
Logical partition
mode physical
resource
management
on the IBM
eServer z990

I. G. Siegel
B. A. Glendening

J. P. Kubala

The IBM eServer� z990 provides tremendously increased
processor, I/O, and memory capacity exceeding the capability
of even the premier IBM operating systems. The modular or
book-form system topology of the z990 enables a highly flexible
and more cost-effective concurrent upgrade infrastructure,
as well as improved hardware failure survivability and
serviceability. The multibook form of the z990 has two
significant memory access performance issues which are
addressed here: First, there is increased cache coherency
overhead when the same memory is accessed by central
processing units (CPUs) from multiple books; second, access
from CPUs to memory on books other than the book on which
a CPU is resident is not as efficient as access from the same
book. Awareness of this multifold increase in capacity and
complexity is effectively managed by the IBM zSeries� logical
partition (LPAR) hypervisor, obviating the need for operating
system involvement. This paper describes changes made to
the zSeries LPAR hypervisor to manage CPU and memory
resources on the z990 machine topology.

Introduction
Traditional zSeries* symmetric multiprocessors (SMPs)
have had cache-coherent, tightly coupled processors that
have scaled up from uniprocessor models to 16-way
models [1]. IBM zSeries servers can be partitioned into
separate logical computing systems. System resources
(memory, processors, I/O devices) can be divided or
shared among many such independent logical partitions
(LPARs) under the control of the LPAR hypervisor,1

which comes with the standard Processor Resource/
Systems Manager* (PR/SM*) feature on all zSeries
servers [2]. Each LPAR supports an independent
operating system (OS) loaded by a separate initial
program load (IPL) operation.

Logical partitions contain one or more logical central
processing units (CPUs), which can be defined to be

dedicated or shared. The LPAR hypervisor dispatches a
dedicated logical CPU exclusively on a chosen physical
CPU. Shared logical CPUs are dispatched on any
remaining physical CPUs, chosen not for dedication but
in accordance with a user-assigned priority expressed in
terms of a relative weight [3]. Most users define the
logical CPUs to be shared. This allows the LPAR hypervisor
to maximize the use of the available physical CPUs depending
on the activity and weight of the logical CPUs.

The zSeries z990 models offer a platform for large
workload consolidations. Comprising one to four books,
each with up to eight processing units (CPUs) and a
shared Level 2 (L2) cache, a z990 configuration can
have as many as 32 CPUs. Each book can have memory
attached to it which is accessible from all of the books.
The accelerating costs of building the traditional tightly
coupled interconnections between CPUs become
prohibitive as the number of processors is increased.

1 The hypervisor is a software layer to manage multiple operating systems running
in a single central processing complex.

�Copyright 2004 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/04/$5.00 © 2004 IBM

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 I. G. SIEGEL ET AL.

535

A modular system topology such as that of the z990 helps
to alleviate these costs. By using PR/SM, such a system
can be broken up in logically partitioned mode into as
many as 30 logical partitions, all under the control of the
LPAR hypervisor.

The multibook form of the z990 has two significant
memory access performance issues that must be addressed:

1. There is an increased cache coherency overhead when
the same memory is accessed by CPUs from multiple
books.

2. Access from CPUs to memory on books other than the
book on which a CPU is resident is not as efficient as
that from the same book.

These topology issues, whose performance impact was not
significant in previous server designs, provide opportunities
for the LPAR hypervisor to optimize allocation of
resources and shield operating systems from an awareness
of the underlying server topology.

To curtail these effects, the LPAR hypervisor must
minimize multiple-book access of the same piece of
memory and off-book memory accesses. A given range
of memory is owned (accessible) by only one logical
partition, so multiple-book access can be minimized by
having the logical CPUs of the owning logical partition
dispatched, as much as possible, on only a single book.
Additionally, off-book access is dramatically reduced by
preferential dispatch of the logical CPUs of a logical
partition on the same book as that from which memory
was allocated. This paper discusses how the LPAR
hypervisor realizes these goals by establishing a book
affinity for each of the logical CPUs of a logical partition
and optimal memory allocation with regard to the
established logical CPU book affinities.

Opportunity for enhancement
The zSeries platform continues to grow and provide
for consolidation of multiple workloads onto a single
platform. Workloads running in multiple logical partitions
under PR/SM can take advantage of unused capacity on
the SMP. The z990 can provide up to 32 processors for
customer use on a single SMP; this is done with up to
eight processors on a tightly coupled multiple-chip module
(MCM) which, by itself, resembles a traditional zSeries
SMP. Each MCM has a 32-MB shared L2 cache plus I/O
connections. This L2 cache is a processor cache, not a
memory cache; its contents reflect the most recently
accessed portions of memory from the processors on that
MCM. Portions of this MCM memory that are referenced
only by processors on other MCMs are stored only in the
L2 caches of the other MCMs.

For the purposes of this paper, an MCM along with its
attached memory is referred to as a book. Up to four such

books can be configured in a fully cache-coherent, single-
SMP configuration, with a ring interconnect between the
books. Performance can be optimized by limiting reference
(update) of a given piece of memory by multiple books.
Also, additional latencies and bandwidth constraints
exist when a CPU accesses memory on a nonlocal
book. This is understood by applications that were
designed for a nonuniform memory access (NUMA)
environment, but the idea is largely foreign to traditional
zSeries operating systems and applications that have
grown up on SMPs. This paper describes how PR/SM
manages CPU and memory resources while shielding the
traditional operating systems from these issues.

Implementation
From its inception, the z990 system was designed to run
always in LPAR mode. This decision makes it possible
to exploit the fact that the LPAR hypervisor is always
present and it can be utilized to conceal changes to the
underlying system infrastructure from user operating
systems and applications. This was a natural progression,
since the great majority of zSeries users already operated
their systems in LPAR mode rather than as a single
operating system in basic (non-LPAR) mode, even when
the user was running only one instance of an operating
system on an eServer*. This decision allows the system
to be a truly PR/SM-managed multiprocessor.

This paper focuses on the way in which PR/SM was
changed to understand the underlying system topology
of the z990 system and how it makes decisions in its
allocation of CPU and memory resources for logical
partitions.

Book topology of the z990
At present, each book of the z990 contains up to eight
processing units (CPUs) that are available for use, as well
as some amount of installed memory. Figure 1 shows a
conceptual example of a four-book system with 32 CPUs
and 256 GB of memory. The books are numbered from 0
to 3, with the CPUs on each book using the book number
as the first hexadecimal digit in their assigned CPU
addresses. Each CPU contains two dedicated Level 1 (L1)
caches, one for instructions and one for operands. All of
the CPUs on a book share a 32-MB L2 cache. Attached to
each book is 64 GB of memory, which is conceptually
accessed through the local L2 cache for a total of 256 GB
of system memory. The L2 caches are connected with a
bidirectional ring interconnect to allow any L2 cache to
access any memory through L2-to-L2 communication.

The following section describes how the book-form
topology is examined in determining where the book
assignments of logical CPUs and memory should be made.

I. G. SIEGEL ET AL. IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

536

Allocating resources to logical partitions on the z990
Each book of a z990 system has its own L2 memory cache,
shared by the processors on that book. Access to local L2
is relatively rapid; however, as storage is shared by CPUs
on different books, interbook cache communication is
required in order to maintain coherency of the data, which
takes significantly more time. Updating such storage can be
particularly time-consuming, since more steps are required
to maintain coherency. Optimal system performance can
be achieved by minimizing the amount of data sharing
by CPUs on different books. Also, access to memory is
faster from a CPU on the book on which the memory
resides than from a CPU of a different book.

The LPAR hypervisor attempts to minimize multiple-
book accesses of the same piece of memory and off-book
memory accesses. Since a given range of memory is owned
(accessible) by only one logical partition, multiple-book
access can be minimized by having the logical CPUs of the
owning logical partition dispatched, as much as possible,
on only one book.

A logical partition is provided access to a contiguous
range of absolute addressable memory. Translation of
absolute addressable memory to physical memory is
provided via a configuration array in the hardware system
area (HSA) in units of 64 MB, each of which is known as
a memory increment. The allocation of physical memory
to a logical partition and the establishment of physical
CPU affinity for its logical CPUs should result in a
configuration in which cross-book cache interrogation
and multiple-book access to a given piece of memory
are minimized. A given range of addressable memory
increments is owned by only one logical partition, so
performance is optimized by dispatching the logical
CPUs of the owning logical partition on as few books as
possible. Though this could be achieved by limiting
dispatch of the logical CPUs of a shared logical partition
to one “preferred” book, we would lose the ability to
dispatch all of them simultaneously if the number of
available physical CPUs on the book was less than the
number of online logical CPUs.

Historically, allocations of memory resources and CPU
resources for logical partitions have been completely
independent. The structure of the z990 system creates the
opportunity for these allocations to consider the intersection
of both resource types. This section describes the changes
made in support of this opportunity.

For the purposes of the following discussion, a “solution”
(be it for CPUs or for memory) is a set of one or more
books which provide all of the physical resources
required by a logical partition. A solution for memory can
differ from that for the logical CPUs of a logical partition,
but each influences the choice of the other. Because the
L2 cache is accessed more frequently than memory, the

logical CPU solution has a more significant impact on
performance than the memory solution for a logical
partition. Ideally, all of the physical memory for a logical
partition is allocated from one book, and the logical CPU
affinities for that logical partition are established on the
same book.

To achieve this ideal, there are several different goals
of varying importance to consider when evaluating
potential solutions. The following goals are applied to
the allocation of resources, listed from highest to
lowest priority:

1. Logical CPUs should be distributed as evenly as
possible across the available physical CPUs so that
maximum utilization of these physical CPUs is
achieved.

2. Logical CPUs with the same logical partition should be
concentrated on the smallest number of books possible
in order to minimize cross-book cache interrogation
overhead.

3. The degree to which the logical CPUs and memory of
the logical partition are on the same book should be
maximized.

4. A “best-fit” solution is preferred to a “most available”
solution. A best-fit solution is one with the smallest
amount of resource (memory on a book, for instance)
in excess of what is required. A solution with the
greatest amount of resource in excess of what is
required is said to have the most available. Consistent
choice of a best-fit solution over most available
provides the greatest likelihood that subsequent
requests will find enough resource available.

Figure 1

Conceptual example of a four-book, 32-CPU system with 256 GB
of memory.

30 31 34 35

64 GB memory

32 33 36 3720 21 24 2522 23 26 27

L1 L1

L2 – 32 MB

00 01

L1 L1

04 0502 03

L1 L1

06 07

L1L1

64 GB memory

L1 L1

L2 – 32 MB

L1 L1 L1 L1L1L1

64 GB memory

L1 L1

L2 – 32 MB

L1 L1 L1 L1L1L1

64 GB memory

L1 L1

L2 – 32 MB

L1 L1 L1 L1L1L1

10 11 14 1512 13 16 17

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 I. G. SIEGEL ET AL.

537

For each logical partition, each potential solution is
identified and evaluated with respect to the degree to which it
satisfies all of the goals. The most highly valued solution
is then implemented. For memory solutions, this means
assigning memory increments from the chosen book(s)
to back the absolute memory increments assigned to the
activating logical partition. Logical CPUs to which physical
CPUs are dedicated have a hard affinity for those CPUs
because they are always dispatched on only the physical
CPUs dedicated to them. Shared logical CPUs have a soft
affinity for the nondedicated physical CPUs on whatever
book has been chosen. If they cannot be dispatched on
those physical CPUs at any particular time, others in the
system on a nonpreferred book are considered. Since the
evaluation process is done sequentially for each logical
partition, it is possible that after the best solution has
been determined for a particular logical partition
(especially one with dedicated logical CPUs), it might be
possible to improve upon the solutions for previous logical
partitions. This reevaluation is a necessary step toward
obtaining the best overall solutions for all of the logical
partitions, and is discussed in more detail below.

Figure 2 illustrates the expected results on a system as
described in Figure 1 (with 1 GB of HSA on Book 0) with
the following logical partition definitions, activated in the
order shown:

1. LPAR 1 – sixteen dedicated logical CPUs and 127 GB
of memory.

2. LPAR 2 – eight shared logical CPUs with a weight of
400, and 32 GB of memory.

3. LPAR 3 – eight shared logical CPUs with a weight of
200, and 64 GB of memory.

4. LPAR 4 – eight shared logical CPUs with a weight of
200, and 16 GB of memory.

5. LPAR 5 – eight shared logical CPUs with a weight of
100, and 16 GB of memory.

Note: For the logical CPUs of LPAR 4, affinity for the
physical CPUs of Book 3 will be established even though
memory from Book 2 will be allocated, because at the
time of activation, the physical CPUs of Book 3 are
relatively underutilized, and it is more important to
optimize logical CPU affinity than to optimize memory
affinity.

In the example of Figure 2, when LPAR 1 is activated,
any combination of two books have sufficient resources to
satisfy the LPAR 1 CPU and memory requests. Each pair
of books is evaluated according to the principles outlined
above. For example, a solution made up of Book 0 and
Book 1 has a solution value assigned to it that incorporates
the following: It provides a “best fit” for the requirements
(no CPUs are available in excess of those required);
no other LPARs would be adversely affected, resulting
in overcommitment of their shared logical CPUs to the
remaining resources; all of the memory for LPAR 1 is
allocatable on books 0 and 1; the concentration of logical
CPUs on each book is maximized; and no other workload
is currently running on the CPUs in those books.

Each of the other possible pairs of books (for instance,
books 2 and 3) evaluate identically from a CPU perspective.
Allocation of memory is used to differentiate between
the possible pairs of books. LPAR 1 requires 127 GB of
storage, which is one whole book (64 GB) plus 63 GB.
The best “solution” for memory must utilize book 0
because it has only 63 GB of memory available for
allocation and so provides a best fit when combined with,
for instance, book 1. Any other book in conjunction with
book 0 provides a best fit as well. By evaluating pairs of
books in the order 0 and 1, 0 and 2, 0 and 3, etc., the
book pair 0 and 1 is “discovered” first and thus is chosen
as the best possible solution.

With this solution, eight logical CPUs for LPAR 1 are
assigned a home book of 0 and are dedicated to physical
CPUs on book 0. The other eight logical CPUs for LPAR 1
are assigned a home book of 1 dedicated to physical
CPUs on book 1. Similarly, the eight shared logical CPUs
for LPAR 2 are assigned a home book of 2 and are
preferentially dispatched on the physical CPUs on book 2.
The next section describes how this preferential
dispatching is done.

Dispatching decisions on the z990
Physical CPU selection by the LPAR hypervisor dispatcher
is controlled by affinity masks. Each logical CPU has an
affinity mask, which represents the candidate physical
CPUs on which the logical CPU can run. This mask is

Figure 2

Resource allocations for the sample logical partition activation
sequence for the system described in Figure 1.

HSA – 1 GB
LPAR 1 – 63 GB

Book 0
Eight CPUs

dedicated to LPAR 1

LPAR 2 – 32 GB
LPAR 4 – 16 GB
LPAR 5 – 16 GB

Book 2
LPAR 2 – Eight logical CPUs,

weight 400
LPAR 5 – Eight logical CPUs,

weight 100

LPAR 1 – 64 GB

Book 1
Eight CPUs

dedicated to LPAR 1

LPAR 3 – 64 GB

Book 3
LPAR 3 – Eight logical CPUs,

weight 200
LPAR 4 – Eight logical CPUs,

weight 200

I. G. SIEGEL ET AL. IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

538

called the global affinity mask, since it represents the
complete set of physical CPUs on which the logical CPU
can run. These masks take into account any asymmetrical
features a processor might have, physical CPUs that have
been dedicated to logical CPUs, and special types of
CPUs (such as integrated coupling facilities, or ICFs).
For the z990, as stated above, each logical CPU has
been assigned a primary home book. In addition, a
second, primary book affinity mask has been established
for each logical CPU with the candidate physical CPUs
on the assigned home book. Both the global and the
primary book affinity masks are created as a result of the
preceding resource allocation algorithms. For a dedicated
logical CPU, the global and the primary book affinity
masks are equal and contain only one physical CPU. For
a shared logical CPU, such as one from LP2, the primary
book affinity mask contains all of the physical CPUs from
book 2 and the global affinity mask contains all of the
physical CPUs from books 2 and 3. The dispatcher
selection process is then modified to utilize this primary
book information.

The first choice for assigning a logical CPU is to an idle
physical CPU (i.e., a physical CPU in wait state). The
available physical CPU must be a valid candidate for the
logical processor. Prior to the advent of the z990 system,
the hypervisor first sought to match the global affinity
mask of the logical processor with the idle physical CPUs.
If the physical CPU on which this logical CPU was last
dispatched was currently available and no other logical
CPU had since been dispatched on that physical CPU,
the logical CPU was assigned to that same physical CPU.

The first change to the assignment algorithms for the
z990 system is that the check for any other logical CPU
being dispatched on this physical CPU is removed. In
prior machines, if some other logical CPU had run on the
physical CPU in the interim, no L1 cache or translation-
lookaside buffer (TLB) entries for this logical CPU would
remain in the physical CPU. The new z990 second-level
translation-lookaside buffer (TLB-2) makes reassignment
to the same physical CPU in this situation very fortuitous.
Multiple sets of TLB-2 entries are “cached” and managed
for each physical CPU.

If it is determined that the last physical CPU on which
the logical CPU was dispatched is not available, a search
is made of the remaining idle candidates for the least
recently dispatched physical CPU. The least recently
dispatched algorithm is used in an attempt to choose a
physical CPU that is least likely to be a “good choice” for
some other logical CPU that may soon request assignment.
During the search, physical CPUs that were last dispatched
for the same logical partition as the requesting logical
CPU are biased to appear better because some useful
data may exist in the L2 cache for the common data
from the same logical partition.

The second change to the assignment algorithms for the
z990 system is in this least recently dispatched search. In
the event that a logical CPU has migrated away from its
home book because of previous conditions and contention,
where should it be dispatched next? Is the best approach
to immediately try to bring home that logical CPU, or to
attempt to make use of the residual L2 cache on the book
to which the logical CPU migrated? The notion that the
migration would have taken place because of contention
on the home book may, in itself, indicate that the home
book was overallocated for the actual assigned workload(s).
Initially, it appeared that the best course of action to
obtain a performance benefit would be to attempt to find a
physical CPU on the book to which the logical CPU was last
dispatched, even if this is not the home book of the logical
CPU. This would dynamically make use of the resources
to which the logical CPU was last dispatched. However,
performance tests showed that the most important criterion
was to return to the home book as quickly as possible.
This criterion was shown to be important enough to
override even the match with the last dispatched physical
CPU as well.

Thus, the net change for z990 is that the search for the
least recently dispatched idle physical CPU was modified
to search one of the following three lists (The first
nonzero list is the only list that will be searched since, if
nonzero, a place to assign the logical CPU is guaranteed.):

1. A list of idle candidate physical CPUs on the home
book of the logical CPU.

2. A list of idle candidate physical CPUs on the same
book to which this logical CPU was last dispatched.

3. A list of all idle candidate physical CPUs on the
machine.

As seen above, if there is an idle physical CPU available
for selection, the logical CPU is dispatched immediately to
a physical CPU. There is no notion of delaying a logical
CPU dispatch because a physical CPU on its home book
is not currently available.

Next, the dispatcher must deal with situations in which
no idle candidate physical CPUs are available for selection.
Basically, if no physical CPUs are idle, the lowest-priority
dispatched unit of work (logical CPU) on a candidate
physical CPU is sought. The displaced unit of work must
be of a lower priority than the unit of work being
dispatched.

The search for the lowest-priority dispatched unit of
work is modified for the z990 system in a manner similar
to the search for idle physical CPUs. The difference here
is that each of the three lists must potentially be searched,
in the order stated below. The first search that finds a unit
of work to displace is used. Of course, checks are made to
determine that the lists are actually different in order to

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 I. G. SIEGEL ET AL.

539

avoid unnecessary repeated processing. The search order
is as follows:

1. A list of candidate physical CPUs on the home book of
the logical CPU (the affinity mask of the logical CPU
home book).

2. A list of candidate physical CPUs on the book to which
the logical CPU was last dispatched.

3. A list of all candidate physical CPUs on the system (the
global affinity mask of the logical CPU).

If lower-priority work cannot be found to preempt, the
logical CPU must wait its turn in the dispatch queue.

Reoptimizing primary book assignments on the z990
system
Once established, physical CPU affinity for a dedicated
logical CPU cannot change because the hypervisor does
not yet have the ability to rededicate a different physical
CPU transparent to the logical partition.

Shared logical CPU affinities determined to be optimal
at logical partition activation may require reevaluation
when the availability and usage of system resources
change. Since the distribution of logical CPU weights
among other logical partitions can affect the optimum
affinity for any particular logical partition, an occurrence
necessitating reoptimization generally affects all currently
active logical partitions using shared logical CPUs.

The following events require reoptimization:

● Configure ON of additional physical CPUs, as for
concurrent capacity backup (CBU).

● Configure OFF of physical CPUs, as for concurrent
CBU undo.

● Dedication of a physical CPU to a logical CPU if the
dedication reduces the number of nondedicated physical
CPUs remaining on its book below the maximum number
of logical CPUs with affinity to that book, for any
logical partition with shared logical CPUs.

● Checkstop 2 of a physical CPU when no spare is
available on the system.

● Transparent sparing 3 of a checkstopped physical CPU
when the CPU brought into the configuration comes
from a book different from the one containing the
broken CPU.

● Logical partition activation of shared logical partitions

so that distribution of shared weights can be equalized
among all of the books.

● Configure ON of a shared logical CPU. Reoptimization
is limited to the logical CPUs of the initiating logical
partition to avoid excessive churning of remaining
logical partitions.

Future potential enhancements
Although PR/SM makes the best choice possible when
allocating resources to a logical partition, there are times
when a less than optimal solution is all that can be
achieved, primarily because of resource fragmentation.
LPAR does not currently have the infrastructure to
transparently change the backing physical CPU for a
dedicated logical CPU, nor is it able to dynamically
change the book(s) providing backing physical increments
for memory ranges owned by logical partitions. Though
not as important to overall performance as logical CPU
dispatching, the location of memory for a logical partition
does play a role. While the current memory allocation is
static, it may be possible to reallocate memory increments
dynamically to better contain resource fragmentation from
multiple logical partition activity.

Future eServer plans striving for even higher overall
availability could include such functions as concurrent
book replacement, which would require that these
capabilities be supported to avoid negative impact on
any logical partitions currently using the resources on
the book to be replaced.

These capabilities can also be used to maintain an
optimal distribution of physical CPU resources and
memory among the active logical partitions, effectively
eliminating compromises brought on by resource
fragmentation. Further improvements could be made to
evaluate the logical partitions on the basis of properties
such as quantity and relative weight of their logical CPUs,
and to provide the optimum solution for the most highly
valued logical partitions. The current implementation is
somewhat constrained by the order of logical partition
activation, which does not necessarily indicate the relative
importance of the workloads of the logical partitions.

Maintaining a single-system image on the z990
From the earliest design discussions for the z990 system,
a primary goal has been to shield the book structure
from computer operators and operating systems. An
understanding of the performance and RAS (reliability,
availability, serviceability) ramifications of a multiple-book
system would have involved a steep learning curve and
pervasive changes to all of the premier IBM operating
systems. Keeping customer management of this additional
complexity simple is a primary goal on the latest zSeries
line of servers.

2 In certain situations, it is impossible or undesirable to continue operation when a
machine error occurs. In these cases, the CPU may enter the checkstop state. In
general, the CPU may enter the checkstop state whenever an uncorrectable error
or other malfunction occurs and the machine is unable to recognize a specific
machine-check-interruption condition.
3 Transparent CPU sparing is a function that automatically replaces a failed
physical CPU with an unused “spare” CPU without loss of data and continues
running the instruction stream with no discernible interruption. This replacement
is “transparent” to the zSeries LPAR hypervisor and to any software running in a
logical partition.

I. G. SIEGEL ET AL. IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

540

An IBM eServer, though comprising multiple books,
each with its own CPUs, L2 cache, memory, and I/O, is
nevertheless a single system. The purpose of the PR/SM
has been to foster this (correct) perception by limiting
multiple-book awareness and management of the disparate
resources to itself. Effectively presenting a single-system
image to all other entities maximizes performance
capabilities and simplifies management of the z990.
Having PR/SM optimize the usage of resources
transparently as resources are added or removed or
workloads are added or removed enhances the self-
optimizing strengths of zSeries servers. Furthermore,
should changes to the book-form topology be required for
future systems, PR/SM can change with the system, while
software in the field does not have to be updated.

Conclusions
In this paper we have described the enhanced self-
managing aspects of the z990 system as they pertain to
hardware resources needed to operate servers, in particular
CPU and memory resources. The omnipresence of the
LPAR hypervisor permits the supported number of
resources to be scaled up immensely, allowing for large
consolidations of servers onto a single platform. This
horizontal growth does not require changes to the
applications deployed on these servers, since the
underlying system topology is transparent to them.
The approach also allows operating systems to scale
themselves up on their own timetable if and when
this is required.

Acknowledgments
The authors thank the anonymous reviewers of this paper
for their insightful comments.

*Trademark or registered trademark of International Business
Machines Corporation.

References
1. IBM Corporation, z/Architecture Principles of Operation

(SA22-7832); see http://www.elink.ibmlink.ibm.com/public/
applications/publications/cgibin/pbi.cgi/.

2. IBM Corporation, zSeries 990 Processor Resource/Systems
Manager Planning Guide (SB10-7036); see http://
www.elink.ibmlink.ibm.com/public/applications/publications/
cgibin/pbi.cgi/.

3. W. J. Rooney, J. P. Kubala, J. Maergner, and P. B. Yocom,
“Intelligent Resource Director,” IBM J. Res. & Dev. 46,
No. 4/5, 567–586 (July/September 2002).

Received September 22, 2003; accepted for publication

Ira G. Siegel IBM Systems and Technology Group,
2455 South Road, Poughkeepsie, New York 12601
(isiegel@us.ibm.com). Mr. Siegel is a Staff Software Engineer
supporting development in the zSeries LPAR hypervisor. He
received a B.S. degree in zoology from Rutgers University
and an M.S. degree in computer science from Villanova
University. Since joining IBM in 1989, he has worked on
LPARs, developing such diverse items as dynamic storage
reconfiguration, concurrent patch, and concurrent CPU
upgrade.

Beth A. Glendening IBM Systems and Technology
Group, 2455 South Road, Poughkeepsie, New York 12601
(glenden@us.ibm.com). Ms. Glendening is a Senior
Programmer in the z/OS Core Technical Design Team
Department. She received a B.S. degree in chemical
engineering from Rensselaer Polytechnic Institute and
an M.S. degree in computer science from Union College,
joining IBM in 1982. Since then, she has worked on
S/390 architecture verification test tools, z/OS workload
management development, z/OS RACF development,
porting Tivoli applications to the z/OS platform, and
zSeries logical partitioning.

Jeffrey P. Kubala IBM Systems and Technology
Group, 2455 South Road, Poughkeepsie, New York 12601
(kubes@us.ibm.com). Mr. Kubala is a Senior Technical
Staff Member in the z/OS Core Technical Design Team
Department; he is currently the technical team leader for
the zSeries LPAR hypervisor. He received a B.S.E. degree
in computer engineering from the University of Connecticut,
joining IBM in 1981. Since then, he has worked on compiler
design and development, OS/390 Hiperbatch, and S/390 and
zSeries logical partitioning. In addition to his role as the
zSeries LPAR hypervisor technical team leader, he is actively
engaged with the iSeries and pSeries hypervisor teams as a
technical consultant.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 I. G. SIEGEL ET AL.

541

March 18, 2004; Internet publication May 6, 2004

