
F. E. Allen

The History of Language Processor Technology in IBM

The history of language processor technology in IBM is described in this paper. Most of the paper is devoted to compiler
technology; interpreters, assemblers, and macro systems are discussed briefly. The emphasis is on scientific contribu-
tions and technological advances from a historical perspective. The synergistic relationship between theory andpractice
is a subtheme.

Introduction
In 1953 IBM introduced an early “automatic-program-
ming” system: Speedcode for the IBM 701 computer.
The goal of the system was to [l] “. . . lessen the
enormous burdens of the programmer by providing a
larger and more convenient instruction repertoire than a
given machine provides.” In the same paper John Backus
and Harlan Herrick go on to state: “There are two
principal methods by which automatic-programming sys-
tems make these nonmachine operations available to the
programmer: the interpretive method and the compiling
method.” In the almost 30 years that have intervened
since these observations were first made, methods for
solving “the programming problem” have become more
diverse and sophisticated, but the basic problem remains.
Language processors-compilers, interpreters, macro
systems, and assemblers-are still the principal methods
used. In this paper we trace the history of IBM’s contri-
butions to the techniques used in today’s language pro-
cessors. The paper concentrates on IBM’s scientific and
technological contributions, covering only widely used,
general purpose techniques or those of particular scien-
tific or historical interest.

ment into its component parts were both elaborate and
language-specific. The problem became the subject of
numerous theoretical investigations and spawned a sub-
field of computer science: formal language theory. To-
day, elegant, language-independent parsing systems exist
and are a common component of production compilers.
The synergistic relationship between theory and practice
continues to play a vital role in the development of
language processor technology. This relationship is a
subtheme of the paper: Particular attention is paid to
tracing the origins and evolution of various techniques.

The history of language processors in IBM divides
quite naturally into five periods, generally delineated by
the introduction of significant new products. The first
period, covered in the section on “Early history,” starts
with the introduction of the IBM 701 in 1952. In 1954
work began on FORTRAN I-a language and system which
established the foundations of compiler technology, set
standards rarely achieved today, and, as a result, dramat-
ically accelerated compiler development. The second
section is devoted entirely to the FORTRAN I compiler. The
period from the introduction of the FORTRAN I compiler to
the introduction of the System/360--“The late fifties and
early sixties’’-is the subject of the third section. “The
mid- and late sixties” is followed by “Recent history: the
seventies,” concluding the main presentation. The sum-
mary recapitulates the central ideas which have led to the
elegant solutions we have today. The paper concludes
with some personal observations and predictions.

The development of language processor technology,
particularly compiler technology, is intimately inter-
twined with the development of computer science. Ad
hoc solutions to pragmatic problems have continued to be
replaced by elegant algorithms. Large, amorphous, seem-
ingly intractable problems have been divided and con-
quered. The best example of this is in the area of parsing.
Early solutions to the problem of decomposing a state-

Copyright 1981 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM J . RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981

536

F. E. ALLEN

Early history

Historical context
In 1952 IBM introduced its first production-line electronic
digital computer and with it IBM’s first language proces-
sor-the NR9003 symbolic programming system. Some
surprisingly advanced techniques already existed.

Libraries of subroutines and the use of combining
routines (“compilers”) had been proposed by Goldstine
and von Neumann [2] and existed in several systems. A
book on programming [3] published in 1951 describes a
system having open and closed subroutines and preset
and program parameters. Preset parameters were incor-
porated into the subroutine when it was read into the
system and remained fixed for all executions; program
parameters were passed with the call to the subroutine.
The programmer’s task was to write a combining routine
which would take the proper subroutines from tape and
modify them appropriately. The motivation for these
facilities was to reduce programming time; they were the
first step in the direction of using a computer to help
prepare programs for itself.

A second step was the use of “a programmer’s lan-
guage” instead of the machine’s language. This evolved
quite slowly. The use of symbols for machine operations
came first, then relative numbers to which fixed reloca-
tion values could be added became common for instruc-
tion and data locations. However, by 1952 a “floating-
address” notation had been developed by Wilkes [4, 51:
Any word or group of words could be designated by a
letter or letter-number combination. The assembler for
this language [5] had what was to become the classic
structure. Two passes were made over the program: the
first to assign a location to each word, and the second to
fill in the correct values for the floating addresses.

Wilkes [4] also proposed “synthetic orders” which
expanded into several parameterizable floating-address
instructions. The expander acted as a preprocessor to the
assembler, and its output could be saved to avoid unnec-
essary re-expansion on subsequent assemblies. Modem
macro preprocessors are clearly elaborations of this early
system.

The idea of a compiler had begun to develop and
several “compilers” existed [6]. The programmer could
write pseudo-codes to refer to subroutines, and the
compiler performed the combining function envisioned
by von Neumann. The function of a compiler was to
interpret the pseudo-code, look up the subroutines in the
library, then adjust and assemble them into a complete
program. Although there is a vague resemblence between

these early compilers and modem compilers, the struc-
ture and tasks of modern compilers had not yet emerged.

a

Early IBM assemblers
The first symbolic assembly program produced by IBM
was the NR9003 (described but not identified in [7]) for
the 701. It was developed by the 701 engineering manag-
er, N. Rochester, so that the engineers could test the
machine. It made program modification easy by using
symbolic addresses and by permitting the assembly of
separately written programs. Different names for the
same location could be associated by the use of a SYN-
onym pseudo-operation. Thus aliasing, the bane of com-
piler writers, made an early-albeit necessary-appear-
ance.

The most widely used IBM assembly program for the
701 was the IBM SO2 [8] written by William McClelland.
This assembler supported relative addresses from an
origin and performed extensive error checking. Hardware
errors were frequent and often undetected by the hard-
ware, so checking methods and restart procedures were
important design criteria in early systems.

The concept of “regional programming” [8, 91 was
used to effect program relocation: Storage was divided
into regions into which the various programs, data, and,
in at least one version of the idea [10, 111, dynamically
overlaid, temporary storage for subroutines could be
placed. This latter usage was very close to today’s use of
dynamic, stacked storage areas by procedures in such
languages as PLII. The implementation techniques were
necessarily quite different since the 701 did not have
index registers.

Early higher-level language processors
IBM’s first higher-level language was Speedcode
[1, 12, 131 developed by John Backus in 1953 for the 701.
He stated [12] that the “. . . most important reason for
having a Speedcoding calculator, in addition to the 701, is
a matter of economy Programming and testing costs
often comprise between 50 and 70% of the total cost of
operating a computing installation. . . . Speedcoding re-
duces coding and testing time considerably.” The system
was an interpreter which caused the 701 to behave like a
three-address, floating-point calculator. Although it re-
quired over 30% of the memory (310 words), it supported
an extensive repertoire of mathematical, I/O, and check-
ing functions which were compactly expressed.

Indeed memory space, both primary and secondary,
was a very scarce resource and strongly influenced the
design of language processing systems for many years.

IBM I. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981

A compiling system, PACT I [14-201 for the 701 (and
PACT IA [2 I] for the 704), emphasizing storage optimiza-
tion, was started in late 1954 by a committee of IBM
employees and customers. The compiler automatically
allocated primary storage in regions for programs and
data. In addition to space for the user’s scalars, vectors,
and arrays, special regions existed for temporaries and
for the “perishable” data used by library routines. It was
noted [19] that a compiler might be able to make an
optimum automatic storage allocation but it would re-
quire that the compiler “follow the logic of the entire
program.” Steel noted [21] that “. . . logically it has a
good deal of similarity to the celebrated ‘four color’
problem.” With the exception of work by Ershov [22],
these ideas were not fully explored until very recently
[23, 241. It is interesting to note that the compiler used a
technique when constructing and accessing the table of
variables which has since become known as hashing. This
technique, in almost exactly the same form, is used
commonly today. Knuth [25] cites H. P. Luhn with
originating hashing and describing it in an IBM memoran-
dum written in 1953. At about the same time another
group of IBM people, Gene Amdahl, Elaine Boehm,
Nathaniel Rochester, and Arthur Samuel, independently
developed hashing for use in an assembly program they
were writing for the 701. In 1979 a nice theoretical result
[26] was obtained by J. L. Carter and M. Wegman which
guarantees a good expected performance for any set of
variables. It will undoubtedly become the standard hash-
ing method used in future compilers.

e SOAP: an optimizing assembler
One of the earliest IBM systems to feature optimization
was SOAP (Symbolic Optimizer and Assembly Program)
for the IBM 650. By storing data and instructions on the
650 drum so that the drum was in the right position when
data or the next instruction was required, a program
might run as much as six or seven times faster [27]. While
automatic optimization did not achieve such dramatic
improvements, a factor of as much as 3.8 was obtained by
a simple, two-pass preprocessor [28]. In designing this
preprocessor, a predecessor of SOAP, optimum was
taken as the point at which the improvement-per-unit-
effort is maximized. The study of program optimization
has continued to emphasize the development of faster
techniques for improving the execution time of a pro-
gram.

Most programs at the beginning of this early period
were written in machine language. By the end of the
period several automatic programming systems existed
which provided a synthetic “computer” different from
the real computer. Many of these systems were, howev-
er, costly to use, either because they were interpreters or

because they relied on precoded routines to implement
functions in the language not directly supported on the
machine.

FORTRAN I

The project and its context
Early in 1954 the FORTRAN I project was formed by John
Backus. A fundamental question posed by the project
was [29] “. . . can a machine translate a sufficiently rich
mathematical language into a sufficiently economical pro-
gram at a sufficiently low cost to make the whole affair
feasible?” A major goal [29] was to provide an automatic
programming system which “. . . would produce pro-
grams almost as efficient as hand coded ones and do so on
virtually every job.” This seemingly impossible goal was
met to an astonishing degree. In some cases it produced
code which was so good that users thought it was wrong
since it bore no obvious relationship to the source. It set a
standard for object program efficiency which has rarely
been equaled. The FORTRAN I compiler, begun in 1954 and
completed in 1957, established modern compiler tasks,
structure, and techniques. Indeed some of the techniques
are still used in nearly the same form.

The compiler was developed for the 704, an IBM
machine introduced in 1954 featuring built-in floating
point and indexing capabilities. It compiled the FORTRAN I

language which was defined as part of the project and
evolved considerably as the project progressed. In order
to achieve its efficiency goals, the high level arithmetic
statements in the source program had to be translated so
as to minimize storage references and, even more impor-
tantly, subscripts and their control had to make maximal
use of the machine’s three index registers. How all of this
was achieved is described in [30], formalized in [3 11, and
reviewed in [32] and [29]. This latter paper in particular
contains a penetrating analysis of the project-its origins,
development, and impacts-and should be read by every-
one interested in computer science history or in compil-
ers.

e The overall organization of the compiler
The compiler was divided into five sections (phases in
today’s terminology):

1. A statement identifier and arithmetic statement trans-
lator,

2. A subscript and DO statement analyzer,
3. A transformer which interfaced sections 2 and 4,
4. A control flow analyzer,
5. A global register allocator, and
6. Final assembly.

We now discuss sections 1 , 2, 4, and 5 in more detail. 637

F. E. ALLEN IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981

Translation
Today’s compilers often use elegant, language-indepen-
dent translator systems. The theory behind these systems
did not really start to develop until the 1960s, but the
problem appeared in its full form in this system. Given an
arithmetic expression, the translator first created a se-
quence of arithmetic instructions, then transformed this
sequence to eliminate redundant computations arising
from the existence of common subexpressions (their
term) and to reduce the number of accesses to memory.
These transformations have been the subject of numerous
investigations ([33] contains a good set of references), and
we now know that an optimal solution is inherently hard.

Subscript and DO statement optimization
The translator did not complete the translation of DO

statements and subscripts-that was the function of sec-
tion 2, designed and developed by R. A. Nelson and I.
Ziller. A symbolic index register corresponding to each
particular subscript combination of a variable was created
by the translator and existed until section 5 had assigned
registers. The function of section 2 was to optimize the
calculation of subscripts and DO control statements. The
constant parts of the calculation were incorporated into
operand addresses; operations involving DO control varia-
bles were transformed into index register increments
when possible; loop-independent parts of the calculation
were removed from the loop; and the loop exit test was
transformed to use one of the registers needed for index-
ing. A nest of DO loops for array calculations was
sometimes replaced by a single loop in the generated
code! Some of these transformations are now subsumed
in a somewhat more general optimization called “strength
reduction” [34], but, with one possible exception [35],
today’s production compilers do not generally do as well.

Flow analysis
The function of sections 4 and 5 of the compiler was to
assign real registers to the symbolic registers. Except for
the symbolic registers and the assumption that they could
all be assigned to real registers, the program on entry to
section 4 was complete. The basic task, therefore, was to
assign the symbolic registers to real registers so as to
minimize the time spent loading and storing index regis-
ters. Section 4 of the compiler did a flow analysis of the
program to determine the pattern and frequency of flow
for use in section 5 where the actual assignment was
made.

Basic blocks (“a basic block is a stretch of program
which has a single entry point and a single exit point”
[30]) were found and a table of immediate predecessor
blocks constructed. Here, then, is the beginning of the

538 elegant and fast control flow algorithms of today. Basic

blocks and predecessor (successor) relationships are in-
puts to these algorithms.

The other task performed by section 4 was the compu-
tation of a probable frequency of execution of every
predecessor edge. To do this Lois Haibt developed a
Monte Carlo “execution” of the program with initial
weights assigned to each edge. This method is no longer
commonly used to identify frequently executed areas of a
program; rather the program topology is used more
directly but with less resultant precision.

Register assignment
Using the edge execution frequencies, regions were
formed so that registers could be assigned to the most
frequently executed areas (usually innermost loops), then
to the next most frequently executed areas, etc., until the
entire program had been treated. When a region had been
processed, its entry and exit conditions were recorded:
the values to be loaded on entry and stored on exit. A
processed region was not re-examined when its contain-
ing region was processed, but the entry and exit condi-
tions and whether or not it had any unassigned registers
were used. The assignment of registers within a basic
block used a “distance to next use” criterion to deter-
mine which register to displace when out of registers.
“Activity bits” were used to determine the necessity of
storing a value in a register for subsequent use if the
register had to be reused. In case of register assignment
mismatches across basic blocks, an attempt was made to
permute the assignment.

This register assignment method, developed by Shel-
don Best, was a phenomenal piece of work. The displace-
ment algorithm for straight-line code was later proved
optimal [36] for the “one-cost model” [37]: A displace-
ment costs the same whether you need to store the
register contents or not. Until 1980, when Gregory Chai-
tin [23] successfully applied a graph coloring algorithm
to the global assignment of registers, most global assign-
ment methods [38-401 were essentially variants on the
FORTRAN I approach.

