
 1

Improved Portability of Shared Libraries

James Donald
Princeton University
Princeton, NJ 08544

jdonald@cs.princeton.edu

January 25, 2003

Abstract

Dynamic linking provides developers and users with
increased power and flexibility. However, this also
brings with it the power to create unexpected problems
and incompatibilities. Although some upgrades or
installations involving shared libraries can successfully
match up on all original interfaces and continue proper
functioning behavior, this is not always this case.

Surprisingly, it is arguable that the shared library
problem under Linux is perhaps even worse than the
corresponding problems in Microsoft Windows [1].
The proposed protective layer given in this paper seeks
to bring better library compatibility to Linux and other
flavors of UNIX.

The basic system comprises of (i) a daemon that keeps
track of many current and old libraries along with (ii)
enhancements to the user’s shell or desktop window
system that detect a library incompatibility and try to
resolve the problem seamlessly.

1. Introduction

The use of dynamic linking to shared libraries--also
known as Dynamic Link Libraries (DLLs) on Microsoft
Windows--provides many benefits. For example,
dynamic linking can shrink application binaries, save
disk space, save memory, and provide an elegant path
for software upgrades [17].

However, the added flexibility of dynamic linking may
damage the robustness and create compatibility
problems. Some components, such as DirectX, have
been known to break many existing applications with
some of their upgraded versions [1]. Rick Anderson
coined the term “DLL Hell” to refer collectively to a
whole range of compatibility problems caused by DLLs
[2]. Although in an ideal world, all original interfaces
would match up and implementations could be changed
seamlessly, this is not always the case. See Table 1 for
a list of some common trouble-makers.

Culprit Platform Reason for portability problems

DirectX Windows involves hardware-specific code [1] [3]

OpenGL all involves hardware-specific code [5]
MFC42.DL
L Windows

used so much, yet was constantly evolving
[2] [11]

libc (glibc) UNIX
used so much, plus very large and complex
[1] [18]

Table 1: Some shared libraries for which occasionally
something goes wrong.

Even if a new library properly adheres to its original
spec and is practically bug-free, it can still be
incompatible with a legacy program. This often
happens because existing bugs in the original libraries
whereby the legacy applications relied on improper side
effects. However, once these original side effects are
removed to conform to the actual spec, the legacy
applications no longer function. Anderson referred to
this problem as Type II DLL Hell. Type III is the
problem mentioned earlier when a new library actually
does have bugs. Type I, the most common on Windows,
happens when a rogue program has bugs in its
installation so it installs libraries in the incorrect places
or overwrites newer libraries with older ones [2].
Furthermore, for example, if program A requires an old
version, while program B requires a newer version, it
becomes very difficult for the programs to coexist.
Some applications use private older copies of shared
system libraries to get around this problem, and this
works alright under Windows, but can often lead to
headaches when attempted under Linux [18].

This project aims to prevent and mitigate the disasters
caused by all such shared library problems.

2. Motivation

Microsoft’s Windows Application Compatibility Group
is dedicated to backwards compatibility of various
legacy programs. The primary method by which they
create backwards compatibility is “injecting” protective
DLL’s (at runtime) into old programs that were not
previously equipped for dealing with upgraded libraries.
The effort is arguably quite a success, as Windows has

 2

maintained arguably much better continuous binary-
compatibility for applications than Linux.

One example of how Microsoft shows its confidence in
its ability to provide backwards compatibility is shown
with DirectX. Despite its problems in the past, no
uninstall feature is provided with the most recent
versions of DirectX, and a claim is made that it is never
necessary to uninstall because there has been sufficient
testing for full backwards compatibility [3].

However, for the Linux world, as with many flavors of
UNIX, applications have in the past been mostly open-
source. When library incompatibilities arose, it was
sometimes just expected of the user to download the
source and recompile the programs. As the popularity
of Linux increases, however, more closed source
applications may appear, and so the recompilation
option may become less viable [1]. Alternatively, the
user can download different versions of binaries made
for different library sets, but this is still less convenient
than binary compatibility across library versions.
.
The Linux community does not have the equivalent of
the Windows Application Compatibility Group, and so
it is worrisome that the same laissez-faire attitude about
library compatibility may continue indefinitely at Linux
users’ expense.

And so, the project presented in this paper targets Linux
specifically in hopes of finding a solution that is
efficient and inexpensive.

3. Sample System

Because the upgrading of libraries is such a long-term
and user-specific effect, it is difficult to measure the
cumulative damage or how often certain users are
affected. For starters though, it can help to sample how
often a typical system has its libraries updated. Figure
2 shows a histogram of the times since modification for
a sample of 1000 shared libraries (*.so files) taken from
the main /usr/lib directory on Princeton’s computer
science Linux servers.

Histogram of Days Since Modification of
Sample Libraries

0

100

200

300

400

500

1 31 61 91 12
1

15
1

18
1

21
1

24
1

27
1

30
1

33
1

36
1

39
1

42
1

45
1

48
1

51
1

54
1

Days

Fi
le

 C
ou

nt

Figure 1: Histogram of days-since-modification on a sample
of 1000 shared library (*.so) files in /usr/lib on
penguins.cs.princeton.edu.

For this single case, it appears that some major library
system changes are done approximately every six
months. Other servers or personal computers may vary
greatly though, depending on the decisions of their
system administrators.

Also, it is uncertain whether library upgrades done
more often can lead to increased or reduced problems.
For library modifications done very often, there is a
larger quantity of opportunities for incompatibilities to
sneak in. On the other hand, if the modifications are
done less often, they probably involve more drastic--so
perhaps more dangerous--upgrades each time.

4. Design

The library portability improvement system consists of
two main components: the daemon responsible for
backing up libraries and the shell component
responsible for detecting a library compatibility
malfunction.

4.1 Library Protection Daemon

The job of the library protection daemon is to maintain
compressed backup copies--along with checksums--of
the libraries in case they get modified later. Certainly,
it was desired to have a more elegant solution than one
that involves backing up every library. Unfortunately
though, there does not seem to be an easy way around
this because since libraries are so extremely intricate
(especially in their bugs) that any loss of any library
would be a loss of needed code. Now, the concept of
simply backing up files before catastrophically
modifying your system isn’t very groundbreaking to the
average PC user. However, the purpose of this
portability protection scheme is to do it in such a way
that doesn’t resemble the typical crash, burn, and start-
over cycle.

 3

Although shared libraries can contain version
information, as is standard in Windows DLL’s, another
safe way we are tagging these files is to record the sizes
and appropriate checksums based on the libraries’
binary contents. These checksums can be compared
fairly quickly later on to identify whether each system
library still matches to certain backup copies.

Upon storage by the library protection daemon, the
libraries are compressed. We could use whatever
various compression algorithm, but for now gzip is
chosen. It seems that Linux libraries compress about
threefold under gzip, so the space required by this
daemon is approximately 35% times the space used
normally by system libraries. This is very little
compared to the amount of space that would be used by
statically linking all applications, which is proportional
to the system library space multiplied by the number of
applications. A backed up library will need to be
decompressed only when it is found to be probably
necessary (as confirmed by various tests with the
checksums) for our main purposes. And so this is
probably a rare enough event that the space saved by
compression outweighs the decompression overhead
cost when the time comes. Figure 2 below summarizes
the basics of the process.

Figure 2: What the library protection daemon starts off doing.

Shown below are sample contents of a libprotect
directory.

tux% ls libprotect
82687 kcalc.so.gz
128 kcalc.so.gz.checksum
11111 kchart.so.gz
128 kchart.so.gz.checksum
20390 kcminit.so.gz
128 kcminit.so.gz.checksum

When it comes time to make use of a backed up library,
perhaps because an incompatibility with a new library
was detected, the backup copy will be decompressed
then ran against. If it turns out that backup copy will be

needed in use for a while, it may remain uncompressed
so it can be commonly used.

Later on it may be found that multiple versions of a
library will have to be stored (perhaps because of
repeated, incompatible upgrades by the administrator).
For this case, it might be possible that if similar library
versions do not differ too much in their binary contents,
the binary comparisons (bdiff) can be used to save
space. However, the amount of used disk space may
simply be insignificant for these cases.

4.2 Incompatibility Detection

The second main necessary component is the
mechanism for detecting library compatibility problems.
The detector is to be placed in the shell, perhaps coded
into the shell or as a plug-in. Since the shell is strongly
tied to paths and user properties (for example, the
default shared library paths), it is in many ways a good
choice of point to detect and attempt to fix dynamic
linking problems. In place of the shell we may also use
the user’s desktop window manager, but regardless, the
detection point should be a user-based (not kernel-
based) program that spawns most of the user’s utilities
directly.

Now, a surprising claim here will drastically simplify
the detection process. It is the author’s experience that
most dynamic linking problems manifest themselves in
obvious ways. For example, you may try to start up a
program and simply see the message “The ordinal
__xx_func could not be found in libyy.so”. Assuming
that most (but definitely not all) dynamic linking
problems manifest themselves in such an obvious way,
the detection for most cases becomes very simple. The
shell can simply watch the text output of the user’s
directly-spawned programs and look out for any
giveaway error code or giveaway error message.

In some slightly more complicated cases, this doesn’t
happen right at the start of execution, but rather halfway
through the program. However, the error message
might still be clear, and although it won’t be the most
user-friendly repair, at least the problem will be
detected properly.

Lastly, an even smaller portion of programs may crash
much more obscurely (segmentation fault) when due to
a library problem, but if program crashes are briefly
checked (upon spotting an unusual error code), then
library comparisons can still be done. For example, if
there’s an amazing coincidence such as records of no
crashes prior but all crashes immediately after a library
modification, then here is another clue that can be acted
on.

 4

Upon detecting the problem, the next step is to analyze
the executable to see which shared libraries it makes
use of. Plain linked programs should contain
information in their binary format that can be read from
the linkage header to quickly identify the shared
libraries that the application makes use of. This is
assuming the user has read access to the executable, but
it is usually the case that if the user has execute-access
to the file he probably has read-access.

From here, it goes on to communication with the library
protection daemon to pull out libraries and see if this
can be immediately explained by a change in a certain
library. If so, the proper information is recorded, and
the next user-friendly step is to automatically
immediately try and run the program with some old set
of libraries that are likely to work. If all goes well and
the original error message is hidden, then this can be
done in a user-friendly way such that the user doesn’t
notice anything went wrong in the first place.

The overall step-by-step process is diagrammed in
Figure 3.

Figure 3: Step-by-step example of the incompatibility
detection and resolution.

The best time to install this foundation would be
immediately preceding a significant library upgrade.
For example, this would be right before you are
upgrading from libc 5 to glibc 2.0.

5. Current Status

At the present time, the fundamentals of the model have
not yet been written or tested. It would take a fair
amount of work to get this design up and running to
confirm many of the conjectures put forth in this paper.

6. Other Issues

In the design of the incompatibility detector, it was
assumed that Linux binaries can easily be read to
determine which shared libraries they directly depend
on. If the applications are linked to shared libraries in
the standard simple way, this is probably valid.
However, some Linux programs open up shared
libraries with explicit calls to dynamic linking functions
like dlsym() and dlopen(). In this case, it may be much
more challenging to detect the library dependency, but
it is uncertain whether this will actually constitute a
significant percentage of cases. Furthermore, such
programs often supply their own routines, and
sometimes elegant error recovery, for dealing with
failed libraries.

Library dependencies can, and very often do, occur as a
complicated graph. For example, library A depends on
B, while B depends on C, while C depends on a long
chain eventually pointing back to A. Although a
straightforward method to scan for the complete
required set can be achieved, this might add significant
overhead to detection of library modifications.

It was decided that the detection scheme would be
placed within the shell, desktop manager, or other user-
based program that saw over a significant number of
program executions. This was chosen instead of a
kernel-based approach because it might be simpler and
more secure. However, this would not have omnipotent
watch over all spawned programs. If an overseen
program spawned another program for private use, that
child would not be overseen. Furthermore, a shared
library failure message from the child process may be
misinterpreted as a shared library problem for the
parent process. And so if a shell-based watcher fails to
much for this reason, then perhaps a kernel-based
approach ought to be attempted.

Library upgrades are often done for reasons related to
security. For instance, many old libraries contain buffer
overruns that compromise the system. This model
presented here does not account for this and so it may
be a security hazard.

Shared libraries typically come in sets of well-
organized installations [1], and unfortunately the hack-
restore job of a few libraries as would be done by this
system may not be sufficient in many cases. It remains
to be determined what kinds of surprising problems
may arise from the intricacy of libraries being designed
only for their standard sets.

 5

7. Alternatives

One of the most obvious alternatives to dynamic linking
is static linking. Even though, compared to in the past,
static linking is used much less proportion-wise
nowadays than dynamic linking, it is still in common
usage even for standardized system libraries. For
example, Microsoft Visual Studio still provides
programmers the option to link MFC42.DLL statically,
because developers often still desire to do this for
obvious reasons. Perhaps even there are more creative
options to use besides simply giving choice to the
developers. For example, automation can be brought
into a program’s decision to use static linking on less
stable systems but dynamic linking on the more stable
ones.

It is thought to be possible for clever users to configure
their Debian Linux environment in order to use multiple
versions of the libc library simultaneously [18].
However, this is difficult, is probably cannot be done
with most libraries, is not yet simple to do, nor is it
guaranteed to provide good results.

Another possible alternative is simply hoping that
program writers and library writers can write more
compatible interfaces to better withstand upgrades and
changes. Although this is wishful thinking, it is part of
a holy grail that is always sought, and even if never
fully achieved, progress toward it may continue.

Sergey Ayukov suggests other desperate options in
addition to using statically linked executables. These
ideas include switching to finer library version
numbering, expanding the Linux kernel definition to
libraries, and creating an oversight committee for Linux.
Unfortunately, these solutions may not be politically
feasible [1].

As a solution to some common library problems,
Windows 2000 (and as is inherited by Windows XP)
implemented the feature of Windows File Protection
(WFP) for DLL’s. This managed to solve all of the
“Type I” problems as described by Anderson. It
protects system libraries directly to avoid rogue
programs trying to modify them. Only signed
Microsoft updates can perform the upgrades to these
files [2]. Although this could theoretically applied to
other operating systems, for Linux it would require
some more “standardization” on the common libraries,
which does not seem very possible given the nature and
visions of Linux at this time.

8. Possible Enhancements

Within the time constraints, no actual library-
application-breaking testing was done to confirm the
claims of occasional incompatibility. This sort of
breaking is a very long-term and user-specific problem.
However, controlled experiments can be done to locate
points in version history of libraries when such breaks
have occurred. For example, Microsoft has made good
use of its “send error report” feature to record data on
application failures in the real world. A similar
approach can be used to get realistic data on failure of
libraries.

It was argued that most library incompatibilities under
Linux can be detected easily because they appear as a
descriptive error code and error message sometimes
even immediately at the start of execution. However,
this has not been proven, and it still does not account
for all other kinds of library failures. One promising
method to help detect and test the proper behavior of
new libraries is multi-version execution as shown by
Cook and Vedagiri in 2002 [4]. Even if multi-version
execution is only shown to be beneficial in some cases,
these special cases can be chosen and selected to
contribute to the overall efficacy of an incompatibility-
detector.

The user-program (shell) approach for library
incompatibility detection was chosen over a kernel-
based approach. However, as mentioned earlier it is
possible that a kernel-based detector may have distinct
advantages. Another advantage, in addition to
overseeing a wider range of program executions, is that
it can actively monitor indirect shared library calls such
as dlopen() and dlsym(). Although these are set up in
different ways on different flavors of UNIX, the
implementation of the functions is typically tied to the
operating system.

The simple model of the library protection daemon is
designed to keep safe the public system libraries.
However, private libraries for specific applications can
possibly benefit from portability improvement as well.
The model may be able to be changed to account for
these, but it will need some method to locate private
libraries that are in use.

Although Linux is the prime target of this study, Solaris
and FreeBSD have very similar, perhaps even worse,
problems with dynamic linking compatibility, and so
the ideas presented in this paper may be well applicable
to them as well. Originally, this study was to take Mac
OS X into account, but so far the author finds it unclear
how serious the shared library problems are on
Macintosh systems.

 6

9. Related Work

As mentioned earlier, Cook and Vedagiri have been
studying multi-version execution to improve reliability
of upgrading. Although at the present time this has
only been tested on simple library cases, there is hope
that it can be extended to C++ libraries or other more
complex scenarios [4].

To aide in fixing common DLL problems on Windows,
Anderson wrote a tool known as the DLL Universal
Problem Solver (DUPS). By analyzing the system for
common problems and automatically solving them in
much the same manner as a Microsoft technical support
worker would, DUPS has already proven very useful in
solving shared library problems [2].

Up until this point, the possibility of bringing online
features to aide in portability has not been discussed.
However, it is quite clear that a centralized server could
be of great benefit, because many of the problems are
caused by not knowing where the incompatibilties lie.
However, bringing online information into the model
would unfortunately make this a much more complex
project and it would no longer be a general-purpose
solution because it would require a centralized server.
Keep in mind that this project is not intended to be
anything like the expensive yet successful “Windows
Update.”

10. Conclusion

Because the shared library effect is such a long-term
and user-specific problem, it is very difficult to reliably
test the benefits of this proposed portability protection.
Still, the ideas presented here look promising in that
they may be sufficient to solve some simple test cases
of real-world problems caused by shared libraries.
These fixes are targeted primarily at Linux operating
systems. The basic protection system structure consists
of the library protection daemon combined with the
shell-based library incompatibility detector. Plus, there
are many ways in which the foundation can be extended
to deal better with various kinds of libraries and
programs.

11. References

[1] Ayukov, Sergey. “Shared libraries in Linux:

growing pains or fundamental problem?”.
ayukov.com. 1999.

[2] Anderson, Rick. “The End of DLL Hell”. MSDN.
Microsoft Corp. 2000.

[3] “Frequently Asked Questions: Microsoft DirectX”.
www.microsoft.com. Microsoft Corporation. 2003.

 [4] Cook, Jonathan, and Navin Vedagiri. "Reliable
Upgrading of Unix Shared Libraries through Multi-
Version Execution". New Mexico State University
Department of Computer Science Technical Report.
Las Creuses, NM. 2002.

[5] “Linux Quake HOWTO: Quake II”, linuxquake.com.
2003.

[6] Daley, R, et al. "Virtual Memory, Processes,
Sharing in MULTICS". Communications in the ACM.
1968.

[7] Duggan, D. "Type-Safe Linking with Recursive
DLLs and Shared Libraries". to appear in ACM
Transactions on Programming Languages and
Systems. 2003.

[8] Orr, Douglas, et al. "Fast and Flexible Shared
Libraries". Proceedings of Summer 1993 Usenix
Conference. 1993.

[9] Bershad, Brian, et al. "Safe Dynamic Linking in an
Extensible Operating System". Seattle, WA. 1995.

[10] Nelson, Michael, et al. "High Performance
Dynamic Linking Through Caching". Proceedings
of the Summer 1993 Usenix Conference. 1993.

[11] “SkyMap Pro Support Issues”. Thompson
Partnership SMP Support Information Page. 2003.

[12] Desitter, Arnaud. “Using static and shared libraries
across platforms”, fortran-2000.com. 2003.

[13] “[Talk] State of dynamic linking in various
platforms”. BBS. www.auug.org.au. 2003.

[14] “Debian Policy Manual. Chapter 9 – Shared
Libraries”. debian.org. 2003.

[15] Phoenix, Chris. “Windows vs. Unix: Linking
dynamic load modules”. 2003.

[16] “Deploying the shared (dynamic) library”. C++
Portable Types Library. melikyan.com. 2003.

[17] Cockroft, Adrian. “Which is better, static or
dynamic linking?”. SunWorld. February 1996.

[18] Menke, Gregory. “Multiple libc versions under
Debian”. BBS. linux.umbc.edu. 2003.

