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The History of Language  Processor  Technology in IBM 

The history of language processor technology in  IBM is described in this paper.  Most of the paper is devoted  to compiler 
technology; interpreters,  assemblers, and macro  systems are discussed  briefly. The emphasis is on scientific contribu- 
tions  and  technological advances  from  a historical perspective. The synergistic  relationship between theory andpractice 
is a subtheme. 

Introduction 
In 1953  IBM introduced an  early “automatic-program- 
ming” system: Speedcode for the  IBM  701 computer. 
The goal of the system was to [l] “. . . lessen the 
enormous burdens of the programmer by providing a 
larger  and  more convenient instruction repertoire than a 
given  machine provides.” In the same paper John Backus 
and Harlan Herrick go on to state: “There are two 
principal methods by  which  automatic-programming sys- 
tems  make these nonmachine operations available to the 
programmer: the interpretive method and the compiling 
method.” In the almost 30 years that have intervened 
since these observations were  first  made, methods for 
solving “the programming problem” have become  more 
diverse and sophisticated, but the basic  problem  remains. 
Language processors-compilers, interpreters, macro 
systems, and assemblers-are still the principal  methods 
used. In this paper we trace the history of IBM’s contri- 
butions to the techniques used  in today’s language  pro- 
cessors. The paper concentrates on IBM’s  scientific  and 
technological contributions, covering  only  widely used, 
general purpose techniques or those of particular scien- 
tific or historical interest. 

ment into its component parts were both elaborate and 
language-specific. The problem became the subject of 
numerous theoretical investigations  and  spawned a sub- 
field  of computer science: formal  language theory. To- 
day, elegant, language-independent  parsing systems exist 
and are a common component of production compilers. 
The synergistic relationship between theory and practice 
continues to play a vital  role in the development of 
language processor technology. This relationship is a 
subtheme of the paper: Particular attention is paid to 
tracing the origins  and  evolution of various techniques. 

The history of language processors in  IBM  divides 
quite naturally into five periods, generally  delineated by 
the introduction of significant  new products. The  first 
period, covered in the section on “Early history,” starts 
with  the introduction of the IBM  701  in  1952. In 1954 
work  began  on FORTRAN I-a language and system which 
established the foundations of compiler technology, set 
standards rarely achieved today, and, as a result, dramat- 
ically accelerated compiler development. The second 
section is devoted entirely to the FORTRAN I compiler. The 
period  from the introduction of the FORTRAN I compiler to 
the introduction of the System/360--“The late fifties  and 
early  sixties’’-is the subject of the third section. “The 
mid- and late sixties” is followed by “Recent history: the 
seventies,” concluding the main presentation. The sum- 
mary recapitulates the central ideas which have led to the 
elegant solutions we have today. The paper concludes 
with  some personal observations and predictions. 

The development of language processor technology, 
particularly compiler technology, is intimately inter- 
twined  with the development of computer science. Ad 
hoc solutions to pragmatic problems have continued to be 
replaced by elegant algorithms. Large, amorphous, seem- 
ingly intractable problems have been  divided  and  con- 
quered. The  best example of this is in the area of parsing. 
Early  solutions to  the problem of decomposing a state- 
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Early history 

Historical  context 
In 1952 IBM introduced its first  production-line electronic 
digital computer and with  it IBM’s first  language proces- 
sor-the NR9003 symbolic  programming system. Some 
surprisingly advanced techniques already existed. 

Libraries of subroutines and the use of combining 
routines (“compilers”) had been proposed by  Goldstine 
and  von  Neumann [2] and existed in several systems. A 
book on programming [3] published  in 1951 describes a 
system having open and closed subroutines and preset 
and  program parameters. Preset parameters were incor- 
porated into the subroutine when it was read into the 
system and  remained  fixed for all executions; program 
parameters were passed with the call to  the subroutine. 
The programmer’s task was to write a combining routine 
which  would take the proper subroutines from tape and 
modify them appropriately. The motivation for these 
facilities  was to reduce programming time; they were the 
first step in the direction of using a computer to help 
prepare programs for itself. 

A second step was the use of “a programmer’s lan- 
guage”  instead of the machine’s  language. This evolved 
quite slowly. The use of symbols for machine operations 
came first, then relative numbers to which  fixed  reloca- 
tion  values  could be added  became  common for instruc- 
tion and data locations. However, by 1952 a “floating- 
address” notation  had been developed by  Wilkes [4, 51: 
Any  word or group of words could  be designated by a 
letter or letter-number combination. The assembler for 
this language [5] had what  was to become the classic 
structure. Two passes were made over the program: the 
first to assign a location to each word, and the second to 
fill  in the correct values for the floating addresses. 

Wilkes [4] also proposed “synthetic orders” which 
expanded into several parameterizable floating-address 
instructions. The expander acted as a preprocessor to the 
assembler, and its output could  be saved to avoid  unnec- 
essary re-expansion on subsequent assemblies. Modem 
macro preprocessors are clearly elaborations of this early 
system. 

The idea of a compiler had  begun to develop and 
several “compilers” existed [6]. The programmer  could 
write pseudo-codes to refer to subroutines, and the 
compiler  performed the combining function envisioned 
by von Neumann. The function of a compiler  was to 
interpret the pseudo-code, look  up the subroutines in the 
library, then adjust and assemble them into a complete 
program. Although there is a vague resemblence between 

these early compilers and modem compilers, the struc- 
ture and tasks of modern compilers  had not yet emerged. 

a 

Early IBM assemblers 
The first  symbolic assembly program produced by  IBM 
was the NR9003 (described but  not  identified in  [7]) for 
the 701. It was developed by the 701 engineering  manag- 
er,  N. Rochester, so that the engineers  could test the 
machine. It made  program  modification easy by  using 
symbolic addresses and by permitting the assembly of 
separately written programs. Different  names for the 
same location could be associated by the use of a SYN- 
onym pseudo-operation. Thus  aliasing, the bane of com- 
piler writers, made an early-albeit necessary-appear- 
ance. 

The most  widely used IBM  assembly  program for the 
701 was the IBM SO2 [8] written by  William McClelland. 
This assembler supported relative addresses from an 
origin  and  performed extensive error checking. Hardware 
errors were frequent and often undetected by the hard- 
ware, so checking methods and restart procedures were 
important design criteria in early systems. 

The concept of “regional programming” [8, 91 was 
used to effect  program relocation: Storage was  divided 
into regions into which the various programs, data,  and, 
in at least one version of the idea [ 10, 111, dynamically 
overlaid, temporary storage for subroutines could  be 
placed. This latter usage was  very close to today’s use of 
dynamic, stacked storage areas by procedures in  such 
languages as PLII. The implementation techniques were 
necessarily quite different  since the 701  did not have 
index registers. 

Early higher-level  language  processors 
IBM’s first higher-level language  was Speedcode 
[ 1, 12, 131 developed  by John Backus  in 1953 for the 701. 
He stated [12] that  the “. . . most important reason for 
having a Speedcoding calculator, in addition to the 701,  is 
a matter of economy . . . . Programming  and testing costs 
often comprise between 50 and  70%  of the total cost of 
operating a computing installation. . . . Speedcoding  re- 
duces coding and testing time considerably.” The system 
was an interpreter which caused the 701 to behave like a 
three-address, floating-point calculator. Although  it re- 
quired over 30% of the memory (310 words), it supported 
an extensive repertoire of mathematical, I/O, and check- 
ing functions which were compactly expressed. 

Indeed memory space, both  primary  and secondary, 
was a very scarce resource and  strongly  influenced the 
design of language processing systems for many years. 
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A compiling system, PACT I [14-201 for  the 701 (and 
PACT IA [2 I] for  the 704), emphasizing storage optimiza- 
tion, was started in late 1954 by a committee of IBM 
employees and customers.  The compiler automatically 
allocated primary storage in regions for  programs  and 
data.  In addition to  space for  the user’s  scalars,  vectors, 
and arrays, special regions existed for temporaries and 
for the  “perishable” data used by library  routines. It was 
noted [19] that a compiler might be able to make an 
optimum automatic  storage allocation but  it would re- 
quire that  the compiler “follow the logic of the entire 
program.”  Steel  noted [21] that “. . . logically it  has a 
good deal of similarity to  the celebrated ‘four color’ 
problem.” With the exception of work by Ershov [22], 
these ideas  were not fully explored until very recently 
[23, 241. It is interesting to  note  that  the compiler  used a 
technique when constructing and accessing the table of 
variables which has since  become  known as hashing. This 
technique, in almost exactly the  same  form, is used 
commonly today. Knuth [25] cites H. P.  Luhn with 
originating hashing and describing it in an  IBM memoran- 
dum written in 1953. At about the  same time  another 
group of IBM people,  Gene Amdahl,  Elaine  Boehm, 
Nathaniel Rochester, and  Arthur  Samuel,  independently 
developed  hashing for  use in an assembly program they 
were writing for the 701. In 1979 a nice theoretical result 
[26] was  obtained by J. L. Carter and M. Wegman which 
guarantees  a good expected  performance for  any  set of 
variables. It will undoubtedly  become the standard  hash- 
ing method  used in future compilers. 

e SOAP: an  optimizing  assembler 
One of the earliest IBM systems to  feature optimization 
was SOAP (Symbolic Optimizer and Assembly Program) 
for the  IBM 650. By storing data and instructions  on the 
650 drum so that  the drum  was in the right position when 
data  or the next  instruction was required, a program 
might run as much as six or  seven times faster [27]. While 
automatic optimization did not  achieve such dramatic 
improvements, a factor of as much as 3.8 was obtained by 
a simple, two-pass preprocessor [28]. In designing this 
preprocessor, a predecessor of SOAP, optimum was 
taken as the  point at which the improvement-per-unit- 
effort  is maximized. The study of program optimization 
has continued to emphasize the development of faster 
techniques for improving the  execution  time of a pro- 
gram. 

Most  programs at  the beginning of this  early period 
were written in machine language. By the end of the 
period  several automatic programming systems existed 
which provided a synthetic  “computer” different from 
the real computer. Many of these systems  were, howev- 
er, costly to  use,  either because  they  were interpreters or 

because they  relied  on  precoded  routines to implement 
functions in the language not directly supported on the 
machine. 

FORTRAN I 

The project  and  its  context 
Early in 1954 the FORTRAN I project  was  formed by John 
Backus.  A  fundamental  question  posed by the project 
was [29] “. . . can a machine  translate a sufficiently rich 
mathematical language into a sufficiently economical pro- 
gram at a sufficiently low cost to  make  the whole affair 
feasible?”  A major goal [29] was to provide  an  automatic 
programming system which “. . . would produce pro- 
grams almost as efficient as hand  coded ones and do so on 
virtually every job.” This seemingly impossible goal was 
met  to  an  astonishing  degree. In some cases it  produced 
code which was so good that users thought it was wrong 
since  it bore no  obvious relationship to  the source. It  set a 
standard for  object program efficiency which has rarely 
been  equaled. The FORTRAN I compiler, begun in 1954 and 
completed in  1957, established  modern  compiler  tasks, 
structure, and techniques. Indeed  some of the  techniques 
are still used in nearly the same form. 

The compiler was developed for the 704, an IBM 
machine introduced in 1954 featuring built-in floating 
point  and indexing capabilities. It compiled the FORTRAN I 

language which was defined as  part of the project and 
evolved considerably as  the project progressed.  In  order 
to achieve  its efficiency goals, the high level arithmetic 
statements in the  source program had to be translated so 
as to minimize storage references and,  even more impor- 
tantly,  subscripts and their  control  had to make maximal 
use of the machine’s three index  registers. How all of this 
was achieved is described in [30], formalized in [3 11, and 
reviewed in  [32] and [29]. This latter  paper in particular 
contains a penetrating  analysis of the project-its origins, 
development,  and impacts-and should be  read by every- 
one interested in computer  science  history or in compil- 
ers. 

e The  overall organization of the compiler 
The compiler was divided into five sections (phases in 
today’s terminology): 

1.  A  statement identifier and arithmetic statement trans- 
lator, 

2. A  subscript  and DO statement  analyzer, 
3.  A  transformer  which  interfaced  sections 2 and 4, 
4. A control flow analyzer, 
5. A global register allocator, and 
6. Final  assembly. 

We now discuss  sections 1 ,  2,  4, and 5 in more  detail. 637 
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Translation 
Today’s compilers often use elegant, language-indepen- 
dent translator systems. The theory behind these systems 
did  not  really start to develop until the 1960s, but the 
problem appeared in its full  form  in this system. Given an 
arithmetic expression, the translator first created a se- 
quence of arithmetic instructions, then transformed this 
sequence to eliminate redundant computations arising 
from the existence of common subexpressions (their 
term) and to reduce the number of accesses to memory. 
These transformations have been the subject of numerous 
investigations ([33] contains a good set of references), and 
we  now  know that an optimal  solution is inherently hard. 

Subscript  and DO statement  optimization 
The translator did  not  complete the translation of DO 

statements and subscripts-that was the function of sec- 
tion 2, designed and developed by R. A. Nelson and I. 
Ziller. A symbolic index register corresponding to each 
particular subscript combination of a variable was created 
by the translator and existed until section 5 had  assigned 
registers. The function of section 2 was to optimize the 
calculation of subscripts and DO control statements. The 
constant parts of the calculation were incorporated into 
operand addresses; operations involving DO control varia- 
bles were transformed into index register increments 
when possible; loop-independent parts of the calculation 
were removed from the loop; and the loop exit test was 
transformed to use one of the registers needed for index- 
ing. A nest of DO loops for array calculations was 
sometimes replaced by a single  loop  in the generated 
code!  Some of these transformations are now  subsumed 
in a somewhat more general optimization  called “strength 
reduction” [34], but, with  one  possible exception [35], 
today’s production compilers do not  generally do  as well. 

Flow analysis 
The function of sections 4 and 5 of the compiler  was to 
assign  real registers to the symbolic registers. Except for 
the symbolic registers and the assumption that they  could 
all be assigned to real registers, the program on entry to 
section 4 was complete. The basic task, therefore, was to 
assign the symbolic registers to real registers so as to 
minimize the time spent loading  and storing index  regis- 
ters. Section 4 of the compiler  did a flow analysis of the 
program to determine the pattern and frequency of  flow 
for use in section 5 where the actual assignment  was 
made. 

Basic  blocks (“a basic block  is a stretch of program 
which has a single entry point  and a single exit point” 
[30]) were found and a table of immediate predecessor 
blocks constructed. Here,  then, is the beginning of the 

538 elegant and fast control flow algorithms of today. Basic 

blocks  and predecessor (successor) relationships are in- 
puts to these algorithms. 

The other task performed by section 4 was the compu- 
tation of a probable frequency of execution of every 
predecessor edge. To do this Lois Haibt developed a 
Monte  Carlo “execution” of the program  with  initial 
weights  assigned to each edge. This  method  is  no  longer 
commonly  used to identify frequently executed areas of a 
program; rather the program  topology is used more 
directly  but  with less resultant precision. 

Register  assignment 
Using the edge execution frequencies, regions  were 
formed so that registers could  be  assigned to the most 
frequently executed areas (usually innermost loops), then 
to the next most frequently executed areas,  etc., until the 
entire program  had been treated. When a region  had  been 
processed, its entry and  exit conditions were recorded: 
the values to be loaded on entry and stored on exit. A 
processed region was not  re-examined  when its contain- 
ing  region  was processed, but the entry and exit  condi- 
tions and whether or not it  had  any  unassigned registers 
were used. The assignment of registers within a basic 
block  used a “distance to next use” criterion to deter- 
mine  which register to displace when out of registers. 
“Activity bits” were used to determine the necessity of 
storing a value in a register for subsequent use if the 
register had to be reused. In case of register assignment 
mismatches across basic blocks, an attempt was  made to 
permute the assignment. 

This register assignment method,  developed by Shel- 
don Best, was a phenomenal piece of work. The displace- 
ment  algorithm for straight-line code was later proved 
optimal [36] for the “one-cost model” [37]: A displace- 
ment costs the same whether you need to store the 
register contents or not. Until 1980, when  Gregory  Chai- 
tin [23] successfully  applied a graph  coloring  algorithm 
to the global assignment of registers, most  global  assign- 
ment  methods [38-401 were essentially variants on the 
FORTRAN I approach. 

0 An  assessment 
Perhaps the best way of demonstrating the results of this 
project is to show an example of its output-an output 
which startled this author. The FORTRAN program  in  Fig. 
1 moves array B to array A. The assembly  program  shows 
this being done with one loop instead of the two expected 
from the source. (FORTRAN stored its arrays column-wise 
and backwards; the 704 subtracted the value in the index 
register from the address.) 

The real results of the project are the influences it had 
on future compilers  and theory. Some of these effects 
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have already been mentioned; more will be discussed 
later. Suffice it  to  say  that  the technological fallout  from 
this  project has  been  extensive. 

The  late  fifties  and  early  sixties 

Characteristics of the period 
The period  from 1957, when the 709 was  announced,  to 
1964, when  System 360 was announced, was one of great 
optimism and little  discipline.  New  languages,  comput- 
ers,  systems, and ideas  appeared at an astonishing rate. 
By 1964 IBM implementations of FORTRAN, Comtran, 
COBOL, RPG, Autocoder, PRINT, FORMAC, GPSS, and  other 
languages  existed on  at  least  one of the  computers 
introduced  during the period: the 709-90, 707-70, 1401, 
1410-7010, Stretch, 7040-44, and  others.  Total  systems, 
such  as IBSYS for  the 7090, provided a unified execution 
environment  and a central  set of facilities to exploit the 
capabilities of such  hardware  features as buffered I/O. 
Time-sharing systems,  such  as  Quiktran, provided  on- 
line, interactive  facilities.  Formalisms emerged, and the 
understanding and  use of fundamental data  structures 
such  as lists and  trees became  widespread. However,  the 
spirit of the  period is probably best exemplified by the 
interest in  universal compiling systems.  The obvious 
problem created by the proliferation of languages  and 
computers led to numerous efforts to  provide a single 
system capable of compiling multiple source languages 
for multiple  target  machines. 

Some  interesting systems 

Language processors  for the 709, 7090-94 systems 
The first system  designed for  the 709,7090-94 computers 
was SOS or SCAT  (SHARE Compiler Assembler  Trans- 
lator) [41-461. It  was a very  complex system designed  by 
a committee  spread throughout the  country  and repre- 
senting many different  companies. It was to provide 
source-level debugging without the  cost of complete 
retranslation whenever  the program  changed or addition- 
al information was  needed.  The  central mechanism  was a 
“SQUOZE”  form of programs  arising from  the partial 
translation of various  source  inputs, including  incremen- 
tal  changes  from the  user.  It never  became a production 
system. It was late,  the general  quality was  poor, and 
there were  serious  performance  problems in “loading” 
multiple modules of SQUOZE  decks.  Furthermore, there 
was a reluctance to  change  from  the existing patterns of 
program  development and execution. 

Concern for  the compile-time  cost of translating pro- 
grams did not,  however, disappear. In  fact  the original 
FORTRAN I system  had already  been modified to handle 
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SOURCE 

DIMENSION A( IO, 10) 
DIMENSION B( 10,lO) 

DO 1 J=1,10 
DO 1 I=1,10 

1 A(1, J)=B(I, J) 

. . . . .  

RESULT 

LXD ONE, 1 load 1 into regl 
LOOP  CLA B+1,1 

ST0 A+1,1 
TXI * + l , l , l  add 1 to regl  and 

TXL LOOP,1,100 if regk100 
goto next inst 

goto loop 
. . .  

ONE , , I  data value one 
A BES 100 reserve 1 0 0  locs, 

ending  with A 
B BES 100 reserve 100 locs, 

ending  with B 

Figure 1 FORTRAN I translation of array move. 

FORTRAN 11-a language  featuring subroutines and COM- 
MON blocks of shared variables. These extensions  to- 
gether with the BSS loader  were a significant factor in the 
acceptance  and effective use of FORTRAN for large pro- 
gramming applications.  Assembly  language  programs  and 
separately  compiled  programs could be loaded and  exe- 
cuted  as a unit. 

In 1961 a decision was made to completely  rewrite the 
FORTRAN compiler to  improve  the compile speed  and  to 
support  the new FORTRAN IV language. Another  factor in 
the  rewrite decision  was the  new, integrated system, 
IBSYS,  for  the 7090: The new FORTRAN would be  an 
integrated component.  The new compiler [47] was neither 
very  fast nor did it  produce object code  as efficient as  the 
original compiler. The new  compiler did,  however, intro- 
duce a new transformation: “anchor pointing” to opti- 
mize FORTRAN IV’S logical expressions. The evaluation 
order of the  components of a logical expression  was 
revised to minimize the time  required for evaluation. 

The Corntran and COBOL compilers 
A compiler for  Comtran (Commercial Translator),  an 
early  IBM language  supplanted by COBOL, was  delivered 
in  early 1961. The  Comtran compiler  contained a number 
of new and very innovative techniques. Unfortunately, 
they were never published. The project manager, Richard 
Talmadge, invented a table driven scanner (probably the 



first) and  extended the PACT IV hashing methods for  use 
in this  system. Robert Rock developed a nice method for 
handling n-tuples. Much of the system  design  was  used in 
the 7090 COBOL, where  it was augmented by a very  early 
table management system,  CITRUS, written by Claude 
Coray. 

The scanner  used an  operator  precedence  table with a 
mechanism for handling parentheses and varying num- 
bers of operands. As the input string was scanned, a table 
of operators  was built giving the precedence and position 
of each.  This  table  was then sorted by precedence value 
and  used to  generate n-tuples from the  text string. Each 
unique n-tuple was assigned a unique symbolic  register to 
hold the result, and the  text string was dynamically 
modified (reduced) to  the symbolic register replacing the 
operator and operands. Before assigning a symbolic regis- 
ter  to an n-tuple, a search was made to determine if it had 
occurred previously in the statement. If it had,  the n-tuple 
was  not put out-a common subexpression had been 
found. On completion of the  scan of a statement  the 
number of symbolic registers used in the  output was 
minimized. 

The scanner  was  driven by a table containing  a set of 
syntax vectors. Each  vector contained  an  encoded  ques- 
tion related to  the  scan  state and two branch  target 
locations: one if the  answer was true,  the  other if false. 
An interpreter  used the table to determine the routing to 
the target action  routines. 

The dictionary  organization  was strikingly similar to a 
form commonly used today. The  source program names 
were  stored in a symbolic dictionary, attributes in an 
attribute  table. These tables  were packed, and hashing 
through a sparse intermediate  table was used to look up 
names. 

These  techniques  were  carried over  to the COBOL 
compiler developed for IBSYS [48]. In addition to incor- 
porating these early  and  excellent techniques,  the 7090 
COBOL compiler was  also one of the first systems [49] to 
use a dynamic table management and spill system:  CIT- 
RUS (for Coalesced  Indirect  Table  Reference Unification 
Scheme). The compiler’s  tables could be  opened, closed, 
relocated, expanded, and  contracted during execution. 

FVRTUAN for  the 1401 
The 1401, announced in 1959, was a  small,  character- 
oriented  computer imposing a severe set of constraints  on 
the FORTRAN compiler design [50]. It  was designed to 
operate in 8000 storage locations (characters) with tape 
usage being optional. We mention the FORTRAN compiler 

540 for the 1401 in this  history  because  it exemplifies an 
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interesting design for a small system. The compiler con- 
sisted of 64 phases,  the first three of which were loaded 
before the program. The entire  program was then  read in, 
and the remainder of the compiler was passed against the 
program,  one phase  at a time. When the compiler  was 
finished, the program  was in executable form in memory 
and could be  executed immediately. An object  deck  was 
optionally available. While the  system did not permit 
arbitrarily large programs,  it made very effective use of 
the space  available  and did not incur  the overhead 
associated with storing  intermediate  results  on tape. 

Quiktran 
In 1%3, Quiktran,  IBM’s first time-sharing system, was 
operational [51, 521. Developed by J. Morrissey, T. 
Dunn, J. Keller (Rivlin), E.  Strum, and G .  Yang, it 
supported 40 concurrent users on  the 7040-44 computers 
with a FORTRAN interpretive  system providing interac- 
tive, source-language-level debugging. The system could 
act  as a desk  calculator and could dynamically alter the 
program during execution. Each executable  statement 
was  stored  internally as a polish string created by using a 
bi-directional “forcing table,” which was also used to 
recreate the  source.  Because of this capability and be- 
cause the language was  standard FORTRAN, a program 
could be debugged using this system,  then  recreated for 
compilation by a standard FORTRAN compiler. The PUI 
Checker [53], currently available for debugging PUI pro- 
grams,  provides many of these  same facilities but does 
not recreate the source from  the  internal  form  used by the 
interpreter. 

The Stretch-Harvest  compiler 
An early  and persistent goal of compiler designers has 
been the construction of a single compiler for multiple 
source languages and multiple target machines. The com- 
piler for  the  Stretch-Harvest computers compiled FOR- 
TRAN and Alpha language programs and was designed to 
handle other languages as well. The  two  source languages 
were as dissimilar as FORTRAN and COBOL, and the 
Harvest attachment to  Stretch  bore no  resemblance to its 
host. One of the central  notions in the design of many 
such systems is that a common internal (intermediate) 
language (IL) can  be found for expressing all the source 
languages. Ideally  this common IL is such  that very little 
language-specific code is needed in the  system.  In the 
Stretch-Harvest  compiler  the common IL was a high level 
Autocoder to which each source language could be trans- 
lated by one pass. 

Having translated the  source  to IL, the second phase of 
the compiler made  three passes over  the program to map 
storage and expand subscripts,  to collect flow and sym- 
bolic register-usage patterns, and to assign index regis- 
ters.  The second phase produced  macros for input to a 
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subsequent  macro-assembler.  A  variant of an early list 
processing system [54] developed by H.  Gelernter, J. 
Hansen, and C.  Gerberich  was used in phase 2 to manage 
the internal data  structures. 

The system was not a success; compilation  time was 
unacceptable. The interfaces  between phases were in 
externally  readable form, costly to  construct and  costly to 
read  and write; either language, and FORTRAN in particu- 
lar, could have been compiled  much  more efficiently by a 
language-specific system. Compiler technology, and  the 
art of effectively utilizing it, was not advanced enough  in 
1960 for such a system. 

0 Universal  compiling  systems 
The  Stretch-Harvest compiler design was,  however, con- 
servative when compared with proposals for  some  other 
language  processing systems. Motivated  by the prolifera- 
tion of languages and  computers  and by the continued 
scarcity of skilled programmers, particularly  experienced 
compiler designers,  the idea of a universal compiling 
system  became very popular. In  the  late 1950s there was 
considerable interest in the design of an  UNCOL (UNi- 
versa1 Computer  Oriented Language) [55]  to which any 
high level language  could be translated and  from which 
executable programs  could  be created  for  any machine.  A 
new language would require a new translator  to  UNCOL, 
and  then compilers for  that language would exist  on all 
supported  computers. Similarly a new computer required 
one translator from  UNCOL to get a family of compilers. 
Though  investigators soon despaired of finding such  a 
language, the motivating factors still existed. 

Within IBM there were two universal compiling sys- 
tems projects in the  early 1%Os: XTRAN [56] and SLANG 

[57]. Julian Green’s XTRAN approach was to  provide a 
boot-strapped, list-processing  system which transformed 
the  source string to  the object string. It  used auxiliary 
information about  source symbols and  operators  to trans- 
late  the  source language to a macro  language,  then  used 
macro definitions to  translate  the  macro language to 
machine  language, and finally optimization  information to 
optimize the  machine language. This approach  was in- 
tended  to minimize the  consequences of changes  to  the 
processor algorithm, the  source language, or  the object 
language. In 1962 a decision  was  made to  terminate  the 
XTRAN project and  concentrate  on  the much  more ambi- 
tious SLANG (Systems Language)  project  being  developed 
by R. Sibley. 

SLANG was both a  problem-oriented, machine-indepen- 
dent language and a compiler with a machine  description 
capability. The main  emphasis  in its initial formulation 
was  to achieve  machine  independence, thereby providing 
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portability of compilers  written in SLANG and, since the 
SLANG compiler  was  written in SLANG, of the SLANG 

system itself. As the  system developed, a syntax-directed 
facility was added  to  provide  source language  indepen- 
dence through the  use of an augmented BNF (Backus 
Normal  Form) [58] description of the  source language 
being compiled. The  source language description was 
compiled and used to  translate  the  input program to 
EMILs-Elementary Machine Intermediate Language 
statements. Tables defining the target  machine  character- 
istics were then  used to  translate  EMILs  to object code. 

The SLANG project  was terminated in 1965 when it 
became  apparent  that  the object code  produced, and 
hence  the SLANG system  and all compilers  written in it, 
was too inefficient. Machine independence failed for 
several reasons: there was no  adequate way to parameter- 
ize  the description of the machine-particularly its  I/O; 
when writing a program  in SLANG, users generally opti- 
mized it for a particular machine; and  the effect of storage 
size  on  the overall  organization of a compiler could not be 
described.  Language  independence  failed due  to  the lack 
of a satisfactory  method of semantics specification and 
because the  parameterization was done with respect  to 
existing languages (FORTRAN and COBOL). Any language 
with new or  extended  features became a problem to 
describe.  In  particular  the new language, PLn, was too 
difficult for SLANG. 

It is now generally accepted  that a special compiler- 
writing language is not necessary,  but if the goal is a 
reasonably efficient compiler  written in its own  language, 
it is essential that  that compiler  be capable of producing 
good code.  Techniques  for providing both a machine 
descriptive  capability and producing  good code  are only 
now beginning to  emerge. 

Early developments in the theory of parsing 
Program translators  today usually use a lexical analyzer 
(scanner) and a syntax  analyzer (parser) to recognize the 
substrings in the  source string. Lexical analyzers recog- 
nize  the tokens  (operators,  separators, identifiers,  etc.) 
using transition  diagrams  and finite state  automata. Syn- 
tax analyzers  recognize the substrings  (phrases) using a 
context-free grammar.  In  fact efficient parsers can be 
automatically constructed from a grammar. Many of 
these elegant systems  have their roots in the practical  and 
theoretical  efforts of this  period. 

The  syntactic  notation  BNF, commonly used to specify 
a grammar,  was  introduced by  John Backus in 1959 [58]. 
It  is discussed elsewhere in  this  issue. 

A major contribution to  the theory of parsing  was  made 
by  John  Cocke. Though not fully documented  at  the time, 541 
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it was  mentioned  in [59], and a variant,  the nodal  span- 
ning parse,  appeared in 1969 [60]. An excellent  discussion 
of the relevance of Cocke’s  parsing  method  was given by 
Robert Floyd in his 1978 Turing Award Lecture [61] and 
is  quoted in the  next paragraph. 

“In  the early 1960’s, parsing of context-free languages 
was a problem of pressing  importance in both compiler 
development and  natural linguistics. Published  algorithms 
were usually both slow and incorrect. John  Cocke, alleg- 
edly with very little  effort,  found  a fast  and simple 
algorithm [62], based  on a now standard paradigm which 
is  the computational form of dynamic  programming [63]. 
The dynamic  programming paradigm solves a problem for 
given input  by  first  iteratively solving it  for all smaller 
inputs. Cocke’s  algorithm  successively found all parsings 
of all substrings of the  input.  In this conceptual  frame,  the 
problem  became  nearly  trivial. The resulting algorithm 
was the first to uniformly run in  polynomial  time.” 

The  mid-  and late  sixties 

Characteristics 
On April 7, 1964, IBM announced the  Systed360.  The 
announcement included five basic, compatible computer 
models  with 19 combinations of speed and  storage capaci- 
ty;  the largest processor  was 100 times  more powerful 
than  the  smallest,  and  the main storage capacity ranged 
from 8192 bytes  to more  than eight million. The system 
was supported  by  a  powerful  operating system incorpo- 
rating several  data  base  access methods and interfaces to 
numerous  auxiliary storage and  input-output  devices. 

Language processors  for FORTRAN, COBOL, the new PL/I 

language,  and other languages  had to  support most of the 
configurations and  to function  in the environment  sup- 
plied by the operating  system. These  requirements, to- 
gether with the  fact  that many design decisions  were 
being made in parallel,  created a rather formidable  chal- 
lenge for  the  designers of these  systems.  Several “design 
points” determined by the maximum memory  size avail- 
able  to a system  were established to  cope with the 
memory constraints. Families of upwards-compatible  lan- 
guage processors  were  then  produced.  For example, 
three distinct FORTRAN compilers  were written  for  use 
with the main operating system OS: an E level requiring 
32 000 bytes, a G requiring 128 000, and  an H requiring 
256 000. 

Most of the language processor efforts  during  this 
period can be characterized  as  the engineering of existing 
technologies to fit the  constraints. FORTRAN H was an 
exception.  We  now discuss  that work and  some  other 
technological and scientific advances which appeared in 
the  late 1960s. 

0 FORTRAN H 

C. W. Medlock and E. Lowry, designers of the FORTRAN 

H optimizer, stated [38] that:  “For small loops of a few 
statements  (the FORTRAN H compiler) very often produces 
perfect code.”  This  was accomplished  by global (to a 
subroutine)  optimizations which generalized  and thus 
extended  the  transformations used  in  earlier FORTRAN 
compilers,  particularly FORTRAN I. Control flow analysis 
of the program was  based,  as in FORTRAN I ,  on a control 
flow graph in which the nodes represented  basic blocks. 
Loops arising  from constructs  other  than DOS were recog- 
nized, and “back dominators”  were found. A  back 
dominator of a node  represents  code which has  to be 
executed before code in the node of interest is executed, 
and  thus is a natural place  to look for common subexpres- 
sions and  to  place  code when the back dominator  is  less 
frequently executed. All subexpressions, not just  those 
related to  address calculations arising from subscript 
expansions,  were considered-one subexpression  at a 
time.  Advances in the technology since  that time  permit 
the identification of all formally  identical  common  subex- 
pressions in parallel. Numerous  other transformations 
and analyses, including a limited form of data flow 
analysis, were incorporated. 

The efficacy of these optimizations is  demonstrated by 
the  fact that fifteen years  after  its  release,  it  is still one of 
the  best product-compilers in terms of object code effi- 
ciency.  (Some improvements  have been made by R. G .  
Scarborough,  primarily  in the  area of subscript  expan- 
sions and register  allocation [35].) The design was incor- 
porated into  an optimizing  compiler for PL/I (PLIOPT) and 
also proved adequate  for supporting the FORTRAN compil- 
er itself, 70% of which  was  written  in FORTRAN. 

PLII 

Although the initial plans  for implementing the newly 
defined P u I  language for System 360 included a family of 
compilers,  only two, PLII F and PLn D, were  produced. As 
it  was, this was a monumental effort requiring great 
ingenuity: The language  was  large, the design  point  small, 
the operating system interactions extensive.  The imple- 
mentation of the new and comprehensive  facilities for 
storage  management, interrupt handling, and multitasking 
were  particularly  innovative. J.  Cox,  J.  Nash, and N. 
Clarke  were  most responsible  for pulling off the enormous 
engineering effort which at its peak involved  some 70 
people. 

Subsequent  to  the  release of the PLII F compiler, a 
technique  for optimizing PL/I was investigated [64] by  M. 
Elson, R. Larner, S. Rake, and others.  The thesis of the 
investigation  was that  context sensitive (“special cas- 
ing”) code  generation techniques  were  needed to  produce 
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good code  for a language as rich as PLII on a machine  such 
as  the 360 with its multiplicity of possible code sequences 
for even the simplest of functions. The form of the 
investigation  was to  produce a prototype  system in which 
each  statement was stored  as a tree augmented with the 
data  attributes,  and a tree-walking, interpretive subsys- 
tem  was  used to  generate code. Although this investiga- 
tion did not  directly  result  in a product,  the thesis has 
remained attractive.  The problem with it  is  the size of the 
code generators and  the consequent  probability of errors. 
Furthermore,  it  cannot deal effectively with transforma- 
tions requiring more global information, such as register 
assignment across  loops. A recent  system, based on a 
diametrically opposite  thesis,  is discussed later. 

0 APL 

Interpreting code  is  often  at  least  an  order of magnitude 
slower than executing it directly. The APL system is a 
counter example. L. Breed  and R.  Lathwell,  who, togeth- 
er with Roger Moore, built the  system,  state [65] that: 
“The APL processor  is interpretive; however,  because of 
the efficiencies afforded by array operations, program 
execution is often one-tenth  to one-fifth as  fast  as com- 
piled code.”  Another  factor is the excellence of the 
design. The  system, initially implemented on  the 7090 and 
then, in 1966, on  the 360, consisted of a supervisor and 
the  interpreter.  It was designed as a  total system in which 
the supervisor had complete  control over  system re- 
sources and the  supervisor-interpreter communications 
could  be simplified. The anticipated use of the system  and 
the language constructs were  carefully  considered  when 
making design choices. An interesting  evaluation of these 
choices and  the historical  setting in which they were 
made  is given in [66]. 

The ACS project 
The Advanced  Computing  Systems (ACS) project was a 
hardware-software project  started in 1964 as System Y at 
the IBM  Thomas J. Watson  Research Center.  The aim of 
the project  was the design of a very high performance 
system  for  the large scientific market.  From  the beginning 
of the project it was recognized that  the only way to 
realistically realize the performance  goals and make  them 
accessible to the  user  was  to design the compiler and  the 
computer at  the  same time. In this way features would not 
be put in the  hardware which the  software could not use 
or which the  software could support  more effectively. 
The  CPU,  for  example,  had a high degree of parallelism, 
both in fetching instructions  and  data and in instruction 
execution. Could the compiler schedule  the instruction 
stream  to take advantage of the  parallelism? It turned  out 
in fact  that  the experimental optimizing compiler  devel- 
oped to evaluate CPU designs could sometimes  do  better 
than carefully  hand-optimized code. 

In  order  to isolate the effects of changes in the  CPU 
design and  to modularize the  experiment,  the ACS com- 
piler classified the optimizations as machine  independent 
or machine dependent.  The machine independent analy- 
ses and  optimizations [67] included a general control flow 
analyzer, common subexpression elimination and  code 
motion, data flow analysis, strength reduction,  constant 
propagation, and  dead  code elimination; the machine 
dependent  transformations included  scheduling [a] and 
register  allocation [39, 691. With the  exception of sched- 
uling, most of the  other  analyses and  transformations had 
appeared in previous  IBM compilers,  particularly FOR- 
TRAN I and FORTRAN H. In  the ACS compiler  (which, like 
the  entire ACS system, never  became a product) the 
techniques were  generalized  and  isolated as much as 
possible  from source  and machine  language constructs. 
This is an essential step, of course, in the evolution of 
general  compiler building tools.  Out of this  project came, 
therefore,  numerous  advances in compiler  technology 
and,  more  importantly,  the foundations of the  theory of 
program  analysis and optimization. The elaboration  and 
refinement of this theory  was the  major  development in 
language processor technology during the  next  decade. 

Recent  history: the seventies 

Characteristics 
Increasing  maturity is perhaps  the hallmark of computer 
science  and technology  in the 1970s. The  cycle from 
pragmatic  problem (with a heuristic  solution) to formal 
solution to realization of the solution  in  a  practical system 
has been completed, or at  least well started in  numerous 
cases.  The  study of algorithms has led to a growing 
collection of tools whose  time  and space bounds  and 
correctness  are known. Programming has become  more 
disciplined, and  formal mechanisms for describing  and 
verifying various properties of systems  have been  exten- 
sively investigated. 

Language processor technology has  been  both  the chief 
benefactor and  the raison d’etre for  much of the  work. 
Parsing and program  optimization are  the quintessential 
examples of the  evolution of the technology. 

At the beginning of this decade,  the  theory of parsing 
was well understood; by the end of the  decade, a fast, 
reliable  parsing system is one of the  “on-the-shelf” tools 
a programmer uses  when building a compiler. At  the 
beginning of the  decade,  the theory of program  analysis 
and optimization was in its infancy;  now some of the 
results of these investigations are  appearing in  various 
implementations.  Register  allocation is another  area in 
which both theoretical  and practical advances  have been 

IBM J. RES. DEVELOP. 0 VOL. 25 NO. 5 SEPTEMBER 1981 



made.  In  this  section  we trace  the evolution of these  latter 
technologies and briefly describe one implementation 
utilizing them. 

0 Program  analysis  and  optimization 
In 1970 two papers [70, 711 described fast,  abstract meth- 
ods  for program control  and data flow analysis. Given a 
directed  graph  representation of a program, one  paper 
[70] showed how the graph could be partitioned  into 
“intervals” (single entry  subgraphs in which all loops 
contain the entry  node) and, treating each interval as a 
node, higher order graphs  were  derived  and  then ana- 
lyzed to effectively codify the nesting structure of the 
program. The algorithm was abstract in that it did not 
depend  on specific source language constructs, such as 
DOS, and it was fast when applied to typical program 
graphs, though it  had a poor worst-case  bound. For  each 
graph  it was linear in the number of edges, and, since the 
number of derived graphs rarely  exceeds three in practice 
(the depth of nesting of loops),  the  number of derived 
graphs was small. Since that time a nearly linear algo- 
rithm has  been found [72] which also  gives a somewhat 
better codification of interesting  control flow relation- 
ships. However,  the most  important feature of the  inter- 
val analysis  method  was that a node ordering was estab- 
lished which could be used to rapidly determine other 
relationships in the  program. 

The second paper [7 11 dealt with a particularly  interest- 
ing application: common  subexpression elimination and 
code motion. All redundant, formally identical (look- 
alike) subexpressions in the entire  program could be 
identified by one execution of a fast algorithm-having 
the same  time  bound as the  interval  analyzer. The algo- 
rithm  not only recognized  subexpressions which could be 
eliminated from the program when the computation al- 
ready  existed  on all paths to  the subexpression,  but it also 
found  code which could be moved out of a loop  or  nests 
of loops. 

Another  important application was finding “def-use” 
relationships: Given a definition of a  variable, all poten- 
tial uses of that definition are of interest during optimiza- 
tion and register allocation. The relationship and its dual, 
the use-def relationship, are needed for strength reduc- 
tion [34], constant propagation,  dead code elimination, 
and other transformations [73]. The interval-based algo- 
rithm [74] for finding all such relationships was fast in the 
sense described  previously; now nearly linear algorithms 
[75] exist. 

A  natural consequence of the existence of fast analysis 
and optimization algorithms for individual procedures,  as 

544 well as  the development and maintenance of on-line 
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program data  bases and  advances in programming meth- 
odologies, was an  interest in analyzing and transforming 
collections of procedures. The first investigations [76, 771 
into interprocedural  analysis defined the problem and 
outlined pragmatic solutions.  Elegant, though not neces- 
sarily pragmatic or completely  general, algorithms [78- 
801 now exist.  A research  project,  the Experimental 
Compiling System [81-831, is investigating the  use of 
interprocedural  analysis [83, 841 and optimization in a 
compiler building system.  The basic  ideas are  to  use 
procedures to  express  the semantics of the language being 
compiled, to  deduce  the characteristics of the language by 
analysis, to  use  procedure integration (in-line expansion) 
to  do  code generation, and to optimize in order  to 
customize  and  obtain good code. 

The work on  program analysis and optimization has 
many parallels with the work  on parsing and will undoubt- 
edly prove to  be  as important. It seems  almost  certain 
that language-independent tools for analyzing and opti- 
mizing programs will become as available as lexical 
analyzers  and  parser-generators are now. Also, just  as 
our understanding of parsing has affected language de- 
sign, so will our  understanding of optimization. It seems 
unlikely that new languages will continue to contain 
constructs such as unconstrained aliasing which con- 
found  analyses (as well as users). 

Global  register  allocation 
One of the  very difficult functions of an optimizing 
compiler is register  allocation. It  has been  formulated as 
an integer programming problem [85] and  shown to be a 
hard problem [86] even  for straight-line code. Practical 
implementations are necessarily heuristic  and typically 
complex. Recently a fast (usually) and surprisingly good 
(approaching that of hand-coded assembly language) ap- 
proach has been  developed and implemented [23] by G. 
Chaitin. The problem  is  formulated as a graph coloring 
problem: Each  node in the graph stands  for a computed 
quantity  that resides in a machine register, and two  nodes 
are connected by an edge if the quantities  interfere with 
each other,  that  is, if they are simultaneously live at some 
point in the object  program. The problem  is to assign 
different colors  (registers) to connected nodes. Obtaining 
an optimum coloring  is hard, but the implementation 
showed that a fast heuristic method for assigning colors to 
these particular graphs generally resulted in a very good 
assignment. Another interesting aspect of the work was 
that most of the idiosyncrasies of the target machine 
(e .g . ,  register pairs, dedicated registers) could be handled 
uniformly and  systematically. It seems likely that this 
approach to register  allocation will be  the basis for many 
interesting  investigations and elegant implementations. 
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An implementation 
In our  discussion of PL/I implementations in the preceding 
section, we said that context-sensitive  (special casing) 
code generation  was  often thought necessary to obtain 
good code for  complex languages. In  an experimental 
compiler [87] for a variant of PL/I a different approach was 
used. Code is produced when some  grammatical con- 
struct is  recognized by a LALR  (Look Ahead  Linear 
Right)-produced parser-generator and is not, therefore, 
selected  because of its context. This simple and straight- 
forward  code  is then optimized by a series of stand-alone 
programs implementing the mathematically based algo- 
rithms mentioned earlier. Code selection tricks are avoid- 
ed. Registers are  then assigned by graph coloring. The 
method, which is largely language and machine  indepen- 
dent,  can result in final code  approaching and even 
surpassing  hand-coded assembly-language programs. 
This  result by itself  is not surprising-the FORTRAN I 
compiler  accomplished the same thing; its  importance lies 
in the means by which  it  was  obtained. 

The uniform, systematic  use of mathematically based, 
general algorithms in a compiling system leads to a 
simpler,  more  predictable design and a more maintainable 
implementation.  This  is widely accepted. What we now 
know is  that this  method  can  also  produce better code. 

1 
Summary 
We have traced the history of language processor tech- 
nology in IBM from its  rather slow start in 1952 to the 
current  collection of elegant algorithms,  powerful tech- 
niques, and unsolved  problems. General, mathematically 
based algorithms now exist for parsing,  analyzing, and 
optimizing programs.  IBM  has  made significant contribu- 
tions to  these  areas, particularly the last two.  The  art of 
designing and  constructing a language processor system 
has become  more scientific and, in some cases, quite 
routine.  Assemblers, interpreters, and macro systems are 
generally well understood, though they still require  the 
judicious  selection of techniques to fit the requirements. 
Though worked on in one form or  another  for more  than 
twenty years, a general production-quality compiler 
building system does  not exist. We are,  however, much 
closer to this goal: We now have language and machine 
independent translators; recent  experiments with similar- 
ly general analyzers, optimizers,  and  register  allocators 
increase the likelihood of such a system being developed. 

A constant  motivating  force for work in language 
processors  has been “the programming prob1em””ours 
and our customers’. Providing effective systems  for Ian- 

ples) has permitted and encouraged users  to concentrate 
more  on problem solving and  less on program writing. 

I guages (Speedcode, FORTRAN, and APL are prime exam- 

Providing increasingly more general language  processor 
tools  has permitted the construction of more  diverse and 
reliable systems. 

The synergistic relationship  between theory  and prac- 
tice, noted throughout the  paper, leads to  two observa- 
tions: All (or nearly all) theoretical  results embodied in 
practical  implementations  concern  problems initially 
identified in such implementations; all (or nearly all) 
powerful general tools utilize theoretical  results. 

Some  final  observations 
“Programming is  optimization” [88]. Most if not all of the 
choices  made in programming a solution to a computable 
problem are aimed at achieving an acceptable level of 
efficiency. For example: How is information to  be repre- 
sented? Should  it be  sorted  to permit fast  lookups? What 
sort method should be used? These  are optimization 
questions, not problem solving questions. If programming 
is to truly become  problem solving on a computer, we 
must relieve users of such decisions by providing the 
technology to permit  widespread use of very high level, 
problem-oriented  languages  and  tools. In his paper on the 
history of FORTRAN [29], John  Backus corroborates this 
view. The next  paragraph is from that paper. 

“To this  day I believe that  our  emphasis on object 
program efficiency rather than  on  language design was 
basically correct. I believe that had we failed to produce 
efficient programs, the widespread use of languages like 
FORTRAN would have been seriously delayed. In  fact, I 
believe that we are in a similar, but unrecognized, situa- 
tion today: in spite of all the fuss  that  has  been made over 
myriad language details, current  conventional languages 
are still very  weak programming aids,  and  far more 
powerful languages would be in use today if anyone had 
found  a way to  make them run with adequate efficiency. 
In  other words, the  next revolution in programming will 
take place only when bath of the following requirements 
have been met: (a) a new kind of programming language, 
far more  powerful than those of today,  has been devel- 
oped and (b) a technique  has been  found for executing its 
programs at not  much  greater cost than that of today’s 
programs.” 

I believe much of the technology is in place  to support 
this revolution. The next decade could be very exciting as 
existing technologies are exploited and  new  ones devel- 
oped to subsume  much  more of the programmer’s task. 

Acknowledgments 
In  the  paper I have indicated a few of the  IBM people who 
contributed to  the development of language processor 
technology in IBM. Strong language processor groups at 

IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981 



IBM’s Time-Life Center in  New  York  City (with M. 
Ackroyd,  G.  Garabedian, W. Heising, R. Larner,  L. 
Levine, F. Pessin, P. Smith, and B. Weitzenhoffer to 
name a few), at  Hursley in England (with B. Marks, J. 
Nash, and I. M. Clarke),  and  at  numerous  other locations 
contributed most to  the solid development of the  area. 
Many others, including the fine scientists  and practition- 
ers outside IBM with whom we  have collaborated  and 
whose  work we  have admired and  assimilated, must 
unfortunately remain unrecognized here. 

Two  people,  John  Backus  and  John  Cocke,  deserve 
special  re-acknowledgment for  their many major  contri- 
butions  to language processor technology. John  Backus 
developed Speedcode,  made FORTRAN happen (with the 
help of a  very  fine group [30]), and  invented  BNF among 
other things. John  Cocke  has contributed to nearly every 
aspect of language processor  science  and technology, 
program  analysis and optimization, parsing, register allo- 
cation,  and  macro  systems,  as well as  to  areas  such  as 
improved hardware  architecture which make  these  tasks 
easier. 

These  are,  as we said,  just a few of the  people  who 
made  the history of language  processing. I also want to 
acknowledge a few of the people who  helped with this 
paper: C. Alberga, J. Cox, M. Hopkins, J. Palmer, and B. 
Weitzenhoffer  supplied  invaluable memoranda, manuals, 
and  names,  and  the  Yorktown  Research  librarians, I. 
Cawley, E. Howing,  and J. Leonard, cheerfully  helped 
locate many obscure  documents. 

In 1962 Donald Knuth said [89] that  the  early history of 
compilers was difficult to assess.  It  has  not  become any 
easier  but, though the  assessment is mine,  the  resources 
available to me have  contributed immeasurably to  the 
pleasure of the  task. 
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