0 An assessment
Perhaps the best way of demonstrating the results of this
project is to show an example of its output-an output
which startled this author. The FORTRAN program in Fig.
1 moves array B to array A. The assembly program shows
this being done with one loop instead of the two expected
from the source. (FORTRAN stored its arrays column-wise
and backwards; the 704 subtracted the value in the index
register from the address.)

The real results of the project are the influences it had
on future compilers and theory. Some of these effects

F. E. ALLEN IBM J. RES. DEVELOP. VOL. 25 0 NO. 5 SEPTEMBER 1981

have already been mentioned; more will be discussed
later. Suffice it to say that the technological fallout from
this project has been extensive.

The late fifties and early sixties

Characteristics of the period
The period from 1957, when the 709 was announced, to
1964, when System 360 was announced, was one of great
optimism and little discipline. New languages, comput-
ers, systems, and ideas appeared at an astonishing rate.
By 1964 IBM implementations of FORTRAN, Comtran,
COBOL, RPG, Autocoder, PRINT, FORMAC, GPSS, and other
languages existed on at least one of the computers
introduced during the period: the 709-90, 707-70, 1401,
1410-7010, Stretch, 7040-44, and others. Total systems,
such as IBSYS for the 7090, provided a unified execution
environment and a central set of facilities to exploit the
capabilities of such hardware features as buffered I/O.
Time-sharing systems, such as Quiktran, provided on-
line, interactive facilities. Formalisms emerged, and the
understanding and use of fundamental data structures
such as lists and trees became widespread. However, the
spirit of the period is probably best exemplified by the
interest in universal compiling systems. The obvious
problem created by the proliferation of languages and
computers led to numerous efforts to provide a single
system capable of compiling multiple source languages
for multiple target machines.

Some interesting systems

Language processors for the 709, 7090-94 systems
The first system designed for the 709,7090-94 computers
was SOS or SCAT (SHARE Compiler Assembler Trans-
lator) [41-461. It was a very complex system designed by
a committee spread throughout the country and repre-
senting many different companies. It was to provide
source-level debugging without the cost of complete
retranslation whenever the program changed or addition-
al information was needed. The central mechanism was a
“SQUOZE” form of programs arising from the partial
translation of various source inputs, including incremen-
tal changes from the user. It never became a production
system. It was late, the general quality was poor, and
there were serious performance problems in “loading”
multiple modules of SQUOZE decks. Furthermore, there
was a reluctance to change from the existing patterns of
program development and execution.

Concern for the compile-time cost of translating pro-
grams did not, however, disappear. In fact the original
FORTRAN I system had already been modified to handle

IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981

SOURCE

DIMENSION A(IO, 10)
DIMENSION B(10,lO)

DO 1 J=1,10
DO 1 I=1,10

1 A(1, J)=B(I, J)

.

RESULT

LXD ONE, 1 load 1 into regl
LOOP CLA B+1,1

ST0 A+1,1
TXI * + l , l , l add 1 to regl and

TXL LOOP,1,100 if regk100
goto next inst

goto loop
. . .

ONE , , I data value one
A BES 100 reserve 1 0 0 locs,

ending with A
B BES 100 reserve 100 locs,

ending with B

Figure 1 FORTRAN I translation of array move.

FORTRAN 11-a language featuring subroutines and COM-
MON blocks of shared variables. These extensions to-
gether with the BSS loader were a significant factor in the
acceptance and effective use of FORTRAN for large pro-
gramming applications. Assembly language programs and
separately compiled programs could be loaded and exe-
cuted as a unit.

In 1961 a decision was made to completely rewrite the
FORTRAN compiler to improve the compile speed and to
support the new FORTRAN IV language. Another factor in
the rewrite decision was the new, integrated system,
IBSYS, for the 7090: The new FORTRAN would be an
integrated component. The new compiler [47] was neither
very fast nor did it produce object code as efficient as the
original compiler. The new compiler did, however, intro-
duce a new transformation: “anchor pointing” to opti-
mize FORTRAN IV’S logical expressions. The evaluation
order of the components of a logical expression was
revised to minimize the time required for evaluation.

The Corntran and COBOL compilers
A compiler for Comtran (Commercial Translator), an
early IBM language supplanted by COBOL, was delivered
in early 1961. The Comtran compiler contained a number
of new and very innovative techniques. Unfortunately,
they were never published. The project manager, Richard
Talmadge, invented a table driven scanner (probably the

first) and extended the PACT IV hashing methods for use
in this system. Robert Rock developed a nice method for
handling n-tuples. Much of the system design was used in
the 7090 COBOL, where it was augmented by a very early
table management system, CITRUS, written by Claude
Coray.

The scanner used an operator precedence table with a
mechanism for handling parentheses and varying num-
bers of operands. As the input string was scanned, a table
of operators was built giving the precedence and position
of each. This table was then sorted by precedence value
and used to generate n-tuples from the text string. Each
unique n-tuple was assigned a unique symbolic register to
hold the result, and the text string was dynamically
modified (reduced) to the symbolic register replacing the
operator and operands. Before assigning a symbolic regis-
ter to an n-tuple, a search was made to determine if it had
occurred previously in the statement. If it had, the n-tuple
was not put out-a common subexpression had been
found. On completion of the scan of a statement the
number of symbolic registers used in the output was
minimized.

The scanner was driven by a table containing a set of
syntax vectors. Each vector contained an encoded ques-
tion related to the scan state and two branch target
locations: one if the answer was true, the other if false.
An interpreter used the table to determine the routing to
the target action routines.

The dictionary organization was strikingly similar to a
form commonly used today. The source program names
were stored in a symbolic dictionary, attributes in an
attribute table. These tables were packed, and hashing
through a sparse intermediate table was used to look up
names.

These techniques were carried over to the COBOL
compiler developed for IBSYS [48]. In addition to incor-
porating these early and excellent techniques, the 7090
COBOL compiler was also one of the first systems [49] to
use a dynamic table management and spill system: CIT-
RUS (for Coalesced Indirect Table Reference Unification
Scheme). The compiler’s tables could be opened, closed,
relocated, expanded, and contracted during execution.

FVRTUAN for the 1401
The 1401, announced in 1959, was a small, character-
oriented computer imposing a severe set of constraints on
the FORTRAN compiler design [50]. It was designed to
operate in 8000 storage locations (characters) with tape
usage being optional. We mention the FORTRAN compiler

540 for the 1401 in this history because it exemplifies an

F. E. ALLEN

interesting design for a small system. The compiler con-
sisted of 64 phases, the first three of which were loaded
before the program. The entire program was then read in,
and the remainder of the compiler was passed against the
program, one phase at a time. When the compiler was
finished, the program was in executable form in memory
and could be executed immediately. An object deck was
optionally available. While the system did not permit
arbitrarily large programs, it made very effective use of
the space available and did not incur the overhead
associated with storing intermediate results on tape.

Quiktran
In 1%3, Quiktran, IBM’s first time-sharing system, was
operational [51, 521. Developed by J. Morrissey, T.
Dunn, J. Keller (Rivlin), E. Strum, and G . Yang, it
supported 40 concurrent users on the 7040-44 computers
with a FORTRAN interpretive system providing interac-
tive, source-language-level debugging. The system could
act as a desk calculator and could dynamically alter the
program during execution. Each executable statement
was stored internally as a polish string created by using a
bi-directional “forcing table,” which was also used to
recreate the source. Because of this capability and be-
cause the language was standard FORTRAN, a program
could be debugged using this system, then recreated for
compilation by a standard FORTRAN compiler. The PUI
Checker [53], currently available for debugging PUI pro-
grams, provides many of these same facilities but does
not recreate the source from the internal form used by the
interpreter.

The Stretch-Harvest compiler
An early and persistent goal of compiler designers has
been the construction of a single compiler for multiple
source languages and multiple target machines. The com-
piler for the Stretch-Harvest computers compiled FOR-
TRAN and Alpha language programs and was designed to
handle other languages as well. The two source languages
were as dissimilar as FORTRAN and COBOL, and the
Harvest attachment to Stretch bore no resemblance to its
host. One of the central notions in the design of many
such systems is that a common internal (intermediate)
language (IL) can be found for expressing all the source
languages. Ideally this common IL is such that very little
language-specific code is needed in the system. In the
Stretch-Harvest compiler the common IL was a high level
Autocoder to which each source language could be trans-
lated by one pass.

Having translated the source to IL, the second phase of
the compiler made three passes over the program to map
storage and expand subscripts, to collect flow and sym-
bolic register-usage patterns, and to assign index regis-
ters. The second phase produced macros for input to a

IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981

subsequent macro-assembler. A variant of an early list
processing system [54] developed by H. Gelernter, J.
Hansen, and C. Gerberich was used in phase 2 to manage
the internal data structures.

The system was not a success; compilation time was
unacceptable. The interfaces between phases were in
externally readable form, costly to construct and costly to
read and write; either language, and FORTRAN in particu-
lar, could have been compiled much more efficiently by a
language-specific system. Compiler technology, and the
art of effectively utilizing it, was not advanced enough in
1960 for such a system.

0 Universal compiling systems
The Stretch-Harvest compiler design was, however, con-
servative when compared with proposals for some other
language processing systems. Motivated by the prolifera-
tion of languages and computers and by the continued
scarcity of skilled programmers, particularly experienced
compiler designers, the idea of a universal compiling
system became very popular. In the late 1950s there was
considerable interest in the design of an UNCOL (UNi-
versa1 Computer Oriented Language) [55] to which any
high level language could be translated and from which
executable programs could be created for any machine. A
new language would require a new translator to UNCOL,
and then compilers for that language would exist on all
supported computers. Similarly a new computer required
one translator from UNCOL to get a family of compilers.
Though investigators soon despaired of finding such a
language, the motivating factors still existed.

Within IBM there were two universal compiling sys-
tems projects in the early 1%Os: XTRAN [56] and SLANG

[57]. Julian Green’s XTRAN approach was to provide a
boot-strapped, list-processing system which transformed
the source string to the object string. It used auxiliary
information about source symbols and operators to trans-
late the source language to a macro language, then used
macro definitions to translate the macro language to
machine language, and finally optimization information to
optimize the machine language. This approach was in-
tended to minimize the consequences of changes to the
processor algorithm, the source language, or the object
language. In 1962 a decision was made to terminate the
XTRAN project and concentrate on the much more ambi-
tious SLANG (Systems Language) project being developed
by R. Sibley.

SLANG was both a problem-oriented, machine-indepen-
dent language and a compiler with a machine description
capability. The main emphasis in its initial formulation
was to achieve machine independence, thereby providing

IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981

portability of compilers written in SLANG and, since the
SLANG compiler was written in SLANG, of the SLANG

system itself. As the system developed, a syntax-directed
facility was added to provide source language indepen-
dence through the use of an augmented BNF (Backus
Normal Form) [58] description of the source language
being compiled. The source language description was
compiled and used to translate the input program to
EMILs-Elementary Machine Intermediate Language
statements. Tables defining the target machine character-
istics were then used to translate EMILs to object code.

The SLANG project was terminated in 1965 when it
became apparent that the object code produced, and
hence the SLANG system and all compilers written in it,
was too inefficient. Machine independence failed for
several reasons: there was no adequate way to parameter-
ize the description of the machine-particularly its I/O;
when writing a program in SLANG, users generally opti-
mized it for a particular machine; and the effect of storage
size on the overall organization of a compiler could not be
described. Language independence failed due to the lack
of a satisfactory method of semantics specification and
because the parameterization was done with respect to
existing languages (FORTRAN and COBOL). Any language
with new or extended features became a problem to
describe. In particular the new language, PLn, was too
difficult for SLANG.

It is now generally accepted that a special compiler-
writing language is not necessary, but if the goal is a
reasonably efficient compiler written in its own language,
it is essential that that compiler be capable of producing
good code. Techniques for providing both a machine
descriptive capability and producing good code are only
now beginning to emerge.

Early developments in the theory of parsing
Program translators today usually use a lexical analyzer
(scanner) and a syntax analyzer (parser) to recognize the
substrings in the source string. Lexical analyzers recog-
nize the tokens (operators, separators, identifiers, etc.)
using transition diagrams and finite state automata. Syn-
tax analyzers recognize the substrings (phrases) using a
context-free grammar. In fact efficient parsers can be
automatically constructed from a grammar. Many of
these elegant systems have their roots in the practical and
theoretical efforts of this period.

The syntactic notation BNF, commonly used to specify
a grammar, was introduced by John Backus in 1959 [58].
It is discussed elsewhere in this issue.

A major contribution to the theory of parsing was made
by John Cocke. Though not fully documented at the time, 541

F. E. ALLEN

it was mentioned in [59], and a variant, the nodal span-
ning parse, appeared in 1969 [60]. An excellent discussion
of the relevance of Cocke’s parsing method was given by
Robert Floyd in his 1978 Turing Award Lecture [61] and
is quoted in the next paragraph.

“In the early 1960’s, parsing of context-free languages
was a problem of pressing importance in both compiler
development and natural linguistics. Published algorithms
were usually both slow and incorrect. John Cocke, alleg-
edly with very little effort, found a fast and simple
algorithm [62], based on a now standard paradigm which
is the computational form of dynamic programming [63].
The dynamic programming paradigm solves a problem for
given input by first iteratively solving it for all smaller
inputs. Cocke’s algorithm successively found all parsings
of all substrings of the input. In this conceptual frame, the
problem became nearly trivial. The resulting algorithm
was the first to uniformly run in polynomial time.”

The mid- and late sixties

Characteristics
On April 7, 1964, IBM announced the Systed360. The
announcement included five basic, compatible computer
models with 19 combinations of speed and storage capaci-
ty; the largest processor was 100 times more powerful
than the smallest, and the main storage capacity ranged
from 8192 bytes to more than eight million. The system
was supported by a powerful operating system incorpo-
rating several data base access methods and interfaces to
numerous auxiliary storage and input-output devices.

Language processors for FORTRAN, COBOL, the new PL/I

language, and other languages had to support most of the
configurations and to function in the environment sup-
plied by the operating system. These requirements, to-
gether with the fact that many design decisions were
being made in parallel, created a rather formidable chal-
lenge for the designers of these systems. Several “design
points” determined by the maximum memory size avail-
able to a system were established to cope with the
memory constraints. Families of upwards-compatible lan-
guage processors were then produced. For example,
three distinct FORTRAN compilers were written for use
with the main operating system OS: an E level requiring
32 000 bytes, a G requiring 128 000, and an H requiring
256 000.

Most of the language processor efforts during this
period can be characterized as the engineering of existing
technologies to fit the constraints. FORTRAN H was an
exception. We now discuss that work and some other
technological and scientific advances which appeared in
the late 1960s.

0 FORTRAN H

C. W. Medlock and E. Lowry, designers of the FORTRAN

H optimizer, stated [38] that: “For small loops of a few
statements (the FORTRAN H compiler) very often produces
perfect code.” This was accomplished by global (to a
subroutine) optimizations which generalized and thus
extended the transformations used in earlier FORTRAN
compilers, particularly FORTRAN I. Control flow analysis
of the program was based, as in FORTRAN I , on a control
flow graph in which the nodes represented basic blocks.
Loops arising from constructs other than DOS were recog-
nized, and “back dominators” were found. A back
dominator of a node represents code which has to be
executed before code in the node of interest is executed,
and thus is a natural place to look for common subexpres-
sions and to place code when the back dominator is less
frequently executed. All subexpressions, not just those
related to address calculations arising from subscript
expansions, were considered-one subexpression at a
time. Advances in the technology since that time permit
the identification of all formally identical common subex-
pressions in parallel. Numerous other transformations
and analyses, including a limited form of data flow
analysis, were incorporated.

The efficacy of these optimizations is demonstrated by
the fact that fifteen years after its release, it is still one of
the best product-compilers in terms of object code effi-
ciency. (Some improvements have been made by R. G .
Scarborough, primarily in the area of subscript expan-
sions and register allocation [35].) The design was incor-
porated into an optimizing compiler for PL/I (PLIOPT) and
also proved adequate for supporting the FORTRAN compil-
er itself, 70% of which was written in FORTRAN.

PLII

Although the initial plans for implementing the newly
defined P u I language for System 360 included a family of
compilers, only two, PLII F and PLn D, were produced. As
it was, this was a monumental effort requiring great
ingenuity: The language was large, the design point small,
the operating system interactions extensive. The imple-
mentation of the new and comprehensive facilities for
storage management, interrupt handling, and multitasking
were particularly innovative. J. Cox, J. Nash, and N.
Clarke were most responsible for pulling off the enormous
engineering effort which at its peak involved some 70
people.

Subsequent to the release of the PLII F compiler, a
technique for optimizing PL/I was investigated [64] by M.
Elson, R. Larner, S. Rake, and others. The thesis of the
investigation was that context sensitive (“special cas-
ing”) code generation techniques were needed to produce

IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981

good code for a language as rich as PLII on a machine such
as the 360 with its multiplicity of possible code sequences
for even the simplest of functions. The form of the
investigation was to produce a prototype system in which
each statement was stored as a tree augmented with the
data attributes, and a tree-walking, interpretive subsys-
tem was used to generate code. Although this investiga-
tion did not directly result in a product, the thesis has
remained attractive. The problem with it is the size of the
code generators and the consequent probability of errors.
Furthermore, it cannot deal effectively with transforma-
tions requiring more global information, such as register
assignment across loops. A recent system, based on a
diametrically opposite thesis, is discussed later.

0 APL

Interpreting code is often at least an order of magnitude
slower than executing it directly. The APL system is a
counter example. L. Breed and R. Lathwell, who, togeth-
er with Roger Moore, built the system, state [65] that:
“The APL processor is interpretive; however, because of
the efficiencies afforded by array operations, program
execution is often one-tenth to one-fifth as fast as com-
piled code.” Another factor is the excellence of the
design. The system, initially implemented on the 7090 and
then, in 1966, on the 360, consisted of a supervisor and
the interpreter. It was designed as a total system in which
the supervisor had complete control over system re-
sources and the supervisor-interpreter communications
could be simplified. The anticipated use of the system and
the language constructs were carefully considered when
making design choices. An interesting evaluation of these
choices and the historical setting in which they were
made is given in [66].

The ACS project
The Advanced Computing Systems (ACS) project was a
hardware-software project started in 1964 as System Y at
the IBM Thomas J. Watson Research Center. The aim of
the project was the design of a very high performance
system for the large scientific market. From the beginning
of the project it was recognized that the only way to
realistically realize the performance goals and make them
accessible to the user was to design the compiler and the
computer at the same time. In this way features would not
be put in the hardware which the software could not use
or which the software could support more effectively.
The CPU, for example, had a high degree of parallelism,
both in fetching instructions and data and in instruction
execution. Could the compiler schedule the instruction
stream to take advantage of the parallelism? It turned out
in fact that the experimental optimizing compiler devel-
oped to evaluate CPU designs could sometimes do better
than carefully hand-optimized code.

In order to isolate the effects of changes in the CPU
design and to modularize the experiment, the ACS com-
piler classified the optimizations as machine independent
or machine dependent. The machine independent analy-
ses and optimizations [67] included a general control flow
analyzer, common subexpression elimination and code
motion, data flow analysis, strength reduction, constant
propagation, and dead code elimination; the machine
dependent transformations included scheduling [a] and
register allocation [39, 691. With the exception of sched-
uling, most of the other analyses and transformations had
appeared in previous IBM compilers, particularly FOR-
TRAN I and FORTRAN H. In the ACS compiler (which, like
the entire ACS system, never became a product) the
techniques were generalized and isolated as much as
possible from source and machine language constructs.
This is an essential step, of course, in the evolution of
general compiler building tools. Out of this project came,
therefore, numerous advances in compiler technology
and, more importantly, the foundations of the theory of
program analysis and optimization. The elaboration and
refinement of this theory was the major development in
language processor technology during the next decade.

Recent history: the seventies

Characteristics
Increasing maturity is perhaps the hallmark of computer
science and technology in the 1970s. The cycle from
pragmatic problem (with a heuristic solution) to formal
solution to realization of the solution in a practical system
has been completed, or at least well started in numerous
cases. The study of algorithms has led to a growing
collection of tools whose time and space bounds and
correctness are known. Programming has become more
disciplined, and formal mechanisms for describing and
verifying various properties of systems have been exten-
sively investigated.

Language processor technology has been both the chief
benefactor and the raison d’etre for much of the work.
Parsing and program optimization are the quintessential
examples of the evolution of the technology.

At the beginning of this decade, the theory of parsing
was well understood; by the end of the decade, a fast,
reliable parsing system is one of the “on-the-shelf” tools
a programmer uses when building a compiler. At the
beginning of the decade, the theory of program analysis
and optimization was in its infancy; now some of the
results of these investigations are appearing in various
implementations. Register allocation is another area in
which both theoretical and practical advances have been

IBM J. RES. DEVELOP. 0 VOL. 25 NO. 5 SEPTEMBER 1981

made. In this section we trace the evolution of these latter
technologies and briefly describe one implementation
utilizing them.

0 Program analysis and optimization
In 1970 two papers [70, 711 described fast, abstract meth-
ods for program control and data flow analysis. Given a
directed graph representation of a program, one paper
[70] showed how the graph could be partitioned into
“intervals” (single entry subgraphs in which all loops
contain the entry node) and, treating each interval as a
node, higher order graphs were derived and then ana-
lyzed to effectively codify the nesting structure of the
program. The algorithm was abstract in that it did not
depend on specific source language constructs, such as
DOS, and it was fast when applied to typical program
graphs, though it had a poor worst-case bound. For each
graph it was linear in the number of edges, and, since the
number of derived graphs rarely exceeds three in practice
(the depth of nesting of loops), the number of derived
graphs was small. Since that time a nearly linear algo-
rithm has been found [72] which also gives a somewhat
better codification of interesting control flow relation-
ships. However, the most important feature of the inter-
val analysis method was that a node ordering was estab-
lished which could be used to rapidly determine other
relationships in the program.

The second paper [7 11 dealt with a particularly interest-
ing application: common subexpression elimination and
code motion. All redundant, formally identical (look-
alike) subexpressions in the entire program could be
identified by one execution of a fast algorithm-having
the same time bound as the interval analyzer. The algo-
rithm not only recognized subexpressions which could be
eliminated from the program when the computation al-
ready existed on all paths to the subexpression, but it also
found code which could be moved out of a loop or nests
of loops.

Another important application was finding “def-use”
relationships: Given a definition of a variable, all poten-
tial uses of that definition are of interest during optimiza-
tion and register allocation. The relationship and its dual,
the use-def relationship, are needed for strength reduc-
tion [34], constant propagation, dead code elimination,
and other transformations [73]. The interval-based algo-
rithm [74] for finding all such relationships was fast in the
sense described previously; now nearly linear algorithms
[75] exist.

A natural consequence of the existence of fast analysis
and optimization algorithms for individual procedures, as

544 well as the development and maintenance of on-line

F. E. ALLEN

program data bases and advances in programming meth-
odologies, was an interest in analyzing and transforming
collections of procedures. The first investigations [76, 771
into interprocedural analysis defined the problem and
outlined pragmatic solutions. Elegant, though not neces-
sarily pragmatic or completely general, algorithms [78-
801 now exist. A research project, the Experimental
Compiling System [81-831, is investigating the use of
interprocedural analysis [83, 841 and optimization in a
compiler building system. The basic ideas are to use
procedures to express the semantics of the language being
compiled, to deduce the characteristics of the language by
analysis, to use procedure integration (in-line expansion)
to do code generation, and to optimize in order to
customize and obtain good code.

The work on program analysis and optimization has
many parallels with the work on parsing and will undoubt-
edly prove to be as important. It seems almost certain
that language-independent tools for analyzing and opti-
mizing programs will become as available as lexical
analyzers and parser-generators are now. Also, just as
our understanding of parsing has affected language de-
sign, so will our understanding of optimization. It seems
unlikely that new languages will continue to contain
constructs such as unconstrained aliasing which con-
found analyses (as well as users).

Global register allocation
One of the very difficult functions of an optimizing
compiler is register allocation. It has been formulated as
an integer programming problem [85] and shown to be a
hard problem [86] even for straight-line code. Practical
implementations are necessarily heuristic and typically
complex. Recently a fast (usually) and surprisingly good
(approaching that of hand-coded assembly language) ap-
proach has been developed and implemented [23] by G.
Chaitin. The problem is formulated as a graph coloring
problem: Each node in the graph stands for a computed
quantity that resides in a machine register, and two nodes
are connected by an edge if the quantities interfere with
each other, that is, if they are simultaneously live at some
point in the object program. The problem is to assign
different colors (registers) to connected nodes. Obtaining
an optimum coloring is hard, but the implementation
showed that a fast heuristic method for assigning colors to
these particular graphs generally resulted in a very good
assignment. Another interesting aspect of the work was
that most of the idiosyncrasies of the target machine
(e .g . , register pairs, dedicated registers) could be handled
uniformly and systematically. It seems likely that this
approach to register allocation will be the basis for many
interesting investigations and elegant implementations.

IBM J. RES. DEVELOP. 0 VOL. 25 NO. 5 SEPTEMBER 1981

An implementation
In our discussion of PL/I implementations in the preceding
section, we said that context-sensitive (special casing)
code generation was often thought necessary to obtain
good code for complex languages. In an experimental
compiler [87] for a variant of PL/I a different approach was
used. Code is produced when some grammatical con-
struct is recognized by a LALR (Look Ahead Linear
Right)-produced parser-generator and is not, therefore,
selected because of its context. This simple and straight-
forward code is then optimized by a series of stand-alone
programs implementing the mathematically based algo-
rithms mentioned earlier. Code selection tricks are avoid-
ed. Registers are then assigned by graph coloring. The
method, which is largely language and machine indepen-
dent, can result in final code approaching and even
surpassing hand-coded assembly-language programs.
This result by itself is not surprising-the FORTRAN I
compiler accomplished the same thing; its importance lies
in the means by which it was obtained.

The uniform, systematic use of mathematically based,
general algorithms in a compiling system leads to a
simpler, more predictable design and a more maintainable
implementation. This is widely accepted. What we now
know is that this method can also produce better code.

1
Summary
We have traced the history of language processor tech-
nology in IBM from its rather slow start in 1952 to the
current collection of elegant algorithms, powerful tech-
niques, and unsolved problems. General, mathematically
based algorithms now exist for parsing, analyzing, and
optimizing programs. IBM has made significant contribu-
tions to these areas, particularly the last two. The art of
designing and constructing a language processor system
has become more scientific and, in some cases, quite
routine. Assemblers, interpreters, and macro systems are
generally well understood, though they still require the
judicious selection of techniques to fit the requirements.
Though worked on in one form or another for more than
twenty years, a general production-quality compiler
building system does not exist. We are, however, much
closer to this goal: We now have language and machine
independent translators; recent experiments with similar-
ly general analyzers, optimizers, and register allocators
increase the likelihood of such a system being developed.

A constant motivating force for work in language
processors has been “the programming prob1em””ours
and our customers’. Providing effective systems for Ian-

ples) has permitted and encouraged users to concentrate
more on problem solving and less on program writing.

I guages (Speedcode, FORTRAN, and APL are prime exam-

Providing increasingly more general language processor
tools has permitted the construction of more diverse and
reliable systems.

The synergistic relationship between theory and prac-
tice, noted throughout the paper, leads to two observa-
tions: All (or nearly all) theoretical results embodied in
practical implementations concern problems initially
identified in such implementations; all (or nearly all)
powerful general tools utilize theoretical results.

Some final observations
“Programming is optimization” [88]. Most if not all of the
choices made in programming a solution to a computable
problem are aimed at achieving an acceptable level of
efficiency. For example: How is information to be repre-
sented? Should it be sorted to permit fast lookups? What
sort method should be used? These are optimization
questions, not problem solving questions. If programming
is to truly become problem solving on a computer, we
must relieve users of such decisions by providing the
technology to permit widespread use of very high level,
problem-oriented languages and tools. In his paper on the
history of FORTRAN [29], John Backus corroborates this
view. The next paragraph is from that paper.

“To this day I believe that our emphasis on object
program efficiency rather than on language design was
basically correct. I believe that had we failed to produce
efficient programs, the widespread use of languages like
FORTRAN would have been seriously delayed. In fact, I
believe that we are in a similar, but unrecognized, situa-
tion today: in spite of all the fuss that has been made over
myriad language details, current conventional languages
are still very weak programming aids, and far more
powerful languages would be in use today if anyone had
found a way to make them run with adequate efficiency.
In other words, the next revolution in programming will
take place only when bath of the following requirements
have been met: (a) a new kind of programming language,
far more powerful than those of today, has been devel-
oped and (b) a technique has been found for executing its
programs at not much greater cost than that of today’s
programs.”

I believe much of the technology is in place to support
this revolution. The next decade could be very exciting as
existing technologies are exploited and new ones devel-
oped to subsume much more of the programmer’s task.

Acknowledgments
In the paper I have indicated a few of the IBM people who
contributed to the development of language processor
technology in IBM. Strong language processor groups at

IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981

IBM’s Time-Life Center in New York City (with M.
Ackroyd, G. Garabedian, W. Heising, R. Larner, L.
Levine, F. Pessin, P. Smith, and B. Weitzenhoffer to
name a few), at Hursley in England (with B. Marks, J.
Nash, and I. M. Clarke), and at numerous other locations
contributed most to the solid development of the area.
Many others, including the fine scientists and practition-
ers outside IBM with whom we have collaborated and
whose work we have admired and assimilated, must
unfortunately remain unrecognized here.

Two people, John Backus and John Cocke, deserve
special re-acknowledgment for their many major contri-
butions to language processor technology. John Backus
developed Speedcode, made FORTRAN happen (with the
help of a very fine group [30]), and invented BNF among
other things. John Cocke has contributed to nearly every
aspect of language processor science and technology,
program analysis and optimization, parsing, register allo-
cation, and macro systems, as well as to areas such as
improved hardware architecture which make these tasks
easier.

These are, as we said, just a few of the people who
made the history of language processing. I also want to
acknowledge a few of the people who helped with this
paper: C. Alberga, J. Cox, M. Hopkins, J. Palmer, and B.
Weitzenhoffer supplied invaluable memoranda, manuals,
and names, and the Yorktown Research librarians, I.
Cawley, E. Howing, and J. Leonard, cheerfully helped
locate many obscure documents.

In 1962 Donald Knuth said [89] that the early history of
compilers was difficult to assess. It has not become any
easier but, though the assessment is mine, the resources
available to me have contributed immeasurably to the
pleasure of the task.

References
1 . John W. Backus and Harlan Hemck, “IBM 701 Speedcod-

ing and Other Automatic-Programming Systems,” Sympo-
sium on Automatic Programming for Digital Computers,
Office of Naval Research, May 1954, pp. 106-113.

2. H. H. Goldstine and J. von Neumann, “Planning and Coding
of Problems for an Electronic Computing Instrument,” The
Institute for Advanced Study, Princeton, NJ, 1947.

3. Maurice V. Wilkes, David J. Wheeler, and Stanley Gill, The
Preparation of Programs for an Electronic Digital Comput-
er, Addison-Wesley Publishing Company, Reading, MA,
1951.

4. M. V. Wilkes, “Pure and Applied Programming,” Proceed-
ings of the ACM Meeting at Toronto, September 1952, pp.
121-124.

5 . Charles W. Adams, “Small Problems on Large Computers,”
Proceedings of the ACM Meeting in Pittsburgh, May 1952,
pp. 99-102.

6. Richard K. Ridgeway, “Compiling Routines,” Proceedings
of the ACM Meeting at Toronto, September 1952, pp. 1-3. 546

F. E. ALLEN

7. Nathaniel Rochester, “Symbolic Programming,” IRE
Trans. Electron. Computers EC-2, 10-15 (1953).

8. “Notes on Programming Systems and Techniques for the
IBM Type 701 Electronic Data Processing Machines,” Pre-
pared for the Applied Science Course held during the week
beginning March 16, 1953.

9. “Regional Programming,” Notes (from N. Rochester) for
701 customer class held August 25 to August 28, 1952.

10. C. L. Baker, “Symbolic Coding for Type 701 Calculator,”
Douglas Aircraft Company, Inc., Santa Monica, CA, Febru-
ary 1953.

11 . “Notes on the 701 Symposium held at Douglas Aircraft
Company, Santa Monica, California,” August 1953.

12. J. W. Backus, “The IBM 701 Speedcoding System,” J.

13. IBM Speedcoding System for the Type 701, IBM Corpora-
tion, September 1953.

14. Wesley S. Melahn, “A Description of a Cooperative Ven-
ture in the Production of an Automatic Coding System,” J.
ACM 3, 266-271 (1956).

15. Charles L. Baker, “The PACT I Coding System for the IBM
Type 701,” J. ACM 3, 272-278 (1956).

16. Owen R. Mock, “Logical Organization of the PACT I
Compiler,” J. ACM 3, 279-287 (1956).

17. Robert C. Miller, Jr., and Bruce Oldfield, “Producing Com-
puter Instructions for the PACT I Compiler,” J. ACM 3,
288-291 (1956).

18. Gus Hempstead and Jules I. Schwartz, “PACT Loop Ex-
pansion,”J. ACM 3, 292-298 (1956).

19. J. I. Derr and R. C. Luke, “Semi-Automatic Allocation of
Data Storage on PACT I,” J. ACM 3, 299-308 (1956).

20. I. D. Greenwald and H. G. Martin, “Conclusions After
Using the PACT I Advanced Coding Technique,” J. ACM 3,

ACM 1,4-6 (1954).

309-313 (1956).
21. T. B. Steel, Jr., “Pact IA,” J. ACM 4, 8-11 (1957).
22. A. P. Yershov (also Ershov), The Alpha Automaric Pro-

gramming System, Academic Press Ltd., London, 1971.
23. Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra,

John Cocke, Martin E. Hopkins, and Peter W. Markstein,
“Register Allocation via Coloring,” Computer Languages 6,

24, Janet Fabri, “Automatic Storage Optimization,” Proceed-
ings of the SZGPLAN Symposium on Compiler Construc-
tion, SZGPLAN Notices 14,83-91 (August 1979).

25. Donald E. Knuth, The Art of Computer Programming,
Volume 3: Searching and Sorting, Addison-Wesley Publish-
ing Company, Reading, MA, 1973.

26. J. Lawrence Carter and Mark N. Wegman, “Universal
Classes of Hash Functions,” J. Computer Syst. Sci. 18, 143-
154 (1979).

27. G . R. Trimble, Jr., and E. C. Kubie, “Principles of Optimum
Programming of the IBM Type 650,” ZBM Applied Science
Division Technical Newsletter No . 8 , 1954.

28. Barry Gordon, “An Optimizing Program for the IBM 650,”

29. John Backus, “The History of FORTRAN I, 11, and 111,”
ACM SZGPLAN History of Programming Languages Con-
ference, SZGPLAN Notices 13, 165-180 (August 1978).

30. J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M.
Haibt, H. L. Hemck, R. A. Nelson, D. Sayre, P. B.
Sheridan, H. Stern, I. Ziller, R. A. Hughes, and R. Nutt,
“The FORTRAN Automatic Coding System,” Proceedings
Western Joint Computer Conf., Los Angeles, 1957, pp. 188-
198.

31. Peter B. Sheridan, “The Arithmetic Translator-Compiler of
the IBM FORTRAN Automatic Coding System,” Commun.

32. J. W. Backus and W. P. Heising, “FORTRAN,” ZEEE

33. Alfred V. Aho, “Translator Writing Systems: Where Do

47-57 (1981).

J . ACM 3, 3-5 (1956).

ACM 2,9-21 (1959).

Trans. Electron. Computers EC-13, 382-385 (1964).

They Stand?”, Computer 13, 9-14 (1980).

IBM J. RES. DEVELOP. VOL. 25 0 NO. 5 SEPTEMBER 1981

34. F. E. Allen, J. Cocke, and K. Kennedy, “Reduction of
Operator Strength,” Data Flow Analysis, Neil D. Jones and
Steven S. Muchnick, Eds., Prentice-Hall, Inc., Englewood

35. Randolph G. Scarborough and Harwood G. Kolsky, “Im-
proved Optimization of FORTRAN Object Programs,” ZBM
J . Res. Develop. 24, 660-676 (1980).

36. L. A. Belady, “A Study of Replacement Algorithms for a
Virtual-Storage Computer,” ZBM Syst. J . 5, 78-101 (1966).

37, L. P. Horwitz, R. M. Karp, R. E. Miller, and S . Winograd,
“Index Register Allocation,” J . ACM 13, 43-61 (1%6).

38. Edward S. Lowry and C. W. Medlock, “Object Code
Optimization,” Commun. ACM 12, 13-22 (1969).

39. J. C. Beatty, “Register Assignment Algorithm for Genera-
tion of Highly Optimized Object Code,” ZBM J . Res. Devel-

40. William Harrison, “A Class of Register Allocation Algo-
rithms,” Research Report RC 5342, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, 1975.

41. Donald L. Shell, “The SHARE 709 System: A Cooperative
Effort,” 1. ACM 6, 123-127 (1959).

42. Irwin D. Greenwald and Maureen Kane, “The SHARE 709
System: Programming and Modification,” J . ACM 6, 128-
133 (1959).

43. E. M. Boehm and T. B. Steel, Jr., “The SHARE 709
System: Machine Implementation of Symbolic Program-
ming,” J . ACM 6, 134-140 (1959).

44. Vincent J. DiGri and Jane E. King, “The SHARE 709
System: Input-Output Translation,” J . ACM 6, 141-144
(1959).

45. Owen Mock and Charles J. Swift, “The SHARE 709 Sys-
tem: Programmed Input-Output Buffering,” J . ACM 6, 145-
151 (1959).

46. Harvey Bratman and Ira V. Boldt, Jr., “The SHARE 709
System: Supervisory Control,” J . ACM 6, 152-155 (1959).

47. R. Lamer, “Design of an Integrated Programming and
Operating System Part IV: The System’s FORTRAN Com-
piler,”ZBM Syst. J . 2, 311-321 (1963).

48. R. T. Dorrance, “Design of an Integrated Programming and
Operating System Part V: The System’s COBOL Compil-
er,” ZBM Sysr. J . 2, 322-327 (1%3).

49. Donald E. Knuth, The Art of Computer Programming,
Volume 1: Fundamental Algorithms, Addison-Wesley Pub-
lishing Company, Reading, MA, 1%9.

50. L. H. Haines, “Serial Compilation and the 1401 FORTRAN
Compiler,” ZBM Syst. J . 4, 73-80 (1965).

51. T. M. Dunn and J. H. Monissey, “Remote Computing-An
Experimental System: Part 1: External Specifications,”
AFZPS Conf. Proc. 25,413-423 (1964).

52. J. M. Keller, E. C. Strum, and G. H. Yang, “Remote
Computing-An Experimental System: Part 2: Internal De-
sign,” AFZPS Conf. Proc. 25, 425-443 (1964).

53. B. L. Marks, “Design of a Checkout Compiler,” ZBM Syst.

54. H. Gelernter, J. R. Hansen, and C. L. Gerberich, “A
FORTRAN-Compiled List-Processing Language,” J . ACM

55. J. Strong, J. Wegstein, A. Tritter, J. Olsztyn, 0. Mock, and
T. Steel, “The Problem of Programming Communication
with Changing Machines: A Proposed Solution,” Commun.
ACM 1, 12-18 (1958) and Commun. ACM 1, 9-16 (1958).

56. R. W. Bemer, “Survey of Modern Programming Tech-
niques,” The Computer Bulletin, 127-135 (1961).

57. R. A. Sibley, “The SLANG System,” Commun. ACM 4,
75-84 (1961) .

58. J. W. Backus, “The Syntax and Semantics of the Proposed
International Algebraic Language of the Zurich ACM-
GAMM Conference,” Proceedings International Confer-
ence on Information Processing, UNESCO, Paris, Butter-
worths, London, 1960, pp. 125-132.

59. David G. Hays, “Automatic Language-Data Processing,”

Cliffs, NJ, 1981, pp. 79-101.

op. 18, 20-39 (1974).

J . 12, 315-327 (1973).

7, 87-101 (1960).

IBM J. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981

Computer Applications in the Behavioral Sciences, Harold
Borko, Ed., Prentice-Hall, Inc., Englewood Cliffs, NJ, 1%2.

60. John Cocke and J. T. Schwartz, “Programming Languages
and Their Compilers,” Courant Institute of Mathematical
Sciences, New York University, New York, 1969.

61. Robert W. Floyd, “The Paradigms of Programming,” Com-
mun. ACM 22,455-460 (1979).

62. Alfred V. Aho and Jeffrey D. Ullman, The Theory of
Parsing, Translation, and Compiling, Volume Z: Parsing,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1972.

63. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman,
The Design and Analysis of Computer Algorithms, Addison-
Wesley Publishing Company, Reading, MA, 1974.

64. M. Elson and S. T. Rake, “Code-Generation Technique for
Large-Language Compilers,” ZBM Syst. J . 9, 166-188
(1970). (Republished in Compiler Techniques, Barry W.
Pollack, Ed., Auerbach Publishers, Inc., Pennsauken, NJ,
1972, pp. 410-438.)

65. L. M. Breed and R. H. Lathwell, “The Implementation of
APW360,” Interactive Systems for Experimental Applied
Mathematics, Melvin Klerer and Juris Reinfelds, Eds. (Pro-
ceedings of the ACM Symposium held in Washington, DC,
August 1%7), Academic Press, Inc., New York, 1968, pp.
390-399.

66. E. E. McDonnell, “The Socio-technical Beginnings of
APL,” ACM SZGPLANISTAPL 10, 13-18 (December 1979).

67. F. E. Allen, “Program Optimization,” Annual Review in
Automatic Programming, Vol. 5 , Mark I. Halpern and
Christopher J. Shaw, Eds., Pergamon Press, Inc., Elmsford,

68. James C. Beatty, “An Axiomatic Approach to Code Optimi-
zation for Expressions,” J . ACM 19,613-640 (1972). Errata:
J . ACM 20, 188 (1973) and J . ACM 20, 538 (1973).

69. J. C. Beatty, “A Global Register Assignment Algorithm,”
Design and Optimization of Compilers, R. Rustin, Ed.,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1972, pp. 65-88.

70. Frances E. Allen, “Control Flow Analysis,” Proceedings
ACM SZGPLAN Symposium on Compiler Optimization,
SZGPLAN Notices 5, 1-19 (July 1970).

71. J. Cocke, “Global Common Subexpression Elimination,”
Proceedings ACM SZGPLAN Symposium on Compiler Opti-
mization, SZGPLAN Notices 5, 20-24 (July 1970).

72. Robert Tarjan, “Testing Flow Graph Reducibility,” J . Com-
puter Syst. Sci. 9, 355-365 (1974).

73. F. E. Allen and J. Cocke, “A Catalogue of Optimizing
Transformations,” Design and Optimization of Compilers,
R. Rustin, Ed., Prentice-Hall, Inc., Englewood Cliffs, NJ,

74. F. E. Allen and J. Cocke, “A Program Data Flow Analysis
Procedure,” Commun. ACM 19, 137-147 (1976).

75. Susan L. Graham and Mark Wegman, “A Fast and Usually
Linear Algorithm for Global Flow Analysis,” J . ACM 23,

76. F. E. Allen, “Interprocedural Data Flow Analysis,” Proc.
ZFZP Congress 74, North-Holland Publishing Co., Amster-

77. T. C. Spillman, “Exposing Side Effects in a PL/I Optimizing
Compiler,” Proc. ZFZP Congress 71, North-Holland Publish-
ing Co., Amsterdam, 1971, pp. 376-381.

78. B. K. