positive
signed fraction. The 64-bit product is then added to the
accumulator and the result is placed in RT and the
accumulator.

Special Registers Altered: 
ACC OV OVH SOV 

Vector Multiply Word Signed, Saturate, 
Fractional and Accumulate Negative

EVX-form

evmwssfan RT,RA,RB 

temp0:63 � (RA)32:63 ×sf (RB)32:63 
if ((RA)32:63=0x8000_0000)&((RB)32:63=0x8000_0000) 
then

temp0:63 � 0x7FFF_FFFF_FFFF_FFFF 
mov � 1

else
mov � 0

temp0:64 � EXTS((ACC)0:63) - EXTS(temp0:63)
ov � (temp0 ⊕  temp1)
RT0:63 � temp1:64
ACC0:63 � (RT)0:63
SPEFSCROVH � 0
SPEFSCROV � ov | mov
SPEFSCRSOV � SPEFSCRSOV | ov | mov

The low word signed fractional elements in RA and RB
are multiplied producing a 64-bit product. If both inputs
are -1.0, the product saturates to the largest positive
signed fraction. The 64-bit product is then subtracted
from the accumulator and the result is placed in RT and
the accumulator.

Special Registers Altered: 
ACC OV OVH SOV 

Vector Multiply Word Unsigned, Modulo, 
Integer EVX-form

evmwumi RT,RA,RB

RT0:63 � (RA)32:63 ×ui (RB)32:63
The low word unsigned-integer elements in RA and RB
are multiplied to form a 64-bit product that is placed in
RT. 

Special Registers Altered: 
None

Vector Multiply Word Unsigned, Modulo, 
Integer to Accumulator EVX-form

evmwumia RT,RA,RB 

RT0:63 � (RA)32:63 ×ui (RB)32:63
ACC0:63 � (RT)0:63
The low word unsigned-integer elements in RA and RB
are multiplied to form a 64-bit product that is placed in
RT and into the accumulator.

Special Registers Altered: 
ACC 

4 RT RA RB 1363
0 6 11 16 21 31 4 RT RA RB 1491

0 6 11 16 21 31

4 RT RA RB 1112
0 6 11 16 21 31

4 RT RA RB 1144
0 6 11 16 21 31
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Vector Multiply Word Unsigned, Modulo, 
Integer and Accumulate EVX-form

evmwumiaa RT,RA,RB 

temp0:63 � (RA)32:63 ×ui (RB)32:63
RT0:63 � (ACC)0:63 + temp0:63
ACC0:63 � (RT)0:63
The low word unsigned-integer elements in RA and RB
are multiplied. The intermediate product is added to the
contents of the 64-bit accumulator, and the resulting
value is placed into the accumulator and in RT.

Special Registers Altered: 
ACC 

Vector Multiply Word Unsigned, Modulo, 
Integer and Accumulate Negative
EVX-form

evmwumian RT,RA,RB 

temp0:63 � (RA)32:63 ×ui (RB)32:63
RT0:63 � (ACC)0:63 - temp0:63
ACC0:63 � (RT)0:63
The low word unsigned-integer elements in RA and RB
are multiplied. The intermediate product is subtracted
from the contents of the 64-bit accumulator, and the
resulting value is placed into the accumulator and in
RT.

Special Registers Altered: 
ACC 

Vector NAND EVX-form

evnand RT,RA,RB

RT0:31 � ¬((RA)0:31 & (RB)0:31)
RT32:63 � ¬((RA)32:63 & (RB)32:63) 

Each element of RA and RB is bitwise NANDed. The
result is placed in the corresponding element of RT.

Special Registers Altered: 
None

Vector Negate EVX-form

evneg RT,RA

RT0:31 � NEG((RA)0:31)
RT32:63 � NEG((RA)32:63)

The negative of each element of RA is placed in RT.
The negative of 0x8000_0000 (most negative number)
returns 0x8000_0000.

Special Registers Altered: 
None

4 RT RA RB 1368
0 6 11 16 21 31 4 RT RA RB 1496

0 6 11 16 21 31

4 RT RA RB 542
0 6 11 16 21 31

4 RT RA /// 521
0 6 11 16 21 31
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Vector NOR EVX-form

evnor RT,RA,RB

RT0:31 � ¬((RA)0:31 | (RB)0:31) 
RT32:63 � ¬((RA)32:63 | (RB)32:63)

Each element of RA and RB is bitwise NORed. The
result is placed in the corresponding element of RT.

Special Registers Altered: 
None

Extended Mnemonics:

Extended mnemonics are provided for the Vector NOR
instruction to produce a vector bitwise complement
operation. 

Vector OR EVX-form

evor RT,RA,RB

RT0:31 � (RA)0:31 | (RB)0:31 
RT32:63 � (RA)32:63 | (RB)32:63
Each element of RA and RB is bitwise ORed. The
result is placed in the corresponding element of RT.

Special Registers Altered: 
None

Extended Mnemonics:

Extended mnemonics are provided for the Vector OR
instruction to provide a 64-bit vector move instruction.

Vector OR with Complement EVX-form

evorc RT,RA,RB

RT0:31 � (RA)0:31 | (¬(RB)0:31) 
RT32:63 � (RA)32:63 | (¬(RB)32:63) 

Each element of RA is bitwise ORed with the comple-
ment of RB. The result is placed in the corresponding
element of RT.

Special Registers Altered: 
None

Vector Rotate Left Word EVX-form

evrlw RT,RA,RB

nh � (RB)27:31
nl � (RB)59:63
RT0:31 � ROTL((RA)0:31, nh)
RT32:63 � ROTL((RA)32:63, nl)

Each of the high and low elements of RA is rotated left
by an amount specified in RB. The result is placed in
RT. Rotate values for each element of RA are found in
bit positions RB27:31 and RB59:63.

Special Registers Altered: 
None

4 RT RA RB 536
0 6 11 16 21 31

Extended: Equivalent to:
evnot RT,RA evnor RT,RA,RA

4 RT RA RB 535
0 6 11 16 21 31

Extended: Equivalent to:
evmr RT,RA evor RT,RA,RA

4 RT RA RB 539
0 6 11 16 21 31

4 RT RA RB 552
0 6 11 16 21 31
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Vector Rotate Left Word Immediate
EVX-form

evrlwi RT,RA,UI

n � UI
RT0:31 � ROTL((RA)0:31, n)
RT32:63 � ROTL((RA)32:63, n)

Both the high and low elements of RA are rotated left
by an amount specified by UI.

Special Registers Altered: 
None

Vector Round Word EVX-form

evrndw RT,RA

RT0:31 � ((RA)0:31+0x00008000) & 0xFFFF0000 
RT32:63 � ((RA)32:63+0x00008000) & 0xFFFF0000 

The 32-bit elements of RA are rounded into 16 bits. The
result is placed in RT. The resulting 16 bits are placed
in the most significant 16 bits of each element of RT,
zeroing out the low-order 16 bits of each element.

Special Registers Altered: 
None

Vector Select EVS-form

evsel RT,RA,RB,BFA

ch � CRBFA×4
cl � CRBFA×4+1
if (ch = 1) then RT0:31 � (RA)0:31
else RT0:31 � (RB)0:31
if (cl = 1) then RT32:63 � (RA)32:63
else RT32:63 � (RB)32:63

If the most significant bit in the BFA field of CR is set to
1, the high-order element of RA is placed in the
high-order element of RT; otherwise, the high-order
element of RB is placed into the high-order element of
RT. If the next most significant bit in the BFA field of CR
is set to 1, the low-order element of RA is placed in the
low-order element of RT, otherwise, the low-order ele-
ment of RB is placed into the low-order element of RT. 

Special Registers Altered: 
None

4 RT RA UI 554
0 6 11 16 21 31

4 RT RA /// 524
0 6 11 16 21 31

4 RT RA RB 79 BFA
0 6 11 16 21 29 31
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Vector Shift Left Word EVX-form

evslw RT,RA,RB

nh � (RB)26:31
nl � (RB)58:63
RT0:31 � SL((RA)0:31, nh)
RT32:63 � SL((RA)32:63, nl)

Each of the high and low elements of RA is shifted left
by an amount specified in RB. The result is placed in
RT. The separate shift amounts for each element are
specified by 6 bits in RB that lie in bit positions 26:31
and 58:63.

Shift amounts from 32 to 63 give a zero result.

Special Registers Altered: 
None

Vector Shift Left Word Immediate
EVX-form

evslwi RT,RA,UI

n � UI
RT0:31 � SL((RA)0:31, n)
RT32:63 � SL((RA)32:63, n)

Both high and low elements of RA are shifted left by the
5-bit UI value and the results are placed in RT.

Special Registers Altered: 
None

Vector Splat Fractional Immediate
EVX-form

evsplatfi RT,SI

RT0:31 � SI || 270
RT32:63 � SI || 270

The value specified by SI is padded with trailing zeros
and placed in both elements of RT. The SI ends up in
bit positions RT0:4 and RT32:36.

Special Registers Altered: 
None

Vector Splat Immediate EVX-form

evsplati RT,SI

RT0:31 � EXTS(SI)
RT32:63 � EXTS(SI)

The value specified by SI is sign extended and placed
in both elements of RT.

Special Registers Altered: 
None

Vector Shift Right Word Immediate Signed
EVX-form

evsrwis RT,RA,UI

n � UI
RT0:31 � EXTS((RA)0:31-n)
RT32:63 � EXTS((RA)32:63-n)

Both high and low elements of RA are shifted right by
the 5-bit UI value. Bits in the most significant positions
vacated by the shift are filled with a copy of the sign bit.

Special Registers Altered: 
None

Vector Shift Right Word Immediate 
Unsigned EVX-form

evsrwiu RT,RA,UI

n � UI
RT0:31 � EXTZ((RA)0:31-n)
RT32:63 � EXTZ((RA)32:63-n)

Both high and low elements of RA are shifted right by
the 5-bit UI value; zeros are shifted into the most signif-
icant position.

Special Registers Altered: 
None

4 RT RA RB 548
0 6 11 16 21 31 4 RT RA UI 550

0 6 11 16 21 31

4 RT SI /// 555
0 6 11 16 21 31

4 RT SI /// 553
0 6 11 16 21 31

4 RT RA UI 547
0 6 11 16 21 31

4 RT RA UI 546
0 6 11 16 21 31
Power ISA™ -- Book I248



   Version 2.04
Vector Shift Right Word Signed EVX-form

evsrws RT,RA,RB

nh � (RB)26:31
nl � (RB)58:63
RT0:31 � EXTS((RA)0:31-nh)
RT32:63 � EXTS((RA)32:63-nl)

Both the high and low elements of RA are shifted right
by an amount specified in RB. The result is placed in
RT. The separate shift amounts for each element are
specified by 6 bits in RB that lie in bit positions 26:31
and 58:63. The sign bits are shifted into the most signif-
icant position.

Shift amounts from 32 to 63 give a result of 32 sign bits.

Special Registers Altered: 
None

Vector Shift Right Word Unsigned
EVX-form

evsrwu RT,RA,RB

nh � (RB)26:31
nl � (RB)58:63
RT0:31 � EXTZ((RA)0:31-nh)
RT32:63 � EXTZ((RA)32:63-nl)

Both the high and low elements of RA are shifted right
by an amount specified in RB. The result is placed in
RT. The separate shift amounts for each element are
specified by 6 bits in RB that lie in bit positions 26:31
and 58:63. Zeros are shifted into the most significant
position. 

Shift amounts from 32 to 63 give a zero result.

Special Registers Altered: 
None

Vector Store Double of Double EVX-form

evstdd RS,D(RA)

if (RA = 0) then b � 0
else b � (RA)
EA � b + EXTZ(UI×8)
MEM(EA,8) � (RS)0:63
D in the instruction mnemonic is UI × 8. The contents of
RS are stored as a doubleword in storage addressed
by EA.

Special Registers Altered: 
None

Vector Store Double of Double Indexed
EVX-form

evstddx RS,RA,RB

if (RA = 0) then b � 0
else b � (RA)
EA � b + (RB)
MEM(EA,8) � (RS)0:63
The contents of RS are stored as a doubleword in stor-
age addressed by EA.

Special Registers Altered: 
None

4 RT RA RB 545
0 6 11 16 21 31 4 RT RA RB 544

0 6 11 16 21 31

4 RS RA UI 801
0 6 11 16 21 31 4 RS RA RB 800

0 6 11 16 21 31
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Vector Store Double of Four Halfwords
EVX-form

evstdh RS,D(RA)

if (RA = 0) then b � 0
else b � (RA)
EA � b + EXTZ(UI×8)
MEM(EA,2) � (RS)0:15
MEM(EA+2,2) � (RS)16:31
MEM(EA+4,2) � (RS)32:47
MEM(EA+6,2) � (RS)48:63
D in the instruction mnemonic is UI × 8. The contents of
RS are stored as four halfwords in storage addressed
by EA.

Special Registers Altered: 
None

Vector Store Double of Four Halfwords 
Indexed EVX-form

evstdhx RS,RA,RB

if (RA = 0) then b � 0
else b � (RA)
EA � b + (RB)
MEM(EA,2) � (RS)0:15
MEM(EA+2,2) � (RS)16:31
MEM(EA+4,2) � (RS)32:47
MEM(EA+6,2) � (RS)48:63
The contents of RS are stored as four halfwords in stor-
age addressed by EA.

Special Registers Altered: 
None

Vector Store Double of Two Words
EVX-form

evstdw RS,D(RA)

if (RA = 0) then b � 0
else b � (RA)
EA � b + EXTZ(UI×8)
MEM(EA,4) � (RS)0:31
MEM(EA+4,4) � (RS)32:63
D in the instruction mnemonic is UI × 8. The contents of
RS are stored as two words in storage addressed by
EA.

Special Registers Altered: 
None

Vector Store Double of Two Words 
Indexed EVX-form

evstdwx RS,RA,RB

if (RA = 0) then b � 0
else b � (RA)
EA � b + (RB)
MEM(EA,4) � (RS)0:31
MEM(EA+4,4) � (RS)32:63
The contents of RS are stored as two words in storage
addressed by EA.

Special Registers Altered: 
None

4 RS RA UI 805
0 6 11 16 21 31

4 RS RA RB 804
0 6 11 16 21 31

4 RS RA UI 803
0 6 11 16 21 31

4 RS RA RB 802
0 6 11 16 21 31
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Vector Store Word of Two Halfwords from 
Even EVX-form

evstwhe RS,D(RA)

if (RA = 0) then b � 0
else b � (RA)
EA � b + EXTZ(UI×4)
MEM(EA,2) � (RS)0:15
MEM(EA+2,2) � (RS)32:47
D in the instruction mnemonic is UI × 4. The even half-
words from each element of RS are stored as two half-
words in storage addressed by EA.

Special Registers Altered: 
None

Vector Store Word of Two Halfwords from 
Even Indexed EVX-form

evstwhex RS,RA,RB

if (RA = 0) then b � 0
else b � (RA)
EA � b + (RB)
MEM(EA,2) � (RS)0:15
MEM(EA+2,2) � (RS)32:47
The even halfwords from each element of RS are
stored as two halfwords in storage addressed by EA.

Special Registers Altered: 
None

Vector Store Word of Two Halfwords from 
Odd EVX-form

evstwho RS,D(RA)

if (RA = 0) then b � 0
else b � (RA)
EA � b + EXTZ(UI×4)
MEM(EA,2) � (RS)16:31
MEM(EA+2,2) � (RS)48:63
D in the instruction mnemonic is UI × 4. The odd half-
words from each element of RS are stored as two half-
words in storage addressed by EA.

Special Registers Altered: 
None

Vector Store Word of Two Halfwords from 
Odd Indexed EVX-form

evstwhox RS,RA,RB

if (RA = 0) then b � 0
else b � (RA)
EA � b + (RB)
MEM(EA,2) � (RS)16:31
MEM(EA+2,2) � (RS)48:63
The odd halfwords from each element of RS are stored
as two halfwords in storage addressed by EA.

Special Registers Altered: 
None

Vector Store Word of Word from Even
EVX-form

evstwwe RS,D(RA)

if (RA = 0) then b � 0
else b � (RA)
EA � b + EXTZ(UI×4)
MEM(EA,4) � (RS)0:31
D in the instruction mnemonic is UI × 4. The even word
of RS is stored in storage addressed by EA.

Special Registers Altered: 
None

Vector Store Word of Word from Even 
Indexed EVX-form

evstwwex RS,RA,RB

if (RA = 0) then b � 0
else b � (RA)
EA � b + (RB)
MEM(EA,4) � (RS)0:31
The even word of RS is stored in storage addressed by
EA.

Special Registers Altered: 
None

4 RS RA UI 817
0 6 11 16 21 31

4 RS RA RB 816
0 6 11 16 21 31

4 RS RA UI 821
0 6 11 16 21 31

4 RS RA RB 820
0 6 11 16 21 31

4 RS RA UI 825
0 6 11 16 21 31

4 RS RA RB 824
0 6 11 16 21 31
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Vector Store Word of Word from Odd
EVX-form

evstwwo RS,D(RA)

if (RA = 0) then b � 0
else b � (RA)
EA � b + EXTZ(UI×4)
MEM(EA,4) � (RS)32:63
D in the instruction mnemonic is UI × 4. The odd word
of RS is stored in storage addressed by EA.

Special Registers Altered: 
None

Vector Store Word of Word from Odd 
Indexed EVX-form

evstwwox RS,RA,RB

if (RA = 0) then b � 0
else b � (RA)
EA � b + (RB)
MEM(EA,4) � (RS)32:63
The odd word of RS is stored in storage addressed by
EA.

Special Registers Altered: 
None

Vector Subtract Signed, Modulo, Integer 
to Accumulator Word EVX-form

evsubfsmiaaw RT,RA

RT0:31 � (ACC)0:31 - (RA)0:31
RT32:63 � (ACC)32:63 - (RA)32:63
ACC0:63 � (RT)0:63
Each word element in RA is subtracted from the corre-
sponding element in the accumulator and the difference
is placed into the corresponding RT word and into the
accumulator.

Special Registers Altered: 
ACC 

Vector Subtract Signed, Saturate, Integer 
to Accumulator Word EVX-form

evsubfssiaaw RT,RA

temp0:63 � EXTS((ACC)0:31) - EXTS((RA)0:31)
ovh � temp31 ⊕  temp32
RT0:31 � SATURATE(ovh, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63)
temp0:63 � EXTS((ACC)32:63) - EXTS((RA)32:63)
ovl � temp31 ⊕  temp32
RT32:63 � SATURATE(ovl, temp31, 0x8000_0000,

0x7FFF_FFFF, temp32:63)
ACC0:63 � (RT)0:63
SPEFSCROVH � ovh
SPEFSCROV � ovl
SPEFSCRSOVH � SPEFSCRSOVH | ovh
SPEFSCRSOV � SPEFSCRSOV | ovl

Each signed-integer word element in RA is
sign-extended and subtracted from the corresponding
sign-extended element in the accumulator saturating if
overflow occurs, and the results are placed in RT and
the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

4 RS RA UI 829
0 6 11 16 21 31

4 RS RA RB 828
0 6 11 16 21 31

4 RT RA /// 1227
0 6 11 16 21 31

4 RT RA /// 1219
0 6 11 16 21 31
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Vector Subtract Unsigned, Modulo, 
Integer to Accumulator Word EVX-form

evsubfumiaaw RT,RA

RT0:31 � (ACC)0:31 - (RA)0:31
RT32:63 � (ACC)32:63 - (RA)32:63
ACC0:63 � (RT)0:63
Each unsigned-integer word element in RA is sub-
tracted from the corresponding element in the accumu-
lator and the results are placed in RT and into the
accumulator.

Special Registers Altered: 
ACC 

Vector Subtract Unsigned, Saturate, 
Integer to Accumulator Word EVX-form

evsubfusiaaw RT,RA

temp0:63 � EXTZ((ACC)0:31) - EXTZ((RA)0:31)
ovh � temp31 
RT0:31 � SATURATE(ovh, temp31, 0x0000_0000,

0x0000_0000, temp32:63)
temp0:63 � EXTS((ACC)32:63) - EXTS((RA)32:63)
ovl � temp31 
RT32:63 � SATURATE(ovl, temp31, 0x0000_0000,

0x0000_0000, temp32:63)
ACC0:63 � (RT)0:63

SPEFSCROVH � ovh
SPEFSCROV � ovl
SPEFSCRSOVH � SPEFSCRSOVH | ovh
SPEFSCRSOV � SPEFSCRSOV | ovl

Each unsigned-integer word element in RA is
zero-extended and subtracted from the corresponding
zero-extended element in the accumulator saturating if
overflow occurs, and the results are placed in RT and
the accumulator.

Special Registers Altered: 
ACC OV OVH SOV SOVH

Vector Subtract from Word EVX-form

evsubfw RT,RA,RB

RT0:31 � (RB)0:31 - (RA)0:31 
RT32:63 � (RB)32:63 - (RA)32:63 

Each signed-integer element of RA is subtracted from
the corresponding element of RB and the results are
placed in RT. 

Special Registers Altered: 
None

Vector Subtract Immediate from Word
EVX-form

evsubifw RT,UI,RB

RT0:31 � (RB)0:31 - EXTZ(UI) 
RT32:63 � (RB)32:63 - EXTZ(UI)

UI is zero-extended and subtracted from both the high
and low elements of RB. Note that the same value is
subtracted from both elements of the register. 

Special Registers Altered: 
None

Vector XOR EVX-form

evxor RT,RA,RB

RT0:31 � (RA)0:31 ⊕  (RB)0:31 
RT32:63 � (RA)32:63 ⊕  (RB)32:63
Each element of RA and RB is exclusive-ORed. The
results are placed in RT.

Special Registers Altered: 
None

4 RT RA /// 1226
0 6 11 16 21 31

4 RT RA /// 1218
0 6 11 16 21 31

4 RT RA RB 516
0 6 11 16 21 31

4 RT UI RB 518
0 6 11 16 21 31

4 RT RA RB 534
0 6 11 16 21 31
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[Category: SPE.Embedded Float Scalar Double]
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259

7.3.1 Load/Store Instructions  . . . . . . . 259
7.3.2 SPE.Embedded Float Vector Instruc-

tions [Category: SPE.Embedded Float 
Vector] . . . . . . . . . . . . . . . . . . . . . . . . . 259

7.3.3 SPE.Embedded Float Scalar Single 
Instructions
[Category: SPE.Embedded Float Scalar 
Single] . . . . . . . . . . . . . . . . . . . . . . . . . 267

7.3.4 SPE.Embedded Float Scalar Double 
Instructions
[Category: SPE.Embedded Float Scalar 
Double]  . . . . . . . . . . . . . . . . . . . . . . . . 274

7.4 Embedded Floating-Point Results 
Summary . . . . . . . . . . . . . . . . . . . . . . . 282

7.1 Overview
The Embedded Floating-Point categories require the
implementation of the Signal Processing Engine (SPE)
category and consist of three distinct categories:

� Embedded vector single-precision floating-point
(SPE.Embedded Float Vector [SP.FV])

� Embedded scalar single-precision floating-point
(SPE.Embedded Float Scalar Single [SP.FS])

� Embedded scalar double-precision floating-point
(SPE.Embedded Float Scalar Double [SP.FD])

Although each of these may be implemented indepen-
dently, they are defined in a single chapter because it is
likely that they may be implemented together.

References to Embedded Floating-Point categories,
Embedded Floating-Point instructions, or Embedded
Floating-Point operations apply to all 3 categories.

Single-precision floating-point is handled by the
SPE.Embedded Float Vector and SPE.Embedded
Float Scalar Single categories; double-precision float-
ing-point is handled by the SPE.Embedded Float Sca-
lar Double category.
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7.2 Programming Model
Embedded floating-point operations are performed in
the GPRs of the processor.

The SPE.Embedded Float Vector and SPE.Embedded
Float Scalar Double categories require a GPR register
file with thirty-two 64-bit registers as required by the
Signal Processing Engine category.

The SPE.Embedded Float Scalar Single category
requires a GPR register file with thirty-two 32-bit regis-
ters. When implemented with a 64-bit register file on a
32-bit implementation, instructions in this category only
use and modify bits 32:63 of the GPR. In this case, bits
0:31 of the GPR are left unchanged by the operation.
For 64-bit implementations, bits 0:31 are unchanged
after the operation.

Instructions in the SPE.Embedded Float Scalar Double
category operate on the entire 64 bits of the GPRs.

Instructions in the SPE.Embedded Float Vector cate-
gory operate on the entire 64 bits of the GPRs as well,
but contain two 32-bit data items that are operated on
independently of each other in a SIMD fashion. The for-
mat of both data items is the same as the format of a
data item in the SPE.Embedded Float Scalar Single
category. The data item contained in bits 0:31 is called
the ‘high word’. The data item contained in bits 32:63 is
called the ‘low word’.

There are no record forms of Embedded Floating-Point
instructions. Embedded Floating-Point Compare
instructions treat NaNs, Infinity, and Denorm as normal-
ized numbers for the comparison calculation when
default results are provided. 

7.2.1 Signal Processing Embed-
ded Floating-Point Status and Con-
trol Register (SPEFSCR)
Status and control for the Embedded Floating-Point
categories uses the SPEFSCR. This register is defined
by the Signal Processing Engine category in Section
6.3.4. Status and control bits are shared for Embedded
Floating-Point and SPE operations. Instructions in the
SPE.Embedded Float Vector category affect both the
high element (bits 34:39) and low element floating-point
status flags (bits 50:55). Instructions in the
SPE.Embedded Float Scalar Double and SPE.Embed-
ded Float Scalar Single categories affect only the low
element floating-point status flags and leave the high
element floating-point status flags undefined.

7.2.2 Floating-Point Data Formats
Single-precision floating-point data elements are 32
bits wide with 1 sign bit (s), 8 bits of biased exponent
(e) and 23 bits of fraction (f). Double-precision float-

ing-point data elements are 64 bits wide with 1 sign bit
(s), 11 bits of biased exponent (e) and 52 bits of fraction
(f).

In the IEEE 754 specification, floating-point values are
represented in a format consisting of three explicit
fields (sign field, biased exponent field, and fraction
field) and an implicit hidden bit.

Figure 69. Floating-Point Data Format

For single-precision normalized numbers, the biased
exponent value e lies in the range of 1 to 254 corre-
sponding to an actual exponent value E in the range
-126 to +127. For double-precision normalized num-
bers, the biased exponent value e lies in the range of 1
to 2046 corresponding to an actual exponent value E in
the range -1022 to +1023. With the hidden bit implied to
be ‘1’ (for normalized numbers), the value of the num-
ber is interpreted as follows:

where E is the unbiased exponent and 1.fraction is the
mantissa (or significand) consisting of a leading ‘1’ (the
hidden bit) and a fractional part (fraction field). For the
single-precision format, the maximum positive normal-
ized number (pmax) is represented by the encoding
0x7F7FFFFF which is approximately 3.4E+38 (2128),
and the minimum positive normalized value (pmin) is
represented by the encoding 0x00800000 which is
approximately 1.2E-38 (2-126). For the double-precision
format, the maximum positive normalized number
(pmax) is represented by the encoding
0x7feFFFFF_FFFFFFFF which is approximately
1.8E+307 (21024), and the minimum positive normal-
ized value (pmin) is represented by the encoding
0x00100000_00000000 which is approximately
2.2E-308 (2-1022).

Two specific values of the biased exponent are
reserved (0 and 255 for single-precision; 0 and 2047 for
double-precision) for encoding special values of +0, -0,
+infinity, -infinity, and NaNs. 

Zeros of both positive and negative sign are repre-
sented by a biased exponent value e of 0 and a fraction
f which is 0. 

Infinities of both positive and negative sign are repre-
sented by a maximum exponent field value (255 for sin-
gle-precision, 2047 for double-precision) and a fraction
which is 0.

fraction

0

exp

31 (or 32:63)8

s

s - sign bit; 0 = positive; 1 = negative

exp - biased exponent field
fraction - fractional portion of number

1 9

fraction

0

exp

6311

s

1 12

hidden bit

Double-precision

Single-precision

1–( )s 2E× 1.fraction( )×
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Denormalized numbers of both positive and negative
sign are represented by a biased exponent value e of 0
and a fraction f, which is nonzero. For these numbers,
the hidden bit is defined by the IEEE 754 standard to
be 0. This number type is not directly supported in
hardware. Instead, either a software interrupt handler is
invoked, or a default value is defined.

Not-a-Numbers (NaNs) are represented by a maximum
exponent field value (255 for single-precision, 2047 for
double-precision) and a fraction f which is nonzero.

7.2.3 Exception Conditions

7.2.3.1 Denormalized Values on Input
Any denormalized value used as an operand may be
truncated by the implementation to a properly signed
zero value.

7.2.3.2 Embedded Floating-Point Over-
flow and Underflow
Defining pmax to be the most positive normalized value
(farthest from zero), pmin the smallest positive normal-
ized value (closest to zero), nmax the most negative
normalized value (farthest from zero) and nmin the
smallest normalized negative value (closest to zero), an
overflow is said to have occurred if the numerically cor-
rect result (r) of an instruction is such that r>pmax or
r<nmax. An underflow is said to have occurred if the
numerically correct result of an instruction is such that
0<r<pmin or nmin<r<0. In this case, r may be denor-
malized, or may be smaller than the smallest denormal-
ized number.

The Embedded Floating-Point categories do not pro-
duce +Infinity, -Infinity, NaN, or denormalized numbers.
If the result of an instruction overflows and Embedded
Floating-Point Overflow exceptions are disabled
(SPEFSCRFOVFE=0), pmax or nmax is generated as
the result of that instruction depending upon the sign of
the result. If the result of an instruction underflows and
Embedded Floating-Point Underflow exceptions are
disabled (SPEFSCRFUNFE=0), +0 or -0 is generated as
the result of that instruction based upon the sign of the
result.

If an overflow occurs, SPEFSCRFOVF FOVFH are set
appropriately, or if an underflow occurs, SPEFSCRFUNF

FUNFH are set appropriately. If either Embedded Float-
ing-Point Underflow or Embedded Floating-Point Over-
flow exceptions are enabled and a corresponding
status bit is 1, an Embedded Floating-Point Data inter-
rupt is taken and the destination register is not updated.

7.2.3.3 Embedded Floating-Point 
Invalid Operation/Input Errors
Embedded Floating-Point Invalid Operation/Input errors
occur when an operand to an operation contains an
invalid input value. If any of the input values are Infinity,
Denorm, or NaN, or for an Embedded Floating-Point
Divide instruction both operands are +/-0, SPEFSCRF-

INV FINVH are set to 1 appropriately, and SPEFSCRFGH

FXH FG FX are set to 0 appropriately. If SPEFSCRF-

INVE=1, an Embedded Floating-Point Data interrupt is
taken and the destination register is not updated.

7.2.3.4 Embedded Floating-Point 
Round (Inexact)
If any result element of an Embedded Floating-Point
instruction is inexact, or overflows but Embedded Float-
ing-Point Overflow exceptions are disabled, or under-
flows but Embedded Floating-Point Underflow
exceptions are disabled, and no higher priority interrupt
occurs, SPEFSCRFINXS is set to 1. If the Embedded
Floating-Point Round (Inexact) exception is enabled, an
Embedded Floating-Point Round interrupt occurs. In
this case, the destination register is updated with the
truncated result(s). The SPEFSCRFGH FXH FG FX bits
are properly updated to allow rounding to be performed
in the interrupt handler.

SPEFSCRFG FX (SPEFSCRFGH FXH) are set to 0 if an
Embedded Floating-Point Data interrupt is taken due to
overflow, underflow, or if an Embedded Floating-Point
Invalid Operation/Input error is signaled for the low
(high) element (regardless of SPEFSCRFINVE).

7.2.3.5 Embedded Floating-Point 
Divide by Zero
If an Embedded Floating-Point Divide instruction
executes and an Embedded Floating-Point Invalid
Operation/Input error does not occur and the instruction
is executed with a +/-0 divisor value and a finite
normalized nonzero dividend value, an Embedded
Floating-Point Divide By Zero exception occurs and
SPEFSCRFDBZ FDBZH are set appropriately. If
Embedded Floating-Point Divide By Zero exceptions
are enabled, an Embedded Floating-Point Data

On some implementations, operations that result in
overflow or underflow are likely to take significantly
longer than operations that do not. For example,
these operations may cause a system error handler
to be invoked; on such implementations, the sys-
tem error handler updates the overflow bits appro-
priately.

Programming Note
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interrupt is then taken and the destination register is not
updated.

7.2.3.6 Default Results
Default results are generated when an Embedded
Floating-Point Invalid Operation/Input Error, Embedded
Floating-Point Overflow, Embedded Floating-Point
Underflow, or Embedded Floating-Point Divide by Zero
occurs on an Embedded Floating-Point operation.
Default results provide a normalized value as a result of
the operation. In general, Denorm results and under-
flows are set to 0 and overflows are saturated to the
maximum representable number.

Default results produced for each operation are
described in Section 7.4, “Embedded Floating-Point
Results Summary”.

7.2.4 IEEE 754 Compliance
The Embedded Floating-Point categories require a
floating-point system as defined in the ANSI/IEEE
Standard 754-1985 but may rely on software support in
order to conform fully with the standard. Thus, when-
ever an input operand of the Embedded Floating-Point
instruction has data values that are +Infinity, -Infinity,
Denormalized, NaN, or when the result of an operation
produces an overflow or an underflow, an Embedded
Floating-Point Data interrupt may be taken and the
interrupt handler is responsible for delivering IEEE 754
compliant behavior if desired. 

When Embedded Floating-Point Invalid Operation/Input
Error exceptions are disabled (SPEFSCRFINVE = 0),
default results are provided by the hardware when an
Infinity, Denormalized, or NaN input is received, or for
the operation 0/0. When Embedded Floating-Point
Underflow exceptions are disabled (SPEFSCRFUNFE =
0) and the result of a floating-point operation under-
flows, a signed zero result is produced. The Embedded
Floating-Point Round (Inexact) exception is also sig-
naled for this condition. When Embedded Float-
ing-Point Overflow exceptions are disabled
(SPEFSCRFOVFE = 0) and the result of a floating-point
operation overflows, a pmax or nmax result is pro-
duced. The Embedded Floating-Point Round (Inexact)
exception is also signaled for this condition. An excep-
tion enable flag (SPEFSCRFINXE) is also provided for
generating an Embedded Floating-Point Round inter-
rupt when an inexact result is produced, to allow a soft-
ware handler to conform to the IEEE 754 standard. An
Embedded Floating-Point Divide By Zero exception
enable flag (SPEFSCRFDBZE) is provided for generat-
ing an Embedded Floating-Point Data interrupt when a
divide by zero operation is attempted to allow a soft-
ware handler to conform to the IEEE 754 standard. All
of these exceptions may be disabled, and the hardware
will then deliver an appropriate default result.

The sign of the result of an addition operation is the
sign of the source operand having the larger absolute
value. If both operands have the same sign, the sign of
the result is the same as the sign of the operands. This
includes subtraction which is addition with the negation
of the sign of the second operand. The sign of the
result of an addition operation with operands of differing
signs for which the result is zero is positive except
when rounding to negative infinity. Thus -0 + -0 = -0,
and all other cases which result in a zero value give +0
unless the rounding mode is round to negative infinity.

7.2.4.1 Sticky Bit Handling For Excep-
tion Conditions
The SPEFSCR register defines sticky bits for retaining
information about exception conditions that are
detected. There are 5 sticky bits (FINXS, FINVS,
FDBZS, FUNFS and FOVFS) that can be used to help
provide IEEE 754 compliance. The sticky bits represent
the combined ‘or’ of all the previous status bits pro-
duced from any Embedded Floating-Point operation
since the last time software zeroed the sticky bit. The
hardware will never set a sticky bit to 0.

Note that when exceptions are disabled and default
results computed, operations having input values
that are denormalized may provide different results
on different implementations. An implementation
may choose to use the denormalized value or a
zero value for any computation. Thus a computa-
tional operation involving a denormalized value and
a normal value may return different results depend-
ing on the implementation.

Programming Note
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7.3 Embedded Floating-Point Instructions

7.3.1 Load/Store Instructions
Embedded Floating-Point instructions use GPRs to
hold and operate on floating-point values. The Embed-
ded Floating-Point categories do not define Load and
Store instructions to move the data to and from mem-
ory, but instead rely on existing instructions in Book I to
load and store data.

7.3.2 SPE.Embedded Float Vector 
Instructions [Category: 
SPE.Embedded Float Vector]
All SPE.Embedded Float Vector instructions are sin-
gle-precision. There are no vector floating-point dou-
ble-precision instructions

.

Vector Floating-Point Single-Precision 
Absolute Value EVX-form

evfsabs RT,RA

RT0:31 � 0b0 || (RA)1:31
RT32:63 � 0b0 || (RA)33:63

The sign bit of each element in register RA is set to 0
and the results are placed into register RT.

Regardless of the value of register RA, no exceptions
are taken during the execution of this instruction.

Special Registers Altered:
None

Vector Floating-Point Single-Precision 
Negative Absolute Value EVX-form

evfsnabs RT,RA

RT0:31 � 0b1 || (RA)1:31
RT32:63 � 0b1 || (RA)33:63

The sign bit of each element in register RA is set to 1
and the results are placed into register RT.

Regardless of the value of register RA, no exceptions
are taken during the execution of this instruction.

Special Registers Altered: 
None

Vector Floating-Point Single-Precision 
Negate EVX-form

evfsneg RT,RA

RT0:31 � ¬(RA)0 || (RA)1:31
RT32:63 � ¬(RA)32 || (RA)33:63

The sign bit of each element in register RA is comple-
mented and the results are placed into register RT.

Regardless of the value of register RA, no exceptions
are taken during the execution of this instruction.

Special Registers Altered: 
None

4 RT RA /// 644
0 6 11 16 21 31

4 RT RA /// 645
0 6 11 16 21 31

4 RT RA /// 646
0 6 11 16 21 31
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Vector Floating-Point Single-Precision 
Add EVX-form

evfsadd RT,RA,RB

RT0:31 � (RA)0:31 +sp (RB)0:31
RT32:63 � (RA)32:63 +sp (RB)32:63

Each single-precision floating-point element of register
RA is added to the corresponding element of register
RB and the results are stored in register RT.

If an underflow occurs, +0 (for rounding modes RN, RZ,
RP) or -0 (for rounding mode RM) is stored in the corre-
sponding element of register RT.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX FINXS
FOVF FOVFH FOVFS
FUNF FUNFH FUNFS

Vector Floating-Point Single-Precision 
Subtract EVX-form

evfssub RT,RA,RB

RT0:31 � (RA)0:31 -sp (RB)0:31
RT32:63 � (RA)32:63 -sp (RB)32:63

Each single-precision floating-point element of register
RB is subtracted from the corresponding element of
register RA and the results are stored in register RT.

If an underflow occurs, +0 (for rounding modes RN, RZ,
RP) or -0 (for rounding mode RM) is stored in the corre-
sponding element of register RT. 

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX FINXS
FOVF FOVFH FOVFS
FUNF FUNFH FUNFS

Vector Floating-Point Single-Precision 
Multiply EVX-form

evfsmul RT,RA,RB

RT0:31 � (RA)0:31 ×sp (RB)0:31
RT32:63 � (RA)32:63 ×sp (RB)32:63

Each single-precision floating-point element of register
RA is multiplied with the corresponding element of reg-
ister RB and the result is stored in register RT.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX FINXS
FOVF FOVFH FOVFS
FUNF FUNFH FUNFS

Vector Floating-Point Single-Precision 
Divide EVX-form

evfsdiv RT,RA,RB

RT0:31 � (RA)0:31 ÷sp (RB)0:31
RT32:63 � (RA)32:63 ÷sp (RB)32:63

Each single-precision floating-point element of register
RA is divided by the corresponding element of register
RB and the result is stored in register RT.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX FINXS
FDBZ FDBZH FDBZS
FOVF FOVFH FOVFS
FUNF FUNFH FUNFS

4 RT RA RB 640
0 6 11 16 21 31

4 RT RA RB 641
0 6 11 16 21 31

4 RT RA RB 648
0 6 11 16 21 31

4 RT RA RB 649
0 6 11 16 21 31
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Vector Floating-Point Single-Precision 
Compare Greater Than EVX-form

evfscmpgt BF,RA,RB

ah � (RA)0:31
al � (RA)32:63
bh � (RB)0:31
bl � (RB)32:63
if (ah > bh) then ch � 1
else ch � 0
if (al > bl) then cl � 1
else cl � 0
CR4×BF:4×BF+3 � ch || cl || (ch | cl) || (ch & cl)

Each element of register RA is compared against the
corresponding element of register RB. The results of
the comparisons are placed into CR field BF. If RA0:31
is greater than RB0:31, bit 0 of CR field BF is set to 1,
otherwise it is set to 0. If RA32:63 is greater than
RB32:63, bit 1 of CR field BF is set to 1, otherwise it is
set to 0. Bit 2 of CR field BF is set to the OR of both
result bits and Bit 3 of CR field BF is set to the AND of
both result bits. Comparison ignores the sign of 0
(+0 = -0).

If an input error occurs and default results are gener-
ated, NaNs, Infinities, and Denorms as treated as nor-
malized numbers, using their values of ‘e’ and ‘f’
directly.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX
CR field BF

Vector Floating-Point Single-Precision 
Compare Less Than EVX-form

evfscmplt BF,RA,RB

ah � (RA)0:31
al � (RA)32:63
bh � (RB)0:31
bl � (RB)32:63
if (ah < bh) then ch � 1
else ch � 0
if (al < bl) then cl � 1
else cl � 0
CR4×BF:4×BF+3 � ch || cl || (ch | cl) || (ch & cl)

Each element of register RA is compared against the
corresponding element of register RB. The results of
the comparisons are placed into CR field BF. If RA0:31
is less than RB0:31, bit 0 of CR field BF is set to 1, oth-
erwise it is set to 0. If RA32:63 is less than RB32:63, bit 1
of CR field BF is set to 1, otherwise it is set to 0. Bit 2 of
CR field BF is set to the OR of both result bits and Bit 3
of CR field BF is set to the AND of both result bits.
Comparison ignores the sign of 0 (+0 = -0).

If an input error occurs and default results are gener-
ated, NaNs, Infinities, and Denorms as treated as nor-
malized numbers, using their values of ‘e’ and ‘f’
directly.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX
CR field BF

4 BF // RA RB 652
0 6 9 11 16 21 31

4 BF // RA RB 653
0 6 9 11 16 21 31
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Vector Floating-Point Single-Precision 
Compare Equal EVX-form

evfscmpeq BF,RA,RB

ah � (RA)0:31
al � (RA)32:63
bh � (RB)0:31
bl � (RB)32:63
if (ah = bh) then ch � 1
else ch � 0
if (al = bl) then cl � 1
else cl � 0
CR4×BF:4×BF+3 � ch || cl || (ch | cl) || (ch & cl)

Each element of register RA is compared against the
corresponding element of register RB. The results of
the comparisons are placed into CR field BF. If RA0:31
is equal to RB0:31, bit 0 of CR field BF is set to 1, other-
wise it is set to 0. If RA32:63 is equal to RB32:63, bit 1 of
CR field BF is set to 1, otherwise it is set to 0. Bit 2 of
CR field BF is set to the OR of both result bits and Bit 3
of CR field BF is set to the AND of both result bits.
Comparison ignores the sign of 0 (+0 = -0).

If an input error occurs and default results are gener-
ated, NaNs, Infinities, and Denorms as treated as nor-
malized numbers, using their values of ‘e’ and ‘f’
directly.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX
CR field BF

Vector Floating-Point Single-Precision 
Test Greater Than EVX-form

evfststgt BF,RA,RB

ah � (RA)0:31
al � (RA)32:63
bh � (RB)0:31
bl � (RB)32:63
if (ah > bh) then ch � 1
else ch � 0
if (al > bl) then cl � 1
else cl � 0
CR4×BF:4×BF+3 � ch || cl || (ch | cl) || (ch & cl)

Each element of register RA is compared against the
corresponding element of register RB.The results of the
comparisons are placed into CR field BF. If RA0:31 is
greater than RB0:31, bit 0 of CR field BF is set to 1, oth-
erwise it is set to 0. If RA32:63 is greater than RB32:63,
bit 1 of CR field BF is set to 1, otherwise it is set to 0.
Bit 2 of CR field BF is set to the OR of both result bits
and Bit 3 of CR field BF is set to the AND of both result
bits. Comparison ignores the sign of 0 (+0 = -0). The
comparison proceeds after treating NaNs, Infinities,
and Denorms as normalized numbers, using their val-
ues of ‘e’ and ‘f’ directly.

No exceptions are taken during the execution of evfst-
stgt. 

Special Registers Altered: 
CR field BF

4 BF // RA RB 654
0 6 9 11 16 21 31

4 BF // RA RB 668
0 6 9 11 16 21 31

In an implementation, the execution of evfststgt is
likely to be faster than the execution of evfscmpgt;
however, if strict IEEE 754 compliance is required,
the program should use evfscmpgt.

Programming Note
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Vector Floating-Point Single-Precision 
Test Less Than EVX-form

evfststlt BF,RA,RB

ah � (RA)0:31
al � (RA)32:63
bh � (RB)0:31
bl � (RB)32:63
if (ah < bh) then ch � 1
else ch � 0
if (al < bl) then cl � 1
else cl � 0
CR4×BF:4×BF+3 � ch || cl || (ch | cl) || (ch & cl)

Each element of register RA is compared with the cor-
responding element of register RB. The results of the
comparisons are placed into CR field BF. If RA0:31 is
less than RB0:31, bit 0 of CR field BF is set to 1, other-
wise it is set to 0. If RA32:63 is less than RB32:63, bit 1 of
CR field BF is set to 1, otherwise it is set to 0. Bit 2 of
CR field BF is set to the OR of both result bits and Bit 3
of CR field BF is set to the AND of both result bits.
Comparison ignores the sign of 0 (+0 = -0). The com-
parison proceeds after treating NaNs, Infinities, and
Denorms as normalized numbers, using their values of
‘e’ and ‘f’ directly.

No exceptions are taken during the execution of evfst-
stlt.

Special Registers Altered: 
CR field BF

Vector Floating-Point Single-Precision 
Test Equal EVX-form

evfststeq BF,RA,RB

ah � (RA)0:31
al � (RA)32:63
bh � (RB)0:31
bl � (RB)32:63
if (ah = bh) then ch � 1
else ch � 0
if (al = bl) then cl � 1
else cl � 0
CR4×BF:4×BF+3 � ch || cl || (ch | cl) || (ch & cl)

Each element of register RA is compared against the
corresponding element of register RB. The results of
the comparisons are placed into CR field BF. If RA0:31
is equal to RB0:31, bit 0 of CR field BF is set to 1, other-
wise it is set to 0. If RA32:63 is equal to RB32:63, bit 1 of
CR field BF is set to 1, otherwise it is set to 0. Bit 2 of
CR field BF is set to the OR of both result bits and Bit 3
of CR field BF is set to the AND of both result bits.
Comparison ignores the sign of 0 (+0 = -0). The com-
parison proceeds after treating NaNs, Infinities, and
Denorms as normalized numbers, using their values of
‘e’ and ‘f’ directly.

No exceptions are taken during the execution of evfst-
steq.

Special Registers Altered: 
CR field BF

4 BF // RA RB 669
0 6 9 11 16 21 31

In an implementation, the execution of evfststlt is
likely to be faster than the execution of evfscmplt;
however, if strict IEEE 754 compliance is required,
the program should use evfscmplt.

Programming Note

4 BF // RA RB 670
0 6 9 11 16 21 31

In an implementation, the execution of evfststeq is
likely to be faster than the execution of evfsc-
mpeq; however, if strict IEEE 754 compliance is
required, the program should use evfscmpeq.

Programming Note
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Vector Convert Floating-Point 
Single-Precision from Signed Integer
 EVX-form

evfscfsi RT,RB

RT0:31 � CnvtI32ToFP32((RB)0:31, S, HI, I)
RT32:63 � CnvtI32ToFP32((RB)32:63, S, LO, I)

Each signed integer element of register RB is con-
verted to the nearest single-precision floating-point
value using the current rounding mode and the results
are placed into the corresponding element of register
RT.

Special Registers Altered: 
FGH FXH FG FX FINXS

Vector Convert Floating-Point 
Single-Precision from Unsigned Integer
 EVX-form

evfscfui RT,RB

RT0:31 � CnvtI32ToFP32((RB)0:31, U, HI, I)
RT32:63 � CnvtI32ToFP32((RB)32:63, U, LO, I)

Each unsigned integer element of register RB is con-
verted to the nearest single-precision floating-point
value using the current rounding mode and the results
are placed into the corresponding elements of register
RT.

Special Registers Altered: 
FGH FXH FG FX FINXS

Vector Convert Floating-Point 
Single-Precision from Signed Fraction

EVX-form

evfscfsf RT,RB

RT0:31 � CnvtI32ToFP32((RB)0:31, S, HI, F)
RT32:63 � CnvtI32ToFP32((RB)32:63, S, LO, F)

Each signed fractional element of register RB is con-
verted to a single-precision floating-point value using
the current rounding mode and the results are placed
into the corresponding elements of register RT.

Special Registers Altered: 
FGH FXH FG FX FINXS

Vector Convert Floating-Point 
Single-Precision from Unsigned Fraction

EVX-form

evfscfuf RT,RB

RT0:31 � CnvtI32ToFP32((RB)0:31, U, HI, F)
RT32:63 � CnvtI32ToFP32((RB)32:63, U, LO, F)

Each unsigned fractional element of register RB is con-
verted to a single-precision floating-point value using
the current rounding mode and the results are placed
into the corresponding elements of register RT.

Special Registers Altered: 
FGH FXH FG FX FINXS

4 RT /// RB 657
0 6 11 16 21 31

4 RT /// RB 656
0 6 11 16 21 31

4 RT /// RB 659
0 6 11 16 21 31

4 RT /// RB 658
0 6 11 16 21 31
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Vector Convert Floating-Point 
Single-Precision to Signed Integer

EVX-form

evfsctsi RT,RB

RT0:31 � CnvtFP32ToI32Sat((RB)0:31, S, HI, RND, I)
RT32:63 � CnvtFP32ToI32Sat((RB)32:63, S, LO, RND, I)

Each single-precision floating-point element in register
RB is converted to a signed integer using the current
rounding mode and the result is saturated if it cannot be
represented in a 32-bit integer. NaNs are converted as
though they were zero.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX FINXS

Vector Convert Floating-Point 
Single-Precision to Signed Integer with 
Round toward Zero EVX-form

evfsctsiz RT,RB

RT0:31 � CnvtFP32ToI32Sat((RB)0:31, S, HI, ZER, I)
RT32:63 � CnvtFP32ToI32Sat((RB)32:63, S, LO, ZER, I)

Each single-precision floating-point element in register
RB is converted to a signed integer using the rounding
mode Round toward Zero and the result is saturated if it
cannot be represented in a 32-bit integer. NaNs are
converted as though they were zero.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX FINXS

Vector Convert Floating-Point 
Single-Precision to Unsigned Integer

EVX-form

evfsctui RT,RB

RT0:31 � CnvtFP32ToI32Sat((RB)0:31, U, HI, RND, I)
RT32:63 � CnvtFP32ToI32Sat((RB)32:63,U, LO, RND, I)

Each single-precision floating-point element in register
RB is converted to an unsigned integer using the cur-
rent rounding mode and the result is saturated if it can-
not be represented in a 32-bit integer. NaNs are
converted as though they were zero.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX FINXS

Vector Convert Floating-Point 
Single-Precision to Unsigned Integer with 
Round toward Zero EVX-form

evfsctuiz RT,RB

RT0:31 � CnvtFP32ToI32Sat((RB)0:31, U, HI, ZER, I)
RT32:63 � CnvtFP32ToI32Sat((RB)32:63, U, LO, ZER, I)

Each single-precision floating-point element in register
RB is converted to an unsigned integer using the
rounding mode Round toward Zero and the result is
saturated if it cannot be represented in a 32-bit integer.
NaNs are converted as though they were zero.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX FINXS

4 RT /// RB 661
0 6 11 16 21 31

4 RT /// RB 666
0 6 11 16 21 31

4 RT /// RB 660
0 6 11 16 21 31

4 RT /// RB 664
0 6 11 16 21 31
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Vector Convert Floating-Point 
Single-Precision to Signed Fraction

EVX-form

evfsctsf RT,RB

RT0:31 � CnvtFP32ToI32Sat((RB)0:31, S, HI, RND ,F)
RT32:63 � CnvtFP32ToI32Sat((RB)32:63, S, LO, RND, F)

Each single-precision floating-point element in register
RB is converted to a signed fraction using the current
rounding mode and the result is saturated if it cannot be
represented in a 32-bit signed fraction. NaNs are con-
verted as though they were zero.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX FINXS

Vector Convert Floating-Point 
Single-Precision to Unsigned Fraction

EVX-form

evfsctuf RT,RB

RT0:31 � CnvtFP32ToI32Sat((RB)0:31, U, HI, RND, F)
RT32:63 � CnvtFP32ToI32Sat((RB)32:63, U, LO, RND, F)

Each single-precision floating-point element in register
RB is converted to an unsigned fraction using the cur-
rent rounding mode and the result is saturated if it can-
not be represented in a 32-bit fraction. NaNs are
converted as though they were zero.

Special Registers Altered: 
FINV FINVH FINVS
FGH FXH FG FX FINXS

4 RT /// RB 663
0 6 11 16 21 31

4 RT /// RB 662
0 6 11 16 21 31
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7.3.3 SPE.Embedded Float Scalar Single Instructions
[Category: SPE.Embedded Float Scalar Single]

Floating-Point Single-Precision Absolute 
Value EVX-form

efsabs RT,RA

RT32:63 � 0b0 || (RA)33:63

The sign bit of the low element of register RA is set to 0
and the result is placed into the low element of register
RT.

Regardless of the value of register RA, no exceptions
are taken during the execution of this instruction.

Special Registers Altered: 
None

Floating-Point Single-Precision Negative 
Absolute Value EVX-form

efsnabs RT,RA

RT32:63 � 0b1 || (RA)33:63
The sign bit of the low element of register RA is set to 1
and the result is placed into the low element of register
RT.

Regardless of the value of register RA, no exceptions
are taken during the execution of this instruction.

Special Registers Altered: 
None

Floating-Point Single-Precision Negate
EVX-form

efsneg RT,RA

RT32:63 � ¬(RA)32 || (RA)33:63

The sign bit of the low element of register RA is com-
plemented and the result is placed into the low element
of register RT.

Regardless of the value of register RA, no exceptions
are taken during the execution of this instruction.

Special Registers Altered: 
None

4 RT RA /// 708
0 6 11 16 21 31

4 RT RA /// 709
0 6 11 16 21 31

4 RT RA /// 710
0 6 11 16 21 31
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Floating-Point Single-Precision Add
EVX-form

efsadd RT,RA,RB

RT32:63 � (RA)32:63 +sp (RB)32:63

The low element of register RA is added to the low ele-
ment of register RB and the result is stored in the low
element of register RT.

If an underflow occurs, +0 (for rounding modes RN, RZ,
RP) or -0 (for rounding mode RM) is stored in register
RT.

Special Registers Altered: 
FINV FINVS
FOVF FOVFS
FUNF FUNFS
FG FX FINXS

Floating-Point Single-Precision Subtract
EVX-form

efssub RT,RA,RB

RT32:63 � (RA)32:63 -sp (RB)32:63

The low element of register RB is subtracted from the
low element of register RA and the result is stored in
the low element of register RT. 

If an underflow occurs, +0 (for rounding modes RN, RZ,
RP) or -0 (for rounding mode RM) is stored in register
RT. 

Special Registers Altered: 
FINV FINVS
FOVF FOVFS
FUNF FUNFS
FG FX FINXS

Floating-Point Single-Precision Multiply
EVX-form

efsmul RT,RA,RB

RT32:63 � (RA)32:63 ×sp (RB)32:63

The low element of register RA is multiplied by the low
element of register RB and the result is stored in the
low element of register RT.

Special Registers Altered: 
FINV FINVS
FOVF FOVFS
FUNF FUNFS
FG FX FINXS

Floating-Point Single-Precision Divide
EVX-form

efsdiv RT,RA,RB

RT32:63 � (RA)32:63 ÷sp (RB)32:63

The low element of register RA is divided by the low
element of register RB and the result is stored in the
low element of register RT.

Special Registers Altered: 
FINV FINVS
FG FX FINXS
FDBZ FDBZS
FOVF FOVFS
FUNF FUNFS

4 RT RA RB 704
0 6 11 16 21 31

4 RT RA RB 705
0 6 11 16 21 31

4 RT RA RB 712
0 6 11 16 21 31

4 RT RA RB 713
0 6 11 16 21 31
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Floating-Point Single-Precision Compare 
Greater Than EVX-form

efscmpgt BF,RA,RB

al � (RA)32:63
bl � (RB)32:63
if (al > bl) then cl � 1
else cl � 0
CR4×BF:4×BF+3 � undefined || cl || undefined || undefined

The low element of register RA is compared against the
low element of register RB. The results of the compari-
sons are placed into CR field BF. If RA32:63 is greater
than RB32:63, bit 1 of CR field BF is set to 1, otherwise it
is set to 0. Bits 0, 2, and 3 of CR field BF are undefined.
Comparison ignores the sign of 0 (+0 = -0).

If an Input Error occurs and default results are gener-
ated, NaNs, Infinities, and Denorms are treated as nor-
malized numbers, using their values of ‘e’ and ‘f’
directly.

Special Registers Altered: 
FINV FINVS
FG FX
CR field BF

Floating-Point Single-Precision Compare 
Less Than EVX-form

efscmplt BF,RA,RB

al � (RA)32:63
bl � (RB)32:63
if (al < bl) then cl � 1
else cl � 0
CR4×BF:4×BF+3 � undefined || cl || undefined || undefined

The low element of register RA is compared against the
low element of register RB. If RA32:63 is less than
RB32:63, bit 1 of CR field BF is set to 1, otherwise it is
set to 0. Bits 0, 2, and 3 of CR field BF are undefined.
Comparison ignores the sign of 0 (+0 = -0).

If an Input Error occurs and default results are gener-
ated, NaNs, Infinities, and Denorms are treated as nor-
malized numbers, using their values of ‘e’ and ‘f’
directly.

Special Registers Altered: 
FINV FINVS
FG FX
CR field BF

4 BF // RA RB 716
0 6 9 11 16 21 31

4 BF // RA RB 717
0 6 9 11 16 21 31
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Floating-Point Single-Precision Compare 
Equal EVX-form

efscmpeq BF,RA,RB

al � (RA)32:63
bl � (RB)32:63
if (al = bl) then cl � 1
else cl � 0
CR4×BF:4×BF+3 � undefined || cl || undefined || undefined

The low element of register RA is compared against the
low element of register RB. If RA32:63 is equal to
RB32:63, bit 1 of CR field BF is set to 1, otherwise it is
set to 0. Bits 0, 2, and 3 of CR field BF are undefined.
Comparison ignores the sign of 0 (+0 = -0).

If an Input Error occurs and default results are gener-
ated, NaNs, Infinities, and Denorms are treated as nor-
malized numbers, using their values of ‘e’ and ‘f’
directly.

Special Registers Altered: 
FINV FINVS
FG FX
CR field BF

Floating-Point Single-Precision Test 
Greater Than EVX-form

efststgt BF,RA,RB

al � (RA)32:63
bl � (RB)32:63
if (al > bl) then cl � 1
else cl � 0
CR4×BF:4×BF+3 � undefined || cl || undefined || undefined

The low element of register RA is compared against the
low element of register RB. If RA32:63 is greater than
RB32:63, bit 1 of CR field BF is set to 1, otherwise it is
set to 0. Bits 0, 2, and 3 of CR field BF are undefined.
Comparison ignores the sign of 0 (+0 = -0). The com-
parison proceeds after treating NaNs, Infinities, and
Denorms as normalized numbers, using their values of
‘e’ and ‘f’ directly.

No exceptions are generated during the execution of
efststgt.

Special Registers Altered: 
CR field BF

4 BF // RA RB 718
0 6 9 11 16 21 31

4 BF // RA RB 732
0 6 9 11 16 21 31

In an implementation, the execution of efststgt is
likely to be faster than the execution of efscmpgt;
however, if strict IEEE 754 compliance is required,
the program should use efscmpgt.

Programming Note
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Floating-Point Single-Precision Test Less 
Than EVX-form

efststlt BF,RA,RB

al � (RA)32:63
bl � (RB)32:63
if (al < bl) then cl � 1
else cl � 0
CR4×BF:4×BF+3 � undefined || cl || undefined || undefined

The low element of register RA is compared against the
low element of register RB. If RA32:63 is less than
RB32:63, bit 1 of CR field BF is set to 1, otherwise it is
set to 0. Bits 0, 2, and 3 of CR field BF are undefined.
Comparison ignores the sign of 0 (+0 = -0). The com-
parison proceeds after treating NaNs, Infinities, and
Denorms as normalized numbers, using their values of
‘e’ and ‘f’ directly.

No exceptions are generated during the execution of
efststlt. 

Special Registers Altered: 
CR field BF

Floating-Point Single-Precision Test 
Equal EVX-form

efststeq BF,RA,RB

al � (RA)32:63
bl � (RB)32:63
if (al = bl) then cl � 1
else cl � 0
CR4×BF:4×BF+3 � undefined || cl || undefined || undefined

The low element of register RA is compared against the
low element of register RB. If RA32:63 is equal to
RB32:63, bit 1 of CR field BF is set to 1, otherwise it is
set to 0. Bits 0, 2, and 3 of CR field BF are undefined.
Comparison ignores the sign of 0 (+0 = -0). The com-
parison proceeds after treating NaNs, Infinities, and
Denorms as normalized numbers, using their values of
‘e’ and ‘f’ directly.

No exceptions are generated during the execution of
efststeq. 

Special Registers Altered: 
CR field BF

4 BF // RA RB 733
0 6 9 11 16 21 31

In an implementation, the execution of efststlt is
likely to be faster than the execution of efscmplt;
however, if strict IEEE 754 compliance is required,
the program should use efscmplt.

Programming Note

4 BF // RA RB 734
0 6 9 11 16 21 31

In an implementation, the execution of efststeq is
likely to be faster than the execution of efscmpeq;
however, if strict IEEE 754 compliance is required,
the program should use efscmpeq.

Programming Note
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Convert Floating-Point Single-Precision 
from Signed Integer EVX-form

efscfsi RT,RB

RT32:63 � CnvtI32ToFP32((RB)32:63, S, LO, I)

The signed integer low element in register RB is con-
verted to a single-precision floating-point value using
the current rounding mode and the result is placed into
the low element of register RT.

Special Registers Altered: 
FINXS FG FX

Convert Floating-Point Single-Precision 
from Unsigned Integer EVX-form

efscfui RT,RB

RT32:63 � CnvtI32ToFP32((RB)32:63, U, LO, I)

The unsigned integer low element in register RB is con-
verted to a single-precision floating-point value using
the current rounding mode and the result is placed into
the low element of register RT.

Special Registers Altered: 
FINXS FG FX

Convert Floating-Point Single-Precision 
from Signed Fraction EVX-form

efscfsf RT,RB

RT32:63 � CnvtI32ToFP32((RB)32:63, S, LO, F)

The signed fractional low element in register RB is con-
verted to a single-precision floating-point value using
the current rounding mode and the result is placed into
the low element of register RT.

Special Registers Altered: 
FINXS FG FX

Convert Floating-Point Single-Precision 
from Unsigned Fraction EVX-form

efscfuf RT,RB

RT32:63 � CnvtI32ToFP32((RB)32:63, U, LO, F)

The unsigned fractional low element in register RB is
converted to a single-precision floating-point value
using the current rounding mode and the result is
placed into the low element of register RT.

Special Registers Altered: 
FINXS FG FX

Convert Floating-Point Single-Precision 
to Signed Integer EVX-form

efsctsi RT,RB

RT32:63 � CnvtFP32ToI32Sat((RB)32:63, S, LO, RND, I)

The single-precision floating-point low element in regis-
ter RB is converted to a signed integer using the cur-
rent rounding mode and the result is saturated if it
cannot be represented in a 32-bit integer. NaNs are
converted as though they were zero.

Special Registers Altered: 
FINV FINVS
FINXS FG FX

Convert Floating-Point Single-Precision 
to Unsigned Integer EVX-form

efsctui RT,RB

RT32:63 � CnvtFP32ToI32Sat((RB)32:63, U, LO, RND, I)

The single-precision floating-point low element in regis-
ter RB is converted to an unsigned integer using the
current rounding mode and the result is saturated if it
cannot be represented in a 32-bit integer. NaNs are
converted as though they were zero.

Special Registers Altered: 
FINV FINVS
FINXS FG FX

4 RT /// RB 721
0 6 11 16 21 31

4 RT /// RB 720
0 6 11 16 21 31

4 RT /// RB 723
0 6 11 16 21 31

4 RT /// RB 722
0 6 11 16 21 31

4 RT /// RB 725
0 6 11 16 21 31

4 RT /// RB 724
0 6 11 16 21 31
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Convert Floating-Point Single-Precision 
to Signed Integer with Round toward Zero

EVX-form

efsctsiz RT,RB

RT32:63 � CnvtFP32ToI32Sat((RB)32:63, S, LO, ZER, I)

The single-precision floating-point low element in regis-
ter RB is converted to a signed integer using the round-
ing mode Round toward Zero and the result is
saturated if it cannot be represented in a 32-bit integer.
NaNs are converted as though they were zero.

Special Registers Altered: 
FINV FINVS
FINXS FG FX

Convert Floating-Point Single-Precision 
to Unsigned Integer with Round toward 
Zero EVX-form

efsctuiz RT,RB

RT32:63 � CnvtFP32ToI32Sat((RB)32:63, U, LO, ZER, I)

The single-precision floating-point low element in regis-
ter RB is converted to an unsigned integer using the
rounding mode Round toward Zero and the result is
saturated if it cannot be represented in a 32-bit integer.
NaNs are converted as though they were zero.

Special Registers Altered: 
FINV FINVS
FINXS FG FX

Convert Floating-Point Single-Precision 
to Signed Fraction EVX-form

efsctsf RT,RB

RT32:63 � CnvtFP32ToI32Sat((RB)32:63, S, LO, RND, F)

The single-precision floating-point low element in regis-
ter RB is converted to a signed fraction using the cur-
rent rounding mode and the result is saturated if it
cannot be represented in a 32-bit fraction. NaNs are
converted as though they were zero. 

Special Registers Altered: 
FINV FINVS
FINXS FG FX

Convert Floating-Point Single-Precision 
to Unsigned Fraction EVX-form

efsctuf RT,RB

RT32:63 � CnvtFP32ToI32Sat((RB)32:63, U, LO, RND, F)

The single-precision floating-point low element in regis-
ter RB is converted to an unsigned fraction using the
current rounding mode and the result is saturated if it
cannot be represented in a 32-bit unsigned fraction.
NaNs are converted as though they were zero.

Special Registers Altered: 
FINV FINVS
FINXS FG FX

4 RT /// RB 730
0 6 11 16 21 31

4 RT /// RB 728
0 6 11 16 21 31

4 RT /// RB 727
0 6 11 16 21 31

4 RT /// RB 726
0 6 11 16 21 31
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7.3.4 SPE.Embedded Float Scalar Double Instructions
[Category: SPE.Embedded Float Scalar Double]

Floating-Point Double-Precision Absolute 
Value EVX-form

efdabs RT,RA

RT0:63 � 0b0 || (RA)1:63

The sign bit of register RA is set to 0 and the result is
placed in register RT.

Regardless of the value of register RA, no exceptions
are taken during the execution of this instruction.

Special Registers Altered: 
None

Floating-Point Double-Precision Negative 
Absolute Value EVX-form

efdnabs RT,RA

RT0:63 � 0b1 || (RA)1:63

The sign bit of register RA is set to 1 and the result is
placed in register RT.

Regardless of the value of register RA, no exceptions
are taken during the execution of this instruction.

Special Registers Altered: 
None

Floating-Point Double-Precision Negate
EVX-form

efdneg RT,RA

RT0:63 � ¬(RA)0 || (RA)1:63

The sign bit of register RA is complemented and the
result is placed in register RT.

Regardless of the value of register RA, no exceptions
are taken during the execution of this instruction.

Special Registers Altered: 
None

4 RT RA /// 740
0 6 11 16 21 31

4 RT RA /// 741
0 6 11 16 21 31

4 RT RA /// 742
0 6 11 16 21 31
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Floating-Point Double-Precision Add 
EVX-form

efdadd RT,RA,RB

RT0:63 � (RA)0:63 +dp (RB)0:63

RA is added to RB and the result is stored in register
RT.

If an underflow occurs, +0 (for rounding modes RN, RZ,
RP) or -0 (for rounding mode RM) is stored in register
RT.

Special Registers Altered: 
FINV FINVS
FOVF FOVFS
FUNF FUNFS
FG FX FINXS

Floating-Point Double-Precision Subtract
EVX-form

efdsub RT,RA,RB

RT0:63 � (RA)0:63 -dp (RB)0:63

RB is subtracted from RA and the result is stored in
register RT. 

If an underflow occurs, +0 (for rounding modes RN, RZ,
RP) or -0 (for rounding mode RM) is stored in register
RT.

Special Registers Altered: 
FINV FINVS
FOVF FOVFS
FUNF FUNFS
FG FX FINXS

Floating-Point Double-Precision Multiply
EVX-form

efdmul RT,RA,RB

RT0:63 � (RA)0:63 ×dp (RB)0:63

RA is multiplied by RB and the result is stored in regis-
ter RT. 

Special Registers Altered: 
FINV FINVS
FOVF FOVFS
FUNF FUNFS
FG FX FINXS

Floating-Point Double-Precision Divide
EVX-form

efddiv RT,RA,RB

RT0:63 � (RA)0:63 ÷dp (RB)0:63

RA is divided by RB and the result is stored in register
RT. 

Special Registers Altered: 
FINV FINVS
FG FX FINXS
FDBZ FDBZS
FOVF FOVFS
FUNF FUNFS

4 RT RA RB 736
0 6 11 16 21 31

4 RT RA RB 737
0 6 11 16 21 31

4 RT RA RB 744
0 6 11 16 21 31

4 RT RA RB 745
0 6 11 16 21 31
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Floating-Point Double-Precision Compare 
Greater Than EVX-form

efdcmpgt BF,RA,RB

al � (RA)0:63
bl � (RB)0:63
if (al > bl) then cl � 1
else cl � 0
CR4×BF:4×BF+3 � undefined || cl || undefined || undefined

RA is compared against RB. If RA is greater than RB,
bit 1 of CR field BF is set to 1, otherwise it is set to 0.
Bits 0, 2, and 3 of CR field BF are undefined. Compari-
son ignores the sign of 0 (+0 = -0).

If an input error occurs and default results are gener-
ated, NaNs, Infinities, and Denorms are treated as nor-
malized numbers, using their values of ‘e’ and ‘f’
directly.

Special Registers Altered: 
FINV FINVS
FG FX 
CR field BF

Floating-Point Double-Precision Compare 
Less Than EVX-form

efdcmplt BF,RA,RB

al � (RA)0:63
bl � (RB)0:63
if (al < bl) then cl � 1
else cl � 0
CR4×BF:4×BF+3 � undefined || cl || undefined || undefined

RA is compared against RB. If RA is less than RB, bit 1
of CR field BF is set to 1, otherwise it is set to 0. Bits 0,
2, and 3 of CR field BF are undefined. Comparison
ignores the sign of 0 (+0 = -0).

If an input error occurs and default results are gener-
ated, NaNs, Infinities, and Denorms are treated as nor-
malized numbers, using their values of ‘e’ and ‘f’
directly.

Special Registers Altered: 
FINV FINVS
FG FX 
CR field BF

Floating-Point Double-Precision Compare 
Equal EVX-form

efdcmpeq BF,RA,RB

al � (RA)0:63
bl � (RB)0:63
if (al = bl) then cl � 1
else cl � 0
CR4×BF:4×BF+3 � undefined || cl || undefined || undefined

RA is compared against RB. If RA is equal to RB, bit 1
of CR field BF is set to 1, otherwise it is set to 0. Bits 0,
2, and 3 of CR field BF are undefined. Comparison
ignores the sign of 0 (+0 = -0).

If an input error occurs and default results are gener-
ated, NaNs, Infinities, and Denorms are treated as nor-
malized numbers, using their values of ‘e’ and ‘f’
directly.

Special Registers Altered: 
FINV FINVS
FG FX 
CR field BF

Floating-Point Double-Precision Test 
Greater Than EVX-form

efdtstgt BF,RA,RB

al � (RA)0:63
bl � (RB)0:63
if (al > bl) then cl � 1
else cl � 0
CR4×BF:4×BF+3 � undefined || cl || undefined || undefined

RA is compared against RB. If RA is greater than RB,
bit 1 of CR field BF is set to 1, otherwise it is set to 0.
Bits 0, 2, and 3 of CR field BF are undefined. Compari-
son ignores the sign of 0 (+0 = -0). The comparison
proceeds after treating NaNs, Infinities, and Denorms
as normalized numbers, using their values of ‘e’ and ‘f’
directly.

No exceptions are generated during the execution of
efdtstgt. 

Special Registers Altered: 
CR field BF

4 BF // RA RB 748
0 6 9 11 16 21 31

4 BF // RA RB 749
0 6 9 11 16 21 31

4 BF // RA RB 750
0 6 9 11 16 21 31

4 BF // RA RB 764
0 6 9 11 16 21 31

In an implementation, the execution of efdtstgt is
likely to be faster than the execution of efdcmpgt;
however, if strict IEEE 754 compliance is required,
the program should use efdcmpgt.

Programming Note
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Floating-Point Double-Precision Test Less 
Than EVX-form

efdtstlt BF,RA,RB

al � (RA)0:63
bl � (RB)0:63
if (al < bl) then cl � 1
else cl � 0
CR4×BF:4×BF+3 � undefined || cl || undefined || undefined

RA is compared against RB. If RA is less than RB, bit 1
of CR field BF is set to 1, otherwise it is set to 0. Bits 0,
2, and 3 of CR field BF are undefined. Comparison
ignores the sign of 0 (+0 = -0). The comparison pro-
ceeds after treating NaNs, Infinities, and Denorms as
normalized numbers, using their values of ‘e’ and ‘f’
directly.

No exceptions are generated during the execution of
efdtstlt. 

Special Registers Altered: 
CR field BF

Floating-Point Double-Precision Test 
Equal EVX-form

efdtsteq BF,RA,RB

al � (RA)0:63
bl � (RB)0:63
if (al = bl) then cl � 1
else cl � 0
CR4×BF:4×BF+3 � undefined || cl || undefined || undefined

RA is compared against RB. If RA is equal to RB, bit 1
of CR field BF is set to 1, otherwise it is set to 0. Bits 0,
2, and 3 of CR field BF are undefined. Comparison
ignores the sign of 0 (+0 = -0). The comparison pro-
ceeds after treating NaNs, Infinities, and Denorms as
normalized numbers, using their values of ‘e’ and ‘f’
directly.

No exceptions are generated during the execution of
efdtsteq. 

Special Registers Altered: 
CR field BF

Convert Floating-Point Double-Precision 
from Signed Integer EVX-form

efdcfsi RT,RB

RT0:63 � CnvtI32ToFP64((RB)32:63, S, I)

The signed integer low element in register RB is con-
verted to a double-precision floating-point value using
the current rounding mode and the result is placed in
register RT.

Special Registers Altered: 
None

Convert Floating-Point Double-Precision 
from Unsigned Integer EVX-form

efdcfui RT,RB

RT0:63 � CnvtI32ToFP64((RB)32:63, U, I)

The unsigned integer low element in register RB is con-
verted to a double-precision floating-point value using
the current rounding mode and the result is placed in
register RT.

Special Registers Altered: 
None

4 BF // RA RB 765
0 6 9 11 16 21 31

In an implementation, the execution of efdtstlt is
likely to be faster than the execution of efdcmplt;
however, if strict IEEE 754 compliance is required,
the program should use efdcmplt.

Programming Note

4 BF // RA RB 766
0 6 9 11 16 21 31

In an implementation, the execution of efdtsteq is
likely to be faster than the execution of efdcmpeq;
however, if strict IEEE 754 compliance is required,
the program should use efdcmpeq.

Programming Note

4 RT /// RB 753
0 6 11 16 21 31

4 RT /// RB 752
0 6 11 16 21 31
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Convert Floating-Point Double-Precision 
from Signed Integer Doubleword

EVX-form

efdcfsid RT,RB

RT0:63 � CnvtI64ToFP64((RB)0:63, S)

The signed integer doubleword in register RB is con-
verted to a double-precision floating-point value using
the current rounding mode and the result is placed in
register RT.

Corequisite Categories: 
64-Bit

Special Registers Altered: 
FINXS FG FX

Convert Floating-Point Double-Precision 
from Unsigned Integer Doubleword

EVX-form

efdcfuid RT,RB

RT0:63 � CnvtI64ToFP64((RB)0:63, U)

The unsigned integer doubleword in register RB is con-
verted to a double-precision floating-point value using
the current rounding mode and the result is placed in
register RT.

Corequisite Categories: 
64-Bit

Special Registers Altered: 
FINXS FG FX

Convert Floating-Point Double-Precision 
from Signed Fraction

EVX-form

efdcfsf RT,RB

RT0:63 � CnvtI32ToFP64((RB)32:63, S, F)

The signed fractional low element in register RB is con-
verted to a double-precision floating-point value using
the current rounding mode and the result is placed in
register RT.

Special Registers Altered: 
None

Convert Floating-Point Double-Precision 
from Unsigned Fraction EVX-form

efdcfuf RT,RB

RT0:63 � CnvtI32ToFP64((RB)32:63, U, F)

The unsigned fractional low element in register RB is
converted to a double-precision floating-point value
using the current rounding mode and the result is
placed in register RT.

Special Registers Altered: 
None

Convert Floating-Point Double-Precision 
to Signed Integer EVX-form

efdctsi RT,RB

RT32:63 � CnvtFP64ToI32Sat((RB)0:63, S, RND, I)

The double-precision floating-point value in register RB
is converted to a signed integer using the current
rounding mode and the result is saturated if it cannot be
represented in a 32-bit integer. NaNs are converted as
though they were zero.

Special Registers Altered: 
FINV FINVS
FINXS FG FX

Convert Floating-Point Double-Precision 
to Unsigned Integer EVX-form

efdctui RT,RB

RT32:63 � CnvtFP64ToI32Sat((RB)0:63, U, RND, I)

The double-precision floating-point value in register RB
is converted to an unsigned integer using the current
rounding mode and the result is saturated if it cannot be
represented in a 32-bit integer. NaNs are converted as
though they were zero.

Special Registers Altered: 
FINV FINVS
FINXS FG FX

4 RT /// RB 739
0 6 11 16 21 31

4 RT /// RB 738
0 6 11 16 21 31

4 RT /// RB 755
0 6 11 16 21 31

4 RT /// RB 754
0 6 11 16 21 31

4 RT /// RB 757
0 6 11 16 21 31

4 RT /// RB 756
0 6 11 16 21 31
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Convert Floating-Point Double-Precision 
to Signed Integer Doubleword with Round 
toward Zero EVX-form

efdctsidz RT,RB

RT0:63 � CnvtFP64ToI64Sat((RB)0:63, S, ZER)

The double-precision floating-point value in register RB
is converted to a signed integer doubleword using the
rounding mode Round toward Zero and the result is
saturated if it cannot be represented in a 64-bit integer.
NaNs are converted as though they were zero.

Corequisite Categories: 
64-Bit

Special Registers Altered: 
FINV FINVS
FINXS FG FX

Convert Floating-Point Double-Precision 
to Unsigned Integer Doubleword with 
Round toward Zero EVX-form

efdctuidz RT,RB

RT0:63 � CnvtFP64ToI64Sat((RB)0:63, U, ZER)

The double-precision floating-point value in register RB
is converted to an unsigned integer doubleword using
the rounding mode Round toward Zero and the result is
saturated if it cannot be represented in a 64-bit integer.
NaNs are converted as though they were zero.

Corequisite Categories: 
64-Bit

Special Registers Altered: 
FINV FINVS
FINXS FG FX

4 RT /// RB 747
0 6 11 16 21 31

4 RT /// RB 746
0 6 11 16 21 31
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Convert Floating-Point Double-Precision 
to Signed Integer with Round toward Zero

EVX-form

efdctsiz RT,RB

RT32:63 � CnvtFP64ToI32Sat((RB)0:63, S, ZER, I)

The double-precision floating-point value in register RB
is converted to a signed integer using the rounding
mode Round toward Zero and the result is saturated if it
cannot be represented in a 32-bit integer. NaNs are
converted as though they were zero.

Special Registers Altered: 
FINV FINVS
FINXS FG FX

Convert Floating-Point Double-Precision 
to Unsigned Integer with Round toward 
Zero EVX-form

efdctuiz RT,RB

RT32:63 � CnvtFP64ToI32Sat((RB)0:63, U, ZER, I)

The double-precision floating-point value in register RB
is converted to an unsigned integer using the rounding
mode Round toward Zero and the result is saturated if it
cannot be represented in a 32-bit integer. NaNs are
converted as though they were zero.

Special Registers Altered: 
FINV FINVS
FINXS FG FX

Convert Floating-Point Double-Precision 
to Signed Fraction EVX-form

efdctsf RT,RB

RT32:63 � CnvtFP64ToI32Sat((RB)0:63, S, RND, F)

The double-precision floating-point value in register RB
is converted to a signed fraction using the current
rounding mode and the result is saturated if it cannot be
represented in a 32-bit fraction. NaNs are converted as
though they were zero. 

Special Registers Altered: 
FINV FINVS
FINXS FG FX

Convert Floating-Point Double-Precision 
to Unsigned Fraction EVX-form

efdctuf RT,RB

RT32:63 � CnvtFP64ToI32Sat((RB)0:63, U, RND, F)

The double-precision floating-point value in register RB
is converted to an unsigned fraction using the current
rounding mode and the result is saturated if it cannot be
represented in a 32-bit unsigned fraction. NaNs are
converted as though they were zero.

Special Registers Altered: 
FINV FINVS
FINXS FG FX

Floating-Point Double-Precision convert 
from Single-Precision EVX-form

efdcfs RT,RB

FP32format f;
FP64format result;
f � (RB)32:63
if (fexp = 0) & (ffrac = 0)) then

result � fsign || 
630

else if Isa32NaNorInfinity(f) | Isa32Denorm(f) then
SPEFSCRFINV � 1
result � fsign || 0b11111111110 || 

521
else if Isa32Denorm(f) then

SPEFSCRFINV � 1
result � fsign || 

630
else

resultsign � fsign
resultexp � fexp - 127 + 1023
resultfrac � ffrac || 

290
RT0:63 � result

The single-precision floating-point value in the low ele-
ment of register RB is converted to a double-precision
floating-point value and the result is placed in register
RT.

Corequisite Categories: 
SPE.Embedded Float Scalar Single or
SPE.Embedded Float Vector

Special Registers Altered: 
FINV FINVS
FG FX

4 RT /// RB 762
0 6 11 16 21 31

4 RT /// RB 760
0 6 11 16 21 31

4 RT /// RB 759
0 6 11 16 21 31

4 RT /// RB 758
0 6 11 16 21 31

4 RT /// RB 751
0 6 11 16 21 31
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Floating-Point Single-Precision Convert 
from Double-Precision EVX-form

efscfd RT,RB

FP64format f;
FP32format result;
f � (RB)0:63
if (fexp = 0) & (ffrac = 0)) then

result � fsign || 
310

else if Isa64NaNorInfinity(f) then
SPEFSCRFINV � 1
result � fsign || 0b11111110 || 

231
else if Isa64Denorm(f) then

SPEFSCRFINV � 1
result � fsign || 

310
else

unbias � fexp - 1023
if unbias > 127 then

result � fsign || 0b11111110 || 
231

SPEFSCRFOVF � 1
else if unbias < -126 then

result � fsign || 0b00000001 || 
230

SPEFSCRFUNF � 1
else

resultsign � fsign
resultexp � unbias + 127
resultfrac � ffrac[0:22]
guard � ffrac[23]
sticky � (ffrac[24:51] ≠ 0)
result � Round32(result, LO, guard, 

sticky)
SPEFSCRFG � guard
SPEFSCRFX � sticky
if guard | sticky then

SPEFSCRFINXS � 1
RT32:63 � result

The double-precision floating-point value in register RB
is converted to a single-precision floating-point value
using the current rounding mode and the result is
placed into the low element of register RT.

Corequisite Categories: 
SPE.Embedded Float Scalar Scalar

Special Registers Altered: 
FINV FINVS
FOVF FOVFS
FUNF FUNFS
FG FX FINXS

4 RT /// RB 719
0 6 11 16 21 31
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7.4 Embedded Floating-Point Results Summary

The following tables summarize the results of various
types of Embedded Floating-Point operations on vari-
ous combinations of input operands. Flag settings are
performed on appropriate element flags. For all the
tables the following annotation and general rules apply:
� * denotes that this status flag is set based on the

results of the calculation.
� _Calc_ denotes that the result is updated with the

results of the computation.
� max denotes the maximum normalized number

with the sign set to the computation [sign(operand
A) XOR sign(operand B)].

� amax denotes the maximum normalized number
with the sign set to the sign of Operand A.

� bmax denotes the maximum normalized number
with the sign set to the sign of Operand B.

� pmax denotes the maximum normalized positive
number. The encoding for single-precision is:
0x7F7FFFFF. The encoding for double-precision
is: 0x7FEFFFFF_FFFFFFFF.

� nmax denotes the maximum normalized negative
number. The encoding for single-precision is:
0xFF7FFFFF. The encoding for double-precision
is: 0xFFEFFFFF_FFFFFFFF.

� pmin denotes the minimum normalized positive
number. The encoding for single-precision is:
0x00800000. The encoding for double-precision is:
0x00100000_00000000.

� nmin denotes the minimum normalized negative
number. The encoding for single-precision is:
0x80800000. The encoding for double-precision is:
0x80100000_00000000.

� Calculations that overflow or underflow saturate.
Overflow for operations that have a floating-point
result force the result to max. Underflow for opera-
tions that have a floating-point result force the
result to zero. Overflow for operations that have a
signed integer result force the result to
0x7FFFFFFF (positive) or 0x80000000 (negative).
Overflow for operations that have an unsigned inte-
ger result force the result to 0xFFFFFFFF (posi-
tive) or 0x00000000 (negative).

� 1 (superscript) denotes that the sign of the result is
positive when the sign of Operand A and the sign
of Operand B are different, for all rounding modes
except round to -infinity, where the sign of the
result is then negative.

� 2 (superscript) denotes that the sign of the result is
positive when the sign of Operand A and the sign
of Operand B are the same, for all rounding modes
except round to -infinity, where the sign of the
result is then negative.

� 3 (superscript) denotes that the sign for any multi-
ply or divide is always the result of the operation
[sign(Operand A) XOR sign(Operand B)].

� 4 (superscript) denotes that if an overflow is
detected, the result may be saturated.

Table 3: Embedded Floating-Point Results Summary—Add, Sub, Mul, Div

Operation Operand A Operand B Result FINV FOVF FUNF FDBZ FINX

Add

Add ∞ ∞ amax 1 0 0 0 0

Add ∞ NaN amax 1 0 0 0 0

Add ∞ denorm amax 1 0 0 0 0

Add ∞ zero amax 1 0 0 0 0

Add ∞ Norm amax 1 0 0 0 0

Add NaN ∞ amax 1 0 0 0 0

Add NaN NaN amax 1 0 0 0 0

Add NaN denorm amax 1 0 0 0 0

Add NaN zero amax 1 0 0 0 0

Add NaN norm amax 1 0 0 0 0

Add denorm ∞ bmax 1 0 0 0 0

Add denorm NaN bmax 1 0 0 0 0

Add denorm denorm zero1 1 0 0 0 0

Add denorm zero zero1 1 0 0 0 0

Add denorm norm operand_b4 1 0 0 0 0

Add zero ∞ bmax 1 0 0 0 0

Add zero NaN bmax 1 0 0 0 0

Add zero denorm zero1 1 0 0 0 0
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Add zero zero zero1 0 0 0 0 0

Add zero norm operand_b4 0 0 0 0 0

Add norm ∞ bmax 1 0 0 0 0

Add norm NaN bmax 1 0 0 0 0

Add norm denorm operand_a4 1 0 0 0 0

Add norm zero operand_a4 0 0 0 0 0

Add norm norm _Calc_ 0 * * 0 *

Subtract

Sub ∞ ∞ amax 1 0 0 0 0

Sub ∞ NaN amax 1 0 0 0 0

Sub ∞ denorm amax 1 0 0 0 0

Sub ∞ zero amax 1 0 0 0 0

Sub ∞ Norm amax 1 0 0 0 0

Sub NaN ∞ amax 1 0 0 0 0

Sub NaN NaN amax 1 0 0 0 0

Sub NaN denorm amax 1 0 0 0 0

Sub NaN zero amax 1 0 0 0 0

Sub NaN norm amax 1 0 0 0 0

Sub denorm ∞ -bmax 1 0 0 0 0

Sub denorm NaN -bmax 1 0 0 0 0

Sub denorm denorm zero2 1 0 0 0 0

Sub denorm zero zero2 1 0 0 0 0

Sub denorm norm -operand_b4 1 0 0 0 0

Sub zero ∞ -bmax 1 0 0 0 0

Sub zero NaN -bmax 1 0 0 0 0

Sub zero denorm zero2 1 0 0 0 0

Sub zero zero zero2 0 0 0 0 0

Sub zero norm -operand_b4 0 0 0 0 0

Sub norm ∞ -bmax 1 0 0 0 0

Sub norm NaN -bmax 1 0 0 0 0

Sub norm denorm operand_a4 1 0 0 0 0

Sub norm zero operand_a4 0 0 0 0 0

Sub norm norm _Calc_ 0 * * 0 *

Multiply3

Mul ∞ ∞ max 1 0 0 0 0

Mul ∞ NaN max 1 0 0 0 0

Mul ∞ denorm zero 1 0 0 0 0

Mul ∞ zero zero 1 0 0 0 0

Mul ∞ Norm max 1 0 0 0 0

Mul NaN ∞ max 1 0 0 0 0

Mul NaN NaN max 1 0 0 0 0

Mul NaN denorm zero 1 0 0 0 0

Mul NaN zero zero 1 0 0 0 0

Mul NaN norm max 1 0 0 0 0

Table 3: Embedded Floating-Point Results Summary—Add, Sub, Mul, Div (Continued)

Operation Operand A Operand B Result FINV FOVF FUNF FDBZ FINX
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Mul denorm ∞ zero 1 0 0 0 0

Mul denorm NaN zero 1 0 0 0 0

Mul denorm denorm zero 1 0 0 0 0

Mul denorm zero zero 1 0 0 0 0

Mul denorm norm zero 1 0 0 0 0

Mul zero ∞ zero 1 0 0 0 0

Mul zero NaN zero 1 0 0 0 0

Mul zero denorm zero 1 0 0 0 0

Mul zero zero zero 0 0 0 0 0

Mul zero norm zero 0 0 0 0 0

Mul norm ∞ max 1 0 0 0 0

Mul norm NaN max 1 0 0 0 0

Mul norm denorm zero 1 0 0 0 0

Mul norm zero zero 0 0 0 0 0

Mul norm norm _Calc_ 0 * * 0 *

Divide3

Div ∞ ∞ zero 1 0 0 0 0

Div ∞ NaN zero 1 0 0 0 0

Div ∞ denorm max 1 0 0 0 0

Div ∞ zero max 1 0 0 0 0

Div ∞ Norm max 1 0 0 0 0

Div NaN ∞ zero 1 0 0 0 0

Div NaN NaN zero 1 0 0 0 0

Div NaN denorm max 1 0 0 0 0

Div NaN zero max 1 0 0 0 0

Div NaN norm max 1 0 0 0 0

Div denorm ∞ zero 1 0 0 0 0

Div denorm NaN zero 1 0 0 0 0

Div denorm denorm max 1 0 0 0 0

Div denorm zero max 1 0 0 0 0

Div denorm norm zero 1 0 0 0 0

Div zero ∞ zero 1 0 0 0 0

Div zero NaN zero 1 0 0 0 0

Div zero denorm max 1 0 0 0 0

Div zero zero max 1 0 0 0 0

Div zero norm zero 0 0 0 0 0

Div norm ∞ zero 1 0 0 0 0

Div norm NaN zero 1 0 0 0 0

Div norm denorm max 1 0 0 0 0

Div norm zero max 0 0 0 1 0

Div norm norm _Calc_ 0 * * 0 *

Table 3: Embedded Floating-Point Results Summary—Add, Sub, Mul, Div (Continued)

Operation Operand A Operand B Result FINV FOVF FUNF FDBZ FINX
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Table 4: Embedded Floating-Point Results Summary—Single Convert 
from Double

Operand B efscfd result FINV FOVF FUNF FDBZ FINX

+∞ pmax 1 0 0 0 0

-∞ nmax 1 0 0 0 0

+NaN pmax 1 0 0 0 0

-NaN nmax 1 0 0 0 0

+denorm +zero 1 0 0 0 0

-denorm -zero 1 0 0 0 0

+zero +zero 0 0 0 0 0

-zero -zero 0 0 0 0 0

norm _Calc_ 0 * * 0 *

Table 5: Embedded Floating-Point Results Summary—Double Convert 
from Single

Operand B efdcfs result FINV FOVF FUNF FDBZ FINX

+∞ pmax 1 0 0 0 0

-∞ nmax 1 0 0 0 0

+NaN pmax 1 0 0 0 0

-NaN nmax 1 0 0 0 0

+denorm +zero 1 0 0 0 0

-denorm -zero 1 0 0 0 0

+zero +zero 0 0 0 0 0

-zero -zero 0 0 0 0 0

norm _Calc_ 0 0 0 0 0

Table 6: Embedded Floating-Point Results Summary—Convert to Unsigned

Operand B
Integer Result

ctui[d][z]
Fractional Result

ctuf
FINV FOVF FUNF FDBZ FINX

+∞ 0xFFFF_FFFF 
0xFFFF_FFFF_FFFF_FFFF

0x7FFF_FFFF 1 0 0 0 0

-∞ 0 0 1 0 0 0 0

+NaN 0 0 1 0 0 0 0

-NaN 0 0 1 0 0 0 0

denorm 0 0 1 0 0 0 0

zero 0 0 0 0 0 0 0

+norm _Calc_ _Calc_ * 0 0 0 *

-norm _Calc_ _Calc_ * 0 0 0 *
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X

Table 7: Embedded Floating-Point Results Summary—Convert to Signed

Operand B
Integer Result

ctsi[d][z]
Fractional Result

ctsf
FINV FOVF FUNF FDBZ FINX

+∞ 0x7FFF_FFFF
0x7FFF_FFFF_FFFF_FFFF

0x7FFF_FFFF 1 0 0 0 0

-∞ 0x8000_0000
0x8000_0000_0000_0000

0x8000_0000 1 0 0 0 0

+NaN 0 0 1 0 0 0 0

-NaN 0 0 1 0 0 0 0

denorm 0 0 1 0 0 0 0

zero 0 0 0 0 0 0 0

+norm _Calc_ _Calc_ * 0 0 0 *

-norm _Calc_ _Calc_ * 0 0 0 *

Table 8: Embedded Floating-Point Results Summary—Convert from Unsigned

Operand B
Integer Source

cfui
Fractional Source

cfuf
FINV FOVF FUNF FDBZ FINX

zero zero zero 0 0 0 0 0

norm _Calc_ _Calc_ 0 0 0 0 *

Table 9: Embedded Floating-Point Results Summary—Convert from Signed

Operand B
Integer Source

cfsi
Fractional Source

cfsf
FINV FOVF FUNF FDBZ FINX

zero zero zero 0 0 0 0 0

norm _Calc_ _Calc_ 0 0 0 0 *

Table 10:Embedded Floating-Point Results Summary—*abs, *nabs, *neg

Operand A *abs *nabs *neg FINV FOVF FUNF FDBZ FIN

+∞ pmax | +∞ nmax | -∞ -amax | -∞ 1 0 0 0 0

-∞ pmax | +∞ nmax | -∞ -amax | +∞ 1 0 0 0 0

+NaN pmax | NaN nmax | -NaN -amax | -NaN 1 0 0 0 0

-NaN pmax | NaN nmax | -NaN -amax | +NaN 1 0 0 0 0

+denorm +zero | +denorm -zero | -denorm -zero | -denorm 1 0 0 0 0

-denorm +zero | +denorm -zero | -denorm +zero | +denorm 1 0 0 0 0

+zero +zero -zero -zero 0 0 0 0 0

-zero +zero -zero +zero 0 0 0 0 0

+norm +norm -norm -norm 0 0 0 0 0

-norm +norm -norm +norm 0 0 0 0 0
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Chapter 8.  Legacy Move Assist Instruction 
[Category: Legacy Move Assist]

Determine Leftmost Zero Byte X-form

dlmzb RA,RS,RB (Rc=0)
dlmzb. RA,RS,RB (Rc=1)

d0:63 � (RS)32:63 || (RB)32:63
i � 0
x � 0
y � 0
do while (x<8) & (y=0)
   x � x + 1
   if di+32:i+39 = 0 then 
      y � 1
   else
      i � i + 8
RA � x
XER57:63 � x
if Rc = 1 then do
   CR35 � SO
   if y = 1 then do
      if x<5 then CR32:34 � 0b010
      else        CR32:34 � 0b100
   else
      CR32:34 � 0b001

The contents of bits 32:63 of register RS and the con-
tents of bits 32:63 of register RB are concatenated to
form an 8-byte operand. The operand is searched for
the leftmost byte in which each bit is 0 (i.e., a null byte).

Bytes in the operand are numbered from left to right
starting with 1. If a null byte is found, its byte number is
placed into bits 57:63 of the XER and into register RA.
Otherwise, the value 0b000_1000 is placed into both
bits 57:63 of the XER and register RA.

If Rc is equal to 1, SO is copied into bit 35 of the CR
and bits 32:34 of the CR are updated as follows:

� If no null byte is found, bits 32:34 of the CR are set
to 0b001.

� If the leftmost null byte is in the first 4 bytes (i.e.,
from register RS), bits 32:34 of the CR are set to
0b010.

� If the leftmost null byte is in the last 4 bytes (i.e.,
from register RB), bits 32:34 of the CR are set to
0b100.

Special Registers Altered:
XER57:63
CR0 (if Rc=1)

31 RS RA RB 78 Rc
0 6 11 16 21 31
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Chapter 9.  Legacy Integer Multiply-Accumulate Instructions 
[Category: Legacy Integer Multiply-Accumulate]

The Legacy Integer Multiply-Accumulate instructions
with Rc=1 set the first three bits of CR Field 0 based on
the 32-bit result, as described in Section 3.3.7, “Other
Fixed-Point Instructions”.

The XO-form Legacy Integer Multiply-Accumulate
instructions set SO and OV when OE=1 to reflect over-
flow of the 32-bit result.

 

Multiply Accumulate Cross Halfword to 
Word Modulo Signed XO-form

macchw RT,RA,RB (OE=0 Rc=0)
macchw. RT,RA,RB (OE=0 Rc=1)
macchwo RT,RA,RB (OE=1 Rc=0)
macchwo. RT,RA,RB (OE=1 Rc=1)

prod0:31 � (RA)48:63 ×si (RB)32:47
temp0:32 � prod0:31 + (RT)32:63
RT32:63 � temp1:32
RT0:31  � undefined

The signed-integer halfword in bits 48:63 of register RA
is multiplied by the signed-integer halfword in bits 32:47
of register RB. 

The 32-bit signed-integer product is added to the
signed-integer word in bits 32:63 of register RT.

The low-order 32 bits of the sum are placed into bits
32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

Multiply Accumulate Cross Halfword to 
Word Saturate Signed XO-form

macchws RT,RA,RB (OE=0 Rc=0)
macchws. RT,RA,RB (OE=0 Rc=1)
macchwso RT,RA,RB (OE=1 Rc=0)
macchwso. RT,RA,RB (OE=1 Rc=1)

prod0:31 � (RA)48:63 ×si (RB)32:47
temp0:32 � prod0:31 + RT32:63
if temp < -231       then RT32:63 � 0x8000_0000
else if temp > 231-1 then RT32:63 � 0x7FFF_FFFF
else                      RT32:63 � temp1:32
RT0:31 � undefined

The signed-integer halfword in bits 48:63 of register RA
is multiplied by the signed-integer halfword in bits 32:47
of register RB. 

The 32-bit signed-integer product is added to the
signed-integer word in bits 32:63 of register RT.

If the sum is less than -231, then the value 0x8000_0000
is placed into bits 32:63 of register RT.

If the sum is greater than 231-1, then the value
0x7FFF_FFFF is placed into bits 32:63 of register RT.

Otherwise, the sum is placed into bits 32:63 of register
RT.

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

Notice that CR Field 0 may not reflect the “true”
(infinitely precise) result if overflow occurs.

Programming Note

4 RT RA RB OE 172 Rc
0 6 11 16 21 22 31

4 RT RA RB OE 236 Rc
0 6 11 16 21 22 31
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Multiply Accumulate Cross Halfword to 
Word Modulo Unsigned  XO-form

macchwu RT,RA,RB (OE=0 Rc=0)
macchwu. RT,RA,RB (OE=0 Rc=1)
macchwuo RT,RA,RB (OE=1 Rc=0)
macchwuo. RT,RA,RB (OE=1 Rc=1)

prod0:31 � (RA)48:63 ×ui (RB)32:47
temp0:32 � prod0:31 + (RT)32:63
RT � temp1:32

The unsigned-integer halfword in bits 48:63 of register
RA is multiplied by the unsigned-integer halfword in bits
32:47 of register RB. 

The 32-bit unsigned-integer product is added to the
unsigned-integer word in bits 32:63 of register RT.

The low-order 32 bits of the sum are placed into bits
32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

Multiply Accumulate Cross Halfword to 
Word Saturate Unsigned  XO-form

macchwsu RT,RA,RB (OE=0 Rc=0)
macchwsu. RT,RA,RB (OE=0 Rc=1)
macchwsuo RT,RA,RB (OE=1 Rc=0)
macchwsuo. RT,RA,RB (OE=1 Rc=1)

prod0:31 � (RA)48:63 ×ui (RB)32:47
temp0:32 � prod0:31 + (RT)32:63
if temp > 232-1 then RT � 0xFFFF_FFFF
else                 RT � temp1:32

The unsigned-integer halfword in bits 48:63 of register
RA is multiplied by the unsigned-integer halfword in bits
32:47 of register RB. 

The 32-bit unsigned-integer product is added to the
unsigned-integer word in bits 32:63 of register RT.

If the sum is greater than 232-1, then the value
0xFFFF_FFFF is placed into bits 32:63 of register RT.

Otherwise, the sum is placed into bits 32:63 of register
RT.

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

4 RT RA RB OE 140 Rc
0 6 11 16 21 22 31

4 RT RA RB OE 204 Rc
0 6 11 16 21 22 31
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Multiply Accumulate High Halfword to 
Word Modulo Signed XO-form

machhw RT,RA,RB (OE=0 Rc=0)
machhw. RT,RA,RB (OE=0 Rc=1)
machhwo RT,RA,RB (OE=1 Rc=0)
machhwo. RT,RA,RB (OE=1 Rc=1)

prod0:31 � (RA)32:47 ×si (RB)32:47
temp0:32 � prod0:31 + (RT)32:63
RT32:63 � temp1:32
RT0:31  � undefined

The signed-integer halfword in bits 32:47 of register RA
is multiplied by the signed-integer halfword in bits 32:47
of register RB. 

The 32-bit signed-integer product is added to the
signed-integer word in bits 32:63 of register RT.

The low-order 32 bits of the sum are placed into bits
32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

Multiply Accumulate High Halfword to 
Word Saturate Signed  XO-form

machhws RT,RA,RB (OE=0 Rc=0)
machhws. RT,RA,RB (OE=0 Rc=1)
machhwso RT,RA,RB (OE=1 Rc=0)
machhwso. RT,RA,RB (OE=1 Rc=1)

prod0:31 � (RA)32:47 ×si (RB)32:47
temp0:32 � prod0:31 + (RT)32:63
if temp < -231       then RT32:63 � 0x8000_0000
else if temp > 231-1 then RT32:63 � 0x7FFF_FFFF
else                      RT32:63 � temp1:32
RT0:31  � undefined

The signed-integer halfword in bits 32:47 of register RA
is multiplied by the signed-integer halfword in bits 32:47
of register RB. 

The 32-bit signed-integer product is added to the
signed-integer word in bits 32:63 of register RT.

If the sum is less than -231, then the value 0x8000_0000
is placed into bits 32:63 of register RT.

If the sum is greater than 231-1, then the value
0x7FFF_FFFF is placed into bits 32:63 of register RT.

Otherwise, the sum is placed into bits 32:63 of register
RT.

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

4 RT RA RB OE 44 Rc
0 6 11 16 21 22 31

4 RT RA RB OE 108 Rc
0 6 11 16 21 22 31
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Multiply Accumulate High Halfword to 
Word Modulo Unsigned XO-form

machhwu RT,RA,RB (OE=0 Rc=0)
machhwu. RT,RA,RB (OE=0 Rc=1)
machhwuo RT,RA,RB (OE=1 Rc=0)
machhwuo. RT,RA,RB (OE=1 Rc=1)

prod0:31 � (RA)32:47 ×ui (RB)32:47
temp0:32 � prod0:31 + (RT)32:63
RT32:63 � temp1:32
RT0:31  � undefined

The unsigned-integer halfword in bits 32:47 of register
RA is multiplied by the unsigned-integer halfword in bits
32:47 of register RB. 

The 32-bit unsigned-integer product is added to the
unsigned-integer word in bits 32:63 of register RT.

The low-order 32 bits of the sum are placed into bits
32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

Multiply Accumulate High Halfword to 
Word Saturate Unsigned XO-form

machhwsu RT,RA,RB (OE=0 Rc=0)
machhwsu. RT,RA,RB (OE=0 Rc=1)
machhwsuo RT,RA,RB (OE=1 Rc=0)
machhwsuo. RT,RA,RB (OE=1 Rc=1)

prod0:31 � (RA)32:47 ×ui (RB)32:47
temp0:32 � prod0:31 + (RT)32:63
if temp > 232-1 then RT � 0xFFFF_FFFF
else                 RT � temp1:32

The unsigned-integer halfword in bits 32:47 of register
RA is multiplied by the unsigned-integer halfword in bits
32:47 of register RB. 

The 32-bit unsigned-integer product is added to the
unsigned-integer word in bits 32:63 of register RT.

If the sum is greater than 232-1, then the value
0xFFFF_FFFF is placed into bits 32:63 of register RT.

Otherwise, the sum is placed into bits 32:63 of register
RT.

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

4 RT RA RB OE 12 Rc
0 6 11 16 21 22 31

4 RT RA RB OE 76 Rc
0 6 11 16 21 22 31
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Multiply Accumulate Low Halfword to 
Word Modulo Signed  XO-form

maclhw RT,RA,RB (OE=0 Rc=0)
maclhw. RT,RA,RB (OE=0 Rc=1)
maclhwo RT,RA,RB (OE=1 Rc=0)
maclhwo. RT,RA,RB (OE=1 Rc=1)

prod0:31 � (RA)48:63 ×si (RB)48:63
temp0:32 � prod0:31 + (RT)32:63
RT32:63 � temp1:32
RT0:31  � undefined

The signed-integer halfword in bits 48:63 of register RA
is multiplied by the signed-integer halfword in bits 48:63
of register RB. 

The 32-bit signed-integer product is added to the
signed-integer word in bits 32:63 of register RT.

The low-order 32 bits of the sum are placed into bits
32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

Multiply Accumulate Low Halfword to 
Word Saturate Signed XO-form

maclhws RT,RA,RB (OE=0 Rc=0)
maclhws. RT,RA,RB (OE=0 Rc=1)
maclhwso RT,RA,RB (OE=1 Rc=0)
maclhwso. RT,RA,RB (OE=1 Rc=1)

prod0:31 � (RA)48:63 ×si (RB)48:63
temp0:32 � prod0:31 + (RT)32:63
if temp < -231       then RT32:63 � 0x8000_0000
else if temp > 231-1 then RT32:63 � 0x7FFF_FFFF
else                      RT32:63 � temp1:32
RT0:31  � undefined

The signed-integer halfword in bits 48:63 of register RA
is multiplied by the signed-integer halfword in bits 48:63
of register RB. 

The 32-bit signed-integer product is added to the
signed-integer word in bits 32:63 of register RT.

If the sum is less than -231, then the value 0x8000_0000
is placed into bits 32:63 of register RT.

If the sum is greater than 231-1, then the value
0x7FFF_FFFF is placed into bits 32:63 of register RT.

Otherwise, the sum is placed into bits 32:63 of register
RT.

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

4 RT RA RB OE 428 Rc
0 6 11 16 21 22 31

4 RT RA RB OE 492 Rc
0 6 11 16 21 22 31
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Multiply Accumulate Low Halfword to 
Word Modulo Unsigned  XO-form

maclhwu RT,RA,RB (OE=0 Rc=0)
maclhwu. RT,RA,RB (OE=0 Rc=1)
maclhwuo RT,RA,RB (OE=1 Rc=0)
maclhwuo. RT,RA,RB (OE=1 Rc=1)

prod0:31 � (RA)48:63 ×ui (RB)48:63
temp0:32 � prod0:31 + (RT)32:63
RT32:63 � temp1:32
RT0:31  � undefined

The unsigned-integer halfword in bits 48:63 of register
RA is multiplied by the unsigned-integer halfword in bits
48:63 of register RB. 

The 32-bit unsigned-integer product is added to the
unsigned-integer word in bits 32:63 of register RT.

The low-order 32 bits of the sum are placed into bits
32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

Multiply Accumulate Low Halfword to 
Word Saturate Unsigned XO-form

maclhwsu RT,RA,RB (OE=0 Rc=0)
maclhwsu. RT,RA,RB (OE=0 Rc=1)
maclhwsuo RT,RA,RB (OE=1 Rc=0)
maclhwsuo. RT,RA,RB (OE=1 Rc=1)

prod0:31 � (RA)48:63 ×ui (RB)48:63
temp0:32 � prod0:31 + (RT)32:63
if temp > 232-1 then RT � 0xFFFF_FFFF
else                 RT � temp1:32

The unsigned-integer halfword in bits 48:63 of register
RA is multiplied by the unsigned-integer halfword in bits
48:63 of register RB. 

The 32-bit unsigned-integer product is added to the
unsigned-integer word in bits 32:63 of register RT.

If the sum is greater than 232-1, then the value
0xFFFF_FFFF is placed into bits 32:63 of register RT.

Otherwise, the sum is placed into bits 32:63 of register
RT.

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

Multiply Cross Halfword to Word Signed
X-form

mulchw RT,RA,RB (Rc=0)
mulchw. RT,RA,RB (Rc=1)

RT32:63 � (RA)48:63 ×si (RB)32:47
RT0:31  � undefined

The signed-integer halfword in bits 48:63 of register RA
is multiplied by the signed-integer halfword in bits 32:47
of register RB and the signed-integer word result is
placed into bits 32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
CR0 (if Rc=1)

Multiply Cross Halfword to Word 
Unsigned  X-form

mulchwu RT,RA,RB (Rc=0)
mulchwu. RT,RA,RB (Rc=1)

RT32:63 � (RA)48:63 ×ui (RB)32:47
RT0:31  � undefined

The unsigned-integer halfword in bits 48:63 of register
RA is multiplied by the unsigned-integer halfword in bits
32:47 of register RB and the unsigned-integer word
result is placed into bits 32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
CR0 (if Rc=1)

4 RT RA RB OE 396 Rc
0 6 11 16 21 22 31

4 RT RA RB OE 460 Rc
0 6 11 16 21 22 31

4 RT RA RB 168 Rc
0 6 11 16 21 31

4 RT RA RB 136 Rc
0 6 11 16 21 31
Power ISA™ -- Book I294



   Version 2.04
Multiply High Halfword to Word Signed
X-form

mulhhw RT,RA,RB (Rc=0)
mulhhw. RT,RA,RB (Rc=1)

RT32:63 � (RA)32:47 ×si (RB)32:47
RT0:31  � undefined

The signed-integer halfword in bits 32:47 of register RA
is multiplied by the signed-integer halfword in bits 32:47
of register RB and the signed-integer word result is
placed into bits 32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
CR0 (if Rc=1)

Multiply High Halfword to Word Unsigned
X-form

mulhhwu RT,RA,RB (Rc=0)
mulhhwu. RT,RA,RB (Rc=1)

RT32:63 � (RA)32:47 ×ui (RB)32:47
RT0:31  � undefined

The unsigned-integer halfword in bits 32:47 of register
RA is multiplied by the unsigned-integer halfword in bits
32:47 of register RB and the unsigned-integer word
result is placed into bits 32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
CR0 (if Rc=1)

Multiply Low Halfword to Word Signed
X-form

mullhw RT,RA,RB (Rc=0)
mullhw. RT,RA,RB (Rc=1)

RT32:63 � (RA)48:63 ×si (RB)48:63
RT0:31  � undefined

The signed-integer halfword in bits 48:63 of register RA
is multiplied by the signed-integer halfword in bits 48:63
of register RB and the signed-integer word result is
placed into bits 32:63 of register RT.

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
CR0 (if Rc=1)

Multiply Low Halfword to Word Unsigned
X-form

mullhwu RT,RA,RB (Rc=0)
mullhwu. RT,RA,RB (Rc=1)

RT32:63 � (RA)48:63 ×ui (RB)48:63
RT0:31  � undefined

The unsigned-integer halfword in bits 48:63 of register
RA is multiplied by the unsigned-integer halfword in bits
48:63 of register RB and the unsigned-integer word
result is placed into bits 32:63 of register RT.

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
CR0 (if Rc=1)

4 RT RA RB 40 Rc
0 6 11 16 21 31

4 RT RA RB 8 Rc
0 6 11 16 21 31

4 RT RA RB 424 Rc
0 6 11 16 21 31

4 RT RA RB 392 Rc
0 6 11 16 21 31
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Negative Multiply Accumulate Cross 
Halfword to Word Modulo Signed

XO-form

nmacchw RT,RA,RB (OE=0 Rc=0)
nmacchw. RT,RA,RB (OE=0 Rc=1)
nmacchwo RT,RA,RB (OE=1 Rc=0)
nmacchwo. RT,RA,RB (OE=1 Rc=1)

prod0:31 � (RA)48:63 ×si (RB)32:47
temp0:32 � (RT)32:63 -si prod0:31
RT32:63 � temp1:32
RT0:31  � undefined

The signed-integer halfword in bits 48:63 of register RA
is multiplied by the signed-integer halfword in bits 32:47
of register RB. 

The 32-bit signed-integer product is subtracted from
the signed-integer word in bits 32:63 of register RT.

The low-order 32 bits of the difference are placed into
bits 32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

Negative Multiply Accumulate Cross 
Halfword to Word Saturate Signed

XO-form

nmacchws RT,RA,RB (OE=0 Rc=0)
nmacchws. RT,RA,RB (OE=0 Rc=1)
nmacchwso RT,RA,RB (OE=1 Rc=0)
nmacchwso. RT,RA,RB (OE=1 Rc=1)

prod0:31 � (RA)48:63 ×si (RB)32:47
temp0:32 � (RT)32:63 -si prod0:31
if temp < -231       then RT32:63 � 0x8000_0000
else if temp > 231-1 then RT32:63 � 0x7FFF_FFFF
else                      RT32:63 � temp1:32
RT0:31  � undefined

The signed-integer halfword in bits 48:63 of register RA
is multiplied by the signed-integer halfword in bits 32:47
of register RB. 

The 32-bit signed-integer product is subtracted from
the signed-integer word in bits 32:63 of register RT.

If the difference is less than -231, then the value
0x8000_0000 is placed into bits 32:63 of register RT.

If the difference is greater than 231-1, then the value
0x7FFF_FFFF is placed into bits 32:63 of register RT.

Otherwise, the difference is placed into bits 32:63 of
register RT.

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

4 RT RA RB OE 174 Rc
0 6 11 16 21 22 31

4 RT RA RB OE 238 Rc
0 6 11 16 21 22 31
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Negative Multiply Accumulate High 
Halfword to Word Modulo Signed 

XO-form

nmachhw RT,RA,RB (OE=0 Rc=0)
nmachhw. RT,RA,RB (OE=0 Rc=1)
nmachhwo RT,RA,RB (OE=1 Rc=0)
nmachhwo. RT,RA,RB (OE=1 Rc=1)

prod0:31 � (RA)32:47 ×si (RB)32:47
temp0:32 � (RT)32:63 -si prod0:31
RT32:63 � temp1:32
RT0:31  � undefined

The signed-integer halfword in bits 32:47 of register RA
is multiplied by the signed-integer halfword in bits 32:47
of register RB. 

The 32-bit signed-integer product is subtracted from
the signed-integer word in bits 32:63 of register RT.

The low-order 32 bits of the difference are placed into
bits 32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

Negative Multiply Accumulate High 
Halfword to Word Saturate Signed 

XO-form

nmachhws RT,RA,RB (OE=0 Rc=0)
nmachhws. RT,RA,RB (OE=0 Rc=1)
nmachhwso RT,RA,RB (OE=1 Rc=0)
nmachhwso. RT,RA,RB (OE=1 Rc=1)

prod0:31 � (RA)32:47 ×si (RB)32:47
temp0:32 � (RT)32:63 -si prod0:31
if temp < -231       then RT32:63 � 0x8000_0000
else if temp > 231-1 then RT32:63 � 0x7FFF_FFFF
else                      RT32:63 � temp1:32
RT0:31  � undefined

The signed-integer halfword in bits 32:47 of register RA
is multiplied by the signed-integer halfword in bits 32:47
of register RB. 

The 32-bit signed-integer product is subtracted from
the signed-integer word in bits 32:63 of register RT.

If the difference is less than -231, then the value
0x8000_0000 is placed into bits 32:63 of register RT.

If the difference is greater than 231-1, then the value
0x7FFF_FFFF is placed into bits 32:63 of register RT.

Otherwise, the difference is placed into bits 32:63 of
register RT.

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

4 RT RA RB OE 46 Rc
0 6 11 16 21 22 31

4 RT RA RB OE 110 Rc
0 6 11 16 21 22 31
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Negative Multiply Accumulate Low 
Halfword to Word Modulo Signed 

XO-form

nmaclhw RT,RA,RB (OE=0 Rc=0)
nmaclhw. RT,RA,RB (OE=0 Rc=1)
nmaclhwo RT,RA,RB (OE=1 Rc=0)
nmaclhwo. RT,RA,RB (OE=1 Rc=1)

prod0:31 � (RA)48:63 ×si (RB)48:63
temp0:32 � (RT)32:63 -si prod0:31
RT32:63 � temp1:32
RT0:31  � undefined

The signed-integer halfword in bits 48:63 of register RA
is multiplied by the signed-integer halfword in bits 48:63
of register RB. 

The 32-bit signed-integer product is subtracted from
the signed-integer word in bits 32:63 of register RT.

The low-order 32 bits of the difference are placed into
bits 32:63 of register RT. 

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

Negative Multiply Accumulate Low 
Halfword to Word Saturate Signed 

XO-form

nmaclhws RT,RA,RB (OE=0 Rc=0)
nmaclhws. RT,RA,RB (OE=0 Rc=1)
nmaclhwso RT,RA,RB (OE=1 Rc=0)
nmaclhwso. RT,RA,RB (OE=1 Rc=1)

prod0:31 � (RA)48:63 ×si (RB)48:63
temp0:32 � (RT)32:63 -si prod0:31
if temp < -231       then RT32:63 � 0x8000_0000
else if temp > 231-1 then RT32:63 � 0x7FFF_FFFF
else                      RT32:63 � temp1:32
RT0:31  � undefined

The signed-integer halfword in bits 48:63 of register RA
is multiplied by the signed-integer halfword in bits 48:63
of register RB. 

The 32-bit signed-integer product is subtracted from
the signed-integer word in bits 32:63 of register RT.

If the difference is less than -231, then the value
0x8000_0000 is placed into bits 32:63 of register RT.

If the difference is greater than 231-1, then the value
0x7FFF_FFFF is placed into bits 32:63 of register RT.

Otherwise, the difference is placed into bits 32:63 of
register RT.

The contents of bits 0:31 of register RT are undefined.

Special Registers Altered:
SO OV (if OE=1)
CR0 (if Rc=1)

4 RT RA RB OE 430 Rc
0 6 11 16 21 22 31

4 RT RA RB OE 494 Rc
0 6 11 16 21 22 31
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Appendix A.  Suggested Floating-Point Models 
[Category: Floating-Point]

A.1 Floating-Point Round to Single-Precision Model
The following describes algorithmically the operation of the Floating Round to Single-Precision instruction.

If (FRB)1:11 < 897 and (FRB)1:63 > 0 then
Do

If FPSCRUE = 0 then goto Disabled Exponent Underflow
If FPSCRUE = 1 then goto Enabled Exponent Underflow

End

If (FRB)1:11 > 1150 and (FRB)1:11 < 2047 then
Do

If FPSCROE = 0 then goto Disabled Exponent Overflow
If FPSCROE = 1 then goto Enabled Exponent Overflow

End

If (FRB)1:11 > 896 and (FRB)1:11 < 1151 then goto Normal Operand

If (FRB)1:63 = 0 then goto Zero Operand

If (FRB)1:11 = 2047 then
Do

If (FRB)12:63 = 0 then goto Infinity Operand
If (FRB)12 = 1 then goto QNaN Operand
If (FRB)12 = 0 and (FRB)13:63 > 0 then goto SNaN Operand

End

Disabled Exponent Underflow:
sign � (FRB)0
If (FRB)1:11 = 0 then

Do
exp � -1022
frac0:52 � 0b0 || (FRB)12:63

End
If (FRB)1:11 > 0 then

Do
exp � (FRB)1:11 - 1023
frac0:52 � 0b1 || (FRB)12:63

End
Denormalize operand:

G || R || X � 0b000
Do while exp < -126

exp � exp + 1
frac0:52 || G || R || X � 0b0 || frac0:52 || G || (R | X)

End
FPSCRUX � (frac24:52 || G || R || X) > 0
Round Single(sign,exp,frac0:52,G,R,X)
FPSCRXX � FPSCRXX | FPSCRFI
If frac0:52 = 0 then

Do
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FRT0 � sign
FRT1:63 � 0
If sign = 0 then FPSCRFPRF � “+ zero”
If sign = 1 then FPSCRFPRF � “- zero”

End
If frac0:52 > 0 then

Do
If frac0 = 1 then

Do
If sign = 0 then FPSCRFPRF � “+ normal number”
If sign = 1 then FPSCRFPRF � “- normal number”

End
If frac0 = 0 then

Do
If sign = 0 then FPSCRFPRF � “+ denormalized number”
If sign = 1 then FPSCRFPRF � “- denormalized number”

End
Normalize operand:

Do while frac0 = 0
exp � exp-1
frac0:52 � frac1:52 || 0b0

End
FRT0 � sign
FRT1:11 � exp + 1023
FRT12:63 � frac1:52

End
Done

Enabled Exponent Underflow:
FPSCRUX � 1
sign � (FRB)0
If (FRB)1:11 = 0 then

Do
exp � -1022
frac0:52 � 0b0 || (FRB)12:63

End
If (FRB)1:11 > 0 then

Do
exp � (FRB)1:11 - 1023
frac0:52 � 0b1 || (FRB)12:63

End
Normalize operand:

Do while frac0 = 0
exp � exp - 1
frac0:52 � frac1:52 || 0b0

End
Round Single(sign,exp,frac0:52,0,0,0)
FPSCRXX � FPSCRXX | FPSCRFI
exp � exp + 192
FRT0 � sign
FRT1:11 � exp + 1023
FRT12:63 � frac1:52
If sign = 0 then FPSCRFPRF � “+ normal number”
If sign = 1 then FPSCRFPRF � “- normal number”
Done

Disabled Exponent Overflow:
FPSCROX � 1
If FPSCRRN = 0b00 then                 /* Round to Nearest */

Do
If (FRB)0 = 0 then FRT � 0x7FF0_0000_0000_0000
If (FRB)0 = 1 then FRT � 0xFFF0_0000_0000_0000
If (FRB)0 = 0 then FPSCRFPRF � “+ infinity”
If (FRB)0 = 1 then FPSCRFPRF � “- infinity”

End
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If FPSCRRN = 0b01 then                 /* Round toward Zero */
Do

If (FRB)0 = 0 then FRT � 0x47EF_FFFF_E000_0000
If (FRB)0 = 1 then FRT � 0xC7EF_FFFF_E000_0000
If (FRB)0 = 0 then FPSCRFPRF � “+ normal number”
If (FRB)0 = 1 then FPSCRFPRF � “- normal number”

End
If FPSCRRN = 0b10 then                 /* Round toward +Infinity */

Do
If (FRB)0 = 0 then FRT � 0x7FF0_0000_0000_0000
If (FRB)0 = 1 then FRT � 0xC7EF_FFFF_E000_0000
If (FRB)0 = 0 then FPSCRFPRF � “+ infinity”
If (FRB)0 = 1 then FPSCRFPRF � “- normal number”

End
If FPSCRRN = 0b11 then                 /* Round toward -Infinity */

Do
If (FRB)0 = 0 then FRT � 0x47EF_FFFF_E000_0000
If (FRB)0 = 1 then FRT � 0xFFF0_0000_0000_0000
If (FRB)0 = 0 then FPSCRFPRF � “+ normal number”
If (FRB)0 = 1 then FPSCRFPRF � “- infinity”

End
FPSCRFR � undefined
FPSCRFI � 1
FPSCRXX � 1
Done

Enabled Exponent Overflow:
sign � (FRB)0
exp � (FRB)1:11 - 1023
frac0:52 � 0b1 || (FRB)12:63
Round Single(sign,exp,frac0:52,0,0,0)
FPSCRXX � FPSCRXX | FPSCRFI

Enabled Overflow:
FPSCROX � 1
exp � exp - 192
FRT0 � sign
FRT1:11 � exp + 1023
FRT12:63 � frac1:52
If sign = 0 then FPSCRFPRF � “+ normal number”
If sign = 1 then FPSCRFPRF � “- normal number”
Done

Zero Operand:
FRT � (FRB)
If (FRB)0 = 0 then FPSCRFPRF � “+ zero”
If (FRB)0 = 1 then FPSCRFPRF � “- zero”
FPSCRFRFI � 0b00
Done

Infinity Operand:
FRT � (FRB)
If (FRB)0 = 0 then FPSCRFPRF � “+ infinity”
If (FRB)0 = 1 then FPSCRFPRF � “- infinity”
FPSCRFRFI � 0b00
Done

QNaN Operand:
FRT � (FRB)0:34 || 290
FPSCRFPRF � “QNaN”
FPSCRFR FI � 0b00
Done
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SNaN Operand:
FPSCRVXSNAN � 1
If FPSCRVE = 0 then

Do
FRT0:11 � (FRB)0:11
FRT12 � 1
FRT13:63 � (FRB)13:34 || 290
FPSCRFPRF � “QNaN”

End
FPSCRFR FI � 0b00
Done

Normal Operand:
sign � (FRB)0
exp � (FRB)1:11 - 1023
frac0:52 � 0b1 || (FRB)12:63
Round Single(sign,exp,frac0:52,0,0,0)
FPSCRXX � FPSCRXX | FPSCRFI
If exp > 127 and FPSCROE = 0 then go to Disabled Exponent Overflow
If exp > 127 and FPSCROE = 1 then go to Enabled Overflow
FRT0 � sign
FRT1:11 � exp + 1023
FRT12:63 � frac1:52
If sign = 0 then FPSCRFPRF � “+ normal number”
If sign = 1 then FPSCRFPRF � “- normal number”
Done

Round Single(sign,exp,frac0:52,G,R,X):
inc � 0
lsb � frac23
gbit � frac24
rbit � frac25
xbit � (frac26:52||G||R||X)≠0
If FPSCRRN = 0b00 then                 /* Round to Nearest */

Do                      /* comparisons ignore u bits */
If sign || lsb || gbit || rbit || xbit = 0bu11uu then inc � 1
If sign || lsb || gbit || rbit || xbit = 0bu011u then inc � 1
If sign || lsb || gbit || rbit || xbit = 0bu01u1 then inc � 1

End
If FPSCRRN = 0b10 then                 /* Round toward + Infinity */

Do                      /* comparisons ignore u bits */
If sign || lsb || gbit || rbit || xbit = 0b0u1uu then inc � 1
If sign || lsb || gbit || rbit || xbit = 0b0uu1u then inc � 1
If sign || lsb || gbit || rbit || xbit = 0b0uuu1 then inc � 1

End
If FPSCRRN = 0b11 then                 /* Round toward - Infinity */

Do                      /* comparisons ignore u bits */
If sign || lsb || gbit || rbit || xbit = 0b1u1uu then inc � 1
If sign || lsb || gbit || rbit || xbit = 0b1uu1u then inc � 1
If sign || lsb || gbit || rbit || xbit = 0b1uuu1 then inc � 1

End
frac0:23 � frac0:23 + inc
If carry_out = 1 then

Do
frac0:23 � 0b1 || frac0:22
exp � exp + 1

End
frac24:52 � 290
FPSCRFR � inc
FPSCRFI � gbit | rbit | xbit
Return
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A.2 Floating-Point Convert to Integer Model
The following describes algorithmically the operation of the Floating Convert To Integer instructions.

If Floating Convert To Integer Word then
Do

round_mode � FPSCRRN
tgt_precision � “32-bit integer”

End

If Floating Convert To Integer Word with round toward Zero then
Do

round_mode � 0b01
tgt_precision � “32-bit integer”

End

If Floating Convert To Integer Doubleword then
Do

round_mode � FPSCRRN
tgt_precision � “64-bit integer”

End

If Floating Convert To Integer Doubleword with round toward Zero then
Do

round_mode � 0b01
tgt_precision � “64-bit integer”

End

sign � (FRB)0
If (FRB)1:11 = 2047 and (FRB)12:63 = 0 then goto Infinity Operand
If (FRB)1:11 = 2047 and (FRB)12 = 0 then goto SNaN Operand
If (FRB)1:11 = 2047 and (FRB)12 = 1 then goto QNaN Operand
If (FRB)1:11 > 1086 then goto Large Operand

If (FRB)1:11 > 0 then exp � (FRB)1:11 - 1023   /* exp - bias */
If (FRB)1:11 = 0 then exp � -1022
If (FRB)1:11 > 0 then frac0:64 � 0b01 || (FRB)12:63 || 110   /* normal; need leading 0 for later complement */
If (FRB)1:11 = 0 then frac0:64 � 0b00 || (FRB)12:63 || 110   /* denormal */

gbit || rbit || xbit � 0b000
Do i=1,63-exp   /* do the loop 0 times if exp = 63 */

frac0:64 || gbit || rbit || xbit � 0b0 || frac0:64 || gbit || (rbit | xbit)
End

Round Integer(sign,frac0:64,gbit,rbit,xbit,round_mode)

If sign = 1 then frac0:64 � ¬frac0:64 + 1          /* needed leading 0 for -264 < (FRB) < -263 */

If tgt_precision = “32-bit integer” and frac0:64 > 231-1 then goto Large Operand
If tgt_precision = “64-bit integer” and frac0:64 > 263-1 then goto Large Operand
If tgt_precision = “32-bit integer” and frac0:64 < -231 then goto Large Operand
If tgt_precision = “64-bit integer” and frac0:64 < -263 then goto Large Operand

FPSCRXX � FPSCRXX | FPSCRFI

If tgt_precision = “32-bit integer” then FRT � 0xuuuu_uuuu || frac33:64   /* u is undefined hex digit */
If tgt_precision = “64-bit integer” then FRT � frac1:64
FPSCRFPRF � undefined
Done
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Round Integer(sign,frac0:64,gbit,rbit,xbit,round_mode):
inc � 0
If round_mode = 0b00 then                 /* Round to Nearest */

Do                      /* comparisons ignore u bits */
If sign || frac64 || gbit || rbit || xbit = 0bu11uu then inc � 1
If sign || frac64 || gbit || rbit || xbit = 0bu011u then inc � 1
If sign || frac64 || gbit || rbit || xbit = 0bu01u1 then inc � 1

End
If round_mode = 0b10 then                 /* Round toward +Infinity */

Do                      /* comparisons ignore u bits */
If sign || frac64 || gbit || rbit || xbit = 0b0u1uu then inc � 1
If sign || frac64 || gbit || rbit || xbit = 0b0uu1u then inc � 1
If sign || frac64 || gbit || rbit || xbit = 0b0uuu1 then inc � 1

End
If round_mode = 0b11 then                 /* Round toward -Infinity */

Do                      /* comparisons ignore u bits */
If sign || frac64 || gbit || rbit || xbit = 0b1u1uu then inc � 1
If sign || frac64 || gbit || rbit || xbit = 0b1uu1u then inc � 1
If sign || frac64 || gbit || rbit || xbit = 0b1uuu1 then inc � 1

End
frac0:64 � frac0:64 + inc
FPSCRFR � inc
FPSCRFI � gbit | rbit | xbit
Return

Infinity Operand:
FPSCRFR FI VXCVI � 0b001
If FPSCRVE = 0 then Do

If tgt_precision = “32-bit integer” then
Do

If sign = 0 then FRT � 0xuuuu_uuuu_7FFF_FFFF   /* u is undefined hex digit */
If sign = 1 then FRT � 0xuuuu_uuuu_8000_0000   /* u is undefined hex digit */

End
Else

Do
If sign = 0 then FRT � 0x7FFF_FFFF_FFFF_FFFF
If sign = 1 then FRT � 0x8000_0000_0000_0000

End
FPSCRFPRF � undefined
End

Done

SNaN Operand:
FPSCRFR FI VXSNAN VXCVI � 0b0011
If FPSCRVE = 0 then

Do
If tgt_precision = “32-bit integer” then FRT � 0xuuuu_uuuu_8000_0000   /* u is undefined hex digit */
If tgt_precision = “64-bit integer” then FRT � 0x8000_0000_0000_0000
FPSCRFPRF � undefined

End
Done

QNaN Operand:
FPSCRFR FI VXCVI � 0b001
If FPSCRVE = 0 then

Do
If tgt_precision = “32-bit integer” then FRT � 0xuuuu_uuuu_8000_0000   /* u is undefined hex digit */
If tgt_precision = “64-bit integer” then FRT � 0x8000_0000_0000_0000
FPSCRFPRF � undefined

End
Done
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Large Operand:
FPSCRFR FI VXCVI � 0b001
If FPSCRVE = 0 then Do

If tgt_precision = “32-bit integer” then
Do

If sign = 0 then FRT � 0xuuuu_uuuu_7FFF_FFFF   /* u is undefined hex digit */
If sign = 1 then FRT � 0xuuuu_uuuu_8000_0000   /* u is undefined hex digit */

End
Else

Do
If sign = 0 then FRT � 0x7FFF_FFFF_FFFF_FFFF
If sign = 1 then FRT � 0x8000_0000_0000_0000

End
FPSCRFPRF � undefined
End

Done
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A.3 Floating-Point Convert from Integer Model
The following describes algorithmically the operation of the Floating Convert From Integer Doubleword instruction.

sign � (FRB)0
exp � 63
frac0:63 � (FRB)

If frac0:63 = 0 then go to Zero Operand

If sign = 1 then frac0:63 � ¬frac0:63 + 1

Do while frac0 = 0   /* do the loop 0 times if (FRB) = maximum negative integer */
frac0:63 � frac1:63 || 0b0
exp � exp - 1

End

Round Float(sign,exp,frac0:63,FPSCRRN)

If sign = 0 then FPSCRFPRF � “+normal number”
If sign = 1 then FPSCRFPRF � “-normal number”
FRT0 � sign
FRT1:11 � exp + 1023   /* exp + bias */
FRT12:63 � frac1:52
Done

Zero Operand:
FPSCRFR FI � 0b00
FPSCRFPRF � “+ zero”
FRT � 0x0000_0000_0000_0000
Done

Round Float(sign,exp,frac0:63,round_mode):
inc � 0
lsb � frac52
gbit � frac53
rbit � frac54
xbit � frac55:63 > 0
If round_mode = 0b00 then                 /* Round to Nearest */

Do                      /* comparisons ignore u bits */
If sign || lsb || gbit || rbit || xbit = 0bu11uu then inc � 1
If sign || lsb || gbit || rbit || xbit = 0bu011u then inc � 1
If sign || lsb || gbit || rbit || xbit = 0bu01u1 then inc � 1

End
If round_mode = 0b10 then                 /* Round toward + Infinity */

Do                      /* comparisons ignore u bits */
If sign || lsb || gbit || rbit || xbit = 0b0u1uu then inc � 1
If sign || lsb || gbit || rbit || xbit = 0b0uu1u then inc � 1
If sign || lsb || gbit || rbit || xbit = 0b0uuu1 then inc � 1

End
If round_mode = 0b11 then                 /* Round toward - Infinity */

Do                      /* comparisons ignore u bits */
If sign || lsb || gbit || rbit || xbit = 0b1u1uu then inc � 1
If sign || lsb || gbit || rbit || xbit = 0b1uu1u then inc � 1
If sign || lsb || gbit || rbit || xbit = 0b1uuu1 then inc � 1

End
frac0:52 � frac0:52 + inc
If carry_out = 1 then exp � exp + 1
FPSCRFR � inc
FPSCRFI � gbit | rbit | xbit
FPSCRXX � FPSCRXX | FPSCRFI
Return
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A.4 Floating-Point Round to Integer Model
The following describes algorithmically the operation of the Floating Round To Integer instructions. 

If (FRB)1:11 = 2047 and (FRB)12:63 = 0, then goto Infinity Operand 
If (FRB)1:11 = 2047 and (FRB)12 = 0, then goto SNaN Operand 
If (FRB)1:11 = 2047 and (FRB)12 = 1, then goto QNaN Operand 
if (FRB)1:63 = 0 then goto Zero Operand 
If (FRB)1:11 < 1023 then goto Small Operand /* exp < 0; |value| < 1*/ 
If (FRB)1:11 > 1074 then goto Large Operand /* exp > 51; integral value */ 

sign � (FRB)0 
exp � (FRB)1:11 - 1023 /* exp - bias */ 
frac0:52 � 0b1 || (FRB)12:63 
gbit || rbit || xbit � 0b000 

Do i = 1, 52 - exp 
frac0:52 || gbit || rbit || xbit � 0b0 || frac0:52 || gbit || (rbit | xbit) 

End

Round Integer (sign, frac0:52, gbit, rbit, xbit) 

Do i = 2, 52 - exp 
frac0:52 � frac1:52 || 0b0 

End 

If frac0 = 1, then exp � exp + 1 
Else frac0:52 � frac1:52 || 0b0 

FRT0 � sign 
FRT1:11 � exp + 1023
FRT12:63 � frac1:52 

If (FRT)0 = 0 then FPSCRFPRF � “+ normal number”
Else FPSCRFPRF � “- normal number”
FPSCRFR FI  � 0b00 
Done 

Round Integer(sign, frac0:52, gbit, rbit, xbit): 
inc � 0 
If inst = Floating Round to Integer Nearest then                     /* ties away from zero */

Do   /* comparisons ignore u bits */ 
If sign || frac52 || gbit || rbit || xbit = 0buu1uu then inc � 1

End
If inst = Floating Round to Integer Plus then 

Do   /* comparisons ignore u bits */ 
If sign || frac52 || gbit || rbit || xbit = 0b0u1uu then inc � 1 
If sign || frac52 || gbit || rbit || xbit = 0b0uu1u then inc � 1 
If sign || frac52 || gbit || rbit || xbit = 0b0uuu1 then inc � 1 

End
If inst = Floating Round to Integer Minus then 

Do   /* comparisons ignore u bits */ 
If sign || frac52 || gbit || rbit || xbit = 0b1u1uu then inc � 1 
If sign || frac52 || gbit || rbit || xbit = 0b1uu1u then inc � 1 
If sign || frac52 || gbit || rbit || xbit = 0b1uuu1 then inc � 1 

End 
frac0:52  � frac0:52 + inc 
Return 
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Infinity Operand: 
FRT  � (FRB) 
If (FRB)0 = 0 then FPSCRFPRF  � “+ infinity“
If (FRB)0 = 1 then FPSCRFPRF  � “- infinity”
FPSCRFR FI  � 0b00 
Done 

SNaN Operand:
FPSCRVXSNAN  � 1 
If FPSCRVE = 0 then 

Do 
FRT  � (FRB) 
FRT12  � 1 
FPSCRFPRF  � “QNaN”

End 
FPSCRFR FI  � 0b00 
Done 

QNaN Operand: 
FRT  � (FRB) 
FPSCRFPRF  � “QNaN”
FPSCRFR FI  � 0b00 
Done 

Zero Operand:
If (FRB)0 = 0 then 

Do
FRT � 0x0000_0000_0000_0000
FPSCRFPRF  � “+ zero”

End
Else 

Do
FRT � 0x8000_0000_0000_0000
FPSCRFPRF  � “- zero”

End
FPSCRFR FI  � 0b00 
Done

Small Operand:
If inst = Floating Round to Integer Nearest and (FRB)1:11 < 1022 then goto Zero Operand
If inst = Floating Round to Integer Toward Zero then goto Zero Operand
If inst = Floating Round to Integer Plus and (FRB)0 = 1 then goto Zero Operand
If inst = Floating Round to Integer Minus and (FRB)0 = 0 then goto Zero Operand

If (FRB)0 = 0 then 
Do

FRT  � 0x3FF0_0000_0000_0000                     /* value = 1.0 */
FPSCRFPRF  � “+ normal number” 

End 
Else

Do
FRT  � 0xBFF0_0000_0000_0000                     /* value = -1.0 */
FPSCRFPRF  � “- normal number”

End 
FPSCRFR FI  � 0b00 
Done

Large Operand: 
FRT  � (FRB) 
If FRT0 = 0 then FPSCRFPRF  � “+ normal number”
Else FPSCRFPRF  � “- normal number”
FPSCRFR FI  � 0b00 
Done
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Appendix B.  Vector RTL Functions [Category: Vector]

ConvertSPtoSXWsaturate( X, Y )
sign     = X0
exp0:7   = X1:8
frac0:30 = X9:31 || 0b0000_0000
if((exp==255)&(frac!=0)) then return(0x0000_0000) // NaN operand
if((exp==255)&(frac==0)) then do // infinity operand

VSCRSAT = 1
return( (sign==1) ? 0x8000_0000 : 0x7FFF_FFFF )

if((exp+Y-127)>30) then do // large operand
VSCRSAT = 1
return( (sign==1) ? 0x8000_0000 : 0x7FFF_FFFF )

   if((exp+Y-127)<0) then return(0x0000_0000) // -1.0 < value < 1.0 (value rounds to 0)
significand0:31 = 0b1 || frac
do i=1 to 31-(exp+Y-127)

significand = significand >>ui 1
return( (sign==0) ? significand : (¬significand + 1) )

ConvertSPtoUXWsaturate( X, Y )
sign     = X0

   exp0:7   = X1:8
   frac0:30 = X9:31 || 0b0000_0000
   if((exp==255)&&(frac!=0)) then return(0x0000_0000) // NaN operand
   if((exp==255)&&(frac==0)) then do   // infinity operand
      VSCRSAT = 1
      return( (sign==1) ? 0x0000_0000 : 0xFFFF_FFFF )
   if((exp+Y-127)>31) then do // large operand
      VSCRSAT = 1
      return( (sign==1) ? 0x0000_0000 : 0xFFFF_FFFF )
   if((exp+Y-127)<0) then return(0x0000_0000) // -1.0 < value < 1.0

//   value rounds to 0
   if( sign==1 ) then do // negative operand
      VSCRSAT = 1
      return(0x0000_0000)
   significand0:31 = 0b1 || frac
   do i=1 to 31-(exp+Y-127)
      significand = significand >>ui 1
   return( significand )

ConvertSXWtoSP( X )
   sign     = X0
   exp0:7   = 32 + 127
   frac0:32 = X0 || X0:31
   if( frac==0 ) return( 0x0000_0000 ) // Zero operand
   if( sign==1 ) then frac = ¬frac + 1
   do while( frac0==0 )
      frac = frac << 1
      exp = exp - 1
   lsb = frac23
   gbit = frac24
   xbit = frac25:32!=0
   inc = ( lsb && gbit ) | ( gbit && xbit )
   frac0:23 = frac0:23 + inc
   if( carry_out==1 ) exp = exp + 1
   return( sign || exp || frac1:23 )
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ConvertUXWtoSP( X )
   exp0:7 = 31 + 127
   frac0:31 = X0:31
   if( frac==0 ) return( 0x0000_0000 ) // Zero Operand
   do while( frac0==0 )
      frac = frac << 1
      exp = exp - 1
   lsb = frac23
   gbit = frac24
   xbit = frac25:31!=0
   inc = ( lsb && gbit ) | ( gbit && xbit )
   frac0:23 = frac0:23 + inc
   if( carry_out==1 ) exp = exp + 1
   return( 0b0 || exp || frac1:23 )
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Appendix C.  Embedded Floating-Point RTL Functions

[Category: SPE.Embedded Float Scalar Double]
[Category: SPE.Embedded Float Scalar Single]
[Category: SPE.Embedded Float Vector]

C.1 Common Functions
// Check if 32-bit fp value is a NaN or Infinity
Isa32NaNorInfinity(fp)
return (fpexp = 255)

Isa32NaN(fp)
return ((fpexp = 255) & (fpfrac ≠ 0))

// Check if 32-bit fp value is denormalized
Isa32Denorm(fp)
return ((fpexp = 0) & (fpfrac ≠ 0))

// Check if 64-bit fp value is a NaN or Infinity
Isa64NaNorInfinity(fp)
return (fpexp = 2047)

Isa64NaN(fp)
return ((fpexp = 2047) & (fpfrac ≠ 0))

// Check if 32-bit fp value is denormalized
Isa64Denorm(fp)
return ((fpexp = 0) & (fpfrac ≠ 0))

// Signal an error in the SPEFSCR
SignalFPError(upper_lower, bits)
if (upper_lower = HI) then

bits � bits << 15
SPEFSCR � SPEFSCR | bits
bits � (FG | FX)
if (upper_lower = HI) then

bits � bits << 15
SPEFSCR � SPEFSCR & ¬bits

// Round a 32-bit fp result
Round32(fp, guard, sticky)

FP32format fp;
if (SPEFSCRFINXE = 0) then

if (SPEFSCRFRMC = 0b00) then // nearest
if (guard) then

if (sticky | fpfrac[22]) then
v0:23 � fpfrac + 1
if v0 then

if (fpexp >= 254) then
// overflow
fp � fpsign || 0b11111110 || 

231
else

fpexp � fpexp + 1
fpfrac � v1:23

else
fpfrac � v1:23

else if ((SPEFSCRFRMC & 0b10) = 0b10) then
// infinity modes
// implementation dependent

return fp

// Round a 64-bit fp result
Round64(fp, guard, sticky)

FP32format fp;
if (SPEFSCRFINXE = 0) then

if (SPEFSCRFRMC = 0b00) then // nearest
if (guard) then

if (sticky | fpfrac[51]) then
v0:52 � fpfrac + 1
if v0 then

if (fpexp >= 2046) then
// overflow
fp � fpsign ||

0b11111111110 || 521
else

fpexp � fpexp + 1
fpfrac � v1:52

else
fpfrac � v1:52

else if ((SPEFSCRFRMC & 0b10) = 0b10) then
// infinity modes
// implementation dependent

return fp
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C.2 Convert from Single-Preci-
sion Embedded Floating-Point to 
Integer Word with Saturation
// Convert 32-bit Floating-Point to 32-bit integer 
// or fractional
// signed = S (signed) or U (unsigned)
// upper_lower = HI (high word) or LO (low word)
// round = RND (round) or ZER (truncate)
// fractional = F (fractional) or I (integer)

CnvtFP32ToI32Sat(fp, signed, 
upper_lower, round, fractional)

FP32format fp;
if (Isa32NaNorInfinity(fp)) then

SignalFPError(upper_lower, FINV)
if (Isa32NaN(fp)) then

return 0x00000000 // all NaNs
if (signed = S) then

if (fpsign = 1) then
return 0x80000000

else
return 0x7fffffff

else
if (fpsign = 1) then

return 0x00000000
else

return 0xffffffff
if (Isa32Denorm(fp)) then

SignalFPError(upper_lower, FINV)
return 0x00000000 // regardless of sign

if ((signed = U) & (fpsign = 1)) then
SignalFPError(upper_lower, FOVF) // overflow
return 0x00000000

if ((fpexp = 0) & (fpfrac = 0)) then
return 0x00000000 // all zero values

if (fractional = I) then // convert to integer
max_exp � 158
shift � 158 - fpexp
if (signed = S) then

if ((fpexp≠158)|(fpfrac≠0)|(fpsign≠1)) then
max_exp � max_exp - 1

else  // fractional conversion
max_exp � 126
shift � 126 - fpexp
if (signed = S) then

shift � shift + 1
if (fpexp > max_exp) then

SignalFPError(upper_lower, FOVF) // overflow
if (signed = S) then

if (fpsign = 1) then
return 0x80000000

else
return 0x7fffffff

else
return 0xffffffff

result � 0b1 || fpfrac || 0b00000000 // add U bit
guard � 0
sticky � 0
for (n � 0; n < shift; n � n + 1) do

sticky � sticky | guard

guard � result & 0x00000001
result � result > 1

// Report sticky and guard bits
if (upper_lower = HI) then

SPEFSCRFGH � guard
SPEFSCRFXH � sticky

else
SPEFSCRFG � guard
SPEFSCRFX � sticky

if (guard | sticky) then
SPEFSCRFINXS � 1

// Round the integer result
if ((round = RND) & (SPEFSCRFINXE = 0)) then

if (SPEFSCRFRMC = 0b00) then // nearest
if (guard) then

if (sticky | (result & 0x00000001)) then
result � result + 1

else if ((SPEFSCRFRMC & 0b10) = 0b10) then
// infinity modes
// implementation dependent

if (signed = S) then
if (fpsign = 1) then

result � ¬result + 1
return result
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C.3 Convert from Double-Preci-
sion Embedded Floating-Point to 
Integer Word with Saturation
// Convert 64-bit Floating-Point to 32-bit integer
// or fractional
// signed = S (signed) or U (unsigned)
// round = RND (round) or ZER (truncate)
// fractional = F (fractional) or I (integer)

CnvtFP64ToI32Sat(fp, signed, round, 
fractional)
FP64format fp;

if (Isa64NaNorInfinity(fp)) then
SignalFPError(LO, FINV)
if (Isa64NaN(fp)) then

return 0x00000000 // all NaNs
if (signed = S) then

if (fpsign = 1) then
return 0x80000000

else
return 0x7fffffff

else
if (fpsign = 1) then

return 0x00000000
else

return 0xffffffff

if (Isa64Denorm(fp)) then
SignalFPError(LO, FINV)
return 0x00000000 // regardless of sign

if ((signed = U) & (fpsign = 1)) then
SignalFPError(LO, FOVF) // overflow
return 0x00000000

if ((fpexp = 0) & (fpfrac = 0)) then
return 0x00000000 // all zero values

if (fractional = I) then // convert to integer
max_exp � 1054
shift � 1054 - fpexp
if (signed � S) then

if ((fpexp≠1054)|(fpfrac≠0)|(fpsign≠1)) then
max_exp � max_exp - 1

else // fractional conversion
max_exp � 1022
shift � 1022 - fpexp
if (signed = S) then

shift � shift + 1

if (fpexp > max_exp) then
SignalFPError(LO, FOVF) // overflow
if (signed = S) then

if (fpsign = 1) then
return 0x80000000

else
return 0x7fffffff

else
return 0xffffffff

result � 0b1 || fpfrac[0:30] // add U to frac
guard � fpfrac[31]
sticky � (fpfrac[32:63] ≠ 0)
for (n � 0; n < shift; n � n + 1) do

sticky � sticky | guard

guard � result & 0x00000001
result � result > 1

// Report sticky and guard bits

SPEFSCRFG � guard
SPEFSCRFX � sticky

if (guard | sticky) then
SPEFSCRFINXS � 1

// Round the result
if ((round = RND) & (SPEFSCRFINXE = 0)) then

if (SPEFSCRFRMC = 0b00) then // nearest
if (guard) then

if (sticky | (result & 0x00000001)) then
result � result + 1

else if ((SPEFSCRFRMC & 0b10) = 0b10) then
// infinity modes
// implementation dependent

if (signed = S) then
if (fpsign = 1) then

result � ¬result + 1
return result
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C.4 Convert from Double-Preci-
sion Embedded Floating-Point to 
Integer Doubleword with Satura-
tion
// Convert 64-bit Floating-Point to 64-bit integer
// signed = S (signed) or U (unsigned)
// round = RND (round) or ZER (truncate)

CnvtFP64ToI64Sat(fp, signed, round)
FP64format fp;
if (Isa64NaNorInfinity(fp)) then

SignalFPError(LO, FINV)
if (Isa64NaN(fp)) then

return 0x00000000_00000000 // all NaNs
if (signed = S) then

if (fpsign = 1) then
return 0x80000000_00000000

else
return 0x7fffffff_ffffffff

else
if (fpsign = 1) then

return 0x00000000_00000000
else

return 0xffffffff_ffffffff

if (Isa64Denorm(fp)) then
SignalFPError(LO, FINV)
return 0x00000000_00000000

if ((signed = U) & (fpsign = 1)) then
SignalFPError(LO, FOVF) // overflow
return 0x00000000_00000000

if ((fpexp = 0) & (fpfrac = 0)) then
return 0x00000000_00000000 // all zero values

max_exp � 1086
shift � 1086 - fpexp
if (signed = S) then

if ((fpexp≠1086)|(fpfrac≠0)|(fpsign≠1)) then
max_exp � max_exp - 1

if (fpexp > max_exp) then
SignalFPError(LO, FOVF) // overflow
if (signed = S) then

if (fpsign = 1) then
return 0x80000000_00000000

else
return 0x7fffffff_ffffffff

else
return 0xffffffff_ffffffff

result � 0b1 || fpfrac || 0b00000000000 //add U bit
guard � 0
sticky � 0
for (n � 0; n < shift; n � n + 1) do

sticky � sticky | guard
guard � result & 0x00000000_00000001
result � result > 1

// Report sticky and guard bits
SPEFSCRFG � guard
SPEFSCRFX � sticky

if (guard | sticky) then
SPEFSCRFINXS � 1

// Round the result
if ((round = RND) & (SPEFSCRFINXE = 0)) then

if (SPEFSCRFRMC = 0b00) then // nearest
if (guard) then

if (sticky | (result&0x00000000_00000001))
then

result � result + 1
else if ((SPEFSCRFRMC & 0b10) = 0b10) then

// infinity modes
// implementation dependent

if (signed = S) then
if (fpsign = 1) then

result � ¬result + 1
return result
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C.5 Convert to Single-Precision 
Embedded Floating-Point from 
Integer Word
// Convert from 32-bit integer or fractional to
// 32-bit Floating-Point
// signed = S (signed) or U (unsigned)
// round = RND (round) or ZER (truncate)
// fractional = F (fractional) or I (integer)
CnvtI32ToFP32(v, signed, upper_lower, 
fractional)
FP32format result;
resultsign � 0
if (v = 0) then

result � 0
if (upper_lower = HI) then

SPEFSCRFGH � 0
SPEFSCRFXH � 0

else
SPEFSCRFG � 0
SPEFSCRFX � 0

else
if (signed = S) then

if (v0 = 1) then
v � ¬v + 1
resultsign � 1

if (fractional = F) then // frac bit align
maxexp � 127
if (signed = U) then

maxexp � maxexp - 1
else

maxexp � 158 // integer bit alignment
sc � 0
while (v0 = 0)

v � v << 1
sc � sc + 1

v0 � 0 // clear U bit
resultexp � maxexp - sc
guard � v24
sticky � (v25:31 ≠ 0)

// Report sticky and guard bits
if (upper_lower = HI) then

SPEFSCRFGH � guard
SPEFSCRFXH � sticky

else
SPEFSCRFG � guard
SPEFSCRFX � sticky

if (guard | sticky) then
SPEFSCRFINXS � 1

// Round the result

resultfrac � v1:23
result � Round32(result, guard, sticky)

return result

C.6 Convert to Double-Preci-
sion Embedded Floating-Point 
from Integer Word
// Convert from integer or fractional to 64 bit
// Floating-Point
// signed = S (signed) or U (unsigned)
// fractional = F (fractional) or I (integer)
CnvtI32ToFP64(v, signed, fractional)
FP64format result;
resultsign � 0
if (v = 0) then

result � 0
SPEFSCRFG � 0
SPEFSCRFX � 0

else
if (signed = S) then

if (v0 = 1) then
v � ¬v + 1
resultsign � 1

if (fractional = F) then // frac bit align
maxexp � 1023
if (signed = U) then

maxexp � maxexp - 1
else

maxexp � 1054 // integer bit align 
sc � 0
while (v0 = 0)

v � v << 1
sc � sc + 1

v0 � 0 // clear U bit
resultexp � maxexp - sc

// Report sticky and guard bits

SPEFSCRFG � 0
SPEFSCRFX � 0

resultfrac � v1:31 || 
210

return result
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C.7 Convert to Double-Preci-
sion Embedded Floating-Point 
from Integer Doubleword 
// Convert from 64-bit integer to 64-bit
// floating-point
// signed = S (signed) or U (unsigned)
CnvtI64ToFP64(v, signed)
FP64format result;
resultsign � 0
if (v = 0) then

result � 0
SPEFSCRFG � 0
SPEFSCRFX � 0

else
if (signed = S) then

if (v0 = 1) then
v � ¬v + 1
resultsign � 1

maxexp � 1054
sc � 0
while (v0 = 0)

v � v << 1
sc � sc + 1

v0 � 0 // clear U bit
resultexp � maxexp - sc
guard � v53
sticky � (v54:63 ≠ 0)

// Report sticky and guard bits

SPEFSCRFG � guard
SPEFSCRFX � sticky
if (guard | sticky) then

SPEFSCRFINXS � 1
// Round the result

resultfrac � v1:52
result � Round64(result, guard, sticky)

return result
Power ISA™ -- Book I316



   Version 2.04
Appendix D.  Assembler Extended Mnemonics

In order to make assembler language programs simpler to write and easier to understand, a set of extended mne-
monics and symbols is provided that defines simple shorthand for the most frequently used forms of Branch Condi-
tional, Compare, Trap, Rotate and Shift, and certain other instructions.

Assemblers should provide the extended mnemonics and symbols listed here, and may provide others.

D.1 Symbols
The following symbols are defined for use in instructions (basic or extended mnemonics) that specify a Condition
Register field or a Condition Register bit. The first five (lt, ..., un) identify a bit number within a CR field. The remainder
(cr0, ..., cr7) identify a CR field. An expression in which a CR field symbol is multiplied by 4 and then added to a bit-
number-within-CR-field symbol and 32 can be used to identify a CR bit.

The extended mnemonics in Sections D.2.2 and D.3 require identification of a CR bit: if one of the CR field symbols is
used, it must be multiplied by 4 and added to a bit-number-within-CR-field (value in the range 0-3, explicit or sym-
bolic) and 32. The extended mnemonics in Sections D.2.3 and D.5 require identification of a CR field: if one of the CR
field symbols is used, it must not be multiplied by 4 or added to 32. (For the extended mnemonics in Section D.2.3,
the bit number within the CR field is part of the extended mnemonic. The programmer identifies the CR field, and the
Assembler does the multiplication and addition required to produce a CR bit number for the BI field of the underlying
basic mnemonic.)

Symbol Value Meaning
lt 0 Less than
gt 1 Greater than
eq 2 Equal
so 3 Summary overflow
un 3 Unordered (after floating-point comparison)
cr0 0 CR Field 0
cr1 1 CR Field 1
cr2 2 CR Field 2
cr3 3 CR Field 3
cr4 4 CR Field 4
cr5 5 CR Field 5
cr6 6 CR Field 6
cr7 7 CR Field 7
Appendix D. Assembler Extended Mnemonics 317



   Version 2.04
D.2 Branch Mnemonics
The mnemonics discussed in this section are variations of the Branch Conditional instructions.

Note: bclr, bclrl, bcctr, and bcctrl each serve as both a basic and an extended mnemonic. The Assembler will rec-
ognize a bclr, bclrl, bcctr, or bcctrl mnemonic with three operands as the basic form, and a bclr, bclrl, bcctr, or
bcctrl mnemonic with two operands as the extended form. In the extended form the BH operand is omitted and
assumed to be 0b00. Similarly, for all the extended mnemonics described in Sections D.2.2 - D.2.4 that devolve to any
of these four basic mnemonics the BH operand can either be coded or omitted. If it is omitted it is assumed to be
0b00.

D.2.1 BO and BI Fields
The 5-bit BO and BI fields control whether the branch is taken. Providing an extended mnemonic for every possible
combination of these fields would be neither useful nor practical. The mnemonics described in Sections D.2.2 - D.2.4
include the most useful cases. Other cases can be coded using a basic Branch Conditional mnemonic (bc[l][a],
bclr[l], bcctr[l]) with the appropriate operands.

D.2.2 Simple Branch Mnemonics
Instructions using one of the mnemonics in Table 11 that tests a Condition Register bit specify the corresponding bit
as the first operand. The symbols defined in Section D.1 can be used in this operand.

Notice that there are no extended mnemonics for relative and absolute unconditional branches.  For these the basic
mnemonics b, ba, bl, and bla should be used.

Examples
1. Decrement CTR and branch if it is still nonzero (closure of a loop controlled by a count loaded into CTR).

bdnz target (equivalent to: bc 16,0,target)

2. Same as (1) but branch only if CTR is nonzero and condition in CR0 is “equal”.

bdnzt eq,target (equivalent to: bc 8,2,target)

3. Same as (2), but “equal” condition is in CR5.

bdnzt 4×cr5+eq,target (equivalent to: bc 8,22,target)

Table 11: Simple branch mnemonics

Branch Semantics
LR not Set LR Set

bc
Relative

bca
Absolute

bclr
To LR

bcctr
To CTR

bcl
Relative

bcla
Absolute

bclrl
To LR

bcctrl
To CTR

Branch unconditionally - - blr bctr - - blrl bctrl

Branch if CRBI=1 bt bta btlr btctr btl btla btlrl btctrl

Branch if CRBI=0 bf bfa bflr bfctr bfl bfla bflrl bfctrl

Decrement CTR, branch if
CTR nonzero

bdnz bdnza bdnzlr - bdnzl bdnzla bdnzlrl -

Decrement CTR, branch if
CTR nonzero and CRBI=1 

bdnzt bdnzta bdnztlr - bdnztl bdnztla bdnztlrl -

Decrement CTR, branch if
CTR nonzero and CRBI=0  

bdnzf bdnzfa bdnzflr - bdnzfl bdnzfla bdnzflrl -

Decrement CTR, branch if
CTR zero

bdz bdza bdzlr - bdzl bdzla bdzlrl -

Decrement CTR, branch if
CTR zero and CRBI=1

bdzt bdzta bdztlr - bdztl bdztla bdztlrl -

Decrement CTR, branch if
CTR zero and CRBI=0

bdzf bdzfa bdzflr - bdzfl bdzfla bdzflrl -
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4. Branch if bit 59 of CR is 0.

bf 27,target (equivalent to: bc 4,27,target)

5. Same  as  (4),  but  set  the  Link  Register.   This is a form of conditional “call”.

bfl 27,target (equivalent to: bcl 4,27,target)

D.2.3 Branch Mnemonics Incorporating Conditions
In the mnemonics defined in Table 12, the test of a bit in a Condition Register field is encoded in the mnemonic.

Instructions using the mnemonics in Table 12 specify the CR field as an optional first operand. One of the CR field
symbols defined in Section D.1 can be used for this operand. If the CR field being tested is CR Field 0, this operand
need not be specified unless the resulting basic mnemonic is bclr[l] or bcctr[l] and the BH operand is specified.

A standard set of codes has been adopted for the most common combinations of branch conditions.

These codes are reflected in the mnemonics shown in Table 12.

Examples
1. Branch if CR0 reflects condition “not equal”.

bne target (equivalent to: bc 4,2,target)

2. Same as (1), but condition is in CR3.

Code Meaning
lt Less than
le Less than or equal
eq Equal
ge Greater than or equal
gt Greater than
nl Not less than
ne Not equal
ng Not greater than
so Summary overflow
ns Not summary overflow
un Unordered (after floating-point comparison)
nu Not unordered (after floating-point comparison)

Table 12: Branch mnemonics incorporating conditions

Branch Semantics
LR not Set LR Set

bc
Relative

bca
Absolute

bclr
To LR

bcctr
To CTR

bcl
Relative

bcla
Absolute

bclrl
To LR

bcctrl
To CTR

Branch if less than blt blta bltlr bltctr bltl bltla bltlrl bltctrl

Branch if less than or equal ble blea blelr blectr blel blela blelrl blectrl

Branch if equal beq beqa beqlr beqctr beql beqla beqlrl beqctrl

Branch if greater than or equal bge bgea bgelr bgectr bgel bgela bgelrl  bgectrl

Branch if greater than bgt bgta bgtlr bgtctr bgtl bgtla bgtlrl  bgtctrl

Branch if not less than bnl bnla bnllr bnlctr bnll bnlla bnllrl bnlctrl

Branch if not equal bne bnea bnelr bnectr bnel bnela bnelrl bnectrl

Branch if not greater than bng bnga bnglr bngctr bngl bngla bnglrl bngctrl

Branch if summary overflow bso bsoa bsolr bsoctr bsol bsola bsolrl bsoctrl

Branch if not summary overflow bns bnsa bnslr bnsctr bnsl bnsla bnslrl bnsctrl

Branch if unordered bun buna bunlr bunctr bunl bunla bunlrl bunctrl

Branch if not unordered bnu bnua bnulr bnuctr bnul bnula bnulrl bnuctrl
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bne cr3,target (equivalent to: bc 4,14,target)

3. Branch to an absolute target if CR4 specifies “greater than”, setting the Link Register.  This is a form of condi-
tional “call”.

bgtla cr4,target (equivalent to: bcla 12,17,target)

4. Same as (3), but target address is in the Count Register.

bgtctrl cr4 (equivalent to: bcctrl 12,17,0)

D.2.4 Branch Prediction
Software can use the “at” bits of Branch Conditional instructions to provide a hint to the processor about the behavior
of the branch.  If, for a given such instruction, the branch is almost always taken or almost always not taken, a suffix
can be added to the mnemonic indicating the value to be used for the “at” bits.

+   Predict branch to be taken (at=0b11)

-   Predict branch not to be taken (at=0b10)

Such a suffix can be added to any Branch Conditional mnemonic, either basic or extended, that tests either the Count
Register or a CR bit (but not both).  Assemblers should use 0b00 as the default value for the “at” bits, indicating that
software has offered no prediction.

Examples
1. Branch if CR0 reflects condition “less than”, specifying that the branch should be predicted to be taken.

blt+ target

2. Same as (1), but target address is in the Link Register and the branch should be predicted not to be taken.

bltlr-
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D.3 Condition Register Logical Mnemonics
The Condition Register Logical instructions can be used to set (to 1), clear (to 0), copy, or invert a given Condition
Register bit.  Extended mnemonics are provided that allow these operations to be coded easily.

The symbols defined in Section D.1 can be used to identify the Condition Register bits.

Examples
1. Set CR bit 57.

crset 25 (equivalent to: creqv 25,25,25)

2. Clear the SO bit of CR0.

crclr so (equivalent to: crxor 3,3,3)

3. Same as (2), but SO bit to be cleared is in CR3.

crclr 4×cr3+so (equivalent to:  crxor 15,15,15)

4. Invert the EQ bit.

crnot eq,eq (equivalent to: crnor 2,2,2)

5. Same as (4), but EQ bit to be inverted is in CR4, and the result is to be placed into the EQ bit of CR5.

crnot 4×cr5+eq,4×cr4+eq (equivalent to: crnor 22,18,18)

D.4 Subtract Mnemonics

D.4.1 Subtract Immediate
Although there is no “Subtract Immediate” instruction, its effect can be achieved by using an Add Immediate instruc-
tion with the immediate operand negated.  Extended mnemonics are provided that include this negation, making the
intent of the computation clearer.

subi Rx,Ry,value (equivalent to: addi Rx,Ry,-value)
subis Rx,Ry,value (equivalent to: addis Rx,Ry,-value)
subic Rx,Ry,value (equivalent to: addic Rx,Ry,-value)
subic. Rx,Ry,value (equivalent to: addic. Rx,Ry,-value)

D.4.2 Subtract
The Subtract From instructions subtract the second operand (RA) from the third (RB).  Extended mnemonics are pro-
vided that use the more “normal” order, in which the third operand is subtracted from the second.  Both these mne-
monics can be coded with a final “o” and/or “.”  to cause the OE and/or Rc bit to be set in the underlying instruction.

sub Rx,Ry,Rz (equivalent to: subf Rx,Rz,Ry)
subc Rx,Ry,Rz (equivalent to: subfc Rx,Rz,Ry)

Table 13: Condition Register logical mnemonics

Operation Extended Mnemonic Equivalent to

Condition Register set crset bx creqv bx,bx,bx

Condition Register clear crclr bx crxor bx,bx,bx

Condition Register move crmove bx,by cror bx,by,by

Condition Register not crnot bx,by crnor bx,by,by
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D.5 Compare Mnemonics
The L field in the fixed-point Compare instructions controls whether the operands are treated as 64-bit quantities or
as 32-bit quantities. Extended mnemonics are provided that represent the L value in the mnemonic rather than requir-
ing it to be coded as a numeric operand.

The BF field can be omitted if the result of the comparison is to be placed into CR Field 0. Otherwise the target CR
field must be specified as the first operand. One of the CR field symbols defined in Section D.1 can be used for this
operand.

Note: The basic Compare mnemonics of Power ISA are the same as those of POWER, but the POWER instructions
have three operands while the Power ISA instructions have four. The Assembler will recognize a basic Compare mne-
monic with three operands as the POWER form, and will generate the instruction with L=0. (Thus the Assembler must
require that the BF field, which normally can be omitted when CR Field 0 is the target, be specified explicitly if L is.)

D.5.1 Doubleword Comparisons

Examples
1. Compare register Rx and immediate value 100 as unsigned 64-bit integers and place result into CR0.

cmpldi Rx,100 (equivalent to: cmpli 0,1,Rx,100)

2. Same as (1), but place result into CR4.

cmpldi cr4,Rx,100 (equivalent to: cmpli 4,1,Rx,100)

3. Compare registers Rx and Ry as signed 64-bit integers and place result into CR0.

cmpd Rx,Ry (equivalent to: cmp 0,1,Rx,Ry)

D.5.2 Word Comparisons

Examples
1. Compare bits 32:63 of register Rx and immediate value 100 as signed 32-bit integers and place result into CR0.

cmpwi Rx,100 (equivalent to: cmpi 0,0,Rx,100)

2. Same as (1), but place result into CR4.

cmpwi cr4,Rx,100 (equivalent to: cmpi 4,0,Rx,100)

3. Compare bits 32:63 of registers Rx and Ry as unsigned 32-bit integers and place result into CR0.

cmplw Rx,Ry (equivalent to: cmpl 0,0,Rx,Ry)

Table 14: Doubleword compare mnemonics

Operation Extended Mnemonic Equivalent to

Compare doubleword immediate cmpdi bf,ra,si cmpi bf,1,ra,si

Compare doubleword cmpd bf,ra,rb cmp bf,1,ra,rb

Compare logical doubleword immediate cmpldi bf,ra,ui cmpli bf,1,ra,ui

Compare logical doubleword cmpld bf,ra,rb cmpl bf,1,ra,rb

Table 15: Word compare mnemonics

Operation Extended Mnemonic Equivalent to

Compare word immediate cmpwi bf,ra,si cmpi bf,0,ra,si

Compare word cmpw bf,ra,rb cmp bf,0,ra,rb

Compare logical word immediate cmplwi bf,ra,ui cmpli bf,0,ra,ui

Compare logical word cmplw bf,ra,rb cmpl bf,0,ra,rb
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D.6 Trap Mnemonics
The mnemonics defined in Table 16 are variations of the Trap instructions, with the most useful values of TO repre-
sented in the mnemonic rather than specified as a numeric operand.

A standard set of codes has been adopted for the most common combinations of trap conditions.

These codes are reflected in the mnemonics shown in Table 16.

Code Meaning TO encoding <   >   =  <u  >u

lt Less than 16 1   0   0   0   0
le Less than or equal 20 1   0   1   0   0
eq Equal 4 0   0   1   0   0
ge Greater than or equal 12 0   1   1   0   0
gt Greater than 8 0   1   0   0   0
nl Not less than 12 0   1   1   0   0
ne Not equal 24 1   1   0   0   0
ng Not greater than 20 1   0   1   0   0
llt Logically less than 2 0   0   0   1   0
lle Logically less than or equal 6 0   0   1   1   0
lge Logically greater than or equal 5 0   0   1   0   1
lgt Logically greater than 1 0   0   0   0   1
lnl Logically not less than 5 0   0   1   0   1
lng Logically not greater than 6 0   0   1   1   0
u Unconditionally with parameters 31 1   1   1   1   1
(none) Unconditional 31 1   1   1   1   1

Table 16: Trap mnemonics

Trap Semantics
64-bit Comparison 32-bit Comparison

tdi
Immediate

td
Register

twi
Immediate

tw
Register

Trap unconditionally - - - trap

Trap unconditionally with parameters tdui tdu twui twu

Trap if less than tdlti tdlt twlti twlt

Trap if less than or equal tdlei tdle twlei twle

Trap if equal tdeqi tdeq tweqi tweq

Trap if greater than or equal tdgei tdge twgei twge

Trap if greater than tdgti tdgt twgti twgt

Trap if not less than tdnli tdnl twnli twnl

Trap if not equal tdnei tdne twnei twne

Trap if not greater than tdngi tdng twngi twng

Trap if logically less than tdllti tdllt twllti twllt

Trap if logically less than or equal tdllei tdlle twllei twlle

Trap if logically greater than or equal tdlgei tdlge twlgei twlge

Trap if logically greater than tdlgti tdlgt twlgti twlgt

Trap if logically not less than tdlnli tdlnl twlnli twlnl

Trap if logically not greater than tdlngi tdlng twlngi twlng
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Examples
1. Trap if register Rx is not 0.

tdnei Rx,0 (equivalent to: tdi 24,Rx,0)

2. Same as (1), but comparison is to register Ry.

tdne Rx,Ry (equivalent to: td 24,Rx,Ry)

3. Trap if bits 32:63 of register Rx, considered as a 32-bit quantity, are logically greater than 0x7FF.

twlgti Rx,0x7FF (equivalent to: twi 1,Rx,0x7FF)

4. Trap unconditionally.

trap (equivalent to: tw 31,0,0)

5. Trap unconditionally with immediate parameters Rx and Ry

tdu Rx,Ry (equivalent to: td 31,Rx,Ry)
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D.7 Rotate and Shift Mnemonics
The Rotate and Shift instructions provide powerful and general ways to manipulate register contents, but can be diffi-
cult to understand. Extended mnemonics are provided that allow some of the simpler operations to be coded easily.

Mnemonics are provided for the following types of operation.

Extract Select a field of n bits starting at bit position b in the source register; left or right justify this field in the target
register; clear all other bits of the target register to 0.

Insert Select a left-justified or right-justified field of n bits in the source register; insert this field starting at bit posi-
tion b of the target register; leave other bits of the target register unchanged.  (No extended mnemonic is
provided for insertion of a left-justified field when operating on doublewords, because such an insertion
requires more than one instruction.)

Rotate Rotate the contents of a register right or left n bits without masking.

Shift Shift the contents of a register right or left n bits, clearing vacated bits to 0 (logical shift).

Clear Clear the leftmost or rightmost n bits of a register to 0.

Clear left and shift left
Clear the leftmost b bits of a register, then shift the register left by n bits.  This operation can be used to
scale a (known nonnegative) array index by the width of an element.

D.7.1 Operations on Doublewords
All these mnemonics can be coded with a final “.” to cause the Rc bit to be set in the underlying instruction.

Examples
1. Extract the sign bit (bit 0) of register Ry and place the result right-justified into register Rx.

extrdi Rx,Ry,1,0 (equivalent to: rldicl Rx,Ry,1,63)

2. Insert the bit extracted in (1) into the sign bit (bit 0) of register Rz.

insrdi Rz,Rx,1,0 (equivalent to: rldimi Rz,Rx,63,0)

3. Shift the contents of register Rx left 8 bits.

sldi Rx,Rx,8 (equivalent to: rldicr Rx,Rx,8,55)

4. Clear the high-order 32 bits of register Ry and place the result into register Rx.

clrldi Rx,Ry,32 (equivalent to: rldicl Rx,Ry,0,32)

Table 17: Doubleword rotate and shift mnemonics

Operation Extended Mnemonic Equivalent to

Extract and left justify immediate extldi ra,rs,n,b  (n > 0) rldicr ra,rs,b,n-1

Extract and right justify immediate extrdi ra,rs,n,b  (n > 0) rldicl ra,rs,b+n,64-n

Insert from right immediate insrdi ra,rs,n,b  (n > 0) rldimi ra,rs,64-(b+n),b

Rotate left immediate rotldi ra,rs,n rldicl ra,rs,n,0

Rotate right immediate rotrdi ra,rs,n rldicl ra,rs,64-n,0

Rotate left rotld ra,rs,rb rldcl ra,rs,rb,0

Shift left immediate sldi ra,rs,n  (n < 64) rldicr ra,rs,n,63-n

Shift right immediate srdi ra,rs,n  (n < 64) rldicl ra,rs,64-n,n

Clear left immediate clrldi ra,rs,n  (n < 64) rldicl ra,rs,0,n

Clear right immediate clrrdi ra,rs,n  (n < 64) rldicr ra,rs,0,63-n

Clear left and shift left immediate clrlsldi ra,rs,b,n  (n <= b < 64) rldic ra,rs,n,b-n
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D.7.2 Operations on Words
All these mnemonics can be coded with a final “.”  to cause the Rc bit to be set in the underlying instruction.  The
operations as described above apply to the low-order 32 bits of the registers, as if the registers were 32-bit registers.
The Insert operations either preserve the high-order 32 bits of the target register or place rotated data there; the other
operations clear these bits.

Examples
1. Extract the sign bit (bit 32) of register Ry and place the result right-justified into register Rx.

extrwi Rx,Ry,1,0 (equivalent to: rlwinm Rx,Ry,1,31,31)

2. Insert the bit extracted in (1) into the sign bit (bit 32) of register Rz.

insrwi Rz,Rx,1,0 (equivalent to: rlwimi Rz,Rx,31,0,0)

3. Shift the contents of register Rx left 8 bits, clearing the high-order 32 bits.

slwi Rx,Rx,8 (equivalent to: rlwinm Rx,Rx,8,0,23)

4. Clear the high-order 16 bits of the low-order 32 bits of register Ry and place the result into register Rx, clearing
the high-order 32 bits of register Rx.

clrlwi Rx,Ry,16 (equivalent to: rlwinm Rx,Ry,0,16,31)

Table 18: Word rotate and shift mnemonics

Operation Extended Mnemonic Equivalent to

Extract and left justify immediate extlwi   ra,rs,n,b    (n > 0) rlwinm   ra,rs,b,0,n-1

Extract and right justify immediate extrwi   ra,rs,n,b    (n > 0) rlwinm   ra,rs,b+n,32-n,31

Insert from left immediate inslwi   ra,rs,n,b    (n > 0) rlwimi   ra,rs,32-b,b,(b+n)-1

Insert from right immediate insrwi   ra,rs,n,b    (n > 0) rlwimi   ra,rs,32-(b+n),b,(b+n)-1

Rotate left immediate rotlwi   ra,rs,n rlwinm   ra,rs,n,0,31

Rotate right immediate rotrwi   ra,rs,n rlwinm   ra,rs,32-n,0,31

Rotate left rotlw   ra,rs,rb rlwnm   ra,rs,rb,0,31

Shift left immediate slwi   ra,rs,n    (n < 32) rlwinm   ra,rs,n,0,31-n

Shift right immediate srwi   ra,rs,n    (n < 32) rlwinm   ra,rs,32-n,n,31

Clear left immediate clrlwi   ra,rs,n    (n < 32) rlwinm   ra,rs,0,n,31

Clear right immediate clrrwi   ra,rs,n    (n < 32) rlwinm   ra,rs,0,0,31-n

Clear left and shift left immediate clrlslwi   ra,rs,b,n    (n ≤ b < 32) rlwinm   ra,rs,n,b-n,31-n
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D.8 Move To/From Special Purpose Register Mnemonics
The mtspr and mfspr instructions specify a Special Purpose Register (SPR) as a numeric operand.  Extended mne-
monics are provided that represent the SPR in the mnemonic rather than requiring it to be coded as an operand.

Examples

1. Copy the contents of register Rx to the XER.

mtxer Rx (equivalent to: mtspr 1,Rx)

2. Copy the contents of the LR to register Rx.

mflr Rx (equivalent to: mfspr Rx,8)

3. Copy the contents of register Rx to the CTR.

mtctr Rx (equivalent to: mtspr 9,Rx)

D.9 Miscellaneous Mnemonics

No-op
Many Power ISA instructions can be coded in a way such that, effectively, no operation is performed. An extended
mnemonic is provided for the preferred form of no-op. If an implementation performs any type of run-time optimization
related to no-ops, the preferred form is the no-op that will trigger this.

nop (equivalent to: ori 0,0,0)

Load Immediate
The addi and addis instructions can be used to load an immediate value into a register.  Extended mnemonics are
provided to convey the idea that no addition is being performed but merely data movement (from the immediate field
of the instruction to a register).

Load a 16-bit signed immediate value into register Rx.

li Rx,value (equivalent to: addi Rx,0,value)

Load a 16-bit signed immediate value, shifted left by 16 bits, into register Rx.

lis Rx,value (equivalent to: addis Rx,0,value)

Table 19: Extended mnemonics for moving to/from an SPR

Special Purpose Register
Move To SPR Move From SPR

Extended Equivalent to Extended Equivalent to

Fixed-Point Exception Register (XER) mtxer  Rx mtspr  1,Rx mfxer  Rx mfspr  Rx,1

Link Register (LR) mtlr    Rx mtspr  8,Rx mflr    Rx mfspr  Rx,8

Count Register (CTR) mtctr  Rx mtspr  9,Rx mfctr  Rx mfspr  Rx,9

PPR mtppr Rx mtspr 896,Rx mfppr Rx mfspr Rx,896
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Load Address
This mnemonic permits computing the value of a base-displacement operand, using the addi instruction which nor-
mally requires separate register and immediate operands.

la Rx,D(Ry) (equivalent to: addi Rx,Ry,D)

The la mnemonic is useful for obtaining the address of a variable specified by name, allowing the Assembler to sup-
ply the base register number and compute the displacement.  If the variable v is located at offset Dv bytes from the
address in register Rv, and the Assembler has been told to use register Rv as a base for references to the data struc-
ture containing v, then the following line causes the address of v to be loaded into register Rx.

la Rx,v (equivalent to: addi Rx,Rv,Dv)

Move Register
Several Power ISA instructions can be coded in a way such that they simply copy the contents of one register to
another. An extended mnemonic is provided to convey the idea that no computation is being performed but merely
data movement (from one register to another).

The following instruction copies the contents of register Ry to register Rx.  This mnemonic can be coded with a final
“.”  to cause the Rc bit to be set in the underlying instruction.

mr Rx,Ry (equivalent to: or Rx,Ry,Ry)

Complement Register
Several Power ISA instructions can be coded in a way such that they complement the contents of one register and
place the result into another register. An extended mnemonic is provided that allows this operation to be coded easily.

The following instruction complements the contents of register Ry and places the result into register Rx.  This mne-
monic can be coded with a final “.”  to cause the Rc bit to be set in the underlying instruction.

not Rx,Ry (equivalent to: nor Rx,Ry,Ry)

Move To/From Condition Register
This mnemonic permits copying the contents of the low-order 32 bits of a GPR to the Condition Register, using the
same style as the mfcr instruction.

mtcr Rx (equivalent to: mtcrf 0xFF,Rx)

The following instructions may generate either the (old) mtcrf or mfcr instructions or the (new) mtocrf or mfocrf
instruction, respectively, depending on the target machine type assembler parameter.

mtcrf FXM,Rx
mfcr Rx

All three extended mnemonics in this subsection are being phased out. In future assemblers the form “mtcr Rx” may
not exist, and the mtcrf and mfcr mnemonics may generate the old form instructions (with bit 11 = 0) regardless of
the target machine type assembler parameter, or may cease to exist. 
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Appendix E.  Programming Examples

E.1 Multiple-Precision Shifts
This section gives examples of how multiple-precision
shifts can be programmed.

A multiple-precision shift is defined to be a shift of an
N-doubleword quantity (64-bit mode) or an N-word
quantity (32-bit mode), where N>1. The quantity to be
shifted is contained in N registers. The shift amount is
specified either by an immediate value in the instruc-
tion, or by a value in a register.

The examples shown below distinguish between the
cases N=2 and N>2.  If N=2, the shift amount may be in
the range 0 through 127 (64-bit mode) or 0 through 63
(32-bit mode), which are the maximum ranges sup-
ported by the Shift instructions used.  However if N>2,
the shift amount must be in the range 0 through 63
(64-bit mode) or 0 through 31 (32-bit mode), in order for
the examples to yield the desired result.  The specific
instance shown for N>2 is N=3; extending those code
sequences to larger N is straightforward, as is reducing

them to the case N=2 when the more stringent restric-
tion on shift amount is met.  For shifts with immediate
shift amounts only the case N=3 is shown, because the
more stringent restriction on shift amount is always
met.

In the examples it is assumed that GPRs 2 and 3 (and
4) contain the quantity to be shifted, and that the result
is to be placed into the same registers, except for the
immediate left shifts in 64-bit mode for which the result
is placed into GPRs 3, 4, and 5. In all cases, for both
input and result, the lowest-numbered register contains
the highest-order part of the data and highest-num-
bered register contains the lowest-order part.  For
non-immediate shifts, the shift amount is assumed to
be in GPR 6. For immediate shifts, the shift amount is
assumed to be greater than 0. GPRs 0 and 31 are used
as scratch registers.

For N>2, the number of instructions required is 2N-1
(immediate shifts) or 3N-1 (non-immediate shifts).
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Multiple-precision shifts in 64-bit 
mode [Category: 64-Bit]

Shift Left Immediate, N = 3  (shift amnt < 64)
rldicr r5,r4,sh,63-sh
rldimi r4,r3,0,sh
rldicl r4,r4,sh,0
rldimi r3,r2,0,sh
rldicl r3,r3,sh,0

Shift Left, N = 2  (shift amnt < 128)
subfic r31,r6,64
sld r2,r2,r6
srd r0,r3,r31
or r2,r2,r0
addi r31,r6,-64
sld r0,r3,r31
or r2,r2,r0
sld r3,r3,r6

Shift Left, N = 3  (shift amnt < 64)
subfic r31,r6,64
sld r2,r2,r6
srd r0,r3,r31
or r2,r2,r0
sld r3,r3,r6
srd r0,r4,r31
or r3,r3,r0
sld r4,r4,r6

Shift Right Immediate, N = 3  (shift amnt < 64)
rldimi r4,r3,0,64-sh
rldicl r4,r4,64-sh,0
rldimi r3,r2,0,64-sh
rldicl r3,r3,64-sh,0
rldicl r2,r2,64-sh,sh

Shift Right, N = 2  (shift amnt < 128)
subfic r31,r6,64
srd r3,r3,r6
sld r0,r2,r31
or r3,r3,r0
addi r31,r6,-64
srd r0,r2,r31
or r3,r3,r0
srd r2,r2,r6

Shift Right, N = 3  (shift amnt < 64)
subfic r31,r6,64
srd r4,r4,r6
sld r0,r3,r31
or r4,r4,r0
srd r3,r3,r6
sld r0,r2,r31
or r3,r3,r0
srd r2,r2,r6

Multiple-precision shifts in 32-bit 
mode

Shift Left Immediate, N = 3  (shift amnt < 32)
rlwinm r2,r2,sh,0,31-sh
rlwimi r2,r3,sh,32-sh,31
rlwinm r3,r3,sh,0,31-sh
rlwimi r3,r4,sh,32-sh,31
rlwinm r4,r4,sh,0,31-sh

Shift Left, N = 2  (shift amnt < 64)
subfic r31,r6,32
slw r2,r2,r6
srw r0,r3,r31
or r2,r2,r0
addi r31,r6,-32
slw r0,r3,r31
or r2,r2,r0
slw r3,r3,r6

Shift Left, N = 3  (shift amnt < 32)
subfic r31,r6,32
slw r2,r2,r6
srw r0,r3,r31
or r2,r2,r0
slw r3,r3,r6
srw r0,r4,r31
or r3,r3,r0
slw r4,r4,r6

Shift Right Immediate, N = 3  (shift amnt < 32)
rlwinm r4,r4,32-sh,sh,31
rlwimi r4,r3,32-sh,0,sh-1
rlwinm r3,r3,32-sh,sh,31
rlwimi r3,r2,32-sh,0,sh-1
rlwinm r2,r2,32-sh,sh,31

Shift Right, N = 2  (shift amnt < 64)
subfic r31,r6,32
srw r3,r3,r6
slw r0,r2,r31
or r3,r3,r0
addi r31,r6,-32
srw r0,r2,r31
or r3,r3,r0
srw r2,r2,r6

Shift Right, N = 3 (shift amnt < 32)
subfic r31,r6,32
srw r4,r4,r6
slw r0,r3,r31
or r4,r4,r0
srw r3,r3,r6
slw r0,r2,r31
or r3,r3,r0
srw r2,r2,r6
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Multiple-precision shifts in 64-bit 
mode, continued [Category: 64-Bit]

Shift Right Algebraic Immediate, N = 3 (shift amnt < 
64)

rldimi r4,r3,0,64-sh
rldicl r4,r4,64-sh,0
rldimi r3,r2,0,64-sh
rldicl r3,r3,64-sh,0
sradi r2,r2,sh

Shift Right Algebraic, N = 2  (shift amnt < 128)
subfic r31,r6,64
srd r3,r3,r6
sld r0,r2,r31
or r3,r3,r0
addic. r31,r6,-64
srad r0,r2,r31
ble $+8
ori r3,r0,0
srad r2,r2,r6

Shift Right Algebraic, N = 3  (shift amnt < 64)
subfic r31,r6,64
srd r4,r4,r6
sld r0,r3,r31
or r4,r4,r0
srd r3,r3,r6
sld r0,r2,r31
or r3,r3,r0
srad r2,r2,r6

Multiple-precision shifts in 32-bit 
mode, continued

Shift Right Algebraic Immediate, N = 3 (shift amnt < 
32)

rlwinm r4,r4,32-sh,sh,31
rlwimi r4,r3,32-sh,0,sh-1
rlwinm r3,r3,32-sh,sh,31
rlwimi r3,r2,32-sh,0,sh-1
srawi r2,r2,sh

Shift Right Algebraic, N = 2 (shift amnt < 64)
subfic r31,r6,32
srw r3,r3,r6
slw r0,r2,r31
or r3,r3,r0
addic. r31,r6,-32
sraw r0,r2,r31
ble $+8
ori r3,r0,0
sraw r2,r2,r6

Shift Right Algebraic, N = 3 (shift amnt < 32)
subfic r31,r6,32
srw r4,r4,r6
slw r0,r3,r31
or r4,r4,r0
srw r3,r3,r6
slw r0,r2,r31
or r3,r3,r0
sraw r2,r2,r6
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E.2 Floating-Point Conversions [Category: Floating-Point]

This section gives examples of how the Floating-Point
Conversion instructions can be used to perform various
conversions.

Warning: Some of the examples use the fsel instruc-
tion. Care must be taken in using fsel if IEEE compati-
bility is required, or if the values being tested can be
NaNs or infinities; see Section E.3.4, “Notes” on
page 336.

E.2.1 Conversion from
Floating-Point Number to
Floating-Point Integer
The full convert to floating-point integer function can be
implemented with the sequence shown below, assum-
ing the floating-point value to be converted is in FPR 1
and the result is returned in FPR 3.

mtfsb0 23 #clear VXCVI
fctid[z] f3,f1 #convert to fx int
fcfid f3,f3 #convert back again
mcrfs 7,5 #VXCVI to CR
bf 31,$+8 #skip if VXCVI was 0
fmr f3,f1 #input was fp int

E.2.2 Conversion from
Floating-Point Number to Signed 
Fixed-Point Integer Doubleword
The full convert to signed fixed-point integer double-
word function can be implemented with the sequence
shown below, assuming the floating-point value to be
converted is in FPR 1, the result is returned in GPR 3,
and a doubleword at displacement “disp” from the
address in GPR 1 can be used as scratch space.

fctid[z] f2,f1 #convert to dword int
stfd f2,disp(r1) #store float
ld r3,disp(r1) #load dword

E.2.3 Conversion from
Floating-Point Number to Unsigned 
Fixed-Point Integer Doubleword
The full convert to unsigned fixed-point integer double-
word function can be implemented with the sequence
shown below, assuming the floating-point value to be
converted is in FPR 1, the value 0 is in FPR 0, the value
264-2048 is in FPR 3, the value 263 is in FPR 4 and
GPR 4, the result is returned in GPR 3, and a double-
word at displacement “disp” from the address in GPR 1
can be used as scratch space.

fsel f2,f1,f1,f0 #use 0 if < 0
fsub f5,f3,f1 #use max if > max
fsel f2,f5,f2,f3
fsub f5,f2,f4 #subtract 263

fcmpu cr2,f2,f4 #use diff if >= 263

fsel f2,f5,f5,f2
fctid[z] f2,f2 #convert to fx int
stfd f2,disp(r1) #store float
ld r3,disp(r1) #load dword
blt cr2,$+8 #add 263 if input
add r3,r3,r4 #  was >= 263

E.2.4 Conversion from
Floating-Point Number to Signed 
Fixed-Point Integer Word
The full convert to signed fixed-point integer word func-
tion can be implemented with the sequence shown
below, assuming the floating-point value to be con-
verted is in FPR 1, the result is returned in GPR 3, and
a doubleword at displacement “disp” from the address
in GPR 1 can be used as scratch space.

fctiw[z] f2,f1 #convert to fx int
stfd f2,disp(r1) #store float
lwa r3,disp+4(r1) #load word algebraic
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E.2.5 Conversion from
Floating-Point Number to Unsigned 
Fixed-Point Integer Word
The full convert to unsigned fixed-point integer word
function can be implemented with the sequence shown
below, assuming the floating-point value to be con-
verted is in FPR 1, the value 0 is in FPR 0, the value
232-1 is in FPR 3, the result is returned in GPR 3, and a
doubleword at displacement “disp” from the address in
GPR 1 can be used as scratch space.

fsel f2,f1,f1,f0 #use 0 if < 0
fsub f4,f3,f1 #use max if > max
fsel f2,f4,f2,f3
fctid[z] f2,f2 #convert to fx int
stfd f2,disp(r1) #store float
lwz r3,disp+4(r1) #load word and zero

E.2.6 Conversion from Signed 
Fixed-Point Integer Doubleword to 
Floating-Point Number
The full convert from signed fixed-point integer double-
word function, using the rounding mode specified by
FPSCRRN, can be implemented with the sequence
shown below, assuming the fixed-point value to be con-
verted is in GPR 3, the result is returned in FPR 1, and
a doubleword at displacement “disp” from the address
in GPR 1 can be used as scratch space.

std r3,disp(r1) #store dword
lfd f1,disp(r1) #load float
fcfid f1,f1 #convert to fp int

E.2.7 Conversion from Unsigned 
Fixed-Point Integer Doubleword to 
Floating-Point Number
The full convert from unsigned fixed-point integer dou-
bleword function, using the rounding mode specified by
FPSCRRN, can be implemented with the sequence
shown below, assuming the fixed-point value to be con-
verted is in GPR 3, the value 232 is in FPR 4, the result
is returned in FPR 1, and two doublewords at displace-
ment “disp” from the address in GPR 1 can be used as
scratch space.

rldicl r2,r3,32,32 #isolate high half
rldicl r0,r3,0,32 #isolate low half
std r2,disp(r1) #store dword both
std r0,disp+8(r1)
lfd f2,disp(r1) #load float both
lfd f1,disp+8(r1)
fcfid f2,f2 #convert each half to
fcfid f1,f1 #  fp int (exact result)
fmadd f1,f4,f2,f1 #(232)×high + low

An alternative, shorter, sequence can be used if round-
ing according to FSCPRRN is desired and FPSCRRN
specifies Round toward +Infinity or Round toward
-Infinity, or if it is acceptable for the rounded answer to
be either of the two representable floating-point inte-
gers nearest to the given fixed-point integer.  In this
case the full convert from unsigned fixed-point integer
doubleword function can be implemented with the
sequence shown below, assuming the value 264 is in
FPR 2.

std r3,disp(r1) #store dword
lfd f1,disp(r1) #load float
fcfid f1,f1 #convert to fp int
fadd f4,f1,f2 #add 264

fsel f1,f1,f1,f4 #  if r3 < 0

E.2.8 Conversion from Signed 
Fixed-Point Integer Word to Float-
ing-Point Number
The full convert from signed fixed-point integer word
function can be implemented with the sequence shown
below, assuming the fixed-point value to be converted
is in GPR 3, the result is returned in FPR 1, and a dou-
bleword at displacement “disp” from the address in
GPR 1 can be used as scratch space.  (The result is
exact.)

extsw r3,r3 #extend sign
std r3,disp(r1) #store dword
lfd f1,disp(r1) #load float
fcfid f1,f1 #convert to fp int

E.2.9 Conversion from Unsigned 
Fixed-Point Integer Word to Float-
ing-Point Number
The full convert from unsigned fixed-point integer word
function can be implemented with the sequence shown
below, assuming the fixed-point value to be converted
is in GPR 3, the result is returned in FPR 1, and a dou-
bleword at displacement “disp” from the address in
GPR 1 can be used as scratch space.  (The result is
exact.)

rldicl r0,r3,0,32 #zero-extend
std r0,disp(r1) #store dword
lfd f1,disp(r1) #load float
fcfid f1,f1 #convert to fp int
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E.3 Floating-Point Selection [Category: Floating-Point]

This section gives examples of how the Floating Select
instruction can be used to implement floating-point min-
imum and maximum functions, and certain simple
forms of if-then-else constructions, without branching.

The examples show program fragments in an imagi-
nary, C-like, high-level programming language, and the
corresponding program fragment using fsel and other
Power ISA instructions. In the examples, a, b, x, y, and
z are floating-point variables, which are assumed to be

in FPRs fa, fb, fx, fy, and fz. FPR fs is assumed to be
available for scratch space.

Additional examples can be found in Section E.2,
“Floating-Point Conversions [Category: Floating-Point]”
on page 334.

Warning: Care must be taken in using fsel if IEEE
compatibility is required, or if the values being tested
can be NaNs or infinities; see Section E.3.4.

E.3.1 Comparison to Zero

E.3.2 Minimum and Maximum

E.3.3 Simple if-then-else
Constructions

E.3.4 Notes
The following Notes apply to the preceding examples
and to the corresponding cases using the other three
arithmetic relations (<, ≤, and ≠). They should also be
considered when any other use of fsel is contemplated.

In these Notes, the “optimized program” is the Power
ISA program shown, and the “unoptimized program”
(not shown) is the corresponding Power ISA program
that uses fcmpu and Branch Conditional instructions
instead of fsel.

1. The unoptimized program affects the VXSNAN bit
of the FPSCR, and therefore may cause the sys-
tem error handler to be invoked if the correspond-
ing exception is enabled, while the optimized
program does not affect this bit.  This property of
the optimized program is incompatible with the
IEEE standard.

2. The optimized program gives the incorrect result if
a is a NaN.

3. The optimized program gives the incorrect result if
a and/or b is a NaN (except that it may give the
correct result in some cases for the minimum and
maximum functions, depending on how those func-
tions are defined to operate on NaNs).

4. The optimized program gives the incorrect result if
a and b are infinities of the same sign.  (Here it is
assumed that Invalid Operation Exceptions are
disabled, in which case the result of the subtraction
is a NaN.  The analysis is more complicated if
Invalid Operation Exceptions are enabled,
because in that case the target register of the sub-
traction is unchanged.)

5. The optimized program affects the OX, UX, XX,
and VXISI bits of the FPSCR, and therefore may
cause the system error handler to be invoked if the
corresponding exceptions are enabled, while the
unoptimized program does not affect these bits.
This property of the optimized program is incom-
patible with the IEEE standard.

High-level language: Power ISA: Notes

if a ≥ 0.0 then x � y
else x � z

fsel  fx,fa,fy,fz (1)

if a > 0.0 then x � y
else x � z

fneg  fs,fa
fsel  fx,fs,fz,fy

(1,2)

if a = 0.0 then x � y
else x � z

fsel  fx,fa,fy,fz
fneg  fs,fa
fsel  fx,fs,fx,fz

(1)

High-level language: Power ISA: Notes

x � min(a,b) fsub  fs,fa,fb
fsel  fx,fs,fb,fa

(3,4,5)

x � max(a,b) fsub  fs,fa,fb
fsel  fx,fs,fa,fb

(3,4,5)

High-level language: Power ISA: Notes

if a ≥ b then x � y
else x � z

fsub  fs,fa,fb
fsel  fx,fs,fy,fz

(4,5)

if a > b then x � y
else x � z

fsub  fs,fb,fa
fsel  fx,fs,fz,fy

(3,4,5)

if a = b then x � y
else x � z

fsub  fs,fa,fb
fsel  fx,fs,fy,fz
fneg  fs,fs
fsel  fx,fs,fx,fz

(4,5)
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E.4 Vector Unaligned Storage Operations [Category: Vector]

E.4.1 Loading a Unaligned Quad-
word Using Permute from 
Big-Endian Storage
The following sequence of instructions copies the
unaligned quadword storage operand into VRT.
# Assumptions:
# Rb != 0 and contents of Rb = 0xB
lvx Vhi,0,Rb # load MSQ
lvsl Vp,0,Rb     # set permute control vector
addi Rb,Rb,16 # address of LSQ
lvx Vlo,0,Rb # load LSQ
perm Vt,Vhi,Vlo,Vp # align the data
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Chapter 1.  Storage Model

1.1 Definitions. . . . . . . . . . . . . . . . . . . 341
1.2 Introduction. . . . . . . . . . . . . . . . . . 342
1.3 Virtual Storage . . . . . . . . . . . . . . . 342
1.4 Single-copy Atomicity  . . . . . . . . . 343
1.5 Cache Model  . . . . . . . . . . . . . . . . 343
1.6 Storage Control Attributes . . . . . . 344
1.6.1 Write Through Required . . . . . . 344
1.6.2 Caching Inhibited  . . . . . . . . . . . 344
1.6.3 Memory Coherence Required [Cate-

gory: Memory Coherence] . . . . . . . . . 345
1.6.4 Guarded  . . . . . . . . . . . . . . . . . . 345
1.6.5 Endianness [Category: Embed-

ded.Little-Endian]  . . . . . . . . . . . . . . . . 346

1.6.6 Variable Length Encoded (VLE) 
Instructions  . . . . . . . . . . . . . . . . . . . . . 346

1.7 Shared Storage  . . . . . . . . . . . . . . 347
1.7.1 Storage Access Ordering    . . . . 347
1.7.2 Storage Ordering of I/O Accesses . . 

349
1.7.3 Atomic Update . . . . . . . . . . . . . . 349
1.7.3.1  Reservations . . . . . . . . . . . . . 349
1.7.3.2  Forward Progress. . . . . . . . . . 351
1.8 Instruction Storage  . . . . . . . . . . . . 351
1.8.1 Concurrent Modification and Execu-

tion of Instructions . . . . . . . . . . . . . . . . 353

1.1 Definitions
The following definitions, in addition to those specified
in Book I, are used in this Book.  In these definitions,
“Load instruction” includes the Cache Management
and other instructions that are stated  in the instruction
descriptions to be “treated as a Load”, and similarly for
“Store instruction”.

� processor
A hardware component that executes the instruc-
tions specified in a program.

� system
A combination of processors, storage, and associ-
ated mechanisms that is capable of executing pro-
grams.  Sometimes the reference to system
includes services provided by the operating sys-
tem.

� main storage  
The level of storage hierarchy in which all storage
state is visible to all processors and mechanisms
in the system.

� instruction storage  
The view of storage as seen by the mechanism
that fetches instructions.

� data storage  
The view of storage as seen by a Load or Store
instruction.

� program order   
The execution of instructions in the order required
by the sequential execution model.  (See the sec-
tion entitled “Instruction Execution Order” in Book
I.  A dcbz instruction that modifies storage which
contains instructions has the same effect with
respect to the sequential execution model as a
Store instruction as described there.)

� storage location 
A contiguous sequence of one or more bytes in
storage.  When used in association with a specific
instruction or the instruction fetching mechanism,
the length of the sequence of one or more bytes is
typically implied by the operation.  In other uses, it
may refer more abstractly to a group of bytes which
share common storage attributes.

� storage access 
An access to a storage location.  There are three
(mutually exclusive) kinds of storage access.

- data access

An access to the storage location specified by
a Load or Store instruction, or, if the access is
performed “out-of-order” (see Book III), an
access to a storage location as if it were the
storage location specified by a Load or Store
instruction.
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- instruction fetch

An access for the purpose of fetching an
instruction.

- implicit access

An access by the processor for the purpose of
address translation or reference and change
recording (see Book III-S).

� caused by, associated with

- caused by

A storage access is said to be caused by an
instruction if the instruction is a Load or Store
and the access (data access) is to the storage
location specified by the instruction.

- associated with

A storage access is said to be associated with
an instruction if the access is for the purpose
of fetching the instruction (instruction fetch), or
is a data access caused by the instruction, or
is an implicit access that occurs as a side
effect of fetching or executing the instruction.

� prefetched instructions
Instructions for which a copy of the instruction has
been fetched from instruction storage, but the
instruction has not yet been executed.

� uniprocessor
A system that contains one processor.

� multiprocessor
A system that contains two or more processors.

� shared storage multiprocessor
A multiprocessor that contains some common stor-
age, which all the processors in the system can
access.

� performed  
A load or instruction fetch by a processor or mech-
anism (P1) is performed with respect to any pro-
cessor or mechanism (P2) when the value to be
returned by the load or instruction fetch can no
longer be changed by a store by P2.  A store by P1
is performed with respect to P2 when a load by P2
from the location accessed by the store will return
the value stored (or a value stored subsequently).
An instruction cache block invalidation by P1 is
performed with respect to P2 when an instruction
fetch by P2 will not be satisfied from the copy of
the block that existed in its instruction cache when
the instruction causing the invalidation was exe-
cuted, and similarly for a data cache block invalida-
tion.

The preceding definitions apply regardless of
whether P1 and P2 are the same entity.

� page (virtual page)  
2n contiguous bytes of storage aligned such that
the effective address of the first byte in the page is
an integral multiple of the page size for which pro-
tection and control attributes are independently
specifiable and for which reference and change
status <S> are independently recorded.

� block
The aligned unit of storage operated on by the
Cache Management instructions. The size of an
instruction cache block may differ from the size of a
data cache block, and both sizes may vary
between implementations. The maximum block
size is equal to the minimum page size.

� aligned storage access
A load or store is aligned if the address of the tar-
get storage location is a multiple of the size of the
transfer effected by the instruction.

1.2 Introduction
The Power ISA User Instruction Set Architecture, dis-
cussed in Book I, defines storage as a linear array of
bytes indexed from 0 to a maximum of 264-1. Each byte
is identified by its index, called its address, and each
byte contains a value. This information is sufficient to
allow the programming of applications that require no
special features of any particular system environment.
The Power ISA Virtual Environment Architecture,
described herein, expands this simple storage model to
include caches, virtual storage, and shared storage
multiprocessors. The Power ISA Virtual Environment
Architecture, in conjunction with services based on the
Power ISA Operating Environment Architecture (see
Book III) and provided by the operating system, permits
explicit control of this expanded storage model. A sim-
ple model for sequential execution allows at most one
storage access to be performed at a time and requires
that all storage accesses appear to be performed in
program order. In contrast to this simple model, the
Power ISA specifies a relaxed model of storage consis-
tency. In a multiprocessor system that allows multiple
copies of a storage location, aggressive implementa-
tions of the architecture can permit intervals of time
during which different copies of a storage location have
different values. This chapter describes features of the
Power ISA that enable programmers to write correct
programs for this storage model. 

1.3 Virtual Storage  
The Power ISA system implements a virtual storage
model for applications. This means that a combination
of hardware and software can present a storage model
that allows applications to exist within a “virtual”
address space larger than either the effective address
space or the real address space.
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Each program can access 264 bytes of “effective
address” (EA) space, subject to limitations imposed by
the operating system. In a typical Power ISA system,
each program's EA space is a subset of a larger “virtual
address” (VA) space managed by the operating sys-
tem.

Each effective address is translated to a real address
(i.e., to an address of a byte in real storage or on an I/O
device) before being used to access storage.  The
hardware accomplishes this, using the address transla-
tion mechanism described in Book III.  The operating
system manages the real (physical) storage resources
of the system, by setting up the tables and other infor-
mation used by the hardware address translation
mechanism.
 

In general, real storage may not be large enough to
map all the virtual pages used by the currently active
applications.  With support provided by hardware, the
operating system can attempt to use the available real
pages to map a sufficient set of virtual pages of the
applications.  If a sufficient set is maintained, “paging”
activity is minimized.  If not, performance degradation is
likely.

The operating system can support restricted access to
virtual pages (including read/write, read only, and no
access; see Book III), based on system standards (e.g.,
program code might be read only) and application
requests.

1.4 Single-copy Atomicity   
An access is single-copy atomic, or simply atomic, if it
is always performed in its entirety with no visible frag-
mentation.  Atomic accesses are thus serialized: each
happens in its entirety in some order, even when that
order is not specified in the program or enforced
between processors.

Vector storage accesses are not guaranteed to be
atomic. The following other types of single-register
accesses are always atomic:

� byte accesses (all bytes are aligned on byte
boundaries)

� halfword accesses aligned on halfword boundaries
� word accesses aligned on word boundaries
� doubleword accesses aligned on doubleword

boundaries (64-bit implementations only; see
Section 1.2 of Book III-E<E>)

No other accesses are guaranteed to be atomic. For
example, the access caused by the following instruc-
tions is not guaranteed to be atomic.

� any Load or Store instruction for which the oper-
and is unaligned

� lmw, stmw, lswi, lswx, stswi, stswx
� any Cache Management instruction

An access that is not atomic is performed as a set of
smaller disjoint atomic accesses.  The number and
alignment of these accesses are implementation-
dependent, as is the relative order in which they are
performed.

The results for several combinations of loads and
stores to the same or overlapping locations are
described below.

1. When two processors execute atomic stores to
locations that do not overlap, and no other stores
are performed to those locations, the contents of
those locations are the same as if the two stores
were performed by a single processor.

2. When two processors execute atomic stores to the
same storage location, and no other store is per-
formed to that location, the contents of that loca-
tion are the result stored by one of the processors.

3. When two processors execute stores that have the
same target location and are not guaranteed to be
atomic, and no other store is performed to that
location, the result is some combination of the
bytes stored by both processors.

4. When two processors execute stores to overlap-
ping locations, and no other store is performed to
those locations, the result is some combination of
the bytes stored by the processors to the overlap-
ping bytes.  The portions of the locations that do
not overlap contain the bytes stored by the proces-
sor storing to the location.

5. When a processor executes an atomic store to a
location, a second processor executes an atomic
load from that location, and no other store is per-
formed to that location, the value returned by the
load is the contents of the location before the store
or the contents of the location after the store.

6. When a load and a store with the same target loca-
tion can be executed simultaneously, and no other
store is performed to that location, the value
returned by the load is some combination of the
contents of the location before the store and the
contents of the location after the store. 

1.5 Cache Model
A cache model in which there is one cache for instruc-
tions and another cache for data is called a “Harvard-
style” cache. This is the model assumed by the Power
ISA, e.g., in the descriptions of the Cache Management
instructions in Section 3.2. Alternative cache models
may be implemented (e.g., a “combined cache” model,
in which a single cache is used for both instructions and
data, or a model in which there are several levels of
caches), but they support the programming model
implied by a Harvard-style cache.
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The processor is not required to maintain copies of
storage locations in the instruction cache consistent
with modifications to those storage locations (e.g.,
modifications caused by Store instructions).

A location in the data cache is considered to be modi-
fied in that cache if the location has been modified
(e.g., by a Store instruction) and the modified data have
not been written to main storage.

Cache Management instructions are provided so that
programs can manage the caches when needed. For
example, program management of the caches is
needed when a program generates or modifies code
that will be executed (i.e., when the program modifies
data in storage and then attempts to execute the modi-
fied data as instructions). The Cache Management
instructions are also useful in optimizing the use of
memory bandwidth in such applications as graphics
and numerically intensive computing. The functions
performed by these instructions depend on the storage
control attributes associated with the specified storage
location (see Section 1.6, “Storage Control Attributes”).

The Cache Management instructions allow the program
to do the following.

� invalidate the copy of storage in an instruction
cache block (icbi)

� <E> provide a hint that an instruction will probably
soon be accessed from a specified instruction
cache block (icbt)

� provide a hint that the program will probably soon
access a specified data cache block (dcbt, dcbtst)

� <E> allocate a data cache block and set the con-
tents of that block to zeros, but perform no opera-
tion if no write access is allowed to the data cache
block (dcba)

� set the contents of a data cache block to zeros
(dcbz)

� copy the contents of a modified data cache block
to main storage (dcbst)

� copy the contents of a modified data cache block
to main storage and make the copy of the block in
the data cache invalid (dcbf or dcbfl<S>) 

1.6 Storage Control Attributes  
Some operating systems may provide a means to allow
programs to specify the storage control attributes
described in this section.  Because the support pro-
vided for these attributes by the operating system may
vary between systems, the details of the specific sys-
tem being used must be known before these attributes
can be used.

Storage control attributes are associated with units of
storage that are multiples of the page size.  Each stor-
age access is performed according to the storage con-
trol attributes of the specified storage location, as

described below.  The storage control attributes are the
following.

� Write Through Required
� Caching Inhibited
� Memory Coherence Required
� Guarded
� Endianness<E>

These attributes have meaning only when an effective
address is translated by the processor performing the
storage access.

<E> Additional storage control attributes may be
defined for some implementations. See Section 4.8 of
Book III-E for additional information.

 

In the remainder of this section, “Load instruction”
includes the Cache Management and other instructions
that are stated in the instruction descriptions to be
“treated as a Load”, and similarly for “Store instruction”.

1.6.1 Write Through Required  
A store to a Write Through Required storage location is
performed in main storage.  A Store instruction that
specifies a location in Write Through Required storage
may cause additional locations in main storage to be
accessed.  If a copy of the block containing the speci-
fied location is retained in the data cache, the store is
also performed in the data cache.  The store does not
cause the block to be considered to be modified in the
data cache.

In general, accesses caused by separate Store instruc-
tions that specify locations in Write Through Required
storage may be combined into one access. Such com-
bining does not occur if the Store instructions are sepa-
rated by a sync, eieio<S>, or mbar<E> instruction.

1.6.2 Caching Inhibited  
An access to a Caching Inhibited storage location is
performed in main storage.  A Load instruction that
specifies a location in Caching  Inhibited storage may

The Write Through Required and Caching Inhibited
attributes are mutually exclusive because, as
described below, the Write Through Required
attribute permits the storage location to be in the
data cache while the Caching Inhibited attribute
does not.

Storage that is Write Through Required or Caching
Inhibited is not intended to be used for general-pur-
pose programming. For example, the lwarx, ldarx,
stwcx., and stdcx. instructions may   cause the
system data storage error handler to be invoked if
they specify a location in storage having either of
these attributes.
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cause additional locations in main storage to be
accessed unless the specified location is also Guarded.
An instruction fetch from Caching Inhibited storage may
cause additional words in main storage to be accessed.
No copy of the accessed locations is placed into the
caches.

In general, non-overlapping accesses caused by sepa-
rate Load instructions that specify locations in Caching
Inhibited storage may be combined into one access, as
may non-overlapping accesses caused by separate
Store instructions that specify locations in Caching
Inhibited storage. Such combining does not occur if the
Load or Store instructions are separated by a sync or
mbar<E> instruction, or by an eieio<S> instruction if
the storage is also Guarded.

1.6.3 Memory Coherence 
Required [Category: Memory 
Coherence] 
An access to a Memory Coherence Required storage
location is performed coherently, as follows.

Memory coherence refers to the ordering of stores to a
single location.  Atomic stores to a given location are
coherent if they are serialized in some order, and no
processor or mechanism is able to observe any subset
of those stores as occurring in a conflicting order.  This
serialization order is an abstract sequence of values;
the physical storage location need not assume each of
the values written to it.  For example, a processor may
update a location several times before the value is writ-
ten to physical storage.  The result of a store operation
is not available to every processor or mechanism at the
same instant, and it may be that a processor or mecha-
nism observes only some of the values that are written
to a location.  However, when a location is accessed
atomically and coherently by all processors and mech-
anisms, the sequence of values loaded from the loca-
tion by any processor or mechanism during any interval
of time forms a subsequence of the sequence of values
that the location logically held during that interval.  That
is, a processor or mechanism can never load a “newer”
value first and then, later, load an “older” value.

Memory coherence is managed in blocks called coher-
ence blocks.  Their size is implementation-dependent,
but is larger than a word and is usually the size of a
cache block.

For storage that is not Memory Coherence Required,
software must explicitly manage memory coherence to
the extent required by program correctness.  The oper-
ations required to do this may be system-dependent.

Because the Memory Coherence Required attribute for
a given storage location is of little use unless all proces-
sors that access the location do so coherently, in state-
ments about Memory Coherence Required storage
elsewhere in this document it is generally assumed that

the storage has the Memory Coherence Required
attribute for all processors that access it.

   

1.6.4 Guarded   
A data access to a Guarded storage location is per-
formed only if either (a) the access is caused by an
instruction that is known to be required by the sequen-
tial execution model, or (b) the access is a load and the
storage location is already in a cache.  If the storage is
also Caching Inhibited, only the storage location speci-
fied by the instruction is accessed; otherwise any stor-
age location in the cache block containing the specified
storage location may be accessed.

For the Server environment, instructions are not
fetched from virtual storage that is Guarded. If the
instruction addressed by the current instruction
address is in such storage, the system instruction stor-
age error handler may be invoked (see Section 6.5.5 of
Book III-S).

Operating systems that allow programs to request
that storage not be Memory Coherence Required
should provide services to assist in managing
memory coherence for such storage, including all
system-dependent aspects thereof.

In most systems the default is that all storage is
Memory Coherence Required.  For some applica-
tions in some systems, software management of
coherence may yield better performance.  In such
cases, a program can request that a given unit of
storage not be Memory Coherence Required, and
can manage the coherence of that storage by using
the sync instruction, the Cache Management
instructions, and services provided by the operat-
ing system.
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1.6.5 Endianness [Category: 
Embedded.Little-Endian]
The Endianness storage control attribute specifies the
byte ordering (Big-Endian or Little-Endian) that is used
when the storage location is accessed; see
Section 1.10 of Book I.

1.6.6 Variable Length Encoded 
(VLE) Instructions
VLE storage is used to store VLE instructions. Instruc-
tions fetched from VLE storage are processed as VLE
instructions. VLE storage must also be Big-Endian.
Instructions fetched from VLE storage that is Little-
Endian cause a Byte-ordering exception, and the sys-
tem instruction storage error handler will be invoked. 

The VLE attribute has no effect on data accesses. See
Chapter 1 of Book VLE.

In some implementations, instructions may be exe-
cuted before they are known to be required by the
sequential execution model.  Because the results
of instructions executed in this manner are dis-
carded if it is later determined that those instruc-
tions would not have been executed in the
sequential execution model, this behavior does not
affect most programs.

This behavior does affect programs that access
storage locations that are not “well-behaved” (e.g.,
a storage location that represents a control register
on an I/O device that, when accessed, causes the
device to perform an operation).  To avoid unin-
tended results, programs that access such storage
locations should request that the storage be
Guarded, and should prevent such storage loca-
tions from being in a cache (e.g., by requesting that
the storage also be Caching Inhibited).

Programming Note
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1.7 Shared Storage   
This architecture supports the sharing of storage
between programs, between different instances of the
same program, and between processors and other
mechanisms.  It also supports access to a storage loca-
tion by one or more programs using different effective
addresses.  All these cases are considered storage
sharing.  Storage is shared in blocks that are an inte-
gral number of pages.

When the same storage location has different effective
addresses, the addresses are said to be aliases.  Each
application can be granted separate access privileges
to aliased pages.

1.7.1 Storage Access Ordering    
The storage model for the ordering of storage accesses
is weakly consistent.  This model provides an opportu-
nity for improved performance over a model that has
stronger consistency rules, but places the responsibility
on the program to ensure that ordering or synchroniza-
tion instructions are properly placed when storage is
shared by two or more programs.

The order in which the processor performs storage
accesses, the order in which those accesses are per-
formed with respect to another processor or mecha-
nism, and the order in which those accesses are
performed in main storage may all be different.  Several
means of enforcing an ordering of storage accesses
are provided to allow programs to share storage with
other programs, or with mechanisms such as I/O
devices.  These means are listed below.  The phrase
“to the extent required by the associated Memory
Coherence Required attributes” refers to the Memory
Coherence Required attribute, if any, associated with
each access.

� If two Store instructions specify storage locations
that are both Caching Inhibited and Guarded, the
corresponding storage accesses are performed in
program order with respect to any processor or
mechanism.

� If a Load instruction depends on the value returned
by a preceding Load instruction (because the
value is used to compute the effective address
specified by the second Load), the corresponding
storage accesses are performed in program order
with respect to any processor or mechanism to the
extent required by the associated Memory Coher-
ence Required attributes.  This applies even if the
dependency has no effect on program logic (e.g.,
the value returned by the first Load is ANDed with
zero and then added to the effective address spec-
ified by the second Load).

� When a processor (P1) executes a Synchronize,
eieio<S>, or mbar<E> instruction a memory bar-
rier is created, which orders applicable storage

accesses pairwise, as follows. Let A be a set of
storage accesses that includes all storage
accesses associated with instructions preceding
the barrier-creating instruction, and let B be a set
of storage accesses that includes all storage
accesses associated with instructions following the
barrier-creating instruction. For each applicable
pair ai,bj of storage accesses such that ai is in A
and bj is in B, the memory barrier ensures that ai
will be performed with respect to any processor or
mechanism, to the extent required by the associ-
ated Memory Coherence Required attributes,
before bj is performed with respect to that proces-
sor or mechanism.

The ordering done by a memory barrier is said to
be “cumulative” if it also orders storage accesses
that are performed by processors and mechanisms
other than P1, as follows.

- A includes all applicable storage accesses by
any such processor or mechanism that have
been performed with respect to P1 before the
memory barrier is created.

- B includes all applicable storage accesses by
any such processor or mechanism that are
performed after a Load instruction executed
by that processor or mechanism has returned
the value stored by a store that is in B. 

No ordering should be assumed among the storage
accesses caused by a single instruction (i.e, by an
instruction for which the access is not atomic), and no
means are provided for controlling that order.
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Because stores cannot be performed “out-of-order”
(see Book III), if a Store instruction depends on the
value returned by a preceding Load instruction
(because the value returned by the Load is used to
compute either the effective address specified by the
Store or the value to be stored), the corresponding stor-
age accesses are performed in program order.  The
same applies if whether the Store instruction is exe-
cuted depends on a conditional Branch instruction that
in turn depends on the value returned by a preceding
Load instruction.

Because an isync instruction prevents the execution of
instructions following the isync until instructions pre-
ceding the isync have completed, if an isync follows a
conditional Branch instruction that depends on the
value returned by a preceding Load instruction, the
load on which the Branch depends is performed before
any loads caused by instructions following the isync.
This applies even if the effects of the “dependency” are
independent of  the value loaded (e.g., the value is
compared to itself and the Branch tests the EQ bit in
the selected CR field), and even if the branch target is
the sequentially next instruction. 

With the exception of the cases described above and
earlier in this section, data dependencies and control
dependencies do not order storage accesses.  Exam-
ples include the following.

� If a Load instruction specifies the same storage
location as a preceding Store instruction and the
location is in storage that is not Caching Inhibited,
the load may be satisfied from a “store queue” (a
buffer into which the processor places  stored val-
ues before presenting them to the storage sub-
system), and not be visible to other processors and
mechanisms.  A consequence is that if a subse-
quent Store depends on the value returned by the
Load, the two stores need not be performed in pro-
gram order with respect to other processors and
mechanisms.

� Because a Store Conditional instruction may com-
plete before its store has been performed, a condi-
tional Branch instruction that depends on the CR0
value set by a Store Conditional instruction does

not order the Store Conditional's store with respect
to storage accesses caused by instructions that
follow  the Branch.

� Because processors may predict branch target
addresses and branch condition resolution, control
dependencies (e.g., branches) do not order stor-
age accesses except as described above.  For
example, when a subroutine returns to its caller the
return address may be predicted, with the result
that loads caused by instructions at or after the
return address may be performed before the load
that obtains the return address is performed.

Because processors may implement nonarchitected
duplicates of architected resources (e.g., GPRs, CR
fields, and the Link Register), resource dependencies
(e.g., specification of the same target register for two
Load instructions) do not order storage accesses.

Examples of correct uses of dependencies, sync,
lwsync<S>, eieio<S>, and mbar<E> to order storage
accesses can be found in Appendix B. “Programming
Examples for Sharing Storage” on page 385.

Because the storage model is weakly consistent, the
sequential execution model as applied to instructions
that cause storage accesses guarantees only that
those accesses appear to be performed in program
order with respect to the processor executing the
instructions.  For example, an instruction may com-
plete, and subsequent instructions may be executed,
before storage accesses caused by the first instruction
have been performed.  However, for a sequence of
atomic accesses to the same storage location, if the
location is in storage that is Memory Coherence
Required the definition of coherence guarantees that
the accesses are performed in program order with
respect to any processor or mechanism that accesses
the location coherently, and similarly if the location is in
storage that is Caching Inhibited.

Because accesses to storage that is Caching Inhibited
are performed in main storage, memory barriers and
dependencies on Load instructions order such
accesses with respect to any  processor or mechanism
even if the storage is not Memory Coherence Required.
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1.7.2 Storage Ordering of I/O 
Accesses
A “coherence domain” consists of all processors and all
interfaces to main storage.  Memory reads and writes
initiated by mechanisms outside the coherence domain
are performed within the coherence domain in the
order in which they enter the coherence domain and
are performed as coherent accesses.

1.7.3 Atomic Update
The Load And Reserve and Store Conditional instruc-
tions together permit atomic update of a shared storage
location.  There are word and doubleword forms of
each of these instructions.  Described here is the oper-
ation of the word forms lwarx and stwcx.; operation of

the doubleword forms ldarx and stdcx. is the same
except for obvious substitutions.

The lwarx instruction is a load from a word-aligned
location that has two side effects.  Both of these side
effects occur at the same time that the load is per-
formed.

1. A reservation for a subsequent stwcx. instruction
is created.

2. The memory coherence mechanism is notified that
a reservation exists for the storage location speci-
fied by the lwarx.

The stwcx. instruction is a store to a word-aligned loca-
tion that is conditioned on the existence of the reserva-
tion created by the lwarx and on whether the same
storage location is specified by both instructions.  To
emulate an atomic operation with these instructions, it
is necessary that both the lwarx and the stwcx.  spec-
ify the same storage location.

A stwcx. performs a store to the target storage location
only if the storage location specified by the lwarx that
established the reservation has not been stored into by
another processor or mechanism since the reservation
was created.  If the storage locations specified by the
two instructions differ, the store is not necessarily per-
formed.

A stwcx. that performs its store is said to “succeed”.

Examples of the use of lwarx and stwcx. are given in
Appendix B. “Programming Examples for Sharing Stor-
age” on page 385.

A successful stwcx. to a given location may complete
before its store has been performed with respect to
other processors and mechanisms.  As a result, a sub-
sequent load or lwarx from the given location by
another processor may return a “stale” value.  However,
a subsequent lwarx from the given location by the
other processor followed by a successful stwcx. by that
processor is guaranteed to have returned the value
stored by the first processor’s stwcx. (in the absence of
other stores to the given location). 

  

1.7.3.1  Reservations 
The ability to emulate an atomic operation using lwarx
and stwcx. is based on the conditional behavior of
stwcx., the reservation created by lwarx, and the
clearing of that reservation if the target location is mod-

The first example below illustrates cumulative
ordering of storage accesses preceding a memory
barrier, and the second illustrates cumulative order-
ing of storage accesses following a memory barrier.
Assume that locations X, Y, and Z initially contain
the  value 0.

Example 1:

Processor A:
stores the value 1 to location X 

Processor B:
loads from location X obtaining the value
1, executes a sync instruction, then
stores the value 2 to location Y

Processor C:
loads from location Y obtaining the value
2, executes a  sync instruction, then loads
from location X

Example 2:

Processor A:
stores the value 1 to location X, executes
a sync instruction, then stores the value 2
to location Y

Processor B:
loops loading from location Y until the
value 2 is obtained, then stores the value
3 to location Z 

Processor C:
loads from location Z obtaining the value
3, executes a sync instruction, then loads
from location X

In both cases, cumulative ordering dictates that the
value loaded from location X by processor C is 1. 

Programming Note

The store caused by a successful stwcx. is
ordered, by a dependence on the reservation, with
respect to the load caused by the lwarx that estab-
lished the reservation, such that the two storage
accesses are performed in program order with
respect to any processor or mechanism.

Programming Note
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ified by another processor or mechanism before the
stwcx. performs its store.

A reservation is held on an aligned unit of real storage
called a reservation granule. The size of the reservation
granule is 2n bytes, where n is implementation-depen-
dent but is always at least 4 (thus the minimum reserva-
tion granule size is a quadword). The reservation
granule associated with effective address EA contains
the real address to which EA maps. (“real_addr(EA)” in
the RTL for the Load And Reserve and Store Condi-
tional instructions stands for “real address to which EA
maps”.)

A processor has at most one reservation at any time. A
reservation is established by executing a lwarx or ldarx
instruction, and is lost (or may be lost, in the case of the
third, fifth, sixth and seventh item) if any of the following
occur.

1. The processor holding the reservation executes
another lwarx or ldarx: this clears the first reserva-
tion and establishes a new one.

2. The processor holding the reservation executes
any stwcx. or stdcx., regardless of whether the
specified address matches the address specified
by the lwarx or ldarx that established the reserva-
tion.

3. The processor holding the reservation executes a
dcbf or dcbfl<S> to the reservation granule:
whether the reservation is lost is undefined.

4. Some other processor executes a Store or dcbz to
the same reservation granule.

5. Some other processor executes a dcbtst, dcbst,
dcbf (but not dcbfl<S>) to the same reservation
granule: whether the reservation is lost is unde-
fined.

6. <E> Some other processor executes a dcba to the
same reservation granule: the reservation is lost if
the instruction causes the target block to be newly
established in a data cache or to be modified; oth-
erwise whether the reservation is lost is undefined.

7. Any processor modifies a Reference or Change bit
(see Book III-S) in the same reservation granule:
whether the reservation is lost is undefined.

8. Some mechanism other than a processor modifies
a storage location in the same reservation granule.

For the Server environment, interrupts (see Book III-S)
do not clear reservations (however, system software
invoked by interrupts may clear reservations); for the
Embedded environment, interrupts do not necessarily
clear reservations (see Book III-E).

  

One use of lwarx and stwcx. is to emulate a “Com-
pare and Swap” primitive like that provided by the
IBM System/370 Compare and Swap instruction;
see Section B.1, “Atomic Update Primitives” on
page 385. A System/370-style Compare and Swap
checks only that the old and current values of the
word being tested are equal, with the result that
programs that use such a Compare and Swap to
control a shared resource can err if the word has
been modified and the old value subsequently
restored. The combination of lwarx and stwcx.
improves on such a Compare and Swap, because
the reservation reliably binds the lwarx and stwcx.
together. The reservation is always lost if the word
is modified by another processor or mechanism
between the lwarx and stwcx., so the stwcx.
never succeeds unless the word has not been
stored into (by another processor or mechanism)
since the lwarx.

In general, programming conventions must ensure
that lwarx and stwcx. specify addresses that
match; a stwcx. should be paired with a specific
lwarx to the same storage location. Situations in
which a stwcx. may erroneously be issued after
some lwarx other than that with which it is intended
to be paired must be scrupulously avoided. For
example, there must not be a context switch in
which the processor holds a reservation in behalf of
the old context, and the new context resumes after
a lwarx and before the paired stwcx.. The stwcx.
in the new context might succeed, which is not
what was intended by the programmer. Such a situ-
ation must be prevented by executing a stwcx. or
stdcx. that specifies a dummy writable aligned
location as part of the context switch; see
Section 6.4.3 of Book III-S and Section 5.5 of Book
III-E.

Programming Note
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1.7.3.2  Forward Progress 
Forward progress in loops that use lwarx and stwcx. is
achieved by a cooperative effort among hardware, sys-
tem software, and application software.

The architecture guarantees that when a processor
executes a lwarx to obtain a reservation for location X
and then a stwcx. to store a value to location X, either

1. the stwcx. succeeds and the value is written to
location X, or 

2. the stwcx. fails because some other processor or
mechanism modified location X, or 

3. the stwcx. fails because the processor’s reserva-
tion was lost for some other reason.

In Cases 1 and 2, the system as a whole makes
progress in the sense that some processor successfully
modifies location X.  Case 3 covers reservation loss
required for correct operation of the rest of the system.
This includes cancellation caused by some other pro-
cessor writing elsewhere in the reservation granule for
X, as well as cancellation caused by the operating sys-
tem in managing certain limited resources such as real
storage.  It may also include implementation-dependent
causes of reservation loss.

An implementation may make a forward progress guar-
antee, defining the conditions under which the system
as a whole makes progress.  Such a guarantee must

specify the possible causes of reservation loss in Case
3.  While the architecture alone cannot provide such a
guarantee, the characteristics listed in Cases 1 and 2
are necessary conditions for any forward progress
guarantee.  An implementation and operating system
can build on them to provide such a guarantee.

  

1.8 Instruction Storage
The instruction execution properties and requirements
described in this section, including its subsections,
apply only to instruction execution that is required by
the sequential execution model.

 In this section, including its subsections, it is assumed
that all instructions for which execution is attempted are
in storage that is not Caching Inhibited and (unless
instruction address translation is disabled; see Book III)
is not Guarded, and from which instruction fetching
does not cause the system error handler to be invoked
(e.g., from which instruction fetching is not prohibited
by the “address translation mechanism” or the “storage
protection mechanism”; see Book III).

  

For each instance of executing an instruction from loca-
tion X, the instruction may be fetched multiple times.

The instruction cache is not necessarily kept consistent
with the data cache or with main storage.  It is the
responsibility of software to ensure that instruction stor-
age is consistent with data storage when such consis-
tency is required for program correctness. 

After one or more bytes of a storage location have been
modified and before an instruction located in that stor-
age location is executed, software must execute the
appropriate sequence of instructions to make instruc-
tion storage consistent with data storage. Otherwise the
result of attempting to execute the instruction is bound-
edly undefined except as described in Section 1.8.1,
“Concurrent Modification and Execution of Instructions”
on page 353.

Programming Note

Following are examples of how to make instruction stor-
age consistent with data storage.  Because the optimal
instruction sequence to make instruction storage con-

sistent with data storage may vary between systems,
many operating systems will provide a system service
to perform this function.

Because the reservation is lost if another processor
stores anywhere in the reservation granule, lock
words (or doublewords) should be allocated such
that few such stores occur, other than perhaps to
the lock word itself.  (Stores by other processors to
the lock word result from contention for the lock,
and are an expected consequence of using locks to
control access to shared storage; stores to other
locations in the reservation granule can cause
needless reservation loss.)  Such allocation can
most easily be accomplished by allocating an entire
reservation granule for the lock and wasting all but
one word.  Because reservation granule size is
implementation-dependent, portable code must do
such allocation dynamically.

Similar considerations apply to other data that are
shared directly using lwarx and stwcx. (e.g., point-
ers in certain linked lists; see Section B.3, “List
Insertion” on page 389). 

Programming Note

The architecture does not include a “fairness guar-
antee”.  In competing for a reservation, two proces-
sors can indefinitely lock out a third.

The results of attempting to execute instructions
from storage that does not satisfy this assumption
are described in Section 1.6.2 and Section 1.6.4 of
this Book and in Book III.

Programming Note
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Case 1: The given program does not modify instruc-
tions executed by another program nor does another
program modify the instructions executed by the given
program.

Assume that location X previously contained the
instruction A0; the program modified one of more bytes
of that location such that, in data storage, the location
contains the instruction A1; and location X is wholly
contained in a single cache block.  The following
instruction sequence will make instruction storage con-
sistent with data storage such that if the isync was in
location X-4, the instruction A1 in location X would be
executed immediately after the isync.

dcbst X #copy the block to main storage
sync #order copy before invalidation
icbi X #invalidate copy in instr cache
isync #discard prefetched instructions

Case 2: One or more programs execute the instruc-
tions that are concurrently being modified by another
program.

Assume program A has modified the instruction at loca-
tion X and other programs  are waiting for program  A to
signal that the new instruction is ready to execute.  The
following instruction sequence will make instruction
storage consistent with data storage and then set a flag
to indicate to the waiting programs  that the new
instruction can be executed.

li r0,1 #put a 1 value in r0
dcbst X #copy the block in main storage
sync #order copy before invalidation

icbi X #invalidate copy in instr cache
sync #order invalidation before store

#  to flag
stw r0,flag #set flag indicating instruction

#  storage is now consistent

The following instruction sequence, executed by the
waiting program, will prevent the waiting programs
from executing the instruction at location X until loca-
tion X in instruction storage is consistent with data stor-
age, and then will cause any prefetched instructions to
be discarded.

lwz r0,flag #loop until flag = 1 (when 1 is
cmpwi r0,1 #   loaded, location X in inst’n
bne $-8 #   storage is consistent with 

#   location X in data storage)
isync #discard any prefetched inst’ns

In the preceding instruction sequence any context syn-
chronizing instruction (e.g., rfid) can be used instead of
isync.  (For Case 1 only isync can be used.)

For both cases, if two or more instructions in separate
data cache blocks have been modified, the dcbst
instruction in the examples must be replaced by a
sequence of dcbst instructions such that each block
containing the modified instructions is copied back to
main storage.  Similarly, for icbi the sequence must
invalidate each instruction cache block containing a
location of an instruction that was modified.  The sync
instruction that appears above between “dcbst X” and
“icbi X” would be placed between the sequence of
dcbst instructions and the sequence of icbi instruc-
tions.
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1.8.1 Concurrent Modification and 
Execution of Instructions
The phrase “concurrent modification and execution of
instructions” (CMODX) refers to the case in which a
processor fetches and executes an instruction from
instruction storage which is not consistent with data
storage or which becomes inconsistent with data stor-
age prior to the completion of its processing.  This sec-
tion describes the only case in which executing this
instruction under these conditions produces defined
results.

In the remainder of this section the following terminol-
ogy is used.

� Location X is an arbitrary word-aligned storage
location.

� X0 is the value of the contents of location X for
which software has made the location X in instruc-
tion storage consistent with data storage.

� X1, X2, ..., Xn are the sequence of the first n values
occupying location X after X0.

� Xn is the first value of X subsequent to X0 for which
software has again made instruction storage con-
sistent with data storage.

� The “patch class” of instructions consists of the I-
form Branch instruction (b[l][a]) and the preferred
no-op instruction (ori 0,0,0).

If the instruction from location X is executed after the
copy of location X in instruction storage is made consis-
tent for the value X0 and before it is made consistent for
the value Xn, the results of executing the instruction are
defined if and only if the following conditions are satis-
fied.

1. The stores that place the values X1, ..., Xn into
location X are atomic stores that modify all four
bytes of location X.

2. Each Xi, 0 ≤ i ≤ n, is a patch class instruction.

3. Location X is in storage that is Memory Coherence
Required.

If these conditions are satisfied, the result of each exe-
cution of an instruction from location X will be the exe-
cution of some Xi, 0 ≤ i ≤ n. The value of the ordinate i
associated with each value executed may be different
and the sequence of ordinates i associated with a
sequence of values executed is not constrained, (e.g.,
a valid sequence of executions of the instruction at
location X could be the sequence Xi, Xi+2, then Xi-1). If
these conditions are not satisfied, the results of each
such execution of an instruction from location X are
boundedly undefined, and may include causing incon-
sistent information to be presented to the system error
handler.

  

  

  

An example of how failure to satisfy the require-
ments given above can cause inconsistent informa-
tion to be presented to the system error handler is
as follows.  If the value X0 (an illegal instruction) is
executed, causing the system illegal instruction
handler to be invoked, and before the error handler
can load X0 into a register, X0 is replaced with X1,
an Add Immediate instruction, it will appear that a
legal instruction caused an illegal instruction
exception. 

It is possible to apply a patch or to instrument a
given program without the need to suspend or halt
the program.  This can be accomplished by modify-
ing the example shown in the Programming Note at
the end of Section 1.8 where one program  is creat-
ing instructions to be executed by one or more
other programs.

In place of the Store to a flag to indicate to the other
programs that the code is ready to be executed, the
program that is applying the patch would replace a
patch class instruction in the original program with
a Branch instruction that would cause any program
executing the Branch to branch to the newly cre-
ated code.  The first instruction in the newly created
code must be an isync, which will cause any
prefetched instructions to be discarded, ensuring
that the execution is consistent with the newly cre-
ated code.  The instruction storage location con-
taining the isync instruction in the patch area must
be consistent with data storage with respect to the
processor that will execute the patched code
before the Store which stores the new Branch
instruction is performed. 

It is believed that all processors that comply with
versions of the architecture that precede Version
2.01 support concurrent modification and execution
of instructions as described in this section if the
requirements given above are satisfied, and that
most such processors yield boundedly undefined
results if the requirements given above are not sat-
isfied.  However, in general such support has not
been verified by processor testing.  Also, one such
processor is known to yield undefined results in
certain cases if the requirements given above are
not satisfied.

Programming Note
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Chapter 2.  Effect of Operand Placement on Performance

2.1 Instruction Restart   . . . . . . . . . . . 356

The placement (location and alignment) of operands in
storage affects relative performance of storage
accesses, and may affect it significantly. The best per-
formance is guaranteed if storage operands are
aligned. In order to obtain the best performance across
the widest range of implementations, the programmer
should assume the performance model described in
Figure 1 with respect to the placement of storage oper-
ands for the Embedded environment. For the Server
environment, Figure 1 applies for Big-Endian byte
ordering, and Figure 2 applies for Little-Endian byte
ordering. Performance of storage accesses varies
depending on the following:

1. Operand Size
2. Operand Alignment
3. Crossing no boundary
4. Crossing a cache block boundary
5. Crossing a virtual page boundary

 

The Move Assist instructions have no alignment
requirements.

Figure 1. Performance effects of storage operand
placement

Operand Boundary Crossing

Size
Byte 
Align. None

Cache 
Block

Virtual 
Page2

Integer

8 Byte 8
4
<4

optimal
good
good

 -
good
good

-
good
good

4 Byte 4
<4

optimal
good

-
good

-
good

2 Byte 2
<2

optimal
good

 -
good

-
good

1 Byte  1 optimal - -

lmw,  
stmw

4
<4

good
poor

good
poor

good
poor

string good good good

Float

8 Byte 8
4
<4

optimal
good
poor

-
good
poor

-
poor
poor

4 Byte 4
<4

optimal
poor

-
poor

-
poor

Vector

any any optimal3 - -
1 If an instruction causes an access that is not 

atomic and any portion of the operand is in stor-
age that is Write Through Required or Caching 
Inhibited, performance is likely to be poor.

2 If the storage operand spans two virtual pages 
that have different storage control attributes or, in 
the Server environment, spans two segments, 
performance is likely to be poor.

3 The storage operands for Vector instructions are 
all assumed to be aligned (see Section 5.4 of 
Book I).
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Figure 2. [Category: Server] Performance effects
of storage operand placement, Little-
Endian

2.1 Instruction Restart   
In this section, “Load instruction” includes the Cache
Management and other instructions that are stated in
the instruction descriptions to be “treated as a Load”,
and similarly for “Store instruction”.

The following instructions are never restarted after hav-
ing accessed any portion of the storage operand
(unless the instruction causes a “Data Address Break-
point match”, for which the corresponding rules are
given in Book III).

1. A Store instruction that causes an atomic access
and, for the Embedded environment, accesses
storage that is Guarded

2. A Load instruction that causes an atomic access to
storage that is Guarded and, for the Server envi-
ronment, is also Caching Inhibited

Any other Load or Store instruction may be partially
executed and then aborted after having accessed a
portion of the storage operand, and then re-executed
(i.e., restarted, by the processor or the operating sys-
tem). If an instruction is partially executed, the contents
of registers are preserved to the extent that the correct
result will be produced when the instruction is re-exe-
cuted. Additional restrictions on the partial execution of
instructions are described in Section 6.6 of Book III-S
and Section 5.7 of Book III-E.

 

  

Operand Boundary Crossing

Size
Byte 
Align. None

Cache    
Block

Virtual 
Page2

       Integer

8 Byte 8
4
<4

optimal
poor
poor

-
poor
poor

-
poor
poor

4 Byte 4
<4

optimal
poor

-
poor

-
poor

2 Byte 2
<2

optimal
poor

-        
poor

-        
poor

1 Byte    1 optimal    -        -        

Float

8 Byte 8        
4        
<4       

optimal    
poor       
poor       

-        
poor     
poor     

-        
poor     
poor     

4 Byte 4
<4       

optimal
poor       

-
poor     

-
poor     

Vector

any any optimal3 - -
1 If an instruction causes an access that is not 

atomic and any portion of the operand is in stor-
age that is Write Through Required or Caching 
Inhibited, performance is likely to be poor.

2 If the storage operand spans two virtual pages 
that have different storage control attributes or, 
in the Server environment, spans two seg-
ments, performance is likely to be poor.

3 The storage operands for Vector instructions 
are all assumed to be aligned (see Section 5.4 
of Book I).

In order to ensure that the contents of registers are
preserved to the extent that a partially executed
instruction can be re-executed correctly, the regis-
ters that are preserved must satisfy the following
conditions. For any given instruction, zero or more
of the conditions applies.
� For a fixed-point Load instruction that is not a

multiple or string form, or for an eciwx instruc-
tion, if RT=RA or RT=RB then the contents of
register RT are not altered.

� For an update form Load or Store instruction,
the contents of register RA are not altered.

There are many events that might cause a Load or
Store instruction to be restarted.  For example, a
hardware error may cause execution of the instruc-
tion to be aborted after part of the access has been
performed, and the recovery operation could then
cause the aborted instruction to be re-executed.

When an instruction is aborted after being partially
executed, the contents of the instruction pointer
indicate that the instruction has not been executed,
however, the contents of some registers may have
been altered and some bytes within the storage
operand may have been accessed.  The following
are examples of an instruction being partially exe-
cuted and altering the program state even though it
appears that the instruction has not been executed.

1. Load Multiple, Load String:  Some registers in
the range of registers to be loaded may have
been altered.

2. Any Store instruction, dcbz: Some bytes of the
storage operand may have been altered.

Programming Note
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Chapter 3.  Storage Control Instructions

3.1 Parameters Useful to Application Pro-
grams . . . . . . . . . . . . . . . . . . . . . . . . . 357

3.2 Cache Management Instructions . 358
3.2.1 Instruction Cache Instructions . . 359
3.2.2 Data Cache Instructions . . . . . . 360
3.2.2.1 Obsolete Data Cache Instructions 

[Category: Vector.Phased-Out] . . . . . . 368
3.3 Synchronization Instructions. . . . . 369
3.3.1 Instruction Synchronize Instruction . 

369

3.3.2 Load and Reserve and Store Condi-
tional Instructions. . . . . . . . . . . . . . . . . 369

3.3.2.1 64-Bit Load and Reserve and 
Store Conditional Instructions [Category: 
64-Bit]  . . . . . . . . . . . . . . . . . . . . . . . . . 371

3.3.3 Memory Barrier Instructions. . . . 372
3.3.4 Wait Instruction. . . . . . . . . . . . . . 375

3.1 Parameters Useful to Application Programs 

It is suggested that the operating system provide a ser-
vice that allows an application program to obtain the fol-
lowing information.

1. The virtual page sizes
2. Coherence block size
3. Granule sizes for reservations
4. An indication of the cache model implemented

(e.g., Harvard-style cache, combined cache)
5. Instruction cache size
6. Data cache size
7. Instruction cache block size
8. Data cache block size
9. Instruction cache associativity

10. Data cache associativity
11. Number of stream IDs supported for the stream

variant of dcbt
12. Factors for converting the Time Base to seconds

If the caches are combined, the same value should be
given for an instruction cache attribute and the corre-
sponding data cache attribute.  
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3.2 Cache Management Instructions 

The Cache Management instructions obey the sequen-
tial execution model except as described in Section
3.2.1.

In the instruction descriptions the statements “this
instruction is treated as a Load” and “this instruction is
treated as a Store” mean that the instruction is treated
as a Load (Store) from (to) the addressed byte with
respect to address translation, the definition of program
order on page 341, storage protection, reference and
change recording<S>, and the storage access ordering
described in Section 1.7.1 and is treated as a Read
(Write) from (to) the addressed byte with respect to
debug events unless otherwise specified. (See Book III-
E.)

Some Cache Management instructions contain a CT
field that is used to specify a cache level within a cache
hierarchy or a portion of a cache structure to which the
instruction is to be applied. The correspondence
between the CT value specified and the cache level is
shown below.

CT values not shown above may be used to specify
implementation-dependent cache levels or implemen-
tation-dependent portions of a cache structure.

CT Field Value Cache Level
0 Primary Cache
2 Secondary Cache
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3.2.1 Instruction Cache Instructions

Instruction Cache Block Invalidate X-form 

icbi RA,RB 

Let the effective address (EA) be the sum (RA|0)+(RB).

If the block containing the byte addressed by EA is in
storage that is Memory Coherence Required and a
block containing the byte addressed by EA is in the
instruction cache of any processors, the block is invali-
dated in those instruction caches.

If the block containing the byte addressed by EA is in
storage that is not Memory Coherence Required and
the block is in the instruction cache of this processor,
the block is invalidated in that instruction cache.

The function of this instruction is independent of
whether the block containing the byte addressed by EA
is in storage that is Write Through Required or Caching
Inhibited.

This instruction is treated as a Load (see Section 3.2),
except that reference and change recording<S> need
not be done.

Special Registers Altered:
None

  

  

Instruction Cache Block Touch X-form 

icbt CT, RA, RB 
[Category: Embedded]

Let the effective address (EA) be the sum (RA|0)+(RB).

If CT=0, this instruction provides a hint that the program
will probably soon execute code from the addressed
location.

If CT≠0, the operation performed by this instruction is
implementation-dependent, except that the instruction
is treated as a no-op for values of CT that are not
implemented.

The hint is ignored if the block is Caching Inhibited.

This instruction treated as a Load (see Section 3.2),
except that the system instruction storage error handler
is not invoked.

Special Registers Altered:
None

31 /// RA RB 982 /
0 6 11 16 21 31

Because the instruction is treated as a Load, the
effective address is translated using translation
resources that are used for data accesses, even
though the block being invalidated was copied into
the instruction cache based on translation
resources used for instruction fetches (see Book
III).

The invalidation of the specified block need not
have been performed with respect to the processor
executing the icbi instruction until a subsequent
isync instruction has been executed by that pro-
cessor.  No other instruction or event has the corre-
sponding effect.

Programming Note
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31 / CT RA RB 22 /
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3.2.2 Data Cache Instructions 

Data Cache Block Allocate   X-form  

dcba RA,RB
[Category: Embedded]

Let the effective address (EA) be the sum (RA|0)+(RB).

This instruction provides a hint that the program will
probably soon store into a portion of the block and the
contents of the rest of the block are not meaningful to
the program. The contents of the block are undefined
when the instruction completes. The hint is ignored if
the block is Caching Inhibited.

This instruction is treated as a Store (see Section 3.2)
except that the instruction is treated as a no-op if exe-
cution of the instruction would cause the system data
storage error handler to be invoked.

Special Registers Altered:
    None

Data Cache Block Touch X-form 

dcbt RA,RB,TH [Category: Server]
dcbt TH,RA,RB [Category: Embedded] 

Let the effective address (EA) be the sum (RA|0)+(RB).

The dcbt instruction provides a hint that describes a
block or data stream, or indicates the expected use
thereof. A hint that the program will probably soon load
from a given storage location is ignored if the location is
Caching Inhibited or, for the Server environment,
Guarded.

The only operation that is “caused” by the dcbt instruc-
tion is the providing of the hint.  The actions (if any)
taken by the processor in response to the hint are not
considered to be “caused by” or “associated with” the
dcbt instruction (e.g., dcbt is considered not to cause
any data accesses).  No means are provided by which
software can synchronize these actions with the execu-
tion of the instruction stream.  For example, these
actions are not ordered by the memory barrier created
by a sync instruction.

The dcbt instruction may complete before the opera-
tion it causes has been performed.

The nature of the hint depends, in part, on the value of
the TH field, as specified below. If TH≠0b1010 this
instruction is treated as a Load (see Section 3.2),
except that the system data storage error handler is not
invoked, and reference and change recording<S> need
not be done.

Special Registers Altered:
    None

Extended Mnemonics:

Extended mnemonics are provided for the Data Cache
Block Touch instruction so that it can be coded with the
TH value as the last operand for all categories. 

31 /// RA RB 758 /
0 6 11 16 21 31

31 / TH RA RB 278 /
0 6 7 11 16 21 31

Extended: Equivalent to:
dcbtct RA,RB,TH dcbt for TH values of 0b0000 - 

0b0111; 
other TH values are invalid.

dcbtds RA,RB,TH dcbt for TH values of 0b0000 or 
0b1000 - 0b1010;

 other TH values are invalid.
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TH Field

For all TH field values which are not listed below, the
hint provided by the instruction is undefined.

TH=0b0000

If TH=0b0000, the dcbt instruction provides a hint that
the program will probably soon load from the block con-
taining the byte addressed by EA.

TH=0b0000 - 0b0111 
[Category: Cache Specification]

In addition to the hint specified above for the TH field
value of 0b0000, an additional hint is provided indicat-
ing that placement of the block in the cache specified
by the TH field might also improve performance. The
correspondence between each value of the TH field
and the cache to be specified is the same as the corre-
spondence between each value the CT field and the
cache to be specified as defined in Section 3.2. The
hints corresponding to values of the TH field not sup-
ported by the implementation are undefined.

TH=0b1000 - 0b1111 [Category: Stream]

The hints provided by the dcbt instruction provide a
hint regarding a sequence of contiguous data cache
blocks, or indicates the expected use thereof.  Such a
sequence is called a “data stream”, and a dcbt instruc-
tion in which TH is set to one of these values  is said to
be a “data stream variant” of dcbt.  In the remainder of
this section, “data stream” may be abbreviated to
“stream”.

When, and how often, effective addresses for a data
stream are translated is implementation-dependent.

The address and length of such data streams are spec-
ified in terms of aligned 128-byte units of storage; in the
remainder of this instruction description, “aligned 128-
byte unit of storage” is abbreviated to “unit”.

Each such data stream is associated, by software, with
a stream ID, which is a resource that the processor
uses to distinguish the data stream from other such
data streams.  The number of stream IDs is an imple-
mentation-dependent value in the range 1:16.  Stream
IDs are numbered sequentially starting from 0.

The encodings of the TH field and of the corresponding
EA values, are as follows.  In the EA layout diagrams,
fields shown as “/”s are reserved.  These fields, and
reserved values of defined EA fields, are treated in the
same manner as the corresponding cases for instruc-

tion fields (see the section entitled “Reserved Fields
and Reserved Values” in Book I), except that a
reserved value in a defined EA field does not make the
instruction form invalid.  If a defined EA field contains a
reserved value, the hint provided by the instruction is
undefined.

TH Description

1000 The dcbt instruction provides a hint that
describes certain attributes of a data stream,
and  may indicate that the program will proba-
bly soon load from the stream.

The EA is interpreted as follows.

Bit(s) Description

0:56 EATRUNC

High-order 57 bits of effective address
of first unit of data stream (i.e., the
effective address of the first unit of the
stream is EATRUNC || 70)

57 Direction (D)

0 Subsequent units are the sequen-
tially following units.

1 Subsequent units are the sequen-
tially preceding units.

58 Unlimited/GO (UG)

0 No information is provided by the
UG field.

1 The number of units in the data
stream is unlimited, the program’s
need for each block of the stream is
not likely to be transient, and the
program will probably soon load
from the stream.

59 Reserved

60:63 Stream ID (ID)

Stream ID to use for this data stream

1010 The dcbt instruction provides a hint that
describes certain attributes of a data stream,
or indicates that the program will probably
soon load from data streams that have been
described using dcbt instructions in which
TH0=1 or will probably no longer load from
such data streams.

The EA is interpreted as follows. If GO=1 and
S≠0b00 the hint provided by the instruction is
undefined; the remainder of this instruction

New programs should avoid using the dcbt and
dcbtst mnemonics; one of the extended mnemon-
ics should be used exclusively.

<S> If the dcbt mnemonic is used with only two
operands, the TH operand assumed to be 0b0000.

Programming Note
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description assumes that this combination is
not used.

Bit(s) Description

0:31 Reserved

32 GO

0 No information is provided by the
GO field.

1 The program will probably soon
load from all nascent data streams
that have been completely
described, and will probably no
longer load from all other nascent
data streams. All other fields of the
EA are ignored.  (“Nascent” and
“completely described” are defined
below.)

33:34 Stop (S)

00 No information is provided by the S
field.

01 Reserved
10 The program will probably no

longer load from the data stream (if
any) associated with the specified
stream ID.  (All other fields of the
EA except the ID field are ignored.)

11 The program will probably no
longer load from the data streams
associated with all stream IDs.  (All
other fields of the EA are ignored.)

35:46 Reserved

47:56 UNITCNT

Number of units in data stream

57 Transient (T)

If T=1, the program’s need for each
block of the data stream is likely to be
transient (i.e., the time interval during
which the program accesses the block
is likely to be short).

58 Unlimited (U)

If U=1, the number of units in the data
stream is unlimited (and the UNITCNT
field is ignored).

59 Reserved

60:63 Stream ID (ID)

Stream ID to use for this data stream
(GO=0 and S=0b00), or stream ID
associated with the data stream from
which the program will probably no
longer load (S=0b10)

If the specified stream ID value is greater than m -1,
where m is the number of stream IDs provided by the
implementation, and either (a) TH=0b1000 or
(b) TH=0b1010 and GO=0 and S≠0b11, no hint is pro-
vided by the instruction.

 

The following terminology is used to describe the state
of a data stream. Except as described in the paragraph
after the next paragraph, the state of a data stream at a
given time is determined by the most recently provided
hint for the stream.

� A data stream for which only descriptive hints have
been provided (by dcbt instructions with
TH=0b1000 and UG=0 or with TH=0b1010 and
GO=0 and S=0b00) is said to be “nascent”. A
nascent data stream for which both kinds of
descriptive hint have been provided (by both of the
dcbt usages listed in the preceding sentence) is
considered to be “completely described”.

� A data stream for which a hint has been provided
(by a dcbt instruction with TH=0b1000 and UG=1
or with TH=0b1010 and GO=1) that the program
will probably soon load from it is said to be “active”.

� A data stream that is either nascent or active is
considered to “exist”.

� A data stream for which a hint has been provided
(e.g., by a dcbt instruction with TH=0b1010 and
S≠0b00) that the program will probably no longer
load from it is considered no longer to exist.

The hint provided by a dcbt instruction with
TH=0b1000 and UG=1 implicitly includes a hint that the
program will probably no longer load from the data
stream (if any) previously associated with the specified
stream ID. The hint provided by a dcbt instruction with
TH=0b1000 and UG=0 or with TH=0b1010 and GO=0
and S=0b00 implicitly includes a hint that the program
will probably no longer load from the active data stream
(if any) previously associated with the specified stream
ID.

Interrupts (see Book III) cause all existing data streams
to cease to exist.  In addition, depending on the imple-
mentation, certain conditions and events may cause an
existing data stream to cease to exist.

/// GO S /// UNITCNT T U / ID
0 32 35 47 57 59 60 63
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Programming Note

To obtain the best performance across the widest range
of implementations that support the variants of dcbt in
which TH0=1, the programmer should assume the fol-
lowing model when using those variants.

� The processor’s response to a hint that the pro-
gram will probably soon load from a given data
stream is to take actions that reduce the latency of
loads from the first few blocks of the stream. (Such
actions may include prefetching the blocks into lev-
els of the storage hierarchy that are “near” the pro-
cessor.)  Thereafter, as the program loads from
each successive block of the stream, the proces-
sor takes latency-reducing actions for additional
blocks of the stream, pacing these actions with the
program’s loads (i.e., taking the actions for only a
limited number of blocks ahead of the block that
the program is currently loading from).

The processor’s response to a hint that the pro-
gram will probably no longer load from a given data
stream, or to the cessation of existence of a data
stream, is to stop taking latency-reducing actions
for the stream.

� A data stream having finite length ceases to exist
when the latency-reducing actions have been
taken for all blocks of the stream.

� If the program ceases to need a given data stream
before having loaded from all blocks of the stream
(always the case for streams having unlimited
length), performance may be improved if the pro-
gram then provides a hint that it will no longer load

from the stream (e.g., by executing the appropriate
dcbt instruction with TH=0b1010 and S≠0b00).

� At each level of the storage hierarchy that is “near”
the processor, blocks of a data stream that is spec-
ified as transient are most likely to be replaced.  As
a result, it may be desirable to stagger addresses
of streams (choose addresses that map to different
cache congruence classes) to reduce the likeli-
hood that a unit of a transient stream will be
replaced prior to being accessed by the program.

� On some implementations, data streams that are
not specified by software may be detected by the
processor.  Such data streams are called “hard-
ware-detected data streams”.  On some such
implementations, data stream resources
(resources that are used primarily to support data
streams) are shared between software-specified
data streams and hardware-detected data
streams.  On these latter implementations, the pro-
gramming model includes the following.

- Software-specified data streams take prece-
dence over hardware-detected data streams
in use of data stream resources.

- The processor’s response to a hint that the
program will probably no longer load from a
given data stream, or to the cessation of exist-
ence of a data stream, includes releasing the
associated data stream resources, so that
they can be used by hardware-detected data
streams.
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Programming Note

This Programming Note describes several aspects of
using dcbt instructions in which TH0=1.

� A non-transient data stream having unlimited
length can be completely specified, including pro-
viding the hint that the program will probably soon
load from it, using one dcbt instruction. The corre-
sponding specification for a data stream having
other attributes requires three dcbt instructions.
However, one dcbt instruction with TH=0b1010
and GO=1 can apply to a set of the data streams
described in the preceding sentence, so the corre-
sponding specification for n such data streams
requires 2×n+1 dcbt instructions. (There is no
need to execute a dcbt instruction with
TH=0b1010 and S=0b10 for a given stream ID
before using the stream ID for a new data stream;
the implicit portion of the hint provided by dcbt
instructions that describe data streams suffices.)

� If it is desired that the hint provided by a given dcbt
instruction be provided in program order with
respect to the hint provided by another dcbt
instruction, the two dcbt instructions must be sep-
arated by an eieio<S> (or sync) instruction. For
example, if a dcbt instruction with TH=0b1010 and
GO=1 is intended to indicate that the program will
probably soon load from nascent data streams
described (completely) by preceding dcbt instruc-
tions, and is intended not to indicate that the pro-
gram will probably soon load from nascent data
streams described (completely) by following dcbt
instructions, an eieio<S> (or sync) instruction
must separate the dcbt instruction with GO=1 from
the preceding dcbt instructions, and another

eieio<S> (or sync) instruction must separate that
dcbt instruction from the following dcbt instruc-
tions.

� In practice, the second eieio<S> (or sync)
described above can sometimes be omitted.  For
example, if the program consists of an outer loop
that contains the dcbt instructions and an inner
loop that contains the Load instructions that load
from the data streams, the characteristics of the
inner loop and of the implementation’s branch pre-
diction mechanisms may make it highly unlikely
that hints corresponding to a given iteration of the
outer loop will be provided out of program order
with respect to hints corresponding to the previous
iteration of the outer loop.  (Also, any providing of
hints out of program order affects only perfor-
mance, not program correctness.)

� To mitigate the effects of interrupts on data
streams, it may be desirable to specify a given
“logical” data stream as a sequence of shorter,
component data streams.  Similar considerations
apply to conditions and events that, depending on
the implementation, may cause an existing data
stream to cease to exist.

� If it is desired to specify data streams without
regard to the number of stream IDs provided by the
implementation, stream IDs should be assigned to
data streams in order of decreasing stream impor-
tance (stream ID 0 to the most important stream,
stream ID 1 to the next most important stream,
etc.).  This order ensures that the hints for the most
important data streams will be provided.
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Data Cache Block Touch for Store  X-form 

dcbtst RA,RB [Category: Server]
dcbtst TH,RA,RB [Category: Embedded]  

Let the effective address (EA) be the sum (RA|0)+(RB).

The dcbtst instruction provides a hint that the program
will probably soon store to the block containing the byte
addressed by EA. If the Cache Specification category
is supported, the nature of the hint depends on the
value of the TH field, as specified below. If the Cache
Specification category is not supported, the TH field is
treated as a reserved field.

The hint is ignored if the block is in a storage location
that is Caching Inhibited or, for the Server environment,
Guarded.

The only operation that is “caused by” the dcbtst
instruction is the providing of the hint. The actions (if
any) taken by the processor in response to the hint are
not considered to be “caused by” or “associated with”
the dcbtst instruction (e.g., dcbtst is considered not to
cause any data accesses). No means are provided by
which software can synchronize these actions with the
execution of the instruction stream. For example, these
actions are not ordered by memory barriers.

The dcbtst instruction may complete before the opera-
tion it causes has been performed.

This instruction is treated as a Load (see Section 3.2),
except that the system data storage error handler is not
invoked, and reference and change recording<S> need
not be done.

TH Field [Category: Cache Specification]

For all TH field values which the are not listed below,
the hint provided by the instruction is undefined.

TH=0b0000 - 0b0111 [Category: Cache Specifica-
tion]

In addition to the hint provided if the Cache Specifica-
tion category is not supported, a hint is provided indi-
cating that placement of the block in the cache
specified by the TH field might also improve perfor-
mance. The correspondence between each value of
the TH field and the cache to be specified is the same
as the correspondence between each value of the CT
field and the cache to be specified as defined in Sec-
tion 3.2. The hints corresponding to values of the TH
field not supported by the implementation are unde-
fined.

Special Registers Altered:
None

Extended Mnemonic:

An extended mnemonic is provided for the Data Cache
Block Touch for Store instruction so that it can be coded
with the TH value as the last operand for all categories.
.

 

  

31 / TH RA RB 246 /
0 6 7 11 16 21 31 Extended: Equivalent to:

dcbtstct RA,RB,TH dcbt for TH values of 0b0000 or 
0b0000 - 0b0111; 

    other TH values are invalid 
for this extended mnemonic.

See the Programming Notes for the dcbt instruc-
tion.

The processor's response to the hint provided by
dcbt or dcbtst is to take actions that reduce the
latency of subsequent loads or stores that access
the specified block.  (Such actions may include
prefetching the block into levels of the storage hier-
archy that are "near" the processor.)

Processors that comply with versions of the archi-
tecture that precede Version 2.01 do not necessar-
ily ignore the hint provided by dcbt and dcbtst if
the specified block is in storage that is Guarded
and not Caching Inhibited. 

Programming Note
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Data Cache Block set to Zero  X-form 

dcbz RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
n � block size (bytes)
m � log2(n)
ea � EA0:63-m || 

m0
MEM(ea, n) � n0x00

Let the effective address (EA) be the sum (RA|0)+(RB).

All bytes in the block containing the byte addressed by
EA are set to zero.

This instruction is treated as a Store (see Section 3.2).

Special Registers Altered:
None

 

Data Cache Block Store  X-form 

dcbst RA,RB 

Let the effective address (EA) be the sum (RA|0)+(RB).

If the block containing the byte addressed by EA is in
storage that is Memory Coherence Required and a
block containing the byte addressed by EA is in the
data cache of any processor and any locations in the
block are considered to be modified there, those loca-
tions are written to main storage, additional locations in
the block may be written to main storage, and the block
ceases to be considered to be modified in that data
cache.

If the block containing the byte addressed by EA is in
storage that is not Memory Coherence Required  and
the block is in the data cache of this processor and any
locations in the block are considered to be modified
there, those locations are written to main storage, addi-
tional locations in the block may be written to main stor-
age, and the block ceases to be considered to be
modified in that data cache.

The function of this instruction is independent of
whether the block containing the byte addressed by EA
is in storage that is Write Through Required or Caching
Inhibited.

This instruction is treated as a Load (see Section 3.2),
except that reference and change recording<S> need
not be done, and it is treated as a Write with respect to
debug events.

Special Registers Altered:
None

31 /// RA RB 1014 /
0 6 11 16 21 31

dcbz does not cause the block to exist in the data
cache if the block is in storage that is Caching
Inhibited.

For storage that is neither Write Through Required
nor Caching Inhibited, dcbz provides an efficient
means of setting blocks of storage to zero.  It can
be used to initialize large areas of such storage, in
a manner that is likely to consume less memory
bandwidth than an equivalent sequence of Store
instructions.

For storage that is either Write Through Required
or Caching Inhibited, dcbz is likely to take signifi-
cantly longer to execute than an equivalent
sequence of Store instructions. For example, on
some implementations dcbz for such storage may
cause the system alignment error handler to be
invoked; on such implementations the system
alignment error handler sets the specified block to
zero  using Store instructions.

See Section 5.9.1 of Book III-S and Section 4.9.1
of Book III-E. for additional information about dcbz.

31 /// RA RB 54 /
0 6 11 16 21 31

Programming Note
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Data Cache Block Flush  X-form 

dcbf RA,RB,L

Let the effective address (EA) be the sum (RA|0)+(RB).

 L=0

If the block containing the byte addressed by EA is
in storage that is Memory Coherence Required
and a block containing the byte addressed by EA is
in the data cache of any processor and any loca-
tions in the block are considered to be modified
there, those locations are written to main storage
and additional locations in the block may be written
to main storage.  The block is invalidated in the
data caches of all processors. 

If the block containing the byte addressed by EA is
in storage that is not Memory Coherence Required
and the block is in the data cache of this processor
and any locations in the block are considered to be
modified there, those locations are written to main
storage and additional locations in the block may
be written to main storage.  The block is invalidated
in the data cache of this processor. 

L=1 (“dcbf local”) [Category: Server Phased-In] 

The L=1 form of the dcbf instruction permits a pro-
gram to limit the scope of the “flush” operation to
the data cache of a single processor. If the block
containing the byte addressed by EA is in the data
cache of this processor and any locations in the
block are considered to be modified there, those
locations are written to main storage and additional
locations in the block may be written to main stor-
age. The block is invalidated in the data cache of
this processor. 

The function of this instruction is independent of
whether the block containing the byte addressed by EA
is in storage that is Write Through Required or Caching
Inhibited. If L=1, the function of this instruction is also
independent of whether the block containing the byte
addressed by EA is in storage that is Memory Coher-
ence Required. 

This instruction is treated as a Load (see Section 3.2),
except that reference and change recording<S> need
not be done, and it is treated as a Write with respect to
debug events.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics are provided for the Data Cache
Block Flush instruction so that it can be coded with the
L value as part of the mnemonic rather than as a

numeric operand. These are shown as examples with
the instruction. See Appendix A. “Assembler Extended
Mnemonics” on page 383. The extended mnemonics
are shown below.

Except in the dcbf instruction description in this sec-
tion, references to “dcbf” in Books I-III imply L=0
unless otherwise stated or obvious from context;
“dcbfl<S>“ is used for L=1. 

  

 

  

31 /// L RA RB 86 /
0 6 10 11 16 21 31 Extended: Equivalent to:

dcbf RA,RB dcbf RA,RB,0
dcbfl RA,RB<S> dcbf RA,RB,1

dcbf serves as both a basic and an extended mne-
monic.  The Assembler will recognize a dcbf mne-
monic with three operands as the basic form, and a
dcbf mnemonic with two operands as the extended
form.  In the extended form the L operand is omit-
ted and assumed to be 0. 

dcbf with L=1 can be used to cause a block that
will not be reused soon to be removed from the
processor's data cache, and thereby potentially to
cause that data cache to be used more efficiently.

The functions provided by dcbf with L=1 are identi-
cal to those that would be provided if L were 0 and
the specified block were in storage that is not Mem-
ory Coherence Required.

Programming Note

Programming Note [Category: Server]
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3.2.2.1 Obsolete Data Cache Instruc-
tions [Category: Vector.Phased-Out]
The Data Stream Touch (dst), Data Stream Touch for
Store (dstst), and Data Stream Stop (dss) instructions
(primary opcode 31, extended opcodes 342, 374, and
822 respectively), which were proposed for addition to
the Power ISA and were implemented by some proces-
sors, may be treated as no-ops (rather than as illegal
instructions).

The treatment of these instructions (no-op or illegal
instruction) is independent of whether other Vector
instructions are available (i.e., is independent of the
contents of MSRVEC<S> (see Book III-S) or MSRSPV
(see Book III-E).

 

These instructions merely provided hints, and thus
were permitted to be treated as no-ops even on
processors that implemented them.

The treatment of these instructions is independent
of whether other Vector instructions are available
because, on processors that implemented the
instructions, the instructions were available even
when other Vector instructions were not.

The extended mnemonics for these instructions
were dstt, dststt,  and  dssall. 

Programming Note
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3.3 Synchronization Instructions

The synchronization instructions are used to ensure
that certain instructions have completed before other

instructions are initiated, or to control storage access
ordering, or to support debug operations.

3.3.1 Instruction Synchronize 
Instruction

Instruction Synchronize   XL-form 

isync 

Executing an isync instruction ensures that all instruc-
tions preceding the isync instruction have completed
before the isync instruction completes, and that no
subsequent instructions are initiated until after the
isync instruction completes.  It also ensures that all
instruction cache block invalidations caused by icbi
instructions preceding the isync instruction have been
performed with respect to the processor executing the
isync instruction, and then causes any prefetched
instructions to be discarded.

Except as described in the preceding sentence, the
isync instruction may complete before storage
accesses associated with instructions preceding the
isync instruction have been performed.

This instruction is context synchronizing (see Book III).

Special Registers Altered:
None

3.3.2 Load and Reserve and Store 
Conditional Instructions
The Load And Reserve and Store Conditional instruc-
tions can be used to construct a sequence of instruc-
tions that appears to perform an atomic update
operation on an aligned storage location. See
Section 1.7.3, “Atomic Update” for additional informa-
tion about these instructions.

The Load And Reserve and Store Conditional instruc-
tions are fixed-point Storage Access instructions; see
Section 3.3.1, “Fixed-Point Storage Access Instruc-
tions”, in Book I.

The storage location specified by the Load And
Reserve and Store Conditional instructions must be in
storage that is Memory Coherence Required if the loca-
tion may be modified by other processors or mecha-
nisms. If the specified location is in storage that is Write
Through Required or Caching Inhibited, the system
data storage error handler or the system alignment
error handler is invoked for the Server environment and
may be invoked for the Embedded environment.

  

  

19 /// /// /// 150 /
0 6 11 16 21 31

The Memory Coherence Required attribute on
other processors and mechanisms ensures that
their stores to the reservation granule will cause
the reservation created by the Load And Reserve
instruction to be lost.

Because the Load And Reserve and Store Condi-
tional instructions have implementation dependen-
cies (e.g., the granularity at which reservations are
managed), they must be used with care.  The oper-
ating system should provide system library pro-
grams that use these instructions to implement the
high-level synchronization functions (Test and Set,
Compare and Swap, locking, etc.; see Appendix B)
that are needed by application programs.  Applica-
tion programs should use these library programs,
rather than use the Load And Reserve and Store
Conditional instructions directly.

Programming Note

Programming Note
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Load Word And Reserve Indexed  X-form 

lwarx RT,RA,RB 

if RA = 0 then b � 0
else           b � (RA)
EA � b +(RB)
RESERVE � 1
RESERVE_ADDR � real_addr(EA)
RT � 320 || MEM(EA, 4)

Let the effective address (EA) be the sum (RA|0)+(RB).
The word in storage addressed by EA is loaded into
RT32:63. RT0:31 are set to 0.

This instruction creates a reservation for use by a Store
Word Conditional instruction. An address computed
from the EA as described in Section 1.7.3.1 is associ-
ated with the reservation, and replaces any address
previously associated with the reservation.

EA must be a multiple of 4.  If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

Special Registers Altered:
None

 

Store Word Conditional Indexed  X-form 

stwcx. RS,RA,RB 

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
if RESERVE then

if RESERVE_ADDR = real_addr(EA) then
    MEM(EA, 4) � (RS)32:63
    CR0 � 0b00 || 0b1 || XERSO

else
    u1 � undefined 1-bit value
    if u1 then
      MEM(EA, 4) � (RS)32:63
    u2 � undefined 1-bit value
    CR0 � 0b00 || u2 || XERSO

RESERVE � 0
else

CR0 � 0b00 || 0b0 || XERSO

Let the effective address (EA) be the sum (RA|0)+(RB).

If a reservation exists and the storage location specified
by the stwcx. is the same as the location specified by
the Load And Reserve instruction that established the
reservation, (RS)32:63 are stored into the word in stor-
age addressed by EA and the reservation is cleared.

If a reservation exists but the storage location specified
by the stwcx. is not the same as the location specified
by the Load And Reserve instruction that established
the reservation, the reservation is cleared, and it is
undefined whether (RS)32:63 are stored into the word in
storage addressed by EA.

If a reservation does not exist, the instruction com-
pletes without altering storage.

CR Field 0 is set as follows. n is a 1-bit value that indi-
cates whether the store was performed, except that if a
reservation exists but the storage location specified by
the stwcx. is not the same as the location specified by
the Load And Reserve instruction that established the
reservation the value of n is undefined.

CR0LT GT EQ SO = 0b00 || n || XERSO

EA must be a multiple of 4. If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

Special Registers Altered:
CR0

31 RT RA RB 20 /
0 6 11 16 21 31

31 RS RA RB 150 1
0 6 11 16 21 31
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3.3.2.1 64-Bit Load and Reserve and Store Conditional Instructions [Category: 64-Bit]

Store Doubleword Conditional Indexed 
X-form 

stdcx. RS,RA,RB 

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
if RESERVE then
  if RESERVE_ADDR = real_addr(EA) then
    MEM(EA, 8) � (RS)
    CR0 � 0b00 || 0b1 || XERSO
  else
    u1 � undefined 1-bit value
    if u1 then
      MEM(EA, 8) � (RS)
    u2 � undefined 1-bit value
    CR0 � 0b00 || u2 || XERSO
  RESERVE � 0
else
  CR0 � 0b00 || 0b0 || XERSO

Let the effective address (EA) be the sum (RA|0)+(RB).

If a reservation exists and the storage location specified
by the stdcx. is the same as the location specified by
the Load And Reserve instruction that established the
reservation, (RS) is stored into the doubleword in stor-
age addressed by EA and the reservation is cleared.

If a reservation exists but the storage location specified
by the stdcx. is not the same as the location specified
by the Load And Reserve instruction that established
the reservation, the reservation is cleared, and it is
undefined whether (RS) is stored into the doubleword
in storage addressed by EA.

If a reservation does not exist, the instruction com-
pletes without altering storage.

CR Field 0 is set as follows. n is a 1-bit value that indi-
cates whether the store was performed, except that if a
reservation exists but the storage location specified by
the stdcx. is not the same as the location specified by
the Load And Reserve instruction that established the
reservation the value of n is undefined.

CR0LT GT EQ SO = 0b00 || n || XERSO

EA must be a multiple of 8. If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

Special Registers Altered:
CR0

Load Doubleword And Reserve Indexed
X-form 

ldarx RT,RA,RB 

if RA = 0 then b � 0
else           b � (RA)
EA � b +(RB)
RESERVE � 1
RESERVE_ADDR � real_addr(EA)
RT � MEM(EA, 8)

Let the effective address (EA) be the sum (RA|0)+(RB).
The doubleword in storage addressed by EA is loaded
into RT.

This instruction creates a reservation for use by a Store
Doubleword Conditional instruction. An address com-
puted from the EA as described in Section 1.7.3.1 is
associated with the reservation, and replaces any
address previously associated with the reservation.

EA must be a multiple of 8.  If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

Special Registers Altered:
None

31 RS RA RB 214 1
0 6 11 16 21 31

31 RT RA RB 84 /
0 6 11 16 21 31
Chapter 3. Storage Control Instructions 371



   Version 2.04
3.3.3 Memory Barrier Instructions
The Memory Barrier instructions can be used to control
the order in which storage accesses are performed.
Additional information about these instructions and
about related aspects of storage management can be
found in Book III.

Extended mnemonics for Synchronize
Extended mnemonics are provided for the Synchronize
instruction so that it can be supported by assemblers
that recognize only the msync<E> mnemonic and so
that it can be coded with the L value as part of the mne-
monic rather than as a numeric operand. These are
shown as examples with the instruction. See Appendix
A. “Assembler Extended Mnemonics” on page 383.

Synchronize  X-form  

sync L 

The sync instruction creates a memory barrier (see
Section 1.7.1). The set of storage accesses that is
ordered by the memory barrier depends on the value of
the L field.

L=0 (“heavyweight sync”)

The memory barrier provides an ordering function
for the storage accesses associated with all
instructions that are executed by the processor
executing the sync instruction.  The applicable
pairs are all pairs ai,bj in which bj is a data access,
except that if ai is the storage access caused by an
icbi instruction then bj may be performed with
respect to the processor executing the sync
instruction before ai is performed with respect to
that processor.

L=1 (“lightweight sync”)<S>

The memory barrier provides an ordering function
for the storage accesses caused by Load, Store,
and dcbz instructions that are executed by the pro-
cessor executing the sync instruction and for
which the specified storage location is in storage
that is Memory Coherence Required and is neither
Write Through Required nor Caching Inhibited.
The applicable pairs are all pairs ai,bj of such
accesses except those in which ai is an access
caused by a Store or dcbz instruction and bj is an
access caused by a Load instruction.

L=2<S>

The set of storage accesses that is ordered by the
memory barrier is described in Section 5.9.2 of
Book III-S and Section 4.9.3 of Book III-E, as are
additional properties of the sync instruction with
L=2.

The ordering done by the memory barrier is cumulative.

If L=0 (or L=2<S>), the sync instruction has the follow-
ing additional properties.

� Executing the sync instruction ensures that all
instructions preceding the sync instruction have
completed before the sync instruction completes,
and that no subsequent instructions are initiated
until after the sync instruction completes.

� The sync instruction is execution synchronizing
(see Book III). However, address translation and
reference and change recording<S> (see Book III)
associated with subsequent instructions may be
performed before the sync instruction completes.

� The memory barrier provides the additional order-
ing function such that if a given instruction that is
the result of a store in set B is executed, all appli-
cable storage accesses in set A have been per-
formed with respect to the processor executing the
instruction to the extent required by the associated
memory coherence properties. The single excep-
tion is that any storage access in set A that is
caused by an icbi instruction executed by the pro-
cessor executing the sync instruction (P1) may not
have been performed with respect to P1 (see the
description of the icbi instruction on page 359).

The cumulative properties of the barrier apply to
the execution of the given instruction as they would
to a load that returned a value that was the result
of a store in set B. 

� The sync instruction provides an ordering function
for the operations caused by dcbt instructions with
TH0=1.

The value L=3 is reserved.

The sync instruction may complete before storage
accesses associated with instructions preceding the
sync instruction have been performed.  The sync
instruction may complete before operations caused by
dcbt instructions with TH0=1 preceding the sync
instruction have been performed.

Special Registers Altered:
None

31 /// L /// /// 598 /
0 6 9 11 16 21 31
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Extended Mnemonics:

Extended mnemonics for Synchronize: 

Except in the sync instruction description in this sec-
tion, references to “sync” in Books I-III imply L=0
unless otherwise stated or obvious from context; the
appropriate extended mnemonics are used when other
L values are intended.

  

  

  

  

Extended: Equivalent to:
sync sync   0
msync<E> sync   0
lwsync<S> sync   1
ptesync<S> sync   2

Section 1.8 contains a detailed description of how
to modify instructions such that a well-defined
result is obtained.

sync serves as both a basic and an extended mne-
monic.  The Assembler will recognize a sync mne-
monic with one operand as the basic form, and a
sync mnemonic with no operand as the extended
form.  In the extended form the L operand is omit-
ted and assumed to be 0.

Programming Note

Programming Note

The sync instruction can be used to ensure that all
stores into a data structure, caused by Store
instructions executed in a “critical section” of a pro-
gram, will be performed with respect to another
processor before the store that releases the lock is
performed with respect to that processor; see
Section B.2, “Lock Acquisition and Release, and
Related Techniques” on page 387.

The memory barrier created by a sync instruction
with L=0 or L=1 does not order implicit storage
accesses.  The memory barrier created by a sync
instruction with any L value does not order instruc-
tion fetches.

(The memory barrier created by a sync instruction
with L=0 – or L=2<S>; see Book III – appears to
order instruction fetches for instructions preceding
the sync instruction with respect to data accesses
caused by instructions following the sync instruc-
tion.  However, this ordering is a consequence of
the first “additional property” of sync with L=0, not
a property of the memory barrier.)

In order to obtain the best performance across the
widest range of implementations, the programmer
should use the sync instruction with L=1, or the
eieio<S> or mbar<E> instruction, if any of these is
sufficient for his needs; otherwise he should use
sync with L=0. sync with L=2<S> should not be
used by application programs.

The functions provided by sync with L=1 are a
strict subset of those provided by sync with L=0.
(The functions provided by sync with L=2<S> are a
strict superset of those provided by sync with L=0;
see Book III.)

Programming Note

Programming Note
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Enforce In-order Execution of I/O  X-form 

eieio  
[Category: Server]

The eieio instruction creates a memory barrier (see
Section 1.7.1, “Storage Access Ordering”), which pro-
vides an ordering function for the storage accesses
caused by Load, Store, dcbz, eciwx, and ecowx
instructions executed by the processor executing the
eieio instruction. These storage accesses are divided
into the two sets listed below. The storage access
caused by an eciwx instruction is ordered as a load,
and the storage access caused by a dcbz or ecowx
instruction is ordered as a store.

1. Loads and stores to storage that is both Caching
Inhibited and Guarded, and stores to main storage
caused by stores to storage that is Write Through
Required.

The applicable pairs are all pairs ai,bj of such
accesses.

2. Stores to storage that is Memory Coherence
Required and is neither Write Through Required
nor Caching Inhibited.

The applicable pairs are all pairs ai,bj of such
accesses.

The operations caused by dcbt instructions with
TH0 = 1 are ordered by eieio as a third set of opera-
tions, and the operations caused by tlbie<S> and tlb-
sync instructions (see Book III-S) are ordered by eieio
as a fourth set of operations.  

Each of the four sets of storage accesses or operations
is ordered independently of the other three sets. The
ordering done by eieio's memory barrier for the second
set is cumulative; the ordering done by eieio's memory
barrier for the other three sets is not cumulative.

The eieio instruction may complete before storage
accesses or operations associated with instructions
preceding the eieio instruction have been performed.

Special Registers Altered:
None

Memory Barrier   X-form

mbar MO
[Category: Embedded]

When MO=0, the mbar instruction creates a cumulative
memory barrier (see Section 1.7.1, “Storage Access
Ordering”), which provides an ordering function for the
storage accesses executed by the processor executing
the mbar instruction. 

When MO≠0, an implementation may support the mbar
instruction ordering a particular subset of storage
accesses. An implementation may also support multi-
ple, non-zero values of MO that each specify a different
subset of storage accesses that are ordered by the
mbar instruction. Which subsets of storage accesses
that are ordered and which values of MO that specify
these subsets is implementation-dependent. 

The mbar instruction may complete before storage
accesses associated with instructions preceding the
mbar instruction have been performed. The mbar
instruction may complete before operations caused by
dcbt instructions having TH0=1 preceding the mbar
instruction have been performed.

Special Registers Altered:
None

  

31 /// /// /// 854 /
0 6 11 16 21 31

31 MO /// /// 854 /
0 6 11 16 21 31

The eieio<S> and mbar<E> instructions are
intended for use in doing memory-mapped I/O, and
in preventing load/store combining operations in
main storage (see Section 1.6, “Storage Control
Attributes” on page 344).

Because stores to storage that is both Caching
Inhibited and Guarded are performed in program
order (see Section 1.7.1, “Storage Access Order-
ing” on page 347), eieio<S> or mbar<E> is
needed for such storage only when loads must be
ordered with respect to stores or with respect to
other loads, or when load/store combining opera-
tions must be prevented.

For the eieio<S> instruction, accesses in set 1, ai
and bj need not be the same kind of access or be to
storage having the same storage control attributes.
For example, ai can be a load to Caching Inhibited,
Guarded storage, and bj a store to Write Through
Required storage.

If stronger ordering is desired than that provided by
eieio<S> or mbar<E>, the sync instruction must
be used, with the appropriate value in the L field.

Programming Note
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  3.3.4 Wait Instruction

Wait X-form

wait
[Category: Wait]

The wait instruction provides an ordering function for
the effects of all instructions executed by the processor
executing the wait instruction. Executing a wait instruc-
tion ensures that all instructions have completed before
the wait instruction completes, and that no subsequent
instructions are initiated until an interrupt occurs. The
wait instruction also causes any prefetched instructions
to be discarded and instruction fetching is suspended
until an interrupt occurs.

Once the wait instruction has completed, the NIA will
point to the next sequential instruction.

Special Registers Altered: 
None

 

 

The functions provided by eieio<S> and mbar<E>
are a strict subset of those provided by sync with
L=0. The functions provided by eieio<S> for its
second set are a strict subset of those provided by
sync with L=1.

Since eieio<S> and mbar<E>share the same op-
code, software designed for both server and
embedded environments must assume that only
the eieio<S> functionality applies since the func-
tions provided by eieio are a subset of those pro-
vided by mbar.

Programming Note

31 /// /// /// 62 /
0 6 11 16 21 31

The wait instruction can be used in verification test
cases to signal the end of a test case. The encod-
ing for the instruction is the same in both Big-
Endian and Little-Endian modes.

The wait instruction may be useful as the primary
instruction of an “idle process” or the completion of
processing for a cooperative thread. Note that wait
updates the NIA so that an interrupt that awakens a
wait instruction will return to the instruction after
the wait.

Programming Note

Programming Note
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Chapter 4.  Time Base 

4.1 Time Base Overview. . . . . . . . . . . 377
4.2 Time Base  . . . . . . . . . . . . . . . . . . 377
4.2.1 Time Base Instructions  . . . . . . . 378

4.3 Alternate Time Base [Category: Alter-
nate Time Base]  . . . . . . . . . . . . . . . . . 380

4.1 Time Base Overview
The time base facilities include a Time Base and an
Alternate Time Base which is category: Alternate Time
Base. The Alternate Time Base is analogous to the
Time Base except that it may count at a different fre-
quency and is not writable.

4.2 Time Base
The Time Base (TB) is a 64-bit register (see Figure 3)
containing a 64-bit unsigned integer that is incremented
periodically. Each increment  adds 1 to the low-order bit
(bit 63). The frequency at which the integer is updated
is implementation-dependent.

Figure 3. Time Base

The Time Base increments until its value becomes
0xFFFF_FFFF_FFFF_FFFF (264 - 1).  At the next
increment, its value becomes
0x0000_0000_0000_0000.  There is no explicit indica-
tion (such as an interrupt; see Book III) that this has
occurred.

The period of the Time Base depends on the driving
frequency.  As an order of magnitude example, sup-
pose that the CPU clock is 1 GHz and that the Time
Base is driven by this frequency divided by 32.  Then
the period of the Time Base would be

  TTB = = 5.90 x 1011 seconds

which is approximately 18,700 years.

The Power ISA AS does not specify a relationship
between the frequency at which the Time Base is
updated and other frequencies, such as the CPU clock
or bus clock, in a Power ISA AS system.  The Time
Base update frequency is not required to be constant.
What is required, so that system software can keep
time of day and operate interval timers, is one of the fol-
lowing.

� The system provides an (implementation-depen-
dent) interrupt to software whenever the update
frequency of the Time Base changes, and a means
to determine what the current update frequency is.

� The update frequency of the Time Base is under
the control of the system software.

  

TBU TBL
0 32                                                   63

Field Description
TBU Upper 32 bits of Time Base
TBL Lower 32 bits of Time Base

264 32×
1GHz

---------------------

If the operating system  initializes the Time Base on
power-on to some reasonable value and the
update frequency  of the Time Base is constant, the
Time Base can be used as a source of values that
increase at a constant rate, such as for time stamps
in trace entries.

Even if the update frequency is not constant, val-
ues read from the Time Base are monotonically
increasing (except when the Time Base wraps from
264-1 to 0).  If a trace entry is recorded each time
the update frequency changes, the sequence of
Time Base values can be post-processed to
become actual time values.

Successive readings of the Time Base may return
identical values.

Programming Note
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4.2.1 Time Base Instructions

Move From Time Base  XFX-form 

mftb RT,TBR 
[Category: Server.Phased-Out]

This instruction behaves as if it were an mfspr instruc-
tion; see the mfspr instruction description in
Section 3.3.14 of Book I.

Special Registers Altered:

None.

Extended Mnemonics:

Extended mnemonics for Move From Time Base: 

  

 

 

Programming Note

Since the update frequency of the Time Base is imple-
mentation-dependent, the algorithm for converting the
current value in the Time Base to time of day is also
implementation-dependent.

As an example, assume that the Time Base is incre-
mented at a constant rate of once for every 32 cycles of
a 1 GHz CPU instruction clock.  What is wanted is the
pair of 32-bit values comprising a POSIX standard
clock:1  the number of whole seconds that have passed
since 00:00:00 January 1, 1970, UTC, and the remain-
ing fraction of a second expressed as a number of
nanoseconds.

Assume that:

� The value 0 in the Time Base represents the start
time of the POSIX clock (if this is not true, a simple
64-bit subtraction will make it so).

� The integer constant ticks_per_sec contains the
value

   = 31,250,000

which is the number of times the Time Base is
updated each second.

� The integer constant ns_adj contains the value

   = 32

which is the number of nanoseconds per tick of the
Time Base.

When the processor is in 64-bit mode, the POSIX clock
can be computed with an instruction sequence such as
this:

mfspr Ry,268 # Ry = Time Base
lwz Rx,ticks_per_sec
divd Rz,Ry,Rx# Rz = whole seconds
stw Rz,posix_sec
mulld Rz,Rz,Rx# Rz = quotient × divisor
sub Rz,Ry,Rz# Rz = excess ticks

31 RT tbr 371 /
0 6 11 21 31

Extended: Equivalent to:

mftb       Rx
mftb      Rx,268 
mfspr   Rx,268

mftbu     Rx
mftb      Rx,269
mfspr   Rx,269

New programs should use mfspr instead of mftb
to access the Time Base.

Programming Note

mftb serves as both a basic and an extended mne-
monic.  The Assembler will recognize an mftb
mnemonic with two operands as the basic form,
and an mftb mnemonic with one operand as the
extended form.  In the extended form the TBR
operand is omitted and assumed to be 268 (the
value that corresponds to TB).

The mfspr instruction can be used to read the Time
Base on all processors that comply with Version
2.01 of the architecture or  with any subsequent
version.

It is believed that the mfspr instruction can be used
to read the Time Base on most processors that
comply with versions of the architecture that pre-
cede Version 2.01.  Processors for which mfspr
cannot be used to read the Time Base include the
following.

-          601
-          POWER3

(601 implements neither the Time Base nor mftb,
but depends on software using mftb to read the
Time Base, so that the attempt causes an Illegal
Instruction type Program interrupt and thereby per-
mits the operating system to emulate the Time
Base.)

Programming Note

Programming Note

1. Described in POSIX Draft Standard P1003.4/D12, Draft Standard for Information Technology -- Portable Operating System Interface (POSIX) --
Part 1: System Application Program Interface (API) - Amendment 1: Real-time Extension [C Language].  Institute of Electrical and Electronics Engi-
neers, Inc., Feb. 1992.

1  GHz
32

-------------------

1,000,000,000
31,250,000

--------------------------------------
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lwz Rx,ns_adj
mulld Rz,Rz,Rx# Rz = excess nanoseconds
stw Rz,posix_ns

For the Embedded environment when the processor is
in 32-bit mode, it is not possible to read the Time Base
using a single instruction. Instead, two instructions
must be used, one of which reads TBL and the other of
which reads TBU.  Because of the possibility of a carry
from TBL to TBU occurring between the two reads, a
sequence such as the following must be used to read
the Time Base.
loop:

mfspr Rx,TBU # load from TBU
mfspr Ry,TB # load from TB
mfspr Rz,TBU # load from TBU
cmp cr0,0,Rx,Rz# check if ‘old’=’new’
bne loop #branch if carry occurred

Non-constant update frequency
In a system in which the update frequency of the Time
Base may change over time, it is not possible to convert
an isolated Time Base value into time of day.  Instead, a
Time Base value has meaning only with respect to the
current update frequency and the time of day that the
update frequency was last changed.  Each time the
update frequency changes, either the system software
is notified of the change via an interrupt (see Book III),
or the change was instigated by the system software
itself.  At each such change, the system software must
compute the current time of day using the old update
frequency, compute a new value of ticks_per_sec for
the new frequency, and save the time of day, Time Base
value, and tick rate.  Subsequent calls to compute Time
of Day use the current Time Base Value and the saved
value.
Chapter 4. Time Base 379



   Version 2.04
4.3 Alternate Time Base [Cate-
gory: Alternate Time Base]
The Alternate Time Base (ATB) is a 64-bit register (see
Figure 3) containing a 64-bit unsigned integer that is
incremented periodically. The frequency at which the
integer is updated is implementation-dependent.

Figure 4. Alternate Time Base

The ATBL register is an aliased name for the ATB.

The Alternate Time Base increments until its value
becomes 0xFFFF_FFFF_FFFF_FFFF (264 - 1). At the
next increment, its value becomes
0x0000_0000_0000_0000. There is no explicit indica-
tion (such as an interrupt; see Book III) that this has
occurred. 

The Alternate Time Base is accessible in both user and
supervisor mode. The counter can be read by execut-
ing a mfspr instruction specifying the ATB (or ATBL)
register, but cannot be written. A second SPR register
ATBU, is defined that accesses only the upper 32 bits
of the counter. Thus the upper 32 bits of the counter
may be read into a register by reading the ATBU regis-
ter.

The effect of entering a power-savings mode or of pro-
cessor frequency changes on counting in the Alternate
Time Base is implementation-dependent.

ATBU ATBL
0 32                                                   63
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Chapter 5.  External Control [Category: External Control] 

The External Control category of facilities and instruc-
tions permits a program to communicate with a special-
purpose device. Two instructions are provided, both of
which must be implemented if the facility is provided.

� External Control In Word Indexed (eciwx), which
does the following:

- Computes an effective address (EA) like most
X-form instructions

- Validates the EA as would be done for a load
from that address

- Translates the EA to a real address
- Transmits the real address to the device
- Accepts a word of data from the device and

places it into a General Purpose Register

� External Control Out Word Indexed (ecowx),
which does the following:

- Computes an effective address (EA) like most
X-form instructions

- Validates the EA as would be done for a store
to that address

- Translates the EA to a real address
- Transmits the real address and a word of data

from a General Purpose Register to the
device

Permission to execute these instructions and identifica-
tion of the target device are controlled by two fields,
called the E bit and the RID field respectively. If attempt
is made to execute either of these instructions when
E=0 the system data storage error handler is invoked.
The location of these fields is described in Book III.

The storage access caused by eciwx and ecowx is
performed as though the specified storage location is
Caching Inhibited and Guarded, and is neither Write
Through Required nor Memory Coherence Required.

Interpretation of the real address transmitted by eciwx
and ecowx and of the 32-bit value transmitted by
ecowx is up to the target device, and is not specified by
the Power ISA. See the System Architecture documen-
tation for a given Power ISA system for details on how
the External Control facility can be used with devices
on that system.

Example
An example of a device designed to be used with the
External Control facility might be a graphics adapter.

The ecowx instruction might be used to send the
device the translated real address of a buffer containing
graphics data, and the word transmitted from the Gen-
eral Purpose Register might be control information that
tells the adapter what operation to perform on the data
in the buffer.  The eciwx instruction might be used to
load status information from the adapter.

A device designed to be used with the External Control
facility may also recognize events that indicate that the
address translation being used by the processor has
changed.  In this case the operating system need not
“pin” the area of storage identified by an eciwx or
ecowx instruction (i.e., need not protect it from being
paged out).
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5.1 External Access Instructions

In the instruction descriptions the statements “this
instruction is treated as a Load” and “this instruction is

treated as a Store” have the same meanings as for the
Cache Management instructions; see Section 3.2.

External Control In Word Indexed  X-form  

eciwx RT,RA,RB
  

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
raddr � address translation of EA
send load word request for raddr to
   device identified by RID
RT � 320 || word from device

Let the effective address (EA) be the sum (RA|0)+(RB).

A load word request for the real address corresponding
to EA is sent to the device identified by RID, bypassing
the cache.  The word returned by the device is placed
into RT32:63.  RT0:31 are set to 0.

The E bit must be 1.  If it is not, the data storage error
handler is invoked.

EA must be a multiple of 4.  If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

This instruction is treated as a Load.

See Book III-S for additional information about this
instruction.

Special Registers Altered:
None

  

External Control Out Word Indexed
X-form

ecowx RS,RA,RB
  

if RA = 0 then b � 0

else           b � (RA)
EA � b + (RB)
raddr � address translation of EA
send store word request for raddr to
  device identified by RID
send (RS)32:63 to device

Let the effective address (EA) be the sum (RA|0)+(RB).

A store word request for the real address correspond-
ing to EA and the contents of RS32:63 are sent to the
device identified by RID, bypassing the cache.

The E bit must be 1.  If it is not, the data storage error
handler is invoked.

EA must be a multiple of 4.  If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

This instruction is treated as a Store, except that its
storage access is not performed in program order with
respect to accesses to other Caching Inhibited and
Guarded storage locations unless software explicitly
imposes that order.

See Book III-S for additional information about this
instruction.

Special Registers Altered:
None

31 RT RA RB 310 /
0 6 11 16 21 31

The eieio<S> or mbar<E> instruction can be used
to ensure that the storage accesses caused by
eciwx and ecowx are performed in program order
with respect to other Caching Inhibited and
Guarded storage accesses.

31 RS RA RB 438 /
0 6 11 16 21 31

Programming Note
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Appendix A.  Assembler Extended Mnemonics 

In order to make assembler language programs simpler
to write and easier to understand, a set of extended
mnemonics and symbols is provided for certain instruc-

tions.  This appendix defines extended mnemonics and
symbols related to instructions defined in Book II.

Assemblers should provide the extended mnemonics
and symbols listed here, and may provide others.

A.1 Data Cache Block Flush 
Mnemonics 
The L field in the Data Cache Block Flush instruction
controls the scope of the flush function performed by
the instruction. Extended mnemonics are provided that
represent the L value in the mnemonic rather than
requiring it to be coded as a numeric operand. 

Note: dcbf serves as both a basic and an extended
mnemonic.  The Assembler will recognize a dcbf mne-
monic with three operands as the basic form, and a
dcbf mnemonic with two operands as the extended
form.  In the extended form the L operand is omitted
and assumed to be 0. 

A.2 Synchronize Mnemonics
The L field in the Synchronize instruction controls the
scope of the synchronization function performed by the
instruction.  Extended mnemonics are provided that
represent the L value in the mnemonic rather than
requiring it to be coded as a numeric operand. Two
extended mnemonics are provided for the L=0 value in
order to support assemblers that do not recognize the
sync mnemonic.

Note: sync serves as both a basic and an extended
mnemonic.  The Assembler will recognize a sync mne-
monic with one operand as the basic form, and a sync
mnemonic with no operand as the extended form.  In
the extended form the L operand is omitted and
assumed to be 0.

dcbf RA,RB (equivalent to: dcbf RA,RB,0)
dcbfl<S> RA,RB (equivalent to: dcbfl RA,RB,1) sync (equivalent to:        sync     0)

msync<E> (equivalent to:        sync     0)
lwsync<S> (equivalent to:        sync     1)
ptesync<S> (equivalent to:        sync     2)
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Appendix B.  Programming Examples for Sharing 
Storage 

This appendix gives examples of how dependencies
and the Synchronization instructions can be used to
control storage access ordering when storage is shared
between programs.

Many of the examples use extended mnemonics (e.g.,
bne, bne-, cmpw) that are defined in Appendix D of
Book I.

Many of the examples use the Load And Reserve and
Store Conditional instructions, in a sequence that
begins with a Load And Reserve instruction and ends
with a Store Conditional instruction (specifying the
same storage location as the Load Conditional) fol-
lowed by a Branch Conditional instruction that tests
whether the Store Conditional instruction succeeded.

In these examples it is assumed that contention for the
shared resource is low; the conditional branches are
optimized for this case by using “+” and “-” suffixes
appropriately.

The examples deal with words; they can be used for
doublewords by changing all word-specific mnemonics
to the corresponding doubleword-specific mnemonics
(e.g., lwarx to ldarx, cmpw to cmpd).

In this appendix it is assumed that all shared storage
locations are in storage that is Memory Coherence
Required, and that the storage locations specified by
Load And Reserve and Store Conditional instructions
are in storage that is neither Write Through Required
nor Caching Inhibited.

B.1 Atomic Update Primitives
This section gives examples of how the Load And
Reserve and Store Conditional instructions can be
used to emulate atomic read/modify/write operations.

An atomic read/modify/write operation reads a storage
location and writes its next value, which may be a func-
tion of its current value, all as a single atomic operation.
The examples shown provide the effect of an atomic
read/modify/write operation, but use several instruc-
tions rather than a single atomic instruction.

Fetch and No-op
The “Fetch and No-op” primitive atomically loads the
current value in a word in storage.

In this example it is assumed that the address of the
word to be loaded is in GPR 3 and the data loaded are
returned in GPR 4.

loop:
lwarx r4,0,r3 #load and reserve
stwcx. r4,0,r3 #store old value if

#  still reserved
bne- loop #loop if lost reservation

Note:

1. The stwcx., if it succeeds, stores to the target
location the same value that was loaded by the
preceding lwarx.  While the store is redundant with
respect to the value in the location, its success
ensures that the value loaded by the lwarx is still
the current value at the time the stwcx. is exe-
cuted.

Fetch and Store
The “Fetch and Store” primitive atomically loads and
replaces a word in storage.

In this example it is assumed that the address of the
word to be loaded and replaced is in GPR 3, the new
value is in GPR 4, and the old value is returned in GPR
5.

loop:
lwarx  r5,0,r3 #load and reserve
stwcx. r4,0,r3 #store new value if

#  still reserved
bne- loop loop if lost reservation
Appendix B. Programming Examples for Sharing Storage 385



   Version 2.04
Fetch and Add
The “Fetch and Add” primitive atomically increments a
word in storage.

In this example it is assumed that the address of the
word to be incremented is in GPR 3, the increment is in
GPR 4, and the old value is returned in GPR 5.

loop:
lwarx  r5,0,r3 #load and reserve
add r0,r4,r5#increment word
stwcx. r0,0,r3 #store new value if still res’ved
bne- loop #loop if lost reservation

Fetch and AND
The “Fetch and AND” primitive atomically ANDs a value
into a word in storage.

In this example it is assumed that the address of the
word to be ANDed is in GPR 3, the value to AND into it
is in GPR 4, and the old value is returned in GPR 5.

loop:
lwarx r5,0,r3 #load and reserve
and r0,r4,r5#AND word
stwcx. r0,0,r3 #store new value if still res’ved
bne- loop #loop if lost reservation

Note:

1. The sequence given above can be changed to per-
form another Boolean operation atomically on a
word in storage, simply by changing the and
instruction to the desired Boolean instruction (or,
xor, etc.).

Test and Set
This version of the “Test and Set” primitive atomically
loads a word from storage, sets the word in storage to a
nonzero value if the value loaded is zero, and sets the
EQ bit of CR Field 0 to indicate whether the value
loaded is zero.

In this example it is assumed that the address of the
word to be tested is in GPR 3, the new value (nonzero)
is in GPR 4, and the old value is returned in GPR 5.

loop:
lwarx r5,0,r3 #load and reserve
cmpwi r5,0 #done if word not equal to 0
bne- exit
stwcx. r4,0,r3 #try to store non-0
bne- loop #loop if lost reservation

exit: ...

Compare and Swap
The “Compare and Swap” primitive atomically com-
pares a value in a register with a word in storage, if they
are equal stores the value from a second register into
the word in storage, if they are unequal loads the word
from storage into the first register, and sets the EQ bit
of CR Field 0 to indicate the result of the comparison.

In this example it is assumed that the address of the
word to be tested is in GPR 3, the comparand is in GPR
4 and the old value is returned there, and the new value
is in GPR 5.

loop:
lwarx r6,0,r3 #load and reserve
cmpw r4,r6 #1st 2 operands equal?
bne- exit #skip if not
stwcx. r5,0,r3 #store new value if still res’ved
bne- loop #loop if lost reservation

exit:
mr r4,r6 #return value from storage

Notes:

1. The semantics given for “Compare and Swap”
above are based on those of the IBM System/370
Compare and Swap instruction.  Other architec-
tures may define a Compare and Swap instruction
differently.

2. “Compare and Swap” is shown primarily for peda-
gogical reasons.  It is useful on machines that lack
the better synchronization facilities provided by
lwarx and stwcx..  A major weakness of a Sys-
tem/370-style Compare and Swap instruction is
that, although the instruction itself is atomic, it
checks only that the old and current values of the
word being tested are equal, with the result that
programs that use such a Compare and Swap to
control a shared resource can err if the word has
been modified and the old value subsequently
restored.  The sequence shown above has the
same weakness.

3. In some applications the second bne- instruction
and/or the mr instruction can be omitted.  The
bne- is needed only if the application requires that
if the EQ bit of CR Field 0 on exit indicates “not
equal” then (r4) and (r6) are in fact not equal. The
mr is needed only if the application requires that if
the comparands are not equal then the word from
storage is loaded into the register with which it was
compared (rather than into a third register).  If
either or both of these instructions is omitted, the
resulting Compare and Swap does not obey Sys-
tem/370 semantics.
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B.2 Lock Acquisition and Release, and Related Techniques

This section gives examples of how dependencies and
the Synchronization instructions can be used to imple-

ment locks, import and export barriers, and similar con-
structs.

B.2.1 Lock Acquisition and Import 
Barriers
An “import barrier” is an instruction or sequence of
instructions that prevents storage accesses caused by
instructions following the barrier from being performed
before storage accesses that acquire a lock have been
performed.  An import barrier can be used to ensure
that a shared data structure protected by a lock is not
accessed until the lock has been acquired.  A sync
instruction can be used as an import barrier, but the
approaches shown below will generally yield better per-
formance because they order only the relevant storage
accesses.

B.2.1.1  Acquire Lock and Import 
Shared Storage
If lwarx and stwcx. instructions are used to obtain the
lock, an import barrier can be constructed by placing an
isync instruction immediately following the loop con-
taining the lwarx and stwcx..  The following example
uses the “Compare and Swap” primitive to acquire the
lock.

In this example it is assumed that the address of the
lock is in GPR 3, the value indicating that the lock is
free is in GPR 4, the value to which the lock should be
set is in GPR 5, the old value of the lock is returned in
GPR 6, and the address of the shared data structure is
in GPR 9.

loop:
lwarx r6,0,r3 #load lock and reserve
cmpw r4,r6 #skip ahead if
bne- wait #  lock not free
stwcx. r5,0,r3 #try to set lock
bne- loop #loop if lost reservation
isync #import barrier
lwz r7,data1(r9)#load shared data
.
.

wait... #wait for lock to free

The second bne- does not complete until CR0 has
been set by the stwcx..  The stwcx. does not set CR0
until it has completed (successfully or unsuccessfully).
The lock is acquired when the stwcx. completes suc-
cessfully.  Together, the second bne- and the subse-
quent isync create an import barrier that prevents the
load from “data1” from being performed until the branch
has been resolved not to be taken.

If the shared data structure is in storage that is neither
Write Through Required nor Caching Inhibited, an
lwsync<S> instruction can be used instead of the
isync instruction.  If lwsync<S> is used, the load from
“data1” may be performed before the stwcx..  But if the
stwcx. fails, the second branch is taken and the lwarx
is re-executed.  If the stwcx. succeeds, the value
returned by the load from “data1” is valid even if the
load is performed before the stwcx., because the
lwsync<S> ensures that the load is performed after the
instance of the lwarx that created the reservation used
by the successful stwcx..

B.2.1.2 Obtain Pointer and Import 
Shared Storage
If lwarx and stwcx. instructions are used to obtain a
pointer into a shared data structure, an import barrier is
not needed if all the accesses to the shared data struc-
ture depend on the value obtained for the pointer.  The
following example uses the “Fetch and Add” primitive to
obtain and increment the pointer.

In this example it is assumed that the address of the
pointer is in GPR 3, the value to be added to the pointer
is in GPR 4, and the old value of the pointer is returned
in GPR 5.

loop:
lwarx r5,0,r3 #load pointer and reserve
add r0,r4,r5#increment the pointer
stwcx. r0,0,r3 #try to store new value
bne- loop #loop if lost reservation
lwz r7,data1(r5) #load shared data

The load from “data1” cannot be performed until the
pointer value has been loaded into GPR 5 by the lwarx.
The load from “data1” may be performed before the
stwcx..  But if the stwcx. fails, the branch is taken and
the value returned by the load from “data1” is dis-
carded.  If the stwcx. succeeds, the value returned by
the load from “data1” is valid even if the load is per-
formed before the stwcx., because the load uses the
pointer value returned by the instance of the lwarx that
created the reservation used by the successful stwcx..

An isync instruction could be placed between the bne-
and the subsequent lwz, but no isync is needed if all
accesses to the shared data structure depend on the
value returned by the lwarx.
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B.2.2 Lock Release and Export 
Barriers
An “export barrier” is an instruction or sequence of
instructions that prevents the store that releases a lock
from being performed before stores caused by instruc-
tions preceding the barrier have been performed.  An
export barrier can be used to ensure that all stores to a
shared data structure protected by a lock will be per-
formed with respect to any other processor before the
store that releases the lock is performed with respect to
that processor.

B.2.2.1 Export Shared Storage and 
Release Lock
A sync instruction can be used as an export barrier
independent of the storage control attributes (e.g.,
presence or absence of the Caching Inhibited attribute)
of the storage containing the shared data structure.
Because the lock must be in storage that is neither
Write Through Required nor Caching Inhibited, if the
shared data structure is in storage that is Write
Through Required or Caching Inhibited a sync instruc-
tion must be used as the export barrier.

In this example it is assumed that the shared data
structure is in storage that is Caching Inhibited, the
address of the lock is in GPR 3, the value indicating
that the lock is free is in GPR 4, and the address of the
shared data structure is in GPR 9.

stw r7,data1(r9)#store shared data (last)
sync #export barrier
stw r4,lock(r3)#release lock

The sync ensures that the store that releases the lock
will not be performed with respect to any other proces-
sor until all stores caused by instructions preceding the
sync have been performed with respect to that proces-
sor.  

B.2.2.2 <S>Export Shared Storage and 
Release Lock using lwsync
If the shared data structure is in storage that is neither
Write Through Required nor Caching Inhibited, an
lwsync instruction can be used as the export barrier.
Using lwsync rather than sync will yield better perfor-
mance in most systems.

In this example it is assumed that the shared data
structure is in storage that is neither Write Through
Required nor Caching Inhibited, the address of the lock
is in GPR 3, the value indicating that the lock is free is
in GPR 4, and the address of the shared data structure
is in GPR 9.

stw r7,data1(r9)#store shared data (last)
lwsync #export barrier
stw r4,lock(r3)#release lock 

The lwsync ensures that the store that releases the
lock will not be performed with respect to any other pro-
cessor until all stores caused by instructions preceding
the lwsync have been performed with respect to that
processor.

 

B.2.3 Safe Fetch
If a load must be performed before a subsequent store
(e.g., the store that releases a lock protecting a shared
data structure), a technique similar to the following can
be used.

In this example it is assumed that the address of the
storage operand to be loaded is in GPR 3, the contents
of the storage operand are returned in GPR 4, and the
address of the storage operand to be stored is in GPR
5.

lwz r4,0(r3)#load shared data
cmpw r4,r4 #set CR0 to “equal”
bne- $-8 #branch never taken
stw r7,0(r5)#store other shared data

An alternative is to use a technique similar to that
described in Section B.2.1.2, by causing the stw to
depend on the value returned by the lwz and omitting
the cmpw and bne-. The dependency could be created
by ANDing the value returned by the lwz with zero and
then adding the result to the value to be stored by the
stw. If both storage operands are in storage that is nei-
ther Write Through Required nor Caching Inhibited,
another alternative is to replace the cmpw and bne-
with an lwsync<S> instruction.
Power ISA™ -- Book II388



   Version 2.04
B.3 List Insertion
This section shows how the lwarx and stwcx.  instruc-
tions can be used to implement simple insertion into a
singly linked list.  (Complicated list insertion, in which
multiple values must be changed atomically, or in which
the correct order of insertion depends on the contents
of the elements, cannot be implemented in the manner
shown below and requires a more complicated strategy
such as using locks.)

The “next element pointer” from the list element after
which the new element is to be inserted, here called the
“parent element”, is stored into the new element, so
that the new element points to the next element in the
list; this store is performed unconditionally.  Then the
address of the new element is conditionally stored into
the parent element, thereby adding the new element to
the list.

In this example it is assumed that the address of the
parent element is in GPR 3, the address of the new ele-
ment is in GPR 4, and the next element pointer is at off-
set 0 from the start of the element.  It is also assumed
that the next element pointer of each list element is in a
reservation granule separate from that of the next ele-
ment pointer of all other list elements.

loop:
lwarx r2,0,r3 #get next pointer
stw r2,0(r4)#store in new element
lwsync<S> or sync#order stw before stwcx
stwcx. r4,0,r3 #add new element to list
bne- loop #loop if stwcx. failed

In the preceding example, if two list elements have next
element pointers in the same reservation granule then,
in a multiprocessor, “livelock” can occur.  (Livelock is a
state in which processors interact in a way such that no
processor makes forward progress.)

If it is not possible to allocate list elements such that
each element’s next element pointer is in a different
reservation granule, then livelock can be avoided by
using the following, more complicated, sequence.

lwz r2,0(r3)#get next pointer
loop1:

mr r5,r2 #keep a copy
stw r2,0(r4)#store in new element
sync #order stw before stwcx. 

and before lwarx
loop2:

lwarx r2,0,r3 #get it again
cmpw r2,r5 #loop if changed (someone
bne- loop1 #  else progressed)
stwcx. r4,0,r3 #add new element to list
bne- loop2 #loop if failed

In the preceding example, livelock is avoided by the fact
that each processor re-executes the stw only if some
other processor has made forward progress.

B.4 Notes
1. To increase the likelihood that forward progress is

made, it is important that looping on lwarx/stwcx.
pairs be minimized. For example, in the “Test and
Set” sequence shown in Section B.1, this is
achieved by testing the old value before attempting
the store; were the order reversed, more stwcx.
instructions might be executed, and reservations
might more often be lost between the lwarx and
the stwcx.

2. The manner in which lwarx and stwcx. are com-
municated to other processors and mechanisms,
and between levels of the storage hierarchy within
a given processor, is implementation-dependent.
In some implementations performance may be
improved by minimizing looping on a lwarx instruc-
tion that fails to return a desired value. For exam-
ple, in the “Test and Set” sequence shown in
Section B.1, if the programmer wishes to stay in
the loop until the word loaded is zero, he could
change the “bne- exit” to “bne- loop”. However, in
some implementations better performance may be
obtained by using an ordinary Load instruction to
do the initial checking of the value, as follows.

loop:
 lwz r5,0(r3)#load the word
 cmpwi r5,0 #loop back if word
 bne- loop #  not equal to 0
 lwarx r5,0,r3 #try again, reserving
 cmpwi r5,0 #  (likely to succeed)
 bne- loop
 stwcx.r4,0,r3 #try to store non-0
 bne- loop #loop if lost reserv’n

3. In a multiprocessor, livelock is possible if there is a
Store instruction (or any other instruction that can
clear another processor’s reservation; see Section
1.7.3.1) between the lwarx and the stwcx. of a
lwarx/stwcx. loop and any byte of the storage
location specified by the Store is in the reservation
granule. For example, the first code sequence
shown in Section B.3 can cause livelock if two list
elements have next element pointers in the same
reservation granule.
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1.1 Overview
Chapter 1 of Book I describes computation modes,
document conventions, a general systems overview,
instruction formats, and storage addressing. This chap-
ter augments that description as necessary for the
Power ISA Operating Environment Architecture.

1.2 Document Conventions
The notation and terminology used in Book I apply to
this Book also, with the following substitutions.

� For “system alignment error handler” substitute
“Alignment interrupt”.

� For “system data storage error handler” substitute
“Data Storage interrupt”, “Hypervisor Data Storage
interrupt”, “Data Segment interrupt”, or “Hypervisor
Data Segment interrupt,” as appropriate.

� For “system error handler” substitute “interrupt”.

� For “system floating-point enabled exception error
handler” substitute “Floating-Point Enabled Excep-
tion type Program interrupt”.

� For “system illegal instruction error handler” substi-
tute “Illegal Instruction type Program interrupt”

� For “system instruction storage error handler” sub-
stitute “Instruction Storage interrupt”, “Hypervisor
Instruction Storage interrupt”, “Instruction Segment
interrupt”, or “Hypervisor Instruction Segment
interrupt”, as appropriate.

� For “system privileged instruction error handler”
substitute “Privileged Instruction type Program
interrupt”.

� For “system service program” substitute “System
Call interrupt”.

� For “system trap handler” substitute “Trap type
Program interrupt”. 

1.2.1 Definitions and Notation
The definitions and notation given in Book I are aug-
mented by the following.

� real page
A unit of real storage that is aligned at a boundary
that is a multiple of its size. The real page size is
4KB.

� context of a program
The processor state (e.g., privilege and relocation)
in which the program executes. The context is con-
trolled by the contents of certain System Registers,
such as the MSR and SDR1, of certain lookaside
buffers, such as the SLB and TLB, and of the Page
Table.

� exception
An error, unusual condition, or external signal, that
may set a status bit and may or may not cause an
interrupt, depending upon whether the correspond-
ing interrupt is enabled.

� interrupt 
The act of changing the machine state in response
to an exception, as described in Chapter
6. “Interrupts” on page 459.

� trap interrupt 
An interrupt that results from execution of a Trap
instruction.

� Additional exceptions to the rule that the processor
obeys the sequential execution model, beyond
those described in the section entitled “Instruction
Fetching” in Book I, are the following.

- A System Reset or Machine Check interrupt
may occur.  The determination of whether an
Chapter 1. Introduction 393



   Version 2.04
instruction is required by the sequential execu-
tion model is not affected by the potential
occurrence of a System Reset or Machine
Check interrupt.  (The determination is
affected by the potential occurrence of any
other kind of interrupt.)

- A context-altering instruction is executed
(Chapter 10. “Synchronization Requirements
for Context Alterations” on page 489). The
context alteration need not take effect until the
required subsequent synchronizing operation
has occurred.

- A Reference and Change bit is updated by the
processor. The update need not be performed
with respect to that processor until the
required subsequent synchronizing operation
has occurred.

� “must”
If hypervisor software violates a rule that is stated
using the word “must” (e.g., “this field must be set
to 0”), and the rule pertains to the contents of a
hypervisor resource, to executing an instruction
that can be executed only in hypervisor state, or to
accessing storage in real addressing mode, the
results are undefined, and may include altering
resources belonging to other partitions, causing
the system to “hang”, etc.

� hardware 
Any combination of hard-wired implementation,
emulation assist, or interrupt for software assis-
tance. In the last case, the interrupt may be to an
architected location or to an implementation-
dependent location. Any use of emulation assists
or interrupts to implement the architecture is imple-
mentation-dependent.

� privileged state and supervisor mode
Used interchangeably to refer to a processor state
in which privileged facilities are available.

�  problem state and user mode
Used interchangeably to refer to a processor state
in which privileged facilities are not available.

� /, //, ///, ... denotes a field that is reserved in an
instruction, in a register, or in an architected stor-
age table.

� ?, ??, ???, ... denotes a field that is implementa-
tion-dependent in an instruction, in a register, or in
an architected storage table.

1.2.2 Reserved Fields
Book I's description of the handling of reserved bits in
System Registers, and of reserved values of defined
fields of System Registers, applies also to the SLB.
Book I's description of the handling of reserved values
of defined fields of System Registers applies also to
architected storage tables (e.g., the Page Table).

Some fields of certain architected storage tables may
be written to automatically by the processor, e.g., Ref-
erence and Change bits in the Page Table. When the
processor writes to such a table, the following rules are
obeyed.

� Unless otherwise stated, no defined field other
than the one(s) the processor is specifically updat-
ing are modified.

� Contents of reserved fields are either preserved by
the processor or written as zero.

  

1.3 General Systems Overview
The processor or processor unit contains the sequenc-
ing and processing controls for instruction fetch,
instruction execution, and interrupt action. Most imple-
mentations also contain data and instruction caches.
Instructions that the processing unit can execute fall
into the following classes:

� instructions executed in the Branch Processor
� instructions executed in the Fixed-Point Processor
� instructions executed in the Floating-Point Proces-

sor
� instructions executed in the Vector Processor

Almost all instructions executed in the Branch Proces-
sor, Fixed-Point Processor, Floating-Point Processor,
and Vector Processor are nonprivileged and are
described in Book I. Book II may describe additional
nonprivileged instructions (e.g., Book II describes some
nonprivileged instructions for cache management).
Instructions related to the privileged state of the pro-
cessor, control of processor resources, control of the
storage hierarchy, and all other privileged instructions
are described here or are implementation-dependent.

1.4 Exceptions
The following augments the exceptions defined in Book
I that can be caused directly by the execution of an
instruction:

� the execution of a floating-point instruction when
MSRFP=0 (Floating-Point Unavailable interrupt)

� an attempt to modify a hypervisor resource when
the processor is in privileged but non-hypervisor
state (see Chapter 2), or an attempt to execute a
hypervisor-only instruction (e.g., tlbie) when the
processor is in privileged but non-hypervisor state

Software should set reserved fields in the SLB and
in architected storage tables to zero, because
these fields may be assigned a meaning in some
future version of the architecture.

Programming Note
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� the execution of a traced instruction (Trace inter-
rupt)

� the execution of a Vector instruction when the vec-
tor processor is unavailable  (Vector Unavailable
interrupt)

1.5 Synchronization
The synchronization described in this section refers to
the state of the processor that is performing the syn-
chronization.

1.5.1 Context Synchronization
An instruction or event is context synchronizing if it sat-
isfies the requirements listed below. Such instructions
and events are collectively called context synchronizing
operations. The context synchronizing operations are
the isync instruction, the System Linkage instructions,
the mtmsr[d] instructions with L=0, and most interrupts
(see Section 6.4).

1. The operation causes instruction dispatching (the
issuance of instructions by the instruction fetching
mechanism to any instruction execution mecha-
nism) to be halted.

2. The operation is not initiated or, in the case of
isync, does not complete, until all instructions that
precede the operation have completed to a point at
which they have reported all exceptions they will
cause.

3. The operation ensures that the instructions that
precede the operation will complete execution in
the context (privilege, relocation, storage protec-
tion, etc.) in which they were initiated, except that
the operation has no effect on the context in which
the associated Reference and Change bit updates
are performed.

4. If the operation directly causes an interrupt (e.g.,
sc directly causes a System Call interrupt) or is an
interrupt, the operation is not initiated until no
exception exists having higher priority than the
exception associated with the interrupt (see Sec-
tion 6.8).

5. The operation ensures that the instructions that fol-
low the operation will be fetched and executed in
the context established by the operation. (This
requirement dictates that any prefetched instruc-
tions be discarded and that any effects and side
effects of executing them out-of-order also be dis-
carded, except as described in Section 5.5, “Per-
forming Operations Out-of-Order”.)

  

1.5.2 Execution Synchronization
An instruction is execution synchronizing if it satisfies
items 2 and 3 of the definition of context synchroniza-
tion (see Section 1.5.1). sync and ptesync are treated
like isync with respect to item 2 (i.e., the conditions
described in item 2 apply to the completion of sync and
ptesync). Examples of execution synchronizing
instructions include sync, ptesync, and mtmsrd.

An instruction is execution synchronizing if it satisfies
items 2 and 3 of the definition of context synchroniza-
tion (see Section 1.5.1). sync and ptesync are treated
like isync with respect to item 2. The execution syn-
chronizing instructions are sync, ptesync, the
mtmsr[d]<S> instructions with L=1, and all context syn-
chronizing instructions.

  

A context synchronizing operation is necessarily
execution synchronizing; see Section 1.5.2.

Unlike the Synchronize instruction, a context syn-
chronizing operation does not affect the order in
which storage accesses are performed.

Item 2 permits a choice only for isync (and sync
and ptesync; see Section 1.5.2) because all other
execution synchronizing operations also alter con-
text.

All context synchronizing instructions are execution
synchronizing.

Unlike a context synchronizing operation, an exe-
cution synchronizing instruction does not ensure
that the instructions following that instruction will
execute in the context established by that instruc-
tion.  This new context becomes effective some-
time after the execution synchronizing instruction
completes and before or at a subsequent context
synchronizing operation.

Programming Note
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2.1 Overview
The Logical Partitioning (LPAR) facility permits proces-
sors and portions of real storage to be assigned to logi-
cal collections called partitions, such that a program
executing on a processor in one partition cannot inter-
fere with any program executing on a processor in a dif-
ferent partition. This isolation can be provided for both
problem state and privileged state programs, by using a
layer of trusted software, called a hypervisor program
(or simply a “hypervisor”), and the resources provided
by this facility to manage system resources. (A hypervi-
sor is a program that runs in hypervisor state; see
below.)

The number of partitions supported is implementation-
dependent.

A processor is assigned to one partition at any given
time. A processor can be assigned to any given parti-
tion without consideration of the physical configuration
of the system (e.g., shared registers, caches, organiza-
tion of the storage hierarchy), except that processors
that share certain hypervisor resources may need to be
assigned to the same partition; see Section 2.6. The
registers and facilities used to control Logical Partition-
ing are listed below and described in the following sub-
sections.

Except in the following subsections, references to the
“operating system” in this document include the hyper-
visor unless otherwise stated or obvious from context.

2.2 Logical Partitioning Control 
Register (LPCR)
The layout of the Logical Partitioning Control Register
(LPCR) is shown in Figure 1 below.

Figure 1. Logical Partitioning Control Register

The contents of the LPCR control a number of aspects
of the operation of the processor with respect to a logi-
cal partition. Below are shown the bit definitions for the
LPCR.

Bit Description

0:2 Virtualization Control (VC)

Controls the virtualization of partition memory.
This field contains two subfields, VPM and
ISL.

0:1 Virtualized Partition Memory (VPM)

This field controls whether VPM mode is
enabled as specified below. (See
Section 5.7.3.4, “Virtual Real Mode
Addressing Mechanism” and Section 5.7.2,
“Virtualized Partition Memory (VPM) Mode”
for additional information on VPM mode.)

Bit Description

V
C /

V
R

M
A

S
D

// RMLS ILE // LPES RMI HDICE

0 3 12 17 34 38 39 60 62 63
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0 This bit controls whether VPM mode is
enabled when address translation is
disabled
0 - VPM mode disabled 
1 - VPM mode enabled 

1 This bit controls whether VPM mode is
enabled when address translation is
enabled
0 - VPM mode disabled 
1 - VPM mode enabled 

2 Ignore SLB Large Page Specification
(ISL)

Controls whether ISL mode is enabled as
specified below.

0 - ISL mode disabled 
1 - ISL mode enabled 

When ISL mode is enabled and address
translation is enabled and the processor is
not in hypervisor state, address translation
is performed as if the contents of SLBL||LP
were 0b000. When address translation is
disabled, the setting of the ISL bit has no
effect. ISL mode has no effect on SLB,
TLB, and ERAT entry invalidations caused
by slbie, slbia, tlbia, tlbie, and slbie. 

3:11 Reserved

12:16 Virtual Real Mode Area Segment Descrip-
tor (VRMASD)

When address translation is disabled and
VPM0=1, the contents of this field specify the
L and LP fields of the segment descriptor that
apply for storage references to the virtualized
real mode area (VRMA). See Section 5.7.3.4,
“Virtual Real Mode Addressing Mechanism”
for additional information. The definitions and
allowed values of the L and LP fields are the
same as for the corresponding fields in the
segment descriptor. (See Section 5.7.7.) If
VPM0=0 or address translation is enabled, the
setting of the VRMASD has no effect.

 
Bit Description

0 Virtual Page Size Selector Bit 0 (L)
1:2 Reserved
3:4 Virtual Page Size Selector Bits 1:2 (LP)

 

17:33 Reserved

34:37 Real Mode Limit Selector (RMLS)

The RMLS field specifies the largest effective
address that can be used by partition software
when address translation is disabled. The
valid RMLS values are implementation-depen-

dent, and each value corresponds to a maxi-
mum effective address of 2m, where m has a
minimum value of 12 and a maximum value
equal to the number of bits in the real address
size supported by the implementation.

38 Interrupt Little-Endian (ILE)

The contents of the ILE bit are copied into
MSRLE by interrupts that set MSRHV to 0 (see
Section 6.5), to establish the Endian mode for
the interrupt handler.

39:59 Reserved

60:61 Logical Partitioning Environment Selector
(LPES)

Three of the four LPES values are sup-
ported.  The 0b10 value is reserved.

60 LPES0

Controls whether External interrupts set
MSRHV to 1 or leave it unchanged.

61 LPES1

Controls how storage is accessed when
address translation is disabled, and whether a
subset of interrupts set MSRHV to 1.

  

62 Real Mode Caching Inhibited Bit (RMI)

The RMI bit affects the manner in which stor-
age accesses are performed in hypervisor
state when address translation is disabled
(see Section 5.7.3.3 on page 424).

  

Programming Note

LPES1=0 provides an environment in
which only the hypervisor can run with
address translation disabled and in which
all interrupts  invoke the hypervisor. This
value (along with MSRHV=1) can also be
used in a system that is not partitioned, to
permit the operating system to access all
system resources.

Because in real addressing mode all stor-
age is not Caching Inhibited (unless the
Real Mode Caching Inhibited bit is 1),
software should not map a Caching Inhib-
ited virtual page to storage that is treated
as non-Guarded in real addressing mode.
Doing so could permit storage locations in
the virtual page to be copied into the
cache, which could lead to violations of
the requirement given in Section 5.8.2.2
on page 441 for changing the value of the
I bit. See also Section 5.7.3.3.1 on
page 424.

Programming Note
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63 Hypervisor Decrementer Interrupt Condi-
tionally Enable (HDICE)

0 Hypervisor Decrementer interrupts are
disabled.

1 Hypervisor Decrementer interrupts are
enabled if permitted by MSREE, MSRHV,
and MSRPR; see Section 6.5.12 on
page 473.

See Section 5.7.3 on page 422 (including subsections)
and Section 5.7.9 on page 437 for a description of how
storage accesses are affected by the setting of LPES1,
RMLS, and RMI. See Section 6.5 on page 466 for a
description of how the setting of LPES0:1 affects the
processing of interrupts.

2.3 Real Mode Offset Register 
(RMOR)
The layout of the Real Mode Offset Register (RMOR) is
shown in Figure 2 below.

Figure 2. Real Mode Offset Register

All other fields are reserved.

The supported RMO values are the non-negative multi-
ples of 2s, where 2s is the smallest implementation-
dependent limit value representable by the contents of
the Real Mode Limit Selector field of the LPCR.

The contents of the RMOR affect how some storage
accesses are performed as described in Section 5.7.3
on page 422 and Section 5.7.4 on page 426.

2.4 Hypervisor Real Mode Offset 
Register (HRMOR)
The layout of the Hypervisor Real Mode Offset Register
(HRMOR) is shown in Figure 3 below.

Figure 3. Hypervisor Real Mode Offset Register

All other fields are reserved.

The supported HRMO values are the non-negative
multiples of 2r, where r is an implementation-dependent
value and 12 ≤ r ≤ 26.

The contents of the HRMOR affect how some storage
accesses are performed as described in Section 5.7.3
on page 422 and Section 5.7.4 on page 426.

2.5 Logical Partition
Identification Register (LPIDR)
The layout of the Logical Partition Identification Regis-
ter (LPIDR) is shown in Figure 4 below.

Figure 4. Logical Partition Identification Register

The contents of the LPIDR identify the partition to
which the processor is assigned, affecting operations
necessary to manage the coherency of some transla-
tion lookaside buffers (see Section 5.10.1 on page 454
and Chapter 10 on page 489).

The supported LPID values consist of all non-negative
values that are less than an implementation-dependent
power of 2, 2q, where 2q ≥ (the maximum number of
processors in a system) × 2.

  

2.6 Other Hypervisor Resources
In addition to the resources described above, the fol-
lowing resources are hypervisor resources, accessible
to software only when the processor is in hypervisor
state.

� All implementation-specific resources, including
implementation-specific registers (e.g., “HID” reg-
isters), that control hardware functions or affect the
results of instruction execution.  Examples include
resources that disable caches, disable hardware
error detection, set breakpoints, control power
management, or significantly affect performance.

� ME bit of the MSR

// RMO
0 4                                                                                                               63

Bits Name Description
4:63 RMO Real Mode Offset

// HRMO
0 4                                                                                                              63

Bits Name Description
4:63 HRMO Real Mode Offset

LPID
32                                                   63

Bits Name Description
32:63 LPID Logical Partition Identifier

On some implementations, software must prevent
the execution of a tlbie instruction on any proces-
sor for which the contents of the LPIDR is the same
as on the processor on which the LPIDR is being
modified or is the same as the new value being
written to the LPIDR. This restriction can be met
with less effort if one partition identity is used only
on processors on which no tlbie instruction is ever
executed. This partition can be thought of as the
transfer partition used exclusively to move a pro-
cessor from one partition to another.

Programming Note
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� DABR, DABRX, EAR (if implemented), HDAR,
HDSISR, Hypervisor Decrementer, PIR, PURR,
SDR1, and Time Base. (Note: Although the Time
Base and the PURR can be altered only by a
hypervisor program, the Time Base can be read by
all programs and the PURR can be read when the
processor is in privileged state.)

The contents of a hypervisor resource can be modified
by the execution of an instruction (e.g., mtspr) only in
hypervisor state (MSRHV PR = 0b10).  Whether an
attempt to modify the contents of a given hypervisor
resource, other than MSRME, in privileged but non-
hypervisor state (MSRHV PR = 0b00) is ignored (i.e.,
treated as a no-op) or causes a Privileged Instruction
type Program interrupt is implementation-dependent.
An attempt to modify MSRME in privileged but non-
hypervisor state is ignored (i.e., the bit is not changed).

The tlbie, tlbiel, tlbia, and tlbsync instructions can be
executed only in hypervisor state; see the descriptions
of these instructions on pages 450 and 453.

  

2.7 Sharing Hypervisor 
Resources
Some hypervisor resources may be shared among pro-
cessors.  Programs that modify these resources must
be aware of this sharing, and must allow for the fact that
changes to these resources may affect more than one
processor.  The following resources may be shared
among processors.

� RMOR (see Section 2.3.)
� HRMOR (see Section 2.4.)
� LPIDR (see Section 2.5.)
� PVR (see Section 4.3.1.)
� SDR1 (see Section 5.7.7.2.)
� Time Base (see Section 7.2.)
� Hypervisor Decrementer (see Section 7.4.)
� certain implementation-specific registers

The set of resources that are shared is implementation-
dependent.

Processors that share any of the resources listed
above, with the exception of the PIR and the HRMOR,
must be in the same partition.

For each field of the LPCR except the RMI field and the
HDICE field, software must ensure that the contents of
the field are identical among all processors that are in
the same partition and are in a state such that the con-

tents of the field could have side effects.  (E.g., soft-
ware must ensure that the contents of LPCRLPES are
identical among all processors that are in the same par-
tition and are not in hypervisor state.)  For the HDICE
field, software must ensure that the contents of the field
are identical among all processors that share the
Hypervisor Decrementer and are in a state such that
the contents of the field could have side effects.  (There
are no identity requirements for the RMI field.)

2.8 Hypervisor Interrupt Little-
Endian (HILE) Bit
The Hypervisor Interrupt Little-Endian (HILE) bit is a bit
in an implementation-dependent register or similar
mechanism. The contents of the HILE bit are copied
into MSRLE by interrupts that set MSRHV to 1 (see Sec-
tion 6.5), to establish the Endian mode for the interrupt
handler. The HILE bit is set, by an implementation-
dependent method, during system initialization, and
cannot be modified after system initialization.

The contents of the HILE bit must be the same for all
processors under the control of a given instance of the
hypervisor; otherwise all results are undefined.

Because the SPRs listed above are privileged for
writing, an attempt to modify the contents of any of
these SPRs in problem state (MSRPR=1) using
mtspr causes a Privileged Instruction type Pro-
gram exception, and similarly for MSRME.

Programming Note
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3.1 Branch Processor Overview
This chapter describes the details concerning the regis-
ters and the privileged instructions implemented in the
Branch Processor that are not covered in Book I.

3.2 Branch Processor Registers

3.2.1 Machine State Register
The Machine State Register (MSR) is a 64-bit register.
This register defines the state of the processor. On
interrupt, the MSR bits are altered in accordance with
Figure 37 on page 466. The MSR can also be modified
by the mtmsr[d], rfid, and hrfid instructions. It can be
read by the mfmsr instruction.

Figure 5. Machine State Register

Below are shown the bit definitions for the Machine
State Register.

Bit Description

0 Sixty-Four-Bit Mode (SF)

0 The processor is in 32-bit mode.
1 The processor is in 64-bit mode.

1:2 Reserved

 3 Hypervisor State (HV)

0 The processor is not in hypervisor state.
1 If MSRPR=0 the processor is in hypervisor

state; otherwise the processor is not in
hypervisor state.

  

4:37 Reserved

38 Vector Available (VEC) [Category: Vector]

0 The processor cannot execute any vector
instructions, including vector loads, stores,
and moves.

1 The processor can execute vector instruc-
tions.

39:46 Reserved

47 Reserved

48 External Interrupt Enable (EE)

0 External and Decrementer interrupts are
disabled.

1 External and Decrementer interrupts are
enabled.

This bit also affects whether Hypervisor Dec-
rementer interrupts are enabled;
Section 6.5.12 on page 473.

49 Problem State (PR)

0 The processor is in privileged state.
1 The processor is in problem state.

MSR
0                                                                                                                      63

The privilege state of the processor is
determined by MSRHV and MSRPR, as
follows.

HV PR

0 0 privileged
0 1 problem
1 0 privileged and hypervisor
1 1 problem

MSRHV can be set to 1 only by the Sys-
tem Call instruction and some interrupts.
It can be set to 0 only by rfid and hrfid.

Programming Note
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50 Floating-Point Available (FP)
[Category: Floating-Point]

0 The processor cannot execute any float-
ing-point instructions, including floating-
point loads, stores, and moves.

1 The processor can execute floating-point
instructions.

51 Machine Check Interrupt Enable (ME)

0 Machine Check interrupts are disabled.
1 Machine Check interrupts are enabled.

This bit is a hypervisor resource; see Chapter
2., “Logical Partitioning (LPAR)”, on page 397.

  

52 Floating-Point Exception Mode 0 (FE0)
[Category: Floating-Point]

See below.

53 Single-Step Trace Enable (SE)
[Category: Trace]

0 The processor executes instructions nor-
mally.

1 The processor generates a Single-Step
type Trace interrupt after successfully
completing the execution of the next
instruction, unless that instruction is hrfid
or rfid, which are never traced. Successful
completion means that the instruction
caused no other interrupt.

54 Branch Trace Enable (BE)
[Category: Trace]

0 The processor executes branch instruc-
tions normally. 

1 The processor generates a Branch type
Trace interrupt after completing the execu-
tion of a branch instruction, whether or not
the branch is taken.

Branch tracing need not be supported on all
implementations that support the Trace cate-
gory. If the function is not implemented, this bit
is treated as reserved.

55 Floating-Point Exception Mode 1 (FE1)
[Category: Floating-Point]

See below.

56:57 Reserved

58 Instruction Relocate (IR)

0 Instruction address translation is disabled.
1 Instruction address translation is enabled.

  

59 Data Relocate (DR)

0 Data address translation is disabled.
Effective Address Overflow (EAO) (see
Book I) does not occur.

1 Data address translation is enabled.  EAO
causes a Data Storage interrupt.

60 Reserved

61 Performance Monitor Mark (PMM) 
[Category: Server.Performance Monitor]

See Appendix B of Book III-S.

62 Recoverable Interrupt (RI)

0 Interrupt is not recoverable.
1 Interrupt is recoverable.

Additional information about the use of this bit
is given in Sections 6.4.3, “Interrupt Process-
ing” on page 463, 6.5.1, “System Reset Inter-
rupt” on page 466, and 6.5.2, “Machine Check
Interrupt” on page 467.

63 Little-Endian Mode (LE)

0 The processor is in Big-Endian mode.
1 The processor is in Little-Endian mode.

 

The Floating-Point Exception Mode bits FE0 and FE1
are interpreted as shown below.  For further details see
Book I.

Any instruction that sets MSRPR to 1 also
sets MSREE, MSRIR, and MSRDR to 1.

The only instructions that can alter
MSRME are rfid and hrfid.

Programming Note

Programming Note

See the Programming Note in the defini-
tion of MSRPR.

See the Programming Note in the defini-
tion of MSRPR.

The only instructions that can alter MSRLE
are rfid and hrfid.

FE0 FE1 Mode
0 0 Ignore Exceptions
0 1 Imprecise Nonrecoverable
1 0 Imprecise Recoverable
1 1 Precise

Programming Note

Programming Note

Programming Note
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3.3 Branch Processor Instructions

3.3.1 System Linkage Instructions
These instructions provide the means by which a pro-
gram can call upon the system to perform a service,
and by which the system can return from performing a
service or from processing an interrupt.

The System Call instruction is described in Book I, but
only at the level required by an application programmer.
A complete description of this instruction appears
below.

System Call  SC-form

sc LEV

SRR0 �iea CIA + 4
SRR133:36 42:47 � 0
SRR10:32 37:41 48:63 � MSR0:32 37:41 48:63
MSR � new_value (see below)
NIA � 0x0000_0000_0000_0C00

The effective address of the instruction following the
System Call instruction is placed into SRR0.  Bits 0:32,
37:41, and 48:63 of the MSR are placed into the corre-
sponding bits of SRR1, and bits 33:36 and 42:47 of
SRR1 are set to zero.

Then a System Call interrupt is generated. The inter-
rupt causes the MSR to be set as described in
Section 6.5, “Interrupt Definitions” on page 466. The
setting of the MSR is affected by the contents of the
LEV field. LEV values greater than 1 are reserved. Bits
0:5 of the LEV field (instruction bits 20:25) are treated
as a reserved field.

The interrupt causes the next instruction to be fetched
from effective address 0x0000_0000_0000_0C00.

This instruction is context synchronizing.

Special Registers Altered:
SRR0 SRR1 MSR

  

17 /// /// // LEV // 1 /
0 6 11 16 20 27 30 31

If LEV=1 the hypervisor is invoked.

If LPES1=1, executing this instruction with LEV=1
is the only way that executing an instruction can
cause hypervisor state to be entered.

Because this instruction is not privileged, it is possi-
ble for application software to invoke the hypervi-
sor. However, such invocation should be
considered a programming error.

Programming Note

sc serves as both a basic and an extended mne-
monic.  The Assembler will recognize an sc mne-
monic with one operand as the basic form, and an
sc mnemonic with no operand as the extended
form.  In the extended form the LEV operand is
omitted and assumed to be 0.

Programming Note
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Return From Interrupt Doubleword
XL-form

rfid

 
MSR51 � (MSR3 & SRR151) | ((¬MSR3) & MSR51)
MSR3 � MSR3 & SRR13
MSR48 � SRR148 | SRR149 
MSR58 � SRR158 | SRR149
MSR59 � SRR159 | SRR149
MSR0:2 4:32 37:41 49:50 52:57 60:63�SRR10:2 4:32 37:41 49:50 52:57 60:63
NIA �iea SRR00:61 || 0b00

If MSR3=1 then bits 3 and 51 of SRR1 are placed into
the corresponding bits of the MSR. The result of ORing
bits 48 and 49 of SRR1 is placed into MSR48. The
result of ORing bits 58 and 49 of SRR1 is placed into
MSR58. The result of ORing bits 59 and 49 of SRR1 is
placed into MSR59. Bits 0:2, 4:32, 37:41, 49:50, 52:57,
and 60:63 of SRR1 are placed into the corresponding
bits of the MSR.

If the new MSR value does not enable any pending
exceptions, then the next instruction is fetched, under
control of the new MSR value, from the address
SRR00:61 || 0b00 (when SF=1 in the new MSR value)
or 320 || SRR032:61 || 0b00 (when SF=0 in the new MSR
value). If the new MSR value enables one or more
pending exceptions, the interrupt associated with the
highest priority pending exception is generated; in this
case the value placed into SRR0 or HSRR0 by the
interrupt processing mechanism (see Section 6.4.3) is
the address of the instruction that would have been
executed next had the interrupt not occurred.

This instruction is privileged and context synchronizing.

Special Registers Altered:
MSR

  

Hypervisor Return From Interrupt 
Doubleword XL-form

hrfid 

 
MSR48 � HSRR148 | HSRR149
MSR58 � HSRR158 | HSRR149
MSR59 � HSRR159 | HSRR149
MSR0:32 37:41 49:57 60:63 � HSRR10:32 37:41 49:57 60:63
NIA �iea HSRR00:61 || 0b00

The result of ORing bits 48 and 49 of HSRR1 is placed
into MSR48. The result of ORing bits 58 and 49 of
HSRR1 is placed into MSR58. The result of ORing bits
59 and 49 of HSRR1 is placed into MSR59. Bits 0:32,
37:41, 49:57, and 60:63 of HSRR1 are placed into the
corresponding bits of the MSR.

If the new MSR value does not enable any pending
exceptions, then the next instruction is fetched, under
control of the new MSR value, from the address
HSRR00:61 || 0b00 (when SF=1 in the new MSR value)
or 320 || HSRR032:61 || 0b00 (when SF=0 in the new
MSR value). If the new MSR value enables one or more
pending exceptions, the interrupt associated with the
highest priority pending exception is generated; in this
case the value placed into SRR0 or HSRR0 by the
interrupt processing mechanism (see Section 6.4.3) is
the address of the instruction that would have been
executed next had the interrupt not occurred.

This instruction is privileged and context synchronizing,
and can be executed only in hypervisor state.  If it is
executed in privileged but non-hypervisor state either a
Privileged Instruction type Program interrupt occurs or
the results are boundedly undefined.

Special Registers Altered:
MSR

 

19 ///  ///  /// 18 /
0 6 11 16 21 31

If this instruction sets MSRPR to 1, it also sets
MSREE, MSRIR, and MSRDR to 1. 

Programming Note

19 /// /// /// 274 /
0 6 11 16 21 31

If this instruction sets MSRPR to 1, it also sets
MSREE, MSRIR, and MSRDR to 1. 

Programming Note
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4.1 Fixed-Point Processor Over-
view
This chapter describes the details concerning the regis-
ters and the privileged instructions implemented in the
Fixed-Point Processor that are not covered in Book I. 

4.2 Special Purpose Registers
Special Purpose Registers (SPRs) are read and written
using the mfspr (page 414) and mtspr (page 413)
instructions. Most SPRs are defined in other chapters
of this book; see the index to locate those definitions.

4.3 Fixed-Point Processor Reg-
isters

4.3.1 Processor Version Register
The Processor Version Register (PVR) is a 32-bit read-
only register that contains a value identifying the ver-
sion and revision level of the processor.  The contents
of the PVR can be copied to a GPR by the mfspr
instruction.  Read access to the PVR is privileged; write
access is not provided.

Figure 6. Processor Version Register

The PVR distinguishes between processors that differ
in attributes that may affect software.  It contains two
fields.

Version A 16-bit number that identifies the version
of the processor.  Different version numbers
indicate major differences between proces-
sors, such as which categories are sup-
ported.

Revision A 16-bit number that distinguishes between
implementations of the version.  Different
revision numbers indicate minor differences
between processors having the same ver-
sion number, such as clock rate and Engi-
neering Change level.

Version numbers are assigned by the Power ISA pro-
cess. Revision numbers are assigned by an implemen-
tation-defined process. 

4.3.2 Processor Identification 
Register
The Processor Identification Register (PIR) is a 32-bit
register that contains a value that can be used to distin-
guish the processor from other processors in the sys-
tem.  The contents of the PIR can be copied to a GPR
by the mfspr instruction.  Read access to the PIR is

 Version Revision
32 48                     63
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privileged; write access, if provided, is implementation-
dependent.

Figure 7. Processor Identification Register

The means by which the PIR is initialized are imple-
mentation-dependent.

The PIR is a hypervisor resource; see Chapter 2.

4.3.3 Control Register
The Control Register (CTRL) is a 32-bit register that
controls an external I/O pin.  This signal may be used
for the following:

� driving the RUN Light on a system operator panel
� External interrupt routing
� Performance Monitor Counter incrementing (see

Appendix B)

All other fields are implementation-dependent.

Figure 8. Control Register

The CTRL RUN can be used by the operating system
to indicate when the processor is doing useful work.

The contents of the CTRL can be written by the mtspr
instruction and read by the mfspr instruction.  Write
access to the CTRL is privileged.  Reads can be per-
formed in privileged or problem state.

4.3.4 Program Priority Register
The Program Priority Register (PPR) is a 64-bit register
that controls the program’s priority. The layout of the
PPR is shown in Figure 9. A subset of the PRI values
may be set by problem state programs (see
Section 3.2.3 of Book I).

Bit(s) Description

11:13 Program Priority (PRI)

001   very low
010   low
011   medium low
100   medium (normal)
101   medium high
110   high
111   very high

44:63 Implementation-specific

Figure 9. Program Priority Register

PROCID
32                                                    63

Bits Name Description
0:31 PROCID Processor ID

/// RUN
32 63

Bit Name Description
63 RUN Run state bit

/// PRI /// imp-specific
0 11 14 44                             63
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4.3.5 Software-use SPRs
Software-use SPRs are 64-bit registers provided for
use by software.

Figure 10. Software-use SPRs

SPRG0, SPRG1, and SPRG2 are privileged registers.
SPRG3 is a privileged register except that the contents
may be copied to a GPR in Problem state when
accessed using the mfspr instruction.

   

HSPRG0 and HSPRG1 are 64-bit registers provided for
use by hypervisor programs.

Figure 11. SPRs for use by hypervisor programs

  

SPRG0

SPRG1
SPRG2
SPRG3

0                                                                                                                     63

Neither the contents of the SPRGs, nor accessing
them using mtspr or mfspr, has a side effect on
the operation of the processor.  One or more of the
registers is likely to be needed by non-hypervisor
interrupt handler programs (e.g., as scratch regis-
ters and/or pointers to per processor save areas).

Operating systems must ensure that no sensitive
data are left in SPRG3 when a problem state pro-
gram is dispatched, and operating systems for
secure systems must ensure that SPRG3 cannot
be used to implement a “covert channel” between
problem state programs. These requirements can
be satisfied by clearing SPRG3 before passing
control to a program that will run in problem state.

HSPRG0
HSPRG1

0                                                                                                                     63

Neither the contents of the HSPRGs, nor accessing
them using mtspr or mfspr, has a side effect on
the operation of the processor.  One or more of the
registers is likely to be needed by hypervisor inter-
rupt handler programs (e.g., as scratch registers
and/or pointers to per processor save areas). 

Programming Note

Programming Note
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4.4 Fixed-Point Processor Instructions

4.4.1 Fixed-Point Storage Access Instructions [Category: Load/Store 
Quadword]

Load Quadword DQ-form

lq RT,DQ(RA)

if RA = 0 then b � 0
else           b � (RA)
EA � b + EXTS(DQ || 0b0000)
RT � MEM(EA, 8)
GPR(RT+1) � MEM(EA+8, 8)

Let the effective address (EA) be the sum (RA|0)+
(DQ||0b0000). The quadword in storage addressed by
EA is loaded into registers RT and RT+1, in increasing
order of storage address and register number.

EA must be a multiple of 16. If it is not, an Alignment
interrupt occurs.

If RT is odd or RT=RA, the instruction form is invalid. If
RT=RA, an attempt to execute this instruction causes
an Illegal Instruction type Program interrupt. (The
RT=RA case includes the case of RT=RA=0.)

This instruction is not supported in Little-Endian mode.
Execution of this instruction in Little-Endian mode
causes either an Alignment interrupt or the results are
boundedly undefined.

This instruction is privileged.

 

Special Registers Altered:
None

Store Quadword DS-form

stq RS,DS(RA)

if RA = 0 then b � 0
else           b � (RA)
EA � b + EXTS(DS || 0b00)
MEM(EA, 8) � RS
MEM(EA+8, 8) � GPR(RS+1)

Let the effective address (EA) be the sum (RA|0)+
(DS||0b00). (RS) and (RS+1) are stored into the quad-
word in storage addressed by EA, in increasing order of
storage address and register number.

EA must be a multiple of 16. If it is not, an Alignment
interrupt occurs.

If RS is odd, the instruction form is invalid.

This instruction is not supported in Little-Endian mode.
Execution of this instruction in Little-Endian mode
causes either an Alignment interrupt or the results are
boundedly undefined.

This instruction is privileged.

 

Special Registers Altered:
None

 

56 RT RA DQ //
0 6 11 16 28    31

62 RS RA DS 2
0 6 11 16 30 31
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4.4.2 OR Instruction
or Rx,Rx,Rx can be used to set PPRPRI (see Section
4.3.4) as shown in Figure 12. PPRPRI remains
unchanged if the privilege state of the processor exe-
cuting the instruction is lower than the privilege indi-
cated in the figure. (The encodings available to
application programs are also shown in Book I.)

Figure 12. Priority levels for or Rx,Rx,Rx

4.4.3 Move To/From System Reg-
ister Instructions
The Move To Special Purpose Register and Move From
Special Purpose Register instructions are described in
Book I, but only at the level available to an application
programmer.  For example, no mention is made there of
registers that can be accessed only in privileged state.
The descriptions of these instructions given below
extend the descriptions given in Book I, but do not list
Special Purpose Registers that are implementation-
dependent. In the descriptions of these instructions
given below, the “defined” SPR numbers are the SPR
numbers shown in the figure for the instruction and the
implementation-specific SPR numbers that are imple-
mented, and similarly for “defined” registers.

Extended mnemonics
Extended mnemonics are provided for the mtspr and
mfspr instructions so that they can be coded with the
SPR name as part of the mnemonic rather than as a
numeric operand. See Appendix A, “Assembler
Extended Mnemonics” on page 493.

Rx PPRPRI Priority Privileged

31 001 very low yes

1 010 low no

6 011 medium low no

2 100 medium (normal) no

5 101 medium high yes

3 110 high yes

7 111 very high hypv
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Figure 13. SPR encodings

decimal
SPR1 Register 

Name
Privileged Length

(bits)
Cat2

spr5:9  spr0:4 mtspr mfspr
1 00000 00001 XER no no 64 B
8 00000 01000 LR no no 64 B
9 00000 01001 CTR no no 64 B

18 00000 10010 DSISR yes yes 32 S
19 00000 10011 DAR yes yes 64 S
22 00000 10110 DEC yes yes 32 B
25 00000 11001 SDR1 hypv3 yes 64 S
26 00000 11010 SRR0 yes yes 64 B
27 00000 11011 SRR1 yes yes 64 B
29 00000 11101 AMR yes yes 64 S

136 00100 01000 CTRL - no 32 S
152 00100 11000 CTRL   yes - 32 S
256 01000 00000 VRSAVE no no 32 V
259 01000 00011 SPRG3 - no 64 B
268 01000 01100 TB - no 64 B
269 01000 01100 TBU - no 32 B

272-275 01000 100xx SPRG[0-3] yes yes 64 B
282 01000 11010 EAR hypv3 yes 32 EC
284 01000 11100 TBL hypv3 - 32 B
285 01000 11101 TBU hypv3 - 32 B
286 01000 11110 TBU40 hypv - 64 S
287 01000 11111 PVR - yes 32 B
304 01001 10000 HSPRG0 hypv3 hypv3 64 S
305 01001 10001 HSPRG1 hypv3 hypv3 64 S
306 01001 10010 HDSISR hypv3 hypv3 32 B
307 01001 10011 HDAR hypv3 hypv3 64 B
309 01001 10101 PURR hypv3 yes 64 S
310 01001 10110 HDEC hypv3 yes 32 S
312 01001 11000 RMOR hypv3 hypv3 64 S
313 01001 11001 HRMOR hypv3 hypv3 64 S
314 01001 11010 HSRR0 hypv3 hypv3 64 S
315 01001 11011 HSRR1 hypv3 hypv3 64 S
318 01001 11110 LPCR hypv3 hypv3 64 S
319 01001 11111 LPIDR hypv3 hypv3 32 S

768-783 11000 0xxxx perf_mon - no 64 S.PM
784-799 11000 1xxxx perf_mon yes yes 64 S.PM

896 11100 00000 PPR no no 64 S
1013 11111 10101 DABR hypv3 yes 64 S
1015 11111 10111 DABRX hypv3 yes 64 S
1023 11111 11111 PIR - yes 32 S

- This register is not defined for this instruction.
1 Note that the order of the two 5-bit halves of the SPR number is reversed.
2 See Section 1.3.5 of Book I.
3 This register is a hypervisor resource, and can be modified by this instruc-

tion only in hypervisor state (see Chapter 2).

All SPR numbers that are not shown above and are not implementation-
specific are reserved.
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Move To Special Purpose Register
XFX-form

mtspr SPR,RS 

n � spr5:9 || spr0:4
if length(SPR(n)) = 64 then
  SPR(n) � (RS)
else
  SPR(n) � (RS)32:63

The SPR field denotes a Special Purpose Register,
encoded as shown in Figure 13. The contents of regis-
ter RS are placed into the designated Special Purpose
Register. For Special Purpose Registers that are 32
bits long, the low-order 32 bits of RS are placed into the
SPR.

For this instruction, SPRs TBL and TBU are treated as
separate 32-bit registers; setting one leaves the other
unaltered.

spr0=1 if and only if writing the register is privileged.
Execution of this instruction specifying a defined and
privileged register when MSRPR=1 causes a Privileged
Instruction type Program interrupt. Execution of this
instruction specifying a hypervisor resource when
MSRHV PR = 0b00 either has no effect or causes a Priv-
ileged Instruction type Program interrupt (Chapter 2.,
“Logical Partitioning (LPAR)”, on page 397).

Execution of this instruction specifying an SPR number
that is not defined for the implementation causes either
an Illegal Instruction type Program interrupt or one of
the following.

� if spr0=0: boundedly undefined results
� if spr0=1:

- if MSRPR=1: Privileged Instruction type Pro-
gram interrupt

- if MSRPR=0 and MSRHV=0: boundedly unde-
fined results

- if MSRPR=0 and MSRHV=1: undefined results

If the SPR number is set to a value that is shown in
Figure 13 but corresponds to an optional Special Pur-
pose Register that is not provided by the implementa-
tion, the effect of executing this instruction is the same
as if the SPR number were reserved.

Special Registers Altered:
See Figure 13

  

31 RS spr 467 /
0 6 11 21 31

For a discussion of software synchronization
requirements when altering certain Special Pur-
pose Registers, see Chapter 10. “Synchronization
Requirements for Context Alterations” on
page 489.

Programming Note
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Move From Special Purpose Register 
XFX-form

mfspr RT,SPR 

n � spr5:9 || spr0:4
if length(SPR(n)) = 64 then
  RT � SPR(n)
else
  RT � 320 || SPR(n)

The SPR field denotes a Special Purpose Register,
encoded as shown in Figure 13. The contents of the
designated Special Purpose Register are placed into
register RT. For Special Purpose Registers that are 32
bits long, the low-order 32 bits of RT receive the con-
tents of the Special Purpose Register and the high-
order 32 bits of RT are set to zero.

spr0=1 if and only if reading the register is privileged.
Execution of this instruction specifying a defined and
privileged register when MSRPR=1 causes a Privileged
Instruction type Program interrupt.

Execution of this instruction specifying an SPR number
that is not defined for the implementation causes either
an Illegal Instruction type Program interrupt or one of
the following.

� if spr0=0: boundedly undefined results
� if spr0=1:

- if MSRPR=1: Privileged Instruction type Pro-
gram interrupt

- if MSRPR=0: boundedly undefined results

If the SPR field contains a value that is shown in
Figure 13 but corresponds to an optional Special Pur-
pose Register that is not provided by the implementa-
tion, the effect of executing this instruction is the same
as if the SPR number were reserved.

Special Registers Altered:
None

  

31 RT spr 339 /
0 6 11 21 31

See the Notes that appear with mtspr.
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Power ISA™ -- Book III-S414



   Version 2.04
Move To Machine State Register X-form

mtmsr RS,L

if L = 0 then
   MSR48 � (RS)48 | (RS)49
   MSR58 � (RS)58 | (RS)49
   MSR59 � (RS)59 | (RS)49
   MSR32:47 49:50 52:57 60:62 �(RS)32:47 49:50 52:57 60:62
else
   MSR48 62 � (RS)48 62

The MSR is set based on the contents of register RS
and of the L field.

L=0:

The result of ORing bits 48 and 49 of register RS is
placed into MSR48.  The result of ORing bits 58
and 49 of register RS is placed into MSR58.  The
result of ORing bits 59 and 49 of register RS is
placed into MSR59.  Bits 32:47, 49:50, 52:57, and
60:62 of register RS are placed into the corre-
sponding bits of the MSR.

L=1:

Bits 48 and 62 of register RS are placed into the
corresponding bits of the MSR.  The remaining bits
of the MSR are unchanged.

This instruction is privileged.

If L=0 this instruction is context synchronizing.  If L=1
this instruction is execution synchronizing; in addition,
the alterations of the EE and RI bits take effect as soon
as the instruction completes.

Special Registers Altered:
MSR

Except in the mtmsr instruction description in this sec-
tion, references to “mtmsr” in this document imply
either L value unless otherwise stated or obvious from
context (e.g., a reference to an mtmsr instruction that
modifies an MSR bit other than the EE or RI bit implies
L=0).

 

  

  

  

  

31 RS ///  L /// 146 /
0 6 11 15 16 21 31

If this instruction sets MSRPR to 1, it also sets
MSREE, MSRIR, and MSRDR to 1. 

This instruction does not alter MSRME or MSRLE.
(This instruction does not alter MSRHV because it
does not alter any of the high-order 32 bits of the
MSR.)

If the only MSR bits to be altered are MSREE RI, to
obtain the best performance L=1 should be used.

Programming Note

If MSREE=0 and an External or Decrementer
exception is pending, executing an mtmsr instruc-
tion that sets MSREE to 1 will cause the External or
Decrementer interrupt to occur before the next
instruction is executed, if no higher priority excep-
tion exists (see Section 6.8, “Interrupt Priorities” on
page 479). Similarly, if a Hypervisor Decrementer
interrupt is pending, execution of the instruction by
the hypervisor causes a Hypervisor Decrementer
interrupt to occur if HDICE=1.

For a discussion of software synchronization
requirements when altering certain MSR bits, see
Chapter 10.

mtmsr serves as both a basic and an extended
mnemonic. The Assembler will recognize an
mtmsr mnemonic with two operands as the basic
form, and an mtmsr mnemonic with one operand
as the extended form.  In the extended form the L
operand is omitted and assumed to be 0.

There is no need for an analogous version of the
mfmsr instruction, because the existing instruction
copies the entire contents of the MSR to the
selected GPR.

Programming Note

Programming Note

Programming Note
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Move To Machine State Register
Doubleword X-form

mtmsrd RS,L 

if L = 0 then

   MSR48 � (RS)48 | (RS)49 
   MSR58 � (RS)58 | (RS)49
   MSR59 � (RS)59 | (RS)49
   MSR0:2 4:47 49:50 52:57 60:62 � (RS)0:2 4:47 49:50 52:57 60:62
else
   MSR48 62 � (RS)48 62

The MSR is set based on the contents of register RS
and of the L field.

L=0:

The result of ORing bits 48 and 49 of register RS is
placed into MSR48. The result of ORing bits 58 and
49 of register RS is placed into MSR58. The result
of ORing bits 59 and 49 of register RS is placed
into MSR59. Bits 0:2, 4:47, 49:50, 52:57, and 60:62
of register RS are placed into the corresponding
bits of the MSR.

L=1:

Bits 48 and 62 of register RS are placed into the
corresponding bits of the MSR.  The remaining bits
of the MSR are unchanged.

This instruction is privileged.

If L=0 this instruction is context synchronizing. If L=1
this instruction is execution synchronizing; in addition,
the alterations of the EE and RI bits take effect as soon
as the instruction completes.

Special Registers Altered:
MSR

Except in the mtmsrd instruction description in this
section, references to “mtmsrd” in this document imply
either L value unless otherwise stated or obvious from
context (e.g., a reference to an mtmsrd instruction that
modifies an MSR bit other than the EE or RI bit implies
L=0).

 

  

  

  

31 RS  /// L /// 178 /
0 6 11 15 16 21 31

If this instruction sets MSRPR to 1, it also sets
MSREE, MSRIR, and MSRDR to 1. 

This instruction does not alter MSRLE, MSRME or
MSRHV.

If the only MSR bits to be altered are MSREE RI, to
obtain the best performance L=1 should be used.

Programming Note

If MSREE=0 and an External or Decrementer
exception is pending, executing an mtmsrd
instruction that sets MSREE to 1 will cause the
External or Decrementer interrupt to occur before
the next instruction is executed, if no higher priority
exception exists (see Section 6.8, “Interrupt Priori-
ties” on page 479). Similarly, if a Hypervisor Decre-
menter interrupt is pending, execution of the
instruction by the hypervisor causes a Hypervisor
Decrementer interrupt to occur if HDICE=1. 

For a discussion of software synchronization
requirements when altering certain MSR bits, see
Chapter 10.

mtmsrd serves as both a basic and an extended
mnemonic. The Assembler will recognize an
mtmsrd mnemonic with two operands as the basic
form, and an mtmsrd mnemonic with one operand
as the extended form.  In the extended form the L
operand is omitted and assumed to be 0.

Programming Note
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Move From Machine State Register 
X-form 

mfmsr RT 

RT � MSR

The contents of the MSR are placed into register RT. 

This instruction is privileged.

Special Registers Altered:
None 

31 RT ///  /// 83 /
0 6 11 16 21 31
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5.1 Overview
A program references storage using the effective

address computed by the processor when it executes a
Load, Store, Branch, or Cache Management instruc-
tion, or when it fetches the next sequential instruction.
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The effective address is translated to a real address
according to procedures described in Section 5.7.3, in
Section 5.7.5 and in the following sections. The real
address is what is presented to the storage subsystem.

For a complete discussion of storage addressing and
effective address calculation, see Section 1.10 of Book
I.

5.2 Storage Exceptions 
A storage exception results when the sequential execu-
tion model requires that a storage access be performed
but the access is not permitted (e.g., is not permitted by
the storage protection mechanism), the access cannot
be performed because the effective address cannot be
translated to a real address, or the access matches
some tracking mechanism criteria (e.g., Data Address
Breakpoint). 

In certain cases a storage exception may result in the
“restart” of (re-execution of at least part of) a Load or
Store instruction. See Section 2.1 of Book II, and Sec-
tion 6.6 in this Book.

5.3 Instruction Fetch 
Instructions are fetched under control of MSRIR.

MSRIR=0

The effective address of the instruction is inter-
preted as described in Section 5.7.3.

MSRIR=1

The effective address of the instruction is trans-
lated by the Address Translation mechanism
described beginning in Section 5.7.5.

5.3.1 Implicit Branch
Explicitly altering certain MSR bits (using mtmsr[d]), or
explicitly altering SLB entries, Page Table Entries, or
certain System Registers (including the HRMOR, and
possibly other implementation-dependent registers),
may have the side effect of changing the addresses,
effective or real, from which the current instruction
stream is being fetched. This side effect is called an
implicit branch. For example, an mtmsrd instruction
that changes the value of MSRSF may change the
effective addresses from which the current instruction
stream is being fetched. The MSR bits and System
Registers (excluding implementation-dependent regis-
ters) for which alteration can cause an implicit branch
are indicated as such in Chapter 10. “Synchronization
Requirements for Context Alterations” on page 489.
Implicit branches are not supported by the Power ISA.
If an implicit branch occurs, the results are boundedly
undefined.

5.3.2 Address Wrapping Com-
bined with Changing MSR Bit SF
If the current instruction is at effective address 232 - 4
and is an mtmsrd instruction that changes the contents
of MSRSF, the effective address of the next sequential
instruction is undefined.

  

5.4 Data Access
Data accesses are controlled by MSRDR.

MSRDR=0

The effective address of the data is interpreted as
described in Section 5.7.3.

MSRDR=1

The effective address of the data is translated by
the Address Translation mechanism described in
Section 5.7.5.

5.5 Performing Operations 
Out-of-Order
An operation is said to be performed “in-order” if, at the
time that it is performed, it is known to be required by
the sequential execution model. An operation is said to
be performed “out-of-order” if, at the time that it is per-
formed, it is not known to be required by the sequential
execution model.

Operations are performed out-of-order by the proces-
sor on the expectation that the results will be needed by
an instruction that will be required by the sequential
execution model. Whether the results are really needed
is contingent on everything that might divert the control
flow away from the instruction, such as Branch, Trap,
System Call, and Return From Interrupt instructions,
and interrupts, and on everything that might change the
context in which the instruction is executed.

Typically, the processor performs operations out-of-
order when it has resources that would otherwise be
idle, so the operation incurs little or no cost. If subse-
quent events such as branches or interrupts indicate
that the operation would not have been performed in
the sequential execution model, the processor aban-
dons any results of the operation (except as described
below).

In the case described in the preceding paragraph, if
an interrupt occurs before the next sequential
instruction is executed, the contents of SRR0, or
HSRR0, as appropriate to the interrupt, are unde-
fined.

Programming Note
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In the remainder of this section, including its subsec-
tions, “Load instruction” includes the Cache Manage-
ment and other instructions that are stated in the
instruction descriptions to be “treated as a Load”, and
similarly for “Store instruction”.

A data access that is performed out-of-order may corre-
spond to an arbitrary Load or Store instruction (e.g., a
Load or Store instruction that is not in the instruction
stream being executed). Similarly, an instruction fetch
that is performed out-of-order may be for an arbitrary
instruction (e.g., the aligned word at an arbitrary loca-
tion in instruction storage).

Most operations can be performed out-of-order, as long
as the machine appears to follow the sequential execu-
tion model. Certain out-of-order operations are
restricted, as follows.

� Stores
Stores are not performed out-of-order (even if the
Store instructions that caused them were executed
out-of-order). 

� Accessing Guarded Storage
The restrictions for this case are given in Section
5.8.1.1.

The only permitted side effects of performing an opera-
tion out-of-order are the following.

� A Machine Check or Checkstop that could be
caused by in-order execution may occur out-of-
order, except as described in Section 5.7.3.3.1 for
the Real Mode Storage Control facility.

� On implementations which support Reference and
Change bits, these bits may be set as described in
Section 5.7.8.

� Non-Guarded storage locations that could be
fetched into a cache by in-order fetching or execu-
tion of an arbitrary instruction may be fetched out-
of-order into that cache.

5.6 Invalid Real Address
A storage access (including an access that is per-
formed out-of-order; see Section 5.5) may cause a
Machine Check if the accessed storage location con-
tains an uncorrectable error or does not exist.

In the case that the accessed storage location does not
exist, the Checkstop state may be entered. See
Section 6.5.2 on page 467.

  

In configurations supporting multiple partitions,
hypervisor software must ensure that a storage
access by a program in one partition will not cause
a Checkstop or other system-wide event that could
affect the integrity of other partitions (see Chapter
2). For example, such an event could occur if a real
address placed in a Page Table Entry or made
accessible to a partition using the Offset Real
Mode Address mechanism (see Section 5.7.3.3)
does not exist.

Programming Note
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5.7 Storage Addressing

Storage Control Overview
� Real address space size is 2m bytes, m≤60; see

Note 1.

� Real page size is 212 bytes (4 KB).

� Effective address space size is 264 bytes.

� An effective address is translated to a virtual
address via the Segment Lookaside Buffer (SLB).
- Virtual address space size is 2n bytes,

65≤n≤78; see Note 2.
- Segment size is 2s bytes, s=28 or 40.
- 2n-40 ≤ number of virtual segments ≤ 2n-28;

see Note 2.
- Virtual page size is 2p bytes, where 12≤p, and

2p is no larger than either the size of the big-
gest segment or the real address space; a
size of 4KB, 64 KB, and an implementation-
dependent number of other sizes are sup-
ported; see Note 3.

- Segments contain pages of a single size or a
mixture of 4KB and 64KB pages

� A virtual address is translated to a real address via
the Page Table.

Notes:

1. The value of m is implementation-dependent (sub-
ject to the maximum given above). When used to
address storage, the high-order 60-m bits of the
“60-bit” real address must be zeros.

2. The value of n is implementation-dependent (sub-
ject to the range given above). In references to 78-
bit virtual addresses elsewhere in this Book, the
high-order 78-n bits of the “78-bit” virtual address
are assumed to be zeros.

3. The supported values of p for the larger virtual
page sizes are implementation-dependent (subject
to the limitations given above).

5.7.1 32-Bit Mode
The computation of the 64-bit effective address is inde-
pendent of whether the processor is in 32-bit mode or
64-bit mode. In 32-bit mode (MSRSF=0), the high-order
32 bits of the 64-bit effective address are treated as
zeros for the purpose of addressing storage. This
applies to both data accesses and instruction fetches. It
applies independent of whether address translation is
enabled or disabled. This truncation of the effective
address is the only respect in which storage accesses
in 32-bit mode differ from those in 64-bit mode.

  

5.7.2 Virtualized Partition Mem-
ory (VPM) Mode
VPM mode enables the hypervisor to reassign all or
part of a partition’s memory transparently so that the
reassignment is not visible to the partition. When this is
done, the partition’s memory is said to be “virtualized.”
The VPM field in the LPCR enables VPM mode sepa-
rately when address translation is enabled and when
translation is disabled.

If the processor is not in hypervisor state, and either
address translation is enabled and VPM1=1, or address
translation is disabled and VPM0=1, conditions that
would have caused a Data Storage or an Instruction
Storage interrupt if the affected memory were not virtu-
alized instead cause a Hypervisor Data Storage or a
Hypervisor Instruction Storage interrupt respectively.
Because the Hypervisor Data Storage and Hypervisor
Instruction Storage interrupts always put the processor
in hypervisor state, they permit the hypervisor to handle
the condition if appropriate (e.g., to restore the contents
of a page that was reassigned), and to reflect it to the
operating system’s  Data Storage or Instruction Storage
interrupt handler otherwise.

When address translation is enabled, VPM mode has
no effect on address translation. When address transla-
tion is disabled, addressing is controlled as specified in
Section 5.7.3.

5.7.3 Real And Virtual Real 
Addressing Modes
When a storage access is an instruction fetch per-
formed when instruction address translation is dis-
abled, or if the access is a data access and data
address translation is disabled, it is said to be per-
formed in “real addressing mode” if VPM0=0 and the
processor is  not in hypervisor state. If the processor is
in hypervisor state, the access is said to be performed

Treating the high-order 32 bits of the effective
address as zeros effectively truncates the 64-bit
effective address to a 32-bit effective address such
as would have been generated on a 32-bit imple-
mentation of the Power ISA. Thus, for example, the
ESID in 32-bit mode is the high-order four bits of
this truncated effective address; the ESID thus lies
in the range 0-15. When address translation is
enabled, these four bits would select a Segment
Register on a 32-bit implementation of the Power
ISA. The SLB entries that translate these 16 ESIDs
can be used to emulate these Segment Registers.

Programming Note
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in “hypervisor real addressing mode” regardless of the
value of VPM0. If the processor is not in hypervisor
state and VPM0=1, the access is said to be performed
in “virtual real addressing mode.”  Storage accesses in
real, hypervisor real, and virtual real addressing modes
are performed in a manner that depends on the con-
tents of MSRHV, LPES, VPM, VRMASD, HRMOR,
RMLS, and RMOR (see Chapter 2), and bit 0 of the
effective address (EA0) as described below. Bit 1 of the
effective address is ignored.

MSRHV=1

� If EA0=0, the Hypervisor Offset Real Mode
Address mechanism, described in Section 5.7.3.1,
controls the access.

� If EA0=1, bits 4:63 of the effective address are
used as the real address for the access.

MSRHV=0

� If LPES1=0, the access causes a storage excep-
tion as described in Section 5.7.9.3.

� If LPES1=1 and VPM0=0, the Offset Real Mode
Address mechanism, described in Section 5.7.3.2,
controls the access.

� If LPES1=1 and VPM0=1, the Virtual Real Mode
Addressing mechanism, described in Section
5.7.3.4, controls the access. 

5.7.3.1 Hypervisor Offset Real Mode 
Address
If MSRHV = 1 and EA0 = 0, the access is controlled by
the contents of the Hypervisor Real Mode Offset Regis-
ter, as follows.

Hypervisor Real Mode Offset Register (HRMOR)

Bits 4:63 of the effective address for the access
are ORed with the 60-bit offset represented by the
contents of the HRMOR, and the 60-bit result is
used as the real address for the access. The sup-
ported offset values are all values of the form i×2r,
where 0 ≤ i < 2j, and j and r are implementation-
dependent values having the properties that 12 ≤ r
≤ 26 (i.e., the minimum offset granularity is 4 KB
and the maximum offset granularity is 64 MB) and
j+r = m, where the real address size supported by
the implementation is m bits.

  

5.7.3.2 Offset Real Mode Address
If VPM0=0, MSRHV=0, and LPES1=1, the access is
controlled by the contents of the Real Mode Limit
Selector and Real Mode Offset Register, as specified
below, and the set of storage locations accessible by
code is referred to as the Real Mode Area (RMA).

Real Mode Limit Selector (RMLS)

If bits 4:63 of effective address for the access are
greater than or equal to the value (limit) repre-
sented by the contents of the RMLR, the access
causes a storage exception (see Section 5.7.9.3).
In this comparison, if m<60, bits 4:63-m of the
effective address may be ignored (i.e., treated as if
they were zeros), where the real address size sup-
ported by the implementation is m bits. The sup-
ported limit values are of the form 2j, where 12 ≤ j ≤
60.   Subject to the preceding sentence, the num-
ber and values of the limits supported are imple-
mentation-dependent.

Real Mode Offset Register (RMOR)

If the access is permitted by the RMLR, bits 4:63 of
the effective address for the access are ORed with
the 60-bit offset represented by the contents of the
RMOR, and the low-order m bits of the 60-bit result
are used as the real address for the access. The
supported offset values are all values of the form
i×2s, where 0 ≤ i < 2k, and k and s are implementa-
tion-dependent values having the properties that
2s is the minimum limit value supported by the
implementation (i.e., the minimum value represent-
able by the contents of the RMLR) and k+s = m.

  

EA4:63-r should equal 60-r0. If this condition is satis-
fied, ORing the effective address with the offset
produces a result that is equivalent to adding the
effective address and the offset.

If m<60, EA4:63-m and HRMOR0:59-m must be
zeros.

Software must ensure that altering the HRMOR
does not cause an implicit branch.

The offset specified by the RMOR should be a non-
zero multiple of the limit specified by the RMLS. If
these registers are set thus, ORing the effective
address with the offset produces a result that is
equivalent to adding the effective address and the
offset. (The offset must not be zero, because real
page 0 contains the fixed interrupt vectors and real
pages 1 and 2 may be used for implementation-
specific purposes; see Section 5.7.4, “Address
Ranges Having Defined Uses” on page 426.)

Programming Note

Programming Note
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5.7.3.3 Storage Control Attributes for 
Accesses in Real and Hypervisor Real 
Addressing Modes
Storage accesses in hypervisor real addressing mode
are performed as though all of storage had the follow-
ing storage control attributes, except as modified by the
Real Mode Storage Control facility (see
Section 5.7.3.3.1). (The storage control attributes are
defined in Book II.)

� not Write Through Required
� not Caching Inhibited, for instruction fetches
� not Caching Inhibited, for data accesses if the Real

Mode Caching Inhibited bit is set to 0; Caching
Inhibited, for data accesses if the Real Mode
Caching Inhibited bit is set to 1

� Memory Coherence Required, for data accesses
� Guarded

Storage accesses in real addressing mode are per-
formed as though all of storage had the following stor-
age control attributes. (Such accesses use the Offset
Real Mode Address mechanism.)

� not Write Through Required
� not Caching Inhibited
� Memory Coherence Required, for data accesses
� not Guarded

Additionally, storage accesses in real or hypervisor real
addressing modes are performed as though all storage
was not No-execute.

Software must ensure that any data storage location
that is accessed with the Real Mode Caching Inhibited
bit set to 1 is not in the caches.

Software must ensure that the Real Mode Caching
Inhibited bit contains 0 whenever data address transla-
tion is enabled and whenever the processor is not in
hypervisor state.

  

5.7.3.3.1 Hypervisor Real Mode Storage Control

The Hypervisor Real Mode Storage Control facility pro-
vides a means of specifying portions of real storage
that are treated as non-Guarded in hypervisor real
addressing mode (MSRHV PR=0b10, and MSRIR=0 or
MSRDR=0, as appropriate for the type of access). The
remaining portions are treated as Guarded in hypervi-
sor real addressing mode. The means is a hypervisor
resource (see Chapter 2), and may also be system-
specific.

If the Real Mode Caching Inhibited (RMI) bit is set to 1,
it is undefined whether a given data access to a storage
location that is treated as non-Guarded in hypervisor
real addressing mode is treated as Caching Inhibited or
as not Caching Inhibited. If the access is treated as
Caching Inhibited and is performed out-of-order, the
access cannot cause a Machine Check or Checkstop to
occur out-of-order due to violation of the requirements
given in Section 5.8.2.2 for changing the value of the
effective I bit. (Recall that software must ensure that
RMI = 0 when the processor is not in hypervisor real
addressing mode; see Section 5.7.3.3.)

The facility does not apply to implicit accesses to the
Page Table by the processor in performing address
translation or in recording reference and change infor-
mation. These accesses are performed as described in
Section 5.7.3.3.

  

5.7.3.4 Virtual Real Mode Addressing 
Mechanism
If VPM0=1, MSRHV=0, LPES1=1, and MSRDR=0 or
MSRIR=0 as appropriate for the type of access, the
access is said to be made in virtual real addressing
mode and is controlled by the mechanism specified
below. The set of storage locations accessible by
code is referred to as the Virtualized Real Mode Area
(VRMA).

Because storage accesses in real addressing
mode and hypervisor real addressing mode do not
use the SLB or the Page Table, accesses in these
modes bypass all checking and recording of infor-
mation contained therein (e.g., storage protection
checks that use information contained therein are
not performed, and reference and change informa-
tion is not recorded).

The Real Mode Caching Inhibited bit can be used
to permit a control register on an I/O device to be
accessed without permitting the corresponding
storage location to be copied into the caches. The
bit should normally contain 0. Software would set
the bit to 1 just before accessing the control regis-
ter, access the control register as needed, and then
set the bit back to 0.

Programming Note

The preceding capability can be used to improve
the performance of hypervisor software that runs in
hypervisor real addressing mode, by causing
accesses to instructions and data that occupy well-
behaved storage to be treated as non-Guarded.
See also the second paragraph of the Program-
ming Note in Section 5.7.3.3.

If RMI=1, the statement in Section 5.5, that non-
Guarded storage locations may be fetched out-of-
order into a cache only if they could be fetched into
that cache by in-order execution does not preclude
the out-of-order fetching into the data cache of stor-
age locations that are treated as non-Guarded in
hypervisor real addressing mode, because the
effective RMI value that could be used for an in-
order data access to such a storage location is
undefined and hence could be 0.

Programming Note
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In virtual real addressing mode, address translation,
storage protection, and reference and change record-
ing are handled as follows.
� Address translation and storage protection are

handled as if address translation were enabled,
except that translation of effective addresses to vir-
tual addresses use the SLBE values in Figure 14
instead of the entry in the SLB corresponding to
the ESID, bits 0:3 of the effective address are
ignored (i.e. treated as if they were 0s),   bits 4:63-
m of the effective address may be ignored (where
the real address size supported by the implemen-
tation is m bits), and the Virtual Page Class Key
protection mechanism does not apply.

  

� Reference and change recording are handled as if
address translation were enabled.

Figure 14. SLBE for VRMA

If the effective address is not less than 1 TB, a Hypervi-
sor Data Segment or Hypervisor Instruction Segment
interrupt may occur.

 

  

 

 

5.7.3.5 Storage Control Attributes for 
Implicit Storage Accesses
Implicit accesses to the Page Table by the processor in
performing address translation and in recording refer-
ence and change information are performed as though
the storage occupied by the Page Table had the follow-
ing storage control attributes.

� not Write Through Required
� not Caching Inhibited
� Memory Coherence Required
� not Guarded

The definition of “performed” given in Book II applies
also to these implicit accesses; accesses for perform-
ing address translation are considered to be loads in
this respect, and accesses for recording reference and
change information are considered to be stores. These
implicit accesses are ordered by the ptesync instruc-
tion as described in Section 5.9.2.

The Virtual Page Class Key protection mecha-
nism does not apply because the authority
mask that an OS has set for application pro-
grams executing with address translation
enabled may not be the same as the authority
mask required by the OS when address trans-
lation is disabled, such as when first entering
an interrupt handler.

 Field   Value
ESID 360
V 1

B 0b01 - 1 TB
VSID 0x0_01FF_FFFF
Ks 0

Kp undefined
N 0
L VRMASDL

C 0
LP VRMASDLP

The C bit in Figure 14 is set to 0 because the imple-
mentation-dependent lookaside information associ-
ated with the VRMA is expected to be long-lived.
See Section 5.9.3.1.

The 1 TB VSID 0x0_01FF_FFFF should not be
used by the operating system for purposes other
than mapping the VRMA when address translation
is enabled. 

Programming Note

Programming Note

Programming Note

Software should specify PTEB = 0b01 for all Page
Table Entries that map the VRMA in order to be
consistent with the values in Figure 14.

All accesses to the RMA are considered not
Guarded. The G bit of the associated Page Table
Entry determines whether an access to the VRMA
is Guarded. Therefore, if an instruction is fetched
from the VRMA, a Hypervisor Instruction Storage
interrupt will result if G=1 in the associated Page
Table Entry.

Programming Note

Programming Note
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5.7.4 Address Ranges Having 
Defined Uses
The address ranges described below have uses that
are defined by the architecture.

� Fixed interrupt vectors

Except for the first 256 bytes, which are reserved
for software use, the real page beginning at real
address 0x0000_0000_0000_0000 is either used
for interrupt vectors or reserved for future interrupt
vectors.

� Implementation-specific use

The two contiguous real pages beginning at real
address 0x0000_0000_0000_1000 are reserved
for implementation-specific purposes.

� Offset Real Mode interrupt vectors

The real pages beginning at the real address spec-
ified by the HRMOR and RMOR are used similarly
to the page for the fixed interrupt vectors.

� Page Table

A contiguous sequence of real pages beginning at
the real address specified by SDR1 contains the
Page Table.
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5.7.5 Address Translation Overview
The effective address (EA) is the address generated by
the processor for an instruction fetch or for a data
access. If address translation is enabled, this address
is passed to the Address Translation mechanism, which
attempts to convert the address to a real address which
is then used to access storage.

The first step in address translation is to convert the
effective address to a virtual address (VA), as
described in Section 5.7.6. The second step, conver-
sion of the virtual address to a real address (RA), is
described in Section 5.7.7.

If the effective address cannot be translated, a storage
exception (see Section 5.2) occurs.

Figure  gives an overview of the address translation
process.

 

Address translation overview

5.7.6 Virtual Address Generation
Conversion of a 64-bit effective address to a virtual
address is done by searching the Segment Lookaside
Buffer (SLB) as shown in Figure 15. 

 

Figure 15. Translation of 64-bit effective address to
78 bit virtual address

5.7.6.1  Segment Lookaside Buffer 
(SLB)
The Segment Lookaside Buffer (SLB) specifies the
mapping between Effective Segment IDs (ESIDs) and
Virtual Segment IDs (VSIDs). The number of SLB
entries is implementation-dependent, except that all
implementations provide at least 32 entries.

The contents of the SLB are managed by software,
using the instructions described in Section 5.9.3.1. See
Chapter 10. “Synchronization Requirements for Con-
text Alterations” on page 489 for the rules that software
must follow when updating the SLB.

SLB Entry
Each SLB entry (SLBE, sometimes referred to as a
“segment descriptor”) maps one ESID to one VSID.
Figure 16 shows the layout of an SLB entry

Real Address

Lookup in
Page Table

Lookup in SLB

Effective Address

Virtual Address

Virtual Page Number (VPN)

64-bit Effective Address

ESID Page Byte

64-s s-p p

0     63-s 64-s 63-p 64-p    63

SLBE0

SLBEn

ESID V VSID KsKpNLC  LP

0            35  37 39      88 89     93  95 96

Segment Lookaside 
Buffer (SLB)

VSID Page Byte

s-p p

≈ ≈ ≈ ≈ ≈ ≈≈≈

B

78-s

VSID0:77-s

78-bit Virtual Address
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.  

All other fields are reserved. B0 (SLBE37)is treated as a
reserved field.

Figure 16. SLB Entry 

Instructions cannot be executed from a No-execute
(N=1) segment.

The L and LP bits specify the page size or sizes that
the segment may contain as shown in Figure 17. A
Mixed Page Size (MPS) segment is a segment that
may contain 4 KB pages, 64 KB pages, or a mixture of
both. A Uniform Page Size (UPS) segment is a seg-
ment that must contain pages of only a single size. 

Figure 17. SLBLL||LP Encoding

For each SLB entry, software must ensure the following
requirements are satisfied.

- L||LP contains a value supported by the imple-
mentation. 

- The page size selected by the L and LP fields
does not exceed the segment size selected by
the B field.

- If s=40, the following bits of the SLB entry con-
tain 0s.
- ESID24:35
- VSID38:49

The bits in the above two items are ignored by
the processor.

The Class field is used in conjunction with the slbie
instruction (see Section 5.9.3.1).

Software must ensure that the SLB contains at most
one entry that translates a given effective address, and
that if the SLB contains an entry that translates a given
effective address, then any previously existing transla-
tion of that effective address has been invalidated. An
attempt to create an SLB entry that violates this
requirement may cause a Machine Check.

  

5.7.6.2 SLB Search
When the hardware searches the SLB, all entries are
tested for a match with the EA. For a match to exist, the
following conditions must be satisfied for indicated
fields in the SLBE.

� V=1
� ESID0:63-s=EA0:63-s, where the value of s is speci-

fied by the B field in the SLBE being tested

If no match is found, the search fails. If one match is
found, the search succeeds. If more than one match is
found, one of the matching entries is used as if it were
the only matching entry, or a Machine Check occurs.

If the SLB search succeeds, the virtual address (VA) is
formed from the EA and the matching SLB entry fields
as follows.

 VA=VSID0:77-s || EA64-s:63

The Virtual Page Number (VPN) is bits 0:77-p of the
virtual address. If the value of the virtual page size
selector field in the matching SLBE is 0b000, then the
value of p is the value specified in the PTE used to
translate the virtual address (see Section 5.7.7.1); oth-
erwise the value of p is the value specified in the virtual
page size selector field in the matching SLBE. If SLBEN
= 1, the N (No-execute) value used for the storage
access is 1. 

ESID V B VSID KsKpNLC / LP
0 36 37 39 89 94 95 96

Bit(s)  Name Description
0:35 ESID Effective Segment ID
36 V Entry valid (V=1) or invalid (V=0)

37:38 B Segment Size Selector
0b00 - 256 MB (s=28)
0b01 - 1 TB (s=40)
0b10 - reserved
0b11 - reserved

39:88 VSID Virtual Segment ID
89 Ks Supervisor (privileged) state stor-

age key (see Section 5.7.9.2)
90 Kp Problem state storage key (See 

Section 5.7.9.2.)
91 N No-execute segment if N=1
92 L Virtual page size selector bit 0.
93 C Class

95:96 LP Virtual page size selector bits 1:2. 

SLBEL||LP

Seg-
ment 
Type

Virtual Page Size(s)

0b000 MPS 4 KB, 64 KB if PTEL LP specifies 
64 KB page in MPS segment, or 

both sizes
0b101 UPS 64 KB if PTEL LP specifies 64 KB 

page in UPS segment
additional
 values1

UPS 2p bytes, where p > 12 and may 
differ among SLBL||LP values

1 The “additional values” of SLBL||LP are implementa-
tion-dependent, as are the corresponding virtual 
page sizes.

It is permissible for software to replace the contents
of a valid SLB entry without invalidating the transla-
tion specified by that entry provided the specified
restrictions are followed. See Chapter 10 Note 11.

Programming Note
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If the SLB search fails, a segment fault occurs. This is
an Instruction Segment exception or a Data Segment
exception, depending on whether the effective address
is for an instruction fetch or for a data access.
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5.7.7 Virtual to Real Translation
Conversion of a 78-bit virtual address to a real address
is done by searching the Page Table as shown in
Figure 18.

Figure 18. Translation of 78-bit virtual address to 60-bit real address

Virtual Page Number (VPN) Byte

                                 78-p    77

78-bit Virtual Address

// xxx.......xx000.00 ///

0  4    1718           45         59  63

78-p p

44 13 5

0           2728     38

Decode to Mask

0            27

3928

28

28

0000000
28 71114

PTE0 PTE7PTEG 0

PTEG n

60-bit Real Address of Page Table Entry Group (PTEG)

2

16 bytes

128 bytes

HTABORG HTABSIZE

   Hash Function
(see Section 5.7.7.3)

AND

OR

AVPN          ARPNHSW V key R C WIMG NL

p

 

60-p

Page Table Entry (PTE)  16 bytes

pp  / pp

  Byte

 

0 1 2 44

LP

52 5556 57

LP

61 62 63

(ARPN||LP)0:59-p

B

54

Page Table

60-bit Real Address

0 457 616263

key

key
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5.7.7.1 Page Table

The Hashed Page Table (HTAB) is a variable-sized data
structure that specifies the mapping between Virtual
Page Numbers and real page numbers, where the real
page number of a real page is bits 0:50 of the address
of the first byte in the real page. The HTAB’s size must
be a multiple of 4 KB, its starting address must be a
multiple of its size, and it must be located in storage
having the storage control attributes that are used for
implicit accesses to it (see Section 5.7.3.3).

The HTAB contains Page Table Entry Groups (PTEGs).
A PTEG contains 8 Page Table Entries (PTEs) of 16
bytes each; each PTEG is thus 128 bytes long. PTEGs
are entry points for searches of the Page Table.

See Section 5.10 for the rules that software must follow
when updating the Page Table.

  

Page Table Entry 
Each Page Table Entry (PTE) maps one VPN to one
RPN. Figure 19 shows the layout of a PTE. This layout
is independent of the Endian mode of the processor.

All other fields are reserved.

Figure 19. Page Table Entry

If p≤23, the Abbreviated Virtual Page Number (AVPN)
field contains bits 0:54 of the VPN. Otherwise bits 0:77-
p of the AVPN field contain bits 0:77-p of the VPN, and
bits 78-p:54 of the AVPN field must be zeros and are
ignored by the processor.

  

The Page Table must be treated as a hypervisor
resource (see Chapter 2), and therefore must be
placed in real storage to which only the hypervisor
has write access. Moreover, the contents of the
Page Table must be such that non-hypervisor soft-
ware cannot modify storage that contains hypervi-
sor programs or data. 

Programming Note

0 57 61 62 63

B AVPN SW L H V

pp  / key ARPN LP key R C WIMG N pp
0 1 2 4 44 52 55 56 57 61 62 63

Dword Bit(s) Name Description
0 0:1 B Segment Size 

0b00 - 256 MB
0b01 - 1 TB
0b10 - reserved
0b11 - reserved

2:56 AVPN Abbreviated Virtual Page 
Number

57:60 SW Available for software use
61 L Virtual page size

0b0 - 4 KB
0b1 - greater than 4KB 

(large page)
62 H Hash function identifier
63 V Entry valid (V=1) or invalid 

(V=0)
1 0 pp Page Protection bit 0
 2:3 key KEY bits 0:1
 4:43 ARPN Abbreviated Real Page

Number
44:51 LP Large page size selector

 52:54 key KEY bits 2:4
 55 R Reference bit
 56 C Change bit
 57:60 WIMG Storage control bits
 61 N No-execute page if N=1
 62:63 pp Page protection bits 1:2

If p≤23, the AVPN field omits the low-order 23-p
bits of the VPN. These bits are not needed in the
PTE, because the low-order 11 bits of the VPN are
always used in selecting the PTEGs to be searched
(see Section 5.7.7.3).

Programming Note
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On implementations that support a virtual address size
of only n bits, n<78, bits 0:77-n of the AVPN field must
be zeros.

A virtual page is mapped to a sequence of 2p-12 contig-
uous real pages such that the low-order p-12 bits of the
real page number of the first real page in the sequence
are 0s.

If PTEL=0, the virtual page size is 4KB, and ARPN con-
catenated with LP (ARPN||LP) contains the page num-
ber of the real page that maps the virtual page
described by the entry.

If PTEL=1, the virtual page size is specified by PTELP.
In this case, the contents of PTELP have the format
shown in Figure 20. Bits labelled “r” are bits of the real
page number. The page size specified by the non-r bits
of PTELP is implementation-dependent.

Figure 20. Format of PTELP 

There are at least 2 formats of PTELP that specify a
64 KB page. One format specifies a 64 KB page con-
tained in an MPS segment, and another specifies a 64
K page contained in a Uniform segment.

If L=1, the page size selected by the LP field must not
exceed the segment size selected by the B field. Forms
of PTELP not supported by a given processor are
treated as reserved values for that processor.

The concatenation of the ARPN field and bits labeled
“r” in the LP field contain the high-order bits of the real
page number of the real page that maps the first 4KB of
the virtual page described by the entry.

The low-order p-12 bits of the real page number con-
tained in the ARPN and LP fields must be 0s and are
ignored by the processor.

 

 

Instructions cannot be executed from a No-execute
(N=1) page.

Page Table Size
The number of entries in the Page Table directly affects
performance because it influences the hit ratio in the
Page Table and thus the rate of page faults. If the table
is too small, it is possible that not all the virtual pages
that actually have real pages assigned can be mapped
via the Page Table. This can happen if too many hash
collisions occur and there are more than 16 entries for
the same primary/secondary pair of PTEGs. While this
situation cannot be guaranteed not to occur for any size
Page Table, making the Page Table larger than the min-
imum size (see Section 5.7.7.2) will reduce the fre-
quency of occurrence of such collisions.

  

r r r r _ r r r 0
r r r r _ r r 01
r r r r _ r 011
r r r r _0111
r r r 0_1111
r r 01_1111
r 011_1111
0111_1111

The page size specified by a given PTELP format is
at least 212+(8-c), where c is the number of r bits in
the format.

Programming Note

The processor often has implementation-depen-
dent lookaside buffers (e.g. TLBs and ERATs) used
to cache translations of recently used storage
addresses. Mapping virtual storage to large pages
may increase the effectiveness of such lookaside
buffers, improving performance, because it is pos-
sible for such buffers to translate a larger range of
addresses, reducing the frequency that the Page
Table must be searched to translate an address.

If large pages are not used, it is recommended that
the number of PTEGs in the Page Table be at least
half the number of real pages to be accessed. For
example, if the amount of real storage to be
accessed is 231 bytes (2 GB), then we have
231-12=219 real pages. The minimum recom-
mended Page Table size would be 218 PTEGs, or
225 bytes (32 MB).

Programming Note
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5.7.7.2 Storage Description
Register 1
The Storage Description Register 1 (SDR1) register is
shown in Figure 21.

All other fields are reserved.

Figure 21. SDR1

SDR1 is a hypervisor resource; see Chapter 2.

The HTABORG field in SDR1 contains the high-order
42 bits of the 60-bit real address of the Page Table. The
Page Table is thus constrained to lie on a 218 byte (256
KB) boundary at a minimum. At least 11 bits from the
hash function (see Figure 18) are used to index into the
Page Table. The minimum size Page Table is 256 KB
(211 PTEGs of 128 bytes each).

The Page Table can be any size 2n bytes where
18≤n≤46. As the table size is increased, more bits are
used from the hash to index into the table and the value
in HTABORG must have more of its low-order bits
equal to 0.

The HTABSIZE field in SDR1 contains an integer giving
the number of bits (in addition to the minimum of 11
bits) from the hash that are used in the Page Table
index. This number must not exceed 28. HTABSIZE is
used to generate a mask of the form 0b00...011...1,
which is a string of 28 - HTABSIZE 0-bits followed by a
string of HTABSIZE 1-bits. The 1-bits determine which
additional bits (beyond the minimum of 11) from the
hash are used in the index (see Figure 18). The num-
ber of low-order 0 bits in HTABORG must be greater
than or equal to the value in HTABSIZE.

On implementations that support a real address size of
only m bits, m<60, bits 0:59-m of the HTABORG field
are treated as reserved bits, and software must set
them to zeros.

  

Example:

Suppose that the Page Table is 16,384 (214) 128-byte
PTEGs, for a total size of 221 bytes (2 MB). A 14-bit
index is required. Eleven bits are provided from the
hash to start with, so 3 additional bits from the hash
must be selected. Thus the value in HTABSIZE must be
3 and the value in HTABORG must have its low-order 3
bits (bits 43:45 of SDR1) equal to 0. This means that
the Page Table must begin on a 23+11+7 = 221 = 2 MB
boundary.

5.7.7.3 Page Table Search
When the hardware searches the Page Table, the
accesses are performed as described in
Section 5.7.3.3.

An outline of the HTAB search process is shown in
Figure 18. Up to two hash functions are used to locate
a PTE that may translate the given virtual address.

A 39-bit hash value is computed from the VPN. The
value of s is the value specified in the SLBE that was
used to generate the virtual address; the value of p
used when computing the hash function is 12 if
SLBEL||LP =0b000, otherwise the value of p is the value
specified in the SLBE.

1. Primary Hash:

If s=28, the hash value is computed by Exclusive
ORing VPN11:49 with (11+p0||VPN50:77-p)

If s=40, the hash value is computed by Exclusive
ORing    the following three quantities: (VPN24:37
||250), (0||VPN0:37), and (p-10||VPN38:77-p)

The 60-bit real address of a PTEG is formed by
concatenating the following values:
� Bits 4:17 of SDR1 (the high-order 14 bits of

HTABORG).
� Bits 0:27 of the 39-bit hash value ANDed with

the mask generated from bits 59:63 of SDR1
(HTABSIZE) and then ORed with bits 18:45 of
SDR1 (the low-order 28 bits of HTABORG).

� Bits 28:38 of the 39-bit hash value.
� Seven 0-bits.

// HTABORG /// HTABSIZE
0 4 46 59                63

Bits Name Description
4:45 HTABORG Real address of Page Table
59:63 HTABSIZE Encoded size of Page Table

Let n equal the virtual address size (in bits) sup-
ported by the implementation. If n<67, software
should set the HTABSIZE field to a value that does
not exceed n-39. Because the high-order 78-n bits
of the VSID are assumed to be zeros, the hash
value used in the Page Table search will have the
high-order 67-n bits either all 0s (primary hash; see
Section 5.7.7.3) or all 1s (secondary hash). If
HTABSIZE > n-39, some of these hash value bits
will be used to index into the Page Table, with the
result that certain PTEGs will not be searched.

Programming Note
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This operation identifies a particular PTEG, called
the “primary PTEG”, whose eight PTEs will be
tested.

2. Secondary Hash:

If s=28, the hash value is computed by taking the
ones complement of the Exclusive OR of VPN11:49
with (11+p0||VPN50:77-p)

If s=40, the hash value is computed by taking the
ones complement of the Exclusive OR of the fol-
lowing three quantities: (VPN24:37 ||250),
(0||VPN0:37), and     (p-10||VPN38:77-p)

The 60-bit real address of a PTEG is formed by
concatenating the following values:
� Bits 4:17 of SDR1 (the high-order 14 bits of

HTABORG).
� Bits 0:27 of the 39-bit hash value ANDed with

the mask generated from bits 59:63 of SDR1
(HTABSIZE) and then ORed with bits 18:45 of
SDR1 (the low-order 28 bits of HTABORG).

� Bits 28:38 of the 39-bit hash value.
� Seven 0-bits.

This operation identifies the “secondary PTEG”.

3. As many as 16 PTEs in the two identified PTEGs
are tested to determine if any translate the given
virtual address. Let q = minimum(54, 77-p). For a
match to exist, the following conditions must be
satisfied, where SLBE is the SLBE used to form
the virtual address.
� PTEH=0 for the primary PTEG, 1 for the sec-

ondary PTEG
� PTEV=1
� PTEB=SLBEB
� PTEAVPN[0:q]=VA0:q
�    if PTEL=0 then SLBEL||LP =0b000

  else PTELP specifies a page size
           specified by SLBEL||LP

If no match is found, the search fails. If one match
is found, the search succeeds. If more than one
match is found, one of the matching entries is used
as if it were the only matching entry, or a Machine
Check occurs.

If the Page Table search succeeds, the real address
(RA) is formed by concatenating bits 0:59-p of
(ARPN||LP) from the matching PTE with bits 64-p:63 of
the effective address (the byte offset), where the p
value is the value specified by PTEL LP.

RA=(ARPN || LP)0:59-p || EA64-p:63

The N (No-execute)  value used for the storage access
is the result of ORing the N bit from the matching PTE
with the N bit from the SLB entry that was used to
translate the effective address.

  

If the Page Table search fails, a page fault occurs. This
is an Instruction Storage exception or a Data Storage
exception, depending on whether the effective address
is for an instruction fetch or for a data access.  The N
value used for the storage access is the N bit from the
SLB entry that was used to translate the effective
address.

  

Translation Lookaside Buffer
Conceptually, the Page Table is searched by the
address relocation hardware to translate every refer-
ence. For performance reasons, the hardware usually
keeps a Translation Lookaside Buffer (TLB) that holds
PTEs that have recently been used. The TLB is
searched prior to searching the Page Table. As a con-
sequence, when software makes changes to the Page
Table it must perform the appropriate TLB invalidate
operations to maintain the consistency of the TLB with
the Page Table (see Section 5.10).

  

For segments that may contain a mixture of 4 KB
and 64 KB pages (i.e. SLBEL||LP = 0b000), the
value of p used when searching the Page Table to
identify the PTEGs is specified to be 12. Since the
segment may contain pages of size 4KB and 64
KB, the processor searches for PTEs specifying
pages of either size, and the real address is formed
using a value of p specified by the matching PTE.

To obtain the best performance, Page Table Entries
should be allocated beginning with the first empty
entry in the primary PTEG, or with the first empty
entry in the secondary PTEG if the primary PTEG
is full.

1. Page Table Entries may or may not be cached
in a TLB.

2. It is possible that the hardware implements
more than one TLB, such as one for data and
one for instructions. In this case the size and
shape of the TLBs may differ, as may the val-
ues contained therein.

3. Use the tlbie or tlbia instruction to ensure that
the TLB no longer contains a mapping for a
particular virtual page.
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5.7.8 Reference and Change 
Recording
If address translation is enabled, Reference (R) and
Change (C) bits are maintained in the Page Table Entry
that is used to translate the virtual address. If the stor-
age operand of a Load or Store instruction crosses a
virtual page boundary, the accesses to the components
of the operand in each page are treated as separate
and independent accesses to each of the pages for the
purpose of setting the Reference and Change bits.

Reference and Change bits are set by the processor as
described below. Setting the bits need not be atomic
with respect to performing the access that caused the
bits to be updated. An attempt to access storage may
cause one or more of the bits to be set (as described
below) even if the access is not performed. The bits are
updated in the Page Table Entry if the new value would
otherwise be different from the old, as determined by
examining either the Page Table Entry or any corre-
sponding lookaside information (e.g., TLB) maintained
by the processor.

Reference Bit

The Reference bit is set to 1 if the corresponding
access (load, store, or instruction fetch) is required
by the sequential execution model and is per-
formed. Otherwise the Reference bit may be set to
1 if the corresponding access is attempted, either
in-order or out-of-order, even if the attempt causes
an exception.

Change Bit

The Change bit is set to 1 if a Store instruction is
executed and the store is performed. Otherwise
the Change bit may be set to 1 if a Store instruc-
tion is executed and the store is permitted by the
storage protection mechanism and, if the Store
instruction is executed out-of-order, the instruction
would be required by the sequential execution
model in the absence of the following kinds of
interrupts:
� system-caused interrupts (see Section 6.4 on

page 462)
� Floating-Point Enabled Exception type Pro-

gram interrupts when the processor is in an
Imprecise mode

  

Figure 22 on page 436 summarizes the rules for setting
the Reference and Change bits. The table applies to
each atomic storage reference. It should be read from
the top down; the first line matching a given situation
applies. For example, if stwcx. fails due to both a stor-
age protection violation and the lack of a reservation,
the Change bit is not altered.

In the figure, the “Load-type” instructions are the Load
instructions described in Books I and II, eciwx, and the
Cache Management instructions that are treated as
Loads. The “Store-type” instructions are the Store
instructions described in Books I and II, ecowx, and the
Cache Management instructions that are treated as
Stores. The “ordinary” Load and Store instructions are
those described in Books I and II. “set” means “set to
1”.

When the processor updates the Reference and
Change bits in the Page Table Entry, the accesses are
performed as described in Section 5.7.3.3, “Storage
Control Attributes for Accesses in Real and Hypervisor
Real Addressing Modes” on page 424. The accesses
may be performed using operations equivalent to a
store to a byte, halfword, word, or doubleword, and are

Even though the execution of a Store instruction
causes the Change bit to be set to 1, the store
might not be performed or might be only partially
performed in cases such as the following.

� A Store Conditional instruction (stwcx. or
stdcx.) is executed, but no store is performed.

� A Store String Word Indexed instruction
(stswx) is executed, but the length is zero.

� The Store instruction causes a Data Storage
exception (for which setting the Change bit is
not prohibited).

� The Store instruction causes an Alignment
exception.

� The Page Table Entry that translates the virtual
address of the storage operand is altered such
that the new contents of the Page Table Entry
preclude performing the store (e.g., the PTE is
made invalid, or the PP bits are changed).

For example, when executing a Store instruc-
tion, the processor may search the Page Table
for the purpose of setting the Change bit and
then re-execute the instruction. When reexe-
cuting the instruction, the processor may
search the Page Table a second time. If the
Page Table Entry has meanwhile been altered,
by a program executing on another processor,
the second search may obtain the new con-
tents, which may preclude the store.

� A system-caused interrupt occurs before the
store has been performed.
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not necessarily performed as an atomic read/modify/
write of the affected bytes.

These Reference and Change bit updates are not nec-
essarily immediately visible to software. Executing a
sync instruction ensures that all Reference and
Change bit updates associated with address transla-
tions that were performed, by the processor executing
the sync instruction, before the sync instruction is exe-
cuted will be performed with respect to that processor
before the sync instruction’s memory barrier is created.
There are additional requirements for synchronizing
Reference and Change bit updates in multiprocessor
systems; see Section 5.10, “Page Table Update Syn-
chronization Requirements” on page 454.

  

If software refers to a Page Table Entry when
MSRDR=1, the Reference and Change bits in the asso-
ciated Page Table Entry are set as for ordinary loads
and stores. See Section 5.10 for the rules software
must follow when updating Reference and Change bits.
  

Figure 22. Setting the Reference and Change bits

Because the sync instruction is execution synchro-
nizing, the set of Reference and Change bit
updates that are performed with respect to the pro-
cessor executing the sync instruction before the
memory barrier is created includes all Reference
and Change bit updates associated with instruc-
tions preceding the sync instruction.

Status of Access R C
Storage protection violation Acc1 No
Out-of-order I-fetch or Load-type insn Acc No
Out-of-order Store-type insn  
   Would be required by the sequential  
     execution model in the absence of  
     system-caused or imprecise  
     interrupts3 Acc Acc1 2

   All other cases Acc No
In-order Load-type or Store-type insn,  
  access not performed  
     Load-type insn Acc No
     Store-type insn Acc Acc2

Other in-order access  
   I-fetch Yes No
   Ordinary Load, eciwx Yes No
   Other ordinary Store, ecowx, dcbz Yes Yes
   icbi, dcbt, dcbtst, dcbst, dcbf[l] Acc No

“Acc” means that it is acceptable to set the bit.
1 It is preferable not to set the bit.
2 If C is set, R is also set unless it is already set.
3 For Floating-Point Enabled Exception type Pro-

gram interrupts, “imprecise” refers to the exception 
mode controlled by MSRFE0 FE1.
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5.7.9 Storage and Virtual Page 
Class Key Protection
The storage and virtual page class key protection
mechanism provides a means for selectively granting
instruction fetch access, granting read access, granting
read/write access, and prohibiting access to areas of
storage based on a number of control criteria.

The operation of the protection mechanism depends on
one or more of the following conditions.

- the state of MSR bits HV, IR,DR, PR

- the value of the key bits in the associated SLB
entry

- the values of the page protection and key bits
in the associated PTE

- the contents of the Authority Mask Register

When translation is enabled for an access, the access
is permitted if and only if the access is permitted by  the
virtual page class key protection (see Section 5.7.9.1)
and the storage protection mechanism (see
Section 5.7.9.2).  If an instruction fetch is not permitted,
an Instruction Storage exception is generated.  If a data
access is not permitted, a Data Storage exception is
generated.  (See Section 5.2)

Unless otherwise indicated, references to “storage pro-
tection mechanism” or “protection mechanism”
throughout the Books refer to both the Storage Protec-
tion mechansm and the Virtual Page Class Key Protec-
tion mechanism.

When address translation is enabled, a protection
domain is a range of unmapped effective addresses, a
virtual page, or a segment. When address translation is
disabled and LPES1=1 there are two protection
domains: the set of effective addresses that are less
than the value specified by the RMLS, and all other
effective addresses. When address translation is dis-
abled and LPES1=0 the entire effective address space
comprises a single protection domain. A protection
boundary is a boundary between protection domains.

5.7.9.1 Virtual Page Class Key Protec-
tion
The Virtual Page Class Key protection mechanism pro-
vides the means to assign  virtual pages to one of 32
classes, and to modify access permissions for each
class quickly by modifying the Authority Mask Register
(AMR) shown in Figure 23. The access permissions
associated with the Virtual Page Class Key protection
mechanism apply only to load and store operations
when address translation is enabled. The Virtual Page

Class Key protection mechanism has no effect on
instruction fetches.

Figure 23. Authority Mask Register (AMR)

The contents of the AMR are as follows.

Bit Description

0:1 Access mask for class number 0

2:3 Access mask for class number 1

...

2n:2n+1 Access mask for class number n 

...

62:63 Access mask for class number 31

The access mask for each class defines the access
permissions used in conjunction with load and store
operations corresponding to page table entries contain-
ing a KEY field value equal to the class number. The
access permissions associated with each class are
defined as follows, where AMR2n and  AMR2n+1 refer to
the first and second bits of the of the access mask cor-
responding to  class number n.

- An access caused by a Store instruction is
permitted if AMR2n=0b0; otherwise the access
is not permitted.

- An access caused by a Load instruction is
permitted if AMR2n+1=0b0; otherwise the
access is not permitted.

  

Key0 Key1 Key2        . . . Key29 Key30 Key31
0 2 4 6 58 60 62

If translation is disabled for a given access, the
access is not affected by the Virtual Page Class
Key protection mechanism even if the access is
made in virtual real addressing mode.
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Programming Note

The Virtual Page Class Key protection mechanism replaces the Data Address Compare mechanism that was defined
in versions of the architecture that precede Version 2.04 (e.g., the two facilities use some of the same processor
resources, as described below).  However, the Virtual Page Class Key protection mechanism can be used to emulate
the Data Address Compare mechanism. Moreover, programs that use the Data Address Compare mechanism can
be modified in a manner such that they will work correctly both on processors that comply with versions of the archi-
tecture that precede Version 2.04 (and hence implement the Data Address Compare mechanism) and on processors
that comply with Version 2.04 of the architecture or with any subsequent version (and hence instead implement the
Virtual Page Class Key protection mechanism).  The technique takes advantage of the facts that the AMR has the
same SPR number as the Data Address Compare mechanism's ACCR (Address Compare Control Register), that
KEY4 occupies the same bit in the PTE as the Data Address Compare mechanism's AC (Address Compare) bit, and
that the definition of ACCR62:63 is very similar to the definition of each even-odd pair of AMR bits.  The technique is as
follows, where PTE1 refers to doubleword 1 of the PTE.

- Set bits 2:3 and 62:63 of SPR 29 (which is
either the ACCR or the AMR) to x, where x is
the desired 2-bit value for controlling Data
Address Compare matches, and set bits 0:1 to
0s.

- Set PTE154 (which is either the AC bit or
KEY4) to the same value that the AC bit would
be set to, and set PTE12:3 (which are either
RPN bits, that correspond to a real address
size larger than the size implemented by any
processor that implements the Data Address
Compare mechanism, or KEY0:1) and
PTE152:53 (which are either reserved bits or
KEY2:3) to 0s.

- Use PTEKEY values 0 and 1 only for purposes
of emulating the Data Address Compare
mechanism, except that PTEKEY value 0 may

also be used for any virtual pages for  which it
is desired that the Virtual Page Class Key
mechanism permit all accesses. Do not use
PTEKEY =31.

- When a Data Storage interrupt occurs, if
DSISR42=1 then ignore the interrupt for
Cache Management instructions other than
dcbz. (These instructions can cause a virtual
page class key protection violation but cannot
cause a Data Address Compare match.)  Oth-
erwise treat the interrupt as if a Data Address
Compare match had occurred. (Note: Cases
for which it is undefined whether a Data
Address Compare match occurs do not nec-
essarily cause a virtual page class key protec-
tion violation.)

5.7.9.2 Storage Protection, Address 
Translation Enabled
When address translation is enabled, the protection
mechanism is controlled both by virtual page class key
protection (see Section 5.7.9.1) and the following.

� MSRPR, which distinguishes between supervisor
(privileged) state and problem state

� Ks and Kp, the supervisor (privileged) state and
problem state storage key bits in the SLB entry
used to translate the effective address

� PP, page protection bits 0:2 in the Page Table
Entry used to translate the effective address

� For instruction fetches only:
- the N (No-execute) value used for the access

(see Sections  5.7.6.1 and 5.7.7.3)
- PTEG, the G (Guarded) bit in the Page Table

Entry used to translate the effective address

Using the above values, the following rules are applied.

1. For an instruction fetch, the access is not permitted
if the N value is 1 or if PTEG=1.

2. For any access except an instruction fetch that is
not permitted by rule 1, a “Key” value is computed
using the following formula:

Key � (Kp & MSRPR) | (Ks & ¬MSRPR)

Using the computed Key, Figure 24 is applied. An
instruction fetch is permitted for any entry in the
figure except “no access”. A load is permitted for
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any entry except “no access”. A store is permitted
only for entries with “read/write”.  

Figure 24. PP bit protection states, address 
translation enabled

5.7.9.3 Storage Protection, Address 
Translation Disabled 
When address translation is disabled, the protection
mechanism is controlled by the following (see Chapter
2 and Section 5.7.3, “Real And Virtual Real Addressing
Modes”).

� LPES1, which distinguishes between the two
modes of accessing storage using the LPAR facility

� MSRHV, which distinguishes between hypervisor
state and other privilege states

� RMLS, which specifies the real mode limit value

Using the above values, Figure 25 is applied. The
access is permitted for any entry in the figure except
“no access”.   

Figure 25. Protection states, address translation 
disabled

  

Key PP Access Authority

0 000 read/write

0 001 read/write

0 010 read/write

0 011 read only

0 110 read only

1 000 no access

1 001 read only

1 010 read/write

1 011 read only

1 110 no access

All PP encodings not shown above are reserved. The
results of using reserved PP encodings are bound-
edly undefined.

LPES1 HV Access Authority
0 0 no access
0 1 read/write
1 0 read/write or no access1

1 1 read/write
1 If VPM0=1, the access authority is read/write. If  

VPM0=0 and the effective address for the access 
is less than the value specified by the RMLS, the 
access authority is read/write; otherwise the 
access is not permitted. 

The comparison described in note 1 in Figure 25
ignores bits 0:3 of the effective address and may
ignore bits 4:63-m; see Section 5.7.3.
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5.8 Storage Control Attributes

This section describes aspects of the storage control
attributes that are relevant only to privileged software
programmers. The rest of the description of storage
control attributes may be found in Section 1.6 of Book II
and subsections.

5.8.1 Guarded Storage
Storage is said to be “well-behaved” if the correspond-
ing real storage exists and is not defective, and if the
effects of a single access to it are indistinguishable
from the effects of multiple identical accesses to it. Data
and instructions can be fetched out-of-order from well-
behaved storage without causing undesired side
effects.

Storage is said to be Guarded if any of the following
conditions is satisfied.

� MSR bit IR or DR is 1 for instruction fetches or data
accesses respectively, and the G bit is 1 in the rel-
evant Page Table Entry.

� MSR bit IR or DR is 0 for instruction fetches or data
accesses respectively, MSRHV=1, and the storage
is outside the range(s) specified by the Real Mode
Storage Control facility (see Section 5.7.3.3.1).

In general, storage that is not well-behaved should be
Guarded. Because such storage may represent a con-
trol register on an I/O device or may include locations
that do not exist, an out-of-order access to such stor-
age may cause an I/O device to perform unintended
operations or may result in a Machine Check.

The following rules apply to in-order execution of Load
and Store instructions for which the first byte of the
storage operand is in storage that is both Caching
Inhibited and Guarded.

� Load or Store instruction that causes an atomic
access

If any portion of the storage operand has been
accessed and an External, Decrementer, Hypervi-
sor Decrementer, or Imprecise mode Floating-
Point Enabled exception is pending, the instruction
completes before the interrupt occurs.

� Load or Store instruction that causes an Alignment
exception, or that causes a Data Storage excep-
tion for reasons other than Data Address Break-
point match.

The portion of the storage operand that is in Cach-
ing Inhibited and Guarded storage is not accessed.

(The corresponding rules for instructions that
cause a Data Address Breakpoint match are given
in Section 8.1.1.)

5.8.1.1 Out-of-Order Accesses to 
Guarded Storage
In general, Guarded storage is not accessed out-of-
order. The only exceptions to this rule are the following. 

Load Instruction

If a copy of any byte of the storage operand is in a
cache then that byte may be accessed in the cache or
in main storage.

Instruction Fetch

If MSRHV IR=0b10 then an instruction may be fetched if
any of the following conditions are met.

1. The instruction is in a cache. In this case it may be
fetched from the cache or from main storage.

2. The instruction is in a real page from which an
instruction has previously been fetched, except
that if that previous fetch was based on condition 1
then the previously fetched instruction must have
been in the instruction cache.

3. The instruction is in the same real page as an
instruction that is required by the sequential execu-
tion model, or is in the real page immediately fol-
lowing such a page.

  

5.8.2 Storage Control Bits
When address translation is enabled, each storage
access is performed under the control of the Page
Table Entry used to translate the effective address.
Each Page Table Entry contains storage control bits
that specify the presence or absence of the corre-
sponding storage control for all accesses translated by
the entry as shown in Figure 26.

Software should ensure that only well-behaved
storage is copied into a cache, either by accessing
as Caching Inhibited (and Guarded) all storage that
may not be well-behaved, or by accessing such
storage as not Caching Inhibited (but Guarded) and
referring only to cache blocks that are well-
behaved.

If a real page contains instructions that will be exe-
cuted when MSRIR=0 and MSRHV=1, software
should ensure that this real page and the next real
page contain only well-behaved storage (or that the
Real Mode Storage Control facility specifies that
this real page is not Guarded).
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Figure 26. Storage control bits

When address translation is enabled, instructions are
not fetched from storage for which the G bit in the Page
Table Entry is set to 1; see Section 5.7.9. 

When address translation is disabled, the storage con-
trol attributes are implicit; see Section 5.7.3.3.

In Section 5.8.2.1 and 5.8.2.2, ”access” includes
accesses that are performed out-of-order, and refer-
ences to W, I, M, and G bits include the values of those
bits that are implied when address translation is dis-
abled.

  

5.8.2.1 Storage Control Bit Restrictions
All combinations of W, I, M, and G values are permitted
except those for which both W and I are 1.

  

At any given time, the value of the I bit must be the
same for all accesses to a given real page. 

At any given time, the value of the W bit must be the
same for all accesses to a given real page.

5.8.2.2 Altering the Storage Control 
Bits
When changing the value of the I bit for a given real
page from 0 to 1, software must set the I bit to 1 and
then flush all copies of locations in the page from the
caches using dcbf[l] and icbi before permitting any
other accesses to the page.

When changing the value of the W bit for a given real
page from 0 to 1, software must ensure that no proces-
sor modifies any location in the page until after all cop-
ies of locations in the page that are considered to be
modified in the data caches have been copied to main
storage using dcbst or dcbf[l]

  

When changing the value of the M bit for a given real
page, software must ensure that all data caches are
consistent with main storage. The actions required to
do this to are system-dependent.

  

Additional requirements for changing the storage con-
trol bits in the Page Table are given in Section 5.10.

Bit Storage Control Attribute

    W1 0 - not Write Through Required
1 - Write Through Required

    I 0 - not Caching Inhibited
1 - Caching Inhibited

    M2 0 - not Memory Coherence Required
1 - Memory Coherence Required

    G 0 - not Guarded
1 - Guarded

1 Support for the 1 value of the W bit is optional. 
Implementations that do not support the 1 value 
treat the bit as reserved and assume its value to 
be 0.

2 [Category: Memory Coherence] Support for the 0 
value of the M bit is optional, implementations that 
do not support the 0 value assume the value of the 
bit to be 1, and may either preserve the value of 
the bit or write it as 1.

In a uniprocessor system in which only the proces-
sor has caches, correct coherent execution does
not require the processor to access storage as
Memory Coherence Required, and accessing stor-
age as not Memory Coherence Required may give
better performance.

If an application program requests both the Write
Through Required and the Caching Inhibited
attributes for a given storage location, the operating
system should set the I bit to 1 and the W bit to 0.

Programming Note
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It is recommended that dcbf be used, rather than
dcbfl, when changing the value of the I or W bit
from 0 to 1. (dcbfl would have to be executed on all
processors for which the contents of the data cache
may be inconsistent with the new value of the bit,
whereas, if the M bit for the page is 1, dcbf need be
executed on only one processor in the system.) 

For example, when changing the M bit in some
directory-based systems, software may be required
to execute dcbf[l] on each processor to flush all
storage locations accessed with the old M value
before permitting the locations to be accessed with
the new M value.
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5.9 Storage Control Instructions

5.9.1 Cache Management Instructions
This section describes aspects of cache management
that are relevant only to privileged software program-
mers.

For a dcbz instruction that causes the target block to
be newly established in the data cache without being
fetched from main storage, the processor need not ver-
ify that the associated real address is valid. The exist-
ence of a data cache block that is associated with an
invalid real address (see Section 5.6) can cause a

delayed Machine Check interrupt or a delayed Check-
stop.

Each implementation provides an efficient means by
which software can ensure that all blocks that are con-
sidered to be modified in the data cache have been
copied to main storage before the processor enters any
power conserving mode in which data cache contents
are not maintained.

5.9.2 Synchronize Instruction 
The Synchronize instruction is described in
Section 3.3.3 of Book II, but only at the level required
by an application programmer (sync with L=0 or L=1).
This section describes properties of the instruction that
are relevant only to operating system and hypervisor
software programmers. This variant of the Synchronize
instruction is designated the Page Table Entry sync
and is specified by the extended mnemonic ptesync
(equivalent to sync with L=2).

The ptesync instruction has all of the properties of
sync with L=0 and also the following additional proper-
ties.

� The memory barrier created by the ptesync
instruction provides an ordering function for the
storage accesses associated with all instructions
that are executed by the processor executing the
ptesync instruction and, as elements of set A, for
all Reference and Change bit updates associated
with additional address translations that were per-
formed, by the processor executing the ptesync
instruction, before the ptesync instruction is exe-
cuted. The applicable pairs are all pairs ai,bj in
which bj is a data access and ai is not an instruc-
tion fetch.

� The ptesync instruction causes all Reference and
Change bit updates associated with address trans-
lations that were performed, by the processor exe-
cuting the ptesync instruction, before the ptesync
instruction is executed, to be performed with
respect to that processor before the ptesync
instruction’s memory barrier is created.

� The ptesync instruction provides an ordering func-
tion for all stores to the Page Table caused by
Store instructions preceding the ptesync instruc-
tion with respect to searches of the Page Table that
are performed, by the processor executing the pte-
sync instruction, after the ptesync instruction
completes. Executing a ptesync instruction
ensures that all such stores will be performed, with

respect to the processor executing the ptesync
instruction, before any implicit accesses to the
affected Page Table Entries, by such Page Table
searches, are performed with respect to that pro-
cessor.

� In conjunction with the tlbie and tlbsync instruc-
tions, the ptesync instruction provides an ordering
function for TLB invalidations and related storage
accesses on other processors as described in the
tlbsync instruction description on page 453.

  

5.9.3 Lookaside Buffer
Management
All implementations have a Segment Lookaside Buffer
(SLB). For performance reasons, most implementa-
tions also have implementation-specific lookaside infor-
mation that is used in address translation. This
lookaside information may be: a Translation Lookaside
Buffer (TLB) which is a cache of recently used Page

For instructions following a ptesync instruc-
tion, the memory barrier need not order implicit
storage accesses for purposes of address
translation and reference and change  record-
ing.

The functions performed by the ptesync
instruction may take a significant amount of
time to complete, so this form of the instruction
should be used only if the functions listed
above are needed. Otherwise sync with L=0
should be used (or sync with L=1, or eieio, if
appropriate).

Section 5.10, “Page Table Update Synchroni-
zation Requirements” on page 454 gives
examples of uses of ptesync.
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Table Entries (PTEs); a cache of recently used transla-
tions of effective addresses to real addresses; etc.; or
any combination of these. Lookaside information,
including the SLB, is managed using the instructions
described in the subsections of this section.

Lookaside information derived from PTEs is not neces-
sarily kept consistent with the Page Table. When soft-
ware alters the contents of a PTE, in general it must
also invalidate all corresponding implementation-spe-
cific lookaside information; exceptions to this rule are
described in Section 5.10.1.2.

The effects of the slbie, slbia, and TLB Management
instructions on address translations, as specified in
Sections 5.9.3.1 and 5.9.3.3  for the SLB and TLB
respectively, apply to all implementation-specific looka-
side information that is used in address translation.
Unless otherwise stated or obvious from context, refer-
ences to SLB entry invalidation and TLB entry invalida-
tion elsewhere in the Books apply also to all
implementation-specific lookaside information that is
derived from SLB entries and PTEs respectively.

The tlbia instruction is optional. However, all implemen-
tations provide a means by which software can invali-
date all implementation-specific lookaside information
that is derived from PTEs.

Implementation-specific lookaside information that con-
tains translations of effective addresses to real
addresses may include “translations” that apply in real
addressing mode. Because such “translations” are
affected by the contents of the LPCR, RMOR, and
HRMOR, when software alters the contents of these
registers it must also invalidate the corresponding
implementation-specific lookaside information.

All implementations that have such lookaside informa-
tion provide a means by which software can invalidate
all such lookaside information.

For simplicity, elsewhere in the Books it is assumed that
the TLB exists.

  

  

5.9.3.1  SLB Management Instructions
  

SLB Invalidate Entry X-form

slbie RB 

ea0:35 � (RB)0:35
if, for SLB entry that translates 
  or most recently translated ea,
    entry_class = (RB)36 and
    entry_seg_size = size specified in (RB)37:38
then for SLB entry (if any) that translates ea
  SLBEV � 0
  all other fields of SLBE � undefined
else 
   s � log_base_2(entry_seg_size)
   esid � (RB)0:63-s 
   translation of esid � undefined

Let the Effective Address (EA) be any EA for which
EA0:35 = (RB)0:35. Let the class be (RB)36. Let the seg-
ment size be equal to the segment size specified in
(RB)37:38; the allowed values of (RB)37:38, and the cor-
respondence between the values and the segment
size, are the same as for the B field in the SLBE (see
Figure 16 on page 428).

The class value and segment size must be the same as
the class value and segment size in the SLB entry that
translates the EA, or the values that were in the SLB
entry that most recently translated the EA if the transla-
tion is no longer in the SLB; if these values are not the
same, the results of translating effective addresses that
would have been translated by that SLB entry are
undefined, and the next paragraph need not apply. 

If the SLB contains only a single entry that translates
the EA, then that is the only SLB entry that is invali-
dated. If the SLB contains more than one such entry,
then zero or more such entries are invalidated, and
similarly for any implementation-specific lookaside

Because the instructions used to manage imple-
mentation-specific lookaside information that is
derived from PTEs may be changed in a future ver-
sion of the architecture, it is recommended that
software “encapsulate” uses of the TLB Manage-
ment instructions into subroutines.

The function of all the instructions described in
Sections 5.9.3.1 - 5.9.3.3 is independent of
whether address translation is enabled or disabled.

For a discussion of software synchronization
requirements when invalidating SLB and TLB
entries, see Chapter 10.

Programming Note

Programming Note

Accesses to a given SLB entry caused by the
instructions described in this section obey the
sequential execution model with respect to the con-
tents of the entry and with respect to data depen-
dencies on those contents. That is, if an instruction
sequence contains two or more of these instruc-
tions, when the sequence has completed, the final
state of the SLB entry and of General Purpose
Registers is as if the instructions had been exe-
cuted in program order.

However, software synchronization is required in
order to ensure that any alterations of the entry
take effect correctly with respect to address transla-
tion; see Chapter 10.

31 ///  /// RB 434 / 
0 6 11 16 21 31

Programming Note
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information used in address translation; additionally, a
machine check may occur.

SLB entries are invalidated by setting the V bit in the
entry to 0, and the remaining fields of the entry are set
to undefined values. 

The processor ignores the contents of RB listed below
and software must set them to 0s.

- (RB)37
- (RB)39:63
- If s = 40, (RB)24:35

If this instruction is executed in 32-bit mode, (RB)0:31
must be zeros.

This instruction is privileged.

Special Registers Altered:
None

  

  

 

SLB Invalidate All X-form

slbia 

for each SLB entry except SLB entry 0
SLBEV � 0
all other fields of SLBE � undefined

For all SLB entries except SLB entry 0, the V bit in the
entry is set to 0, making the entry invalid, and the
remaining fields of the entry are set to undefined val-
ues. SLB entry 0 is not altered.

This instruction is privileged.

Special Registers Altered:
None

  

  

slbie does not affect SLBs on other processors.

The reason the class value specified by slbie must
be the same as the Class value that is or was in the
relevant SLB entry is that the processor may use
these values to optimize invalidation of implemen-
tation-specific lookaside information used in
address translation.  If the value specified by slbie
differs from the value that is or was in the relevant
SLB entry, these optimizations may produce incor-
rect results.  (An example of implementation-spe-
cific address translation lookaside information is
the set of recently used translations of effective
addresses to real addresses that some processors
maintain in an Effective to Real Address Translation
(ERAT) lookaside buffer.)

The recommended use of the Class field is to use
the 0 value to indicate that the SLB entry contains a
translation that is expected to be long-lived and the
1 value to indicate the SLB entry contains a transla-
tion that is expected to be short lived.  If this is done
and the processor invalidates certain implementa-
tion-specific lookaside information based only on
the specified class value, an slbie instruction that
invalidates a short-lived translation will preserve
such lookaside information for long-lived transla-
tions.

The Move To Segment Register instructions (see
Section 5.9.3.2.1) create SLB entries in which the
Class value is 0.

The B value in register RB may be needed for inval-
idating ERAT entries corresponding to the transla-
tion being invalidated.

Programming Note

Programming Note

Programming Note

31  /// /// /// 498 /
0 6 11 16 21 31

slbia does not affect SLBs on other processors.

If slbia is executed when instruction address trans-
lation is enabled, software can ensure that attempt-
ing to fetch the instruction following the slbia does
not cause an Instruction Segment interrupt by plac-
ing the slbia and the subsequent instruction in the
effective segment mapped by SLB entry 0. (The
preceding assumes that no other interrupts occur
between executing the slbia and executing the
subsequent instruction.)

Programming Note

Programming Note
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SLB Move To Entry X-form

slbmte RS,RB 

The SLB entry specified by bits 52:63 of register RB is
loaded from register RS and from the remainder of reg-
ister RB. The contents of these registers are inter-
preted as shown in Figure 27.

RS

RB

RS0:1 B
RS2:51 VSID
RS52 Ks
RS53 Kp
RS54 N
RS55 L
RS56 C
RS57 must be 0b0
RS58:59 LP
RS60:63 must be 0b0000
RB0:35 ESID
RB36 V
RB37:51 must be 0b000 || 0x000
RB52:63 index, which selects the SLB entry

Figure 27. GPR contents for slbmte

On implementations that support a virtual address size
of only n bits, n<78, (RS)0:77-n must be zeros.

(RS)57 and (RS)60:63 must be ignored by the processor.

High-order bits of (RB)52:63 that correspond to SLB
entries beyond the size of the SLB provided by the
implementation must be zeros.

If this instruction is executed in 32-bit mode, (RB)0:31
must be zeros (i.e., the ESID must be in the range 0-
15).

This instruction cannot be used to invalidate an SLB
entry.

This instruction is privileged.

Special Registers Altered:
None 

  

31 RS /// RB 402 / 
0 6 11 16 21 31

B VSID KsKpNLC 0 LP 0s
0 2 52 57 58 60  63

ESID V 0s index
0 36 37 52                     63

The reason slbmte cannot be used to invalidate an
SLB entry is that it does not necessarily affect
implementation-specific address translation looka-
side information. slbie (or slbia) must be used for
this purpose.

Programming Note
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SLB Move From Entry VSID X-form

slbmfev RT,RB 

If the SLB entry specified by bits 52:63 of register RB is
valid (V=1), the contents of the B, VSID, Ks, Kp, N, L, C,
and LP fields of the entry are placed into register RT.
The contents of these registers are interpreted as
shown in Figure 28.

RT

RB

RT0:1 B
RT2:51 VSID
RT52 Ks
RT53 Kp
RT54 N
RT55 L
RT56 C
RT57 set to 0b0
RT58:59 LP
RT60:63 set to 0b0000

RB0:51 must be 0x0_0000_0000_0000
RB52:63 index, which selects the SLB entry

Figure 28. GPR contents for slbmfev

On implementations that support a virtual address size
of only n bits, n<78, RT0:77-n are set to zeros.

If the SLB entry specified by bits 52:63 of register RB is
invalid (V=0), the contents of register RT are set to 0.

High-order bits of (RB)52:63 that correspond to SLB
entries beyond the size of the SLB provided by the
implementation must be zeros.

This instruction is privileged.

Special Registers Altered:
None

SLB Move From Entry ESID X-form

slbmfee RT,RB 

If the SLB entry specified by bits 52:63 of register RB is
valid (V=1), the contents of the ESID and V fields of the
entry are placed into register RT. The contents of these
registers are interpreted as shown in Figure 29.

RT 

RB

RT0:35 ESID
RT36 V
RT37:63 set to 0b000 || 0x00_0000
RB0:51 must be 0x0_0000_0000_0000
RB52:63 index, which selects the SLB entry

Figure 29. GPR contents for slbmfee

If the SLB entry specified by bits 52:63 of register RB is
invalid (V=0), the contents of register RT are set to 0.

High-order bits of (RB)52:63 that correspond to SLB
entries beyond the size of the SLB provided by the
implementation must be zeros.

This instruction is privileged.

Special Registers Altered:
None

31  RT /// RB 851 /
0 6 11 16 21 31

B VSID KsKpNLC 0 LP 0s
0 2 52 57 58 60  63

0s index
0 52                          63

31 RT /// RB 915 /
0 6 11 16 21 31

ESID V 0s
0 36 37                                           63

0s index
0 52                          63
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5.9.3.2 Bridge to SLB Architecture [Category:Server.Phased-Out]

The facility described in this section can be used to
ease the transition to the current Power ISA software-
managed Segment Lookaside Buffer (SLB) architec-
ture, from the Segment Register architecture provided
by 32-bit PowerPC implementations. A complete
description of the Segment Register architecture may
be found in “Segmented Address Translation, 32-Bit
Implementations,” Section 4.5, Book III of Version 1.10
of the PowerPC architecture, referenced in the intro-
duction to this architecture.

The facility permits the operating system to continue to
use the 32-bit PowerPC implementation’s Segment
Register Manipulation instructions.

5.9.3.2.1 Segment Register
Manipulation Instructions

The instructions described in this section -- mtsr,
mtsrin, mfsr, and mfsrin -- allow software to associate
effective segments 0 through 15 with any of virtual seg-
ments 0 through 227-1. SLB entries 0:15 serve as vir-
tual Segment Registers, with SLB entry i used to
emulate Segment Register i. The mtsr and mtsrin
instructions move 32 bits from a selected GPR to a
selected SLB entry. The mfsr and mfsrin instructions
move 32 bits from a selected SLB entry to a selected
GPR.

The contents of the GPRs used by the instructions
described in this section are shown in Figure 30. Fields
shown as zeros must be zero for the Move To Segment
Register instructions. Fields shown as hyphens are
ignored. Fields shown as periods are ignored by the
Move To Segment Register instructions and set to zero
by the Move From Segment Register instructions.
Fields shown as colons are ignored by the Move To
Segment Register instructions and set to undefined val-
ues by the Move From Segment Register instructions.

RS/RT

RB

Figure 30. GPR contents for mtsr, mtsrin, mfsr, and 
 mfsrin

  

  

: : : . KsKpN 0 VSID23:49
0 32 33 36 37                     63

- - - ESID  - - -
0 32 36                          63

The “Segment Register” format used by the instruc-
tions described in this section corresponds to the
low-order 32 bits of RS and RT shown in the figure.
This format is essentially the same as that for the
Segment Registers of 32-bit PowerPC implementa-
tions. The only differences are the following.

� Bit 36 corresponds to a reserved bit in Seg-
ment Registers. Software must supply 0 for the
bit because it corresponds to the L bit in SLB
entries, and large pages are not supported for
SLB entries created by the Move To Segment
Register instructions.

� VSID bits 23:25 correspond to reserved bits in
Segment Registers. Software can use these
extra VSID bits to create VSIDs that are larger
than those supported by the Segment Register
Manipulation instructions of 32-bit PowerPC
implementations.

Bit 32 of RS and RT corresponds to the T (direct-
store) bit of early 32-bit PowerPC implementations.
No corresponding bit exists in SLB entries.

The Programming Note in the introduction to Sec-
tion 5.9.3.1 applies also to the Segment Register
Manipulation instructions described in this section,
and to any combination of the instructions
described in the two sections, except as specified
below for mfsr and mfsrin.

The requirement that the SLB contain at most one
entry that translates a given effective address (see
Section 5.7.6.1) applies to SLB entries created by
mtsr and mtsrin. This requirement is satisfied nat-
urally if only mtsr and mtsrin are used to create
SLB entries for a given ESID, because for these
instructions the association between SLB entries
and ESID values is fixed (SLB entry i is used for
ESID i). However, care must be taken if slbmte is
also used to create SLB entries for the ESID,
because for slbmte the association between SLB
entries and ESID values is specified by software.

Programming Note

Programming Note
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Move To Segment Register X-form

mtsr SR,RS

The SLB entry specified by SR is loaded from register
RS, as follows.

MSRSF must be 0 when this instruction is executed;
otherwise the results are boundedly undefined.

This instruction is privileged.

Special Registers Altered:
None

Move To Segment Register Indirect 
X-form

mtsrin RS,RB

The SLB entry specified by (RB)32:35 is loaded from
register RS, as follows.

MSRSF must be 0 when this instruction is executed;
otherwise the results are boundedly undefined.

This instruction is privileged.

Special Registers Altered:
None

31 RS / SR /// 210 /
0 6 11 12 16 21 31

SLBE 
Bit(s)

Set to SLB Field(s)

0:31 0x0000_0000 ESID0:31
32:35 SR ESID32:35
36 0b1 V
37:38 0b00 B
39:61 0b000||0x0_0000  VSID0:22
62:88 (RS)37:63 VSID23:49
89:91 (RS)33:35 KsKpN
92 (RS)36 L ((RS)36 must be 0b0)
93 0b0 C
94 0b0 reserved
95:96 0b00 LP

31 RS /// RB 242 / 
0 6 11 16 21 31

SLBE 
Bit(s)

Set to SLB Field(s)

0:31 0x0000_0000 ESID0:31
32:35 (RB)32:35 ESID32:35
36 0b1  V
37:38 0b00 B
39:61 0b000||0x0_0000  VSID0:22
62:88 (RS)37:63 VSID23:49
89:91 (RS)33:35 KsKpN
92 (RS)36 L ((RS)36 must be 0b0)
93 0b0 C
94 0b0 reserved
95:96 0b00 LP
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Move From Segment Register  X-form

mfsr RT,SR

The contents of the low-order 27 bits of the VSID field
and the contents of the Ks, Kp, N, and L fields of the
SLB entry specified by SR are placed into register RT
as follows.

RT32 is set to 0. The contents of RT0:31 are undefined.

MSRSF must be 0 when this instruction is executed;
otherwise the results are boundedly undefined.

This instruction must be used only to read an SLB entry
that was, or could have been, created by mtsr or
mtsrin and has not subsequently been invalidated (i.e.,
an SLB entry in which ESID<16, V=1, VSID<227, L=0,
and C=0). If the SLB entry is invalid (V=0), RT33:63 are
set to 0. Otherwise the contents of register RT are
undefined.

This instruction is privileged.

Special Registers Altered:
None

Move From Segment Register Indirect
X-form

mfsrin RT,RB

The contents of the low-order 27 bits of the VSID field
and the contents of the Ks, Kp, N, and L fields of the
SLB entry specified by (RB)32:35 are placed into regis-
ter RT as follows.

RT32 is set to 0. The contents of RT0:31 are undefined.

MSRSF must be 0 when this instruction is executed;
otherwise the results are boundedly undefined.

This instruction must be used only to read an SLB entry
that was, or could have been, created by mtsr or
mtsrin and has not subsequently been invalidated (i.e.,
an SLB entry in which ESID<16, V=1, VSID<227, L=0,
and C=0). If the SLB entry is invalid (V=0), RT33:63 are
set to 0. Otherwise the contents of register RT are
undefined.

This instruction is privileged.

Special Registers Altered:
None

31 RT / SR /// 595 /
0 6 11 12 16 21 31

SLBE Bit(s) Copied to SLB Field(s)
62:88 RT37:63 VSID23:49
89:91 RT33:35 KsKpN
92 RT36 L (SLBEL must be 0b0)

31 RT /// RB 659 /
0 6 11 16 21 31

SLBE Bit(s) Copied to SLB Field(s)
62:88 RT37:63 VSID23:49
89:91 RT33:35 KsKpN
92 RT36 L (SLBEL must be 0b0)
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5.9.3.3 TLB Management Instructions

TLB Invalidate Entry  X-form

tlbie RB,L
[Category: Server]

if L = 0
  then
    p = 12

 if (RB)56=0
      then pg_size � 4 KB 
      else pg_size � 64 KB
    else
      pg_size � page size specified in (RB)44:51
      p � log_base_2(pg_size)
sg_size ��segment size specified in (RB)54:55
for each processor in the partition
  for each TLB entry
    if (entry_VA14:77-p = (RB)0:63-p) &
       (entry_sg_size = sg_size) &
       (entry_pg_size = pg_size)
    then TLB entry � invalid

The operation performed by this instruction is based
upon the contents of RB and the L field. The contents
of RB are shown below, where L is the L field in the
instruction.

L=0:

L=1:

If the L field of the instruction contains 0, RB56 (AP -
Admixed Page size field) must be set to 0 if the page
size specified by the PTE that was used to create the
TLB entry to be invalidated is 4 KB and must be set to 1
if the page size specified by the PTE that was used to
create the TLB entry to be invalidated is 64 KB. The
VPN field in register RB must contain bits 14:65 of the
virtual address translated by the TLB entry to be invali-
dated.

If the L field in the instruction contains 1, the following
rules apply, where c is the number of “r” bits in the LP
field of the PTE that was used to create the TLB entry
to be invalidated.

- The page size is specified in the LP field in
register RB, where the relationship between
(RB)LP and the page size is the same as the
relationship between PTELP and the page size
(see Figure 6). Specifically,     (RB)44+c:51
must be equal to the contents of bits c:7 of the

LP field of the PTE that was used to create the
TLB entry to be invalidated.

- (RB)0:43+c must contain bits 14:77-p of the vir-
tual address translated by the TLB to be inval-
idated, followed by p+c-20 zeros which must
be ignored by the processor.

Let the segment size be equal to the segment size
specified in RB54:55 (B field). The contents of RB54:55
must be the same as the contents of PTEB used to cre-
ate the TLB entry to be invalidated.

RB52:53 , RB56 (when the L field of the instruction is 1),
and RB57:63 must be set to zeros and must be ignored
by the processor.

All TLB entries that have all of the following properties
are made invalid on all processors that are in the same
partition as the processor executing the tlbie instruc-
tion.

� The entry translates a virtual address for which
VA14:77-p is equal to (RB)0:63-p.

� The segment size of the entry is the same as the
segment size specified in (RB)54:55.

� Either of the following is true:
- The L field in the instruction is 0, and either

the page size of the entry is 4KB and
(RB)56=0, or the page size of the entry is
64KB and (RB)56 =1.

- The L field of the instruction is 1, and the page
size of the entry matches the page size speci-
fied in (RB)44:51.

Additional TLB entries may also be made invalid on any
processor that is in the same partition as the processor
executing the tlbie instruction.

MSRSF must be 1 when this instruction is executed;
otherwise the results are undefined.

The operation performed by this instruction is ordered
by the eieio (or sync or ptesync) instruction with
respect to a subsequent tlbsync instruction executed
by the processor executing the tlbie instruction. The
operations caused by tlbie and tlbsync are ordered by
eieio as a fourth set of operations, which is indepen-
dent of the other three sets that eieio orders.

This instruction is privileged, and can be executed only
in hypervisor state. If it is executed in privileged but
non-hypervisor state either a privileged Instruction type
Program interrupt occurs or the results are boundedly
undefined.

 

See Section 5.10, “Page Table Update Synchronization
Requirements” for a description of other requirements
associated with the use of this instruction.

31 /// L /// RB 306 /
0 6 10 11 16 21 31

VPN 0s B AP 0s
0 52 54 56 57  63

VPN LP 0s B 0s
0 44 52 54 56      63
Power ISA™ -- Book III-S450



   Version 2.04
Special Registers Altered:
None

  

For tlbie[l] instructions in which L=0, the AP value
in RB is provided to make it easier for the processor
to locate address translations, in lookaside buffers,
corresponding to the address translation being
invalidated.

Programming Note
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TLB Invalidate Entry Local  X-form

tlbiel RB,L
[Category: Server] 

if L = 0
   then
   p = 12
   if (RB)56=0
      then pg_size � 4 KB
      else pg_size � 64 KB
   else
      pg_size � page size specified in (RB)44:51
      p � log_base_2(pg_size)
sg_size ��segment size specified in (RB)54:55
for each TLB entry
  if (entry_VA14:77-p = (RB)0:63-p) &
     (entry_sg_size = segment_size)
     (entry_pg_size = pg_size)
  then TLB entry � invalid

The operation performed by this instruction is based
upon the contents of RB and the L field. The contents
of RB are shown below, where L is the L field in the
instruction.

L=0:

L=1:

If the L field of the instruction contains 0, RB56 (AP -
Admixed Page size field) must be set to 0 if the page
size specified by the PTE that was used to create the
TLB entry to be invalidated is 4 KB and must be set to 1
if the page size specified by the PTE that was used to
create the TLB entry to be invalidated is 64 KB. The
VPN field in register RB must contain bits 14:65 of the
virtual address translated by the TLB entry to be invali-
dated.

If the L field in the instruction contains 1, the following
rules apply, where c is the number of “r” bits in the LP
field of the PTE that was used to create the TLB entry
to be invalidated.

- The page size is specified in the LP field in
register RB, where the relationship between
(RB)LP and the page size is the same as the
relationship between PTELP and the page size
(see Figure 6). Specifically,     (RB)44+c:51
must be equal to the contents of bits c:7 of the
LP field of the PTE that was used to create the
TLB entry to be invalidated.

- (RB)0:43+c must contain bits 14:77-p of the vir-
tual address translated by the TLB to be inval-
idated, followed by p+c-20 zeros which must
be ignored by the processor.

Let the segment size be equal to the segment size
specified in RB54:55 (B field). The contents of RB54:55
must be the same as the contents of PTEB used to cre-
ate the TLB entry to be invalidated.

RB52:53 , RB56 (when the L field of the instruction is 1),
and RB 57:63 must be set to 0s and must be ignored by
the processor.

All TLB entries that have all of the following properties
are made invalid on the processor executing the tlbiel
instruction.

� The entry translates a virtual address for which
VA14:77-p is equal to (RB)0:63-p.

� The segment size of the entry is the same as the
segment size specified in (RB)54:55. 

� Either of the following is true:
- The L field in the instruction is 0, and either

the page size of the entry is 4KB and
(RB)56=0, or the page size of the entry is
64KB and (RB)56 =1.

- The L field of the instruction is 1, and the page
size of the entry matches the page size speci-
fied in (RB)44:51.

Only TLB entries on the processor executing the tlbiel
instruction are affected.

MSRSF must be 1 when this instruction is executed;
otherwise the results are undefined.

This instruction is privileged, and can be executed only
in hypervisor state. If it is executed in privileged but
non-hypervisor state either a Privileged Instruction type
Program interrupt occurs or the results are boundedly
undefined.

 

See Section 5.10, “Page Table Update Synchronization
Requirements” on page 454 for a description of other
requirements associated with the use of this instruction.

Special Registers Altered:
None

  

31 /// L /// RB 274 /
0 6 10 11 16 21 31

VPN 0s B AP 0s
0 52 54 56 57  63

VPN LP 0s B 0s
0 44 52 54 56      63

The primary use of this instruction by hypervisor
state code is to invalidate TLB entries prior to reas-
signing a processor to a new logical partition.

tlbiel may be executed on a given processor even if
the sequence tlbie - eieio - tlbsync - ptesync is
concurrently being executed on another processor.

See also the Programming Note with the descrip-
tion of the tlbie instruction.

Programming Note
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TLB Invalidate All X-form

tlbia 

all TLB entries � invalid

All TLB entries are made invalid on the processor exe-
cuting the tlbia instruction.

This instruction is privileged, and can be executed only
in hypervisor state. If it is executed in privileged but
non-hypervisor state either a Privileged instruction type
Program interrupt occurs or the results are boundedly
undefined.

This instruction is optional, and need not be imple-
mented.

Special Registers Altered:
None

  

TLB Synchronize  X-form

tlbsync 

The tlbsync instruction provides an ordering function
for the effects of all tlbie instructions executed by the
processor executing the tlbsync instruction, with
respect to the memory barrier created by a subsequent
ptesync instruction executed by the same processor.
Executing a tlbsync instruction ensures that all of the
following will occur.

� All TLB invalidations caused by tlbie instructions
preceding the tlbsync instruction will have com-
pleted on any other processor before any data
accesses caused by instructions following the pte-
sync instruction are performed with respect to that
processor.

� All storage accesses by other processors for which
the address was translated using the translations
being invalidated, and all Reference and Change
bit updates associated with address translations
that were performed by other processors using the
translations being invalidated, will have been per-
formed with respect to the processor executing the
ptesync instruction, to the extent required by the
associated Memory Coherence Required
attributes, before the ptesync instruction’s mem-
ory barrier is created.

The operation performed by this instruction is ordered
by the eieio (or sync or ptesync) instruction with
respect to preceding tlbie instructions executed by the
processor executing the tlbsync instruction. The oper-
ations caused by tlbie and tlbsync are ordered by
eieio as a fourth set of operations, which is indepen-
dent of the other three sets that eieio orders.

The tlbsync instruction may complete before opera-
tions caused by tlbie instructions preceding the tlb-
sync instruction have been performed.

This instruction is privileged and can be executed only
in hypervisor state. If it is executed in privileged but
non-hypervisor state either a Privileged Instruction type
Program interrupt occurs or the results are boundedly
undefined.

 

See Section 5.10 for a description of other require-
ments associated with the use of this instruction.

Special Registers Altered:
None

  

31 /// /// /// 370 /
0 6 11 16 21 31

tlbia does not affect TLBs on other processors.

Programming Note

31 /// /// /// 566 /
0 6 11 16 21 31

tlbsync should not be used to synchronize the
completion of tlbiel.

Programming Note
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5.10 Page Table Update Synchronization Requirements

This section describes rules that software must follow
when updating the Page Table, and includes suggested
sequences of operations for some representative
cases.

In the sequences of operations shown in the following
subsections, any alteration of a Page Table Entry (PTE)
that corresponds to a single line in the sequence is
assumed to be done using a Store instruction for which
the access is atomic. Appropriate modifications must
be made to these sequences if this assumption is not
satisfied (e.g., if a store doubleword operation is done
using two Store Word instructions).

Stores are not performed out-of-order, as described in
Section 5.5, “Performing Operations Out-of-Order” on
page 420. Moreover, address translations associated
with instructions preceding the corresponding Store
instructions are not performed again after the stores
have been performed. (These address translations
must have been performed before the store was deter-
mined to be required by the sequential execution
model, because they might have caused an exception.)
As a result, an update to a PTE need not be preceded
by a context synchronizing operation.

All of the sequences require a context synchronizing
operation after the sequence if the new contents of the
PTE are to be used for address translations associated
with subsequent instructions.

As noted in the description of the Synchronize instruc-
tion in Section 3.3.3 of Book II, address translation
associated with instructions which occur in program
order subsequent to the Synchronize (and this includes
the ptesync variant) may actually be performed prior to
the completion of the Synchronize. To ensure that
these instructions and data which may have been spec-
ulatively fetched are discarded, a context synchronizing
operation is required.

  

Page Table Entries must not be changed in a manner
that causes an implicit branch.

5.10.1 Page Table Updates
TLBs are non-coherent caches of the HTAB. TLB
entries must be invalidated explicitly with one of the
TLB Invalidate instructions.

Unsynchronized lookups in the HTAB continue
even while it is being modified. Any processor,
including a processor on which software is modifying
the HTAB, may look in the HTAB at any time in an
attempt to translate a virtual address. When modifying
a PTE, software must ensure that the PTE’s Valid bit is
0 if the PTE is inconsistent (e.g., if the RPN field is not
correct for the current AVPN field).

Updates of Reference and Change bits by the pro-
cessor are not synchronized with the accesses that
cause the updates. When modifying doubleword 1 of
a PTE, software must take care to avoid overwriting a
processor update of these bits and to avoid having the
value written by a Store instruction overwritten by a pro-
cessor update. 

Before permitting one or more tlbie instructions to be
executed on a given processor in a given partition soft-
ware must ensure that no other processor will execute
a “conflicting instruction” until after the following
sequence of instructions has been executed on the
given processor.

the tlbie instruction(s)
eieio 
tlbsync 
ptesync 

The “conflicting instructions” in this case are the follow-
ing.

� a tlbie or tlbsync instruction, if executed on
another processor in the given partition

� an mtspr instruction that modifies the LPIDR, if the
modification has either of the following properties.

- The old LPID value (i.e., the contents of the
LPIDR just before the mtspr instruction is
executed) is the value that identifies the given
partition

- The new LPID value (i.e., the value specified
by the mtspr instruction) is the value that
identifies the given partition

Other instructions (excluding mtspr instructions that
modify the LPIDR as described above, and excluding
tlbie instructions except as shown) may be interleaved
with the instruction sequence shown above, but the
instructions in the sequence must appear in the order
shown. On uniprocessor systems, the eieio and tlb-
sync instructions can be omitted. Other instructions
may be interleaved with this sequence of instructions,
but these instructions must appear in the order shown. 

In many cases this context synchronization will
occur naturally; for example, if the sequence is exe-
cuted within an interrupt handler the rfid or hrfid
instruction that returns from the interrupt handler
may provide the required context synchronization.

 

Programming Note
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The requirements specified above for tlbie instructions
apply also to tlbsync instructions, except that the
“sequence of instructions” consists solely of the tlb-
sync instruction(s) followed by a ptesync instruction.

Before permitting an mtspr instruction that modifies the
LPIDR to be executed on a given processor, software
must ensure that no other processor will execute a
“conflicting instruction” until after the mtspr instruction
followed by a context synchronizing instruction have
been executed on the given processor (a context syn-
chronizing event can be used instead of the context
synchronizing instruction; see Chapter 10).

The “conflicting instructions” in this case are the follow-
ing.

� a tlbie or tlbsync instruction, if executed on a pro-
cessor in either of the following partitions

- the partition identified by the old LPID value

-  the partition identified by the new LPID value

  

Similarly, when a tlbsync instruction has been exe-
cuted by a processor in a given partition, a ptesync
instruction must be executed by that processor before a
tlbie or tlbsync instruction is executed by another pro-
cessor in that partition.

The sequences of operations shown in the following
subsections assume a multiprocessor environment. In
a uniprocessor environment the tlbsync must be omit-
ted, and the eieio that separates the tlbie from the tlb-
sync can be omitted. In a multiprocessor environment,
when tlbiel is used instead of tlbie in a Page Table
update, the synchronization requirements are the same
as when tlbie is used in a uniprocessor environment.

  

5.10.1.1 Adding a Page Table Entry
This is the simplest Page Table case. The Valid bit of
the old entry is assumed to be 0. The following
sequence can be used to create a PTE, maintain a
consistent state, and ensure that a subsequent refer-
ence to the virtual address translated by the new entry
will use the correct real address and associated
attributes

PTEARPN,LP,AC,R,C,WIMG,N,PP � new values
eieio /* order 1st update before 2nd */
PTEB,AVPN,SW,L,H,V � new values (V=1)
ptesync /* order updates before next

   Page Table search and before
   next data access.             */

The eieio instruction prevents the reordering of
tlbie instructions previously executed by the pro-
cessor with respect to the subsequent tlbsync
instruction. The tlbsync instruction and the subse-
quent ptesync instruction together ensure that all
storage accesses for which the address was trans-
lated using the translations being invalidated, and
all Reference and Change bit updates associated
with address translations that were performed
using the translations being invalidated, will be per-
formed with respect to any processor or mecha-
nism, to the extent required by the associated
Memory Coherence Required attributes, before any
data accesses caused by instructions following the
ptesync instruction are performed with respect to
that processor or mechanism.

The restrictions specified above regarding modify-
ing the LPIDR apply even on uniprocessor sys-
tems, and even if the new LPID value is equal to
the old LPID value.

Programming Note

Programming Note

For all of the sequences shown in the following
subsections, if it is necessary to communicate com-
pletion of the sequence to software running on
another processor, the ptesync instruction at the
end of the sequence should be followed by a Store
instruction that stores a chosen value to some cho-
sen storage location X. The memory barrier cre-
ated by the ptesync instruction ensures that if a
Load instruction executed by another processor
returns the chosen value from location X, the
sequence’s stores to the Page Table have been
performed with respect to that other processor. The
Load instruction that returns the chosen value
should be followed by a context synchronizing
instruction in order to ensure that all instructions
following the context synchronizing instruction will
be fetched and executed using the values stored by
the sequence (or values stored subsequently).
(These instructions may have been fetched or exe-
cuted out-of-order using the old contents of the
PTE.)

This Note assumes that the Page Table and loca-
tion X are in storage that is Memory Coherence
Required.

Programming Note
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5.10.1.2 Modifying a Page Table Entry

General Case
If a valid entry is to be modified and the translation
instantiated by the entry being modified is to be invali-
dated, the following sequence can be used to modify
the PTE, maintain a consistent state, ensure that the
translation instantiated by the old entry is no longer
available, and ensure that a subsequent reference to
the virtual address translated by the new entry will use
the correct real address and associated attributes. (The
sequence is equivalent to deleting the PTE and then
adding a new one; see Sections 5.10.1.1 and 5.10.1.3.)

PTEV � 0 /* (other fields don’t matter)*/
ptesync /* order update before tlbie and

      before next Page Table search */
tlbie(old_B,old_VA14:77-p,old_L,old_LP,old_AP)

/*invalidate old translation*/
eieio /* order tlbie before tlbsync     */
tlbsync /* order tlbie before ptesync     */
ptesync /* order tlbie, tlbsync and 1st

      update before 2nd update      */
PTEARPN,LP,AC,R,C,WIMG,N,PP � new values
eieio /* order 2nd update before 3rd */
PTEB,AVPN,SW,L,H,V � new values (V=1)
ptesync /* order 2nd and 3rd updates before

      next Page Table search and
      before next data access      */

Resetting the Reference Bit
If the only change being made to a valid entry is to set
the Reference bit to 0, a simpler sequence suffices
because the Reference bit need not be maintained
exactly.

oldR � PTER /* get old R                      */
if oldR = 1 then
  PTER � 0 /* store byte (R=0, other bits

      unchanged)                */
  tlbie(B,VA14:77-p,L,LP,AP) /* invalidate entry */
  eieio /* order tlbie before tlbsync           */
  tlbsync /* order tlbie before ptesync           */
  ptesync /* order tlbie, tlbsync, and update

      before next Page Table search
      and before next data access          */

Modifying the SW field
If the only change being made to a valid entry is to
modify the SW field, the following sequence suffices,
because the SW field is not used by the processor and
doubleword 0 of the PTE is not modified by the proces-
sor.

loop: ldarx r1 � PTE_dwd_0 /* load dwd 0 of PTE */
r157:60 � new SW value /* replace SW, in r1 */
stdcx. PTE_dwd_0 ��r1 /* store dwd 0 of PTE 

if still reserved (new SW value, other
fields unchanged) */

bne- loop    /* loop if lost reservation */

A lwarx/stwcx. pair (specifying the low-order word of
doubleword 0 of the PTE) can be used instead of the
ldarx /stdcx. pair shown above.

Modifying the Virtual Address
If the virtual address translated by a valid PTE is to be
modified and the new virtual address hashes to the
same two PTEGs as does the old virtual address, the
following sequence can be used to modify the PTE,
maintain a consistent state, ensure that the translation
instantiated by the old entry is no longer available, and
ensure that a subsequent reference to the virtual
address translated by the new entry will use the correct
real address and associated attributes.

PTEAVPN,SW,L,H,V � new values (V=1)
ptesync /* order update before tlbie and

      before next Page Table search        */
tlbie(old_B,old_VA14:77-p,old_L,old_LP,old_AP)

/*invalidate old translation*/
eieio /* order tlbie before tlbsync           */
tlbsync /* order tlbie before ptesync           */
ptesync /* order tlbie, tlbsync, and update

      before next data access              */
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5.10.1.3 Deleting a Page Table Entry
The following sequence can be used to ensure that the
translation instantiated by an existing entry is no longer
available.

PTEV � 0 /* (other fields don’t matter)          */
ptesync /* order update before tlbie and

   before next Page Table search  */
tlbie(old_B,old_VA14:77-p,old_L,old_LP,old_AP)

/*invalidate old translation*/
eieio /* order tlbie before tlbsync           */
tlbsync /* order tlbie before ptesync           */
ptesync /* order tlbie, tlbsync, and update

      before next data access              */
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6.1 Overview
The Power ISA provides an interrupt mechanism to
allow the processor to change state as a result of exter-
nal signals, errors, or unusual conditions arising in the
execution of instructions.

System Reset and Machine Check interrupts are not
ordered.  All other interrupts are ordered such that only
one interrupt is reported, and when it is processed
(taken) no program state is lost.  Since Save/Restore
Registers SRR0 and SRR1 are serially reusable

resources used by most interrupts, program state may
be lost when an unordered interrupt is taken.

6.2 Interrupt Registers

6.2.1 Machine Status Save/
Restore Registers
When various interrupts occur, the state of the machine
is saved in the Machine Status Save/Restore registers
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(SRR0 and SRR1). Section 6.5  describes which regis-
ters are altered by each interrupt.

Figure 31. Save/Restore Registers

SRR1 bits may be treated as reserved in a given imple-
mentation if they correspond to MSR bits that are
reserved or are treated as reserved in that implementa-
tion or, for SRR1 bits in the range 33:36 and 42:47, they
are specified as being set either to 0 or to an undefined
value for all interrupts that set SRR1 (including imple-
mentation-dependent setting, e.g. by the Machine
Check interrupt or by implementation-specific inter-
rupts).

6.2.2 Hypervisor Machine Status 
Save/Restore Registers
When various interrupts occur, the state of the machine
is saved in the Hypervisor Machine Status Save/
Restore registers (HSRR0 and HSRR1). Section 6.5
describes which registers are altered by each interrupt. 

Figure 32. Hypervisor Save/Restore Registers 

HSRR1 bits may be treated as reserved in a given
implementation if they correspond to MSR bits that are
reserved or are treated as reserved in that implementa-
tion or, for HSRR1 bits in the range 33:36 and 42:47,
they are specified as being set either to 0 or to an unde-
fined value for all interrupts that set HSRR1 (including
implementation-dependent setting, e.g. by implementa-
tion-specific interrupts).

The HSRR0 and HSRR1 are hypervisor resources; see
Chapter 2.

  

6.2.3 Data Address Register 
The Data Address Register (DAR) is a 64-bit register
that is set by the Machine Check, Data Storage, Data

Segment, and Alignment interrupts; see Sections 6.5.2,
6.5.3, 6.5.4, and 6.5.8. In general, when one of these
interrupts occurs the DAR is set to an effective address
associated with the storage access that caused the
interrupt, with the high-order 32 bits of the DAR set to 0
if the interrupt occurs in 32-bit mode.

Figure 33. Data Address Register

6.2.4 Hypervisor Data Address 
Register
The Hypervisor Data Address Register (HDAR) is a 64-
bit register that is set by the Hypervisor Data Storage
and Hypervisor Data Segment interrupts; see Section
6.5.15 and Section 6.5.17. In general, when one of
these interrupts occurs the HDAR is set to an effective
address associated with the storage access that
caused the interrupt, with the high-order 32 bits of the
HDAR set to 0 if the interrupt occurs in 32-bit mode.

Figure 34. Hypervisor Data Address Register

6.2.5 Data Storage Interrupt
Status Register
The Data Storage Interrupt Status Register (DSISR) is
a 32-bit register that is set by the Machine Check, Data
Storage, Data Segment, and Alignment interrupts; see
Sections 6.5.2, 6.5.3, 6.5.4, and 6.5.8. In general, when
one of these interrupts occurs the DSISR is set to indi-
cate the cause of the interrupt. 

Figure 35. Data Storage Interrupt Status Register

DSISR bits may be treated as reserved in a given
implementation if they are specified as being set either
to 0 or to an undefined value for all interrupts that set
the DSISR (including implementation-dependent set-
ting, e.g. by the Machine Check interrupt or by imple-
mentation-specific interrupts).

6.2.6 Hypervisor Data Storage 
Interrupt Status Register
The Hypervisor Data Storage Interrupt Status Register
(HDSISR) is a 32-bit register that is set by the Hypervi-
sor Data Storage interrupt. In general, when one of

SRR0 //
0 62 63

SRR1
0                                                                                                                      63

HSRR0 //
0 62 63

HSRR1
0                                                                                                                     63

Execution of some instructions, and fetching
instructions when MSRIR=1, may have the side
effect of modifying HSRR0 and HSRR1; see Sec-
tion 6.4.4.

Programming Note

DAR
0                                                                                                                     63

HDAR
0                                                                                                                     63

DSISR
32                                                       63
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these interrupts occurs the HDSISR is set to indicate
the cause of the interrupt. 

Figure 36. Hypervisor Data Storage Interrupt
Status Register

HDSISR
32                                                       63
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6.3 Interrupt Synchronization
When an interrupt occurs, SRR0 or HSRR0 is set to
point to an instruction such that all preceding instruc-
tions have completed execution, no subsequent
instruction has begun execution, and the instruction
addressed by SRR0 or HSRR0 may or may not have
completed execution, depending on the interrupt type.

With the exception of System Reset and Machine
Check interrupts, all interrupts are context synchroniz-
ing as defined in Section 1.5.1. System Reset and
Machine Check interrupts are context synchronizing if
they are recoverable (i.e., if bit 62 of SRR1 is set to 1 by
the interrupt). If a System Reset or Machine Check
interrupt is not recoverable (i.e., if bit 62 of SRR1 is set
to 0 by the interrupt), it acts like a context synchronizing
operation with respect to subsequent instructions. That
is, a non-recoverable System Reset or Machine Check
interrupt need not satisfy items 1 through 3 of Section
1.5.1, but does satisfy items 4 and 5.

6.4 Interrupt Classes
Interrupts are classified by whether they are directly
caused by the execution of an instruction or are caused
by some other system exception.  Those that are “sys-
tem-caused” are:

� System Reset
� Machine Check
� External
� Decrementer
� Hypervisor Decrementer

External, Decrementer, and Hypervisor Decrementer
interrupts are maskable interrupts.  Therefore, software
may delay the generation of these interrupts.  System
Reset and Machine Check interrupts are not maskable.

“Instruction-caused” interrupts are further divided into
two classes, precise and imprecise.

6.4.1 Precise Interrupt
Except for the Imprecise Mode Floating-Point Enabled
Exception type Program interrupt, all instruction-
caused interrupts are precise.

When the fetching or execution of an instruction causes
a precise interrupt, the following conditions exist at the
interrupt point.

1. SRR0 addresses either the instruction causing the
exception or the immediately following instruction.
Which instruction is addressed can be determined
from the interrupt type and status bits.

2. An interrupt is generated such that all instructions
preceding the instruction causing the exception
appear to have completed with respect to the exe-
cuting processor. 

3. The instruction causing the exception may appear
not to have begun execution (except for causing
the exception), may have been partially executed,
or may have completed, depending on the interrupt
type.

4. Architecturally, no subsequent instruction has
begun execution.

6.4.2 Imprecise Interrupt
This architecture defines one imprecise interrupt, the
Imprecise Mode Floating-Point Enabled Exception type
Program interrupt.

When an Imprecise Mode Floating-Point Enabled
Exception type Program interrupt occurs, the following
conditions exist at the interrupt point.

1. SRR0 addresses either the instruction causing the
exception or some instruction following that
instruction; see Section 6.5.9, “Program Interrupt”
on page 471.

2. An interrupt is generated such that all instructions
preceding the instruction addressed by SRR0
appear to have completed with respect to the exe-
cuting processor.

3. The instruction addressed by SRR0 may appear
not to have begun execution (except, in some
cases, for causing the interrupt to occur), may
have been partially executed, or may have com-
pleted; see Section 6.5.9.

4. No instruction following the instruction addressed
by SRR0 appears to have begun execution.

All Floating-Point Enabled Exception type Program
interrupts are maskable using the MSR bits FE0 and
FE1.  Although these interrupts are maskable, they dif-
fer significantly from the other maskable interrupts in
that the masking of these interrupts is usually con-
trolled by the application program, whereas the mask-
ing of all other maskable interrupts is controlled by
either the operating system or the hypervisor.
Power ISA™ -- Book III-S462



   Version 2.04
6.4.3 Interrupt Processing
Associated with each kind of interrupt is an interrupt
vector, which contains the initial sequence of instruc-
tions that is executed when the corresponding interrupt
occurs.

Interrupt processing consists of saving a small part of
the processor’s state in certain registers, identifying the
cause of the interrupt in other registers, and continuing
execution at the corresponding interrupt vector location.
When an exception exists that will cause an interrupt to
be generated and it has been determined that the inter-
rupt will occur, the following actions are performed. The
handling of Machine Check interrupts (see
Section 6.5.2) differs from the description given below
in several respects.

1. SRR0 or HSRR0 is loaded with an instruction
address that depends on the type of interrupt; see
the specific interrupt description for details.

2. Bits 33:36 and 42:47 of SRR1 or HSRR1 are
loaded with information specific to the interrupt
type.

3. Bits 0:32, 37:41, and 48:63 of SRR1 or HSRR1 are
loaded with a copy of the corresponding bits of the
MSR.

4. The MSR is set as shown in Figure 37 on
page 466. In particular, MSR bits IR and DR are
set to 0, disabling relocation, and MSR bit SF is set
to 1, selecting 64-bit mode. The new values take
effect beginning with the first instruction executed
following the interrupt.

5. Instruction fetch and execution resumes, using the
new MSR value, at the effective address specific to
the interrupt type. These effective addresses are
shown in Figure 38 on page 466.

Interrupts do not clear reservations obtained with lwarx
or ldarx.

  

In general, when an interrupt occurs, the following
instructions should be executed by the operating
system before dispatching a “new” program.

� stwcx. or stdcx., to clear the reservation if
one is outstanding, to ensure that a lwarx or
ldarx in the interrupted program is not paired
with a stwcx. or stdcx. in the “new” program.

� sync, to ensure that all storage accesses
caused by the interrupted program will be per-
formed with respect to another processor
before the program is resumed on that other
processor.

� isync or rfid, to ensure that the instructions in
the “new” program execute in the “new” con-
text.

Programming Note
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Programming Note

For instruction-caused interrupts, in some cases it may
be desirable for the operating system to emulate the
instruction that caused the interrupt, while in other
cases it may be desirable for the operating system not
to emulate the instruction.  The following list, while not
complete, illustrates criteria by which decisions regard-
ing emulation should be made.  The list applies to gen-
eral execution environments; it does not necessarily
apply to special environments such as program debug-
ging, processor bring-up, etc.

In general, the instruction should be emulated if:

- The interrupt is caused by a condition for
which the instruction description (including
related material such as the introduction to the
section describing the instruction) implies that
the instruction works correctly. Example:
Alignment interrupt caused by lmw for which
the storage operand is not aligned, or by dcbz
for which the storage operand is in storage
that is Write Through Required or Caching
Inhibited.

- The instruction is an illegal instruction that
should appear, to the program executing it, as
if it were supported by the implementation.
Example: Illegal Instruction type Program
interrupt caused by an instruction that has
been phased out of the architecture but is still
used by some programs that the operating
system supports, or by an instruction that is in

a category that the implementation does not
support but is used by some programs that the
operating system supports.

In general, the instruction should not be emulated if:

- The purpose of the instruction is to cause an
interrupt. Example: System Call interrupt
caused by sc.

- The interrupt is caused by a condition that is
stated, in the instruction description, poten-
tially to cause the interrupt. Example: Align-
ment interrupt caused by lwarx for which the
storage operand is not aligned.

- The program is attempting to perform a func-
tion that it should not be permitted to perform.
Example: Data Storage interrupt caused by
lwz for which the storage operand is in stor-
age that the program should not be permitted
to access.  (If the function is one that the pro-
gram should be permitted to perform, the con-
ditions that caused the interrupt should be
corrected and the program re-dispatched such
that the instruction will be re-executed.  Exam-
ple: Data Storage interrupt caused by lwz for
which the storage operand is in storage that
the program should be permitted to access
but for which there currently is no PTE that
satisfies the Page Table search.)

  

If a program modifies an instruction that it or
another program will subsequently execute and the
execution of the instruction causes an interrupt, the
state of storage and the content of some processor
registers may appear to be inconsistent to the inter-
rupt handler program.  For example, this could be
the result of one program executing an instruction
that causes an Illegal Instruction type Program
interrupt just before another instance of the same
program stores an Add Immediate instruction in
that storage location.  To the interrupt handler
code, it would appear that a processor generated
the Program interrupt as the result of executing a
valid instruction.
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6.4.4 Implicit alteration of HSRR0 
and HSRR1
Executing some of the more complex instructions may
have the side effect of altering the contents of HSRR0
and HSRR1. The instructions listed below are guaran-
teed not to have this side effect. Any omission of
instruction suffixes is significant; e.g., add is listed but
add. is excluded. 

 

1. Branch instructions

b[l][a], bc[l][a], bclr[l], bcctr[l]

2. Fixed-Point Load and Store Instructions

lbz, lbzx, lhz, lhzx, lwz, lwzx, ld<64>, ldx<64>,
stb, stbx, sth, sthx, stw, stwx, std<64>,
stdx<64>

Execution of these instructions is guaranteed not
to have the side effect of altering HSRR0 and
HSRR1 only if the storage operand is aligned and
MSRDR=0.

3. Arithmetic instructions

addi, addis, add, subf, neg

4. Compare instructions

cmpi, cmp, cmpli, cmpl

5. Logical and Extend Sign instructions

ori, oris, xori, xoris, and, or, xor, nand, nor, eqv,
andc, orc, extsb, extsh, extsw

6. Rotate and Shift instructions

rldicl<64>, rldicr<64>, rldic<64>, rlwinm,
rldcl<64>, rldcr<64>, rlwnm, rldimi<64>, rlwimi,
sld<64>, slw, srd<64>, srw 

7. Other instructions

isync

rfid, hrfid

mtspr, mfspr, mtmsrd, mfmsr

  

 

Similarly, fetching instructions may have the side effect
of altering the contents of HSRR0 and HSRR1 unless
MSRIR=0.

In order to handle Machine Check and System
Reset interrupts correctly, the operating system
should manage MSRRI as follows.

� In the Machine Check and System Reset inter-
rupt handlers, interpret SRR1 bit 62 (where
MSRRI is placed) as:
- 0: interrupt is not recoverable
- 1: interrupt is recoverable

� In each interrupt handler, when enough state
has been saved that a Machine Check or Sys-
tem Reset interrupt can be recovered from, set
MSRRI to 1.

� In each interrupt handler, do the following (in
order) just before returning.

1. Set MSRRI to 0.
2. Set SRR0 and SRR1 to the values to be

used by rfid.  The new value of SRR1
should have bit 62 set to 1 (which will hap-
pen naturally if SRR1 is restored to the
value saved there by the interrupt,
because the interrupt handler will not be
executing this sequence unless the inter-
rupt is recoverable).

3. Execute rfid.

For interrupts that set the SRRs other than
Machine Check or System Reset, MSRRI can be
managed similarly when these interrupts occur
within interrupt handlers for other interrupts that set
the SRRs. 

This Note does not apply to interrupts that set the
HSRRs because these interrupts put the processor
into hypervisor state, and either do not occur or can
be prevented from occurring within interrupt han-
dlers for other interrupts that set the HSRRs.

Programming Note

Instructions excluded from the list include the fol-
lowing.

� instructions that set or use XERCA
� instructions that set XEROV or XERSO
� andi., andis., and fixed-point instructions with

Rc=1  (Fixed-point instructions with Rc=1 can
be replaced by the corresponding instruction
with Rc=0 followed by a Compare instruction.)

� all floating-point instructions
� mftb

These instructions, and the other excluded instruc-
tions, may be implemented with the assistance of
implementation-specific interrupts that modify
HSRR0 and HSRR1.  The included instructions are
guaranteed not to be implemented thus. (The
included instructions are sufficiently simple as to be
unlikely to need such assistance.  Moreover, they
are likely to be needed in interrupt handlers before
HSRR0 and HSRR1 have been saved or after
HSRR0 and HSRR1 have been restored.)
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6.5 Interrupt Definitions
Figure 37 shows all the types of interrupts and the val-
ues assigned to the MSR for each. Figure 38 shows the
effective address of the interrupt vector for each inter-
rupt type. (Section 5.7.4 on page 426 summarizes all
architecturally defined uses of effective addresses,
including those implied by Figure 38.)

       

Figure 37. MSR setting due to interrupt

      

Figure 38. Effective address of interrupt vector by 
interrupt type

  

6.5.1 System Reset Interrupt
If a System Reset exception causes an interrupt that is
not context synchronizing or causes the loss of a

Interrupt Type MSR Bit
 IR DR FE0 FE1 EE RI ME HV

System Reset  0  0  0  0  0  0  -  1

Machine Check  0  0  0  0  0  0  0  1

Data Storage  0  0  0  0  0  0  -  m

Data Segment  0  0  0  0  0  0  -  m

Instruction Storage  0  0  0  0  0  0  -  m

Instruction Segment  0  0  0  0  0  0  -  m

External  0  0  0  0  0  0  -  e

Alignment  0  0  0  0  0  0  -  m

Program  0  0  0  0  0  0  -  m

FP Unavailable  0  0  0  0  0  0  -  m

Decrementer  0  0  0  0  0  0  -  m

Hypervisor Decrem’er  0  0  0  0  0  -  -  1

System Call  0  0  0  0  0  0  -  s

Trace  0  0  0  0  0  0  -  m

Hypervisor Data Stg.  0  0  0  0  0  -  -  1

Hypervisor Instr. Stg.  0  0  0  0  0  -  -  1

Hypervisor Instr. Seg.  0  0  0  0  0  -  -  1

Hypervisor Data Seg.  0  0  0  0  0  -  -  1

Performance Monitor  0  0  0  0  0  0  -  m

Vector Unavailable1  0  0  0  0  0  0  -  m

0 bit is set to 0
1 bit is set to 1
- bit is not altered
m if LPES1=0, set to 1; otherwise not altered
e if LPES0=0, set to 1; otherwise not altered
s if LEV=1 or LPES/LPES1=0, set to 1; otherwise

not altered

Settings for Other Bits

Bits BE, FP, PMM, PR, SE, and VEC1are set to 0.

If the interrupt results in HV being equal to 1, the LE bit
is copied from the HILE bit; otherwise the LE bit is cop-
ied from the LPCRILE bit.

The SF bit is set to 1.

Reserved bits are set as if written as 0.

1 Category: Vector

Effective 
Address1

 
Interrupt Type

 00..0000_0100  System Reset
 00..0000_0200  Machine Check
 00..0000_0300  Data Storage
 00..0000_0380  Data Segment
 00..0000_0400  Instruction Storage
 00..0000_0480  Instruction Segment
 00..0000_0500  External
 00..0000_0600  Alignment
 00..0000_0700  Program
 00..0000_0800  Floating-Point Unavailable
 00..0000_0900  Decrementer
 00..0000_0980  Hypervisor Decrementer  
 00..0000_0A00  Reserved
 00..0000_0B00  Reserved
 00..0000_0C00  System Call
 00..0000_0D00  Trace
 00..0000_0E00  Hypervisor Data Storage
 00..0000_0E10  Hypervisor Instruction Storage
 00..0000_0E20  Hypervisor Data Segment
 00..0000_0E30  Hypervisor Instruction Segment
 00..0000_0E40  Reserved
     . . .   . . .
 00..0000_0EFF  Reserved
 00..0000_0F00  Performance Monitor
 00..0000_0F10  Reserved
 00..0000_0F20  Vector Unavailable3

 00..0000_0F30  Reserved
     . . .   . . . 
 00..0000_0FFF  Reserved
1 The values in the Effective Address column are     

interpreted as follows.
� 00...0000_nnnn means

 0x0000_0000_0000_nnnn
2 Effective addresses 0x0000_0000_0000_0000     

through 0x0000_0000_0000_00FF are used by     
software and will not be assigned as interrupt     
vectors.

3 Category: Vector.

When address translation is disabled, use of any of
the effective addresses that are shown as reserved
in Figure 38 risks incompatibility with future imple-
mentations.

Programming Note
Power ISA™ -- Book III-S466



   Version 2.04
Machine Check exception or an External exception, or
if the state of the processor has been corrupted, the
interrupt is not recoverable.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

SRR1
33:36 Set to 0.
42:44 Set to an implementation-dependent value.
45:47 Set to 0.
62 Loaded from bit 62 of the MSR if the pro-

cessor is in a recoverable state; otherwise
set to 0.

Others Loaded from the MSR.

MSR See Figure 37 on page 466.

Execution resumes at effective address
0x0000_0000_0000_0100.

Each implementation provides an implementation-
dependent means for software to distinguish power-on
Reset from other types of System Reset.

6.5.2 Machine Check Interrupt
The causes of Machine Check interrupts are implemen-
tation-dependent. For example, a Machine Check inter-
rupt may be caused by a reference to a storage location
that contains an uncorrectable error or does not exist
(see Section 5.6), or by an error in the storage sub-
system.

Machine Check interrupts are enabled when
MSRME=1. If MSRME=0 and a Machine Check occurs,
the processor enters the Checkstop state. The Check-
stop state may also be entered if an access is
attempted to a storage location that does not exist (see
Section 5.6).

Disabled Machine Check (Checkstop State)

When a processor is in Checkstop state, instruction
processing is suspended and generally cannot be
restarted without resetting the processor.  Some imple-
mentations may preserve some or all of the internal
state of the processor when entering Checkstop state,
so that the state can be analyzed as an aid in problem
determination.

Enabled Machine Check

If a Machine Check exception causes an interrupt that
is not context synchronizing or causes the loss of an
External exception, or if the state of the processor has
been corrupted, the interrupt is not recoverable.

In some systems, the operating system may attempt to
identify and log the cause of the Machine Check.

The following registers are set:

SRR0 Set on a “best effort” basis to the effective
address of some instruction that was exe-
cuting or was about to be executed when
the Machine Check exception occurred.
The details are implementation-dependent.

SRR1
62 Loaded from bit 62 of the MSR if the pro-

cessor is in a recoverable state; otherwise
set to 0.

Others Set to an implementation-dependent value.

MSR See Figure 37.

DSISR Set to an implementation-dependent value.

DAR Set to an implementation-dependent value.

Execution resumes at effective address
0x0000_0000_0000_0200.

  

6.5.3 Data Storage Interrupt
A Data Storage interrupt occurs when no higher priority
exception exists, the value of the expression

(MSRHV PR = 0b10)|(¬VPM0 & ¬MSRDR) 

                                 | (¬VPM1 & MSRDR)

is 1, and a data access cannot be performed for any of
the following reasons. 

� Data address translation is enabled (MSRDR=1)
and the virtual address of any byte of the storage
location specified by a Load, Store, icbi, dcbz,
dcbst, dcbf[l], eciwx, or ecowx instruction cannot
be translated to a real address.

� The effective address specified by a lq, stq, lwarx,
ldarx, stwcx., or stdcx. instruction refers to stor-
age that is Write Through Required or Caching
Inhibited.

� The access violates storage protection.
� A Data Address Breakpoint match occurs.
� Execution of an eciwx or ecowx instruction is dis-

allowed because EARE=0.

If a stwcx. or stdcx. would not perform its store in the
absence of a Data Storage interrupt, and either (a) the
specified effective address refers to storage that is
Write Through Required or Caching Inhibited, or (b) a
non-conditional Store to the specified effective address
would cause a Data Storage interrupt, it is implementa-
tion-dependent whether a Data Storage interrupt
occurs.

If a Machine Check interrupt is caused by an error
in the storage subsystem, the storage subsystem
may return incorrect data, which may be placed
into registers.  This corruption of register contents
may occur even if the interrupt is recoverable.
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If the contents of the XER specifies a length of zero
bytes for a Move Assist instruction, a Data Storage
interrupt does not occur for reasons of address transla-
tion, or storage protection. If such an instruction causes
a Data Storage interrupt for other reasons, the setting
of the DSISR and DAR reflects only these other rea-
sons listed in the preceding sentence. (E.g., if such an
instruction causes a storage protection violation and a
Data Address Breakpoint match, the DSISR and DAR
are set as if the storage protection violation did not
occur.)

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 37.

DSISR
32 Set to 0.
33 Set to 1 if MSRDR=1 and the translation for

an attempted access is not found in the pri-
mary PTEG or in the secondary PTEG; oth-
erwise set to 0.

34:35 Set to 0.
36 Set to 1 if the access is not permitted by

Figure 24 or 25, as appropriate; otherwise
set to 0.

37 Set to 1 if the access is due to a lq, stq,
lwarx, ldarx, stwcx., or stdcx. instruction
that addresses storage that is Write
Through Required or Caching Inhibited;
otherwise set to 0.

38 Set to 1 for a Store, dcbz, or ecowx
instruction; otherwise set to 0.

39:40 Set to 0.
41 Set to 1 if a Data Address Breakpoint

match occurs; otherwise set to 0.
42 Set to 1 if the access is not permitted by

virtual page class key protection; otherwise
set to 0.

43 Set to 1 if execution of an eciwx or ecowx
instruction is attempted when EARE=0; oth-
erwise set to 0.

44:63 Set to 0.

DAR Set to the effective address of a storage
element as described in the following list.
The list should be read from the top down;
the DAR is set as described by the first item
that corresponds to an exception that is
reported in the DSISR. For example, if a
Load instruction causes a storage protec-
tion violation and a Data Address Break-
point match (and both are reported in the
DSISR), the DAR is set to the effective
address of a byte in the first aligned double-

word for which access was attempted in the
page that caused the exception.
� a Data Storage exception occurs for

reasons other than a Data Address
Breakpoint match or, for eciwx and
ecowx, EARE=0
- a byte in the block that caused the

exception, for a Cache Manage-
ment instruction

- a byte in the first aligned double-
word for which access was
attempted in the page that caused
the exception, for a Load, Store,
eciwx, or ecowx instruction (“first”
refers to address order; see
Section 6.7)

� undefined, for a Data Address Break-
point match, or if eciwx or ecowx is
executed when EARE=0

For the cases in which the DAR is specified
above to be set to a defined value, if the
interrupt occurs in 32-bit mode the high-
order 32 bits of the DAR are set to 0.

If multiple Data Storage exceptions occur for a given
effective address, any one or more of the bits corre-
sponding to these exceptions may be set to 1 in the
DSISR.

 

Execution resumes at effective address
0x0000_0000_0000_0300.

6.5.4 Data Segment Interrupt
A Data Segment interrupt occurs when no higher prior-
ity exception exists and a data access cannot be per-
formed because data address translation is enabled
and the effective address of any byte of the storage
location specified by a Load, Store, icbi, dcbz, dcbst,
dcbf[l] eciwx, or ecowx instruction cannot be trans-
lated to a virtual address.

If a stwcx. or stdcx. would not perform its store in the
absence of a Data Segment interrupt, and a non-condi-
tional Store to the specified effective address would
cause a Data Segment interrupt, it is implementation-
dependent whether a Data Segment interrupt occurs.

If a Move Assist instruction has a length of zero (in the
XER), a Data Segment interrupt does not occur,
regardless of the effective address.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33:36 Set to 0.
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42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 37.

DSISR Set to an undefined value.

DAR Set to the effective address of a storage
element as described in the following list.
� a byte in the block that caused the

Data Segment interrupt, for a Cache
Management instruction

� a byte in the first aligned doubleword
for which access was attempted in the
segment that caused the Data Seg-
ment interrupt, for a Load, Store,
eciwx, or ecowx instruction (“first”
refers to address order; see
Section 6.7)

If the interrupt occurs in 32-bit mode, the
high-order 32 bits of the DAR are set to 0.

Execution resumes at effective address
0x0000_0000_0000_0380.

  

6.5.5 Instruction Storage Interrupt
An Instruction Storage interrupt occurs when no higher
priority exception exists, the value of the expression

(MSRHV PR = 0b10)|(¬VPM0 & ¬MSRIR) 

                                 | (¬VPM1 & MSRIR)

is 1, and the next instruction to be executed cannot be
fetched for any of the following reasons.

� Instruction address translation is enabled  and the
virtual address cannot be translated to a real
address.

� The fetch access violates storage protection.

The following registers are set:

SRR0 Set to the effective address of the instruction
that the processor would have attempted to
execute next if no interrupt conditions were
present (if the interrupt occurs on attempting
to fetch a branch target, SRR0 is set to the
branch target address).

SRR1
33 Set to 1 if MSRIR=1 and the translation for

an attempted access is not found in the pri-
mary PTEG or in the secondary PTEG; oth-
erwise set to 0.

34 Set to 0.

35 Set to 1 if the access is to No-execute or
Guarded storage; otherwise set to 0.

36 Set to 1 if the access is not permitted by
Figure 24, or 25, as appropriate; otherwise
set to 0.
  

42:47 Set to 0.
 
Others Loaded from the MSR.

MSR See Figure 37.

If multiple Instruction Storage exceptions occur due to
attempting to fetch a single instruction, any one or more
of the bits corresponding to these exceptions may be
set to 1 in SRR1.

 

Execution resumes at effective address
0x0000_0000_0000_0400.

6.5.6 Instruction Segment
Interrupt
An Instruction Segment interrupt occurs when no
higher priority exception exists and the next instruction
to be executed cannot be fetched because instruction
address translation is enabled and the effective
address cannot be translated to a virtual address.

The following registers are set:

SRR0 Set to the effective address of the instruction
that the processor would have attempted to
execute next if no interrupt conditions were
present (if the interrupt occurs on attempting
to fetch a branch target, SRR0 is set to the
branch target address).

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 37 on page 466.

Execution resumes at effective address
0x0000_0000_0000_0480.

A Data Segment interrupt occurs if MSRDR=1 and
the translation of the effective address of any byte
of the specified storage location is not found in the
SLB (or in any implementation-specific address
translation lookaside information).

Programming Note

Storage protection violations for the
Data Storage Interrupt are reported in
DSISR36 and DSISR42, whereas stor-
age protection violations for the Instruc-
tion Storage Interrupt are reported in
SRR135 and SRR136.
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6.5.7 External Interrupt
An External interrupt occurs when no higher priority
exception exists, an External exception exists, and
MSREE=1.  The occurrence of the interrupt does not
cause the exception to cease to exist.

The following registers are set:

SRR0 Set to the effective address of the instruction
that the processor would have attempted to
execute next if no interrupt conditions were
present.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 37.

Execution resumes at effective address
0x0000_0000_0000_0500.

6.5.8 Alignment Interrupt
An Alignment interrupt occurs when no higher priority
exception exists and a data access cannot be per-
formed for any of the following reasons.

� The operand of a floating-point Load or Store is not
word-aligned, or crosses a virtual page boundary.

� The operand of lq, stq, lmw, stmw, lwarx, ldarx,
stwcx., stdcx., eciwx, or ecowx is not aligned.

� The operand of a single-register Load or Store is
not aligned and the processor is in Little-Endian
mode.

� The instruction is lq, stq, lmw, stmw, lswi, lswx,
stswi, or stswx, and the operand is in storage that
is Write Through Required or Caching Inhibited, or
the processor is in Little-Endian mode.

� The operand of a Load or Store crosses a segment
boundary, or crosses a boundary between virtual
pages that have different storage control attributes.

� The operand of a Load or Store is not aligned and
is in storage that is Write Through Required or
Caching Inhibited.

� The operand of dcbz, lwarx, ldarx, stwcx., or
stdcx. is in storage that is Write Through Required
or Caching Inhibited.

If a stwcx. or stdcx. would not perform its store in the
absence of an Alignment interrupt and the specified
effective address refers to storage that is Write Through
Required or Caching Inhibited, it is implementation-
dependent whether an Alignment interrupt occurs.

Setting the DSISR and DAR as described below is
optional for implementations on which Alignment inter-
rupts occur rarely, if ever, for cases that the Alignment
interrupt handler emulates.  For such implementations,
if the DSISR and DAR are not set as described below
they are set to undefined values.

The following registers are set:

SRR0 Set to the effective address of the instruction
that caused the interrupt.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 37.

DSISR
32:43 Set to 0.
44:45 Set to bits 30:31 of the instruction if DS-

form. Set to 0b00 if D-, or X-form.
46 Set to 0.
47:48 Set to bits 29:30 of the instruction if X-form.

Set to 0b00 if D- or DS-form.
49 Set to bit 25 of the instruction if X-form. Set

to bit 5 of the instruction if D- or DS-form.
50:53 Set to bits 21:24 of the instruction if X-form.

Set to bits 1:4 of the instruction if D- or DS-
form.

54:58 Set to bits 6:10 of the instruction (RT/RS/
FRT/FRS), except undefined for dcbz.

59:63 Set to bits 11:15 of the instruction (RA) for
update form instructions; set to either bits
11:15 of the instruction or to any register
number not in the range of registers to be
loaded for a valid form lmw, a valid form
lswi, or a valid form lswx for which neither
RA nor RB is in the range of registers to be
loaded; otherwise undefined.

DAR Set to the effective address computed by
the instruction, except that if the interrupt
occurs in 32-bit mode the high-order 32 bits
of the DAR are set to 0.

For an X-form Load or Store, it is acceptable for the
processor to set the DSISR to the same value that
would have resulted if the corresponding D- or DS-form
instruction had caused the interrupt. Similarly, for a D-
or DS-form Load or Store, it is acceptable for the pro-
cessor to set the DSISR to the value that would have
resulted for the corresponding X-form instruction.  For
example, an unaligned lwax (that crosses a protection
boundary) would normally, following the description
above, cause the DSISR to be set to binary:

An Instruction Segment interrupt occurs if
MSRIR=1 and the translation of the effective
address of the next instruction to be executed is not
found in the SLB (or in any implementation-specific
address translation lookaside information).
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   000000000000 00 0 01 0 0101 ttttt ?????

where “ttttt” denotes the RT field, and “?????” denotes
an undefined 5-bit value.  However, it is acceptable if it
causes the DSISR to be set as for lwa, which is

   000000000000 10 0 00 0 1101 ttttt ?????

If there is no corresponding alternative form instruction
(e.g., for lwaux), the value described above is set in the
DSISR.

The instruction pairs that may use the same DSISR
value are.

Execution resumes at effective address
0x0000_0000_0000_0600.

  

6.5.9 Program Interrupt
A Program interrupt occurs when no higher priority
exception exists and one of the following exceptions
arises during execution of an instruction:

Floating-Point Enabled Exception

A Floating-Point Enabled Exception type Program
interrupt is generated when the value of the
expression

(MSRFE0 | MSRFE1) & FPSCRFEX

is 1.  FPSCRFEX is set to 1 by the execution of a
floating-point instruction that causes an enabled
exception, including the case of a Move To FPSCR
instruction that causes an exception bit and the
corresponding enable bit both to be 1.

Illegal Instruction

An Illegal Instruction type Program interrupt is gen-
erated when execution is attempted of an illegal
instruction, or of a reserved instruction or an
instruction that is not provided by the implementa-
tion.

An Illegal Instruction type Program interrupt may
be generated when execution is attempted of any
of the following kinds of instruction.

� an instruction that is in invalid form
� an lswx instruction for which RA or RB is in

the range of registers to be loaded
� an mtspr or mfspr instruction with an SPR

field that does not contain one of the defined
values

Privileged Instruction

The following applies if the instruction is executed
when MSRPR = 1.

A Privileged Instruction type Program interrupt
is generated when execution is attempted of a
privileged instruction, or of an mtspr or mfspr
instruction with an SPR field that contains one
of the defined values having spr0=1. It may be
generated when execution is attempted of an
mtspr or mfspr instruction with an SPR field
that does not contain one of the defined val-
ues but has spr0=1.

The following applies if the instruction is executed
when MSRHV PR = 0b00.

A Privileged Instruction type Program interrupt
may be generated when execution is
attempted of an mtspr instruction with an
SPR field that designates a hypervisor
resource, or when execution of a tlbie, tlbiel,
tlbia, or tlbsync instruction is attempted.

  

Trap

A Trap type Program interrupt is generated when
any of the conditions specified in a Trap instruction
is met.

The following registers are set:

SRR0 For all Program interrupts except a Floating-
Point Enabled Exception type Program inter-
rupt, set to the effective address of the instruc-
tion that caused the corresponding exception.

For a Floating-Point Enabled Exception type
Program interrupt, set as described in the fol-
lowing list.
- If MSRFE0 FE1 = 0b00, FPSCRFEX = 1,

and an instruction is executed that
changes MSRFE0 FE1 to a nonzero value,

lhz/lhzx lhzu/lhzux lha/lhax lhau/lhaux
lwz/lwzx lwzu/lwzux lwa/lwax
ld/ldx ldu/ldux
lsth/sthx sthu/sthux stw/stwx stwu/stwux
std/stdx stdu/stdux
lfs/lfsx lfsu/lfsux lfd/lfdx lfdu/lfdux
stfs/stfsx stfsu/stfsux stfd/stfdx stfdu/stfdux

The architecture does not support the use of an
unaligned effective address by lwarx, ldarx,
stwcx., stdcx., eciwx, and ecowx.  If an Align-
ment interrupt occurs because one of these instruc-
tions specifies an unaligned effective address, the
Alignment interrupt handler must not attempt to
simulate the instruction, but instead should treat
the instruction as a programming error.

Programming Note

These are the only cases in which a Privi-
leged Instruction type Program interrupt
can be generated when MSRPR=0. They
can be distinguished from other causes of
Privileged Instruction type Program inter-
rupts by examining SRR149 (the bit in
which MSRPR was saved by the interrupt).
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set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

  

- If MSRFE0 FE = 0b11, set to the effective
address of the instruction that caused the
Floating-Point Enabled Exception.  

- If MSRFE0 FE = 0b01 or 0b10, set to the
effective address of the first instruction
that caused a Floating-Point Enabled
Exception since the most recent time
FPSCRFEX was changed from 1 to 0 or of
some subsequent instruction.

  

SRR1
33:36 Set to 0.
42 Set to 0.
43 Set to 1 for a Floating-Point Enabled

Exception type Program interrupt; other-
wise set to 0.

44 Set to 1 for an Illegal Instruction type Pro-
gram interrupt; otherwise set to 0.

45 Set to 1 for a Privileged Instruction type
Program interrupt; otherwise set to 0.

46 Set to 1 for a Trap type Program interrupt;
otherwise set to 0.

47 Set to 0 if SRR0 contains the address of
the instruction causing the exception and
there is only one such instruction; other-
wise set to 1.

  

Others Loaded from the MSR.

Only one of bits 43:46 can be set to 1.

MSR See Figure 37 on page 466.

Execution resumes at effective address
0x0000_0000_0000_0700.

6.5.10 Floating-Point Unavailable 
Interrupt
A Floating-Point Unavailable interrupt occurs when no
higher priority exception exists, an attempt is made to
execute a floating-point instruction (including floating-
point loads, stores, and moves), and MSRFP=0.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 37 on page 466.

Execution resumes at effective address
0x0000_0000_0000_0800.

6.5.11 Decrementer Interrupt
A Decrementer interrupt occurs when no higher priority
exception exists, a Decrementer exception exists, and
MSREE=1. 

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 37 on page 466.

Execution resumes at effective address
0x0000_0000_0000_0900.

Recall that all instructions that can alter
MSRFE0 FE1 are context synchroniz-
ing, and therefore are not initiated until
all preceding instructions have reported
all exceptions they will cause.

If SRR0 is set to the effective address
of a subsequent instruction, that
instruction will not be beyond the first
such instruction at which synchroniza-
tion of floating-point instructions
occurs.  (Recall that such synchroniza-
tion is caused by Floating-Point Status
and Control Register instructions, as
well as by execution synchronizing
instructions and events.)

Programming Note

Programming Note

SRR147 can be set to 1 only if the
exception is a Floating-Point Enabled
Exception and either MSRFE0 FE1 =
0b01 or 0b10 or MSRFE0 FE1 has just
been changed from 0b00 to a nonzero
value.  (SRR147 is always set to 1 in
the last case.)

Programming Note
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6.5.12 Hypervisor Decrementer 
Interrupt
A Hypervisor Decrementer interrupt occurs when no
higher priority exception exists, a Hypervisor Decre-
menter exception exists, and the value of the following
expression is 1.

(MSREE | ¬(MSRHV) | MSRPR) & HDICE 

The following registers are set:

HSRR0 Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

HSRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 37 on page 466.

Execution resumes at effective address
0x0000_0000_0000_0980.

  

6.5.13 System Call Interrupt
A System Call interrupt occurs when a System Call
instruction is executed.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion following the System Call instruction.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 37 on page 466.

Execution resumes at effective address
0x0000_0000_0000_0C00.

  

6.5.14 Trace Interrupt [Category: 
Trace]
A Trace interrupt occurs when no higher priority excep-
tion exists and either MSRSE=1 and any instruction
except rfid or hrfid, is successfully completed, or
MSRBE=1 and a Branch instruction is completed. Suc-
cessful completion means that the instruction caused
no other interrupt. Thus a Trace interrupt never occurs
for a System Call instruction, or for a Trap instruction
that traps. The instruction that causes a Trace interrupt
is called the “traced instruction”.

When a Trace interrupt occurs, the following registers
are set:

SRR0 Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

SRR1
33:36 and 42:47

Set to an implementation-dependent value.
Others Loaded from the MSR.

MSR See Figure 37 on page 466.

Execution resumes at effective address
0x0000_0000_0000_0D00.

Extensions to the Trace facility are described in
Appendix C.

  

6.5.15 Hypervisor Data Storage 
Interrupt
A Hypervisor Data Storage interrupt occurs when the
processor is not in hypervisor state, no higher priority
exception exists, the value of the expression

(VPM0 & ¬MSRDR) | (VPM1 & MSRDR)

is 1, and a data access cannot be performed for any of
the following reasons.  

� Data address translation is enabled (MSRDR=1)
and the virtual address of any byte of the storage
location specified by a Load, Store, icbi, dcbz,

Because the value of MSREE is always 1 when the
processor is in problem state, the simpler expres-
sion

(MSREE | ¬(MSRHV)) & HDICE  

is equivalent to the expression given above.

An attempt to execute an sc instruction with LEV=1
in problem state should be treated as a program-
ming error.

Programming Note

Programming Note

The following instructions are not traced.

� rfid 
� hrfid 
� sc, and Trap instructions that trap
� other instructions that cause interrupts (other

than Trace interrupts)
� the first instructions of any interrupt handler
� instructions that are emulated by software

In general, interrupt handlers can achieve the effect
of tracing these instructions.

Programming Note
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dcbst, dcbf[l], eciwx, or ecowx instruction cannot
be translated to a real address.

� Data address translation is disabled (MSRDR=0),
LPES1 =1, and the virtual address of any byte of
the storage location specified by a Load, Store,
icbi, dcbz, dcbst, dcbf[l], eciwx, or ecowx
instruction cannot be translated to a real address
by means of the virtual real addressing mecha-
nism.

� The effective address specified by a lwarx, ldarx,
stwcx., or stdcx. instruction refers to storage that
is Write Through Required or Caching Inhibited.

� The access violates storage protection.
� A Data Address Compare match or a Data

Address Breakpoint match occurs.
� Execution of an eciwx or ecowx instruction is dis-

allowed because EARE=0.

If a stwcx. or stdcx. would not perform its store in the
absence of a Hypervisor Data Storage interrupt, and
either (a) the specified effective address refers to stor-
age that is Write Through Required or Caching Inhib-
ited, or (b) a non-conditional Store to the specified
effective address would cause a Hypervisor Data Stor-
age interrupt, it is implementation-dependent whether a
Hypervisor Data Storage interrupt occurs.

If the contents of the XER specifies a length of zero
bytes for a Move Assist instruction, a Hypervisor Data
Storage interrupt does not occur for reasons of address
translation, or storage protection. If such an instruction
causes a Hypervisor Data Storage interrupt for other
reasons, the setting of the HDSISR and HDAR reflects
only these other reasons listed in the preceding sen-
tence. (E.g., if such an instruction causes a storage
protection violation and a Data Address Breakpoint
match, the HDSISR and HDAR are set as if the storage
protection violation did not occur.)

The following registers are set:

HSRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

HSRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 37.

HDSISR
32 Set to 0.
33 Set to 1 if the value of the expression

(MSRDR) | ((¬MSRDR & VPM0)
                 & LPES1)
is 1 and the translation for an attempted
access is not found in the primary PTEG or
in the secondary PTEG; otherwise set to 0.

34:35 Set to 0.
36 Set to 1 if the access is not permitted by the

storage protection mechanism; otherwise
set to 0.

37 Set to 1 if the access is due to a lq, stq,
lwarx, ldarx, stwcx., or stdcx. instruction
that addresses storage that is Write
Through Required or Caching Inhibited;
otherwise set to 0.

38 Set to 1 for a Store, dcbz, or ecowx
instruction; otherwise set to 0.

39:40 Set to 0.
41 Set to 1 if a Data Address Compare match

or a Data Address Breakpoint match
occurs; otherwise set to 0.

42 Set to 0.
43 Set to 1 if execution of an eciwx or ecowx

instruction is attempted when EARE=0; oth-
erwise set to 0.

44:63 Set to 0.

HDAR Set to the effective address of a storage
element as described in the following list.
The list should be read from the top down;
the HDAR is set as described by the first
item that corresponds to an exception that
is reported in the HDSISR. For example, if
a Load instruction causes a storage protec-
tion violation and a Data Address Break-
point match (and both are reported in the
HDSISR), the HDAR is set to the effective
address of a byte in the first aligned double-
word for which access was attempted in the
page that caused the exception.
� a Data Storage exception occurs for

reasons other than a Data Address
Breakpoint match or, for eciwx and
ecowx, EARE=0
- a byte in the block that caused the

exception, for a Cache Manage-
ment instruction

- a byte in the first aligned double-
word for which access was
attempted in the page that caused
the exception, for a Load, Store,
eciwx, or ecowx instruction (“first”
refers to address order; see
Section 6.7)

� undefined, for a Data Address Break-
point match, or if eciwx or ecowx is
executed when EARE=0

For the cases in which the HDAR is speci-
fied above to be set to a defined value, if
the interrupt occurs in 32-bit mode the high-
order 32 bits of the DAR are set to 0.

If multiple Hypervisor Data Storage exceptions occur
for a given effective address, any one or more of the
bits corresponding to these exceptions may be set to 1
in the HDSISR.

Execution resumes at effective address
0x0000_0000_0000_0E00.
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6.5.16 Hypervisor Instruction 
Storage Interrupt
A Hypervisor Instruction Storage interrupt occurs when
the processor is not in hypervisor state, no higher prior-
ity exception exists, the value of the expression

(VPM0 & ¬MSRIR) | (VPM1 & MSRIR)

is 1, and the next instruction to be executed cannot be
fetched for any of the following reasons.

� Instruction address translation is enabled
(MSRIR=1) and the virtual address cannot be
translated to a real address.

� Instruction address translation is disabled
(MSRIR=0), LPES1 =1, and the virtual address
cannot be translated to a real address by means of
the virtual real addressing mechanism.

� The fetch access violates storage protection.

The following registers are set:

HSRR0 Set to the effective address of the instruction
that the processor would have attempted to
execute next if no interrupt conditions were
present (if the interrupt occurs on attempting
to fetch a branch target, HSRR0 is set to the
branch target address).

HSRR1
33 Set to 1 if the value of the expression

(MSRIR) | ((¬MSRIR & VPM0)
                 & LPES1)
is 1 and the translation for an attempted
access is not found in the primary PTEG or
in the secondary PTEG; otherwise set to 0.

34 Set to 0.
35 Set to 1 if the access is to No-execute or

Guarded storage; otherwise set to 0.
36 Set to 1 if the access is not permitted by

Figure 24; otherwise set to 0.

  

42:46 Set to 0.
47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 37.

If multiple Instruction Storage exceptions occur due to
attempting to fetch a single instruction, any one or more
of the bits corresponding to these exceptions may be
set to 1 in HSRR1.

Execution resumes at effective address
0x0000_0000_0000_0E10.

6.5.17 Hypervisor Data Seg-
ment Interrupt
A Hypervisor Data Segment interrupt may occur when
the processor is not in hypervisor state, data address
translation is disabled (MSRDR=0), VPM0=1, LPES1=1,
no higher priority exception exists, the effective address
of any byte of the storage location specified by a Load,
Store, icbi, dcbz, dcbst, dcbf[l] eciwx, or ecowx
instruction is beyond the 1 TB VRMA.

If a stwcx. or stdcx. would not perform its store in the
absence of a Hypervisor Data Segment interrupt, and a
non-conditional Store to the specified effective address
would cause a Hypervisor Data Segment interrupt, it is
implementation-dependent whether a Hypervisor Data
Segment interrupt occurs.

If a Move Assist instruction has a length of zero (in the
XER), a Hypervisor Data Segment interrupt does not
occur, regardless of the effective address.

The following registers are set:

HSRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

HSRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 37.

HDSISR Set to an undefined value.

HDAR Set to the effective address of a storage
element as described in the following list.
� a byte in the block that caused the

Hypervisor Data Segment interrupt, for
a Cache Management instruction

� a byte in the first aligned doubleword
for which access was attempted in the
segment that caused the Hypervisor
Data Segment interrupt, for a Load,
Store, eciwx, or ecowx instruction
(“first” refers to address order; see
Section 6.7)

Execution resumes at effective address
0x0000_0000_0000_0E20.

6.5.18 Hypervisor Instruction 
Segment Interrupt
A Hypervisor Instruction Segment interrupt may occur
when the processor is not in hypervisor state, instruc-
tion address translation is disabled (MSRIR=0),
VPM0=1, LPES1=1, no higher priority exception exists,

Storage protection violations for the
Hypervisor Data Storage Interrupt are
reported in HDSISR36, whereas storage
protection violations for the Hypervisor
Instruction Storage Interrupt are reported
in HSRR135 and HSRR136.
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and the effective address of any byte of the instruction
is beyond the 1 TB VRMA.

The following registers are set:

HSRR0 Set to the effective address of the instruction
that the processor would have attempted to
execute next if no interrupt conditions were
present (if the interrupt occurs on attempting
to fetch a branch target, HSRR0 is set to the
branch target address).

HSRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 37 on page 466.

Execution resumes at effective address
0x0000_0000_0000_03E0.

6.5.19 Performance Monitor
Interrupt [Category: Server.Perfor-
mance Monitor]
The Performance Monitor interrupt is part of the Perfor-
mance Monitor facility; see Appendix C. If the Perfor-
mance Monitor facility is not implemented or does not
use this interrupt, the corresponding interrupt vector
(see Figure 38 on page 466) is treated as reserved.

6.5.20 Vector Unavailable Inter-
rupt [Category: Vector]
A Vector Unavailable interrupt occurs when no higher
priority exception exists, an attempt is made to execute
a Vector instruction (including Vector loads, stores, and
moves), and MSRVEC=0.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 37 on page 466.

Execution resumes at effective address
0x0000_0000_0000_0F20.
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6.6 Partially Executed
Instructions
If a Data Storage, Data Segment, Alignment, system-
caused, or imprecise exception occurs while a Load or
Store instruction is executing, the instruction may be
aborted. In such cases the instruction is not completed,
but may have been partially executed in the following
respects.

� Some of the bytes of the storage operand may
have been accessed, except that if access to a
given byte of the storage operand would violate
storage protection, that byte is neither copied to a
register by a Load instruction nor modified by a
Store instruction. Also, the rules for storage
accesses given in Section 5.8.1, “Guarded Stor-
age” and in Section 2.1 of Book II are obeyed.

� Some registers may have been altered as
described in the Book II section cited above.

� Reference and Change bits may have been
updated as described in Section 5.7.8.

� For a stwcx. or stdcx. instruction that is executed
in-order, CR0 may have been set to an undefined
value and the reservation may have been cleared.

� For an lq instruction that is executed in-order, the
TGCC may have been set to an undefined value.

The architecture does not support continuation of an
aborted instruction but intends that the aborted instruc-
tion be re-executed if appropriate.

  

An exception may result in the partial execution of
a Load or Store instruction.  For example, if the
Page Table Entry that translates the address of the
storage operand is altered, by a program running
on another processor, such that the new contents
of the Page Table Entry preclude performing the
access, the alteration could cause the Load or
Store instruction to be aborted after having been
partially executed.

As stated in the Book II section cited above, if an
instruction is partially executed the contents of reg-
isters are preserved to the extent that the instruc-
tion can be re-executed correctly. The consequent
preservation is described in the following list. For
any given instruction, zero or one item in the list
applies.

� For a fixed-point Load instruction that is not a
multiple or string form, or for an eciwx instruc-
tion, if RT=RA or RT=RB then the contents of
register RT are not altered.

� For an lq instruction, if RT+1 = RA then the
contents of register RT+1 are not altered.

� For an update form Load or Store instruction,
the contents of register RA are not altered.

Programming Note
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6.7 Exception Ordering
Since multiple exceptions can exist at the same time
and the architecture does not provide for reporting
more than one interrupt at a time, the generation of
more than one interrupt is prohibited. Some exceptions,
such as the External exception, persist and can be
deferred. However, other exceptions would be lost if
they were not recognized and handled when they
occur. For example, if an External interrupt was gener-
ated when a Data Storage exception existed, the Data
Storage exception would be lost. If the Data Storage
exception was caused by a Store Multiple instruction for
which the storage operand crosses a virtual page
boundary and the exception was a result of attempting
to access the second virtual page, the store could have
modified locations in the first virtual page even though it
appeared that the Store Multiple instruction was never
executed.

For the above reasons, all exceptions are prioritized
with respect to other exceptions that may exist at the
same instant to prevent the loss of any exception that is
not persistent.  Some exceptions cannot exist at the
same instant as some others.

Data Storage, Hypervisor Data Storage, Data Seg-
ment, Hypervisor Data Segment, and Alignment excep-
tions occur as if the storage operand were accessed
one byte at a time in order of increasing effective
address (with the obvious caveat if the operand
includes both the maximum effective address and
effective address 0).

6.7.1 Unordered Exceptions
The exceptions listed here are unordered, meaning that
they may occur at any time regardless of the state of
the interrupt processing mechanism.  These exceptions
are recognized and processed when presented.

1. System Reset

2. Machine Check

6.7.2 Ordered Exceptions
The exceptions listed here are ordered with respect to
the state of the interrupt processing mechanism. In the
following list, the hypervisor forms of the Data Storage,
Instruction Storage, Data Segment, and Instruction
Segment exceptions can be substituted for the non-
hypervisor forms since the hypervisor forms cannot be
caused by the same instruction and have the same
ordering.

System-Caused or Imprecise

1. Program
    - Imprecise Mode Floating-Point Enabled Exception
2. External and [Hypervisor] Decrementer

Instruction-Caused and Precise

1. [Hypervisor] Instruction Segment
2. [Hypervisor] Instruction Storage
3. Program
     - Illegal Instruction
     - Privileged Instruction
4. Function-Dependent
    4.a Fixed-Point and Branch
        1a     Program
                  - Trap
        1b     System Call
        1c     [Hypervisor] Data Storage, [Hypervisor] Data
                 Segment, or Alignment
        2       Trace
    4.b Floating-Point
        1       FP Unavailable
        2a     Program
                  - Precise Mode Floating-Pt Enabled Excep’n
        2b     [Hypervisor] Data Storage, [Hypervisor] Data
                  Segment, or Alignment
        3       Trace
    4.c Vector
        1       Vector Unavailable
        2a     [Hypervisor] Data Storage, [Hypervisor] Data
                  Segment, or Alignment
        3       Trace

For implementations that execute multiple instructions
in parallel using pipeline or superscalar techniques, or
combinations of these, it can be difficult  to  understand
the ordering of exceptions.To understand  this  ordering
it is useful to consider a model in which each instruction
is fetched, then decoded, then executed,  all  before the
next  instruction is fetched. In this model, the excep-
tions a single instruction would generate are in the
order shown in the list of instruction-caused exceptions.
Exceptions with different numbers have different order-
ing. Exceptions with  the  same  numbering  but differ-
ent lettering are mutually exclusive and cannot be
caused by the same   instruction. The  External, Decre-
menter, and Hypervisor Decrementer interrupts have
equal ordering. Similarly, where  Data Storage, Data
Segment, and Alignment exceptions are listed in the
same item they have equal ordering.

Even  on processors that are capable of executing sev-
eral instructions simultaneously, or out of order,
instruction-caused interrupts (precise and imprecise)
occur in program order.
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6.8 Interrupt Priorities
This section describes the relationship of nonmaskable,
maskable, precise, and imprecise interrupts. In the fol-
lowing descriptions, the interrupt mechanism waiting for
all possible exceptions to be reported includes only
exceptions caused by previously initiated instructions
(e.g., it does not include waiting for the Decrementer to
step through zero).    The exceptions are listed in order
of highest to lowest priority. In the following list, the
hypervisor forms of the Data Storage, Instruction Stor-
age, Data Segment, and Instruction Segment excep-
tions can be substituted for the non-hypervisor forms
since the hypervisor forms cannot occur simultaneously
and have the same priority.

1. System Reset

System Reset exception has the highest priority of
all exceptions. If this exception exists,  the  inter-
rupt  mechanism  ignores  all other exceptions and
generates a System Reset interrupt.

Once  the  System  Reset  interrupt  is  generated,
no nonmaskable interrupts are generated due to
exceptions caused by  instructions issued prior to
the generation of this interrupt.

2. Machine Check

Machine  Check exception is the second highest
priority exception. If this exception exists and a
System  Reset  exception  does  not exist,  the
interrupt  mechanism ignores all other exceptions
and generates a Machine Check interrupt.

Once the Machine Check  interrupt  is  generated,
no  nonmaskable interrupts  are generated due to
exceptions caused by instructions issued prior to
the generation of this interrupt.

3. Instruction-Dependent

This exception is the third highest priority excep-
tion.  When this exception is  created,  the  inter-
rupt  mechanism  waits  for  all possible  Imprecise
exceptions to be reported.  It then generates the
appropriate ordered interrupt if no higher priority
exception exists  when  the  interrupt  is  to  be
generated.   Within this category a particular
instruction may present more than  a  single excep-
tion.    When  this  occurs,  those exceptions are
ordered in priority as indicated in the following lists.
Where [Hypervisor] Data Storage, [Hypervisor]
Data Segment, and Alignment exceptions are
listed in the same item they have equal priority
(i.e., the processor may generate any one of the
three interrupts for which an exception exists).

 A. Fixed-Point Loads and Stores
a.These exceptions are mutually exclusive

and have the same priority:
� Program - Illegal Instruction
� Program - Privileged Instruction

b. [Hypervisor] Data Storage, [Hypervisor]
Data Segment, or Alignment

c. Trace

 B. Floating-Point Loads and Stores
a.Program - Illegal Instruction
b. Floating-Point Unavailable
c. [Hypervisor] Data Storage, [Hypervisor]

Data Segment, or Alignment
d.Trace

 C. Vector Loads and Stores
a.Program - Illegal Instruction
b. Vector Unavailable
c. [Hypervisor] Data Storage, [Hypervisor]

Data Segment, or Alignment
d.Trace

 D. Other Floating-Point Instructions
a.Floating-Point Unavailable
b. Program - Precise Mode Floating-Point

Enabled Exception
c. Trace

 E. Other Vector Instructions
a.Vector Unavailable
b. Trace

 F. rfid, hrfid and mtmsr[d]
a.Program - Privileged Instruction
b. Program - Floating-Point Enabled Exception
c. Trace, for mtmsr[d] only

G. Other Instructions
  a.These exceptions are mutually exclusive

 and have the same priority:
� Program - Trap
� System Call
� Program - Privileged Instruction
� Program - Illegal Instruction

  b.Trace

H.    [Hypervisor] Instruction Storage and
         [Hypervisor] Instruction Segment

These  exceptions  have  the lowest priority in
this category. They are recognized only when
all instructions  prior  to  the instruction  caus-
ing  one  of  these exceptions appear to have
completed and that instruction is the next
instruction  to  be executed.  The two excep-
tions are mutually exclusive.

The priority of these exceptions is specified for
completeness and   to  ensure  that  they  are
not  given  more  favorable treatment.  It is
acceptable for an  implementation  to  treat
these exceptions as though they had a lower
priority.

4. Program - Imprecise Mode Floating-Point Enabled
Exception

This exception is the fourth highest priority excep-
tion.  When this exception is created, the interrupt
mechanism waits for all other possible exceptions
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to be reported.  It then generates this interrupt if no
higher priority exception exists when the interrupt
is to be generated.

5. External and [Hypervisor] Decrementer

These exceptions are the lowest priority excep-
tions.   All have equal priority (i.e., the processor
may generate any one of these interrupts for which
an exception exists).   When one of these excep-
tions is created, the interrupt processing mecha-
nism waits for all other possible exceptions to be
reported.  It then generates the corresponding
interrupt if no higher priority exception exists when
the interrupt is to be generated.

If a Hypervisor Decrementer exception exists and
each attempt to execute an instruction when the
Hypervisor Decrementer interrupt is enabled
causes an exception (see the Programming Note
below), the Hypervisor Decrementer interrupt is
not delayed indefinitely.

  

An incorrect or malicious operating system
could  corrupt  the first  instruction  in  the
interrupt  vector location for an instruction-
caused interrupt such that the attempt to  exe-
cute the  instruction  causes  the  same  excep-
tion that caused the interrupt (a looping
interrupt; e.g., illegal instruction  and Program
interrupt).   Similarly, the first instruction of the
interrupt vector for one  instruction-caused
interrupt  could cause  a different instruction-
caused interrupt, and the first instruction  of
the   interrupt   vector   for   the   second
instruction-caused    interrupt    could   cause
the   first instruction-caused  interrupt  (e.g.,
Program  interrupt  and Floating-Point
Unavailable interrupt).  Similarly, if the Real
Mode Area is virtualized and there is no PTE
for the page containing the interrupt vectors,
every attempt to execute the first instruction of
the OS's Instruction Storage interrupt handler
would cause a Hypervisor Instruction Storage
interrupt; if the Hypervisor Instruction Storage
interrupt handler returns to the OS's Instruc-
tion Storage interrupt handler without the rele-
vant PTE having been created, another
Hypervisor Instruction Storage interrupt would
occur immediately. The looping caused by
these and similar cases is terminated by the
occurrence  of  a System Reset or Hypervisor
Decrementer interrupt.

Programming Note
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Chapter 7.  Timer Facilities
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7.1 Overview
The Time Base, Decrementer, Hypervisor Decre-
menter, and the Processor Utilization of Resources
Register, provide timing functions for the system. The
remainder of this section describes these registers and
related facilities.

7.2 Time Base (TB)
The Time Base (TB) is a 64-bit register (see Figure 39)
containing a 64-bit unsigned integer that is incremented
periodically. Each increment adds 1 to the low-order bit
(bit 63). The frequency at which the integer is updated
is implementation-dependent.

Figure 39. Time Base

The Time Base is a hypervisor resource; see Chapter
2.

The SPRs TBU40, TBU, and TBL provide access to the
fields of the Time Base shown in Figure 39. When a
mtspr instruction is executed specifying one of these
SPRs, the associated field of the Time Base is altered
and the remaining bits of the Time Base are not
affected.

The Time Base increments until its value becomes
0xFFFF_FFFF_FFFF_FFFF (264 - 1).  At the next
increment, its value becomes
0x0000_0000_0000_0000.  There is no interrupt or
other indication when this occurs.

The period of the Time Base depends on the driving
frequency.  As an order of magnitude example, sup-
pose that the CPU clock is 1 GHz and that the Time
Base is driven by this frequency divided by 32.  Then
the period of the Time Base would be

    TTB =  = 5.90 × 1011 seconds

which is approximately 18,700 years.

The Time Base is implemented such that:

1. Loading a GPR from the Time Base has no effect
on the accuracy of the Time Base.

2. Copying the contents of a GPR to the Time Base
replaces the contents of the Time Base with the
contents of the GPR.

The Power ISA does not specify a relationship between
the frequency at which the Time Base is updated and
other frequencies, such as the CPU clock or bus clock
in a Power ISA system. The Time Base update fre-
quency is not required to be constant. What is required,
so that system software can keep time of day and oper-
ate interval timers, is one of the following.

� The system provides an (implementation-depen-
dent) interrupt to software whenever the update
frequency of the Time Base changes, and a means
to determine what the current update frequency is.

� The update frequency of the Time Base is under
the control of the system software.

0            39

TBU40 ///
TBU TBL

0 32                                          63

Field Description
TBU40 Upper 40 bits of Time Base
TBU Upper 32 bits of Time Base
TBL Lower 32 bits of Time Base

264 32×
1 GHz

---------------------
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Implementations must provide a means for either pre-
venting the Time Base from incrementing or preventing
it from being read in problem state (MSRPR=1).  If the
means is under software control, it must be privileged
and, in implementations of the Server environment,
must be accessible only in hypervisor state (MSRHV PR
= 0b10).  There must be a method for getting all pro-
cessors’ Time Bases to start incrementing with values
that are identical or almost identical in all processors. 

  

7.2.1 Writing the Time Base
Writing the Time Base is privileged, and can be done
only in hypervisor state. Reading the Time Base is not
privileged; it is discussed in Chapter 4 of Book II.

It is not possible to write the entire 64-bit Time Base
using a single instruction. The mttbl and mttbu
extended mnemonics write the lower and upper halves
of the Time Base (TBL and TBU), respectively, preserv-
ing the other half. These are extended mnemonics for
the mtspr instruction; see Appendix A, “Assembler
Extended Mnemonics” on page 493.

The Time Base can be written by a sequence such as:

lwz Rx,upper # load 64-bit value for
lwz Ry,lower # TB into Rx and Ry
li Rz,0
mttbl Rz  # set TBL to 0
mttbu Rx  # set TBU
mttbl Ry  # set TBL

Provided that no interrupts occur while the last three
instructions are being executed, loading 0 into TBL pre-
vents the possibility of a carry from TBL to TBU while
the Time Base is being initialized.

The preferred method of changing the Time Base uti-
lizes the TBU40 facility. The following code sequence

demonstrates the process. Assume the upper 40 bits of
Rx contain the desired value upper 40 bits of the Time
Base.

mftb Ry # Read 64-bit Time Base value
clrldi Ry,Ry,40# lower 24 bits of old TB
mttbu40Rx # write upper 40 bits of TB
mftb Rz # read TB value again
clrldi Rz,Rz,40# lower 24 bits of new TB
cmpld Rz,Ry # compare new and old lwr 24
bge done # no carry out of low 24 bits
addis Rx,Rx,0x0100#increment upper 40 bits
mttbu40 Rx # update to adjust for carry

  

7.3 Decrementer
The Decrementer (DEC) is a 32-bit decrementing
counter that provides a mechanism for causing a Dec-
rementer interrupt after a programmable delay.  The
contents of the Decrementer are treated as a signed
integer.

Figure 40. Decrementer

The Decrementer is driven by the same frequency as
the Time Base. The period of the Decrementer will
depend on the driving frequency, but if the same values
are used as given above for the Time Base (see Sec-
tion 7.2), and if the Time Base update frequency is con-
stant, the period would be

   TDEC =  = 137 seconds.

The Decrementer counts down.

When the contents of DEC32 change from 0 to 1, a
Decrementer exception will come into existence within
a reasonable period or time. When the contents of
DEC32 change from 1 to 0, an existing Decrementer
exception will cease to exist within a reasonable period
of time, but not later than the completion of the next
context synchronizing instruction or event.

The preceding paragraph applies regardless of whether
the change in the contents of DEC32 is the result of
decrementation of the Decrementer by the processor or
of modification of the Decrementer caused by execu-
tion of an mtspr instruction.

The operation of the Decrementer satisfies the follow-
ing constraints.

If software initializes the Time Base on power-on to
some reasonable value and the update frequency
of the Time Base is constant, the Time Base can
be used as a source of values that increase at a
constant rate, such as for time stamps in trace
entries.

Even if the update frequency is not constant, val-
ues read from the Time Base are monotonically
increasing (except when the Time Base wraps from
264-1 to 0).  If a trace entry is recorded each time
the update frequency changes, the sequence of
Time Base values can be post-processed to
become actual time values.

Successive readings of the Time Base may return
identical values.

See the description of the Time Base in Chapter 4
of Book II for ways to compute time of day in POSIX
format from the Time Base.

Programming Note

The instructions for writing the Time Base are
mode-independent. Thus code written to set the
Time Base will work correctly in either 64-bit or 32-
bit mode.

DEC
32                                                    63

Programming Note

232 32×
1 GHz

---------------------
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1. The operation of the Time Base and the Decre-
menter is coherent, i.e., the counters are driven by
the same fundamental time base.

2. Loading a GPR from the Decrementer has no
effect on the accuracy of the Time Base.

3. Copying the contents of a GPR to the Decrementer
replaces the contents of the Decrementer with the
contents of the GPR.

  

7.3.1 Writing and Reading the 
Decrementer
The contents of the Decrementer can be read or written
using the mfspr and mtspr instructions, both of which
are privileged when they refer to the Decrementer.
Using an extended mnemonic (see Appendix A,
“Assembler Extended Mnemonics” on page 493), the
Decrementer can be written from GPR Rx using:

mtdec  Rx

The Decrementer can be read into GPR Rx using:

mfdec  Rx

Copying the Decrementer to a GPR has no effect on
the Decrementer contents or on the interrupt mecha-
nism.

7.4 Hypervisor Decrementer
The Hypervisor Decrementer (HDEC) is a 32-bit decre-
menting counter that provides a mechanism for causing
a Hypervisor Decrementer interrupt after a programma-
ble delay.  The contents of the Decrementer are treated
as a signed integer.

Figure 41. Hypervisor Decrementer

The Hypervisor Decrementer is a hypervisor resource;
see Chapter 2.

The Hypervisor Decrementer is driven by the same fre-
quency as the Time Base. The period of the Hypervisor
Decrementer will depend on the driving frequency, but
if the same values are used as given above for the
Time Base (see Section 7.2), and if the Time Base
update frequency is constant, the period would be

   TDEC =  = 137 seconds.

When the contents of HDEC32 change from 0 to 1, a
Hypervisor Decrementer exception will come into exist-
ence within a reasonable period or time. When the con-
tents of HDEC32 change from 1 to 0, an existing
Hypervisor Decrementer exception will cease to exist
within a reasonable period of time, but not later than the
completion of the next context synchronizing instruction
or event.

The preceding paragraph applies regardless of whether
the change in the contents of HDEC32 is the result of
decrementation of the Hypervisor Decrementer by the
processor or of modification of the Hypervisor Decre-
menter caused by execution of an mtspr instruction.

The operation of the Hypervisor Decrementer satisfies
the following constraints.

1. The operation of the Time Base and the Hypervi-
sor Decrementer is coherent, i.e., the counters are
driven by the same fundamental time base.

2. Loading a GPR from the Hypervisor Decrementer
has no effect on the accuracy of the Hypervisor
Decrementer.

3. Copying the contents of a GPR to the Hypervisor
Decrementer replaces the contents of the Hypervi-
sor Decrementer with the contents of the GPR.

  

7.5 Processor Utilization of 
Resources Register (PURR)
The Processor Utilization of Resources Register
(PURR) is a 64-bit counter, the contents of which pro-
vide an estimate of the resources used by the proces-
sor.  The contents of the PURR are treated as a 64-bit
unsigned integer.

Figure 42. Processor Utilization of Resources
Register

The PURR is a hypervisor resource; see Chapter 2.

The contents of the PURR increase monotonically,
unless altered by software, until the sum of the contents
plus the amount by which it is to be increased exceed
0xFFFF_FFFF_FFFF_FFFF (264 - 1) at which point the

In systems that change the Time Base update fre-
quency for purposes such as power management,
the Decrementer input frequency will also change.
Software must be aware of this in order to set inter-
val timers.

HDEC
32                                                    63

Programming Note

In systems that change the Time Base update fre-
quency for purposes  such as power management,
the Hypervisor Decrementer update  frequency will
also change.  Software must be aware of this in
order to set interval timers.

PURR
0                                                                                                                     63

232 32×
1 GHz

---------------------
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contents are replaced by that sum modulo 264.  There
is no interrupt or other indication when this occurs.

The rate at which the value represented by the contents
of the PURR increases is an estimate of the portion of
resources used by the processor with respect to other
processors that share those resources monitored by
the PURR.

Let the difference between the value represented by
the contents of the Time Base at times Ta and Tb be
Tab. Let the difference between the value represented
by the contents of the PURR at time Ta and Tb be the
value Pab. The ratio of Pab/Tab is an estimate of the per-
centage of shared resources used by the processor
during the interval Tab.  For the set {S} of processors
that share the resources monitored by the PURR, the
sum of the usage estimates for all the processors in the
set is 1.0.

The definition of the set of processors S, the shared
resources corresponding to the set S, and specifics of
the algorithm for incrementing the PURR are imple-
mentation-specific.

The PURR is implemented such that:

1. Loading a GPR from the PURR has no effect on
the accuracy of the PURR.

2. Copying the contents of a GPR to the PURR
replaces the contents of the PURR with the con-
tents of the GPR.

  

 

Estimates computed as described above may be
useful for purposes of resource use accounting,
program dispatching, etc.

Because the rate at which the PURR accumulates
resource usage estimates is dependent on the fre-
quency at which the Time Base is incremented, the
interpretation of the contents of the PURR must be
adjusted if the frequency at which the Time Base is
incremented is altered.

Programming Note
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8.1 Overview
Processors provide debug facilities to enable hardware
and software debug functions, such as instructions and
data breakpoints and program single stepping. The
debug facilities consist of a data address breakpoint
register (DABR), a data address breakpoint register
extension (DABRX) (see Section 8.1.1) and an associ-
ated interrupt (see Section 6.5.3).

The mfspr and mtspr instructions (see Section 4.4.3)
provide access to the registers of the debug facilities.

In addition to the facilities described here, implementa-
tions will typically include debug facilities, modes, and
access mechanisms which are implementation-spe-
cific. For example, implementations will typically pro-
vide access to the debug facilities via a dedicated
interface such as the IEEE 1149.1 Test Access Port
(JTAG).

 

8.1.1 Data Address Breakpoint
The Data Address Breakpoint mechanism provides a
means of detecting load and store accesses to a desig-
nated doubleword.  The address comparison is done
on an effective address (EA).

The Data Address Breakpoint mechanism is controlled
by the Data Address Breakpoint Register (DABR),

shown in Figure 43, and the Data Address Breakpoint
Register Extension (DABRX), shown in Figure 44.

Figure 43. Data Address Breakpoint Register

All other fields are reserved.

Figure 44. Data Address Breakpoint Register
Extension

The DABR and DABRX are hypervisor resources; see
Section 2.6 on page 399.

The supported PRIVM values are 0b000, 0b001,
0b010, 0b011, 0b100, and 0b111.  If the PRIVM field
does not contain one of the supported values, then
whether a match occurs for a given storage access is
undefined.  Elsewhere in this section it is  assumed that
the PRIVM field contains one of the supported values.

DAB BT DW DR
0 61 62 63

Bit(s) Name Description
0:60 DAB Data Address Breakpoint
61 BT Breakpoint Translation
62 DW Data Write
63 DR Data Read

/// BTI PRIVM
0 60 61        63

Bit(s) Name Description
60 BTI Breakpoint Translation Ignore
61:63 PRIVM Privilege Mask
61 HYP Hypervisor state
62 PNH Privileged but Non-Hypervisor state
63 PRO Problem state
Chapter 8. Debug Facilities 485
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A Data Address Breakpoint match occurs for a Load or
Store instruction if, for any byte accessed, all of the fol-
lowing conditions are satisfied.

� EA0:60 = DABRDAB
� (MSRDR = DABRBT) | DABRXBTI
� if the processor is in

- hypervisor state and DABRXHYP = 1 or
- privileged but non-hypervisor state and

DABRXPNH = 1 or
- problem state and DABRXPR = 1

� the instruction is a Store and DABRDW = 1, or the
instruction is a Load and DABRDR = 1.

In 32-bit mode the high-order 32 bits of the EA are
treated as zeros for the purpose of detecting a match.

If the above conditions are satisfied, a match also
occurs for eciwx and ecowx.  For the purpose of deter-
mining whether a match occurs, eciwx is treated as a
Load, and ecowx is treated as a Store.

If the above conditions are satisfied, it is undefined
whether a match occurs in the following cases.

� The instruction is Store Conditional but the store is
not performed.

� The instruction is a Load/Store String of zero
length.

� The instruction is dcbz.  (For the purpose of deter-
mining whether a match occurs, dcbz is treated as
a Store.)

The Cache Management instructions other than dcbz
never cause a match.

A Data Address Breakpoint match causes a Data Stor-
age exception (see Section 6.5.3, “Data Storage Inter-
rupt” on page 467). If a match occurs, some or all of the
bytes of the storage operand may have been accessed;
however, if a Store or ecowx instruction causes the
match, the storage operand is not modified if the
instruction is one of the following:
� any Store instruction that causes an atomic access
� ecowx

  

  

  

PRIVM value 0b000 causes matches not to occur
regardless of the contents of other DABR and
DABRX fields. PRIVM values 0b101 and 0b110 are
not supported because a storage location that is
shared between the hypervisor and non-hypervisor
software is unlikely to be accessed using the same
EA by both the hypervisor and the non-hypervisor
software.  (PRIVM value 0b111 is supported prima-
rily for reasons of software compatibility, as
described in a subsequent Programming Note.)

The Data Address Breakpoint mechanism does not
apply to instruction fetches.

Programming Note

Programming Note

Before setting a breakpoint requested by the oper-
ating system, the hypervisor must verify that the
requested contents of the DABR and DABRX can-
not cause the hypervisor to receive a Data Storage
interrupt that it is not prepared to handle, or that it
intrinsically cannot handle (e.g., the EA is in the
range of EAs at which the hypervisor's Data Stor-
age interrupt handler saves registers, DABRBT ||
DABRXBTI ≠ 0b10, DABRDW = 1, and DABRXHYP =
1).

Processors that comply with versions of the archi-
tecture that precede Version 2.02 do not provide
the DABRX.  Forward compatibility for software
that was written for such processors (and uses the
Data Address Breakpoint facility) can be obtained
by setting DABRX60:63 to 0b0111.

Programming Note

Programming Note
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The External Control facility permits a program to com-
municate with a special-purpose device.  The facility
consists of a Special Purpose Register, called EAR,
and two instructions, called External Control In Word
Indexed (eciwx) and External Control Out Word
Indexed (ecowx).

This facility must provide a means of synchronizing the
devices with the processor to prevent the use of an
address by the device when the translation that pro-
duced that address is being invalidated.

9.1 External Access Register
This 32-bit Special Purpose Register controls access to
the External Control facility and, for external control
operations that are permitted, identifies the target
device.

All other fields are reserved.

Figure 45. External Access Register

The EAR is a hypervisor resource; see Chapter 2.

The high-order bits of the RID field that correspond to
bits of the Resource ID beyond the width of the
Resource ID supported by the implementation are
treated as reserved bits.

  

9.2 External Access Instructions
The External Access instructions, External Control In
Word Indexed (eciwx) and External Control Out Word
Indexed (ecowx), are described in Book II. Additional
information about them is given below.

If attempt is made to execute either of these instruc-
tions when EARE=0, a Data Storage interrupt occurs
with bit 43 of the DSISR set to 1.

The instructions are supported whenever MSRDR=1. If
either instruction is executed when MSRDR=0 (real
addressing mode), the results are boundedly unde-
fined.

E /// RID
32 33 58   63

Bit(s) Name Description
32 E Enable bit
58:63 RID Resource ID

The hypervisor can use the EAR to control which
programs are allowed to execute External Access
instructions, when they are allowed to do so, and
which devices they are allowed to communicate
with using these instructions.

Programming Note
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Chapter 10.  Synchronization Requirements for Context 
Alterations

Changing the contents of certain System Registers, the
contents of SLB entries, or the contents of other system
resources that control the context in which a program
executes can have the side effect of altering the context
in which data addresses and instruction addresses are
interpreted, and in which instructions are executed and
data accesses are performed. For example, changing
MSRIR from 0 to 1 has the side effect of enabling trans-
lation of instruction addresses. These side effects need
not occur in program order, and therefore may require
explicit synchronization by software. (Program order is
defined in Book II.)

An instruction that alters the context in which data
addresses or instruction addresses are interpreted, or
in which instructions are executed or data accesses are
performed, is called a context-altering instruction. This
chapter covers all the context-altering instructions. The
software synchronization required for them is shown in
Table 1 (for data access) and Table 2 (for instruction
fetch and execution).

The notation “CSI” in the tables means any context syn-
chronizing instruction (e.g., sc, isync, or rfid).  A con-
text synchronizing interrupt (i.e., any interrupt except
non-recoverable System Reset or non-recoverable
Machine Check) can be used instead of a context syn-
chronizing instruction.  If it is, phrases like “the synchro-
nizing instruction”, below, should be interpreted as
meaning the instruction at which the interrupt occurs.  If
no software synchronization is required before (after) a
context-altering instruction, “the synchronizing instruc-
tion before (after) the context-altering instruction”
should be interpreted as meaning the context-altering
instruction itself.

The synchronizing instruction before the context-alter-
ing instruction ensures that all instructions up to and
including that synchronizing instruction are fetched and
executed in the context that existed before the alter-
ation.  The synchronizing instruction after the context-
altering instruction ensures that all instructions after
that synchronizing instruction are fetched and executed
in the context established by the alteration.  Instructions
after the first synchronizing instruction, up to and
including the second synchronizing instruction, may be
fetched or executed in either context.

If a sequence of instructions contains context-altering
instructions and contains no instructions that are
affected by any of the context alterations, no software
synchronization is required within the sequence.

  

No software synchronization is required before or after
a context-altering instruction that is also context syn-
chronizing or when altering the MSR in most cases
(see the tables). No software synchronization is
required before most of the other alterations shown in
Table 2, because all instructions preceding the context-
altering instruction are fetched and decoded before the
context-altering instruction is executed (the processor
must determine whether any of these preceding
instructions are context synchronizing).

Unless otherwise stated, the material in this chapter
assumes a uniprocessor environment.

Sometimes advantage can be taken of the fact that
certain events, such as interrupts, and certain
instructions that occur naturally in the program,
such as the rfid that returns from an interrupt han-
dler, provide the required synchronization.

Programming Note
Chapter 10. Synchronization Requirements for Context Alterations 489



   Version 2.04
Instruction or  
Event

Required  
Before  

Required     
After     

Notes

interrupt none none
rfid none none
hrfid none none
sc none none
Trap none none
mtmsrd    (SF) none none
mtmsr[d] (PR) none none
mtmsr[d] (DR) none none
mtsr[in] CSI CSI
mtspr (SDR1) ptesync CSI 3,4
mtspr (AMR) CSI CSI
mtspr (EAR) CSI CSI
mtspr (RMOR) CSI CSI 13
mtspr (HRMOR) CSI CSI 13
mtspr (LPCR) CSI CSI 13
mtspr (DABR) -- -- 2
mtspr (DABRX) -- -- 2
slbie CSI CSI
slbia CSI CSI
slbmte CSI CSI 11
tlbie CSI CSI 5,7
tlbiel CSI ptesync 5
tlbia CSI CSI 5
Store(PTE) none {ptesync, 

CSI}
6,7

Table 1: Synchronization requirements for data access

Instruction or 
Event

Required    
Before

Required 
After

Notes

interrupt none        none
rfid none        none
hrfid none        none
sc none        none
Trap none        none
mtmsrd    (SF) none        none 8
mtmsr[d] (EE) none        none 1
mtmsr[d] (PR) none        none 9
mtmsr[d] (FP) none        none
mtmsr[d](FE0,FE1) none        none
mtmsr[d] (SE, BE) none        none
mtmsr[d] (IR) none        none 9
mtmsr[d] (RI) none        none
mtsr[in] none CSI 9
mtspr (DEC) none        none 10
mtspr (SDR1) ptesync CSI 3,4
mtspr (CTRL) none        none
mtspr (HDEC) none        none 10
mtspr (RMOR) none        CSI 13
mtspr (HRMOR) none        CSI 9,13
mtspr (LPCR) none        CSI 13
mtspr (LPIDR) CSI         CSI 7,12
slbie none        CSI
slbia none        CSI
slbmte none        CSI 9,11
tlbie none        CSI 5,7
tlbiel none        CSI 5
tlbia none        CSI 5
Store(PTE) none        {ptesync, CSI} 6,7

Table 2: Synchronization requirements for instruction 
fetch and/or execution
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Notes:
1. The effect of changing the EE bit is immediate,

even if the mtmsr[d] instruction is not context syn-
chronizing (i.e., even if L=1).
� If an mtmsr[d] instruction sets the EE bit to 0,

neither an External interrupt nor a Decre-
menter interrupt occurs after the mtmsr[d] is
executed.

� If an mtmsr[d] instruction changes the EE bit
from 0 to 1 when an External, Decrementer, or
higher priority exception exists, the corre-
sponding interrupt occurs immediately after
the mtmsr[d] is executed, and before the next
instruction is executed in the program that set
EE to 1.

� If a hypervisor executes the mtmsr[d] instruc-
tion that sets the EE bit to 0, a Hypervisor
Decrementer interrupt does not occur after
mtmsr[d] is executed as long as the proces-
sor remains in hypervisor state.

� If the hypervisor executes an mtmsr[d]
instruction that changes the EE bit from 0 to 1
when a Hypervisor Decrementer or higher pri-
ority exception exists, the corresponding inter-
rupt occurs immediately after the mtmsr[d]
instruction is executed, and before the next
instruction is executed, provided HDICE is 1.

2. Synchronization requirements for this instruction
are implementation-dependent.

3. SDR1 must not be altered when MSRDR=1 or
MSRIR=1; if it is, the results are undefined.

4. A ptesync instruction is required before the mtspr
instruction because (a) SDR1 identifies the Page
Table and thereby the location of Reference and
Change bits, and (b) on some implementations,
use of SDR1 to update Reference and Change bits
may be independent of translating the virtual
address. (For example, an implementation might
identify the PTE in which to update the Reference
and Change bits in terms of its offset in the Page
Table, instead of its real address, and then add the
Page Table address from SDR1 to the offset to
determine the real address at which to update the
bits.) To ensure that Reference and Change bits
are updated in the correct Page Table, SDR1 must
not be altered until all Reference and Change bit
updates associated with address translations that
were performed, by the processor executing the
mtspr instruction, before the mtspr instruction is
executed have been performed with respect to that
processor. A ptesync instruction guarantees this
synchronization of Reference and Change bit
updates, while neither a context synchronizing
operation nor the instruction fetching mechanism
does so.

5. For data accesses, the context synchronizing
instruction before the tlbie, tlbiel, or tlbia instruc-

tion ensures that all preceding instructions that
access data storage have completed to a point at
which they have reported all exceptions they will
cause.

The context synchronizing instruction after the
tlbie, tlbiel, or tlbia instruction ensures that stor-
age accesses associated with instructions follow-
ing the context synchronizing instruction will not
use the TLB entry(s) being invalidated.

(If it is necessary to order storage accesses asso-
ciated with preceding instructions, or Reference
and Change bit updates associated with preceding
address translations, with respect to subsequent
data accesses, a ptesync instruction must also be
used, either before or after the tlbie, tlbiel, or tlbia
instruction. These effects of the ptesync instruc-
tion are described in the last paragraph of Note 8.)

6. The notation “{ptesync,CSI}” denotes an instruc-
tion sequence. Other instructions may be inter-
leaved with this sequence, but these instructions
must appear in the order shown.

No software synchronization is required before the
Store instruction because (a) stores are not per-
formed out-of-order and (b) address translations
associated with instructions preceding the Store
instruction are not performed again after the store
has been performed (see Section 5.5). These
properties ensure that all address translations
associated with instructions preceding the Store
instruction will be performed using the old contents
of the PTE.

The ptesync instruction after the Store instruction
ensures that all searches of the Page Table that
are performed after the ptesync instruction com-
pletes will use the value stored (or a value stored
subsequently).  The context synchronizing instruc-
tion after the ptesync instruction ensures that any
address translations associated with instructions
following the context synchronizing instruction that
were performed using the old contents of the PTE
will be discarded, with the result that these
address translations will be performed again and, if
there is no corresponding entry in any implementa-
tion-specific address translation lookaside informa-
tion, will use the value stored (or a value stored
subsequently).

The ptesync instruction also ensures that all stor-
age accesses associated with instructions preced-
ing the ptesync instruction, and all Reference and
Change bit updates associated with additional
address translations that were performed, by the
processor executing the ptesync instruction,
before the ptesync instruction is executed, will be
performed with respect to any processor or mech-
anism, to the extent required by the associated
Memory Coherence Required attributes, before
any data accesses caused by instructions following
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the ptesync instruction are performed with respect
to that processor or mechanism.

7. There are additional software synchronization
requirements for this instruction in multiprocessor
environments (e.g., it may be necessary to invali-
date one or more TLB entries on all processors in
the multiprocessor system and to be able to deter-
mine that the invalidations have completed and
that all side effects of the invalidations have taken
effect).

Section 5.10 gives examples of using tlbie, Store,
and related instructions to maintain the Page
Table, in both multiprocessor and uniprocessor
environments.

  

8. The alteration must not cause an implicit branch in
effective address space. Thus, when changing
MSRSF from 1 to 0, the mtmsrd instruction must
have an effective address that is less than 232 - 4.
Furthermore, when changing MSRSF from 0 to 1,
the mtmsrd instruction must not be at effective
address 232 - 4 (see Section 5.3.2 on page 420).

9. The alteration must not cause an implicit branch in
real address space.  Thus the real address of the
context-altering instruction and of each subse-
quent instruction, up to and including the next con-
text synchronizing instruction, must be
independent of whether the alteration has taken
effect.

10. The elapsed time between the contents of the Dec-
rementer or Hypervisor Decrementer becoming
negative and the signaling of the corresponding
exception is not defined.

11. If an slbmte instruction alters the mapping, or
associated attributes, of a currently mapped ESID,
the slbmte must be preceded by an slbie (or
slbia) instruction that invalidates the existing trans-
lation.  This applies even if the corresponding entry
is no longer in the SLB (the translation may still be
in implementation-specific address translation
lookaside information).  No software synchroniza-
tion is needed between the slbie and the slbmte,
regardless of whether the index of the SLB entry (if
any) containing the current translation is the same
as the SLB index specified by the slbmte.

No slbie (or slbia) is needed if the slbmte instruc-
tion replaces a valid SLB entry with a mapping of a

different ESID (e.g., to satisfy an SLB miss).  How-
ever, the slbie is needed later if and when the
translation that was contained in the replaced SLB
entry is to be invalidated.

12. The context synchronizing instruction before the
mtspr instruction ensures that the LPIDR is not
altered out-of-order. (Out-of-order alteration of the
LPIDR could permit the requirements described in
Section 5.10.1 to be violated. For the same rea-
son, such a context synchronizing instruction may
be needed even if the new LPID value is equal to
the old LPID value.)

See also Chapter 2. “Logical Partitioning (LPAR)”
on page 397 regarding moving a processor from
one partition to another.

13. When the RMOR or HRMOR is modified, or the
VC, VRMASD, RMLS, LPES1, or RMI fields of the
LPCR are modified, software must invalidate all
implementation-specific lookaside information
used in address translation that depends on values
stored in these registers. All implementations pro-
vide a means by which software can do this.

In a multiprocessor system, if software locking
is used to help ensure that the requirements
described in Section 5.10 are satisfied, the
lwsync instruction near the end of the lock
acquisition sequence (see Section B.2.1.1 of
Book II) may naturally provide the context syn-
chronization that is required before the alter-
ation.

Programming Note
Power ISA™ -- Book III-S492



   Version 2.04
Appendix A.  Assembler Extended Mnemonics

In order to make assembler language programs simpler
to write and easier to understand, a set of extended
mnemonics and symbols is provided for certain instruc-

tions.  This appendix defines extended mnemonics and
symbols related to instructions defined in Book III.

Assemblers should provide the extended mnemonics
and symbols listed here, and may provide others.

A.1 Move To/From Special Purpose Register Mnemonics

This section defines extended mnemonics for the
mtspr and mfspr instructions, including the Special
Purpose Registers (SPRs) defined in Book I and cer-
tain privileged SPRs, and for the Move From Time Base
instruction defined in Book II.

The mtspr and mfspr instructions specify an SPR as a
numeric operand; extended mnemonics are provided
that represent the SPR in the mnemonic rather than
requiring it to be coded as an operand.  Similar
extended mnemonics are provided for the Move From
Time Base instruction, which specifies the portion of
the Time Base as a numeric operand.

Note: mftb serves as both a basic and an extended
mnemonic. The Assembler will recognize an mftb mne-
monic with two operands as the basic form, and an

mftb mnemonic with one operand as the extended
form. In the extended form the TBR operand is omitted
and assumed to be 268 (the value that corresponds to
TB).

 

The extended mnemonics in Table 3 for SPRs
associated with the Performance Monitor facility
are based on the definitions in Appendix B.

Other versions of Performance Monitor facilities
used different sets of SPR numbers (all 32-bit Pow-
erPC processors used a different set, and some
early Power ISA processors used yet a different
set).

Programming Note
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Table 3: Extended mnemonics for moving to/from an SPR

Special Purpose Register
Move To SPR Move From SPR1

Extended Equivalent to Extended Equivalent to

Fixed-Point Exception Register mtxer Rx mtspr 1,Rx mfxer Rx mfspr Rx,1

Link Register mtlr  Rx mtspr 8,Rx mflr  Rx mfspr Rx,8

Count Register mtctr Rx mtspr 9,Rx mfctr Rx mfspr Rx,9

Data Storage Interrupt Status 
Register

mtdsisr Rx mtspr 18,Rx mfdsisr Rx mfspr Rx,18

Data Address Register mtdar Rx mtspr 19,Rx mfdar Rx mfspr Rx,19

Decrementer mtdec Rx mtspr 22,Rx mfdec Rx mfspr Rx,22

Storage Description Register 1 mtsdr1 Rx mtspr 25,Rx mfsdr1 Rx mfspr Rx,25

Save/Restore Register 0 mtsrr0 Rx mtspr 26,Rx mfsrr0 Rx mfspr Rx,26

Save/Restore Register 1 mtsrr1 Rx mtspr 27,Rx mfsrr1 Rx mfspr Rx,27

AMR mtamr Rx mtspr 29,Rx mfamr Rx mfspr Rx,29

CTRL mtctrl Rx mtspr 152,Rx mfctrl Rx mfspr Rx,136

Special Purpose Registers
 G0 through G3

mtsprg n,Rx mtspr 272+n,Rx mfsprg Rx,n mfspr Rx,272+n

Time Base [Lower] mttbl Rx mtspr 284,Rx mftb Rx mftb Rx,2681

mfspr Rx,268

Time Base Upper mttbu Rx mtspr 285,Rx mftbu Rx mftb Rx,2691

mfspr Rx,269

Time Base Upper 40 mttbu40 Rx mtspr 286,Rx - -

Processor Version Register - - mfpvr Rx mfspr Rx,287

MMCRA mtmmcra Rx mtspr 786,Rx mfmmcra Rx mfspr Rx,770

PMC1 mtpmc1 Rx mtspr 787,Rx mfpmc1 Rx mfspr Rx,771

PMC2 mtpmc2 Rx mtspr 788,Rx mfpmc2 Rx mfspr Rx,772

PMC3 mtpmc3 Rx mtspr 789,Rx mfpmc3 Rx mfspr Rx,773

PMC4 mtpmc4 Rx mtspr 790,Rx mfpmc4 Rx mfspr Rx,774

PMC5 mtpmc5 Rx mtspr 791,Rx mfpmc5 Rx mfspr Rx,775

PMC6 mtpmc6 Rx mtspr 792,Rx mfpmc6 Rx mfspr Rx,776

MMCR0 mtmmcr0 Rx mtspr 795,Rx mfmmcr0 Rx mfspr Rx,779

MMCR1 mtmmcr1 Rx mtspr 798,Rx mfmmcr1 Rx mfspr Rx,782

PPR mtppr Rx mtspr 896, Rx mfppr Rx mfspr Rx, 896

Processor Identification Register - - mfpir Rx mfspr Rx,1023
1 The mftb instruction is Category: Server.Phased-Out. Assemblers targeting version 2.03 or later of the architec-

ture should generate an mfspr instruction for the mftb and mftbu extended mnemonics; see the corresponding 
Assembler Note in the mftb instruction description (see Section 4.2.1 of Book II).
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Appendix B.  Example Performance Monitor

  

A Performance Monitor facility provides a means of col-
lecting information about program and system perfor-
mance.

The resources (e.g., SPR numbers) that a Performance
Monitor facility may use are identified elsewhere in this
Book.  All other aspects of any Performance Monitor
facility are implementation-dependent.

This appendix provides an example of a Performance
Monitor facility.  It is only an example; implementations
may provide all, some, or none of the features
described here, or may provide features that are similar
to those described here but differ in detail.

  

The example Performance Monitor facility consists of
the following features (described in detail in subsequent
sections).

� one MSR bit

- PMM (Performance Monitor Mark), which can
be used to select one or more programs for
monitoring

� SPRs

- PMC1 - PMC6 (Performance Monitor Counter
registers 1 - 6), which count events

- MMCR0, MMCR1, and MMCRA (Monitor
Mode Control Registers 0, 1, and A), which
control the Performance Monitor facility

- SIAR and SDAR (Sampled Instruction
Address Register and Sampled Data Address
Register), which contain the address of the
“sampled instruction” and of the “sampled
data”

� the Performance Monitor interrupt, which can be
caused by monitored conditions and events

The minimal subset of the features that makes the
resulting Performance Monitor useful to software con-
sists of MSRPMM, PMC1, PMC2, PMC3, PMC4,
MMCR0, MMCR1, and MMCRA and certain bits and
fields of these three Monitor Mode Control Registers,
and the Performance Monitor Interrupt.  These features
are identified as the “basic” features below.  The
remaining features (the remaining SPRs, and the
remaining bits and fields in the three Monitor Mode
Control Registers) are considered “extensions”.

The events that can be counted in the PMCs as well as
the code that identifies each event are implementation-
dependent.  The events and codes may vary between
PMCs, as well as between implementations.  For the
programmable PMCs, the event to be counted is
selected by specifying the appropriate code in the
MMCR “Selector” field for the PMC.  Some events may
include operations that are performed out-of-order.

Many aspects of the operation of the Performance
Monitor are summarized by the following hierarchy,
which is described starting at the lowest level.

� A “counter negative condition” exists when the
value in a PMC is negative (i.e., when bit 0 of the
PMC is 1).  A “Time Base transition event” occurs
when a selected bit of the Time Base changes
from 0 to 1 (the bit is selected by an MMCR field).
The term “condition or event” is used as an abbre-
viation for “counter negative condition or Time
Base transition event”.  A condition or event can be
caused implicitly by the processor (e.g., increment-
ing a PMC) or explicitly by software (mtspr).

�  A condition or event is enabled if the correspond-
ing “Enable” bit in an MMCR is 1.  The occurrence
of an enabled condition or event can have side
effects within the Performance Monitor, such as
causing the PMCs to cease counting.

� An enabled condition or event causes a Perfor-
mance Monitor alert if Performance Monitor alerts
are enabled by the corresponding “Enable” bit in

This Appendix describes an example implementa-
tion of a Performance Monitor. A subset of these
requirements are being considered for inclusion in
the Architecture as part of Category: Server.Perfor-
mance Monitor.

Because the features provided by a Performance
Monitor facility are implementation-dependent,
operating systems should provide services that
support the useful performance monitoring func-
tions in a generic fashion.  Application programs
should use these services, and should not depend
on the features provided by a particular implemen-
tation.

Note

Programming Note
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an MMCR. A single Performance Monitor alert may
reflect multiple enabled conditions and events.

� A Performance Monitor alert causes a Perfor-
mance Monitor exception.

The exception effects of the Performance Monitor
are said to be consistent with the contents of
MMCR0PMAO if one of the following statements is
true. (MMCR0PMAO reflects the occurrence of Per-
formance Monitor alerts; see the definition of that
bit in Section B.2.2.)
- MMCR0PMAO=0 and a Performance Monitor

exception does not exist.
- MMCR0PMAO=1 and a Performance Monitor

exception exists.

A context synchronizing instruction or event that
occurs when MMCR0PMAO=0 ensures that the
exception effects of the Performance Monitor are
consistent with the contents of MMCR0PMAO.

Even without software synchronization, when the
contents of MMCR0PMAO change, the exception
effects of the Performance Monitor become consis-
tent with the new contents of MMCR0PMAO suffi-
ciently soon that the Performance Monitor facility is
useful to software for its intended purposes.

� A Performance Monitor exception causes a Perfor-
mance Monitor interrupt when MSREE=1.

  

B.1 PMM Bit of the Machine 
State Register
The Performance Monitor uses MSR bit PMM, which is
defined as follows.

Bit Description

61 Performance Monitor Mark (PMM)

This bit is a basic feature.

This bit contains the Performance Monitor
“mark” (0 or 1).

  

B.2 Special Purpose Registers
The Performance Monitor SPRs count events, control
the operation of the Performance Monitor, and provide
associated information.

The Performance Monitor SPRs can be read and writ-
ten using the mfspr and mtspr instructions (see
Section 4.4.3, “Move To/From System Register Instruc-
tions” on page 411). The Performance Monitor SPR
numbers are shown in Figure 46. Writing any of the
Performance Monitor SPRs is privileged. Reading any
of the Performance Monitor SPRs is not privileged
(however, the privileged SPR numbers used to write
the SPRs can also be used to read them; see the fig-
ure).

The elapsed time between the execution of an instruc-
tion and the time at which events due to that instruction
have been reflected in Performance Monitor SPRs is
not defined.  No means are provided by which software
can ensure that all events due to preceding instructions
have been reflected in Performance Monitor SPRs.
Similarly, if the events being monitored may be caused
by operations that are performed out-of-order, no
means are provided by which software can prevent
such events due to subsequent instructions from being

The Performance Monitor can be effectively dis-
abled (i.e., put into a state in which Performance
Monitor SPRs are not altered and Performance
Monitor interrupts do not occur) by setting MMCR0
to 0x0000_0000_8000_0000.

Programming Note

Software can use this bit as a process-specific
marker which, in conjunction with MMCR0FCM0

FCM1 (see Section B.2.2), permits events to be
counted on a process-specific basis. (The bit is
saved by interrupts and restored by rfid.)

Common uses of the PMM bit include the following.

� Count events for a few selected processes.
This use requires the following bit settings.
- MSRPMM=1 for the selected processes,

MSRPMM=0 for all other processes
- MMCR0FCM0=1
- MMCR0FCM1=0

� Count events for all but a few selected pro-
cesses.  This use requires the following bit set-
tings.
- MSRPMM=1 for the selected processes,

MSRPMM=0 for all other processes
- MMCR0FCM0=0
- MMCR0FCM1=1

Notice that for both of these uses a mark value of 1
identifies the “few” processes and a mark value of 0
identifies the remaining “many” processes.
Because the PMM bit is set to 0 when an interrupt
occurs (see Figure 37 on page 466), interrupt han-
dlers are treated as one of the “many”. If it is
desired to treat interrupt handlers as one of the
“few”, the mark value convention just described
would be reversed.

Programming Note
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reflected in Performance Monitor SPRs.  Thus the con-
tents obtained by reading a Performance Monitor SPR
may not be precise: it may fail to reflect some events
due to instructions that precede the mfspr and may
reflect some events due to instructions that follow the
mfspr.  This lack of precision applies regardless of
whether the state of the processor is such that the SPR
is subject to change by the processor at the time the
mfspr is executed.  Similarly, if an mtspr instruction is
executed that changes the contents of the Time Base,
the change is not guaranteed to have taken effect with
respect to causing Time Base transition events until
after a subsequent context synchronizing instruction
has been executed.

If an mtspr instruction is executed that changes the
value of a Performance Monitor SPR other than SIAR
or SDAR, the change is not guaranteed to have taken
effect until after a subsequent context synchronizing
instruction has been executed (see Chapter
10. “Synchronization Requirements for Context Alter-
ations” on page 489).

  

 

Figure 46. Performance Monitor SPR encodings for
mtspr and mfspr

B.2.1 Performance Monitor 
Counter Registers
The six Performance Monitor Counter registers, PMC1
through PMC6, are 32-bit registers that count events.

Figure 47. Performance Monitor Counter registers

PMC1, PMC2, PMC3, and PMC4 are basic features.
PMC5 and PMC6 are not programmable.  PMC5
counts instructions completed and PMC6 counts
cycles.

Normally each PMC is incremented each processor
cycle by the number of times the corresponding event
occurred in that cycle.  Other modes of incrementing
may also be provided (e.g., see the description of
MMCR1 bits PMC1HIST and PMCjHIST).

“PMCj” is used as an abbreviation for “PMCi, i > 1”.

  

  

B.2.2 Monitor Mode Control 
Register 0
Monitor Mode Control Register 0 (MMCR0) is a 64-bit
register.  This register, along with MMCR1 and

Depending on the events being monitored, the con-
tents of Performance Monitor SPRs may be
affected by aspects of the runtime environment
(e.g., cache contents) that are not directly attribut-
able to the programs being monitored.

                           SPR1,2

  decimal       spr5:9 spr0:4

Register 
Name

Privi-
leged

770,786       11000 n0010   MMCRA no,yes
771,787       11000 n0011   PMC1 no,yes
772,788       11000 n0100   PMC2 no,yes
773,789       11000 n0101   PMC3 no,yes
774,790       11000 n0110   PMC4 no,yes
775,791       11000 n0111   PMC5 no,yes
776,792       11000 n1000   PMC6 no,yes

779,795       11000 n1011   MMCR0 no,yes
780,796       11000 n1100   SIAR no,yes
781,797       11000 n1101   SDAR no,yes
782,798       11000 n1110   MMCR1 no,yes
1 Note that the order of the two 5-bit halves of 

the SPR number is reversed.
2 For mtspr, n must be 1.  For mfspr, reading 

the SPR is privileged if and only if n=1.

Programming Note

PMC1
PMC2
PMC3

PMC4
PMC5
PMC6

32                                                    63

PMC5 and PMC6 are defined to facilitate calculat-
ing basic performance metrics such as cycles per
instruction (CPI).

Software can use a PMC to “pace” the collection of
Performance Monitor data.  For example, if it is
desired to collect event counts every n cycles, soft-
ware can specify that a particular PMC count
cycles and set that PMC to 0x8000_0000 - n.  The
events of interest would be counted in other PMCs.
The counter negative condition that will occur after
n cycles can, with the appropriate setting of MMCR
bits, cause counter values to become frozen, cause
a Performance Monitor interrupt to occur, etc.

Programming Note

Programming Note
Appendix B. Example Performance Monitor 497



   Version 2.04
MMCRA, controls the operation of the Performance
Monitor.

Figure 48. Monitor Mode Control Register 0

MMCR0 is a basic feature.  Within MMCR0, some of
the bits and fields are basic features and some are
extensions.  The basic bits and fields are identified as
such, below.

Some bits of MMCR0 are altered by the processor
when various events occur, as described below.

The bit definitions of MMCR0 are as follows.  MMCR0
bits that are not implemented are treated as reserved.

Bit(s) Description

0:31 Reserved

32 Freeze Counters (FC)

This bit is a basic feature.
0 The PMCs are incremented (if permitted

by other MMCR bits).
1 The PMCs are not incremented.

The processor sets this bit to 1 when an
enabled condition or event occurs and
MMCR0FCECE=1.

33 Freeze Counters in Privileged State (FCS)

This bit is a basic feature.

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
MSRHV PR=0b00.

34 Freeze Counters in Problem State (FCP)

This bit is a basic feature.

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
MSRPR=1.

35 Freeze Counters while Mark = 1 (FCM1)

This bit is a basic feature.

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
MSRPMM=1.

36 Freeze Counters while Mark = 0 (FCM0)

This bit is a basic feature.

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
MSRPMM=0.

37 Performance Monitor Alert Enable (PMAE)

This bit is a basic feature.

0 Performance Monitor alerts are disabled.
1 Performance Monitor alerts are enabled

until a Performance Monitor alert occurs,
at which time:
� MMCR0PMAE is set to 0
� MMCR0PMAO is set to 1

  

38 Freeze Counters on Enabled Condition or
Event (FCECE)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are incremented (if permitted
by other MMCR bits)    until an enabled
condition or event occurs when
MMCR0TRIGGER=0, at which time:
� MMCR0FC is set to 1

If the enabled condition or event occurs when
MMCR0TRIGGER=1, the FCECE bit is treated
as if it were 0.

39:40 Time Base Selector (TBSEL)

This field selects the Time Base bit that can
cause a Time Base transition event (the event
occurs when the selected bit changes from 0
to 1).

00  Time Base bit 63 is selected.
01  Time Base bit 55 is selected.
10  Time Base bit 51 is selected.
11  Time Base bit 47 is selected.

MMCR0
0                                                                                                                     63

Software can set this bit and
MMCR0PMAO to 0 to prevent Performance
Monitor interrupts.

Software can set this bit to 1 and then poll
the bit to determine whether an enabled
condition or event has occurred. This is
especially useful for software that runs
with MSREE=0.

In earlier versions of the architecture that
lacked the concept of Performance Moni-
tor alerts, this bit was called Performance
Monitor Exception Enable (PMXE).

Programming Note
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41 Time Base Event Enable (TBEE)

0 Time Base transition events are disabled.
1 Time Base transition events are enabled.

42:47 Reserved

48 PMC1 Condition Enable (PMC1CE)

This bit controls whether counter negative
conditions due to a negative value in PMC1
are enabled.

0 Counter negative conditions for PMC1 are
disabled.

1 Counter negative conditions for PMC1 are
enabled.

49 PMCj Condition Enable (PMCjCE)

This bit controls whether counter negative
conditions due to a negative value in any
PMCj (i.e., in any PMC except PMC1) are
enabled.

0 Counter negative conditions for all PMCjs
are disabled.

1 Counter negative conditions for all PMCjs
are enabled.

50 Trigger (TRIGGER)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 PMC1 is incremented (if permitted by
other MMCR bits).  The PMCjs are not
incremented until PMC1 is negative or an
enabled condition or event occurs, at
which time:
� the PMCjs resume incrementing (if

permitted by other MMCR bits)
� MMCR0TRIGGER is set to 0

See the description of the FCECE bit, above,
regarding the interaction between TRIGGER
and FCECE.

  

51:52 Setting is implementation-dependent.

53:55 Reserved

56 Performance Monitor Alert Occurred
(PMAO)

This bit is a basic feature.

0 A Performance Monitor alert has not
occurred since the last time software set
this bit to 0.

1 A Performance Monitor alert has occurred
since the last time software set this bit to
0.

This bit is set to 1 by the processor when a
Performance Monitor alert occurs. This bit can
be set to 0 only by the mtspr instruction.

Time Base transition events can be used
to collect information about processor
activity, as revealed by event counts in
PMCs and by addresses in SIAR and
SDAR, at periodic intervals.

In multiprocessor systems in which the
Time Base registers are synchronized
among the processors, Time Base transi-
tion events can be used to correlate the
Performance Monitor data obtained by the
several processors.  For this use, software
must specify the same TBSEL value for all
the processors in the system.

Because the frequency of the Time Base
is implementation-dependent, software
should invoke a system service program
to obtain the frequency before choosing a
value for TBSEL.

Programming Note

Uses of TRIGGER include the following.

� Resume counting in the PMCjs when
PMC1 becomes negative, without
causing a Performance Monitor inter-
rupt.  Then freeze all PMCs (and
optionally cause a Performance Mon-
itor interrupt) when a PMCj becomes
negative.  The PMCjs then reflect the
events that occurred between the
time PMC1 became negative and the
time a PMCj becomes negative.  This
use requires the following MMCR0 bit
settings.

- TRIGGER=1
- PMC1CE=0
- PMCjCE=1
- TBEE=0
- FCECE=1
- PMAE=1 (if a Performance Moni-

tor interrupt is desired)

� Resume counting in the PMCjs when
PMC1 becomes negative, and cause
a Performance Monitor interrupt with-
out freezing any PMCs.  The PMCjs
then reflect the events that occurred
between the time PMC1 became
negative and the time the interrupt
handler reads them. This use
requires the following MMCR0 bit set-
tings.

- TRIGGER=1
- PMC1CE=1
- TBEE=0
- FCECE=0
- PMAE=1

Programming Note
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57 Setting is implementation-dependent.

58 Freeze Counters 1-4 (FC1-4)

0 PMC1 - PMC4 are incremented (if permit-
ted by other MMCR bits).

1 PMC1 - PMC4 are not incremented.

59 Freeze Counters 5-6 (FC5-6)

0 PMC5 - PMC6 are incremented (if permit-
ted by other MMCR bits).

1 PMC5 - PMC6 are not incremented.

60:61 Reserved

62 Freeze Counters in Wait State (FCWAIT)

This bit is a basic feature.

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
CTRL31=0.  Software is expected to set
CTRL31=0 when it is in a “wait state”, i.e,
when there is no process ready to run.

Only Branch Unit type of events do not incre-
ment if CTRL31=0. Other units continue to
count.

63 Freeze Counters in Hypervisor State (FCH)

This bit is a basic feature.

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
MSRHV PR=0b10.

B.2.3 Monitor Mode Control 
Register 1
Monitor Mode Control Register 1 (MMCR1) is a 64-bit
register.  This register, along with MMCR0 and
MMCRA, controls the operation of the Performance
Monitor.

Figure 49. Monitor Mode Control Register 1

MMCR1 is a basic feature.  Within MMCR1, some of
the bits and fields are basic features and some are
extensions.  The basic bits and fields are identified as
such, below.

Some bits of MMCR1 are altered by the processor
when various events occur, as described below.

The bit definitions of MMCR1 are as follows.  MMCR1
bits that are not implemented are treated as reserved.

Bit(s) Description

0:31 Implementation-Dependent Use

These bits have implementation-dependent
uses (e.g., extended event selection).

32:39 PMC1 Selector (PMC3SEL)
40:47 PMC2 Selector (PMC4SEL)
48:55 PMC3 Selector (PMC5SEL)
56:63 PMC4 Selector (PMC6SEL)

Each of these fields contains a code that iden-
tifies the event to be counted by PMCs 1
through 4 respectively.

PMC Selectors are basic features.

  

B.2.4 Monitor Mode Control 
Register A
Monitor Mode Control Register A (MMCRA) is a 64-bit
register.  This register, along with MMCR0 and
MMCR1, controls the operation of the Performance
Monitor.

Figure 50. Monitor Mode Control Register A

MMCRA is a basic feature.  Within MMCRA, some of
the bits and fields are basic features and some are
extensions.  The basic bits and fields are identified as
such, below.

Some bits of MMCRA are altered by the processor
when various events occur, as described below.

The bit definitions of MMCRA are as follows.  MMCRA
bits that are not implemented are treated as reserved.

Bit(s) Description

0:31 Reserved

Software can set this bit to 1 to simulate
the occurrence of a Performance Monitor
alert.

Software should set this bit to 0 after han-
dling the Performance Monitor alert.

MMCR1
0                                                                                                                     63

Programming Note

In versions of the architecture that pre-
cede Version 2.02 the PMC Selector
Fields were six bits long, and were split
between MMCR0 and MMCR1.  PMC1-8
were all programmable. 

If more programmable PMCs are imple-
mented in the future, additional MMCRs
may be defined to cover the additional
selectors.

MMCRA
0                                                                                                                     63

Compatibility Note
Power ISA™ -- Book III-S500



   Version 2.04
32 Contents of SIAR and SDAR Are Related
(CSSR)

Set to 1 by the processor if the contents of
SIAR and SDAR are associated with the same
instruction; otherwise set to 0.

33:34 Setting is implementation-dependent.

35 Sampled MSRHV (SAMPHV)

Value of MSRHV when the Performance Moni-
tor Alert occurred.

36 Sampled MSRPR (SAMPPR)

Value of MSRPR when the Performance Moni-
tor Alert occurred.

37:47 Setting is implementation-dependent.

48:53 Threshold (THRESHOLD)

This field contains a “threshold value”, which
is a value such that only events that exceed
the value are counted.  The events to which a
threshold value can apply are implementation-
dependent, as are the dimension of the
threshold (e.g., duration in cycles) and the
granularity with which the threshold value is
interpreted.

  

54:59 Reserved for implementation-specific use.

60:62 Reserved

63 Setting is implementation-dependent.

B.2.5 Sampled Instruction 
Address Register
The Sampled Instruction Address Register (SIAR) is a
64-bit register. It contains the address of the “sampled
instruction” when a Performance Monitor alert occurs.

Figure 51. Sampled Instruction Address Register

When a Performance Monitor alert occurs, SIAR is set
to the effective address of an instruction that was being
executed, possibly out-of-order, at or around the time

that the Performance Monitor alert occurred.  This
instruction is called the “sampled instruction”.

The contents of SIAR may be altered by the processor
if and only if MMCR0PMAE=1.  Thus after the Perfor-
mance Monitor alert occurs, the contents of SIAR are
not altered by the processor until software sets
MMCR0PMAE to 1.  After software sets MMCR0PMAE to
1, the contents of SIAR are undefined until the next
Performance Monitor alert occurs.

See Section B.4 regarding the effects of the Trace facil-
ity on SIAR.

  

B.2.6 Sampled Data Address Reg-
ister
The Sampled Data Address Register (SDAR) is a 64-bit
register.  It contains the address of the “sampled data”
when a Performance Monitor alert occurs.

Figure 52. Sampled Data Address Register

When a Performance Monitor alert occurs, SDAR is set
to the effective address of the storage operand of an
instruction that was being executed, possibly out-of-
order, at or around the time that the Performance Moni-
tor alert occurred. This storage operand is called the
“sampled data”. The sampled data may be, but need
not be, the storage operand (if any) of the sampled
instruction (see Section B.2.5).

The contents of SDAR may be altered by the processor
if and only if MMCR0PMAE=1.  Thus after the Perfor-
mance Monitor alert occurs, the contents of SDAR are
not altered by the processor until software sets
MMCR0PMAE to 1.  After software sets MMCR0PMAE to
1, the contents of SDAR are undefined until the next
Performance Monitor alert occurs.

See Section B.4 regarding the effects of the Trace facil-
ity on SDAR.

  

By varying the threshold value, software
can obtain a profile of the characteristics
of the events subject to the threshold.  For
example, if PMC1 counts the number of
cache misses for which the duration
exceeds the threshold value, then soft-
ware can obtain the distribution of cache
miss durations for a given program by
monitoring the program repeatedly using
a different threshold value each time.

SIAR
0                                                                                                                     63

Programming Note

If the Performance Monitor alert causes a Perfor-
mance Monitor interrupt, the value of MSRHV PR
that was in effect when the sampled instruction was
being executed is reported in MMCRA.

SDAR
0                                                                                                                     63

If the Performance Monitor alert causes a Perfor-
mance Monitor interrupt, MMCRA indicates
whether the sampled data is the storage operand of
the sampled instruction.

Programming Note

Programming Note
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B.3 Performance Monitor
Interrupt
The Performance Monitor interrupt is a system caused
interrupt (Section 6.4). It is masked by MSREE in the
same manner that External and Decrementer interrupts
are.

The Performance Monitor interrupt is a basic feature.

A Performance Monitor interrupt occurs when no higher
priority exception exists, a Performance Monitor excep-
tion exists, and MSREE=1.

If multiple Performance Monitor exceptions occur
before the first causes a Performance Monitor interrupt,
the interrupt reflects the most recent Performance Mon-
itor exception and the preceding Performance Monitor
exceptions are lost.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

SRR1
33:36 and 42:47

Implementation-specific.
Others Loaded from the MSR.

MSR See Figure 37 on page 466.

SIAR Set to the effective address of the “sampled
instruction” (see Section B.2.5).

SDAR Set to the effective address of the “sampled
data” (see Section B.2.6).

Execution resumes at effective address
0x0000_0000_0000_0F00.

In general, statements about External and Decre-
menter interrupts elsewhere in this Book apply also to
the Performance Monitor interrupt; for example, if a
Performance Monitor exception exists when an mtm-
srd[d] instruction is executed that changes MSREE
from 0 to 1, the Performance Monitor interrupt will occur
before the next instruction is executed (if no higher pri-
ority exception exists).

The priority of the Performance Monitor exception is
equal to that of the External, Decrementer, and Hyper-
visor Decrementer exceptions (i.e., the processor may
generate any one of the four interrupts for which an
exception exists) (see Section 6.7.2, “Ordered Excep-
tions” on page 478 and Section 6.8, “Interrupt Priori-
ties” on page 479).

B.4 Interaction with the Trace 
Facility
If the Trace facility includes setting SIAR and SDAR
(see Appendix C, “Example Trace Extensions” on
page 503), and tracing is active (MSRSE=1 or
MSRBE=1), the contents of SIAR and SDAR as used by
the Performance Monitor facility are undefined and may
change even when MMCR0PMAE=0.

  

A potential combined use of the Trace and Perfor-
mance Monitor facilities is to trace the control flow
of a program and simultaneously count events for
that program.

Programming Note
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Appendix C.  Example Trace Extensions

  

This appendix provides an example of extensions that
may be added to the Trace facility described in
Section 6.5.14, “Trace Interrupt [Category: Trace]” on
page 473. It is only an example; implementations may
provide all, some, or none of the features described
here, or may provide features that are similar to those
described here but differ in detail.

The extensions consist of the following features
(described in detail below).

� use of MSRSE BE=0b11 to specify new causes of
Trace interrupts

� specification of how certain SRR1 bits are set
when a Trace interrupt occurs

� setting of SIAR and SDAR (see Appendix B,
“Example Performance Monitor” on page 495)
when a Trace interrupt occurs

MSRSE BE = 0b11
If MSRSE BE=0b11, the processor generates a Trace
exception under the conditions described in Section
6.5.14 for MSRSE BE=0b01, and also after successfully
completing the execution of any instruction that would
cause at least one of SRR1 bits 33:36, 42, and 44:46 to
be set to 1 (see below) if the instruction were executed
when MSRSE BE=0b10.

This overrides the implicit statement in Section 6.5.14
that the effects of MSRSE BE=0b11 are the same as
those of MSRSE BE=0b10.

SRR1
When a Trace interrupt occurs, the SRR1 bits that are
not loaded from the MSR are set as follows instead of
as described in Section 6.5.14.

33 Set to 1 if the traced instruction is icbi; oth-
erwise set to 0.

34 Set to 1 if the traced instruction is dcbt,
dcbtst, dcbz, dcbst, dcbf[l]; otherwise set
to 0.

35 Set to 1 if the traced instruction is a Load
instruction or eciwx; may be set to 1 if the
traced instruction is icbi, dcbt, dcbtst,
dcbst, dcbf[l]; otherwise set to 0.

36 Set to 1 if the traced instruction is a Store
instruction, dcbz, or ecowx; otherwise set
to 0.

42 Set to 1 if the traced instruction is lswx or
stswx; otherwise set to 0.

43 Implementation-dependent.
44 Set to 1 if the traced instruction is a Branch

instruction and the branch is taken; other-
wise set to 0.

45 Set to 1 if the traced instruction is eciwx or
ecowx; otherwise set to 0.

46 Set to 1 if the traced instruction is lwarx,
ldarx, stwcx., or stdcx.; otherwise set to 0.

47 Implementation-dependent.

SIAR and SDAR
If the Performance Monitor facility is implemented and
includes SIAR and SDAR (see Appendix B), the follow-
ing additional registers are set when a Trace interrupt
occurs:

SIAR Set to the effective address of the traced
instruction.

SDAR Set to the effective address of the storage
operand (if any) of the traced instruction;
otherwise undefined.

If the state of the Performance Monitor is such that the
Performance Monitor may be altering these registers
(i.e., if MMCR0PMAE=1), the contents of SIAR and
SDAR as used by the Trace facility are undefined and
may change even when no Trace interrupt occurs.

This Appendix describes an example implementa-
tion of Trace Extensions. A subset of these require-
ments are being considered for inclusion in the
Architecture as part of Category: Trace.

Note
Appendix C. Example Trace Extensions 503
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Appendix D.  Interpretation of the DSISR as Set by an 
Alignment Interrupt

For most causes of Alignment interrupt, the interrupt
handler will emulate the interrupting instruction.  To do
this, it needs the following characteristics of the inter-
rupting instruction:

Load or store
Length (halfword, word, doubleword)
String, multiple, or elementary
Fixed-point or floating-point
Update or non-update
Byte reverse or not
Is it dcbz?

The Power ISA optionally provides this information by
setting bits in the DSISR that identify the interrupting
instruction type. It is not necessary for the interrupt
handler to load the interrupting instruction from storage.
The mapping is unique except for a few exceptions that
are discussed below. The near-uniqueness depends on
the fact that many instructions, such as the fixed- and
floating-point arithmetic instructions and the one-byte
loads and stores, cannot cause an Alignment interrupt.

See Section 6.5.8 for a description of how the opcode
and extended opcode are mapped to a DSISR value for
an X-, D-, or DS-form instruction that causes an Align-
ment interrupt.

The table on the next page shows the inverse mapping:
how the DSISR bits identify the interrupting instruc-
tion.  The following notes are cited in the table.

1. The instructions lwz and lwarx give the same
DSISR bits (all zero).  But if lwarx causes an Align-
ment interrupt, it should not be emulated.  It is ade-
quate for the Alignment interrupt handler simply to
treat the instruction as if it were lwz.  The emulator
must use the address in the DAR, rather than com-
pute it from RA/RB/D, because lwz and lwarx have
different instruction formats.

If opcode 0 (“Illegal or Reserved”) can cause an
Alignment interrupt, it will be indistinguishable to
the interrupt handler from lwarx and lwz.

2. These are distinguished by DSISR bits 44:45,
which are not shown in the table.

The interrupt handler has no need to distinguish
between an X-form instruction and the corresponding
D- or DS-form instruction if one exists, and vice versa.

Therefore two such instructions may yield the same
DSISR value (all 32 bits).  For example, stw and stwx
may both yield either the DSISR value shown in the fol-
lowing table for stw, or that shown for stwx.
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If DSISR 
47:53 is:

then it is 
either X-
form 
opcode:

or D/
DS-
form 
opcode: so the instruction is:

00 0 0000 00000xxx00   x00000   lwarx,lwz,reserved(1)
00 0 0001 00010xxx00   x00010   ldarx
00 0 0010 00100xxx00   x00100   stw
00 0 0011  00110xxx00   x00110   -
00 0 0100  01000xxx00   x01000   lhz
00 0 0101  01010xxx00   x01010   lha
00 0 0110  01100xxx00   x01100   sth
00 0 0111  01110xxx00   x01110   lmw
00 0 1000  10000xxx00   x10000   lfs
00 0 1001  10010xxx00   x10010   lfd
00 0 1010  10100xxx00   x10100   stfs
00 0 1011  10110xxx00   x10110   stfd
00 0 1100  11000xxx00   x11000   -
00 0 1101  11010xxx00   x11010   ld, ldu, lwa (2)
00 0 1110  11100xxx00   x11100   -
00 0 1111  11110xxx00   x11110   std, stdu (2)
00 1 0000  00001xxx00   x00001   lwzu
00 1 0001  00011xxx00   x00011   -
00 1 0010  00101xxx00   x00101   stwu
00 1 0011  00111xxx00   x00111   -
00 1 0100  01001xxx00   x01001   lhzu
00 1 0101  01011xxx00   x01011   lhau
00 1 0110  01101xxx00   x01101   sthu
00 1 0111  01111xxx00   x01111   stmw
00 1 1000  10001xxx00   x10001   lfsu
00 1 1001  10011xxx00   x10011   lfdu
00 1 1010  10101xxx00   x10101   stfsu
00 1 1011  10111xxx00   x10111   stfdu
00 1 1100  11001xxx00   x11001   -
00 1 1101  11011xxx00   x11011   -
00 1 1110  11101xxx00   x11101   -
00 1 1111  11111xxx00   x11111   -
01 0 0000  00000xxx01            ldx
01 0 0001  00010xxx01            -
01 0 0010  00100xxx01            stdx
01 0 0011  00110xxx01            -
01 0 0100  01000xxx01            -
01 0 0101  01010xxx01            lwax
01 0 0110  01100xxx01            -
01 0 0111  01110xxx01            -
01 0 1000  10000xxx01            lswx
01 0 1001  10010xxx01            lswi
01 0 1010  10100xxx01            stswx
01 0 1011  10110xxx01            stswi
01 0 1100  11000xxx01            -
01 0 1101  11010xxx01            -
01 0 1110  11100xxx01            -
01 0 1111  11110xxx01            -
01 1 0000  00001xxx01            ldux
01 1 0001  00011xxx01            -
01 1 0010  00101xxx01            stdux
01 1 0011  00111xxx01            -
01 1 0100  01001xxx01            -
01 1 0101  01011xxx01            lwaux
01 1 0110  01101xxx01            -
01 1 0111  01111xxx01            -
01 1 1000  10001xxx01            -
01 1 1001  10011xxx01            -
01 1 1010  10101xxx01            -
01 1 1011  10111xxx01            -
01 1 1100  11001xxx01            -
01 1 1101  11011xxx01            -
01 1 1110  11101xxx01            -
01 1 1111  11111xxx01            -
10 0 0000  00000xxx10            -

10 0 0001  00010xxx10            -
10 0 0010  00100xxx10            stwcx.
10 0 0011  00110xxx10            stdcx.
10 0 0100  01000xxx10            -
10 0 0101  01010xxx10            -
10 0 0110  01100xxx10            -
10 0 0111  01110xxx10            -
10 0 1000  10000xxx10            lwbrx
10 0 1001  10010xxx10            -
10 0 1010  10100xxx10            stwbrx
10 0 1011  10110xxx10            -
10 0 1100  11000xxx10            lhbrx
10 0 1101  11010xxx10            -
10 0 1110  11100xxx10            sthbrx
10 0 1111  11110xxx10            -
10 1 0000  00001xxx10            -
10 1 0001  00011xxx10            -
10 1 0010  00101xxx10            -
10 1 0011   00111xxx10            -
10 1 0100  01001xxx10            eciwx
10 1 0101  01011xxx10            -
10 1 0110  01101xxx10            ecowx
10 1 0111  01111xxx10            -
10 1 1000  10001xxx10            -
10 1 1001  10011xxx10            -
10 1 1010  10101xxx10            -
10 1 1011  10111xxx10            -
10 1 1100  11001xxx10            -
10 1 1101  11011xxx10            -
10 1 1110  11101xxx10            -
10 1 1111  11111xxx10            dcbz
11 0 0000  00000xxx11            lwzx
11 0 0001  00010xxx11            -
11 0 0010 00100xxx11            stwx
11 0 0011 00110xxx11            -
11 0 0100 01000xxx11            lhzx
11 0 0101 01010xxx11            lhax
11 0 0110 01100xxx11            sthx
11 0 0111 01110xxx11            -
11 0 1000 10000xxx11            lfsx
11 0 1001 10010xxx11            lfdx
11 0 1010 10100xxx11            stfsx
11 0 1011 10110xxx11            stfdx
11 0 1100 11000xxx11            -
11 0 1101 11010xxx11            -
11 0 1110 11100xxx11            -
11 0 1111 11110xxx11            stfiwx
11 1 0000 00001xxx11            lwzux
11 1 0001 00011xxx11            -
11 1 0010 00101xxx11            stwux
11 1 0011 00111xxx11            -
11 1 0100 01001xxx11            lhzux
11 1 0101 01011xxx11            lhaux
11 1 0110 01101xxx11            sthux
11 1 0111 01111xxx11            -
11 1 1000 10001xxx11            lfsux
11 1 1001 10011xxx11            lfdux
11 1 1010 10101xxx11            stfsux
11 1 1011 10111xxx11            stfdux
11 1 1100 11001xxx11            -
11 1 1101 11011xxx11            -
11 1 1110 11101xxx11            -
11 1 1111 11111xxx11            -

If DSISR 
47:53 is:

then it is 
either X-
form 
opcode:

or D/
DS-
form 
opcode: so the instruction is:
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1.1 Overview
Chapter 1 of Book I describes computation modes,
document conventions, a general systems overview,
instruction formats, and storage addressing. This chap-
ter augments that description as necessary for the
Power ISA Operating Environment Architecture.

1.2 32-Bit Implementations
Though the specifications in this document assume a
64-bit implementation, 32-bit implementations are per-
mitted as described in    Appendix C, “Guidelines for
64-bit Implementations in 32-bit Mode and 32-bit Imple-
mentations” on page 637.

1.3 Document Conventions
The notation and terminology used in Book I apply to
this Book also, with the following substitutions.

� For “system alignment error handler” substitute
“Alignment interrupt”.

� For “system auxiliary processor enabled exception
error handler” substitute “Auxiliary Processor
Enabled Exception type Program interrupt”,

� For “system data storage error handler” substitute
“Data Storage interrupt” or Data TLB Error inter-
rupt” as appropriate.

� For “system error handler” substitute “interrupt”.

� For “system floating-point enabled exception error
handler” substitute “Floating-Point Enabled Excep-
tion type Program interrupt”.

� For “system illegal instruction error handler” substi-
tute “Illegal Instruction exception type Program

interrupt” or “Unimplemented Operation exception
type Program interrupt”, as appropriate.

� For “system instruction storage error handler” sub-
stitute “Instruction Storage interrupt” or “Instruction
TLB Error”, as appropriate.

� For “system privileged instruction error handler”
substitute “Privileged Instruction exception type
Program interrupt”.

� For “system service program” substitute “System
Call interrupt”.

� For “system trap handler” substitute “Trap type
Program interrupt”. 

1.3.1 Definitions and Notation
The definitions and notation given in Book I are aug-
mented by the following.

� real page

A unit of real storage that is aligned at a boundary
that is a multiple of its size. The real page size may
range from 1KB to 1TB.

� context of a program

The processor state (e.g., privilege and relocation)
in which the program executes. The context is con-
trolled by the contents of certain System Registers,
such as the MSR, of certain lookaside buffers,
such as the TLB, and of other resources.

� exception

An error, unusual condition, or external signal, that
may set a status bit and may or may not cause an
interrupt, depending upon whether the correspond-
ing interrupt is enabled.
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� interrupt

The act of changing the machine state in response
to an exception, as described in Chapter
5. “Interrupts and Exceptions” on page 563.

� trap interrupt

An interrupt that results from execution of a Trap
instruction.

� Additional exceptions to the rule that the processor
obeys the sequential execution model, beyond
those described in the section entitled “Instruction
Fetching” in Book I, are the following.

- A System Reset or Machine Check interrupt
may occur.  The determination of whether an
instruction is required by the sequential execu-
tion model is not affected by the potential
occurrence of a System Reset or Machine
Check interrupt.  (The determination is
affected by the potential occurrence of any
other kind of interrupt.)

- A context-altering instruction is executed
(Chapter 10. “Synchronization Requirements
for Context Alterations” on page 625). The
context alteration need not take effect until the
required subsequent synchronizing operation
has occurred.

� hardware

Any combination of hard-wired implementation,
emulation assist, or interrupt for software assis-
tance. In the last case, the interrupt may be to an
architected location or to an implementation-
dependent location. Any use of emulation assists
or interrupts to implement the architecture is imple-
mentation-dependent.

� /, //, ///, ... denotes a field that is reserved in an
instruction, in a register, or in an architected stor-
age table.

� ?, ??, ???, ... denotes a field that is implementa-
tion-dependent in an instruction, in a register, or in
an architected storage table.

1.3.2 Reserved Fields
Some fields of certain architected registers may be
written to automatically by the processor, e.g.,
Reserved bits in System Registers. When the proces-
sor writes to such a register, the following rules are
obeyed.

� Unless otherwise stated, no defined field other
than the one(s) the processor is specifically updat-
ing are modified.

� Contents of reserved fields are either preserved by
the processor or written as zero.

The reader should be aware that reading and writing of
some of these registers (e.g., the MSR) can occur as a
side effect of processing an interrupt and of returning
from an interrupt, as well as when requested explicitly
by the appropriate instruction (e.g., mtmsr instruction).

1.4 General Systems Overview
The processor or processor unit contains the sequenc-
ing and processing controls for instruction fetch,
instruction execution, and interrupt action. Most imple-
mentations also contain data and instruction caches.
Instructions that the processing unit can execute fall
into the following classes:

� instructions executed in the Branch Processor
� instructions executed in the Fixed-Point Processor
� instructions executed in the Floating-Point Proces-

sor
� instructions executed in the Vector Processor
� instructions executed in an Auxiliary Processor
� other instructions executed by the processor

Almost all instructions executed in the Branch Proces-
sor, Fixed-Point Processor, Floating-Point Processor,
and Vector Processor are nonprivileged and are
described in Book I. Book I may describe additional
nonprivileged instructions (e.g., Book II describes some
nonprivileged instructions for cache management).
Instructions executed in an Auxiliary Processor are
implementation-dependent. Instructions related to the
supervisor mode, control of processor resources, con-
trol of the storage hierarchy, and all other privileged
instructions are described here or are implementation-
dependent.

1.5 Exceptions
The following augments the exceptions defined in Book
I that can be caused directly by the execution of an
instruction:

� the execution of a floating-point instruction when
MSRFP=0 (Floating-Point Unavailable interrupt)

� execution of an instruction that causes a debug
event (Debug interrupt).

� the execution of an auxiliary processor instruction
when the auxiliary processor instruction is unavail-
able (Auxiliary Processor Unavailable interrupt)

� the execution of a Vector, SPE, or Embedded
Floating-Point instruction when MSRSPV=0 (SPE/
Embedded Floating-Point/Vector Unavailable inter-
rupt)
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1.6  Synchronization
The synchronization described in this section refers to
the state of the processor that is performing the syn-
chronization.

1.6.1 Context Synchronization
An instruction or event is context synchronizing if it sat-
isfies the requirements listed below. Such instructions
and events are collectively called context synchronizing
operations. The context synchronizing operations
include the isync instruction, the System Linkage
instructions, the mtmsr instruction, and most interrupts
(see Section 5.1).

1. The operation causes instruction dispatching (the
issuance of instructions by the instruction fetching
mechanism to any instruction execution mecha-
nism) to be halted.

2. The operation is not initiated or, in the case of dnh
[Category: Embedded.Enhanced Debug], isync
and wait [Category: Wait], does not complete, until
all instructions that precede the operation have
completed to a point at which they have reported
all exceptions they will cause.

3. The operation ensures that the instructions that
precede the operation will complete execution in
the context (privilege, relocation, storage protec-
tion, etc.) in which they were initiated.

4. If the operation directly causes an interrupt (e.g.,
sc directly causes a System Call interrupt) or is an
interrupt, the operation is not initiated until no
exception exists having higher priority than the
exception associated with the interrupt (see
Section 5.9, “Exception Priorities” on page 591).

5. The operation ensures that the instructions that fol-
low the operation will be fetched and executed in
the context established by the operation. (This
requirement dictates that any prefetched instruc-
tions be discarded and that any effects and side
effects of executing them out-of-order also be dis-
carded, except as described in Section 4.5, “Per-
forming Operations Out-of-Order”.)

  

1.6.2 Execution Synchronization
An instruction is execution synchronizing if it satisfies
items 2 and 3 of the definition of context synchroniza-
tion (see Section 1.6.1). sync is treated like isync with
respect to item 2. The execution synchronizing instruc-
tions are sync, mtmsr and all context synchronizing
instructions.

  

A context synchronizing operation is necessarily
execution synchronizing; see Section 1.6.2.

Unlike the Synchronize instruction, a context syn-
chronizing operation does not affect the order in
which storage accesses are performed.

Item 2 permits a choice only for isync (and sync;
see Section 1.6.2) because all other execution syn-
chronizing operations also alter context.

Programming Note

All context synchronizing instructions are execution
synchronizing.

Unlike a context synchronizing operation, an exe-
cution synchronizing instruction does not ensure
that the instructions following that instruction will
execute in the context established by that instruc-
tion.  This new context becomes effective some-
time after the execution synchronizing instruction
completes and before or at a subsequent context
synchronizing operation.

Programming Note
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2.1 Branch Processor Overview
This chapter describes the details concerning the regis-
ters and the privileged instructions implemented in the
Branch Processor that are not covered in Book I.

2.2 Branch Processor Registers

2.2.1 Machine State Register 
The MSR (MSR) is a 32-bit register. MSR bits are num-
bered 32 (most-significant bit) to 63 (least-significant
bit). This register defines the state of the processor.
The MSR can also be modified by the mtmsr, rfi, rfci,
rfdi [Category: Embedded.Enhanced Debug], rfmci,
wrtee and wrteei instructions and interrupts. It can be
read by the mfmsr instruction.

Figure 1. Machine State Register

Below are shown the bit definitions for the Machine
State Register.

Bit Description

32 Computation Mode (CM)

0 The processor runs in 32-bit mode.
1 The processor runs in 64-bit mode.

33 Interrupt Computation Mode  (ICM)

On interrupt this bit is copied to MSRCM,
selecting 32-bit or 64-bit mode for interrupt
handling.

0 MSRCM is set to 0 (32-bit mode) when an
interrupt occurs.

1 MSRCM is set to 1 (64-bit mode) when an
interrupt occurs.

34:36 Implementation-dependent

37 User Cache Locking Enable (UCLE)
[Category: Embedded Cache Locking.User
Mode]

0 Cache Locking instructions are privileged.
1 Cache Locking instructions can be exe-

cuted in user mode (MSRPR=1).

If category Embedded Cache Locking.User
Mode is not supported, this bit is treated as
reserved.

38 SP/Embedded Floating-Point/Vector Avail-
able (SPV)

[Category: Signal Processing]:
0 The processor cannot execute any SP

instructions except for the brinc instruc-
tion.

1 The processor can execute all SP instruc-
tions.

 
[Category: Vector]:
0 The processor cannot execute any Vector

instruction.
1 The processor can execute Vector instruc-

tions.

39:44 Reserved

45 Wait State Enable (WE)

0 The processor is not in wait state and con-
tinues processing

1 The processor enters the wait state by
ceasing to execute instructions and enter-
ing low power mode. The details of how
the wait state is entered and exited, and
how the processor behaves while in the
wait state, are implementation-dependent.

MSR
32                                                       63
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46 Critical Enable (CE)

0 Critical Input, Watchdog Timer, and Pro-
cessor Doorbell Critical interrupts are dis-
abled

1 Critical Input, Watchdog Timer, and Pro-
cessor Doorbell Critical interrupts are
enabled

47 Reserved 

48 External Enable (EE)

0 External Input, Decrementer, Fixed-Inter-
val Timer, Processor Doorbell, and
Embedded Performance Monitor [Cate-
gory:E.PM] interrupts are disabled.

1 External Input, Decrementer, Fixed-Inter-
val Timer, Processor Doorbell, and
Embedded Performance Monitor [Cate-
gory:E.PM] interrupts are enabled.

49 Problem State (PR)

0 The processor is in supervisor mode, can
execute any instruction, and can access
any resource (e.g. GPRs, SPRs, MSR,
etc.).

1 The processor is in user mode, cannot
execute any privileged instruction, and
cannot access any privileged resource.

MSRPR also affects storage access control,
as described in Section 6.2.4.

50 Floating-Point Available (FP)
[Category: Floating-Point]

0 The processor cannot execute any float-
ing-point instructions, including floating-
point loads, stores and moves.

1 The processor can execute floating-point
instructions.

51 Machine Check Enable (ME)

0 Machine Check interrupts are disabled.
1 Machine Check interrupts are enabled.

52 Floating-Point Exception Mode 0 (FE0)
[Category: Floating-Point]

 (See below)

53 Implementation-dependent

54 Debug Interrupt Enable (DE)

0 Debug interrupts are disabled
1 Debug interrupts are enabled if

DBCR0IDM=1

55 Floating-Point Exception Mode 1 (FE1)
[Category: Floating-Point]

 (See below)

56 Reserved

57 Reserved

58 Instruction Address Space (IS)

0 The processor directs all instruction
fetches to address space 0 (TS=0 in the
relevant TLB entry).

1 The processor directs all instruction
fetches to address space 1 (TS=1 in the
relevant TLB entry).

59 Data Address Space (DS)

0 The processor directs all data storage
accesses to address space 0 (TS=0 in the
relevant TLB entry).

1 The processor directs all data storage
accesses to address space 1 (TS=1 in the
relevant TLB entry).

60 Implementation-dependent

61 Performance Monitor Mark (PMM)
[Category: Embedded.Performance Monitor]

0 Disable statistics gathering on marked
processes.

1 Enable statistics gathering on marked pro-
cesses

See Appendix E for additional information.

62 Reserved 

63 Reserved 

The Floating-Point Exception Mode bits FE0 and FE1
are interpreted as shown below. For further details see
Book I.

See Section 6.3, “Processor State After Reset” on
page 595 for the initial state of the MSR.

 

FE0 FE1 Mode
0 0 Ignore Exceptions
0 1 Imprecise Nonrecoverable
1 0 Imprecise Recoverable
1 1 Precise

A Machine State Register bit that is reserved may
be altered by rfi/rfci/rfmci/rfdi [Category:Embed-
ded.Enhanced Debug].

Programming Note
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2.3 Branch Processor Instruc-
tions

2.4 System Linkage Instructions
These instructions provide the means by which a pro-
gram can call upon the system to perform a service,

and by which the system can return from performing a
service or from processing an interrupt.

The System Call instruction is described in Book I, but
only at the level required by an application programmer.
A complete description of this instruction appears
below.

System Call SC-form 

sc

SRR0 �iea CIA + 4
SRR1 � MSR
NIA � IVPR0:47 || IVOR848:59 || 0b0000
MSR � new_value (see below)

The effective address of the instruction following the
System Call instruction is placed into SRR0. The con-
tents of the MSR are copied into SRR1.

Then a System Call interrupt is generated. The inter-
rupt causes the MSR to be set as described in Section
5.6 on page 574. 

The interrupt causes the next instruction to be fetched
from effective address

 IVPR0:47||IVOR848:59||0b0000.

This instruction is context synchronizing.

Special Registers Altered:
SRR0 SRR1 MSR

Return From Interrupt XL-form

rfi 

MSR � SRR1
NIA �iea SRR00:61 || 0b00

The rfi instruction is used to return from a base class
interrupt, or as a means of simultaneously establishing
a new context and synchronizing on that new context.

The contents of SRR1 are placed into the MSR. If the
new MSR value does not enable any pending excep-
tions, then the next instruction is fetched, under control
of the new MSR value, from the address
SRR00:61||0b00. (Note: VLE behavior may be different;
see Book VLE.) If the new MSR value enables one or
more pending exceptions, the interrupt associated with
the highest priority pending exception is generated; in
this case the value placed into the applicable save/
restore register 0 by the interrupt processing mecha-
nism (see Section 5.6 on page 574) is the address of
the instruction that would have been executed next had
the interrupt not occurred (i.e. the address in SRR0 at
the time of the execution of the rfi).

This instruction is privileged and context synchronizing.

Special Registers Altered:
MSR

17 /// /// /// /// // 1 /
0 6 11 16 20 27 30 31

19 /// /// /// 50 /
0 6 11 16 21 31
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Return From Critical Interrupt XL-form

rfci 

MSR � CSRR1
NIA �iea CSRR00:61 || 0b00

The rfci instruction is used to return from a critical
class interrupt, or as a means of establishing a new
context and synchronizing on that new context simulta-
neously. 

The contents of CSRR1 are placed into the MSR. If the
new MSR value does not enable any pending excep-
tions, then the next instruction is fetched, under control
of the new MSR value, from the address
CSRR00:61||0b00. (Note: VLE behavior may be differ-
ent; see Book VLE.) If the new MSR value enables one
or more pending exceptions, the interrupt associated
with the highest priority pending exception is gener-
ated; in this case the value placed into SRR0 or
CSRR0 by the interrupt processing mechanism (see
Section 5.6 on page 574) is the address of the instruc-
tion that would have been executed next had the inter-
rupt not occurred (i.e. the address in CSRR0 at the
time of the execution of the rfci).

This instruction is privileged and context synchronizing.

Special Registers Altered:
MSR

Return From Debug Interrupt X-form

rfdi
[Category: Embedded.Enhanced Debug]

MSR � DSRR1
NIA �iea DSRR00:61 || 0b00

The rfdi instruction is used to return from a Debug
interrupt, or as a means of establishing a new context
and synchronizing on that new context simultaneously. 

The contents of DSRR1 are placed into the MSR. If the
new MSR value does not enable any pending excep-
tions, then the next instruction is fetched, under control
of the new MSR value, from the address
DSRR00:61||0b00. (Note: VLE behavior may be differ-
ent; see Book VLE.) If the new MSR value enables one
or more pending exceptions, the interrupt associated
with the highest priority pending exception is gener-
ated; in this case the value placed into SRR0, CSRR0,
or DSRR0 by the interrupt processing mechanism is
the address of the instruction that would have been
executed next had the interrupt not occurred (i.e. the
address in DSRR0 at the time of the execution of the
rfdi).

This instruction is privileged and context synchronizing.

Special Registers Altered: 
MSR

19 /// /// /// 51 /
0 6 11 16 21 31 19 /// /// /// 39 /

0 6 11 16 21 31
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Return From Machine Check Interrupt
XL-form

rfmci 

MSR � MCSRR1
NIA �iea MCSRR00:61 || 0b00

The rfmci instruction is used to return from a Machine
Check class interrupt, or as a means of establishing a
new context and synchronizing on that new context
simultaneously. 

The contents of MCSRR1 are placed into the MSR. If
the new MSR value does not enable any pending
exceptions, then the next instruction is fetched, under
control of the new MSR value, from the address
MCSRR00:61||0b00. (Note: VLE behavior may be differ-
ent; see Book VLE.) If the new MSR value enables one
or more pending exceptions, the interrupt associated
with the highest priority pending exception is gener-
ated; in this case the value placed into SRR0, CSRR0,
MCSRR0, or DSRR0 [Category: Embedded.Enhanced
Debug] by the interrupt processing mechanism (see
Section 5.6 on page 574) is the address of the instruc-
tion that would have been executed next had the inter-
rupt not occurred (i.e. the address in MCSRR0 at the
time of the execution of the rfmci).

This instruction is privileged and context synchronizing.

Special Registers Altered:
MSR

19 /// /// /// 38 /
0 6 11 16 21 31
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3.1 Fixed-Point Processor Over-
view
This chapter describes the details concerning the regis-
ters and the privileged instructions implemented in the
Fixed-Point Processor that are not covered in Book I.  

3.2 Special Purpose Registers
Special Purpose Registers (SPRs) are read and written
using the mfspr (page 526) and mtspr (page 524)
instructions. Most SPRs are defined in other chapters
of this book; see the index to locate those definitions.

3.3 Fixed-Point Processor Reg-
isters

3.3.1 Processor Version Register
The Processor Version Register (PVR) is a 32-bit read-
only register that contains a value identifying the ver-
sion and revision level of the processor.  The contents
of the PVR can be copied to a GPR by the mfspr
instruction.  Read access to the PVR is privileged; write
access is not provided.

Figure 2. Processor Version Register

The PVR distinguishes between processors that differ
in attributes that may affect software.  It contains two
fields.

Version A 16-bit number that identifies the version
of the processor.  Different version numbers
indicate major differences between proces-
sors, such as which optional facilities and
instructions are supported.

Revision A 16-bit number that distinguishes between
implementations of the version.  Different
revision numbers indicate minor differences
between processors having the same ver-
sion number, such as clock rate and Engi-
neering Change level.

Version numbers are assigned by the Power ISA Archi-
tecture process. Revision numbers are assigned by an
implementation-defined process. 

3.3.2 Processor Identification 
Register
The Processor Identification Register (PIR) is a 32-bit
register that contains a value that can be used to distin-
guish the processor from other processors in the sys-
tem. The contents of the PIR can be copied to a GPR
by the mfspr instruction. Read access to the PIR is

 Version Revision
32 48                    63
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privileged; write access, if provided, is implementation-
dependent.

Figure 3. Processor Identification Register

The means by which the PIR is initialized are imple-
mentation-dependent.

3.3.3 Software-use SPRs
Software-use SPRs are 64-bit registers provided for
use by software.

Figure 4. Special Purpose Registers

 

SPRG0 through SPRG2

These 64-bit registers can be accessed only in
supervisor mode.

SPRG3

This 64-bit register can be read in supervisor mode
and can be written only in supervisor mode. It is
implementation-dependent whether or not this reg-
ister can be read in user mode.

SPRG4 through SPRG7

These 64-bit registers can be written only in super-
visor mode. These registers can be read in super-
visor and user modes.

SPRG8 through SPRG9

These 64-bit registers can be accessed only in
supervisor mode.

The contents of SPRGi can be read using mfspr and
written into SPRGi using mtspr.

PROCID
32                                                    63

Bits Name Description
32:63 PROCID Processor ID

SPRG0
SPRG1

SPRG2
SPRG3
SPRG4

SPRG5
SPRG6
SPRG7

SPRG8
SPRG9 [Category: Embedded.Enhanced Debug]

0                                                            63

USPRG0 was made a 32-bit register and renamed
to VRSAVE; see Book I, Section 5.3.3.

Programming Note
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3.3.4 External Process ID Regis-
ters [Category: Embedded.Exter-
nal PID]
The External Process ID Registers provide capabilities
for loading and storing General Purpose Registers and
performing cache management operations using a sup-
plied context other than the context normally used by
the programming model.

Two SPRs describe the context for loading and storing
using external contexts. The External Process ID Load
Context (EPLC) Register provides the context for Exter-
nal Process ID Load instructions, and the External Pro-
cess ID Store Context (EPSC) Register provides the
context for External Process ID Store instructions. Each
of these registers contains a PR (privilege) bit, an AS
(address space) bit, and a Process ID. Changes to the
EPLC or the EPSC Register require that a context syn-
chronizing operation be performed prior to using any
External Process ID instructions that use these regis-
ters.

External Process ID instructions that use the context
provided by the EPLC register include lbepx, lhepx,
lwepx, ldepx, dcbtep, dcbtstep, dcbfep, dcbstep,
icbiep, lfdepx, evlddepx, lvepx, and lvepxl and those
that use the context provided by the EPSC register
include stbepx, sthepx, stwepx, stdepx, dcbzep,
stfdepx, evstddepx, stvepx, and stvepxl. Instruction
definitions appear in Section 3.4.2.

System software configures the EPLC register to reflect
the Process ID, AS, and PR state from the context that
it wishes to perform loads from and configures the
EPSC register to reflect the Process ID, AS, and PR
state from the context it wishes to perform stores to.
Software then issues External Process ID instructions
to manipulate data as required.

When the processor executes an External Process ID
Load instruction, it uses the context information in the
EPLC Register instead of the normal context with
respect to address translation and storage access con-
trol. EPLCEPR is used in place of MSRPR, EPLCEAS is
used in place of MSRDS, and EPLCEPID is used in
place of any Process ID registers implemented by the
processor. Similarly, when the processor executes an
External Process ID Store instruction, it uses the con-
text information in the EPSC Register instead of the
normal context with respect to address translation and
storage access control. EPSCEPR is used in place of
MSRPR, EPSCEAS is used in place of MSRDS, and
EPSCEPID is used in place of all Process ID registers
implemented by the processor. Translation occurs
using the new substituted values. 

If the TLB lookup is successful, the storage access
control mechanism grants or denies the access using
context information from EPLCEPR or EPSCEPR for
loads and stores respectively. If access is not granted,

a Data Storage interrupt occurs, and the ESREPID bit is
set to 1. If the operation was a Store, the ESRST bit is
also set to 1.

3.3.4.1 External Process ID Load Con-
text (EPLC) Register
The EPLC register contains fields to provide the con-
text for External Process ID load instructions. 

Figure 5. External Process ID Load Context
Register

These bits are interpreted as follows:

Bit Definition

0 External Load Context PR Bit (EPR)
Used in place of MSRPR by the storage
access control mechanism when an External
Process ID Load instruction is executed.

0 Supervisor mode
1 User mode

1 External Load Context AS Bit (EAS)
Used in place of MSRDS for translation when
an External Process ID Load instruction is
executed.

0 Address space 0
1 Address space 1

2:17 Reserved

18:31 External Load Context Process ID Value
(EPID)
Used in place of all Process ID register values
for translation when an external Process ID
Load instruction is executed.

EPLC
32 63
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3.3.4.2 External Process ID Store Con-
text (EPSC) Register
The EPSC register contains fields to provide the con-
text for External Process ID Store instructions. The field
encoding is the same as the EPLC Register. 

Figure 6. External Process ID Store Context
Register

These bits are interpreted as follows:

Bits Definition

0 External Store Context PR Bit (EPR)
Used in place of MSRPR by the storage
access control mechanism when an External
Process ID Store instruction is executed.

0 Supervisor mode
1 User mode

1 External Store Context AS Bit (EAS)
Used in place of MSRDS for translation when
an External Process ID Store instruction is
executed.

0 Address space 0
1 Address space 1

2:17 Reserved

18:31 External Store Context Process ID Value
(EPID)
Used in place of all Process ID register values
for translation when an external PID Store
instruction is executed.

EPSC
32                                                    63
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3.4 Fixed-Point Processor Instructions

3.4.1 Move To/From System Register Instructions
The Move To Special Purpose Register and Move From
Special Purpose Register instructions are described in
Book I, but only at the level available to an application
programmer. For example, no mention is made there of
registers that can be accessed only in supervisor
mode. The descriptions of these instructions given
below extend the descriptions given in Book I, but do
not list Special Purpose Registers that are implementa-
tion-dependent. In the descriptions of these instructions
given below, the “defined” SPR numbers are the SPR

numbers shown in Figure 7 and the implementation-
specific SPR numbers that are implemented, and simi-
larly for “defined” registers.

Extended mnemonics
Extended mnemonics are provided for the mtspr and
mfspr instructions so that they can be coded with the
SPR name as part of the mnemonic rather than as a
numeric operand; see Appendix B.

 SPR Numbers

decimal
SPR1 Register 

Name
Privileged Length

(bits)
Cat2

spr5:9  spr0:4 mtspr mfspr
1 00000 00001 XER no no 64 B
8 00000 01000 LR no no 64 B
9 00000 01001 CTR no no 64 B

22 00000 10110 DEC yes yes 32 B
26 00000 11010 SRR0 yes yes 64 B
27 00000 11011 SRR1 yes yes 64 B
48 00001 10000 PID yes yes 32 E
54 00001 10110 DECAR yes yes 32 E
58 00001 11010 CSRR0 yes yes 64 E
59 00001 11011 CSRR1 yes yes 32 E
61 00001 11101 DEAR yes yes 64 E
62 00001 11110 ESR yes yes 32 E
63 00001 11111 IVPR yes yes 64 E

256 01000 00000 VRSAVE no no 32 E,V
259 01000 00011 SPRG3 - no 64 B

260-263 01000 001xx SPRG[4-7] - no 64 E
268 01000 01100 TB - no 64 B
269 01000 01101 TBU - no 325 B

272-275 01000 100xx SPRG[0-3] yes yes 64 B
276-279 01000 101xx SPRG[4-7] yes yes 64 E

282 01000 11010 EAR yes yes 32 EC
284 01000 11100 TBL yes - 32 B
285 01000 11101 TBU yes - 32 B
286 01000 11110 PIR - yes 32 E
287 01000 11111 PVR - yes 32 B
304 01001 10000 DBSR yes3 yes 32 E
308 01001 10100 DBCR0 yes yes 32 E
309 01001 10101 DBCR1 yes yes 32 E
310 01001 10110 DBCR2 yes yes 32 E
312 01001 11000 IAC1 yes yes 64 E
313 01001 11001 IAC2 yes yes 64 E
314 01001 11010 IAC3 yes yes 64 E
315 01001 11011 IAC4 yes yes 64 E
316 01001 11100 DAC1 yes yes 64 E
317 01001 11101 DAC2 yes yes 64 E
318 01001 11110 DVC1 yes yes 64 E
319 01001 11111 DVC2 yes yes 64 E
336 01010 10000 TSR yes3 yes 32 E
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Figure 7. Embedded SPR List

Move To Special Purpose Register
XFX-form

mtspr SPR,RS 

n � spr5:9 || spr0:4
if length(SPR(n)) = 64 then
  SPR(n) � (RS)
else
  SPR(n) � (RS)32:63

340 01010 10100 TCR yes yes 32 E
400-415 01100 1xxxx IVOR[0-15] yes yes 32 E

512 10000 00000 SPEFSCR no no 32 SPE
526 10000 01110 ATB/ATBL - no 64 ATB
527 10000 01111 ATBU - no 32 ATB
528 10000 10000 IVOR32 yes yes 32 SPE
529 10000 10001 IVOR33 yes yes 32 SPE
530 10000 10010 IVOR34 yes yes 32 SPE
531 10000 10011 IVOR35 yes yes 32 E.PM
532 10000 10100 IVOR36 yes yes 32 E.PC
533 10000 10101 IVOR37 yes yes 32 E.PC
570 10001 11010 MCSRR0 yes yes 64 E
571 10001 11011 MCSRR1 yes yes 32 E
572 10001 11100 MCSR yes yes 64 E
574 10001 11110 DSRR0 yes yes 64 E.ED
575 10001 11111 DSRR1 yes yes 32 E.ED
604 10010 11100 SPRG8 yes yes 64 E
605 10010 11101 SPRG9 yes yes 64 E.ED
624 10011 10000 MAS0 yes yes 32 E.MF
625 10011 10001 MAS1 yes yes 32 E.MF
626 10011 10010 MAS2 yes yes 64 E.MF
627 10011 10011 MAS3 yes yes 32 E.MF
628 10011 10100 MAS4 yes yes 32 E.MF
630 10011 10110 MAS6 yes yes 32 E.MF
633 10011 11001 PID1 yes yes 32 E.MF
634 10011 11010 PID2 yes yes 32 E.MF

688-691 10101 100xx TLB[0-3]CFG yes yes 32 E.MF
702 10101 11110 EPR - yes 32 EXP
924 11100 11100 DCBTRL -4 yes 32 E.CD
925 11100 11101 DCBTRH -4 yes 32 E.CD
926 11100 11110 ICBTRL -5 yes 32 E.CD
927 11100 11111 ICDBTRH -5 yes 32 E.CD
944 11101 10000 MAS7 yes yes 32 E.MF
947 11101 10011 EPLC yes yes 32 E.PD
948 11101 10100 EPSC yes yes 32 E.PD
979 11110 10011 ICBDR -5 yes 32 E.CD
1012 11111 10100 MMUCSR0 yes yes 32 E.MF
1015 11111 10111 MMUCFG yes yes 32 E.MF

- This register is not defined for this instruction.
1 Note that the order of the two 5-bit halves of the SPR number is reversed.
2 See Section 1.3.5 of Book I.
3 This register cannot be directly written to. Instead, bits in the register corre-

sponding to 1 bits in (RS) can be cleared using mtspr SPR,RS.
4 The register can be written by the dcread instruction.
5 The register can be written by the icread instruction.
 
All SPR numbers that are not shown above and are not implementation-
specific are reserved.

decimal
SPR1 Register 

Name
Privileged Length

(bits)
Cat2

spr5:9  spr0:4 mtspr mfspr

31 RS spr 467 /

0 6 11 21 31
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The SPR field denotes a Special Purpose Register,
encoded as shown in Figure 7. The contents of register
RS are placed into the designated Special Purpose
Register. For Special Purpose Registers that are 32
bits long, the low-order 32 bits of RS are placed into the
SPR.

For this instruction, SPRs TBL and TBU are treated as
separate 32-bit registers; setting one leaves the other
unaltered.

spr0=1 if and only if writing the register is privileged.
Execution of this instruction specifying a defined and
privileged register when MSRPR=1 causes a Privileged
Instruction type Program interrupt.

Execution of this instruction specifying an SPR number
that is not defined for the implementation causes either
an Illegal Instruction type Program interrupt or one of
the following.

� if spr0=0: boundedly undefined results
� if spr0=1:

- if MSRPR=1: Privileged Instruction type Pro-
gram interrupt; if MSRPR=0: boundedly unde-
fined results

If the SPR number is set to a value that is shown in
Figure 7 but corresponds to an optional Special Pur-
pose Register that is not provided by the implementa-
tion, the effect of executing this instruction is the same
as if the SPR number were reserved.

Special Registers Altered:
See Figure 7

  

 

For the mtspr and mfspr instructions, the SPR
number coded in assembler language does not
appear directly as a 10-bit binary number in the
instruction. The number coded is split into two 5-bit
halves that are reversed in the instruction, with the
high-order 5 bits appearing in bits 16:20 of the
instruction and the low-order 5 bits in bits 11:15.

For a discussion of software synchronization
requirements when altering certain Special Pur-
pose Registers, see Chapter 10. “Synchronization
Requirements for Context Alterations” on
page 625.

Compiler and Assembler Note

Programming Note
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Move From Special Purpose Register  
XFX-form

mfspr RT,SPR 

n � spr5:9 || spr0:4
if length(SPR(n)) = 64 then
  RT � SPR(n)
else
  RT � 320 || SPR(n)

The SPR field denotes a Special Purpose Register,
encoded as shown in Figure 7. The contents of the
designated Special Purpose Register are placed into
register RT. For Special Purpose Registers that are 32
bits long, the low-order 32 bits of RT receive the con-
tents of the Special Purpose Register and the high-
order 32 bits of RT are set to zero.

spr0=1 if and only if reading the register is privileged.
Execution of this instruction specifying a defined and
privileged register when MSRPR=1 causes a Privileged
Instruction type Program interrupt.

Execution of this instruction specifying an SPR number
that is not defined for the implementation causes either
an Illegal Instruction type Program interrupt or one of
the following.

� if spr0=0: boundedly undefined results
� if spr0=1:

- if MSRPR=1: Privileged Instruction type Pro-
gram interrupt

- if MSRPR=0: boundedly undefined results

If the SPR field contains a value that is shown in
Figure 7 but corresponds to an optional Special Pur-
pose Register that is not provided by the implementa-
tion, the effect of executing this instruction is the same
as if the SPR number were reserved.

Special Registers Altered:
None

  

Move To Device Control Register
XFX-form

mtdcr DCRN,RS 

DCRN � dcr0:4 || dcr5:9
DCR(DCRN) � (RS)

Let DCRN denote a Device Control Register. (The sup-
ported Device Control Registers are implementation-
dependent.)

The contents of register RS are placed into the desig-
nated Device Control Register. For 32-bit Device Con-
trol Registers, the contents of bits 32:63 of (RS) are
placed into the Device Control Register. 

This instruction is privileged. 

Special Registers Altered:
Implementation-dependent.

Move To Device Control Register Indexed 
X-form

mtdcrx RA,RS

DCRN � (RA)
DCR(DCRN) ��(RS)

Let the contents of register RA denote a Device Control
Register. (The supported Device Control Registers
supported are implementation-dependent.)

The contents of register RS are placed into the desig-
nated Device Control Register. For 32-bit Device Con-
trol Registers, the contents of RS32:63 are placed into
the Device Control Register. 

The specification of Device Control Registers using
mtdcrx, mtdcrux (see Book I), and mtdcr is imple-
mentation-dependent. For example, mtdcr 105,r2 and
mtdcrux r1,r2 (where register r1 contains the value 105)
may not produce identical results on an implementa-
tion.

This instruction is privileged. 

Special Registers Altered:
Implementation-dependent.

31 RT spr 339 /
0 6 11 21 31

See the Notes that appear with mtspr.

Note

31 RS dcr 451 /
0 6 11 21 31

31 RS RA  /// 387 /
0 6 11 16 21 31
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Move From Device Control Register  
XFX-form

mfdcr RT,DCRN

DCRN � dcr0:4 || dcr5:9
RT � DCR(DCRN)

Let DCRN denote a Device Control Register. (The sup-
ported Device Control Registers are implementation-
dependent.)

The contents of the designated Device Control Register
are placed into register RT. For 32-bit Device Control
Registers, the contents of the Device Control Register
are placed into bits 32:63 of RT. Bits 0:31 of RT are set
to 0.

This instruction is privileged. 

Special Registers Altered:
Implementation-dependent.

Move From Device Control Register 
Indexed X-form

mfdcrx RT,RA

DCRN � (RA)
RT � DCR(DCRN)

Let the contents of register RA denote a Device Control
Register (the supported Device Control Registers are
implementation-dependent.)

The contents of the designated Device Control Register
are placed into register RT. For 32-bit Device Control
Registers, the contents of bits 32:63 of the designated
Device Control Register are placed into RT. Bits 0:31 of
RT are set to 0.

The specification of Device Control Registers using
mfdcrx and mfdcrux (see Book I) compared to the
specification of Device Control Registers using mfdcr
is implementation-dependent. For example, mfdcr
r2,105 and mfdcrx r2,r1 (where register r1 contains the
value 105) may not produce identical results on an
implementation or between implementations. Also,
accessing privileged Device Control Registers with
mfdcrux when the processor is in supervisor mode is
implementation-dependent.

This instruction is privileged. 

Special Registers Altered:
Implementation-dependent.

Move To Machine State Register  X-form

mtmsr RS

newmsr � (RS)32:63 
if MSRCM = 0 & newmsrCM = 1 then NIA0:31 � 0 
MSR � newmsr

The contents of register RS32:63 are placed into the
MSR. If the processor is changing from 32-bit mode to
64-bit mode, the next instruction is fetched from
320||NIA32:63.

This instruction is privileged and execution synchroniz-
ing.

In addition, alterations to the EE or CE bits are effective
as soon as the instruction completes. Thus if MSREE=0
and an External interrupt is pending, executing an
mtmsr that sets MSREE to 1 will cause the External
interrupt to be taken before the next instruction is exe-
cuted, if no higher priority exception exists. Likewise, if
MSRCE=0 and a Critical Input interrupt is pending, exe-
cuting an mtmsr that sets MSRCE to 1 will cause the
Critical Input interrupt to be taken before the next
instruction is executed if no higher priority exception
exists. (See Section 5.6 on page 574).

Special Registers Altered:
MSR

  

Move From Machine State Register
X-form  

mfmsr RT 

RT � 320 || MSR

The contents of the MSR are placed into bits 32:63 of
register RT and bits 0:31 of RT are set to 0.

This instruction is privileged.

Special Registers Altered:
None

31 RT dcr 323 /
0 6 11 21 31

31 RT RA  /// 259 /
0 6 11 16 21 31

31 RS ///  /// 146 /
0 6 11 16 21 31

For a discussion of software synchronization
requirements when altering certain MSR bits
please refer to Chapter 10.

31 RT ///  /// 83 /
0 6 11 16 21 31

Programming Note
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Write MSR External Enable X-form

wrtee RS

MSREE � (RS)48

The content of (RS)48 is placed into MSREE.

Alteration of the MSREE bit is effective as soon as the
instruction completes. Thus if MSREE=0 and an Exter-
nal interrupt is pending, executing a wrtee instruction
that sets MSREE to 1 will cause the External interrupt to
occur before the next instruction is executed, if no
higher priority exception exists (Section 5.9, “Exception
Priorities” on page 591).

This instruction is privileged. 

Special Registers Altered:
MSR

Write MSR External Enable Immediate
X-form  

wrteei

MSREE � E

The value specified in the E field is placed into MSREE.

Alteration of the MSREE bit is effective as soon as the
instruction completes. Thus if MSREE=0 and an Exter-
nal interrupt is pending, executing a wrtee instruction
that sets MSREE to 1 will cause the External interrupt to
occur before the next instruction is executed, if no
higher priority exception exists (Section 5.9, “Exception
Priorities” on page 591).

This instruction is privileged. 

Special Registers Altered:
MSR

  

31 RS ///  /// 131 /
0 6 11 16 21 31 31 /// /// E  /// 163 /

0 6 11 16 17 21 31

wrtee and wrteei are used to provide atomic
update of MSREE. Typical usage is:
mfmsr Rn #save EE in (Rn)48
wrteei 0 #turn off EE
mfmsr Rn #save EE in (Rn)48
wrteei 0 #turn off EE
  : : :
  : #code with EE disabled
wrtee Rn   #restore EE without altering

     #other MSR bits that might
     #have changed

Programming Note
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3.4.2 External Process ID Instructions [Category: Embedded.External PID]
External Process ID instructions provide capabilities for
loading and storing General Purpose Registers and
performing cache management operations using a sup-
plied context other than the context normally used by
translation.

The EPLC and EPSC registers provide external con-
texts for performing loads and stores. The EPLC and
the EPSC registers are described in Section 3.3.4.

If an Alignment interrupt, Data Storage interrupt, or a
Data TLB Error interrupt, occurs while attempting to
execute an External Process ID instruction, ESREPID is
set to 1 indicating that the instruction causing the inter-
rupt was an External Process ID instruction; any other
applicable ESR bits are also set.

Load Byte by External Process ID Indexed
X-form

lbepx RT,RA,RB 

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
RT � 560 || MEM(EA,1)

Let the effective address (EA) be the sum (RA|0)+(RB).
The byte in storage addressed by EA is loaded into
RT56:63. RT0:55 are set to 0.

For lbepx, the normal translation mechanism is not
used. The contents of the EPLC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of all Process ID regis-
ters.

This instruction is privileged.

Special Registers Altered:
None

Load Halfword by External Process ID 
Indexed X-form

lhepx RT,RA,RB 

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
RT � 480 || MEM(EA,2)

Let the effective address (EA) be the sum (RA|0)+(RB).
The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are set to 0.

For lhepx, the normal translation mechanism is not
used. The contents of the EPLC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of all Process ID regis-
ters.

This instruction is privileged.

Special Registers Altered:
None

31 RT RA RB 95 /
0 6 11 16 21 31

This instruction behaves identically to a lbzx
instruction except for using the EPLC register to
provide the translation context.

Programming Note

31 RT RA RB 287 /
0 6 11 16 21 31

This instruction behaves identically to a lhzx
instruction except for using the EPLC register to
provide the translation context.

Programming Note
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Load Word by External Process ID 
Indexed X-form

lwepx RT,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
RT � 320 || MEM(EA,4)

Let the effective address (EA) be the sum (RA|0)+(RB).
The word in storage addressed by EA is loaded into
RT32:63. RT0:31 are set to 0.

For lwepx, the normal translation mechanism is not
used. The contents of the EPLC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of all Process ID regis-
ters.

This instruction is privileged.

Special Registers Altered:
None

Load Doubleword by External Process ID 
Indexed X-form

ldepx RT,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
RT � MEM(EA,8)

Let the effective address (EA) be the sum (RA|0)+(RB).
The doubleword in storage addressed by EA is loaded
into RT.

For ldepx, the normal translation mechanism is not
used. The contents of the EPLC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of all Process ID regis-
ters.

This instruction is privileged.

Corequisite Categories: 
64-Bit

Special Registers Altered:
None

31 RT RA RB 31 /
0 6 11 16 21 31

This instruction behaves identically to a lwzx
instruction except for using the EPLC register to
provide the translation context.

Programming Note

31 RT RA RB 29 /
0 6 11 16 21 31

This instruction behaves identically to a ldx instruc-
tion except for using the EPLC register to provide
the translation context.

Programming Note
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Store Byte by External Process ID 
Indexed X-form

stbepx RS,RA,RB 

if RA = 0 then b � 0
else          b � (RA)
EA � b + (RB)
MEM(EA,1) � (RS)56:63

Let the effective address (EA) be the sum (RA|0)+(RB).
(RS)56:63 are stored into the byte in storage addressed
by EA.

For stbepx, the normal translation mechanism is not
used. The contents of the EPSC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPSCEPR is used in place of MSRPR
EPSCEAS is used in place of MSRDS
EPSCEPID is used in place of all Process ID regis-
ters.

This instruction is privileged.

Special Registers Altered:
None

Store Halfword by External Process ID 
Indexed X-form

sthepx RS,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
MEM(EA,2) � (RS)48:63

Let the effective address (EA) be the sum (RA|0)+(RB).
(RS)48:63 are stored into the halfword in storage
addressed by EA.

For sthepx, the normal translation mechanism is not
used. The contents of the EPSC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPSCEPR is used in place of MSRPR
EPSCEAS is used in place of MSRDS
EPSCEPID is used in place of all Process ID regis-
ters.

This instruction is privileged.

Special Registers Altered:
None

31 RS RA RB 223 /
0 6 11 16 21 31

This instruction behaves identically to a stbx
instruction except for using the EPSC register to
provide the translation context.

Programming Note

31 RS RA RB 415 /
0 6 11 16 21 31

This instruction behaves identically to a sthx
instruction except for using the EPSC register to
provide the translation context.

Programming Note
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Store Word by External Process ID 
Indexed X-form

stwepx RS,RA,RB 

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
MEM(EA,4) � (RS)32:63

Let the effective address (EA) be the sum (RA|0)+(RB).
(RS)32:63 are stored into the word in storage addressed
by EA.

For stwepx, the normal translation mechanism is not
used. The contents of the EPSC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPSCEPR is used in place of MSRPR
EPSCEAS is used in place of MSRDS
EPSCEPID is used in place of all Process ID regis-
ters.

This instruction is privileged.

Special Registers Altered:
None

Store Doubleword by External Process ID 
Indexed X-form

stdepx RS,RA,RB 

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
MEM(EA,8) � (RS)

Let the effective address (EA) be the sum (RA|0)+(RB).
(RS) is stored into the doubleword in storage
addressed by EA.

For stdepx, the normal translation mechanism is not
used. The contents of the EPSC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPSCEPR is used in place of MSRPR
EPSCEAS is used in place of MSRDS
EPSCEPID is used in place of all Process ID regis-
ters.

This instruction is privileged.

Corequisite Categories: 
64-Bit

Special Registers Altered:
None

31 RS RA RB 159 /
0 6 11 16 21 31

This instruction behaves identically to a stwx
instruction except for using the EPSC register to
provide the translation context.

Programming Note

31 RS RA RB 157 /
0 6 11 16 21 31

This instruction behaves identically to a stdx
instruction except for using the EPSC register to
provide the translation context.

Programming Note
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Data Cache Block Store by External PID
X-form

dcbstep RA,RB  

Let the effective address (EA) be the sum (RA|0)+(RB).

If the block containing the byte addressed by EA is in
storage that is Memory Coherence Required, a block
containing the byte addressed by EA is in the data
cache of any processor, and any locations in the block
are considered to be modified there, then those loca-
tions are written to main storage. Additional locations in
the block may be written to main storage. The block
ceases to be considered modified in that data cache.

If the block containing the byte addressed by EA is in
storage that is not Memory Coherence Required and
the block is in the data cache of this processor, and any
locations in the block are considered to be modified
there, those locations are written to main storage. Addi-
tional locations in the block may be written to main stor-
age, and the block ceases to be considered modified in
that data cache.

The function of this instruction is independent of
whether the block containing the byte addressed by EA
is in storage that is Write Through Required or Caching
Inhibited.

The instruction is treated as a Load with respect to
translation, memory protection, and is treated as a
Write with respect to debug events.

This instruction is privileged.

For dcbstep, the normal translation mechanism is not
used. The contents of the EPLC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of all Process ID regis-
ters

Special Registers Altered: 
None

Data Cache Block Touch by External PID 
 X-form

dcbtep TH,RA,RB 

Let the effective address (EA) be the sum (RA|0)+(RB).

The dcbtep instruction provides a hint that describes a
block or data stream, or indicates the expected use
thereof. A hint that the program will probably soon load
from a given storage location is ignored if the location is
Caching Inhibited or Guarded.

The only operation that is “caused” by the dcbtep
instruction is the providing of the hint. The actions (if
any) taken by the processor in response to the hint are
not considered to be “caused by” or “associated with”
the dcbtep instruction (e.g., dcbtep is considered not
to cause any data accesses). No means are provided
by which software can synchronize these actions with
the execution of the instruction stream. For example,
these actions are not ordered by the memory barrier
created by a sync instruction.

The dcbtep instruction may complete before the opera-
tion it causes has been performed.

The nature of the hint depends, in part, on the value of
the TH field, as specified in the dcbt instruction in
Section 3.2.2 of Book II.

The instruction is treated as a Load, except that no
interrupt occurs if a protection violation occurs.

The instruction is privileged.

The normal address translation mechanism is not used.
The contents of the EPLC register are used to provide
the context in which translation occurs. The following
substitutions are made for just the translation and
access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of all Process ID regis-
ters.

Special Registers Altered:
    None

Extended Mnemonics:

Extended mnemonics are provided for the Data Cache
Block Touch by External PID instruction so that it can
be coded with the TH value as the last operand for all
categories. .

31 /// RA RB 63 /
0 6 11 16 21 31

This instruction behaves identically to a dcbst
instruction except for using the EPLC register to
provide the translation context.

Programming Note

31 / TH RA RB 319 /
0 6 7 11 16 21 31

Extended: Equivalent to:
dcbtctep RA,RB,TH dcbtep for TH values of 0b0000 - 

0b0111; 
other TH values are invalid.
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Data Cache Block Flush by External PID
X-form

dcbfep RA,RB 

Let the effective address (EA) be the sum (RA|0)+(RB).

If the block containing the byte addressed by EA is in
storage that is Memory Coherence Required, a block
containing the byte addressed by EA is in the data
cache of any processor, and any locations in the block
are considered to be modified there, then those loca-
tions are written to main storage. Additional locations in
the block may also be written to main storage. The
block is invalidated in the data cache of all processors.

If the block containing the byte addressed by EA is in
storage that is not Memory Coherence Required, a
block containing the byte addressed by EA is in the
data cache of this processor, and any locations in the
block are considered to be modified there, then those
locations are written to main storage. Additional loca-
tions in the block may also be written to main storage.
The block is invalidated in the data cache of this pro-
cessor.

The function of this instruction is independent of
whether the block containing the byte addressed by EA
is in storage that is Write Through Required or Caching
Inhibited.

The instruction is treated as a Load with respect to
translation, memory protection, and is treated as a
Write with respect to debug events.

This instruction is privileged.

The normal translation mechanism is not used. The
contents of the EPLC register are used to provide the
context in which translation occurs. The following sub-
stitutions are made for just the translation and access
control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of all Process ID regis-
ters

Special Registers Altered: 
None

dcbtdsep RA,RB,TH dcbtep for TH values of 0b0000 
or 0b1000 - 0b1010;

 other TH values are invalid.

This instruction behaves identically to a dcbt
instruction except for using the EPLC register to
provide the translation context.

Extended: Equivalent to:

Programming Note 31 /// RA RB 127 /

0 6 11 16 21 31

This instruction behaves identically to a dcbf
instruction except for using the EPLC register to
provide the translation context.

Programming Note
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Data Cache Block Touch for Store by 
External PID  X-form 

dcbtstep TH,RA,RB 

Let the effective address (EA) be the sum (RA|0)+(RB).

The dcbtstep instruction provides a hint that the pro-
gram will probably soon store to the block containing
the byte addressed by EA. If the Cache Specification
category is supported, the nature of the hint depends
on the value of the TH field, as specified in
Section 3.2.2 of Book II. If the Cache Specification cat-
egory is not supported, the TH field is treated as a
reserved field.

If the block is in a storage location that is Caching Inhib-
ited or Guarded, then the hint is ignored.

The only operation that is “caused” by the dcbtstep
instruction is the providing of the hint. The actions (if
any) taken by the processor in response to the hint are
not considered to be “caused by” or “associated with”
the dcbtstep instruction (e.g., dcbtstep is considered
not to cause any data accesses). No means are pro-
vided by which software can synchronize these actions
with the execution of the instruction stream. For exam-
ple, these actions are not ordered by the memory bar-
rier created by a sync instruction.

The dcbtstep instruction may complete before the
operation it causes has been performed.

The instruction is treated as a Load, except that no
interrupt occurs if a protection violation occurs.

The instruction is privileged.

The normal address translation mechanism is not used.
The contents of the EPLC register are used to provide
the context in which translation occurs. The following
substitutions are made for just the translation and
access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of all Process ID regis-
ters.

Special Registers Altered:
    None

Extended Mnemonics:

Extended mnemonics are provided for the Data Cache
Block Touch for Store by External PID instruction so

that it can be coded with the TH value as the last oper-
and for all categories. .

31 / TH RA RB 255 /
0 6 7 11 16 21 31

Extended: Equivalent to:
dcbtstctep RA,RB,TH dcbtstep for TH values of 

0b0000 - 0b0111; 
other TH values are invalid.

This instruction behaves identically to a dcbtst
instruction except for using the EPLC register to
provide the translation context.
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Instruction Cache Block Invalidate by 
External PID X-form

icbiep RA,RB 

Let the effective address (EA) be the sum (RA|0)+(RB).

If the block containing the byte addressed by EA is in
storage that is Memory Coherence Required and a
block containing the byte addressed by EA is in the
instruction cache of any processor, the block is invali-
dated in those instruction caches.

If the block containing the byte addressed by EA is in
storage that is not Memory Coherence Required and a
block containing the byte addressed by EA is in the
instruction cache of this processor, the block is invali-
dated in that instruction cache.

The function of this instruction is independent of
whether the block containing the byte addressed by EA
is in storage that is Write Through Required or Caching
Inhibited.

The instruction is treated as a Load.

This instruction is privileged.

For icbiep, the normal translation mechanism is not
used. The contents of the EPLC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of all Process ID regis-
ters

Special Registers Altered: 
None

Data Cache Block set to Zero by External 
PID  X-form 

dcbzep RA,RB 

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
n � block size (bytes)
m � log2(n)
ea � EA0:63-m || 

m0
MEM(ea, n) � n0x00

Let the effective address (EA) be the sum (RA|0)+(RB).

All bytes in the block containing the byte addressed by
EA are set to zero.

This instruction is treated as a Store.

This instruction is privileged.

The normal translation mechanism is not used. The
contents of the EPSC register are used to provide the
context in which translation occurs. The following sub-
stitutions are made for just the translation and access
control process:

EPSCEPR is used in place of MSRPR
EPSCEAS is used in place of MSRDS
EPSCEPID is used in place of all Process ID regis-
ters

Special Registers Altered:
None

 

31 /// RA RB 991 /
0 6 11 16 21 31

This instruction behaves identically to an icbi
instruction except for using the EPLC register to
provide the translation context.

Programming Note

31 /// RA RB 1023 /
0 6 11 16 21 31

See the Programming Notes for the dcbz instruc-
tion.

This instruction behaves identically to a dcbz
instruction except for using the EPSC register to
provide the translation context.

Programming Note
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Load Floating-Point Double by External 
Process ID Indexed X-form

lfdepx FRT,RA,RB 

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
FRT � MEM(EA,8)

Let the effective address (EA) be the sum (RA|0)+(RB).
The doubleword in storage addressed by EA is loaded
into FRT.

For lfdepx, the normal translation mechanism is not
used. The contents of the EPLC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of all Process ID regis-
ters

This instruction is privileged.

An attempt to execute lfdepx while MSRFP=0 will
cause a Floating-Point Unavailable interrupt.

Corequisite Categories: 
Floating-Point

Special Registers Altered: 
None

Store Floating-Point Double by External 
Process ID Indexed X-form

stfdepx FRS,RA,RB 

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
MEM(EA,8) � (FRS)

Let the effective address (EA) be the sum (RA|0)+(RB).
(FRS) is stored into the doubleword in storage
addressed by EA.

For stfdepx, the normal translation mechanism is not
used. The contents of the EPSC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPSCEPR is used in place of MSRPR
EPSCEAS is used in place of MSRDS
EPSCEPID is used in place of all Process ID regis-
ters

This instruction is privileged.

An attempt to execute stfdepx while MSRFP=0 will
cause a Floating-Point Unavailable interrupt.

Corequisite Categories: 
Floating-Point

Special Registers Altered: 
None

31 FRT RA RB 607 /
0 6 11 16 21 31

This instruction behaves identically to a lfdx
instruction except for using the EPLC register to
provide the translation context.

Programming Note

31 FRS RA RB 735 /
0 6 11 16 21 31

This instruction behaves identically to a stfdx
instruction except for using the EPSC register to
provide the translation context.

Programming Note
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Vector Load Doubleword into Doubleword 
by External Process ID Indexed EVX-form

evlddepx RT,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
RT � MEM(EA,8)

Let the effective address (EA) be the sum (RA|0)+(RB).
The doubleword in storage addressed by EA is loaded
into RT.

For evlddepx, the normal translation mechanism is not
used. The contents of the EPLC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of all Process ID regis-
ters

This instruction is privileged.

An attempt to execute evlddepx while MSRSPV=0 will
cause an SPE Unavailable interrupt.

Corequisite Categories: 
Signal Processing Engine

Special Registers Altered: 
None

Vector Store Doubleword into 
Doubleword by External Process ID 
Indexed EVX-form

evstddepx RS,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
MEM(EA,8) � (RS)

Let the effective address (EA) be the sum (RA|0)+(RB).
(RS) is stored into the doubleword in storage
addressed by EA.

For evstddepx, the normal translation mechanism is
not used. The contents of the EPSC register are used
to provide the context in which translation occurs. The
following substitutions are made for just the translation
and access control process:

EPSCEPR is used in place of MSRPR
EPSCEAS is used in place of MSRDS
EPSCEPID is used in place of all Process ID regis-
ters

This instruction is privileged.

An attempt to execute evstddepx while MSRSPV=0 will
cause an SPE Unavailable interrupt.

Corequisite Categories: 
Signal Processing Engine

Special Registers Altered: 
None

31 RT RA RB 285
0 6 11 16 21                                                31

This instruction behaves identically to a evlddx
instruction except for using the EPLC register to
provide the translation context.

Programming Note

31 RS RA RB 413
0 6 11 16 21                                                31

This instruction behaves identically to a evstddx
instruction except for using the EPSC register to
provide the translation context.

Programming Note
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Load Vector by External Process ID 
Indexed X-form

lvepx VRT,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
VRT � MEM(EA & 0xFFFF_FFFF_FFFF_FFF0, 16)

Let the effective address (EA) be the sum (RA|0)+(RB).
The quadword in storage addressed by the result of EA
ANDed with 0xFFFF_FFFF_FFFF_FFF0 is loaded into
VRT. 

For lvepx, the normal translation mechanism is not
used. The contents of the EPLC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of all Process ID regis-
ters

This instruction is privileged.

An attempt to execute lvepx while MSRSPV=0 will
cause a Vector Unavailable interrupt.

Corequisite Categories: 
Vector

Special Registers Altered: 
None

Load Vector by External Process ID
Indexed LRU X-form

lvepxl VRT,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
VRT � MEM(EA & 0xFFFF_FFFF_FFFF_FFF0, 16)
mark_as_not_likely_to_be_needed_again_anytime_soon
( EA )

Let the effective address (EA) be the sum (RA|0)+(RB).
The quadword in storage addressed by the result of EA
ANDed with 0xFFFF_FFFF_FFFF_FFF0 is loaded into
VRT. 

lvepxl provides a hint that the quadword in storage
addressed by EA will probably not be needed again by
the program in the near future.

For lvepxl, the normal translation mechanism is not
used. The contents of the EPLC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPLCEPR is used in place of MSRPR
EPLCEAS is used in place of MSRDS
EPLCEPID is used in place of all Process ID regis-
ters

This instruction is privileged.

An attempt to execute lvepxl while MSRSPV=0 will
cause a Vector Unavailable interrupt.

Corequisite Categories: 
Vector

Special Registers Altered: 
None

 

31 VRT RA RB 295 /
0 6 11 16 21 31

This instruction behaves identically to a lvx instruc-
tion except for using the EPLC register to provide
the translation context.

Programming Note

31 VRT RA RB 263 /
0 6 11 16 21 31

See the Programming Notes for the lvxl instruction
in Section 5.7.2 of Book I.

This instruction behaves identically to a lvxl
instruction except for using the EPLC register to
provide the translation context.

Programming Note

Programming Note
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Store Vector by External Process ID 
Indexed X-form

stvepx VRS,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
MEM(EA & 0xFFFF_FFFF_FFFF_FFF0, 16) � (VRS)

Let the effective address (EA) be the sum (RA|0)+(RB).
The contents of VRS are stored into the quadword in
storage addressed by the result of EA ANDed with
0xFFFF_FFFF_FFFF_FFF0. 

For stvepx, the normal translation mechanism is not
used. The contents of the EPSC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPSCEPR is used in place of MSRPR
EPSCEAS is used in place of MSRDS
EPSCEPID is used in place of all Process ID regis-
ters

This instruction is privileged.

An attempt to execute stvepx while MSRSPV=0 will
cause a Vector Unavailable interrupt.

Corequisite Categories: 
Vector

Special Registers Altered: 
None

Store Vector by External Process ID 
Indexed LRU X-form

stvepxl VRS,RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
MEM(EA & 0xFFFF_FFFF_FFFF_FFF0, 16) � (VRS)
mark_as_not_likely_to_be_needed_again_anytime_soon
(EA)

Let the effective address (EA) be the sum (RA|0)+(RB).
The contents of VRS are stored into the quadword in
storage addressed by the result of EA ANDed with
0xFFFF_FFFF_FFFF_FFF0. 

The stvepxl instruction provides a hint that the quad-
word addressed by EA will probably not be needed
again by the program in the near future.

For stvepxl, the normal translation mechanism is not
used. The contents of the EPSC register are used to
provide the context in which translation occurs. The fol-
lowing substitutions are made for just the translation
and access control process:

EPSCEPR is used in place of MSRPR
EPSCEAS is used in place of MSRDS
EPSCEPID is used in place of all Process ID regis-
ters

This instruction is privileged.

An attempt to execute stvepxl while MSRSPV=0 will
cause a Vector Unavailable interrupt.

Corequisite Categories: 
Vector

Special Registers Altered: 
None

 

31 VRS RA RB 807 /
0 6 11 16 21 31

This instruction behaves identically to a stvx
instruction except for using the EPSC register to
provide the translation context.

Programming Note

31 VRS RA RB 775 /
0 6 11 16 21 31

See the Programming Notes for the lvxl instruction
in Section 5.7.2 of Book I.

This instruction behaves identically to a stvxl
instruction except for using the EPSC register to
provide the translation context.

Programming Note

Programming Note
Power ISA™ -- Book III-E540



   Version 2.04
Chapter 4.  Storage Control

4.1 Storage Addressing  . . . . . . . . . . . 541
4.2 Storage Exceptions  . . . . . . . . . . . 541
4.3 Instruction Fetch  . . . . . . . . . . . . . 542
4.3.1 Implicit Branch . . . . . . . . . . . . . . 542
4.3.2 Address Wrapping Combined with 

Changing MSR Bit CM . . . . . . . . . . . . 542
4.4 Data Access . . . . . . . . . . . . . . . . . 542
4.5 Performing Operations 

Out-of-Order . . . . . . . . . . . . . . . . . . . . 542
4.6 Invalid Real Address. . . . . . . . . . . 543
4.7 Storage Control. . . . . . . . . . . . . . . 543
4.7.1 Storage Control Registers . . . . . 543
4.7.1.1 Process ID Register . . . . . . . . 543
4.7.1.2 Translation Lookaside Buffer  . 543
4.7.2 Page Identification . . . . . . . . . . . 545
4.7.3 Address Translation . . . . . . . . . . 548
4.7.4 Storage Access Control . . . . . . . 549
4.7.4.1 Execute Access  . . . . . . . . . . . 549
4.7.4.2 Write Access. . . . . . . . . . . . . . 549
4.7.4.3 Read Access  . . . . . . . . . . . . . 549
4.7.4.4 Storage Access Control Applied to 

Cache Management Instructions  . . . . 549
4.7.4.5 Storage Access Control Applied to 

String Instructions . . . . . . . . . . . . . . . . 550
4.7.5 TLB Management  . . . . . . . . . . . 550

4.8 Storage Control Attributes . . . . . . . 551
4.8.1 Guarded Storage . . . . . . . . . . . . 551
4.8.1.1 Out-of-Order Accesses to Guarded 

Storage  . . . . . . . . . . . . . . . . . . . . . . . . 552
4.8.2 User-Definable . . . . . . . . . . . . . . 552
4.8.3 Storage Control Bits . . . . . . . . . . 552
4.8.3.1 Storage Control Bit Restrictions  . . 

552
4.8.3.2 Altering the Storage Control Bits. . 

553
4.9 Storage Control Instructions . . . . . 554
4.9.1 Cache Management Instructions 554
4.9.2  Cache Locking [Category: Embed-

ded Cache Locking] . . . . . . . . . . . . . . . 555
4.9.2.1 Lock Setting and Clearing . . . . 555
4.9.2.2 Error Conditions  . . . . . . . . . . . 555
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4.1 Storage Addressing
A program references storage using the effective
address computed by the processor when it executes a
Load, Store, Branch, or Cache Management instruc-
tion, or when it fetches the next sequential instruction.
The effective address is translated to a real address
according to procedures described in Section 4.7.2 and
in Section 4.7.3. The real address that results from the
respective translations is used to access main storage. 

For a complete discussion of storage addressing and
effective address calculation, see Section 1.10 of Book
I.

4.2 Storage Exceptions  
A storage exception results when the sequential execu-
tion model requires that a storage access be performed
but the access is not permitted (e.g., is not permitted by
the storage protection mechanism), the access cannot
be performed because the effective address cannot be
translated to a real address, or the access matches
some tracking mechanism criteria (e.g., Data Address
Breakpoint). 

In certain cases a storage exception may result in the
“restart” of (re-execution of at least part of) a Load or
Store instruction. See Section 2.1 of Book II and
Section 5.7 on page 588 in this Book. 
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4.3 Instruction Fetch 
The effective address for an instruction fetch is pro-
cessed under control of MSRIS. The Address Transla-
tion mechanism is described beginning in
Section 4.7.2.

4.3.1 Implicit Branch
Explicitly altering certain MSR bits (using mtmsr), or
explicitly altering TLB entries, certain System Registers
and possibly other implementation-dependent regis-
ters, may have the side effect of changing the
addresses, effective or real, from which the current
instruction stream is being fetched. This side effect is
called an implicit branch. For example, an mtmsr
instruction that changes the value of MSRCM may
change the real address from which the current instruc-
tion stream is being fetched. The MSR bits and System
Registers (excluding implementation-dependent regis-
ters) for which alteration can cause an implicit branch
are indicated as such in Chapter 10. “Synchronization
Requirements for Context Alterations” on page 625.
Implicit branches are not supported by the Power ISA.
If an implicit branch occurs, the results are boundedly
undefined.

4.3.2 Address Wrapping Com-
bined with Changing MSR Bit CM
If the current instruction is at effective address 232-4
and is an mtmsr instruction that changes the contents
of MSRCM, the effective address of the next sequential
instruction is undefined.

  

4.4 Data Access
The effective address for a data access is processed
under control of MSRDS. The Address Translation
mechanism is described beginning in Section 4.7.2.

Storage control attributes may also affect instruction
fetch.

4.5 Performing Operations 
Out-of-Order
An operation is said to be performed “in-order” if, at the
time that it is performed, it is known to be required by

the sequential execution model.  An operation is said to
be performed “out-of-order” if, at the time that it is per-
formed, it is not known to be required by the sequential
execution model.

Operations are performed out-of-order by the proces-
sor on the expectation that the results will be needed by
an instruction that will be required by the sequential
execution model. Whether the results are really needed
is contingent on everything that might divert the control
flow away from the instruction, such as Branch, Trap,
System Call, and Return From Interrupt instructions,
and interrupts, and on everything that might change the
context in which the instruction is executed.

Typically, the processor performs operations out-of-
order when it has resources that would otherwise be
idle, so the operation incurs little or no cost.  If subse-
quent events such as branches or interrupts indicate
that the operation would not have been performed in
the sequential execution model, the processor aban-
dons any results of the operation (except as described
below).

In the remainder of this section, including its subsec-
tions, “Load instruction” includes the Cache Manage-
ment and other instructions that are stated in the
instruction descriptions to be “treated as a Load”, and
similarly for “Store instruction”.

A data access that is performed out-of-order may corre-
spond to an arbitrary Load or Store instruction (e.g., a
Load or Store instruction that is not in the instruction
stream being executed).  Similarly, an instruction fetch
that is performed out-of-order may be for an arbitrary
instruction (e.g., the aligned word at an arbitrary loca-
tion in instruction storage).

Most operations can be performed out-of-order, as long
as the machine appears to follow the sequential execu-
tion model.  Certain out-of-order operations are
restricted, as follows.

� Stores

Stores are not performed out-of-order (even if the
Store instructions that caused them were executed
out-of-order).

� Accessing Guarded Storage

The restrictions for this case are given in Section
4.8.1.1.

The only permitted side effects of performing an opera-
tion out-of-order are the following.

� A Machine Check that could be caused by in-order
execution may occur out-of-order.

� Non-Guarded storage locations that could be
fetched into a cache by in-order fetching or execu-
tion of an arbitrary instruction may be fetched out-
of-order into that cache.

In the case described in the preceding paragraph, if
an interrupt occurs before the next sequential
instruction is executed, the contents of SRR0,
CSRR0, or MCSRR0, as appropriate to the inter-
rupt, are undefined.

Programming Note
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4.6 Invalid Real Address
A storage access (including an access that is per-
formed out-of-order; see Section 4.5) may cause a
Machine Check if the accessed storage location con-
tains an uncorrectable error or does not exist. See
Section 5.6.2 on page 576.

4.7 Storage Control 
This section describes the address translation facility,
access control, and storage control attributes.

Demand-paged virtual memory is supported, as well as
a variety of other management schemes that depend
on precise control of effective-to-real address transla-
tion and flexible memory protection. Translation misses
and protection faults cause precise exceptions. Suffi-
cient information is available to correct the fault and
restart the faulting instruction.

The effective address space is divided into pages. The
page represents the granularity of effective address
translation, access control, and storage control
attributes. Up to sixteen page sizes (1KB, 4KB, 16KB,
64KB, 256KB, 1MB, 4MB, 16MB, 64MB, 256MB, 1GB,
4GB, 16GB, 64GB, 256GB, 1TB) may be simulta-
neously supported. In order for an effective to real
translation to exist, a valid entry for the page containing
the effective address must be in the Translation Looka-
side Buffer (TLB). Addresses for which no TLB entry
exists cause TLB Miss exceptions.

4.7.1 Storage Control Registers
In addition to the registers described below, the
Machine State Register provides the IS and DS bits,
that specify which of the two address spaces the
respective instruction or data storage accesses are
directed towards. MSRPR bit is also used by the stor-
age access control mechanism.

4.7.1.1 Process ID Register
The Process ID Register (PID) is a 32-bit register. Pro-
cess ID Register bits are numbered 32 (most-signifi-
cant bit) to 63 (least-significant bit). The Process ID
Register provides a value that is used to construct a vir-
tual address for accessing storage.

The Process ID Register can be read using mfspr and
can be written using mtspr. An implementation may opt
to implement only the least-significant n bits of the Pro-
cess ID Register, where 0 ≤ n ≤ 32, and n must be the
same as the number of implemented bits in the TID
field of the TLB entry. The most-significant 32–n bits of
the Process ID Register are treated as reserved.

Some implementations may support more than one
Process ID Register. See User’s Manual for the imple-
mentation.

4.7.1.2 Translation Lookaside Buffer
The Translation Lookaside Buffer (TLB) is the hardware
resource that controls translation, protection, and stor-
age control attributes. The organization of the TLB (e.g.
unified versus separate instruction and data, hierar-
chies, associativity, number of entries, etc.) is imple-
mentation-dependent. Thus, the software for updating
the TLB is also implementation-dependent. For the pur-
poses of this discussion, a unified TLB organization is
assumed. The differences for an implementation with
separate instruction and data TLBs are for the most
part obvious (e.g. separate instructions or separate
index ranges for reading, writing, searching, and invali-
dating each TLB). For details on how to synchronize
TLB updates with instruction execution see Chapter 10.

Maintenance of TLB entries is under software control.
System software determines TLB entry replacement
strategy and the format and use of any page state infor-
mation. The TLB entry contains all the information
required to identify the page, to specify the translation,
to specify access controls, and to specify the storage
control attributes. The format of the TLB entry is imple-
mentation-dependent.

While the TLB is managed by software, an implementa-
tion may include partial or full hardware assist for TLB
management (e.g. support of the Server environment’s
virtual memory architecture). However, such implemen-
tations should be able to disable such support with
implementation-dependent software or hardware con-
figuration mechanisms.

A TLB entry is written by copying information from a
GPR or other implementation-dependent source, using
a series of tlbwe instructions (see page 562). A TLB
entry is read by copying information to a GPR or other
implementation-dependent target, using a series of
tlbre instructions (see page 560). Software can also
search for specific TLB entries using the tlbsx instruc-
tion (see page 561). Writing, reading and searching the
TLB is implementation-dependent.

Each TLB entry describes a page that is eligible for
translation and access controls. Fields in the TLB entry
fall into four categories:

� Page identification fields (information required to
identify the page to the hardware translation mech-
anism).

� Address translation fields
� Access control fields
� Storage attribute fields

While the fields in the TLB entry are required, no partic-
ular TLB entry format is formally specified. The tlbre
and tlbwe instructions provide the ability to read or
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write portions of individual entries. Below are shown
the field definitions for the TLB entry.

Page Identification Fields
Name Description
EPN Effective Page Number (up to 54 bits)

Bits 0:n–1 of the EPN field are compared to 
bits 0:n–1 of the effective address (EA) of 
the storage access (where n=64–
log2(page size in bytes) and page size is 
specified by the SIZE field of the TLB entry). 
See Table 1.

Note: Bits X:Y of the EPN field may be imple-
mented, where X=0 or X=32, and Y ≤�53. 
The number of bits implemented for EPN 
are not required to be the same number of 
bits as are implemented for RPN.

TS   Translation Address Space
This bit indicates the address space this TLB 

entry is associated with. For instruction stor-
age accesses, MSRIS must match the value 
of TS in the TLB entry for that TLB entry to 
provide the translation. Likewise, for data 
storage accesses, MSRDS must match the 
value of TS in the TLB entry. For tlbsx and 
tlbivax instructions, an implementation-
dependent source provides the address 
space specification that must match the 
value of TS.

SIZE Page Size
The SIZE field specifies the size of the page 

associated with the TLB entry as 4SIZEKB, 
where 0 ≤ SIZE ≤ 15. Implementations may 
implement any one or more of these page 
sizes. See Table 1.

TID Translation ID (implementation-dependent 
size)

Field used to identify a shared page (TID=0) or 
the owner’s process ID of a private page 
(TID≠0). See Section 4.7.2.

V Valid
This bit indicates that this TLB entry is valid 

and may be used for translation. The Valid 
bit for a given entry can be set or cleared 
with a tlbwe instruction; alternatively, the 
Valid bit for an entry may be cleared by a 
tlbivax instruction.

Translation Field
Name Description
RPN Real Page Number (up to 54 bits)

Bits 0:n–1 of the RPN field are used to replace 
bits 0:n–1 of the effective address to produce 
the real address for the storage access 
(where n=64–log2(page size in bytes) and 
page size is specified by the SIZE field of the 
TLB entry). Software must set unused low-
order RPN bits (i.e. bits n:53) to 0. See Sec-
tion 4.7.3.

Note: Bits X:Y of the RPN field may be imple-
mented, where X ≥ 0 and 53 ≥  Y. The num-
ber of bits implemented for EPN are not 
required to be the same number of bits as 
are implemented for RPN.

Storage Control Bits (see Section 4.8.3 on page 552)
Name Description
W Write-Through Required See Section 1.6.1 

of Book II.
I Caching Inhibited See Section 1.6.2 of 

Book II.
M Memory Coherence Required See 

Section 1.6.3 of Book II.
G Guarded See Section 1.6.4 of Book II and 

Section 4.8.1.
E Endian Mode See Section 1.10.1 of Book I 

and Section 1.6.5 of Book II.
U0:U3 User-Definable Storage Control 

Attributes See Section 4.8.2.
Specifies implementation-dependent and sys-

tem-dependent storage control attributes for 
the page associated with the TLB entry.

VLE Variable Length Encoding [Category: VLE] 
See Section 4.8.3 and Chapter 1 of Book 
VLE.

Access Control Fields
Name Description
UX User State Execute Enable See Section 

4.7.4.1.
0  Instruction fetch and execution is not permit-

ted from this page while MSRPR=1 and will 
cause an Execute Access Control exception 
type Instruction Storage interrupt.

1  Instruction fetch and execution is permitted 
from this page while MSRPR=1.
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4.7.2 Page Identification
Instruction effective addresses are generated for
sequential instruction fetches and for addresses that
correspond to a change in program flow (branches,
interrupts). Data effective addresses are generated by
Load, Store, and Cache Management instructions. TLB
Management instructions generate effective addresses
to determine the presence of or to invalidate a specific
TLB entry associated with that address. 

The Valid (V) bit, Effective Page Number (EPN) field,
Translation Space Identifier (TS) bit, Page Size (SIZE)
field, and Translation ID (TID) field of a particular TLB
entry identify the page associated with that TLB entry.
Except as noted, all comparisons must succeed to vali-
date this entry for subsequent translation and access
control processing. Failure to locate a matching TLB
entry based on this criteria for instruction fetches will
result in an Instruction TLB Miss exception type Instruc-
tion TLB Error interrupt. Failure to locate a matching
TLB entry based on this criteria for data storage
accesses will result in a Data TLB Miss exception which
may result in a Data TLB Error interrupt. Figure 8 on
page 546 illustrates the criteria for a virtual address to
match a specific TLB entry.

There are two address spaces, one typically associated
with interrupt-related storage accesses and one typi-
cally associated with non-interrupt-related storage
accesses. There are two bits in the Machine State Reg-
ister, the Instruction Address Space bit (IS) and the
Data Address Space bit (DS), that control which
address space instruction and data storage accesses,
respectively, are performed in, and a bit in the TLB
entry (TS) that specifies which address space that TLB
entry is associated with.

Load, Store, Cache Management, Branch, tlbsx, and
tlbivax instructions and next-sequential-instruction
fetches produce a 64-bit effective address. The virtual
address space is extended from this 64-bit effective
address space by prepending a one-bit address space
identifier and a process identifier. For instruction
fetches, the address space identifier is provided by
MSRIS and the process identifier is provided by the
contents of the Process ID Register. For data storage
accesses, the address space identifier is provided by
the MSRDS and the process identifier is provided by the
contents of the Process ID Register. For tlbsx, and
tlbivax instructions, the address space identifier and
the process identifier are provided by implementation-
dependent sources.

This virtual address is used to locate the associated
entry in the TLB. The address space identifier, the pro-
cess identifier, and the effective address of the storage
access are compared to the Translation Address Space
bit (TS), the Translation ID field (TID), and the value in
the Effective Page Number field (EPN), respectively, of
each TLB entry.

SX Supervisor State Execute Enable See Sec-
tion 4.7.4.1.

0  Instruction fetch and execution is not permit-
ted from this page while MSRPR=0 and will 
cause an Execute Access Control exception 
type Instruction Storage interrupt.

1  Instruction fetch and execution is permitted 
from this page while MSRPR=1.

UW User State Write Enable See Section 
4.7.4.2.

0 Store operations, including dcba dcbz, and 
dcbzep are not permitted to this page when 
MSRPR=1 and will cause a Write Access 
Control exception. Except as noted in 
Table 3 on page 550, a Write Access Control 
exception will cause a Data Storage inter-
rupt.

1  Store operations, including dcba, dcbz, and 
dcbzep are permitted to this page when 
MSRPR=1.

SW Supervisor State Write Enable See Section 
4.7.4.2.

0 Store operations, including dcba, dcbi, 
dcbz, and dcbzep are not permitted to this 
page when MSRPR=0. Store operations, 
including dcbi, dcbz, and dcbzep, will 
cause a Write Access Control exception. 
Except as noted in Table 3 on page 550, a 
Write Access Control exception will cause a 
Data Storage interrupt.

1  Store operations, including dcba, dcbi, 
dcbz, and dcbzep, are permitted to this 
page when MSRPR=0.

UR User State Read Enable See Section 
4.7.4.3.

0 Load operations (including load-class Cache 
Management instructions) are not permitted 
from this page when MSRPR=1 and will 
cause a Read Access Control exception. 
Except as noted in Table 3 on page 550, a 
Read Access Control exception will cause a 
Data Storage interrupt.

1  Load operations (including load-class Cache 
Management instructions) are permitted 
from this page when MSRPR=1.

SR Supervisor State Read Enable See Section 
4.7.4.3.

0 Load operations (including load-class Cache 
Management instructions) are not permitted 
from this page when MSRPR=0 and will 
cause a Read Access Control exception. 
Except as noted in Table 3 on page 550, a 
Read Access Control exception will cause a 
Data Storage interrupt.

1  Load operations (including load-class Cache 
Management instructions) are permitted 
from this page when MSRPR=0.
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The virtual address of a storage access matches a TLB
entry if, for every TLB entry i in the congruence class
specified by EA:

� the value of the address specifier for the storage
access (MSRIS for instruction fetches, MSRDS for
data storage accesses, and implementation-
dependent source for tlbsx and tlbivax) is equal to
the value of the TS bit of the TLB entry, and

� either the value of the process identifier (Process
ID Register for instruction and data storage
accesses, and implementation-dependent source
for tlbsx and tlbivax) is equal to the value in the
TID field of the TLB entry, or the value of the TID
field of the TLB entry is equal to 0, and

� the contents of bits 0:n–1 of the effective address
of the storage or TLB access are equal to the value
of bits 0:n-1 of the EPN field of the TLB entry
(where n=64-log2(page size in bytes) and
page size is specified by the value of the SIZE field
of the TLB entry). See Table 1.

A TLB Miss exception occurs if there is no valid entry in
the TLB for the page specified by the virtual address
(Instruction or Data TLB Error interrupt). Although the
possibility to place multiple entries into the TLB that

match a specific virtual address exists, assuming a set-
associative or fully-associative organization, doing so is
a programming error and the results are undefined.

Figure 8. Virtual Address to TLB Entry Match
Process

Table 1: Page Size and Effective Address to EPN 
Comparison

SIZE
Page Size
(4SIZEKB)

EA to EPN Comparison
(bits 0:53–2¥SIZE)

=0b0000
=0b0001
=0b0010
=0b0011
=0b0100
=0b0101
=0b0110
=0b0111
=0b1000
=0b1001
=0b1010
=0b1011
=0b1100
=0b1101
=0b1110
=0b1111

1KB
4KB

16KB
64KB

256KB
1MB
4MB

16MB
64MB

256MB
1GB
4GB

16GB
64GB

256GB
1TB

EPN0:53 =? EA0:53
EPN0:51 =? EA0:51
EPN0:49 =? EA0:49
EPN0:47 =? EA0:47
EPN0:45 =? EA0:45
EPN0:43 =? EA0:43
EPN0:41 =? EA0:41
EPN0:39 =? EA0:39
EPN0:37 =? EA0:37
EPN0:35 =? EA0:35
EPN0:33 =? EA0:33
EPN0:31 =? EA0:31
EPN0:29 =? EA0:29
EPN0:27 =? EA0:27
EPN0:25 =? EA0:25
EPN0:23 =? EA0:23

TLB entry i matches effective address

MSRIS for instruction fetches, or
MSRDS for data storage accesses, or
implementation-dependent for tlbsx

AS

Legend:

EA effective address of storage access

63 – log2(page size)N-1

{=0?

private page

shared page

=?

n 64 – # of implemented PID/TID bits

=?

contents of Process ID Register for

implementation-dependent for tlbsx
Process ID

instruction fetches and data 

TLBentry[i][V]

TLBentry[i][TS]

AS

Process IDn:63

TLBentry[i][TID]n:63

TLBentry[i][EPN]0:N-1

EA0:N-1 {

=?

 & tlbivax

storage accesses, or

& tlbivax
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Figure 9. Effective-to-Real Address Translation
Flow

64-bit Effective Address

64-bit Real Address

Virtual Address

NOTE: n = 64–log2(page size)

PID Effective Page Address Offset

0 n 63

Real Page Number Offset

n 630

TLB
multiple-entry

MSRIS for instruction fetch

A
S

MSRDS for data storage accesses

RPN0:53

n–1

n–1
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4.7.3 Address Translation
A program references memory by using the effective
address computed by the processor when it executes a
Load, Store, Cache Management, or Branch instruc-
tion, and when it fetches the next instruction. The effec-
tive address is translated to a real address according to
the procedures described in this section. The storage
subsystem uses the real address for the access. All
storage access effective addresses are translated to
real addresses using the TLB mechanism. See Figure
9.

If the virtual address of the storage access matches a
TLB entry in accordance with the selection criteria
specified in Section 4.7.2, the value of the Real Page
Number field (RPN) of the selected TLB entry provides
the real page number portion of the real address. Let
n=64–log2(page size in bytes) where page size is spec-
ified by the SIZE field of the TLB entry. Bits n:63 of the
effective address are appended to bits 0:n–1 of the 54-
bit RPN field of the selected TLB entry to produce the
64-bit real address (i.e. RA = RPN0:n–1 || EAn:63). The
page size is determined by the value of the SIZE field
of the selected TLB entry. See Table 2.

The rest of the selected TLB entry provides the access
control bits (UX, SX, UW, SW, UR, SR), and storage
control attributes (U0, U1, U2, U3, W, I, M, G, E) for the
storage access. The access control bits and storage
attribute bits specify whether or not the access is
allowed and how the access is to be performed. See
Sections 4.7.4 and 4.7.5.

The Real Page Number field (RPN) of the matching
TLB entry provides the translation for the effective
address of the storage access. Based on the setting of
the SIZE field of the matching TLB entry, the RPN field
replaces the corresponding most-significant N bits of
the effective address (where N = 64 – log2(page size)),
as shown in Table 2, to produce the 64-bit real address
that is to be presented to main storage to perform the
storage access.

Figure 10. Access Control Process

Table 2: Effective Address to Real Address

SIZE

Page 
Size 

(4SIZE 
KB)

RPN Bits
 Required

to be Equal
 to 0

Real Address

=0b0000
=0b0001
=0b0010
=0b0011
=0b0100
=0b0101
=0b0110
=0b0111
=0b1000
=0b1001
=0b1010
=0b1011
=0b1100
=0b1101
=0b1110
=0b1111

1KB
4KB

16KB
64KB
256KB
1MB
4MB

16MB
64MB

256MB
1GB
4GB

16GB
64GB

256GB
1TB

none
RPN52:53=0
RPN50:53=0
RPN48:53=0
RPN46:53=0
RPN44:53=0
RPN42:53=0
RPN40:53=0
RPN38:53=0
RPN36:53=0
RPN34:53=0
RPN32:53=0
RPN30:53=0
RPN28:53=0
RPN26:53=0
RPN24:53=0

RPN0:53 || EA54:63
RPN0:51 || EA52:63
RPN0:49 || EA50:63
RPN0:47 || EA48:63
RPN0:45 || EA46:63
RPN0:43 || EA44:63
RPN0:41 || EA42:63
RPN0:39 || EA40:63
RPN0:37 || EA38:63
RPN0:35 || EA36:63
RPN0:33 || EA34:63
RPN0:31 || EA32:63
RPN0:29 || EA30:63
RPN0:27 || EA28:63
RPN0:25 || EA26:63
RPN0:23 || EA24:63

access granted

instruction fetch
MSRPR

TLBentry[UX]

TLBentry[SX]

load-class data storage access
TLBentry[UR]

TLBentry[SR]

store-class data storage access
TLBentry[UW]

TLBentry[SW]

TLB match (see Figure 8)
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4.7.4 Storage Access Control
After a matching TLB entry has been identified, an
access control mechanism selectively grants shared
access, grants execute access, grants read access,
grants write access, and prohibits access to areas of
storage based on a number of criteria. Figure 10 illus-
trates the access control process and is described in
detail in Sections 4.7.4.1 through 4.7.4.5.

An Execute, Read, or Write Access Control exception
occurs if the appropriate TLB entry is found but the
access is not allowed by the access control mechanism
(Instruction or Data Storage interrupt). See Section 5.6
for additional information about these and other inter-
rupt types. In certain cases, Execute, Read, and Write
Access Control exceptions may result in the restart of
(re-execution of at least part of) a Load or Store instruc-
tion.

Some implementation may provide additional access
control capabilities beyond that described here.

4.7.4.1 Execute Access
The UX and SX bits of the TLB entry control execute
access to the page (see Table 3).

Instructions may be fetched and executed from a page
in storage while in user state (MSRPR=1) if the UX
access control bit for that page is equal to 1. If the UX
access control bit is equal to 0, then instructions from
that page will not be fetched, and will not be placed into
any cache as the result of a fetch request to that page
while in user state.

Instructions may be fetched and executed from a page
in storage while in supervisor state (MSRPR=0) if the
SX access control bit for that page is equal to 1. If the
SX access control bit is equal to 0, then instructions
from that page will not be fetched, and will not be
placed into any cache as the result of a fetch request to
that page while in supervisor state. 

Instructions from no-execute storage may be in the
instruction cache if they were fetched into that cache
when their effective addresses were mapped to exe-
cute permitted storage.  Software need not flush a page
from the instruction cache before marking it no-exe-
cute.

Furthermore, if the sequential execution model calls for
the execution of an instruction from a page that is not
enabled for execution (i.e. UX=0 when MSRPR=1 or
SX=0 when MSRPR=0), an Execute Access Control
exception type Instruction Storage interrupt is taken.

4.7.4.2 Write Access
The UW and SW bits of the TLB entry control write
access to the page (seeTable 3 ).

Store operations (including Store-class Cache Man-
agement instructions) are permitted to a page in stor-
age while in user state (MSRPR=1) if the UW access
control bit for that page is equal to 1. If the UW access
control bit is equal to 0, then execution of the Store
instruction is suppressed and a Write Access Control
exception type Data Storage interrupt is taken.

Store operations (including Store-class Cache Man-
agement instructions) are permitted to a page in stor-
age while in supervisor state (MSRPR=0) if the SW
access control bit for that page is equal to 1. If the SW
access control bit is equal to 0, then execution of the
Store instruction is suppressed and a Write Access
Control exception type Data Storage interrupt is taken.

4.7.4.3 Read Access
The UR and SR bits of the TLB entry control read
access to the page (see Table 3).

Load operations (including Load-class Cache Manage-
ment instructions) are permitted from a page in storage
while in user state (MSRPR=1) if the UR access control
bit for that page is equal to 1. If the UR access control
bit is equal to 0, then execution of the Load instruction
is suppressed and a Read Access Control exception
type Data Storage interrupt is taken.

Load operations (including Load-class Cache Manage-
ment instructions) are permitted from a page in storage
while in supervisor state (MSRPR=0) if the SR access
control bit for that page is equal to 1. If the SR access
control bit is equal to 0, then execution of the Load
instruction is suppressed and a Read Access Control
exception type Data Storage interrupt is taken.

4.7.4.4 Storage Access Control Applied 
to Cache Management Instructions
dcbi, dcbz, and dcbzep instructions are treated as
Stores since they can change data (or cause loss of
data by invalidating a dirty line). As such, they both can
cause Write Access Control exception type Data Stor-
age interrupts. If an implementation first flushes a line
before invalidating it during a dcbi, the dcbi is treated
as a a Load since the data is not modified.

dcba instructions are treated as Stores since they can
change data. As such, they can cause Write Access
Control exceptions. However, such exceptions will not
result in a Data Storage interrupt.

icbi and icbiep instructions are treated as Loads with
respect to protection. As such, they can cause Read
Access Control exception type Data Storage interrupts.

dcbt, dcbtep, dcbtst, dcbtstep, and icbt instructions
are treated as Loads with respect to protection. As
such, they can cause Read Access Control exceptions.
However, such exceptions will not result in a Data Stor-
age interrupt.
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dcbf, dcbfep, dcbst, and dcbstep instructions are
treated as Loads with respect to protection. Flushing or
storing a line from the cache is not considered a Store
since the store has already been done to update the
cache and the dcbf, dcbfep, dcbst, or dcbstep
instruction is only updating the copy in main storage. As
a Load, they can cause Read Access Control exception
type Data Storage interrupts.

4.7.4.5 Storage Access Control Applied 
to String Instructions
When the string length is zero, neither lswx nor stswx
can cause Data Storage interrupts.

4.7.5 TLB Management
No format for the Page Tables or the Page Table Entries
is implied. Software has significant flexibility in imple-
menting a custom replacement strategy. For example,
software may choose to lock TLB entries that corre-
spond to frequently used storage, so that those entries
are never cast out of the TLB and TLB Miss exceptions
to those pages never occur. At a minimum, software
must maintain an entry or entries for the Instruction and
Data TLB Error interrupt handlers.

TLB management is performed in software with some
hardware assist. This hardware assist consists of a
minimum of:

� Automatic recording of the effective address caus-
ing a TLB Miss exception. For Instruction TLB Miss
exceptions, the address is saved in the Save/
Restore Register 0. For Data TLB Miss exceptions,
the address is saved in the Data Exception
Address Register. 

� Instructions for reading, writing, searching, invali-
dating, and synchronizing the TLB (see Section
4.9.4.1).

Table 3: Storage Access Control Applied to Cache 
Instructions

Instruction
Read Protection

Violation
Write Protection

Violation

dcba No Yes2

dcbf Yes No

dcbfep Yes No

dcbi Yes3 Yes3

dcblc Yes No

dcbst Yes No

dcbstep Yes No

dcbt Yes1 No

dcbtep Yes1 No

dcbtls Yes No

dcbtst Yes1 No

dcbtstep Yes1 No

dcbtstls Yes4 Yes4

dcbz No Yes

dcbzep No Yes

dci No No

icbi Yes No

icbiep Yes No

icblc Yes5 No

icbt Yes1 No

icbtls Yes5 No

ici No No

1. dcbt, dcbtep, dcbtst, dcbtstep, and icbt may 
cause a Read Access Control exception but does 
not result in a Data Storage interrupt.

2. dcba may cause a Write Access Control exception 
but does not result in a Data Storage interrupt.

3. dcbi may cause a Read or Write Access Control 
Exception based on whether the data is flushed 
prior to invalidation.

4. It is implementation-dependent whether dcbtstls 
is treated as a Load or a Store.

5. icbtls and icblc require execute or read access.
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Programming Note

This Note suggests one example for managing refer-
ence and change recording.

When performing physical page management, it is use-
ful to know whether a given physical page has been ref-
erenced or altered. Note that this may be more involved
than whether a given TLB entry has been used to refer-
ence or alter memory, since multiple TLB entries may
translate to the same physical page. If it is necessary to
replace the contents of some physical page with other
contents, a page which has been referenced (accessed
for any purpose) is more likely to be maintained than a
page which has never been referenced. If the contents
of a given physical page are to be replaced, then the
contents of that page must be written to the backing
store before replacement, if anything in that page has
been changed. Software must maintain records to con-
trol this process.

Similarly, when performing TLB management, it is use-
ful to know whether a given TLB entry has been refer-
enced. When making a decision about which entry to
cast-out of the TLB, an entry which has been refer-
enced is more likely to be maintained in the TLB than
an entry which has never been referenced.

Execute, Read and Write Access Control exceptions
may be used to allow software to maintain reference
information for a TLB entry and for its associated physi-
cal page. The entry is built, with its UX, SX, UR, SR,
UW, and SW bits off, and the index and effective page
number of the entry retained by software. The first

attempt of application code to use the page will cause
an Access Control exception (because the entry is
marked “No Execute”, “No Read”, and “No Write”). The
Instruction or Data Storage interrupt handler records
the reference to the TLB entry and to the associated
physical page in a software table, and then turns on the
appropriate access control bit. An initial read from the
page could be handled by only turning on the appropri-
ate UR or SR access control bits, leaving the page
“read-only”. Subsequent execute, read, or write
accesses to the page via this TLB entry will proceed
normally.

In a demand-paged environment, when the contents of
a physical page are to be replaced, if any storage in
that physical page has been altered, then the backing
storage must be updated. The information that a physi-
cal page is dirty is typically recorded in a “Change” bit
for that page.

Write Access Control exceptions may be used to allow
software to maintain change information for a physical
page. For the example just given for reference record-
ing, the first write access to the page via the TLB entry
will create a Write Access Control exception type Data
Storage interrupt. The Data Storage interrupt handler
records the change status to the physical page in a
software table, and then turns on the appropriate UW
and SW bits. All subsequent accesses to the page via
this TLB entry will proceed normally.

4.8 Storage Control Attributes

This section describes aspects of the storage control
attributes that are relevant only to privileged software
programmers. The rest of the description of storage
control attributes may be found in Section 1.6 of Book II
and subsections.

4.8.1 Guarded Storage
Storage is said to be “well-behaved” if the correspond-
ing real storage exists and is not defective, and if the
effects of a single access to it are indistinguishable
from the effects of multiple identical accesses to it.
Data and instructions can be fetched out-of-order from
well-behaved storage without causing undesired side
effects.

Storage is said to be Guarded if the G bit is 1 in the TLB
entry that translates the effective address.

In general, storage that is not well-behaved should be
Guarded. Because such storage may represent a con-
trol register on an I/O device or may include locations
that do not exist, an out-of-order access to such stor-
age may cause an I/O device to perform unintended
operations or may result in a Machine Check.

Instruction fetching is not affected by the G bit. Soft-
ware must set guarded pages to no execute (i.e. UX=0
and SX=0) to prevent instruction fetching from guarded
storage.

The following rules apply to in-order execution of Load
and Store instructions for which the first byte of the
storage operand is in storage that is both Caching
Inhibited and Guarded.
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� Load or Store instruction that causes an atomic
access

If any portion of the storage operand has been
accessed,  the instruction completes before the
interrupt occurs if any of the following exceptions is
pending.
� External, Decrementer, Critical Input, Machine

Check, Fixed-Interval Timer, Watchdog Timer,
Debug, or Imprecise mode Floating-Point or
Auxiliary Processor Enabled 

� Load or Store instruction that causes an Alignment
exception, a Data TLB Error exception, or that
causes a Data Storage exception.

The portion of the storage operand that is in Cach-
ing Inhibited and Guarded storage is not accessed.

4.8.1.1 Out-of-Order Accesses to 
Guarded Storage
In general, Guarded storage is not accessed out-of-
order. The only exceptions to this rule are the following.  

Load Instruction

If a copy of any byte of the storage operand is in a
cache then that byte may be accessed in the cache or
in main storage.

4.8.2 User-Definable
User-definable storage control attributes control user-
definable and implementation-dependent behavior of
the storage system. These bits are both implementa-
tion-dependent and system-dependent in their effect.
They may be used in any combination and also in com-
bination with the other storage attribute bits.

4.8.3 Storage Control Bits
Storage control attributes are specified on a per-page
basis. These attributes are specified in storage control
bits in the TLB entries. The interpretation of their values
is given in Figure 11.

 

Figure 11. Storage control bits

In Section 4.8.3.1 and 4.8.3.2, “access” includes
accesses that are performed out-of-order.

  

4.8.3.1 Storage Control Bit Restrictions
All combinations of W, I, M, G, and E values are permit-
ted except those for which both W and I are 1.

  

At any given time, the value of the I bit must be the
same for all accesses to a given real page. 

Bit Storage Control Attribute

W1 0 - not Write Through Required
1 - Write Through Required

I 0 - not Caching Inhibited
1 - Caching Inhibited

M2 0 - not Memory Coherence Required
1 - Memory Coherence Required

G 0 - not Guarded
1 - Guarded

E3 0 - Big-Endian
1 - Little-Endian

U0-U34 User-Definable

VLE5 0 - non Variable Length Encoding (VLE).
1 - VLE

1 Support for the 1 value of the W bit is optional. 
Implementations that do not support the 1 value 
treat the bit as reserved and assume its value to 
be 0.

2 Support of the 1 value is optional for implementa-
tions that do not support multiprocessing, imple-
mentations that do not support this storage 
attribute assume the value of the bit to be 0, and 
setting M=1 in a TLB entry will have no effect.

3 [Category: Embedded.Little-Endian]
4 Support for these attributes is optional.
5 [Category: VLE]

In a uniprocessor system in which only the proces-
sor has caches, correct coherent execution does
not require the processor to access storage as
Memory Coherence Required, and accessing stor-
age as not Memory Coherence Required may give
better performance.

If an application program requests both the Write
Through Required and the Caching Inhibited
attributes for a given storage location, the operating
system should set the I bit to 1 and the W bit to 0.

Programming Note

Programming Note
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Accesses to the same storage location using two effec-
tive addresses for which the W bit differs meet the
memory coherence requirements described in
Section 1.6.3 of Book II if the accesses are performed
by a single processor. If the accesses are performed by
two or more processors, coherence is enforced by the
hardware only if the W bit is the same for all the
accesses.

At any given time, data accesses to a given real page
may use both Endian modes. When changing the
Endian mode of a given real page for instruction fetch-
ing, care must be taken to prevent accesses while the
change is made and to flush the instruction cache(s)
after the change has been completed.

4.8.3.2 Altering the Storage Control 
Bits
When changing the value of the I bit for a given real
page from 0 to 1, software must set the I bit to 1 and
then flush all copies of locations in the page from the
caches using dcbf, dcbfep, or dcbi, and icbi or icbiep
before permitting any other accesses to the page.

When changing the value of the W bit for a given real
page from 0 to 1, software must ensure that no proces-
sor modifies any location in the page until after all cop-
ies of locations in the page that are considered to be
modified in the data caches have been copied to main
storage using dcbst, dcbstep, dcbf, dcbfep, or dcbi.

When changing the value of the M bit for a given real
page, software must ensure that all data caches are
consistent with main storage. The actions required to
do this to are system-dependent.

  

For example, when changing the M bit in some
directory-based systems, software may be required
to execute dcbf or dcbfep on each processor to
flush all storage locations accessed with the old M
value before permitting the locations to be
accessed with the new M value.

Programming Note
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4.9 Storage Control Instructions

4.9.1 Cache Management Instructions
This section describes aspects of cache management
that are relevant only to privileged software program-
mers.

For a dcbz or dcba instruction that causes the target
block to be newly established in the data cache without
being fetched from main storage, the processor need
not verify that the associated real address is valid. The
existence of a data cache block that is associated with
an invalid real address (see Section 4.6) can cause a

delayed Machine Check interrupt or a delayed Check-
stop.

Each implementation provides an efficient means by
which software can ensure that all blocks that are con-
sidered to be modified in the data cache have been
copied to main storage before the processor enters any
power conserving mode in which data cache contents
are not maintained.

Data Cache Block Invalidate  X-form

dcbi RA,RB 

if RA=0 then b ← 0
else         b ← (RA)
EA ← b + (RB)
InvalidateDataCacheBlock( EA )

Let the effective address (EA) be the sum (RA|0)+(RB).

If the block containing the byte addressed by EA is in
storage that is Memory Coherence Required and a
block containing the byte addressed by EA is in the
data cache of any processors, then the block is invali-
dated in those data caches. On some implementations,
before the block is invalidated, if any locations in the
block are considered to be modified in any such data
cache, those locations are written to main storage and
additional locations in the block may be written to main
storage.

If the block containing the byte addressed by EA is in
storage that is not Memory Coherence Required and a
block containing the byte addressed by EA is in the
data cache of this processor, then the block is invali-
dated in that data cache. On some implementations,
before the block is invalidated, if any locations in the
block are considered to be modified in that data cache,
those locations are written to main storage and addi-
tional locations in the block may be written to main stor-
age.

The function of this instruction is independent of
whether the block containing the byte addressed by EA
is in storage that is Write Through Required or Caching
Inhibited.

This instruction is treated as a Store (see
Section 4.7.4.4) on implementations that invalidate a
block without first writing to main storage all locations in
the block that are considered to be modified in the data

cache, except that the invalidation is not ordered by
mbar. On other implementations this instruction is
treated as a Load (see the section cited above).

If a processor holds a reservation and some other pro-
cessor executes a dcbi to the same reservation gran-
ule, whether the reservation is lost is undefined.

dcbi may cause a cache locking exception, the details
of which are implementation-dependent.

This instruction is privileged.

Special Registers Altered:
None

31 ///  RA RB 470 / 
0 6 11 16 21 31
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4.9.2  Cache Locking [Category: Embedded Cache Locking]
The Embedded Cache Locking category defines
instructions and methods for locking cache blocks for
frequently used instructions and data. Cache locking
allows software to instruct the cache to keep latency
sensitive data readily available for fast access. This is
accomplished by marking individual cache blocks as
locked.

A locked block differs from a normal block in the cache
in the following way:

� blocks that are locked in the cache do not partici-
pate in the normal replacement policy when a
block must be replaced.

4.9.2.1 Lock Setting and Clearing
Blocks are locked into the cache by software using
Cache Locking instructions. The following instructions
are provided to lock data items into the data and
instruction cache:

� dcbtls - Data cache block touch and lock set.
� dcbtstls - Data cache block touch for store and

lock set.
� icbtls - Instruction cache block touch and lock set.

The RA and RB operands in these instructions are
used to identify the block to be locked. The CT field
indicates which cache in the cache hierarchy should be
targeted. (See Section 3.2 of Book II.)

These instructions are similar in nature to the dcbt,
dcbtst, and icbt instructions, but are not hints and thus
locking instructions do not execute speculatively and
may cause additional exceptions. For unified caches,
both the instruction lock set and the data lock set target
the same cache.

Similarly, blocks are unlocked from the cache by soft-
ware using Lock Clear instructions. The following
instructions are provided to unlock instructions and
data in their respective caches:

� dcblc - Data cache block lock clear.
� icblc - Instruction cache block lock clear.

The RA and RB operands in these instructions are
used to identify the block to be unlocked. The CT field
indicates which cache in the cache hierarchy should be
targeted.

Additionally, an implementation-dependent method can
be provided for software to clear all the locks in the
cache. 

An implementation is not required to unlock blocks that
contain data that has been invalidated unless it is
explicitly unlocked with a dcblc or icblc instruction; if
the implementation does not unlock the block upon
invalidation, the block remains locked even though it
contains invalid data. If the implementation does not
clear locks when the associated block is invalidated,

the method of locking is said to be persistent; otherwise
it is not persistent. An implementation may choose to
implement locks as persistent or not persistent; how-
ever, the preferred method is persistent.

It is implementation-dependent if cache blocks are
implicitly unlocked in the following ways:

� A locked block is invalidated as the result of a dcbi,
dcbf, dcbfep, icbi, or icbiep instruction.

� A locked block is evicted because of an overlock-
ing condition.

� A snoop hit on a locked block that requires the
block to be invalidated. This can occur because the
data the block contains has been modified external
to the processor, or another processor has explic-
itly invalidated the block.

� The entire cache containing the locked block is
invalidated.

4.9.2.2 Error Conditions
Setting locks in the cache can fail for a variety of rea-
sons. A Lock Set instruction addressing a byte in stor-
age that is not allowed to be accessed by the storage
access control mechanism (see Section 4.7.4) will
cause a Data Storage interrupt (DSI). Addresses refer-
enced by Cache Locking instructions are always trans-
lated as data references; therefore, icbtls instructions
that fail to translate or are not allowed by the storage
access control mechanism cause Data TLB Error inter-
rupts and Data Storage interrupts, respectively. Addi-
tionally, cache locking and clearing operations can fail
due to non-privileged access. The methods for deter-
mining other failure conditions such as unable-to-lock
or overlocking (see below), is implementation-depen-
dent. 

When a Cache Locking instruction is executed in user
mode and MSRUCLE is 0, a Data Storage interrupt
occurs and one of the following ESR bits is set to 1.

Bit Description

42 DLK0 

0 Default setting.
1 A dcbtls, dcbtstls, or dcblc instruction

was executed in user mode.

43 DLK1

0 Default setting.
1 An icbtls or icblc instruction was exe-

cuted in user mode.

4.9.2.2.1 Overlocking

If no exceptions occur for the execution of an dcbtls,
dcbtstls, or icbtls instruction, an attempt is made to
lock the specified block into the cache. If all of the avail-
able cache blocks into which the specified block may be
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loaded are already locked, an overlocking condition
occurs. The overlocking condition may be reported in
an implementation-dependent manner.

If an overlocking condition occurs, it is implementation-
dependent whether the specified block is not locked
into the cache or if another locked block is evicted and
the specified block is locked.

The selection of which block is replaced in an overlock-
ing situation is implementation-dependent. The over-
locking condition is still said to exist, and is reflected in
any implementation-dependent overlocking status.

An attempt to lock a block that is already present and
valid in the cache will not cause an overlocking condi-
tion.

If a cache block is to be loaded because of an instruc-
tion other than a Cache Management or Cache Locking
instruction and all available blocks into which the block
can be loaded are locked, the instruction executes and
completes, but no cache blocks are unlocked and the
block is not loaded into the cache.

  

4.9.2.2.2 Unable-to-lock and Unable-to-unlock 
Conditions

If no exceptions occur and no overlocking condition
exists, an attempt to set or unlock a lock may fail if any
of the following are true:
� The target address is marked Caching Inhibited, or

the storage attributes of the address use a coher-
ency protocol that does not support locking.

� The target cache is disabled or not present.
� The CT field of the instructions contains a value

not supported by the implementation.
� Any other implementation-specific error conditions

are detected.

If an unable-to-lock or unable-to-unlock condition
occurs, the lock set or unlock instruction is treated as a
no-op and the condition may be reported in an imple-
mentation-dependent manner.

Since caches may be shared among processors,
an overlocking condition may occur when loading a
block even though a given processor has not
locked all the available cache blocks. Similarly.
blocks may be unlocked as a result of invalidations
by other processors.
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4.9.2.3 Cache Locking Instructions

Data Cache Block Touch and Lock Set
X-form 

dcbtls CT,RA,RB

Let the effective address (EA) be the sum (RA|0)+(RB).

The dcbtls instruction provides a hint that the program
will probably soon load from the block containing the
byte addressed by EA, and that the block containing
the byte addressed by EA is to be loaded and locked
into the cache specified by the CT field. (See
Section 3.2 of Book II.) If the CT field is set to a value
not supported by the implementation, no operation is
performed.

If the block already exists in the cache, the block is
locked without accessing storage. If the block is in a
storage location that is Caching Inhibited, then no
cache operation is performed. An unable-to-lock condi-
tion may occur (see Section 4.9.2.2.2), or an overlock-
ing condition may occur (see Section 4.9.2.2.1). 

The dcbtls instruction may complete before the opera-
tion it causes has been performed.

The instruction is treated as a Load. 

This instruction is privileged unless the Embedded
Cache Locking.User Mode category is supported. If the
Embedded Cache Locking.User Mode category is
supported, this instruction is privileged only if
MSRUCLE=0.

Special Registers Altered:
    None

Data Cache Block Touch for Store and 
Lock Set X-form 

dcbtstls CT,RA,RB  

Let the effective address (EA) be the sum (RA|0)+(RB).

The dcbtstls instruction provides a hint that the pro-
gram will probably soon store to the block containing
the byte addressed by EA, and that the block contain-
ing the byte addressed by EA is to be loaded and
locked into the cache specified by the CT field. (See
Section 3.2 of Book II.) If the CT field is set to a value
not supported by the implementation, no operation is
performed.

If the block already exists in the cache, the block is
locked without accessing storage. If the block is in a
storage location that is Caching Inhibited, then no
cache operation is performed. An unable-to-lock condi-
tion may occur (see Section 4.9.2.2.2), or an overlock-
ing condition may occur (see Section 4.9.2.2.1).

The dcbtstls instruction may complete before the oper-
ation it causes has been performed.

It is implementation-dependent whether the instruction
is treated as a Load or a Store. 

This instruction is privileged unless the Embedded
Cache Locking.User Mode category is supported. If the
Embedded Cache Locking.User Mode category is sup-
ported, this instruction is privileged only if MSRUCLE=0.

Special Registers Altered:
    None

31 / CT RA RB 166 /
0 6 7 11 16 21 31

31 / CT RA RB 134 /
0 6 7 11 16 21 31
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Instruction Cache Block Touch and Lock 
Set X-form

icbtls CT,RA,RB 

Let the effective address (EA) be the sum (RA|0)+(RB).

The icbtls instruction causes the block containing the
byte addressed by EA to be loaded and locked into the
instruction cache specified by CT, and provides a hint
that the program will probably soon execute code from
the block. See Section 3.2 of Book II for a definition of
the CT field.

If the block already exists in the cache, the block is
locked without refetching from memory. If the block is in
storage that is Caching Inhibited, no cache operation is
performed. 

This instruction treated as a Load (see Section 3.2),
except that the system instruction storage error handler
is not invoked.

An unable-to-lock condition may occur (see Section
4.9.2.2.2), or an overlocking condition may occur (see
Section 4.9.2.2.1).

This instruction is privileged unless the Embedded
Cache Locking.User Mode category is supported. If the
Embedded Cache Locking.User Mode category is sup-
ported, this instruction is privileged only if MSRUCLE=0.

Special Registers Altered:
None

Instruction Cache Block Lock Clear 
X-form

icblc CT,RA,RB 

Let the effective address (EA) be the sum (RA|0)+(RB).

The block containing the byte addressed by EA in the
instruction cache specified by the CT field is unlocked.

The instruction is treated as a Load.

An unable-to-unlock condition may occur (see Section
4.9.2.2.2). If the block containing the byte addressed by
EA is not locked in the specified cache, no cache oper-
ation is performed.

This instruction is privileged unless the Embedded
Cache Locking.User Mode category is supported. If the
Embedded Cache Locking.User Mode category is sup-
ported, this instruction is privileged only if MSRUCLE=0.

Special Registers Altered:
None

Data Cache Block Lock Clear X-form

dcblc CT,RA,RB 

Let the effective address (EA) be the sum (RA|0)+(RB).

The block containing the byte addressed by EA in the
data cache specified by the CT field is unlocked.

The instruction is treated as a Load.

An unable-to-unlock condition may occur (see Section
4.9.2.2.2). If the block containing the byte addressed by
EA is not locked in the specified cache, no cache oper-
ation is performed.

This instruction is privileged unless the Embedded
Cache Locking.User Mode category is supported. If the
Embedded Cache Locking.User Mode category is sup-
ported, this instruction is privileged only if MSRUCLE=0.

Special Registers Altered:
None

 

31 / CT RA RB 486 /
0 6 7 11 16 21 31

31 / CT RA RB 230 /
0 6 7 11 16 21 31

31 / CT RA RB 390 /
0 6 7 11 16 21 31

The dcblc and icblc instructions are used to
remove locks previously set by the corresponding
lock set instructions.
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4.9.3 Synchronize Instruction 
The Synchronize instruction is described in
Section 3.3.3 of Book II, but only at the level required
by an application programmer. This section describes
properties of the instruction that are relevant only to
operating system programmers. 

In conjunction with the tlbie and tlbsync instructions,
the sync instruction provides an ordering function for
TLB invalidations and related storage accesses on
other processors as described in the tlbsync instruc-
tion description on page 561.

4.9.4 Lookaside Buffer
Management
All implementations include a TLB as the architected
repository of translation, protection, and attribute infor-
mation for storage.

Each implementation that has a TLB or similar looka-
side buffer provides a means by which software can
invalidate the lookaside entry that translates a given
effective address.

  

In addition, implementations provide a means by which
software can do the following.

� Read a specified TLB entry
� Identify the TLB entry (if any) associated with a

specified effective address
� Write a specified TLB entry

  

The invalidate all entries function is not required
because each TLB entry can be addressed directly
without regard to the contents of the entry.

Because the presence, absence, and exact
semantics of the TLB Management instructions are
implementation-dependent, it is recommended that
system software “encapsulate” uses of these
instructions into subroutines to minimize the impact
of moving from one implementation to another.

Programming Note
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4.9.4.1 TLB Management Instructions

The tlbivax instruction is used to invalidate TLB
entries. Additional instructions are used to read and

write, and search TLB entries, and to provide an order-
ing function for the effects of tlbivax 

TLB Invalidate Virtual Address Indexed 
X-form

tlbivax (implementation dependent) 

Bits 6:20 of the instruction encoding are implementa-
tion-dependent, and may be used to specify the TLB
entry or entries to be invalidated. (E.g. they may specify
virtual or effective addresses.)

If a single tlbivax instruction can invalidate more
entries than those corresponding to a single VA, a
means must be provided to prevent specific TLB entries
from being invalidated. 

If the Translation Lookaside Buffer (TLB) contains an
entry specified, the entry or entries are made invalid
(i.e. removed from the TLB). This instruction causes the
target TLB entry to be invalidated in all processors.

If the instruction specifies a TLB entry that does not
exist, the results are undefined.

Execution of this instruction may cause other imple-
mentation-dependent effects.

The operation performed by this instruction is ordered
by the mbar (or sync) instruction with respect to a sub-
sequent tlbsync instruction executed by the processor
executing the tlbivax instruction. The operations
caused by tlbivax and tlbsync are ordered by mbar as
a set of operations which is independent of the other
sets that mbar orders.

This instruction is privileged.

Special Registers Altered:
None

  

  

TLB Read Entry  X-form

tlbre (implementation dependent) 

Bits 6:20 of the instruction encoding are implementa-
tion-dependent, and may be used to specify the source
TLB entry, the source portion of the source TLB entry,
and the target resource that the result is placed into.

The implementation-dependent-specified TLB entry is
read, and the implementation-dependent-specified por-
tion of the TLB entry is extracted and placed into an
implementation-dependent target resource.

If the instruction specifies a TLB entry that does not
exist, the results are undefined.

Execution of this instruction may cause other imple-
mentation-dependent effects.

This instruction is privileged.

Special Registers Altered:
Implementation-dependent

31 ??? ??? ??? 786 /
0 6 11 16 21 31

The effects of the invalidation may not be visible
until the completion of a context synchronizing
operation (see Section 1.6.1).

Care must be taken not to invalidate any TLB entry
that contains the mapping for any interrupt vector.

Programming Note
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TLB Search Indexed X-form

tlbsx RA,RB, (implementation dependent) 

if RA=0 then b � 0 
else         b � (RA)
EA � b + (RB)
AS        � implementation-dependent value
ProcessID � implementation-dependent value
VA        � AS || ProcessID || EA
If there is a TLB entry for which TLBentryVA=VA 

then result � implementation-dependent value
else result � undefined

target resource(???) � result

Let the effective address (EA) be the sum(RA|0)+ (RB).

Let address space (AS) be defined as implementation-
dependent (e.g. could be MSRDS or a bit from an imple-
mentation-dependent SPR). 

Let the ProcessID be defined as implementation-
dependent (e.g. could be from the PID register or from
an implementation-dependent SPR).

Let the virtual address (VA) be the value AS || Pro-
cessID || EA. See Figure 9 on page 547.

Bits 6:10 of the instruction encoding are implementa-
tion-dependent, and may be used to specify the target
resource that the result of the instruction is placed into.

If the Translation Lookaside Buffer (TLB) contains an
entry corresponding to VA, an implementation-depen-
dent value is placed into an implementation-dependent-
specified target. Otherwise the contents of the imple-
mentation-dependent-specified target are left unde-
fined.

Bit 31 of the instruction encoding is implementation-
dependent. For example, bit 31 may be interpreted as
an “Rc” bit, used to enable recording the success or
failure of the search operation.

This instruction is privileged.

Special Registers Altered:
None

TLB Synchronize   X-form

tlbsync  

The tlbsync instruction provides an ordering function
for the effects of all tlbivax instructions executed by the
processor executing the tlbsync instruction, with
respect to the memory barrier created by a subsequent
sync instruction executed by the same processor. Exe-
cuting a tlbsync instruction ensures that all of the fol-
lowing will occur.

� All storage accesses by other processors for which
the address was translated using the translations
being invalidated will have been performed with
respect to the processor executing the sync
instruction, to the extent required by the associ-
ated Memory Coherence Required attributes,
before the sync instruction’s memory barrier is
created.

The operation performed by this instruction is ordered
by the mbar or msync instruction with respect to pre-
ceding tlbivax instructions executed by the processor
executing the tlbsync instruction. The operations
caused by tlbivax and tlbsync are ordered by mbar as
a set of operations, which is independent of the other
sets that mbar orders.

The tlbsync instruction may complete before opera-
tions caused by tlbivax instructions preceding the tlb-
sync instruction have been performed.

This instruction is privileged. 

Special Registers Altered:
None

31 ??? RA RB 914 ?
0 6 11 16 21 31

31 /// /// /// 566 /
0 6 11 16 21 31
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TLB Write Entry  X-form

tlbwe (implementation dependent) 

Bits 6:20 of the instruction encoding are implementa-
tion-dependent, and may be used to specify the target
TLB entry, the target portion of the target TLB entry,
and the source of the value that is to be written into the
TLB.

The contents of the implementation-dependent-speci-
fied source are written into the implementation-depen-
dent-specified portion of the implementation-
dependent-specified TLB entry.

If the instruction specifies a TLB entry that does not
exist, the results are undefined.

Execution of this instruction may cause other imple-
mentation-dependent effects.

This instruction is privileged.

Special Registers Altered:
Implementation-dependent

 

  

31 ??? ??? ??? 978 /
0 6 11 16 21 31

The effects of the update may not be visible until
the completion of a context synchronizing opera-
tion (see Section 1.6.1).

Care must be taken not to invalidate any TLB entry
that contains the mapping for any interrupt vector.

Programming Note
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5.1 Overview
An interrupt is the action in which the processor saves
its old context (MSR and next instruction address) and
begins execution at a pre-determined interrupt-handler
address, with a modified MSR. Exceptions are the
events that will, if enabled, cause the processor to take
an interrupt.

Exceptions are generated by signals from internal and
external peripherals, instructions, the internal timer
facility, debug events, or error conditions. 

Interrupts are divided into 4 classes, as described in
Section 5.4.3, such that only one interrupt of each class
is reported, and when it is processed no program state
is lost. Since Save/Restore register pairs SRR0/SRR1,
CSRR0/CSRR1, DSRR0/DSRR1 [Category: E.ED],
and MCSSR0/MCSSR1 are serially reusable resources
used by base, critical, debug [Category: E.ED],
Machine Check interrupts, respectively, program state
may be lost when an unordered interrupt is taken. (See
Section 5.8.

All interrupts, except Machine Check, are context syn-
chronizing as defined in Section 1.6.1 on page 511. A
Machine Check interrupt acts like a context synchroniz-
ing operation with respect to subsequent instructions;
that is, a Machine Check interrupt need not satisfy
items 2-3 of Section 1.6.1 but does satisfy items 1, 4,
and 5.

5.2 Interrupt Registers

5.2.1 Save/Restore Register 0
Save/Restore Register 0 (SRR0) is a 64-bit register.
SRR0 bits are numbered 0 (most-significant bit) to 63
(least-significant bit). The register is used to save
machine state on non-critical interrupts, and to restore
machine state when an rfi is executed. On a non-criti-
cal interrupt, SRR0 is set to the current or next instruc-
tion address. When rfi is executed, instruction
execution continues at the address in SRR0.

In general, SRR0 contains the address of the instruc-
tion that caused the non-critical interrupt, or the
address of the instruction to return to after a non-critical
interrupt is serviced.

The contents of SRR0 when an interrupt is taken are
mode dependent, reflecting the computation mode cur-
rently in use (specified by MSRCM) and the computa-
tion mode entered for execution of the interrupt
(specified by MSRICM). The contents of SRR0 upon
interrupt can be described as follows (assuming Addr is
the address to be put into SRR0):

if (MSRCM = 0) & (MSRICM = 0) 
then SRR0 ← 32undefined ||  Addr32:63

if (MSRCM = 0) & (MSRICM = 1) 
then SRR0 ← 320 ||  Addr32:63

if (MSRCM = 1) & (MSRICM = 1) then SRR0 ← Addr0:63
if (MSRCM = 1) & (MSRICM = 0) then SRR0 ← undefined

The contents of SRR0 can be read into register RT
using mfspr RT,SRR0. The contents of register RS can
be written into the SRR0 using mtspr SRR0,RS.

5.2.2 Save/Restore Register 1
Save/Restore Register 1 (SRR1) is a 32-bit register.
SRR1 bits are numbered 32 (most-significant bit) to 63
(least-significant bit). The register is used to save
machine state on non-critical interrupts, and to restore
machine state when an rfi is executed. When a non-
critical interrupt is taken, the contents of the MSR are
placed into SRR1. When rfi is executed, the contents of
SRR1 are placed into the MSR.

Bits of SRR1 that correspond to reserved bits in the
MSR are also reserved.

  

The contents of SRR1 can be read into register RT
using mfspr RT,SRR1. The contents of register RS can
be written into the SRR1 using mtspr SRR1,RS.

A MSR bit that is reserved may be inadvertently
modified by rfi/rfci/rfmci.
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5.2.3 Critical Save/Restore Regis-
ter 0
Critical Save/Restore Register 0 (CSRR0) is a 64-bit
register. CSRR0 bits are numbered 0 (most-significant
bit) to 63 (least-significant bit). The register is used to
save machine state on critical interrupts, and to restore
machine state when an rfci is executed. When a critical
interrupt is taken, the CSRR0 is set to the current or
next instruction address. When rfci is executed,
instruction execution continues at the address in
CSRR0.

In general, CSRR0 contains the address of the instruc-
tion that caused the critical interrupt, or the address of
the instruction to return to after a critical interrupt is ser-
viced.

The contents of CSRR0 when a critical interrupt is
taken are mode dependent, reflecting the computation
mode currently in use (specified by MSRCM) and the
computation mode entered for execution of the critical
interrupt (specified by MSRICM). The contents of
CSRR0 upon critical interrupt can be described as fol-
lows (assuming Addr is the address to be put into
CSRR0):

if (MSRCM = 0) & (MSRICM = 0) 
then CSRR0 ← 32undefined ||  Addr32:63

if (MSRCM = 0) & (MSRICM = 1) 
then CSRR0 ← 320 ||  Addr32:63

if (MSRCM = 1) & (MSRICM = 1) then CSRR0 ← Addr0:63
if (MSRCM = 1) & (MSRICM = 0) then CSRR0 ← undefined

The contents of CSRR0 can be read into register RT
using mfspr RT,CSRR0. The contents of register RS
can be written into CSRR0 using mtspr CSRR0,RS.

5.2.4 Critical Save/Restore Regis-
ter 1
Critical Save/Restore Register 1 (CSRR1) is a 32-bit
register. CSRR1 bits are numbered 32 (most-significant
bit) to 63 (least-significant bit). The register is used to
save machine state on critical interrupts, and to restore
machine state when an rfci is executed. When a critical
interrupt is taken, the contents of the MSR are placed
into CSRR1. When rfci is executed, the contents of
CSRR1 are placed into the MSR.

Bits of CSRR1 that correspond to reserved bits in the
MSR are also reserved.

  

The contents of CSRR1 can be read into bits 32:63 of
register RT using mfspr RT,CSRR1, setting bits 0:31 of
RT to zero. The contents of bits 32:63 of register RS

can be written into the CSRR1 using mtspr
CSRR1,RS.

5.2.5 Debug Save/Restore Regis-
ter 0 [Category: Embed-
ded.Enhanced Debug]
Debug Save/Restore Register 0 (DSRR0) is a 64-bit
register used to save machine state on Debug inter-
rupts, and to restore machine state when an rfdi is exe-
cuted. When a Debug interrupt is taken, the DSRR0 is
set to the current or next instruction address. When rfdi
is executed, instruction execution continues at the
address in DSRR0.

In general, DSRR0 contains the address of an instruc-
tion that was executing or just finished execution when
the Debug exception occurred.

The contents of DSRR0 when a Debug interrupt is
taken are mode dependent, reflecting the computation
mode currently in use (specified by MSRCM) and the
computation mode entered for execution of the Debug
interrupt (specified by MSRICM). The contents of
DSRR0 upon Debug interrupt can be described as fol-
lows (assuming Addr is the address to be put into
DSRR0):
if (MSRCM = 0) & (MSRICM = 0) then DSRR0 � 32undefined || 
Addr32:63
if (MSRCM = 0) & (MSRICM = 1) then DSRR0 � 320 || Addr32:63
if (MSRCM = 1) & (MSRICM = 1) then DSRR0 � Addr0:63
if (MSRCM = 1) & (MSRICM = 0) then DSRR0 � undefined

The contents of DSRR0 can be read into register RT
using mfspr RT,DSRR0. The contents of register RS
can be written into DSRR0 using mtspr DSRR0,RS.

5.2.6 Debug Save/Restore Regis-
ter 1 [Category: Embed-
ded.Enhanced Debug]
Debug Save/Restore Register 1 (DSRR1) is a 32-bit
register used to save machine state on Debug inter-
rupts, and to restore machine state when an rfdi is exe-
cuted. When a Debug interrupt is taken, the contents of
the Machine State Register are placed into DSRR1.
When rfdi is executed, the contents of DSRR1 are
placed into the Machine State Register.

Bits of DSRR1 that correspond to reserved bits in the
Machine State Register are also reserved.

The contents of DSRR1 can be read into bits 32:63 of
register RT using mfspr RT,DSRR1, setting bits 0:31 of
RT to zero. The contents of bits 32:63 of register RS
can be written into the DSSR1 using mtspr
DSRR1,RS.

A MSR bit that is reserved may be inadvertently
modified by rfi/rfci/rfmci.

Programming Note
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5.2.7 Data Exception Address 
Register
The Data Exception Address Register (DEAR) is a 64-
bit register. DEAR bits are numbered 0 (most-signifi-
cant bit) to 63 (least-significant bit). The DEAR contains
the address that was referenced by a Load, Store or
Cache Management instruction that caused an Align-
ment, Data TLB Miss, or Data Storage interrupt.

The contents of the DEAR when an interrupt is taken
are mode dependent, reflecting the computation mode
currently in use (specified by MSRCM) and the compu-
tation mode entered for execution of the critical inter-
rupt (specified by MSRICM). The contents of the DEAR
upon interrupt can be described as follows (assuming
Addr is the address to be put into DEAR):

if (MSRCM = 0) & (MSRICM = 0) 
then DEAR ← 32undefined ||  Addr32:63

if (MSRCM = 0) & (MSRICM = 1) 
then DEAR ← 320 ||  Addr32:63

if (MSRCM = 1) & (MSRICM = 1) then DEAR ← Addr0:63
if (MSRCM = 1) & (MSRICM = 0) then DEAR ← undefined

The contents of DEAR can be read into register RT
using mtspr RT,DEAR. The contents of register RS can
be written into the DEAR using mtspr DEAR,RS.

5.2.8 Interrupt Vector Prefix Reg-
ister
The Interrupt Vector Prefix Register (IVPR) is a 64-bit
register. Interrupt Vector Prefix Register bits are num-
bered 0 (most-significant bit) to 63 (least-significant bit).
Bits 48:63 are reserved. Bits 0:47 of the Interrupt Vec-
tor Prefix Register provides the high-order 48 bits of the
address of the exception processing routines. The 16-
bit exception vector offsets (provided in Section 5.2.10)
are concatenated to the right of bits 0:47 of the Inter-
rupt Vector Prefix Register to form the 64-bit address of
the exception processing routine.

The contents of Interrupt Vector Prefix Register can be
read into register RT using mfspr RT,IVPR. The con-
tents of register RS can be written into Interrupt Vector
Prefix Register using mtspr IVPR,RS.
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5.2.9 Exception Syndrome Register
The Exception Syndrome Register (ESR) is a 32-bit
register. ESR bits are numbered 32 (most-significant
bit) to 63 (least-significant bit). The ESR provides a
syndrome to differentiate between the different kinds of
exceptions that can generate the same interrupt type.
Upon the generation of one of these types of interrupts,

the bit or bits corresponding to the specific exception
that generated the interrupt is set, and all other ESR
bits are cleared. Other interrupt types do not affect the
contents of the ESR. The ESR does not need to be
cleared by software. Figure 12 shows the bit definitions
for the ESR.

Figure 12. Exception Syndrome Register
 Definitions

Bit(s) Name Meaning Associated Interrupt Type
32:35 Implementation-dependent (Implementation-dependent)
36 PIL Illegal Instruction exception Program
37 PPR Privileged Instruction exception Program
38 PTR Trap exception Program
39 FP Floating-point operation Alignment

Data Storage
Data TLB
Program

40 ST Store operation Alignment
Data Storage
Data TLB Error

41 Reserved
42 DLK0 (Implementation-dependent) (Implementation-dependent)

(Implementation-dependent)43 DLK1 (implementation-dependent)
44 AP Auxiliary Processor operation Alignment

Data Storage
Data TLB
Program

45 PUO Unimplemented Operation exception Program
46 BO Byte Ordering exception Data Storage

Instruction Storage
47 PIE Imprecise exception Program
48:55 Reserved
56 SPV Signal Processing operation [Category: Sig-

nal Processing Engine]
Vector operation [Category: Vector]

Alignment
Data Storage
Data TLB
Embedded Floating-point Data
Embedded Floating-point Round
SPE/Embedded Floating-point/Vector Unavailable

57 EPID External Process ID operation [Category: 
Embedded.External Process ID]

Alignment
Data Storage
Data TLB

58 VLEMI VLE operation [Category: VLE] Alignment
Data Storage
Data TLB
SPE/Embedded Floating-point/Vector Unavailable
Embedded Floating-point Data
Embedded Floating-point Round
Instruction Storage
Program
System Call

59:61 Implementation-dependent (Implementation-dependent)
62 MIF Misaligned Instruction [Category: VLE] Instruction TLB

Instruction Storage
Chapter 5. Interrupts and Exceptions 567



   Version 2.04
The contents of the ESR can be read into bits 32:63 of
register RT using mfspr RT,ESR, setting bits 0:31 of RT
to zero. The contents of bits 32:63 of register RS can
be written into the ESR using mtspr ESR,RS.

5.2.10 Interrupt Vector Offset Reg-
isters
The Interrupt Vector Offset Registers (IVORs) are 32-
bit registers. Interrupt Vector Offset Register bits are
numbered 32 (most-significant bit) to 63 (least-signifi-
cant bit). Bits 32:47 and bits 60:63 are reserved. An
Interrupt Vector Offset Register provides the quadword
index from the base address provided by the IVPR (see
Section 5.2.8) for its respective interrupt. Interrupt Vec-
tor Offset Registers 0 through 15 and 32-37 are pro-
vided for the defined interrupts. SPR numbers
corresponding to Interrupt Vector Offset Registers 16
through 31 are reserved. SPR numbers corresponding
to Interrupt Vector Offset Registers 38 through 63 are
allocated for implementation-dependent use. Figure 13
provides the assignments of specific Interrupt Vector
Offset Registers to specific interrupts.

Figure 13. Interrupt Vector Offset Register 
Assignments

Bits 48:59 of the contents of IVORi can be read into bits
48:59 of register RT using mfspr RT,IVORi, setting bits
0:47 and bits 60:63 of GPR(RT) to zero. Bits 48:59 of
the contents of register RS can be written into bits
48:59 of IVORi using mtspr IVORi,RS.

5.2.11 Machine Check Registers
A set of Special Purpose Registers are provided to sup-
port Machine Check interrupts.

The information provided by the ESR is not com-
plete. System software may also need to identify
the type of instruction that caused the interrupt,
examine the TLB entry accessed by a data or
instruction storage access, as well as examine the
ESR to fully determine what exception or excep-
tions caused the interrupt. For example, a Data
Storage interrupt may be caused by both a Protec-
tion Violation exception as well as a Byte Ordering
exception. System software would have to look
beyond ESRBO, such as the state of MSRPR in
SRR1 and the page protection bits in the TLB entry
accessed by the storage access, to determine
whether or not a Protection Violation also occurred.

Programming Note

IVORi Interrupt 

IVOR0
IVOR1
IVOR2
IVOR3
IVOR4
IVOR5
IVOR6
IVOR7
IVOR8
IVOR9
IVOR10
IVOR11
IVOR12
IVOR13
IVOR14
IVOR15

Critical Input
Machine Check
Data Storage
Instruction Storage
External
Alignment
Program
Floating-Point Unavailable
System Call
Auxiliary Processor Unavailable
Decrementer
Fixed-Interval Timer Interrupt
Watchdog Timer Interrupt
Data TLB Error
Instruction TLB Error
Debug

IVOR16
:

IVOR31

Reserved

[Category: Signal Processing Engine]
[Category: Vector]

IVOR 32 SPE/Embedded Floating-Point/Vector 
Unavailable Interrupt

[Category: SP.Embedded Float_*]
(IVORs 33 & 34 are required if any SP.Float_ 

dependent category is supported.)

IVOR 33
IVOR 34

Embedded Floating-Point Data Interrupt
Embedded Floatg.-pt. round Interrupt

[Category: Embedded Performance Monitor]

IVOR 35 Embedded Performance Monitor Inter-
rupt 

[Category: Embedded.Processor Control]

IVOR 36
IVOR 37

Processor Doorbell Interrupt
Processor Doorbell Critical Interrupt

IVOR38
:

IVOR63

Implementation-dependent
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5.2.11.1 Machine Check Save/Restore 
Register 0
Machine Check Save/Restore Register 0 (MCSRR0) is
used to save machine state on Machine Check inter-
rupts, and to restore machine state when an rfmci is
executed. When a Machine Check interrupt is taken,
the MCSRR0 is set to the current or next instruction
address. When rfmci is executed, instruction execution
continues at the address in MCSRR0.

In general, MCSRR0 contains the address of an
instruction that was executing or about to be executed
when the Machine Check exception occurred.

The contents of MCSRR0 when a Machine Check inter-
rupt is taken are mode dependent, reflecting the com-
putation mode currently in use (specified by MSRCM)
and the computation mode entered for execution of the
Machine Check interrupt (specified by MSRICM). The
contents of MCSRR0 upon Machine Check interrupt
can be described as follows (assuming Addr is the
address to be put into MCSRR0):

if (MSRCM = 0) & (MSRICM = 0) 
then MCSRR0 ← 32undefined ||  Addr32:63

if (MSRCM = 0) & (MSRICM = 1) 
then MCSRR0 ← 320 ||  Addr32:63

if (MSRCM = 1) & (MSRICM = 1) then MCSRR0 ← Addr0:63
if (MSRCM = 1) & (MSRICM = 0) then MCSRR0 ← unde-
fined

The contents of MCSRR0 can be read into register RT
using mfspr RT,MCSRR0. The contents of register RS
can be written into MCSRR0 using mtspr MCSRR0,RS.

5.2.11.2 Machine Check Save/Restore 
Register 1
Machine Check Save/Restore Register 1 (MCSRR1) is
used to save machine state on Machine Check inter-
rupts, and to restore machine state when an rfmci is
executed. When a Machine Check interrupt is taken,
the contents of the MSR are placed into MCSRR1.
When rfmci is executed, the contents of MCSRR1 are
placed into the MSR.

Bits of MCSRR1 that correspond to reserved bits in the
MSR are also reserved.

  

The contents of MCSRR1 can be read into register RT
using mfspr RT,MCSRR1. The contents of register RS
can be written into the MCSRR1 using mtspr
MCSRR1,RS.

5.2.11.3 Machine Check Syndrome 
Register
MCSR (MCSR) is a 64-bit register that is used to
record the cause of the Machine Check interrupt. The
specific definition of the contents of this register are
implementation-dependent (see the User Manual of the
implementation).

The contents of MCSR can be read into register RT
using mfspr RT,MCSR. The contents of register RS can
be written into the MCSR using mtspr MCSR,RS.

5.2.12 External Proxy Register 
[Category: External Proxy]
The External Proxy Register (EPR) contains implemen-
tation-dependent information related to an External
Input interrupt when an External Input interrupt occurs.
The EPR is only considered valid from the time that the
External Input Interrupt occurs until MSREE is set to 1
as the result of a mtmsr or a return from interrupt
instruction.

The format of the EPR is shown below.

Figure 14. External Proxy Register

When the External Input interrupt is taken, the contents
of the EPR provide information related to the External
Input Interrupt.

 

A MSR bit that is reserved may be inadvertently
modified by rfi/rfci/rfmci.

Programming Note

EPR
32                                                    63

The EPR is provided for faster interrupt processing
as well as situations where an interrupt must be
taken, but software must delay the resultant pro-
cessing for later.

The EPR contains the vector from the interrupt con-
troller. The process of receiving the interrupt into
the EPR acknowledges the interrupt to the interrupt
controller. The method for enabling or disabling the
acknowledgment of the interrupt by placing the
interrupt-related information in the EPR is imple-
mentation-dependent. If this acknowledgement is
disabled, then the EPR is set to 0 when the Exter-
nal Input interrupt occurs.

Programming Note
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5.3 Exceptions
There are two kinds of exceptions, those caused
directly by the execution of an instruction and those
caused by an asynchronous event. In either case, the
exception may cause one of several types of interrupts
to be invoked.

Examples of exceptions that can be caused directly by
the execution of an instruction include but are not lim-
ited to the following:

� an attempt to execute a reserved-illegal instruction
(Illegal Instruction exception type Program inter-
rupt)

� an attempt by an application program to execute a
‘privileged’ instruction (Privileged Instruction
exception type Program interrupt)

� an attempt by an application program to access a
‘privileged’ Special Purpose Register (Privileged
Instruction exception type Program interrupt)

� an attempt by an application program to access a
Special Purpose Register that does not exist
(Unimplemented Operation Instruction exception
type Program interrupt)

� an attempt by a system program to access a Spe-
cial Purpose Register that does not exist (bound-
edly undefined results)

� the execution of a defined instruction using an
invalid form (Illegal Instruction exception type Pro-
gram interrupt, Unimplemented Operation excep-
tion type Program interrupt, or Privileged
Instruction exception type Program interrupt)

� an attempt to access a storage location that is
either unavailable (Instruction TLB Error interrupt
or Data TLB Error interrupt) or not permitted
(Instruction Storage interrupt or Data Storage
interrupt)

� an attempt to access storage with an effective
address alignment not supported by the implemen-
tation (Alignment interrupt)

� the execution of a System Call instruction (System
Call interrupt)

� the execution of a Trap instruction whose trap con-
dition is met (Trap type Program interrupt)

� the execution of a floating-point instruction when
floating-point instructions are unavailable (Float-
ing-point Unavailable interrupt)

� the execution of a floating-point instruction that
causes a floating-point enabled exception to exist
(Enabled exception type Program interrupt)

� the execution of a defined instruction that is not
implemented by the implementation (Illegal
Instruction exception or Unimplemented Opera-
tion exception type of Program interrupt)

� the execution of an instruction that is not imple-
mented by the implementation (Illegal Instruction
exception or Unimplemented Operation exception
type of Program interrupt)

� the execution of an auxiliary processor instruction
when the auxiliary processor instruction is unavail-
able (Auxiliary Processor Unavailable interrupt)

� the execution of an instruction that causes an aux-
iliary processor enabled exception (Enabled
exception type Program interrupt)

The invocation of an interrupt is precise, except that if
one of the imprecise modes for invoking the Floating-
point Enabled Exception type Program interrupt is in
effect then the invocation of the Floating-point Enabled
Exception type Program interrupt may be imprecise.
When the interrupt is invoked imprecisely, the excepting
instruction does not appear to complete before the next
instruction starts (because one of the effects of the
excepting instruction, namely the invocation of the
interrupt, has not yet occurred).

5.4 Interrupt Classification
All interrupts, except for Machine Check, can be classi-
fied as either Asynchronous or Synchronous. Indepen-
dent from this classification, all interrupts, including
Machine Check, can be classified into one of the follow-
ing classes:
� Base
� Critical
� Machine Check
� Debug[Category:Embedded.Enhanced Debug].

5.4.1 Asynchronous Interrupts
Asynchronous interrupts are caused by events that are
independent of instruction execution. For asynchronous
interrupts, the address reported to the exception han-
dling routine is the address of the instruction that would
have executed next, had the asynchronous interrupt not
occurred.

5.4.2 Synchronous Interrupts
Synchronous interrupts are those that are caused
directly by the execution (or attempted execution) of
instructions, and are further divided into two classes,
precise and imprecise.

Synchronous, precise interrupts are those that pre-
cisely indicate the address of the instruction causing
the exception that generated the interrupt; or, for cer-
tain synchronous, precise interrupt types, the address
of the immediately following instruction. 

Synchronous, imprecise interrupts are those that may
indicate the address of the instruction causing the
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exception that generated the interrupt, or some instruc-
tion after the instruction causing the exception.

5.4.2.1 Synchronous, Precise Inter-
rupts
When the execution or attempted execution of an
instruction causes a synchronous, precise interrupt, the
following conditions exist at the interrupt point.

� SRR0, CSRR0, or DSRR0 [Category: Embed-
ded.Enhanced Debug] addresses either the
instruction causing the exception or the instruction
immediately following the instruction causing the
exception. Which instruction is addressed can be
determined from the interrupt type and status bits.

� An interrupt is generated such that all instructions
preceding the instruction causing the exception
appear to have completed with respect to the exe-
cuting processor. However, some storage
accesses associated with these preceding instruc-
tions may not have been performed with respect to
other processors and mechanisms.

� The instruction causing the exception may appear
not to have begun execution (except for causing
the exception), may have been partially executed,
or may have completed, depending on the interrupt
type. See Section 5.7 on page 588.

� Architecturally, no subsequent instruction has exe-
cuted beyond the instruction causing the excep-
tion.

5.4.2.2 Synchronous, Imprecise Inter-
rupts
When the execution or attempted execution of an
instruction causes an imprecise interrupt, the following
conditions exist at the interrupt point.

� SRR0 or CSRR0 addresses either the instruction
causing the exception or some instruction following
the instruction causing the exception that gener-
ated the interrupt.

� An interrupt is generated such that all instructions
preceding the instruction addressed by SRR0 or
CSRR0 appear to have completed with respect to
the executing processor.

� If the imprecise interrupt is forced by the context
synchronizing mechanism, due to an instruction
that causes another exception that generates an
interrupt (e.g., Alignment, Data Storage), then
SRR0 addresses the interrupt-forcing instruction,
and the interrupt-forcing instruction may have been
partially executed (see Section 5.7 on page 588).

� If the imprecise interrupt is forced by the execution
synchronizing mechanism, due to executing an
execution synchronizing instruction other than
msync or isync, then SRR0 or CSRR0 addresses
the interrupt-forcing instruction, and the interrupt-
forcing instruction appears not to have begun exe-
cution (except for its forcing the imprecise inter-

rupt). If the imprecise interrupt is forced by an
msync or isync instruction, then SRR0 or CSRR0
may address either the msync or isync instruc-
tion, or the following instruction.

� If the imprecise interrupt is not forced by either the
context synchronizing mechanism or the execution
synchronizing mechanism, then the instruction
addressed by SRR0 or CSRR0 may have been
partially executed (see Section 5.7 on page 588).

� No instruction following the instruction addressed
by SRR0 or CSRR0 has executed.

5.4.3 Interrupt Classes
Interrupts can also be classified as base, critical,
Machine Check, and Debug [Category: Embed-
ded.Enhanced Debug]. 

Interrupt classes other than the base class may
demand immediate attention even if another class of
interrupt is currently being processed and software has
not yet had the opportunity to save the state of the
machine (i.e. return address and captured state of the
MSR). For this reason, the interrupts are organized into
a hierarchy (see Section 5.8). To enable taking a criti-
cal, Machine Check, or Debug [Category: Embed-
ded.Enhanced Debug] interrupt immediately after a
base class interrupt occurs (i.e. before software has
saved the state of the machine), these interrupts use
the Save/Restore Register pair CSRR0/CSRR1,
MCSRR0/MCSRR1, or DSRR0/DSRR1 [Category:
Embedded.Enhanced Debug], and base class inter-
rupts use Save/Restore Register pair SRR0/SRR1. 

5.4.4 Machine Check Interrupts
Machine Check interrupts are a special case. They are
typically caused by some kind of hardware or storage
subsystem failure, or by an attempt to access an invalid
address. A Machine Check may be caused indirectly by
the execution of an instruction, but not be recognized
and/or reported until long after the processor has exe-
cuted past the instruction that caused the Machine
Check. As such, Machine Check interrupts cannot
properly be thought of as synchronous or asynchro-
nous, nor as precise or imprecise. The following gen-
eral rules apply to Machine Check interrupts:

1. No instruction after the one whose address is
reported to the Machine Check interrupt handler in
MCSRR0 has begun execution.

2. The instruction whose address is reported to the
Machine Check interrupt handler in MCSRR0, and
all prior instructions, may or may not have com-
pleted successfully. All those instructions that are
ever going to complete appear to have done so
already, and have done so within the context exist-
ing prior to the Machine Check interrupt. No further
interrupt (other than possible additional Machine
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Check interrupts) will occur as a result of those
instructions.

5.5 Interrupt Processing
Associated with each kind of interrupt is an interrupt
vector, that is the address of the initial instruction that is
executed when the corresponding interrupt occurs.

Interrupt processing consists of saving a small part of
the processor’s state in certain registers, identifying the
cause of the interrupt in another register, and continu-
ing execution at the corresponding interrupt vector
location. When an exception exists that will cause an
interrupt to be generated and it has been determined
that the interrupt can be taken, the following actions are
performed, in order:

1. SRR0, DSRR0 [Category: Embedded.Enhanced
Debug], MCSRR0, or CSRR0 is loaded with an
instruction address that depends on the interrupt;
see the specific interrupt description for details.

2. The ESR is loaded with information specific to the
exception. Note that many interrupts can only be
caused by a single kind of exception event, and
thus do not need nor use an ESR setting to indi-
cate to the cause of the interrupt was.

3. SRR1, DSRR1 [Category: Embedded.Enhanced
Debug], or MCSRR1, or CSRR1 is loaded with a
copy of the contents of the MSR.

4. The MSR is updated as described below. The new
values take effect beginning with the first instruc-
tion following the interrupt. MSR bits of particular
interest are the following.
� MSRWE,EE,PR,FP,FE0,FE1,IS,DS are set to 0 by

all interrupts.
� MSRME is set to 0 by Machine Check inter-

rupts and left unchanged by all other inter-
rupts.

� MSRCE is set to 0 by critical class interrupts,
Debug interrupts, and Machine Check inter-
rupts, and is left unchanged by all other inter-
rupts.

� MSRDE is set to 0 by critical class interrupts
unless Category E.ED is supported, by Debug
interrupts, and by Machine Check interrupts,
and is left unchanged by all other interrupts.

� MSRCM is set to MSRICM.
� Other supported MSR bits are left unchanged

by all interrupts.

See Section 2.2.1 for more detail on the definition
of the MSR.

5. Instruction fetching and execution resumes, using
the new MSR value, at a location specific to the
interrupt. The location is

IVPR0:47 || IVORi48:59 || 0b0000

where IVPR is the Interrupt Vector Prefix Register
and IVORi is the Interrupt Vector Offset Register
for that interrupt (see Figure 13 on page 568). The
contents of the Interrupt Vector Prefix Register and
Interrupt Vector Offset Registers are indeterminate
upon power-on reset, and must be initialized by
system software using the mtspr instruction.

Interrupts may not clear reservations obtained with
Load and Reserve instructions. The operating system
should do so at appropriate points, such as at process
switch.

At the end of an interrupt handling routine, execution of
an rfi, rfdi [Category: Embedded.Enhanced Debug],
rfmci, or rfci causes the MSR to be restored from the
contents of SRR1, DSRR1 [Category: Embed-
ded.Enhanced Debug], MCSRR1, or CSRR1, and
instruction execution to resume at the address con-
tained in SRR0, DSRR0 [Category: Embed-
ded.Enhanced Debug], MCSRR0, or CSRR0,
respectively.

  

In general, at process switch, due to possible pro-
cess interlocks and possible data availability
requirements, the operating system needs to con-
sider executing the following.

� stwcx. or stdcx., to clear the reservation if
one is outstanding, to ensure that a lwarx or
ldarx in the “old” process is not paired with a
stwcx. or stdcx. in the “new” process. 

� msync, to ensure that all storage operations of
an interrupted process are complete with
respect to other processors before that pro-
cess begins executing on another processor. 

� isync, rfi, rfdi [Category: Embed-
ded.Enhanced Debug], rfmci, or rfci to ensure
that the instructions in the “new” process exe-
cute in the “new” context. 

Programming Note
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Programming Note

For instruction-caused interrupts, in some cases it may
be desirable for the operating system to emulate the
instruction that caused the interrupt, while in other
cases it may be desirable for the operating system not
to emulate the instruction. The following list, while not
complete, illustrates criteria by which decisions regard-
ing emulation should be made. The list applies to gen-
eral execution environments; it does not necessarily
apply to special environments such as program debug-
ging, processor bring-up, etc.

In general, the instruction should be emulated if:

- The interrupt is caused by a condition for
which the instruction description (including
related material such as the introduction to the
section describing the instruction) implies that
the instruction works correctly. Example:
Alignment interrupt caused by lmw for which
the storage operand is not aligned, or by dcbz
or dcbzep for which the storage operand is in
storage that is Write Through Required or
Caching Inhibited.

- The instruction is an illegal instruction that
should appear, to the program executing it, as
if it were supported by the implementation.
Example: Illegal Instruction type Program
interrupt caused by an instruction that has
been phased out of the architecture but is still
used by some programs that the operating

system supports, or by an instruction that is in
a category that the implementation does not
support but is used by some programs that the
operating system supports.

In general, the instruction should not be emulated if:

- The purpose of the instruction is to cause an
interrupt. Example: System Call interrupt
caused by sc.

- The interrupt is caused by a condition that is
stated, in the instruction description, poten-
tially to cause the interrupt. Example: Align-
ment interrupt caused by lwarx for which the
storage operand is not aligned.

- The program is attempting to perform a func-
tion that it should not be permitted to perform.
Example: Data Storage interrupt caused by
lwz for which the storage operand is in stor-
age that the program should not be permitted
to access. (If the function is one that the pro-
gram should be permitted to perform, the con-
ditions that caused the interrupt should be
corrected and the program re-dispatched such
that the instruction will be re-executed. Exam-
ple: Data Storage interrupt caused by lwz for
which the storage operand is in storage that
the program should be permitted to access
but for which there currently is no TLB entry.)
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5.6 Interrupt Definitions

Table 15 provides a summary of each interrupt type,
the various exception types that may cause that inter-
rupt type, the classification of the interrupt, which ESR
bits can be set, if any, which MSR bits can mask the

interrupt type and which Interrupt Vector Offset Regis-
ter is used to specify that interrupt type’s vector
address. 
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IVOR0 Critical Input Critical Input x x  CE E 1 576
IVOR1 Machine Check Machine Check ME E 2,4 576
IVOR2 Data Storage Access x [ST],[FP,AP,SPV]

[VLEMI], [EPID]
E 9 577

Load and Reserve or Store 
Conditional to ‘write-thru 
required’ storage (W=1)

x [ST], [VLEMI] E 9

Cache Locking x {DLK0,DLK1},[ST]
[VLEMI]

E 8

Byte Ordering x BO, [ST],
[FP,AP,SPV],
[VLEMI], [EPID]

E

IVOR3 Inst Storage Access x E 578
Byte Ordering x BO, [VLEMI] E
Mismatched Instruction
Storage (See Book VLE.))

x BO, VLEMI EE E,
VLE

1

Misaligned Instruction
Storage (See Book VLE.)

x MIF EE E,
VLE

1

IVOR4 External Input External Input x EE E 1 578
IVOR5 Alignment Alignment x [ST],[FP,AP,SPV]

[EPID],[VLEMI]
E 579

IVOR6 Program Illegal x PIL, [VLEMI] E 580
Privileged x PPR,[AP],

[VLEMI]
E

Trap x PTR,[VLEMI] E
FP Enabled x x FP, [PIE] FE0,

FE1
E 6,7

AP Enabled x x AP E
Unimplemented Op x PUO, [VLEMI]

[FP,AP,SPV]
E 7

IVOR7 FP Unavailable FP Unavailable x E 581
IVOR8 System Call System Call x [VLEMI] E 581
IVOR9 AP Unavailable AP Unavailable x E 581
IVOR10 Decrementer x EE DIE E 582
IVOR11 FIT x EE FIE E 582
IVOR12 Watchdog x x CE WIE E 10 582
IVOR13 Data TLB Error Data TLB Miss x [ST],[FP,AP,SPV]

[VLEMI],[EPID]
E 583

IVOR14 Inst TLB Error Inst TLB Miss x [MIF] E 583
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Figure 15. Interrupt and Exception Types

Figure 15 Notes
1. Although it is not specified, it is common for sys-

tem implementations to provide, as part of the
interrupt controller, independent mask and status
bits for the various sources of Critical Input and
External Input interrupts.

2. Machine Check interrupts are a special case and
are not classified as asynchronous nor synchro-
nous. See Section 5.4.4 on page 571.

3. The Instruction Complete and Branch Taken debug
events are only defined for MSRDE=1 when in
Internal Debug Mode (DBCR0IDM=1). In other
words, when in Internal Debug Mode with
MSRDE=0, then Instruction Complete and Branch
Taken debug events cannot occur, and no DBSR
status bits are set and no subsequent imprecise
Debug interrupt will occur (see Section 8.4 on
page 606).

4. Machine Check status information is commonly
provided as part of the system implementation, but
is implementation-dependent.

5. In general, when an interrupt causes a particular
ESR bit or bits to be set (or cleared) as indicated in
the table, it also causes all other ESR bits to be
cleared. There may be special rules regarding the
handling of implementation-specific ESR bits.

Legend:

[xxx] means ESRxxx could be set

[xxx,yyy] means either ESRxxx or ESRyyy
may be set, but never both

(xxx,yyy) means either ESRxxx or ESRyyy
will be set, but never both

{xxx,yyy} means either ESRxxx or ESRyyy will
be set, or possibly both

xxx means ESRxxx is set

IVOR15 Debug Trap x x DE IDM E 10 584
Inst Addr Compare x x DE IDM E 10
Data Addr Compare x x DE IDM E 10
Instruction Complete x x DE IDM E 3,10
Branch Taken x x DE IDM E 3,10
Return From Interrupt x x DE IDM E 10
Interrupt Taken x x DE IDM E 10
Uncond Debug Event
Critical Interrupt Taken
Critical Interrupt Return

x
x

x

x DE
DE
DE

IDM
IDM
IDM

E.ED
E.ED
E.ED

10

IVOR32 SPE/Embedded
Floating-Point/Vector
Unavailable

SPE Unavailable x SPV, [VLEMI] SPE 585

Vector Unavailable SPV V
IVOR33 Embedded Floating-

Point Data
Embedded Floating-Point 

Data
x SPV, [VLEMI] SP.F* 586

IVOR34 Embedded Floating-
Point Round

Embedded Floating-Point 
Round

x SPV, [VLEMI] SP.F* 586

IVOR35 Embedded Perfor-
mance Monitor  

Embedded Performance 
Monitor

x E.PM

IVOR36 Processor Doorbell Processor Doorbell x EE E.PC
IVOR37 Processor Critical 

Doorbell
Processor Critical Doorbell x x CE E.PC

IVOR Interrupt Exception
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6. The precision of the Floating-point Enabled Excep-
tion type Program interrupt is controlled by the
MSRFE0,FE1 bits. When MSRFE0,FE1=0b01 or
0b10, the interrupt may be imprecise. When such a
Program interrupt is taken, if the address saved in
SRR0 is not the address of the instruction that
caused the exception (i.e. the instruction that
caused FPSCRFEX to be set to 1), ESRPIE is set to
1. When MSRFE0,FE1=0b11, the interrupt is pre-
cise. When MSRFE0,FE1=0b00, the interrupt is
masked, and the interrupt will subsequently occur
imprecisely if and when Floating-point Enabled
Exception type Program interrupts are enabled by
setting either or both of MSRFE0,FE1, and will also
cause ESRPIE to be set to 1. See Section 5.6.7.
Also, exception status on the exact cause is avail-
able in the Floating-Point Status and Control Reg-
ister (see Section 4.2.2 and Section 4.4 of Book I).

The precision of the Auxiliary Processor Enabled
Exception type Program interrupt is implementa-
tion-dependent.

7. Auxiliary Processor exception status is commonly
provided as part of the implementation.

8. Cache locking and cache locking exceptions are
implementation-dependent.

9. Software must examine the instruction and the
subject TLB entry to determine the exact cause of
the interrupt.

10. If the Embedded.Enhanced Debug category is
enabled, this interrupt is not a critical interrupt.
DSRR0 and DSRR1 are used instead of CSRR0
and CSRR1.

5.6.1 Critical Input Interrupt
A Critical Input interrupt occurs when no higher priority
exception exists (see Section 5.9 on page 591), a Criti-
cal Input exception is presented to the interrupt mecha-
nism, and MSRCE=1. While the specific definition of a
Critical Input exception is implementation-dependent, it
would typically be caused by the activation of an asyn-
chronous signal that is part of the system. Also, imple-
mentations may provide an alternative means (in
addition to MSRCE) for masking the Critical Input inter-
rupt.

CSRR0, CSRR1, and MSR are updated as follows:

CSRR0 Set to the effective address of the next
instruction to be executed.

CSRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to MSRICM.
ME, ICM Unchanged.
DE Unchanged if category E.ED is supported;

otherwise set to 0 

All other defined MSR bits set to 0.

Instruction execution resumes at address IVPR0:47 ||
IVOR048:59||0b0000.

  

5.6.2 Machine Check Interrupt
A Machine Check interrupt occurs when no higher pri-
ority exception exists (see Section 5.9 on page 591), a
Machine Check exception is presented to the interrupt
mechanism, and MSRME=1. The specific cause or
causes of Machine Check exceptions are implementa-
tion-dependent, as are the details of the actions taken
on a Machine Check interrupt.

If the Machine Check Extension is implemented,
MCSRR0, MCSRR1, and MCSR are set, otherwise
CSRR0, CSRR1, and ESR are set. The registers are
updated as follows:

CSRR0/MCSRR0
Set to an instruction address. As closely as
possible, set to the effective address of an
instruction that was executing or about to
be executed when the Machine Check
exception occurred.

CSRR1/MCSRR1
Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to MSRICM.
DE Unchanged if category E.ED is supported;

otherwise set to 0.

All other defined MSR bits set to 0.

ESR/MCSR
Implementation-dependent.

Instruction execution resumes at address IVPR0:47 ||
IVOR148:59||0b0000.

  

Software is responsible for taking any action(s) that
are required by the implementation in order to clear
any Critical Input exception status prior to re-
enabling MSRCE in order to avoid another, redun-
dant Critical Input interrupt.

If a Machine Check interrupt is caused by an error
in the storage subsystem, the storage subsystem
may return incorrect data, that may be placed into
registers and/or on-chip caches.

Programming Note

Programming Note
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5.6.3 Data Storage Interrupt
A Data Storage interrupt may occur when no higher pri-
ority exception exists (see Section 5.9 on page 591)
and a Data Storage exception is presented to the inter-
rupt mechanism. A Data Storage exception is caused
when any of the following exceptions arises during exe-
cution of an instruction:

Read Access Control exception

A Read Access Control exception is caused when one
of the following conditions exist.

� While in user mode (MSRPR=1), a Load or ‘load-
class’ Cache Management instruction attempts to
access a location in storage that is not user mode
read enabled (i.e. page access control bit UR=0).

� While in supervisor mode (MSRPR=0), a Load or
‘load-class’ Cache Management instruction
attempts to access a location in storage that is not
supervisor mode read enabled (i.e. page access
control bit SR=0).

Write Access Control exception

A Write Access Control exception is caused when one
of the following conditions exist.

� While in user mode (MSRPR=1), a Store or ‘store-
class’ Cache Management instruction attempts to
access a location in storage that is not user mode
write enabled (i.e. page access control bit UW=0).

� While in supervisor mode (MSRPR=0), a Store or
‘store-class’ Cache Management instruction
attempts to access a location in storage that is not
supervisor mode write enabled (i.e. page access
control bit SW=0).

Byte Ordering exception

A Byte Ordering exception may occur when the imple-
mentation cannot perform the data storage access in
the byte order specified by the Endian storage attribute
of the page being accessed.

Cache Locking exception

A Cache Locking exception may occur when the locked
state of one or more cache lines has the potential to be
altered. This exception is implementation-dependent.

Storage Synchronization exception

A Storage Synchronization exception will occur when
an attempt is made to execute a Load and Reserve or
Store Conditional instruction from or to a location that is
Write Through Required or Caching Inhibited (if the
interrupt does not occur then the instruction executes
correctly: see Section 3.3.2 of Book II).

If a stwcx. or stdcx. would not perform its store in the
absence of a Data Storage interrupt, and either (a) the
specified effective address refers to storage that is
Write Through Required or Caching Inhibited, or (b) a
non-conditional Store to the specified effective address
would cause a Data Storage interrupt, it is implementa-
tion-dependent whether a Data Storage interrupt
occurs.

Instructions lswx or stswx with a length of zero, icbt,
dcbt, dcbtep, dcbtst, dcbtstep, or dcba cannot cause
a Data Storage interrupt, regardless of the effective
address.

  

When a Data Storage interrupt occurs, the processor
suppresses the execution of the instruction causing the
Data Storage exception.

SRR0, SRR1, MSR, DEAR, and ESR are updated as
follows:

SRR0 Set to the effective address of the instruc-
tion causing the Data Storage interrupt.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM  MSRCM is set to MSRICM.
CE, ME,
DE, ICM Unchanged.

All other defined MSR bits set to 0.

On implementations on which a Machine Check
interrupt can be caused by referring to an invalid
real address, executing a dcbz, dcbzep, or dcba
instruction can cause a delayed Machine Check
interrupt by establishing in the data cache a block
that is associated with an invalid real address. See
Section 3.2 of Book II. A Machine Check interrupt
can eventually occur if and when a subsequent
attempt is made to write that block to main storage,
for example as the result of executing an instruc-
tion that causes a cache miss for which the block is
the target for replacement or as the result of exe-
cuting a dcbst, dcbstep, dcbf, or dcbfep instruc-
tion.

Programming Note

The icbi, icbiep, and icbt instructions are treated
as Loads from the addressed byte with respect to
address translation and protection. These Instruc-
tion Cache Management instructions use MSRDS,
not MSRIS, to determine translation for their oper-
ands. Instruction Storage exceptions and Instruc-
tion TLB Miss exceptions are associated with the
‘fetching’ of instructions not with the ‘execution’ of
instructions. Data Storage exceptions and Data
TLB Miss exceptions are associated with the ‘exe-
cution’ of Instruction Cache Management instruc-
tions.

Programming Note
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DEAR Set to the effective address of a byte that is
both within the range of the bytes being
accessed by the Storage Access or Cache
Management instruction, and within the
page whose access caused the Data Stor-
age exception.

ESR
FP Set to 1 if the instruction causing the inter-

rupt is a floating-point load or store; other-
wise set to 0.

ST Set to 1 if the instruction causing the inter-
rupt is a Store or ‘store-class’ Cache Man-
agement instruction; otherwise set to 0.

DLK0:1 Set to an implementation-dependent value
due to a Cache Locking exception causing
the interrupt.

AP Set to 1 if the instruction causing the inter-
rupt is an Auxiliary Processor load or store;
otherwise set to 0.

BO Set to 1 if the instruction caused a Byte
Ordering exception; otherwise set to 0.

SPV Set to 1 if the instruction causing the inter-
rupt is a SPE operation or a Vector opera-
tion; otherwise set to 0.

VLEMI Set to 1 if the instruction causing the inter-
rupt resides in VLE storage.

EPID Set to 1 if the instruction causing the inter-
rupt is an External Process ID instruction;
otherwise set to 0.

All other defined ESR bits are set to 0.

  

Instruction execution resumes at address IVPR0:47 ||
IVOR248:59||0b0000.

5.6.4 Instruction Storage Interrupt
An Instruction Storage interrupt occurs when no higher
priority exception exists (see Section 5.9 on page 591)
and an Instruction Storage exception is presented to
the interrupt mechanism. An Instruction Storage excep-
tion is caused when any of the following exceptions
arises during execution of an instruction:

Execute Access Control exception

An Execute Access Control exception is caused when
one of the following conditions exist.

� While in user mode (MSRPR=1), an instruction
fetch attempts to access a location in storage that

is not user mode execute enabled (i.e. page
access control bit UX=0).

� While in supervisor mode (MSRPR=0), an instruc-
tion fetch attempts to access a location in storage
that is not supervisor mode execute enabled (i.e.
page access control bit SX=0).

Byte Ordering exception

A Byte Ordering exception may occur when the imple-
mentation cannot perform the instruction fetch in the
byte order specified by the Endian storage attribute of
the page being accessed.

When an Instruction Storage interrupt occurs, the pro-
cessor suppresses the execution of the instruction
causing the Instruction Storage exception. 

SRR0, SRR1, MSR, and ESR are updated as follows:

SRR0 Set to the effective address of the instruc-
tion causing the Instruction Storage inter-
rupt.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to MSRICM.
CE, ME,
DE, ICM Unchanged.

All other defined MSR bits set to 0.

ESR
BO Set to 1 if the instruction fetch caused a

Byte Ordering exception; otherwise set to
0.

VLEMI Set to 1 if the instruction causing the inter-
rupt resides in VLE storage.

All other defined ESR bits are set to 0.

  

Instruction execution resumes at address IVPR0:47 ||
IVOR348:59||0b0000.

5.6.5 External Input Interrupt 
An External Input interrupt occurs when no higher pri-
ority exception exists (see Section 5.9 on page 591), an
External Input exception is presented to the interrupt
mechanism, and MSREE=1. While the specific defini-
tion of an External Input exception is implementation-
dependent, it would typically be caused by the activa-
tion of an asynchronous signal that is part of the pro-

Read and Write Access Control and Byte Ordering
exceptions are not mutually exclusive. Even if
ESRBO is set, system software must also examine
the TLB entry accessed by the data storage access
to determine whether or not a Read Access Control
or Write Access Control exception  may have also
occurred.

Programming Note

Execute Access Control and Byte Ordering excep-
tions are not mutually exclusive. Even if ESRBO is
set, system software must also examine the TLB
entry accessed by the instruction fetch to deter-
mine whether or not an Execute Access Control
exception may have also occurred.

Programming Note
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cessing system. Also, implementations may provide an
alternative means (in addition to MSREE) for masking
the External Input interrupt.

SRR0, SRR1, and MSR are updated as follows:

SRR0 Set to the effective address of the next
instruction to be executed.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to MSRICM.
CE, ME,
DE, ICM Unchanged.

All other defined MSR bits set to 0.

Instruction execution resumes at address IVPR0:47 ||
IVOR448:59||0b0000.

  

5.6.6 Alignment Interrupt
An Alignment interrupt occurs when no higher priority
exception exists (see Section 5.9 on page 591) and an
Alignment exception is presented to the interrupt mech-
anism. An Alignment exception may be caused when
the implementation cannot perform a data storage
access for one of the following reasons:

� The operand of a Load or Store is not aligned.
� The instruction is a Move Assist, Load Multiple or

Store Multiple.
� The operand of dcbz or dcbzep is in storage that

is Write Through Required or Caching Inhibited, or
one of these instructions is executed in an imple-
mentation that has either no data cache or a Write
Through data cache or the line addressed by the
instruction cannot be established in the cache
because the cache is disabled or locked.

� The operand of a Store, except Store Conditional,
is in storage that is Write-Through Required.

For lmw and stmw with an operand that is not word-
aligned, and for Load and Reserve and Store Condi-
tional instructions with an operand that is not aligned,
an implementation may yield boundedly undefined
results instead of causing an Alignment interrupt. A
Store Conditional to Write Through Required storage
may either cause a Data Storage interrupt, cause an
Alignment interrupt, or correctly execute the instruction.
For all other cases listed above, an implementation
may execute the instruction correctly instead of causing
an Alignment interrupt. (For dcbz or dcbzep, ‘correct’

execution means setting each byte of the block in main
storage to 0x00.)

  

When an Alignment interrupt occurs, the processor
suppresses the execution of the instruction causing the
Alignment exception.

SRR0, SRR1, MSR, DEAR, and ESR are updated as
follows:

SRR0 Set to the effective address of the instruc-
tion causing the Alignment interrupt.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to MSRICM.
CE, ME,
DE, ICM Unchanged.

All other defined MSR bits set to 0.

DEAR Set to the effective address of a byte that is
both within the range of the bytes being
accessed by the Storage Access or Cache
Management instruction, and within the
page whose access caused the Alignment
exception.

ESR
FP Set to 1 if the instruction causing the inter-

rupt is a floating-point load or store; other-
wise set to 0.

ST Set to 1 if the instruction causing the inter-
rupt is a Store; otherwise set to 0.

AP Set to 1 if the instruction causing the inter-
rupt is an Auxiliary Processor load or store;
otherwise set to 0.

SPV Set to 1 if the instruction causing the inter-
rupt is a SPE operation or a Vector opera-
tion; otherwise set to 0.

VLEMI Set to 1 if the instruction causing the inter-
rupt resides in VLE storage.

EPID Set to 1 if the instruction causing the inter-
rupt is an External Process ID instruction;
otherwise set to 0.

All other defined ESR bits are set to 0.

Instruction execution resumes at address IVPR0:47 ||
IVOR548:59||0b0000.

Software is responsible for taking whatever
action(s) are required by the implementation in
order to clear any External Input exception status
prior to re-enabling MSREE in order to avoid
another, redundant External Input interrupt.

Programming Note

The architecture does not support the use of an
unaligned effective address by Load and Reserve
and Store Conditional instructions. If an Alignment
interrupt occurs because one of these instructions
specifies an unaligned effective address, the Align-
ment interrupt handler must not attempt to emulate
the instruction, but instead should treat the instruc-
tion as a programming error.

Programming Note
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5.6.7 Program Interrupt
A Program interrupt occurs when no higher priority
exception exists (see Section 5.9 on page 591), a Pro-
gram exception is presented to the interrupt mecha-
nism, and, for Floating-point Enabled exception,
MSRFE0,FE1 are non-zero. A Program exception is
caused when any of the following exceptions arises
during execution of an instruction:

Floating-point Enabled exception

A Floating-point Enabled exception is caused when
FPSCRFEX is set to 1 by the execution of a floating-
point instruction that causes an enabled exception,
including the case of a Move To FPSCR instruction that
causes an exception bit and the corresponding enable
bit both to be 1. Note that in this context, the term
‘enabled exception’ refers to the enabling provided by
control bits in the Floating-Point Status and Control
Register. See Section 4.2.2 of Book I.

Auxiliary Processor Enabled exception

The cause of an Auxiliary Processor Enabled exception
is implementation-dependent.

Illegal Instruction exception

An Illegal Instruction exception does occur when exe-
cution is attempted of any of the following kinds of
instructions.

� a reserved-illegal instruction
� when MSRPR=1 (user mode), an mtspr or mfspr

that specifies an SPRN value with SPRN5=0 (user-
mode accessible) that represents an unimple-
mented Special Purpose Register

An Illegal Instruction exception may occur when execu-
tion is attempted of any of the following kinds of instruc-
tions. If the exception does not occur, the alternative is
shown in parentheses.

� an instruction that is in invalid form (boundedly
undefined results)

� an lswx instruction for which register RA or regis-
ter RB is in the range of registers to be loaded
(boundedly undefined results)

� a reserved-no-op instruction (no-operation per-
formed is preferred)

� a defined instruction that is not implemented by the
implementation (Unimplemented Operation excep-
tion)

Privileged Instruction exception

A Privileged Instruction exception occurs when
MSRPR=1 and execution is attempted of any of the fol-
lowing kinds of instructions.

� a privileged instruction
� an mtspr or mfspr instruction that specifies an

SPRN value with SPRN5=1

Trap exception

A Trap exception occurs when any of the conditions
specified in a Trap instruction are met and the excep-
tion is not also enabled as a Debug interrupt. If enabled
as a Debug interrupt (i.e. DBCR0TRAP=1,
DBCR0IDM=1, and MSRDE=1), then a Debug interrupt
will be taken instead of the Program interrupt.

Unimplemented Operation exception

An Unimplemented Operation exception may occur
when execution is attempted of a defined instruction
that is not implemented by the implementation. Other-
wise an Illegal Instruction exception occurs.

An Unimplemented Operation exception may also
occur when the processor is in 32-bit mode and execu-
tion is attempted of an instruction that is part of the 64-
Bit category. Otherwise the instruction executes nor-
mally.

SRR0, SRR1, MSR, and ESR are updated as follows:

SRR0 For all Program interrupts except an
Enabled exception when in one of the
imprecise modes (see Section 2.2.1 on
page 513) or when a disabled exception is
subsequently enabled, set to the effective
address of the instruction that caused the
Program interrupt.

For an imprecise Enabled exception, set to
the effective address of the excepting
instruction or to the effective address of
some subsequent instruction. If it points to
a subsequent instruction, that instruction
has not been executed, and ESRPIE is set
to 1. If a subsequent instruction is an
msync or isync, SRR0 will point at the
msync or isync instruction, or at the follow-
ing instruction.

If FPSCRFEX=1 but both MSRFE0=0 and
MSRFE1=0, an Enabled exception type Pro-
gram interrupt will occur imprecisely prior to
or at the next synchronizing event if these
MSR bits are altered by any instruction that
can set the MSR so that the expression

(MSRFE0 | MSRFE1) & FPSCRFEX

is 1. When this occurs, SRR0 is loaded with
the address of the instruction that would
have executed next, not with the address of
the instruction that modified the MSR caus-
ing the interrupt, and ESRPIE is set to 1.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to MSRICM.
CE, ME,
DE, ICM Unchanged.
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All other defined MSR bits set to 0.

ESR
PIL Set to 1 if an Illegal Instruction exception

type Program interrupt; otherwise set to 0
PPR Set to 1 if a Privileged Instruction exception

type Program interrupt; otherwise set to 0
PTR Set to 1 if a Trap exception type Program

interrupt; otherwise set to 0
PUO Set to 1 if an Unimplemented Operation

exception type Program interrupt; other-
wise set to 0

FP Set to 1 if the instruction causing the inter-
rupt is a floating-point instruction; otherwise
set to 0.

PIE Set to 1 if a Floating-point Enabled excep-
tion type Program interrupt, and the
address saved in SRR0 is not the address
of the instruction causing the exception (i.e.
the instruction that caused FPSCRFEX to
be set); otherwise set to 0.

AP Set to 1 if the instruction causing the inter-
rupt is an Auxiliary Processor instruction;
otherwise set to 0.

SPV Set to 1 if the instruction causing the inter-
rupt is a SPE operation or a Vector opera-
tion; otherwise set to 0.

VLEMI Set to 1 if the instruction causing the inter-
rupt resides in VLE storage.

All other defined ESR bits are set to 0.

Instruction execution resumes at address IVPR0:47 ||
IVOR648:59||0b0000.

5.6.8 Floating-Point Unavailable 
Interrupt
A Floating-Point Unavailable interrupt occurs when no
higher priority exception exists (see Section 5.9 on
page 591), an attempt is made to execute a floating-
point instruction (i.e. any instruction listed in
Section 4.6 of Book I), and MSRFP=0.

When a Floating-Point Unavailable interrupt occurs, the
processor suppresses the execution of the instruction
causing the Floating-Point Unavailable interrupt.

SRR0, SRR1, and MSR are updated as follows:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to MSRICM.
CE, ME,
DE, ICM Unchanged.

All other defined MSR bits set to 0.

Instruction execution resumes at address IVPR0:47 ||
IVOR748:59||0b0000.

5.6.9 System Call Interrupt
A System Call interrupt occurs when no higher priority
exception exists (see Section 5.9 on page 591) and a
System Call (sc) instruction is executed. 

SRR0, SRR1, and MSR are updated as follows:

SRR0 Set to the effective address of the instruc-
tion after the sc instruction.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM  MSRCM is set to MSRICM.
VLEMI Set to 1 if the instruction causing the inter-

rupt resides in VLE storage.
CE, ME,
DE, ICM Unchanged.

All other defined MSR bits set to 0.

Instruction execution resumes at address IVPR0:47 ||
IVOR848:59||0b0000.

5.6.10 Auxiliary Processor 
Unavailable Interrupt
An Auxiliary Processor Unavailable interrupt occurs
when no higher priority exception exists (see
Section 5.9 on page 591), an attempt is made to exe-
cute an Auxiliary Processor instruction (including Auxil-
iary Processor loads, stores, and moves), the target
Auxiliary Processor is present on the implementation,
and the Auxiliary Processor is configured as unavail-
able. Details of the Auxiliary Processor, its instruction
set, and its configuration are implementation-depen-
dent. See User’s Manual for the implementation.

When an Auxiliary Processor Unavailable interrupt
occurs, the processor suppresses the execution of the
instruction causing the Auxiliary Processor Unavailable
interrupt.

Registers SRR0, SRR1, and MSR are updated as fol-
lows:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to MSRICM.
CE, ME,
DE, ICM Unchanged.

All other defined MSR bits set to 0.
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Instruction execution resumes at address IVPR0:47 ||
IVOR948:59||0b0000.

5.6.11 Decrementer Interrupt
A Decrementer interrupt occurs when no higher priority
exception exists (see Section 5.9 on page 591), a Dec-
rementer exception exists (TSRDIS=1), and the inter-
rupt is enabled (TCRDIE=1 and MSREE=1). See
Section 7.3 on page 599.

  

SRR0, SRR1, MSR, and TSR are updated as follows:

SRR0 Set to the effective address of the next
instruction to be executed.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to MSRICM.
CE, ME,
DE, ICM Unchanged.

All other defined MSR bits set to 0.

TSR (See Section 7.5.1 on page 601.)
DIS Set to 1.

Instruction execution resumes at address IVPR0:47 ||
IVOR1048:59||0b0000.

  

5.6.12 Fixed-Interval Timer Inter-
rupt
A Fixed-Interval Timer interrupt occurs when no higher
priority exception exists (see Section 5.9 on page 591),
a Fixed-Interval Timer exception exists (TSRFIS=1),
and the interrupt is enabled (TCRFIE=1 and MSREE=1).
See Section 7.6 on page 602. 

  

SRR0, SRR1, MSR, and TSR are updated as follows:

SRR0 Set to the effective address of the next
instruction to be executed.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to MSRICM.
CE, ME,
DE, ICM Unchanged.

All other defined MSR bits set to 0.

TSR (See Section 7.5.1 on page 601.)
FIS Set to 1

Instruction execution resumes at address IVPR0:47 ||
IVOR1148:59||0b0000.

  

5.6.13 Watchdog Timer Interrupt
A Watchdog Timer interrupt occurs when no higher pri-
ority exception exists (see Section 5.9 on page 591), a
Watchdog Timer exception exists (TSRWIS=1), and the
interrupt is enabled (i.e. TCRWIE=1 and MSRCE=1).
See Section 7.7 on page 602. 

  

CSRR0, CSRR1, MSR, and TSR are updated as fol-
lows:

CSRR0 Set to the effective address of the next
instruction to be executed.

CSRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to MSRICM.
ME, ICM,

MSREE also enables the External Input and Fixed-
Interval Timer interrupts.

Software is responsible for clearing the Decre-
menter exception status prior to re-enabling the
MSREE bit in order to avoid another redundant
Decrementer interrupt. To clear the Decrementer
exception, the interrupt handling routine must clear
TSRDIS. Clearing is done by writing a word to TSR
using mtspr with a 1 in any bit position that is to be
cleared and 0 in all other bit positions. The write-
data to the TSR is not direct data, but a mask. A 1
causes the bit to be cleared, and a 0 has no effect.

Programming Note
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MSREE also enables the External Input and Decre-
menter interrupts.

Software is responsible for clearing the Fixed-Inter-
val Timer exception status prior to re-enabling the
MSREE bit in order to avoid another redundant
Fixed-Interval Timer interrupt. To clear the Fixed-
Interval Timer exception, the interrupt handling rou-
tine must clear TSRFIS. Clearing is done by writing
a word to TSR using mtspr with a 1 in any bit posi-
tion that is to be cleared and 0 in all other bit posi-
tions. The write-data to the TSR is not direct data,
but a mask. A 1 causes the bit to be cleared, and a
0 has no effect.

MSRCE also enables the Critical Input interrupt.

Programming Note

Programming Note

Programming Note
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DE Unchanged.

All other defined MSR bits set to 0.

TSR (See Section 7.5.1 on page 601.)
WIS Set to 1.

Instruction execution resumes at address IVPR0:47 ||
IVOR1248:59||0b0000.

  

5.6.14 Data TLB Error Interrupt
A Data TLB Error interrupt occurs when no higher prior-
ity exception exists (see Section 5.9 on page 591) and
any of the following Data TLB Error exceptions is pre-
sented to the interrupt mechanism. 

TLB Miss exception

Caused when the virtual address associated with a
data storage access does not match any valid entry in
the TLB as specified in Section 4.7.2 on page 545.

If a stwcx. or stdcx. would not perform its store in the
absence of a Data Storage interrupt, and a non-condi-
tional Store to the specified effective address would
cause a Data Storage interrupt, it is implementation-
dependent whether a Data Storage interrupt occurs.

When a Data TLB Error interrupt occurs, the processor
suppresses the execution of the instruction causing the
Data TLB Error interrupt.

SRR0, SRR1, MSR, DEAR and ESR are updated as
follows:

SRR0 Set to the effective address of the instruc-
tion causing the Data TLB Error interrupt

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM                   MSRCM is set to MSRICM.
CE, ME, DE, ICM Unchanged.

All other defined MSR bits set to 0.

DEAR Set to the effective address of a byte that is
both within the range of the bytes being
accessed by the Storage Access or Cache

Management instruction, and within the
page whose access caused the Data TLB
Error exception.

ESR
ST Set to 1 if the instruction causing the inter-

rupt is a Store, dcbi, dcbz, or dcbzep
instruction; otherwise set to 0.

FP Set to 1 if the instruction causing the inter-
rupt is a floating-point load or store; other-
wise set to 0.

AP Set to 1 if the instruction causing the inter-
rupt is an Auxiliary Processor load or store;
otherwise set to 0.

SPV Set to 1 if the instruction causing the inter-
rupt is a SPE operation or a Vector opera-
tion; otherwise set to 0.

VLEMI Set to 1 if the instruction causing the inter-
rupt resides in VLE storage.

EPID Set to 1 if the instruction causing the inter-
rupt is an External Process ID instruction;
otherwise set to 0.

All other defined ESR bits are set to 0.

Instruction execution resumes at address IVPR0:47 ||
IVOR1348:59||0b0000.

5.6.15 Instruction TLB Error Inter-
rupt
An Instruction TLB Error interrupt occurs when no
higher priority exception exists (see Section 5.9 on
page 591) and any of the following Instruction TLB
Error exceptions is presented to the interrupt mecha-
nism. 

TLB Miss exception

Caused when the virtual address associated with an
instruction fetch does not match any valid entry in the
TLB as specified in Section 4.7.2 on page 545.

When an Instruction TLB Error interrupt occurs, the
processor suppresses the execution of the instruction
causing the Instruction TLB Miss exception.

SRR0, SRR1, and MSR are updated as follows:

SRR0 Set to the effective address of the instruc-
tion causing the Instruction TLB Error inter-
rupt.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to MSRICM.
CE, ME,
DE, ICM Unchanged.

All other defined MSR bits set to 0.

Software is responsible for clearing the Watchdog
Timer exception status prior to re-enabling the
MSRCE bit in order to avoid another redundant
Watchdog Timer interrupt. To clear the Watchdog
Timer exception, the interrupt handling routine
must clear TSRWIS. Clearing is done by writing a
word to TSR using mtspr with a 1 in any bit posi-
tion that is to be cleared and 0 in all other bit posi-
tions. The write-data to the TSR is not direct data,
but a mask. A 1 causes the bit to be cleared, and a
0 has no effect.

Programming Note
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Instruction execution resumes at address IVPR0:47 ||
IVOR1448:59||0b0000.

5.6.16 Debug Interrupt
A Debug interrupt occurs when no higher priority
exception exists (see Section 5.9 on page 591), a
Debug exception exists in the DBSR, and Debug inter-
rupts are enabled (DBCR0IDM=1 and MSRDE=1). A
Debug exception occurs when a Debug Event causes a
corresponding bit in the DBSR to be set. See Section
8.5. 

If the Embedded.Enhanced Debug category is not sup-
ported or is supported and is not enabled, CSRR0,
CSRR1, MSR, and DBSR are updated as follows. If the
Embedded.Enhanced Debug category is supported
and is enabled, DSRR0 and DSRR1 are updated as
specified below and CSRR0 and CSRR1 are not
changed. The means by which the Embed-
ded.Enhanced Debug category is enabled is implemen-
tation-dependent.

CSRR0 or DSRR0 [Category: Embedded.Enhanced
Debug]

For Debug exceptions that occur while
Debug interrupts are enabled
(DBCR0IDM=1 and MSRDE=1), CSRR0 is
set as follows:
� For Instruction Address Compare

(IAC1, IAC2, IAC3, IAC4), Data
Address Compare (DAC1R, DAC1W,
DAC2R, DAC2W), Data Value Com-
pare (DVC1, DVC2), Trap (TRAP), or
Branch Taken (BRT) debug excep-
tions, set to the address of the instruc-
tion causing the Debug interrupt.

� For Instruction Complete (ICMP)
debug exceptions, set to the address
of the instruction that would have exe-
cuted after the one that caused the
Debug interrupt.

� For Unconditional Debug Event (UDE)
debug exceptions, set to the address
of the instruction that would have exe-
cuted next if the Debug interrupt had
not occurred.

� For Interrupt Taken (IRPT) debug
exceptions, set to the interrupt vector
value of the interrupt that caused the
Interrupt Taken debug event.

� For Return From Interrupt (RET)
debug exceptions, set to the address
of the rfi instruction that caused the
Debug interrupt.

� For Critical Interrupt Taken (CRPT)
debug exceptions, DSRR0 is set to the
address of the first instruction of the
critical interrupt handler. CSRR0 is
unaffected.

� For Critical Interrupt Return (CRET)
debug exceptions, DSRR0 is set to the
address of the rfci instruction that
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caused the Debug interrupt. See
Section 8.4.10, “Critical Interrupt
Return Debug Event [Category:
Embedded.Enhanced Debug]”.

For Debug exceptions that occur while
Debug interrupts are disabled
(DBCR0IDM=0 or MSRDE=0), a Debug
interrupt will occur at the next synchroniz-
ing event if DBCR0IDM and MSRDE are
modified such that they are both 1 and if the
Debug exception Status is still set in the
DBSR. When this occurs, CSRR0 or
DSRR0 [Category:Embedded.Enhanced
Debug] is set to the address of the instruc-
tion that would have executed next, not with
the address of the instruction that modified
the Debug Control Register 0 or MSR and
thus caused the interrupt. 

CSRR1 or DSRR1 [Category: Embedded.Enhanced
Debug]

Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to MSRICM.
ME, ICM Unchanged.

All other supported MSR bits set to 0.

DBSR Set to indicate type of Debug Event (see
Section 8.5.2)

Instruction execution resumes at address IVPR0:47 ||
IVOR1548:59||0b0000.

5.6.17 SPE/Embedded Floating-
Point/Vector Unavailable Interrupt
[Categories: SPE.Embedded Float 
Scalar Double, SPE.Embedded 
Float Vector, Vector]
The SPE/Embedded Floating-Point/Vector Unavailable
interrupt occurs when no higher priority exception
exists, and an attempt is made to execute an  SPE,
SPE.Embedded Float Scalar Double, SPE.Embedded
Float Vector, or Vector instruction and MSRSPV = 0.

When an Embedded Floating-Point Unavailable inter-
rupt occurs, the processor suppresses the execution of
the instruction causing the exception. 

SRR0, SRR1, MSR, and ESR are updated as follows:

SRR0 Set to the effective address of the instruc-
tion causing the Embedded Floating-Point
Unavailable interrupt.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to MSRICM.
VLEMI Set to 1 if the instruction causing the inter-

rupt resides in VLE storage.
CE, ME,
DE, ICM  Unchanged.

All other defined MSR bits set to 0.

ESR
SPV Set to 1.
VLEMI Set to 1 if the instruction causing the inter-

rupt resides in VLE storage.

 All other defined ESR bits are set to 0.

Instruction execution resumes at address IVPR0:47 ||
IVOR3248:59||0b0000.

 

This interrupt is also used by the Signal Processing
Engine in the same manner. It should be used by
software to determine if the application is using the
upper 32 bits of the GPRs in a 32-bit implementa-
tion and thus be required to save and restore them
on context switch.

Programming Note
Chapter 5. Interrupts and Exceptions 585



   Version 2.04
5.6.18 Embedded Floating-Point 
Data Interrupt
[Categories: SPE.Embedded Float 
Scalar Double, SPE.Embedded 
Float Scalar Single, SPE.Embedded 
Float Vector]
The Embedded Floating-Point Data interrupt occurs
when no higher priority exception exists (see Section
5.9) and an Embedded Floating-Point Data exception is
presented to the interrupt mechanism. The Embedded
Floating-Point Data exception causing the interrupt is
indicated in the SPEFSCR; these exceptions include
Embedded Floating-Point Invalid Operation/Input Error
(FINV, FINVH), Embedded Floating-Point Divide By
Zero (FDBZ, FDBZH), Embedded Floating-Point Over-
flow (FOV, FOVH), and Embedded Floating-Point
Underflow (FUNF, FUNFH)

When an Embedded Floating-Point Data interrupt
occurs, the processor suppresses the execution of the
instruction causing the exception. 

SRR0, SRR1, MSR, and ESR are updated as follows:

SRR0 Set to the effective address of the instruc-
tion causing the Embedded Floating-Point
Data interrupt.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to MSRICM.
VLEMI Set to 1 if the instruction causing the inter-

rupt resides in VLE storage.

CE, ME,
DE, ICM Unchanged.

All other defined MSR bits set to 0.

ESR
SPV Set to 1.

 All other defined ESR bits are set to 0.

Instruction execution resumes at address IVPR0:47 ||
IVOR3348:59||0b0000.

5.6.19 Embedded Floating-Point 
Round Interrupt
[Categories: SPE.Embedded Float 
Scalar Double, SPE.Embedded 
Float Scalar Single, SPE.Embedded 
Float Vector]
The Embedded Floating-Point Round interrupt occurs
when no higher priority exception exists (see
Section 5.9 on page 591), SPEFSCRFINXE is set to 1,
and any of the following occurs:

- the unrounded result of an Embedded Float-
ing-Point operation is not exact

- an overflow occurs and overflow exceptions
are disabled (FOVF or FOVFH is set to 1 and
FOVFE is set to 0)

- an underflow occurs and underflow exceptions
are disabled (FUNF is set to 1 and FUNFE is
set to 0).

The value of SPEFSCRFINXS is 1, indicating that one of
the above exceptions has occurred, and additional
information about the exception is found in
SPEFSCRFGH FG FXH FX.

When an Embedded Floating-Point Round interrupt
occurs, the processor completes the execution of the
instruction causing the exception and writes the result
to the destination register prior to taking the interrupt.

SRR0, SRR1, MSR, and ESR are updated as follows:

SRR0 Set to the effective address of the instruc-
tion following the instruction causing the
Embedded Floating-Point Round interrupt.

SRR1 Set to the contents of the MSR at the time
of the interrupt.

MSR
CM MSRCM is set to MSRICM.
CE, ME,
DE, ICM  Unchanged.

All other defined MSR bits set to 0.

ESR
SPV Set to 1.
VLEMI Set to 1 if the instruction causing the inter-

rupt resides in VLE storage.

 All other defined ESR bits are set to 0.

Instruction execution resumes at address IVPR0:47 ||
IVOR3448:59||0b0000.
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5.6.20 Performance Monitor Inter-
rupt [Category: Embedded.Perfor-
mance Monitor]
The Performance Monitor interrupt is part of the
optional Performance Monitor facility; see Appendix E.

5.6.21 Processor Doorbell Inter-
rupt [Category: Embedded.Proces-
sor Control]
A Processor Doorbell Interrupt occurs when no higher
priority exception exists, a Processor Doorbell excep-
tion is present, and MSREE=1. Processor Doorbell
exceptions are generated when DBELL messages (see
Chapter 9) are received and accepted by the proces-
sor.

When a Processor Doorbell Interrupt occurs, SRR0 is
set to the address of the next instruction to be executed
and SRR1 is set to the contents of the MSR at the time
of the interrupt.

Instruction execution resumes at address IVPR0:47 ||
IVOR3648:59 || 0b0000.

5.6.22 Processor Doorbell Critical 
Interrupt [Category: Embed-
ded.Processor Control]
A Processor Doorbell Critical Interrupt occurs when no
higher priority exception exists, a Processor Doorbell
Critical exception is present, and MSRCE=1. Processor
Doorbell Critical exceptions are generated when
DBELL_CRIT messages (see Chapter 9) are received
and accepted by the processor.

When a Processor Doorbell Critical Interrupt occurs,
CSRR0 is set to the address of the next instruction to
be executed and CSRR1 is set to the contents of the
MSR at the time of the interrupt.

Instruction execution resumes at address IVPR0:47 ||
IVOR3748:59 || 0b0000.

If an implementation does not support ±Infinity
rounding modes and the rounding mode is set to be
+Infinity or -Infinity, an Embedded Floating-Point
Round interrupt occurs after every Embedded
Floating-Point instruction for which rounding might
occur regardless of the value of FINXE, provided
no higher priority exception exists.

When an Embedded Floating-Point Round interrupt
occurs, the unrounded (truncated) result of an inex-
act high or low element is placed in the target regis-
ter. If only a single element is inexact, the other
exact element is updated with the correctly
rounded result, and the FG and FX bits corre-
sponding to the other exact element will both be 0. 

The bits FG (FGH) and FX (FXH) are provided so
that an interrupt handler can round the result as it
desires. FG (FGH) is the value of the bit immedi-
ately to the right of the least significant bit of the
destination format mantissa from the infinitely pre-
cise intermediate calculation before rounding. FX
(FXH) is the value of the ‘or’ of all the bits to the
right of the FG (FGH) of the destination format
mantissa from the infinitely precise intermediate
calculation before rounding.
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5.7 Partially Executed Instructions

In general, the architecture permits load and store
instructions to be partially executed, interrupted, and
then to be restarted from the beginning upon return
from the interrupt. Unaligned Load and Store instruc-
tions, or Load Multiple, Store Multiple, Load String, and
Store String instructions may be broken up into multi-
ple, smaller accesses, and these accesses may be per-
formed in any order. In order to guarantee that a
particular load or store instruction will complete without
being interrupted and restarted, software must mark
the storage being referred to as Guarded, and must use
an elementary (non-string or non-multiple) load or store
that is aligned on an operand-sized boundary.

In order to guarantee that Load and Store instructions
can, in general, be restarted and completed correctly
without software intervention, the following rules apply
when an execution is partially executed and then inter-
rupted:

� For an elementary Load, no part of the target reg-
ister RT or FRT, will have been altered.

� For ‘with update’ forms of Load or Store, the
update register, register RA, will not have been
altered.

On the other hand, the following effects are permissible
when certain instructions are partially executed and
then restarted:

� For any Store, some of the bytes at the target stor-
age location may have been altered (if write
access to that page in which bytes were altered is
permitted by the access control mechanism). In
addition, for Store Conditional instructions, CR0
has been set to an undefined value, and it is unde-
fined whether the reservation has been cleared.

� For any Load, some of the bytes at the addressed
storage location may have been accessed (if read
access to that page in which bytes were accessed
is permitted by the access control mechanism).

� For Load Multiple or Load String, some of the reg-
isters in the range to be loaded may have been
altered. Including the addressing registers (RA,
and possibly RB) in the range to be loaded is a
programming error, and thus the rules for partial
execution do not protect against overwriting of
these registers.

In no case will access control be violated.

As previously stated, the only load or store instructions
that are guaranteed to not be interrupted after being
partially executed are elementary, aligned, guarded
loads and stores. All others may be interrupted after
being partially executed. The following list identifies the
specific instruction types for which interruption after
partial execution may occur, as well as the specific
interrupt types that could cause the interruption:

1. Any Load or Store (except elementary, aligned,
guarded):

Any asynchronous interrupt
Machine Check
Program (Imprecise Mode Floating-Point

Enabled)
Program (Imprecise Mode Auxiliary Processor

Enabled)

2. Unaligned elementary Load or Store, or any multi-
ple or string:

All of the above listed under item 1, plus the
following:
Data Storage (if the access crosses a protec-

tion boundary)
Debug (Data Address Compare, Data Value

Compare)

3. mtcrf may also be partially executed due to the
occurrence of any of the interrupts listed under
item 1 at the time the mtcrf was executing.
� All instructions prior to the mtcrf have com-

pleted execution. (Some storage accesses
generated by these preceding instructions
may not have completed.)

� No subsequent instruction has begun execu-
tion.

� The mtcrf instruction (the address of which
was saved in SRR0/CSRR0/MCSRR0/
DSRR0 [Category: Embedded.Enhanced
Debug] at the occurrence of the interrupt),
may appear not to have begun or may have
partially executed.
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5.8 Interrupt Ordering and Masking

It is possible for multiple exceptions to exist simulta-
neously, each of which could cause the generation of
an interrupt. Furthermore, for interrupts classes other
than the Machine Check interrupt and critical interrupts,
the architecture does not provide for reporting more
than one interrupt of the same class (unless the
Embedded.Enhanced Debug category is supported).
Therefore, the architecture defines that interrupts are
ordered with respect to each other, and provides a
masking mechanism for certain persistent interrupt
types.

When an interrupt is masked (disabled), and an event
causes an exception that would normally generate the
interrupt, the exception persists as a status bit in a reg-
ister (which register depends upon the exception type).
However, no interrupt is generated. Later, if the inter-
rupt is enabled (unmasked), and the exception status
has not been cleared by software, the interrupt due to
the original exception event will then finally be gener-
ated.

All asynchronous interrupts can be masked. In addition,
certain synchronous interrupts can be masked. An
example of such an interrupt is the Floating-Point
Enabled exception type Program interrupt. The execu-
tion of a floating-point instruction that causes the
FPSCRFEX bit to be set to 1 is considered an exception
event, regardless of the setting of MSRFE0,FE1. If
MSRFE0,FE1 are both 0, then the Floating-Point
Enabled exception type of Program interrupt is masked,
but the exception persists in the FPSCRFEX bit. Later, if
the MSRFE0,FE1 bits are enabled, the interrupt will
finally be generated.

The architecture enables implementations to avoid situ-
ations in which an interrupt would cause the state infor-
mation (saved in Save/Restore Registers) from a
previous interrupt to be overwritten and lost. In order to
do this, the architecture defines interrupt classes in a
hierarchical manner. At each interrupt class, hardware
automatically disables any further interrupts associated
with the interrupt class by masking the interrupt enable
in the MSR when the interrupt is taken. In addition,
each interrupt class masks the interrupt enable in the
MSR for each lower class in the hierarchy. The hierar-

chy of interrupt classes is as follows from highest to
lowest: 

Figure 16. Interrupt Hierarchy

If the Embedded.Enhanced Debug category is not sup-
ported (or is supported and is not enabled), then the
Debug interrupt becomes a Critical class interrupt and
all critical class interrupts will clear DE, CE, and EE in
the MSR.

Base Class interrupts that occur as a result of precise
exceptions are not masked by the EE bit in the MSR
and any such exception that occurs prior to software
saving the state of SRR0/1 in a base class exception
handler will result in a situation that could result in the
loss of state information.

This first step of the hardware clearing the MSR enable
bits lower in the hierarchy shown in Figure 16 prevents
any subsequent asynchronous interrupts from overwrit-
ing the Save/Restore Registers (SRR0/SRR1, CSRR0/
CSRR1, MCSRR0/MCSRR1, or DSRR0/DSRR1 [Cate-
gory: Embedded.Enhanced Debug]), prior to software
being able to save their contents. Hardware also auto-
matically clears, on any interrupt,
MSRWE,PR,FP,FE0,FE1,IS,DS. The clearing of these bits
assists in the avoidance of subsequent interrupts of
certain other types. However, guaranteeing that inter-
rupt classes lower in the hierarchy do not occur and
thus do not overwrite the Save/Restore Registers
(SRR0/SRR1, CSRR0/CSRR1, DSRR0/DSRR1 [Cate-
gory: Embedded.Enhanced Debug], or MCSRR0/
MCSRR1) also requires the cooperation of system soft-
ware. Specifically, system software must avoid the exe-
cution of instructions that could cause (or enable) a
subsequent interrupt, if the contents of the Save/
Restore Registers (SRR0/SRR1, CSRR0/CSRR1,
DSRR0/DSRR1 [Category: Embedded.Enhanced
Debug]), or MCSRR0/MCSRR1) have not yet been
saved.

Interrupt Class
MSR Enables 

Cleared
Save/Restore 

Registers
Machine Check ME,DE, CE, EE MSRR0/1
Debug1 DE,CE,EE DSRR0/1
Critical CE,EE CSRR0/1

Base EE SRR0/1
1 The Debug interrupt class is Category: E.ED. 

Note: MSRDE may be cleared when a critical inter-
rupt occurs if Category: E.ED is not supported.
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5.8.1 Guidelines for System Soft-
ware 
The following list identifies the actions that system soft-
ware must avoid, prior to having saved the Save/
Restore Registers’ contents:

� Re-enabling an interrupt class that is at the same
or a lower level in the interrupt hierarchy. This
includes the following actions:

- Re-enabling of MSREE

- Re-enabling of MSRCE,EE in critical class
interrupt handlers, and if the Embed-
ded.Enhanced Debug category is not sup-
ported, re-enabling of MSRDE.

- Category: Embedded.Enhanced Debug: Re-
enabling of MSRCE,EE,DE in Debug class inter-
rupt handlers

- Re-enabling of MSREE,CE,DE,ME in Machine
Check interrupt handlers.

� Branching (or sequential execution) to addresses
not mapped by the TLB, or mapped without UX=1
or SX=1 permission.

This prevents Instruction Storage and Instruction
TLB Error interrupts.

� Load, Store or Cache Management instructions to
addresses not mapped by the TLB or not having
required access permissions.

This prevents Data Storage and Data TLB Error
interrupts.

� Execution of System Call (sc) or Trap (tw, twi, td,
tdi) instructions 

This prevents System Call and Trap exception type
Program interrupts.

� Execution of any floating-point instruction

This prevents Floating-Point Unavailable inter-
rupts. Note that this interrupt would occur upon the
execution of any floating-point instruction, due to
the automatic clearing of MSRFP. However, even if
software were to re-enable MSRFP, floating-point
instructions must still be avoided in order to pre-
vent Program interrupts due to various possible
Program interrupt exceptions (Floating-Point
Enabled, Unimplemented Operation).

� Re-enabling of MSRPR

This prevents Privileged Instruction exception type
Program interrupts. Alternatively, software could
re-enable MSRPR, but avoid the execution of any
privileged instructions.

� Execution of any Auxiliary Processor instruction

This prevents Auxiliary Processor Unavailable
interrupts, and Auxiliary Processor Enabled type

and Unimplemented Operation type Program inter-
rupts.

� Execution of any Illegal instructions

This prevents Illegal Instruction exception type
Program interrupts.

� Execution of any instruction that could cause an
Alignment interrupt

This prevents Alignment interrupts. Included in this
category are any string or multiple instructions,
and any unaligned elementary load or store
instructions. See Section 5.6.6 on page 579 for a
complete list of instructions that may cause Align-
ment interrupts.

It is not necessary for hardware or software to avoid
interrupts higher in the interrupt hierarchy (see
Figure 16) from within interrupt handlers (and hence,
for example, hardware does not automatically clear
MSRCE,ME,DE upon a base class interrupt), since inter-
rupts at each level of the hierarchy use different pairs of
Save/Restore Registers to save the instruction address
and MSR (i.e. SRR0/SRR1 for base class interrupts,
and MCSRR0/MCSRR1,DSRR0/DSRR1 [Category:
Embedded.Enhanced Debug], or CSRR0/CSRR1 for
non-base class interrupts). The converse, however, is
not true. That is, hardware and software must cooper-
ate in the avoidance of interrupts lower in the hierarchy
from occurring within interrupt handlers, even though
the these interrupts use different Save/Restore Regis-
ter pairs. This is because the interrupt higher in the
hierarchy may have occurred from within a interrupt
handler for an interrupt lower in the hierarchy prior to
the interrupt handler having saved the Save/Restore
Registers. Therefore, within an interrupt handler, Save/
Restore Registers for all interrupts lower in the hierar-
chy may contain data that is necessary to the system
software.
Power ISA™ -- Book III-E590



   Version 2.04
5.8.2 Interrupt Order
The following is a prioritized listing of the various
enabled interrupts for which exceptions might exist
simultaneously:

1. Synchronous (Non-Debug) Interrupts: 
Data Storage
Instruction Storage
Alignment
Program
Floating-Point Unit Unavailable
Auxiliary Processor Unavailable
Embedded Floating-Point Unavailable

[SP.Category: SP.Embedded Float_*]
SPE/Embedded Floating-Point/Vector

Unavailable
Embedded Floating-Point Data [Category:

SP.Embedded Float_*]
Embedded Floating-Point Round [Category:

SP.Embedded Float_*]
System Call
Data TLB Error
Instruction TLB Error

Only one of the above types of synchronous inter-
rupts may have an existing exception generating it
at any given time. This is guaranteed by the excep-
tion priority mechanism (see Section 5.9 on
page 591) and the requirements of the Sequential
Execution Model.

2. Machine Check
3. Debug
4. Critical Input
5. Watchdog Timer
6. Processor Doorbell Critical
7. External Input
8. Fixed-Interval Timer
9. Decrementer

10. Processor Doorbell
11. Embedded Performance Monitor

Even though, as indicated above, the base, synchro-
nous exception types listed under item 1 are generated
with higher priority than the non-base interrupt classes
listed in items 2-5, the fact is that these base class
interrupts will immediately be followed by the highest
priority existing interrupt in items 2-5, without executing
any instructions at the base class interrupt handler.
This is because the base interrupt classes do not auto-
matically disable the MSR mask bits for the interrupts
listed in 2-5. In all other cases, a particular interrupt
class from the above list will automatically disable any
subsequent interrupts of the same class, as well as all
other interrupt classes that are listed below it in the pri-
ority order.

5.9 Exception Priorities
All synchronous (precise and imprecise) interrupts are
reported in program order, as required by the Sequen-
tial Execution Model. The one exception to this rule is
the case of multiple synchronous imprecise interrupts.
Upon a synchronizing event, all previously executed
instructions are required to report any synchronous
imprecise interrupt-generating exceptions, and the
interrupt will then be generated with all of those excep-
tion types reported cumulatively, in both the ESR, and
any status registers associated with the particular
exception type (e.g. the Floating-Point Status and Con-
trol Register).

For any single instruction attempting to cause multiple
exceptions for which the corresponding synchronous
interrupt types are enabled, this section defines the pri-
ority order by which the instruction will be permitted to
cause a single enabled exception, thus generating a
particular synchronous interrupt. Note that it is this
exception priority mechanism, along with the require-
ment that synchronous interrupts be generated in pro-
gram order, that guarantees that at any given time,
there exists for consideration only one of the synchro-
nous interrupt types listed in item 1 of Section 5.8.2 on
page 591. The exception priority mechanism also pre-
vents certain debug exceptions from existing in combi-
nation with certain other synchronous interrupt-
generating exceptions.

Because unaligned Load and Store instructions, or
Load Multiple, Store Multiple, Load String, and Store
Sting instructions may be broken up into multiple,
smaller accesses, and these accesses may be per-
formed in any order. The exception priority mechanism
applies to each of the multiple storage accesses in the
order they are performed by the implementation.

This section does not define the permitted setting of
multiple exceptions for which the corresponding inter-
rupt types are disabled. The generation of exceptions
for which the corresponding interrupt types are disabled
will have no effect on the generation of other exceptions
for which the corresponding interrupt types are
enabled. Conversely, if a particular exception for which
the corresponding interrupt type is enabled is shown in
the following sections to be of a higher priority than
another exception, it will prevent the setting of that
other exception, independent of whether that other
exception’s corresponding interrupt type is enabled or
disabled.

Except as specifically noted, only one of the exception
types listed for a given instruction type will be permitted
to be generated at any given time. The priority of the
exception types are listed in the following sections
ranging from highest to lowest, within each instruction
type.
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5.9.1 Exception Priorities for 
Defined Instructions

5.9.1.1 Exception Priorities for Defined 
Floating-Point Load and Store Instruc-
tions
The following prioritized list of exceptions may occur as
a result of the attempted execution of any defined
Floating-Point Load and Store instruction.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
5. Floating-Point Unavailable
6. Program (Unimplemented Operation)
7. Data TLB Error
8. Data Storage (all types)
9. Alignment

10. Debug (Data Address Compare, Data Value Com-
pare)

11. Debug (Instruction Complete)

If the instruction is causing both a Debug (Instruction
Address Compare) and a Debug (Data Address Com-
pare) or Debug (Data Value Compare), and is not caus-
ing any of the exceptions listed in items 2-9, it is
permissible for both exceptions to be generated and
recorded in the DBSR. A single Debug interrupt will
result.

5.9.1.2 Exception Priorities for Other 
Defined Load and Store Instructions and 
Defined Cache Management Instructions
The following prioritized list of exceptions may occur as
a result of the attempted execution of any other defined
Load or Store instruction, or defined Cache Manage-
ment instruction.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
5. Program (Privileged Instruction) (dcbi only)
6. Program (Unimplemented Operation)
7. Data TLB Error
8. Data Storage (all types)
9. Alignment

10. Debug (Data Address Compare, Data Value Com-
pare)

11. Debug (Instruction Complete)

If the instruction is causing both a Debug (Instruction
Address Compare) and a Debug (Data Address Com-
pare) or Debug (Data Value Compare), and is not caus-
ing any of the exceptions listed in items 2-9, it is
permissible for both exceptions to be generated and
recorded in the DBSR. A single Debug interrupt will
result.

5.9.1.3 Exception Priorities for Other 
Defined Floating-Point Instructions
The following prioritized list of exceptions may occur as
a result of the attempted execution of any defined float-
ing-point instruction other than a load or store.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
5. Floating-Point Unavailable
6. Program (Unimplemented Operation)
7. Program (Floating-point Enabled)
8. Debug (Instruction Complete)

5.9.1.4 Exception Priorities for Defined 
Privileged Instructions 
The following prioritized list of exceptions may occur as
a result of the attempted execution of any defined privi-
leged instruction, except dcbi, rfi, and rfci instructions.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
5. Program (Privileged Instruction)
6. Program (Unimplemented Operation)
7. Debug (Instruction Complete)

For mtmsr, mtspr (DBCR0, DBCR1, DBCR2), mtspr
(TCR), and mtspr (TSR), if they are not causing Debug
(Instruction Address Compare) nor Program (Privileged
Instruction) exceptions, it is possible that they are
simultaneously enabling (via mask bits) multiple exist-
ing exceptions (and at the same time possibly causing
a Debug (Instruction Complete) exception). When this
occurs, the interrupts will be handled in the order
defined by Section 5.8.2 on page 591.

5.9.1.5 Exception Priorities for Defined 
Trap Instructions
The following prioritized list of exceptions may occur as
a result of the attempted execution of a defined Trap
instruction.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error

Some exception types may even be mutually exclu-
sive of each other and could otherwise be consid-
ered the same priority. In these cases, the
exceptions are listed in the order suggested by the
sequential execution model.

Programming Note
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3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
5. Program (Unimplemented Operation)
6. Debug (Trap)
7. Program (Trap)
8. Debug (Instruction Complete)

If the instruction is causing both a Debug (Instruction
Address Compare) and a Debug (Trap), and is not
causing any of the exceptions listed in items 2-5, it is
permissible for both exceptions to be generated and
recorded in the DBSR. A single Debug interrupt will
result.

5.9.1.6 Exception Priorities for Defined 
System Call Instruction
The following prioritized list of exceptions may occur as
a result of the attempted execution of a defined System
Call instruction.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
5. Program (Unimplemented Operation)
6. System Call
7. Debug (Instruction Complete)

5.9.1.7 Exception Priorities for Defined 
Branch Instructions
The following prioritized list of exceptions may occur as
a result of the attempted execution of any defined
branch instruction.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
5. Program (Unimplemented Operation)
6. Debug (Branch Taken)
7. Debug (Instruction Complete)

If the instruction is causing both a Debug (Instruction
Address Compare) and a Debug (Branch Taken), and
is not causing any of the exceptions listed in items 2-5,
it is permissible for both exceptions to be generated
and recorded in the DBSR. A single Debug interrupt will
result.

5.9.1.8 Exception Priorities for Defined 
Return From Interrupt Instructions
The following prioritized list of exceptions may occur as
a result of the attempted execution of an rfi, rfci, rfmci,
rfdi [Category:Embedded.Enhanced Debug] instruc-
tion.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)

4. Program (Illegal Instruction)
5. Program (Privileged Instruction)
6. Program (Unimplemented Operation)
7. Debug (Return From Interrupt)
8. Debug (Instruction Complete)

If the rfi or rfci, rfmci, or rfdi [Category: Embed-
ded.Enhanced Debug] instruction is causing both a
Debug (Instruction Address Compare) and a Debug
(Return From Interrupt), and is not causing any of the
exceptions listed in items 2-5, it is permissible for both
exceptions to be generated and recorded in the DBSR.
A single Debug interrupt will result.

5.9.1.9 Exception Priorities for Other 
Defined Instructions
The following prioritized list of exceptions may occur as
a result of the attempted execution of all other instruc-
tions not listed above.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
5. Program (Unimplemented Operation)
6. Debug (Instruction Complete)

5.9.2 Exception Priorities for 
Reserved Instructions
The following prioritized list of exceptions may occur as
a result of the attempted execution of any reserved
instruction.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
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6.1 Background
This chapter describes the requirements for processor
reset. This includes both the means of causing reset,
and the specific initialization that is required to be per-
formed automatically by the processor hardware. This
chapter also provides an overview of the operations
that should be performed by initialization software, in
order to fully initialize the processor.

In general, the specific actions taken by a processor
upon reset are implementation-dependent. Also, it is
the responsibility of system initialization software to ini-
tialize the majority of processor and system resources
after reset. Implementations are required to provide a
minimum processor initialization such that this system
software may be fetched and executed, thereby accom-
plishing the rest of system initialization.

6.2 Reset Mechanisms
This specification defines two processor mechanisms
for internally invoking a reset operation using either the
Watchdog Timer (see Section 7.7 on page 602) or the
Debug facilities using DBCR0RST (see Section 8.5.1.1
on page 613). In addition, implementations will typically
provide additional means for invoking a reset operation,
via an external mechanism such as a signal pin which
when activated will cause the processor to reset.

6.3 Processor State After Reset
The initial processor state is controlled by the register
contents after reset. In general, the contents of most
registers are undefined after reset.

The processor hardware is only guaranteed to initialize
those registers (or specific bits in registers) which must
be initialized in order for software to be able to reliably
perform the rest of system initialization.

The Machine State Register and Processor Version
Register and a TLB entry are updated as follows:

Machine State Register

Figure 17. Machine State Register Initial Values

Processor Version Register
Implementation-Dependent. (This register is read-only,
and contains a value which identifies the specific imple-
mentation)

Bit Setting Comments
CM 0 Computation Mode (set to 32-bit 

mode)

ICM 0 Interrupt Computation Mode (set 
to 32-bit)

UCLE 0 User Cache Locking Enable
SPV 0 SPE/Embedded Floating-Point/

Vector Unavailable

WE 0 Wait State disabled
CE 0 Critical Input interrupts disabled
DE 0 Debug interrupts disabled

EE 0 External Input interrupts disabled
PR 0 Supervisor mode
FP 0 FP unavailable

ME 0 Machine Check interrupts disabled
FE0 0 FP exception type Program inter-

rupts disabled
FE1 0 FP exception type Program inter-

rupts disabled

IS 0 Instruction Address Space 0
DS 0 Data Address Space 0

PMM 0 Performance Monitor Mark
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TLB entry
A TLB entry (which entry is implementation-dependent)
is initialized in an implementation-dependent manner
that maps the last 4KB page in the implemented effec-
tive storage address space, with the following field set-
tings:

Figure 18. TLB Initial Values

The initial settings of EPN and RPN are dependent
upon the number of bits implemented in the EPN and
RPN fields and the minimum page size supported by
the implementation. For example, an implementation
that allows 1KB pages and 32 bits of effective address
would implement a 22 bit EPN and set the initial value
of the boot entry to 222-4 (0x3FFC) while an implemen-
tation that supports only 4K pages as the smallest size
and 32 bits of effective address would implement a 20
bit EPN and set the initial value of the boot entry to 220-
1 (0xFFFF).

Instruction execution begins at the last word address of
the page mapped by the boot TLB entry. Note that this

address is different from the PowerPC Architecture
System Reset interrupt vector.

An implementation may provide additional methods for
initializing the TLB entry used for initial boot by provid-
ing an implementation-dependent RPN, or initializing
other TLB entries.

6.4 Software Initialization 
Requirements
When reset occurs, the processor is initialized to a min-
imum configuration to start executing initialization code.
Initialization code is necessary to complete the proces-
sor and system configuration. The initialization code
described in this section is the minimum recommended
for configuring the processor to run application code.

Initialization code should configure the following pro-
cessor resources:

- Invalidate the instruction cache and data
cache (implementation-dependent).

- Initialize system memory as required by the
operating system or application code. 

- Initialize the Interrupt Vector Prefix Register
and Interrupt Vector Offset Register.

- Initialize other processor registers as needed
by the system.

- Initialize off-chip system facilities.

- Dispatch the operating system or application
code.

Field Setting Comments
EPN see 

below
Represents the last 4K page in
effective address space

RPN see 
below

Represents the last 4K page in
physical address space

TS 0 translation address space 0
SIZE 0b0001 4KB page size

W ? implementation-dependent value
I ? implementation-dependent value

M ? implementation-dependent value

G ? implementation-dependent value
E ? implementation-dependent value

U0 ? implementation-dependent value

U1 ? implementation-dependent value
U2 ? implementation-dependent value
U3 ? implementation-dependent value

TID ? implementation-dependent value,
but page must be accessible

UX ? implementation-dependent value
UR ? implementation-dependent value

UW ? implementation-dependent value
SX 1 page is execute accessible in

supervisor mode
SR 1 page is read accessible in

supervisor mode

SW 1 page is write accessible in
supervisor mode

VLE ? implementation-dependent value
ACM ? implementation-dependent value
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7.1 Overview
The Time Base, Decrementer, Fixed-interval Timer,
and Watchdog Timer provide timing functions for the
system. The remainder of this section describes these
registers and related facilities.

7.2 Time Base (TB)
The Time Base (TB) is a 64-bit register (see Figure 19)
containing a 64-bit unsigned integer that is incremented
periodically. Each increment adds 1 to the low-order bit
(bit 63). The frequency at which the integer is updated
is implementation-dependent.

Figure 19. Time Base

The Time Base increments until its value becomes
0xFFFF_FFFF_FFFF_FFFF (264-1). At the next incre-
ment, its value becomes 0x0000_0000_0000_0000.
There is no interrupt or other indication when this
occurs.

The period of the Time Base depends on the driving
frequency.  As an order of magnitude example, sup-
pose that the CPU clock is 1 GHz and that the Time
Base is driven by this frequency divided by 32.  Then
the period of the Time Base would be

    TTB =  = 5.90 × 1011 seconds

which is approximately 18,700 years.

The Time Base is implemented such that:

1. Loading a GPR from the Time Base has no effect
on the accuracy of the Time Base.

2. Copying the contents of a GPR to the Time Base
replaces the contents of the Time Base with the
contents of the GPR.

The Power ISA does not specify a relationship between
the frequency at which the Time Base is updated and
other frequencies, such as the CPU clock or bus clock
in a Power ISA system. The Time Base update fre-
quency is not required to be constant. What is required,
so that system software can keep time of day and oper-
ate interval timers, is one of the following.

� The system provides an (implementation-depen-
dent) interrupt to software whenever the update
frequency of the Time Base changes, and a means
to determine what the current update frequency is.

� The update frequency of the Time Base is under
the control of the system software.

Implementations must provide a means for either pre-
venting the Time Base from incrementing or preventing
it from being read in user mode (MSRPR=1). If the
means is under software control, it must be privileged.
There must be a method for getting all processors’
Time Bases to start incrementing with values that are
identical or almost identical in all processors.

TBU TBL
0 32                                                    63

Field Description
TBU Upper 32 bits of Time Base
TBL Lower 32 bits of Time Base

264 32×
1 GHz

---------------------
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7.2.1 Writing the Time Base
Writing the Time Base is privileged. Reading the Time
Base is not privileged; it is discussed in Book II.

It is not possible to write the entire 64-bit Time Base
using a single instruction. The mttbl and mttbu
extended mnemonics write the lower and upper halves
of the Time Base (TBL and TBU), respectively, preserv-
ing the other half. These are extended mnemonics for
the mtspr instruction; see Appendix B, “Assembler
Extended Mnemonics” on page 635.

The Time Base can be written by a sequence such as:

lwz Rx,upper # load 64-bit value for
lwz Ry,lower # TB into Rx and Ry
li Rz,0
mttbl Rz  # set TBL to 0
mttbu Rx  # set TBU
mttbl Ry  # set TBL

Provided that no interrupts occur while the last three
instructions are being executed, loading 0 into TBL pre-
vents the possibility of a carry from TBL to TBU while
the Time Base is being initialized.

  

If software initializes the Time Base on power-on to
some reasonable value and the update frequency
of the Time Base is constant, the Time Base can be
used as a source of values that increase at a con-
stant rate, such as for time stamps in trace entries.

Even if the update frequency is not constant, val-
ues read from the Time Base are monotonically
increasing (except when the Time Base wraps from
264-1 to 0).  If a trace entry is recorded each time
the update frequency changes, the sequence of
Time Base values can be post-processed to
become actual time values.

Successive readings of the Time Base may return
identical values.

See the description of the Time Base in Book II, for
ways to compute time of day in POSIX format from
the Time Base.

The instructions for writing the Time Base are
mode-independent. Thus code written to set the
Time Base will work correctly in either 64-bit or 32-
bit mode.

Programming Note
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7.3 Decrementer
The Decrementer (DEC) is a 32-bit decrementing
counter that provides a mechanism for causing a Dec-
rementer interrupt after a programmable delay.  The
contents of the Decrementer are treated as a signed
integer.

Figure 20. Decrementer

The Decrementer is driven by the same frequency as
the Time Base. The period of the Decrementer will
depend on the driving frequency, but if the same values
are used as given above for the Time Base (see Sec-
tion 7.2), and if the Time Base update frequency is con-
stant, the period would be

   TDEC =  = 137 seconds.

The Decrementer counts down.

The operation of the Decrementer satisfies the follow-
ing constraints.

1. The operation of the Time Base and the Decre-
menter is coherent, i.e., the counters are driven by
the same fundamental time base.

2. Loading a GPR from the Decrementer has no
effect on the accuracy of the Time Base.

3. Copying the contents of a GPR to the Decrementer
replaces the contents of the Decrementer with the
contents of the GPR.

  

7.3.1 Writing and Reading the 
Decrementer
The contents of the Decrementer can be read or written
using the mfspr and mtspr instructions, both of which
are privileged when they refer to the Decrementer.
Using an extended mnemonic (see Appendix B,
“Assembler Extended Mnemonics” on page 635), the
Decrementer can be written from GPR Rx using:

mtdec  Rx

The Decrementer can be read into GPR Rx using:

mfdec  Rx

Copying the Decrementer to a GPR has no effect on
the Decrementer contents or on the interrupt mecha-
nism.

7.3.2 Decrementer Events
A Decrementer event occurs when a decrement occurs
on a Decrementer value of 0x0000_0001. 

Upon the occurrence of a Decrementer event, the Dec-
rementer may be reloaded from a 32-bit Decrementer
Auto-Reload Register (DECAR). See Section 7.4. Upon
the occurrence of a Decrementer event, the Decre-
menter has the following basic modes of operation.

Decrement to one and stop on zero
If TCRARE=0, TSRDIS is set to 1, the value
0x0000_0000 is then placed into the DEC, and the
Decrementer stops decrementing. 

If enabled by TCRDIE=1 and MSREE=1, a Decre-
menter interrupt is taken. See Section 5.6.11,
“Decrementer Interrupt” on page 582 for details of
register behavior caused by the Decrementer inter-
rupt.

Decrement to one and auto-reload
If TCRARE=1, TSRDIS is set to 1, the contents of
the Decrementer Auto-Reload Register is then
placed into the DEC, and the Decrementer contin-
ues decrementing from the reloaded value.

If enabled by TCRDIE=1 and MSREE=1, a Decre-
menter interrupt is taken. See Section 5.6.11,
“Decrementer Interrupt” on page 582 for details of
register behavior caused by the Decrementer inter-
rupt.

Forcing the Decrementer to 0 using the mtspr instruc-
tion will not cause a Decrementer exception; however,
decrementing which was in progress at the instant of
the mtspr may cause the exception. To eliminate the
Decrementer as a source of exceptions, set TCRDIE to
0 (clear the Decrementer Interrupt Enable bit).

If it is desired to eliminate all Decrementer activity, the
procedure is as follows:

1. Write 0 to TCRDIE. This will prevent Decrementer
activity from causing exceptions.

2. Write 0 to TCRARE to disable the Decrementer
auto-reload.

3. Write 0 to Decrementer. This will halt Decrementer
decrementing. While this action will not cause a
Decrementer exception to be set in TSRDIS, a near
simultaneous decrement may have done so.

4. Write 1 to TSRDIS. This action will clear TSRDIS to
0 ( see Section 7.5.1 on page 601). This will clear
any Decrementer exception which may be pend-
ing. Because the Decrementer is frozen at zero, no
further Decrementer events are possible.

DEC
32                                                    63

In systems that change the Time Base update fre-
quency for purposes such as power management,
the Decrementer input frequency will also change.
Software must be aware of this in order to set inter-
val timers.

232 32×
1 GHz

---------------------
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If the auto-reload feature is disabled (TCRARE=0), then
once the Decrementer decrements to zero, it will stay
there until software reloads it using the mtspr instruc-
tion.

On reset, TCRARE is set to 0. This disables the auto-
reload feature.

7.4 Decrementer Auto-Reload 
Register 
The Decrementer Auto-Reload Register is a 32-bit reg-
ister as shown below.

Figure 21. Decrementer

Bits of the decrementer auto-reload register are num-
bered 32 (most-significant bit) to 63 (least-significant

bit). The Decrementer Auto-Reload Register is pro-
vided to support the auto-reload feature of the Decre-
menter. See Section 7.3.2

The contents of the Decrementer Auto-Reload Register
cannot be read. The contents of bits 32:63 of register
RS can be written to the Decrementer Auto-Reload
Register using the mtspr instruction.

7.5 Timer Control Register 
The Timer Control Register (TCR) is a 32-bit register.
Timer Control Register bits are numbered 32 (most-sig-
nificant bit) to 63 (least-significant bit). The Timer Con-
trol Register controls Decrementer (see Section 7.3),
Fixed-Interval Timer (see Section 7.6), and Watchdog
Timer (see Section 7.7) options.

The relationship of the Timer facilities to the TCR and
TB is shown in the figure below.

Figure 22. Relationships of the Timer Facilities

The contents of the Timer Control Register can be read
using the mfspr instruction. The contents of bits 32:63
of register RS can be written to the Timer Control Reg-
ister using the mtspr instruction.

The contents of the TCR are defined below:

Bit(s) Description

32:33 Watchdog Timer Period (WP) (see
Section 7.7 on page 602)

Specifies one of 4 bit locations of the Time
Base used to signal a Watchdog Timer
exception on a transition from 0 to 1. The 4
Time Base bits that can be specified to

DECAR
32                                                    63

Timer Clock

TIME BASE (incrementer)

Decrementer event ‹ 0/1 detect

DEC

31

DECAR

0

auto-reload

310

TBL

310

TBU

(decrementer)

Watchdog Timer events based on one of 4 Time
Base bits selected by TCRWP

(the 4 Time Base bits that can be selected by
TCRWP are implementation-dependent)

Fixed-Interval Timer events based on one of 4
Time Base bits selected by TCRFP

(the 4 Time Base bits that can be selected by
TCRFP are implementation-dependent)
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serve as the Watchdog Timer period are
implementation-dependent.

34:35 Watchdog Timer Reset Control (WRC) (see
Section 7.7 on page 602)

00 No Watchdog Timer reset will occur

TCRWRC resets to 0b00. This field may be
set by software, but cannot be cleared by
software (except by a software-induced
reset)

01-11
Force processor to be reset on second
time-out of Watchdog Timer. The exact
function of any of these settings is imple-
mentation-dependent.

The Watchdog Timer Reset Control field is
cleared to zero by processor reset. These bits
are set only by software. Once a 1 has been
written to one of these bits, that bit remains a
1 until a reset occurs. This is to prevent errant
code from disabling the Watchdog reset func-
tion.

36 Watchdog Timer Interrupt Enable (WIE)
(see Section 7.7 on page 602)

0 Disable Watchdog Timer interrupt
1 Enable Watchdog Timer interrupt

37 Decrementer Interrupt Enable (DIE) (see
Section 7.3 on page 599)

0 Disable Decrementer interrupt
1 Enable Decrementer interrupt

38:39 Fixed-Interval Timer Period (FP) (see
Section 7.6 on page 602)

Specifies one of 4 bit locations of the Time
Base used to signal a Fixed-Interval Timer
exception on a transition from 0 to 1. The 4
Time Base bits that can be specified to serve
as the Fixed-Interval Timer period are imple-
mentation-dependent.

40 Fixed-Interval Timer Interrupt Enable (FIE)
(see Section 7.6 on page 602

0 Disable Fixed-Interval Timer interrupt
1 Enable Fixed-Interval Timer interrupt

41 Auto-Reload Enable (ARE)

0 Disable auto-reload of the Decrementer

Decrementer exception is presented (i.e.
TSRDIS is set to 1) when the Decrementer
is decremented from a value of
0x0000_0001. The next value placed in the
Decrementer is the value 0x0000_0000.
The Decrementer then stops decrementing.
If MSREE=1, TCRDIE=1, and TSRDIS=1, a

Decrementer interrupt is taken.  Software
must reset TSRDIS.

1 Enable auto-reload of the Decrementer

Decrementer exception is presented (i.e.
TSRDIS is set to 1) when the Decrementer
is decremented from a value of
0x0000_0001. The contents of the Decre-
menter Auto-Reload Register is placed in
the Decrementer. The Decrementer
resumes decrementing. If MSREE=1,
TCRDIE=1, and TSRDIS=1, a Decrementer
interrupt is taken. Software must reset
TSRDIS.

42 Implementation-dependent

43:63 Reserved

7.5.1 Timer Status Register
The Timer Status Register (TSR) is a 32-bit register.
Timer Status Register bits are numbered 32 (most-sig-
nificant bit) to 63 (least-significant bit). The Timer Sta-
tus Register contains status on timer events and the
most recent Watchdog Timer-initiated processor reset. 

The Timer Status Register is set via hardware, and
read and cleared via software. The contents of the
Timer Status Register can be read using the mfspr
instruction. Bits in the Timer Status Register can be
cleared using the mtspr instruction. Clearing is done
by writing bits 32:63 of a General Purpose Register to
the Timer Status Register with a 1 in any bit position
that is to be cleared and 0 in all other bit positions. The
write-data to the Timer Status Register is not direct
data, but a mask. A 1 causes the bit to be cleared, and
a 0 has no effect.

The contents of the TSR are defined below:

Bit(s) Description

32 Enable Next Watchdog Timer (ENW) (see
Section 7.7 on page 602)

0 Action on next Watchdog Timer time-out is
to set TSRENW

1 Action on next Watchdog Timer time-out is
governed by TSRWIS

33 Watchdog Timer Interrupt Status (WIS) (see
Section 7.7 on page 602)

0 A Watchdog Timer event has not
occurred.

1 A Watchdog Timer event has occurred.
When MSRCE=1 and TCRWIE=1, a
Watchdog Timer interrupt is taken.

34:35 Watchdog Timer Reset Status (WRS) (see
Section 7.7 on page 602)
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These two bits are set to one of three values
when a reset is caused by the Watchdog
Timer. These bits are undefined at power-up.

00 No Watchdog Timer reset has occurred.
01 Implementation-dependent reset informa-

tion.
10 Implementation-dependent reset informa-

tion.
11 Implementation-dependent reset informa-

tion.

36 Decrementer Interrupt Status (DIS) (see
Section 7.3.2 on page 599)

0 A Decrementer event has not occurred.
1 A Decrementer event has occurred. When

MSREE=1 and TCRDIE=1, a Decrementer
interrupt is taken.

37 Fixed-Interval Timer Interrupt Status (FIS)
(see Section 7.6 on page 602)

0 A Fixed-Interval Timer event has not
occurred.

1 A Fixed-Interval Timer event has
occurred. When MSREE=1 and TCRFIE=1,
a Fixed-Interval Timer interrupt is taken.

38:63 Reserved

7.6 Fixed-Interval Timer
The Fixed-Interval Timer (FIT) is a mechanism for pro-
viding timer interrupts with a repeatable period, to facili-
tate system maintenance. It is similar in function to an
auto-reload Decrementer, except that there are fewer
selections of interrupt period available. The Fixed-Inter-
val Timer exception occurs on 0 to 1 transitions of a
selected bit from the Time Base (see Section 7.5).

The Fixed-Interval Timer exception is logged by TSR-

FIS. A Fixed-Interval Timer interrupt will occur if TCRFIE
and MSREE are enabled. See Section 5.6.12 on
page 582 for details of register behavior caused by the
Fixed-Interval Timer interrupt.

Note that a Fixed-Interval Timer exception will also
occur if the selected Time Base bit transitions from 0 to
1 due to an mtspr instruction that writes a 1 to the bit
when its previous value was 0.

7.7 Watchdog Timer
The Watchdog Timer is a facility intended to aid system
recovery from faulty software or hardware. Watchdog
time-outs occur on 0 to 1 transitions of selected bits
from the Time Base (Section 7.5).

When a Watchdog Timer time-out occurs while Watch-
dog Timer Interrupt Status is clear (TSRWIS = 0) and
the next Watchdog Time-out is enabled (TSRENW = 1),

a Watchdog Timer exception is generated and logged
by setting TSRWIS to 1. This is referred to as a Watch-
dog Timer First Time Out. A Watchdog Timer interrupt
will occur if enabled by TCRWIE and MSRCE. See
Section 5.6.13 on page 582 for details of register

behavior caused by the Watchdog Timer interrupt. The
purpose of the Watchdog Timer First time-out is to give
an indication that there may be problem and give the
system a chance to perform corrective action or cap-
ture a failure before a reset occurs from the Watchdog
Timer Second time-out as explained further below.

Note that a Watchdog Timer exception will also occur if
the selected Time Base bit transitions from 0 to 1 due
to an mtspr instruction that writes a 1 to the bit when its
previous value was 0.

When a Watchdog Timer time-out occurs while
TSRWIS = 1 and TSRENW = 1, a processor reset occurs
if it is enabled by a non-zero value of the Watchdog
Reset Control field in the Timer Control Register (TCR-

WRC). This is referred to as a Watchdog Timer Second
Time Out. The assumption is that TSRWIS was not
cleared because the processor was unable to execute
the Watchdog Timer interrupt handler, leaving reset as
the only available means to restart the system. Note
that once TCRWRC has been set to a non-zero value, it
cannot be reset by software; this feature prevents
errant software from disabling the Watchdog Timer
reset capability.

A more complete view of Watchdog Timer behavior is
afforded by Figure 23 and Table 24, which describe the
Watchdog Timer state machine and Watchdog Timer
controls. The numbers in parentheses in the figure refer
to the discussion of modes of operation which follow
the table.
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Figure 23. Watchdog State Machine

Figure 24. Watchdog Timer Controls

The controls described in the above table imply three
different modes of operation that a programmer might
select for the Watchdog Timer. Each of these modes
assumes that TCRWRC has been set to allow processor
reset by the Watchdog facility:

1. Always take the Watchdog Timer interrupt when
pending, and never attempt to prevent its occur-
rence. In this mode, the Watchdog Timer interrupt
caused by a first time-out is used to clear TSRWIS
so a second time-out never occurs. TSRENW is not
cleared, thereby allowing the next time-out to
cause another interrupt.

2. Always take the Watchdog Timer interrupt when
pending, but avoid when possible. In this mode a
recurring code loop of reliable duration (or perhaps

a periodic interrupt handler such as the Fixed-
Interval Timer interrupt handler) is used to repeat-
edly clear TSRENW such that a first time-out
exception is avoided, and thus no Watchdog Timer
interrupt occurs. Once TSRENW has been cleared,
software has between one and two full Watchdog
periods before a Watchdog exception will be
posted in TSRWIS. If this occurs before the soft-
ware is able to clear TSRENW again, a Watchdog
Timer interrupt will occur. In this case, the Watch-
dog Timer interrupt handler will then clear both
TSRENW and TSRWIS, in order to (hopefully) avoid
the next Watchdog Timer interrupt.

3. Never take the Watchdog Timer interrupt. In this
mode, Watchdog Timer interrupts are disabled (via
TCRWIE=0), and the system depends upon a

TSRENW,WIS=0b00

TSRENW,WIS=0b01

TSRENW,WIS=0b10

TSRENW,WIS=0b11

Time-out. No exception recorded in TSRWIS. 

Time-out. WDT exception recorded in TSRWIS 

Time-out. Set TSRENW

Time-out

(2) SW Loop

(3) SW Loop

(1) Watchdog

Handler

(2)
Interrupt
Handler

TSRWRS ← TCRWRC
TCRWRC ← 0b00

 WDT interrupt will occur if enabled by

Set TSRENW so next time-out will cause exception.

Interrupt

Watchdog

 so next time-out will 

If TCRWRC≠00 then RESET, including

cause reset

TCRWIE and MSRCE

Enable
Next WDT 
(TSRENW)

WDT Status
(TSRWIS)

Action when timer interval expires

0 0 Set Enable Next Watchdog Timer (TSRENW=1).

0 1 Set Enable Next Watchdog Timer (TSRENW=1).

1 0 Set Watchdog Timer interrupt status bit (TSRWIS=1).
If Watchdog Timer interrupt is enabled (TCRWIE=1 and 

MSRCE=1), then interrupt.

1 1 Cause Watchdog Timer reset action specified by
TCRWRC. Reset will copy pre-reset TCRWRC into 
TSRWRS, then clear TCRWRC.
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recurring code loop of reliable duration (or perhaps
a periodic interrupt handler such as the Fixed-
Interval Timer interrupt handler) to repeatedly clear
TSRWIS such that a second time-out is avoided,
and thus no reset occurs. TSRENW is not cleared,
thereby allowing the next time-out to set TSRWIS
again. The recurring code loop must have a period
which is less than one Watchdog Timer period in
order to guarantee that a Watchdog Timer reset
will not occur.

7.8 Freezing the Timer Facilities
The debug mechanism provides a means of tempo-
rarily freezing the timers upon a debug event. Specifi-
cally, the Time Base and Decrementer can be frozen
and prevented from incrementing/decrementing,
respectively, whenever a debug event is set in the
Debug Status Register. Note that this also freezes the
FIT and Watchdog timer. This allows a debugger to
simulate the appearance of ‘real time’, even though the
application has been temporarily ‘halted’ to service the
debug event. See the description of bit 63 of the Debug
Control Register 0 (Freeze Timers on Debug Event or
DBCR0FT) in Section 8.5.1.1 on page 613.
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8.1 Overview
Processors provide debug facilities to enable hardware
and software debug functions, such as instruction and
data breakpoints and program single stepping. The
debug facilities consist of a set of Debug Control Regis-
ters (DBCR0, DBCR1, and DBCR2) (see Section 8.5.1
on page 613), a set of Address and Data Value Com-
pare Registers (IAC1, IAC2, IAC3, IAC4, DAC1, DAC2,
DVC1, and DVC2), (see Section 8.4.3, Section 8.4.4,
and Section 8.4.5), a Debug Status Register (DBSR)
(see Section 8.5.2) for enabling and recording various
kinds of debug events, and a special Debug interrupt
type built into the interrupt mechanism (see
Section 5.6.16). The debug facilities also provide a
mechanism for software-controlled processor reset,
and for controlling the operation of the timers in a
debug environment.

The mfspr and mtspr instructions (see Section 3.4.1)
provide access to the registers of the debug facilities.

In addition to the facilities described here, implementa-
tions will typically include debug facilities, modes, and
access mechanisms which are implementation-spe-
cific. For example, implementations will typically pro-
vide access to the debug facilities via a dedicated
interface such as the IEEE 1149.1 Test Access Port
(JTAG).

8.2 Internal Debug Mode
Debug events include such things as instruction and
data breakpoints. These debug events cause status
bits to be set in the Debug Status Register. The exist-
ence of a set bit in the Debug Status Register is consid-
ered a Debug exception. Debug exceptions, if enabled,
will cause Debug interrupts.

There are two different mechanisms that control
whether Debug interrupts are enabled. The first is the
MSRDE bit, and this bit must be set to 1 to enable
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Debug interrupts. The second mechanism is an enable
bit in the Debug Control Register 0 (DBCR0). This bit is
the Internal Debug Mode bit (DBCR0IDM), and it must
also be set to 1 to enable Debug interrupts.

When DBCR0IDM=1, the processor is in Internal Debug
Mode. In this mode, debug events will (if also enabled
by MSRDE) cause Debug interrupts. Software at the
Debug interrupt vector location will thus be given con-
trol upon the occurrence of a debug event, and can
access (via the normal instructions) all architected pro-
cessor resources. In this fashion, debug monitor soft-
ware can control the processor and gather status, and
interact with debugging hardware connected to the pro-
cessor.

When the processor is not in Internal Debug Mode
(DBCR0IDM=0), debug events may still occur and be
recorded in the Debug Status Register. These excep-
tions may be monitored via software by reading the
Debug Status Register (using mfspr), or may eventu-
ally cause a Debug interrupt if later enabled by setting
DBCR0IDM=1 (and MSRDE=1). Processor behavior
when debug events occur while DBCR0IDM=0 is imple-
mentation-dependent.

8.3 External Debug Mode [Cate-
gory: Embedded.Enhanced 
Debug]
The External Debug Mode is a mode in which facilities
external to the processor can access processor
resources and control execution. These facilities are
defined as the external debug facilities and are not
defined here, however some instructions and registers
share internal and external debug roles and are briefly
described as necessary.

A dnh instruction is provided to stop instruction fetching
and execution and allow the processor to be managed
by an external debug facility. After the dnh instruction is
executed, instructions are not fetched, interrupts are
not taken, and the processor does not execute instruc-
tions. 

8.4 Debug Events
Debug events are used to cause Debug exceptions to
be recorded in the Debug Status Register (see
Section 8.5.2). In order for a debug event to be enabled
to set a Debug Status Register bit and thereby cause a
Debug exception, the specific event type must be
enabled by a corresponding bit or bits in the Debug
Control Register DBCR0 (see Section 8.5.1.1), DBCR1
(see Section 8.5.1.2), or DBCR2 (see Section 8.5.1.3),
in most cases; the Unconditional Debug Event (UDE) is
an exception to this rule. Once a Debug Status Register
bit is set, if Debug interrupts are enabled by MSRDE, a
Debug interrupt will be generated.

Certain debug events are not allowed to occur when
MSRDE=0. In such situations, no Debug exception
occurs and thus no Debug Status Register bit is set.
Other debug events may cause Debug exceptions and
set Debug Status Register bits regardless of the state
of MSRDE. The associated Debug interrupts that result
from such Debug exceptions will be delayed until
MSRDE=1, provided the exceptions have not been
cleared from the Debug Status Register in the mean-
time.

Any time that a Debug Status Register bit is allowed to
be set while MSRDE=0, a special Debug Status Regis-
ter bit, Imprecise Debug Event (DBSRIDE), will also be
set. DBSRIDE indicates that the associated Debug
exception bit in the Debug Status Register was set
while Debug interrupts were disabled via the MMSRDE
bit. Debug interrupt handler software can use this bit to
determine whether the address recorded in CSRR0/
DSRR0 [Category: Embedded.Enhanced Debug]
should be interpreted as the address associated with
the instruction causing the Debug exception, or simply
the address of the instruction after the one which set
the MSRDE bit, thereby enabling the delayed Debug
interrupt.

Debug interrupts are ordered with respect to other
interrupt types (see Section 7.8 on page 179). Debug
exceptions are prioritized with respect to other excep-
tions (see Section 7.9 on page 183).

There are eight types of debug events defined:

1. Instruction Address Compare debug events
2. Data Address Compare debug events
3. Trap debug events
4. Branch Taken debug events
5. Instruction Complete debug events
6. Interrupt Taken debug events
7. Return debug events
8. Unconditional debug events
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Programming Note

There are two classes of debug exception types:

Type 1: exception before instruction

Type 2: exception after instruction

Almost all debug exceptions fall into the first type. That
is, they all take the interrupt upon encountering an
instruction having the exception without updating any
architectural state (other than DBSR, CSRR0/DSRR0
[Category: Embedded.Enhanced Debug], CSRR1/
DSRR1 [Category: Embedded.Enhanced Debug],
MSR) for that instruction. 

The CSRR0/DSRR0 [Category: Embedded.Enhanced
Debug] for this type of exception points to the instruc-
tion that encountered the exception. This includes IAC,
DAC, branch taken, etc.

The only exception which fall into the second type is the
instruction complete debug exception. This exception is
taken upon completing and updating one instruction
and then pointing CSRR0/DSRR0 [Category: Embed-
ded.Enhanced Debug] to the next instruction to exe-
cute.

To make forward progress for any Type 1 debug excep-
tion one does the following:

1. Software sets up Type 1 exceptions (e.g. branch
taken debug exceptions) and then returns to nor-
mal program operation

2. Hardware takes Debug interrupt upon the first
branch taken Debug exception, pointing to the
branch with CSRR0/DSRR0 [Category: Embed-
ded.Enhanced Debug].

3. Software, in the debug handler, sees the branch
taken exception type, does whatever logging/anal-

ysis it wants to, then clears all debug event enables
in the DBCR except for the instruction complete
debug event enable.

4. Software does an rfci or rfdi [Category: Embed-
ded.Enhanced Debug].

5. Hardware would execute and complete one
instruction (the branch taken in this case), and
then take a Debug interrupt with CSRR0/DSRR0
[Category: Embedded.Enhanced Debug] pointing
to the target of the branch.

6. Software would see the instruction complete inter-
rupt type. It clears the instruction complete event
enable, then enables the branch taken interrupt
event again.

7. Software does an rfci or rfdi [Category: Embed-
ded.Enhanced Debug].

8. Hardware resumes on the target of the taken
branch and continues until another taken branch,
in which case we end up at step 2 again.

This, at first, seems like a double tax (i.e. 2 debug inter-
rupts for every instance of a Type 1 exception), but
there doesn't seem like any other clean way to make
forward progress on Type 1 debug exceptions. The only
other way to avoid the double tax is to have the debug
handler routine actually emulate the instruction pointed
to for the Type 1 exceptions, determine the next instruc-
tion that would have been executed by the interrupted
program flow and load the CSRR0/DSRR0 [Category:
Embedded.Enhanced Debug] with that address and do
an rfci/rfdi [Category: Embedded.Enhanced Debug];
this is probably not faster.

8.4.1 Instruction Address Com-
pare Debug Event
One or more Instruction Address Compare debug
events (IAC1, IAC2, IAC3 or IAC4) occur if they are
enabled and execution is attempted of an instruction at
an address that meets the criteria specified in the
DBCR0, DBCR1, IAC1, IAC2, IAC3, and IAC4 Regis-
ters.

Instruction Address Compare User/
Supervisor Mode
DBCR1IAC1US specifies whether IAC1 debug events
can occur in user mode or supervisor mode, or both.

DBCR1IAC2US specifies whether IAC2 debug events
can occur in user mode or supervisor mode, or both.

DBCR1IAC3US specifies whether IAC3 debug events
can occur in user mode or supervisor mode, or both.

DBCR1IAC4US specifies whether IAC4 debug events
can occur in user mode or supervisor mode, or both.

Effective/Real Address Mode
DBCR1IAC1ER specifies whether effective addresses,
real addresses, effective addresses and MSRIS=0, or
effective addresses and MSRIS=1 are used in deter-
mining an address match on IAC1 debug events.

DBCR1IAC2ER specifies whether effective addresses,
real addresses, effective addresses and MSRIS=0, or
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effective addresses and MSRIS=1 are used in deter-
mining an address match on IAC2 debug events.

DBCR1IAC3ER specifies whether effective addresses,
real addresses, effective addresses and MSRIS=0, or
effective addresses and MSRIS=1 are used in deter-
mining an address match on IAC3 debug events.

DBCR1IAC4ER specifies whether effective addresses,
real addresses, effective addresses and MSRIS=0, or
effective addresses and MSRIS=1 are used in deter-
mining an address match on IAC4 debug events.

Instruction Address Compare Mode
DBCR1IAC12M specifies whether all or some of the bits
of the address of the instruction fetch must match the
contents of the IAC1 or IAC2, whether the address
must be inside a specific range specified by the IAC1
and IAC2 or outside a specific range specified by the
IAC1 and IAC2 for an IAC1 or IAC2 debug event to
occur.

DBCR1IAC34M specifies whether all or some of the bits
of the address of the instruction fetch must match the
contents of the IAC3 Register or IAC4 Register,
whether the address must be inside a specific range
specified by the IAC3 Register and IAC4 Register or
outside a specific range specified by the IAC3 Register
and IAC4 Register for an IAC3 or IAC4 debug event to
occur.

There are four instruction address compare modes.

There are four instruction address compare modes.

- Exact address compare mode
If the address of the instruction fetch is equal
to the value in the enabled IAC Register, an
instruction address match occurs. For 64-bit
implementations, the addresses are masked
to compare only bits 32:63 when the proces-
sor is executing in 32-bit mode.

- Address bit match mode
For IAC1 and IAC2 debug events, if the
address of the instruction fetch access,
ANDed with the contents of the IAC2, are
equal to the contents of the IAC1, also ANDed
with the contents of the IAC2, an instruction
address match occurs.

For IAC3 and IAC4 debug events, if the
address of the instruction fetch, ANDed with
the contents of the IAC4, are equal to the con-
tents of the IAC3, also ANDed with the con-
tents of the IAC4, an instruction address
match occurs.

For 64-bit implementations, the addresses are
masked to compare only bits 32:63 when the
processor is executing in 32-bit mode.

- Inclusive address range compare mode
For IAC1 and IAC2 debug events, if the 64-bit

address of the instruction fetch is greater than
or equal to the contents of the IAC1 and less
than the contents of the IAC2, an instruction
address match occurs.

For IAC3 and IAC4 debug events, if the 64-bit
address of the instruction fetch is greater than
or equal to the contents of the IAC3 and less
than the contents of the IAC4, an instruction
address match occurs.

- For 64-bit implementations, the addresses are
masked to compare only bits 32:63 when the
processor is executing in 32-bit mode.

- Exclusive address range compare mode
For IAC1 and IAC2 debug events, if the 64-bit
address of the instruction fetch is less than the
contents of the IAC1 or greater than or equal
to the contents of the IAC2, an instruction
address match occurs.

For IAC3 and IAC4 debug events, if the 64-bit
address of the instruction fetch is less than the
contents of the IAC3 or greater than or equal
to the contents of the IAC4, an instruction
address match occurs.

For 64-bit implementations, the addresses are
masked to compare only bits 32:63 when the
processor is executing in 32-bit mode.

See the detailed description of DBCR0 (see
Section 8.5.1.1, “Debug Control Register 0 (DCBR0)”
on page 613) and DBCR1 (see Section 8.5.1.2, “Debug
Control Register 1 (DCBR1)” on page 614) and the
modes for detecting IAC1, IAC2, IAC3 and IAC4 debug
events. Instruction Address Compare debug events can
occur regardless of the setting of MSRDE or
DBCR0IDM.

When an Instruction Address Compare debug event
occurs, the corresponding DBSRIAC1, DBSRIAC2,
DBSRIAC3, or DBSRIAC4 bit or bits are set to record the
debug exception. If MSRDE=0, DBSRIDE is also set to 1
to record the imprecise debug event.

If MSRDE=1 (i.e. Debug interrupts are enabled) at the
time of the Instruction Address Compare debug excep-
tion, a Debug interrupt will occur immediately (provided
there exists no higher priority exception which is
enabled to cause an interrupt). The execution of the
instruction causing the exception will be suppressed,
and CSRR0/DSRR0 [Category: Embedded.Enhanced
Debug] will be set to the address of the excepting
instruction.

If MSRDE=0 (i.e. Debug interrupts are disabled) at the
time of the Instruction Address Compare debug excep-
tion, a Debug interrupt will not occur, and the instruction
will complete execution (provided the instruction is not
causing some other exception which will generate an
enabled interrupt).
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Later, if the debug exception has not been reset by
clearing DBSRIAC1, DBSRIAC2, DBSRIAC3, and
DBSRIAC4, and MSRDE is set to 1, a delayed Debug
interrupt will occur. In this case, CSRR0/DSRR0 [Cate-
gory: Embedded.Enhanced Debug will contain the
address of the instruction after the one which enabled
the Debug interrupt by setting MSRDE to 1. Software in
the Debug interrupt handler can observe DBSRIDE to
determine how to interpret the value in CSRR0/DSRR0
[Category: Embedded.Enhanced Debug.

8.4.2 Data Address Compare 
Debug Event
One or more Data Address Compare debug events
(DAC1R, DAC1W, DAC2R, DAC2W) occur if they are
enabled, execution is attempted of a data storage
access instruction, and the type, address, and possibly
even the data value of the data storage access meet
the criteria specified in the Debug Control Register 0,
Debug Control Register 2, and the DAC1, DAC2, DVC1,
and DVC2 Registers.

Data Address Compare Read/Write 
Enable
DBCR0DAC1 specifies whether DAC1R debug events
can occur on read-type data storage accesses and
whether DAC1W debug events can occur on write-type
data storage accesses.

DBCR0DAC2 specifies whether DAC2R debug events
can occur on read-type data storage accesses and
whether DAC2W debug events can occur on write-type
data storage accesses.

Indexed-string instructions (lswx, stswx) for which the
XER field specifies zero bytes as the length of the
string are treated as no-ops, and are not allowed to
cause Data Address Compare debug events.

All Load instructions are considered reads with respect
to debug events, while all Store instructions are consid-
ered writes with respect to debug events. In addition,
the Cache Management instructions, and certain spe-
cial cases, are handled as follows.

- dcbt, dcbtls, dcbtep, dcbtst, dcbtstls, dcbt-
step, icbt, icbtls, icbtep, icbi, icblc, dcblc,
and icbiep are all considered reads with
respect to debug events. Note that dcbt,
dcbtep, dcbtst, dcbtstep, icbt, and icbtep
are treated as no-operations when they report
Data Storage or Data TLB Miss exceptions,
instead of being allowed to cause interrupts.
However, these instructions are allowed to
cause Debug interrupts, even when they
would otherwise have been no-op’ed due to a
Data Storage or Data TLB Miss exception.

- dcbz, dcbzep, dcbi, dcbf, dcbfep, dcba,
dcbst, and dcbstep are all considered writes

with respect to debug events. Note that dcbf,
dcbfep, dcbst, and dcbstep are considered
reads with respect to Data Storage excep-
tions, since they do not actually change the
data at a given address. However, since the
execution of these instructions may result in
write activity on the processor’s data bus, they
are treated as writes with respect to debug
events.

Data Address Compare User/Supervi-
sor Mode

DBCR2DAC1US specifies whether DAC1R and
DAC1W debug events can occur in user mode or
supervisor mode, or both.

DBCR2DAC2US specifies whether DAC2R and
DAC2W debug events can occur in user mode or
supervisor mode, or both.

Effective/Real Address Mode
DBCR2DAC1ER specifies whether effective
addresses, real addresses, effective addresses
and MSRDS=0, or effective addresses and
MSRDS=1 are used to in determining an address
match on DAC1R and DAC1W debug events.

DBCR2DAC2ER specifies whether effective
addresses, real addresses, effective addresses
and MSRDS=0, or effective addresses and
MSRDS=1 are used to in determining an address
match on DAC2R and DAC2W debug events.

Data Address Compare Mode
DBCR2DAC12M specifies whether all or some of the
bits of the address of the data storage access must
match the contents of the DAC1 or DAC2, whether
the address must be inside a specific range speci-
fied by the DAC1 and DAC2 or outside a specific
range specified by the DAC1 and DAC2 for a
DAC1R, DAC1W, DAC2R or DAC2W debug event
to occur.

There are four data address compare modes.

- Exact address compare mode
If the 64-bit address of the data storage
access is equal to the value in the enabled
Data Address Compare Register, a data
address match occurs.

 For 64-bit implementations, the addresses
are masked to compare only bits 32:63 when
the processor is executing in 32-bit mode.

- Address bit match mode
If the address of the data storage access,
ANDed with the contents of the DAC2, are
equal to the contents of the DAC1, also
ANDed with the contents of the DAC2, a data
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address match occurs.

For 64-bit implementations, the addresses are
masked to compare only bits 32:63 when the
processor is executing in 32-bit mode.

- Inclusive address range compare mode
If the 64-bit address of the data storage
access is greater than or equal to the contents
of the DAC1 and less than the contents of the
DAC2, a data address match occurs.

For 64-bit implementations, the addresses are
masked to compare only bits 32:63 when the
processor is executing in 32-bit mode.

- Exclusive address range compare mode
If the 64-bit address of the data storage
access is less than the contents of the DAC1
or greater than or equal to the contents of the
DAC2, a data address match occurs.

For 64-bit implementations, the addresses are
masked to compare only bits 32:63 when the
processor is executing in 32-bit mode.

Data Value Compare Mode
DBCR2DVC1M and DBCR2DVC1BE specify whether
and how the data value being accessed by the
storage access must match the contents of the
DVC1 for a DAC1R or DAC1W debug event to
occur.

DBCR2DVC2M and DBCR2DVC2BE specify whether
and how the data value being accessed by the
storage access must match the contents of the
DVC2 for a DAC2R or DAC2W debug event to
occur.

The description of DBCR0 (see Section 8.5.1.1) and
DBCR2 (see Section 8.5.1.3) and the modes for detect-
ing Data Address Compare debug events. Data
Address Compare debug events can occur regardless
of the setting of MSRDE or DBCR0IDM. 

When an Data Address Compare debug event occurs,
the corresponding DBSRDAC1R, DBSRDAC1W,
DBSRDAC2R, or DBSRDAC2W bit or bits are set to 1 to
record the debug exception. If MSRDE=0, DBSRIDE is
also set to 1 to record the imprecise debug event.

If MSRDE=1 (i.e. Debug interrupts are enabled) at the
time of the Data Address Compare debug exception, a
Debug interrupt will occur immediately (provided there
exists no higher priority exception which is enabled to
cause an interrupt), the execution of the instruction
causing the exception will be suppressed, and CSRR0/
DSRR0 [Category: Embedded.Enhanced Debug will be
set to the address of the excepting instruction. Depend-
ing on the type of instruction and/or the alignment of
the data access, the instruction causing the exception
may have been partially executed (see Section 5.7).

If MSRDE=0 (i.e. Debug interrupts are disabled) at the
time of the Data Address Compare debug exception, a
Debug interrupt will not occur, and the instruction will
complete execution (provided the instruction is not
causing some other exception which will generate an
enabled interrupt). Also, DBSRIDE is set to indicate that
the debug exception occurred while Debug interrupts
were disabled by MSRDE=0.

Later, if the debug exception has not been reset by
clearing DBSRDAC1R, DBSRDAC1W, DBSRDAC2R,
DBSRDAC2W, and MSRDE is set to 1, a delayed Debug
interrupt will occur. In this case, CSRR0/DSRR0 [Cate-
gory: Embedded.Enhanced Debug will contain the
address of the instruction after the one which enabled
the Debug interrupt by setting MSRDE to 1. Software in
the Debug interrupt handler can observe DBSRIDE to
determine how to interpret the value in CSRR0/DSRR0
[Category: Embedded.Enhanced Debug.

8.4.3 Trap Debug Event
A Trap debug event (TRAP) occurs if DBCR0TRAP=1
(i.e. Trap debug events are enabled) and a Trap
instruction (tw, twi, td, tdi) is executed and the condi-
tions specified by the instruction for the trap are met.
The event can occur regardless of the setting of
MSRDE or DBCR0IDM.

When a Trap debug event occurs, DBSRTR is set to 1 to
record the debug exception. If MSRDE=0, DBSRIDE is
also set to 1 to record the imprecise debug event.

If MSRDE=1 (i.e. Debug interrupts are enabled) at the
time of the Trap debug exception, a Debug interrupt will
occur immediately (provided there exists no higher pri-
ority exception which is enabled to cause an interrupt),
and CSRR0/DSRR0 [Category: Embedded.Enhanced
Debug] will be set to the address of the excepting
instruction. 

If MSRDE=0 (i.e. Debug interrupts are disabled) at the
time of the Trap debug exception, a Debug interrupt will
not occur, and a Trap exception type Program interrupt
will occur instead if the trap condition is met.

Later, if the debug exception has not been reset by
clearing DBSRTR, and MSRDE is set to 1, a delayed
Debug interrupt will occur. In this case, CSRR0/DSRR0
[Category: Embedded.Enhanced Debug will contain
the address of the instruction after the one which
enabled the Debug interrupt by setting MSRDE to 1.
Software in the debug interrupt handler can observe
DBSRIDE to determine how to interpret the value in
CSRR0/DSRR0 [Category: Embedded.Enhanced
Debug].

8.4.4 Branch Taken Debug Event
A Branch Taken debug event (BRT) occurs if
DBCR0BRT=1 (i.e. Branch Taken Debug events are
enabled), execution is attempted of a branch instruction
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whose direction will be taken (that is, either an uncondi-
tional branch, or a conditional branch whose branch
condition is met), and MSRDE=1.

Branch Taken debug events are not recognized if
MSRDE=0 at the time of the execution of the branch
instruction and thus DBSRIDE can not be set by a
Branch Taken debug event. This is because branch
instructions occur very frequently. Allowing these com-
mon events to be recorded as exceptions in the DBSR
while debug interrupts are disabled via MSRDE would
result in an inordinate number of imprecise Debug
interrupts.

When a Branch Taken debug event occurs, the DBSR-

BRT bit is set to 1 to record the debug exception and a
Debug interrupt will occur immediately (provided there
exists no higher priority exception which is enabled to
cause an interrupt). The execution of the instruction
causing the exception will be suppressed, and CSRR0/
DSRR0 [Category: Embedded.Enhanced Debug] will
be set to the address of the excepting instruction. 

8.4.5 Instruction Complete Debug 
Event
An Instruction Complete debug event (ICMP) occurs if
DBCR0ICMP=1 (i.e. Instruction Complete debug events
are enabled), execution of any instruction is completed,
and MSRDE=1. Note that if execution of an instruction
is suppressed due to the instruction causing some
other exception which is enabled to generate an inter-
rupt, then the attempted execution of that instruction
does not cause an Instruction Complete debug event.
The sc instruction does not fall into the type of an
instruction whose execution is suppressed, since the
instruction actually completes execution and then gen-
erates a System Call interrupt. In this case, the Instruc-
tion Complete debug exception will also be set.

Instruction Complete debug events are not recognized
if MSRDE=0 at the time of the execution of the instruc-
tion, DBSRIDE can not be set by an ICMP debug event.
This is because allowing the common event of Instruc-
tion Completion to be recorded as an exception in the
DBSR while Debug interrupts are disabled via MSRDE
would mean that the Debug interrupt handler software
would receive an inordinate number of imprecise
Debug interrupts every time Debug interrupts were re-
enabled via MSRDE.

When an Instruction Complete debug event occurs,
DBSRICMP is set to 1 to record the debug exception, a
Debug interrupt will occur immediately (provided there
exists no higher priority exception which is enabled to
cause an interrupt), and CSRR0/DSRR0 [Category:
Embedded.Enhanced Debug] will be set to the address
of the instruction after the one causing the Instruction
Complete debug exception. 

8.4.6 Interrupt Taken Debug Event

8.4.6.1 Causes of Interrupt Taken 
Debug Events
Only base class interrupts can cause an Interrupt
Taken debug event. If the Embedded.Enhanced Debug
category is not supported or is supported and not
enabled, all other interrupts automatically clear MSRDE,
and thus would always prevent the associated Debug
interrupt from occurring precisely. If the Embed-
ded.Enhanced Debug category is supported and
enabled, then critical class interrupts do not automati-
cally clear MSRDE, but they cause Critical Interrupt
Taken debug events instead of Interrupt Taken debug
events.

Also, if the Embedded.Enhanced Debug category is not
supported or is supported and not enabled, Debug
interrupts themselves are critical class interrupts, and
thus any Debug interrupt (for any other debug event)
would always end up setting the additional exception of
DBSRIRPT upon entry to the Debug interrupt handler.
At this point, the Debug interrupt handler would be
unable to determine whether or not the Interrupt Taken
debug event was related to the original debug event.

8.4.6.2 Interrupt Taken Debug Event 
Description
An Interrupt Taken debug event (IRPT) occurs if
DBCR0IRPT=1 (i.e. Interrupt Taken debug events are
enabled) and a base class interrupt occurs. Interrupt
Taken debug events can occur regardless of the setting
of MSRDE.

When an Interrupt Taken debug event occurs, DBSR-

IRPT is set to 1 to record the debug exception. If
MSRDE=0, DBSRIDE is also set to 1 to record the
imprecise debug event.

If MSRDE=1 (i.e. Debug interrupts are enabled) at the
time of the Interrupt Taken debug event, a Debug inter-
rupt will occur immediately (provided there exists no
higher priority exception which is enabled to cause an
interrupt), and Critical Save/Restore Register 0/Debug
Save/Restore Register 0 [Category: Embed-
ded.Enhanced Debug] will be set to the address of the
interrupt vector which caused the Interrupt Taken
debug event. No instructions at the base interrupt han-
dler will have been executed. 

If MSRDE=0 (i.e. Debug interrupts are disabled) at the
time of the Interrupt Taken debug event, a Debug inter-
rupt will not occur, and the handler for the interrupt
which caused the Interrupt Taken debug event will be
allowed to execute.

Later, if the debug exception has not been reset by
clearing DBSRIRPT, and MSRDE is set to 1, a delayed
Debug interrupt will occur. In this case, CSRR0/DSRR0
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[Category: Embedded.Enhanced Debug] will contain
the address of the instruction after the one which
enabled the Debug interrupt by setting MSRDE to 1.
Software in the Debug interrupt handler can observe
the DBSRIDE bit to determine how to interpret the value
in CSRR0/DSRR0 [Category: Embedded.Enhanced
Debug.

8.4.7 Return Debug Event
A Return debug event (RET) occurs if DBCR0RET=1
and an attempt is made to execute an rfi. Return debug
events can occur regardless of the setting of MSRDE.

When a Return debug event occurs, DBSRRET is set to
1 to record the debug exception. If MSRDE=0, DBSRIDE
is also set to 1 to record the imprecise debug event.

If MSRDE=1 at the time of the Return Debug event, a
Debug interrupt will occur immediately, and CSRR0/
DSRR0 [Category: Embedded.Enhanced Debug will be
set to the address of the rfi. 

If MSRDE=0 at the time of the Return Debug event, a
Debug interrupt will not occur.

Later, if the Debug exception has not been reset by
clearing DBSRRET, and MSRDE is set to 1, a delayed
imprecise Debug interrupt will occur. In this case,
CSRR0/DSRR0 [Category: Embedded.Enhanced
Debug will contain the address of the instruction after
the one which enabled the Debug interrupt by setting
MSRDE to 1. An imprecise Debug interrupt can be
caused by executing an rfi when DBCR0RET=1 and
MSRDE=0, and the execution of that rfi happens to
cause MSRDE to be set to 1. Software in the Debug
interrupt handler can observe the DBSRIDE bit to deter-
mine how to interpret the value in CSRR0/DSRR0 [Cat-
egory: Embedded.Enhanced Debug].

8.4.8 Unconditional Debug Event
An Unconditional debug event (UDE) occurs when the
Unconditional Debug Event (UDE) signal is activated by
the debug mechanism. The exact definition of the UDE
signal and how it is activated is implementation-depen-
dent. The Unconditional debug event is the only debug
event which does not have a corresponding enable bit
for the event in DBCR0 (hence the name of the event).
The Unconditional debug event can occur regardless of
the setting of MSRDE. 

When an Unconditional debug event occurs, the
DBSRUDE bit is set to 1 to record the Debug exception.
If MSRDE=0, DBSRIDE is also set to 1 to record the
imprecise debug event.

If MSRDE=1 (i.e. Debug interrupts are enabled) at the
time of the Unconditional Debug exception, a Debug
interrupt will occur immediately (provided there exists
no higher priority exception which is enabled to cause
an interrupt), and CSRR0/DSRR0 [Category: Embed-

ded.Enhanced Debug] will be set to the address of the
instruction which would have executed next had the
interrupt not occurred. 

If MSRDE=0 (i.e. Debug interrupts are disabled) at the
time of the Unconditional Debug exception, a Debug
interrupt will not occur.

Later, if the Unconditional Debug exception has not
been reset by clearing DBSRUDE, and MSRDE is set to
1, a delayed Debug interrupt will occur. In this case,
CSRR0/DSRR0 [Category: Embedded.Enhanced
Debug] will contain the address of the instruction after
the one which enabled the Debug interrupt by setting
MSRDE to 1. Software in the Debug interrupt handler
can observe DBSRIDE to determine how to interpret the
value in CSRR0/DSRR0 [Category: Embed-
ded.Enhanced Debug].

8.4.9 Critical Interrupt Taken 
Debug Event [Category: Embed-
ded.Enhanced Debug]
A Critical Interrupt Taken debug event (CIRPT) occurs if
DBCR0CIRPT = 1 (i.e. Critical Interrupt Taken debug
events are enabled) and a critical interrupt occurs. A
critical interrupt is any interrupt that saves state in
CSRR0 and CSRR1 when the interrupt is taken. Criti-
cal Interrupt Taken debug events can occur regardless
of the setting of MSRDE.

When a Critical Interrupt Taken debug event occurs,
DBSRCIRPT is set to 1 to record the debug event. If
MSRDE=0, DBSRIDE is also set to 1 to record the
imprecise debug event.

If MSRDE = 1 (i.e. Debug Interrupts are enabled) at the
time of the Critical Interrupt Taken debug event, a
Debug Interrupt will occur immediately (provided there
is no higher priority exception which is enabled to
cause an interrupt), and DSRR0 will be set to the
address of the first instruction of the critical interrupt
handler. No instructions at the critical interrupt handler
will have been executed.

If MSRDE = 0 (i.e. Debug Interrupts are disabled) at the
time of the Critical Interrupt Taken debug event, a
Debug Interrupt will not occur, and the handler for the
critical interrupt which caused the debug event will be
allowed to execute normally. Later, if the debug excep-
tion has not been reset by clearing DBSRCIRPT and
MSRDE is set to 1, a delayed Debug Interrupt will occur.
In this case DSRR0 will contain the address of the
instruction after the one that set MSRDE = 1. Software
in the Debug Interrupt handler can observe DBSRIDE to
determine how to interpret the value in DSRR0.
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8.4.10 Critical Interrupt Return 
Debug Event [Category: Embed-
ded.Enhanced Debug]
A Critical Interrupt Return debug event (CRET) occurs
if DBCR0CRET = 1 (i.e. Critical Interrupt Return debug
events are enabled) and an attempt is made to execute
an rfci instruction. Critical Interrupt Return debug
events can occur regardless of the setting of MSRDE.

When a Critical Interrupt Return debug event occurs,
DBSRCRET is set to 1 to record the debug event. If
MSRDE=0, DBSRIDE is also set to 1 to record the
imprecise debug event.

If MSRDE = 1 (i.e. Debug Interrupts are enabled) at the
time of the Critical Interrupt Return debug event, a
Debug Interrupt will occur immediately (provided there
is no higher priority exception which is enabled to
cause an interrupt), and DSRR0 will be set to the
address of the rfci instruction. 

If MSRDE = 0 (i.e. Debug Interrupts are disabled) at the
time of the Critical Interrupt Return debug event, a
Debug Interrupt will not occur. Later, if the debug
exception has not been reset by clearing DBSRCRET
and MSRDE is set to 1, a delayed Debug Interrupt will
occur. In this case DSRR0 will contain the address of
the instruction after the one that set MSRDE = 1. An
imprecise Debug Interrupt can be caused by executing
an rfci when DBCR0CRET = 1 and MSRDE = 0, and the
execution of the rfci happens to cause MSRDE to be
set to 1. Software in the Debug Interrupt handler can
observe DBSRIDE to determine how to interpret the
value in DSRR0.

8.5 Debug Registers
This section describes debug-related registers that are
accessible to software running on the processor. These
registers are intended for use by special debug tools
and debug software, and not by general application or
operating system code.

8.5.1 Debug Control Registers
Debug Control Register 0 (DBCR0), Debug Control
Register 1 (DBCR1), and Debug Control Register 2
(DBCR2) are each 32-bit registers. Bits of DBCR0,
DBCR1, and DBCR2 are numbered 32 (most-signifi-
cant bit) to 63 (least-significant bit). DBCR0, DBCR1,
and DBCR2 are used to enable debug events, reset the
processor, control timer operation during debug events,
and set the debug mode of the processor.

8.5.1.1 Debug Control Register 0 
(DCBR0)
The contents of the DCBR0 can be read into bits 32:63
of register RT using mfspr RT,DBCR0, setting bits 0:31
of RT to 0. The contents of bits 32:63 of register RS can
be written to the DCBR0 using mtspr DBCR0,RS. The
bit definitions for DCBR0 are shown below.

Bit(s) Description

32 External Debug Mode (EDM) [Category:
Embedded.Enhanced Debug]
The EDM bit is a read-only bit that reflects
whether the processor is controlled by an
external debug facility. When EDM is set,
internal debug mode is suppressed and the
taking of debug interrupts does not occur.

0 The processor is not in external debug
mode.

1 The processor is in external debug mode.

33 Internal Debug Mode (IDM)

0 Debug interrupts are disabled.
1 If MSRDE=1, then the occurrence of a

debug event or the recording of an earlier
debug event in the Debug Status Register
when MSRDE=0 or DBCR0IDM=0 will
cause a Debug interrupt.

34:35 Reset (RST)

00 No action
01 Implementation-specific
10 Implementation-specific
11 Implementation-specific

Warning: Writing 0b01, 0b10, or 0b11 to
these bits may cause a processor reset to
occur.

36 Instruction Completion Debug Event
(ICMP)

0 ICMP debug events are disabled
1 ICMP debug events are enabled

Note: Instruction Completion will not cause an
ICMP debug event if MSRDE=0.

37 Branch Taken Debug Event Enable (BRT)

0 BRT debug events are disabled
1 BRT debug events are enabled

Note: Taken branches will not cause a BRT
debug event if MSRDE=0.

38 Interrupt Taken Debug Event Enable (IRPT)

0 IRPT debug events are disabled
1 IRPT debug events are enabled

Note: Critical interrupts will not cause an
IRPT Debug event even if MSRDE=0. If the
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Embedded.Enhanced Debug category is sup-
ported, see Section 8.4.9.

39 Trap Debug Event Enable (TRAP)

0 TRAP debug events cannot occur
1 TRAP debug events can occur

40 Instruction Address Compare 1 Debug
Event Enable (IAC1)

0 IAC1 debug events cannot occur
1 IAC1 debug events can occur

41 Instruction Address Compare 2 Debug
Event Enable (IAC2)

0 IAC2 debug events cannot occur
1 IAC2 debug events can occur

42 Instruction Address Compare 3 Debug
Event Enable (IAC3)

0 IAC3 debug events cannot occur
1 IAC3 debug events can occur

43 Instruction Address Compare 4 Debug
Event Enable (IAC4)

0 IAC4 debug events cannot occur
1 IAC4 debug events can occur

44:45 Data Address Compare 1 Debug Event
Enable (DAC1)

00 DAC1 debug events cannot occur
01 DAC1 debug events can occur only if a

store-type data storage access
10 DAC1 debug events can occur only if a

load-type data storage access
11 DAC1 debug events can occur on any

data storage access

46:47 Data Address Compare 2 Debug Event
Enable (DAC2)

00 DAC2 debug events cannot occur
01 DAC2 debug events can occur only if a

store-type data storage access
10 DAC2 debug events can occur only if a

load-type data storage access
11 DAC2 debug events can occur on any

data storage access

48 Return Debug Event Enable (RET)

0 RET debug events cannot occur
1 RET debug events can occur

Note: Return From Critical Interrupt will not
cause an RET debug event if MSRDE=0. If the
Embedded.Enhanced Debug category is sup-
ported, see Section 8.4.10

49:56 Reserved

57 Critical Interrupt Taken Debug Event
(CIRPT) [Category: Embedded.Enhanced

Debug]
A Critical Interrupt Taken Debug Event occurs
when DBCR0CIRPT = 1 and a critical interrupt
(any interrupt that uses the critical class, i.e.
uses CSRR0 and CSRR1) occurs.

0 Critical interrupt taken debug events are
disabled.

1 Critical interrupt taken debug events are
enabled.

58 Critical Interrupt Return Debug Event
(CRET) [Category: Embedded.Enhanced
Debug] 
A Critical Interrupt Return Debug Event
occurs when DBCR0CRET= 1 and a return
from critical interrupt (an rfci instruction is
executed) occurs.

0 Critical interrupt return debug events are
disabled.

1 Critical interrupt return debug events are
enabled.

59:62 Implementation-dependent

63 Freeze Timers on Debug Event (FT)

0 Enable clocking of timers
1 Disable clocking of timers if any DBSR bit

is set (except MRR)

8.5.1.2 Debug Control Register 1 
(DCBR1)
The contents of the DCBR1 can be read into bits 32:63
a register RT using mfspr RT,DBCR1, setting bits 0:31
of RT to 0. The contents of bits 32:63 of register RS can
be written to the DBCR1 using mtspr DBCR1,RS. The
bit definitions for DCBR1 are shown below. 

Bit(s) Description

32:33 Instruction Address Compare 1 User/
Supervisor  Mode(IAC1US)

00 IAC1 debug events can occur
01 Reserved
10 IAC1 debug events can occur only if

MSRPR=0
11 IAC1 debug events can occur only if

MSRPR=1

34:35 Instruction Address Compare 1 Effective/
Real Mode (IAC1ER)

00 IAC1 debug events are based on effective
addresses

01 IAC1 debug events are based on real
addresses

10 IAC1 debug events are based on effective
addresses and can occur only if MSRIS=0

11 IAC1 debug events are based on effective
addresses and can occur only if MSRIS=1
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36:37 Instruction Address Compare 2 User/
Supervisor Mode (IAC2US)

00 IAC2 debug events can occur
01 Reserved
10 IAC2 debug events can occur only if

MSRPR=0
11 IAC2 debug events can occur only if

MSRPR=1

38:39 Instruction Address Compare 2 Effective/
Real Mode (IAC2ER)

00 IAC2 debug events are based on effective
addresses

01 IAC2 debug events are based on real
addresses

10 IAC2 debug events are based on effective
addresses and can occur only if MSRIS=0

11 IAC2 debug events are based on effective
addresses and can occur only if MSRIS=1

40:41 Instruction Address Compare 1/2 Mode
(IAC12M)

00 Exact address compare

IAC1 debug events can occur only if the
address of the instruction fetch is equal to
the value specified in IAC1.

IAC2 debug events can occur only if the
address of the instruction fetch is equal to
the value specified in IAC2.

01 Address bit match

IAC1 and IAC2 debug events can occur
only if the address of the instruction fetch,
ANDed with the contents of IAC2 are equal
to the contents of IAC1, also ANDed with
the contents of IAC2.

If IAC1US≠IAC2US or IAC1ER≠IAC2ER,
results are boundedly undefined.

10 Inclusive address range compare

IAC1 and IAC2 debug events can occur
only if the address of the instruction fetch is
greater than or equal to the value specified
in IAC1 and less than the value specified in
IAC2.

If IAC1US≠IAC2US or IAC1ER≠IAC2ER,
results are boundedly undefined.

11 Exclusive address range compare

IAC1 and IAC2 debug events can occur
only if the address of the instruction fetch is
less than the value specified in IAC1 or is
greater than or equal to the value specified
in IAC2.

If IAC1US≠AC2US or IAC1ER≠IAC2ER,
results are boundedly undefined.

42:47 Reserved

48:49 Instruction Address Compare 3 User/
Supervisor Mode (IAC3US)

00 IAC3 debug events can occur
01 Reserved
10 IAC3 debug events can occur only if

MSRPR=0
11 IAC3 debug events can occur only if

MSRPR=1

50:51 Instruction Address Compare 3 Effective/
Real Mode (IAC3ER)

00 IAC3 debug events are based on effective
addresses

01 IAC3 debug events are based on real
addresses

10 IAC3 debug events are based on effective
addresses and can occur only if MSRIS=0

11 IAC3 debug events are based on effective
addresses and can occur only if MSRIS=1

52:53 Instruction Address Compare 4 User/
Supervisor Mode (IAC4US)

00 IAC4 debug events can occur
01 Reserved
10 IAC4 debug events can occur only if

MSRPR=0
11 IAC4 debug events can occur only if

MSRPR=1

54:55 Instruction Address Compare 4 Effective/
Real Mode (IAC4ER)

00 IAC4 debug events are based on effective
addresses

01 IAC4 debug events are based on real
addresses

10 IAC4 debug events are based on effective
addresses and can occur only if MSRIS=0

11 IAC4 debug events are based on effective
addresses and can occur only if MSRIS=1

56:57 Instruction Address Compare 3/4 Mode
(IAC34M)

00 Exact address compare

IAC3 debug events can occur only if the
address of the instruction fetch is equal to
the value specified in IAC3.

IAC4 debug events can occur only if the
address of the instruction fetch is equal to
the value specified in IAC4.

01 Address bit match

IAC3 and IAC4 debug events can occur
only if the address of the data storage
access, ANDed with the contents of IAC4
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are equal to the contents of IAC3, also
ANDed with the contents of IAC4.

If IAC3US≠IAC4US or IAC3ER≠IAC4ER,
results are boundedly undefined.

10 Inclusive address range compare

IAC3 and IAC4 debug events can occur
only if the address of the instruction fetch is
greater than or equal to the value specified
in IAC3 and less than the value specified in
IAC4.

If IAC3US≠IAC4US or IAC3ER≠IAC4ER,
results are boundedly undefined.

11 Exclusive address range compare

IAC3 and IAC4 debug events can occur
only if the address of the instruction fetch is
less than the value specified in IAC3 or is
greater than or equal to the value specified
in IAC4.

If IAC3US≠IAC4US or IAC3ER≠IAC4ER,
results are boundedly undefined.

58:63 Reserved

8.5.1.3 Debug Control Register 2 
(DCBR2)
The contents of the DCBR2 can be copied into bits
32:63 register RT using mfspr RT,DBCR2, setting bits
0:31 of register RT to 0. The contents of bits 32:63 of a
register RS can be written to the DCBR2 using
mtspr DBCR2,RS. The bit definitions for DCBR2 are
shown below.

Bit(s) Description

32:33 Data Address Compare 1 User/Supervisor
Mode (DAC1US)

00 DAC1 debug events can occur
01 Reserved
10 DAC1 debug events can occur only if

MSRPR=0
11 DAC1 debug events can occur only if

MSRPR=1

34:35 Data Address Compare 1 Effective/Real
Mode (DAC1ER)

00 DAC1 debug events are based on effec-
tive addresses

01 DAC1 debug events are based on real
addresses

10 DAC1 debug events are based on effec-
tive addresses and can occur only if
MSRDS=0

11 DAC1 debug events are based on effec-
tive addresses and can occur only if
MSRDS=1

36:37 Data Address Compare 2 User/Supervisor
Mode (DAC2US)

00 DAC2 debug events can occur
01 Reserved
10 DAC2 debug events can occur only if

MSRPR=0
11 DAC2 debug events can occur only if

MSRPR=1

38:39 Data Address Compare 2 Effective/Real
Mode (DAC2ER)

00 DAC2 debug events are based on effec-
tive addresses

01 DAC2 debug events are based on real
addresses

10 DAC2 debug events are based on effec-
tive addresses and can occur only if
MSRDS=0

11 DAC2 debug events are based on effec-
tive addresses and can occur only if
MSRDS=1

40:41 Data Address Compare 1/2 Mode
(DAC12M)

00 Exact address compare

DAC1 debug events can occur only if the
address of the data storage access is equal
to the value specified in DAC1.

DAC2 debug events can occur only if the
address of the data storage access is equal
to the value specified in DAC2.

01 Address bit match

DAC1 and DAC2 debug events can occur
only if the address of the data storage
access, ANDed with the contents of DAC2
are equal to the contents of DAC1, also
ANDed with the contents of DAC2.

If DAC1US≠DAC2US or
DAC1ER≠DAC2ER, results are boundedly
undefined.

10 Inclusive address range compare

DAC1 and DAC2 debug events can occur
only if the address of the data storage
access is greater than or equal to the value
specified in DAC1 and less than the value
specified in DAC2.

If DAC1US ≠ DAC2US or DAC1ER ≠
DAC2ER, results are boundedly undefined.
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11 Exclusive address range compare

DAC1 and DAC2 debug events can occur
only if the address of the data storage
access is less than the value specified in
DAC1 or is greater than or equal to the
value specified in DAC2.

If DAC1US ≠ DAC2US or DAC1ER ≠
DAC2ER, results are boundedly undefined.

42:43 Reserved

44:45 Data Value Compare 1 Mode (DVC1M)

00 DAC1 debug events can occur
01 DAC1 debug events can occur only when

all bytes specified in DBCR2DVC1BE in the
data value of the data storage access
match their corresponding bytes in DVC1

10 DAC1 debug events can occur only when
at least one of the bytes specified in
DBCR2DVC1BE in the data value of the
data storage access matches its corre-
sponding byte in DVC1

11 DAC1 debug events can occur only when
all bytes specified in DBCR2DVC1BE within
at least one of the halfwords of the data
value of the data storage access matches
their corresponding bytes in DVC1

46:47 Data Value Compare 2 Mode (DVC2M)

00 DAC2 debug events can occur
01 DAC2 debug events can occur only when

all bytes specified in DBCR2DVC2BE in the
data value of the data storage access
match their corresponding bytes in DVC2

10 DAC2 debug events can occur only when
at least one of the bytes specified in
DBCR2DVC2BE in the data value of the
data storage access matches its corre-
sponding byte in DVC2

11 DAC2 debug events can occur only when
all bytes specified in DBCR2DVC2BE within
at least one of the halfwords of the data
value of the data storage access matches
their corresponding bytes in DVC2

48:55 Data Value Compare 1 Byte Enables
(DVC1BE)

Specifies which bytes in the aligned data
value being read or written by the storage
access are compared to the corresponding
bytes in DVC1.

56:63 Data Value Compare 2 Byte Enables
(DVC2BE)

Specifies which bytes in the aligned data
value being read or written by the storage
access are compared to the corresponding
bytes in DVC2

8.5.2 Debug Status Register
The Debug Status Register (DBSR) is a 32-bit register
and contains status on debug events and the most
recent processor reset. 

The DBSR is set via hardware, and read and cleared
via software. The contents of the DBSR can be read
into bits 32:63 of a register RT using the mfspr instruc-
tion, setting bits 0:31 of RT to zero. Bits in the DBSR
can be cleared using the mtspr instruction. Clearing is
done by writing bits 32:63 of a register to the DBSR
with a 1 in any bit position that is to be cleared and 0 in
all other bit positions. The write-data to the DBSR is not
direct data, but a mask. A 1 causes the bit to be
cleared, and a 0 has no effect.

The bit definitions for the DBSR are shown below:

Bit(s) Description

32 Imprecise Debug Event (IDE)

Set to 1 if MSRDE=0 and a debug event
causes its respective Debug Status Register
bit to be set to 1.

33 Unconditional Debug Event (UDE)

Set to 1 if an Unconditional debug event
occurred. See Section 8.4.8.

34:35 Most Recent Reset (MRR)

Set to one of three values when a reset
occurs. These two bits are undefined at
power-up.

00 No reset occurred since these bits last
cleared by software

01 Implementation-dependent reset informa-
tion

10 Implementation-dependent reset informa-
tion

11 Implementation-dependent reset informa-
tion

36 Instruction Complete Debug Event (ICMP)

Set to 1 if an Instruction Completion debug
event occurred and DBCR0ICMP=1. See
Section 8.4.5.

37 Branch Taken Debug Event (BRT)

Set to 1 if a Branch Taken debug event
occurred and DBCR0BRT=1. See
Section 8.4.4.
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38 Interrupt Taken Debug Event (IRPT)

Set to 1 if an Interrupt Taken debug event
occurred and DBCR0IRPT=1. See
Section 8.4.6.

39 Trap Instruction Debug Event (TRAP)

Set to 1 if a Trap Instruction debug event
occurred and DBCR0TRAP=1. See
Section 8.4.3.

40 Instruction Address Compare 1 Debug
Event (IAC1)

Set to 1 if an IAC1 debug event occurred and
DBCR0IAC1=1. See Section 8.4.1.

41 Instruction Address Compare 2 Debug
Event (IAC2)

Set to 1 if an IAC2 debug event occurred and
DBCR0IAC2=1. See Section 8.4.1.

42 Instruction Address Compare 3 Debug
Event (IAC3)

Set to 1 if an IAC3 debug event occurred and
DBCR0IAC3=1. See Section 8.4.1.

43 Instruction Address Compare 4 Debug
Event (IAC4)

Set to 1 if an IAC4 debug event occurred and
DBCR0IAC4=1. See Section 8.4.1.

44 Data Address Compare 1 Read Debug
Event (DAC1R)

Set to 1 if a read-type DAC1 debug event
occurred and DBCR0DAC1=0b10 or
DBCR0DAC1=0b11. See Section 8.4.2.

45 Data Address Compare 1 Write Debug
Event (DAC1W)

Set to 1 if a write-type DAC1 debug event
occurred and DBCR0DAC1=0b01 or
DBCR0DAC1=0b11. See Section 8.4.2.

46 Data Address Compare 2 Read Debug
Event (DAC2R)

Set to 1 if a read-type DAC2 debug event
occurred and DBCR0DAC2=0b10 or
DBCR0DAC2=0b11. See Section 8.4.2.

47 Data Address Compare 2 Write Debug
Event (DAC2W)

Set to 1 if a write-type DAC2 debug event
occurred and DBCR0DAC2=0b01 or
DBCR0DAC2=0b11. See Section 8.4.2.

48 Return Debug Event (RET)

Set to 1 if a Return debug event occurred and
DBCR0RET=1. See Section 8.4.2.

49:52 Reserved

53:56 Implementation-dependent

57 Critical Interrupt Taken Debug Event
(CIRPT) [Category: Embedded.Enhanced
Debug]
A Critical Interrupt Taken Debug Event occurs
when DBCR0CIRPT=1 and a critical interrupt
(any interrupt that uses the critical class, i.e.
uses CSRR0 and CSRR1) occurs.

0 Critical interrupt taken debug events are
disabled.

1 Critical interrupt taken debug events are
enabled.

58 Critical Interrupt Return Debug Event
(CRET) [Category: Embedded.Enhanced
Debug] 
A Critical Interrupt Return Debug Event
occurs when DBCR0CRET=1 and a return
from critical interrupt (an rfci instruction is
executed) occurs.

0 Critical interrupt return debug events are
disabled.

1 Critical interrupt return debug events are
enabled.

59:63 Implementation-dependent

8.5.3 Instruction Address Com-
pare Registers
The Instruction Address Compare Register 1, 2, 3, and
4 (IAC1, IAC2, IAC3, and IAC4 respectively) are each
64-bits, with bit 63 being reserved.

A debug event may be enabled to occur upon an
attempt to execute an instruction from an address
specified in either IAC1, IAC2, IAC3, or IAC4, inside or
outside a range specified by IAC1 and IAC2 or, inside
or outside a range specified by IAC3 and IAC4, or to
blocks of addresses specified by the combination of the
IAC1 and IAC2, or to blocks of addresses specified by
the combination of the IAC3 and IAC4. Since all instruc-
tion addresses are required to be word-aligned, the two
low-order bits of the Instruction Address Compare Reg-
isters are reserved and do not participate in the com-
parison to the instruction address (see Section 8.4.1 on
page 607).

The contents of the Instruction Address Compare i
Register (where i={1,2,3, or 4}) can be read into regis-
ter RT using mfspr RT,IACi. The contents of register RS
can be written to the Instruction Address Compare i
Register using mtspr IACi,RS.

8.5.4 Data Address Compare Reg-
isters
The Data Address Compare Register 1 and 2 (DAC1
and DAC2 respectively) are each 64-bits.
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A debug event may be enabled to occur upon loads,
stores, or cache operations to an address specified in
either the DAC1 or DAC2, inside or outside a range
specified by the DAC1 and DAC2, or to blocks of
addresses specified by the combination of the DAC1
and DAC1 (see Section 8.4.2).

The contents of the Data Address Compare i Register
(where i={1 or 2}) can be read into register RT using
mfspr RT,DACi. The contents of register RS can be
written to the Data Address Compare i Register using
mtspr DACi,RS.

The contents of the DAC1 or DAC2 are compared to
the address generated by a data storage access
instruction.

8.5.5 Data Value Compare Regis-
ters
The Data Value Compare Register 1 and 2 (DVC1 and
DVC2 respectively) are each 64-bits.

A DAC1R, DAC1W, DAC2R, or DAC2W debug event
may be enabled to occur upon loads or stores of a spe-
cific data value specified in either or both of the DVC1
and DVC2. DBCR2DVC1M and DBCR2DVC1BE control
how the contents of the DVC1 is compared with the
value and DBCR2DVC2M and DBCR2DVC2BE control
how the contents of the DVC2 is compared with the
value (see Section 8.4.2 and Section 8.5.1.3).

The contents of the Data Value Compare i Register
(where i={1 or 2}) can be read into register RT using
mfspr RT,DVCi. The contents of register RS can be
written to the Data Value Compare i Register using
mtspr DVCi,RS.
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8.6 Debugger Notify Halt Instruction 
[Category: Embedded.Enhanced Debug]

The dnh instruction provides the means for the transfer
of information between the processor and an imple-
mentation-dependent external debug facility. dnh also
causes the processor to stop fetching and executing
instructions.

Debugger Notify Halt XFX-form

dnh DUI,DUIS 

if enabled by implementation-dependent means
then

implementation-dependent register � dui
halt processor

else
illegal instruction exception

Execution of the dnh instruction causes the processor
to stop fetching instructions and taking interrupts if exe-
cution of the instruction has been enabled. The con-
tents of the DUI field are sent to the external debug
facility to identify the reason for the halt.

If execution of the dnh instruction has not been previ-
ously enabled, executing the dnh instruction produces
an Illegal Instruction exception. The means by which
execution of the dnh instruction is enabled is imple-
mentation-dependent.

The current state of the processor debug facility,
whether the processor is in IDM or EDM mode has no
effect on the execution of the dnh instruction.

The instruction is context synchronizing.

 

Special Registers Altered: 
None

19 DUI DUIS 198 /
0 6 11 21 31

The DUIS field in the instruction may be used to
pass information to an external debug facility. After
the dnh instruction has executed, the instruction
itself can be read back by the Illegal Instruction
Interrupt handler or the external debug facility if the
contents of the DUIS field are of interest. If the pro-
cessor entered the Illegal Instruction Interrupt han-
dler, software can use SRR0 to obtain the address
of the dnh instruction which caused the handler to
be invoked. If the dnh instruction has been exe-
cuted and the processor has stopped fetching
instructions, the external debug facility can issue a
mfspr NIA to obtain the address of the dnh instruc-
tion that was executed.

Programming Note
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Chapter 9.  Processor Control
[Category: Embedded.Processor Control]

9.1 Overview. . . . . . . . . . . . . . . . . . . . 621
9.2 Programming Model . . . . . . . . . . . 621
9.2.1 Processor Message Handling and 

Filtering . . . . . . . . . . . . . . . . . . . . . . . . 621
9.2.1.1 Doorbell Message Filtering. . . 622

9.2.1.2 Doorbell Critical Message Filtering
622

9.3 Processor Control Instructions  . . . 623

9.1 Overview
The Processor Control facility provides a mechanism
for processors within a coherence domain to send mes-
sages to all devices in the coherence domain. The facil-
ity provides a mechanism for sending interrupts that are
not dependent on the interrupt controller to processors
and allows message filtering by the processors that
receive the message.

The Processor Control facility is also useful for sending
messages to a device that provides specialized ser-
vices such as secure boot operations controlled by a
security device.

The Processor Control facility defines how processors
send messages and what actions processors take on
the receipt of a message. The actions taken by devices
other than processors are not defined.

9.2 Programming Model
Processors initiate a message by executing the msg-
snd instruction and specifying a message type and
message payload in a general purpose register. Send-
ing a message causes the message to be sent to all the
devices, including the sending processor, in the coher-
ence domain in a reliable manner.

Each device receives all messages that are sent. The
actions that a device takes are dependent on the mes-
sage type and payload. There are no restrictions on
what messages a processor can send.

To provide inter processor interrupt capability two mes-
sage types are defined, Processor Doorbell and Pro-
cessor Doorbell Critical. A Processor Doorbell [Critical]
message causes an interrupt to occur on processors

when the message is received and the processor deter-
mines through examination of the payload that the
message should be accepted. The examination of the
payload for this purpose is termed filtering. The accep-
tance of a Processor Doorbell [Critical] message
causes an exception to be generated on the accepting
processor.

Processors accept and filter messages defined in
Section 9.2.1. Processors may also accept other imple-
mentation-dependent defined messages.

9.2.1 Processor Message Han-
dling and Filtering
Processors filter, accept, and handle message types
defined as follows. The message type is specified in the
message and is determined by the contents of register
RB32:36 used as the operand in the msgsnd instruc-
tion.The message type is interpreted as follows:

Value Description

0 Doorbell Interrupt (DBELL)
A Processor Doorbell exception is generated
on the processor when the processor has fil-
tered the message based on the payload and
has determined that it should accept the mes-
sage. A Processor Doorbell Interrupt occurs
when no higher priority exception exists, a
Processor Doorbell exception exists, and
MSREE=1.

1 Doorbell Critical Interrupt (DBELL_CRIT)
A Processor Doorbell Critical exception is
generated on the processor when the proces-
sor has filtered the message based on the
payload and has determined that it should
accept the message. A Processor Doorbell
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Critical Interrupt occurs when no higher prior-
ity exception exists, a Processor Doorbell Crit-
ical exception exists, and MSRCE=1.

Message types other than these and their associated
actions are implementation-dependent.

9.2.1.1 Doorbell Message Filtering
A processor receiving a DBELL message type will filter
the message and either ignore the message or accept
the message and generate a Processor Doorbell
exception based on the payload and the state of the
processor at the time the message is received.

The payload is specified in the message and is deter-
mined by the contents of register RB37:63 used as the
operand in the msgsnd instruction. The payload bits
are defined below.

Bit Description

37 Broadcast (BRDCAST)
The message is accepted by all processors
regardless of the value of the PIR register and
the value of PIRTAG.

0 If the value of PIR and PIRTAG are equal
a Processor Doorbell exception is gener-
ated.

1 A Processor Doorbell exception is gener-
ated regardless of the value of PIRTAG
and PIR.

38:41 Reserved

50:63 PIR Tag (PIRTAG)
The contents of this field are compared with
bits 50:63 of the PIR register.

If a DBELL message is received by a processor and
either payloadBRDCAST=1 or PIR50:63=payloadPIRTAG
then a Processor Doorbell exception is generated. The
exception condition remains until a Processor Doorbell
Interrupt is taken, or a msgclr instruction is executed
on the receiving processor with a message type of
DBELL. A change to any of the filtering criteria (i.e.
changing the PIR register) will not clear a pending Pro-
cessor Doorbell exception.

DBELL messages are not cumulative. That is, if a
DBELL message is accepted and the interrupt is
pended because MSREE=0, further DBELL messages
that would be accepted are ignored until the Processor
Doorbell exception is cleared by taking the interrupt or
cleared by executing a msgclr with a message type of
DBELL on the receiving processor.

The temporal relationship between when a DBELL
message is sent and when it is received in a given pro-
cessor is not defined.

9.2.1.2 Doorbell Critical Message Filter-
ing
A processor receiving a DBELL_CRIT message type
will filter the message and either ignore the message or
accept the message and generate a Processor Door-
bell Critical exception based on the payload and the
state of the processor at the time the message is
received.

The payload is specified in the message and is deter-
mined by the contents of register RB37:63 used as the
operand in the msgsnd instruction. The payload bits
are defined below.

Bit Description

37 Broadcast (BRDCAST)
The message is accepted by all processors
regardless of the value of the PIR register and
the value of PIRTAG.

0 If the value of PIR and PIRTAG are equal
a Processor Doorbell Critical exception is
generated.

1 A Processor Doorbell Critical exception is
generated regardless of the value of
PIRTAG and PIR.

38:41 Reserved

50:63 PIR Tag (PIRTAG)
The contents of this field are compared with
bits 50:63 of the PIR register.

If a DBELL_CRIT message is received by a processor
and either payloadBRDCAST=1 or PIR50:63=payload-

PIRTAG then a Processor Doorbell Critical exception is
generated. The exception condition remains until a Pro-
cessor Doorbell Critical Interrupt is taken, or a msgclr
instruction is executed on the receiving processor with
a message type of DBELL_CRIT. A change to any of
the filtering criteria (i.e. changing the PIR register) will
not clear a pending Processor Doorbell Critical excep-
tion.

DBELL_CRIT messages are not cumulative. That is, if
a DBELL_CRIT message is accepted and the interrupt
is pended because MSRCE=0, further DBELL_CRIT
messages that would be accepted are ignored until the
Processor Doorbell Critical exception is cleared by tak-
ing the interrupt or cleared by executing a msgclr with
a message type of DBELL_CRIT on the receiving pro-
cessor.

The temporal relationship between when a
DBELL_CRIT message is sent and when it is received
in a given processor is not defined.
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9.3 Processor Control Instructions

msgsnd and msgclr instructions are provided for
sending and clearing messages to processors and
other devices in the coherence domain. These instruc-
tions are privileged.

In the instruction descriptions the statement “this
instructions is treated as a Store” means that the
instruction is treated as a Store with respect to the stor-
age access ordering mechanism caused by memory
barriers in Section 1.7.1 of Book II.

Message Send X-form

msgsnd  RB 

msgtype � GPR(RB)32:36
payload � GPR(RB)37:63
send_msg_to_choherence_domain(msgtype, payload)

msgsnd sends a message to all devices in the coher-
ence domain. The message contains a type and a pay-
load. The message type (msgtype) is defined by the
contents of RB32:36 and the message payload is
defined by the contents of RB37:63. Message delivery is
reliable and guaranteed. Each device may perform spe-
cific actions based on the message type and payload or
may ignore messages. Consult the implementation
user’s manual for specific actions taken based on mes-
sage type and payload.

For processors, actions taken on receipt of a message
are defined in Section 9.2.1.

For storage access ordering, msgsnd is treated as a
Store with respect to memory barriers.

This instruction is privileged.

Special Registers Altered: 
None

Message Clear X-form

msgclr RB 

msgtype � GPR(RB)32:36
clear_received_message(msgtype)

msgclr clears a message of msgtype previously
accepted by the processor executing the msgclr. msg-
type is defined by the contents of RB32:36. A message
is said to be cleared when a pending exception gener-
ated by an accepted message has not yet taken its
associated interrupt.

If a pending exception exists for msgtype that exception
is cleared at the completion of the msgclr instruction.

For processors, the types of messages that can be
cleared are defined in Section 9.2.1.

This instruction is privileged.

Special Registers Altered: 
None

 

 

31 /// /// RB 206 /
0 6 11 16 21 31

31 /// /// RB 238 /
0 6 11 16 21 31

Execution of a msgclr instruction that clears a
pending exception when the associated interrupt is
masked because the interrupt enable (MSREE or
MSRCE) is not set to 1 will always clear the pending
exception (and thus the interrupt will not occur) if a
subsequent instruction causes MSREE or MSRCE
to be set to 1.

Programming Note
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Chapter 10.  Synchronization Requirements for Context 
Alterations

Changing the contents of certain System Registers, the
contents of TLB entries, or the contents of other system
resources that control the context in which a program
executes can have the side effect of altering the context
in which data addresses and instruction addresses are
interpreted, and in which instructions are executed and
data accesses are performed. For example, changing
certain bits in the MSR has the side effect of changing
how instruction addresses are calculated. These side
effects need not occur in program order, and therefore
may require explicit synchronization by software. (Pro-
gram order is defined in Book II.)

An instruction that alters the context in which data
addresses or instruction addresses are interpreted, or
in which instructions are executed or data accesses are
performed, is called a context-altering instruction. This
chapter covers all the context-altering instructions. The
software synchronization required for them is shown in
Table 5 (for data access) and Table 4 (for instruction
fetch and execution).

The notation “CSI” in the tables means any context syn-
chronizing instruction (e.g., sc, isync, rfi, rfci, rfmci, or
rfdi [Category: Embedded. Enhanced Debug]). A con-
text synchronizing interrupt (i.e., any interrupt except
non-recoverable System Reset or non-recoverable
Machine Check) can be used instead of a context syn-
chronizing instruction. If it is, phrases like “the synchro-
nizing instruction”, below, should be interpreted as
meaning the instruction at which the interrupt occurs. If
no software synchronization is required before (after) a
context-altering instruction, “the synchronizing instruc-
tion before (after) the context-altering instruction”
should be interpreted as meaning the context-altering
instruction itself.

The synchronizing instruction before the context-alter-
ing instruction ensures that all instructions up to and
including that synchronizing instruction are fetched and
executed in the context that existed before the alter-
ation.  The synchronizing instruction after the context-
altering instruction ensures that all instructions after
that synchronizing instruction are fetched and executed
in the context established by the alteration.  Instructions
after the first synchronizing instruction, up to and
including the second synchronizing instruction, may be
fetched or executed in either context.

If a sequence of instructions contains context-altering
instructions and contains no instructions that are
affected by any of the context alterations, no software
synchronization is required within the sequence.

  

No software synchronization is required before or after
a context-altering instruction that is also context syn-
chronizing (e.g., rfi, etc.) or when altering the MSR in
most cases (see the tables). No software synchroniza-
tion is required before most of the other alterations
shown in Table 4, because all instructions preceding
the context-altering instruction are fetched and
decoded before the context-altering instruction is exe-
cuted (the processor must determine whether any of
these preceding instructions are context synchroniz-
ing).

Unless otherwise stated, the material in this chapter
assumes a uniprocessor environment.

Sometimes advantage can be taken of the fact that
certain events, such as interrupts, and certain
instructions that occur naturally in the program,
such as an rfi, rfci,  rfmci, or rfdi [Cate-
gory:Embeddd.Enhanced Debug] that returns from
an interrupt handler, provide the required synchro-
nization.

Programming Note
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Notes:
1. There are additional software synchronization

requirements for this instruction in multiprocessor
environments (e.g., it may be necessary to invali-
date one or more TLB entries on all processors in
the multiprocessor system and to be able to deter-
mine that the invalidations have completed and
that all side effects of the invalidations have taken
effect); it is also necessary to execute a tlbsync
instruction.

2. The alteration must not cause an implicit branch in
real address space. Thus the real address of the
context-altering instruction and of each subse-
quent instruction, up to and including the next con-
text synchronizing instruction, must be
independent of whether the alteration has taken
effect.

3. A context synchronizing instruction is required
after altering MSRME to ensure that the alteration
takes effect for subsequent Machine Check inter-
rupts, which may not be recoverable and therefore
may not be context synchronizing.

4. Synchronization requirements for changing the
Wait State Enable are implementation-dependent,.

5. The effect of changing MSREE or MSRCE is imme-
diate.

Instruction or 
Event

Required    
Before

Required 
After

Notes

interrupt none        none
rfi none        none
rfci none        none
rfmci none none
rfdi[Category:E.ED] none none
sc none        none
mtmsr (CM) none        none
mtmsr (ICM) none        CSI
mtmsr (UCLE) none        none
mtmsr (SPV) none        none
mtmsr (WE) -- -- 4
mtmsr (CE) none        none 5
mtmsr (EE) none        none 5
mtmsr (PR) none CSI
mtmsr (FP) none CSI
mtmsr (DE) none CSI
mtmsr (ME) none CSI 3
mtmsr (FE0) none        CSI
mtmsr (FE1) none        CSI
mtmsr (IS) none        CSI 2
mtspr (DEC) none        none 8
mtspr (PID) none        CSI 2
mtspr (IVPR) none        none
mtspr (DBSR) -- -- 6
mtspr 

(DBCR0,DBCR1)
-- -- 6 

mtspr 
(IAC1,IAC2,IAC3,
IAC4)

-- -- 6

mtspr (IVORi) none        none
mtspr (TSR) none        none 8
mtspr (TCR) none        none 8
tlbivax none        CSI, or

CSI and sync
1,7

tlbwe none        CSI, or
CSI and sync

1,7

wrtee none        none 5
wrteei none        none 5

Table 4: Synchronization requirements for instruction 
fetch and/or execution

Instruction or  
Event

Required  
Before  

Required     
After     

Notes

interrupt none none
rfi none none
rfci none none
rfmci none none
rfdi[Category:E.ED] none none
sc none none
mtmsr (CM) none CSI
mtmsr (ICM) none none
mtmsr (PR) none CSI
mtmsr (ME) none CSI 3
mtmsr (DS) none CSI
mtspr (PID) CSI CSI
mtspr (DBSR) -- -- 6
mtspr 

(DBCR0,DBCR2)
--- --- 6

mtspr 
(DAC1,DAC2,

    DVC1,DVC2)

-- -- 6

tlbivax CSI CSI, or CSI
and sync

1,7

tlbwe CSI CSI, or CSI
and sync

1,7

Table 5: Synchronization requirements for data access
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If an mtmsr, wrtee, or wrteei instruction sets
MSREE to ‘0’, an External Input, DEC or FIT inter-
rupt does not occur after the instruction is exe-
cuted. 

If an mtmsr, wrtee, or wrteei instruction changes
MSREE from ‘0’ to ‘1’ when an External Input, Dec-
rementer, Fixed-Interval Timer, or higher priority
enabled exception exists, the corresponding inter-
rupt occurs immediately after the mtmsr, wrtee, or
wrteei is executed, and before the next instruction
is executed in the program that set MSREE to ‘1’.

If an mtmsr instruction sets MSRCE to ‘0’, a Criti-
cal Input or Watchdog Timer interrupt does not
occur after the instruction is executed. 

If an mtmsr instruction changes MSRCE from ‘0’ to
‘1’ when a Critical Input, Watchdog Timer or higher
priority enabled exception exists, the correspond-
ing interrupt occurs immediately after the mtmsr is
executed, and before the next instruction is exe-
cuted in the program that set MSRCE to ‘1’.

6. Synchronization requirements for changing any of
the Debug Facility Registers are implementation-
dependent.

7. For data accesses, the context synchronizing
instruction before the tlbwe or tlbivax instruction
ensures that all storage accesses due to preceding
instructions have completed to a point at which
they have reported all exceptions they will cause.

The context synchronizing instruction after the
tlbwe or tlbivax ensures that subsequent storage
accesses (data and instruction) will use the
updated value in the TLB entry(s) being affected. It
does not ensure that all storage accesses previ-
ously translated by the TLB entry(s) being updated
have completed with respect to storage; if these
completions must be ensured, the tlbwe or tlbivax
must be followed by an sync instruction as well as
by a context synchronizing instruction.

  

8. The elapsed time between the Decrementer reach-
ing zero, or the transition of the selected Time
Base bit for the Fixed-Interval Timer or the Watch-
dog Timer, and the signalling of the Decrementer,
Fixed-Interval Timer or the Watchdog Timer excep-
tion is not defined.

The following sequence illustrates why it is
necessary, for data accesses, to ensure that
all storage accesses due to instructions before
the tlbwe or tlbivax have completed to a point
at which they have reported all exceptions they
will cause. Assume that valid TLB entries exist
for the target storage location when the
sequence starts. 
� A program issues a load or store to a

page. 
� The same program executes a tlbwe or

tlbivax that invalidates the corresponding
TLB entry. 

� The Load or Store instruction finally exe-
cutes, and gets a TLB Miss exception. 

� The TLB Miss exception is semantically
incorrect. In order to prevent it, a context
synchronizing instruction must be exe-
cuted between steps 1 and 2. 

Programming Note
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Appendix A.  Implementation-Dependent Instructions

This appendix documents architectural resources that
are allocated for specific implementation-sensitive func-
tions which have scope-limited utility. Implementations

may exercise reasonable flexibility in implementing
these functions, but that flexibility should be limited to
that allowed in this appendix.

A.1 Embedded Cache Initialization [Category: Embedded.Cache Ini-
tialization]

Data Cache Invalidate X-form

dci CT

If CT is not supported by the implementation, this
instruction designates the primary data cache as the
target data cache.

If CT is supported by the implementation, let CT desig-
nate either the primary data cache or another level of
the data cache hierarchy, as specified in Book II Sec-
tion 3.2, as the target data cache.

The contents of the target data cache of the processor
executing the dci instruction are invalidated.

Software must place a sync instruction before the dci
to guarantee all previous data storage accesses com-
plete before the dci is performed.

Software must place a sync instruction after the dci to
guarantee that the dci completes before any subse-
quent data storage accesses are performed.

This instruction is privileged.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonic for Data Cache Invalidate

Extended: Equivalent to:
dccci dci      0

Instruction Cache Invalidate X-form

ici CT

If CT is not supported by the implementation, this
instruction designates the primary instruction cache as
the target instruction cache.

If CT is supported by the implementation, let CT desig-
nate either the primary instruction cache or another
level of the instruction cache hierarchy, as specified in
Book II Section 3.2, as the target instruction cache.

The contents of the target instruction cache of the pro-
cessor executing the ici instruction are invalidated.

Software must place a sync instruction before the ici to
guarantee all previous instruction storage accesses
complete before the ici is performed.

Software must place an isync instruction after the ici to
invalidate any instructions that may have already been
fetched from the previous contents of the instruction
cache after the isync.

This instruction is privileged.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonic for Instruction Cache Invalidate

Extended: Equivalent to:
iccci ici      0

31 / CT /// /// 454 /
0 6 7 11 16 21 31

31 / CT /// /// 966 /
0 6 7 11 16 21 31
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A.2 Embedded Cache Debug Facility
[Category: Embedded.Cache Debug]

A.2.1 Embedded Cache Debug Registers

A.2.1.1 Data Cache Debug Tag Register 
High
The Data Cache Debug Tag Register High (DCDBTRH)
is a 32-bit Special Purpose Register (SPRN=0x39D).
Data Cache Debug Tag Register High is read using
mfspr and is set by dcread.

Figure 25. Data Cache Debug Tag Register High

 

A.2.1.2 Data Cache Debug Tag Register 
Low
The Data Cache Debug Tag Register Low (DCDBTRL)
is a 32-bit Special Purpose Register (SPRN=0x39C).
Data Cache Debug Tag Register Low is read using
mfspr and is set by dcread.

Figure 26. Data Cache Debug Tag Register Low

 

DCDBTRH
32 63

An example implementation of DCDBTRH could
have the following content and format.

Bit(s) Description

32:55 Tag Real Address (TRA)
Bits 0:23 of the lower 32 bits of the 36-bit
real address associated with this cache
block

56 Valid (V)
The valid indicator for the cache block (1
indicates valid)

57:59 Reserved

60:63 Tag Extended Real Address (TERA)
Upper 4 bits of the 36-bit real address
associated with this cache block

Implementations may support different content and
format based on their cache implementation.

Programming Note

DCDBTRL
32 63

An example implementation of DCDBTRL could
have the following content and format.

Bit(s) Description

32:44 Reserved (TRA)

45 U bit parity (UPAR)

46:47 Tag parity (TPAR)

48:51 Data parity (DPAR)

52:55 Modified (dirty) parity (MPAR)

56:59 Dirty Indicators (D)
The “dirty” (modified) indicators for each
of the four doublewords in the cache block

60 U0 Storage Attribute (U0)
The U0 storage attribute for the page
associated with this cache block

61 U1 Storage Attribute (U1)
The U1 storage attribute for the page
associated with this cache block

62 U2 Storage Attribute (U2)
The U2 storage attribute for the page
associated with this cache block

63 U3 Storage Attribute (U3)
The U3 storage attribute for the page
associated with this cache block

Implementations may support different content and
format based on their cache implementation.

Programming Note
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A.2.1.3 Instruction Cache Debug Data 
Register
The Instruction Cache Debug Data Register (ICDBDR)
is a read-only 32-bit Special Purpose Register
(SPRN=0x3D3). Instruction Cache Debug Data Regis-
ter can be read using mfspr and is set by icread.

Figure 27. Instruction Cache Debug Data Register

A.2.1.4 Instruction Cache Debug Tag 
Register High
The Instruction Cache Debug Tag Register High (ICDB-
TRH) is a 32-bit Special Purpose Register
(SPRN=0x39F). Instruction Cache Debug Tag Register
High is read using mfspr and is set by icread.

Figure 28. Instruction Cache Debug Tag Register
High

 

A.2.1.5 Instruction Cache Debug Tag 
Register Low
The Instruction Cache Debug Tag Register Low (ICDB-
TRL) is a 32-bit Special Purpose Register
(SPRN=0x39E). Instruction Cache Debug Tag Register
Low is read using mfspr and is set by icread.

Figure 29. Instruction Cache Debug Tag Register
Low

 

ICDBDR
32 63

ICDBTRH
32 63

An example implementation of ICDBTRH could
have the following content and format.

Bit(s) Description

32:55 Tag Effective Address (TEA)
Bits 0:23 of the 32-bit effective address
associated with this cache block

56 Valid (V)
The valid indicator for the cache block (1
indicates valid)

57:58 Tag parity (TPAR)

59 Instruction Data parity (DPAR)

60:63 Reserved

Implementations may support different content and
format based on their cache implementation.

Programming Note

ICDBTRL
32 63

An example implementation of ICDBTRL could
have the following content and format.

Bit(s) Description

32:53 Reserved

54 Translation Space (TS)
The address space portion of the virtual
address associated with this cache block.

55 Translation ID Disable (TD)
TID Disable field for the memory page
associated with this cache block

56:63 Translation ID (TID)
TID field portion of the virtual address
associated with this cache block

Other implementations may support different con-
tent and format based on their cache implementa-
tion.

Programming Note
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A.2.2 Embedded Cache Debug Instructions 

Data Cache Read X-form

dcread RT,RA,RB

[Alternative Encoding]

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
C � log2(cache size)
B � log2(cache block size)
IDX� EA64-C:63-B
WD � EA64-B:61
RT0:31� undefined
RT32:63� (data cache data)[IDX]WD×32:WD×32+31
DCDBTRH� (data cache tag high)[IDX]
DCDBTRL� (data cache tag low)[IDX]

Let the effective address (EA) be the sum of the con-
tents of register RA, or 0 if RA is equal to 0, and the
contents of register RB.

Let C = log2(cache size in bytes).
Let B = log2(cache block size in bytes).

EA64-C:63-B selects one of the 2C-B data cache blocks.

EA64-B:61 selects one of the data words in the selected
data cache block.

The selected word in the selected data cache block is
placed into register RT.

The contents of the data cache directory entry associ-
ated with the selected data cache block are placed into
DCDBTRH and DCDBTRL (see Figure 25 and
Figure 26).

dcread requires software to guarantee execution syn-
chronization before subsequent mfspr instructions can
read the results of the dcread instruction into GPRs. In
order to guarantee that the mfspr instructions obtain
the results of the dcread instruction, a sequence such
as the following must be used:

msync # ensure that all previous
# cache operations have
# completed

dcread regT,regA,regB# read cache information;

isync # ensure dcread completes
# before attempting to
# read results

mfspr regD,dcdbtrh # move high portion of tag
# into GPR D

mfspr   regE,dcdbtrl # move low portion of tag
# into GPR E

This instruction is privileged.

Special Registers Altered:
DCDBTRH DCDBTRL

 

 

31 RT RA RB 486 /
0 6 11 16 21 31

31 RT RA RB 326 /
0 6 11 16 21 31

dcread can be used by a debug tool to determine
the contents of the data cache, without knowing the
specific addresses of the blocks which are currently
contained within the cache.

Execution of dcread before the data cache has
completed all cache operations associated with
previously executed instructions (such as block fills
and block flushes) is undefined. 

Programming Note

Programming Note
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Instruction Cache Read X-form

icread RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
C � log2(cache size)
B � log2(cache block size)
IDX� EA64-C:63-B
WD � EA64-B:61
ICDBDR� (instruction cache data)[IDX]WD×32:WD×32+31
ICDBTRH� (instruction cache tag high)[IDX]
ICDBTRL� (instruction cache tag low)[IDX]

Let the effective address (EA) be the sum of the con-
tents of register RA, or 0 if RA is equal to 0, and the
contents of register RB.

Let C = log2(cache size in bytes).
Let B = log2(cache block size in bytes).

EA64-C:63-B selects one of the 2C-B instruction cache
blocks.

EA64-B:61 selects one of the data words in the selected
instruction cache block.

The selected word in the selected instruction cache
block is placed into ICDBDR.

The contents of the instruction cache directory entry
associated with the selected cache block are placed
into ICDBTRH and ICDBTRL (see Figure 28 and
Figure 29).

icread requires software to guarantee execution syn-
chronization before subsequent mfspr instructions can
read the results of the icread instruction into GPRs. In
order to guarantee that the mfspr instructions obtain
the results of the icread instruction, a sequence such
as the following must be used:

icread regA,regB # read cache information

isync      # ensure icread completes
# before attempting to
# read results

mficdbdr regC # move instruction
# information into GPR C

mficdbtrh regD # move high portion of
# tag into GPR D

mficdbtrl regE # move low portion of tag
# into GPR E

This instruction is privileged.

Special Registers Altered:
ICDBDR ICDBTRH ICDBTRL

 

31 /// RA RB 998 /
0 6 11 16 21 31

icread can be used by a debug tool to determine
the contents of the instruction cache, without know-
ing the specific addresses of the blocks which are
currently contained within the cache.

Programming Note
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Appendix B.  Assembler Extended Mnemonics

In order to make assembler language programs simpler
to write and easier to understand, a set of extended
mnemonics and symbols is provided for certain instruc-
tions.  This appendix defines extended mnemonics and
symbols related to instructions defined in Book III.

Assemblers should provide the extended mnemonics
and symbols listed here, and may provide others.
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B.1 Move To/From Special Purpose Register Mnemonics

This section defines extended mnemonics for the
mtspr and mfspr instructions, including the Special
Purpose Registers (SPRs) defined in Book I and cer-
tain privileged SPRs, and for the Move From Time Base
instruction defined in Book II.

The mtspr and mfspr instructions specify an SPR as a
numeric operand; extended mnemonics are provided
that represent the SPR in the mnemonic rather than
requiring it to be coded as an operand.  Similar
extended mnemonics are provided for the Move From

Time Base instruction, which specifies the portion of
the Time Base as a numeric operand.

Note: mftb serves as both a basic and an extended
mnemonic. The Assembler will recognize an mftb mne-
monic with two operands as the basic form, and an
mftb mnemonic with one operand as the extended
form. In the extended form the TBR operand is omitted
and assumed to be 268 (the value that corresponds to
TB).

 

 

Table 6: Extended mnemonics for moving to/from an SPR

Special Purpose Register
Move To SPR Move From SPR

Extended Equivalent to Extended Equivalent to

Fixed-Point Exception Register mtxer Rx mtspr 1,Rx mfxer Rx mfspr Rx,1

Link Register mtlr  Rx mtspr 8,Rx mflr  Rx mfspr Rx,8

Count Register mtctr Rx mtspr 9,Rx mfctr Rx mfspr Rx,9

Decrementer mtdec Rx mtspr 22,Rx mfdec Rx mfspr Rx,22

Save/Restore Register 0 mtsrr0 Rx mtspr 26,Rx mfsrr0 Rx mfspr Rx,26

Save/Restore Register 1 mtsrr1 Rx mtspr 27,Rx mfsrr1 Rx mfspr Rx,27

Special Purpose Registers
 G0 through G3

mtsprg n,Rx mtspr 272+n,Rx mfsprg Rx,n mfspr Rx,272+n

Time Base [Lower] mttbl Rx mtspr 284,Rx mftb Rx mfspr Rx,268

Time Base Upper mttbu Rx mtspr 285,Rx mftbu Rx mfspr Rx,269

Processor Version Register - - mfpvr Rx mfspr Rx,287
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Appendix C.  Guidelines for 64-bit Implementations in 
32-bit Mode and 32-bit Implementations

C.1 Hardware Guidelines

C.1.1 64-bit Specific Instructions
The instructions in the Category: 64-Bit are considered
restricted only to 64-bit processing. A 32-bit implemen-
tation need not implement the group; likewise, the
32-bit applications will not utilize any of these instruc-
tions. All other instructions shall either be supported
directly by the implementation, or sufficient infrastruc-
ture will be provided to enable software emulation of
the instructions. A 64-bit implementation that is execut-
ing in 32-bit mode may choose to take an Unimple-
mented Instruction Exception when these 64-bit
specific instructions are executed.

C.1.2 Registers on 32-bit Imple-
mentations
The Power ISA provides 32-bit and 64-bit registers. All
32-bit registers shall be supported as defined in the
specification except the MSR. The MSR shall be sup-
ported as defined in the specification except that bits
32:33 (CM and ICM) are treated as reserved bits. Only
bits 32:63 of the 64-bit registers are required to be
implemented in hardware in a 32-bit implementation
except for the 64-bit FPRs. Such 64-bit registers
include the LR, the CTR, the XER, the 32 GPRs, SRR0
and CSRR0.

Likewise, other than floating-point instructions, all
instructions which are defined to return a 64-bit result
shall return only bits 32:63 of the result on a 32-bit
implementation.

C.1.3 Addressing on 32-bit Imple-
mentations
Only bits 32:63 of the 64-bit instruction and data stor-
age effective addresses need to be calculated and pre-
sented to main storage. Given that the only branch and
data storage access instructions that are not included
in Section C.1.1 are defined to prepend 32 0s to bits
32:63 of the effective address computation, a 32-bit
implementation can simply bypass the prepending of

the 32 0s when implementing these instructions. For
Branch to Link Register and Branch to Count Register
instructions, given the LR and CTR are implemented
only as 32-bit registers, only concatenating 2 0s to the
right of bits 32:61 of these registers is necessary to
form the 32-bit branch target address.

For next sequential instruction address computation,
the behavior is the same as for 64-bit implementations
in 32-bit mode.

C.1.4 TLB Fields on 32-bit Imple-
mentations
32-bit implementations should support bits 32:53 of the
Effective Page Number (EPN) field in the TLB. This size
provides support for a 32-bit effective address, which
Power ISA ABIs may have come to expect to be avail-
able. 32-bit implementations may support greater than
32-bit real addresses by supporting more than bits
32:53 of the Real Page Number (RPN) field in the TLB.

C.2 32-bit Software Guidelines

C.2.1 32-bit Instruction Selection
Any software that uses any of the instructions listed in
Category: 64-Bit shall be considered 64-bit software,
and correct execution cannot be guaranteed on 32-bit
implementations. Generally speaking, 32-bit software
should avoid using any instruction or instructions that
depend on any particular setting of bits 0:31 of any
64-bit application-accessible system register, including
General Purpose Registers, for producing the correct
32-bit results. Context switching may or may not pre-
serve the upper 32 bits of application-accessible 64-bit
system registers and insertion of arbitrary settings of
those upper 32 bits at arbitrary times during the execu-
tion of the 32-bit application must not affect the final
result.
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Appendix D.  Type FSL Storage Control
[Category: Embedded.MMU Type FSL]

D.1 Type FSL Storage Control 
Overview
The Embedded category provides two different mem-
ory management and TLB programming models from
which an implementation may choose. Both models
use the same definition of the general contents of a
Translation Lookaside Buffer (TLB) entry, but differ on
what methods and resources are used to manipulate
the TLB itself. The programming model presented here
is called Type FSL and it defines functions and struc-
tures that are visible to software. These are divided into
the following areas:

� The TLB itself. The TLB consists of one or more
structures called TLB arrays each of which may
have differing characteristics.

� The address translation mechanism.
� Methods and effects of changing and manipulating

TLB arrays.
� Configuration information available to the operat-

ing system that describes the structure and form of
the TLB arrays and translation mechanism.

The TLB structure and the methods of performing
translations are called the Memory Management Unit
(MMU).

The programming model for reading and writing TLBs
is software managed. Hardware page table formats are
not defined and software is free to choose any form in
which to hold information about address translation.
Address translation is accomplished through a set of
TLB arrays, PID registers, and address space identifi-
ers from the MSR, all of which are software managed.

TLB entries are used to translate both instruction and
data memory references providing a unified memory
management model.

D.2 Type FSL Storage Control 
Registers

D.2.1 Process ID Registers (PIDn)
Process ID Registers are used by system software to
specify which TLB entries are used by the processor to
accomplish address translation for loads, stores, and
instruction fetches. Section 4.7.1.1 defines the PID reg-
ister. The PID register is synonymous with PID0. In
addition to PID0, 2 additional PID registers, PID1 and
PID2 are defined. An implementation may choose to
provide any number of PIDs up to a maximum of 3. The
number of PIDs implemented is indicated by the value
of MMUCFGNPIDS and the number of bits implemented
in each PID register is indicated by the value of
MMUCFGPIDSIZE. PID values are used to construct vir-
tual addresses for accessing memory. 

Figure 30. Process ID Register (PID0–PID2)

Bit Description

32:49 Reserved

50:63 Process ID
Identifies the process

 

D.2.2 Translation Lookaside 
Buffer
The MMU contains up to four TLB arrays. TLB arrays
are on-chip storage areas for holding TLB entries. A

PIDn
32 63

The suggested software convention for PID usage
is to use PID0 to denote private mappings for a
process and to use other PIDs to handle mappings
that may be common to multiple processes. This
method allows for processes sharing address
space to also share TLB entries if the shared
address space is mapped at the same virtual
address in each process.

Programming Note
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TLB entry contains effective to real address mappings
for loads, stores, and instruction fetches. A TLB array
contains zero or more TLB entries. Each of the TLB
entries has specific fields that can be accessed using
the corresponding fields in the MMU Assist Registers
(see Section D.2.4). Each TLB array that is imple-
mented has a configuration register (TLBnCFG) associ-
ated with it describing the size and attributes of the TLB
entries in that array (see Section D.2.5.2).

A TLB entry contains the fields described in Section
4.7.1.2 as well as these additional fields:

Field Description

IPROT Invalidation protection. This entry is protected
from all TLB invalidation mechanisms except
the explicit writing of a 0 to the V bit.

ACM The Alternate Coherency Mode (ACM)
attribute allows an implementation to employ
more than a single coherency method. This
allows for a processor to participate in multiple
coherency protocols. If the M attribute (Mem-
ory Coherence Required) is not set for a page
(M=0), the page has no coherency associated
with it and the ACM attribute is ignored. If the
M attribute is set to 1 for a page (M=1), the
ACM attribute is used to determine the coher-
ence domain (or protocol) used. The values
for ACM are implementation-dependent.

D.2.3 Address Space Identifiers
The address space identifier is called the AS bit. Thus
there are two possible address spaces, 0 and 1. The
value of the AS bit (see Section 4.7.2, Figure 8) is
determined by the type of translation performed and
from the contents of the MSR when an address is
translated. If the type of translation performed is an
instruction fetch, the value of the AS bit is taken from
the contents of MSRIS. If the type of translation per-
formed is a load, store, or other data translation includ-
ing target addresses of software initiated instruction
fetch hints and locks the value of the AS bit is taken
from the contents of MSRDS.

 

D.2.4 MMU Assist Registers
The MMU Assist Registers (MAS) are used to transfer
data to and from the TLB arrays. MAS registers can be
read and written by software using mfspr and mtspr

instructions. Execution of a tlbre instruction causes the
TLB entry specified by MAS0TLBSEL, MAS0ESEL, and
MAS2EPN to be copied to the MAS registers. Con-
versely, execution of a tlbwe instruction causes the
TLB entry specified by MAS0TLBSEL, MAS0ESEL, and
MAS2EPN to be written with contents of the MAS regis-
ters. MAS registers may also be updated by hardware
on the occurrence of an Instruction or Data TLB Error
interrupt or as the result of a tlbsx instruction.

All MAS registers are privileged. All MAS registers with
the exception of MAS7 must be implemented. MAS7 is
not required to be implemented if the processor sup-
ports 32 bits or less of real address.

Processors are only required to implement the neces-
sary bits of any multi-bit field in a MAS register such
that only the resources supplied by the processor are
represented. Any non-implemented bits in a field
should have no effect when writing and should always
read as zero. For example, a processor that imple-
ments only 2 TLB arrays will likely only implement the
lower-order bit of the MAS0TLBSEL field.

D.2.4.1 MAS0 Register
The MAS0 register contains fields for identifying and
selecting a TLB entry.

Figure 31. MAS0 register

These bits are interpreted as follows:

Bit Description

32:33 Reserved

34:35 TLB Select (TLBSEL)
Selects TLB for access.

00 TLB0
01 TLB1
10 TLB2
11 TLB3

36:47 Entry Select (ESEL)
Identifies an entry in the selected array to be
used for tlbwe and tlbre. Valid values for
ESEL are from 0 to TLBnCFGASSOC - 1. That
is, ESEL selects the entry in the TLB array
from the set of entries which can be used for
translating addresses with the EPN specified
by MAS2EPN. For fully-associative TLB arrays,
ESEL ranges from 0 to TLBnCFGNENTRY - 1.
ESEL is also updated on TLB error exceptions
(misses), and tlbsx hit and miss cases.

48:51 Reserved

52:63 Next Victim (NV)
NV is a hint to software to identify the next vic-
tim to be targeted for a TLB miss replacement

While system software is free to use address space
bits as it sees fit, it should be noted that on inter-
rupt, the MSRIS and MSRDS bits are set to 0. This
encourages software to use address space 0 for
system software and address space 1 for user soft-
ware.

Programming Note
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operation for those TLBs that support the NV
field. If the TLB selected by MAS0TLBSEL does
not support the NV field, then this field is
undefined. The computation of this field is
implementation-dependent. NV is updated on
TLB error exceptions (misses), tlbsx hit and
miss cases as shown in Table 7, and on exe-
cution of tlbre if the TLB array being accessed
supports the NV field. When NV is updated by
a supported TLB array, the NV field will always
present a value that can be used in the
MAS0ESEL field.

D.2.4.2 MAS1 Register
The MAS1 register contains fields for selecting a TLB
entry during translation. 

Figure 32. MAS1 register

These bits are interpreted as follows:

Bit Definition

32 TLB Valid Bit (V)

0 This TLB entry is invalid.
1 This TLB entry is valid.

33 Invalidate Protect (IPROT) 
Indicates this TLB entry is protected from
invalidate operations due to execution of
tlbivax, tlbivax invalidations from another
processor, or invalidate all operations. IPROT
is only implemented for TLB entries in TLB
arrays where TLBnCFGIPROT is indicated.

0 Entry is not protected from invalidation
1 Entry is protected from invalidation.

34:47 Translation Identity (TID)
During translation, TID is compared with the
current process IDs (PIDs) to select a TLB
entry. A TID value of 0 defines an entry as glo-
bal and matches with all process IDs.

48:50 Reserved

51 Translation Space (TS)
During translation, TS is compared with AS
(the IS or DS fields of the MSR depending on
the type of access) to select a TLB entry.

52:55 Translation Size (TSIZE)
TSIZE defines the page size of the TLB entry.
For TLB arrays that contain fixed-size TLB
entries, this field is ignored. For variable page
size TLB arrays, the page size is
4TSIZE Kbytes. TSIZE must be between
TLBnCFGMINSIZE and TLBnCFGMAXSIZE.
Encodings for page size are defined in Section
4.7.1.2.

56:63 Reserved

D.2.4.3 MAS2 Register
The MAS2 register is a 64-bit register in 64-bit mode
and a 32-bit register in 32-bit mode. The register con-
tains fields for specifying the effective page address
and the storage attributes for a TLB entry. 

Figure 33. MAS2 register

These bits are interpreted as follows:

Bit Description

0:51 Effective Page Number (EPN)
Depending on page size, only the bits associ-
ated with a page boundary are valid. Bits that
represent offsets within a page are ignored
and should be zero. EPN0:31 are accessible
only in 64-bit implementations as the upper 32
bits of the effective address of the page. 

52:55 Reserved

56:57 Alternate Coherency Mode (ACM) 
The ACM attribute allows an implementation
to employ more than a single coherency
method. This allows for a processor to partici-
pate in multiple coherency protocols. If the M
attribute (Memory Coherence Required) is not
set for a page (M=0), the page has no coher-
ency associated with it and the ACM attribute
is ignored. If the M attribute is set to 1 for a
page (M=1), the ACM attribute is used to
determine the coherence domain (or protocol)
used. The values for ACM are implementa-
tion-dependent.

  

58 VLE Mode (VLE)
[Category: VLE]
Identifies pages which contain instructions to
be decoded as VLE instructions (see Chapter
1 of Book VLE). Setting the VLE attribute to 1
and setting the E attribute to 1 is considered a
programming error and an attempt to fetch
instructions from a page so marked produces
an Instruction Storage Interrupt Byte Ordering
Exception and sets ESRBO.

0 Instructions fetched from the page are
decoded and executed as non-VLE
instructions.

MAS1
32 63

MAS2
0 63

Some previous implementations may
have a storage bit in the bit 57 position
labeled as X0.
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1 Instructions fetched from the page are
decoded and executed as VLE instruc-
tions.

  

59 Write Through (W)

0 This page is not Write-Through Required
storage.

1 This page is Write-Through Required stor-
age.

60 Caching Inhibited (I)

0 This page is not Caching Inhibited stor-
age.

1 This page is Caching Inhibited storage

61 Memory Coherence Required (M)

0 This page is not Memory Coherence
Required storage.

1 This page is Memory Coherence
Required storage.

62 Guarded (G) 

0 This page is not Guarded storage.
1 This page is Guarded storage.

63 Endianness (E)

0 The page is accessed in Big-Endian byte
order.

1 The page is accessed in Little-Endian byte
order. 

D.2.4.4 MAS3 Register
The MAS3 register contains fields for specifying the
real page address, user defined attributes, and the per-
mission attributes for a TLB entry. 

Figure 34. MAS3 register

These bits are interpreted as follows:

Bit Description

32:51 Real Page Number (bits 32:51) (RPNL or
RPN32:51)
Depending on page size, only the bits associ-
ated with a page boundary are valid. Bits that
represent offsets within a page are ignored
and should be zero. RPN0:31 are accessed
through MAS7.

52:53 Reserved

54:57 User Bits (U0:U3)
These bits are associated with a TLB entry
and can be used by system software. For
example, these bits may be used to hold infor-
mation useful to a page scanning algorithm or
be used to mark more abstract page
attributes.

58:63 Permission Bits (UX, SX, UW, SW, UR, SR).
User and supervisor execute, write, and read
permission bits. The effect of the Permission
Bits are defined in Section 4.7.1.2.

D.2.4.5 MAS4 Register
The MAS4 register contains fields for specifying default
information to be pre-loaded on certain MMU related
exceptions. See Section D.4.5 for more information.

Figure 35. MAS4 register

The MAS4 fields are described below.

Bit Description

32:33 Reserved

34:35 TLBSEL Default Value (TLBSELD) 
Specifies the default value loaded in
MAS0TLBSEL on a TLB miss exception.

36:43 Reserved

44:47 TID Default Selection Value (TIDSELD)
Specifies which of the current PID registers
should be used to load the MAS1TID field on a
TLB miss exception. 

The PID registers are addressed as follows:

0000 = PID0 (PID)
0001 = PID1
0010 = PID2

A value that references a non-implemented
PID register causes a value of 0 to be placed
in MAS1TID.

48:51 Reserved

52:55 Default TSIZE Value (TSIZED)
Specifies the default value loaded into
MAS1TSIZE on a TLB miss exception.

56:57 Default ACM Value (ACMD)
Specifies the default value loaded into
MAS2ACM on a TLB miss exception.

58 Default VLE Value (VLED)
Specifies the default value loaded into
MAS2VLE on a TLB miss exception.

Some previous implementations may
have a storage bit in this position labeled
as X1. Software should not use the pres-
ence of this bit (the ability to set to 1 and
read a 1) to determine if the implementa-
tion supports the VLE.

MAS3
32 63
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59 Default W Value (WD)
Specifies the default value loaded into MAS2W
on a TLB miss exception.

60 Default I Value (ID)
Specifies the default value loaded into MAS2I
on a TLB miss exception.

61 Default M Value (MD)
Specifies the default value loaded into MAS2M
on a TLB miss exception.

62 Default G Value (GD)
Specifies the default value loaded into MAS2G
on a TLB miss exception.

63 Default E Value (ED)
Specifies the default value loaded into MAS2E
on a TLB miss exception.

D.2.4.6 MAS6 Register
The MAS6 register contains fields for specifying PID
and AS values to be used when searching TLB entries
with the tlbsx instruction. 

Figure 36. MAS6 register

These bits are interpreted as follows:

Bit Description

32:33 Reserved

34:47 Search PID0 (SPID0)
Specifies the value of PID0 used when
searching the TLB during execution of tlbsx.
This field is valid for only the number of bits
implemented for PID registers.

48:62 Reserved 

63 Address Space Value for Searches (SAS)
Specifies the value of AS used when search-
ing the TLB during execution of tlbsx. 

D.2.4.7 MAS7 Register
The MAS7 register contains the high order address bits
of the RPN for implementations that support more than
32 bits of physical address. Implementations that do
not support more than 32 bits of physical addressing
are not required to implement MAS7.

Figure 37. MAS7 register

These bits are interpreted as follows:

Bit Description

32:63 Real Page Number (bits 0:31) (RPNU or
RPN0:31)
RPN32:51 are accessed through MAS3.

MAS6
32 63

MAS7
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Table 7: MAS Register Update Summary

MAS Field 
Updated

Value Loaded on Event

Data or Instruction 
TLB Error Interrupt

tlbsx hit tlbsx miss tlbre

MAS0TLBSEL MAS4TLBSELD TLB array that hit MAS4TLBSELD —

MAS0ESEL if TLB array 
[MAS4TLBSELD] sup-

ports next victim then 
hardware hint,
else undefined

Number of entry that hit if TLB array 
[MAS4TLBSELD] sup-

ports next victim then 
hardware hint,
else undefined

—

MAS0NV if TLB array 
[MAS4TLBSELD] sup-

ports next victim then 
next hardware hint,

else undefined

if TLB array 
[MAS4TLBSELD] sup-

ports next victim then 
hardware hint,
else undefined

if TLB array 
[MAS4TLBSELD] sup-

ports next victim then 
next hardware hint,

else undefined

if TLB array 
[MAS4TLBSELD] sup-

ports next victim then 
hardware hint,
else undefined

MAS1V 1 1 0 TLBV

MAS1IPROT 0 TLBIPROT 0 TLBIPROT

MAS1TID if PID[MAS4TIDSELD] 
implemented then 
PID[MAS4TIDSELD] 

else 0

TLBTID MAS6SPID0 TLBTID

MAS1TS MSRIS or MSRDS TLBTS MAS6SAS TLBTS

MAS1TSIZE MAS4TSIZED TLBSIZE MAS4TSIZED TLBSIZE

MAS2EPN EA0:51
1 TLBEPN undefined TLBEPN

MAS2ACM MAS4ACMD TLBACM MAS4ACMD TLBACM

MAS2VLE MAS4VLED TLBVLE MAS4VLED TLBVLE

MAS2W MAS4WD TLBW MAS4WD TLBW

MAS2I MAS4ID TLBI MAS4ID TLBI

MAS2M MAS4MD TLBM MAS4MD TLBM

MAS2G MAS4GD TLBG MAS4GD TLBG

MAS2E MAS4ED TLBE MAS4ED TLBE

MAS3RPN 0 TLBRPN
(bits 32:51)

0 TLBRPN
(bits 32:51)

MAS3U0 U1 U2 U3 0 TLBU0 U1 U2 U3 0 TLBU0 U1 U2 U3

MAS3UX SX UW 

SW UR SR

0 TLBUX SX UW SW UR SR 0 TLBUX SX UW SW UR SR

MAS4 — — — —

MAS6SPID0 PID0 — — —

MAS6SAS MSRIS or MSRDS — — —

MAS7RPN 0 TLBRPN
(bits 0:31)

0 TLBRPN
(bits 0:31)

1. If MSRCM=0 (32-bit mode) at the time of the exception, EPN0:31 are set to 0.
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D.2.5 MMU Configuration and 
Control Registers

D.2.5.1 MMU Configuration Register 
(MMUCFG)
The read-only MMUCFG register is described as fol-
lows.

Figure 38. MMU Configuration Register

These bits are interpreted as follows:

Bit Description

32:39 Reserved

40:46 Real Address Size (RASIZE)
Number of bits in a real address supported by
the implementation.

47:48 Reserved

49:52 Number of PID Registers (NPIDS)
Indicates the number of PID registers pro-
vided by the processor. 

53:57 PID Register Size (PIDSIZE)
The value of PIDSIZE is one less than the
number of bits implemented for each of the
PID registers implemented by the processor.
The processor implements only the least sig-
nificant PIDSIZE+1 bits in the PID registers.
The maximum number of PID register bits that
may be implemented is 14.

58:59 Reserved

60:61 Number of TLBs (NTLBS)
The value of NTLBS is one less than the num-
ber of software-accessible TLB structures that
are implemented by the processor. NTLBS is
set to one less than the number of TLB struc-
tures so that its value matches the maximum
value of MAS0TLBSEL.

00 1 TLB
01 2 TLBs
10 3 TLBs
11 4 TLBs

62:63 MMU Architecture Version Number (MAVN)
Indicates the version number of the architec-
ture of the MMU implemented by the proces-
sor.

00 Version 1.0
01 Reserved
10 Reserved
11 Reserved

D.2.5.2 TLB Configuration Registers 
(TLBnCFG)
The TLBnCFG read-only registers provide information
about each specific TLB that is implemented. There is
one TLBnCFG register implemented for each TLB array
that is implemented. TLB0CFG corresponds to TLB0,
TLB1CFG corresponds to TLB1, etc.

TLBnCFG provides configuration information for the
corresponding TLB array.

Figure 39. TLB Configuration Register

These bits are interpreted as follows:

Bit Description

32:39 Associativity (ASSOC)
Total number of entries in a TLB array which
can be used for translating addresses with a
given EPN. This number is referred to as the
associativity level of the TLB array. A value
equal to NENTRY or 0 indicates the array is
fully-associative.

40:43 Minimum Page Size (MINSIZE)
Minimum page size of TLB array. Page size
encoding is defined in Section 4.7.1.2.

44:47 Maximum Page Size (MAXSIZE)
Maximum page size of TLB array. Page size
encoding is defined in Section 4.7.1.2.

48 Invalidate Protection (IPROT)
Invalidate protect capability of TLB array.

0 Indicates invalidate protection capability
not supported.

1 Indicates invalidate protection capability
supported.

49 Page Size Availability (AVAIL) 
Page size availability of TLB array.

0 Fixed selectable page size from MINSIZE
to MAXSIZE (all TLB entries are the same
size).

1 Variable page size from MINSIZE to MAX-
SIZE (each TLB entry can be sized sepa-
rately).

50:51 Reserved

52:63 Number of Entries (NENTRY)
Number of entries in TLB array.

D.2.5.3 MMU Control and Status Regis-
ter (MMUCSR0)
The MMUCSR0 register is used for general control of
the MMU including invalidation of the TLB arrays and
page sizes for programmable fixed size arrays. For TLB

MMUCFG
32 63 TLBnCFG

32 63
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arrays that have programmable fixed sizes, the
TLBn_PS fields allow software to specify the page size. 

Figure 40. MMU Control and Status Register 0 

These bits are interpreted as follows:

Bit Description

32:40 Reserved

41:56 TLBn Array Page Size
A 4-bit field specifies the page size for TLBn
array. Page size encoding is defined in Sec-
tion 4.7.1.2. For each TLB array n, the field is
implemented only if TLBnCFGAVAIL=0 and
TLBnCFGMINSIZE≠TLBnCFGMAXSIZE. If the
value of TLBn_PS is not between TLBnCFG-

MINSIZE and TLBnCFGMAXSIZE the page size
is set to TLBnCFGMINSIZE.

41:44 TLB3 Array Page Size (TLB3_PS) 
Page size of the TLB3 array.

45:48 TLB2 Array Page Size (TLB2_PS) 
Page size of the TLB2 array.

49:52 TLB1 Array Page Size (TLB1_PS)
Page size of the TLB1 array.

53:56 TLB0 Array Page Size (TLB0_PS) 
Page size of the TLB0 array.

57:62 TLBn Invalidate All
TLB invalidate all bit for the TLBn array.

0 If this bit reads as a 1, an invalidate all
operation for the TLBn array is in
progress. Hardware will set this bit to 0
when the invalidate all operation is com-
pleted. Writing a 0 to this bit during an
invalidate all operation is ignored. 

1 TLBn invalidation operation. Hardware ini-
tiates a TLBn invalidate all operation.
When this operation is complete, this bit is
cleared. Writing a 1 during an invalidate
all operation produces an undefined
result. If the TLB array supports IPROT,
entries that have IPROT set will not be
invalidated.

57 TLB2 Invalidate All (TLB2_FI)
TLB invalidate all bit for the TLB2 array.

58 TLB3 Invalidate All (TLB3_FI)
TLB invalidate all bit for the TLB3 array.

59:60 Reserved

61 TLB0 Invalidate All (TLB0_FI) 
TLB invalidate all bit for the TLB0 array.

62 TLB1 Invalidate All (TLB1_FI)
TLB invalidate all bit for the TLB1 array.

63 Reserved

  

D.3 Page Identification and 
Address Translation
Page Identification occurs as described in Section 4.7.2
except the matching TLB entry may be identified using
more than one PID register. Accesses that would result
in multiple matching entries are not allowed and are
considered a serious programming error by system
software and the results of such a translation are unde-
fined. A PID register containing a 0 value (or the same
value as another PID register) will form a non unique
match and is permissible.

Once a match occurs the matching TLB entry is used
for access control, storage attributes, and effective to
real address translation.

D.4 TLB Management

D.4.1 Reading TLB Entries
TLB entries can be read by executing tlbre instructions.
At the time of tlbre execution, the MAS registers are
used to index a specific TLB entry and upon completion
of the tlbre instruction, the MAS registers will contain
the contents of the indexed TLB entry.

Specifying invalid values for MAS0TLBSEL and
MAS0ESEL produce undefined results.

D.4.2 Writing TLB Entries
TLB entries can be written by executing tlbwe instruc-
tions. At the time of tlbwe execution, the MAS registers
are used to index a specific TLB entry and contain the
contents to be written to the indexed TLB entry. Upon
completion of the tlbwe instruction, the contents of the
MAS registers corresponding to TLB entry fields will be
written to the indexed TLB entry.

Specifying invalid values for MAS0TLBSEL ESEL pro-
duces undefined results.

MMUCSR0
32 63

Changing the fixed page size of an entire
array must be done with great care. If any
entries in the array are valid, changing the
page size may cause those entries to
overlap, creating a serious programming
error. It is suggested that the entire TLB
array be invalidated and any entries with
IPROT have their V bits set to zero before
changing page size.
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D.4.3 Invalidating TLB Entries
TLB entries may be invalidated by three different meth-
ods. The TLB entry can be invalidated as the result of a
tlbwe instruction that sets the MAS1V bit in the entry to
0. TLB entries may also be invalidated as a result of a
tlbivax instruction or from an invalidation resulting from
a tlbivax on another processor. Lastly, TLB entries may
be invalidated as a result of an invalidate all operation
specified through appropriate settings in the
MMUCSR0.

In both multiprocessor and uniprocessor systems,
invalidations can occur on a wider set of TLB entries
than intended. That is, a virtual address presented for
invalidation may cause not only the intended TLB tar-
geted for invalidation to be invalidated, but may also
invalidate other TLB entries depending on the imple-
mentation. This is because parts of the translation
mechanism may not be fully specified to the hardware
at invalidate time. This is especially true in SMP sys-
tems, where the invalidation address must be supplied
to all processors in the system, and there may be other
limitations imposed by the hardware implementation.
This phenomenon is known as generous invalidates.
The architecture assures that the intended TLB will be
invalidated, but does not guarantee that it will be the
only one. A TLB entry invalidated by writing the V bit of
the TLB entry to 0 by use of a tlbwe instruction is guar-
anteed to invalidate only the addressed TLB entry.
Invalidates occurring from tlbivax instructions or from
tlbivax instructions on another processor may cause
generous invalidates.

The architecture provides a method to protect against
generous invalidations. This is important since there
are certain virtual memory regions that must be prop-
erly mapped to make forward progress. To prevent this,
the architecture specifies an IPROT bit for TLB entries.
If the IPROT bit is set to 1 in a given TLB entry, that
entry is protected from invalidations resulting from
tlbivax instructions, or from invalidate all operations.
TLB entries with the IPROT field set may only be invali-
dated by explicitly writing the TLB entry and specifying
a 0 for the V (MAS1V) field.

 

 

 

 

 

 

D.4.4 Searching TLB Entries
Software may search the MMU by using the tlbsx
instruction. The tlbsx instruction uses PID values and
an AS value from the MAS registers instead of the PID
registers and the MSR. This allows software to search
address spaces that differ from the current address
space defined by the PID registers. This is useful for
TLB fault handling.

D.4.5 TLB Replacement Hardware 
Assist
The architecture provides mechanisms to assist soft-
ware in creating and updating TLB entries when MMU
related exceptions occur. This is called TLB Replace-
ment Hardware Assist. Hardware will update the MAS

The most obvious issue with generous invalida-
tions is the code memory region that serves as the
exception handler for MMU faults. If this region
does not have a valid mapping, an MMU exception
cannot be handled because the first address of the
exception handler will result in another MMU
exception. 

Programming Note

Not all TLB arrays in a given implementation will
implement the IPROT attribute. It is likely that
implementations that are suitable for demand page
environments will implement it for only a single
array, while not implementing it for other TLB
arrays.

Operating systems need to use great care when
using protected (IPROT) TLB entries, particularly in
SMP systems. An SMP system that contains TLB
entries on other processors will require a cross pro-
cessor interrupt or some other synchronization
mechanism to assure that each processor per-
forms the required invalidation by writing its own
TLB entries.

To ensure a TLB entry that is not protected by
IPROT is invalidated if software does not know
which TLB array the entry is in, software should
issue a tlbivax instruction targeting each TLB in
the implementation with the EA to be invalidated.

 The preferred method of invalidating entire TLB
arrays is invalidation using MMUCSR0.

Invalidations using MMUCSR0 only affect the TLB
array on the processor that performs the invalida-
tion. To perform invalidations in a multiprocessor
system on all processors in a coherence domain,
software should use tlbivax.

Programming Note
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registers on the occurrence of a Data TLB Error Inter-
rupt or Instruction TLB Error interrupt.

When a Data or Instruction TLB Error interrupt (miss)
occurs, MAS0, MAS1, and MAS2 are automatically
updated using the defaults specified in MAS4 as well as
the AS and EPN values corresponding to the access
that caused the exception. MAS6 is updated to set
MAS6SPID0 to the value of PID0 and MAS6SAS to the
value of MSRDS or MSRIS depending on the type of
access that caused the error. In addition, if
MAS4TLBSELD identifies a TLB array that supports NV
(Next Victim), MAS0ESEL is loaded with a value that
hardware believes represents the best TLB entry to vic-
timize to create a new TLB entry and MAS0NV is
updated with the TLB entry index of what hardware
believes to be the next victim. Thus MAS0ESEL identi-
fies the current TLB entry to be replaced, and MAS0NV
points to the next victim. When software writes the TLB
entry, the MAS0NV field is written to the TLB array. The
algorithm used by the hardware to determine which
TLB entry should be targeted for replacement is imple-
mentation-dependent.

The automatic update of the MAS registers sets up all
the necessary fields for creating a new TLB entry with
the exception of RPN, the U0-U3 attribute bits, and the
permission bits. With the exception of the upper 32 bits
of RPN and the page attributes (should software desire
to specify changes from the default attributes), all the
remaining fields are located in MAS3, requiring only the
single MAS register manipulation by software before
writing the TLB entry.

For Instruction Storage interrupt (ISI) and Data Storage
interrupt (DSI) related exceptions, the MAS registers
are not updated. Software must explicitly search the
TLB to find the appropriate entry.

The update of MAS registers through TLB Replace-
ment Hardware Assist is summarized in Table 7.

D.5 32-bit and 64-bit Specific 
MMU Behavior
MMU behavior is largely unaffected by whether the pro-
cessor is in 32-bit computation mode (MSRCM=0) or
64-bit computation mode (MSRCM=1). The only differ-
ences occur in the EPN field of the TLB entry and the
EPN field of MAS2. The differences are summarized
here.

� Executing a tlbwe instruction in 32-bit mode will
set bits 0:31 of the TLB EPN field to 0, regardless
of the value of bits 0:31 of the EPN field in MAS2.

� Updates to MAS registers via TLB Replacement
Hardware Assist (see Section D.4.5), update bits
0:51 of the EPN field regardless of the computa-
tion mode of the processor at the time of the
exception or the interrupt computation mode in
which the interrupt is taken. If the instruction caus-

ing the exception was executing in 32-bit mode,
then bits 0:31 of the EPN field in MAS2 will be set
to 0.

� Executing a tlbre instruction in 32-bit mode will set
bits 0:31 of the MAS2 EPN field to an undefined
value.

 

This allows a 32-bit OS to operate seamlessly on a
64-bit implementation and a 64-bit OS to easily
support 32-bit applications.
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D.6 Type FSL MMU Instructions

The instructions described in this section, replace the
instructions described in Section 4.9.4.1, “TLB Man-
agement Instructions”.

TLB Invalidate Virtual Address Indexed
X-form

tlbivax RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
for each processor

for TLB array = EA59:60
   for each TLB entry
      m � ¬((1 << (2×(entrySIZE-1))) - 1)
      if ((EA0:51 & m) = (entryEPN & m)) | EA61

        then if entryIPROT = 0
             then entryV � 0

Let the effective address (EA) be the sum(RA|0)+ (RB).
The EA is interpreted as show below.

EA0:51 EA0:51

EA52:58 Reserved

EA59:60 TLB array selector

00 TLB0
01 TLB1
10 TLB2
11 TLB3

EA61 TLB Invalidate All

EA62:63 Reserved

If EA61=0, then if the TLB array targeted by EA59:60
contains an entry identified by EA0:51, that entry is
made invalid unless the TLB entry is protected by the
IPROT attribute. A TLB entry is identified if, for
m = ¬((1 << (2×(TLB_entrysize-1))) - 1), EA0:51&m is
equal to TLB_entryEPN&m. The AS bit does not partici-
pate in the comparison.

If EA61=1, then all entries not protected by the IPROT
attribute in the TLB array targeted by EA59:60 are made
invalid.

This instruction causes the target TLB entry to be inval-
idated in all processors.

The operation performed by this instruction is ordered
by the mbar (or sync) instruction with respect to a sub-
sequent tlbsync instruction executed by the processor
executing the tlbivax instruction. The operations
caused by tlbivax and tlbsync are ordered by mbar as

a set of operations which is independent of the other
sets that mbar orders.

The effects of the invalidation are not guaranteed to be
visible to the programming model until the completion
of a context synchronizing operation.

Invalidations may occur for other TLB entries in the
designated array, but in no case will any TLB entries
with the IPROT attribute set be made invalid.

In some implementations, if RA does not equal 0, it
may produce an Illegal Instruction exception.

This instruction is privileged.

Special Registers Altered:
None

 

31 /// RA RB 786 /
0 6 11 16 21 31

The use of EA61 to invalidate TLB arrays may be
phased out in future versions of the architecture.
The preferred method of invalidating TLB arrays is
invalidation using MMUCSR0.

Programming Note
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TLB Search Indexed X-form

tlbsx RA,RB

if RA = 0 then b � 0
else           b � (RA)
EA � b + (RB)
pid � MAS6SPID0
as � MAS6SAS
va � as || pid || EA
if Valid_matching_entry_exists(va) then
   entry � matching entry found
   array � TLB array number where TLB entry found
   index � index into TLB array of TLB entry found
   if TLB array supports Next Victim then
      hint � hardware hint for Next Victim
   else
      hint � undefined
   rpn � entryRPN
   MAS0TLBSEL � array
   MAS0ESEL � index
   MAS0NV � hint
   MAS1V � 1
   MAS1IPROT TID TS TSIZE � entryIPROT TID TS SIZE
   MAS2EPN VLE W I M G E ACM � entryEPN VLE W I M G E ACM
   MAS3RPNL � rpn32:51
   MAS3U0:U3 UX SX UW SW UR SR � entryU0:U3 UX SX UW SW UR SR
   MAS7RPNU � rpn0:31
else
   MAS0TLBSEL � MAS4TLBSELD
   MAS0ESEL � hint
   MAS0NV � hint
   MAS1V IPROT � 0
   MAS1TID TS � MAS6SPID0 SAS
   MAS1TSIZE � MAS4TSIZED
   MAS2VLE W I M G E ACM � MAS4VLED WD ID MD GD ED ACMD
   MAS2EPN � undefined
   MAS3RPNL � 0
   MAS3U0:U3 UX SX UW SW UR SR � 0
   MAS7RPNU � 0

Let the effective address (EA) be the sum(RA|0)+ (RB).

If any valid TLB array contains an entry corresponding
to the virtual address formed by MAS6SAS SPID0 and
EA, that entry as well as the index and array are read
into the MAS registers. If no valid matching translation
exists, MAS1V is set to 0 and the MAS registers are
loaded with defaults to facilitate a TLB replacement.

If the TLB array supports MAS0NV, an implementation
defined value, hint, specifying the index for the next
entry to be replaced is loaded into MAS0NV regardless
of whether a match occurs; otherwise MAS0NV is set to
an undefined value. It is also loaded into MAS0ESEL if
no match occurs.

In some implementations, if RA does not equal 0, it
may produce an Illegal Instruction exception.

This instruction is privileged.

Special Registers Altered:
MAS0 MAS1 MAS2 MAS3 MAS7

TLB Read Entry X-form

tlbre

entry � SelectTLB(MAS0TLBSEL, MAS0ESEL, MAS2EPN)
rpn � entryRPN
if TLB array supports Next Victim then
    MAS0NV � hint
else
    MAS0NV � undefined
MAS1V IPROT TID TS TSIZE � entryV IPROT TID TS SIZE
MAS2EPN VLE W I M G E ACM � entryEPN VLE W I M G E ACM
MAS3RPNL � rpn32:51
MAS3U0:U3 UX SX UW SW UR SR  � entryU0:U3 UX SX UW SW UR SR
MAS7RPNU � rpn0:31

The contents of the TLB entry specified by
MAS0TLBSEL, MAS0ESEL, and MAS2EPN are read and
placed into the MAS registers.

If the TLB array supports MAS0NV, then an implemen-
tation defined value, hint, specifying the index for the
next entry to be replaced is loaded into MAS0NV; other-
wise MAS0NV is set to an undefined value.

If the specified entry does not exist, the results are
undefined.

This instruction is privileged.

Special Registers Altered:
MAS0 MAS1 MAS2 MAS3 MAS7

31 /// RA RB 914 /
0 6 11 16 21 31

31 /// /// /// 946 /
0 6 11 16 21 31
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TLB Synchronize X-form

tlbsync

The tlbsync instruction provides an ordering function
for the effects of all tlbivax instructions executed by the
processor executing the tlbsync instruction, with
respect to the memory barrier created by a subsequent
sync (msync) instruction executed by the same pro-
cessor. Executing a tlbsync instruction ensures that all
of the following will occur.

� All TLB invalidations caused by tlbivax instructions
preceding the tlbsync instruction will have com-
pleted on any other processor before any storage
accesses associated with data accesses caused
by instructions following the sync (msync) instruc-
tion are performed with respect to that processor.

� All storage accesses by other processors for which
the address was translated using the translations
being invalidated will have been performed with
respect to the processor executing the sync
(msync) instruction, to the extent required by the
associated Memory Coherence Required
attributes, before the sync (msync) instruction’s
memory barrier is created.

The operation performed by this instruction is ordered
by the mbar or sync (msync) instruction with respect
to preceding tlbivax instructions executed by the pro-
cessor executing the tlbsync instruction. The opera-
tions caused by tlbivax and tlbsync are ordered by
mbar as a set of operations, which is independent of
the other sets that mbar orders.

The tlbsync instruction may complete before opera-
tions caused by tlbivax instructions preceding the tlb-
sync instruction have been performed.

This instruction is privileged.

Special Registers Altered:
None

TLB Write Entry X-form

tlbwe

entry � SelectTLB(MAS0TLBSEL, MAS0ESEL, MAS2EPN)
rpn � MAS7RPNU || MAS3RPNL
hint � MAS0NV
entryV IPROT TID TS SIZE � MAS1V IPROT TID TS TSIZE
entryEPN VLE W I M G E ACM � MAS2EPN VLE W I M G E ACM
entryU0:U3 UX SX UW SW UR SR � MAS3U0:U3 UX SX UW SW UR SR
entryRPN � rpn

The contents of the MAS registers are written to the
TLB entry specified by MAS0TLBSEL, MAS0ESEL, and
MAS2EPN.

MAS0NV provides a suggestion to hardware of where
the next hardware hint for replacement should be given
when the next Data or Instruction TLB Error Interrupt,
tlbsx, or tlbre instruction occurs.

If the specified entry does not exist, the results are
undefined.

A context synchronizing instruction is required after a
tlbwe instruction to ensure any subsequent instructions
that will use the updated TLB values execute in the new
context.

This instruction is privileged.

Special Registers Altered:
None

31 /// /// /// 566 /
0 6 11 16 21 31

31 /// /// /// 978 /
0 6 11 16 21 31
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Appendix E.  Example Performance Monitor 
[Category: Embedded.Performance Monitor] 

E.1 Overview
This appendix describes an example of a Performance
Monitor facility. It defines an architecture suitable for
performance monitoring facilities in the Embedded
environment. The architecture itself presents only pro-
gramming model visible features in conjunction with
architecturally defined behavioral features. Much of the
selection of events is by necessity implementation-
dependent and is not described as part of the architec-
ture; however, this document provides guidelines for
some features of a performance monitor implementa-
tion that should be followed by all implementations.

The example Performance Monitor facility provides the
ability to monitor and count predefined events such as
processor clocks, misses in the instruction cache or
data cache, types of instructions decoded, or mispre-
dicted branches. The count of such events can be used
to trigger the Performance Monitor exception. While
most of the specific events are not architected, the
mechanism of controlling data collection is.

The example Performance Monitor facility can be used
to do the following:

� Improve system performance by monitoring soft-
ware execution and then recoding algorithms for
more efficiency. For example, memory hierarchy
behavior can be monitored and analyzed to opti-
mize task scheduling or data distribution algo-
rithms. 

� Characterize processors in environments not eas-
ily characterized by benchmarking.

� Help system developers bring up and debug their
systems.

E.2 Programming Model
The example Performance Monitor facility defines a set
of Performance Monitor Registers (PMRs) that are
used to collect and control performance data collection
and an interrupt to allow intervention by software. The
PMRs provide various controls and access to collected
data. They are categorized as follows:

� Counter registers. These registers are used for
data collection. The occurrence of selected events
are counted here. These registers are named
PMC0..15. User and supervisor level access to
these registers is through different PMR numbers
allowing different access rights.

� Global controls. This register control global set-
tings of the Performance Monitor facility and affect
all counters. This register is named PMGC0. User
and supervisor level access to these registers is
through different PMR numbers allowing different
access rights. In addition, a bit in the MSR
(MSRPMM) is defined to enable/disable counting.

� Local controls. These registers control settings that
apply only to a particular counter. These registers
are named PMLCa0..15 and PMLCb0..15. User
and supervisor level access to these registers is
through different PMR numbers allowing different
access rights. Each set of local control registers
(PMLCan and PMLCbn) contains controls that
apply to the associated same numbered counter
register (e.g. PMLCa0 and PMLCb0 contain con-
trols for PMC0 while PMLCa1 and PMLCb1 con-
tain controls for PMC1).

A given implementation may implement fewer counter
registers (and their associated control registers) than
are architected. Architected counter and counter con-
trol registers that are not implemented behave the
same as unarchitected Performance Monitor Registers.

PMRs are described in Section E.3.

Software uses the global and local controls to select
which events are counted in the counter registers,
when such events should be counted, and what action

The counter registers, global controls, and local
controls have alias names which cause the assem-
bler to use different PMR numbers. The names
PMC0...15, PMGC0, PMLCa0...15, and
PMLCb0...15 cause the assembler to use the
supervisor level PMR number, and the names
UPMC0...15, UPMGC0, UPMLCa0...15, and
UPMLCb0...15 cause the assembler to use the
user-level PMR number.

Assembler Note
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should be taken when a counter overflows. Software
can use the collected information to determine perfor-
mance attributes of a given segment of code, a pro-
cess, or the entire software system. PMRs can be read
by software using the mfpmr instruction and PMRs can
be written by using the mtpmr instruction. Both instruc-
tions are described in Section E.4.

Since counters are defined as 32-bit registers, it is pos-
sible for the counting of some events to overflow. A Per-
formance Monitor interrupt is provided that can be
programmed to occur in the event of a counter overflow.
The Performance Monitor interrupt is described in
detail in Section E.2.5 and Section E.2.6.

E.2.1 Event Counting
Event counting can be configured in several different
ways. This section describes configurability and spe-
cific unconditional counting modes. 

E.2.2 Processor Context Config-
urability
Counting can be enabled if conditions in the processor
state match a software-specified condition. Because a
software task scheduler may switch a processor’s exe-
cution among multiple processes and because statis-
tics on only a particular process may be of interest, a
facility is provided to mark a process. The Performance
Monitor mark bit, MSRPMM, is used for this purpose.
System software may set this bit to 1 when a marked
process is running. This enables statistics to be gath-
ered only during the execution of the marked process.
The states of MSRPR and MSRPMM together define a
state that the processor (supervisor or user) and the
process (marked or unmarked) may be in at any time. If
this state matches an individual state specified by the
PMLCanFCS, PMLCanFCU, PMLCanFCM1 and
PMLCanFCM0 fields in PMLCan (the state for which
monitoring is enabled), counting is enabled for PMCn.

Each event, on an implementation basis, may count
regardless of the value of MSRPMM. The counting
behavior of each event should be documented in the
User’s Manual.

The processor states and the settings of the
PMLCanFCS, PMLCanFCU, PMLCanFCM1 and
PMLCanFCM0 fields in PMLCan necessary to enable

monitoring of each processor state are shown in
Figure 41.

Figure 41. Processor States and PMLCan Bit
Settings

Two unconditional counting modes may be specified:

� Counting is unconditionally enabled regardless of
the states of MSRPMM and MSRPR. This can be
accomplished by setting PMLCanFCS,
PMLCanFCU, PMLCanFCM1, and PMLCanFCM0 to
0 for each counter control.

� Counting is unconditionally disabled regardless of
the states of MSRPMM and MSRPR. This can be
accomplished by setting PMGC0FAC to 1 or by set-
ting PMLCanFC to 1 for each counter control. Alter-
natively, this can be accomplished by setting
PMLCanFCM1 to 1 and PMLCanFCM0 to 1 for each
counter control or by setting PMLCanFCS to 1 and
PMLCanFCU to 1 for each counter control.

 

E.2.3 Event Selection
Events to count are determined by placing an imple-
mentation defined event value into the
PMLCa0..15EVENT field. Which events may be pro-
grammed into which counter are implementation spe-
cific and should be defined in the User’s Manual. In
general, most events may be programmed into any of
the implementation available counters. Programming a

Processor State FCS FCU FCM1 FCM0

Marked 0 0 0 1

Not marked 0 0 1 0

Supervisor 0 1 0 0

User 1 0 0 0

Marked and supervisor 0 1 0 1

Marked and user 1 0 0 1

Not marked and supervisor 0 1 1 0

Not mark and user 1 0 1 0

All 0 0 0 0

None X X 1 1

None 1 1 X X

Events may be counted in a fuzzy manner. That is,
events may not be counted precisely due to the
nature of an implementation. Users of the Perfor-
mance Monitor facility should be aware that an
event may be counted even if it was precisely fil-
tered, though it should not have been. In general
such discrepancies are statistically unimportant
and users should not assume that counts are
explicitly accurate.

Programming Note
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counter with an event that is not supported for that
counter gives boundedly undefined results.

 

E.2.4 Thresholds
Thresholds are values that must be exceeded for an
event to be counted. Threshold values are programmed
in the PMLCb0..15THRESHOLD field. The events which
may be thresholded and the units of each event that
may be thresholded are implementation-dependent.
Programming a threshold value for an event that is not
defined to use a threshold gives boundedly undefined
results.

E.2.5 Performance Monitor Excep-
tion
A Performance Monitor exception occurs when counter
overflow detection is enabled and a counter overflows.
More specifically, for each counter register n, if
PMGC0PMIE=1 and PMLCanCE=1 and PMCnOV=1 and
MSREE = 1, a Performance Monitor exception is said to
exist. The Performance Monitor exception condition will
cause a Performance Monitor interrupt if the exception
is the highest priority exception.

The Performance Monitor exception is level sensitive
and the exception condition may cease to exist if any of
the required conditions fail to be met. Thus it is possible
for a counter to overflow and continue counting events
until PMCnOV becomes 0 without taking a Performance
Monitor interrupt if MSREE = 0 during the overflow con-
dition. To avoid this, software should program the
counters to freeze if an overflow condition is detected
(see Section E.3.4).

E.2.6 Performance Monitor Inter-
rupt
A Performance Monitor interrupt occurs when a Perfor-
mance Monitor exception exists and no higher priority
exception exists. When a Performance Monitor inter-
rupt occurs, SRR0 and SRR1 record the current state
of the NIA and the MSR, the MSR is set to handle the
interrupt, and instruction execution resumes at
IVPR0:47 || IVOR3548:59 || 0b0000.

The Performance Monitor interrupt is precise and asyn-
chronous.

 

E.3 Performance Monitor Regis-
ters

E.3.1 Performance Monitor Glo-
bal Control Register 0
The Performance Monitor Global Control Register 0
(PMGC0) controls all Performance Monitor counters.

Figure 42. [User] Performance Monitor Global
Control Register 0

These bits are interpreted as follows:

Bit Description

32 Freeze All Counters (FAC)
The FAC bit is sticky; that is, once set to 1 it
remains set to 1 until it is set to 0 by an mtpmr
instruction.

0 The PMCs can be incremented (if enabled
by other Performance Monitor control
fields).

1 The PMCs can not be incremented. 

33 Performance Monitor Interrupt Enable
(PMIE)

0 Performance Monitor interrupts are dis-
abled.

1 Performance Monitor interrupts are
enabled and occur when an enabled con-
dition or event occurs. Enabled conditions
and events are described in Section E.2.5.

34 Freeze Counters on Enabled Condition or
Event (FCECE)
Enabled conditions and events are described
in Section E.2.5.

0 The PMCs can be incremented (if enabled
by other Performance Monitor control
fields).

1 The PMCs can be incremented (if enabled
by other Performance Monitor control
fields) only until an enabled condition or
event occurs. When an enabled condition
or event occurs, PMGC0FAC is set to 1. It
is the user’s responsibility to set
PMGC0FAC to 0.

Event name and event numbers will differ greatly
across implementations and software should not
expect that events and event names will be consis-
tent.

Programming Note

When taking a Performance Monitor interrupt soft-
ware should clear the overflow condition by reading
the counter register and setting the counter register
to a non-overflow value since the normal return
from the interrupt will set MSREE back to 1.

PMGC0
32 63

Programming Note
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35:63 Reserved

The UPMGC0 register is an alias to the PMGC0 regis-
ter for user mode read only access.

E.3.2 Performance Monitor Local 
Control A Registers 
The Performance Monitor Local Control A Registers 0
through 15 (PMLCa0..15) function as event selectors
and give local control for the corresponding numbered
Performance Monitor counters. PMLCa works with the
corresponding numbered PMLCb register. 

Figure 43. [User] Performance Monitor Local
Control A Registers

PMLCa is set to 0 at reset. These bits are interpreted
as follows:

Bit Description

32 Freeze Counter (FC)

0 The PMC can be incremented (if enabled
by other Performance Monitor control
fields).

1 The PMC can not be incremented.

33 Freeze Counter in Supervisor State (FCS)

0 The PMC is incremented (if enabled by
other Performance Monitor control fields).

1 The PMC can not be incremented if
MSRPR is 0.

34 Freeze Counter in User State (FCU)

0 The PMC can be incremented (if enabled
by other Performance Monitor control
fields).

1 The PMC can not be incremented if
MSRPR is 1.

35 Freeze Counter while Mark is Set (FCM1)

0 The PMC can be incremented (if enabled
by other Performance Monitor control
fields).

1 The PMC can not be incremented if
MSRPMM is 1.

36 Freeze Counter while Mark is Cleared
(FCM0)

0 The PMC can be incremented (if enabled
by other Performance Monitor control
fields).

1 The PMC can not be incremented if
MSRPMM is 0.

37 Condition Enable (CE)

0 Overflow conditions for PMCn cannot
occur (PMCn cannot cause interrupts,
cannot freeze counters)

1 Overflow conditions occur when the most-
significant-bit of PMCn is equal to 1.

It is recommended that CE be set to 0 when
counter PMCn is selected for chaining; see
Section E.5.1.

38:40 Reserved

41:47 Event Selector (EVENT)
Up to 128 events selectable; see Section
E.2.3.

48:53 Setting is implementation-dependent.

54:63 Reserved

The UPMLCa0..15 registers are aliases to the
PMLCa0..15 registers for user mode read only access.

E.3.3 Performance Monitor Local 
Control B Registers 
The Performance Monitor Local Control B Registers 0
through 15 (PMLCb0..15) specify a threshold value and
a multiple to apply to a threshold event selected for the
corresponding Performance Monitor counter. Threshold
capability is implementation counter dependent. Not all
events or all counters of an implementation are guaran-
teed to support thresholds. PMLCb works with the cor-
responding numbered PMLCa register. 

Figure 44. [User] Performance Monitor Local
Control B Register

PMLCb is set to 0 at reset. These bits are interpreted
as follows:

Bit Description

32:52 Reserved

53:55 Threshold Multiple (THRESHMUL)

000 Threshold field is multiplied by 1
(THRESHOLD × 1)

001 Threshold field is multiplied by 2
(THRESHOLD × 2)

010 Threshold field is multiplied by 4
(THRESHOLD × 4)

011 Threshold field is multiplied by 8
(THRESHOLD × 8)

100 Threshold field is multiplied by 16
(THRESHOLD × 16)

101 Threshold field is multiplied by 32
(THRESHOLD × 32)

110 Threshold field is multiplied by 64
(THRESHOLD × 64)

PMLCa0..15
32 63

PMLCb0..15
32 63
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111 Threshold field is multiplied by 128
(THRESHOLD × 128)

56:57 Reserved

58:63 Threshold (THRESHOLD)
Only events that exceed the value THRESH-
OLD multiplied as described by THRESHMUL
are counted. Events to which a threshold
value applies are implementation-dependent
as are the unit (for example duration in cycles)
and the granularity with which the threshold
value is interpreted. 

The UPMLCb0..15 registers are aliases to the
PMLCb0..15 registers for user mode read only access.

E.3.4 Performance Monitor 
Counter Registers
The Performance Monitor Counter Registers
(PMC0..15) are 32-bit counters that can be pro-
grammed to generate interrupt signals when they over-
flow. Each counter is enabled to count up to 128
events.

Figure 45. [User] Performance Monitor Counter
Registers

PMCs are set to 0 at reset. These bits are interpreted
as follows:

Bit Description

32 Overflow (OV)

0 Counter has not reached an overflow
state.

1 Counter has reached an overflow state. 

33:63 Counter Value (CV) 
Indicates the number of occurrences of the
specified event. 

The minimum value for a counter is 0 (0x0000_0000)
and the maximum value is 4,294,967,295
(0xFFFF_FFFF). A counter can increment up to the
maximum value and then wraps to the minimum value.
A counter enters the overflow state when the high-order
bit is set to 1, which normally occurs only when the

counter increments from a value below 2,147,483,648
(0x8000_0000) to a value greater than or equal to
2,147,483,648 (0x8000_0000).

Several different actions may occur when an overflow
state is reached, depending on the configuration:

� If PMLCanCE is 0, no special actions occur on
overflow: the counter continues incrementing, and
no exception is signaled.

� If PMLCanCE and PMGC0FCECE are 1, all counters
are frozen when PMCn overflows.

� If PMLCanCE, PMGC0PMIE, and MSREE are 1, an
exception is signalled when PMCn reaches over-
flow. Note that the interrupts are masked by setting
MSREE to 0. An overflow condition may be present
while MSREE is zero, but the interrupt is not taken
until MSREE is set to 1.

If an overflow condition occurs while MSREE is 0 (the
exception is masked), the exception is still signalled
once MSREE is set to 1 if the overflow condition is still
present and the configuration has not been changed in
the meantime to disable the exception; however, if
MSREE remains 0 until after the counter leaves the
overflow state (MSB becomes 0), or if MSREE remains
0 until after PMLCanCE or PMGC0PMIE are set to 0, the
exception does not occur.

 

The following sequence is generally recommended for
setting the counter values and configurations.

1. Set PMGC0FAC to 1 to freeze the counters.

2. Perform a series of mtpmr operations to initialize
counter values and configure the control registers

3. Release the counters by setting PMGC0FAC to 0
with a final mtpmr.

By varying the threshold value, software can obtain
a profile of the event characteristics subject to
thresholding. For example, if PMC1 is configured to
count cache misses that last longer than the
threshold value, software can measure the distribu-
tion of cache miss durations for a given program by
monitoring the program repeatedly using a different
threshold value each time.

PMC0..15
32 63

Programming Note

Loading a PMC with an overflowed value can
cause an immediate exception. For example, if
PMLCanCE, PMGC0PMIE, and MSREE are all 1,
and an mtpmr loads an overflowed value into a
PMCn that previously held a non-overflowed value,
then an interrupt will be generated before any
event counting has occurred.

Programming Note
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E.4 Performance Monitor Instructions

Move From Performance Monitor Register
XFX-form

mfpmr RT,PMRN

n � pmrn5:9 || pmrn0:4
if length(PMR(n)) = 64 then

RT � PMR(n)
else

RT � 320 || PMR(n)32:63

Let PMRN denote a Performance Monitor Register
number and PMR the set of Performance Monitor Reg-
isters.

The contents of the designated Performance Monitor
Register are placed into register RT.

The list of defined Performance Monitor Registers and
their privilege class is provided in Figure 46.

Execution of this instruction specifying a defined and
privileged Performance Monitor Register when
MSRPR=1 will result in a Privileged Instruction excep-
tion.

Execution of this instruction specifying an undefined
Performance Monitor Register will either result in an
Illegal Instruction exception or will produce an unde-
fined value for register RT.

Special Registers Altered: 
None

Move To Performance Monitor Register
XFX-form

mtpmr PMRN,RS

n � pmrn5:9 || pmrn0:4
if length(PMR(n)) = 64 then

PMR(n) � (RS)
else

PMR(n) � (RS)32:63

Let PMRN denote a Performance Monitor Register
number and PMR the set of Performance Monitor Reg-
isters.

The contents of the register RS are placed into the des-
ignated Performance Monitor Register.

The list of defined Performance Monitor Registers and
their privilege class is provided in Figure 46.

Execution of this instruction specifying a defined and
privileged Performance Monitor Register when
MSRPR=1 will result in a Privileged Instruction excep-
tion.

Execution of this instruction specifying an undefined
Performance Monitor Register will either result in an
Illegal Instruction exception or will perform no opera-
tion.

Special Registers Altered: 
None

 

Figure 46. Embedded.Peformance Monitor PMRs

31 RT pmrn 334 /
0 6 11 21 31

31 RS pmrn 462 /
0 6 11 21 31

decimal
PMR1

Register Name
Privileged

Cat
pmrn5:9 pmrn0:4 mtpmr mfpmr

0-15 00000 0xxxx PMC0..15 - no E.PM
16-31 00000 1xxxx PMC0..15 yes yes E.PM

128-143 00100 0xxxx PMLCA0..15 - no E.PM
144-159 00100 1xxxx PMLCA0..15 yes yes E.PM
256-271 01000 0xxxx PMLCB0..15 - no E.PM
272-287 01000 1xxxx PMLCB0..15 yes yes E.PM

384 01100 00000 PMGC0 - no E.PM
400 01100 10000 PMGC0 yes yes E.PM

- This register is not defined for this instruction.
1 Note that the order of the two 5-bit halves of the PMR number is reversed.
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E.5 Performance Monitor Soft-
ware Usage Notes

E.5.1 Chaining Counters
An implementation may contain events that are used to
“chain” counters together to provide a larger range of
event counts. This is accomplished by programming the
desired event into one counter and programming
another counter with an event that occurs when the first
counter transitions from 1 to 0 in the most significant
bit.

The counter chaining feature can be used to decrease
the processing pollution caused by Performance Moni-
tor interrupts, (things like cache contamination, and
pipeline effects), by allowing a higher event count than
is possible with a single counter. Chaining two counters
together effectively adds 32 bits to a counter register
where the first counter’s carry-out event acts like a
carry-out feeding the second counter. By defining the
event of interest to be another PMC’s overflow genera-
tion, the chained counter increments each time the first
counter rolls over to zero. Multiple counters may be
chained together. 

Because the entire chained value cannot be read in a
single instruction, an overflow may occur between
counter reads, producing an inaccurate value. A
sequence like the following is necessary to read the
complete chained value when it spans multiple
counters and the counters are not frozen. The example
shown is for a two-counter case.

loop:
mfpmr Rx,pmctr1 #load from upper counter
mfpmr Ry,pmctr0 #load from lower counter
mfpmr Rz,pmctr1 #load from upper counter
cmp cr0,0,Rz,Rx #see if ‘old’ = ‘new’
bc 4,2,loop

 #loop if carry occurred between reads

The comparison and loop are necessary to ensure that
a consistent set of values has been obtained. The
above sequence is not necessary if the counters are
frozen.

E.5.2 Thresholding
Threshold event measurement enables the counting of
duration and usage events. Assume an example event,
dLFB load miss cycles, requires a threshold value. A
dLFB load miss cycles event is counted only when the
number of cycles spent recovering from the miss is
greater than the threshold. If the event is counted on
two counters and each counter has an individual
threshold, one execution of a performance monitor pro-
gram can sample two different threshold values. Mea-
suring code performance with multiple concurrent
thresholds expedites code profiling significantly.
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This chapter describes computation modes, document
conventions, a processor overview, instruction formats,
storage addressing, and instruction addressing.

1.1 Overview
Variable Length Encoding (VLE) is a code density opti-
mized re-encoding of much of the instruction set
defined by Books I, II, and III-E using both 16-bit and
32-bit instruction formats.

VLE offers more efficient binary representations of
applications for the embedded processor spaces where
code density plays a major role in affecting overall sys-
tem cost, and to a somewhat lesser extent, perfor-
mance.

VLE is a supplement to the instruction set defined by
Book I-III and code pages using VLE encoding or non-
VLE encoding can be intermingled in a system provid-
ing focus on both high performance and code density
where most needed.

VLE provides alternative encodings to instructions
defined in Books I-III to enable reduced code footprint.
This set of alternative encodings is selected on a page
basis. A single storage attribute bit selects between

standard instruction encodings and VLE instructions for
that page of memory. 

Instruction encodings in pages marked as VLE are
either 16 or 32 bits long, and are aligned on 16-bit
boundaries. Because of this, all instruction pages
marked as VLE are required to use Big-Endian byte
ordering.

The programming model uses the same register set
with both instruction set encodings, although some reg-
isters are not accessible by VLE instructions using the
16-bit formats and not all condition register (CR) fields
are used by Conditional Branch instructions or instruc-
tions that access the condition register executing from
a VLE instruction page. In addition, immediate fields
and displacements differ in size and use, due to the
more restrictive encodings imposed by VLE instruction
formats. 

VLE additional instruction fields are described in
Section 1.4.17, “Instruction Fields”.

Other than the requirement of Big-Endian byte ordering
for instruction pages and the additional storage
attribute to identify whether the instruction page corre-
sponds to a VLE section of code, VLE complies with
the memory model, register model, timer facilities,
debug facilities, and interrupt/exception model defined
Chapter 1. Variable Length Encoding Introduction 663
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in Book I-III and therefore execute in the same environ-
ment as non-VLE instructions.

1.2 Documentation Conventions
Book VLE adheres to the documentation conventions
defined inSection 1.3 of Book I. Note however that this
book defines instructions that apply to the User Instruc-
tion Set Architecture, the Virtual Environment Architec-
ture, and the Operating Environment Architecture. 

1.2.1 Description of Instruction 
Operation
The RTL (register transfer language) descriptions in
Book VLE conform to the conventions described in
Section 1.3.4 of Book I.

1.3 Instruction Mnemonics and 
Operands
The description of each instruction includes the mne-
monic and a formatted list of operands. VLE instruction
semantics are either identical or similar to those of
other instructions in the architecture. Where the
semantics, side-effects, and binary encodings are iden-
tical, the standard mnemonics and formats are used.
Such unchanged instructions are listed and appropri-
ately referenced, but the instruction definitions are not
replicated in this book. Where the semantics are similar
but the binary encodings differ, the standard mnemonic
is typically preceded with an e_ to denote a VLE
instruction. To distinguish between similar instructions
available in both 16- and 32-bit forms under VLE and
standard instructions, VLE instructions encoded with
16 bits have an se_ prefix. The following are examples:
stwx RS,RA,RB // standard Book I instruction
e_stw RS,D(RA) // 32-bit VLE instruction
se_stw RZ,SD4(RX) // 16-bit VLE instruction

1.4 VLE Instruction Formats
All VLE instructions to be executed are either two or
four bytes long and are halfword-aligned in storage.
Thus, whenever instruction addresses are presented to
the processor (as in Branch instructions), the low-order
bit is treated as 0. Similarly, whenever the processor
generates an instruction address, the low-order bit is
zero.

The format diagrams given below show horizontally all
valid combinations of instruction fields. Only those for-
mats that are unique to VLE-defined instructions are
included here. Instruction forms that are available in
VLE or non-VLE mode are described in Section 1.6 of
Book I and are not repeated here.

In some cases an instruction field must contain a par-
ticular value. If a field that must contain a particular
value does not contain that value, the instruction form is
invalid and the results are as described for invalid
instruction forms in Book I.

VLE instructions use split field notation as defined in
Section 1.6 of Book I.

1.4.1 BD8-form (16-bit Branch 
Instructions) 

Figure 1. BD8 instruction format

1.4.2 C-form (16-bit Control 
Instructions) 

Figure 2. C instruction format

1.4.3 IM5-form (16-bit register + 
immediate Instructions)

Figure 3. IM5 instruction format

1.4.4 OIM5-form (16-bit register + 
offset immediate Instructions)

Figure 4. OIM5 instruction format

1.4.5 IM7-form (16-bit Load imme-
diate Instructions) 

Figure 5. IM7 instruction format

0 5 6 7 8 15

OPCD BO16 BI16 BD8
OPCD X

O
LK BD8

0 15

OPCD
OPCD LK

0 6 7 12 15

OPCD X
O

UI5 RX

0 6 7 12 15

OPCD X
O

OIM5 RX

OPCD R
C

OIM5 RX

0 5 12 15

OPCD UI7 RX
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1.4.6 R-form (16-bit Monadic 
Instructions)

Figure 6. R instruction format

1.4.7 RR-form (16-bit Dyadic 
Instructions)

Figure 7. RR instruction format

1.4.8 SD4-form (16-bit Load/Store 
Instructions)

Figure 8. SD4 instruction format

1.4.9 BD15-form

Figure 9. BD15 instruction format

1.4.10 BD24-form

Figure 10. BD24 instruction format

1.4.11 D8-form

Figure 11. D8 instruction format

1.4.12 I16A-form 

Figure 12. I16A instruction format

1.4.13 I16L-form

Figure 13. I16L instruction format

1.4.14 M-form

Figure 14. M instruction format

1.4.15 SCI8-form

Figure 15. SC18 instruction format

1.4.16 LI20-form

Figure 16. LI20 instruction format

1.4.17 Instruction Fields
VLE uses instruction fields defined in Section 1.6.22 of
Book I as well as VLE-defined instruction fields defined
below.

ARX (12:15)
Field used to specify an “alternate” General
Purpose Register in the range R8:R23 to be
used as a destination.

0 6 12 15

OPCD XO RX

0 6 7 8 12 15

OPCD XO RY RX
OPCD X

O
R
C RY RX

OPCD XO ARY RX
OPCD XO RY ARX

0 4 8 12 15

OPCD SD4 RZ RX

0  10 12 16 31

OPCD BO32 BI32 BD15 LK

0  6 7    31

OPCD 0 BD24 LK

0  6   11  16 24 31

OPCD RT RA XO D8
OPCD RS RA XO D8

0  6   11  16 21 31

OPCD si RA XO si
OPCD ui RA XO ui

0  6   11  16 21 31

OPCD RT ui XO ui

0 6 11 16 21 26 31

OPCD RS RA SH MB ME X
O

OPCD RS RA SH MB ME X
O

0  6  9  11  16 20 21 22 24 31

OPCD RT RA XO Rc F SCL UI8
OPCD RT RA XO F SCL UI8
OPCD RS RA XO Rc F SCL UI8
OPCD RS RA XO F SCL UI8
OPCD 000 BF32 RA XO F SCL UI8
OPCD 001 BF32 RA XO F SCL UI8
OPCD XO RA XO F SCL UI8

0  6   11  16 17 21 31

OPCD RT li20 XO li20 li20
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ARY (8:11)
Field used to specify an “alternate” General
Purpose Register in the range R8:R23 to be
used as a source.

BD8 (8:15), BD15 (16:30), BD24 (7:30)
Immediate field specifying a signed two's
complement branch displacement which is
concatenated on the right with 0b0 and sign-
extended to 64 bits.

BD15. (Used by 32-bit branch conditional
class instructions) A 15-bit signed displace-
ment that is sign-extended and shifted left one
bit (concatenated with 0b0) and then added to
the current instruction address to form the
branch target address.

BD24. (Used by 32-bit branch class instruc-
tions) A 24-bit signed displacement that is
sign-extended and shifted left one bit (concat-
enated with 0b0) and then added to the cur-
rent instruction address to form the branch
target address.

BD8. (Used by 16-bit branch and branch con-
ditional class instructions) An 8-bit signed dis-
placement that is sign-extended and shifted
left one bit (concatenated with 0b0) and then
added to the current instruction address to
form the branch target address.

BI16 (6:7), BI32 (12:15)
Field used to specify one of the Condition
Register fields to be used as a condition of a
Branch Conditional instruction.

BO16 (5), BO32 (10:11)

Field used to specify whether to branch if the
condition is true, false, or to decrement the
Count Register and branch if the Count Regis-
ter is not zero in a Branch Conditional instruc-
tion.

BF32 (9:10)
Field used to specify one of the Condition
Register fields to be used as a target of a
compare instruction.

D8 (24:31)
The D8 field is a 8-bit signed displacement
which is sign-extended to 64 bits.

F (21) Fill value used to fill the remaining 56 bits of a
scaled-immediate 8 value. 

LI20 (17:20 || 11:15 || 21:31)
A 20-bit signed immediate value which is sign-
extended to 64 bits for the e_li instruction.

LK (7, 16, 31)
LINK bit.

0 Do not set the Link Register.

1 Set the Link Register. The sum of the
value 2 or 4 and the address of the Branch
instruction is placed into the Link Register.

OIM5 (7:11)
Offset Immediate field used to specify a 5-bit
unsigned fixed-point value in the range [1:32]
encoded as [0:31]. Thus the binary encoding
of 0b00000 represents an immediate value of
1, 0b00001 represents an immediate value of
2, and so on.

OPCD (0:3, 0:4, 0:5, 0:9, 0:14, 0:15)
Primary opcode field.

Rc (6, 7, 20, 31)
RECORD bit.

0 Do not alter the Condition Register.
1 Set Condition Register Field 0.

RX (12:15)
Field used to specify a General Purpose Reg-
ister in the ranges R0:R7 or R24:R31 to be
used as a source or as a destination. R0 is
encoded as 0b0000, R1 as 0b0001, etc. R24
is encoded as 0b1000, R25 as 0b1001, etc.

RY (8:11)
Field used to specify a General Purpose Reg-
ister in the ranges R0:R7 or R24:R31 to be
used as a source. R0 is encoded as 0b0000,
R1 as 0b0001, etc. R24 is encoded as
0b1000, R25 as 0b1001, etc.

RZ (8:11)
Field used to specify a General Purpose Reg-
ister in the ranges R0:R7 or R24:R31 to be
used as a source or as a destination for load/
store data. R0 is encoded as 0b0000, R1 as
0b0001, etc. R24 is encoded as 0b1000, R25
as 0b1001, etc.

SCL (22:23)
Field used to specify a scale amount in Imme-
diate instructions using the SCI8-form. Scaling
involves left shifting by 0, 8, 16, or 24 bits.

SD4 (4:7)
Used by 16-bit load and store class instruc-
tions. The SD4 field is a 4-bit unsigned imme-
diate value zero-extended to 64 bits, shifted
left according to the size of the operation, and
then added to the base register to form a 64-
bit EA. For byte operations, no shift is per-
formed. For half-word operations, the immedi-
ate is shifted left one bit (concatenated with
0b0). For word operations, the immediate is
shifted left two bits (concatenated with
0b00).SI (6:10 || 21:31, 11:15 || 21:31)
A 16-bit signed immediate value sign-
extended to 64 bits and used as one operand
of the instruction. 
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UI (6:10 || 21:31, 11:15 || 21:31)
A 16-bit unsigned immediate value zero-
extended to 64 bits or padded with 16 zeros
and used as one operand of the instruction.
The instruction encoding differs between the
I16A and I16L instruction formats as shown in
Section 1.4.12 and Section 1.4.13.

UI5 (7:11) 
Immediate field used to specify a 5-bit
unsigned fixed-point value.

UI7 (5:11)
Immediate field used to specify a 7-bit
unsigned fixed-point value.

UI8 (24:31)
Immediate field used to specify an 8-bit
unsigned fixed-point value.

XO (6, 6:7, 6:10, 6:11, 16, 16:19,16:23)
Extended opcode field.

 

For scaled immediate instructions using the SCI8-
form, the instruction assembly syntax requires a
single immediate value, sci8, that the assembler
will synthesize into the appropriate F, SCL, and UI8
fields. The F, SCL, and UI8 fields must be able to
be formed correctly from the given sci8 value or the
assembler will flag the assembly instruction as an
error.

Assembler Note
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Chapter 2.  VLE Storage Addressing

2.1 Data Storage Addressing Modes . 669
2.2 Instruction Storage Addressing Modes

670

2.2.1 Misaligned, Mismatched, and Byte 
Ordering Instruction Storage Exceptions. . 
670

2.2.2 VLE Exception Syndrome Bits . . 670

A program references memory using the effective
address (EA) computed by the processor when it exe-
cutes a Storage Access or Branch instruction (or cer-
tain other instructions described in Book II and Book III-
E), or when it fetches the next sequential instruction.

2.1 Data Storage Addressing Modes

Table 1 lists data storage addressing modes supported
by the VLE category.

Table 1: Data Storage Addressing Modes

Mode Form Description

Base+16-bit displacement
(32-bit instruction format)

D-form The 16-bit D field is sign-extended and added to the contents of the GPR 
designated by RA or to zero if RA = 0 to produce the EA.

Base+8-bit displacement 
(32-bit instruction format)

D8-form The 8-bit D8 field is sign-extended and added to the contents of the GPR 
designated by RA or to zero if RA = 0 to produce the EA.

Base+scaled 4-bit displace-
ment 
(16-bit instruction format)

SD4-form The 4-bit SD4 field zero-extended, scaled (shifted left) according to the 
size of the operand, and added to the contents of the GPR designated 
by RX to produce the EA. (Note that RX = 0 is not a special case.)

Base+Index 
(32-bit instruction format)

X-form The GPR contents designated by RB are added to the GPR contents 
designated by RA or to zero if RA = 0 to produce the EA.
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2.2 Instruction Storage 
Addressing Modes
Table 2 lists instruction storage addressing modes sup-
ported by the VLE category.

2.2.1 Misaligned, Mismatched, 
and Byte Ordering Instruction Stor-
age Exceptions
A Misaligned Instruction Storage Exception occurs
when an implementation which supports VLE attempts
to execute an instruction that is not 32-bit aligned and
the VLE storage attribute is not set for the page that
corresponds to the effective address of the instruction.
The attempted execution can be the result of a Branch
instruction which has bit 62 of the target address set to
1 or the result of an rfi, se_rfi, rfci, se_rfci, rfdi,
se_rfdi, rfmci, or se_rfmci instruction which has bit 62
set in SRR0, SRR0, CSRR0, CSRR0, DSRR0,
DSRR0, MCSRR0, or MCSRR0 respectively. If a Mis-
aligned Instruction Storage Exception is detected and
no higher priority exception exists, an Instruction Stor-
age Interrupt will occur setting SRR0 to the misaligned
address for which execution was attempted.

A Mismatched Instruction Storage Exception occurs
when an implementation which supports VLE attempts
to execute an instruction that crosses a page boundary
for which the first page has the VLE storage attribute
set to 1 and the second page has the VLE storage
attribute bit set to 0. If a Mismatched Instruction Stor-

age Exception is detected and no higher priority excep-
tion exists, an Instruction Storage Interrupt will occur
setting SRR0 to the misaligned address for which exe-
cution was attempted.

A Byte Ordering Instruction Storage Exception occurs
when an implementation which supports VLE attempts
to execute an instruction that has the VLE storage
attribute set to 1 and the E (Endian) storage attribute
set to 1 for the page that corresponds to the effective
address of the instruction. If a Byte Ordering Instruction
Storage Exception is detected and no higher priority
exception exists, an Instruction Storage Interrupt will
occur setting SRR0 to the address for which execution
was attempted.

2.2.2 VLE Exception Syndrome 
Bits
Two bits in the Exception Syndrome Register (ESR)
(see Section 5.2.9 of Book III-E) are provided to facili-
tate VLE exception handling, VLEMI and MIF.

ESRVLEMI is set when an exception and subsequent
interrupt is caused by the execution or attempted exe-
cution of an instruction that resides in memory with the
VLE storage attribute set.

Table 2: Instruction Storage Addressing Modes

Mode Description

Taken BD24-form Branch instruc-
tions (32-bit instruction format)

The 24-bit BD24 field is concatenated on the right with 0b0, sign-extended, and 
then added to the address of the branch instruction.

Taken B15-form Branch instruc-
tions (32-bit instruction format)

The 15-bit BD15 field is concatenated on the right with 0b0, sign-extended, and 
then added to the address of the branch instruction to form the EA of the next 
instruction.

Take BD8-form Branch instruc-
tions (16-bit instruction format)

The 8-bit BD8 field is concatenated on the right with 0b0, sign-extended, and 
then added to the address of the branch instruction to form the EA of the next 
instruction.

Sequential instruction fetching (or 
non-taken branch instructions)

The value 4 [2] is added to the address of the current 32-bit [16-bit] instruction to 
form the EA of the next instruction. If the address of the current instruction is 
0xFFFF_FFFF_FFFF_FFFC [0xFFFF_FFFF_FFFF_FFFE] in 64-bit mode or 
0xFFFF_FFFC [0xFFFF_FFFE] in 32-bit mode, the address of the next 
sequential instruction is undefined.

Any Branch instruction with 
LK = 1 (32-bit instruction for-
mat)

The value 4 is added to the address of the current branch instruction and the 
result is placed into the LR. If the address of the current instruction is 
0xFFFF_FFFF_FFFF_FFFC in 64-bit mode o r0xFFFF_FFFC in 32-bit mode, 
the result placed into the LR is undefined.

Branch se_bl. se_blrl. se_bctrl 
instructions (16-bit instruction 
format)

The value 2 is added to the address of the current branch instruction and the 
result is placed into the LR. If the address of the current instruction is 
0xFFFF_FFFF_FFFF_FFFE in 64-bit mode or 0xFFFF_FFFE in 32-bit mode, 
the result placed into the LR is undefined.
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ESRMIF is set when an Instruction Storage Interrupt is
caused by a Misaligned Instruction Storage Exception
or when an Instruction TLB Error Interrupt was caused
by a TLB miss on the second half of a misaligned 32-bit
instruction.

ESRBO is set when an Instruction Storage Interrupt is
caused by a Mismatched Instruction Storage Exception
or a Byte Ordering Instruction Storage Exception.

 

When an Instruction TLB Error Interrupt occurs as
the result of a Instruction TLB miss on the second
half of a 32-bit VLE instruction that is aligned to
only 16-bits, SRR0 will point to the first half of the
instruction and ESRMIF will be set to 1. Any other
status posted as a result of the TLB miss (such as
MAS register updates described in TYPE-FSL
Memory Management) will reflect the page corre-
sponding to the second half of the instruction which
caused the Instruction TLB miss.

Programming Note
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Chapter 3.  VLE Compatibility with Books I–III

3.1 Overview. . . . . . . . . . . . . . . . . . . . 673
3.2 VLE Processor and Storage Control 

Extensions  . . . . . . . . . . . . . . . . . . . . . 673
3.2.1 Instruction Extensions . . . . . . . . 673

3.2.2 MMU Extensions  . . . . . . . . . . . . 673
3.3 VLE Limitations . . . . . . . . . . . . . . . 673

This chapter addresses the relationship between VLE
and Books I–III. 

3.1 Overview
Category VLE uses the same semantics as Books I–III.
Due to the limited instruction encoding formats, VLE
instructions typically support reduced immediate fields
and displacements, and not all operations defined by
Books I–III are encoded in category VLE. The basic
philosophy is to capture all useful operations, with most
frequent operations given priority. Immediate fields and
displacements are provided to cover the majority of
ranges encountered in embedded control code. Instruc-
tions are encoded in either a 16- or 32-bit format, and
these may be freely intermixed. 

VLE instructions cannot access floating-point registers
(FPRs). VLE instructions use GPRs and SPRs with the
following limitations:
� VLE instructions using the 16-bit formats are lim-

ited to addressing GPR0–GPR7, and GPR24–
GPR31 in most instructions. Move instructions are
provided to transfer register contents between
these registers and GPR8–GPR23.

� VLE compare and bit test instructions using the
16-bit formats implicitly set their results in CR0.

VLE instruction encodings are generally different than
instructions defined by Books I–III, except that most
instructions falling within primary opcode 31 are
encoded identically and have identical semantics
unless they affect or access a resource not supported
by category VLE.

3.2 VLE Processor and Storage 
Control Extensions
This section describes additional functionality to sup-
port category VLE.

3.2.1 Instruction Extensions
This section describes extensions to support VLE oper-
ations. Because instructions may reside on a half-word
boundary, bit 62 is not masked by instructions that read
an instruction address from a register, such as the LR,
CTR, or a save/restore register 0, that holds an instruc-
tion address:

The instruction set defined by Books I-III is modified to
support halfword instruction addressing, as follows:
� For Return From Interrupt instructions, such as rfi,

rfci, rfdi, and rfmci no longer mask bit 62 of the
respective save/restore register 0. The destination
address is SRR00:62 || 0b0, CSRR00:62 || 0b0,
DSRR00:62 || 0b0, MCSRR00:62 || 0b0 respectively.

� For bclr, bclrl, bcctr, and bcctrl no longer mask
bit 62 of the LR or CTR. The destination address is
LR0:62 || 0b0 or CTR0:62 || 0b0.

3.2.2 MMU Extensions
VLE operation is indicated by the VLE storage attribute.
When the VLE storage attribute for a page is set to 1,
instruction fetches from that page are decoded and pro-
cessed as VLE instructions. See Section 4.8.3 of Book
III-E.

When instructions are executing from a page that has
the VLE storage attribute set to 1, the processor is said
to be in VLE mode.

3.3 VLE Limitations
VLE instruction fetches are valid only when performed
in a Big-Endian mode. Attempting to fetch an instruc-
tion in a Little-Endian mode from a page with the VLE
storage attribute set causes an Instruction Storage
Byte-ordering exception.

Support for concurrent modification and execution of
VLE instructions is implementation-dependent.
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Chapter 4.  Branch Operation Instructions

4.1 Branch Processor Registers . . . . . 675
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4.1.1.1 Condition Register Setting for 

Compare Instructions . . . . . . . . . . . . . 676
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Bit Test Instruction. . . . . . . . . . . . . . . . 676
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This section defines Branch instructions that can be
executed when a processor is in VLE mode and the
registers that support them.

4.1 Branch Processor Registers
The registers that support branch operations are:
� Section 4.1.1, “Condition Register (CR)”
� Section 4.1.2, “Link Register (LR)”
� Section 4.1.3, “Count Register (CTR)”

4.1.1 Condition Register (CR)
The Condition Register (CR) is a 32-bit register which
reflects the result of certain operations, and provides a
mechanism for testing (and branching). The CR is more
fully defined in Book I.

Category VLE uses the entire CR, but some compari-
son operations and all Branch instructions are limited to
using CR0–CR3. The full Book I condition register field
and logical operations are provided however.

Figure 17. Condition Register

The bits in the Condition Register are grouped into
eight 4-bit fields, CR Field 0 (CR0) ... CR Field 7 (CR7),
which are set by VLE defined instructions in one of the
following ways.
� Specified fields of the condition register can be set

by a move to the CR from a GPR (mtcrf, mtocrf).
� A specified CR field can be set by a move to the

CR from another CR field (e_mcrf) or from
XER32:35 (mcrxr).

� CR field 0 can be set as the implicit result of a
fixed-point instruction.

� A specified CR field can be set as the result of a
fixed-point compare instruction.

� CR field 0 can be set as the result of a fixed-point
bit test instruction.

Other instructions from implemented categories may
also set bits in the CR in the same manner that they
would when not in VLE mode.

Instructions are provided to perform logical operations
on individual CR bits and to test individual CR bits.

For all fixed-point instructions in which the Rc bit is
defined and set, and for e_add2i., e_and2i.,and
e_and2is., the first three bits of CR field 0 (CR32:34)
are set by signed comparison of the result to zero, and
the fourth bit of CR field 0 (CR35) is copied from the
final state of XERSO. “Result” here refers to the entire
64-bit value placed into the target register in 64-bit
mode, and to bits 32:63 of the value placed into the tar-
get register in 32-bit mode.

if (64-bit mode)
then M � 0
else M � 32

if      (target_register)M:63 < 0 then c � 0b100
else if (target_register)M:63 > 0 then c � 0b010
else c � 0b001
CR0 � c || XERSO

If any portion of the result is undefined, the value
placed into the first three bits of CR field 0 is undefined.

The bits of CR field 0 are interpreted as shown below.

CR Bit Description

32 Negative (LT)
The result is negative.

33 Positive (GT)
The result is positive.

34 Zero (EQ)
The result is 0.

CR
32 63
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35 Summary overflow (SO)
This is a copy of the contents of XERSO at the
completion of the instruction.

4.1.1.1 Condition Register Setting for 
Compare Instructions
For compare instructions, a CR field specified by the
BF operand for the e_cmph, e_cmphl, e_cmpi, and
e_cmpli instructions, or CR0 for the se_cmpl,
e_cmp16i, e_cmph16i, e_cmphl16i, e_cmpl16i,
se_cmp, se_cmph, se_cmphl, se_cmpi, and
se_cmpli instructions, is set to reflect the result of the
comparison. The CR field bits are interpreted as shown
below. A complete description of how the bits are set is
given in the instruction descriptions and Section 5.6,
“Fixed-Point Compare and Bit Test Instructions”.

Condition register bits settings for compare instructions
are interpreted as follows. (Note: e_cmpi, and e_cmpli
instructions have a BF32 field instead of BF field; for
these instructions, BF32 should be substituted for BF in
the list below.)

CR Bit Description

4×BF + 32
Less Than (LT)
For signed fixed-point compare, (RA) or (RX)
< sci8, SI, (RB), or (RY).
For unsigned fixed-point compare, (RA) or
(RX) <u sci8, UI, UI5, (RB), or (RY).

4×BF + 33
Greater Than (GT)
For signed fixed-point compare, (RA) or (RX)
> sci8, SI, (RB), or (RY).
For unsigned fixed-point compare, (RA) or
(RX) >u sci8, UI, UI5, (RB), or (RY).

4×BF + 34
Equal (EQ)
For fixed-point compare, (RA) or (RX) = sci8,
UI, UI5, SI, (RB), or (RY).

4×BF + 35
Summary Overflow (SO)
For fixed-point compare, this is a copy of the
contents of XERSO at the completion of the
instruction.

4.1.1.2 Condition Register Setting for 
the Bit Test Instruction
The Bit Test Immediate instruction, se_btsti, also sets
CR field 0. See the instruction description and also
Section 5.6, “Fixed-Point Compare and Bit Test Instruc-
tions”. 

4.1.2 Link Register (LR)
VLE instructions use the Link Register (LR) as defined
in Book I, although category VLE defines a subset of all
variants of Book I conditional branches involving the
LR.

4.1.3 Count Register (CTR)
VLE instructions use the Count Register (CTR) as
defined in Book I, although category VLE defines a
subset of the variants of Book I conditional branches
involving the CTR.
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4.2 Branch Instructions

The sequence of instruction execution can be changed
by the branch instructions. Because VLE instructions
must be aligned on half-word boundaries, the low-order
bit of the generated branch target address is forced to 0
by the processor in performing the branch.

The branch instructions compute the EA of the target in
one of the following ways, as described in Section 2.2,
“Instruction Storage Addressing Modes”

1. Adding a displacement to the address of the
branch instruction.

2. Using the address contained in the LR (Branch to
Link Register [and Link]).

3. Using the address contained in the CTR (Branch to
Count Register [and Link]).

Branching can be conditional or unconditional, and the
return address can optionally be provided. If the return
address is to be provided (LK = 1), the EA of the
instruction following the branch instruction is placed
into the LR after the branch target address has been
computed; this is done regardless of whether the
branch is taken.

In branch conditional instructions, the BI32 or BI16
instruction field specifies the CR bit to be tested. For
32-bit instructions using BI32, CR32:47 (corresponding
to bits in CR0:CR3) may be specified. For 16-bit
instructions using BI16, only CR32:35 (bits within CR0)
may be specified. 

In branch conditional instructions, the BO32 or BO16
field specifies the conditions under which the branch is
taken and how the branch is affected by or affects the
CR and CTR. Note that VLE instructions also have dif-
ferent encodings for the BO32 and BO16 fields than in
Book I’s BO field. 

If the BO32 field specifies that the CTR is to be decre-
mented, in 64-bit mode CTR0:63 are decremented, and
in 32-bit mode CTR32:63 are decremented. If BO16 or
BO32 specifies a condition that must be TRUE or
FALSE, that condition is obtained from the contents of
CRBI32+32 or CRBI16+32. (Note that CR bits are num-
bered 32:63. BI32 or BI16 refers to the condition regis-
ter bit field in the branch instruction encoding. For
example, specifying BI32 = 2 refers to CR34.)

For Figure 18 let M = 0 in 64-bit mode and M = 32 in
32-bit mode.

Encodings for the BO32 field for VLE are shown in
Figure 18.

Figure 18. BO32 field encodings

Encodings for the BO16 field for VLE are shown in
Figure 19.

Figure 19. BO16 field encodings

BO32 Description

00 Branch if the condition is false.

01 Branch if the condition is true.

10 Decrement CTRM:63, then branch if the 
decremented CTRM:63≠0

11 Decrement CTRM:63, then branch if the 
decremented CTRM:63=0.

BO16 Description

0 Branch if the condition is false.

1 Branch if the condition is true.
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Branch [and Link] BD24-form

e_b target_addr (LK=0)
e_bl target_addr (LK=1)

NIA �iea CIA + EXTS(BD24 || 0b0)
if LK then LR �iea CIA + 4

target_addr specifies the branch target address.

The branch target address is the sum of BD24 || 0b0
sign-extended and the address of this instruction, with
the high-order 32 bits of the branch target address set
to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered: 
LR (if LK=1)

Branch [and Link] BD8-form

se_b target_addr (LK=0)
se_bl target_addr (LK=1)

NIA �iea CIA + EXTS(BD8 || 0b0)
if LK then LR �iea CIA + 2

target_addr specifies the branch target address.

The branch target address is the sum of BD8 || 0b0
sign-extended and the address of this instruction, with
the high-order 32 bits of the branch target address set
to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered: 
LR (if LK=1)

Branch Conditional [and Link] BD15-form

e_bc BO32,BI32,target_addr (LK=0)
e_bcl BO32,BI32,target_addr (LK=1)

if (64-bit mode)
then M � 0
else M � 32

if BO320 then CTRM:63 � CTRM:63 - 1
ctr_ok  � ¬BO320 | ((CTRM:63 ≠ 0) ⊕  BO321)
cond_ok � BO320 | (CRBI32+32 ≡ BO321)
if ctr_ok & cond_ok then
NIA �iea (CIA + EXTS(BD15 || 0b0))

else
NIA �iea CIA + 4

if LK then LR �iea CIA + 4

The BI32 field specifies the Condition Register bit to be
tested. The BO32 field is used to resolve the branch as
described in Figure 18. target_addr specifies the
branch target address.

The branch target address is the sum of BD15 || 0b0
sign-extended and the address of this instruction, with
the high-order 32 bits of the branch target address set
to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction
following the Branch instruction is placed into the Link
Register.

Special Registers Altered: 
CTR (if BO320=1) 
LR (if LK=1)

Branch Conditional Short Form BD8-form

se_bc BO16,BI16,target_addr

cond_ok � (CRBI16+32 ≡ BO16)
if cond_ok then
               NIA �iea CIA + EXTS(BD8 || 0b0)
else           NIA �iea CIA + 2

The BI16 field specifies the Condition Register bit to be
tested. The BO16 field is used to resolve the branch as
described in Figure 19. target_addr specifies the
branch target address.

The branch target address is the sum of BD8 || 0b0
sign-extended and the address of this instruction, with
the high-order 32 bits of the branch target address set
to 0 in 32-bit mode.

Special Registers Altered: 
None

30 0 BD24 LK
0 6 7 31

58 0 LK BD8
0 6 7 8 15

30 8 BO32 BI32 BD15 LK
0 6 10 12 16 31

28 BO16 BI16 BD8
0 5 6 8 15
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Branch to Count Register [and Link]
C-form

se_bctr (LK=0)
se_bctrl (LK=1)

NIA �iea CTR0:62 || 0b0
if LK then LR �iea CIA + 2

The branch target address is CTR0:62 || 0b0 with the
high-order 32 bits of the branch target address set to 0
in 32-bit mode.

If LK=1 then the effective address of the instruction
following the Branch instruction is placed into the Link
Register.

Special Registers Altered: 
LR (if LK=1)

Branch to Link Register [and Link]C-form

se_blr (LK=0)
se_blrl (LK=1)

NIA �iea LR0:62 || 0b0
if LK then LR �iea CIA + 2

The branch target address is LR0:62 || 0b0 with the
high-order 32 bits of the branch target address set to 0
in 32-bit mode.

If LK=1 then the effective address of the instruction
following the Branch instruction is placed into the Link
Register.

Special Registers Altered: 
LR (if LK=1)

03 LK
0 15

02 LK
0 15
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4.3 System Linkage Instructions

The System Linkage instructions enable the program to
call upon the system to perform a service and provide a
means by which the system can return from performing
a service or from processing an interrupt. System Link-
age instructions defined by the VLE category are identi-
cal in semantics to System Linkage instructions defined

in Book I and Book III-E with the exception of the LEV
field, but are encoded differently.

se_sc provides the same functionality as the Book I
(and Book III-E) instruction sc without the LEV field.
se_rfi, se_rfci, se_rfdi, and se_rfmci provide the
same functionality as the Book III-E instructions rfi,
rfci, rfdi, and rfmci respectively.

System Call C-form

se_sc

SRR1 �iea MSR
SRR0 � CIA+2
NIA �iea IVPR0:47 || IVOR848:59 || 0b0000
MSR � new_value (see below)

The effective address of the instruction following the
System Call instruction is placed into SRR0. The con-
tents of the MSR are copied into SRR1.

Then a System Call interrupt is generated. The inter-
rupt causes the MSR to be set as described in
Section 5.6 of Book III-E.

The interrupt causes the next instruction to be fetched
from effective address

IVPR0:47 || IVOR848:59 || 0b0000.

This instruction is context synchronizing.

Special Registers Altered: 
SRR0 SRR MSR

Illegal C-form

se_illegal

se_illegal is used to request an Illegal Instruction
exception.

The behavior is the same as if an illegal instruction was
executed.

This instruction is context synchronizing.

Special Registers Altered: 
SRR0 SRR1 MSR ESR

02
0 15

0
0 15
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Return From Machine Check Interrupt C-
form

se_rfmci

MSR � MCSRR1
NIA �iea MCSRR00:62 || 0b0

The se_rfmci instruction is used to return from a
machine check class interrupt, or as a means of estab-
lishing a new context and synchronizing on that new
context simultaneously. 

The contents of MCSRR1 are placed into the MSR. If
the new MSR value does not enable any pending
exceptions, then the next instruction is fetched, under
control of the new MSR value, from the address
MCSRR00:62||0b0. If the new MSR value enables one
or more pending exceptions, the interrupt associated
with the highest priority pending exception is gener-
ated; in this case the values placed into the save/
restore registers by the interrupt processing mecha-
nism (see Chapter 5 of Book III-E) is the address and
MSR value of the instruction that would have been exe-
cuted next had the interrupt not occurred (that is, the
address in MCSRR0 at the time of the execution of the
se_rfmci).

This instruction is privileged and context synchronizing.

Special Registers Altered: 
MSR

Return From Critical Interrupt C-form

se_rfci

MSR � CSRR1
NIA �iea CSRR00:62 || 0b0

The se_rfci instruction is used to return from a critical
class interrupt, or as a means of establishing a new
context and synchronizing on that new context simulta-
neously. 

The contents of CSRR1 are placed into the MSR. If the
new MSR value does not enable any pending excep-
tions, then the next instruction is fetched, under control
of the new MSR value, from the address
CSRR00:62||0b0. If the new MSR value enables one or
more pending exceptions, the interrupt associated with
the highest priority pending exception is generated; in
this case the values placed into the save/restore regis-
ters by the interrupt processing mechanism (see Chap-
ter 5 of Book III-E) is the address and MSR value of the
instruction that would have been executed next had the
interrupt not occurred (that is, the address in CSRR0 at
the time of the execution of the se_rfci).

This instruction is privileged and context synchronizing.

Special Registers Altered: 
MSR

11
0 15

09
0 15
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Return From Interrupt C-form

se_rfi

MSR � SRR1
NIA �iea SRR00:62 || 0b0

The se_rfi instruction is used to return from a non-criti-
cal class interrupt, or as a means of establishing a new
context and synchronizing on that new context simulta-
neously.

The contents of SRR1 are placed into the MSR. If the
new MSR value does not enable any pending excep-
tions, then the next instruction is fetched under control
of the new MSR value from the address SRR00:62||0b0.
If the new MSR value enables one or more pending
exceptions, the interrupt associated with the highest
priority pending exception is generated; in this case the
values placed into the save/restore registers by the
interrupt processing mechanism (see Chapter 5 of
Book III-E) is the address and MSR value of the instruc-
tion that would have been executed next had the inter-
rupt not occurred (that is, the address in SRR0 at the
time of the execution of the se_rfi).

This instruction is privileged and context synchronizing.

Special Registers Altered: 
MSR

Return From Debug Interrupt C-form

se_rfdi

MSR � DSRR1
NIA �iea DSRR032:62 || 0b0

The se_rfdi instruction is used to return from a debug
class interrupt, or as a means of establishing a new
context and synchronizing on that new context simulta-
neously. 

The contents of DSRR1 are placed into the MSR. If the
new MSR value does not enable any pending excep-
tions, then the next instruction is fetched, under control
of the new MSR value, from the address
DSRR00:62||0b0. If the new MSR value enables one or
more pending exceptions, the interrupt associated with
the highest priority pending exception is generated; in
this case the value placed into the save/restore regis-
ters by the interrupt processing mechanism (see Chap-
ter 5 of Book III-E) is the address of the instruction that
would have been executed next had the interrupt not
occurred (that is, the address in DSRR0 at the time of
the execution of se_rfdi).

This instruction is privileged and context synchronizing.

Special Registers Altered:
MSR

Corequisite Categories:
Embedded.Enhanced Debug

08
0 15

10
0 15
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4.4 Condition Register Instructions

Condition Register instructions are provided to transfer
values to and from various portions of the CR. Cate-
gory VLE does not introduce any additional functional-
ity beyond that defined in Book I for CR operations, but

does remap the CR-logical and mcrf instruction func-
tionality into primary opcode 31. These instructions
operate identically to the Book I instructions, but are
encoded differently. 

Condition Register AND XL-form

e_crand BT,BA,BB

CRBT+32 � CRBA+32 & CRBB+32

The bit in the Condition Register specified by BA+32 is
ANDed with the bit in the Condition Register specified
by BB+32, and the result is placed into the bit in the
Condition Register specified by BT+32.

Special Registers Altered: 
CRBT+32

Condition Register AND with Complement
XL-form

e_crandc BT,BA,BB

CRBT+32 � CRBA+32 & ¬CRBB+32

The bit in the Condition Register specified by BA+32 is
ANDed with the one’s complement of the bit in the Con-
dition Register specified by BB+32, and the result is
placed into the bit in the Condition Register specified by
BT+32.

Special Registers Altered: 
CRBT+32

Condition Register Equivalent XL-form

e_creqv BT,BA,BB

CRBT+32 � CRBA+32 ≡ CRBB+32
The bit in the Condition Register specified by BA+32 is
XORed with the bit in the Condition Register specified
by BB+32, and the complemented result is placed into
the bit in the Condition Register specified by BT+32.

Special Registers Altered: 
CRBT+32

Condition Register NAND XL-form

e_crnand BT,BA,BB

CRBT+32 � ¬(CRBA+32 & CRBB+32)

The bit in the Condition Register specified by BA+32 is
ANDed with the bit in the Condition Register specified
by BB+32, and the complemented result is placed into
the bit in the Condition Register specified by BT+32.

Special Registers Altered: 
CRBT+32

31 BT BA BB 257 /
0 6 11 16 21 31 31 BT BA BB 129 /

0 6 11 16 21 31

31 BT BA BB 289 /
0 6 11 16 21 31

31 BT BA BB 225 /
0 6 11 16 21 31
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Condition Register NOR XL-form

e_crnor BT,BA,BB

CRBT+32 � ¬(CRBA+32 | CRBB+32)
The bit in the Condition Register specified by BA+32 is
ORed with the bit in the Condition Register specified by
BB+32, and the complemented result is placed into the
bit in the Condition Register specified by BT+32.

Special Registers Altered: 
CRBT+32

Condition Register OR XL-form

e_cror BT,BA,BB

CRBT+32 � CRBA+32 | CRBB+32

The bit in the Condition Register specified by BA+32 is
ORed with the bit in the Condition Register specified by
BB+32, and the result is placed into the bit in the Con-
dition Register specified by BT+32.

Special Registers Altered: 
CRBT+32

Condition Register OR with Complement
XL-form

e_crorc BT,BA,BB

CRBT+32 � CRBA+32 | ¬CRBB+32
The bit in the Condition Register specified by BA+32 is
ORed with the complement of the bit in the Condition
Register specified by BB+32, and the result is placed
into the bit in the Condition Register specified by
BT+32.

Special Registers Altered: 
CRBT+32

Condition Register XOR XL-form

e_crxor BT,BA,BB

CRBT+32 � CRBA+32 ⊕  CRBB+32
The bit in the Condition Register specified by BA+32 is
XORed with the bit in the Condition Register specified
by BB+32, and the result is placed into the bit in the
Condition Register specified by BT+32.

Special Registers Altered: 
CRBT+32

Move CR Field XL-form

e_mcrf BF,BFA

CR4xBF+32:4xBF+35 � CR4xBFA+32:4xBFA+35

The contents of Condition Register field BFA are copied
to Condition Register field BF.

Special Registers Altered: 
CR field BF

31 BT BA BB 33 /
0 6 11 16 21 31

31 BT BA BB 449 /
0 6 11 16 21 31

31 BT BA BB 417 /
0 6 11 16 21 31

31 BT BA BB 193 /
0 6 11 16 21 31

31 BF // BFA ///// 16 /
0 6 9 11 16 21 31
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Chapter 5.  Fixed-Point Instructions

5.1 Fixed-Point Load Instructions . . . . 685
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5.7 Fixed-Point Trap Instructions . . . . . 701
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Instructions  . . . . . . . . . . . . . . . . . . . . . 710

This section lists the fixed-point instructions supported
by category VLE. 

5.1 Fixed-Point Load Instructions

The fixed-point Load instructions compute the effective
address (EA) of the memory to be accessed as
described in Section 2.1, “Data Storage Addressing
Modes”

The byte, halfword, word, or doubleword in storage
addressed by EA is loaded into RT or RZ.

Category VLE supports both Big- and Little-Endian
byte ordering for data accesses.

Some fixed-point load instructions have an update form
in which RA is updated with the EA. For these forms, if
RA≠0 and RA≠RT, the EA is placed into RA and the
memory element (byte, halfword, word, or doubleword)
addressed by EA is loaded into RT. If RA=0 or RA =RT,

the instruction form is invalid. This is the same behavior
as specified for load with update instructions in Book I.

The fixed-point Load instructions from Book I, lbzx,
lbzux, lhzx, lhzux, lwzx, and lwzux are available while
executing in VLE mode. The mnemonics, decoding,
and semantics for these instructions are identical to
those in Book I. See Section 3.3.2 of Book I for the
instruction definitions.

The fixed-point Load instructions from Book I, lwax,
lwaux, ldx, and ldux are available while executing in
VLE mode on 64-bit implementations. The mnemonics,
decoding, and semantics for these instructions are
identical to those in Book I. See Section 3.3.2 of Book
Ifor the instruction definitions.
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Load Byte and Zero D-form

e_lbz RT,D(RA)

if RA = 0 then b � 0
else b � (RA)
EA � b + EXTS(D)
RT � 560 || MEM(EA, 1)

Let the effective address (EA) be the sum (RA|0) + D.
The byte in storage addressed by EA is loaded into
RT56:63. RT0:55 are set to 0.

Special Registers Altered: 
None

Load Byte and Zero Short Form SD4-form

se_lbz RZ,SD4(RX)

EA � (RX)+ 600 || SD4
RZ � 560 || MEM(EA, 1)

Let the effective address (EA) be the sum RX + SD4.
The byte in storage addressed by EA is loaded into
RT56:63. RT0:55 are set to 0.

Special Registers Altered: 
None

Load Byte and Zero with Update D8-form

e_lbzu RT,D8(RA)

EA � (RA) + EXTS(D8)
RT � 560 || MEM(EA, 1)
RA � EA

Let the effective address (EA) be the sum (RA) + D8.
The byte in storage addressed by EA is loaded into
RT56:63. RT0:55 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered: 
None

Load Halfword Algebraic D-form

e_lha RT,D(RA)

if RA = 0 then b � 0
else b � (RA)
EA � b + EXTS(D)
RT � EXTS(MEM(EA, 2))

Let the effective address (EA) be the sum (RA|0) + D.
The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are filled with a copy of bit 0 of the
loaded halfword.

Special Registers Altered: 
None

Load Halfword and Zero D-form

e_lhz RT,D(RA)

if RA = 0 then b � 0
else b � (RA)
EA � b + EXTS(D)
RT � 480 || MEM(EA, 2)

Let the effective address (EA) be the sum (RA|0) + D.
The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are set to 0.

Special Registers Altered: 
None

Load Halfword and Zero Short Form 
SD4-form

se_lhz RZ,SD4(RX)

EA � (RX)+ (590 || SD4 || 0)
RZ � 480 || MEM(EA, 2)

Let the effective address (EA) be the sum (RX) + (SD4
|| 0). The halfword in storage addressed by EA is
loaded into RZ48:63. RZ0:47 are set to 0.

Special Registers Altered: 
None

12 RT RA D
0 6 11 16 31

08 SD4 RZ RX
0 4 8 12 15

06 RT RA 0 D8
0 6 11 16 24 31

14 RT RA D
0 6 11 16 31

22 RT RA D
0 6 11 16 31 10 SD4 RZ RX

0 4 8 12 15
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Load Halfword Algebraic with Update
D8-form

e_lhau RT,D8(RA)

EA � (RA) + EXTS(D8)
RT � EXTS(MEM(EA, 2))
RA � EA

Let the effective address (EA) be the sum (RA) + D8.
The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are filled with a copy of bit 0 of the
loaded halfword.

EA is placed into RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered: 
None

Load Halfword and Zero with Update
D8-form

e_lhzu RT,D8(RA)

EA � (RA) + EXTS(D8)
RT � 480 || MEM(EA, 2))
RA � EA

Let the effective address (EA) be the sum (RA) + D8.
The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered: 
None

Load Word and Zero D-form

e_lwz RT,D(RA)

if RA = 0 then b � 0
else b � (RA)
EA � b + EXTS(D)
RT � 320 || MEM(EA, 4)

Let the effective address (EA) be the sum (RA|0) + D.
The word in storage addressed by EA is loaded into
RT32:63. RT0:31 are set to 0.

Special Registers Altered: 
None

Load Word and Zero Short FormSD4-form

se_lwz RZ,SD4(RX)

EA � (RX)+ (580 || SD4 || 20)
RZ � 320 || MEM(EA, 2)

Let the effective address (EA) be the sum (RX) + (SD4
|| 00). The word in storage addressed by EA is loaded
into RZ32:63. RZ0:31 are set to 0.

Special Registers Altered: 
None

06 RT RA 03 D8
0 6 11 16 24 31

06 RT RA 01 D8
0 6 11 16 24 31

20 RT RA D
0 6 11 16 31

12 SD4 RZ RX
0 4 8 12 15
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Load Word and Zero with Update D8-form

e_lwzu RT,D8(RA)

EA � (RA) + EXTS(D8)
RT � 320 || MEM(EA, 4))
RA � EA

Let the effective address (EA) be the sum (RA) + D8.
The word in storage addressed by EA is loaded into
RT32:63. RT0:31 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered: 
None

06 RT RA 02 D8
0 6 11 16 24 31
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5.2 Fixed-Point Store Instructions

The fixed-point Store instructions compute the EA of
the memory to be accessed as described in
Section 2.1, “Data Storage Addressing Modes”. 

The contents of register RS or RZ are stored into the
byte, halfword, word, or doubleword in storage
addressed by EA.

Category VLE supports both Big- and Little-Endian
byte ordering for data accesses.

Some fixed-point store instructions have an update
form, in which register RA is updated with the effective
address. For these forms, the following rules (from
Book I) apply.
� If RA≠0, the effective address is placed into regis-

ter RA.

� If RS=RA, the contents of register RS are copied
to the target memory element and then EA is
placed into register RA (RS).

The fixed-point Store instructions from Book I, stbx,
stbux, sthx, sthux, stwx, and stwux are available
while executing in VLE mode. The mnemonics, decod-
ing, and semantics for those instructions are identical to
those in Book I; see Section 3.3.3 of Book I for the
instruction definitions.

The fixed-point Store instructions from Book I, stdx and
stdux are available while executing in VLE mode on
64-bit implementations. The mnemonics, decoding,
and semantics for these instructions are identical to
those in Book I; see Section 3.3.3 of Book I for the
instruction definitions.

Store Byte D-form

e_stb RS,D(RA)

if RA = 0 then b � 0
else b � (RA)
EA � b + EXTS(D)
MEM(EA, 1) � (RS)56:63

Let the effective address (EA) be the sum (RA|0)+ D.
(RS)56:63 are stored in the byte in storage addressed by
EA.

Special Registers Altered: 
None

Store Byte Short Form SD4-form

se_stb RZ,SD4(RX)

EA � (RX) + EXTS(SD4)
MEM(EA, 1) � (RZ)56:63

Let the effective address (EA) be the sum (RX) + SD4.
(RZ)56:63 are stored in the byte in storage addressed by
EA.

Special Registers Altered:
None

13 RS RA D
0 6 11 16 31

09 SD4 RZ RX
0 4 8 12 15
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Store Byte with Update D8-form

e_stbu RS,D8(RA)

EA � (RA) + EXTS(D8)
MEM(EA, 1) � (RS)56:63
RA � EA

Let the effective address (EA) be the sum (RA) + D8.
(RS)56:63 are stored in the byte in storage addressed by
EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered: 
None

Store Halfword D-form

e_sth RS,D(RA)

if RA = 0 then b � 0
else b � (RA)
EA � b + EXTS(D)
MEM(EA, 2) � (RS)48:63

Let the effective address (EA) be the sum (RA|0) + D.
(RS)48:63 are stored in the halfword in storage
addressed by EA.

Special Registers Altered: 
None

Store Halfword Short Form SD4-form

se_sth RZ,SD4(RX)

EA � (RX) + (590 || SD4 || 0)
MEM(EA, 2) � (RZ)48:63

Let the effective address (EA) be the sum (RX) + (SD4
|| 0). (RZ)48:63 are stored in the halfword in storage
addressed by EA.

Special Registers Altered:
None

Store Halfword with Update D8-form

e_sthu RS,D8(RA)

EA � (RA) + EXTS(D8)
MEM(EA, 2) � (RS)48:63
RA � EA

Let the effective address (EA) be the sum (RA) + D8.
(RS)48:63 are stored in the halfword in storage
addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered: 
None

06 RS RA 04 D8
0 6 11 16 24 31

23 RS RA D
0 6 11 16 31

11 SD4 RZ RX
0 4 8 12 15

06 RS RA 05 D8
0 6 11 16 24 31
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Store Word D-form

e_stw RS,D(RA)

if RA = 0 then b � 0
else b � (RA)
EA � b + EXTS(D)
MEM(EA, 4) � (RS)32:63

Let the effective address (EA) be the sum (RA|0) + D.
(RS)32:63 are stored in the word in storage addressed
by EA.

Special Registers Altered: 
None

Store Word Short Form SD4-form

se_stw RZ,SD4(RX)

EA � (RX) + (580 || SD4 || 20)
MEM(EA, 4) � (RZ)32:63

Let the effective address (EA) be the sum (RX)+ (SD4 ||
00). (RZ)32:63 are stored in the word in storage
addressed by EA.

Special Registers Altered:
None

Store Word with Update D8-form

e_stwu RS,D8(RA)

EA � (RA) + EXTS(D8)
MEM(EA, 4) � (RS)32:63
RA � EA

Let the effective address (EA) be the sum (RA) + D8.
(RS)32:63 are stored in the word in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered: 
None

21 RS RA D
0 6 11 16 31

13 SD4 RZ RX
0 4 8 12 15

06 RS RA 06 D8
0 6 11 16 24 31
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5.3 Fixed-Point Load and Store 
with Byte Reversal Instructions
The fixed-point Load with Byte Reversal and Store with
Byte Reversal instructions from Book I, lhbrx, lwbrx,
sthbrx, and stwbrx are available while executing in
VLE mode. The mnemonics, decoding, and semantics
for these instructions are identical to those in Book I.
See Section 3.3.4 of Book I for the instruction defini-
tions.

5.4 Fixed-Point Load and Store 
Multiple Instructions
The Load/Store Multiple instructions have preferred
forms; see Section 1.8.1 of Book I. In the preferred
forms storage alignment satisfies the following rule.
� The combination of the EA and RT (RS) is such

that the low-order byte of GPR 31 is loaded
(stored) from (into) the last byte of an aligned
quadword in storage.

Load Multiple Word D8-form

e_lmw RT,D8(RA)

if RA = 0 then b � 0
else b � (RA)
EA � b + EXTS(D8)
r � RT
do while r ≤31

GPR(r) � 320 || MEM(EA,4)
r  � r + 1
EA � EA + 4

Let n = (32-RT). Let the effective address (EA) be the
sum (RA|0) + D8.

n consecutive words starting at EA are loaded into the
low-order 32 bits of GPRs RT through 31. The high-
order 32 bits of these GPRs are set to zero.

If RA is in the range of registers to be loaded, including
the case in which RA = 0, the instruction form is invalid.

Special Registers Altered: 
None

Store Multiple Word D8-form

e_stmw RS,D8(RA)

if RA = 0 then b � 0
else b � (RA)
EA � b + EXTS(D8)
r � RS
do while r ≤31

MEM(EA,4) � GPR(r)32:63
r  � r + 1
EA � EA + 4

Let n = (32-RS). Let the effective address (EA) be the
sum (RA|0) + D8.

n consecutive words starting at EA are stored from the
low-order 32 bits of GPRs RS through 31.

Special Registers Altered: 
None

06 RT RA 08 D8
0 6 11 16 24 31

06 RS RA 9 D8
0 6 11 16 24 31
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5.5 Fixed-Point Arithmetic 
Instructions
The fixed-point Arithmetic instructions use the contents
of the GPRs as source operands, and place results into
GPRs, into status bits in the XER and into CR0.

The fixed-point Arithmetic instructions treat source
operands as signed integers unless the instruction is
explicitly identified as performing an unsigned opera-
tion.

The e_add2i. instruction and other Arithmetic instruc-
tions with Rc=1 set the first three bits of CR0 to charac-
terize the result placed into the target register. In 64-bit
mode, these bits are set by signed comparison of the
result to 0. In 32-bit mode, these bits are set by signed
comparison of the low-order 32 bits of the result to
zero.

e_addic[.] and e_subfic[.] always set CA to reflect the
carry out of bit 0 in 64-bit mode and out of bit 32 in 32-
bit mode.

The fixed-point Arithmetic instructions from Book I,
add[.], addo[.], addc[.], addco[.], adde[.], addeo[.],
addme[.], addmeo[.], addze[.], addzeo[.], divw[.],
divwo[.], divwu[.], divwuo[.], mulhw[.], mulhwu[.],
mullw[.], mullwo[.] neg[.], nego[.], subf[.], subfo[.]
subfe[.], subfeo[.], subfme[.], subfmeo[.], subfze[.],
subfzeo[.], subfc[.], and subfco[.] are available while
executing in VLE mode. The mnemonics, decoding,
and semantics for these instructions are identical to
those in Book I; see Section 3.3.8 of Book I for the
instruction definitions.

The fixed-point Arithmetic instructions from Book I,
mulld[.], mulldo[.], mulhd[.], muldu[.], divd[.],
divdo[.], divdu[.], and divduo[.] are available while
executing in VLE mode on 64-bit implementations. The
mnemonics, decoding, and semantics for those instruc-
tions are identical to these in Book I; see Section 3.3.8
of Book I for the instruction definitions.
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Add Short Form RR-form

se_add RX,RY

RX � (RX) + (RY)

The sum (RX) + (RY) is placed into register RX.

Special Registers Altered: 
None

Add Immediate D-form

e_add16i RT,RA,SI

RT � (RA) + EXTS(SI)

The sum (RA) + SI is placed into register RT.

Special Registers Altered: 
None

Add (2 operand) Immediate and Record
I16A-form

e_add2i. RA,si

RA � (RA) + EXTS(si)

The sum (RA) + si is placed into register RT.

Special Registers Altered: 
CR0

Add (2 operand) Immediate Shifted
I16A-form

e_add2is RA,si

RA� (RA) + EXTS(si || 160)

The sum (RA) + (si || 0x0000) is placed into register RA.

Special Registers Altered: 
None

Add Scaled Immediate SCI8-form

e_addi RT,RA,sci8 (Rc=0)
e_addi. RT,RA,sci8 (Rc=1)

sci8 � 56-SCL×8F || UI8 ||SCL×8F
RT � (RA) + sci8

The sum (RA) + sci8 is placed into register RT.

Special Registers Altered: 
CR0  (if Rc=1)

Add Immediate Short Form OIM5-form

se_addi RX,oimm 

oimm � (590 || OIM5) + 1
RX � (RX) + oimm

The sum (RX) + oimm is placed into RX. The value of
oimm must be in the range of 1 to 32.

Special Registers Altered: 
None

01 0 RY RX
0 6 8 12 15

07 RT RA SI
0 6 11 16 31

28 si RA 17 si
0 6 11 16 21 31

28 si RA 18 si
0 6 11 16 21 31

06 RT RA 8 Rc F SCL UI8
0 6 11 16 20 21 22 24 31

08 0 OIM5 RX
0 6 7 12 15
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Add Scaled Immediate Carrying
SCI8-form

e_addic RT,RA,sci8 (Rc=0)
e_addic. RT,RA,sci8 (Rc=1)

sci8 � 56-SCL×8F || UI8 ||SCL×8F
RT � (RA) + sci8

The sum (RA) + sci8 is placed into register RT.

Special Registers Altered: 
CR0 (if Rc=1)
CA

Subtract RR-form

se_sub RX,RY 

RX � (RX) + ¬(RY) + 1

The sum (RX) + ¬(RY) + 1 is placed into register RX.

Special Registers Altered: 
None

Subtract From Short Form RR-form

se_subf RX,RY

RX � ¬(RX) + (RY) + 1

The sum ¬(RX) + (RY) + 1 is placed into register RX.

Special Registers Altered: 
None

Subtract From Scaled Immediate Carrying
SCI8-form

e_subfic RT,RA,sci8 (Rc=0)
e_subfic. RT,RA,sci8 (Rc=1)

sci8 � 56-SCL×8F || UI8 ||SCL×8F
RT � ¬(RA) + sci8 + 1

The sum ¬(RA) + sci8 + 1 is placed into register RT.

Special Registers Altered: 
CR0 (if Rc=1)
CA

Subtract Immediate OIM5-form

se_subi RX,oimm (Rc=0)
se_subi. RX,oimm (Rc=1)

oimm � (590 || OIM5) + 1
RX � (RX) + ¬oimm + 1

The sum (RA) + ¬oimm + 1 is placed into register RX.
The value of oimm must be in the range 1 to 32.

Special Registers Altered: 
CR0 (if Rc=1)

06 RT RA 9 RcF SCL UI8
0 6 11 16 20 21 22 24 31

1 2 RY RX
0 6 8 12 15

01 3 RY RX
0 6 8 12 15

06 RT RA 11 Rc F SCL UI8
0 6 11 16 20 21 22 24 31

09 Rc OIM5 RX
0 6 7 12 15
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Multiply Low Scaled Immediate SCI8-form

e_mulli RT,RA,sci8

sci8 � 56-SCL×8F || UI8 ||SCL×8F
prod0:127 � (RA) × sci8
RT � prod64:127

The 64-bit first operand is (RA). The 64-bit second
operand is the sci8 operand. The low-order 64-bits of
the 128-bit product of the operands are placed into reg-
ister RT.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered: 
None

Multiply (2 operand) Low Immediate
I16A-form

e_mull2i RA,si

prod0:127 � (RA) × EXTS(si)
RA � prod64:127

The 64-bit first operand is (RA). The 64-bit second
operand is the sign-extended value of the si operand.
The low-order 64-bits of the 128-bit product of the oper-
ands are placed into register RA.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered: 
None

Multiply Low Word Short Form RR-form

se_mullw RX,RY

RX � (RX)32:63 × (RY)32:63
The 32-bit operands are the low-order 32-bits of RX
and of RY. The 64-bit product of the operands is placed
into register RX.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered: 
None

Negate Short Form R-form

se_neg RX

RX � ¬(RX)+ 1

The sum ¬(RX) + 1 is placed into register RX

If the processor is in 64-bit mode and register RX con-
tains the most negative 64-bit number
(0x8000_0000_0000_0000), the result is the most neg-
ative 64-bit number. Similarly, if the processor is in 32-
bit mode and register RX contains the most negative
32-bit number (0x8000_0000), the result is the most
negative 32-bit number.

Special Registers Altered: 
None

06 RT RA 20 F SCL UI8
0 6 11 16 21 22 24 31 28 si RA 20 si

0 6 11 16 21 31

01 1 RY RX
0 6 8 12 15

0 03 RX
0 6 12 15
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5.6 Fixed-Point Compare and Bit Test Instructions

The fixed-point Compare instructions compare the con-
tents of register RA or register RX with one of the fol-
lowing:
� The value of the scaled immediate field sci8

formed from the F, UI8, and SCL fields as:
sci8 � 56-SCL×8F || UI8 ||SCL×8F

� The zero-extended value of the UI field
� The zero-extended value of the UI5 field
� The sign-extended value of the SI field
� The contents of register RB or register RY. 

The following comparisons are signed: e_cmph,
e_cmpi, e_cmp16i, e_cmph16i, se_cmp, se_cmph,
and se_cmpi. 

The following comparisons are unsigned: e_cmphl,
e_cmpli, e_cmphl16i, e_cmpl16i, se_cmpli,
se_cmpl, and se_cmphl.

The fixed-point Bit Test instruction tests the bit specified
by the UI5 instruction field and sets the CR0 field as fol-
lows.

.

The fixed-point Compare instructions from Book I, cmp
and cmpl are available while executing in VLE mode.
The mnemonics, decoding, and semantics for these
instructions are identical to those in Book I; see
Section 3.3.9 of Book I for the instruction definitions.

Bit Test Immediate IM5-form

se_btsti RX,UI5

a � UI5
b � a+320 || 1 ||  31-a0
c � (RX) & b
if c = 0 then d � 0b001 else d � 0b010
CR0 � d || XERSO

Bit UI5+32 of register RX is tested for equality to ’0’ and
the result is recorded in CR0. EQ is set if the tested bit
is 0, LT is cleared, and GT is set to the inverse value of
EQ.

Special Registers Altered: 
CR0

Compare Immediate Word I16A-form

e_cmp16i RA,si

b � EXTS(si)
if (RA)32:63 < b32:63 then c � 0b100
if (RA)32:63 > b32:63 then c � 0b010
if (RA)32:63 = b32:63 then c � 0b001
CR0 � c || XERSO 

The low-order 32 bits of register RA are compared with
si, treating operands as signed integers. The result of
the comparison is placed into CR0.

Special Registers Altered: 
CR0

Bit Name Description
0 LT Always set to 0
1 GT RXui5 = 1
2 EQ RXui5 = 0
3 SO Summary overflow from the XER

25 1 UI5 RX
0 6 7 12 15

28 si RA 19 si
0 6 11 16 21 31
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Compare Scaled Immediate Word
SCI8-form

e_cmpi BF32,RA,sci8

sci8 � 56-SCL×8F || UI8 ||SCL×8F
if (RA)32:63 < sci832:63 then c � 0b100
if (RA)32:63 > sci832:63 then c � 0b010
if (RA)32:63 = sci832:63 then c � 0b001
CR4×BF32+32:4×BF32+35 � c || XERSO 

The low-order 32 bits of register RA are compared with
sci8, treating operands as signed integers. The result of
the comparison is placed into CR field BF32.

Special Registers Altered: 
CR field BF32

Compare Word RR-form

se_cmp RX,RY

if (RX)32:63 < (RY)32:63 then c � 0b100
if (RX)32:63 > (RY)32:63 then c � 0b010
if (RX)32:63 = (RY)32:63 then c � 0b001
CR0 � c || XERSO 

The low-order 32 bits of register RX are compared with
the low-order 32 bits of register RY, treating operands
as signed integers. The result of the comparison is
placed into CR0.

Special Registers Altered: 
CR0

Compare Immediate Word Short Form
IM5-form

se_cmpi RX,UI5

b � 590 || UI5
if (RX)32:63 < b32:63 then c � 0b100
if (RX)32:63 > b32:63 then c � 0b010
if (RX)32:63 = b32:63 then c � 0b001
CR0 � c || XERSO 

The low-order 32 bits of register RX are compared with
UI5, treating operands as signed integers. The result of
the comparison is placed into CR0.

Special Registers Altered: 
CR0

Compare Logical Immediate Word
I16A-form

e_cmpl16i RA,ui 

b � 480 || ui
if (RA)32:63 <

u b32:63 then c � 0b100
if (RA)32:63 >

u b32:63 then c � 0b010
if (RA)32:63 = b32:63 then c � 0b001
CR0 � c || XERSO 

The low-order 32 bits of register RA are compared with
ui, treating operands as unsigned integers. The result
of the comparison is placed into CR0.

Special Registers Altered: 
CR0

06 000 BF32 RA 21 F SCL UI8
0 6 9 11 16 21 22 24 31

3 0 RY RX
0 6 8 12 15

10 1 UI5 RX
0 6 7 12 15

28 ui RA 21 ui
0 6 11 16 21 31
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Compare Logical Scaled Immediate Word
SCI8-form

e_cmpli BF32,RA,sci8

sci8 � 56-SCL×8F || UI8 ||SCL×8F
if (RA)32:63 <

u sci832:63 then c � 0b100
if (RA)32:63 >

u sci832:63 then c � 0b010
if (RA)32:63 = sci832:63 then c � 0b001
CR4×BF32+32:4×BF32+35 � c || XERSO 

The low-order 32 bits of register RA are compared with
sci8, treating operands as unsigned integers. The
result of the comparison is placed into CR field BF32.

Special Registers Altered: 
CR field BF32

Compare Logical Word RR-form

se_cmpl RX,RY

if (RX)32:63 <
u (RY)32:63 then c � 0b100

if (RX)32:63 >
u (RY)32:63 then c � 0b010

if (RX)32:63 = (RY)32:63 then c � 0b001
CR0 � c || XERSO 

The low-order 32 bits of register RX are compared with
the low-order 32 bits of register RY, treating operands
as unsigned integers. The result of the comparison is
placed into CR0.

Special Registers Altered: 
CR0

Compare Logical Immediate Word
OIM5-form

se_cmpli RX,oimm

oimm � 590 || (OIM5 + 1)
if (RX)32:63 <

u oimm32:63 then c � 0b100
if (RX)32:63 >

u oimm32:63 then c � 0b010
if (RX)32:63 = oimm32:63 then c � 0b001
CR0 � c || XERSO 

The low-order 32 bits of register RX are compared with
oimm, treating operands as unsigned integers. The
result of the comparison is placed into CR0. The value
of oimm must be in the range of 1 to 32.

Special Registers Altered:
CR0

Compare Halfword X-form

e_cmph BF,RA,RB

a � EXTS((RA)48:63)
b � EXTS((RB)48:63)
if a < b then c � 0b100
if a > b then c � 0b010
if a = b then c � 0b001
CR4×BF+32:4×BF+35 � c || XERSO

The low-order 16 bits of register RA are compared with
the low-order 16 bits of register RB, treating operands
as signed integers. The result of the comparison is
placed into CR field BF.

Special Registers Altered: 
CR field BF

06 01 BF32 RA 21 F SCL UI8
0 6 9 11 16 21 22 24 31

3 1 RY RX
0 6 8 12 15

08 1 OIM5 RX
0 6 7 12 15

31 BF // RA RB 14 /
0 6 9 11 16 21 31
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Compare Halfword Short Form RR-form

se_cmph RX,RY

a � EXTS((RX)48:63)
b � EXTS((RY)48:63)
if a < b then c � 0b100
if a > b then c � 0b010
if a = b then c � 0b001
CR0 � c || XERSO

The low-order 16 bits of register RX are compared with
the low-order 16 bits of register RY, treating operands
as signed integers. The result of the comparison is
placed into CR0.

Special Registers Altered: 
CR0

Compare Halfword Immediate I16A-form

e_cmph16i RA,si

a � EXTS((RA)48:63)
b � EXTS(si)
if a < b then c � 0b100
if a > b then c � 0b010
if a = b then c � 0b001
CR0 � c || XERSO 

The low-order 16 bits of register RA are compared with
si, treating operands as signed integers. The result of
the comparison is placed into CR0.

Special Registers Altered: 
CR0

Compare Halfword Logical X-form

e_cmphl BF,RA,RB

a � EXTZ((RA)48:63)
b � EXTZ((RB)48:63)
if a <u b then c � 0b100
if a >u b then c � 0b010
if a = b then c � 0b001
CR4×BF+32:4×BF+35 � c || XERSO

The low-order 16 bits of register RA are compared with
the low-order 16 bits of register RB, treating operands
as unsigned integers. The result of the comparison is
placed into CR field BF.

Special Registers Altered: 
CR field BF

Compare Halfword Logical Short Form
RR-form

se_cmphl RX,RY

a � (RX)48:63
b � (RY)48:63
if a <u b then c � 0b100
if a >u b then c � 0b010
if a = b then c � 0b001
CR0 � c || XERSO

The low-order 16 bits of register RX are compared with
the low-order 16 bits of register RY, treating operands
as unsigned integers. The result of the comparison is
placed into CR0.

Special Registers Altered: 
CR0

3 2 RY RX
0 6 8 12 15

28 si RA 22 si
0 6 11 16 21 31

31 BF // RA RB 46 /
0 6 9 11 16 21 31 3 3 RY RX

0 6 8 12 15
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Compare Halfword Logical Immediate
I16A-form

e_cmphl16i RA,ui

a � 480 || (RA)48:63
b � 480 || ui
if a <u b then c � 0b100
if a >u b then c � 0b010
if a = b then c � 0b001
CR0 � c || XERSO 

The low-order 16 bits of register RA are compared with
the ui field, treating operands as signed integers. The
result of the comparison is placed into CR0.

Special Registers Altered: 
CR0

5.7 Fixed-Point Trap Instruc-
tions
The fixed-point Trap instruction from Book I, tw is avail-
able while executing in VLE mode. The mnemonics,
decoding, and semantics for this instruction is identical
to that in Book I; see Section 3.3.10 of Book I for the
instruction definition.

The fixed-point Trap instruction from Book I, td is avail-
able while executing in VLE mode on 64-bit implemen-
tations. The mnemonic, decoding, and semantics for
the td instruction are identical to those in Book I; see
Section 3.3.10 of Book I for the instruction definitions.

5.8 Fixed-Point Select Instruc-
tion 
The fixed-point Select instruction provides a means to
select one of two registers and place the result in a
destination register under the control of a predicate
value supplied by a CR bit. 

The fixed-point Select instruction from Book I, isel is
available while executing in VLE mode. The mnemon-
ics, decoding, and semantics for this instruction is iden-
tical to that in Book I; see Section  of Book I for the
instruction definition.

28 ui RA 23 ui
0 6 11 16 21 31
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5.9 Fixed-Point Logical, Bit, and Move Instructions

The Logical instructions perform bit-parallel operations
on 64-bit operands. The Bit instructions manipulate a
bit, or create a bit mask, in a register. The Move instruc-
tions move a register or an immediate value into a reg-
ister.

The X-form Logical instructions with Rc=1, the SCI8-
form Logical instructions with Rc=1, the RR-form Logi-
cal instructions with Rc=1, the e_and2i. instruction,
and the e_and2is. instruction set the first three bits of
CR field 0 as the arithmetic instructions described in
Section 5.5, “Fixed-Point Arithmetic Instructions”. (Also
see Section 4.1.1.) The Logical instructions do not
change the SO, OV, and CA bits in the XER.

The fixed-point Logical instructions from Book I, and[.],
or[.], xor[.], nand[.], nor[.], eqv[.], andc[.], orc[.],
extsb[.], extsh[.], cntlzw[.], and popcntb are available
while executing in VLE mode. The mnemonics, decod-
ing, and semantics for these instructions are identical to
those in Book I; see Section 3.3.12 of Book I for the
instruction definitions.

The fixed-point Logical instructions from Book I,
extsw[.] and cntlzd[.] are available while executing in
VLE mode on 64-bit implementations. The mnemonics,
decoding, and semantics for these instructions are
identical to those in Book I; see Section 3.3.12 of Book
I for the instruction definitions.

AND (two operand) Immediate I16L-form

e_and2i. RT,ui

RT � (RT) & (480 || ui)

The contents of register RT are ANDed with 480 || ui
and the result is placed into register RT.

Special Registers Altered: 
CR0

AND (2 operand) Immediate Shifted
I16L-form

e_and2is. RT,ui

RT � (RT) & (320 || ui || 160)

The contents of register RT are ANDed with 320 || ui ||
160 and the result is placed into register RT.

Special Registers Altered: 
CR0

AND Scaled Immediate Carrying
SCI8-form

e_andi RA,RS,sci8 (Rc=0)
e_andi. RA,RS,sci8 (Rc=1)

sci8 � 56-SCL×8F || UI8 ||SCL×8F
RA � (RS) & sci8

The contents of register RS are ANDed with sci8 and
the result is placed into register RA.

Special Registers Altered: 
CR0 (if Rc=1)

AND Immediate Short Form IM5-form

se_andi RX,UI5

RX � (RX) & 590 || UI5

The contents of register RX are ANDed with 590 || UI5
and the result is placed into register RX.

Special Registers Altered: 
None

28 RT ui 25 ui
0 6 11 16 21 31 28 RT ui 29 ui

0 6 11 16 21 31

06 RS RA 12 RcF SCL UI8
0 6 11 16 20 21 22 24 31

11 1 UI5 RX
0 6 7 12 15
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OR (two operand) Immediate I16L-form

e_or2i RT,ui

RT � (RT) | (480 || ui)

The contents of register RT are ORed with 480 || ui and
the result is placed into register RT.

Special Registers Altered: 
None

OR (2 operand) Immediate Shifted
I16L-form

e_or2is RT,ui

RT � (RT) | (320 || ui || 160)

The contents of register RT are ORed with 320 || ui ||
160 and the result is placed into register RT.

Special Registers Altered: 
None

OR Scaled Immediate SCI8-form

e_ori RA,RS,sci8 (Rc=0)
e_ori. RA,RS,sci8 (Rc=1)

sci8 � 56-SCL×8F || UI8 ||SCL×8F
RA � (RS) | sci8

The contents of register RS are ORed with sci8 and the
result is placed into register RA.

Special Registers Altered: 
CR0 (if Rc=1)

XOR Scaled Immediate SCI8-form

e_xori RA,RS,sci8 (Rc=0)
e_xori. RA,RS,sci8 (Rc=1)

sci8 � 56-SCL×8F || UI8 ||SCL×8F
RA � (RS) ⊕  sci8

The contents of register RS are XORed with sci8 and
the result is placed into register RA.

Special Registers Altered: 
CR0 (if Rc=1)

AND Short Form RR-form

se_and RX,RY (Rc=0)
se_and. RX,RY (Rc=1)

RX � (RX) & (RY)

The contents of register RX are ANDed with the con-
tents of register RY and the result is placed into register
RX.

Special Registers Altered: 
CR0 (if Rc=1)

AND with Complement Short Form
RR-form

se_andc RX,RY

RX � (RX) & ¬(RY)
The contents of register RX are ANDed with the com-
plement of the contents of register RY and the result is
placed into register RX.

Special Registers Altered: 
None

28 RT ui 24 ui
0 6 11 16 21 31 28 RT ui 26 ui

0 6 11 16 21 31

06 RS RA 13 RcF SCL UI8
0 6 11 16 20 21 22 24 31

06 RS RA 14 Rc F SCL UI8
0 6 11 16 20 21 22 24 31

17 1 Rc RY RX
0 6 7 8 12 15

17 1 RY RX
0 6 8 12 15
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OR Short Form RR-form

se_or RX,RY

RX � (RX) | (RY)

The contents of register RX are ORed with the contents
of register RY and the result is placed into register RX.

Special Registers Altered: 
None

NOT Short Form R-form

se_not RX

RX � ¬(RX)
The contents of RX are complemented and placed into
register RX.

Special Registers Altered: 
None

Bit Clear Immediate IM5-form

se_bclri RX,UI5

a � UI5
RX � (RX) & (a+321 || 0 || 31-a1)

Bit UI5+32 of register RX is set to 0.

Special Registers Altered: 
None

Bit Generate Immediate IM5-form

se_bgeni RX,UI5

a � UI5
RX � (a+320 || 1 || 31-a0)

Bit UI5+32 of register RX is set to 1. All other bits in
register RX are set to 0.

Special Registers Altered: 
None

Bit Mask Generate Immediate IM5-form

se_bmaski RX,UI5

a � UI5
if a = 0 then RX � 641
else RX � 64-a0 || a1

If UI5 is not zero, the low-order UI5 bits are set to 1 in
register RX and all other bits in register RX are set to 0.
If UI5 is 0, all bits in register RX are set to 1.

Special Registers Altered: 
None

Bit Set Immediate IM5-form

se_bseti RX,UI5

a � UI5
RX � (RX) | (a+320 || 1 || 31-a0)

Bit UI5+32 of register RX is set to 1.

Special Registers Altered: 
None

17 0 RY RX
0 6 8 12 15

0 02 RX
0 6 12 15

24 0 UI5 RX
0 6 7 12 15

24 1 UI5 RX
0 6 7 12 15

11 0 UI5 RX
0 6 7 12 15

25 0 UI5 RX
0 6 7 12 15
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Extend Sign Byte Short Form R-form

se_extsb RX

s � (RX)56
RX � 56s || (RX)56:63

(RX)56:63 are placed into RX56:63. Bit 56 of register RX
is placed into RX0:55.

Special Registers Altered: 
None

Extend Sign Halfword Short Form R-form

se_extsh RX

s � (RX)48
RX � 48s || (RX)48:63

(RX)48:63 are placed into RX48:63. Bit 48 of register RX
is placed into RX0:47.

Special Registers Altered: 
None

Extend Zero Byte R-form

se_extzb RX

RX � 560 || (RX)56:63

(RX)56:63 are placed into RX56:63. RX0:55 are set to 0.

Special Registers Altered: 
None

Extend Zero Halfword R-form

se_extzh RX

RX � 480 || (RX)48:63

(RX)48:63 are placed into RX48:63. RX0:47 are set to 0.

Special Registers Altered: 
None

Load Immediate LI20-form

e_li RT,LI20

RT � EXTS(li205:8 || li200:4 || li209:19)

The sign-extended LI20 field is placed into RT. 

Special Registers Altered: 
None

Load Immediate Short Form IM7-form

se_li RX,UI7

RX � 570 || UI7 

The zero-extended UI7 field is placed into RX. 

Special Registers Altered: 
None

Load Immediate Shifted I16L-form

e_lis RT,ui

RT � 320 || ui || 160

The zero-extended value of ui shifted left 16 bits is
placed into RT. 

Special Registers Altered: 
None

0 13 RX
0 6 12 15

0 15 RX
0 6 12 15

0 12 RX
0 6 12 15

0 14 RX
0 6 12 15

28 RT li204:8 0 li200:3 li209:19
0 6 11 16 17 21 31

09 UI7 RX
0 5 12 15

28 RT ui 28 ui
0 6 11 16 21 31
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Move from Alternate Register RR-form

se_mfar RX,ARY

r � ARY+8
RX � GPR(r)

The contents of register ARY+8 are placed into RX.
ARY specifies a register in the range R8:R23.

Special Registers Altered: 
None

Move Register RR-form

se_mr RX,RY

RX � (RY)

The contents of register RY are placed into RX. 

Special Registers Altered: 
None

Move to Alternate Register RR-form

se_mtar ARX,RY

r � ARX+8
GPR(r) � (RY)

The contents of register RY are placed into register
ARX+8. ARX specifies a register in the range R8:R23.

Special Registers Altered: 
None

0 3 ARY RX
0 6 8 12 15

0 1 RY RX
0 6 8 12 15

0 2 RY ARX
0 6 8 12 15
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5.10 Fixed-Point Rotate and Shift Instructions

The fixed-point Shift instructions from Book I, slw[.],
srw[.], srawi[.], and sraw[.] are available while execut-
ing in VLE mode. The mnemonics, decoding, and
semantics for those instructions are identical to those in
Book I; see Section 3.3.13.2 of Book I for the instruc-
tion definitions.

The fixed-point Shift instructions from Book I, sld[.],
srd[.], sradi[.], and srad[.] are available while execut-
ing in VLE mode on 64-bit implementations. The mne-
monics, decoding, and semantics for those instructions
are identical to those in Book I; see Section 3.3.13.2 of
Book I for the instruction definitions.

Rotate Left Word X-form 

e_rlw RA,RS,RB (Rc=0)
e_rlw. RA,RS,RB (Rc=1)

n � (RB)59:63
RA � ROTL32((RS)32:63,n)

The contents of register RS are rotated32 left the num-
ber of bits specified by (RB)59:63 and the result is
placed into register RA.

Special Registers Altered: 
CR0 (if Rc=1)

Rotate Left Word Immediate X-form

e_rlwi RA,RS,SH (Rc=0)
e_rlwi. RA,RS,SH (Rc=1)

n � SH
RA � ROTL32((RS)32:63,n)

The contents of register RS are rotated32 left SH bits
and the result is placed into register RA.

Special Registers Altered: 
CR0 (if Rc=1)

Rotate Left Word Immediate then Mask 
Insert M-form

e_rlwimi RA,RS,SH,MB,ME

n � SH
r � ROTL32((RS)32:63, n)
m � MASK(MB+32, ME+32)
RA � r&m | (RA)&¬m

The contents of register RS are rotated32 left SH bits. A
mask is generated having 1-bits from bit MB+32
through bit ME+32 and 0-bits elsewhere. The rotated
data is inserted into register RA under control of the
generated mask.

Special Registers Altered: 
None

Rotate Left Word Immediate then AND 
with Mask M-form

e_rlwinm RA,RS,SH,MB,ME

n � SH
r � ROTL32((RS)32:63, n)
m � MASK(MB+32, ME+32)
RA � r & m

The contents of register RS are rotated32 left SH bits. A
mask is generated having 1-bits from bit MB+32
through bit ME+32 and 0-bits elsewhere. The rotated
data is ANDed with the generated mask and the result
is placed into register RA.

Special Registers Altered:
None

31 RS RA RB 280 Rc
0 6 11 16 21 31

31 RS RA SH 312 Rc
0 6 11 16 21 31

29 RS RA SH MB ME 0
0 6 11 16 21 26 31

29 RS RA SH MB ME 1
0 6 11 16 21 26 31
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Shift Left Word Immediate X-form

e_slwi RA,RS,SH (Rc=0)
e_slwi. RA,RS,SH (Rc=1)

n � SH
r � ROTL32((RS)32:63, n)
m � MASK(32, 63-n)
RA � r & m

The contents of the low-order 32 bits of register RS are
shifted left SH bits. Bits shifted out of position 32 are
lost. Zeros are supplied to the vacated positions on the
right. The 32-bit result is placed into RA32:63. RA0:31
are set to 0.

Special Registers Altered: 
CR0 (if Rc=1)

Shift Left Word Immediate Short Form
IM5-form

se_slwi RX,UI5

n � UI5
r � ROTL32((RX)32:63, n)
m � MASK(32, 63-n)
RX � r & m

The contents of the low-order 32 bits of register RX are
shifted left UI5 bits. Bits shifted out of position 32 are
lost. Zeros are supplied to the vacated positions on the
right. The 32-bit result is placed into RX32:63. RX0:31
are set to 0.

Special Registers Altered:
None

Shift Left Word RR-form

se_slw RX,RY

n � (RY)58:63
r � ROTL32((RX)32:63, n)
if (RY)58 = 0 then m � MASK(32, 63-n)
else m � 640
RX � r & m

The contents of the low-order 32 bits of register RX are
shifted left the number of bits specified by (RY)58:63.
Bits shifted out of position 32 are lost. Zeros are sup-
plied to the vacated positions on the right. The 32-bit
result is placed into RX32:63. RX0:31 are set to 0. Shift
amounts from 32-63 give a zero result.

Special Registers Altered:
None

Shift Right Algebraic Word Immediate
IM5-form

se_srawi RX,UI5

n � UI5
r � ROTL32((RX)32:63, 64-n)
m � MASK(n+32, 63)
s � (RX)32
RX � r&m | (64s)&¬m
CA � s & ((r&¬m)32:63≠0)

The contents of the low-order 32 bits of register RX are
shifted right UI5 bits. Bits shifted out of position 63 are
lost, and bit 32 of RX is replicated to fill the vacated
positions on the left. Bit 32 of RX is replicated to fill
RX0:31 and the 32-bit result is placed into RX32:63. CA
is set to 1 if the low-order 32 bits of register RX contain
a negative value and any 1-bits are shifted out of bit
position 63; otherwise CA is set to 0. A shift amount of
zero causes RX to receive EXTS((RX)32:63), and CA to
be set to 0.

Special Registers Altered:
CA

31 RS RA SH 56 Rc
0 6 11 16 21 31

27 0 UI5 RX
0 6 7 12 15

16 2 RY RX
0 6 8 12 15 26 1 UI5 RX

0 6 7 12 15
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Shift Right Algebraic Word RR-form

se_sraw RX,RY

n � (RY)59:63
r � ROTL32((RX)32:63, 64-n)
if (RY)58 = 0 then m � MASK(n+32, 63)
else m � 640
s � (RX)32
RX � r&m | (64s)&¬m
CA � s & ((r&¬m)32:63≠0)
The contents of the low-order 32 bits of register RX are
shifted right the number of bits specified by (RY)58:63.
Bits shifted out of position 63 are lost, and bit 32 of RX
is replicated to fill the vacated positions on the left. Bit
32 of RX is replicated to fill RX0:31 and the 32-bit result
is placed into RX32:63. CA is set to 1 if the low-order 32
bits of register RX contain a negative value and any 1-
bits are shifted out of bit position 63; otherwise CA is
set to 0. A shift amount of zero causes RX to receive
EXTS((RX)32:63), and CA to be set to 0. Shift amounts
from 32-63 give a result of 64 sign bits, and cause CA
to receive the sign bit of (RX)32:63.

Special Registers Altered:
CA

Shift Right Word Immediate X-form

e_srwi RA,RS,SH (Rc=0)
e_srwi. RA,RS,SH (Rc=1)

n � SH
r � ROTL32((RS)32:63, 64-n)
m � MASK(n+32, 63)
RA � r & m

The contents of the low-order 32 bits of register RS are
shifted right SH bits. Bits shifted out of position 63 are
lost. Zeros are supplied to the vacated positions on the
left. The 32-bit result is placed into RA32:63. RA0:31 are
set to 0.

Special Registers Altered:
CR0 (if Rc=1)

Shift Right Word Immediate Short Form
IM5-form

se_srwi RX,UI5 

n � UI5
r � ROTL32((RX)32:63, 64-n)
m � MASK(n+32, 63)
RX � r & m

The contents of the low-order 32 bits of register RX are
shifted right UI5 bits. Bits shifted out of position 63 are
lost. Zeros are supplied to the vacated positions on the
left. The 32-bit result is placed into RX32:63. RX0:31 are
set to 0.

Special Registers Altered:
None

Shift Right Word RR-form

se_srw RX,RY

n � (RY)59:63
r � ROTL32((RX)32:63, 64-n)
if (RY)58 = 0 then m � MASK(n+32, 63)
else m � 640
RX � r & m

The contents of the low-order 32 bits of register RX are
shifted right the number of bits specified by (RY)58:63.
Bits shifted out of position 63 are lost. Zeros are sup-
plied to the vacated positions on the left. The 32-bit
result is placed into RX32:63. RX0:31 are set to 0. Shift
amounts from 32 to 63 give a zero result.

Special Registers Altered:
None

16 1 RY RX
0 6 8 12 15 31 RS RA SH 568 Rc

0 6 11 16 21 31

26 0 UI5 RX
0 6 7 12 15

16 0 RY RX
0 6 8 12 15
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5.11 Move To/From System Register Instructions

The VLE category provides 16-bit forms of instructions
to move to/from the LR and CTR.

The fixed-point Move To/From System Register instruc-
tions from Book I, mfspr, mtcrf, mfcr, mtocrf, mfocrf,
mcrxr, mtdcrux, mfdcrux, mfapidi, and mtspr are
available while executing in VLE mode. The mnemon-
ics, decoding, and semantics for these instructions are
identical to those in Book I; see Section 3.3.14 of Book
I for the instruction definitions.

The fixed-point Move To/From System Register instruc-
tions from Book III-E, mfspr, mtspr, mfdcr, mtdcr,
mtmsr, mfmsr, wrtee, and wrteei are available while
executing in VLE mode. The mnemonics, decoding,
and semantics for these instructions are identical to
those in Book III-E; see Section 3.4.1 of Book III-E for
the instruction definitions.

Move From Count Register R-form

se_mfctr RX

RX � CTR

The CTR contents are placed into register RX.

Special Registers Altered: 
None

Move From Link Register R-form

se_mflr RX

RX � LR

The LR contents are placed into register RX.

Special Registers Altered: 
None

Move To Count Register R-form

se_mtctr RX

CTR � (RX)

The contents of register RX are placed into the CTR.

Special Registers Altered: 
CTR

Move To Link Register R-form

se_mtlr RX

LR � (RX)

The contents of register RX are placed into the LR.

Special Registers Altered: 
LR

0 10 RX
0 6 12 15

0 8 RX
0 6 12 15

0 11 RX
0 6 12 15

0 9 RX
0 6 12 15
Power ISA™ -- Book VLE710



   Version 2.04
Chapter 6.  Storage Control Instructions

6.1 Storage Synchronization Instructions . 
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6.1 Storage Synchronization 
Instructions
The memory synchronization instructions implemented
by category VLE are identical in semantics to those
defined in Book II and Book III-E. The se_isync
instruction is defined by category VLE, but has the
same semantics as isync.

The Load and Reserve and Store Conditional instruc-
tions from Book II, lwarx and stwcx. are available while
executing in VLE mode. The mnemonics, decoding,
and semantics for those instructions are identical to
those in Book II; see Section 3.3.2 of Book II for the
instruction definitions.

The Load and Reserve and Store Conditional instruc-
tions from Book II, ldarx and stdcx. are available while
executing in VLE mode on 64-bit implementations. The
mnemonics, decoding, and semantics for those instruc-
tions are identical to those in Book II; see Section 3.3.2
of Book II for the instruction definitions.

The Memory Barrier instructions from Book II, sync
(msync) and mbar are available while executing in
VLE mode. The mnemonics, decoding, and semantics
for those instructions are identical to those in Book II;
see Section 3.3.3 of Book II for the instruction defini-
tions.

The wait instruction from Book II is available while exe-
cuting in VLE mode if the category Wait is imple-
mented. The mnemonics, decoding, and semantics for
wait are identical to those in Book II; see Section 3.3 of
Book II for the instruction definition.

Instruction Synchronize C-form

se_isync

Executing an se_isync instruction ensures that all
instructions preceding the se_isync instruction have
completed before the se_isync instruction completes,
and that no subsequent instructions are initiated until
after the se_isync instruction completes. It also
ensures that all instruction cache block invalidations
caused by icbi instructions preceding the se_isync
instruction have been performed with respect to the
processor executing the se_isync instruction, and then
causes any prefetched instructions to be discarded.

Except as described in the preceding sentence, the
se_isync instruction may complete before storage
accesses associated with instructions preceding the
se_isync instruction have been performed. This
instruction is context synchronizing.

The se_isync instruction has identical semantics to the
Book II isync instruction, but has a different encoding.

Special Registers Altered: 
None

01
0 15
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6.2 Cache Management Instruc-
tions
Cache management instructions implemented by cate-
gory VLE are identical to those defined in Book II and
Book III-E.

The Cache Management instructions from Book II,
dcba, dcbf, dcbst, dcbt, dcbtst, dcbz, icbi, and icbt
are available while executing in VLE mode. The mne-
monics, decoding, and semantics for these instructions
are identical to those in Book II; see Section 3.2 of
Book II for the instruction definitions.

The Cache Management instruction from Book III-E,
dcbi is available while executing in VLE mode. The
mnemonics, decoding, and semantics for this instruc-
tion are identical to those in Book III-E; see
Section 4.9.1 of Book III-E for the instruction definition.

6.3 Cache Locking Instructions
Cache locking instructions implemented by category
VLE are identical to those defined in Book III-E. If the
Cache Locking instructions are implemented in cate-
gory VLE, the category Embedded Cache Locking
must also be implemented.

The Cache Locking instructions from Book III-E,
dcbtls, dcbtstls, dcblc, icbtls, and icblc are available
while executing in VLE mode. The mnemonics, decod-
ing, and semantics for these instructions are identical to
those in Book III-E; see Section 4.9.2 of Book III-E for
the instruction definitions.

6.4 TLB Management Instruc-
tions
The TLB management instructions implemented by cat-
egory VLE are identical to those defined in Book III-E. 

The TLB Management instructions from Book III-E,
tlbre, tlbwe, tlbivax, tlbsync, and tlbsx are available
while executing in VLE mode. The mnemonics, decod-
ing, and semantics for these instructions are identical to
those in Book III-E. See Section 4.9.4.1 of Book III-E
for the instruction definitions.

Instructions and resources from category Embed-
ded.MMU Type FSL are available if the appropriate cat-
egory is implemented.

6.5 Instruction Alignment and 
Byte Ordering
Only Big-Endian instruction memory is supported when
executing from a page of VLE instructions. Attempting
to fetch VLE instructions from a page marked as Little-
Endian generates an instruction storage interrupt byte-
ordering exception.
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Chapter 7.  Additional Categories Available in VLE

7.1 Move Assist  . . . . . . . . . . . . . . . . . 713
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7.3 Signal Processing Engine. . . . . . . 713
7.4 Embedded Floating Point . . . . . . . 713
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7.6 External PID  . . . . . . . . . . . . . . . . . 713
7.7 Embedded Performance Monitor  . 714
7.8 Processor Control . . . . . . . . . . . . . 714

Instructions and resources from categories other than
Base and Embedded are available in VLE. These
include categories for which all the instructions in the
category use primary opcode 4 or primary opcode 31.

7.1 Move Assist
Move Assist instructions implemented by category VLE
are identical to those defined in Book I. If the Move
Assist instructions are implemented in category VLE,
category Move Assist must also be implemented. The
mnemonics, decoding, and semantics for those instruc-
tions are identical to those in Book I; see Section 3.3.6
of Book I for the instruction definitions.

7.2 Vector
Vector instructions implemented by category VLE are
identical to those defined in Book I. If the Vector instruc-
tions are implemented in category VLE, category Vec-
tor must also be implemented. The mnemonics,
decoding, and semantics for those instructions are
identical to those in Book I; see Chapter 5 of Book I for
the instruction definitions.

7.3 Signal Processing Engine
Signal Processing Engine instructions implemented by
category VLE are identical to those defined in Book I. If
the Signal Processing Engine instructions are imple-
mented in category VLE, category Signal Processing
Engine must also be implemented. The mnemonics,
decoding, and semantics for those instructions are
identical to those in Book I; see Chapter 6 of Book Ifor
the instruction definitions.

7.4 Embedded Floating Point
Embedded Floating Point instructions implemented by
category VLE are identical to those defined in Book I. If
the Embedded Floating Point instructions are imple-
mented in category VLE, the appropriate category
SPE.Embedded Float Scalar Double, SPE.Embedded
Float Scalar Single, or SPE.Embedded Float Vector
must also be implemented. The mnemonics, decoding,
and semantics for those instructions are identical to
those in Book I; see Chapter 7 of Book I for the instruc-
tion definitions.

7.5 Legacy Move Assist
Legacy Move Assist instructions implemented by cate-
gory VLE are identical to those defined in Book I. If the
Legacy Move Assist instructions are implemented in
category VLE, category Legacy Move Assist must also
be implemented. The mnemonics, decoding, and
semantics for those instructions are identical to those in
Book I; see Chapter 8 of Book I for the instruction defi-
nitions.

7.6 External PID
External Process ID instructions implemented by cate-
gory VLE are identical to those defined in Book III-E. If
the External Process ID instructions are implemented
in category VLE, category Embedded.External PID
must also be implemented. The mnemonics, decoding,
and semantics for those instructions are identical to
those in Book III-E; see Chapter 3.3.4 of Book III-E for
the instruction definitions.
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7.7 Embedded Performance 
Monitor
Embedded Performance Monitor instructions imple-
mented by category VLE are identical to those defined
in Book III-E. If the Embedded Performance Monitor
instructions are implemented in category VLE, cate-
gory Embedded.Performance Monitor must also be
implemented. The mnemonics, decoding, and seman-
tics for those instructions are identical to those in Book
III-E; see Appendix E of Book III-E for the instruction
definitions.

7.8 Processor Control
Processor Control instructions implemented by cate-
gory VLE are identical to those defined in Book III-E. If
the Processor Control instructions are implemented in
category VLE, category Embedded.Processor Control
must also be implemented. The mnemonics, decoding,
and semantics for those instructions are identical to
those in Book III-E; see Chapter 9 of Book III-E for the
instruction definitions.
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Appendix A.  VLE Instruction Set Sorted by Mnemonic

This appendix lists all the instructions available in VLE mode in the Power ISA, in order by mnemonic. Opcodes that
are not defined below are treated as illegal by category VLE.
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XO 7C000214 B add[o][.] Add
XO 7C000014 B addc[o][.] Add Carrying
XO 7C000114 SR B adde[o][.] Add Extended
XO 7C0001D4 SR B addme[o][.] Add to Minus One Extended
XO 7C000194 SR B addze[o][.] Add to Zero Extended
X 7C000038 SR B and[.] AND
X 7C000078 SR B andc[.] AND with Complement
EVX 1000020F SP brinc Bit Reverse Increment
X 7C000000 B cmp Compare
X 7C000040 B cmpl Compare Logical
X 7C000074 SR 64 cntlzd[.] Count Leading Zeros Doubleword
X 7C000034 SR B cntlzw[.] Count Leading Zeros Word
X 7C0005EC E dcba Data Cache Block Allocate
X 7C0000AC B dcbf Data Cache Block Flush
X 7C0000FE P E.PD dcbfep Data Cache Block Flush by External Process ID
X 7C0003AC P E dcbi Data Cache Block Invalidate
X 7C00030C M ECL dcblc Data Cache Block Lock Clear
X 7C00006C B dcbst Data Cache Block Store
X 7C00022C B dcbt Data Cache Block Touch
X 7C00027E P E.PD dcbtep Data Cache Block Touch by External Process ID
X 7C00014C M ECL dcbtls Data Cache Block Touch and Lock Set
X 7C0001EC B dcbtst Data Cache Block Touch for Store
X 7C0001FE P E.PD dcbtstep Data Cache Block Touch for Store by External Process ID
X 7C00010C M ECL dcbtstls Data Cache Block Touch for Store and Lock Set
X 7C0007EC B dcbz Data Cache Block set to Zero
X 7C0007FE P E.PD dcbzep Data Cache Block set to Zero by External Process ID
X 7C00038C P E.CI dci Data Cache Invalidate
X 7C00028C P E.CD dcread Data Cache Read
X 7C0003CC P E.CD dcread Data Cache Read
XO 7C0003D2 SR 64 divd[o][.] Divide Doubleword
XO 7C000392 SR 64 divdu[o][.] Divide Doubleword Unsigned
XO 7C0003D6 SR B divw[o][.] Divide Word
XO 7C000396 SR B divwu[o][.] Divide Word Unsigned
D 1C000000 VLE e_add16i Add Immediate
I16A 70008800 SR VLE e_add2i. Add (2 operand) Immediate and Record
I16A 70009000 VLE e_add2is Add (2 operand) Immediate Shifted
SCI8 18008000 SR VLE e_addi[.] Add Scaled Immediate
SCI8 18009000 SR VLE e_addic[.] Add Scaled Immediate Carrying
I16L 7000C800 SR VLE e_and2i. AND (2 operand) Immediate
I16L 7000E800 SR VLE e_and2is. AND (2 operand) Immediate Shifted
SCI8 1800C000 SR VLE e_andi[.] AND Scaled Immediate
BD24 78000000 VLE e_b[l] Branch [and Link]
BD15 7A000000 CT VLE e_bc[l] Branch Conditional [and Link]
IA16 70009800 VLE e_cmp16i Compare Immediate Word
IA16 7000B000 VLE e_cmph16i Compare Halfword Immediate
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X 7C00001C VLE e_cmph Compare Halfword
IA16 7000B800 VLE e_cmphl16i Compare Halfword Logical Immediate
X 7C00005C VLE e_cmphl Compare Halfword Logical
SCI8 1800A800 VLE e_cmpi Compare Scaled Immediate Word
I16A 7000A800 VLE e_cmpl16i Compare Logical Immediate Word
SCI8 1880A800 VLE e_cmpli Compare Logical Scaled Immediate Word
XL 7C000202 VLE e_crand Condition Register AND
XL 7C000102 VLE e_crandc Condition Register AND with Complement
XL 7C000242 VLE e_creqv Condition Register Equivalent
XL 7C0001C2 VLE e_crnand Condition Register NAND
XL 7C000042 VLE e_crnor Condition Register NOR
XL 7C000382 VLE e_cror Condition Register OR
XL 7C000342 VLE e_crorc Condition Register OR with Complement
XL 7C000182 VLE e_crxor Condition Register XOR
D 30000000 VLE e_lbz Load Byte and Zero
D8 18000000 VLE e_lbzu Load Byte and Zero with Update
D 38000000 VLE e_lha Load Halfword Algebraic
D8 18000300 VLE e_lhau Load Halfword Algebraic with Update
D 58000000 VLE e_lhz Load Halfword and Zero
D8 18000100 VLE e_lhzu Load Halfword and Zero with Update
LI20 70000000 VLE e_li Load Immediate
I16L 7000E000 VLE e_lis Load Immediate Shifted
D8 18000800 VLE e_lmw Load Multiple Word
D 50000000 VLE e_lwz Load Word and Zero
D8 18000200 VLE e_lwzu Load Word and Zero with Update
XL 7C000020 VLE e_mcrf Move CR Field
I16A 7000A000 VLE e_mull2i Multiply (2 operand) Low Immediate
SCI8 1800A000 VLE e_mulli Multiply Low Scaled Immediate
I16L 7000C000 VLE e_or2i OR (2operand) Immediate
I16L 7000D000 VLE e_or2is OR (2 operand) Immediate Shifted
SCI8 1800D000 SR VLE e_ori[.] OR Scaled Immediate
X 7C000230 SR VLE e_rlw[.] Rotate Left Word
X 7C000270 SR VLE e_rlwi[.] Rotate Left Word Immediate
M 74000000 VLE e_rlwimi Rotate Left Word Immediate then Mask Insert
M 74000001 VLE e_rlwinm Rotate Left Word Immediate then AND with Mask
X 7C000070 SR VLE e_slwi[.] Shift Left Word Immediate
X 7C000470 SR VLE e_srwi[.] Shift Right Word Immediate
D 34000000 VLE e_stb Store Byte
D8 18000400 VLE e_stbu Store Byte with Update
D 5C000000 VLE e_sth Store Halfword
D8 18000500 VLE e_sthu Store Halfword with Update
D8 18000900 VLE e_stmw Store Multiple Word
D 54000000 VLE e_stw Store Word
D8 18000600 VLE e_stwu Store word with Update
SCI8 1800B000 SR VLE e_subfic[.] Subtract From Scaled Immediate Carrying
SCI8 1800E000 SR VLE e_xori[.] XOR Scaled Immediate
EVX 100002E4 SP.FD efdabs Floating-Point Double-Precision Absolute Value
EVX 100002E0 SP.FD efdadd Floating-Point Double-Precision Add
EVX 100002EF SP.FD efdcfs Floating-Point Double-Precision Convert from Single-Preci-

sion
EVX 100002F3 SP.FD efdcfsf Convert Floating-Point Double-Precision from Signed Frac-

tion
EVX 100002F1 SP.FD efdcfsi Convert Floating-Point Double-Precision from Signed Inte-

ger
EVX 100002E3 SP.FD efdcfsid Convert Floating-Point Double-Precision from Signed Inte-

ger Doubleword
EVX 100002F2 SP.FD efdcfuf Convert Floating-Point Double-Precision from Unsigned 

Fraction
EVX 100002F0 SP.FD efdcfui Convert Floating-Point Double-Precision from Unsigned 

Integer
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EVX 100002E2 SP.FD efdcfuid Convert Floating-Point Double-Precision from Unsigned 
Integer Doubleword

EVX 100002EE SP.FD efdcmpeq Floating-Point Double-Precision Compare Equal
EVX 100002EC SP.FD efdcmpgt Floating-Point Double-Precision Compare Greater Than
EVX 100002ED SP.FD efdcmplt Floating-Point Double-Precision Compare Less Than
EVX 100002F7 SP.FD efdctsf Convert Floating-Point Double-Precision to Signed Fraction
EVX 100002F5 SP.FD efdctsi Convert Floating-Point Double-Precision to Signed Integer
EVX 100002EB SP.FD efdctsidz Convert Floating-Point Double-Precision to Signed Integer 

Doubleword with Round Towards Zero
EVX 100002FA SP.FD efdctsiz Convert Floating-Point Double-Precision to Signed Integer 

with Round Towards Zero
EVX 100002F6 SP.FD efdctuf Convert Floating-Point Double-Precision to Unsigned Frac-

tion
EVX 100002F4 SP.FD efdctui Convert Floating-Point Double-Precision to Unsigned Inte-

ger
EVX 100002EA SP.FD efdctuidz Convert Floating-Point Double-Precision to Unsigned Inte-

ger Doubleword with Round Towards Zero
EVX 100002F8 SP.FD efdctuiz Convert Floating-Point Double-Precision to Unsigned Inte-

ger with Round Towards Zero
EVX 100002E9 SP.FD efddiv Floating-Point Double-Precision Divide
EVX 100002E8 SP.FD efdmul Floating-Point Double-Precision Multiply
EVX 100002E5 SP.FD efdnabs Floating-Point Double-Precision Negative Absolute Value
EVX 100002E6 SP.FD efdneg Floating-Point Double-Precision Negate
EVX 100002E1 SP.FD efdsub Floating-Point Double-Precision Subtract
EVX 100002FE SP.FD efdtsteq Floating-Point Double-Precision Test Equal
EVX 100002FC SP.FD efdtstgt Floating-Point Double-Precision Test Greater Than
EVX 100002FD SP.FD efdtstlt Floating-Point Double-Precision Test Less Than
EVX 100002E4 SP.FS efsabs Floating-Point Single-Precision Absolute Value
EVX 100002E0 SP.FS efsadd Floating-Point Single-Precision Add
EVX 100002CF SP.FD efscfd Floating-Point Single-Precision Convert from Double-Preci-

sion
EVX 100002F3 SP.FS efscfsf Convert Floating-Point Single-Precision from Signed Frac-

tion
EVX 100002F1 SP.FS efscfsi Convert Floating-Point Single-Precision from Signed Integer
EVX 100002E3 SP.FS efscfsid Convert Floating-Point Single-Precision from Signed Integer 

Doubleword
EVX 100002F2 SP.FS efscfuf Convert Floating-Point Single-Precision from Unsigned 

Fraction
EVX 100002F0 SP.FS efscfui Convert Floating-Point Single-Precision from Unsigned Inte-

ger
EVX 100002E2 SP.FS efscfuid Convert Floating-Point Single-Precision from Unsigned Inte-

ger Doubleword
EVX 100002EE SP.FS efscmpeq Floating-Point Single-Precision Compare Equal
EVX 100002EC SP.FS efscmpgt Floating-Point Single-Precision Compare Greater Than
EVX 100002ED SP.FS efscmplt Floating-Point Single-Precision Compare Less Than
EVX 100002F7 SP.FS efsctsf Convert Floating-Point Single-Precision to Signed Fraction
EVX 100002F5 SP.FS efsctsi Convert Floating-Point Single-Precision to Signed Integer
EVX 100002EB SP.FS efsctsidz Convert Floating-Point Single-Precision to Signed Integer 

Doubleword with Round Towards Zero
EVX 100002FA SP.FS efsctsiz Convert Floating-Point Single-Precision to Signed Integer 

with Round Towards Zero
EVX 100002F6 SP.FS efsctuf Convert Floating-Point Single-Precision to Unsigned Frac-

tion
EVX 100002F4 SP.FS efsctui Convert Floating-Point Single-Precision to Unsigned Integer
EVX 100002EA SP.FS efsctuidz Convert Floating-Point Single-Precision to Unsigned Integer 

Doubleword with Round Towards Zero
EVX 100002F8 SP.FS efsctuiz Convert Floating-Point Single-Precision to Unsigned Integer 

with Round Towards Zero
EVX 100002E9 SP.FS efsdiv Floating-Point Single-Precision Divide
EVX 100002E8 SP.FS efsmul Floating-Point Single-Precision Multiply
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EVX 100002E5 SP.FS efsnabs Floating-Point Single-Precision Negative Absolute Value
EVX 100002E6 SP.FS efsneg Floating-Point Single-Precision Negate
EVX 100002E1 SP.FS efssub Floating-Point Single-Precision Subtract
EVX 100002FE SP.FS efststeq Floating-Point Single-Precision Test Equal
EVX 100002FC SP.FS efststgt Floating-Point Single-Precision Test Greater Than
EVX 100002FD SP.FS efststlt Floating-Point Single-Precision Test Less Than
X 7C000238 SR B eqv[.] Equivalent
EVX 10000208 SP evabs Vector Absolute Value
EVX 10000202 SP evaddiw Vector Add Immediate Word
EVX 100004C9 SP evaddsmiaaw Vector Add Signed, Modulo, Integer to Accumulator Word
EVX 100004C1 SP evaddssiaaw Vector Add Signed, Saturate, Integer to Accumulator Word
EVX 100004C8 SP evaddumiaaw Vector Add Unsigned, Modulo, Integer to Accumulator Word
EVX 100004C0 SP evaddusiaaw Vector Add Unsigned, Saturate, Integer to Accumulator 

Word
EVX 10000200 SP evaddw Vector Add Word
EVX 10000211 SP evand Vector AND
EVX 10000212 SP evandc Vector AND with Complement
EVX 10000234 SP evcmpeq Vector Compare Equal
EVX 10000231 SP evcmpgts Vector Compare Greater Than Signed
EVX 10000230 SP evcmpgtu Vector Compare Greater Than Unsigned
EVX 10000233 SP evcmplts Vector Compare Less Than Signed
EVX 10000232 SP evcmpltu Vector Compare Less Than Unsigned
EVX 1000020E SP evcntlsw Vector Count Leading Sign Bits Word
EVX 1000020D SP evcntlzw Vector Count Leading Zeros Bits Word
EVX 100004C6 SP evdivws Vector Divide Word Signed
EVX 100004C7 SP evdivwu Vector Divide Word Unsigned
EVX 10000219 SP eveqv Vector Equivalent
EVX 1000020A SP evextsb Vector Extend Sign Byte
EVX 1000020B SP evextsh Vector Extend Sign Halfword
EVX 10000284 SP.FV evfsabs Vector Floating-Point Single-Precision Absolute Value
EVX 10000280 SP.FV evfsadd Vector Floating-Point Single-Precision Add
EVX 10000293 SP.FV evfscfsf Vector Convert Floating-Point Single-Precision from Signed 

Fraction
EVX 10000291 SP.FV evfscfsi Vector Convert Floating-Point Single-Precision from Signed 

Integer
EVX 10000292 SP.FV evfscfuf Vector Convert Floating-Point Single-Precision from 

Unsigned Fraction
EVX 10000290 SP.FV evfscfui Vector Convert Floating-Point Single-Precision from 

Unsigned Integer
EVX 1000028E SP.FV evfscmpeq Vector Floating-Point Single-Precision Compare Equal
EVX 1000028C SP.FV evfscmpgt Vector Floating-Point Single-Precision Compare Greater 

Than
EVX 1000028D SP.FV evfscmplt Vector Floating-Point Single-Precision Compare Less Than
EVX 10000297 SP.FV evfsctsf Vector Convert Floating-Point Single-Precision to Signed 

Fraction
EVX 10000295 SP.FV evfsctsi Vector Convert Floating-Point Single-Precision to Signed 

Integer
EVX 1000029A SP.FV evfsctsiz Vector Convert Floating-Point Single-Precision to Signed 

Integer with Round Towards Zero
EVX 10000296 SP.FV evfsctuf Vector Convert Floating-Point Single-Precision to Unsigned 

Fraction
EVX 10000294 SP.FV evfsctui Vector Convert Floating-Point Single-Precision to Unsigned 

Integer
EVX 10000298 SP.FV evfsctuiz Vector Convert Floating-Point Single-Precision to Unsigned 

Integer with Round Towards Zero
EVX 10000289 SP.FV evfsdiv Vector Floating-Point Single-Precision Divide
EVX 10000288 SP.FV evfsmul Vector Floating-Point Single-Precision Multiply
EVX 10000285 SP.FV evfsnabs Vector Floating-Point Single-Precision Negative Absolute 

Value
EVX 10000286 SP.FV evfsneg Vector Floating-Point Single-Precision Negate
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EVX 10000281 SP.FV evfssub Vector Floating-Point Single-Precision Subtract
EVX 1000029E SP.FV evfststeq Vector Floating-Point Single-Precision Test Equal
EVX 1000029C SP.FV evfststgt Vector Floating-Point Single-Precision Test Greater Than
EVX 1000029D SP.FV evfststlt Vector Floating-Point Single-Precision Test Less Than
EVX 10000301 SP evldd Vector Load Doubleword into Doubleword
EVX 7C00011D P E.PD evlddepx Vector Load Doubleword into Doubleword by External Pro-

cess ID Indexed
EVX 10000300 SP evlddx Vector Load Doubleword into Doubleword Indexed
EVX 10000305 SP evldh Vector Load Doubleword into 4 Halfwords
EVX 10000304 SP evldhx Vector Load Doubleword into 4 Halfwords Indexed
EVX 10000303 SP evldw Vector Load Doubleword into 2 Words
EVX 10000302 SP evldwx Vector Load Doubleword into 2 Words Indexed
EVX 10000309 SP evlhhesplat Vector Load Halfword into Halfwords Even and Splat
EVX 10000308 SP evlhhesplatx Vector Load Halfword into Halfwords Even and Splat 

Indexed
EVX 1000030F SP evlhhossplat Vector Load Halfword into Halfwords Odd and Splat
EVX 1000030E SP evlhhossplatx Vector Load Halfword into Halfwords Odd Signed and Splat 

Indexed
EVX 1000030D SP evlhhousplat Vector Load Halfword into Halfwords Odd Unsigned and 

Splat
EVX 1000030C SP evlhhousplatx Vector Load Halfword into Halfwords Odd Unsigned and 

Splat Indexed
EVX 10000311 SP evlwhe Vector Load Word into Two Halfwords Even
EVX 10000310 SP evlwhex Vector Load Word into Two Halfwords Even Indexed
EVX 10000317 SP evlwhos Vector Load Word into Two Halfwords Odd Signed (with 

sign extension)
EVX 10000316 SP evlwhosx Vector Load Word into Two Halfwords Odd Signed Indexed 

(with sign extension)
EVX 10000315 SP evlwhou Vector Load Word into Two Halfwords Odd Unsigned (zero-

extended)
EVX 10000314 SP evlwhoux Vector Load Word into Two Halfwords Odd Unsigned 

Indexed (zero-extended)
EVX 1000031D SP evlwhsplat Vector Load Word into Two Halfwords and Splat
EVX 1000031C SP evlwhsplatx Vector Load Word into Two Halfwords and Splat Indexed
EVX 10000319 SP evlwwsplat Vector Load Word into Word and Splat
EVX 10000318 SP evlwwsplatx Vector Load Word into Word and Splat Indexed
EVX 1000022C SP evmergehi Vector Merge High
EVX 1000022E SP evmergehilo Vector Merge High/Low
EVX 1000022D SP evmergelo Vector Merge Low
EVX 1000022F SP evmergelohi Vector Merge Low/High
EVX 1000052B SP evmhegsmfaa Vector Multiply Halfwords, Even, Guarded, Signed, Modulo, 

Fractional and Accumulate
EVX 100005AB SP evmhegsmfan Vector Multiply Halfwords, Even, Guarded, Signed, Modulo, 

Fractional and Accumulate Negative
EVX 10000529 SP evmhegsmiaa Vector Multiply Halfwords, Even, Guarded, Signed, Modulo, 

Integer and Accumulate
EVX 100005A9 SP evmhegsmian Vector Multiply Halfwords, Even, Guarded, Signed, Modulo, 

Integer and Accumulate Negative
EVX 10000528 SP evmhegumiaa Vector Multiply Halfwords, Even, Guarded, Unsigned, Mod-

ulo, Integer and Accumulate
EVX 100005A8 SP evmhegumian Vector Multiply Halfwords, Even, Guarded, Unsigned, Mod-

ulo, Integer and Accumulate Negative
EVX 1000040B SP evmhesmf Vector Multiply Halfwords, Even, Signed, Modulo, Fractional
EVX 1000042B SP evmhesmfa Vector Multiply Halfwords, Even, Signed, Modulo, Fractional 

to Accumulate
EVX 1000050B SP evmhesmfaaw Vector Multiply Halfwords, Even, Signed, Modulo, Fractional 

and Accumulate into Words
EVX 1000058B SP evmhesmfanw Vector Multiply Halfwords, Even, Signed, Modulo, Fractional 

and Accumulate Negative into Words
EVX 10000409 SP evmhesmi Vector Multiply Halfwords, Even, Signed, Modulo, Integer

F
o

rm

Opcode
(hexadeci-

mal)2 M
o

d
e

 D
ep

.1

P
ri

v1

Cat1 Mnemonic Instruction
Appendix A. VLE Instruction Set Sorted by Mnemonic 719



   Version 2.04
EVX 10000429 SP evmhesmia Vector Multiply Halfwords, Even, Signed, Modulo, Integer to 
Accumulator

EVX 10000509 SP evmhesmiaaw Vector Multiply Halfwords, Even, Signed, Modulo, Integer 
and Accumulate into Words

EVX 10000589 SP evmhesmianw Vector Multiply Halfwords, Even, Signed, Modulo, Integer 
and Accumulate Negative into Words

EVX 10000403 SP evmhessf Vector Multiply Halfwords, Even, Signed, Saturate, Frac-
tional

EVX 10000423 SP evmhessfa Vector Multiply Halfwords, Even, Signed, Saturate, Frac-
tional to Accumulator

EVX 10000503 SP evmhessfaaw Vector Multiply Halfwords, Even, Signed, Saturate, Frac-
tional and Accumulate into Words

EVX 10000583 SP evmhessfanw Vector Multiply Halfwords, Even, Signed, Saturate, Frac-
tional and Accumulate Negative into Words

EVX 10000501 SP evmhessiaaw Vector Multiply Halfwords, Even, Signed, Saturate, Integer 
and Accumulate into Words

EVX 10000581 SP evmhessianw Vector Multiply Halfwords, Even, Signed, Saturate, Integer 
and Accumulate Negative into Words

EVX 10000408 SP evmheumi Vector Multiply Halfwords, Even, Unsigned, Modulo, Integer
EVX 10000428 SP evmheumia Vector Multiply Halfwords, Even, Unsigned, Modulo, Integer 

to Accumulator
EVX 10000508 SP evmheumiaaw Vector Multiply Halfwords, Even, Unsigned, Modulo, Integer 

and Accumulate into Words
EVX 10000588 SP evmheumianw Vector Multiply Halfwords, Even, Unsigned, Modulo, Integer 

and Accumulate Negative into Words
EVX 10000500 SP evmheusiaaw Vector Multiply Halfwords, Even, Unsigned, Saturate Integer 

and Accumulate into Words
EVX 10000580 SP evmheusianw Vector Multiply Halfwords, Even, Unsigned, Saturate Integer 

and Accumulate Negative into Words
EVX 1000052F SP evmhogsmfaa Vector Multiply Halfwords, Odd, Guarded, Signed, Modulo, 

Fractional and Accumulate
EVX 100005AF SP evmhogsmfan Vector Multiply Halfwords, Odd, Guarded, Signed, Modulo, 

Fractional and Accumulate Negative
EVX 1000052D SP evmhogsmiaa Vector Multiply Halfwords, Odd, Guarded, Signed, Modulo, 

Integer and Accumulate
EVX 100005AD SP evmhogsmian Vector Multiply Halfwords, Odd, Guarded, Signed, Modulo, 

Integer and Accumulate Negative
EVX 1000052C SP evmhogumiaa Vector Multiply Halfwords, Odd, Guarded, Unsigned, Mod-

ulo, Integer and Accumulate
EVX 100005AC SP evmhogumian Vector Multiply Halfwords, Odd, Guarded, Unsigned, Mod-

ulo, Integer and Accumulate Negative
EVX 1000040F SP evmhosmf Vector Multiply Halfwords, Odd, Signed, Modulo, Fractional
EVX 1000042F SP evmhosmfa Vector Multiply Halfwords, Odd, Signed, Modulo, Fractional 

to Accumulator
EVX 1000050F SP evmhosmfaaw Vector Multiply Halfwords, Odd, Signed, Modulo, Fractional 

and Accumulate into Words
EVX 1000058F SP evmhosmfanw Vector Multiply Halfwords, Odd, Signed, Modulo, Fractional 

and Accumulate Negative into Words
EVX 1000040D SP evmhosmi Vector Multiply Halfwords, Odd, Signed, Modulo, Integer
EVX 1000042D SP evmhosmia Vector Multiply Halfwords, Odd, Signed, Modulo, Integer to 

Accumulator
EVX 1000050D SP evmhosmiaaw Vector Multiply Halfwords, Odd, Signed, Modulo, Integer 

and Accumulate into Words
EVX 1000058D SP evmhosmianw Vector Multiply Halfwords, Odd, Signed, Modulo, Integer 

and Accumulate Negative into Words
EVX 10000407 SP evmhossf Vector Multiply Halfwords, Odd, Signed, Fractional
EVX 10000427 SP evmhossfa Vector Multiply Halfwords, Odd, Signed, Fractional to Accu-

mulator
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EVX 10000507 SP evmhossfaaw Vector Multiply Halfwords, Odd, Signed, Saturate, Frac-
tional and Accumulate into Words

EVX 10000587 SP evmhossfanw Vector Multiply Halfwords, Odd, Signed, Saturate, Frac-
tional and Accumulate Negative into Words

EVX 10000505 SP evmhossiaaw Vector Multiply Halfwords, Odd, Signed, Saturate, Integer 
and Accumulate into Words

EVX 10000585 SP evmhossianw Vector Multiply Halfwords, Odd, Signed, Saturate, Integer 
and Accumulate Negative into Words

EVX 1000040C SP evmhoumi Vector Multiply Halfwords, Odd, Unsigned, Modulo, Integer
EVX 1000042C SP evmhoumia Vector Multiply Halfwords, Odd, Unsigned, Modulo, Integer 

to Accumulator
EVX 1000050C SP evmhoumiaaw Vector Multiply Halfwords, Odd, Unsigned, Modulo, Integer 

and Accumulate into Words
EVX 1000058C SP evmhoumianw Vector Multiply Halfwords, Odd, Unsigned, Modulo, Integer 

and Accumulate Negative into Words
EVX 10000504 SP evmhousiaaw Vector Multiply Halfwords, Odd, Unsigned, Saturate, Integer 

and Accumulate into Words
EVX 10000584 SP evmhousianw Vector Multiply Halfwords, Odd, Unsigned, Saturate, Integer 

and Accumulate Negative into Words
EVX 100004C4 SP evmra Initialize Accumulator
EVX 1000044F SP evmwhsmf Vector Multiply Word High Signed, Modulo, Fractional
EVX 1000046F SP evmwhsmfa Vector Multiply Word High Signed, Modulo, Fractional to 

Accumulator
EVX 1000054F SP evmwhsmfaaw Vector Multiply Word High Signed, Modulo, Fractional and 

Accumulate into Words
EVX 100005CF SP evmwhsmfanw Vector Multiply Word High Signed, Modulo, Fractional and 

Accumulate Negative into Words
EVX 1000044D SP evmwhsmi Vector Multiply Word High Signed, Modulo, Integer
EVX 1000046D SP evmwhsmia Vector Multiply Word High Signed, Modulo, Integer to Accu-

mulator
EVX 1000054D SP evmwhsmiaaw Vector Multiply Word High Signed, Modulo, Integer and 

Accumulate into Words
EVX 100005CD SP evmwhsmianw Vector Multiply Word High Signed, Modulo, Integer and 

Accumulate Negative into Words
EVX 10000447 SP evmwhssf Vector Multiply Word High Signed, Fractional
EVX 10000467 SP evmwhssfa Vector Multiply Word High Signed, Fractional to Accumula-

tor
EVX 10000547 SP evmwhssfaaw Vector Multiply Word High Signed, Fractional and Accumu-

late into Words
EVX 100005C7 SP evmwhssfanw Vector Multiply Word High Signed, Fractional and Accumu-

late Negative into Words
EVX 100005C5 SP evmwhssianw Vector Multiply Word High Signed, Integer and Accumulate 

Negative into Words
EVX 1000044C SP evmwhumi Vector Multiply Word High Unsigned, Modulo, Integer
EVX 1000046C SP evmwhumia Vector Multiply Word High Unsigned, Modulo, Integer to 

Accumulator
EVX 1000054C SP evmwhumiaaw Vector Multiply Word High Unsigned, Modulo, Integer and 

Accumulate into Words
EVX 100005CC SP evmwhumianw Vector Multiply Word High Unsigned, Modulo, Integer and 

Accumulate Negative into Words
EVX 10000544 SP evmwhusiaaw Vector Multiply Word High Unsigned, Integer and Accumu-

late into Words
EVX 100005C4 SP evmwhusianw Vector Multiply Word High Unsigned, Integer and Accumu-

late Negative into Words
EVX 10000549 SP evmwlsmiaaw Vector Multiply Word Low Signed, Modulo, Integer and 

Accumulate into Words
EVX 100005C9 SP evmwlsmianw Vector Multiply Word Low Signed, Modulo, Integer and 

Accumulate Negative into Words
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EVX 10000541 SP evmwlssiaaw Vector Multiply Word Low Signed, Saturate, Integer and 
Accumulate into Words

EVX 100005C1 SP evmwlssianw Vector Multiply Word Low Signed, Saturate, Integer and 
Accumulate Negative into Words

EVX 10000448 SP evmwlumi Vector Multiply Word Low Unsigned, Modulo, Integer
EVX 10000468 SP evmwlumia Vector Multiply Word Low Unsigned, Modulo, Integer to 

Accumulator
EVX 10000548 SP evmwlumiaaw Vector Multiply Word Low Unsigned, Modulo, Integer and 

Accumulate into Words
EVX 100005C8 SP evmwlumianw Vector Multiply Word Low Unsigned, Modulo, Integer and 

Accumulate Negative into Words
EVX 10000540 SP evmwlusiaaw Vector Multiply Word Low Unsigned Saturate, Integer and 

Accumulate into Words
EVX 100005C0 SP evmwlusianw Vector Multiply Word Low Unsigned Saturate, Integer and 

Accumulate Negative into Words
EVX 1000045B SP evmwsmf Vector Multiply Word Signed, Modulo, Fractional
EVX 1000047B SP evmwsmfa Vector Multiply Word Signed, Modulo, Fractional to Accu-

mulator
EVX 1000055B SP evmwsmfaa Vector Multiply Word Signed, Modulo, Fractional and Accu-

mulate
EVX 100005DB SP evmwsmfan Vector Multiply Word Signed, Modulo, Fractional and Accu-

mulate Negative
EVX 10000459 SP evmwsmi Vector Multiply Word Signed, Modulo, Integer
EVX 10000479 SP evmwsmia Vector Multiply Word Signed, Modulo, Integer to Accumula-

tor
EVX 10000559 SP evmwsmiaa Vector Multiply Word Signed, Modulo, Integer and Accumu-

late
EVX 100005D9 SP evmwsmian Vector Multiply Word Signed, Modulo, Integer and Accumu-

late Negative
EVX 10000453 SP evmwssf Vector Multiply Word Signed, Saturate, Fractional
EVX 10000473 SP evmwssfa Vector Multiply Word Signed, Saturate, Fractional to Accu-

mulator
EVX 10000553 SP evmwssfaa Vector Multiply Word Signed, Saturate, Fractional and Accu-

mulate
EVX 100005D3 SP evmwssfan Vector Multiply Word Signed, Saturate, Fractional and Accu-

mulate Negative
EVX 10000458 SP evmwumi Vector Multiply Word Unsigned, Modulo, Integer
EVX 10000478 SP evmwumia Vector Multiply Word Unsigned, Modulo, Integer to Accumu-

lator
EVX 10000558 SP evmwumiaa Vector Multiply Word Unsigned, Modulo, Integer and Accu-

mulate
EVX 100005D8 SP evmwumian Vector Multiply Word Unsigned, Modulo, Integer and Accu-

mulate Negative
EVX 1000021E SP evnand Vector NAND
EVX 10000209 SP evneg Vector Negate
EVX 10000218 SP evnor Vector NOR
EVX 10000217 SP evor Vector OR
EVX 1000021B SP evorc Vector OR with Complement
EVX 10000228 SP evrlw Vector Rotate Left Word
EVX 1000022A SP evrlwi Vector Rotate Left Word Immediate
EVX 1000020C SP evrndw Vector Round Word
EVSE

L
10000278 SP evsel Vector Select

EVX 10000224 SP evslw Vector Shift Left Word
EVX 10000226 SP evslwi Vector Shift Left Word Immediate
EVX 1000022B SP evsplatfi Vector Splat Fractional Immediate
EVX 10000229 SP evsplati Vector Splat Immediate
EVX 10000223 SP evsrwis Vector Shift Right Word Immediate Signed
EVX 10000222 SP evsrwiu Vector Shift Right Word Immediate Unsigned
EVX 10000221 SP evsrws Vector Shift Right Word Signed
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EVX 10000220 SP evsrwu Vector Shift Right Word Unsigned
EVX 10000321 SP evstdd Vector Store Doubleword of Doubleword
EVX 7C00019D P E.PD evstddepx Vector Store Doubleword into Doubleword by External Pro-

cess ID Indexed
EVX 10000320 SP evstddx Vector Store Doubleword of Doubleword Indexed
EVX 10000325 SP evstdh Vector Store Doubleword of Four Halfwords
EVX 10000324 SP evstdhx Vector Store Doubleword of Four Halfwords Indexed
EVX 10000323 SP evstdw Vector Store Doubleword of Two Words
EVX 10000322 SP evstdwx Vector Store Doubleword of Two Words Indexed
EVX 10000331 SP evstwhe Vector Store Word of Two Halfwords from Even
EVX 10000330 SP evstwhex Vector Store Word of Two Halfwords from Even Indexed
EVX 10000335 SP evstwho Vector Store Word of Two Halfwords from Odd
EVX 10000334 SP evstwhox Vector Store Word of Two Halfwords from Odd Indexed
EVX 10000339 SP evstwwe Vector Store Word of Word from Even
EVX 10000338 SP evstwwex Vector Store Word of Word from Even Indexed
EVX 1000033D SP evstwwo Vector Store Word of Word from Odd
EVX 1000033C SP evstwwox Vector Store Word of Word from Odd Indexed
EVX 100004CB SP evsubfsmiaaw Vector Subtract Signed, Modulo, Integer to Accumulator 

Word
EVX 100004C3 SP evsubfssiaaw Vector Subtract Signed, Saturate, Integer to Accumulator 

Word
EVX 100004CA SP evsubfumiaaw Vector Subtract Unsigned, Modulo, Integer to Accumulator 

Word
EVX 100004C2 SP evsubfusiaaw Vector Subtract Unsigned, Saturate, Integer to Accumulator 

Word
EVX 10000204 SP evsubfw Vector Subtract from Word
EVX 10000206 SP evsubifw Vector Subtract Immediate from Word
EVX 10000216 SP evxor Vector XOR
X 7C000774 SR B extsb[.] Extend Shign Byte
X 7C000734 SR B extsh[.] Extend Sign Halfword
X 7C0007B4 SR 64 extsw[.] Extend Sign Word
X 7C0007AC B icbi Instruction Cache Block Invalidate
X 7C0007BE P E.PD icbiep Instruction Cache Block Invalidate by External Process ID
X 7C0001CC M ECL icblc Instruction Cache Block Lock Clear
X 7C00002C E icbt Instruction Cache Block Touch
X 7C0003CC M ECL icbtls Instruction Cache Block Touch and Lock Set
X 7C00078C P E.CI ici Instruction Cache Invalidate
X 7C0007CC P E.CD icread Instruction Cache Read
A 7C00001E B.in isel Integer Select
X 7C0000BE P E.PD lbepx Load Byte by External Process ID Indexed
X 7C0000EE B lbzux Load Byte and Zero with Update Indexed
X 7C0000AE B lbzx Load Byte and Zero Indexed
X 7C0000A8 64 ldarx Load Doubleword and Reserve Indexed
X 7C00003A P E.PD ldepx Load Doubleword by External Process ID Indexed
X 7C00006A 64 ldux Load Doubleword with Update Indexed
X 7C00002A 64 ldx Load Doubleword Indexed
X 7C0004BE P E.PD lfdepx Load Floating-Point Double by External Process ID Indexed
X 7C0002EE B lhaux Load Halfword Algebraic with Update Indexed
X 7C0002AE B lhax Load Halfword Algebraic Indexed
X 7C00062C B lhbrx Load Halfword Byte-Reversed Indexed
X 7C00023E P E.PD lhepx Load Halfword by External Process ID Indexed
X 7C00026E B lhzux Load Halfword and Zero with Update Indexed
X 7C00022E B lhzx Load Halfword and Zero Indexed
X 7C0004AA MA lswi Load String Word Immediate
X 7C00042A MA lswx Load String Word Indexed
X 7C00000E V lvebx Load Vector Element Byte Indexed
X 7C00004E V lvehx Load Vector Element Halfword Indexed
X 7C00024E P E.PD lvepx Load Vector by External Process ID Indexed
X 7C00020E P E.PD lvepxl Load Vector by External Process ID Indexed LRU
X 7C00008E V lvewx Load Vector Element Word Indexed
X 7C00000C V lvsl Load Vector for Shift Left Indexed
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X 7C00004C V lvsr Load Vector for Shift Right  Indexed
X 7C0000CE V lvx[l] Load Vector Indexed [Last]
X 7C000028 B lwarx Load Word and Reserve Indexed
X 7C0002EA 64 lwaux Load Word Algebraic with Update Indexed
X 7C0002AA 64 lwax Load Word Algebraic Indexed
X 7C00042C B lwbrx Load Word Byte-Reversed Indexed
X 7C00003E P E.PD lwepx Load Word by External Process ID Indexed
X 7C00006E B lwzux Load Word and Zero with Update Indexed
X 7C00002E B lwzx Load Word and Zero Indexed
X 10000158 SR LIM macchw[o][.] Multiply Accumulate Cross Halfword to Word Modulo 

Signed
X 100001D8 SR LIM macchws[o][.] Multiply Accumulate Cross Halfword to Word Saturate 

Signed
X 10000198 SR LIM macchwsu[o][.] Multiply Accumulate Cross Halfword to Word Saturate 

Unsigned
X 10000118 SR LIM macchwu[o][.] Multiply Accumulate Cross Halfword to Word Modulo 

Unsigned
X 10000058 SR LIM machhw[o][.] Multiply Accumulate High Halfword to Word Modulo Signed
X 100000D8 SR LIM machhws[o][.] Multiply Accumulate High Halfword to Word Saturate 

Signed
X 10000098 SR LIM machhwsu[o][.] Multiply Accumulate High Halfword to Word Saturate 

Unsigned
X 10000018 SR LIM machhwu[o][.] Multiply Accumulate High Halfword to Word Modulo 

Unsigned
X 10000358 SR LIM maclhw[o][.] Multiply Accumulate Low Halfword to Word Modulo Signed
X 100003D8 SR LIM maclhws[o][.] Multiply Accumulate Low Halfword to Word Saturate Signed
X 10000398 SR LIM maclhwsu[o][.] Multiply Accumulate Low Halfword to Word Saturate 

Unsigned
X 10000318 SR LIM maclhwu[o][.] Multiply Accumulate Low Halfword to Word Modulo 

Unsigned
XFX 7C0006AC E mbar Memory Barrier
X 7C000400 B mcrxr Move To Condition Register From XER
XFX 7C000026 B mfcr Move From Condition Register
XFX 7C000286 P E mfdcr Move From Device Control Register
XFX 7C000246 P E mfdcrux Move From Device Control Register User-mode Indexed
XFX 7C000206 P E mfdcrx Move From Device Control Register Indexed
X 7C0000A6 P B mfmsr Move From Machine State Register
XFX 7C100026 B mfocrf Move From One Condition Register Field
XFX 7C00029C O E.PM mfpmr Move From Performance Monitor Register
XFX 7C0002A6 O B mfspr Move From Special Purpose Register
VX 10000604 V mfvscr Move from Vector Status and Control Register
X 7C0001DC P E.PC msgclr Message Clear
X 7C00019C P E.PC msgsnd Message Send
XFX 7C000120 B mtcrf Move To Condition Register Fields
XFX 7C000386 P E mtdcr Move To Device Control Register
X 7C000346 E mtdcrux Move To Device Control Register User-mode Indexed
X 7C000306 P E mtdcrx Move To Device Control Register Indexed
X 7C000124 P E mtmsr Move To Machine State Register
XFX 7C100120 B mtocrf Move To One Condition Register Field
XFX 7C00039C O E.PM mtpmr Move To Performance Monitor Register
XFX 7C0003A6 O B mtspr Move To Special Purpose Register
VX 10000644 V mtvscr Move to Vector Status and Control Register
X 10000150 SR LIM mulchw[o][.] Multiply Cross Halfword to Word Signed
X 10000110 SR LIM mulchwu[o][.] Multiply Cross Halfword to Word Unsigned
XO 7C000092 SR 64 mulhd[.] Multiply High Doubleword
XO 7C000012 SR 64 mulhdu[.] Multiply High Doubleword Unsigned
X 10000050 SR LIM mulhhw[o][.] Multiply High Halfword to Word Signed
X 10000010 SR LIM mulhhwu[o][.] Multiply High Halfword to Word Unsigned
XO 7C000096 SR B mulhw[.] Multiply High Word
XO 7C000016 SR B mulhwu[.] Multiply High Word Unsigned
XO 7C0001D2 SR 64 mulld[o][.] Multiply Low Doubleword
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XO 7C0001D6 SR B mullw[o][.] Multiply Low Word
X 7C0003B8 SR B nand[.] NAND
X 7C0000D0 SR B neg[o][.] Negate
X 1000015C SR LIM nmacchw[o][.] Negative Multiply Accumulate Cross Halfword to Word Mod-

ulo Signed
X 100001DC SR LIM nmacchws[o][.] Negative Multiply Accumulate Cross Halfword to Word Sat-

urate Signed
X 1000005C SR LIM nmachhw[o][.] Negative Multiply Accumulate High Halfword to Word Mod-

ulo Signed
X 100000DC SR LIM nmachhws[o][.] Negative Multiply Accumulate High Halfword to Word Satu-

rate Signed
X 1000035C SR LIM nmaclhw[o][.] Negative Multiply Accumulate Low Halfword to Word Mod-

ulo Signed
X 100003DC SR LIM nmaclhws[o][.] Negative Multiply Accumulate Low Halfword to Word Satu-

rate Signed
X 7C0000F8 SR B nor[.] NOR
X 7C000378 SR B or[.] OR
X 7C000338 SR B orc[.] OR with Complement
X 7C0000F4 B popcntb Population Count Bytes
RR 0400---- VLE se_add Add Short Form
OIM5 2000---- VLE se_addi Add Immediate Short Form
RR 4600---- SR VLE se_and[.] AND Short Form
RR 4500---- VLE se_andc AND with Complement Short Form
IM5 2E00---- VLE se_andi AND Immediate Short Form
BD8 E800---- VLE se_b[l] Branch [and Link]
BD8 E000---- VLE se_bc Branch Conditional Short Form
IM5 6000---- VLE se_bclri Bit Clear Immediate
C 0006---- VLE se_bctr Branch To Count Register [and Link]
IM5 6200---- VLE se_bgeni Bit Generate Immediate
C 0004---- VLE se_blr Branch To Link Register [and Link]
IM5 2C00---- VLE se_bmaski Bit Mask Generate Immediate
IM5 6400---- VLE se_bseti Bit Set Immediate
IM5 6600---- VLE se_btsti Bit Test Immediate
RR 0C00---- VLE se_cmp Compare Word
RR 0E00---- VLE se_cmph Compare Halfword Short Form
RR 0F00---- VLE se_cmphl Compare Halfword Logical Short Form
IM5 2A00---- VLE se_cmpi Compare Immediate Word Short Form
RR 0D00---- VLE se_cmpl Compare Logical Word
OIM5 2200---- VLE se_cmpli Compare Logical Immendiate Word
R 00D0---- VLE se_extsb Extend Sign Byte Short Form
R 00F0---- VLE se_extsh Extend Sign Halfword Short Form
R 00C0---- VLE se_extzb Extend Zero Byte
R 00E0---- VLE se_extzh Extend Zero Halfword
C 0000---- VLE se_illegal Illegal
C 0001---- VLE se_isync Instruction Synchronize
SD4 8000---- VLE se_lbz Load Byte and Zero Short Form
SD4 A000---- VLE se_lhz Load Halfword and Zero Short Form
IM7 4800---- VLE se_li Load Immediate Short Form
SD4 C000---- VLE se_lwz Load Word and Zero Short Form
RR 0300---- VLE se_mfar Move from Alternate Register
R 00A0---- VLE se_mfctr Move From Count Register
R 0080---- VLE se_mflr Move From Link Register
RR 0100---- VLE se_mr Move Register
RR 0200---- VLE se_mtar Move To Alternate Register
R 00B0---- VLE se_mtctr Move To Count Register
R 0090---- VLE se_mtlr Move To Link Register
RR 0500---- VLE se_mullw Multiply Low Word Short Form
R 0030---- VLE se_neg Negate Short Form
R 0020---- VLE se_not NOT Short Form
RR 4400---- VLE se_or OR SHort Form
C 0009---- P VLE se_rfci Return From Critical Interrupt
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C 000A---- P VLE se_rfdi Return From Debug Interrupt
C 0008---- P VLE se_rfi Return from Interrupt
C 000B---- P VLE se_rfmci Return From Machine Check Interrupt
C 0002---- VLE se_sc System Call
RR 4200---- VLE se_slw Shift Left Word
IM5 6C00---- VLE se_slwi Shift Left Word Immediate Short Form
RR 4100---- SR VLE se_sraw Shift Right Algebraic Word
IM5 6A00---- SR VLE se_srawi Shift Right Algebraic Immediate
RR 4000---- VLE se_srw Shift Right Word
IM5 6800---- VLE se_srwi Shift Right Word Immediate Short Form
SD4 9000---- VLE se_stb Store Byte Short Form
SD4 B000---- VLE se_sth Store Halfword SHort Form
SD4 D000---- VLE se_stw Store Word Short Form
RR 0600---- VLE se_sub Subtract
RR 0700---- VLE se_subf Subtract From Short Form
OIM5 2400---- SR VLE se_subi[.] Subtract Immediate
X 7C000036 SR 64 sld[.] Shift Left Doubleword
X 7C000030 SR B slw[.] Shift Left Word
X 7C000634 SR 64 srad[.] Shift Right Algebraic Doubleword
X 7C000674 SR 64 sradi[.] Shift Right Algebraic Doubleword Immediate
X 7C000630 SR B sraw[.] Shift Right Algebraic Word
X 7C000670 SR B srawi[.] Shift Right Algebraic Word Immediate
X 7C000436 SR 64 srd[.] Shift Right Doubleword
X 7C000430 SR B srw[.] Shift Right Word
X 7C0001BE P E.PD stbepx Store Byte by External Process ID Indexed
X 7C0001EE B stbux Store Byte with Update Indexed
X 7C0001AE B stbx Store Bye Indexed
X 7C0001AD 64 stdcx. Store Doubleword Conditional Indexed
X 7C00013A P E.PD stdepx Store Doubleword by External Process ID Indexed
X 7C00016A 64 stdux Store Doubleword with Update Indexed
X 7C00012A 64 stdx Store Doubleword Indexed
X 7C0005BE P E.PD stfdepx Store Floating-Point Double by External Process ID Indexed
X 7C00072C B sthbrx Store Halfword Byte-Reversed Indexed
X 7C00033E P E.PD sthepx Store Halfword by External Process ID Indexed
X 7C00036E B sthux Store Halfword with Update Indexed
X 7C00032E B sthx Store Halfword Indexed
X 7C0005AA MA stswi Store String Word Immediate
X 7C00052A MA stswx Store String Word Indexed
VX 7C00010E V stvebx Store Vector Element Byte Indexed
VX 7C00014E V stvehx Store Vector Element Halfword Indexed
X 7C00064E P E.PD stvepx Store Vector by External Process ID Indexed
X 7C00060E P E.PD stvepxl Store Vector by External Process ID Indexed LRU
VX 7C00018E V stvewx Store Vector Element Word Indexed
VX 7C0001CE V stvx[l] Store Vector Indexed [Last]
X 7C00052C B stwbrx Store Word Byte-Reversed Indexed
X 7C00012D B stwcx. Store Word Conditional Indexed
X 7C00013E P E.PD stwepx Store Word by External Process ID Indexed
X 7C00016E B stwux Store Word with Update Indexed
X 7C00012E B stwx Store Word Indexed
XO 7C000050 SR B subf[o][.] Subtract From
XO 7C000010 SR B subfc[o][.] Subtract From Carrying
XO 7C000110 SR B subfe[o][.] Subtract From Extended
XO 7C0001D0 SR B subfme[o][.] Subtract From Minus One Extended
XO 7C000190 SR B subfze[o][.] Subtract From Zero Extended
X 7C0004AC B sync Synchronize
X 7C000088 64 td Trap Doubleword
X 7C000624 P E tlbivax TLB Invalidate Virtual Address Indexed
X 7C000764 P E tlbre TLB Read Entry
X 7C000724 P E tlbsx TLB Search Indexed
X 7C00046C P E tlbsync TLB Synchronize
X 7C0007A4 P E tlbwe TLB Write Entry
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X 7C000008 B tw Trap Word
VX 10000180 V vaddcuw Vector Add Carryout Unsigned Word
VX 1000000A V vaddfp Vector Add Floating-Point
VX 10000300 V vaddsbs Vector Add Signed Byte Saturate
VX 10000340 V vaddshs Vector Add Signed Halfword Saturate
VX 10000380 V vaddsws Vector Add Signed Word Saturate
VX 10000000 V vaddubm Vector Add Unsigned Byte Modulo
VX 10000200 V vaddubs Vector Add Unsigned Byte Saturate
VX 10000040 V vadduhm Vector Add Unsigned Halfword Modulo
VX 10000240 V vadduhs Vector Add Unsigned Halfword Saturate
VX 10000080 V vadduwm Vector Add Unsigned Word Modulo
VX 10000280 V vadduws Vector Add Unsigned Word Saturate
VX 10000404 V vand Vector AND
VX 10000444 V vandc Vector AND with Complement
VX 10000502 V vavgsb Vector Average Signed Byte
VX 10000542 V vavgsh Vector Average Signed Halfword
VX 10000582 V vavgsw Vector Average Signed Word
VX 10000402 V vavgub Vector Average Unsigned Byte
VX 10000442 V vavguh Vector Average Unsigned Halfword
VX 10000482 V vavguw Vector Average Unsigned Word
VX 100003CA V vcfpsxws Vector Convert from Single-Precision to Signed Fixed-Point 

Word Saturate
VX 1000038A V vcfpuxws Vector Convert from Single-Precision to Unsigned Fixed-

Point Word Saturate
VX 100003C6 V vcmpbfp[.] Vector Compare Bounds Single-Precision
VC 100000C6 V vcmpeqfp[.] Vector Compare Equal To Single-Precision
VC 10000006 V vcmpequb[.] Vector Compare Equal To Unsigned Byte
VC 10000046 V vcmpequh[.] Vector Compare Equal To Unsigned Halfword
VC 10000086 V vcmpequw[.] Vector Compare Equal To Unsigned Word
VC 100001C6 V vcmpgefp[.] Vector Compare Greater Than or Equal To Single-Precision
VC 100002C6 V vcmpgtfp[.] Vector Compare Greater Than Single-Precision
VC 10000306 V vcmpgtsb[.] Vector Compare Greater Than Signed Byte
VC 10000346 V vcmpgtsh[.] Vector Compare Greater Than Signed Halfword
VC 10000386 V vcmpgtsw[.] Vector Compare Greater Than Signed Word
VC 10000206 V vcmpgtub[.] Vector Compare Greater Than Unsigned Byte
VC 10000246 V vcmpgtuh[.] Vector Compare Greater Than Unsigned Halfword
VC 10000286 V vcmpgtuw[.] Vector Compare Greater Than Unsigned Word
VX 1000034A V vcsxwfp Vector Convert from Signed Fixed-Point Word to Single-

Precision
VX 1000030A V vcuxwfp Vector Convert from Unsigned Fixed-Point Word to Single-

Precision
VX 1000018A V vexptefp Vector 2 Raised to the Exponent Estimate Floating-Point
VX 100001CA V vlogefp Vector Log Base 2 Estimate Floating-Point
VA 1000002E V vmaddfp Vector Multiply-Add Single-Precision
VX 1000040A V vmaxfp Vector Maximum Single-Precision
VX 10000102 V vmaxsb Vector Maximum Signed Byte
VX 10000142 V vmaxsh Vector Maximum Signed Halfword
VX 10000182 V vmaxsw Vector Maximum Signed Word
VX 10000002 V vmaxub Vector Maximum Unsigned Byte
VX 10000042 V vmaxuh Vector Maximum Unsigned Halfword
VX 10000082 V vmaxuw Vector Maximum Unsigned Word
VA 10000020 V vmhaddshs Vector Multiply-High-Add Signed Halfword Saturate
VA 10000021 V vmhraddshs Vector Multiply-High-Round-Add Signed Halfword Saturate
VX 1000044A V vminfp Vector Minimum Single-Precision
VX 10000302 V vminsb Vector Minimum Signed Byte
VX 10000342 V vminsh Vector Minimum Signed Halfword
VX 10000382 V vminsw Vector Minimum Signed Word
VX 10000202 V vminub Vector Minimum Unsigned Byte
VX 10000242 V vminuh Vector Minimum Unsigned Halfword
VX 10000282 V vminuw Vector Minimum Unsigned Word
VA 10000022 V vmladduhm Vector Multiply-Low-Add Unsigned Halfword Modulo
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VX 1000000C V vmrghb Vector Merge High Byte
VX 1000004C V vmrghh Vector Merge High Halfword
VX 1000008C V vmrghw Vector Merge High Word
VX 1000010C V vmrglb Vector Merge Low Byte
VX 1000014C V vmrglh Vector Merge Low Halfword
VX 1000018C V vmrglw Vector Merge Low Word
VA 10000025 V vmsummbm Vector Multiply-Sum Mixed Byte Modulo
VA 10000028 V vmsumshm Vector Multiply-Sum Signed Halfword Modulo
VA 10000029 V vmsumshs Vector Multiply-Sum Signed Halfword Saturate
VA 10000024 V vmsumubm Vector Multiply-Sum Unsigned Byte Modulo
VA 10000026 V vmsumuhm Vector Multiply-Sum Unsigned Halfword Modulo
VA 10000027 V vmsumuhs Vector Multiply-Sum Unsigned Halfword Saturate
VX 10000308 V vmulesb Vector Multiply Even Signed Byte
VX 10000348 V vmulesh Vector Multiply Even Signed Halfword
VX 10000208 V vmuleub Vector Multiply Even Unsigned Byte
VX 10000248 V vmuleuh Vector Multiply Even Unsigned Halfword
VX 10000108 V vmulosb Vector Multiply Odd Signed Byte
VX 10000148 V vmulosh Vector Multiply Odd Signed Halfword
VX 10000008 V vmuloub Vector Multiply Odd Unsigned Byte
VX 10000048 V vmulouh Vector Multiply Odd Unsigned Halfword
VA 1000002F V vnmsubfp Vector Negative Multiply-Subtract Single-Precision
VX 10000504 V vnor Vector NOR
VX 10000484 V vor Vector OR
VA 1000002B V vperm Vector Permute
VX 1000030E V vpkpx Vector Pack Pixel
VX 1000018E V vpkshss Vector Pack Signed Halfword Signed Saturate
VX 1000010E V vpkshus Vector Pack Signed Halfword Unsigned Saturate
VX 100001CE V vpkswss Vector Pack Signed Word Signed Saturate
VX 1000014E V vpkswus Vector Pack Signed Word Unsigned Saturate
VX 1000000E V vpkuhum Vector Pack Unsigned Halfword Unsigned Modulo
VX 1000008E V vpkuhus Vector Pack Unsigned Halfword Unsigned Saturate
VX 1000004E V vpkuwum Vector Pack Unsigned Word Unsigned Modulo
VX 100000CE V vpkuwus Vector Pack Unsigned Word Unsigned Saturate
VX 1000010A V vrefp Vector Reciprocal Estimate Single-Precision
VX 100002CA V vrfim Vector Round to Single-Precision Integer toward -Infinity
VX 1000020A V vrfin Vector Round to Single-Precision Integer Nearest
VX 1000028A V vrfip Vector Round to Single-Precision Integer toward +Infinity
VX 1000024A V vrfiz Vector Round to Single-Precision Integer toward Zero
VX 10000004 V vrlb Vector Rotate Left Byte
VX 10000044 V vrlh Vector Rotate Left Halfword
VX 10000084 V vrlw Vector Rotate Left Word
VX 1000014A V vrsqrtefp Vector Reciprocal Square Root Estimate Single-Precision
VA 1000002A V vsel Vector Select
VX 100001C4 V vsl Vector Shift Left
VX 10000104 V vslb Vector Shift Left Byte
VA 1000002C V vsldoi Vector Shift Left Double by Octet Immediate
VX 10000144 V vslh Vector Shift Left Halfword
VX 1000040C V vslo Vector Shift Left by Octet
VX 10000184 V vslw Vector Shift Left Word
VX 1000020C V vspltb Vector Splat Byte
VX 1000024C V vsplth Vector Splat Halfword
VX 1000030C V vspltisb Vector Splat Immediate Signed Byte
VX 1000034C V vspltish Vector Splat Immediate Signed Halfword
VX 1000038C V vspltisw Vector Splat Immediate Signed Word
VX 1000028C V vspltw Vector Splat Word
VX 100002C4 V vsr Vector Shift Right
VX 10000304 V vsrab Vector Shift Right Algebraic Word
VX 10000344 V vsrah Vector Shift Right Algebraic Word
VX 10000384 V vsraw Vector Shift Right Algebraic Word
VX 10000204 V vsrb Vector Shift Right Byte
VX 10000244 V vsrh Vector Shift Right Halfword
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1 See the key to the mode dependency and privilege columns on page 839 and the key to the category column in 
Section 1.3.5 of Book I.

2 For 16-bit instructions, the “Opcode” column represents the 16-bit hexadecimal instruction encoding with the 
opcode and extended opcode in the corresponding fields in the instruction, and with 0’s in bit positions which are 
not opcode bits; dashes are used following the opcode to indicate the form is a 16-bit instruction. For 32-bit 
instructions, the “Opcode” column represents the 32-bit hexadecimal instruction encoding with the opcode and 
extended opcode in the corresponding fields in the instruction, and with 0’s in bit positions which are not opcode 
bits.

VX 1000044C V vsro Vector Shift Right by Octet
VX 10000284 V vsrw Vector Shift Right Word
VX 10000580 V vsubcuw Vector Subtract and Write Carry-Out Unsigned Word
VX 1000004A V vsubfp Vector Subtract Single-Precision
VX 10000700 V vsubsbs Vector Subtract Signed Byte Saturate
VX 10000740 V vsubshs Vector Subtract Signed Halfword Saturate
VX 10000780 V vsubsws Vector Subtract Signed Word Saturate
VX 10000400 V vsububm Vector Subtract Unsigned Byte Modulo
VX 10000600 V vsububs Vector Subtract Unsigned Byte Saturate
VX 10000440 V vsubuhm Vector Subtract Unsigned Byte Modulo
VX 10000640 V vsubuhs Vector Subtract Unsigned Halfword Saturate
VX 10000480 V vsubuwm Vector Subtract Unsigned Word Modulo
VX 10000680 V vsubuws Vector Subtract Unsigned Word Saturate
VX 10000688 V vsum2sws Vector Sum across Half Signed Word Saturate
VX 10000708 V vsum4sbs Vector Sum across Quarter Signed Byte Saturate
VX 10000648 V vsum4shs Vector Sum across Quarter Signed Halfword Saturate
VX 10000608 V vsum4ubs Vector Sum across Quarter Unsigned Byte Saturate
VX 10000788 V vsumsws Vector Sum across Signed Word Saturate
VX 1000034E V vupkhpx Vector Unpack High Pixel
VX 1000020E V vupkhsb Vector Unpack High Signed Byte
VX 1000024E V vupkhsh Vector Unpack High Signed Halfword
VX 100003CE V vupklpx Vector Unpack Low Pixel
VX 1000028E V vupklsb Vector Unpack Low Signed Byte
VX 100002CE V vupklsh Vector Unpack Low Signed Halfword
VX 100004C4 V vxor Vector XOR
X 7C00007C WT wait Wait
X 7C000106 P E wrtee Write MSR External Enable
X 7C000146 P E wrteei Write MSR External Enable Immediate
D 7C000278 SR B xor[.] XOR
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Appendix B.  VLE Instruction Set Sorted by Opcode

This appendix lists all the instructions available in VLE mode in the Power ISA , in order by opcode. Opcodes that are
not defined below are treated as illegal by category VLE.
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C 0000---- VLE se_illegal Illegal
C 0001---- VLE se_isync Instruction Synchronize
C 0002---- VLE se_sc System Call
C 0004---- VLE se_blr Branch To Link Register [and Link]
C 0006---- VLE se_bctr Branch To Count Register [and Link]
C 0008---- P VLE se_rfi Return from Interrupt
C 0009---- P VLE se_rfci Return From Critical Interrupt
C 000A---- P VLE se_rfdi Return From Debug Interrupt
C 000B---- P VLE se_rfmci Return From Machine Check Interrupt
R 0020---- VLE se_not NOT Short Form
R 0030---- VLE se_neg Negate Short Form
R 0080---- VLE se_mflr Move From Link Register
R 0090---- VLE se_mtlr Move To Link Register
R 00A0---- VLE se_mfctr Move From Count Register
R 00B0---- VLE se_mtctr Move To Count Register
R 00C0---- VLE se_extzb Extend Zero Byte
R 00D0---- VLE se_extsb Extend Sign Byte Short Form
R 00E0---- VLE se_extzh Extend Zero Halfword
R 00F0---- VLE se_extsh Extend Sign Halfword Short Form
RR 0100---- VLE se_mr Move Register
RR 0200---- VLE se_mtar Move To Alternate Register
RR 0300---- VLE se_mfar Move from Alternate Register
RR 0400---- VLE se_add Add Short Form
RR 0500---- VLE se_mullw Multiply Low Word Short Form
RR 0600---- VLE se_sub Subtract
RR 0700---- VLE se_subf Subtract From Short Form
RR 0C00---- VLE se_cmp Compare Word
RR 0D00---- VLE se_cmpl Compare Logical Word
RR 0E00---- VLE se_cmph Compare Halfword Short Form
RR 0F00---- VLE se_cmphl Compare Halfword Logical Short Form
VX 10000000 V vaddubm Vector Add Unsigned Byte Modulo
VX 10000002 V vmaxub Vector Maximum Unsigned Byte
VX 10000004 V vrlb Vector Rotate Left Byte
VC 10000006 V vcmpequb[.] Vector Compare Equal To Unsigned Byte
VX 10000008 V vmuloub Vector Multiply Odd Unsigned Byte
VX 1000000A V vaddfp Vector Add Floating-Point
VX 1000000C V vmrghb Vector Merge High Byte
VX 1000000E V vpkuhum Vector Pack Unsigned Halfword Unsigned Modulo
X 10000010 SR LIM mulhhwu[o][.] Multiply High Halfword to Word Unsigned
X 10000018 SR LIM machhwu[o][.] Multiply Accumulate High Halfword to Word Modulo 

Unsigned
VA 10000020 V vmhaddshs Vector Multiply-High-Add Signed Halfword Saturate
VA 10000021 V vmhraddshs Vector Multiply-High-Round-Add Signed Halfword Saturate
VA 10000022 V vmladduhm Vector Multiply-Low-Add Unsigned Halfword Modulo
VA 10000024 V vmsumubm Vector Multiply-Sum Unsigned Byte Modulo
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VA 10000025 V vmsummbm Vector Multiply-Sum Mixed Byte Modulo
VA 10000026 V vmsumuhm Vector Multiply-Sum Unsigned Halfword Modulo
VA 10000027 V vmsumuhs Vector Multiply-Sum Unsigned Halfword Saturate
VA 10000028 V vmsumshm Vector Multiply-Sum Signed Halfword Modulo
VA 10000029 V vmsumshs Vector Multiply-Sum Signed Halfword Saturate
VA 1000002A V vsel Vector Select
VA 1000002B V vperm Vector Permute
VA 1000002C V vsldoi Vector Shift Left Double by Octet Immediate
VA 1000002E V vmaddfp Vector Multiply-Add Single-Precision
VA 1000002F V vnmsubfp Vector Negative Multiply-Subtract Single-Precision
VX 10000040 V vadduhm Vector Add Unsigned Halfword Modulo
VX 10000042 V vmaxuh Vector Maximum Unsigned Halfword
VX 10000044 V vrlh Vector Rotate Left Halfword
VC 10000046 V vcmpequh[.] Vector Compare Equal To Unsigned Halfword
VX 10000048 V vmulouh Vector Multiply Odd Unsigned Halfword
VX 1000004A V vsubfp Vector Subtract Single-Precision
VX 1000004C V vmrghh Vector Merge High Halfword
VX 1000004E V vpkuwum Vector Pack Unsigned Word Unsigned Modulo
X 10000050 SR LIM mulhhw[o][.] Multiply High Halfword to Word Signed
X 10000058 SR LIM machhw[o][.] Multiply Accumulate High Halfword to Word Modulo Signed
X 1000005C SR LIM nmachhw[o][.] Negative Multiply Accumulate High Halfword to Word Mod-

ulo Signed
VX 10000080 V vadduwm Vector Add Unsigned Word Modulo
VX 10000082 V vmaxuw Vector Maximum Unsigned Word
VX 10000084 V vrlw Vector Rotate Left Word
VC 10000086 V vcmpequw[.] Vector Compare Equal To Unsigned Word
VX 1000008C V vmrghw Vector Merge High Word
VX 1000008E V vpkuhus Vector Pack Unsigned Halfword Unsigned Saturate
X 10000098 SR LIM machhwsu[o][.] Multiply Accumulate High Halfword to Word Saturate 

Unsigned
VC 100000C6 V vcmpeqfp[.] Vector Compare Equal To Single-Precision
VX 100000CE V vpkuwus Vector Pack Unsigned Word Unsigned Saturate
X 100000D8 SR LIM machhws[o][.] Multiply Accumulate High Halfword to Word Saturate 

Signed
X 100000DC SR LIM nmachhws[o][.] Negative Multiply Accumulate High Halfword to Word Satu-

rate Signed
VX 10000102 V vmaxsb Vector Maximum Signed Byte
VX 10000104 V vslb Vector Shift Left Byte
VX 10000108 V vmulosb Vector Multiply Odd Signed Byte
VX 1000010A V vrefp Vector Reciprocal Estimate Single-Precision
VX 1000010C V vmrglb Vector Merge Low Byte
VX 1000010E V vpkshus Vector Pack Signed Halfword Unsigned Saturate
X 10000110 SR LIM mulchwu[o][.] Multiply Cross Halfword to Word Unsigned
X 10000118 SR LIM macchwu[o][.] Multiply Accumulate Cross Halfword to Word Modulo 

Unsigned
VX 10000142 V vmaxsh Vector Maximum Signed Halfword
VX 10000144 V vslh Vector Shift Left Halfword
VX 10000148 V vmulosh Vector Multiply Odd Signed Halfword
VX 1000014A V vrsqrtefp Vector Reciprocal Square Root Estimate Single-Precision
VX 1000014C V vmrglh Vector Merge Low Halfword
VX 1000014E V vpkswus Vector Pack Signed Word Unsigned Saturate
X 10000150 SR LIM mulchw[o][.] Multiply Cross Halfword to Word Signed
X 10000158 SR LIM macchw[o][.] Multiply Accumulate Cross Halfword to Word Modulo 

Signed
X 1000015C SR LIM nmacchw[o][.] Negative Multiply Accumulate Cross Halfword to Word Mod-

ulo Signed
VX 10000180 V vaddcuw Vector Add Carryout Unsigned Word
VX 10000182 V vmaxsw Vector Maximum Signed Word
VX 10000184 V vslw Vector Shift Left Word
VX 1000018A V vexptefp Vector 2 Raised to the Exponent Estimate Floating-Point
VX 1000018C V vmrglw Vector Merge Low Word
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VX 1000018E V vpkshss Vector Pack Signed Halfword Signed Saturate
X 10000198 SR LIM macchwsu[o][.] Multiply Accumulate Cross Halfword to Word Saturate 

Unsigned
VX 100001C4 V vsl Vector Shift Left
VC 100001C6 V vcmpgefp[.] Vector Compare Greater Than or Equal To Single-Precision
VX 100001CA V vlogefp Vector Log Base 2 Estimate Floating-Point
VX 100001CE V vpkswss Vector Pack Signed Word Signed Saturate
X 100001D8 SR LIM macchws[o][.] Multiply Accumulate Cross Halfword to Word Saturate 

Signed
X 100001DC SR LIM nmacchws[o][.] Negative Multiply Accumulate Cross Halfword to Word Sat-

urate Signed
EVX 10000200 SP evaddw Vector Add Word
VX 10000200 V vaddubs Vector Add Unsigned Byte Saturate
EVX 10000202 SP evaddiw Vector Add Immediate Word
VX 10000202 V vminub Vector Minimum Unsigned Byte
EVX 10000204 SP evsubfw Vector Subtract from Word
VX 10000204 V vsrb Vector Shift Right Byte
EVX 10000206 SP evsubifw Vector Subtract Immediate from Word
VC 10000206 V vcmpgtub[.] Vector Compare Greater Than Unsigned Byte
EVX 10000208 SP evabs Vector Absolute Value
VX 10000208 V vmuleub Vector Multiply Even Unsigned Byte
EVX 10000209 SP evneg Vector Negate
EVX 1000020A SP evextsb Vector Extend Sign Byte
VX 1000020A V vrfin Vector Round to Single-Precision Integer Nearest
EVX 1000020B SP evextsh Vector Extend Sign Halfword
EVX 1000020C SP evrndw Vector Round Word
VX 1000020C V vspltb Vector Splat Byte
EVX 1000020D SP evcntlzw Vector Count Leading Zeros Bits Word
EVX 1000020E SP evcntlsw Vector Count Leading Sign Bits Word
VX 1000020E V vupkhsb Vector Unpack High Signed Byte
EVX 1000020F SP brinc Bit Reverse Increment
EVX 10000211 SP evand Vector AND
EVX 10000212 SP evandc Vector AND with Complement
EVX 10000216 SP evxor Vector XOR
EVX 10000217 SP evor Vector OR
EVX 10000218 SP evnor Vector NOR
EVX 10000219 SP eveqv Vector Equivalent
EVX 1000021B SP evorc Vector OR with Complement
EVX 1000021E SP evnand Vector NAND
EVX 10000220 SP evsrwu Vector Shift Right Word Unsigned
EVX 10000221 SP evsrws Vector Shift Right Word Signed
EVX 10000222 SP evsrwiu Vector Shift Right Word Immediate Unsigned
EVX 10000223 SP evsrwis Vector Shift Right Word Immediate Signed
EVX 10000224 SP evslw Vector Shift Left Word
EVX 10000226 SP evslwi Vector Shift Left Word Immediate
EVX 10000228 SP evrlw Vector Rotate Left Word
EVX 10000229 SP evsplati Vector Splat Immediate
EVX 1000022A SP evrlwi Vector Rotate Left Word Immediate
EVX 1000022B SP evsplatfi Vector Splat Fractional Immediate
EVX 1000022C SP evmergehi Vector Merge High
EVX 1000022D SP evmergelo Vector Merge Low
EVX 1000022E SP evmergehilo Vector Merge High/Low
EVX 1000022F SP evmergelohi Vector Merge Low/High
EVX 10000230 SP evcmpgtu Vector Compare Greater Than Unsigned
EVX 10000231 SP evcmpgts Vector Compare Greater Than Signed
EVX 10000232 SP evcmpltu Vector Compare Less Than Unsigned
EVX 10000233 SP evcmplts Vector Compare Less Than Signed
EVX 10000234 SP evcmpeq Vector Compare Equal
VX 10000240 V vadduhs Vector Add Unsigned Halfword Saturate
VX 10000242 V vminuh Vector Minimum Unsigned Halfword
VX 10000244 V vsrh Vector Shift Right Halfword
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VC 10000246 V vcmpgtuh[.] Vector Compare Greater Than Unsigned Halfword
VX 10000248 V vmuleuh Vector Multiply Even Unsigned Halfword
VX 1000024A V vrfiz Vector Round to Single-Precision Integer toward Zero
VX 1000024C V vsplth Vector Splat Halfword
VX 1000024E V vupkhsh Vector Unpack High Signed Halfword
EVSE

L
10000278 SP evsel Vector Select

EVX 10000280 SP.FV evfsadd Vector Floating-Point Single-Precision Add
VX 10000280 V vadduws Vector Add Unsigned Word Saturate
EVX 10000281 SP.FV evfssub Vector Floating-Point Single-Precision Subtract
VX 10000282 V vminuw Vector Minimum Unsigned Word
EVX 10000284 SP.FV evfsabs Vector Floating-Point Single-Precision Absolute Value
VX 10000284 V vsrw Vector Shift Right Word
EVX 10000285 SP.FV evfsnabs Vector Floating-Point Single-Precision Negative Absolute 

Value
EVX 10000286 SP.FV evfsneg Vector Floating-Point Single-Precision Negate
VC 10000286 V vcmpgtuw[.] Vector Compare Greater Than Unsigned Word
EVX 10000288 SP.FV evfsmul Vector Floating-Point Single-Precision Multiply
EVX 10000289 SP.FV evfsdiv Vector Floating-Point Single-Precision Divide
VX 1000028A V vrfip Vector Round to Single-Precision Integer toward  +Infinity
EVX 1000028C SP.FV evfscmpgt Vector Floating-Point Single-Precision Compare Greater 

Than
VX 1000028C V vspltw Vector Splat Word
EVX 1000028D SP.FV evfscmplt Vector Floating-Point Single-Precision Compare Less Than
EVX 1000028E SP.FV evfscmpeq Vector Floating-Point Single-Precision Compare Equal
VX 1000028E V vupklsb Vector Unpack Low Signed Byte
EVX 10000290 SP.FV evfscfui Vector Convert Floating-Point Single-Precision from 

Unsigned Integer
EVX 10000291 SP.FV evfscfsi Vector Convert Floating-Point Single-Precision from Signed 

Integer
EVX 10000292 SP.FV evfscfuf Vector Convert Floating-Point Single-Precision from 

Unsigned Fraction
EVX 10000293 SP.FV evfscfsf Vector Convert Floating-Point Single-Precision from Signed 

Fraction
EVX 10000294 SP.FV evfsctui Vector Convert Floating-Point Single-Precision to Unsigned 

Integer
EVX 10000295 SP.FV evfsctsi Vector Convert Floating-Point Single-Precision to Signed 

Integer
EVX 10000296 SP.FV evfsctuf Vector Convert Floating-Point Single-Precision to Unsigned 

Fraction
EVX 10000297 SP.FV evfsctsf Vector Convert Floating-Point Single-Precision to Signed 

Fraction
EVX 10000298 SP.FV evfsctuiz Vector Convert Floating-Point Single-Precision to Unsigned 

Integer with Round Towards Zero
EVX 1000029A SP.FV evfsctsiz Vector Convert Floating-Point Single-Precision to Signed 

Integer with Round Towards Zero
EVX 1000029C SP.FV evfststgt Vector Floating-Point Single-Precision Test Greater Than
EVX 1000029D SP.FV evfststlt Vector Floating-Point Single-Precision Test Less Than
EVX 1000029E SP.FV evfststeq Vector Floating-Point Single-Precision Test Equal
VX 100002C4 V vsr Vector Shift Right
VC 100002C6 V vcmpgtfp[.] Vector Compare Greater Than Single-Precision
VX 100002CA V vrfim Vector Round to Single-Precision Integer toward -Infinity
VX 100002CE V vupklsh Vector Unpack Low Signed Halfword
EVX 100002CF SP.FD efscfd Floating-Point Single-Precision Convert from Double-Preci-

sion
EVX 100002E0 SP.FD efdadd Floating-Point Double-Precision Add
EVX 100002E0 SP.FS efsadd Floating-Point Single-Precision Add
EVX 100002E1 SP.FD efdsub Floating-Point Double-Precision Subtract
EVX 100002E1 SP.FS efssub Floating-Point Single-Precision Subtract
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EVX 100002E2 SP.FD efdcfuid Convert Floating-Point Double-Precision from Unsigned 
Integer Doubleword

EVX 100002E2 SP.FS efscfuid Convert Floating-Point Single-Precision from Unsigned Inte-
ger Doubleword

EVX 100002E3 SP.FD efdcfsid Convert Floating-Point Double-Precision from Signed Inte-
ger Doubleword

EVX 100002E3 SP.FS efscfsid Convert Floating-Point Single-Precision from Signed Integer 
Doubleword

EVX 100002E4 SP.FD efdabs Floating-Point Double-Precision Absolute Value
EVX 100002E4 SP.FS efsabs Floating-Point Single-Precision Absolute Value
EVX 100002E5 SP.FD efdnabs Floating-Point Double-Precision Negative Absolute Value
EVX 100002E5 SP.FS efsnabs Floating-Point Single-Precision Negative Absolute Value
EVX 100002E6 SP.FD efdneg Floating-Point Double-Precision Negate
EVX 100002E6 SP.FS efsneg Floating-Point Single-Precision Negate
EVX 100002E8 SP.FD efdmul Floating-Point Double-Precision Multiply
EVX 100002E8 SP.FS efsmul Floating-Point Single-Precision Multiply
EVX 100002E9 SP.FD efddiv Floating-Point Double-Precision Divide
EVX 100002E9 SP.FS efsdiv Floating-Point Single-Precision Divide
EVX 100002EA SP.FD efdctuidz Convert Floating-Point Double-Precision to Unsigned Inte-

ger Doubleword with Round Towards Zero
EVX 100002EA SP.FS efsctuidz Convert Floating-Point Single-Precision to Unsigned Integer 

Doubleword with Round Towards Zero
EVX 100002EB SP.FD efdctsidz Convert Floating-Point Double-Precision to Signed Integer 

Doubleword with Round Towards Zero
EVX 100002EB SP.FS efsctsidz Convert Floating-Point Single-Precision to Signed Integer 

Doubleword with Round Towards Zero
EVX 100002EC SP.FD efdcmpgt Floating-Point Double-Precision Compare Greater Than
EVX 100002EC SP.FS efscmpgt Floating-Point Single-Precision Compare Greater Than
EVX 100002ED SP.FD efdcmplt Floating-Point Double-Precision Compare Less Than
EVX 100002ED SP.FS efscmplt Floating-Point Single-Precision Compare Less Than
EVX 100002EE SP.FD efdcmpeq Floating-Point Double-Precision Compare Equal
EVX 100002EE SP.FS efscmpeq Floating-Point Single-Precision Compare Equal
EVX 100002EF SP.FD efdcfs Floating-Point Double-Precision Convert from Single-Preci-

sion
EVX 100002F0 SP.FD efdcfui Convert Floating-Point Double-Precision from Unsigned 

Integer
EVX 100002F0 SP.FS efscfui Convert Floating-Point Single-Precision from Unsigned Inte-

ger
EVX 100002F1 SP.FD efdcfsi Convert Floating-Point Double-Precision from Signed Inte-

ger
EVX 100002F1 SP.FS efscfsi Convert Floating-Point Single-Precision from Signed Integer
EVX 100002F2 SP.FD efdcfuf Convert Floating-Point Double-Precision from Unsigned 

Fraction
EVX 100002F2 SP.FS efscfuf Convert Floating-Point Single-Precision from Unsigned 

Fraction
EVX 100002F3 SP.FD efdcfsf Convert Floating-Point Double-Precision from Signed Frac-

tion
EVX 100002F3 SP.FS efscfsf Convert Floating-Point Single-Precision from Signed Frac-

tion
EVX 100002F4 SP.FD efdctui Convert Floating-Point Double-Precision to Unsigned Inte-

ger
EVX 100002F4 SP.FS efsctui Convert Floating-Point Single-Precision to Unsigned Integer
EVX 100002F5 SP.FD efdctsi Convert Floating-Point Double-Precision to Signed Integer
EVX 100002F5 SP.FS efsctsi Convert Floating-Point Single-Precision to Signed Integer
EVX 100002F6 SP.FD efdctuf Convert Floating-Point Double-Precision to Unsigned Frac-

tion
EVX 100002F6 SP.FS efsctuf Convert Floating-Point Single-Precision to Unsigned Frac-

tion
EVX 100002F7 SP.FD efdctsf Convert Floating-Point Double-Precision to Signed Fraction
EVX 100002F7 SP.FS efsctsf Convert Floating-Point Single-Precision to Signed Fraction
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EVX 100002F8 SP.FD efdctuiz Convert Floating-Point Double-Precision to Unsigned Inte-
ger with Round Towards Zero

EVX 100002F8 SP.FS efsctuiz Convert Floating-Point Single-Precision to Unsigned Integer 
with Round Towards Zero

EVX 100002FA SP.FD efdctsiz Convert Floating-Point Double-Precision to Signed Integer 
with Round Towards Zero

EVX 100002FA SP.FS efsctsiz Convert Floating-Point Single-Precision to Signed Integer 
with Round Towards Zero

EVX 100002FC SP.FD efdtstgt Floating-Point Double-Precision Test Greater Than
EVX 100002FC SP.FS efststgt Floating-Point Single-Precision Test Greater Than
EVX 100002FD SP.FD efdtstlt Floating-Point Double-Precision Test Less Than
EVX 100002FD SP.FS efststlt Floating-Point Single-Precision Test Less Than
EVX 100002FE SP.FD efdtsteq Floating-Point Double-Precision Test Equal
EVX 100002FE SP.FS efststeq Floating-Point Single-Precision Test Equal
EVX 10000300 SP evlddx Vector Load Doubleword into Doubleword Indexed
VX 10000300 V vaddsbs Vector Add Signed Byte Saturate
EVX 10000301 SP evldd Vector Load Doubleword into Doubleword
EVX 10000302 SP evldwx Vector Load Doubleword into 2 Words Indexed
VX 10000302 V vminsb Vector Minimum Signed Byte
EVX 10000303 SP evldw Vector Load Doubleword into 2 Words
EVX 10000304 SP evldhx Vector Load Doubleword into 4 Halfwords Indexed
VX 10000304 V vsrab Vector Shift Right Algebraic Word
EVX 10000305 SP evldh Vector Load Doubleword into 4 Halfwords
VC 10000306 V vcmpgtsb[.] Vector Compare Greater Than Signed Byte
EVX 10000308 SP evlhhesplatx Vector Load Halfword into Halfwords Even and Splat 

Indexed
VX 10000308 V vmulesb Vector Multiply Even Signed Byte
EVX 10000309 SP evlhhesplat Vector Load Halfword into Halfwords Even and Splat
VX 1000030A V vcuxwfp Vector Convert from Unsigned Fixed-Point Word to Single-

Precision
EVX 1000030C SP evlhhousplatx Vector Load Halfword into Halfwords Odd Unsigned and 

Splat Indexed
VX 1000030C V vspltisb Vector Splat Immediate Signed Byte
EVX 1000030D SP evlhhousplat Vector Load Halfword into Halfwords Odd Unsigned and 

Splat
EVX 1000030E SP evlhhossplatx Vector Load Halfword into Halfwords Odd Signed and Splat 

Indexed
VX 1000030E V vpkpx Vector Pack Pixel
EVX 1000030F SP evlhhossplat Vector Load Halfword into Halfwords Odd and Splat
EVX 10000310 SP evlwhex Vector Load Word into Two Halfwords Even Indexed
EVX 10000311 SP evlwhe Vector Load Word into Two Halfwords Even
EVX 10000314 SP evlwhoux Vector Load Word into Two Halfwords Odd Unsigned 

Indexed (zero-extended)
EVX 10000315 SP evlwhou Vector Load Word into Two Halfwords Odd Unsigned (zero-

extended)
EVX 10000316 SP evlwhosx Vector Load Word into Two Halfwords Odd Signed Indexed 

(with sign extension)
EVX 10000317 SP evlwhos Vector Load Word into Two Halfwords Odd Signed (with 

sign extension)
EVX 10000318 SP evlwwsplatx Vector Load Word into Word and Splat Indexed
X 10000318 SR LIM maclhwu[o][.] Multiply Accumulate Low Halfword to Word Modulo 

Unsigned
EVX 10000319 SP evlwwsplat Vector Load Word into Word and Splat
EVX 1000031C SP evlwhsplatx Vector Load Word into Two Halfwords and Splat Indexed
EVX 1000031D SP evlwhsplat Vector Load Word into Two Halfwords and Splat
EVX 10000320 SP evstddx Vector Store Doubleword of Doubleword Indexed
EVX 10000321 SP evstdd Vector Store Doubleword of Doubleword
EVX 10000322 SP evstdwx Vector Store Doubleword of Two Words Indexed
EVX 10000323 SP evstdw Vector Store Doubleword of Two Words
EVX 10000324 SP evstdhx Vector Store Doubleword of Four Halfwords Indexed
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EVX 10000325 SP evstdh Vector Store Doubleword of Four Halfwords
EVX 10000330 SP evstwhex Vector Store Word of Two Halfwords from Even Indexed
EVX 10000331 SP evstwhe Vector Store Word of Two Halfwords from Even
EVX 10000334 SP evstwhox Vector Store Word of Two Halfwords from Odd Indexed
EVX 10000335 SP evstwho Vector Store Word of Two Halfwords from Odd
EVX 10000338 SP evstwwex Vector Store Word of Word from Even Indexed
EVX 10000339 SP evstwwe Vector Store Word of Word from Even
EVX 1000033C SP evstwwox Vector Store Word of Word from Odd Indexed
EVX 1000033D SP evstwwo Vector Store Word of Word from Odd
VX 10000340 V vaddshs Vector Add Signed Halfword Saturate
VX 10000342 V vminsh Vector Minimum Signed Halfword
VX 10000344 V vsrah Vector Shift Right Algebraic Word
VC 10000346 V vcmpgtsh[.] Vector Compare Greater Than Signed Halfword
VX 10000348 V vmulesh Vector Multiply Even Signed Halfword
VX 1000034A V vcsxwfp Vector Convert from Signed Fixed-Point Word to Single-

Precision
VX 1000034C V vspltish Vector Splat Immediate Signed Halfword
VX 1000034E V vupkhpx Vector Unpack High Pixel
X 10000358 SR LIM maclhw[o][.] Multiply Accumulate Low Halfword to Word Modulo Signed
X 1000035C SR LIM nmaclhw[o][.] Negative Multiply Accumulate Low Halfword to Word Mod-

ulo Signed
VX 10000380 V vaddsws Vector Add Signed Word Saturate
VX 10000382 V vminsw Vector Minimum Signed Word
VX 10000384 V vsraw Vector Shift Right Algebraic Word
VC 10000386 V vcmpgtsw[.] Vector Compare Greater Than Signed Word
VX 1000038A V vcfpuxws Vector Convert from Single-Precision to Unsigned Fixed-

Point Word Saturate
VX 1000038C V vspltisw Vector Splat Immediate Signed Word
X 10000398 SR LIM maclhwsu[o][.] Multiply Accumulate Low Halfword to Word Saturate 

Unsigned
VC 100003C6 V vcmpbfp[.] Vector Compare Bounds Single-Precision
VX 100003CA V vcfpsxws Vector Convert from Single-Precision to Signed Fixed-Point 

Word Saturate
VX 100003CE V vupklpx Vector Unpack Low Pixel
X 100003D8 SR LIM maclhws[o][.] Multiply Accumulate Low Halfword to Word Saturate Signed
X 100003DC SR LIM nmaclhws[o][.] Negative Multiply Accumulate Low Halfword to Word Satu-

rate Signed
VX 10000400 V vsububm Vector Subtract Unsigned Byte Modulo
VX 10000402 V vavgub Vector Average Unsigned Byte
EVX 10000403 SP evmhessf Vector Multiply Halfwords, Even, Signed, Saturate, Frac-

tional
VX 10000404 V vand Vector AND
EVX 10000407 SP evmhossf Vector Multiply Halfwords, Odd, Signed, Fractional
EVX 10000408 SP evmheumi Vector Multiply Halfwords, Even, Unsigned, Modulo, Integer
EVX 10000409 SP evmhesmi Vector Multiply Halfwords, Even, Signed, Modulo, Integer
VX 1000040A V vmaxfp Vector Maximum Single-Precision
EVX 1000040B SP evmhesmf Vector Multiply Halfwords, Even, Signed, Modulo, Fractional
EVX 1000040C SP evmhoumi Vector Multiply Halfwords, Odd, Unsigned, Modulo, Integer
VX 1000040C V vslo Vector Shift Left by Octet
EVX 1000040D SP evmhosmi Vector Multiply Halfwords, Odd, Signed, Modulo, Integer
EVX 1000040F SP evmhosmf Vector Multiply Halfwords, Odd, Signed, Modulo, Fractional
EVX 10000423 SP evmhessfa Vector Multiply Halfwords, Even, Signed, Saturate, Frac-

tional to Accumulator
EVX 10000427 SP evmhossfa Vector Multiply Halfwords, Odd, Signed, Fractional to Accu-

mulator
EVX 10000428 SP evmheumia Vector Multiply Halfwords, Even, Unsigned, Modulo, Integer 

to Accumulator
EVX 10000429 SP evmhesmia Vector Multiply Halfwords, Even, Signed, Modulo, Integer to 

Accumulator
EVX 1000042B SP evmhesmfa Vector Multiply Halfwords, Even, Signed, Modulo, Fractional 

to Accumulate
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EVX 1000042C SP evmhoumia Vector Multiply Halfwords, Odd, Unsigned, Modulo, Integer 
to Accumulator

EVX 1000042D SP evmhosmia Vector Multiply Halfwords, Odd, Signed, Modulo, Integer to 
Accumulator

EVX 1000042F SP evmhosmfa Vector Multiply Halfwords, Odd, Signed, Modulo, Fractional 
to Accumulator

VX 10000440 V vsubuhm Vector Subtract Unsigned Byte Modulo
VX 10000442 V vavguh Vector Average Unsigned Halfword
VX 10000444 V vandc Vector AND with Complement
EVX 10000447 SP evmwhssf Vector Multiply Word High Signed, Fractional
EVX 10000448 SP evmwlumi Vector Multiply Word Low Unsigned, Modulo, Integer
VX 1000044A V vminfp Vector Minimum Single-Precision
EVX 1000044C SP evmwhumi Vector Multiply Word High Unsigned, Modulo, Integer
VX 1000044C V vsro Vector Shift Right by Octet
EVX 1000044D SP evmwhsmi Vector Multiply Word High Signed, Modulo, Integer
EVX 1000044F SP evmwhsmf Vector Multiply Word High Signed, Modulo, Fractional
EVX 10000453 SP evmwssf Vector Multiply Word Signed, Saturate, Fractional
EVX 10000458 SP evmwumi Vector Multiply Word Unsigned, Modulo, Integer
EVX 10000459 SP evmwsmi Vector Multiply Word Signed, Modulo, Integer
EVX 1000045B SP evmwsmf Vector Multiply Word Signed, Modulo, Fractional
EVX 10000467 SP evmwhssfa Vector Multiply Word High Signed, Fractional to Accumula-

tor
EVX 10000468 SP evmwlumia Vector Multiply Word Low Unsigned, Modulo, Integer to 

Accumulator
EVX 1000046C SP evmwhumia Vector Multiply Word High Unsigned, Modulo, Integer to 

Accumulator
EVX 1000046D SP evmwhsmia Vector Multiply Word High Signed, Modulo, Integer to Accu-

mulator
EVX 1000046F SP evmwhsmfa Vector Multiply Word High Signed, Modulo, Fractional to 

Accumulator
EVX 10000473 SP evmwssfa Vector Multiply Word Signed, Saturate, Fractional to Accu-

mulator
EVX 10000478 SP evmwumia Vector Multiply Word Unsigned, Modulo, Integer to Accumu-

lator
EVX 10000479 SP evmwsmia Vector Multiply Word Signed, Modulo, Integer to Accumula-

tor
EVX 1000047B SP evmwsmfa Vector Multiply Word Signed, Modulo, Fractional to Accu-

mulator
VX 10000480 V vsubuwm Vector Subtract Unsigned Word Modulo
VX 10000482 V vavguw Vector Average Unsigned Word
VX 10000484 V vor Vector OR
EVX 100004C0 SP evaddusiaaw Vector Add Unsigned, Saturate, Integer to Accumulator 

Word
EVX 100004C1 SP evaddssiaaw Vector Add Signed, Saturate, Integer to Accumulator Word
EVX 100004C2 SP evsubfusiaaw Vector Subtract Unsigned, Saturate, Integer to Accumulator 

Word
EVX 100004C3 SP evsubfssiaaw Vector Subtract Signed, Saturate, Integer to Accumulator 

Word
EVX 100004C4 SP evmra Initialize Accumulator
VX 100004C4 V vxor Vector XOR
EVX 100004C6 SP evdivws Vector Divide Word Signed
EVX 100004C7 SP evdivwu Vector Divide Word Unsigned
EVX 100004C8 SP evaddumiaaw Vector Add Unsigned, Modulo, Integer to Accumulator Word
EVX 100004C9 SP evaddsmiaaw Vector Add Signed, Modulo, Integer to Accumulator Word
EVX 100004CA SP evsubfumiaaw Vector Subtract Unsigned, Modulo, Integer to Accumulator 

Word
EVX 100004CB SP evsubfsmiaaw Vector Subtract Signed, Modulo, Integer to Accumulator 

Word
EVX 10000500 SP evmheusiaaw Vector Multiply Halfwords, Even, Unsigned, Saturate Integer 

and Accumulate into Words
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EVX 10000501 SP evmhessiaaw Vector Multiply Halfwords, Even, Signed, Saturate, Integer 
and Accumulate into Words

VX 10000502 V vavgsb Vector Average Signed Byte
EVX 10000503 SP evmhessfaaw Vector Multiply Halfwords, Even, Signed, Saturate, Frac-

tional and Accumulate into Words
EVX 10000504 SP evmhousiaaw Vector Multiply Halfwords, Odd, Unsigned, Saturate, Integer 

and Accumulate into Words
VX 10000504 V vnor Vector NOR
EVX 10000505 SP evmhossiaaw Vector Multiply Halfwords, Odd, Signed, Saturate, Integer 

and Accumulate into Words
EVX 10000507 SP evmhossfaaw Vector Multiply Halfwords, Odd, Signed, Saturate, Frac-

tional and Accumulate into Words
EVX 10000508 SP evmheumiaaw Vector Multiply Halfwords, Even, Unsigned, Modulo, Integer 

and Accumulate into Words
EVX 10000509 SP evmhesmiaaw Vector Multiply Halfwords, Even, Signed, Modulo, Integer 

and Accumulate into Words
EVX 1000050B SP evmhesmfaaw Vector Multiply Halfwords, Even, Signed, Modulo, Fractional 

and Accumulate into Words
EVX 1000050C SP evmhoumiaaw Vector Multiply Halfwords, Odd, Unsigned, Modulo, Integer 

and Accumulate into Words
EVX 1000050D SP evmhosmiaaw Vector Multiply Halfwords, Odd, Signed, Modulo, Integer 

and Accumulate into Words
EVX 1000050F SP evmhosmfaaw Vector Multiply Halfwords, Odd, Signed, Modulo, Fractional 

and Accumulate into Words
EVX 10000528 SP evmhegumiaa Vector Multiply Halfwords, Even, Guarded, Unsigned, Mod-

ulo, Integer and Accumulate
EVX 10000529 SP evmhegsmiaa Vector Multiply Halfwords, Even, Guarded, Signed, Modulo, 

Integer and Accumulate
EVX 1000052B SP evmhegsmfaa Vector Multiply Halfwords, Even, Guarded, Signed, Modulo, 

Fractional and Accumulate
EVX 1000052C SP evmhogumiaa Vector Multiply Halfwords, Odd, Guarded, Unsigned, Mod-

ulo, Integer and Accumulate
EVX 1000052D SP evmhogsmiaa Vector Multiply Halfwords, Odd, Guarded, Signed, Modulo, 

Integer and Accumulate
EVX 1000052F SP evmhogsmfaa Vector Multiply Halfwords, Odd, Guarded, Signed, Modulo, 

Fractional and Accumulate
EVX 10000540 SP evmwlusiaaw Vector Multiply Word Low Unsigned Saturate, Integer and 

Accumulate into Words
EVX 10000541 SP evmwlssiaaw Vector Multiply Word Low Signed, Saturate, Integer and 

Accumulate into Words
VX 10000542 V vavgsh Vector Average Signed Halfword
EVX 10000544 SP evmwhusiaaw Vector Multiply Word High Unsigned, Integer and Accumu-

late into Words
EVX 10000547 SP evmwhssfaaw Vector Multiply Word High Signed, Fractional and Accumu-

late into Words
EVX 10000548 SP evmwlumiaaw Vector Multiply Word Low Unsigned, Modulo, Integer and 

Accumulate into Words
EVX 10000549 SP evmwlsmiaaw Vector Multiply Word Low Signed, Modulo, Integer and 

Accumulate into Words
EVX 1000054C SP evmwhumiaaw Vector Multiply Word High Unsigned, Modulo, Integer and 

Accumulate into Words
EVX 1000054D SP evmwhsmiaaw Vector Multiply Word High Signed, Modulo, Integer and 

Accumulate into Words
EVX 1000054F SP evmwhsmfaaw Vector Multiply Word High Signed, Modulo, Fractional and 

Accumulate into Words
EVX 10000553 SP evmwssfaa Vector Multiply Word Signed, Saturate, Fractional and Accu-

mulate
EVX 10000558 SP evmwumiaa Vector Multiply Word Unsigned, Modulo, Integer and Accu-

mulate
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EVX 10000559 SP evmwsmiaa Vector Multiply Word Signed, Modulo, Integer and Accumu-
late

EVX 1000055B SP evmwsmfaa Vector Multiply Word Signed, Modulo, Fractional and Accu-
mulate

EVX 10000580 SP evmheusianw Vector Multiply Halfwords, Even, Unsigned, Saturate Integer 
and Accumulate Negative into Words

VX 10000580 V vsubcuw Vector Subtract and Write Carry-Out Unsigned Word
EVX 10000581 SP evmhessianw Vector Multiply Halfwords, Even, Signed, Saturate, Integer 

and Accumulate Negative into Words
VX 10000582 V vavgsw Vector Average Signed Word
EVX 10000583 SP evmhessfanw Vector Multiply Halfwords, Even, Signed, Saturate, Frac-

tional and Accumulate Negative into Words
EVX 10000584 SP evmhousianw Vector Multiply Halfwords, Odd, Unsigned, Saturate, Integer 

and Accumulate Negative into Words
EVX 10000585 SP evmhossianw Vector Multiply Halfwords, Odd, Signed, Saturate, Integer 

and Accumulate Negative into Words
EVX 10000587 SP evmhossfanw Vector Multiply Halfwords, Odd, Signed, Saturate, Frac-

tional and Accumulate Negative into Words
EVX 10000588 SP evmheumianw Vector Multiply Halfwords, Even, Unsigned, Modulo, Integer 

and Accumulate Negative into Words
EVX 10000589 SP evmhesmianw Vector Multiply Halfwords, Even, Signed, Modulo, Integer 

and Accumulate Negative into Words
EVX 1000058B SP evmhesmfanw Vector Multiply Halfwords, Even, Signed, Modulo, Fractional 

and Accumulate Negative into Words
EVX 1000058C SP evmhoumianw Vector Multiply Halfwords, Odd, Unsigned, Modulo, Integer 

and Accumulate Negative into Words
EVX 1000058D SP evmhosmianw Vector Multiply Halfwords, Odd, Signed, Modulo, Integer 

and Accumulate Negative into Words
EVX 1000058F SP evmhosmfanw Vector Multiply Halfwords, Odd, Signed, Modulo, Fractional 

and Accumulate Negative into Words
EVX 100005A8 SP evmhegumian Vector Multiply Halfwords, Even, Guarded, Unsigned, Mod-

ulo, Integer and Accumulate Negative
EVX 100005A9 SP evmhegsmian Vector Multiply Halfwords, Even, Guarded, Signed, Modulo, 

Integer and Accumulate Negative
EVX 100005AB SP evmhegsmfan Vector Multiply Halfwords, Even, Guarded, Signed, Modulo, 

Fractional and Accumulate Negative
EVX 100005AC SP evmhogumian Vector Multiply Halfwords, Odd, Guarded, Unsigned, Mod-

ulo, Integer and Accumulate Negative
EVX 100005AD SP evmhogsmian Vector Multiply Halfwords, Odd, Guarded, Signed, Modulo, 

Integer and Accumulate Negative
EVX 100005AF SP evmhogsmfan Vector Multiply Halfwords, Odd, Guarded, Signed, Modulo, 

Fractional and Accumulate Negative
EVX 100005C0 SP evmwlusianw Vector Multiply Word Low Unsigned Saturate, Integer and 

Accumulate Negative into Words
EVX 100005C1 SP evmwlssianw Vector Multiply Word Low Signed, Saturate, Integer and 

Accumulate Negative into Words
EVX 100005C4 SP evmwhusianw Vector Multiply Word High Unsigned, Integer and Accumu-

late Negative into Words
EVX 100005C5 SP evmwhssianw Vector Multiply Word High Signed, Integer and Accumulate 

Negative into Words
EVX 100005C7 SP evmwhssfanw Vector Multiply Word High Signed, Fractional and Accumu-

late Negative into Words
EVX 100005C8 SP evmwlumianw Vector Multiply Word Low Unsigned, Modulo, Integer and 

Accumulate Negative into Words
EVX 100005C9 SP evmwlsmianw Vector Multiply Word Low Signed, Modulo, Integer and 

Accumulate Negative into Words
EVX 100005CC SP evmwhumianw Vector Multiply Word High Unsigned, Modulo, Integer and 

Accumulate Negative into Words
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EVX 100005CD SP evmwhsmianw Vector Multiply Word High Signed, Modulo, Integer and 
Accumulate Negative into Words

EVX 100005CF SP evmwhsmfanw Vector Multiply Word High Signed, Modulo, Fractional and 
Accumulate Negative into Words

EVX 100005D3 SP evmwssfan Vector Multiply Word Signed, Saturate, Fractional and Accu-
mulate Negative

EVX 100005D8 SP evmwumian Vector Multiply Word Unsigned, Modulo, Integer and Accu-
mulate Negative

EVX 100005D9 SP evmwsmian Vector Multiply Word Signed, Modulo, Integer and Accumu-
late Negative

EVX 100005DB SP evmwsmfan Vector Multiply Word Signed, Modulo, Fractional and Accu-
mulate Negative

VX 10000600 V vsububs Vector Subtract Unsigned Byte Saturate
VX 10000604 V mfvscr Move from Vector Status and Control Register
VX 10000608 V vsum4ubs Vector Sum across Quarter Unsigned Byte Saturate
VX 10000640 V vsubuhs Vector Subtract Unsigned Halfword Saturate
VX 10000644 V mtvscr Move to Vector Status and Control Register
VX 10000648 V vsum4shs Vector Sum across Quarter Signed Halfword Saturate
VX 10000680 V vsubuws Vector Subtract Unsigned Word Saturate
VX 10000688 V vsum2sws Vector Sum across Half Signed Word Saturate
VX 10000700 V vsubsbs Vector Subtract Signed Byte Saturate
VX 10000708 V vsum4sbs Vector Sum across Quarter Signed Byte Saturate
VX 10000740 V vsubshs Vector Subtract Signed Halfword Saturate
VX 10000780 V vsubsws Vector Subtract Signed Word Saturate
VX 10000788 V vsumsws Vector Sum across Signed Word Saturate
D8 18000000 VLE e_lbzu Load Byte and Zero with Update
D8 18000100 VLE e_lhzu Load Halfword and Zero with Update
D8 18000200 VLE e_lwzu Load Word and Zero with Update
D8 18000300 VLE e_lhau Load Halfword Algebraic with Update
D8 18000400 VLE e_stbu Store Byte with Update
D8 18000500 VLE e_sthu Store Halfword with Update
D8 18000600 VLE e_stwu Store word with Update
D8 18000800 VLE e_lmw Load Multiple Word
D8 18000900 VLE e_stmw Store Multiple Word
SCI8 18008000 SR VLE e_addi[.] Add Scaled Immediate
SCI8 18009000 SR VLE e_addic[.] Add Scaled Immediate Carrying
SCI8 1800A000 VLE e_mulli Multiply Low Scaled Immediate
SCI8 1800A800 VLE e_cmpi Compare Scaled Immediate Word
SCI8 1800B000 SR VLE e_subfic[.] Subtract From Scaled Immediate Carrying
SCI8 1800C000 SR VLE e_andi[.] AND Scaled Immediate
SCI8 1800D000 SR VLE e_ori[.] OR Scaled Immediate
SCI8 1800E000 SR VLE e_xori[.] XOR Scaled Immediate
SCI8 1880A800 VLE e_cmpli Compare Logical Scaled Immediate Word
D 1C000000 VLE e_add16i Add Immediate
OIM5 2000---- VLE se_addi Add Immediate Short Form
OIM5 2200---- VLE se_cmpli Compare Logical Immediate Word
OIM5 2400---- SR VLE se_subi[.] Subtract Immediate
IM5 2A00---- VLE se_cmpi Compare Immediate Word Short Form
IM5 2C00---- VLE se_bmaski Bit Mask Generate Immediate
IM5 2E00---- VLE se_andi AND Immediate Short Form
D 30000000 VLE e_lbz Load Byte and Zero
D 34000000 VLE e_stb Store Byte
D 38000000 VLE e_lha Load Halfword Algebraic
RR 4000---- VLE se_srw Shift Right Word
RR 4100---- SR VLE se_sraw Shift Right Algebraic Word
RR 4200---- VLE se_slw Shift Left Word
RR 4400---- VLE se_or OR SHort Form
RR 4500---- VLE se_andc AND with Complement Short Form
RR 4600---- SR VLE se_and[.] AND Short Form
IM7 4800---- VLE se_li Load Immediate Short Form
D 50000000 VLE e_lwz Load Word and Zero
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D 54000000 VLE e_stw Store Word
D 58000000 VLE e_lhz Load Halfword and Zero
D 5C000000 VLE e_sth Store Halfword
IM5 6000---- VLE se_bclri Bit Clear Immediate
IM5 6200---- VLE se_bgeni Bit Generate Immediate
IM5 6400---- VLE se_bseti Bit Set Immediate
IM5 6600---- VLE se_btsti Bit Test Immediate
IM5 6800---- VLE se_srwi Shift Right Word Immediate Short Form
IM5 6A00---- SR VLE se_srawi Shift Right Algebraic Immediate
IM5 6C00---- VLE se_slwi Shift Left Word Immediate Short Form
LI20 70000000 VLE e_li Load Immediate
I16A 70008800 SR VLE e_add2i. Add (2 operand) Immediate and Record
I16A 70009000 VLE e_add2is Add (2 operand) Immediate Shifted
IA16 70009800 VLE e_cmp16i Compare Immediate Word
I16A 7000A000 VLE e_mull2i Multiply (2 operand) Low Immediate
I16A 7000A800 VLE e_cmpl16i Compare Logical Immediate Word
IA16 7000B000 VLE e_cmph16i Compare Halfword Immediate
IA16 7000B800 VLE e_cmphl16i Compare Halfword Logical Immediate
I16L 7000C000 VLE e_or2i OR (2operand) Immediate
I16L 7000C800 SR VLE e_and2i. AND (2 operand) Immediate
I16L 7000D000 VLE e_or2is OR (2 operand) Immediate Shifted
I16L 7000E000 VLE e_lis Load Immediate Shifted
I16L 7000E800 SR VLE e_and2is. AND (2 operand) Immediate Shifted
M 74000000 VLE e_rlwimi Rotate Left Word Immediate then Mask Insert
M 74000001 VLE e_rlwinm Rotate Left Word Immediate then AND with Mask
BD24 78000000 VLE e_b[l] Branch [and Link]
BD15 7A000000 CT VLE e_bc[l] Branch Conditional [and Link]
X 7C000000 B cmp Compare
X 7C000008 B tw Trap Word
X 7C00000C V lvsl Load Vector for Shift Left Indexed
X 7C00000E V lvebx Load Vector Element Byte Indexed
XO 7C000010 SR B subfc[o][.] Subtract From Carrying
XO 7C000012 SR 64 mulhdu[.] Multiply High Doubleword Unsigned
XO 7C000014 B addc[o][.] Add Carrying
XO 7C000016 SR B mulhwu[.] Multiply High Word Unsigned
X 7C00001C VLE e_cmph Compare Halfword
A 7C00001E B.in isel Integer Select
XL 7C000020 VLE e_mcrf Move CR Field
XFX 7C000026 B mfcr Move From Condition Register
X 7C000028 B lwarx Load Word and Reserve Indexed
X 7C00002A 64 ldx Load Doubleword Indexed
X 7C00002C E icbt Instruction Cache Block Touch
X 7C00002E B lwzx Load Word and Zero Indexed
X 7C000030 SR B slw[.] Shift Left Word
X 7C000034 SR B cntlzw[.] Count Leading Zeros Word
X 7C000036 SR 64 sld[.] Shift Left Doubleword
X 7C000038 SR B and[.] AND
X 7C00003A P E.PD ldepx Load Doubleword by External Process ID Indexed
X 7C00003E P E.PD lwepx Load Word by External Process ID Indexed
X 7C000040 B cmpl Compare Logical
XL 7C000042 VLE e_crnor Condition Register NOR
X 7C00004C V lvsr Load Vector for Shift Right  Indexed
X 7C00004E V lvehx Load Vector Element Halfword Indexed
XO 7C000050 SR B subf[o][.] Subtract From
X 7C00005C VLE e_cmphl Compare Halfword Logical
X 7C00006A 64 ldux Load Doubleword with Update Indexed
X 7C00006C B dcbst Data Cache Block Store
X 7C00006E B lwzux Load Word and Zero with Update Indexed
X 7C000070 SR VLE e_slwi[.] Shift Left Word Immediate
X 7C000074 SR 64 cntlzd[.] Count Leading Zeros Doubleword
X 7C000078 SR B andc[.] AND with Complement
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X 7C00007C WT wait Wait
X 7C000088 64 td Trap Doubleword
X 7C00008E V lvewx Load Vector Element Word Indexed
XO 7C000092 SR 64 mulhd[.] Multiply High Doubleword
XO 7C000096 SR B mulhw[.] Multiply High Word
X 7C0000A6 P B mfmsr Move From Machine State Register
X 7C0000A8 64 ldarx Load Doubleword and Reserve Indexed
X 7C0000AC B dcbf Data Cache Block Flush
X 7C0000AE B lbzx Load Byte and Zero Indexed
X 7C0000BE P E.PD lbepx Load Byte by External Process ID Indexed
X 7C0000CE V lvx[l] Load Vector Indexed [Last]
X 7C0000D0 SR B neg[o][.] Negate
X 7C0000EE B lbzux Load Byte and Zero with Update Indexed
X 7C0000F4 B popcntb Population Count Bytes
X 7C0000F8 SR B nor[.] NOR
X 7C0000FE P E.PD dcbfep Data Cache Block Flush by External Process ID
XL 7C000102 VLE e_crandc Condition Register AND with Completement
X 7C000106 P E wrtee Write MSR External Enable
X 7C00010C M ECL dcbtstls Data Cache Block Touch for Store and Lock Set
VX 7C00010E V stvebx Store Vector Element Byte Indexed
XO 7C000110 SR B subfe[o][.] Subtract From Extended
XO 7C000114 SR B adde[o][.] Add Extended
EVX 7C00011D P E.PD evlddepx Vector Load Doubleword into Doubleword by External Pro-

cess ID Indexed
XFX 7C000120 B mtcrf Move To Condition Register Fields
X 7C000124 P E mtmsr Move To Machine State Register
X 7C00012A 64 stdx Store Doubleword Indexed
X 7C00012D B stwcx. Store Word Conditional Indexed
X 7C00012E B stwx Store Word Indexed
X 7C00013A P E.PD stdepx Store Doubleword by External Process ID Indexed
X 7C00013E P E.PD stwepx Store Word by External Process ID Indexed
X 7C000146 P E wrteei Write MSR External Enable Immediate
X 7C00014C M ECL dcbtls Data Cache Block Touch and Lock Set
VX 7C00014E V stvehx Store Vector Element Halfword Indexed
X 7C00016A 64 stdux Store Doubleword with Update Indexed
X 7C00016E B stwux Store Word with Update Indexed
XL 7C000182 VLE e_crxor Condition Register XOR
VX 7C00018E V stvewx Store Vector Element Word Indexed
XO 7C000190 SR B subfze[o][.] Subtract From Zero Extended
XO 7C000194 SR B addze[o][.] Add to Zero Extended
X 7C00019C P E.PC msgsnd Message Send
EVX 7C00019D P E.PD evstddepx Vector Store Doubleword into Doubleword by External Pro-

cess ID Indexed
X 7C0001AD 64 stdcx. Store Doubleword Conditional Indexed
X 7C0001AE B stbx Store Bye Indexed
X 7C0001BE P E.PD stbepx Store Byte by External Process ID Indexed
XL 7C0001C2 VLE e_crnand Condition Register NAND
X 7C0001CC M ECL icblc Instruction Cache Block Lock Clear
VX 7C0001CE V stvx[l] Store Vector Indexed [Last]
XO 7C0001D0 SR B subfme[o][.] Subtract From Minus One Extended
XO 7C0001D2 SR 64 mulld[o][.] Multiply Low Doubleword
XO 7C0001D4 SR B addme[o][.] Add to Minus One Extended
XO 7C0001D6 SR B mullw[o][.] Multiply Low Word
X 7C0001DC P E.PC msgclr Message Clear
X 7C0001EC B dcbtst Data Cache Block Touch for Store
X 7C0001EE B stbux Store Byte with Update Indexed
X 7C0001FE P E.PD dcbtstep Data Cache Block Touch for Store by External Process ID
XL 7C000202 VLE e_crand Condition Register AND
XFX 7C000206 P E mfdcrx Move From Device Control Register Indexed
X 7C00020E P E.PD lvepxl Load Vector by External Process ID Indexed LRU
XO 7C000214 B add[o][.] Add
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X 7C00022C B dcbt Data Cache Block Touch
X 7C00022E B lhzx Load Halfword and Zero Indexed
X 7C000230 SR VLE e_rlw[.] Rotate Left Word
X 7C000238 SR B eqv[.] Equivalent
X 7C00023E P E.PD lhepx Load Halfword by External Process ID Indexed
XL 7C000242 VLE e_creqv Condition Register Equivalent
XFX 7C000246 P E mfdcrux Move From Device Control Register User-mode Indexed
X 7C00024E P E.PD lvepx Load Vector by External Process ID Indexed
X 7C00026E B lhzux Load Halfword and Zero with Update Indexed
X 7C000270 SR VLE e_rlwi[.] Rotate Left Word Immediate
D 7C000278 SR B xor[.] XOR
X 7C00027E P E.PD dcbtep Data Cache Block Touch by External Process ID
XFX 7C000286 P E mfdcr Move From Device Control Register
X 7C00028C P E.CD dcread Data Cache Read
XFX 7C00029C O E.PM mfpmr Move From Performance Monitor Register
XFX 7C0002A6 O B mfspr Move From Special Purpose Register
X 7C0002AA 64 lwax Load Word Algebraic Indexed
X 7C0002AE B lhax Load Halfword Algebraic Indexed
X 7C0002EA 64 lwaux Load Word Algebraic with Update Indexed
X 7C0002EE B lhaux Load Halfword Algebraic with Update Indexed
X 7C000306 P E mtdcrx Move To Device Control Register Indexed
X 7C00030C M ECL dcblc Data Cache Block Lock Clear
X 7C00032E B sthx Store Halfword Indexed
X 7C000338 SR B orc[.] OR with Complement
X 7C00033E P E.PD sthepx Store Halfword by External Process ID Indexed
XL 7C000342 VLE e_crorc Condition Register OR with Complement
X 7C000346 E mtdcrux Move To Device Control Register User-mode Indexed
X 7C00036E B sthux Store Halfword with Update Indexed
X 7C000378 SR B or[.] OR
XL 7C000382 VLE e_cror Condition Register OR
XFX 7C000386 P E mtdcr Move To Device Control Register
X 7C00038C P E.CI dci Data Cache Invalidate
XO 7C000392 SR 64 divdu[o][.] Divide Doubleword Unsigned
XO 7C000396 SR B divwu[o][.] Divide Word Unsigned
XFX 7C00039C O E.PM mtpmr Move To Performance Monitor Register
XFX 7C0003A6 O B mtspr Move To Special Purpose Register
X 7C0003AC P E dcbi Data Cache Block Invalidate
X 7C0003B8 SR B nand[.] NAND
X 7C0003CC M ECL icbtls Instruction Cache Block Touch and Lock Set
X 7C0003CC P E.CD dcread Data Cache Read
XO 7C0003D2 SR 64 divd[o][.] Divide Doubleword
XO 7C0003D6 SR B divw[o][.] Divide Word
X 7C000400 B mcrxr Move To Condition Register From XER
X 7C00042A MA lswx Load String Word Indexed
X 7C00042C B lwbrx Load Word Byte-Reversed Indexed
X 7C000430 SR B srw[.] Shift Right Word
X 7C000436 SR 64 srd[.] Shift Right Doubleword
X 7C00046C P E tlbsync TLB Synchronize
X 7C000470 SR VLE e_srwi[.] Shift Right Word Immediate
X 7C0004AA MA lswi Load String Word Immediate
X 7C0004AC B sync Synchronize
X 7C0004BE P E.PD lfdepx Load Floating-Point Double by External Process ID Indexed
X 7C00052A MA stswx Store String Word Indexed
X 7C00052C B stwbrx Store Word Byte-Reversed Indexed
X 7C0005AA MA stswi Store String Word Immediate
X 7C0005BE P E.PD stfdepx Store Floating-Point Double by External Process ID Indexed
X 7C0005EC E dcba Data Cache Block Allocate
X 7C00060E P E.PD stvepxl Store Vector by External Process ID Indexed LRU
X 7C000624 P E tlbivax TLB Invalidate Virtual Address Indexed
X 7C00062C B lhbrx Load Halfword Byte-Reversed Indexed
X 7C000630 SR B sraw[.] Shift Right Algebraic Word
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1 See the key to the mode dependency and privilege column below and the key to the category column in 
Section 1.3.5 of Book I.

2For 16-bit instructions, the “Opcode” column represents the 16-bit hexadecimal instruction encoding with the opcode
and extended opcode in the corresponding fields in the instruction, and with 0’s in bit positions which are not opcode
bits; dashes are used following the opcode to indicate the form is a 16-bit instruction. For 32-bit instructions, the
“Opcode” column represents the 32-bit hexadecimal instruction encoding with the opcode and extended opcode in
the corresponding fields in the instruction, and with 0’s in bit positions which are not opcode bits.

Mode Dependency and Privilege Abbreviations
Except as described below and in Section 1.10.3, “Effective Address Calculation”, in Book I, all instructions are inde-
pendent of whether the processor is in 32-bit or 64-bit mode. 

Key to Privilege Column 

X 7C000634 SR 64 srad[.] Shift Right Algebraic Doubleword
X 7C00064E P E.PD stvepx Store Vector by External Process ID Indexed
X 7C000670 SR B srawi[.] Shift Right Algebraic Word Immediate
X 7C000674 SR 64 sradi[.] Shift Right Algebraic Doubleword Immediate
XFX 7C0006AC E mbar Memory Barrier
X 7C000724 P E tlbsx TLB Search Indexed
X 7C00072C B sthbrx Store Halfword Byte-Reversed Indexed
X 7C000734 SR B extsh[.] Extend Sign Halfword
X 7C000764 P E tlbre TLB Read Entry
X 7C000774 SR B extsb[.] Extend Shign Byte
X 7C00078C P E.CI ici Instruction Cache Invalidate
X 7C0007A4 P E tlbwe TLB Write Entry
X 7C0007AC B icbi Instruction Cache Block Invalidate
X 7C0007B4 SR 64 extsw[.] Extend Sign Word
X 7C0007BE P E.PD icbiep Instruction Cache Block Invalidate by External Process ID
X 7C0007CC P E.CD icread Instruction Cache Read
X 7C0007EC B dcbz Data Cache Block set to Zero
X 7C0007FE P E.PD dcbzep Data Cache Block set to Zero by External Process ID
XFX 7C100026 B mfocrf Move From One Condition Register Field
XFX 7C100120 B mtocrf Move To One Condition Register Field
SD4 8000---- VLE se_lbz Load Byte and Zero Short Form
SD4 9000---- VLE se_stb Store Byte Short Form
SD4 A000---- VLE se_lhz Load Halfword and Zero Short Form
SD4 B000---- VLE se_sth Store Halfword SHort Form
SD4 C000---- VLE se_lwz Load Word and Zero Short Form
SD4 D000---- VLE se_stw Store Word Short Form
BD8 E000---- VLE se_bc Branch Conditional Short Form
BD8 E800---- VLE se_b[l] Branch [and Link]

Mode Dep. Description
CT If the instruction tests the Count Register, it 

tests the low-order 32 bits in 32-bit mode 
and all 64 bits in 64-bit mode.

SR The setting of status registers (such as XER 
and CR0) is mode-dependent.

32 The instruction must be executed only in 32-
bit mode.

64 The instruction must be executed only in 64-
bit mode.

Priv. Description
P Denotes a privileged instruction.
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O Denotes an instruction that is treated as priv-
ileged or nonprivileged (or hypervisor, for 
mtspr), depending on the SPR number.

M Denotes an instruction that is treated as priv-
ileged or nonprivileged, depending on the 
value of the UCLE bit of the MSR.

H Denotes an instruction that can be executed 
only in hypervisor state.

Priv. Description
Power ISA™ -- Book VLE746
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Appendix A.  Incompatibilities with the POWER 
Architecture

This appendix identifies the known incompatibilities that
must be managed in the migration from the POWER
Architecture to the Power ISA. Some of the incompati-
bilities can, at least in principle, be detected by the pro-
cessor, which could trap and let software simulate the
POWER operation. Others cannot be detected by the
processor even in principle.

In general, the incompatibilities identified here are
those that affect a POWER application program; incom-
patibilities for instructions that can be used only by
POWER system programs are not necessarily dis-
cussed.

A.1 New Instructions, Formerly 
Privileged Instructions
Instructions new to Power ISA typically use opcode val-
ues (including extended opcode) that are illegal in
POWER. A few instructions that are privileged in
POWER (e.g., dclz, called dcbz in Power ISA) have
been made nonprivileged in Power ISA. Any POWER
program that executes one of these now-valid or now-
nonprivileged instructions, expecting to cause the sys-
tem illegal instruction error handler or the system privi-
leged instruction error handler to be invoked, will not
execute correctly on Power ISA.

A.2 Newly Privileged
Instructions
The following instructions are nonprivileged in POWER
but privileged in Power ISA.

    mfmsr
    mfsr

A.3 Reserved Fields in
Instructions
These fields are shown with “/”s in the instruction lay-
outs. In both POWER and Power ISA these fields are
ignored by the processor. The Power ISA states that
these fields must contain zero. The POWER Architec-
ture lacks such a statement, but it is expected that
essentially all POWER programs contain zero in these
fields.

In several cases the Power ISA assumes that reserved
fields in POWER instructions indeed contain zero. The
cases include the following.

� bclr[l] and bcctr[l] assume that bits 19:20 in the
POWER instructions contain zero.

� cmpi, cmp, cmpli, and cmpl assume that bit 10 in
the POWER instructions contains zero.

� mtspr and mfspr assume that bits 16:20 in the
POWER instructions contain zero.

� mtcrf and mfcr assume that bit 11 in the POWER
instructions is contains zero.

� Synchronize assumes that bits 9:10 in the POWER
instruction (dcs) contain zero. (This assumption
provides compatibility for application programs, but
not necessarily for operating system programs;
see Section A.22.)

� mtmsr assumes that bit 15 in the POWER instruc-
tion contains zero.

A.4 Reserved Bits in Registers
Both POWER and Power ISA permit software to write
any value to these bits. However in POWER reading
such a bit always returns 0, while in Power ISA reading
it may return either 0 or the value that was last written
to it.

A.5 Alignment Check
The POWER MSR AL bit (bit 24) is no longer sup-
ported; the corresponding Power ISA MSR bit, bit 56, is
reserved. The low-order bits of the EA are always used.
(Notice that the value 0 — the normal value for a
reserved bit —- means “ignore the low-order EA bits” in
POWER, and the value 1 means “use the low-order EA
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bits”.) POWER-compatible operating system code will
probably write the value 1 to this bit.

A.6 Condition Register
The following instructions specify a field in the CR
explicitly (via the BF field) and also, in POWER, use bit
31 as the Record bit. In Power ISA, bit 31 is a reserved
field for these instructions and is ignored by the proces-
sor. In POWER, if bit 31 contains 1 the instructions exe-
cute normally (i.e., as if the bit contained 0) except as
follows:

cmp CR0 is undefined if Rc=1 and BF≠0
cmpl CR0 is undefined if Rc=1 and BF≠0
mcrxr CR0 is undefined if Rc=1 and BF≠0
fcmpu CR1 is undefined if Rc=1
fcmpo CR1 is undefined if Rc=1
mcrfs CR1 is undefined if Rc=1 and BF≠1

A.7 LK and Rc Bits
For the instructions listed below, if bit 31 (LK or Rc bit in
POWER) contains 1, in POWER the instruction exe-
cutes as if the bit contained 0 except as follows: if
LK=1, the Link Register is set (to an undefined value,
except for svc); if Rc=1, Condition Register Field 0 or 1
is set to an undefined value. In Power ISA, bit 31 is a
reserved field for these instructions and is ignored by
the processor.

Power ISA instructions for which bit 31 is the LK bit in
POWER:

sc (svc in POWER)
the Condition Register Logical instructions
mcrf
isync (ics in POWER)

Power ISA instructions for which bit 31 is the Rc bit in
POWER:

fixed-point X-form Load and Store instructions
fixed-point X-form Compare instructions
the X-form Trap instruction
mtspr, mfspr, mtcrf, mcrxr, mfcr, mtocrf, mfocrf
floating-point X-form Load and Store instructions
floating-point Compare instructions
mcrfs
dcbz (dclz in POWER)

A.8 BO Field
POWER shows certain bits in the BO field — used by
Branch Conditional instructions — as “x”.  Although the
POWER Architecture does not say how these bits are
to be interpreted, they are in fact ignored by the proces-
sor.

Power ISA shows these bits as “z”, “a”, or “t”. The “z”
bits are ignored, as in POWER. However, the “a” and “t”
bits can be used by software to provide a hint about
how the branch is likely to behave. If a POWER pro-
gram has the “wrong” value for these bits, the program
will produce the same results as on POWER but perfor-
mance may be affected.

A.9 BH Field
Bits 19:20 of the Branch Conditional to Link Register
and Branch Conditional to Count Register instructions
are reserved in POWER but are defined as a branch
hint (BH) field in Power ISA. Because these bits are
hints, they may affect performance but do not affect the
results of executing the instruction.

A.10 Branch Conditional to 
Count Register
For the case in which the Count Register is decre-
mented and tested (i.e., the case in which BO2=0),
POWER specifies only that the branch target address
is undefined, with the implication that the Count Regis-
ter, and the Link Register if LK=1, are updated in the
normal way. Power ISA specifies that this instruction
form is invalid.

A.11 System Call
There are several respects in which Power ISA is
incompatible with POWER for System Call instructions
— which in POWER are called Supervisor Call instruc-
tions.

� POWER provides a version of the Supervisor Call
instruction (bit 30 = 0) that allows instruction fetch-
ing to continue at any one of 128 locations. It is
used for “fast SVCs”. Power ISA provides no such
version: if bit 30 of the instruction is 0 the instruc-
tion form is invalid.

� POWER provides a version of the Supervisor Call
instruction (bits 30:31 = 0b11) that resumes
instruction fetching at one location and sets the
Link Register to the address of the next instruction.
Power ISA provides no such version: bit 31 is a
reserved field.

� For POWER, information from the MSR is saved in
the Count Register. For Power ISA this information
is saved in SRR1.

� In POWER bits 16:19 and 27:29 of the instruction
comprise defined instruction fields or a portion
thereof, while in Power ISA these bits comprise
reserved fields.
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� In POWER bits 20:26 of the instruction comprise a
portion of the SV field, while in Power ISA these
bits comprise the LEV field.

� POWER saves the low-order 16 bits of the instruc-
tion, in the Count Register. Power ISA does not
save them.

� The settings of MSR bits by the associated inter-
rupt differ between POWER and Power ISA; see
POWER Processor Architecture and Book III.

A.12 Fixed-Point Exception
Register (XER)
Bits 48:55 of the XER are reserved in Power ISA, while
in POWER the corresponding bits (16:23) are defined
and contain the comparison byte for the lscbx instruc-
tion (which Power ISA lacks).

A.13 Update Forms of Storage 
Access Instructions
Power ISA requires that RA not be equal to either RT
(fixed-point Load only) or 0. If the restriction is violated
the instruction form is invalid. POWER permits these
cases, and simply avoids saving the EA.

A.14 Multiple Register Loads
Power ISArequires that RA, and RB if present in the
instruction format, not be in the range of registers to be
loaded, while POWER permits this and does not alter
RA or RB in this case. (The Power ISA restriction
applies even if RA=0, although there is no obvious ben-
efit to the restriction in this case since RA is not used to
compute the effective address if RA=0.) If the Power
ISA restriction is violated, either the system illegal
instruction error handler is invoked or the results are
boundedly undefined. The instructions affected are:

lmw (lm in POWER)
lswi (lsi in POWER)
lswx (lsx in POWER)

For example, an lmw instruction that loads all 32 regis-
ters is valid in POWER but is an invalid form in Power
ISA.

A.15 Load/Store Multiple 
Instructions
There are two respects in which Power ISA is incom-
patible with POWER for Load Multiple and Store Multi-
ple instructions.

� If the EA is not word-aligned, in Power ISA either
an Alignment exception occurs or the addressed
bytes are loaded, while in POWER an Alignment
interrupt occurs if MSRAL=1 (the low-order two bits
of the EA are ignored if MSRAL=0).

� In Power ISA the instruction may be interrupted by
a system-caused interrupt, while in POWER the
instruction cannot be thus interrupted.

A.16 Move Assist Instructions
There are several respects in which Power ISA is
incompatible with POWER for Move Assist instructions.

� In Power ISA an lswx instruction with zero length
leaves the contents of RT undefined (if RT≠RA and
RT≠RB) or is an invalid instruction form (if RT=RA
or RT=RB), while in POWER the corresponding
instruction (lsx) is a no-op in these cases.

� In Power ISA an lswx instruction with zero length
may alter the Reference bit, and a stswx instruc-
tion with zero length may alter the Reference and
Change bits, while in POWER the corresponding
instructions (lsx and stsx) do not alter the Refer-
ence and Change bits in this case.

� In Power ISA a Move Assist instruction may be
interrupted by a system-caused interrupt, while in
POWER the instruction cannot be thus interrupted.

A.17 Move To/From SPR
There are several respects in which Power ISA is
incompatible with POWER for Move To/From Special
Purpose Register instructions.

� The SPR field is ten bits long in Power ISA, but
only five in POWER (see also Section A.3,
“Reserved Fields in Instructions”).

� mfspr can be used to read the Decrementer in
problem state in POWER, but only in privileged
state in Power ISA.

� If the SPR value specified in the instruction is not
one of the defined values, POWER behaves as fol-
lows.
- If the instruction is executed in problem state

and SPR0=1, a Privileged Instruction type
Program interrupt occurs.  No architected reg-
isters are altered except those set by the inter-
rupt.

- Otherwise no architected registers are altered.

In this same case, Power ISA behaves as follows.
- If the instruction is executed in problem state

and spr0=1, either an Illegal Instruction type
Program interrupt or a Privileged Instruction
type Program interrupt occurs.  No architected
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registers are altered except those set by the
interrupt.

- Otherwise either an Illegal Instruction type
Program interrupt occurs (in which case no
architected registers are altered except those
set by the interrupt) or the results are bound-
edly undefined (or possibly undefined, for
mtspr; see Book III).

A.18 Effects of Exceptions on 
FPSCR Bits FR and FI
For the following cases, POWER does not specify how
FR and FI are set, while Power ISA preserves them for
Invalid Operation Exception caused by a Compare
instruction, sets FI to 1 and FR to an undefined value
for disabled Overflow Exception, and clears them other-
wise.
� Invalid Operation Exception (enabled or disabled)
� Zero Divide Exception (enabled or disabled)
� Disabled Overflow Exception

A.19 Store Floating-Point Sin-
gle Instructions
There are several respects in which Power ISA is
incompatible with POWER for Store Floating-Point Sin-
gle instructions.

� POWER uses FPSCRUE to help determine
whether denormalization should be done, while
Power ISA does not. Using FPSCRUE is in fact
incorrect: if FPSCRUE=1 and a denormalized sin-
gle-precision number is copied from one storage
location to another by means of lfs followed by
stfs, the two “copies” may not be the same.

� For an operand having an exponent that is less
than 874 (unbiased exponent less than -149),
POWER stores a zero (if FPSCRUE=0) while
Power ISA stores an undefined value.

A.20 Move From FPSCR
POWER defines the high-order 32 bits of the result of
mffs to be 0xFFFF_FFFF, while Power ISA specifies
that they are undefined.

A.21 Zeroing Bytes in the Data 
Cache
The dclz instruction of POWER and the dcbz instruc-
tion of Power ISA have the same opcode. However, the
functions differ in the following respects.
� dclz clears a line while dcbz clears a block.

� dclz saves the EA in RA (if RA≠0) while dcbz does
not.

� dclz is privileged while dcbz is not.

A.22 Synchronization
The Synchronize instruction (called dcs in POWER)
and the isync instruction (called ics in POWER) cause
more pervasive synchronization in Power ISA than in
POWER. However, unlike dcs, Synchronize does not
wait until data cache block writes caused by preceding
instructions have been performed in main storage.
Also, Synchronize has an L field while dcs does not,
and some uses of the instruction by the operating sys-
tem require L=2<S>. (The L field corresponds to
reserved bits in dcs and hence is expected to be zero
in POWER programs; see Section A.3.)

A.23 Move To Machine State 
Register Instruction
The mtmsr instruction has an L field in Power ISA but
not in POWER. The function of the variant of mtmsr
with L=1 differs from the function of the instruction in
the POWER architecture in the following ways.

� In Power ISA, this variant of mtmsr modifies only
the EE and RI bits of the MSR, while in the
POWER mtmsr modifies all bits of the MSR.

� This variant of mtmsr is execution synchronizing in
Power ISA but is context synchronizing in POWER.
(The POWER architecture lacks Power ISA’s dis-
tinction between execution synchronization and
context synchronization. The statement in the
POWER architecture specification that mtmsr is
“synchronizing” is equivalent to stating that the
instruction is context synchronizing.)

Also, mtmsr is optional in Power ISA but required in
POWER.

A.24 Direct-Store Segments
POWER’s direct-store segments are not supported in
Power ISA.

A.25 Segment Register
Manipulation Instructions
The definitions of the four Segment Register Manipula-
tion instructions mtsr, mtsrin, mfsr, and mfsrin differ
in two respects between POWER and Power ISA.
Instructions similar to mtsrin and mfsrin are called
mtsri and mfsri in POWER.
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privilege: mfsr and mfsri are problem state instruc-
tions in POWER, while mfsr and mfsrin
are privileged in Power ISA.

function: the “indirect” instructions (mtsri and
mfsri) in POWER use an RA register in
computing the Segment Register number,
and the computed EA is stored into RA (if
RA≠0 and RA≠RT), while in Power ISA
mtsrin and mfsrin have no RA field and
the EA is not stored.

mtsr, mtsrin (mtsri), and mfsr have the same
opcodes in Power ISA as in POWER. mfsri (POWER)
and mfsrin (Power ISA) have different opcodes.

Also, the Segment Register Manipulation instructions
are required in POWER whereas they are optional in
Power ISA.

A.26 TLB Entry Invalidation
The tlbi instruction of POWER and the tlbie instruction
of Power ISA have the same opcode. However, the
functions differ in the following respects.

� tlbi computes the EA as (RA|0) + (RB), while tlbie
lacks an RA field and computes the EA and related
information as (RB).

� tlbi saves the EA in RA (if RA≠0), while tlbie lacks
an RA field and does not save the EA.

� For tlbi the high-order 36 bits of RB are used in
computing the EA, while for tlbie these bits contain
additional information that is not directly related to
the EA.

� tlbie has an L field, while tlbi does not.

Also, tlbi is required in POWER whereas tlbie is
optional in Power ISA.

A.27 Alignment Interrupts
Placing information about the interrupting instruction
into the DSISR and the DAR when an Alignment inter-
rupt occurs is optional in Power ISA but required in
POWER.

A.28 Floating-Point Interrupts
POWER uses MSR bit 20 to control the generation of
interrupts for floating-point enabled exceptions, and
Power ISA uses the corresponding MSR bit, bit 52, for
the same purpose. However, in Power ISA this bit is
part of a two-bit value that controls the occurrence, pre-
cision, and recoverability of the interrupt, while in
POWER this bit is used independently to control the
occurrence of the interrupt (in POWER all floating-point
interrupts are precise).

A.29 Timing Facilities

A.29.1 Real-Time Clock
The POWER Real-Time Clock is not supported in
Power ISA. Instead, Power ISA provides a Time Base.
Both the RTC and the TB are 64-bit Special Purpose
Registers, but they differ in the following respects.

� The RTC counts seconds and nanoseconds, while
the TB counts “ticks”.  The ticking rate of the TB is
implementation-dependent.

� The RTC increments discontinuously: 1 is added to
RTCU when the value in RTCL passes
999_999_999.  The TB increments continuously: 1
is added to TBU when the value in TBL passes
0xFFFF_FFFF.

� The RTC is written and read by the mtspr and
mfspr instructions, using SPR numbers that
denote the RTCU and RTCL. The TB is written and
read by the same instructions using different SPR
numbers.

� The SPR numbers that denote POWER’s RTCL
and RTCU are invalid in Power ISA.

� The RTC is guaranteed to increment at least once
in the time required to execute ten Add Immediate
instructions.  No analogous guarantee is made for
the TB.

� Not all bits of RTCL need be implemented, while
all bits of the TB must be implemented.

A.29.2 Decrementer
The Power ISA Decrementer differs from the POWER
Decrementer in the following respects.

� The Power ISA DEC decrements at the same rate
that the TB increments, while the POWER DEC
decrements every nanosecond (which is the same
rate that the RTC increments).

� Not all bits of the POWER DEC need be imple-
mented, while all bits of the Power ISA DEC must
be implemented.

� The interrupt caused by the DEC has its own inter-
rupt vector location in Power ISA, but is considered
an External interrupt in POWER.
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A.30 Deleted Instructions
The following instructions are part of the POWER
Architecture but have been dropped from the Power
ISA.

(*) This instruction is privileged.

Note: Many of these instructions use the MQ register.
The MQ is not defined in the Power ISA.

A.31 Discontinued Opcodes
The opcodes listed below are defined in the POWER
Architecture but have been dropped from the Power
ISA. The list contains the POWER mnemonic (MNEM),
the primary opcode (PRI), and the extended opcode
(XOP) if appropriate. The corresponding instructions
are reserved in Power ISA.

(*) This instruction is privileged.

  

abs Absolute
clcs Cache Line Compute Size
clf Cache Line Flush
cli (*) Cache Line Invalidate
dclst Data Cache Line Store
div Divide
divs Divide Short
doz Difference Or Zero
dozi Difference Or Zero Immediate
lscbx Load String And Compare Byte Indexed
maskg Mask Generate
maskir Mask Insert From Register
mfsri Move From Segment Register Indirect
mul Multiply
nabs Negative Absolute
rac (*) Real Address Compute
rfi (*) Return From Interrupt
rfsvc Return From SVC
rlmi Rotate Left Then Mask Insert
rrib Rotate Right And Insert Bit
sle Shift Left Extended
sleq Shift Left Extended With MQ
sliq Shift Left Immediate With MQ
slliq Shift Left Long Immediate With MQ
sllq Shift Left Long With MQ
slq Shift Left With MQ
sraiq Shift Right Algebraic Immediate With MQ
sraq Shift Right Algebraic With MQ
sre Shift Right Extended
srea Shift Right Extended Algebraic
sreq Shift Right Extended With MQ
sriq Shift Right Immediate With MQ
srliq Shift Right Long Immediate With MQ
srlq Shift Right Long With MQ
srq Shift Right With MQ

MNEM PRI XOP
abs 31 360
clcs 31 531
clf 31 118
cli (*) 31 502
dclst 31 630
div 31 331
divs 31 363
doz 31 264
dozi 09 -
lscbx 31 277
maskg 31 29
maskir 31 541
mfsri 31 627
mul 31 107
nabs 31 488
rac (*) 31 818
rfi (*) 19 50
rfsvc 19 82
rlmi 22 -
rrib 31 537
sle 31 153
sleq 31 217
sliq 31 184
slliq 31 248
sllq 31 216
slq 31 152
sraiq 31 952
sraq 31 920
sre 31 665
srea 31 921
sreq 31 729
sriq 31 696
srliq 31 760
srlq 31 728
srq 31 664

It might be helpful to current software writers for the
Assembler to flag the discontinued POWER
instructions.

Assembler Note
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A.32 POWER2 Compatibility

The POWER2 instruction set is a superset of the
POWER instruction set. Some of the instructions added
for POWER2 are included in the Power ISA. Those that
have been renamed in the Power ISA  are listed in this

section, as are the new POWER2 instructions that are
not included in the Power ISA.

Other incompatibilities are also listed.

A.32.1 Cross-Reference for 
Changed POWER2 Mnemonics
The following table lists the new POWER2 instruction
mnemonics that have been changed in the Power ISA
User Instruction Set Architecture, sorted by POWER2
mnemonic.

To determine the Power ISA mnemonic for one of these
POWER2 mnemonics, find the POWER2 mnemonic in

the second column of the table: the remainder of the
line gives the Power ISA mnemonic and the page on
which the instruction is described, as well as the
instruction names.

POWER2 mnemonics that have not changed are not
listed.

A.32.2 Floating-Point Conversion 
to Integer
The fcir and fcirz instructions of POWER2 have the
same opcodes as do the fctiw and fctiwz instructions,
respectively, of Power ISA. However, the functions differ
in the following respects.

� fcir and fcirz set the high-order 32 bits of the tar-
get FPR to 0xFFFF_FFFF, while fctiw and fctiwz
set them to an undefined value.

� Except for enabled Invalid Operation Exceptions,
fcir and fcirz set the FPRF field of the FPSCR
based on the result, while fctiw and fctiwz set it to
an undefined value.

� fcir and fcirz do not affect the VXSNAN bit of the
FPSCR, while fctiw and fctiwz do.

� fcir and fcirz set FPSCRXX to 1 for certain cases
of “Large Operands” (i.e., operands that are too
large to be represented as a 32-bit signed fixed-
point integer), while fctiw and fctiwz do not alter it
for any case of “Large Operand”.  (The IEEE stan-
dard requires not altering it for “Large Operands”.)

A.32.3 Floating-Point Interrupts
POWER2 uses MSR bits 20 and 23 to control the gen-
eration of interrupts for floating-point enabled excep-
tions, and Power ISA uses the corresponding MSR bits,
bits 52 and 55, for the same purpose. However, in
Power ISA these bits comprise a two-bit value that con-
trols the occurrence, precision, and recoverability of the
interrupt, while in POWER2 these bits are used inde-
pendently to control the occurrence (bit 20) and the
precision (bit 23) of the interrupt. Moreover, in Power
ISA all floating-point interrupts are considered Program
interrupts, while in POWER2 imprecise floating-point
interrupts have their own interrupt vector location.

A.32.4 Trace
The Trace interrupt vector location differs between the
two architectures, and there are many other differ-
ences.

A.33 Deleted Instructions
The following instructions are new in POWER2 imple-
mentations of the POWER Architecture but have been
dropped from the Power ISA.

Page
POWER2 Power ISA

Mnemonic Instruction Mnemonic  Instruction
126 fcir[.] Floating Convert Double to Inte-

ger with Round
fctiw[.] Floating Convert To Integer Word

127 fcirz[.] Floating Convert Double to Inte-
ger with Round to Zero

fctiwz[.] Floating Convert To Integer Word
with round toward Zero

lfq Load Floating-Point Quad
lfqu Load Floating-Point Quad with Update
Appendix A. Incompatibilities with the POWER Architecture 755



   Version 2.04
A.33.1 Discontinued Opcodes
The opcodes listed below are new in POWER2 imple-
mentations of the POWER Architecture but have been
dropped from the Power ISA. The list contains the
POWER2 mnemonic (MNEM), the primary opcode
(PRI), and the extended opcode (XOP) if appropriate.
The corresponding instructions are either illegal or
reserved in Power ISA; see Appendix D. 

 

lfqux Load Floating-Point Quad with Update 
Indexed

lfqx Load Floating-Point Quad Indexed
stfq Store Floating-Point Quad
stfqu Store Floating-Point Quad with Update
stfqux Store Floating-Point Quad with Update 

Indexed
stfqx Store Floating-Point Quad Indexed

MNEM PRI XOP
lfq 56 -
lfqu 57 -
lfqux 31 823
lfqx 31 791
stfq 60 -
stfqu 61  -
stfqux 31 951
stfqx 31 919
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Appendix B.  Platform Support Requirements

As described in Chapter 1 of Book I, the architecture is
structured as a collection of categories. Each category
is comprised of facilities and/or instructions that
together provide a unit of functionality. The Server and
Embedded categories are referred to as “special”
because all implementations must support at least one
of these categories. Each special category, when taken
together with the Base category, is referred to as an
“environment”, and provides the minimum functionality
required to develop operating systems and applica-
tions.

Every processor implementation supports at least one
of the environments, and may also support a set of cat-
egories chosen based on the target market for the
implementation. To facilitate the development of operat-
ing systems and applications for a well-defined purpose
or customer set, usually embodied in a unique hard-
ware platform, this appendix documents the associa-
tion between a platform and the set of categories it
requires.

Adding a new platform may permit cost-performance
optimization by clearly identifying a unique set of cate-
gories. However, this has the potential to fragment the
application base. As a result, new platforms will be
added only when the optimization benefit clearly out-
weighs the loss due to fragmentation. 

The platform support requirements are documented in
Figure 20. An “x” in a column indicates that the cate-
gory is required. A “+” in a column indicates that the
requirement is being phased in.
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Figure 20. Platform Support Requirements

Category Server Plat-
form

Embedded 
Platform

Base x x

Server x

Embedded x

Alternate Time Base

Cache Specification

Embedded.Cache Debug

Embedded.Cache Initialization

Embedded.Enhanced Debug

Embedded.External PID

Embedded.Little-Endian

Embedded.MMU Type FSL *

Embedded.Performance Monitor

Embedded.Processor Control

Embedded Cache Locking

External Control

External Proxy

Floating-Point
   Floating-Point.Record

x
x

Legacy Move Assist

Legacy Integer Multiply-Accumulate

Load/Store Quadword

Memory Coherence x

Move Assist x

Server.Performance Monitor x

Signal Processing Engine
 SPE.Embedded Float Scalar Double
 SPE.Embedded Float Scalar Single
 SPE.Embedded Float Vector

Stream x

Trace x

Variable Length Encoding

Vector
 Vector.Little-Endian

+
+1

Wait

64-Bit x
1 If the Vector category is supported, Vector.Little-Endian is required on 

the Server platform.
-

Power ISA™ -- Book Appendices758



   Version 2.04
Appendix C.  Complete SPR List

This appendix lists all the Special Purpose Registers in
the Power ISA ,  ordered by SPR number. 

 

decimal
SPR1 Register 

Name
Privileged Length

(bits)
Cat2

spr5:9  spr0:4 mtspr mfspr
1 00000 00001 XER no no 64 B
8 00000 01000 LR no no 64 B
9 00000 01001 CTR no no 64 B

18 00000 10010 DSISR yes yes 32 S
19 00000 10011 DAR yes yes 64 S
22 00000 10110 DEC yes yes 32 B
25 00000 11001 SDR1 hypv3 yes 64 S
26 00000 11010 SRR0 yes yes 64 B
27 00000 11011 SRR1 yes yes 64 B
29 00000 11101 AMR yes yes 64 S
48 00001 10000 PID yes yes 32 E
54 00001 10110 DECAR yes yes 32 E
58 00001 11010 CSRR0 yes yes 64 E
59 00001 11011 CSRR1 yes yes 32 E
61 00001 11101 DEAR yes yes 64 E
62 00001 11110 ESR yes yes 32 E
63 00001 11111 IVPR yes yes 64 E

136 00100 01000 CTRL - no 32 S
152 00100 11000 CTRL   yes - 32 S
256 01000 00000 VRSAVE no no 32 V
259 01000 00011 SPRG3 - no 64 B

260-263 01000 001xx SPRG[4-7] - no 64 E
268 01000 01100 TB - no 64 B
269 01000 01101 TBU - no 32 B

272-275 01000 100xx SPRG[0-3] yes yes 64 B
276-279 01000 101xx SPRG[4-7] yes yes 64 E

282 01000 11010 EAR hypv3 yes 32 EC
284 01000 11100 TBL hypv4 - 32 B
285 01000 11101 TBU hypv4 - 32 B
286 01000 11110 TBU40 hypv - 64 S
286 01000 11110 PIR - yes 32 E
287 01000 11111 PVR - yes 32 B
304 01001 10000 HSPRG0 hypv3 hypv3 64 S
304 01001 10000 DBSR yes5 yes 32 E
305 01001 10001 HSPRG1 hypv3 hypv3 64 S
306 01001 10010 HDSISR hypv3 hypv3 32 B
307 01001 10011 HDAR hypv3 hypv3 64 B
308 01001 10100 DBCR0 yes yes 32 E
309 01001 10101 PURR hypv3 yes 64 S
309 01001 10101 DBCR1 yes yes 32 E
310 01001 10110 HDEC hypv3 yes 32 S
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310 01001 10110 DBCR2 yes yes 32 E
312 01001 11000 RMOR hypv3 hypv3 64 S
312 01001 11000 IAC1 yes yes 64 E
313 01001 11001 HRMOR hypv3 hypv3 64 S
313 01001 11001 IAC2 yes yes 64 E
314 01001 11010 HSRR0 hypv3 hypv3 64 S
314 01001 11010 IAC3 yes yes 64 E
315 01001 11011 HSRR1 hypv3 hypv3 64 S
315 01001 11011 IAC4 yes yes 64 E
316 01001 11100 DAC1 yes yes 64 E
317 01001 11101 DAC2 yes yes 64 E
318 01001 11110 LPCR hypv3 hypv3 64 S
318 01001 11110 DVC1 yes yes 64 E
319 01001 11111 LPIDR hypv3 hypv3 32 S
319 01001 11111 DVC2 yes yes 64 E
336 01010 10000 TSR yes5 yes 32 E
340 01010 10100 TCR yes yes 32 E

400-415 01100 1xxxx IVOR[0-15] yes yes 32 E
512 10000 00000 SPEFSCR no no 32 SP
526 10000 01110 ATB/ATBL - no 64 ATB
527 10000 01111 ATBU - no 32 ATB
528 10000 10000 IVOR32 yes yes 32 SP
529 10000 10001 IVOR33 yes yes 32 SP
530 10000 10010 IVOR34 yes yes 32 SP
531 10000 10011 IVOR35 yes yes 32 E.PM
532 10000 10100 IVOR36 yes yes 32 E.PC
533 10000 10101 IVOR37 yes yes 32 E.PC
570 10001 11010 MCSRR0 yes yes 64 E
571 10001 11011 MCSRR1 yes yes 32 E
572 10001 11100 MCSR yes yes 64 E
574 10001 11110 DSRR0 yes yes 64 E.ED
575 10001 11111 DSRR1 yes yes 32 E.ED
604 10010 11100 SPRG8 yes yes 64 XSR
605 10010 11101 SPRG9 yes yes 64 XSR
624 10011 10000 MAS0 yes yes 32 E.MF
625 10011 10001 MAS1 yes yes 32 E.MF
626 10011 10010 MAS2 yes yes 64 E.MF
627 10011 10011 MAS3 yes yes 32 E.MF
628 10011 10100 MAS4 yes yes 32 E.MF
630 10011 10110 MAS6 yes yes 32 E.MF
633 10011 11001 PID1 yes yes 32 E.MF
634 10011 11010 PID2 yes yes 32 E.MF

688-691 10101 100xx TLB[0-3]CFG yes yes 32 E.MF
702 10101 11110 EPR - yes 32 EXP

768-783 11000 0xxxx perf_mon - no 64 S.PM
784-799 11000 1xxxx perf_mon yes yes 64 S.PM

896 11100 00000 PPR no no 64 S
924 11100 11100 DCBTRL -6 yes 32 E.CD
925 11100 11101 DCBTRH -6 yes 32 E.CD
926 11100 11110 ICBTRL -7 yes 32 E.CD
927 11100 11111 ICDBTRH -7 yes 32 E.CD
944 11101 10000 MAS7 yes yes 32 E.MF
947 11101 10011 EPLC yes yes 32 E.PD
948 11101 10100 EPSC yes yes 32 E.PD
979 11110 10011 ICBDR -7 yes 32 E.CD

1012 11111 10100 MMUCSR0 yes yes 32 E.MF
1013 11111 10101 DABR hypv3 yes 64 S

decimal
SPR1 Register 

Name
Privileged Length

(bits)
Cat2

spr5:9  spr0:4 mtspr mfspr
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1015 11111 10111 DABRX hypv3 yes 64 S
1015 11111 10111 MMUCFG yes yes 32 E.MF
1023 11111 11111 PIR - yes 32 S

- This register is not defined for this instruction.
1 Note that the order of the two 5-bit halves of the SPR number is reversed.
2 See Section 1.3.5 of Book I.
3 This register is a hypervisor resource, and can be modified by this instruc-

tion only in hypervisor state (see Chapter 2 of Book III-S).
4 <S>This register is a hypervisor resource, and can be modified by this 

instruction only in hypervisor state (see Chapter 2 of Book III-S).
<E>This register is privileged.

5 This register cannot be directly written to. Instead, bits in the register corre-
sponding to 1 bits in (RS) can be cleared using mtspr SPR,RS.

6 The register can be written by the dcread instruction.
7 The register can be written by the icread instruction.
 
All SPR numbers that are not shown above and are not implementation-spe-
cific are reserved.

decimal
SPR1 Register 

Name
Privileged Length

(bits)
Cat2

spr5:9  spr0:4 mtspr mfspr
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Appendix D.  Illegal Instructions

With the exception of the instruction consisting entirely
of binary 0s, the instructions in this class are available
for future extensions of the Power ISA; that is, some
future version of the Power ISA may define any of these
instructions to perform new functions.

The following primary opcodes are illegal.

1, 5, 6, 57, 60, 61

The following primary opcodes have unused extended
opcodes. Their unused extended opcodes can be
determined from the opcode maps in Appendix F of
Book Appendices. All unused extended opcodes are
illegal.

4, 19, 30, 31, 56, 58, 59, 62, 63 

An instruction consisting entirely of binary 0s is illegal,
and is guaranteed to be illegal in all future versions of
this architecture. 
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Appendix E.  Reserved Instructions

The instructions in this class are allocated to specific
purposes that are outside the scope of the Power ISA.

The following types of instruction are included in this
class.

1. The instruction having primary opcode 0, except
the instruction consisting entirely of binary 0s
(which is an illegal instruction; see Section 1.7.2,
“Illegal Instruction Class” on page 18) and the
extended opcode shown below.

256 Service Processor “Attention”

2. Instructions for the POWER Architecture that have
not been included in the Power ISA. These are
listed in Section A.31, “Discontinued Opcodes”
and Section A.33.1, “Discontinued Opcodes”.

3. Implementation-specific instructions used to con-
form to the Power ISA specification.

4. Any other implementation-dependent instructions
that are not defined in the Power ISA.
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Appendix F.  Opcode Maps

This appendix contains tables showing the opcodes
and extended opcodes.

For the primary opcode table (Table 3 on page 768),
each cell is in the following format.

The category abbreviations are shown on Section 1.3.5
of Book I.

The extended opcode tables show the extended
opcode in decimal, the instruction mnemonic, the cate-
gory, and the instruction format. These tables appear in
order of primary opcode within three groups. The first
group consists of the primary opcodes that have small
extended opcode fields (2-4 bits), namely 30, 58, and
62. The second group consists of primary opcodes that
have 11-bit extended opcode fields. The third group
consists of primary opcodes that have 10-bit extended
opcode fields. The tables for the second and third
groups are rotated.

In the extended opcode tables several special markings
are used.

� A prime (‘) following an instruction mnemonic
denotes an additional cell, after the lowest-num-
bered one, used by the instruction. For example,
subfc occupies cells 8 and 520 of primary opcode
31, with the former corresponding to OE=0 and the
latter to OE=1. Similarly, sradi occupies cells 826
and 827, with the former corresponding to sh5=0
and the latter to sh5=1 (the 9-bit extended opcode
413, shown on page 85, excludes the sh5 bit).

� Two vertical bars (||) are used instead of primed
mnemonics when an instruction occupies an entire
column of a table.  The instruction mnemonic is
repeated in the last cell of the column.

� For primary opcode 31, an asterisk (*) in a cell that
would otherwise be empty means that the cell is
reserved because it is “overlaid”, by a fixed-point or
Storage Access instruction having only a primary

opcode, by an instruction having an extended
opcode in primary opcode 30, 58, or 62, or by a
potential instruction in any of the categories just
mentioned.  The overlaying instruction, if any, is
also shown.  A cell thus reserved should not be
assigned to an instruction having primary opcode
31.  (The overlaying is a consequence of opcode
decoding for fixed-point instructions: the primary
opcode, and the extended opcode if any, are
mapped internally to a 10-bit “compressed
opcode” for ease of subsequent decoding.)

� Parentheses around the opcode or extended
opcode mean that the instruction was defined in
earlier versions of the Power ISA  but is no longer
defined in the Power ISA.

� Curly brackets around the opcode or extended
opcode mean that the instruction will be defined in
future versions of the Power ISA.

� long is used as filler for mnemonics that are longer
than a table cell.

An empty cell, a cell containing only an asterisk, or a
cell in which the opcode or extended opcode is paren-
thesized, corresponds to an illegal instruction.

The instruction consisting entirely of binary 0s causes
the system illegal instruction error handler to be
invoked for all members of the POWER family, and this
is likely to remain true in future models (it is guaranteed
in the Power ISA). An instruction having primary
opcode 0 but not consisting entirely of binary 0s is
reserved except for the following extended opcode
(instruction bits 21:30).

256 Service Processor “Attention” (Power ISA
only)

   

Category

Instruction 
Mnemonic

Opcode in
Hexadecimal

Instruction
Format

Opcode in 
Decimal
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Table 3: Primary opcodes 
0 00 

Illegal,
Reserved

 1 01  2 02 
tdi

64 D 

 3  03 
twi

B D 

 See primary opcode 0 extensions on page 767
 
 Trap Doubleword Immediate
 Trap Word Immediate

4 04 
Vector, LMA, 

SP
 V, LMA, SP

5 05 

            

6 06 

             

7 07 
mulli

BD

 See Table 7 and Table 8
 
 
 Multiply Low Immediate

8  08 
subfic   

             
B  D 

9 09 10 0A 
 cmpli   

             
B D 

11  0B 
cmpi     

B D 

 Subtract From Immediate Carrying

 Compare Logical Immediate
 Compare Immediate

12 0C 
addic    

             
B D 

 13 0D 
addic.  

            
 B D 

 14 0E 
addi    

             
 B D 

 15 0F 
addis    

               
 B D 

 Add Immediate Carrying
 Add Immediate Carrying and Record
 Add Immediate
 Add Immediate Shifted

16 10 
bc

B B 

17 11 
sc

B SC 

18 12 
b
             

B I 

19 13 
CR ops, 

etc.
XL 

 Branch Conditional
 System Call
 Branch
 See Table 10 on page 781

20 14 
rlwimi   

B M 

 21 15 
rlwinm  

 B M 

22 16 23 17 
rlwnm    

B M 

 Rotate Left Word Imm. then Mask Insert
 Rotate Left Word Imm. then AND with Mask
 
 Rotate Left Word then AND with Mask

24 18 
ori     

             
B D 

25 19 
oris   

            
 B D 

26 1A 
xori    

             
 B D 

27 1B 
xoris    

               
 B D 

 OR Immediate
 OR Immediate Shifted
 XOR Immediate
 XOR Immediate Shifted

28 1C 
andi.    

             
B D 

29 1D 
andis.  

            
B D 

30 1E 
FX Dwd Rot 

MD[S]

31 1F 
FX      

Extended Ops 

 AND Immediate
 AND Immediate Shifted
 See Table 4 on page 769
 See Table 10 on page 781

32 20 
lwz

B  D 

33 21 
lwzu

B D 

34 22 
lbz

B D 

35 23 
lbzu     

               
B D 

 Load Word and Zero
 Load Word and Zero with Update
 Load Byte and Zero
 Load Byte and Zero with Update

36 24 
stw     

             
B D 

37 25 
stwu   

            
B D 

38 26 
stb    

             
B D 

39 27 
stbu     

               
B D 

 Store Word
 Store Word with Update
 Store Byte
 Store Byte with Update

40 28 
lhz     

             
B D 

41 29 
lhzu   

            
B D 

42  2A 
lha    

             
B D 

43 2B 
lhau     

               
B  D 

 Load Half and Zero
 Load Half and Zero with Update
 Load Half Algebraic
 Load Half Algebraic with Update

44 2C 
sth

B  D 

45  2D 
sthu

B D 

46 2E 
lmw    

B D 

47 2F 
stmw     

B D 

 Store Half
 Store Half with Update
 Load Multiple Word
 Store Multiple Word

48 30 
lfs     

FP D 

49 31 
lfsu   

FP D 

50 32 
lfd    

FP D 

51 33 
lfdu     

FP D 

 Load Floating-Point Single
 Load Floating-Point Single with Update
 Load Floating-Point Double
 Load Floating-Point Double with Update

52 34 
stfs    

FP D 

53 35 
stfsu   

FP D 

54 36 
stfd    

FP D 

55 37 
stfdu    

FP D 

 Store Floating-Point Single
 Store Floating-Point Single with Update
 Store Floating-Point Double
 Store Floating-Point Double with Update

56 38 
lq
 

LSQ DQ

57 39 
 
 

 

58 3A 
FX DS-form 

Loads   
 DS 

59 3B 
FP Single  

Extended Ops 
A 

 Load Quadword
 
 See Table 5 on page 769
 See Table 15 on page 785

60 3C 

 

61 3D 62 3E 
FX DS-form 

Stores   
DS 

63 3F 
FP Double

Extended Ops 

 
 
 See Table 6 on page 769
 See Table 16 on page 787
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Table 4: Extended opcodes for primary opcode 30 
(instruction bits 27:30)

00 01 10 11

00

0
rldicl

64
MD

1
rldicl’

MD

2
rldicr

64
MD

3
rldicr’

MD

01

4
rldic
64
MD

5
rldic’

MD

6
rldimi

64
MD

7
rldimi’

MD

10

8
rldcl
64

MDS

9
rldcr

64
MDS    

11

Table 5: Extended opcodes for primary opcode 58 
(instruction bits 30:31)

0 1

0

0
ld
64
DS

1
ldu
64
DS

1

2
lwa
64
DS

Table 6: Extended opcodes for primary opcode 62 
(instruction bits 30:31)

0          1

0

0
std
64
DS

1
stdu
64
DS

1

2
stq
LSQ
DS
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Table 7: (Left) Extended opcodes for primary opcode 4 [Category: V & LMA] (instruction bits 21:31)

     000000 000001 000010 000011 000100 000101 000110 000111 001000 001001 001010 001011 001100 001101 001110 001111

00000
0

vaddubm
V VX

2
vmaxub
V       VX

4
vrlb

V       VX

6
vcmpequb
V       VC

8
vmuloub
V       VX

10
vaddfp

V       VX

12
vmrghb
V       VX

14
vpkuhum
V       VX

00001
64

vadduhm
V       VX

66
vmaxuh
V       VX

68
vrlh

V       VX

70
vcmpequh
V       VC

72
vmulouh
V       VX

74
vsubfp

V       VX

76
vmrghh
V       VX

78
vpkuwum
V       VX

00010
128

vadduwm
V       VX

130
vmaxuw
V       VX

132
vrlw

V       VX

134
vcmpequw
V       VC

140
vmrghw
V       VX

142
vpkuhus
V       VX

00011
198

vcmpeqfp
V       VC

206
vpkuwus
V       VX

00100
258

vmaxsb
V       VX

260
vslb

V       VX

264
vmulosb
V       VX

266
vrefp

V       VX

268
vmrglb

V       VX

270
vpkshus
V       VX

00101
322

vmaxsh
V       VX

324
vslh

V       VX

328
vmulosh
V       VX

330
vrsqrtefp
V       VX

332
vmrglh

V       VX

334
vpkswus
V       VX

00110
384

vaddcuw
V       VX

386
vmaxsw
V       VX

388
vslw

V       VX

394
vexptefp
V       VX

396
vmrglw
V       VX

398
vpkshss
V       VX

00111
452
vsl

V       VX

454
vcmpgefp
V       VC

458
vlogefp
V       VX

462
vpkswss
V       VX

01000
512

vaddubs
V       VX

514
vminub
V       VX

516
vsrb

V       VX

518
vcmpgtub
V       VC

520
vmuleub
V       VX

522
vrfin

V       VX

524
vspltb

V       VX

526
vupkhsb
V       VX

01001
576

vadduhs
V       VX

578
vminuh
V       VX

580
vsrh

V       VX

582
vcmpgtuh
V       VC

584
vmuleuh
V       VX

586
vrfiz

V       VX

588
vsplth

V       VX

590
vupkhsh
V       VX

01010
640

vadduws
V       VX

642
vminuw
V       VX

644
vsrw

V       VX

646
vcmpgtuw
V       VC

650
vrfip

V       VX

652
vspltw

V       VX

654
vupklsb
V       VX

01011
708
vsr

V       VX

710
vcmpgtfp
V       VC

714
vrfim

V       VX

718
vupklsh
V       VX

01100
768

vaddsbs
V       VX

770
vminsb
V       VX

772
vsrab

V       VX

774
vcmpgtsb
V       VC

776
vmulesb
V       VX

778
vcuxwfp
V       VX

780
vspltisb
V       VX

782
vpkpx

V       VX

01101
832

vaddshs
V       VX

834
vminsh
V       VX

836
vsrah

V       VX

838
vcmpgtsh
V       VC

840
vmulesh
V       VX

842
vcsxwfp
V       VX

844
vspltish
V       VX

846
vupkhpx
V       VX

01110
896

vaddsws
V       VX

898
vminsw
V       VX

900
vsraw

V       VX

902
vcmpgtsw
V       VC

906
vcfpuxws
V       VX

908
vspltisw
V       VX

01111
966

vcmpbfp
V       VC

970
vcfpsxws
V       VX

974
vupklpx
V       VX

10000
1024

vsububm
V       VX

1026
vavgub

V       VX

1028
vand

V       VX

1030
vcmpequb.
V       VC

1034
vmaxfp
V       VX

1036
vslo

V       VX

10001
1088

vsubuhm
V       VX

1090
vavgub

V       VX

1092
vandc

V       VX

1094
vcmpequh.
V       VC

1098
vminfp

V       VX

1100
vsro

V       VX

10010
1152

vsubuwm
V       VX

1154
vavgub

V       VX

1156
vor

V       VX

1158
vcmpequw.
V       VC

10011
1220
vxor

V       VX

1222
vcmpeqfp.
V       VC

10100
1282

vavgsb
V       VX

1284
vnor

V       VX

10101
1346

vavgsb
V       VX

10110
1408

vsubcuw
V       VX

1410
vavgsb

V       VX

10111
1478

vcmpgefp
V       VC

11000
1536

vsububs
V       VX

1540
mfvscr

V       VX

1542
vcmpgtub.
V       VC

1544
vsum4ubs
V       VX

11001
1600

vsubuhs
V       VX

1604
mtvscr

V       VX

1606
vcmpgtuh.
V       VC

1608
vsum4shs
V       VX

11010
1664

vsubuws
V       VX

1670
vcmpgtuw.
V       VC

1672
vsum2sws
V       VX

11011
1734

vcmpgtfp.
V       VC

11100
1792

vsubsbs
V       VX

1798
vcmpgtsb.
V       VC

1800
vsum4sbs
V       VX

11101
1856

vsubshs
V       VX

1862
vcmpgtsh.
V       VC

11110
1920

vsubsws
V       VX

1926
vcmpgtsw.
V       VC

1928
vsumsws

V       VX

11111
1990

vcmpbfp.
V       VC
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   Version 2.04
Table 7 (Left-Center) Extended opcodes for primary opcode 4 [Category: V & LMA] (instruction bits 21:31)
     010000 010001 010010 010011 010100 010101 010110 010111 011000 011001 011010 011011 011100 011101 011110 011111

00000
16

mulhhwu
LMA XO

17
mulhhwu.
LMA XO

24
machhwu
LMA XO

24
long

LMA XO

00001
80

mullhw
LMA XO

81
mullhw.

LMA XO

88
machhw

LMA XO

89
machhw.
LMA XO

92
nmachhw
LMA XO

93
long

LMA XO

00010
152
long

LMA XO

153
long

LMA XO

00011
216

machhws
LMA XO

217
long

LMA XO

220
long

LMA XO

220
long

LMA XO

00100
272

mulchwu
LMA X

273
mulchwu.
LMA X

280
macchwu
LMA XO

281
long

LMA XO

00101
336

mulchw
LMA X

337
mulchw.

LMA X

344
macchw

LMA XO

345
macchw.
LMA XO

348
nmacchw
LMA XO

349
long

LMA XO

00110
408
long

LMA XO

409
long

LMA XO

00111
472

macchws
LMA XO

473
long

LMA XO

476
long

LMA XO

477
long

LMA XO

01000

01001

01010

01011

01100
784

mullhwu
LMA X

784
mullhwu.
LMA X

792
maclhwu
LMA XO

793
maclhwu.
LMA XO

01101
848

mullhw
LMA X

849
mullhw.

LMA X

856
maclhw

LMA XO

857
maclhw.

LMA XO

860
nmaclhw
LMA XO

861
nmaclhw.
LMA XO

01110
920
long

LMA XO

921
long

LMA XO

01111
984

maclhws
LMA XO

985
maclhws.
LMA XO

988
long

LMA XO

989
long

LMA XO

10000
1040
long

LMA XO

1041
long

LMA XO

1048
long

LMA XO

1049
long

LMA XO

10001
1104

mullhwo.
LMA XO

1105
mullhwo.
LMA XO

1112
machhwo
LMA XO

1113
long

LMA XO

1116
long

LMA XO

1117
long

LMA XO

10010
1176
long

LMA XO

1177
long

LMA XO

10011
1240
long

LMA XO

1241
long

LMA XO

1244
long

LMA XO

1245
long

LMA XO

10100
1304
long

LMA XO

1305
long

LMA XO

10101
1368

macchwo
LMA XO

1369
long

LMA XO

1372
long

LMA XO

1373
long

LMA XO

10110
1432
long

LMA XO

1433
long

LMA XO

10111
1496
long

LMA XO

1497
long

LMA XO

1500
long

LMA XO

1501
long

LMA XO

11000

11001

11010

11011

11100
1816
long

LMA XO

1817
long

LMA XO

11101
1880

maclhwo
LMA XO

1881
maclhwo.
LMA XO

1884
long

LMA XO

1885
long

LMA XO

11110
1944
long

LMA XO

1946
long

LMA XO

11111
2008
long

LMA XO

2009
long

LMA XO

2012
long

LMA XO

2013
long

LMA XO
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   Version 2.04
Table 7 (Right-Center) Extended opcodes for primary opcode 4 [Category: V & LMA] (instruction bits 21:31)
     100000 100001 100010 100011 100100 100101 100110 100111 101000 101001 101010 101011 101100 101101 101110 101111

00000
32

vmhaddshs
V       VA

32
vmhraddshs
V       VA

34
vmladduhm
V       VA

36
vmsumubm
V       VA

37
vmsummbm
V       VA

38
vmsumuhm
V       VA

39
vmsumuhs
V       VA

40
vmsumshm
V       VA

41
vmsumshs
V       VA

42
vsel

V       VA

43
vperm

V       VA

44
vsdoi

V       VA

46
vmaddfp
V       VA

47
vnmsubfp
V       VA

00001
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00010
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00011
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00100
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00101
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00110
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00111
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01000
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01001
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01010
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01011
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01100
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01101
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01110
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01111
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10000
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10001
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10010
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10011
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10100
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10101
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10110
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10111
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11000
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11001
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11010
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11011
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11100
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11101
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11110
||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11111
||
||

vmhaddshs

||
||

vmhraddshs

||
||

vmladduhm

||
||

vmsumubm

||
||

vmsummbm

||
||

vmsumuhm

||
||

vmsumuhs

||
||

vmsumshm

||
||

vmsumshs

||
||

vsel

||
||

vperm

||
||

vsdoi

||
||

vmaddfp

||
||

vnmsubfp
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   Version 2.04
Table 7 (Right) Extended opcodes for primary opcode 4 [Category: V & LMA] (instruction bits 21:31)
     110000 110001 110010 110011 110100 110101 110110 110111 111000 111001 111010 111011 111100 111101 111110 111111

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111
774



   Version 2.04
     
Table 8: (Left) Extended opcodes for primary opcode 4 [Category: SP.*] (instruction bits 21:31)

     000000 000001 000010 000011 000100 000101 000110 000111 001000 001001 001010 001011 001100 001101 001110 001111

00000

00001

00010

00011

00100

00101

00110

00111

01000
512

evaddw
SP EVX

514
evaddiw

SP EVX

516
evsubfw

SP EVX

518
evsubifw
SP EVX

520
evabs

SP EVX

521
evneg

SP EVX

522
evextsb

SP EVX

523
evextsh

SP EVX

524
evrndw

SP EVX

525
evcntlzw
SP EVX

526
evcntlsw
SP EVX

527
brinc

SP EVX

01001

01010
640

evfsadd
sp.fv EVX

641
evssub

sp.fv EVX

644
evfsabs

sp.fv EVX

645
evfsnabs
sp.fv EVX

646
evfsneg

sp.fv EVX

648
evfsmul

sp.fv EVX

649
evfsdiv

sp.fv EVX

652
long

sp.fv EVX

653
evfscmplt
sp.fv EVX

654
long

sp.fv EVX

01011
704

efsadd
sp.fs EVX

705
efssub

sp.fs EVX

708
efsabs

sp.fs EVX

709
efsnabs

sp.fs EVX

710
efsneg

sp.fs EVX

712
efsmul

sp.fs EVX

713
efsdiv

sp.fs EVX

716
efscmpgt
sp.fs EVX

717
efscmplt

sp.fs EVX

718
efscmpeq
sp.fs EVX

719
efscfd

sp.fd EVX

01100
768

evlddx
SP EVX

769
evldd

SP EVX

770
evldwx

SP EVX

771
evldw

SP EVX

772
evldhx

SP EVX

773
evldh

SP EVX

776
long

SP EVX

777
long

SP EVX

780
long

SP EVX

781
long

SP EVX

782
long

SP EVX

783
long

SP EVX

01101

01110

01111

10000
1027

evmhessf
SP EVX

1031
evmhossf
SP EVX

1032
long

SP EVX

1033
long

SP EVX

1035
long

SP EVX

1036
long

SP EVX

1037
long

SP EVX

1039
long

SP EVX

10001
1095
long

SP EVX

1096
long

SP EVX

1100
long

SP EVX

1101
long

SP EVX

1103
long

SP EVX

10010

10011
1216
long

SP EVX

1217
long

SP EVX

1218
long

SP EVX

1219
long

SP EVX

1220
evmra

SP EVX

1222
evdivws

SP EVX

1223
evdivwu

SP EVX

1224
long

SP EVX

1225
long

SP EVX

1226
long

SP EVX

1227
long

SP EVX

10100
1280
long

SP EVX

1281
long

SP EVX

1283
long

SP EVX

1285
long

SP EVX

1287
long

SP EVX

1288
long

SP EVX

1289
long

SP EVX

1291
long

SP EVX

1292
long

SP EVX

1293
long

SP EVX

1295
long

SP EVX

10101
1344
long

SP EVX

1345
long

SP EVX

1352
long

SP EVX

1353
long

SP EVX

10110
1408
long

SP EVX

1409
long

SP EVX

1411
long

SP EVX

1412
long

SP EVX

1413
long

SP EVX

1415
long

SP EVX

1416
long

SP EVX

1417
long

SP EVX

1419
long

SP EVX

1420
long

SP EVX

1421
long

SP EVX

1423
long

SP EVX

10111
1472
long

SP EVX

1473
long

SP EVX

1480
long

SP EVX

1481
long

SP EVX

11000

11001

11010

11011

11100

11101

11110

11111
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Table 8 (Left-Center) Extended opcodes for primary opcode 4 [Category: SP.*] (instruction bits 21:31)
     010000 010001 010010 010011 010100 010101 010110 010111 011000 011001 011010 011011 011100 011101 011110 011111

00000

00001

00010

00011

00100

00101

00110

00111

01000
529

evand
SP EVX

530
evandc

SP EVX

534
evxor

SP EVX

535
evor

SP EVX

536
evnor

SP EVX

537
eveqv

SP EVX

539
evorc

SP EVX

542
evnand

SP EVX

01001

01010
656

evfsfui
sp.fv EVX

657
evfscfsi

sp.fv EVX

658
evfscfuf

sp.fv EVX

659
evfscfsf

sp.fv EVX

660
evfsctui

sp.fv EVX

661
evfsctsi

sp.fv EVX

662
evfsctuf

sp.fv EVX

663
evfsctsf

sp.fv EVX

664
evfsctuiz
sp.fv EVX

666
evfsctsiz
sp.fv EVX

668
evfststgt

sp.fv EVX

669
evfststlt

sp.fv EVX

670
evfststeq
sp.fv EVX

01011
720

efscfui
sp.fs EVX

721
efscfsi

sp.fs EVX

722
efscfuf

sp.fs EVX

723
efscfsf

sp.fs EVX

724
efsctui

sp.fs EVX

725
efsctsi

sp.fs EVX

726
efsctuf

sp.fs EVX

727
efsctsf

sp.fs EVX

728
efsctuiz

sp.fs EVX

730
efsctsiz

sp.fs EVX

732
efststgt

sp.fs EVX

733
efststlt

sp.fs EVX

734
efststeq

sp.fs EVX

01100
784

evlwhex
SP EVX

785
evlwhe

SP EVX

788
evlwhoux
SP EVX

789
evlwhou

SP EVX

790
evlwhosx
SP EVX

791
evlwhos

SP EVX

792
long

SP EVX

793
long

SP EVX

796
long

SP EVX

797
long

SP EVX

01101

01110

01111

10000

10001
1112
long

SP EVX

1113
long

SP EVX

1115
long

SP EVX

10010

10011

10100

10101
1363
long

SP EVX

1368
long

SP EVX

1369
long

SP EVX

1371
long

SP EVX

10110

10111
1491
long

SP EVX

1496
long

SP EVX

1497
long

SP EVX

1499
long

SP EVX

11000

11001

11010

11011

11100

11101

11110

11111
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Table 8 (Right-Center) Extended opcodes for primary opcode 4 [Category: SP.*] (instruction bits 21:31)
     100000 100001 100010 100011 100100 100101 100110 100111 101000 101001 101010 101011 101100 101101 101110 101111

00000

00001

00010

00011

00100

00101

00110

00111

01000
544

evsrwu
SP EVX

545
evsrws

SP EVX

546
evsrwiu

SP EVX

547
evsrwis

SP EVX

548
evslw

SP EVX

550
evslwi

SP EVX

552
evrlw

SP EVX

553
evsplati

SP EVX

554
evrlwi

SP EVX

555
evsplatfi

SP EVX

556
long

SP EVX

557
long

SP EVX

558
long

SP EVX

559
long

SP EVX

01001

01010

01011
736

efdadd
sp.fdEVX

737
efdsub

sp.fdEVX

738
efdcfuid

sp.fdEVX

739
efdcfsid

sp.fdEVX

740
efdabs

sp.fdEVX

741
efdnabs

sp.fdEVX

742
efdneg

sp.fdEVX

744
efdmul

sp.fdEVX

745
efddiv

sp.fdEVX

746
efdctuidz
sp.fdEVX

747
efdctsidz
sp.fdEVX

748
efdcmpgt
sp.fdEVX

749
efdcmplt
sp.fdEVX

750
efdcmpeq
sp.fdEVX

751
efdcfs

sp.fdEVX

01100
800

evstddx
SP EVX

801
evstdd

SP EVX

802
evstdwx

SP EVX

803
evstdw

SP EVX

804
evstdhx

SP EVX

805
evstdh

SP EVX

01101

01110

01111

10000
1059
long

SP EVX

1063
long

SP EVX

1064
long

SP EVX

1065
long

SP EVX

1067
long

SP EVX

1068
long

SP EVX

1069
long

SP EVX

1071
long

SP EVX

10001
1127
long

SP EVX

1128
long

SP EVX

1132
long

SP EVX

1133
long

SP EVX

1135
long

SP EVX

10010

10011

10100
1320
long

SP EVX

1321
long

SP EVX

1323
long

SP EVX

1324
long

SP EVX

1325
long

SP EVX

1327
long

SP EVX

10101

10110
1448
long

SP EVX

1449
long

SP EVX

1451
long

SP EVX

1452
long

SP EVX

1453
long

SP EVX

1455
long

SP EVX

10111

11000

11001

11010

11011

11100

11101

11110

11111
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Table 8 (Right) Extended opcodes for primary opcode 4 [Category: SP.*] (instruction bits 21:31)
     110000 110001 110010 110011 110100 110101 110110 110111 111000 111001 111010 111011 111100 111101 111110 111111

00000

00001

00010

00011

00100

00101

00110

00111

01000
560

evcmpgtu
SP EVX

561
evcmpgts
SP EVX

562
evcmpltu
SP EVX

563
evcmplts
SP EVX

564
evcmpeq
SP EVX

01001
632
evsel

SP EVS

633
evsel’

SP EVS

634
evsel’

SP EVS

635
evsel’

SP EVS

636
evsel’

SP EVS

637
evsel’

SP EVS

638
evsel’

SP EVS

639
evsel’

SP EVS

01010

01011
752

efdcfui
sp.fdEVX

753
efdcfsi

sp.fdEVX

754
efdcfuf

sp.fdEVX

755
efdcfsf

sp.fdEVX

756
efdctui

sp.fdEVX

757
efdctsi

sp.fdEVX

758
efdctuf

sp.fdEVX

759
efdctsf

sp.fdEVX

760
efdctuiz

sp.fdEVX

762
efdctsiz

sp.fdEVX

764
efdtstgt

sp.fdEVX

765
efdtstlt

sp.fdEVX

766
efdtsteq

sp.fdEVX

01100
816

evstwhex
SP EVX

817
evstwhe

SP EVX

820
evstwhox
SP EVX

821
evstwho

SP EVX

824
evstwwex
SP EVX

825
evstwwe

SP EVX

828
evstwwox
SP EVX

829
evstwwo
SP EVX

01101

01110

01111

10000

10001
1139
long

SP EVX

1145
long

SP EVX

1147
long

SP EVX

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111
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Table 9: (Left) Extended opcodes for primary opcode 19 (instruction bits 21:30)

     00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111

00000
0

mcrf 
B XL

  

00001
33 

crnor 
B   XL

 38
rfmci

E      XL

39
rfdi

E.ED X

00010
  

00011

00100
129 

crandc
 B    XL

00101
 

00110
193 

crxor
 B    XL

 198
dnh

E.EDXFX

 

00111
225

crnand
B   XL

 

01000
257 

crand
 B    XL

01001
289

creqv
B    XL

01010

01011

01100

01101
417

crorc
B    XL

01110
449
cror

B   XL

01111
 

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010
 

11011

11100

11101

11110

11111
Power ISA™ -- Book Appendices779



   Version 2.04
Table 9. (Right) Extended opcodes for primary opcode 19 (instruction bits 21:30)
     10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111

00000
16

bclr
B      XL

18
 rfid

S     XL

  

00001
50
rfi

E    XL

51
rfci

E      XL

 

00010
(82)

 rfsvc
    XL

00011

00100
150 

isync
 B     XL

 

00101

00110
     

00111
 

01000
274
hrfid

S     XL

01001

01010

01011

01100
 

01101

01110

01111

10000
528

bcctr
B    XL

10001

10010

10011

10100

10101
 

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111
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Table 10: (Left) Extended opcodes for primary opcode 31 (instruction bits 21:30)
     00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111

00000
0

cmp
B     X

4
tw

B     X

6
lvsl

V      X

7
lvebx
V      X

8
subfc

B    XO

9
mulhdu
64   XO

10
addc

B    XO

11
mulhwu

B  XO

14
Res’d
VLE

15
See

Table 14

00001
32

cmpl
B     X

33
Res’d
VLE

38
lvsr

V     X

39
lvehx
V    X

40
subf

B     XO 

 46
Res’d
VLE

||
||
||

00010
68 
td

64     X

71
lvewx
V     X

73
mulhd

64     XO

75
mulhw
B     XO 

78
dlmzb

LMA X

||
||
||

00011
103
lvx

V     X

104
neg

 B     XO

||
||
||

00100
129

Res’d
VLE

131
wrtee
E      X

134
dcbtstls

ECL X

135
stvebx
V     X

136
subfe

B     XO

138
add

B     XO

||
||
||

00101
 163

wrteei
E     X

166
dcbtls

ECL X

167
stvehx
V     X

||
||
||

00110
193

Res’d
VLE

199
stvewx
V     X

200
subfze 
B    XO

202
addz

B   XO 

206
msgsnd

E.PC X

||
||
||

00111
225

Res’d
VLE

230
icblc

ECL X

231
stvx

V     X

232
subfme
B    XO

233
mulld

64   XO

234
addme
B    XO

235
mullw
B    XO

238
msgclr

E.PC X

||
||
||

01000
257

Res’d
VLE

259
mfdrx
E      X

262
Res’d

AP

263
lvepxl

E.PD X

266
add 

B     XO

||
||
||

01001
289

Res’d
VLE

291
mfdrux
E      X

295
lvepx

E.PD X

||
||
||

01010
323

mfdcr
E      X

326
dcread

E.CD X

   334
mfpmr

E.PM X

||
||
||

01011
{359}
lvxl
V   X

||
||
||

01100
387

mtdcrx
E X

390
dcblc

ECL X

||
||
||

01101
417

Res’d
VLE

419
mtdcrux

E X

 ||
||
||

01110
449

Res’d
VLE

451
mtdcr

E X

454
dci

E.CI X

457
divdu

64      XO 

459
divwu

B     XO

462
mtpmr

E.PM X

||
||
||

01111
486

Res’d
AP

{487}
stvxl
V     X

489
divd

64    XO

491
divw

B     XO

||
||
||

10000
512

mcrxr
B     X

{519}
lvlx

V     X

520
subfc’ 
B   XO

521
mulhdu’

64XO

522
addc’

B     XO

523
mulhwu’

B   XO

||
||
||

10001
{551}
lvrx

V     X

552
subf’ 
B   XO

||
||
||

10010
585

mulhd’ 
64   XO

587
mulhw’
B    XO

||
||
||

10011
 616

neg’ 
B   XO 

||
||
||

10100
{647}
stvlx
V     X

648
subfe’
B    XO

650
adde’
B   XO

||
||
||

10101
{679}
stvrx
V     X

  ||
||
||

10110
712

subfze’
B   XO

 714
addze’
B XO

   ||
||
||

10111
   744

subfme’
B   XO

745
mulld’ 

64    XO

746
addme’
B   XO

747
mullw’ 
B XO

 ||
||
||

11000
775

stvepxl
E.PD X

778
add’ 

B   XO

||
||
||

11001
807

stvepx
E.PD X

||
||
||

11010
||
||
||

11011
||
||
||

11100
903

stvlxl
V     X

||
||
||

11101
935

stvrxl
V     X

||
||
||

11110
966
ici

E.CI X

969
divdu’ 
64   XO

971
divwu’ 
B XO

||
||
||

11111
998

icread
E.CD X

1001
divd’

64   XO

1003
divw’
B   XO

||
See

Table 14
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Table 10. (Right) Extended opcodes for primary opcode 31 (instruction bits 21:30)
     10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111

00000
16

Res’d
VLE

19
mfcr

  B  XFX

20
lwarx  
B    X

21
ldx

64    X

22
icbt

E      X

23
lwzx

B     X

24
slw

B     X

26
cntlzw
B      X

27
sld

64     X

28
and

B      X

29
ldepx

E.PD X

30
rldicl*

64   MD

31
lwepx

E.PD X

00001
53

ldux
64    X

54
dcbst
B    X

55
lwzux
B    X

56
Res’d
VLE

58
cntlzd
64    X

60
andc
B    X

62
See

Table 11

00010
(82)

mtsrd
     X

83
mfmsr
B     X

84
ldarx

64    X

86
dcbf
B    X

87
lbzx

B    X

94
rldicr*
64   MD

95
lbepx

E.PD X

00011
(114)

mtsrdin
     X

118
 clf

      X

119
lbzux
B    X

122
popcntb

B     X

124
nor

B     X

126
rldicr*
64   MD

127
dcbfep

E.PD X

00100
144

mtcrf
B   XFX

146
mtmsr
B    X

149
stdx

64     X

150
stwcx.
B      X

151
stwx

B      X

157
stdepx

E.PD X

158
rldic*

64   MD

159
See 

Table 13

00101
178

mtmsrd
S      X

181
stdux

64     X

183
stwux
B     X

190
rldic*

64   MD

191
rlwinm*

B   M

00110
210
mtsr
S    X

214
stdcx.
64    X

215
stbx

B     X

222
rldimi*
64   MD

223
stbepx

E.PD X

00111
242

mtsrin
S     X

246
dcbtst
B      X

247
stbux
B     X

254
rldimi*
64   MD

255
See 

Table 13

01000
274

tlbiel
S      X

275
mfapidi
E     X

278
dcbt

B     X

279
lhzx

B     X

280
Res’d
VLE

284
eqv

B     X

285
evlddepx
E.PD evx

286
rldcl*

64  MDS

286
See 

Table 13

01001
306
tlbie

S     X

308
Res’d

310 
eciwx
EC  X

311
lhzux
B     X

312
Res’d
VLE

316
xor

B      X

318
rldcr*

64  MDS

319
See 

Table 13

01010
339

mfspr
B  XFX

341
lwax

64     X

342
Res’d

AP

343
lhax

B     X

350 
 *

351
xori*
B    D

01011
370
tlbia

S     X

371
mftb

S   XFX

373
lwaux

64      X

374
Res’d

AP

375
lhaux
B     X

382
 *

383
xoris*
B     D

01100
402

slbmte
S      X

407
sthx

B      X

412
orc

B      X

413
evstddepx

E.PD evx

414
*

415
See 

Table 13

01101
434

slbie
S      X

438
ecowx

EC      X

439
sthux
B      X

      444
or

B      X

 446
*

447
andis.*
B    D

01110
467

mtspr
B    XFX

469 
 *

470
dcbi

E X

471
lmw*

All     D

476
nand

B      X

478
*

01111
498

slbia
S     X

501
*

503
stmw*
All     D

  510
*

10000
532

Res’d
533
lswx

B     MA

534
lwbrx

B       X

535
lfsx

FP      X

536
srw

B      X

 539
srd

64      X

10001
566

tlbsync
S      X

567
lfsux

FP      X

568
Res’d
VLE

10010
595
mfsr

S      X

597
lswi

B    MA

598
sync

B      X

599
lfdx

FP     X

607
lfdepx

E.PD X

10011
631

lfdux
FP     X

 

10100
  659

mfsrin
S     X

660
Res’d

661
stswx

B    MA

662
stwbrx
B     X

663
stfsx

FP     X

10101
695

stfsux
FP      X

10110
725

stswi
B     MA

    727
stfdx

FP       X

735
stfdepx

E.PD X

10111
758
dcba

E X

759
stfdux

FP      X

11000
786

tlbivax
E     X

790
lhbrx

B      X

792
sraw

B       X

794
srad
64  X

 

11001
818
rac

      X

822
Res’d

823
Res’d

824
srawi
B      X

826
sradi
64 XS

827
sradi’
64 XS

11010
851

slbmfev
S      X

854
See 

Table 12

11011

11100
914
tlbsx

E X

915
slbmfee
S     X

918
sthbrx
B     X

922
extsh
B      X

11101
946
tlbre

E X

951
Res’d

AP

954
extsb
B     X

11110
978
tlbwe

E X

982
icbi

B      X

983
stfiwx

FP      X

986
extsw
64     X

991
icbiep

E.PD X

11111
 1010

Res’d
1014
dcbz

B      X

1023
dcbzep

E.PD X
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Table 11: Opcode: 31, Extended Opcode: 62

0 00001

00001
62

rldicl*
64 MD

62
wait

WT X

Table 12: Opcode: 31, Extended Opcode: 854
10110

11010
854
eieio

S X

854
mbar

E X

Table 13: Opcode: 31, Extended Opcode: 159
11111

00100
159

rlwimi*
B    M

159
stwepx

E.PD X

00101
191

rlwinm*
B    M

00110
223

stbepx
E.PD X

00111
255

rlwnm*
B   M

255
dcbstep

E.PD X

01000
287
ori*

B     D

287
lhepx

E.PD X

01001
319

oris*
B D

319
dcbtep

E.PD X

01010
351

xori*
B    D

01011
383

xoris*
B     D

01100
415

andi.*
B    D

415
sthepx

E.PD X

Table 14: Opcode: 31, Extended Opcode: 15
 01111

00000
15
isel

B.in A

00001
47
*

||
||
||

00010
79

tdi*
64      D

||
||
||

00011
111
twi*

B      D

||
||
||

00100
143

*
||
||
||

00101
175

*
||
||
||

00110
207

*
||
||
||

00111
239

mulli*
B     D

||
||
||

01000
271

subfic*
B     D

||
||
||

01001
||
||
||

01010
335

cmpli*
B     D

||
||
||

01011
367

cmpi*
B     D

||
||
||

01100
399

addic* 
B     D

||
||
||

01101
431

addic.*
B     D

||
||
||

01110
463

addi*
B     D

||
||
||

01111
495

addis*
B     D

||
||
||

10000
||
||
||

10001
||
||
||

10010
||
||
||

10011
||
||
||

10100
||
||
||

10101
||
||
||

10110
||
||
||

10111
||
||
||

11000
||
||
||

11001
||
||
||

11010
||
||
||

11011
||
||
||

11100
||
||
||

11101
||
||
||

11110
||
||
||

11111
||
||

isel
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Table 15:(Left) Extended opcodes for primary opcode 59 (instruction bits 21:30)

     00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111

00000

00001

00010

00011

00100

00101

00110

00111

01000
 

01001

01010

01011

01100

01101

01110

01111

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100
 

11101
 

11110

11111
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Table 15. (Right) Extended opcodes for primary opcode 59 (instruction bits 21:30)
     10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111

00000
18

fdivs
FP     A

20
fsubs

FP     A

21
fadds
FP    A

22
fsqrts

FP     A

24
fres

FP     A

25
fmuls
FP    A

26
frsqrtes
FP    A

28
fmsub
FP    A

29
fmadds
FP    A

30
fnmsubs
FP    A

31
fnmadds
FP    A

00001
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

00010
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

00011
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

00100
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

00101
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

00110
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

00111
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

01000
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

01001
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

01010
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

01011
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

01100
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

01101
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

01110
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

01111
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

10000
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

10001
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

10010
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

10011
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

10100
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

10101
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

10110
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

10111
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

11000
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

11001
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

11010
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

11011
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

11100
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

11101
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

11110
||
||
||

||
||
||

||
||
||

|| 
|| 
||  

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

|| 
|| 
|| 

||
||
||

11111
||
||

fdivs

||
||

fsubs

||
||

fadds

|| 
|| 

fsqrts 

||
||

fres

||
||

fmuls

||
||

frsqrtes

||
||

fmsub

||
||

fmadds

|| 
|| 

fnmsubs

||
||

fnmadds
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Table 16:(Left) Extended opcodes for primary opcode 63 (instruction bits 21:30)
     00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111

00000
0

fcmpu
FP     X

12
frsp

FP     X

14
fctiw

FP     X

15
fctiwz
FP     X

00001
32

fcmpo
FP      X

38
mtfsb1
FP     X

40
fneg

FP     X

00010
64

mcrfs
FP    X

70
mtfsb0
FP     X

72
fmr

FP     X

00011

00100
134

mtfsfi
FP      X

136
 fnabs
FP     X

00101

00110

00111

01000
264
fabs

FP    X

01001

01010

01011

01100
392
frin

FP X

01101
424
friz

FP X

01110
456
frip

FP X

01111
488
frim

FP X

10000

10001

10010
583
mffs

FP     X

10011

10100

10101

10110
711

mtfsf
FP   XFL

10111
   

11000

11001
814
fctid

FP    X

815
fctidz

FP     X

11010
846
fcfid

FP    X

11011

11100

11101

11110

11111
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   Version 2.04
Table 16. (Right) Extended opcodes for primary opcode 63 (instruction bits 21:30)
     10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111

00000
18

fdiv
FP    A

20
fsub

FP      A

21
fadd

FP    A

22
fsqrt

FP     A

23
fsel

FP     A

24
fre

FP    A

25
fmul

FP     A

26
frsqrte
FP     A

28
fmsub
FP    A

29
fmadd
FP    A

30
fnmsub
FP     A

31
fnmadd
FP    A

00001
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00010
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00011
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00100
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00101
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00110
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

00111
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01000
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01001
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01010
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01011
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01100
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01101
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01110
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

01111
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10000
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10001
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10010
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10011
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10100
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10101
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10110
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

10111
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11000
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11001
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11010
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11011
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11100
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11101
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11110
||
||
||

||
||
||

||
||
||

||
||
||

 ||
 ||
 ||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

||
||
||

11111
||
||

fdiv

||
||

fsub

||
||

fadd

||
||

fsqrt

||
||

fsel

||
||

fre

||
||

fmul

||
||

frsqrte

||
||

fmsub

||
||

fmadd

||
||

fnmsub

||
||

fnmadd
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   Version 2.04
Appendix G.  Power ISA Instruction Set Sorted by 
Category

This appendix lists all the instructions in the Power ISA, grouped by category, and in order by mnemonic within cate-
gory.

 

F
o

rm

Opcode

M
o

d
e

 D
ep

.1

P
ri

v1

Page Cat1 Mnemonic InstructionPri Ext

X 31 58 SR 76 64 cntlzd[.] Count Leading Zeros Doubleword
XO 31 489 SR 66 64 divd[o][.] Divide Doubleword
XO 31 457 SR 66 64 divdu[o][.] Divide Doubleword Unsigned
X 31 986 SR 76 64 extsw[.] Extend Sign Word
DS 58 0 46 64 ld Load Doubleword
X 31 84 371 64 ldarx Load Doubleword And Reserve Indexed
DS 58 1 46 64 ldu Load Doubleword with Update
X 31 53 46 64 ldux Load Doubleword with Update Indexed
X 31 21 46 64 ldx Load Doubleword Indexed
DS 58 2 45 64 lwa Load Word Algebraic
X 31 373 45 64 lwaux Load Word Algebraic with Update Indexed
X 31 341 45 64 lwax Load Word Algebraic Indexed
XO 31 73 SR 65 64 mulhd[.] Multiply High Doubleword
XO 31 9 SR 65 64 mulhdu[.] Multiply High Doubleword Unsigned
XO 31 233 SR 65 64 mulld[o][.] Multiply Low Doubleword
MDS 30 8 SR 81 64 rldcl[.] Rotate Left Doubleword then Clear Left
MDS 30 9 SR 82 64 rldcr[.] Rotate Left Doubleword then Clear Right
MD 30 2 SR 81 64 rldic[.] Rotate Left Doubleword Immediate then Clear
MD 30 0 SR 79 64 rldicl[.] Rotate Left Doubleword Immediate then Clear Left
MD 30 1 SR 80 64 rldicr[.] Rotate Left Doubleword Immediate then Clear Right
MD 30 3 SR 82 64 rldimi[.] Rotate Left Doubleword Immediate then Mask Insert
X 31 27 SR 85 64 sld[.] Shift Left Doubleword
X 31 794 SR 85 64 srad[.] Shift Right Algebraic Doubleword
XS 31 413 SR 85 64 sradi[.] Shift Right Algebraic Doubleword Immediate
X 31 539 SR 85 64 srd[.] Shift Right Doubleword
DS 62 0 50 64 std Store Doubleword
X 31 214 371 64 stdcx. Store Doubleword Conditional Indexed
DS 62 1 50 64 stdu Store Doubleword with Update
X 31 181 50 64 stdux Store Doubleword with Update Indexed
X 31 149 50 64 stdx Store Doubleword Indexed
X 31 68 70 64 td Trap Doubleword
D  2 70 64 tdi Trap Doubleword Immediate
XO 31 266 SR 59 B add[o][.] Add
XO 31 10 SR 60 B addc[o][.] Add Carrying
XO 31 138 SR 61 B adde[o][.] Add Extended
D 14 58 B addi Add Immediate
D 12 SR 59 B addic Add Immediate Carrying
D 13 SR 59 B addic. Add Immediate Carrying and Record
D 15 58 B addis Add Immediate Shifted
XO 31 234 SR 61 B addme[o][.] Add to Minus One Extended
XO 31 202 SR 62 B addze[o][.] Add to Zero Extended
X 31 28 SR 73 B and[.] AND
X 31 60 SR 74 B andc[.] AND with Complement
Appendix G. Power ISA Instruction Set Sorted by Category 791
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D 28 SR 71 B andi. AND Immediate
D 29 SR 71 B andis. AND Immediate Shifted
I 18 31 B b[l][a] Branch
B 16 CT 31 B bc[l][a] Branch Conditional
XL 19 528 CT 32 B bcctr[l] Branch Conditional to Count Register
XL 19 16 CT 32 B bclr[l] Branch Conditional to Link Register
X 31 0 67 B cmp Compare
D 11 67 B cmpi Compare Immediate
X 31 32 68 B cmpl Compare Logical
D 10  68 B cmpli Compare Logical Immediate
X 31 26 SR 74 B cntlzw[.] Count Leading Zeros Word
XL 19 257 33 B crand Condition Register AND
XL 19 129 34 B crandc Condition Register AND with Complement
XL 19 289 34 B creqv Condition Register Equivalent
XL 19 225 33 B crnand Condition Register NAND
XL 19 33 34 B crnor Condition Register NOR
XL 19 449 33 B cror Condition Register OR
XL 19 417 34 B crorc Condition Register OR with Complement
XL 19 193 33 B crxor Condition Register XOR
X 31 86  367 B dcbf Data Cache Block Flush
X 31  54  366 B dcbst Data Cache Block Store
X 31 278  360 B dcbt Data Cache Block Touch
X 31 246  365 B dcbtst Data Cache Block Touch for Store
X 31 1014  366 B dcbz Data Cache Block set to Zero
XO 31 491 SR 64 B divw[o][.] Divide Word
XO 31 459 SR 64 B divwu[o][.] Divide Word Unsigned
X 31 284 SR  74 B eqv[.] Equivalent
X 31 954 SR  74 B extsb[.] Extend Sign Byte
X 31 922 SR  74 B extsh[.] Extend Sign Halfword
X 31 982 359 B icbi Instruction Cache Block Invalidate
XL 19 150 369 B isync Instruction Synchronize
D 34  41 B lbz Load Byte and Zero
D 35  41 B lbzu Load Byte and Zero with Update
X 31 119 41 B lbzux Load Byte and Zero with Update Indexed
X 31  87 42 B lbzx Load Byte and Zero Indexed
D 42  43 B lha Load Halfword Algebraic
D 43  43 B lhau Load Halfword Algebraic with Update
X 31 375 43 B lhaux Load Halfword Algebraic with Update Indexed
X 31 343 43 B lhax Load Halfword Algebraic Indexed
X 31 790 51 B lhbrx Load Halfword Byte-Reverse Indexed
D 40  42 B lhz Load Halfword and Zero
D 41  42 B lhzu Load Halfword and Zero with Update
X 31 311 42 B lhzux Load Halfword and Zero with Update Indexed
X 31 279 42 B lhzx Load Halfword and Zero Indexed
D 46  52 B lmw Load Multiple Word
X 31 20  370 B lwarx Load Word And Reserve Indexed
X 31 534 51 B lwbrx Load Word Byte-Reverse Indexed
D 32  44 B lwz Load Word and Zero
D 33  44 B lwzu Load Word and Zero with Update
X 31  55 44 B lwzux Load Word and Zero with Update Indexed
X 31 23 44 B lwzx Load Word and Zero Indexed
XL 19 0 34 B mcrf Move Condition Register Field
X 31 512 91 B mcrxr Move to Condition Register from XER
XFX 31 19 89 B mfcr Move From Condition Register
X 31 83 P 417,

527
B mfmsr Move From Machine State Register

XFX 31 339 O 88,3
78

B mfspr Move From Special Purpose Register

XFX 31 144 89 B mtcrf Move To Condition Register Fields
XFX 31 467 O 87 B mtspr Move To Special Purpose Register
XO 31 75 SR 63 B mulhw[.] Multiply High Word

F
o

rm
Opcode

M
o

d
e

 D
ep

.1

P
ri

v1

Page Cat1 Mnemonic InstructionPri Ext
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XO 31 11 SR 63 B mulhwu[.] Multiply High Word Unsigned
D  7  63 B mulli Multiply Low Immediate
XO 31 235 SR 63 B mullw[o][.] Multiply Low Word
X 31 476 SR 73 B nand[.] NAND
XO 31 104 SR 62 B neg[o][.] Negate
X 31 124 SR 74 B nor[.] NOR
X 31 444 SR 73 B or[.] OR
X 31 412 SR 74 B orc[.] OR with Complement
D 24 71 B ori OR Immediate
D 25 72 B oris OR Immediate Shifted
M 20 SR 79 B rlwimi[.] Rotate Left Word Immediate then Mask Insert
M 21 SR 77 B rlwinm[.] Rotate Left Word Immediate then AND with Mask
M 23 SR 78 B rlwnm[.] Rotate Left Word then AND with Mask
SC 17 35, 

404,
515

B sc System Call

X 31 24 SR 83 B slw[.] Shift Left Word
X 31 792 SR 84 B sraw[.] Shift Right Algebraic Word
X 31 824 SR 84 B srawi[.] Shift Right Algebraic Word Immediate
X 31 536 SR 83 B srw[.] Shift Right Word
D 38 47 B stb Store Byte
D 39 47 B stbu Store Byte with Update
X 31 247 47 B stbux Store Byte with Update Indexed
X 31 215 47 B stbx Store Byte Indexed
D 44  48 B sth Store Halfword
X 31 918 51 B sthbrx Store Halfword Byte-Reverse Indexed
D 45  48 B sthu Store Halfword with Update
X 31 439 48 B sthux Store Halfword with Update Indexed
X 31 407 48 B sthx Store Halfword Indexed
D 47  53 B stmw Store Multiple Word
D 36  49 B stw Store Word
X 31 662 51 B stwbrx Store Word Byte-Reverse Indexed
X 31 150 370 B stwcx. Store Word Conditional Indexed
D 37 49 B stwu Store Word with Update
X 31 183 49 B stwux Store Word with Update Indexed
X 31 151 49 B stwx Store Word Indexed
XO 31 40 SR 59 B subf[o][.] Subtract From
XO 31 8 SR 60 B subfc[o][.] Subtract From Carrying
XO 31 136 SR 61 B subfe[o][.] Subtract From Extended
D  8  SR 60 B subfic Subtract From Immediate Carrying
XO 31 232 SR 61 B subfme[o][.] Subtract From Minus One Extended
XO 31 200 SR 62 B subfze[o][.] Subtract From Zero Extended
X 31 598 372 B sync Synchronize
X 31 566 H 453,

561,
651

B tlbsync TLB Synchronize

X 31 4 69 B tw Trap Word
D  3  69 B twi Trap Word Immediate
X 31 316 SR 73 B xor[.] XOR
D 26  72 B xori XOR Immediate
D 27  72 B xoris XOR Immediate Shifted
A 31 15 70 B.in isel Integer Select
XFX 31 19 90 B.in mfocrf Move From One Condition Register Field
XFX 31 144 90 B.in mtocrf Move To One Condition Register Field
X 31 122 76 B.in popcntb Population Count Bytes
X 31 758 360 E dcba Data Cache Block Allocate
X 31 470 P 554 E dcbi Data Cache Block Invalidate
X 31 22 359 E icbt Instruction Cache Block Touch
X 31 854 374 E mbar Memory Barrier
X 31 275 91 E mfapidi Move From APID Indirect
XFX 31 323 S 527 E mfdcr Move From Device Control Register
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X 31 291 91 E mfdcrux Move From Device Control Register User-mode 
Indexed

X 31 259 P 527 E mfdcrx Move From Device Control Register Indexed 
XFX 31 451 P 526 E mtdcr Move To Device Control Register
X 31 419 91 E mtdcrux Move To Device Control Register User-mode Indexed
X 31 387 P 526 E mtdcrx Move To Device Control Register Indexed
X 31 146 P 527 E mtmsr Move To Machine State Register
XL 19 51 P 516 E rfci Return From Critical Interrupt
XL 19 50 P 515 E rfi Return From Interrupt
XL 19 38 P 516 E rfmci Return From Machine Check Interrupt
X 31 786 P 560,

649
E tlbivax TLB Invalidate Virtual Address Indexed

X 31 946 P 560,
650

E tlbre TLB Read Entry

X 31 914 P 561,
650

E tlbsx TLB Search Indexed

X 31 978 P 562,
651

E tlbwe TLB Write Entry

X 31 131 S 528 E wrtee Write MSR External Enable
X 31 163 S 528 E wrteei Write MSR External Enable Immediate
X 31 326 632 E.CD dcread Data Cache Read [Alternative Encoding]
X 31 486 632 E.CD dcread Data Cache Read
X 31 998 633 E.CD icread Instruction Cache Read
X 31 454 629 E.CI dci Data Cache Invalidate
X 31 966 629 E.CI ici Instruction Cache Invalidate
XFX 19 198 620 E.ED dnh Debugger Notify Halt
X 19 39 516 E.ED rfdi Return From Debug Interrupt
X 31 238 623 E.PC msgclr Message Clear
X 31 206 623 E.PC msgsnd Message Send
X 31 127 534 E.PD dcbfep Data Cache Block Flush by External PID
X 31 63 533 E.PD dcbstep Data Cache Block Store by External PID
X 31 319 533 E.PD dcbtep Data Cache Block Touch by External PID
X 31 255 535 E.PD dcbtstep Data Cache Block Touch for Store by External PID
X 31 1023 536 E.PD dcbzep Data Cache Block set to Zero by External PID
EVX 31 285 538 E.PD evlddepx Vector Load Doubleword into Doubleword by External 

Process ID Indexed
EVX 31 413 538 E.PD evstddepx Vector Store Doubleword into Doubleword by External 

Process ID Indexed
X 31 991 536 E.PD icbiep Instruction Cache Block Invalidate by External PID
X 31 95 529 E.PD lbepx Load Byte by External Process ID Indexed
X 31 29 530 E.PD ldepx Load Doubleword by External Process ID Indexed
X 31 607 537 E.PD lfdepx Load Floating-Point Double by External Process ID 

Indexed
X 31 287 529 E.PD lhepx Load Halfword by External Process ID Indexed
X 31 295 539 E.PD lvepx Load Vector by External Process ID Indexed
X 31 263 539 E.PD lvepxl Load Vector by External Process ID Indexed LRU
X 31 31 530 E.PD lwepx Load Word by External Process ID Indexed
X 31 223 531 E.PD stbepx Store Byte by External Process ID Indexed
X 31 157 532 E.PD stdepx Store Doubleword by External Process ID Indexed
X 31 735 537 E.PD stfdepx Store Floating-Point Double by External Process ID 

Indexed
X 31 415 531 E.PD sthepx Store Halfword by External Process ID Indexed
X 31 807 540 E.PD stvepx Store Vector by External Process ID Indexed
X 31 775 540 E.PD stvepxl Store Vector by External Process ID Indexed LRU
X 31 159 532 E.PD stwepx Store Word by External Process ID Indexed
XFX 31 334 658 E.PM mfpmr Move From Performance Monitor Register
XFX 31 462 658 E.PM mtpmr Move To Performance Monitor Register
X 31 310 382 EC eciwx External Control In Word Indexed
X 31 438 382 EC ecowx External Control Out Word Indexed
X 31 390 558 ECL dcblc Data Cache Block Lock Clear
X 31 166 557 ECL dcbtls Data Cache Block Touch and Lock Set
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X 31 134 557 ECL dcbtstls Data Cache Block Touch for Store and Lock Set
X 31 230 559 ECL icblc Instruction Cache Block Lock Clear
X 31 486 558 ECL icbtls Instruction Cache Block Touch and Lock Set
X 63 32 129 FP fcmpo Floating Compare Ordered
X 63 0 129 FP fcmpu Floating Compare Unordered
D 50  113 FP lfd Load Floating-Point Double
D 51  113 FP lfdu Load Floating-Point Double with Update
X 31 631 113 FP lfdux Load Floating-Point Double with Update Indexed
X 31 599 113 FP lfdx Load Floating-Point Double Indexed
D 48  115 FP lfs Load Floating-Point Single
D 49  115 FP lfsu Load Floating-Point Single with Update
X 31 567 115 FP lfsux Load Floating-Point Single with Update Indexed
X 31 535 115 FP lfsx Load Floating-Point Single Indexed
X 63 64 131 FP mcrfs Move to Condition Register from FPSCR
D 54  116 FP stfd Store Floating-Point Double
D 55  116 FP stfdu Store Floating-Point Double with Update
X 31 759 116 FP stfdux Store Floating-Point Double with Update Indexed
X 31 727 116 FP stfdx Store Floating-Point Double Indexed
X 31 983 117 FP stfiwx Store Floating-Point as Integer Word Indexed
D 52  115 FP stfs Store Floating-Point Single
D 53  115 FP stfsu Store Floating-Point Single with Update
X 31 695 115 FP stfsux Store Floating-Point Single with Update Indexed
X 31 663 115 FP stfsx Store Floating-Point Single Indexed
X 63 264 118 FP[R] fabs[.] Floating Absolute Value
A 63 21 119 FP[R] fadd[.] Floating Add
A 59 21 119 FP[R] fadds[.] Floating Add Single
X 63 846 127 FP[R] fcfid[.] Floating Convert From Integer Doubleword
X 63 814 125 FP[R] fctid[.] Floating Convert To Integer Doubleword
X 63 815 126 FP[R] fctidz[.] Floating Convert To Integer Doubleword with round 

toward Zero
X 63 14 126 FP[R] fctiw[.] Floating Convert To Integer Word
X 63 15 127 FP[R] fctiwz[.] Floating Convert To Integer Word with round toward 

Zero
A 63 18 120 FP[R] fdiv[.] Floating Divide
A 59 18 120 FP[R] fdivs[.] Floating Divide Single
A 63 29 123 FP[R] fmadd[.] Floating Multiply-Add
A 59 29 123 FP[R] fmadds[.] Floating Multiply-Add Single
X 63 72 118 FP[R] fmr[.] Floating Move Register
A 63 28 123 FP[R] fmsub[.] Floating Multiply-Subtract
A 59 28 123 FP[R] fmsubs[.] Floating Multiply-Subtract Single
A 63 25 120 FP[R] fmul[.] Floating Multiply
A 59 25 120 FP[R] fmuls[.] Floating Multiply Single
X 63 136 118 FP[R] fnabs[.] Floating Negative Absolute Value
X 63 40 118 FP[R] fneg[.] Floating Negate
A 63 31 124 FP[R] fnmadd[.] Floating Negative Multiply-Add
A 59 31 124 FP[R] fnmadds[.] Floating Negative Multiply-Add Single
A 63 30 124 FP[R] fnmsub[.] Floating Negative Multiply-Subtract
A 59 30 124 FP[R] fnmsubs[.] Floating Negative Multiply-Subtract Single
A 63 24 121 FP[R] fre[.] Floating Reciprocal Estimate
A 59 24 121 FP[R] fres[.] Floating Reciprocal Estimate Single
X 63 488 128 FP[R] frim[.] Floating Round to Integer Minus
A 63 23 130 FP[R] fsel[.] Floating Select
A 63 22 121 FP[R] fsqrt[.] Floating Square Root
A 59 22 121 FP[R] fsqrts[.] Floating Square Root Single
A 63 20 119 FP[R] fsub[.] Floating Subtract
A 59 20 119 FP[R] fsubs[.] Floating Subtract Single
X 63 583 131 FP[R] mffs[.] Move From FPSCR
X 63 70 132 FP[R] mtfsb0[.] Move To FPSCR Bit 0
X 63 38 132 FP[R] mtfsb1[.] Move To FPSCR Bit 1
XFL 63 711 131 FP[R] mtfsf[.] Move To FPSCR Fields
X 63 134 131 FP[R] mtfsfi[.] Move To FPSCR Field Immediate
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X 63 392 128 FP[R].in frin[.] Floating Round to Integer Nearest
X 63 456 128 FP[R].in frip[.] Floating Round to Integer Plus
X 63 424 128 FP[R].in friz[.] Floating Round to Integer Toward Zero
X 63 12 125 FP[R].in frsp[.] Floating Round to Single-Precision
A 63 26 122 FP[R].in frsqrte[.] Floating Reciprocal Square Root Estimate
A 59 26 122 FP[R].in frsqrtes[.] Floating Reciprocal Square Root Estimate Single
XO 4 172 289 LMA macchw[o][.] Multiply Accumulate Cross Halfword to Word Modulo 

Signed
XO 4 236 289 LMA macchws[o][.] Multiply Accumulate Cross Halfword to Word Saturate 

Signed
XO 4 204 290 LMA macchwsu[o][.] Multiply Accumulate Cross Halfword to Word Saturate 

Unsigned
XO 4 140 290 LMA macchwu[o][.] Multiply Accumulate Cross Halfword to Word Modulo 

Unsigned
XO 4 44 291 LMA machhw[o][.] Multiply Accumulate High Halfword to Word Modulo 

Signed
XO 4 108 291 LMA machhws[o][.] Multiply Accumulate High Halfword to Word Saturate 

Signed
XO 4 76 292 LMA machhwsu[o][.] Multiply Accumulate High Halfword to Word Saturate 

Unsigned
XO 4 12 292 LMA machhwu[o][.] Multiply Accumulate High Halfword to Word Modulo 

Unsigned
XO 4 428 293 LMA maclhw[o][.] Multiply Accumulate Low Halfword to Word Modulo 

Signed
XO 4 492 293 LMA maclhws[o][.] Multiply Accumulate Low Halfword to Word Saturate 

Signed
XO 4 460 294 LMA maclhwsu[o][.] Multiply Accumulate Low Halfword to Word Saturate 

Unsigned
XO 4 396 294 LMA maclhwu[o][.] Multiply Accumulate Low Halfword to Word Modulo 

Unsigned
X 4 168 294 LMA mulchw[.] Multiply Cross Halfword to Word Signed
X 4 136 294 LMA mulchwu[.] Multiply Cross Halfword to Word Unsigned
X 4 40 295 LMA mulhhw[.] Multiply High Halfword to Word Signed
X 4 8 295 LMA mulhhwu[.] Multiply High Halfword to Word Unsigned
X 4 424 295 LMA mullhw[.] Multiply Low Halfword to Word Signed
X 4 392 295 LMA mullhwu[.] Multiply Low Halfword to Word Unsigned
XO 4 174 296 LMA nmacchw[o][.] Negative Multiply Accumulate Cross Halfword to Word 

Modulo Signed
XO 4 238 296 LMA nmacchws[o][.] Negative Multiply Accumulate Cross Halfword to Word 

Saturate Signed
XO 4 46 297 LMA nmachhw[o][.] Negative Multiply Accumulate High Halfword to Word 

Modulo Signed
XO 4 110 297 LMA nmachhws[o][.] Negative Multiply Accumulate High Halfword to Word 

Saturate Signed
XO 4 430 298 LMA nmaclhw[o][.] Negative Multiply Accumulate Low Halfword to Word 

Modulo Signed
XO 4 494 298 LMA nmaclhws[o][.] Negative Multiply Accumulate Low Halfword to Word 

Saturate Signed
X 31 78 287 LMV dlmzb[.] Determine Leftmost Zero Byte
DQ 56  P 410 LSQ lq Load Quadword
DS 62 2 P 410 LSQ stq Store Quadword
X 31 597 55 MA lswi Load String Word Immediate
X 31 533 55 MA lswx Load String Word Indexed
X 31 725 56 MA stswi Store String Word Immediate
X 31 661 56 MA stswx Store String Word Indexed
X 31 854 374 S eieio Enforce In-order Execution of I/O
XL 19 274 H 405 S hrfid Hypervisor Return From Interrupt Doubleword
X 31 595 32 P 449 S mfsr Move From Segment Register
X 31 659 32 P 449 S mfsrin Move From Segment Register Indirect
XFX 31 371 378 S mftb Move From Time Base
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X 31 146 P 415 S mtmsr Move To Machine State Register
X 31 178 P 416 S mtmsrd Move To Machine State Register Doubleword
X 31 210 32 P 448 S mtsr Move To Segment Register
X 31 242 32 P 448 S mtsrin Move To Segment Register Indirect
XL 19  18 P 405 S rfid Return From Interrupt Doubleword
X 31 498 P 444 S slbia SLB Invalidate All
X 31 434 P 443 S slbie SLB Invalidate Entry
X 31 915 P 446 S slbmfee SLB Move From Entry ESID
X 31 851 P 446 S slbmfev SLB Move From Entry VSID
X 31 402 P 445 S slbmte SLB Move To Entry
X 31 370 P 453 S tlbia TLB Invalidate All
X 31 306 64 H 450 S tlbie TLB Invalidate Entry
X 31 274 64 H 452 S tlbiel TLB Invalidate Entry Local
EVX 4 527 208 SP brinc Bit Reversed Increment
EVX 4 520 208 SP evabs Vector Absolute Value
EVX 4 514 208 SP evaddiw Vector Add Immediate Word
EVX 4 1225 208 SP evaddsmiaaw Vector Add Signed, Modulo, Integer to Accumulator 

Word
EVX 4 1217 209 SP evaddssiaaw Vector Add Signed, Saturate, Integer to Accumulator 

Word
EVX 4 1224 209 SP evaddumiaaw Vector Add Unsigned, Modulo, Integer to Accumulator 

Word
EVX 4 1216 209 SP evaddusiaaw Vector Add Unsigned, Saturate, Integer to Accumulator 

Word
EVX 4 512 209 SP evaddw Vector Add Word
EVX 4 529 210 SP evand Vector AND
EVX 4 530 210 SP evandc Vector AND with Complement
EVX 4 564 210 SP evcmpeq Vector Compare Equal
EVX 4 561 210 SP evcmpgts Vector Compare Greater Than Signed
EVX 4 560 211 SP evcmpgtu Vector Compare Greater Than Unsigned
EVX 4 563 211 SP evcmplts Vector Compare Less Than Signed
EVX 4 562 211 SP evcmpltu Vector Compare Less Than Unsigned
EVX 4 526 212 SP evcntlsw Vector Count Leading Signed Bits Word
EVX 4 525 212 SP evcntlzw Vector Count Leading Zeros Word
EVX 4 1222 212 SP evdivws Vector Divide Word Signed
EVX 4 1223 213 SP evdivwu Vector Divide Word Unsigned
EVX 4 537 213 SP eveqv Vector Equivalent
EVX 4 522 213 SP evextsb Vector Extend Sign Byte
EVX 4 523 213 SP evextsh Vector Extend Sign Halfword
EVX 4 769 214 SP evldd Vector Load Double Word into Double Word
EVX 4 768 214 SP evlddx Vector Load Double Word into Double Word Indexed
EVX 4 773 214 SP evldh Vector Load Double into Four Halfwords
EVX 4 772 214 SP evldhx Vector Load Double into Four Halfwords Indexed
EVX 4 771 215 SP evldw Vector Load Double into Two Words
EVX 4 770 215 SP evldwx Vector Load Double into Two Words Indexed
EVX 4 777 215 SP evlhhesplat Vector Load Halfword into Halfwords Even and Splat
EVX 4 776 215 SP evlhhesplatx Vector Load Halfword into Halfwords Even and Splat 

Indexed
EVX 4 783 216 SP evlhhossplat Vector Load Halfword into Halfword Odd Signed and 

Splat
EVX 4 782 216 SP evlhhossplatx Vector Load Halfword into Halfword Odd Signed and 

Splat Indexed
EVX 4 781 216 SP evlhhousplat Vector Load Halfword into Halfword Odd Unsigned and 

Splat
EVX 4 780 216 SP evlhhousplatx Vector Load Halfword into Halfword Odd Unsigned and 

Splat Indexed
EVX 4 785 217 SP evlwhe Vector Load Word into Two Halfwords Even
EVX 4 784 217 SP evlwhex Vector Load Word into Two Halfwords Even Indexed
EVX 4 791 217 SP evlwhos Vector Load Word into Two Halfwords Odd Signed (with 

sign extension)
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EVX 4 790 217 SP evlwhosx Vector Load Word into Two Halfwords Odd Signed 
Indexed (with sign extension)

EVX 4 789 218 SP evlwhou Vector Load Word into Two Halfwords Odd Unsigned 
(zero-extended)

EVX 4 788 218 SP evlwhoux Vector Load Word into Two Halfwords Odd Unsigned 
Indexed (zero-extended)

EVX 4 797 218 SP evlwhsplat Vector Load Word into Two Halfwords and Splat
EVX 4 796 218 SP evlwhsplatx Vector Load Word into Two Halfwords and Splat 

Indexed
EVX 4 793 219 SP evlwwsplat Vector Load Word into Word and Splat
EVX 4 792 219 SP evlwwsplatx Vector Load Word into Word and Splat Indexed
EVX 4 556 219 SP evmergehi Vector Merge High
EVX 4 558 220 SP evmergehilo Vector Merge High/Low
EVX 4 557 219 SP evmergelo Vector Merge Low
EVX 4 559 220 SP evmergelohi Vector Merge Low/High
EVX 4 1323 220 SP evmhegsmfaa Vector Multiply Halfwords, Even, Guarded, Signed, 

Modulo, Fractional and Accumulate
EVX 4 1451 220 SP evmhegsmfan Vector Multiply Halfwords, Even, Guarded, Signed, 

Modulo, Fractional and Accumulate Negative
EVX 4 1321 221 SP evmhegsmiaa Vector Multiply Halfwords, Even, Guarded, Signed, 

Modulo, Integer and Accumulate
EVX 4 1449 221 SP evmhegsmian Vector Multiply Halfwords, Even, Guarded, Signed, 

Modulo, Integer and Accumulate Negative
EVX 4 1320 221 SP evmhegumiaa Vector Multiply Halfwords, Even, Guarded, Unsigned, 

Modulo, Integer and Accumulate
EVX 4 1448 221 SP evmhegumian Vector Multiply Halfwords, Even, Guarded, Unsigned, 

Modulo, Integer and Accumulate Negative
EVX 4 1035 222 SP evmhesmf Vector Multiply Halfwords, Even, Signed, Modulo, Frac-

tional
EVX 4 1067 222 SP evmhesmfa Vector Multiply Halfwords, Even, Signed, Modulo, Frac-

tional to Accumulator
EVX 4 1291 222 SP evmhesmfaaw Vector Multiply Halfwords, Even, Signed, Modulo, Frac-

tional and Accumulate into Words
EVX 4 1419 222 SP evmhesmfanw Vector Multiply Halfwords, Even, Signed, Modulo, Frac-

tional and Accumulate Negative into Words
EVX 4 1033 223 SP evmhesmi Vector Multiply Halfwords, Even, Signed, Modulo, Inte-

ger
EVX 4 1065 223 SP evmhesmia Vector Multiply Halfwords, Even, Signed, Modulo, Inte-

ger to Accumulator
EVX 4 1289 223 SP evmhesmiaaw Vector Multiply Halfwords, Even, Signed, Modulo, Inte-

ger and Accumulate into Words
EVX 4 1417 223 SP evmhesmianw Vector Multiply Halfwords, Even, Signed, Modulo, Inte-

ger and Accumulate Negative into Words
EVX 4 1027 224 SP evmhessf Vector Multiply Halfwords, Even, Signed, Saturate, 

Fractional
EVX 4 1059 224 SP evmhessfa Vector Multiply Halfwords, Even, Signed, Saturate, 

Fractional to Accumulator
EVX 4 1283 225 SP evmhessfaaw Vector Multiply Halfwords, Even, Signed, Saturate, 

Fractional and Accumulate into Words
EVX 4 1411 225 SP evmhessfanw Vector Multiply Halfwords, Even, Signed, Saturate, 

Fractional and Accumulate Negative into Words
EVX 4 1281 226 SP evmhessiaaw Vector Multiply Halfwords, Even, Signed, Saturate, Inte-

ger and Accumulate into Words
EVX 4 1409 226 SP evmhessianw Vector Multiply Halfwords, Even, Signed, Saturate, Inte-

ger and Accumulate Negative into Words
EVX 4 1032 227 SP evmheumi Vector Multiply Halfwords, Even, Unsigned, Modulo, 

Integer
EVX 4 1064 227 SP evmheumia Vector Multiply Halfwords, Even, Unsigned, Modulo, 

Integer to Accumulator
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EVX 4 1288 227 SP evmheumiaaw Vector Multiply Halfwords, Even, Unsigned, Modulo, 
Integer and Accumulate into Words

EVX 4 1416 227 SP evmheumianw Vector Multiply Halfwords, Even, Unsigned, Modulo, 
Integer and Accumulate Negative into Words

EVX 4 1280 228 SP evmheusiaaw Vector Multiply Halfwords, Even, Unsigned, Saturate, 
Integer and Accumulate into Words

EVX 4 1408 228 SP evmheusianw Vector Multiply Halfwords, Even, Unsigned, Saturate, 
Integer and Accumulate Negative into Words

EVX 4 1327 229 SP evmhogsmfaa Vector Multiply Halfwords, Odd, Guarded, Signed, Mod-
ulo, Fractional and Accumulate

EVX 4 1455 229 SP evmhogsmfan Vector Multiply Halfwords, Odd, Guarded, Signed, Mod-
ulo, Fractional and Accumulate Negative

EVX 4 1325 229 SP evmhogsmiaa Vector Multiply Halfwords, Odd, Guarded, Signed, Mod-
ulo, Integer and Accumulate

EVX 4 1453 229 SP evmhogsmian Vector Multiply Halfwords, Odd, Guarded, Signed, Mod-
ulo, Integer and Accumulate Negative

EVX 4 1324 230 SP evmhogumiaa Vector Multiply Halfwords, Odd, Guarded, Unsigned, 
Modulo, Integer and Accumulate

EVX 4 1452 230 SP evmhogumian Vector Multiply Halfwords, Odd, Guarded, Unsigned, 
Modulo, Integer and Accumulate Negative

EVX 4 1039 230 SP evmhosmf Vector Multiply Halfwords, Odd, Signed, Modulo, Frac-
tional

EVX 4 1071 230 SP evmhosmfa Vector Multiply Halfwords, Odd, Signed, Modulo, Frac-
tional to Accumulator

EVX 4 1295 231 SP evmhosmfaaw Vector Multiply Halfwords, Odd, Signed, Modulo, Frac-
tional and Accumulate into Words

EVX 4 1423 231 SP evmhosmfanw Vector Multiply Halfwords, Odd, Signed, Modulo, Frac-
tional and Accumulate Negative into Words

EVX 4 1037 231 SP evmhosmi Vector Multiply Halfwords, Odd, Signed, Modulo, Inte-
ger

EVX 4 1069 231 SP evmhosmia Vector Multiply Halfwords, Odd, Signed, Modulo, Inte-
ger to Accumulator

EVX 4 1293 232 SP evmhosmiaaw Vector Multiply Halfwords, Odd, Signed, Modulo, Inte-
ger and Accumulate into Words

EVX 4 1421 231 SP evmhosmianw Vector Multiply Halfwords, Odd, Signed, Modulo, Inte-
ger and Accumulate Negative into Words

EVX 4 1031 233 SP evmhossf Vector Multiply Halfwords, Odd, Signed, Saturate, Frac-
tional

EVX 4 1063 233 SP evmhossfa Vector Multiply Halfwords, Odd, Signed, Saturate, Frac-
tional to Accumulator

EVX 4 1287 234 SP evmhossfaaw Vector Multiply Halfwords, Odd, Signed, Saturate, Frac-
tional and Accumulate into Words

EVX 4 1415 234 SP evmhossfanw Vector Multiply Halfwords, Odd, Signed, Saturate, Frac-
tional and Accumulate Negative into Words

EVX 4 1285 235 SP evmhossiaaw Vector Multiply Halfwords, Odd, Signed, Saturate, Inte-
ger and Accumulate into Words

EVX 4 1413 235 SP evmhossianw Vector Multiply Halfwords, Odd, Signed, Saturate, Inte-
ger and Accumulate Negative into Words

EVX 4 1036 235 SP evmhoumi Vector Multiply Halfwords, Odd, Unsigned, Modulo, 
Integer

EVX 4 1068 235 SP evmhoumia Vector Multiply Halfwords, Odd, Unsigned, Modulo, 
Integer to Accumulator

EVX 4 1292 236 SP evmhoumiaaw Vector Multiply Halfwords, Odd, Unsigned, Modulo, 
Integer and Accumulate into Words

EVX 4 1420 232 SP evmhoumianw Vector Multiply Halfwords, Odd, Unsigned, Modulo, 
Integer and Accumulate Negative into Words

EVX 4 1284 236 SP evmhousiaaw Vector Multiply Halfwords, Odd, Unsigned, Saturate, 
Integer and Accumulate into Words
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EVX 4 1412 236 SP evmhousianw Vector Multiply Halfwords, Odd, Unsigned, Saturate, 
Integer and Accumulate Negative into Words

EVX 4 1220 237 SP evmra Initialize Accumulator
EVX 4 1103 237 SP evmwhsmf Vector Multiply Word High Signed, Modulo, Fractional
EVX 4 1135 237 SP evmwhsmfa Vector Multiply Word High Signed, Modulo, Fractional 

to Accumulator
EVX 4 1101 237 SP evmwhsmi Vector Multiply Word High Signed, Modulo, Integer
EVX 4 1133 237 SP evmwhsmia Vector Multiply Word High Signed, Modulo, Integer to 

Accumulator
EVX 4 1095 238 SP evmwhssf Vector Multiply Word High Signed, Saturate, Fractional
EVX 4 1127 238 SP evmwhssfa Vector Multiply Word High Signed, Saturate, Fractional 

to Accumulator
EVX 4 1100 238 SP evmwhumi Vector Multiply Word High Unsigned, Modulo, Integer
EVX 4 1132 238 SP evmwhumia Vector Multiply Word High Unsigned, Modulo, Integer to 

Accumulator
EVX 4 1353 239 SP evmwlsmiaaw Vector Multiply Word Low Signed, Modulo, Integer and 

Accumulate into Words
EVX 4 1481 239 SP evmwlsmianw Vector Multiply Word Low Signed, Modulo, Integer and 

Accumulate Negative in Words
EVX 4 1345 239 SP evmwlssiaaw Vector Multiply Word Low Signed, Saturate, Integer and 

Accumulate into Words
EVX 4 1473 239 SP evmwlssianw Vector Multiply Word Low Signed, Saturate, Integer and 

Accumulate Negative in Words
EVX 4 1096 240 SP evmwlumi Vector Multiply Word Low Unsigned, Modulo, Integer
EVX 4 1128 240 SP evmwlumia Vector Multiply Word Low Unsigned, Modulo, Integer to 

Accumulator
EVX 4 1352 240 SP evmwlumiaaw Vector Multiply Word Low Unsigned, Modulo, Integer 

and Accumulate into Words
EVX 4 1480 240 SP evmwlumianw Vector Multiply Word Low Unsigned, Modulo, Integer 

and Accumulate Negative in Words
EVX 4 1344 241 SP evmwlusiaaw Vector Multiply Word Low Unsigned, Saturate, Integer 

and Accumulate into Words
EVX 4 1472 241 SP evmwlusianw Vector Multiply Word Low Unsigned, Saturate, Integer 

and Accumulate Negative in Words
EVX 4 1115 241 SP evmwsmf Vector Multiply Word Signed, Modulo, Fractional
EVX 4 1147 241 SP evmwsmfa Vector Multiply Word Signed, Modulo, Fractional to 

Accumulator
EVX 4 1371 242 SP evmwsmfaa Vector Multiply Word Signed, Modulo, Fractional and 

Accumulate
EVX 4 1499 242 SP evmwsmfan Vector Multiply Word Signed, Modulo, Fractional and 

Accumulate Negative
EVX 4 1113 242 SP evmwsmi Vector Multiply Word Signed, Modulo, Integer
EVX 4 1145 242 SP evmwsmia Vector Multiply Word Signed, Modulo, Integer to Accu-

mulator
EVX 4 1369 242 SP evmwsmiaa Vector Multiply Word Signed, Modulo, Integer and 

Accumulate
EVX 4 1497 242 SP evmwsmian Vector Multiply Word Signed, Modulo, Integer and 

Accumulate Negative
EVX 4 1107 243 SP evmwssf Vector Multiply Word Signed, Saturate, Fractional
EVX 4 1139 243 SP evmwssfa Vector Multiply Word Signed, Saturate, Fractional to 

Accumulator
EVX 4 1363 243 SP evmwssfaa Vector Multiply Word Signed, Saturate, Fractional and 

Accumulate
EVX 4 1491 244 SP evmwssfan Vector Multiply Word Signed, Saturate, Fractional and 

Accumulate Negative
EVX 4 1112 244 SP evmwumi Vector Multiply Word Unsigned, Modulo, Integer
EVX 4 1144 244 SP evmwumia Vector Multiply Word Unsigned, Modulo, Integer to 

Accumulator
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EVX 4 1368 245 SP evmwumiaa Vector Multiply Word Unsigned, Modulo, Integer and 
Accumulate

EVX 4 1496 245 SP evmwumian Vector Multiply Word Unsigned, Modulo, Integer and 
Accumulate Negative

EVX 4 542 245 SP evnand Vector NAND
EVX 4 521 245 SP evneg Vector Negate
EVX 4 536 245 SP evnor Vector NOR
EVX 4 535 246 SP evor Vector OR
EVX 4 539 246 SP evorc Vector OR with Complement
EVX 4 552 246 SP evrlw Vector Rotate Left Word
EVX 4 554 247 SP evrlwi Vector Rotate Left Word Immediate
EVX 4 524 247 SP evrndw Vector Round Word
EVS 4 79 247 SP evsel Vector Select
EVX 4 548 248 SP evslw Vector Shift Left Word
EVX 4 550 248 SP evslwi Vector Shift Left Word Immediate
EVX 4 555 248 SP evsplatfi Vector Splat Fractional Immediate
EVX 4 553 248 SP evsplati Vector Splat Immediate
EVX 4 547 248 SP evsrwis Vector Shift Right Word Immediate Signed
EVX 4 546 248 SP evsrwiu Vector Shift Right Word Immediate Unsigned
EVX 4 545 249 SP evsrws Vector Shift Right Word Signed
EVX 4 544 249 SP evsrwu Vector Shift Right Word Unsigned
EVX 4 801 249 SP evstdd Vector Store Double of Double
EVX 4 800 249 SP evstddx Vector Store Double of Double Indexed
EVX 4 805 250 SP evstdh Vector Store Double of Four Halfwords
EVX 4 804 250 SP evstdhx Vector Store Double of Four Halfwords Indexed
EVX 4 803 250 SP evstdw Vector Store Double of Two Words
EVX 4 802 250 SP evstdwx Vector Store Double of Two Words Indexed
EVX 4 817 251 SP evstwhe Vector Store Word of Two Halfwords from Even
EVX 4 816 251 SP evstwhex Vector Store Word of Two Halfwords from Even Indexed
EVX 4 821 251 SP evstwho Vector Store Word of Two Halfwords from Odd
EVX 4 820 251 SP evstwhox Vector Store Word of Two Halfwords from Odd Indexed
EVX 4 825 251 SP evstwwe Vector Store Word of Word from Even
EVX 4 824 251 SP evstwwex Vector Store Word of Word from Even Indexed
EVX 4 829 252 SP evstwwo Vector Store Word of Word from Odd
EVX 4 828 252 SP evstwwox Vector Store Word of Word from Odd Indexed
EVX 4 1227 252 SP evsubfsmiaaw Vector Subtract Signed, Modulo, Integer to Accumula-

tor Word
EVX 4 1219 252 SP evsubfssiaaw Vector Subtract Signed, Saturate, Integer to Accumula-

tor Word
EVX 4 1226 253 SP evsubfumiaaw Vector Subtract Unsigned, Modulo, Integer to Accumu-

lator Word
EVX 4 1218 253 SP evsubfusiaaw Vector Subtract Unsigned, Saturate, Integer to Accu-

mulator Word
EVX 4 516 253 SP evsubfw Vector Subtract from Word
EVX 4 518 253 SP evsubifw Vector Subtract Immediate from Word
EVX 4 534 253 SP evxor Vector XOR
EVX 4 740 274 SP.FD efdabs Floating-Point Double-Precision Absolute Value
EVX 4 736 275 SP.FD efdadd Floating-Point Double-Precision Add
EVX 4 751 280 SP.FD efdcfs Floating-Point Double-Precision Convert from Single-

Precision
EVX 4 755 278 SP.FD efdcfsf Convert Floating-Point Double-Precision from Signed 

Fraction
EVX 4 753 277 SP.FD efdcfsi Convert Floating-Point Double-Precision from Signed 

Integer
EVX 4 739 278 SP.FD efdcfsid Convert Floating-Point Double-Precision from Signed 

Integer Doubleword
EVX 4 754 278 SP.FD efdcfuf Convert Floating-Point Double-Precision from Unsigned 

Fraction
EVX 4 752 277 SP.FD efdcfui Convert Floating-Point Double-Precision from Unsigned 

Integer
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EVX 4 738 278 SP.FD efdcfuid Convert Floating-Point Double-Precision from Unsigned 
Integer Doubleword

EVX 4 750 276 SP.FD efdcmpeq Floating-Point Double-Precision Compare Equal
EVX 4 748 276 SP.FD efdcmpgt Floating-Point Double-Precision Compare Greater 

Than
EVX 4 749 276 SP.FD efdcmplt Floating-Point Double-Precision Compare Less Than
EVX 4 759 280 SP.FD efdctsf Convert Floating-Point Double-Precision to Signed 

Fraction
EVX 4 757 278 SP.FD efdctsi Convert Floating-Point Double-Precision to Signed Inte-

ger
EVX 4 747 279 SP.FD efdctsidz Convert Floating-Point Double-Precision to Signed Inte-

ger Doubleword with Round toward Zero
EVX 4 762 280 SP.FD efdctsiz Convert Floating-Point Double-Precision to Signed Inte-

ger with Round toward Zero
EVX 4 758 280 SP.FD efdctuf Convert Floating-Point Double-Precision to Unsigned 

Fraction
EVX 4 756 278 SP.FD efdctui Convert Floating-Point Double-Precision to Unsigned 

Integer
EVX 4 746 279 SP.FD efdctuidz Convert Floating-Point Double-Precision to Unsigned 

Integer Doubleword with Round toward Zero
EVX 4 760 280 SP.FD efdctuiz Convert Floating-Point Double-Precision to Unsigned 

Integer with Round toward Zero
EVX 4 745 275 SP.FD efddiv Floating-Point Double-Precision Divide
EVX 4 744 275 SP.FD efdmul Floating-Point Double-Precision Multiply
EVX 4 741 274 SP.FD efdnabs Floating-Point Double-Precision Negative Absolute 

Value
EVX 4 742 274 SP.FD efdneg Floating-Point Double-Precision Negate
EVX 4 737 275 SP.FD efdsub Floating-Point Double-Precision Subtract
EVX 4 766 277 SP.FD efdtsteq Floating-Point Double-Precision Test Equal
EVX 4 764 276 SP.FD efdtstgt Floating-Point Double-Precision Test Greater Than
EVX 4 765 277 SP.FD efdtstlt Floating-Point Double-Precision Test Less Than
EVX 4 719 281 SP.FD efscfd Floating-Point Single-Precision Convert from Double-

Precision
EVX 4 708 267 SP.FS efsabs Floating-Point Single-Precision Absolute Value
EVX 4 704 268 SP.FS efsadd Floating-Point Single-Precision Add
EVX 4 723 272 SP.FS efscfsf Convert Floating-Point Single-Precision from Signed 

Fraction
EVX 4 721 272 SP.FS efscfsi Convert Floating-Point Single-Precision from Signed 

Integer
EVX 4 722 272 SP.FS efscfuf Convert Floating-Point Single-Precision from Unsigned 

Fraction
EVX 4 720 272 SP.FS efscfui Convert Floating-Point Single-Precision from Unsigned 

Integer
EVX 4 718 270 SP.FS efscmpeq Floating-Point Single-Precision Compare Equal
EVX 4 716 269 SP.FS efscmpgt Floating-Point Single-Precision Compare Greater Than
EVX 4 717 269 SP.FS efscmplt Floating-Point Single-Precision Compare Less Than
EVX 4 727 273 SP.FS efsctsf Convert Floating-Point Single-Precision to Signed Frac-

tion
EVX 4 725 272 SP.FS efsctsi Convert Floating-Point Single-Precision to Signed Inte-

ger
EVX 4 730 273 SP.FS efsctsiz Convert Floating-Point Single-Precision to Signed Inte-

ger with Round toward Zero
EVX 4 726 273 SP.FS efsctuf Convert Floating-Point Single-Precision to Unsigned 

Fraction
EVX 4 724 272 SP.FS efsctui Convert Floating-Point Single-Precision to Unsigned 

Integer
EVX 4 728 273 SP.FS efsctuiz Convert Floating-Point Single-Precision to Unsigned 

Integer with Round toward Zero
EVX 4 713 268 SP.FS efsdiv Floating-Point Single-Precision Divide
EVX 4 712 268 SP.FS efsmul Floating-Point Single-Precision Multiply
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EVX 4 709 267 SP.FS efsnabs Floating-Point Single-Precision Negative Absolute 
Value

EVX 4 710 267 SP.FS efsneg Floating-Point Single-Precision Negate
EVX 4 705 268 SP.FS efssub Floating-Point Single-Precision Subtract
EVX 4 734 271 SP.FS efststeq Floating-Point Single-Precision Test Equal
EVX 4 732 270 SP.FS efststgt Floating-Point Single-Precision Test Greater Than
EVX 4 733 271 SP.FS efststlt Floating-Point Single-Precision Test Less Than
EVX 4 644 259 SP.FV evfsabs Vector Floating-Point Single-Precision Absolute Value
EVX 4 640 260 SP.FV evfsadd Vector Floating-Point Single-Precision Add
EVX 4 659 264 SP.FV evfscfsf Vector Convert Floating-Point Single-Precision from 

Signed Fraction
EVX 4 657 264 SP.FV evfscfsi Vector Convert Floating-Point Single-Precision from 

Signed Integer
EVX 4 658 264 SP.FV evfscfuf Vector Convert Floating-Point Single-Precision from 

Unsigned Fraction
EVX 4 656 264 SP.FV evfscfui Vector Convert Floating-Point Single-Precision from 

Unsigned Integer
EVX 4 654 262 SP.FV evfscmpeq Vector Floating-Point Single-Precision Compare Equal
EVX 4 652 261 SP.FV evfscmpgt Vector Floating-Point Single-Precision Compare 

Greater Than
EVX 4 653 261 SP.FV evfscmplt Vector Floating-Point Single-Precision Compare Less 

Than
EVX 4 663 266 SP.FV evfsctsf Vector Convert Floating-Point Single-Precision to 

Signed Fraction
EVX 4 661 265 SP.FV evfsctsi Vector Convert Floating-Point Single-Precision to 

Signed Integer
EVX 4 666 265 SP.FV evfsctsiz Vector Convert Floating-Point Single-Precision to 

Signed Integer with Round toward Zero
EVX 4 662 266 SP.FV evfsctuf Vector Convert Floating-Point Single-Precision to 

Unsigned Fraction
EVX 4 660 265 SP.FV evfsctui Vector Convert Floating-Point Single-Precision to 

Unsigned Integer
EVX 4 664 265 SP.FV evfsctuiz Vector Convert Floating-Point Single-Precision to 

Unsigned Integer with Round toward Zero
EVX 4 649 260 SP.FV evfsdiv Vector Floating-Point Single-Precision Divide
EVX 4 648 260 SP.FV evfsmul Vector Floating-Point Single-Precision Multiply
EVX 4 645 259 SP.FV evfsnabs Vector Floating-Point Single-Precision Negative Abso-

lute Value
EVX 4 646 259 SP.FV evfsneg Vector Floating-Point Single-Precision Negate
EVX 4 641 260 SP.FV evfssub Vector Floating-Point Single-Precision Subtract
EVX 4 670 263 SP.FV evfststeq Vector Floating-Point Single-Precision Test Equal
EVX 4 668 262 SP.FV evfststgt Vector Floating-Point Single-Precision Test Greater 

Than
EVX 4 669 263 SP.FV evfststlt Vector Floating-Point Single-Precision Test Less Than
X 31 7 146 V lvebx Load Vector Element Byte Indexed
X 31 39 143 V lvehx Load Vector Element Halfword Indexed
X 31 71 143 V lvewx Load Vector Element Word Indexed
X 31 6 148 V lvsl Load Vector for Shift Left Indexed
X 31 38 148 V lvsr Load Vector for Shift Right Indexed
X 31 103 144 V lvx Load Vector Indexed
X 31 359 144 V lvxl Load Vector Indexed Last
VX 4 1540 199 V mfvscr Move From Vector Status and Control Register
VX 4 1604 199 V mtvscr Move To Vector Status and Control Register
X 31 135 146 V stvebx Store Vector Element Byte Indexed
X 31 167 146 V stvehx Store Vector Element Halfword Indexed
X 31 199 147 V stvewx Store Vector Element Word Indexed
X 31 231 144 V stvx Store Vector Indexed
X 31 487 147 V stvxl Store Vector Indexed Last
VX 4 384 160 V vaddcuw Vector Add and Write Carry-Out Unsigned Word
VX 4 10 189 V vaddfp Vector Add Single-Precision

F
o

rm
Opcode

M
o

d
e

 D
ep

.1

P
ri

v1

Page Cat1 Mnemonic InstructionPri Ext
Appendix G. Power ISA Instruction Set Sorted by Category 803



   Version 2.04
VX 4 768 160 V vaddsbs Vector Add Signed Byte Saturate
VX 4 832 160 V vaddshs Vector Add Signed Halfword Saturate
VX 4 896 160 V vaddsws Vector Add Signed Word Saturate
VX 4 0 161 V vaddubm Vector Add Unsigned Byte Modulo
VX 4 512 162 V vaddubs Vector Add Unsigned Byte Saturate
VX 4 64 161 V vadduhm Vector Add Unsigned Halfword Modulo
VX 4 576 162 V vadduhs Vector Add Unsigned Halfword Saturate
VX 4 128 161 V vadduwm Vector Add Unsigned Word Modulo
VX 4 640 162 V vadduws Vector Add Unsigned Word Saturate
VX 4 1028 184 V vand Vector Logical AND
VX 4 1092 184 V vandc Vector Logical AND with Complement
VX 4 1282 175 V vavgsb Vector Average Signed Byte
VX 4 1346 175 V vavgsh Vector Average Signed Halfword
VX 4 1410 175 V vavgsw Vector Average Signed Word
VX 4 1026 176 V vavgub Vector Average Unsigned Byte
VX 4 1090 176 V vavguh Vector Average Unsigned Halfword
VX 4 1154 176 V vavguw Vector Average Unsigned Word
VX 4 842 193 V vcfsx Vector Convert From Signed Fixed-Point Word
VX 4 778 193 V vcfux Vector Convert From Unsigned Fixed-Point Word
VC 4 966 195 V vcmpbfp[.] Vector Compare Bounds Single-Precision
VC 4 198 195 V vcmpeqfp[.] Vector Compare Equal To Single-Precision
VC 4 6 181 V vcmpequb[.] Vector Compare Equal To Unsigned Byte
VC 4 70 181 V vcmpequh[.] Vector Compare Equal To Unsigned Halfword
VC 4 134 182 V vcmpequw[.] Vector Compare Equal To Unsigned Word
VC 4 454 196 V vcmpgefp[.] Vector Compare Greater Than or Equal To Single-Pre-

cision
VC 4 710 196 V vcmpgtfp[.] Vector Compare Greater Than Single-Precision
VC 4 774 182 V vcmpgtsb[.] Vector Compare Greater Than Signed Byte
VC 4 838 182 V vcmpgtsh[.] Vector Compare Greater Than Signed Halfword
VC 4 902 182 V vcmpgtsw[.] Vector Compare Greater Than Signed Word
VC 4 518 183 V vcmpgtub[.] Vector Compare Greater Than Unsigned Byte
VC 4 582 183 V vcmpgtuh[.] Vector Compare Greater Than Unsigned Halfword
VC 4 646 183 V vcmpgtuw[.] Vector Compare Greater Than Unsigned Word
VX 4 970 192 V vctsxs Vector Convert To Signed Fixed-Point Word Saturate
VX 4 906 192 V vctuxs Vector Convert To Unsigned Fixed-Point Word Saturate
VX 4 394 197 V vexptefp Vector 2 Raised to the Exponent Estimate Floating-

Point
VX 4 458 197 V vlogefp Vector Log Base 2 Estimate Floating-Point
VA 4 46 190 V vmaddfp Vector Multiply-Add Single-Precision
VX 4 1034 191 V vmaxfp Vector Maximum Single-Precision
VX 4 258 177 V vmaxsb Vector Maximum Signed Byte
VX 4 322 177 V vmaxsh Vector Maximum Signed Halfword
VX 4 386 177 V vmaxsw Vector Maximum Signed Word
VX 4 2 178 V vmaxub Vector Maximum Unsigned Byte
VX 4 66 178 V vmaxuh Vector Maximum Unsigned Halfword
VX 4 130 178 V vmaxuw Vector Maximum Unsigned Word
VA 4 32 168 V vmhaddshs Vector Multiply-High-Add Signed Halfword Saturate
VA 4 33 168 V vmhraddshs Vector Multiply-High-Round-Add Signed Halfword Satu-

rate
VX 4 1098 191 V vminfp Vector Minimum Single-Precision
VX 4 770 179 V vminsb Vector Minimum Signed Byte
VX 4 834 179 V vminsh Vector Minimum Signed Halfword
VX 4 898 179 V vminsw Vector Minimum Signed Word
VX 4 514 180 V vminub Vector Minimum Unsigned Byte
VX 4 578 180 V vminuh Vector Minimum Unsigned Halfword
VX 4 642 180 V vminuw Vector Minimum Unsigned Word
VA 4 34 169 V vmladduhm Vector Multiply-Low-Add Unsigned Halfword Modulo
VX 4 12 154 V vmrghb Vector Merge High Byte
VX 4 76 154 V vmrghh Vector Merge High Halfword
VX 4 140 154 V vmrghw Vector Merge High Word
VX 4 268 155 V vmrglb Vector Merge Low Byte
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VX 4 332 155 V vmrglh Vector Merge Low Halfword
VX 4 396 155 V vmrglw Vector Merge Low Word
VA 4 37 170 V vmsummbm Vector Multiply-Sum Mixed Byte Modulo
VA 4 40 170 V vmsumshm Vector Multiply-Sum Signed Halfword Modulo
VA 4 41 171 V vmsumshs Vector Multiply-Sum Signed Halfword Saturate
VA 4 36 169 V vmsumubm Vector Multiply-Sum Unsigned Byte Modulo
VA 4 38 171 V vmsumuhm Vector Multiply-Sum Unsigned Halfword Modulo
VA 4 39 172 V vmsumuhs Vector Multiply-Sum Unsigned Halfword Saturate
VX 4 776 166 V vmulesb Vector Multiply Even Signed Byte
VX 4 840 166 V vmulesh Vector Multiply Even Signed Halfword
VX 4 520 166 V vmuleub Vector Multiply Even Unsigned Byte
VX 4 584 166 V vmuleuh Vector Multiply Even Unsigned Halfword
VX 4 264 167 V vmulosb Vector Multiply Odd Signed Byte
VX 4 328 167 V vmulosh Vector Multiply Odd Signed Halfword
VX 4 8 167 V vmuloub Vector Multiply Odd Unsigned Byte
VX 4 72 167 V vmulouh Vector Multiply Odd Unsigned Halfword
VA 4 47 190 V vnmsubfp Vector Negative Multiply-Subtract Single-Precision
VX 4 1284 184 V vnor Vector Logical NOR
VX 4 1156 184 V vor Vector Logical OR
VA 4 43 157 V vperm Vector Permute
VX 4 782 149 V vpkpx Vector Pack Pixel
VX 4 398 150 V vpkshss Vector Pack Signed Halfword Signed Saturate
VX 4 270 150 V vpkshus Vector Pack Signed Halfword Unsigned Saturate
VX 4 462 150 V vpkswss Vector Pack Signed Word Signed Saturate
VX 4 334 150 V vpkswus Vector Pack Signed Word Unsigned Saturate
VX 4 14 151 V vpkuhum Vector Pack Unsigned Halfword Unsigned Modulo
VX 4 142 151 V vpkuhus Vector Pack Unsigned Halfword Unsigned Saturate
VX 4 78 151 V vpkuwum Vector Pack Unsigned Word Unsigned Modulo
VX 4 206 151 V vpkuwus Vector Pack Unsigned Word Unsigned Saturate
VX 4 266 198 V vrefp Vector Reciprocal Estimate Single-Precision
VX 4 714 194 V vrfim Vector Round to Single-Precision Integer toward -Infin-

ity
VX 4 522 194 V vrfin Vector Round to Single-Precision Integer Nearest
VX 4 650 194 V vrfip Vector Round to Single-Precision Integer toward +Infin-

ity
VX 4 586 194 V vrfiz Vector Round to Single-Precision Integer toward Zero
VX 4 4 185 V vrlb Vector Rotate Left Byte
VX 4 68 185 V vrlh Vector Rotate Left Halfword
VX 4 132 185 V vrlw Vector Rotate Left Word
VX 4 330 198 V vrsqrtefp Vector Reciprocal Square Root Estimate Single-Preci-

sion
VA 4 42 157 V vsel Vector Select
VX 4 452 158 V vsl Vector Shift Left
VX 4 260 186 V vslb Vector Shift Left Byte
VA 4 44 158 V vsldoi Vector Shift Left Double by Octet Immediate
VX 4 324 186 V vslh Vector Shift Left Halfword
VX 4 1036 158 V vslo Vector Shift Left by Octet
VX 4 388 186 V vslw Vector Shift Left Word
VX 4 524 156 V vspltb Vector Splat Byte
VX 4 588 156 V vsplth Vector Splat Halfword
VX 4 780 156 V vspltisb Vector Splat Immediate Signed Byte
VX 4 844 156 V vspltish Vector Splat Immediate Signed Halfword
VX 4 908 156 V vspltisw Vector Splat Immediate Signed Word
VX 4 652 156 V vspltw Vector Splat Word
VX 4 708 159 V vsr Vector Shift Right
VX 4 772 188 V vsrab Vector Shift Right Algebraic Byte
VX 4 836 188 V vsrah Vector Shift Right Algebraic Halfword
VX 4 900 188 V vsraw Vector Shift Right Algebraic Word
VX 4 516 187 V vsrb Vector Shift Right Byte
VX 4 580 187 V vsrh Vector Shift Right Halfword
VX 4 1100 159 V vsro Vector Shift Right by Octet
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1 See the key to the mode dependency and privilege columns on page 839 and the key to the category column in 
Section 1.3.5 of Book I.

VX 4 644 187 V vsrw Vector Shift Right Word
VX 4 1408 163 V vsubcuw Vector Subtract and Write Carry-Out Unsigned Word
VX 4 74 189 V vsubfp Vector Subtract Single-Precision
VX 4 1792 163 V vsubsbs Vector Subtract Signed Byte Saturate
VX 4 1856 163 V vsubshs Vector Subtract Signed Halfword Saturate
VX 4 1920 163 V vsubsws Vector Subtract Signed Word Saturate
VX 4 1024 164 V vsububm Vector Subtract Unsigned Byte Modulo
VX 4 1536 165 V vsububs Vector Subtract Unsigned Byte Saturate
VX 4 1088 164 V vsubuhm Vector Subtract Unsigned Halfword Modulo
VX 4 1600 164 V vsubuhs Vector Subtract Unsigned Halfword Saturate
VX 4 1152 164 V vsubuwm Vector Subtract Unsigned Word Modulo
VX 4 1664 165 V vsubuws Vector Subtract Unsigned Word Saturate
VX 4 1672 173 V vsum2sws Vector Sum across Half Signed Word Saturate
VX 4 1800 174 V vsum4sbs Vector Sum across Quarter Signed Byte Saturate
VX 4 1608 174 V vsum4shs Vector Sum across Quarter Signed Halfword Saturate
VX 4 1544 174 V vsum4ubs Vector Sum across Quarter Unsigned Byte Saturate
VX 4 1928 173 V vsumsws Vector Sum across Signed Word Saturate
VX 4 846 152 V vupkhpx Vector Unpack High Pixel
VX 4 526 152 V vupkhsb Vector Unpack High Signed Byte
VX 4 590 152 V vupkhsh Vector Unpack High Signed Halfword
VX 4 974 153 V vupklpx Vector Unpack Low Pixel
VX 4 654 153 V vupklsb Vector Unpack Low Signed Byte
VX 4 718 153 V vupklsh Vector Unpack Low Signed Halfword
VX 4 1220 184 V vxor Vector Logical XOR
X 31 62 375 WT wait Wait
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Appendix H.  Power ISA Instruction Set Sorted by 
Opcode

This appendix lists all the instructions in the Power ISA, in order by opcode.
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D  2 70 64 tdi Trap Doubleword Immediate
D  3  69 B twi Trap Word Immediate
VX 4 0 161 V vaddubm Vector Add Unsigned Byte Modulo
VX 4 2 178 V vmaxub Vector Maximum Unsigned Byte
VX 4 4 185 V vrlb Vector Rotate Left Byte
VC 4 6 181 V vcmpequb[.] Vector Compare Equal To Unsigned Byte
X 4 8 295 LMA mulhhwu[.] Multiply High Halfword to Word Unsigned
VX 4 8 167 V vmuloub Vector Multiply Odd Unsigned Byte
VX 4 10 189 V vaddfp Vector Add Single-Precision
XO 4 12 292 LMA machhwu[o][.] Multiply Accumulate High Halfword to Word Modulo 

Unsigned
VX 4 12 154 V vmrghb Vector Merge High Byte
VX 4 14 151 V vpkuhum Vector Pack Unsigned Halfword Unsigned Modulo
VA 4 32 168 V vmhaddshs Vector Multiply-High-Add Signed Halfword Saturate
VA 4 33 168 V vmhraddshs Vector Multiply-High-Round-Add Signed Halfword Satu-

rate
VA 4 34 169 V vmladduhm Vector Multiply-Low-Add Unsigned Halfword Modulo
VA 4 36 169 V vmsumubm Vector Multiply-Sum Unsigned Byte Modulo
VA 4 37 170 V vmsummbm Vector Multiply-Sum Mixed Byte Modulo
VA 4 38 171 V vmsumuhm Vector Multiply-Sum Unsigned Halfword Modulo
VA 4 39 172 V vmsumuhs Vector Multiply-Sum Unsigned Halfword Saturate
X 4 40 295 LMA mulhhw[.] Multiply High Halfword to Word Signed
VA 4 40 170 V vmsumshm Vector Multiply-Sum Signed Halfword Modulo
VA 4 41 171 V vmsumshs Vector Multiply-Sum Signed Halfword Saturate
VA 4 42 157 V vsel Vector Select
VA 4 43 157 V vperm Vector Permute
XO 4 44 291 LMA machhw[o][.] Multiply Accumulate High Halfword to Word Modulo 

Signed
VA 4 44 158 V vsldoi Vector Shift Left Double by Octet Immediate
XO 4 46 297 LMA nmachhw[o][.] Negative Multiply Accumulate High Halfword to Word 

Modulo Signed
VA 4 46 190 V vmaddfp Vector Multiply-Add Single-Precision
VA 4 47 190 V vnmsubfp Vector Negative Multiply-Subtract Single-Precision
VX 4 64 161 V vadduhm Vector Add Unsigned Halfword Modulo
VX 4 66 178 V vmaxuh Vector Maximum Unsigned Halfword
VX 4 68 185 V vrlh Vector Rotate Left Halfword
VC 4 70 181 V vcmpequh[.] Vector Compare Equal To Unsigned Halfword
VX 4 72 167 V vmulouh Vector Multiply Odd Unsigned Halfword
VX 4 74 189 V vsubfp Vector Subtract Single-Precision
XO 4 76 292 LMA machhwsu[o][.] Multiply Accumulate High Halfword to Word Saturate 

Unsigned
VX 4 76 154 V vmrghh Vector Merge High Halfword
VX 4 78 151 V vpkuwum Vector Pack Unsigned Word Unsigned Modulo
EVS 4 79 247 SP evsel Vector Select
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XO 4 108 291 LMA machhws[o][.] Multiply Accumulate High Halfword to Word Saturate 
Signed

XO 4 110 297 LMA nmachhws[o][.] Negative Multiply Accumulate High Halfword to Word 
Saturate Signed

VX 4 128 161 V vadduwm Vector Add Unsigned Word Modulo
VX 4 130 178 V vmaxuw Vector Maximum Unsigned Word
VX 4 132 185 V vrlw Vector Rotate Left Word
VC 4 134 182 V vcmpequw[.] Vector Compare Equal To Unsigned Word
X 4 136 294 LMA mulchwu[.] Multiply Cross Halfword to Word Unsigned
XO 4 140 290 LMA macchwu[o][.] Multiply Accumulate Cross Halfword to Word Modulo 

Unsigned
VX 4 140 154 V vmrghw Vector Merge High Word
VX 4 142 151 V vpkuhus Vector Pack Unsigned Halfword Unsigned Saturate
X 4 168 294 LMA mulchw[.] Multiply Cross Halfword to Word Signed
XO 4 172 289 LMA macchw[o][.] Multiply Accumulate Cross Halfword to Word Modulo 

Signed
XO 4 174 296 LMA nmacchw[o][.] Negative Multiply Accumulate Cross Halfword to Word 

Modulo Signed
VC 4 198 195 V vcmpeqfp[.] Vector Compare Equal To Single-Precision
XO 4 204 290 LMA macchwsu[o][.] Multiply Accumulate Cross Halfword to Word Saturate 

Unsigned
VX 4 206 151 V vpkuwus Vector Pack Unsigned Word Unsigned Saturate
XO 4 236 289 LMA macchws[o][.] Multiply Accumulate Cross Halfword to Word Saturate 

Signed
XO 4 238 296 LMA nmacchws[o][.] Negative Multiply Accumulate Cross Halfword to Word 

Saturate Signed
VX 4 258 177 V vmaxsb Vector Maximum Signed Byte
VX 4 260 186 V vslb Vector Shift Left Byte
VX 4 264 167 V vmulosb Vector Multiply Odd Signed Byte
VX 4 266 198 V vrefp Vector Reciprocal Estimate Single-Precision
VX 4 268 155 V vmrglb Vector Merge Low Byte
VX 4 270 150 V vpkshus Vector Pack Signed Halfword Unsigned Saturate
VX 4 322 177 V vmaxsh Vector Maximum Signed Halfword
VX 4 324 186 V vslh Vector Shift Left Halfword
VX 4 328 167 V vmulosh Vector Multiply Odd Signed Halfword
VX 4 330 198 V vrsqrtefp Vector Reciprocal Square Root Estimate Single-Preci-

sion
VX 4 332 155 V vmrglh Vector Merge Low Halfword
VX 4 334 150 V vpkswus Vector Pack Signed Word Unsigned Saturate
VX 4 384 160 V vaddcuw Vector Add and Write Carry-Out Unsigned Word
VX 4 386 177 V vmaxsw Vector Maximum Signed Word
VX 4 388 186 V vslw Vector Shift Left Word
X 4 392 295 LMA mullhwu[.] Multiply Low Halfword to Word Unsigned
VX 4 394 197 V vexptefp Vector 2 Raised to the Exponent Estimate Floating-

Point
XO 4 396 294 LMA maclhwu[o][.] Multiply Accumulate Low Halfword to Word Modulo 

Unsigned
VX 4 396 155 V vmrglw Vector Merge Low Word
VX 4 398 150 V vpkshss Vector Pack Signed Halfword Signed Saturate
X 4 424 295 LMA mullhw[.] Multiply Low Halfword to Word Signed
XO 4 428 293 LMA maclhw[o][.] Multiply Accumulate Low Halfword to Word Modulo 

Signed
XO 4 430 298 LMA nmaclhw[o][.] Negative Multiply Accumulate Low Halfword to Word 

Modulo Signed
VX 4 452 158 V vsl Vector Shift Left
VC 4 454 196 V vcmpgefp[.] Vector Compare Greater Than or Equal To Single-Pre-

cision
VX 4 458 197 V vlogefp Vector Log Base 2 Estimate Floating-Point
XO 4 460 294 LMA maclhwsu[o][.] Multiply Accumulate Low Halfword to Word Saturate 

Unsigned
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VX 4 462 150 V vpkswss Vector Pack Signed Word Signed Saturate
XO 4 492 293 LMA maclhws[o][.] Multiply Accumulate Low Halfword to Word Saturate 

Signed
XO 4 494 298 LMA nmaclhws[o][.] Negative Multiply Accumulate Low Halfword to Word 

Saturate Signed
EVX 4 512 209 SP evaddw Vector Add Word
VX 4 512 162 V vaddubs Vector Add Unsigned Byte Saturate
EVX 4 514 208 SP evaddiw Vector Add Immediate Word
VX 4 514 180 V vminub Vector Minimum Unsigned Byte
EVX 4 516 253 SP evsubfw Vector Subtract from Word
VX 4 516 187 V vsrb Vector Shift Right Byte
EVX 4 518 253 SP evsubifw Vector Subtract Immediate from Word
VC 4 518 183 V vcmpgtub[.] Vector Compare Greater Than Unsigned Byte
EVX 4 520 208 SP evabs Vector Absolute Value
VX 4 520 166 V vmuleub Vector Multiply Even Unsigned Byte
EVX 4 521 245 SP evneg Vector Negate
EVX 4 522 213 SP evextsb Vector Extend Sign Byte
VX 4 522 194 V vrfin Vector Round to Single-Precision Integer Nearest
EVX 4 523 213 SP evextsh Vector Extend Sign Halfword
EVX 4 524 247 SP evrndw Vector Round Word
VX 4 524 156 V vspltb Vector Splat Byte
EVX 4 525 212 SP evcntlzw Vector Count Leading Zeros Word
EVX 4 526 212 SP evcntlsw Vector Count Leading Signed Bits Word
VX 4 526 152 V vupkhsb Vector Unpack High Signed Byte
EVX 4 527 208 SP brinc Bit Reversed Increment
EVX 4 529 210 SP evand Vector AND
EVX 4 530 210 SP evandc Vector AND with Complement
EVX 4 534 253 SP evxor Vector XOR
EVX 4 535 246 SP evor Vector OR
EVX 4 536 245 SP evnor Vector NOR
EVX 4 537 213 SP eveqv Vector Equivalent
EVX 4 539 246 SP evorc Vector OR with Complement
EVX 4 542 245 SP evnand Vector NAND
EVX 4 544 249 SP evsrwu Vector Shift Right Word Unsigned
EVX 4 545 249 SP evsrws Vector Shift Right Word Signed
EVX 4 546 248 SP evsrwiu Vector Shift Right Word Immediate Unsigned
EVX 4 547 248 SP evsrwis Vector Shift Right Word Immediate Signed
EVX 4 548 248 SP evslw Vector Shift Left Word
EVX 4 550 248 SP evslwi Vector Shift Left Word Immediate
EVX 4 552 246 SP evrlw Vector Rotate Left Word
EVX 4 553 248 SP evsplati Vector Splat Immediate
EVX 4 554 247 SP evrlwi Vector Rotate Left Word Immediate
EVX 4 555 248 SP evsplatfi Vector Splat Fractional Immediate
EVX 4 556 219 SP evmergehi Vector Merge High
EVX 4 557 219 SP evmergelo Vector Merge Low
EVX 4 558 220 SP evmergehilo Vector Merge High/Low
EVX 4 559 220 SP evmergelohi Vector Merge Low/High
EVX 4 560 211 SP evcmpgtu Vector Compare Greater Than Unsigned
EVX 4 561 210 SP evcmpgts Vector Compare Greater Than Signed
EVX 4 562 211 SP evcmpltu Vector Compare Less Than Unsigned
EVX 4 563 211 SP evcmplts Vector Compare Less Than Signed
EVX 4 564 210 SP evcmpeq Vector Compare Equal
VX 4 576 162 V vadduhs Vector Add Unsigned Halfword Saturate
VX 4 578 180 V vminuh Vector Minimum Unsigned Halfword
VX 4 580 187 V vsrh Vector Shift Right Halfword
VC 4 582 183 V vcmpgtuh[.] Vector Compare Greater Than Unsigned Halfword
VX 4 584 166 V vmuleuh Vector Multiply Even Unsigned Halfword
VX 4 586 194 V vrfiz Vector Round to Single-Precision Integer toward Zero
VX 4 588 156 V vsplth Vector Splat Halfword
VX 4 590 152 V vupkhsh Vector Unpack High Signed Halfword
EVX 4 640 260 SP.FV evfsadd Vector Floating-Point Single-Precision Add
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VX 4 640 162 V vadduws Vector Add Unsigned Word Saturate
EVX 4 641 260 SP.FV evfssub Vector Floating-Point Single-Precision Subtract
VX 4 642 180 V vminuw Vector Minimum Unsigned Word
EVX 4 644 259 SP.FV evfsabs Vector Floating-Point Single-Precision Absolute Value
VX 4 644 187 V vsrw Vector Shift Right Word
EVX 4 645 259 SP.FV evfsnabs Vector Floating-Point Single-Precision Negative Abso-

lute Value
EVX 4 646 259 SP.FV evfsneg Vector Floating-Point Single-Precision Negate
VC 4 646 183 V vcmpgtuw[.] Vector Compare Greater Than Unsigned Word
EVX 4 648 260 SP.FV evfsmul Vector Floating-Point Single-Precision Multiply
EVX 4 649 260 SP.FV evfsdiv Vector Floating-Point Single-Precision Divide
VX 4 650 194 V vrfip Vector Round to Single-Precision Integer toward +Infin-

ity
EVX 4 652 261 SP.FV evfscmpgt Vector Floating-Point Single-Precision Compare 

Greater Than
VX 4 652 156 V vspltw Vector Splat Word
EVX 4 653 261 SP.FV evfscmplt Vector Floating-Point Single-Precision Compare Less 

Than
EVX 4 654 262 SP.FV evfscmpeq Vector Floating-Point Single-Precision Compare Equal
VX 4 654 153 V vupklsb Vector Unpack Low Signed Byte
EVX 4 656 264 SP.FV evfscfui Vector Convert Floating-Point Single-Precision from 

Unsigned Integer
EVX 4 657 264 SP.FV evfscfsi Vector Convert Floating-Point Single-Precision from 

Signed Integer
EVX 4 658 264 SP.FV evfscfuf Vector Convert Floating-Point Single-Precision from 

Unsigned Fraction
EVX 4 659 264 SP.FV evfscfsf Vector Convert Floating-Point Single-Precision from 

Signed Fraction
EVX 4 660 265 SP.FV evfsctui Vector Convert Floating-Point Single-Precision to 

Unsigned Integer
EVX 4 661 265 SP.FV evfsctsi Vector Convert Floating-Point Single-Precision to 

Signed Integer
EVX 4 662 266 SP.FV evfsctuf Vector Convert Floating-Point Single-Precision to 

Unsigned Fraction
EVX 4 663 266 SP.FV evfsctsf Vector Convert Floating-Point Single-Precision to 

Signed Fraction
EVX 4 664 265 SP.FV evfsctuiz Vector Convert Floating-Point Single-Precision to 

Unsigned Integer with Round toward Zero
EVX 4 666 265 SP.FV evfsctsiz Vector Convert Floating-Point Single-Precision to 

Signed Integer with Round toward Zero
EVX 4 668 262 SP.FV evfststgt Vector Floating-Point Single-Precision Test Greater 

Than
EVX 4 669 263 SP.FV evfststlt Vector Floating-Point Single-Precision Test Less Than
EVX 4 670 263 SP.FV evfststeq Vector Floating-Point Single-Precision Test Equal
EVX 4 704 268 SP.FS efsadd Floating-Point Single-Precision Add
EVX 4 705 268 SP.FS efssub Floating-Point Single-Precision Subtract
EVX 4 708 267 SP.FS efsabs Floating-Point Single-Precision Absolute Value
VX 4 708 159 V vsr Vector Shift Right
EVX 4 709 267 SP.FS efsnabs Floating-Point Single-Precision Negative Absolute 

Value
EVX 4 710 267 SP.FS efsneg Floating-Point Single-Precision Negate
VC 4 710 196 V vcmpgtfp[.] Vector Compare Greater Than Single-Precision
EVX 4 712 268 SP.FS efsmul Floating-Point Single-Precision Multiply
EVX 4 713 268 SP.FS efsdiv Floating-Point Single-Precision Divide
VX 4 714 194 V vrfim Vector Round to Single-Precision Integer toward -Infin-

ity
EVX 4 716 269 SP.FS efscmpgt Floating-Point Single-Precision Compare Greater Than
EVX 4 717 269 SP.FS efscmplt Floating-Point Single-Precision Compare Less Than
EVX 4 718 270 SP.FS efscmpeq Floating-Point Single-Precision Compare Equal
VX 4 718 153 V vupklsh Vector Unpack Low Signed Halfword
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EVX 4 719 281 SP.FD efscfd Floating-Point Single-Precision Convert from Double-
Precision

EVX 4 720 272 SP.FS efscfui Convert Floating-Point Single-Precision from Unsigned 
Integer

EVX 4 721 272 SP.FS efscfsi Convert Floating-Point Single-Precision from Signed 
Integer

EVX 4 722 272 SP.FS efscfuf Convert Floating-Point Single-Precision from Unsigned 
Fraction

EVX 4 723 272 SP.FS efscfsf Convert Floating-Point Single-Precision from Signed 
Fraction

EVX 4 724 272 SP.FS efsctui Convert Floating-Point Single-Precision to Unsigned 
Integer

EVX 4 725 272 SP.FS efsctsi Convert Floating-Point Single-Precision to Signed Inte-
ger

EVX 4 726 273 SP.FS efsctuf Convert Floating-Point Single-Precision to Unsigned 
Fraction

EVX 4 727 273 SP.FS efsctsf Convert Floating-Point Single-Precision to Signed Frac-
tion

EVX 4 728 273 SP.FS efsctuiz Convert Floating-Point Single-Precision to Unsigned 
Integer with Round toward Zero

EVX 4 730 273 SP.FS efsctsiz Convert Floating-Point Single-Precision to Signed Inte-
ger with Round toward Zero

EVX 4 732 270 SP.FS efststgt Floating-Point Single-Precision Test Greater Than
EVX 4 733 271 SP.FS efststlt Floating-Point Single-Precision Test Less Than
EVX 4 734 271 SP.FS efststeq Floating-Point Single-Precision Test Equal
EVX 4 736 275 SP.FD efdadd Floating-Point Double-Precision Add
EVX 4 737 275 SP.FD efdsub Floating-Point Double-Precision Subtract
EVX 4 738 278 SP.FD efdcfuid Convert Floating-Point Double-Precision from Unsigned 

Integer Doubleword
EVX 4 739 278 SP.FD efdcfsid Convert Floating-Point Double-Precision from Signed 

Integer Doubleword
EVX 4 740 274 SP.FD efdabs Floating-Point Double-Precision Absolute Value
EVX 4 741 274 SP.FD efdnabs Floating-Point Double-Precision Negative Absolute 

Value
EVX 4 742 274 SP.FD efdneg Floating-Point Double-Precision Negate
EVX 4 744 275 SP.FD efdmul Floating-Point Double-Precision Multiply
EVX 4 745 275 SP.FD efddiv Floating-Point Double-Precision Divide
EVX 4 746 279 SP.FD efdctuidz Convert Floating-Point Double-Precision to Unsigned 

Integer Doubleword with Round toward Zero
EVX 4 747 279 SP.FD efdctsidz Convert Floating-Point Double-Precision to Signed Inte-

ger Doubleword with Round toward Zero
EVX 4 748 276 SP.FD efdcmpgt Floating-Point Double-Precision Compare Greater 

Than
EVX 4 749 276 SP.FD efdcmplt Floating-Point Double-Precision Compare Less Than
EVX 4 750 276 SP.FD efdcmpeq Floating-Point Double-Precision Compare Equal
EVX 4 751 280 SP.FD efdcfs Floating-Point Double-Precision Convert from Single-

Precision
EVX 4 752 277 SP.FD efdcfui Convert Floating-Point Double-Precision from Unsigned 

Integer
EVX 4 753 277 SP.FD efdcfsi Convert Floating-Point Double-Precision from Signed 

Integer
EVX 4 754 278 SP.FD efdcfuf Convert Floating-Point Double-Precision from Unsigned 

Fraction
EVX 4 755 278 SP.FD efdcfsf Convert Floating-Point Double-Precision from Signed 

Fraction
EVX 4 756 278 SP.FD efdctui Convert Floating-Point Double-Precision to Unsigned 

Integer
EVX 4 757 278 SP.FD efdctsi Convert Floating-Point Double-Precision to Signed Inte-

ger
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EVX 4 758 280 SP.FD efdctuf Convert Floating-Point Double-Precision to Unsigned 
Fraction

EVX 4 759 280 SP.FD efdctsf Convert Floating-Point Double-Precision to Signed 
Fraction

EVX 4 760 280 SP.FD efdctuiz Convert Floating-Point Double-Precision to Unsigned 
Integer with Round toward Zero

EVX 4 762 280 SP.FD efdctsiz Convert Floating-Point Double-Precision to Signed Inte-
ger with Round toward Zero

EVX 4 764 276 SP.FD efdtstgt Floating-Point Double-Precision Test Greater Than
EVX 4 765 277 SP.FD efdtstlt Floating-Point Double-Precision Test Less Than
EVX 4 766 277 SP.FD efdtsteq Floating-Point Double-Precision Test Equal
EVX 4 768 214 SP evlddx Vector Load Double Word into Double Word Indexed
VX 4 768 160 V vaddsbs Vector Add Signed Byte Saturate
EVX 4 769 214 SP evldd Vector Load Double Word into Double Word
EVX 4 770 215 SP evldwx Vector Load Double into Two Words Indexed
VX 4 770 179 V vminsb Vector Minimum Signed Byte
EVX 4 771 215 SP evldw Vector Load Double into Two Words
EVX 4 772 214 SP evldhx Vector Load Double into Four Halfwords Indexed
VX 4 772 188 V vsrab Vector Shift Right Algebraic Byte
EVX 4 773 214 SP evldh Vector Load Double into Four Halfwords
VC 4 774 182 V vcmpgtsb[.] Vector Compare Greater Than Signed Byte
EVX 4 776 215 SP evlhhesplatx Vector Load Halfword into Halfwords Even and Splat 

Indexed
VX 4 776 166 V vmulesb Vector Multiply Even Signed Byte
EVX 4 777 215 SP evlhhesplat Vector Load Halfword into Halfwords Even and Splat
VX 4 778 193 V vcfux Vector Convert From Unsigned Fixed-Point Word
EVX 4 780 216 SP evlhhousplatx Vector Load Halfword into Halfword Odd Unsigned and 

Splat Indexed
VX 4 780 156 V vspltisb Vector Splat Immediate Signed Byte
EVX 4 781 216 SP evlhhousplat Vector Load Halfword into Halfword Odd Unsigned and 

Splat
EVX 4 782 216 SP evlhhossplatx Vector Load Halfword into Halfword Odd Signed and 

Splat Indexed
VX 4 782 149 V vpkpx Vector Pack Pixel
EVX 4 783 216 SP evlhhossplat Vector Load Halfword into Halfword Odd Signed and 

Splat
EVX 4 784 217 SP evlwhex Vector Load Word into Two Halfwords Even Indexed
EVX 4 785 217 SP evlwhe Vector Load Word into Two Halfwords Even
EVX 4 788 218 SP evlwhoux Vector Load Word into Two Halfwords Odd Unsigned 

Indexed (zero-extended)
EVX 4 789 218 SP evlwhou Vector Load Word into Two Halfwords Odd Unsigned 

(zero-extended)
EVX 4 790 217 SP evlwhosx Vector Load Word into Two Halfwords Odd Signed 

Indexed (with sign extension)
EVX 4 791 217 SP evlwhos Vector Load Word into Two Halfwords Odd Signed (with 

sign extension)
EVX 4 792 219 SP evlwwsplatx Vector Load Word into Word and Splat Indexed
EVX 4 793 219 SP evlwwsplat Vector Load Word into Word and Splat
EVX 4 796 218 SP evlwhsplatx Vector Load Word into Two Halfwords and Splat 

Indexed
EVX 4 797 218 SP evlwhsplat Vector Load Word into Two Halfwords and Splat
EVX 4 800 249 SP evstddx Vector Store Double of Double Indexed
EVX 4 801 249 SP evstdd Vector Store Double of Double
EVX 4 802 250 SP evstdwx Vector Store Double of Two Words Indexed
EVX 4 803 250 SP evstdw Vector Store Double of Two Words
EVX 4 804 250 SP evstdhx Vector Store Double of Four Halfwords Indexed
EVX 4 805 250 SP evstdh Vector Store Double of Four Halfwords
EVX 4 816 251 SP evstwhex Vector Store Word of Two Halfwords from Even Indexed
EVX 4 817 251 SP evstwhe Vector Store Word of Two Halfwords from Even
EVX 4 820 251 SP evstwhox Vector Store Word of Two Halfwords from Odd Indexed
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EVX 4 821 251 SP evstwho Vector Store Word of Two Halfwords from Odd
EVX 4 824 251 SP evstwwex Vector Store Word of Word from Even Indexed
EVX 4 825 251 SP evstwwe Vector Store Word of Word from Even
EVX 4 828 252 SP evstwwox Vector Store Word of Word from Odd Indexed
EVX 4 829 252 SP evstwwo Vector Store Word of Word from Odd
VX 4 832 160 V vaddshs Vector Add Signed Halfword Saturate
VX 4 834 179 V vminsh Vector Minimum Signed Halfword
VX 4 836 188 V vsrah Vector Shift Right Algebraic Halfword
VC 4 838 182 V vcmpgtsh[.] Vector Compare Greater Than Signed Halfword
VX 4 840 166 V vmulesh Vector Multiply Even Signed Halfword
VX 4 842 193 V vcfsx Vector Convert From Signed Fixed-Point Word
VX 4 844 156 V vspltish Vector Splat Immediate Signed Halfword
VX 4 846 152 V vupkhpx Vector Unpack High Pixel
VX 4 896 160 V vaddsws Vector Add Signed Word Saturate
VX 4 898 179 V vminsw Vector Minimum Signed Word
VX 4 900 188 V vsraw Vector Shift Right Algebraic Word
VC 4 902 182 V vcmpgtsw[.] Vector Compare Greater Than Signed Word
VX 4 906 192 V vctuxs Vector Convert To Unsigned Fixed-Point Word Saturate
VX 4 908 156 V vspltisw Vector Splat Immediate Signed Word
VC 4 966 195 V vcmpbfp[.] Vector Compare Bounds Single-Precision
VX 4 970 192 V vctsxs Vector Convert To Signed Fixed-Point Word Saturate
VX 4 974 153 V vupklpx Vector Unpack Low Pixel
VX 4 1024 164 V vsububm Vector Subtract Unsigned Byte Modulo
VX 4 1026 176 V vavgub Vector Average Unsigned Byte
EVX 4 1027 224 SP evmhessf Vector Multiply Halfwords, Even, Signed, Saturate, 

Fractional
VX 4 1028 184 V vand Vector Logical AND
EVX 4 1031 233 SP evmhossf Vector Multiply Halfwords, Odd, Signed, Saturate, Frac-

tional
EVX 4 1032 227 SP evmheumi Vector Multiply Halfwords, Even, Unsigned, Modulo, 

Integer
EVX 4 1033 223 SP evmhesmi Vector Multiply Halfwords, Even, Signed, Modulo, Inte-

ger
VX 4 1034 191 V vmaxfp Vector Maximum Single-Precision
EVX 4 1035 222 SP evmhesmf Vector Multiply Halfwords, Even, Signed, Modulo, Frac-

tional
EVX 4 1036 235 SP evmhoumi Vector Multiply Halfwords, Odd, Unsigned, Modulo, 

Integer
VX 4 1036 158 V vslo Vector Shift Left by Octet
EVX 4 1037 231 SP evmhosmi Vector Multiply Halfwords, Odd, Signed, Modulo, Inte-

ger
EVX 4 1039 230 SP evmhosmf Vector Multiply Halfwords, Odd, Signed, Modulo, Frac-

tional
EVX 4 1059 224 SP evmhessfa Vector Multiply Halfwords, Even, Signed, Saturate, 

Fractional to Accumulator
EVX 4 1063 233 SP evmhossfa Vector Multiply Halfwords, Odd, Signed, Saturate, Frac-

tional to Accumulator
EVX 4 1064 227 SP evmheumia Vector Multiply Halfwords, Even, Unsigned, Modulo, 

Integer to Accumulator
EVX 4 1065 223 SP evmhesmia Vector Multiply Halfwords, Even, Signed, Modulo, Inte-

ger to Accumulator
EVX 4 1067 222 SP evmhesmfa Vector Multiply Halfwords, Even, Signed, Modulo, Frac-

tional to Accumulator
EVX 4 1068 235 SP evmhoumia Vector Multiply Halfwords, Odd, Unsigned, Modulo, 

Integer to Accumulator
EVX 4 1069 231 SP evmhosmia Vector Multiply Halfwords, Odd, Signed, Modulo, Inte-

ger to Accumulator
EVX 4 1071 230 SP evmhosmfa Vector Multiply Halfwords, Odd, Signed, Modulo, Frac-

tional to Accumulator
VX 4 1088 164 V vsubuhm Vector Subtract Unsigned Halfword Modulo
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VX 4 1090 176 V vavguh Vector Average Unsigned Halfword
VX 4 1092 184 V vandc Vector Logical AND with Complement
EVX 4 1095 238 SP evmwhssf Vector Multiply Word High Signed, Saturate, Fractional
EVX 4 1096 240 SP evmwlumi Vector Multiply Word Low Unsigned, Modulo, Integer
VX 4 1098 191 V vminfp Vector Minimum Single-Precision
EVX 4 1100 238 SP evmwhumi Vector Multiply Word High Unsigned, Modulo, Integer
VX 4 1100 159 V vsro Vector Shift Right by Octet
EVX 4 1101 237 SP evmwhsmi Vector Multiply Word High Signed, Modulo, Integer
EVX 4 1103 237 SP evmwhsmf Vector Multiply Word High Signed, Modulo, Fractional
EVX 4 1107 243 SP evmwssf Vector Multiply Word Signed, Saturate, Fractional
EVX 4 1112 244 SP evmwumi Vector Multiply Word Unsigned, Modulo, Integer
EVX 4 1113 242 SP evmwsmi Vector Multiply Word Signed, Modulo, Integer
EVX 4 1115 241 SP evmwsmf Vector Multiply Word Signed, Modulo, Fractional
EVX 4 1127 238 SP evmwhssfa Vector Multiply Word High Signed, Saturate, Fractional 

to Accumulator
EVX 4 1128 240 SP evmwlumia Vector Multiply Word Low Unsigned, Modulo, Integer to 

Accumulator
EVX 4 1132 238 SP evmwhumia Vector Multiply Word High Unsigned, Modulo, Integer to 

Accumulator
EVX 4 1133 237 SP evmwhsmia Vector Multiply Word High Signed, Modulo, Integer to 

Accumulator
EVX 4 1135 237 SP evmwhsmfa Vector Multiply Word High Signed, Modulo, Fractional 

to Accumulator
EVX 4 1139 243 SP evmwssfa Vector Multiply Word Signed, Saturate, Fractional to 

Accumulator
EVX 4 1144 244 SP evmwumia Vector Multiply Word Unsigned, Modulo, Integer to 

Accumulator
EVX 4 1145 242 SP evmwsmia Vector Multiply Word Signed, Modulo, Integer to Accu-

mulator
EVX 4 1147 241 SP evmwsmfa Vector Multiply Word Signed, Modulo, Fractional to 

Accumulator
VX 4 1152 164 V vsubuwm Vector Subtract Unsigned Word Modulo
VX 4 1154 176 V vavguw Vector Average Unsigned Word
VX 4 1156 184 V vor Vector Logical OR
EVX 4 1216 209 SP evaddusiaaw Vector Add Unsigned, Saturate, Integer to Accumulator 

Word
EVX 4 1217 209 SP evaddssiaaw Vector Add Signed, Saturate, Integer to Accumulator 

Word
EVX 4 1218 253 SP evsubfusiaaw Vector Subtract Unsigned, Saturate, Integer to Accu-

mulator Word
EVX 4 1219 252 SP evsubfssiaaw Vector Subtract Signed, Saturate, Integer to Accumula-

tor Word
EVX 4 1220 237 SP evmra Initialize Accumulator
VX 4 1220 184 V vxor Vector Logical XOR
EVX 4 1222 212 SP evdivws Vector Divide Word Signed
EVX 4 1223 213 SP evdivwu Vector Divide Word Unsigned
EVX 4 1224 209 SP evaddumiaaw Vector Add Unsigned, Modulo, Integer to Accumulator 

Word
EVX 4 1225 208 SP evaddsmiaaw Vector Add Signed, Modulo, Integer to Accumulator 

Word
EVX 4 1226 253 SP evsubfumiaaw Vector Subtract Unsigned, Modulo, Integer to Accumu-

lator Word
EVX 4 1227 252 SP evsubfsmiaaw Vector Subtract Signed, Modulo, Integer to Accumula-

tor Word
EVX 4 1280 228 SP evmheusiaaw Vector Multiply Halfwords, Even, Unsigned, Saturate, 

Integer and Accumulate into Words
EVX 4 1281 226 SP evmhessiaaw Vector Multiply Halfwords, Even, Signed, Saturate, Inte-

ger and Accumulate into Words
VX 4 1282 175 V vavgsb Vector Average Signed Byte
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EVX 4 1283 225 SP evmhessfaaw Vector Multiply Halfwords, Even, Signed, Saturate, 
Fractional and Accumulate into Words

EVX 4 1284 236 SP evmhousiaaw Vector Multiply Halfwords, Odd, Unsigned, Saturate, 
Integer and Accumulate into Words

VX 4 1284 184 V vnor Vector Logical NOR
EVX 4 1285 235 SP evmhossiaaw Vector Multiply Halfwords, Odd, Signed, Saturate, Inte-

ger and Accumulate into Words
EVX 4 1287 234 SP evmhossfaaw Vector Multiply Halfwords, Odd, Signed, Saturate, Frac-

tional and Accumulate into Words
EVX 4 1288 227 SP evmheumiaaw Vector Multiply Halfwords, Even, Unsigned, Modulo, 

Integer and Accumulate into Words
EVX 4 1289 223 SP evmhesmiaaw Vector Multiply Halfwords, Even, Signed, Modulo, Inte-

ger and Accumulate into Words
EVX 4 1291 222 SP evmhesmfaaw Vector Multiply Halfwords, Even, Signed, Modulo, Frac-

tional and Accumulate into Words
EVX 4 1292 236 SP evmhoumiaaw Vector Multiply Halfwords, Odd, Unsigned, Modulo, 

Integer and Accumulate into Words
EVX 4 1293 232 SP evmhosmiaaw Vector Multiply Halfwords, Odd, Signed, Modulo, Inte-

ger and Accumulate into Words
EVX 4 1295 231 SP evmhosmfaaw Vector Multiply Halfwords, Odd, Signed, Modulo, Frac-

tional and Accumulate into Words
EVX 4 1320 221 SP evmhegumiaa Vector Multiply Halfwords, Even, Guarded, Unsigned, 

Modulo, Integer and Accumulate
EVX 4 1321 221 SP evmhegsmiaa Vector Multiply Halfwords, Even, Guarded, Signed, 

Modulo, Integer and Accumulate
EVX 4 1323 220 SP evmhegsmfaa Vector Multiply Halfwords, Even, Guarded, Signed, 

Modulo, Fractional and Accumulate
EVX 4 1324 230 SP evmhogumiaa Vector Multiply Halfwords, Odd, Guarded, Unsigned, 

Modulo, Integer and Accumulate
EVX 4 1325 229 SP evmhogsmiaa Vector Multiply Halfwords, Odd, Guarded, Signed, Mod-

ulo, Integer and Accumulate
EVX 4 1327 229 SP evmhogsmfaa Vector Multiply Halfwords, Odd, Guarded, Signed, Mod-

ulo, Fractional and Accumulate
EVX 4 1344 241 SP evmwlusiaaw Vector Multiply Word Low Unsigned, Saturate, Integer 

and Accumulate into Words
EVX 4 1345 239 SP evmwlssiaaw Vector Multiply Word Low Signed, Saturate, Integer and 

Accumulate into Words
VX 4 1346 175 V vavgsh Vector Average Signed Halfword
EVX 4 1352 240 SP evmwlumiaaw Vector Multiply Word Low Unsigned, Modulo, Integer 

and Accumulate into Words
EVX 4 1353 239 SP evmwlsmiaaw Vector Multiply Word Low Signed, Modulo, Integer and 

Accumulate into Words
EVX 4 1363 243 SP evmwssfaa Vector Multiply Word Signed, Saturate, Fractional and 

Accumulate
EVX 4 1368 245 SP evmwumiaa Vector Multiply Word Unsigned, Modulo, Integer and 

Accumulate
EVX 4 1369 242 SP evmwsmiaa Vector Multiply Word Signed, Modulo, Integer and 

Accumulate
EVX 4 1371 242 SP evmwsmfaa Vector Multiply Word Signed, Modulo, Fractional and 

Accumulate
EVX 4 1408 228 SP evmheusianw Vector Multiply Halfwords, Even, Unsigned, Saturate, 

Integer and Accumulate Negative into Words
VX 4 1408 163 V vsubcuw Vector Subtract and Write Carry-Out Unsigned Word
EVX 4 1409 226 SP evmhessianw Vector Multiply Halfwords, Even, Signed, Saturate, Inte-

ger and Accumulate Negative into Words
VX 4 1410 175 V vavgsw Vector Average Signed Word
EVX 4 1411 225 SP evmhessfanw Vector Multiply Halfwords, Even, Signed, Saturate, 

Fractional and Accumulate Negative into Words
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   Version 2.04
EVX 4 1412 236 SP evmhousianw Vector Multiply Halfwords, Odd, Unsigned, Saturate, 
Integer and Accumulate Negative into Words

EVX 4 1413 235 SP evmhossianw Vector Multiply Halfwords, Odd, Signed, Saturate, Inte-
ger and Accumulate Negative into Words

EVX 4 1415 234 SP evmhossfanw Vector Multiply Halfwords, Odd, Signed, Saturate, Frac-
tional and Accumulate Negative into Words

EVX 4 1416 227 SP evmheumianw Vector Multiply Halfwords, Even, Unsigned, Modulo, 
Integer and Accumulate Negative into Words

EVX 4 1417 223 SP evmhesmianw Vector Multiply Halfwords, Even, Signed, Modulo, Inte-
ger and Accumulate Negative into Words

EVX 4 1419 222 SP evmhesmfanw Vector Multiply Halfwords, Even, Signed, Modulo, Frac-
tional and Accumulate Negative into Words

EVX 4 1420 232 SP evmhoumianw Vector Multiply Halfwords, Odd, Unsigned, Modulo, 
Integer and Accumulate Negative into Words

EVX 4 1421 231 SP evmhosmianw Vector Multiply Halfwords, Odd, Signed, Modulo, Inte-
ger and Accumulate Negative into Words

EVX 4 1423 231 SP evmhosmfanw Vector Multiply Halfwords, Odd, Signed, Modulo, Frac-
tional and Accumulate Negative into Words

EVX 4 1448 221 SP evmhegumian Vector Multiply Halfwords, Even, Guarded, Unsigned, 
Modulo, Integer and Accumulate Negative

EVX 4 1449 221 SP evmhegsmian Vector Multiply Halfwords, Even, Guarded, Signed, 
Modulo, Integer and Accumulate Negative

EVX 4 1451 220 SP evmhegsmfan Vector Multiply Halfwords, Even, Guarded, Signed, 
Modulo, Fractional and Accumulate Negative

EVX 4 1452 230 SP evmhogumian Vector Multiply Halfwords, Odd, Guarded, Unsigned, 
Modulo, Integer and Accumulate Negative

EVX 4 1453 229 SP evmhogsmian Vector Multiply Halfwords, Odd, Guarded, Signed, Mod-
ulo, Integer and Accumulate Negative

EVX 4 1455 229 SP evmhogsmfan Vector Multiply Halfwords, Odd, Guarded, Signed, Mod-
ulo, Fractional and Accumulate Negative

EVX 4 1472 241 SP evmwlusianw Vector Multiply Word Low Unsigned, Saturate, Integer 
and Accumulate Negative in Words

EVX 4 1473 239 SP evmwlssianw Vector Multiply Word Low Signed, Saturate, Integer and 
Accumulate Negative in Words

EVX 4 1480 240 SP evmwlumianw Vector Multiply Word Low Unsigned, Modulo, Integer 
and Accumulate Negative in Words

EVX 4 1481 239 SP evmwlsmianw Vector Multiply Word Low Signed, Modulo, Integer and 
Accumulate Negative in Words

EVX 4 1491 244 SP evmwssfan Vector Multiply Word Signed, Saturate, Fractional and 
Accumulate Negative

EVX 4 1496 245 SP evmwumian Vector Multiply Word Unsigned, Modulo, Integer and 
Accumulate Negative

EVX 4 1497 242 SP evmwsmian Vector Multiply Word Signed, Modulo, Integer and 
Accumulate Negative

EVX 4 1499 242 SP evmwsmfan Vector Multiply Word Signed, Modulo, Fractional and 
Accumulate Negative

VX 4 1536 165 V vsububs Vector Subtract Unsigned Byte Saturate
VX 4 1540 199 V mfvscr Move From Vector Status and Control Register
VX 4 1544 174 V vsum4ubs Vector Sum across Quarter Unsigned Byte Saturate
VX 4 1600 164 V vsubuhs Vector Subtract Unsigned Halfword Saturate
VX 4 1604 199 V mtvscr Move To Vector Status and Control Register
VX 4 1608 174 V vsum4shs Vector Sum across Quarter Signed Halfword Saturate
VX 4 1664 165 V vsubuws Vector Subtract Unsigned Word Saturate
VX 4 1672 173 V vsum2sws Vector Sum across Half Signed Word Saturate
VX 4 1792 163 V vsubsbs Vector Subtract Signed Byte Saturate
VX 4 1800 174 V vsum4sbs Vector Sum across Quarter Signed Byte Saturate
VX 4 1856 163 V vsubshs Vector Subtract Signed Halfword Saturate
VX 4 1920 163 V vsubsws Vector Subtract Signed Word Saturate
VX 4 1928 173 V vsumsws Vector Sum across Signed Word Saturate
D  7  63 B mulli Multiply Low Immediate
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D  8  SR 60 B subfic Subtract From Immediate Carrying
D 10  68 B cmpli Compare Logical Immediate
D 11 67 B cmpi Compare Immediate
D 12 SR 59 B addic Add Immediate Carrying
D 13 SR 59 B addic. Add Immediate Carrying and Record
D 14 58 B addi Add Immediate
D 15 58 B addis Add Immediate Shifted
B 16 CT 31 B bc[l][a] Branch Conditional
SC 17 35, 

404,
515

B sc System Call

I 18 31 B b[l][a] Branch
XL 19 0 34 B mcrf Move Condition Register Field
XL 19 16 CT 32 B bclr[l] Branch Conditional to Link Register
XL 19  18 P 405 S rfid Return From Interrupt Doubleword
XL 19 33 34 B crnor Condition Register NOR
XL 19 38 P 516 E rfmci Return From Machine Check Interrupt
X 19 39 516 E.ED rfdi Return From Debug Interrupt
XL 19 50 P 515 E rfi Return From Interrupt
XL 19 51 P 516 E rfci Return From Critical Interrupt
XL 19 129 34 B crandc Condition Register AND with Complement
XL 19 150 369 B isync Instruction Synchronize
XL 19 193 33 B crxor Condition Register XOR
XFX 19 198 620 E.ED dnh Debugger Notify Halt
XL 19 225 33 B crnand Condition Register NAND
XL 19 257 33 B crand Condition Register AND
XL 19 274 H 405 S hrfid Hypervisor Return From Interrupt Doubleword
XL 19 289 34 B creqv Condition Register Equivalent
XL 19 417 34 B crorc Condition Register OR with Complement
XL 19 449 33 B cror Condition Register OR
XL 19 528 CT 32 B bcctr[l] Branch Conditional to Count Register
M 20 SR 79 B rlwimi[.] Rotate Left Word Immediate then Mask Insert
M 21 SR 77 B rlwinm[.] Rotate Left Word Immediate then AND with Mask
M 23 SR 78 B rlwnm[.] Rotate Left Word then AND with Mask
D 24 71 B ori OR Immediate
D 25 72 B oris OR Immediate Shifted
D 26  72 B xori XOR Immediate
D 27  72 B xoris XOR Immediate Shifted
D 28 SR 71 B andi. AND Immediate
D 29 SR 71 B andis. AND Immediate Shifted
MD 30 0 SR 79 64 rldicl[.] Rotate Left Doubleword Immediate then Clear Left
MD 30 1 SR 80 64 rldicr[.] Rotate Left Doubleword Immediate then Clear Right
MD 30 2 SR 81 64 rldic[.] Rotate Left Doubleword Immediate then Clear
MD 30 3 SR 82 64 rldimi[.] Rotate Left Doubleword Immediate then Mask Insert
MDS 30 8 SR 81 64 rldcl[.] Rotate Left Doubleword then Clear Left
MDS 30 9 SR 82 64 rldcr[.] Rotate Left Doubleword then Clear Right
X 31 0 67 B cmp Compare
X 31 4 69 B tw Trap Word
X 31 6 148 V lvsl Load Vector for Shift Left Indexed
X 31 7 146 V lvebx Load Vector Element Byte Indexed
XO 31 8 SR 60 B subfc[o][.] Subtract From Carrying
XO 31 9 SR 65 64 mulhdu[.] Multiply High Doubleword Unsigned
XO 31 10 SR 60 B addc[o][.] Add Carrying
XO 31 11 SR 63 B mulhwu[.] Multiply High Word Unsigned
A 31 15 70 B.in isel Integer Select
XFX 31 19 89 B mfcr Move From Condition Register
XFX 31 19 90 B.in mfocrf Move From One Condition Register Field
X 31 20  370 B lwarx Load Word And Reserve Indexed
X 31 21 46 64 ldx Load Doubleword Indexed
X 31 22 359 E icbt Instruction Cache Block Touch
X 31 23 44 B lwzx Load Word and Zero Indexed
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X 31 24 SR 83 B slw[.] Shift Left Word
X 31 26 SR 74 B cntlzw[.] Count Leading Zeros Word
X 31 27 SR 85 64 sld[.] Shift Left Doubleword
X 31 28 SR 73 B and[.] AND
X 31 29 530 E.PD ldepx Load Doubleword by External Process ID Indexed
X 31 31 530 E.PD lwepx Load Word by External Process ID Indexed
X 31 32 68 B cmpl Compare Logical
X 31 38 148 V lvsr Load Vector for Shift Right Indexed
X 31 39 143 V lvehx Load Vector Element Halfword Indexed
XO 31 40 SR 59 B subf[o][.] Subtract From
X 31 53 46 64 ldux Load Doubleword with Update Indexed
X 31  54  366 B dcbst Data Cache Block Store
X 31  55 44 B lwzux Load Word and Zero with Update Indexed
X 31 58 SR 76 64 cntlzd[.] Count Leading Zeros Doubleword
X 31 60 SR 74 B andc[.] AND with Complement
X 31 62 375 WT wait Wait
X 31 63 533 E.PD dcbstep Data Cache Block Store by External PID
X 31 68 70 64 td Trap Doubleword
X 31 71 143 V lvewx Load Vector Element Word Indexed
XO 31 73 SR 65 64 mulhd[.] Multiply High Doubleword
XO 31 75 SR 63 B mulhw[.] Multiply High Word
X 31 78 287 LMV dlmzb[.] Determine Leftmost Zero Byte
X 31 83 P 417,

527
B mfmsr Move From Machine State Register

X 31 84 371 64 ldarx Load Doubleword And Reserve Indexed
X 31 86  367 B dcbf Data Cache Block Flush
X 31  87 42 B lbzx Load Byte and Zero Indexed
X 31 95 529 E.PD lbepx Load Byte by External Process ID Indexed
X 31 103 144 V lvx Load Vector Indexed
XO 31 104 SR 62 B neg[o][.] Negate
X 31 119 41 B lbzux Load Byte and Zero with Update Indexed
X 31 122 76 B.in popcntb Population Count Bytes
X 31 124 SR 74 B nor[.] NOR
X 31 127 534 E.PD dcbfep Data Cache Block Flush by External PID
X 31 131 S 528 E wrtee Write MSR External Enable
X 31 134 557 ECL dcbtstls Data Cache Block Touch for Store and Lock Set
X 31 135 146 V stvebx Store Vector Element Byte Indexed
XO 31 136 SR 61 B subfe[o][.] Subtract From Extended
XO 31 138 SR 61 B adde[o][.] Add Extended
XFX 31 144 89 B mtcrf Move To Condition Register Fields
XFX 31 144 90 B.in mtocrf Move To One Condition Register Field
X 31 146 P 527 E mtmsr Move To Machine State Register
X 31 146 P 415 S mtmsr Move To Machine State Register
X 31 149 50 64 stdx Store Doubleword Indexed
X 31 150 370 B stwcx. Store Word Conditional Indexed
X 31 151 49 B stwx Store Word Indexed
X 31 157 532 E.PD stdepx Store Doubleword by External Process ID Indexed
X 31 159 532 E.PD stwepx Store Word by External Process ID Indexed
X 31 163 S 528 E wrteei Write MSR External Enable Immediate
X 31 166 557 ECL dcbtls Data Cache Block Touch and Lock Set
X 31 167 146 V stvehx Store Vector Element Halfword Indexed
X 31 178 P 416 S mtmsrd Move To Machine State Register Doubleword
X 31 181 50 64 stdux Store Doubleword with Update Indexed
X 31 183 49 B stwux Store Word with Update Indexed
X 31 199 147 V stvewx Store Vector Element Word Indexed
XO 31 200 SR 62 B subfze[o][.] Subtract From Zero Extended
XO 31 202 SR 62 B addze[o][.] Add to Zero Extended
X 31 206 623 E.PC msgsnd Message Send
X 31 210 32 P 448 S mtsr Move To Segment Register
X 31 214 371 64 stdcx. Store Doubleword Conditional Indexed
X 31 215 47 B stbx Store Byte Indexed
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X 31 223 531 E.PD stbepx Store Byte by External Process ID Indexed
X 31 230 559 ECL icblc Instruction Cache Block Lock Clear
X 31 231 144 V stvx Store Vector Indexed
XO 31 232 SR 61 B subfme[o][.] Subtract From Minus One Extended
XO 31 233 SR 65 64 mulld[o][.] Multiply Low Doubleword
XO 31 234 SR 61 B addme[o][.] Add to Minus One Extended
XO 31 235 SR 63 B mullw[o][.] Multiply Low Word
X 31 238 623 E.PC msgclr Message Clear
X 31 242 32 P 448 S mtsrin Move To Segment Register Indirect
X 31 246  365 B dcbtst Data Cache Block Touch for Store
X 31 247 47 B stbux Store Byte with Update Indexed
X 31 255 535 E.PD dcbtstep Data Cache Block Touch for Store by External PID
X 31 259 P 527 E mfdcrx Move From Device Control Register Indexed 
X 31 263 539 E.PD lvepxl Load Vector by External Process ID Indexed LRU
XO 31 266 SR 59 B add[o][.] Add
X 31 274 64 H 452 S tlbiel TLB Invalidate Entry Local
X 31 275 91 E mfapidi Move From APID Indirect
X 31 278  360 B dcbt Data Cache Block Touch
X 31 279 42 B lhzx Load Halfword and Zero Indexed
X 31 284 SR  74 B eqv[.] Equivalent
EVX 31 285 538 E.PD evlddepx Vector Load Doubleword into Doubleword by External 

Process ID Indexed
X 31 287 529 E.PD lhepx Load Halfword by External Process ID Indexed
X 31 291 91 E mfdcrux Move From Device Control Register User-mode 

Indexed
X 31 295 539 E.PD lvepx Load Vector by External Process ID Indexed
X 31 306 64 H 450 S tlbie TLB Invalidate Entry
X 31 310 382 EC eciwx External Control In Word Indexed
X 31 311 42 B lhzux Load Halfword and Zero with Update Indexed
X 31 316 SR 73 B xor[.] XOR
X 31 319 533 E.PD dcbtep Data Cache Block Touch by External PID
XFX 31 323 S 527 E mfdcr Move From Device Control Register
X 31 326 632 E.CD dcread Data Cache Read [Alternative Encoding]
XFX 31 334 658 E.PM mfpmr Move From Performance Monitor Register
XFX 31 339 O 88,3

78
B mfspr Move From Special Purpose Register

X 31 341 45 64 lwax Load Word Algebraic Indexed
X 31 343 43 B lhax Load Halfword Algebraic Indexed
X 31 359 144 V lvxl Load Vector Indexed Last
X 31 370 P 453 S tlbia TLB Invalidate All
XFX 31 371 378 S mftb Move From Time Base
X 31 373 45 64 lwaux Load Word Algebraic with Update Indexed
X 31 375 43 B lhaux Load Halfword Algebraic with Update Indexed
X 31 387 P 526 E mtdcrx Move To Device Control Register Indexed
X 31 390 558 ECL dcblc Data Cache Block Lock Clear
X 31 402 P 445 S slbmte SLB Move To Entry
X 31 407 48 B sthx Store Halfword Indexed
X 31 412 SR 74 B orc[.] OR with Complement
XS 31 413 SR 85 64 sradi[.] Shift Right Algebraic Doubleword Immediate
EVX 31 413 538 E.PD evstddepx Vector Store Doubleword into Doubleword by External 

Process ID Indexed
X 31 415 531 E.PD sthepx Store Halfword by External Process ID Indexed
X 31 419 91 E mtdcrux Move To Device Control Register User-mode Indexed
X 31 434 P 443 S slbie SLB Invalidate Entry
X 31 438 382 EC ecowx External Control Out Word Indexed
X 31 439 48 B sthux Store Halfword with Update Indexed
X 31 444 SR 73 B or[.] OR
XFX 31 451 P 526 E mtdcr Move To Device Control Register
X 31 454 629 E.CI dci Data Cache Invalidate
XO 31 457 SR 66 64 divdu[o][.] Divide Doubleword Unsigned
XO 31 459 SR 64 B divwu[o][.] Divide Word Unsigned
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XFX 31 462 658 E.PM mtpmr Move To Performance Monitor Register
XFX 31 467 O 87 B mtspr Move To Special Purpose Register
X 31 470 P 554 E dcbi Data Cache Block Invalidate
X 31 476 SR 73 B nand[.] NAND
X 31 486 632 E.CD dcread Data Cache Read
X 31 486 558 ECL icbtls Instruction Cache Block Touch and Lock Set
X 31 487 147 V stvxl Store Vector Indexed Last
XO 31 489 SR 66 64 divd[o][.] Divide Doubleword
XO 31 491 SR 64 B divw[o][.] Divide Word
X 31 498 P 444 S slbia SLB Invalidate All
X 31 512 91 B mcrxr Move to Condition Register from XER
X 31 533 55 MA lswx Load String Word Indexed
X 31 534 51 B lwbrx Load Word Byte-Reverse Indexed
X 31 535 115 FP lfsx Load Floating-Point Single Indexed
X 31 536 SR 83 B srw[.] Shift Right Word
X 31 539 SR 85 64 srd[.] Shift Right Doubleword
X 31 566 H 453,

561,
651

B tlbsync TLB Synchronize

X 31 567 115 FP lfsux Load Floating-Point Single with Update Indexed
X 31 595 32 P 449 S mfsr Move From Segment Register
X 31 597 55 MA lswi Load String Word Immediate
X 31 598 372 B sync Synchronize
X 31 599 113 FP lfdx Load Floating-Point Double Indexed
X 31 607 537 E.PD lfdepx Load Floating-Point Double by External Process ID 

Indexed
X 31 631 113 FP lfdux Load Floating-Point Double with Update Indexed
X 31 659 32 P 449 S mfsrin Move From Segment Register Indirect
X 31 661 56 MA stswx Store String Word Indexed
X 31 662 51 B stwbrx Store Word Byte-Reverse Indexed
X 31 663 115 FP stfsx Store Floating-Point Single Indexed
X 31 695 115 FP stfsux Store Floating-Point Single with Update Indexed
X 31 725 56 MA stswi Store String Word Immediate
X 31 727 116 FP stfdx Store Floating-Point Double Indexed
X 31 735 537 E.PD stfdepx Store Floating-Point Double by External Process ID 

Indexed
X 31 758 360 E dcba Data Cache Block Allocate
X 31 759 116 FP stfdux Store Floating-Point Double with Update Indexed
X 31 775 540 E.PD stvepxl Store Vector by External Process ID Indexed LRU
X 31 786 P 560,

649
E tlbivax TLB Invalidate Virtual Address Indexed

X 31 790 51 B lhbrx Load Halfword Byte-Reverse Indexed
X 31 792 SR 84 B sraw[.] Shift Right Algebraic Word
X 31 794 SR 85 64 srad[.] Shift Right Algebraic Doubleword
X 31 807 540 E.PD stvepx Store Vector by External Process ID Indexed
X 31 824 SR 84 B srawi[.] Shift Right Algebraic Word Immediate
X 31 851 P 446 S slbmfev SLB Move From Entry VSID
X 31 854 374 E mbar Memory Barrier
X 31 854 374 S eieio Enforce In-order Execution of I/O
X 31 914 P 561,

650
E tlbsx TLB Search Indexed

X 31 915 P 446 S slbmfee SLB Move From Entry ESID
X 31 918 51 B sthbrx Store Halfword Byte-Reverse Indexed
X 31 922 SR  74 B extsh[.] Extend Sign Halfword
X 31 946 P 560,

650
E tlbre TLB Read Entry

X 31 954 SR  74 B extsb[.] Extend Sign Byte
X 31 966 629 E.CI ici Instruction Cache Invalidate
X 31 978 P 562,

651
E tlbwe TLB Write Entry

X 31 982 359 B icbi Instruction Cache Block Invalidate
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X 31 983 117 FP stfiwx Store Floating-Point as Integer Word Indexed
X 31 986 SR 76 64 extsw[.] Extend Sign Word
X 31 991 536 E.PD icbiep Instruction Cache Block Invalidate by External PID
X 31 998 633 E.CD icread Instruction Cache Read
X 31 1014  366 B dcbz Data Cache Block set to Zero
X 31 1023 536 E.PD dcbzep Data Cache Block set to Zero by External PID
D 32  44 B lwz Load Word and Zero
D 33  44 B lwzu Load Word and Zero with Update
D 34  41 B lbz Load Byte and Zero
D 35  41 B lbzu Load Byte and Zero with Update
D 36  49 B stw Store Word
D 37 49 B stwu Store Word with Update
D 38 47 B stb Store Byte
D 39 47 B stbu Store Byte with Update
D 40  42 B lhz Load Halfword and Zero
D 41  42 B lhzu Load Halfword and Zero with Update
D 42  43 B lha Load Halfword Algebraic
D 43  43 B lhau Load Halfword Algebraic with Update
D 44  48 B sth Store Halfword
D 45  48 B sthu Store Halfword with Update
D 46  52 B lmw Load Multiple Word
D 47  53 B stmw Store Multiple Word
D 48  115 FP lfs Load Floating-Point Single
D 49  115 FP lfsu Load Floating-Point Single with Update
D 50  113 FP lfd Load Floating-Point Double
D 51  113 FP lfdu Load Floating-Point Double with Update
D 52  115 FP stfs Store Floating-Point Single
D 53  115 FP stfsu Store Floating-Point Single with Update
D 54  116 FP stfd Store Floating-Point Double
D 55  116 FP stfdu Store Floating-Point Double with Update
DQ 56  P 410 LSQ lq Load Quadword
DS 58 0 46 64 ld Load Doubleword
DS 58 1 46 64 ldu Load Doubleword with Update
DS 58 2 45 64 lwa Load Word Algebraic
A 59 18 120 FP[R] fdivs[.] Floating Divide Single
A 59 20 119 FP[R] fsubs[.] Floating Subtract Single
A 59 21 119 FP[R] fadds[.] Floating Add Single
A 59 22 121 FP[R] fsqrts[.] Floating Square Root Single
A 59 24 121 FP[R] fres[.] Floating Reciprocal Estimate Single
A 59 25 120 FP[R] fmuls[.] Floating Multiply Single
A 59 26 122 FP[R].in frsqrtes[.] Floating Reciprocal Square Root Estimate Single
A 59 28 123 FP[R] fmsubs[.] Floating Multiply-Subtract Single
A 59 29 123 FP[R] fmadds[.] Floating Multiply-Add Single
A 59 30 124 FP[R] fnmsubs[.] Floating Negative Multiply-Subtract Single
A 59 31 124 FP[R] fnmadds[.] Floating Negative Multiply-Add Single
DS 62 0 50 64 std Store Doubleword
DS 62 1 50 64 stdu Store Doubleword with Update
DS 62 2 P 410 LSQ stq Store Quadword
X 63 0 129 FP fcmpu Floating Compare Unordered
X 63 12 125 FP[R].in frsp[.] Floating Round to Single-Precision
X 63 14 126 FP[R] fctiw[.] Floating Convert To Integer Word
X 63 15 127 FP[R] fctiwz[.] Floating Convert To Integer Word with round toward 

Zero
A 63 18 120 FP[R] fdiv[.] Floating Divide
A 63 20 119 FP[R] fsub[.] Floating Subtract
A 63 21 119 FP[R] fadd[.] Floating Add
A 63 22 121 FP[R] fsqrt[.] Floating Square Root
A 63 23 130 FP[R] fsel[.] Floating Select
A 63 24 121 FP[R] fre[.] Floating Reciprocal Estimate
A 63 25 120 FP[R] fmul[.] Floating Multiply
A 63 26 122 FP[R].in frsqrte[.] Floating Reciprocal Square Root Estimate
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1 See the key to the mode dependency and privilege columns on page 839 and the key to the category column in 
Section 1.3.5 of Book I.

A 63 28 123 FP[R] fmsub[.] Floating Multiply-Subtract
A 63 29 123 FP[R] fmadd[.] Floating Multiply-Add
A 63 30 124 FP[R] fnmsub[.] Floating Negative Multiply-Subtract
A 63 31 124 FP[R] fnmadd[.] Floating Negative Multiply-Add
X 63 32 129 FP fcmpo Floating Compare Ordered
X 63 38 132 FP[R] mtfsb1[.] Move To FPSCR Bit 1
X 63 40 118 FP[R] fneg[.] Floating Negate
X 63 64 131 FP mcrfs Move to Condition Register from FPSCR
X 63 70 132 FP[R] mtfsb0[.] Move To FPSCR Bit 0
X 63 72 118 FP[R] fmr[.] Floating Move Register
X 63 134 131 FP[R] mtfsfi[.] Move To FPSCR Field Immediate
X 63 136 118 FP[R] fnabs[.] Floating Negative Absolute Value
X 63 264 118 FP[R] fabs[.] Floating Absolute Value
X 63 392 128 FP[R].in frin[.] Floating Round to Integer Nearest
X 63 424 128 FP[R].in friz[.] Floating Round to Integer Toward Zero
X 63 456 128 FP[R].in frip[.] Floating Round to Integer Plus
X 63 488 128 FP[R] frim[.] Floating Round to Integer Minus
X 63 583 131 FP[R] mffs[.] Move From FPSCR
XFL 63 711 131 FP[R] mtfsf[.] Move To FPSCR Fields
X 63 814 125 FP[R] fctid[.] Floating Convert To Integer Doubleword
X 63 815 126 FP[R] fctidz[.] Floating Convert To Integer Doubleword with round 

toward Zero
X 63 846 127 FP[R] fcfid[.] Floating Convert From Integer Doubleword
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Appendix I.  Power ISA Instruction Set Sorted by 
Mnemonic

This appendix lists all the instructions in the Power ISA, in order by mnemonic.
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XO 31 266 SR 59 B add[o][.] Add
XO 31 10 SR 60 B addc[o][.] Add Carrying
XO 31 138 SR 61 B adde[o][.] Add Extended
D 14 58 B addi Add Immediate
D 12 SR 59 B addic Add Immediate Carrying
D 13 SR 59 B addic. Add Immediate Carrying and Record
D 15 58 B addis Add Immediate Shifted
XO 31 234 SR 61 B addme[o][.] Add to Minus One Extended
XO 31 202 SR 62 B addze[o][.] Add to Zero Extended
X 31 28 SR 73 B and[.] AND
X 31 60 SR 74 B andc[.] AND with Complement
D 28 SR 71 B andi. AND Immediate
D 29 SR 71 B andis. AND Immediate Shifted
I 18 31 B b[l][a] Branch
B 16 CT 31 B bc[l][a] Branch Conditional
XL 19 528 CT 32 B bcctr[l] Branch Conditional to Count Register
XL 19 16 CT 32 B bclr[l] Branch Conditional to Link Register
EVX 4 527 208 SP brinc Bit Reversed Increment
X 31 0 67 B cmp Compare
D 11 67 B cmpi Compare Immediate
X 31 32 68 B cmpl Compare Logical
D 10  68 B cmpli Compare Logical Immediate
X 31 58 SR 76 64 cntlzd[.] Count Leading Zeros Doubleword
X 31 26 SR 74 B cntlzw[.] Count Leading Zeros Word
XL 19 257 33 B crand Condition Register AND
XL 19 129 34 B crandc Condition Register AND with Complement
XL 19 289 34 B creqv Condition Register Equivalent
XL 19 225 33 B crnand Condition Register NAND
XL 19 33 34 B crnor Condition Register NOR
XL 19 449 33 B cror Condition Register OR
XL 19 417 34 B crorc Condition Register OR with Complement
XL 19 193 33 B crxor Condition Register XOR
X 31 758 360 E dcba Data Cache Block Allocate
X 31 86  367 B dcbf Data Cache Block Flush
X 31 127 534 E.PD dcbfep Data Cache Block Flush by External PID
X 31 470 P 554 E dcbi Data Cache Block Invalidate
X 31 390 558 ECL dcblc Data Cache Block Lock Clear
X 31  54  366 B dcbst Data Cache Block Store
X 31 63 533 E.PD dcbstep Data Cache Block Store by External PID
X 31 278  360 B dcbt Data Cache Block Touch
X 31 319 533 E.PD dcbtep Data Cache Block Touch by External PID
X 31 166 557 ECL dcbtls Data Cache Block Touch and Lock Set
X 31 246  365 B dcbtst Data Cache Block Touch for Store
X 31 255 535 E.PD dcbtstep Data Cache Block Touch for Store by External PID
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X 31 134 557 ECL dcbtstls Data Cache Block Touch for Store and Lock Set
X 31 1014  366 B dcbz Data Cache Block set to Zero
X 31 1023 536 E.PD dcbzep Data Cache Block set to Zero by External PID
X 31 454 629 E.CI dci Data Cache Invalidate
X 31 326 632 E.CD dcread Data Cache Read [Alternative Encoding]
X 31 486 632 E.CD dcread Data Cache Read
XO 31 489 SR 66 64 divd[o][.] Divide Doubleword
XO 31 457 SR 66 64 divdu[o][.] Divide Doubleword Unsigned
XO 31 491 SR 64 B divw[o][.] Divide Word
XO 31 459 SR 64 B divwu[o][.] Divide Word Unsigned
X 31 78 287 LMV dlmzb[.] Determine Leftmost Zero Byte
XFX 19 198 620 E.ED dnh Debugger Notify Halt
X 31 310 382 EC eciwx External Control In Word Indexed
X 31 438 382 EC ecowx External Control Out Word Indexed
EVX 4 740 274 SP.FD efdabs Floating-Point Double-Precision Absolute Value
EVX 4 736 275 SP.FD efdadd Floating-Point Double-Precision Add
EVX 4 751 280 SP.FD efdcfs Floating-Point Double-Precision Convert from Single-

Precision
EVX 4 755 278 SP.FD efdcfsf Convert Floating-Point Double-Precision from Signed 

Fraction
EVX 4 753 277 SP.FD efdcfsi Convert Floating-Point Double-Precision from Signed 

Integer
EVX 4 739 278 SP.FD efdcfsid Convert Floating-Point Double-Precision from Signed 

Integer Doubleword
EVX 4 754 278 SP.FD efdcfuf Convert Floating-Point Double-Precision from Unsigned 

Fraction
EVX 4 752 277 SP.FD efdcfui Convert Floating-Point Double-Precision from Unsigned 

Integer
EVX 4 738 278 SP.FD efdcfuid Convert Floating-Point Double-Precision from Unsigned 

Integer Doubleword
EVX 4 750 276 SP.FD efdcmpeq Floating-Point Double-Precision Compare Equal
EVX 4 748 276 SP.FD efdcmpgt Floating-Point Double-Precision Compare Greater 

Than
EVX 4 749 276 SP.FD efdcmplt Floating-Point Double-Precision Compare Less Than
EVX 4 759 280 SP.FD efdctsf Convert Floating-Point Double-Precision to Signed 

Fraction
EVX 4 757 278 SP.FD efdctsi Convert Floating-Point Double-Precision to Signed Inte-

ger
EVX 4 747 279 SP.FD efdctsidz Convert Floating-Point Double-Precision to Signed Inte-

ger Doubleword with Round toward Zero
EVX 4 762 280 SP.FD efdctsiz Convert Floating-Point Double-Precision to Signed Inte-

ger with Round toward Zero
EVX 4 758 280 SP.FD efdctuf Convert Floating-Point Double-Precision to Unsigned 

Fraction
EVX 4 756 278 SP.FD efdctui Convert Floating-Point Double-Precision to Unsigned 

Integer
EVX 4 746 279 SP.FD efdctuidz Convert Floating-Point Double-Precision to Unsigned 

Integer Doubleword with Round toward Zero
EVX 4 760 280 SP.FD efdctuiz Convert Floating-Point Double-Precision to Unsigned 

Integer with Round toward Zero
EVX 4 745 275 SP.FD efddiv Floating-Point Double-Precision Divide
EVX 4 744 275 SP.FD efdmul Floating-Point Double-Precision Multiply
EVX 4 741 274 SP.FD efdnabs Floating-Point Double-Precision Negative Absolute 

Value
EVX 4 742 274 SP.FD efdneg Floating-Point Double-Precision Negate
EVX 4 737 275 SP.FD efdsub Floating-Point Double-Precision Subtract
EVX 4 766 277 SP.FD efdtsteq Floating-Point Double-Precision Test Equal
EVX 4 764 276 SP.FD efdtstgt Floating-Point Double-Precision Test Greater Than
EVX 4 765 277 SP.FD efdtstlt Floating-Point Double-Precision Test Less Than
EVX 4 708 267 SP.FS efsabs Floating-Point Single-Precision Absolute Value
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EVX 4 704 268 SP.FS efsadd Floating-Point Single-Precision Add
EVX 4 719 281 SP.FD efscfd Floating-Point Single-Precision Convert from Double-

Precision
EVX 4 723 272 SP.FS efscfsf Convert Floating-Point Single-Precision from Signed 

Fraction
EVX 4 721 272 SP.FS efscfsi Convert Floating-Point Single-Precision from Signed 

Integer
EVX 4 722 272 SP.FS efscfuf Convert Floating-Point Single-Precision from Unsigned 

Fraction
EVX 4 720 272 SP.FS efscfui Convert Floating-Point Single-Precision from Unsigned 

Integer
EVX 4 718 270 SP.FS efscmpeq Floating-Point Single-Precision Compare Equal
EVX 4 716 269 SP.FS efscmpgt Floating-Point Single-Precision Compare Greater Than
EVX 4 717 269 SP.FS efscmplt Floating-Point Single-Precision Compare Less Than
EVX 4 727 273 SP.FS efsctsf Convert Floating-Point Single-Precision to Signed Frac-

tion
EVX 4 725 272 SP.FS efsctsi Convert Floating-Point Single-Precision to Signed Inte-

ger
EVX 4 730 273 SP.FS efsctsiz Convert Floating-Point Single-Precision to Signed Inte-

ger with Round toward Zero
EVX 4 726 273 SP.FS efsctuf Convert Floating-Point Single-Precision to Unsigned 

Fraction
EVX 4 724 272 SP.FS efsctui Convert Floating-Point Single-Precision to Unsigned 

Integer
EVX 4 728 273 SP.FS efsctuiz Convert Floating-Point Single-Precision to Unsigned 

Integer with Round toward Zero
EVX 4 713 268 SP.FS efsdiv Floating-Point Single-Precision Divide
EVX 4 712 268 SP.FS efsmul Floating-Point Single-Precision Multiply
EVX 4 709 267 SP.FS efsnabs Floating-Point Single-Precision Negative Absolute 

Value
EVX 4 710 267 SP.FS efsneg Floating-Point Single-Precision Negate
EVX 4 705 268 SP.FS efssub Floating-Point Single-Precision Subtract
EVX 4 734 271 SP.FS efststeq Floating-Point Single-Precision Test Equal
EVX 4 732 270 SP.FS efststgt Floating-Point Single-Precision Test Greater Than
EVX 4 733 271 SP.FS efststlt Floating-Point Single-Precision Test Less Than
X 31 854 374 S eieio Enforce In-order Execution of I/O
X 31 284 SR  74 B eqv[.] Equivalent
EVX 4 520 208 SP evabs Vector Absolute Value
EVX 4 514 208 SP evaddiw Vector Add Immediate Word
EVX 4 1225 208 SP evaddsmiaaw Vector Add Signed, Modulo, Integer to Accumulator 

Word
EVX 4 1217 209 SP evaddssiaaw Vector Add Signed, Saturate, Integer to Accumulator 

Word
EVX 4 1224 209 SP evaddumiaaw Vector Add Unsigned, Modulo, Integer to Accumulator 

Word
EVX 4 1216 209 SP evaddusiaaw Vector Add Unsigned, Saturate, Integer to Accumulator 

Word
EVX 4 512 209 SP evaddw Vector Add Word
EVX 4 529 210 SP evand Vector AND
EVX 4 530 210 SP evandc Vector AND with Complement
EVX 4 564 210 SP evcmpeq Vector Compare Equal
EVX 4 561 210 SP evcmpgts Vector Compare Greater Than Signed
EVX 4 560 211 SP evcmpgtu Vector Compare Greater Than Unsigned
EVX 4 563 211 SP evcmplts Vector Compare Less Than Signed
EVX 4 562 211 SP evcmpltu Vector Compare Less Than Unsigned
EVX 4 526 212 SP evcntlsw Vector Count Leading Signed Bits Word
EVX 4 525 212 SP evcntlzw Vector Count Leading Zeros Word
EVX 4 1222 212 SP evdivws Vector Divide Word Signed
EVX 4 1223 213 SP evdivwu Vector Divide Word Unsigned
EVX 4 537 213 SP eveqv Vector Equivalent
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EVX 4 522 213 SP evextsb Vector Extend Sign Byte
EVX 4 523 213 SP evextsh Vector Extend Sign Halfword
EVX 4 644 259 SP.FV evfsabs Vector Floating-Point Single-Precision Absolute Value
EVX 4 640 260 SP.FV evfsadd Vector Floating-Point Single-Precision Add
EVX 4 659 264 SP.FV evfscfsf Vector Convert Floating-Point Single-Precision from 

Signed Fraction
EVX 4 657 264 SP.FV evfscfsi Vector Convert Floating-Point Single-Precision from 

Signed Integer
EVX 4 658 264 SP.FV evfscfuf Vector Convert Floating-Point Single-Precision from 

Unsigned Fraction
EVX 4 656 264 SP.FV evfscfui Vector Convert Floating-Point Single-Precision from 

Unsigned Integer
EVX 4 654 262 SP.FV evfscmpeq Vector Floating-Point Single-Precision Compare Equal
EVX 4 652 261 SP.FV evfscmpgt Vector Floating-Point Single-Precision Compare 

Greater Than
EVX 4 653 261 SP.FV evfscmplt Vector Floating-Point Single-Precision Compare Less 

Than
EVX 4 663 266 SP.FV evfsctsf Vector Convert Floating-Point Single-Precision to 

Signed Fraction
EVX 4 661 265 SP.FV evfsctsi Vector Convert Floating-Point Single-Precision to 

Signed Integer
EVX 4 666 265 SP.FV evfsctsiz Vector Convert Floating-Point Single-Precision to 

Signed Integer with Round toward Zero
EVX 4 662 266 SP.FV evfsctuf Vector Convert Floating-Point Single-Precision to 

Unsigned Fraction
EVX 4 660 265 SP.FV evfsctui Vector Convert Floating-Point Single-Precision to 

Unsigned Integer
EVX 4 664 265 SP.FV evfsctuiz Vector Convert Floating-Point Single-Precision to 

Unsigned Integer with Round toward Zero
EVX 4 649 260 SP.FV evfsdiv Vector Floating-Point Single-Precision Divide
EVX 4 648 260 SP.FV evfsmul Vector Floating-Point Single-Precision Multiply
EVX 4 645 259 SP.FV evfsnabs Vector Floating-Point Single-Precision Negative Abso-

lute Value
EVX 4 646 259 SP.FV evfsneg Vector Floating-Point Single-Precision Negate
EVX 4 641 260 SP.FV evfssub Vector Floating-Point Single-Precision Subtract
EVX 4 670 263 SP.FV evfststeq Vector Floating-Point Single-Precision Test Equal
EVX 4 668 262 SP.FV evfststgt Vector Floating-Point Single-Precision Test Greater 

Than
EVX 4 669 263 SP.FV evfststlt Vector Floating-Point Single-Precision Test Less Than
EVX 4 769 214 SP evldd Vector Load Double Word into Double Word
EVX 31 285 538 E.PD evlddepx Vector Load Doubleword into Doubleword by External 

Process ID Indexed
EVX 4 768 214 SP evlddx Vector Load Double Word into Double Word Indexed
EVX 4 773 214 SP evldh Vector Load Double into Four Halfwords
EVX 4 772 214 SP evldhx Vector Load Double into Four Halfwords Indexed
EVX 4 771 215 SP evldw Vector Load Double into Two Words
EVX 4 770 215 SP evldwx Vector Load Double into Two Words Indexed
EVX 4 777 215 SP evlhhesplat Vector Load Halfword into Halfwords Even and Splat
EVX 4 776 215 SP evlhhesplatx Vector Load Halfword into Halfwords Even and Splat 

Indexed
EVX 4 783 216 SP evlhhossplat Vector Load Halfword into Halfword Odd Signed and 

Splat
EVX 4 782 216 SP evlhhossplatx Vector Load Halfword into Halfword Odd Signed and 

Splat Indexed
EVX 4 781 216 SP evlhhousplat Vector Load Halfword into Halfword Odd Unsigned and 

Splat
EVX 4 780 216 SP evlhhousplatx Vector Load Halfword into Halfword Odd Unsigned and 

Splat Indexed
EVX 4 785 217 SP evlwhe Vector Load Word into Two Halfwords Even
EVX 4 784 217 SP evlwhex Vector Load Word into Two Halfwords Even Indexed
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EVX 4 791 217 SP evlwhos Vector Load Word into Two Halfwords Odd Signed (with 
sign extension)

EVX 4 790 217 SP evlwhosx Vector Load Word into Two Halfwords Odd Signed 
Indexed (with sign extension)

EVX 4 789 218 SP evlwhou Vector Load Word into Two Halfwords Odd Unsigned 
(zero-extended)

EVX 4 788 218 SP evlwhoux Vector Load Word into Two Halfwords Odd Unsigned 
Indexed (zero-extended)

EVX 4 797 218 SP evlwhsplat Vector Load Word into Two Halfwords and Splat
EVX 4 796 218 SP evlwhsplatx Vector Load Word into Two Halfwords and Splat 

Indexed
EVX 4 793 219 SP evlwwsplat Vector Load Word into Word and Splat
EVX 4 792 219 SP evlwwsplatx Vector Load Word into Word and Splat Indexed
EVX 4 556 219 SP evmergehi Vector Merge High
EVX 4 558 220 SP evmergehilo Vector Merge High/Low
EVX 4 557 219 SP evmergelo Vector Merge Low
EVX 4 559 220 SP evmergelohi Vector Merge Low/High
EVX 4 1323 220 SP evmhegsmfaa Vector Multiply Halfwords, Even, Guarded, Signed, 

Modulo, Fractional and Accumulate
EVX 4 1451 220 SP evmhegsmfan Vector Multiply Halfwords, Even, Guarded, Signed, 

Modulo, Fractional and Accumulate Negative
EVX 4 1321 221 SP evmhegsmiaa Vector Multiply Halfwords, Even, Guarded, Signed, 

Modulo, Integer and Accumulate
EVX 4 1449 221 SP evmhegsmian Vector Multiply Halfwords, Even, Guarded, Signed, 

Modulo, Integer and Accumulate Negative
EVX 4 1320 221 SP evmhegumiaa Vector Multiply Halfwords, Even, Guarded, Unsigned, 

Modulo, Integer and Accumulate
EVX 4 1448 221 SP evmhegumian Vector Multiply Halfwords, Even, Guarded, Unsigned, 

Modulo, Integer and Accumulate Negative
EVX 4 1035 222 SP evmhesmf Vector Multiply Halfwords, Even, Signed, Modulo, Frac-

tional
EVX 4 1067 222 SP evmhesmfa Vector Multiply Halfwords, Even, Signed, Modulo, Frac-

tional to Accumulator
EVX 4 1291 222 SP evmhesmfaaw Vector Multiply Halfwords, Even, Signed, Modulo, Frac-

tional and Accumulate into Words
EVX 4 1419 222 SP evmhesmfanw Vector Multiply Halfwords, Even, Signed, Modulo, Frac-

tional and Accumulate Negative into Words
EVX 4 1033 223 SP evmhesmi Vector Multiply Halfwords, Even, Signed, Modulo, Inte-

ger
EVX 4 1065 223 SP evmhesmia Vector Multiply Halfwords, Even, Signed, Modulo, Inte-

ger to Accumulator
EVX 4 1289 223 SP evmhesmiaaw Vector Multiply Halfwords, Even, Signed, Modulo, Inte-

ger and Accumulate into Words
EVX 4 1417 223 SP evmhesmianw Vector Multiply Halfwords, Even, Signed, Modulo, Inte-

ger and Accumulate Negative into Words
EVX 4 1027 224 SP evmhessf Vector Multiply Halfwords, Even, Signed, Saturate, 

Fractional
EVX 4 1059 224 SP evmhessfa Vector Multiply Halfwords, Even, Signed, Saturate, 

Fractional to Accumulator
EVX 4 1283 225 SP evmhessfaaw Vector Multiply Halfwords, Even, Signed, Saturate, 

Fractional and Accumulate into Words
EVX 4 1411 225 SP evmhessfanw Vector Multiply Halfwords, Even, Signed, Saturate, 

Fractional and Accumulate Negative into Words
EVX 4 1281 226 SP evmhessiaaw Vector Multiply Halfwords, Even, Signed, Saturate, Inte-

ger and Accumulate into Words
EVX 4 1409 226 SP evmhessianw Vector Multiply Halfwords, Even, Signed, Saturate, Inte-

ger and Accumulate Negative into Words
EVX 4 1032 227 SP evmheumi Vector Multiply Halfwords, Even, Unsigned, Modulo, 

Integer
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EVX 4 1064 227 SP evmheumia Vector Multiply Halfwords, Even, Unsigned, Modulo, 
Integer to Accumulator

EVX 4 1288 227 SP evmheumiaaw Vector Multiply Halfwords, Even, Unsigned, Modulo, 
Integer and Accumulate into Words

EVX 4 1416 227 SP evmheumianw Vector Multiply Halfwords, Even, Unsigned, Modulo, 
Integer and Accumulate Negative into Words

EVX 4 1280 228 SP evmheusiaaw Vector Multiply Halfwords, Even, Unsigned, Saturate, 
Integer and Accumulate into Words

EVX 4 1408 228 SP evmheusianw Vector Multiply Halfwords, Even, Unsigned, Saturate, 
Integer and Accumulate Negative into Words

EVX 4 1327 229 SP evmhogsmfaa Vector Multiply Halfwords, Odd, Guarded, Signed, Mod-
ulo, Fractional and Accumulate

EVX 4 1455 229 SP evmhogsmfan Vector Multiply Halfwords, Odd, Guarded, Signed, Mod-
ulo, Fractional and Accumulate Negative

EVX 4 1325 229 SP evmhogsmiaa Vector Multiply Halfwords, Odd, Guarded, Signed, Mod-
ulo, Integer and Accumulate

EVX 4 1453 229 SP evmhogsmian Vector Multiply Halfwords, Odd, Guarded, Signed, Mod-
ulo, Integer and Accumulate Negative

EVX 4 1324 230 SP evmhogumiaa Vector Multiply Halfwords, Odd, Guarded, Unsigned, 
Modulo, Integer and Accumulate

EVX 4 1452 230 SP evmhogumian Vector Multiply Halfwords, Odd, Guarded, Unsigned, 
Modulo, Integer and Accumulate Negative

EVX 4 1039 230 SP evmhosmf Vector Multiply Halfwords, Odd, Signed, Modulo, Frac-
tional

EVX 4 1071 230 SP evmhosmfa Vector Multiply Halfwords, Odd, Signed, Modulo, Frac-
tional to Accumulator

EVX 4 1295 231 SP evmhosmfaaw Vector Multiply Halfwords, Odd, Signed, Modulo, Frac-
tional and Accumulate into Words

EVX 4 1423 231 SP evmhosmfanw Vector Multiply Halfwords, Odd, Signed, Modulo, Frac-
tional and Accumulate Negative into Words

EVX 4 1037 231 SP evmhosmi Vector Multiply Halfwords, Odd, Signed, Modulo, Inte-
ger

EVX 4 1069 231 SP evmhosmia Vector Multiply Halfwords, Odd, Signed, Modulo, Inte-
ger to Accumulator

EVX 4 1293 232 SP evmhosmiaaw Vector Multiply Halfwords, Odd, Signed, Modulo, Inte-
ger and Accumulate into Words

EVX 4 1421 231 SP evmhosmianw Vector Multiply Halfwords, Odd, Signed, Modulo, Inte-
ger and Accumulate Negative into Words

EVX 4 1031 233 SP evmhossf Vector Multiply Halfwords, Odd, Signed, Saturate, Frac-
tional

EVX 4 1063 233 SP evmhossfa Vector Multiply Halfwords, Odd, Signed, Saturate, Frac-
tional to Accumulator

EVX 4 1287 234 SP evmhossfaaw Vector Multiply Halfwords, Odd, Signed, Saturate, Frac-
tional and Accumulate into Words

EVX 4 1415 234 SP evmhossfanw Vector Multiply Halfwords, Odd, Signed, Saturate, Frac-
tional and Accumulate Negative into Words

EVX 4 1285 235 SP evmhossiaaw Vector Multiply Halfwords, Odd, Signed, Saturate, Inte-
ger and Accumulate into Words

EVX 4 1413 235 SP evmhossianw Vector Multiply Halfwords, Odd, Signed, Saturate, Inte-
ger and Accumulate Negative into Words

EVX 4 1036 235 SP evmhoumi Vector Multiply Halfwords, Odd, Unsigned, Modulo, 
Integer

EVX 4 1068 235 SP evmhoumia Vector Multiply Halfwords, Odd, Unsigned, Modulo, 
Integer to Accumulator

EVX 4 1292 236 SP evmhoumiaaw Vector Multiply Halfwords, Odd, Unsigned, Modulo, 
Integer and Accumulate into Words

EVX 4 1420 232 SP evmhoumianw Vector Multiply Halfwords, Odd, Unsigned, Modulo, 
Integer and Accumulate Negative into Words

F
o

rm
Opcode

M
o

d
e

 D
ep

.1

P
ri

v1

Page Cat1 Mnemonic InstructionPri Ext
Power ISA™ -- Book Appendices828



   Version 2.04
EVX 4 1284 236 SP evmhousiaaw Vector Multiply Halfwords, Odd, Unsigned, Saturate, 
Integer and Accumulate into Words

EVX 4 1412 236 SP evmhousianw Vector Multiply Halfwords, Odd, Unsigned, Saturate, 
Integer and Accumulate Negative into Words

EVX 4 1220 237 SP evmra Initialize Accumulator
EVX 4 1103 237 SP evmwhsmf Vector Multiply Word High Signed, Modulo, Fractional
EVX 4 1135 237 SP evmwhsmfa Vector Multiply Word High Signed, Modulo, Fractional 

to Accumulator
EVX 4 1101 237 SP evmwhsmi Vector Multiply Word High Signed, Modulo, Integer
EVX 4 1133 237 SP evmwhsmia Vector Multiply Word High Signed, Modulo, Integer to 

Accumulator
EVX 4 1095 238 SP evmwhssf Vector Multiply Word High Signed, Saturate, Fractional
EVX 4 1127 238 SP evmwhssfa Vector Multiply Word High Signed, Saturate, Fractional 

to Accumulator
EVX 4 1100 238 SP evmwhumi Vector Multiply Word High Unsigned, Modulo, Integer
EVX 4 1132 238 SP evmwhumia Vector Multiply Word High Unsigned, Modulo, Integer to 

Accumulator
EVX 4 1353 239 SP evmwlsmiaaw Vector Multiply Word Low Signed, Modulo, Integer and 

Accumulate into Words
EVX 4 1481 239 SP evmwlsmianw Vector Multiply Word Low Signed, Modulo, Integer and 

Accumulate Negative in Words
EVX 4 1345 239 SP evmwlssiaaw Vector Multiply Word Low Signed, Saturate, Integer and 

Accumulate into Words
EVX 4 1473 239 SP evmwlssianw Vector Multiply Word Low Signed, Saturate, Integer and 

Accumulate Negative in Words
EVX 4 1096 240 SP evmwlumi Vector Multiply Word Low Unsigned, Modulo, Integer
EVX 4 1128 240 SP evmwlumia Vector Multiply Word Low Unsigned, Modulo, Integer to 

Accumulator
EVX 4 1352 240 SP evmwlumiaaw Vector Multiply Word Low Unsigned, Modulo, Integer 

and Accumulate into Words
EVX 4 1480 240 SP evmwlumianw Vector Multiply Word Low Unsigned, Modulo, Integer 

and Accumulate Negative in Words
EVX 4 1344 241 SP evmwlusiaaw Vector Multiply Word Low Unsigned, Saturate, Integer 

and Accumulate into Words
EVX 4 1472 241 SP evmwlusianw Vector Multiply Word Low Unsigned, Saturate, Integer 

and Accumulate Negative in Words
EVX 4 1115 241 SP evmwsmf Vector Multiply Word Signed, Modulo, Fractional
EVX 4 1147 241 SP evmwsmfa Vector Multiply Word Signed, Modulo, Fractional to 

Accumulator
EVX 4 1371 242 SP evmwsmfaa Vector Multiply Word Signed, Modulo, Fractional and 

Accumulate
EVX 4 1499 242 SP evmwsmfan Vector Multiply Word Signed, Modulo, Fractional and 

Accumulate Negative
EVX 4 1113 242 SP evmwsmi Vector Multiply Word Signed, Modulo, Integer
EVX 4 1145 242 SP evmwsmia Vector Multiply Word Signed, Modulo, Integer to Accu-

mulator
EVX 4 1369 242 SP evmwsmiaa Vector Multiply Word Signed, Modulo, Integer and 

Accumulate
EVX 4 1497 242 SP evmwsmian Vector Multiply Word Signed, Modulo, Integer and 

Accumulate Negative
EVX 4 1107 243 SP evmwssf Vector Multiply Word Signed, Saturate, Fractional
EVX 4 1139 243 SP evmwssfa Vector Multiply Word Signed, Saturate, Fractional to 

Accumulator
EVX 4 1363 243 SP evmwssfaa Vector Multiply Word Signed, Saturate, Fractional and 

Accumulate
EVX 4 1491 244 SP evmwssfan Vector Multiply Word Signed, Saturate, Fractional and 

Accumulate Negative
EVX 4 1112 244 SP evmwumi Vector Multiply Word Unsigned, Modulo, Integer
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EVX 4 1144 244 SP evmwumia Vector Multiply Word Unsigned, Modulo, Integer to 
Accumulator

EVX 4 1368 245 SP evmwumiaa Vector Multiply Word Unsigned, Modulo, Integer and 
Accumulate

EVX 4 1496 245 SP evmwumian Vector Multiply Word Unsigned, Modulo, Integer and 
Accumulate Negative

EVX 4 542 245 SP evnand Vector NAND
EVX 4 521 245 SP evneg Vector Negate
EVX 4 536 245 SP evnor Vector NOR
EVX 4 535 246 SP evor Vector OR
EVX 4 539 246 SP evorc Vector OR with Complement
EVX 4 552 246 SP evrlw Vector Rotate Left Word
EVX 4 554 247 SP evrlwi Vector Rotate Left Word Immediate
EVX 4 524 247 SP evrndw Vector Round Word
EVS 4 79 247 SP evsel Vector Select
EVX 4 548 248 SP evslw Vector Shift Left Word
EVX 4 550 248 SP evslwi Vector Shift Left Word Immediate
EVX 4 555 248 SP evsplatfi Vector Splat Fractional Immediate
EVX 4 553 248 SP evsplati Vector Splat Immediate
EVX 4 547 248 SP evsrwis Vector Shift Right Word Immediate Signed
EVX 4 546 248 SP evsrwiu Vector Shift Right Word Immediate Unsigned
EVX 4 545 249 SP evsrws Vector Shift Right Word Signed
EVX 4 544 249 SP evsrwu Vector Shift Right Word Unsigned
EVX 4 801 249 SP evstdd Vector Store Double of Double
EVX 31 413 538 E.PD evstddepx Vector Store Doubleword into Doubleword by External 

Process ID Indexed
EVX 4 800 249 SP evstddx Vector Store Double of Double Indexed
EVX 4 805 250 SP evstdh Vector Store Double of Four Halfwords
EVX 4 804 250 SP evstdhx Vector Store Double of Four Halfwords Indexed
EVX 4 803 250 SP evstdw Vector Store Double of Two Words
EVX 4 802 250 SP evstdwx Vector Store Double of Two Words Indexed
EVX 4 817 251 SP evstwhe Vector Store Word of Two Halfwords from Even
EVX 4 816 251 SP evstwhex Vector Store Word of Two Halfwords from Even Indexed
EVX 4 821 251 SP evstwho Vector Store Word of Two Halfwords from Odd
EVX 4 820 251 SP evstwhox Vector Store Word of Two Halfwords from Odd Indexed
EVX 4 825 251 SP evstwwe Vector Store Word of Word from Even
EVX 4 824 251 SP evstwwex Vector Store Word of Word from Even Indexed
EVX 4 829 252 SP evstwwo Vector Store Word of Word from Odd
EVX 4 828 252 SP evstwwox Vector Store Word of Word from Odd Indexed
EVX 4 1227 252 SP evsubfsmiaaw Vector Subtract Signed, Modulo, Integer to Accumula-

tor Word
EVX 4 1219 252 SP evsubfssiaaw Vector Subtract Signed, Saturate, Integer to Accumula-

tor Word
EVX 4 1226 253 SP evsubfumiaaw Vector Subtract Unsigned, Modulo, Integer to Accumu-

lator Word
EVX 4 1218 253 SP evsubfusiaaw Vector Subtract Unsigned, Saturate, Integer to Accu-

mulator Word
EVX 4 516 253 SP evsubfw Vector Subtract from Word
EVX 4 518 253 SP evsubifw Vector Subtract Immediate from Word
EVX 4 534 253 SP evxor Vector XOR
X 31 954 SR  74 B extsb[.] Extend Sign Byte
X 31 922 SR  74 B extsh[.] Extend Sign Halfword
X 31 986 SR 76 64 extsw[.] Extend Sign Word
X 63 264 118 FP[R] fabs[.] Floating Absolute Value
A 63 21 119 FP[R] fadd[.] Floating Add
A 59 21 119 FP[R] fadds[.] Floating Add Single
X 63 846 127 FP[R] fcfid[.] Floating Convert From Integer Doubleword
X 63 32 129 FP fcmpo Floating Compare Ordered
X 63 0 129 FP fcmpu Floating Compare Unordered
X 63 814 125 FP[R] fctid[.] Floating Convert To Integer Doubleword
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X 63 815 126 FP[R] fctidz[.] Floating Convert To Integer Doubleword with round 
toward Zero

X 63 14 126 FP[R] fctiw[.] Floating Convert To Integer Word
X 63 15 127 FP[R] fctiwz[.] Floating Convert To Integer Word with round toward 

Zero
A 63 18 120 FP[R] fdiv[.] Floating Divide
A 59 18 120 FP[R] fdivs[.] Floating Divide Single
A 63 29 123 FP[R] fmadd[.] Floating Multiply-Add
A 59 29 123 FP[R] fmadds[.] Floating Multiply-Add Single
X 63 72 118 FP[R] fmr[.] Floating Move Register
A 63 28 123 FP[R] fmsub[.] Floating Multiply-Subtract
A 59 28 123 FP[R] fmsubs[.] Floating Multiply-Subtract Single
A 63 25 120 FP[R] fmul[.] Floating Multiply
A 59 25 120 FP[R] fmuls[.] Floating Multiply Single
X 63 136 118 FP[R] fnabs[.] Floating Negative Absolute Value
X 63 40 118 FP[R] fneg[.] Floating Negate
A 63 31 124 FP[R] fnmadd[.] Floating Negative Multiply-Add
A 59 31 124 FP[R] fnmadds[.] Floating Negative Multiply-Add Single
A 63 30 124 FP[R] fnmsub[.] Floating Negative Multiply-Subtract
A 59 30 124 FP[R] fnmsubs[.] Floating Negative Multiply-Subtract Single
A 63 24 121 FP[R] fre[.] Floating Reciprocal Estimate
A 59 24 121 FP[R] fres[.] Floating Reciprocal Estimate Single
X 63 488 128 FP[R] frim[.] Floating Round to Integer Minus
X 63 392 128 FP[R].in frin[.] Floating Round to Integer Nearest
X 63 456 128 FP[R].in frip[.] Floating Round to Integer Plus
X 63 424 128 FP[R].in friz[.] Floating Round to Integer Toward Zero
X 63 12 125 FP[R].in frsp[.] Floating Round to Single-Precision
A 63 26 122 FP[R].in frsqrte[.] Floating Reciprocal Square Root Estimate
A 59 26 122 FP[R].in frsqrtes[.] Floating Reciprocal Square Root Estimate Single
A 63 23 130 FP[R] fsel[.] Floating Select
A 63 22 121 FP[R] fsqrt[.] Floating Square Root
A 59 22 121 FP[R] fsqrts[.] Floating Square Root Single
A 63 20 119 FP[R] fsub[.] Floating Subtract
A 59 20 119 FP[R] fsubs[.] Floating Subtract Single
XL 19 274 H 405 S hrfid Hypervisor Return From Interrupt Doubleword
X 31 982 359 B icbi Instruction Cache Block Invalidate
X 31 991 536 E.PD icbiep Instruction Cache Block Invalidate by External PID
X 31 230 559 ECL icblc Instruction Cache Block Lock Clear
X 31 22 359 E icbt Instruction Cache Block Touch
X 31 486 558 ECL icbtls Instruction Cache Block Touch and Lock Set
X 31 966 629 E.CI ici Instruction Cache Invalidate
X 31 998 633 E.CD icread Instruction Cache Read
A 31 15 70 B.in isel Integer Select
XL 19 150 369 B isync Instruction Synchronize
X 31 95 529 E.PD lbepx Load Byte by External Process ID Indexed
D 34  41 B lbz Load Byte and Zero
D 35  41 B lbzu Load Byte and Zero with Update
X 31 119 41 B lbzux Load Byte and Zero with Update Indexed
X 31  87 42 B lbzx Load Byte and Zero Indexed
DS 58 0 46 64 ld Load Doubleword
X 31 84 371 64 ldarx Load Doubleword And Reserve Indexed
X 31 29 530 E.PD ldepx Load Doubleword by External Process ID Indexed
DS 58 1 46 64 ldu Load Doubleword with Update
X 31 53 46 64 ldux Load Doubleword with Update Indexed
X 31 21 46 64 ldx Load Doubleword Indexed
D 50  113 FP lfd Load Floating-Point Double
X 31 607 537 E.PD lfdepx Load Floating-Point Double by External Process ID 

Indexed
D 51  113 FP lfdu Load Floating-Point Double with Update
X 31 631 113 FP lfdux Load Floating-Point Double with Update Indexed
X 31 599 113 FP lfdx Load Floating-Point Double Indexed
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   Version 2.04
D 48  115 FP lfs Load Floating-Point Single
D 49  115 FP lfsu Load Floating-Point Single with Update
X 31 567 115 FP lfsux Load Floating-Point Single with Update Indexed
X 31 535 115 FP lfsx Load Floating-Point Single Indexed
D 42  43 B lha Load Halfword Algebraic
D 43  43 B lhau Load Halfword Algebraic with Update
X 31 375 43 B lhaux Load Halfword Algebraic with Update Indexed
X 31 343 43 B lhax Load Halfword Algebraic Indexed
X 31 790 51 B lhbrx Load Halfword Byte-Reverse Indexed
X 31 287 529 E.PD lhepx Load Halfword by External Process ID Indexed
D 40  42 B lhz Load Halfword and Zero
D 41  42 B lhzu Load Halfword and Zero with Update
X 31 311 42 B lhzux Load Halfword and Zero with Update Indexed
X 31 279 42 B lhzx Load Halfword and Zero Indexed
D 46  52 B lmw Load Multiple Word
DQ 56  P 410 LSQ lq Load Quadword
X 31 597 55 MA lswi Load String Word Immediate
X 31 533 55 MA lswx Load String Word Indexed
X 31 7 146 V lvebx Load Vector Element Byte Indexed
X 31 39 143 V lvehx Load Vector Element Halfword Indexed
X 31 295 539 E.PD lvepx Load Vector by External Process ID Indexed
X 31 263 539 E.PD lvepxl Load Vector by External Process ID Indexed LRU
X 31 71 143 V lvewx Load Vector Element Word Indexed
X 31 6 148 V lvsl Load Vector for Shift Left Indexed
X 31 38 148 V lvsr Load Vector for Shift Right Indexed
X 31 103 144 V lvx Load Vector Indexed
X 31 359 144 V lvxl Load Vector Indexed Last
DS 58 2 45 64 lwa Load Word Algebraic
X 31 20  370 B lwarx Load Word And Reserve Indexed
X 31 373 45 64 lwaux Load Word Algebraic with Update Indexed
X 31 341 45 64 lwax Load Word Algebraic Indexed
X 31 534 51 B lwbrx Load Word Byte-Reverse Indexed
X 31 31 530 E.PD lwepx Load Word by External Process ID Indexed
D 32  44 B lwz Load Word and Zero
D 33  44 B lwzu Load Word and Zero with Update
X 31  55 44 B lwzux Load Word and Zero with Update Indexed
X 31 23 44 B lwzx Load Word and Zero Indexed
XO 4 172 289 LMA macchw[o][.] Multiply Accumulate Cross Halfword to Word Modulo 

Signed
XO 4 236 289 LMA macchws[o][.] Multiply Accumulate Cross Halfword to Word Saturate 

Signed
XO 4 204 290 LMA macchwsu[o][.] Multiply Accumulate Cross Halfword to Word Saturate 

Unsigned
XO 4 140 290 LMA macchwu[o][.] Multiply Accumulate Cross Halfword to Word Modulo 

Unsigned
XO 4 44 291 LMA machhw[o][.] Multiply Accumulate High Halfword to Word Modulo 

Signed
XO 4 108 291 LMA machhws[o][.] Multiply Accumulate High Halfword to Word Saturate 

Signed
XO 4 76 292 LMA machhwsu[o][.] Multiply Accumulate High Halfword to Word Saturate 

Unsigned
XO 4 12 292 LMA machhwu[o][.] Multiply Accumulate High Halfword to Word Modulo 

Unsigned
XO 4 428 293 LMA maclhw[o][.] Multiply Accumulate Low Halfword to Word Modulo 

Signed
XO 4 492 293 LMA maclhws[o][.] Multiply Accumulate Low Halfword to Word Saturate 

Signed
XO 4 460 294 LMA maclhwsu[o][.] Multiply Accumulate Low Halfword to Word Saturate 

Unsigned
XO 4 396 294 LMA maclhwu[o][.] Multiply Accumulate Low Halfword to Word Modulo 

Unsigned
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X 31 854 374 E mbar Memory Barrier
XL 19 0 34 B mcrf Move Condition Register Field
X 63 64 131 FP mcrfs Move to Condition Register from FPSCR
X 31 512 91 B mcrxr Move to Condition Register from XER
X 31 275 91 E mfapidi Move From APID Indirect
XFX 31 19 89 B mfcr Move From Condition Register
XFX 31 323 S 527 E mfdcr Move From Device Control Register
X 31 291 91 E mfdcrux Move From Device Control Register User-mode 

Indexed
X 31 259 P 527 E mfdcrx Move From Device Control Register Indexed 
X 63 583 131 FP[R] mffs[.] Move From FPSCR
X 31 83 P 417,

527
B mfmsr Move From Machine State Register

XFX 31 19 90 B.in mfocrf Move From One Condition Register Field
XFX 31 334 658 E.PM mfpmr Move From Performance Monitor Register
XFX 31 339 O 88,3

78
B mfspr Move From Special Purpose Register

X 31 595 32 P 449 S mfsr Move From Segment Register
X 31 659 32 P 449 S mfsrin Move From Segment Register Indirect
XFX 31 371 378 S mftb Move From Time Base
VX 4 1540 199 V mfvscr Move From Vector Status and Control Register
X 31 238 623 E.PC msgclr Message Clear
X 31 206 623 E.PC msgsnd Message Send
XFX 31 144 89 B mtcrf Move To Condition Register Fields
XFX 31 451 P 526 E mtdcr Move To Device Control Register
X 31 419 91 E mtdcrux Move To Device Control Register User-mode Indexed
X 31 387 P 526 E mtdcrx Move To Device Control Register Indexed
X 63 70 132 FP[R] mtfsb0[.] Move To FPSCR Bit 0
X 63 38 132 FP[R] mtfsb1[.] Move To FPSCR Bit 1
XFL 63 711 131 FP[R] mtfsf[.] Move To FPSCR Fields
X 63 134 131 FP[R] mtfsfi[.] Move To FPSCR Field Immediate
X 31 146 P 527 E mtmsr Move To Machine State Register
X 31 146 P 415 S mtmsr Move To Machine State Register
X 31 178 P 416 S mtmsrd Move To Machine State Register Doubleword
XFX 31 144 90 B.in mtocrf Move To One Condition Register Field
XFX 31 462 658 E.PM mtpmr Move To Performance Monitor Register
XFX 31 467 O 87 B mtspr Move To Special Purpose Register
X 31 210 32 P 448 S mtsr Move To Segment Register
X 31 242 32 P 448 S mtsrin Move To Segment Register Indirect
VX 4 1604 199 V mtvscr Move To Vector Status and Control Register
X 4 168 294 LMA mulchw[.] Multiply Cross Halfword to Word Signed
X 4 136 294 LMA mulchwu[.] Multiply Cross Halfword to Word Unsigned
XO 31 73 SR 65 64 mulhd[.] Multiply High Doubleword
XO 31 9 SR 65 64 mulhdu[.] Multiply High Doubleword Unsigned
X 4 40 295 LMA mulhhw[.] Multiply High Halfword to Word Signed
X 4 8 295 LMA mulhhwu[.] Multiply High Halfword to Word Unsigned
XO 31 75 SR 63 B mulhw[.] Multiply High Word
XO 31 11 SR 63 B mulhwu[.] Multiply High Word Unsigned
XO 31 233 SR 65 64 mulld[o][.] Multiply Low Doubleword
X 4 424 295 LMA mullhw[.] Multiply Low Halfword to Word Signed
X 4 392 295 LMA mullhwu[.] Multiply Low Halfword to Word Unsigned
D  7  63 B mulli Multiply Low Immediate
XO 31 235 SR 63 B mullw[o][.] Multiply Low Word
X 31 476 SR 73 B nand[.] NAND
XO 31 104 SR 62 B neg[o][.] Negate
XO 4 174 296 LMA nmacchw[o][.] Negative Multiply Accumulate Cross Halfword to Word 

Modulo Signed
XO 4 238 296 LMA nmacchws[o][.] Negative Multiply Accumulate Cross Halfword to Word 

Saturate Signed
XO 4 46 297 LMA nmachhw[o][.] Negative Multiply Accumulate High Halfword to Word 

Modulo Signed
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XO 4 110 297 LMA nmachhws[o][.] Negative Multiply Accumulate High Halfword to Word 
Saturate Signed

XO 4 430 298 LMA nmaclhw[o][.] Negative Multiply Accumulate Low Halfword to Word 
Modulo Signed

XO 4 494 298 LMA nmaclhws[o][.] Negative Multiply Accumulate Low Halfword to Word 
Saturate Signed

X 31 124 SR 74 B nor[.] NOR
X 31 444 SR 73 B or[.] OR
X 31 412 SR 74 B orc[.] OR with Complement
D 24 71 B ori OR Immediate
D 25 72 B oris OR Immediate Shifted
X 31 122 76 B.in popcntb Population Count Bytes
XL 19 51 P 516 E rfci Return From Critical Interrupt
X 19 39 516 E.ED rfdi Return From Debug Interrupt
XL 19 50 P 515 E rfi Return From Interrupt
XL 19  18 P 405 S rfid Return From Interrupt Doubleword
XL 19 38 P 516 E rfmci Return From Machine Check Interrupt
MDS 30 8 SR 81 64 rldcl[.] Rotate Left Doubleword then Clear Left
MDS 30 9 SR 82 64 rldcr[.] Rotate Left Doubleword then Clear Right
MD 30 2 SR 81 64 rldic[.] Rotate Left Doubleword Immediate then Clear
MD 30 0 SR 79 64 rldicl[.] Rotate Left Doubleword Immediate then Clear Left
MD 30 1 SR 80 64 rldicr[.] Rotate Left Doubleword Immediate then Clear Right
MD 30 3 SR 82 64 rldimi[.] Rotate Left Doubleword Immediate then Mask Insert
M 20 SR 79 B rlwimi[.] Rotate Left Word Immediate then Mask Insert
M 21 SR 77 B rlwinm[.] Rotate Left Word Immediate then AND with Mask
M 23 SR 78 B rlwnm[.] Rotate Left Word then AND with Mask
SC 17 35, 

404,
515

B sc System Call

X 31 498 P 444 S slbia SLB Invalidate All
X 31 434 P 443 S slbie SLB Invalidate Entry
X 31 915 P 446 S slbmfee SLB Move From Entry ESID
X 31 851 P 446 S slbmfev SLB Move From Entry VSID
X 31 402 P 445 S slbmte SLB Move To Entry
X 31 27 SR 85 64 sld[.] Shift Left Doubleword
X 31 24 SR 83 B slw[.] Shift Left Word
X 31 794 SR 85 64 srad[.] Shift Right Algebraic Doubleword
XS 31 413 SR 85 64 sradi[.] Shift Right Algebraic Doubleword Immediate
X 31 792 SR 84 B sraw[.] Shift Right Algebraic Word
X 31 824 SR 84 B srawi[.] Shift Right Algebraic Word Immediate
X 31 539 SR 85 64 srd[.] Shift Right Doubleword
X 31 536 SR 83 B srw[.] Shift Right Word
D 38 47 B stb Store Byte
X 31 223 531 E.PD stbepx Store Byte by External Process ID Indexed
D 39 47 B stbu Store Byte with Update
X 31 247 47 B stbux Store Byte with Update Indexed
X 31 215 47 B stbx Store Byte Indexed
DS 62 0 50 64 std Store Doubleword
X 31 214 371 64 stdcx. Store Doubleword Conditional Indexed
X 31 157 532 E.PD stdepx Store Doubleword by External Process ID Indexed
DS 62 1 50 64 stdu Store Doubleword with Update
X 31 181 50 64 stdux Store Doubleword with Update Indexed
X 31 149 50 64 stdx Store Doubleword Indexed
D 54  116 FP stfd Store Floating-Point Double
X 31 735 537 E.PD stfdepx Store Floating-Point Double by External Process ID 

Indexed
D 55  116 FP stfdu Store Floating-Point Double with Update
X 31 759 116 FP stfdux Store Floating-Point Double with Update Indexed
X 31 727 116 FP stfdx Store Floating-Point Double Indexed
X 31 983 117 FP stfiwx Store Floating-Point as Integer Word Indexed
D 52  115 FP stfs Store Floating-Point Single
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D 53  115 FP stfsu Store Floating-Point Single with Update
X 31 695 115 FP stfsux Store Floating-Point Single with Update Indexed
X 31 663 115 FP stfsx Store Floating-Point Single Indexed
D 44  48 B sth Store Halfword
X 31 918 51 B sthbrx Store Halfword Byte-Reverse Indexed
X 31 415 531 E.PD sthepx Store Halfword by External Process ID Indexed
D 45  48 B sthu Store Halfword with Update
X 31 439 48 B sthux Store Halfword with Update Indexed
X 31 407 48 B sthx Store Halfword Indexed
D 47  53 B stmw Store Multiple Word
DS 62 2 P 410 LSQ stq Store Quadword
X 31 725 56 MA stswi Store String Word Immediate
X 31 661 56 MA stswx Store String Word Indexed
X 31 135 146 V stvebx Store Vector Element Byte Indexed
X 31 167 146 V stvehx Store Vector Element Halfword Indexed
X 31 807 540 E.PD stvepx Store Vector by External Process ID Indexed
X 31 775 540 E.PD stvepxl Store Vector by External Process ID Indexed LRU
X 31 199 147 V stvewx Store Vector Element Word Indexed
X 31 231 144 V stvx Store Vector Indexed
X 31 487 147 V stvxl Store Vector Indexed Last
D 36  49 B stw Store Word
X 31 662 51 B stwbrx Store Word Byte-Reverse Indexed
X 31 150 370 B stwcx. Store Word Conditional Indexed
X 31 159 532 E.PD stwepx Store Word by External Process ID Indexed
D 37 49 B stwu Store Word with Update
X 31 183 49 B stwux Store Word with Update Indexed
X 31 151 49 B stwx Store Word Indexed
XO 31 40 SR 59 B subf[o][.] Subtract From
XO 31 8 SR 60 B subfc[o][.] Subtract From Carrying
XO 31 136 SR 61 B subfe[o][.] Subtract From Extended
D  8  SR 60 B subfic Subtract From Immediate Carrying
XO 31 232 SR 61 B subfme[o][.] Subtract From Minus One Extended
XO 31 200 SR 62 B subfze[o][.] Subtract From Zero Extended
X 31 598 372 B sync Synchronize
X 31 68 70 64 td Trap Doubleword
D  2 70 64 tdi Trap Doubleword Immediate
X 31 370 P 453 S tlbia TLB Invalidate All
X 31 306 64 H 450 S tlbie TLB Invalidate Entry
X 31 274 64 H 452 S tlbiel TLB Invalidate Entry Local
X 31 786 P 560,

649
E tlbivax TLB Invalidate Virtual Address Indexed

X 31 946 P 560,
650

E tlbre TLB Read Entry

X 31 914 P 561,
650

E tlbsx TLB Search Indexed

X 31 566 H 453,
561,
651

B tlbsync TLB Synchronize

X 31 978 P 562,
651

E tlbwe TLB Write Entry

X 31 4 69 B tw Trap Word
D  3  69 B twi Trap Word Immediate
VX 4 384 160 V vaddcuw Vector Add and Write Carry-Out Unsigned Word
VX 4 10 189 V vaddfp Vector Add Single-Precision
VX 4 768 160 V vaddsbs Vector Add Signed Byte Saturate
VX 4 832 160 V vaddshs Vector Add Signed Halfword Saturate
VX 4 896 160 V vaddsws Vector Add Signed Word Saturate
VX 4 0 161 V vaddubm Vector Add Unsigned Byte Modulo
VX 4 512 162 V vaddubs Vector Add Unsigned Byte Saturate
VX 4 64 161 V vadduhm Vector Add Unsigned Halfword Modulo
VX 4 576 162 V vadduhs Vector Add Unsigned Halfword Saturate
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VX 4 128 161 V vadduwm Vector Add Unsigned Word Modulo
VX 4 640 162 V vadduws Vector Add Unsigned Word Saturate
VX 4 1028 184 V vand Vector Logical AND
VX 4 1092 184 V vandc Vector Logical AND with Complement
VX 4 1282 175 V vavgsb Vector Average Signed Byte
VX 4 1346 175 V vavgsh Vector Average Signed Halfword
VX 4 1410 175 V vavgsw Vector Average Signed Word
VX 4 1026 176 V vavgub Vector Average Unsigned Byte
VX 4 1090 176 V vavguh Vector Average Unsigned Halfword
VX 4 1154 176 V vavguw Vector Average Unsigned Word
VX 4 842 193 V vcfsx Vector Convert From Signed Fixed-Point Word
VX 4 778 193 V vcfux Vector Convert From Unsigned Fixed-Point Word
VC 4 966 195 V vcmpbfp[.] Vector Compare Bounds Single-Precision
VC 4 198 195 V vcmpeqfp[.] Vector Compare Equal To Single-Precision
VC 4 6 181 V vcmpequb[.] Vector Compare Equal To Unsigned Byte
VC 4 70 181 V vcmpequh[.] Vector Compare Equal To Unsigned Halfword
VC 4 134 182 V vcmpequw[.] Vector Compare Equal To Unsigned Word
VC 4 454 196 V vcmpgefp[.] Vector Compare Greater Than or Equal To Single-Pre-

cision
VC 4 710 196 V vcmpgtfp[.] Vector Compare Greater Than Single-Precision
VC 4 774 182 V vcmpgtsb[.] Vector Compare Greater Than Signed Byte
VC 4 838 182 V vcmpgtsh[.] Vector Compare Greater Than Signed Halfword
VC 4 902 182 V vcmpgtsw[.] Vector Compare Greater Than Signed Word
VC 4 518 183 V vcmpgtub[.] Vector Compare Greater Than Unsigned Byte
VC 4 582 183 V vcmpgtuh[.] Vector Compare Greater Than Unsigned Halfword
VC 4 646 183 V vcmpgtuw[.] Vector Compare Greater Than Unsigned Word
VX 4 970 192 V vctsxs Vector Convert To Signed Fixed-Point Word Saturate
VX 4 906 192 V vctuxs Vector Convert To Unsigned Fixed-Point Word Saturate
VX 4 394 197 V vexptefp Vector 2 Raised to the Exponent Estimate Floating-

Point
VX 4 458 197 V vlogefp Vector Log Base 2 Estimate Floating-Point
VA 4 46 190 V vmaddfp Vector Multiply-Add Single-Precision
VX 4 1034 191 V vmaxfp Vector Maximum Single-Precision
VX 4 258 177 V vmaxsb Vector Maximum Signed Byte
VX 4 322 177 V vmaxsh Vector Maximum Signed Halfword
VX 4 386 177 V vmaxsw Vector Maximum Signed Word
VX 4 2 178 V vmaxub Vector Maximum Unsigned Byte
VX 4 66 178 V vmaxuh Vector Maximum Unsigned Halfword
VX 4 130 178 V vmaxuw Vector Maximum Unsigned Word
VA 4 32 168 V vmhaddshs Vector Multiply-High-Add Signed Halfword Saturate
VA 4 33 168 V vmhraddshs Vector Multiply-High-Round-Add Signed Halfword Satu-

rate
VX 4 1098 191 V vminfp Vector Minimum Single-Precision
VX 4 770 179 V vminsb Vector Minimum Signed Byte
VX 4 834 179 V vminsh Vector Minimum Signed Halfword
VX 4 898 179 V vminsw Vector Minimum Signed Word
VX 4 514 180 V vminub Vector Minimum Unsigned Byte
VX 4 578 180 V vminuh Vector Minimum Unsigned Halfword
VX 4 642 180 V vminuw Vector Minimum Unsigned Word
VA 4 34 169 V vmladduhm Vector Multiply-Low-Add Unsigned Halfword Modulo
VX 4 12 154 V vmrghb Vector Merge High Byte
VX 4 76 154 V vmrghh Vector Merge High Halfword
VX 4 140 154 V vmrghw Vector Merge High Word
VX 4 268 155 V vmrglb Vector Merge Low Byte
VX 4 332 155 V vmrglh Vector Merge Low Halfword
VX 4 396 155 V vmrglw Vector Merge Low Word
VA 4 37 170 V vmsummbm Vector Multiply-Sum Mixed Byte Modulo
VA 4 40 170 V vmsumshm Vector Multiply-Sum Signed Halfword Modulo
VA 4 41 171 V vmsumshs Vector Multiply-Sum Signed Halfword Saturate
VA 4 36 169 V vmsumubm Vector Multiply-Sum Unsigned Byte Modulo
VA 4 38 171 V vmsumuhm Vector Multiply-Sum Unsigned Halfword Modulo
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VA 4 39 172 V vmsumuhs Vector Multiply-Sum Unsigned Halfword Saturate
VX 4 776 166 V vmulesb Vector Multiply Even Signed Byte
VX 4 840 166 V vmulesh Vector Multiply Even Signed Halfword
VX 4 520 166 V vmuleub Vector Multiply Even Unsigned Byte
VX 4 584 166 V vmuleuh Vector Multiply Even Unsigned Halfword
VX 4 264 167 V vmulosb Vector Multiply Odd Signed Byte
VX 4 328 167 V vmulosh Vector Multiply Odd Signed Halfword
VX 4 8 167 V vmuloub Vector Multiply Odd Unsigned Byte
VX 4 72 167 V vmulouh Vector Multiply Odd Unsigned Halfword
VA 4 47 190 V vnmsubfp Vector Negative Multiply-Subtract Single-Precision
VX 4 1284 184 V vnor Vector Logical NOR
VX 4 1156 184 V vor Vector Logical OR
VA 4 43 157 V vperm Vector Permute
VX 4 782 149 V vpkpx Vector Pack Pixel
VX 4 398 150 V vpkshss Vector Pack Signed Halfword Signed Saturate
VX 4 270 150 V vpkshus Vector Pack Signed Halfword Unsigned Saturate
VX 4 462 150 V vpkswss Vector Pack Signed Word Signed Saturate
VX 4 334 150 V vpkswus Vector Pack Signed Word Unsigned Saturate
VX 4 14 151 V vpkuhum Vector Pack Unsigned Halfword Unsigned Modulo
VX 4 142 151 V vpkuhus Vector Pack Unsigned Halfword Unsigned Saturate
VX 4 78 151 V vpkuwum Vector Pack Unsigned Word Unsigned Modulo
VX 4 206 151 V vpkuwus Vector Pack Unsigned Word Unsigned Saturate
VX 4 266 198 V vrefp Vector Reciprocal Estimate Single-Precision
VX 4 714 194 V vrfim Vector Round to Single-Precision Integer toward -Infin-

ity
VX 4 522 194 V vrfin Vector Round to Single-Precision Integer Nearest
VX 4 650 194 V vrfip Vector Round to Single-Precision Integer toward +Infin-

ity
VX 4 586 194 V vrfiz Vector Round to Single-Precision Integer toward Zero
VX 4 4 185 V vrlb Vector Rotate Left Byte
VX 4 68 185 V vrlh Vector Rotate Left Halfword
VX 4 132 185 V vrlw Vector Rotate Left Word
VX 4 330 198 V vrsqrtefp Vector Reciprocal Square Root Estimate Single-Preci-

sion
VA 4 42 157 V vsel Vector Select
VX 4 452 158 V vsl Vector Shift Left
VX 4 260 186 V vslb Vector Shift Left Byte
VA 4 44 158 V vsldoi Vector Shift Left Double by Octet Immediate
VX 4 324 186 V vslh Vector Shift Left Halfword
VX 4 1036 158 V vslo Vector Shift Left by Octet
VX 4 388 186 V vslw Vector Shift Left Word
VX 4 524 156 V vspltb Vector Splat Byte
VX 4 588 156 V vsplth Vector Splat Halfword
VX 4 780 156 V vspltisb Vector Splat Immediate Signed Byte
VX 4 844 156 V vspltish Vector Splat Immediate Signed Halfword
VX 4 908 156 V vspltisw Vector Splat Immediate Signed Word
VX 4 652 156 V vspltw Vector Splat Word
VX 4 708 159 V vsr Vector Shift Right
VX 4 772 188 V vsrab Vector Shift Right Algebraic Byte
VX 4 836 188 V vsrah Vector Shift Right Algebraic Halfword
VX 4 900 188 V vsraw Vector Shift Right Algebraic Word
VX 4 516 187 V vsrb Vector Shift Right Byte
VX 4 580 187 V vsrh Vector Shift Right Halfword
VX 4 1100 159 V vsro Vector Shift Right by Octet
VX 4 644 187 V vsrw Vector Shift Right Word
VX 4 1408 163 V vsubcuw Vector Subtract and Write Carry-Out Unsigned Word
VX 4 74 189 V vsubfp Vector Subtract Single-Precision
VX 4 1792 163 V vsubsbs Vector Subtract Signed Byte Saturate
VX 4 1856 163 V vsubshs Vector Subtract Signed Halfword Saturate
VX 4 1920 163 V vsubsws Vector Subtract Signed Word Saturate
VX 4 1024 164 V vsububm Vector Subtract Unsigned Byte Modulo
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1 See the key to the mode dependency and privilege columns on page 839 and the key to the category column in 
Section 1.3.5 of Book I.

VX 4 1536 165 V vsububs Vector Subtract Unsigned Byte Saturate
VX 4 1088 164 V vsubuhm Vector Subtract Unsigned Halfword Modulo
VX 4 1600 164 V vsubuhs Vector Subtract Unsigned Halfword Saturate
VX 4 1152 164 V vsubuwm Vector Subtract Unsigned Word Modulo
VX 4 1664 165 V vsubuws Vector Subtract Unsigned Word Saturate
VX 4 1672 173 V vsum2sws Vector Sum across Half Signed Word Saturate
VX 4 1800 174 V vsum4sbs Vector Sum across Quarter Signed Byte Saturate
VX 4 1608 174 V vsum4shs Vector Sum across Quarter Signed Halfword Saturate
VX 4 1544 174 V vsum4ubs Vector Sum across Quarter Unsigned Byte Saturate
VX 4 1928 173 V vsumsws Vector Sum across Signed Word Saturate
VX 4 846 152 V vupkhpx Vector Unpack High Pixel
VX 4 526 152 V vupkhsb Vector Unpack High Signed Byte
VX 4 590 152 V vupkhsh Vector Unpack High Signed Halfword
VX 4 974 153 V vupklpx Vector Unpack Low Pixel
VX 4 654 153 V vupklsb Vector Unpack Low Signed Byte
VX 4 718 153 V vupklsh Vector Unpack Low Signed Halfword
VX 4 1220 184 V vxor Vector Logical XOR
X 31 62 375 WT wait Wait
X 31 131 S 528 E wrtee Write MSR External Enable
X 31 163 S 528 E wrteei Write MSR External Enable Immediate
X 31 316 SR 73 B xor[.] XOR
D 26  72 B xori XOR Immediate
D 27  72 B xoris XOR Immediate Shifted
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Mode Dependency and Privilege Abbreviations
Except as described below and in Section 1.10.3, “Effective Address Calculation”, in Book I, all instructions are inde-
pendent of whether the processor is in 32-bit or 64-bit mode.

Key to Mode Dependency Column 

Key to Privilege Column 

Mode Dep. Description
CT If the instruction tests the Count Register, it

tests the low-order 32 bits in 32-bit mode and
all 64 bits in 64-bit mode.

SR The setting of status registers (such as XER
and CR0) is mode-dependent.

32 The instruction can be executed only in 32-bit
mode.

64 The instruction can be executed only in 64-bit
mode.

Priv. Description
P Denotes a privileged instruction.
O Denotes an instruction that is treated as privi-

leged or nonprivileged (or hypervisor, for
mtspr), depending on the SPR number.

H Denotes an instruction that can be executed
only in hypervisor state.
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Index

A

a bit 28
A-form 15
AA field 16
address 20

effective 23
effective address 419, 541
real 420, 542

address compare 420, 467, 473
address translation 435, 546

EA to VA 422
esid to vsid 422
overview 427
PTE

page table entry 431, 435
Reference bit 435
RPN

real page number 430
VA to RA 430
VPN

virtual page number 430
32-bit mode 422

address wrap 420, 542
addresses

accessed by processor 426
implicit accesses 426
interrupt vectors 426
with defined uses 426

addressing mode
D-mode 669

aliasing 347
alignment

effect on performance 355, 485, 605
Alignment interrupt 470, 505, 579
assembler language

extended mnemonics 317, 493, 635
mnemonics 317, 493, 635
symbols 317, 493, 635

atomic operation 349
atomicity 343

single-copy 343
Auxiliary Processor Unavailable interrupt 581

B

B-form 13
BA field 16
BA instruction field 665, 666

BB field 16
BC field 16
BD field 16
BD instruction field 666
BE

See Machine State Register
BF field 16
BF instruction field 666
BFA field 16
BFA instruction field 666
BH field 16
BI field 16
block 342
BO field 16, 28
boundedly undefined 4
Branch Trace 473
Bridge 447

Segment Registers 447
SR 447

brinc 208
BT field 16
bytes 4

C

C 96
CA 38
cache management instructions 358
cache model 343
cache parameters 357
Caching Inhibited 344
Change bit 435
CIA 7
consistency 347
context

definition 393, 509
synchronization 395, 511

Control Register 408
Count Register 412, 523, 676, 759
CR 26
Critical Input interrupt 576
Critical Save/Restore Register 1 565
CSRR1 565
CTR 27, 676
CTRL

See Control Register
Current Instruction Address 404, 515
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D

D field 16
D instruction field 666
D-form 14
D-mode addressing mode 669
DABR interrupt 485
DABR(X)

See Data Breakpoint Register (Extension)
DAR

See Data Address Register
data access 420, 542
Data Address Breakpoint Register (Extension) 400,

412, 485, 490, 761
data address compare 467, 473
Data Address Register 412, 460, 468, 469, 470, 474,

475, 759
data cache instructions 360
Data Exception Address Register 566
data exception address register 566
Data Segment interrupt 468, 475
data storage 341
Data Storage interrupt 467, 473, 577
Data Storage Interrupt Status Register 412, 460, 468,

470, 471, 474, 505, 759
Alignment interrupt 505

Data TLB Error interrupt 583
dcba instruction 360, 554
dcbf instruction 367
dcbst instruction 351, 366, 467, 473
dcbt instruction 360, 533, 557
dcbtls 558
dcbtst instruction 365, 535, 557
dcbz instruction 366, 442, 467, 470, 473, 505, 536,

554
DEAR 566
Debug Interrupt 584
DEC

See Decrementer
Decrementer 412, 482, 523, 599, 759
Decrementer Interrupt 582
Decrementer interrupt 415, 416, 472
defined instructions 18
denormalization 100
denormalized number 98
double-precision 100
doublewords 4
DQ-form 14
DR

See Machine State Register
DS field 16
DS-form 14
DSISR

See Data Storage Interrupt Status Register

E

E (Enable bit) 487
EA 23
eciwx instruction 381, 382, 467, 470, 471, 473, 487

ecowx instruction 381, 382, 467, 470, 471, 473, 487
EE

See Machine State Register
effective address 23, 419, 427, 541

size 422
translation 427

eieio instruction 347, 374, 454
emulation assist 394, 510
Endianness 346
EQ 26, 27
ESR 567
evabs 208
evaddiw 208
evaddsmiaaw 208
evaddssiaaw 209
evlwhex 217
exception 564

alignment exception 579
critical input exception 576
data storage exception 577
external input exception 578
illegal instruction exception 580
instruction storage exception 578
instruction TLB miss exception 583
machine check exception 576
privileged instruction exception 580
program exception 580
system call exception 581
trap exception 580

exception priorities 591
system call instruction 593
trap instructions 592

Exception Syndrome Register 567
exception syndrome register 567
exception vector prefix register 566
Exceptions 563
exceptions

address compare 420, 467, 473
definition 393, 509
page fault 420, 434, 467, 473, 541
protection 420, 541
segment fault 420
storage 420, 541

execution synchronization 395, 511
extended mnemonics 383
External Access Register 412, 467, 473, 487, 490,

523, 759
External Control 381
External Control instructions

eciwx 382
ecowx 382

External Input interrupt 578
External interrupt 415, 416, 470

F

FE 27, 96
FEX 95
FE0

See Machine State Register
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FE1
See Machine State Register

FG 27, 96
FI 96
Fixed-Interval Timer interrupt 582
Fixed-Point Exception Register 412, 523, 759
FL 26, 96
FLM field 17
floating-point

denormalization 100
double-precision 100
exceptions 94, 102

inexact 107
invalid operation 104
overflow 105
underflow 106
zero divide 105

execution models 107
normalization 100
number

denormalized 98
infinity 99
normalized 98
not a number 99
zero 98

rounding 101
sign 99
single-precision 100

Floating-Point Unavailable interrupt 472, 476, 581
forward progress 351
FP

See Machine State Register
FPCC 96
FPR 94
FPRF 96
FPSCR 95

C 96
FE 96
FEX 95
FG 96
FI 96
FL 96
FPCC 96
FPRF 96
FR 96
FU 96
FX 95
NI 97
OE 97
OX 95
RN 97
UE 97
UX 95
VE 97
VX 95
VXCVI 97
VXIDI 96
VXIMZ 96
VXISI 96
VXSNAN 96

VXSOFT 96
VXSQRT 96
VXVC 96
VXZDZ 96
XE 97
XX 95
ZE 97
ZX 95

FR 96
FRA field 17
FRB field 17
FRC field 17
FRS field 17
FRT field 17
FU 27, 96
FX 95
FXM field 17
FXM instruction field 666

G

GPR 38
GT 26, 27
Guarded 345

H

halfwords 4
hardware

definition 394, 510
hardware description language 7
hashed page table 431

size 432
HDEC

See Hypervisor Decrementer
HDICE

See Logical Partitioning Control Register
hrfid instruction 401, 479
HRMOR

See Hypervisor Real Mode Offset Register
HSPRGn

See software-use SPRs
HTAB

See hashed page table
HTABORG 433
HTABSIZE 433
HV

See Machine State Register
hypervisor 397

page table 431
Hypervisor Decrementer 412, 483, 490, 759
Hypervisor Decrementer interrupt 473
Hypervisor Machine Status Save Restore Register

See HSRR0, HSRR1
Hypervisor Machine Status Save Restore Register

0 460
Hypervisor Real Mode Offset Register 39, 399, 408,

490
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I

I-form 13
icbi instruction 351, 359, 467, 473
icbt instruction 359
ILE

See Logical Partitioning Control Register
illegal instructions 18
implicit branch 420, 542
imprecise interrupt 462, 571
in-order operations 420, 542
inexact 107
infinity 99
instruction 467, 473

field
BA 665, 666
BD 666
BF 666
BFA 666
D 666
FXM 666
L 666
LK 666
Rc 666
SH 666
SI 666
UI 667
WS 667

fields 16–18
AA 16
BA 16
BB 16
BC 16
BD 16
BF 16
BFA 16
BH 16
BI 16
BO 16
BT 16
D 16
DS 16
FLM 17
FRA 17
FRB 17
FRC 17
FRS 17
FRT 17
FXM 17
L 17
LEV 17
LI 17
LK 17
MB 17
ME 17
NB 17
OE 17
RA 17
RB 17
Rc 17

RS 18
RT 18
SH 18
SI 18
SPR 17, 18
SR 18
TBR 18
TH 18
TO 18
U 18
UI 18
XO 18

formats 13–??
A-form 15
B-form 13
D-form 14
DQ-form 14
DS-form 14
I-form 13
M-form 15
MD-form 15
MDS-form 15
SC-form 14
VA-form 15
VX-form 16
X-form 14
XFL-form 15
XFX-form 15
XL-form 15
XO-form 15
XS-form 15

interrupt control 680
mtmsr 527
partially executed 588
rfci 681
sc 680

instruction cache instructions 359
instruction fetch 420, 542

effective address 420, 542
implicit branch 420, 542

Instruction Fields 665
instruction restart 356
Instruction Segment interrupt 469, 475
instruction storage 341
Instruction Storage interrupt 469, 578
Instruction TLB Error Interrupt 583
instruction-caused interrupt 462
Instructions

brinc 208
dcbtls 558
evabs 208
evaddiw 208
evaddsmiaaw 208
evaddssiaaw 209
evlwhex 217

instructions
classes 18
dcba 360, 554
dcbf 367
dcbst 351, 366, 467, 473
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dcbt 360, 533, 557
dcbtst 365, 535, 557
dcbz 366, 442, 470, 505, 536, 554
defined 18

forms 19
eciwx 381, 382, 467, 470, 471, 473, 487
ecowx 381, 382, 467, 470, 471, 473, 487
eieio 347, 374, 454
hrfid 401, 479
icbi 351, 359, 467, 473
icbt 359
illegal 18
invalid forms 19
isync 351, 369, 463
ldarx 349, 371, 463, 467, 470, 471, 473
lmw 470
lookaside buffer 442
lq 410, 470
lwa 471
lwarx 349, 370, 463, 467, 470, 471, 473, 505
lwaux 471
lwsync 372
lwz 505
mbar 374
mfmsr 401, 417, 527
mfspr 414, 526
mfsr 449
mfsrin 449
mftb 378
mtmsr 401, 415, 479
mtmsrd 401, 416, 479

address wrap 420, 542
mtspr 413, 524
mtsr 448
mtsrin 448
optional

See optional instructions
preferred forms 19
ptesync 372, 395, 454
reserved 19
rfci 516
rfid 351, 401, 405, 465, 479
rfmci 517
sc 404, 473, 515
slbia 444
slbie 443
slbmfee 446
slbmfev 446
slbmte 445
stdcx. 349, 371, 463, 467, 470, 471, 473
stmw 470
storage control 357, 442, 554
stq 410, 470
stw 505
stwcx. 349, 370, 463, 467, 470, 471, 473
stwx 505
sync 351, 372, 395, 435, 463
tlbia 434, 453
tlbie 434, 450, 453, 455, 561
tlbiel 452

tlbsync 453, 454, 561
wrtee 528
wrteei 528

interrupt 564
Alignment 470, 505
alignment interrupt 579
DABR 485
Data Segment 468, 475
Data Storage 467, 473
data storage interrupt 577
Decrementer 415, 416, 472
definition 393, 510
External 415, 416, 470
external input interrupt 578
Floating-Point Unavailable 472, 476
Hypervisor Decrementer 473
imprecise 462, 571
instruction

partially executed 588
Instruction Segment 469, 475
Instruction Storage 469, 578
instruction storage interrupt 578
instruction TLB miss interrupt 583
instruction-caused 462
Machine Check 467
machine check interrupt 576
masking 589

guidelines for system software 591
new MSR 466
ordering 589, 591

guidelines for system software 591
overview 459
Performance Monitor 476
precise 462, 571
priorities 479
processing 463
Program 471
program interrupt 580

illegal instruction exception 580
privileged instruction exception 580
trap exception 580

recoverable 465
synchronization 462
System Call 473
system call interrupt 581
System Reset 466
system-caused 462
Trace 473
type

Alignment 579
Auxiliary Processor Unavailable 581
Critical Input 576
Data Storage 577
Data TLB Error 583
Debug 584
Decrementer 582
External Input 578
Fixed-Interval Timer 582
Floating-Point Unavailable 581
Instruction TLB Error 583
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Machine Check 576
Program interrupt 580
System Call 581
Watchdog Timer 582

vector 463, 466
interrupt and exception handling registers

DEAR 566
ESR 567
ivpr 566

interrupt classes
asynchronous 570
critical,non-critical 571
machine check 571
synchronous 570

interrupt control instructions 680
mtmsr 527
rfci 681
sc 680

interrupt processing 572
interrupt vector 572

interrupt vector 572
Interrupt Vector Offset Register 36 524, 760
Interrupt Vector Offset Register 37 524, 760
Interrupt Vector Offset Registers 568
Interrupt Vector Prefix Register 566
Interrupts 563
invalid instruction forms 19
invalid operation 104
IR

See Machine State Register
isync instruction 351, 369, 463
IVORs 568
IVPR 566
ivpr 566

K

K bits 437
key, storage 437

L

dcbf 467, 473
instructions

dcbf 467, 473
L field 17
L instruction field 666
language used for instruction operation description 7
ldarx instruction 349, 371, 463, 467, 470, 471, 473
LE

See Machine State Register
LEV field 17
LI field 17
Link Register 412, 523, 676, 759
LK field 17
LK instruction field 666
lmw instruction 470
Logical Partition Identification Register 399
Logical Partitioning 397

Logical Partitioning Control Register 397, 412, 443,
490, 760

HDICE Hypervisor Decrementer Interrupt Condition-
ally Enable 399, 400, 415, 416, 473, 491

ILE Interrupt Little-Endian 398, 466
LPES Logical Partitioning Environment

Selector 398, 400, 404, 423, 424, 437, 439, 466,
492

RMI Real Mode Caching Inhibited Bit 398, 400,
424, 492

RMLS Real Mode Offset Selector 398, 492
VC 492
VRMASD 492

lookaside buffer 442
LPAR (see Logical Partitioning) 397
LPCR

See Logical Partitioning Control Register
LPES

See Logical Partitioning Control Register
LPIDR

See Logical Partition Identification Register
lq instruction 410, 470
LR 27, 676
LT 26
lwa instruction 471
lwarx instruction 349, 370, 463, 467, 470, 471, 473,

505
lwaux instruction 471
lwsync instruction 372
lwz instruction 505

M

M-form 15
Machine 513
Machine Check 571
Machine Check interrupt 467, 576
Machine State Register 401, 404, 415, 416, 417, 463,

465, 466, 513, 527
BE Branch Trace Enable 402
DR Data Relocate 402
EE External Interrupt Enable 401, 415, 416
FE0 FP Exception Mode 402
FE1 FP Exception Mode 402
FP FP Available 402
HV Hypervisor State 401
IR Instruction Relocate 402
LE Little-Endian Mode 402
ME Machine Check Enable 402
PMMPerformance Monitor Mark 402, 496
PR Problem State 401
RI Recoverable Interrupt 402, 415, 416
SE Single-Step Trace Enable 402
SF Sixty Four Bit mode 401, 420, 542
VEC Vector Avaialable 401

Machine Status Save Restore Register
See SRR0, SRR1

Machine Status Save Restore Register 0 459, 463,
465

Machine Status Save Restore Register 1 463, 465,
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472
main storage 341
MB field 17
mbar instruction 374
MD-form 15
MDS-form 15
ME

See Machine State Register
ME field 17
memory barrier 347
Memory Coherence Required 345
mfmsr instruction 401, 417, 527
mfspr instruction 414, 526
mfsr instruction 449
mfsrin instruction 449
mftb instruction 378
Mnemonics 664
mnemonics

extended 317, 493, 635
mode change 420, 542
move to machine state register 527
MSR

See Machine State Register
mtmsr 527
mtmsr instruction 401, 415, 479
mtmsrd instruction 401, 416, 479
mtspr instruction 413, 524
mtsr instruction 448
mtsrin instruction 448

N

NB field 17
Next Instruction Address 404, 405, 515, 516, 517
NI 97
NIA 7
no-op 71
normalization 100
normalized number 98
not a number 99

O

OE 97
OE field 17
opcode 0 505
optional instructions 442

slbia 444
slbie 443
tlbia 453
tlbie 450
tlbiel 452
tlbsync 453

out-of-order operations 420, 542
OV 38
overflow 105
OX 95

P

page 342
size 422

page fault 420, 434, 467, 473, 541
page table

See also hashed page table
search 433
update 454

page table entry 431, 435
Change bit 435
PP bits 437
Reference bit 435
update 454, 455

partially executed instructions 588
partition 397
Performance Monitor interrupt 476
performed 342
PID 543
PMM

See Machine State Register
PP bits 437
PR

See Machine State Register
precise interrupt 462, 571
preferred instruction forms 19
priority of interrupts 479
Process ID Register 543
Processor Utilization of Resources Register 400, 412,

483, 759
Processor Version Register 407, 519
Program interrupt 471, 580
program order 341
Program Priority Register 39, 408, 412, 760
protection boundary 437, 470
protection domain 437
PTE 433

See also page table entry
PTEG 433
ptesync instruction 372, 395, 454
PURR

See Processor Utilization of Resources Register
PVR

See Processor Version Register

Q

quadwords 4

R

RA field 17
RB field 17
RC bits 435
Rc field 17
Rc instruction field 666
real address 427
Real Mode Offset Register 399, 490
real page
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definition 393, 509
real page number 431
recoverable interrupt 465
reference and change recording 435
Reference bit 435
register

CSRR1 565
CTR 676
DEAR 566
ESR 567
IVORs 568
IVPR 566
ivpr 566
LR 676
PID 543
SRR0 564
SRR1 564

register transfer level language 7
Registers

implementation-specific
MMCR1 656

supervisor-level
MMCR1 656

registers
Condition Register 26
Count Register 27
CTR

Count Register 412, 523, 759
CTRL

Control Register 408
DABR(X)

Data Address Breakpoint Register
(Extension) 400, 412, 485, 490, 761

DAR
Data Address Register 412, 460, 468, 469, 470,

474, 475, 759
DEC

Decrementer 412, 482, 523, 599, 759
DSISR

Data Storage Interrupt Status Register 412,
460, 468, 470, 471, 474, 505, 759

EAR
External Access Register 412, 467, 473, 487,

490, 523, 759
Fixed-Point Exception Register 38
Floating-Point Registers 94
Floating-Point Status and Control Register 95
General Purpose Registers 38
HDEC

Hypervisor Decrementer 412, 483, 490, 759
HRMOR

Hypervisor Real Mode Offset Register 39, 399,
408, 490

HSPRGn
software-use SPRs 409

HSRR0
Hypervisor Machine Status Save Restore Regis-

ter 0 460
IVOR36

Interrupt Vector Offset Register 36 524, 760

IVOR37
Interrupt Vector Offset Register 37 524, 760

Link Register 27
LPCR

Logical Partitioning Control Register 397, 412,
443, 490, 760

LPIDR
Logical Partition Identification Register 399

LR
Link Register 412, 523, 759

MSR
Machine State Register 401, 404, 415, 416,

417, 463, 465, 466, 513, 527
PPR

Program Prioirty Register 39, 408, 412, 760
PURR

Processor Utilization of Resources
Register 400, 412, 483, 759

PVR
Processor Version Register 407, 519

RMOR
Real Mode Offset Register 399, 490

SDR1
Storage Description Register 1 412, 433, 759
Storage DescriptionRegister 1 490

SPRGn
software-use SPRs 412, 523, 759

SPRs
Special Purpose Registers 412

SRR0
Machine Status Save Restore Register 0 459,

463, 465
SRR1

Machine Status Save Restore Register 1 463,
465, 472

TB
Time Base 481, 597

TBL
Time Base Lower 412, 481, 523, 597, 759

TBU
Time Base Upper 412, 481, 523, 597, 759

Time Base 377
XER

Fixed-Point Exception Register 402, 412, 475,
523, 759

relocation
data 420, 542

reserved field 5, 394
reserved instructions 19
return from critical interrupt 681
rfci 681
rfci instruction 516
rfid instruction 351, 401, 405, 465, 479
rfmci instruction 517
RI

See Machine State Register
RID (Resource ID) 487
RMI

See Logical Partitioning Control Register
RMLS
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See Logical Partitioning Control Register
RMOR

See Real Mode Offset Register
RN 97
rounding 101
RS field 18
RT field 18
RTL 7

S

Save/Restore Register 0 564
Save/Restore Register 1 564
sc 680
sc instruction 404, 473, 515
SC-form 14
SDR1

See Storage Description Register 1
SE

See Machine State Register
segment

size 422
type 422

Segment Lookaside Buffer
See SLB

Segment Registers 447
Segment Table

bridge 447
sequential execution model 25

definition 393, 510
SF

See Machine State Register
SH field 18
SH instruction field 666
SI field 18
SI instruction field 666
sign 99
single-copy atomicity 343
single-precision 100
Single-Step Trace 473
SLB 427, 442

entry 428
slbia instruction 444
slbie instruction 443
slbmfee instruction 446
slbmfev instruction 446
slbmte instruction 445
SO 26, 27, 38
software-use SPRs 412, 523, 759
Special Purpose Registers 412
speculative operations 420, 542
split field notation 13
SPR field 17, 18
SR 447
SR field 18
SRR0 564
SRR1 564
stdcx. instruction 349, 371, 463, 467, 470, 471, 473
stmw instruction 470
storage

access order 347
accessed by processor 426
atomic operation 349
attributes

Endianness 346
implicit accesses 426
instruction restart 356
interrupt vectors 426
N 433
No-execute 433
order 347
ordering 347, 372, 374
protection

translation disabled 439
reservation 349
shared 347
with defined uses 426

storage access 341
definitions

program order 341
floating-point 111

storage access ordering 385
storage address 20
storage control

instructions 442, 554
storage control attributes 344
storage control instructions 357
Storage Description Register 1 412, 433, 490, 759
storage key 437
storage location 341
storage operations

in-order 420, 542
out-of-order 420, 542
speculative 420, 542

storage protection 437
string instruction 550
TLB management 550

stq instruction 410, 470
string instruction 550
stw instruction 505
stwcx. instruction 349, 370, 463, 467, 470, 471, 473
stwx instruction 505
symbols 317, 493, 635
sync instruction 351, 372, 395, 435, 463
synchronization 395, 454, 511

context 395, 511
execution 395, 511
interrupts 462

Synchronize 347
Synchronous 570
system call 680
system call instruction 593
System Call interrupt 473, 581
System Reset interrupt 466
system-caused interrupt 462

T

t bit 28
table update 454
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TB 377
TBL 377
TBR field 18
TH field 18
Time Base 377, 481, 597
Time Base Lower 412, 481, 523, 597, 759
Time Base Upper 412, 481, 523, 597, 759
TLB 434, 442, 543
TLB management 550
tlbia instruction 434, 453
tlbie instruction 434, 450, 453, 455, 561
tlbiel instruction 452
tlbsync instruction 453, 454, 561
TO field 18
Trace interrupt 473
Translation Lookaside Buffer 543
translation lookaside buffer 434
trap instructions 592
trap interrupt

definition 393, 510

U

U field 18
UE 97
UI field 18
UI instruction field 667
UMMCR1 (user monitor mode control register 1) 656
undefined 7

boundedly 4
underflow 106
UX 95

V

VA-form 15
VE 97
VEC

See Machine State Register
virtual address 427, 430

generation 427
size 422

virtual page number 431
virtual storage 342
VX 95
VX-form 16
VXCVI 97
VXIDI 96
VXIMZ 96
VXISI 96
VXSNAN 96
VXSOFT 96
VXSQRT 96
VXVC 96
VXZDZ 96

W

Watchdog Timer interrupt 582

words 4
Write Through Required 344
wrtee instruction 528
wrteei instruction 528
WS instruction field 667

X

X-form 14
XE 97
XER 38, 402, 475
XFL-form 15
XFX-form 15
XL-form 15
XO field 18
XO-form 15
XS-form 15
XX 95

Z

z bit 28
ZE 97
zero 98
zero divide 105
ZX 95

Numerics

32-bit mode 422
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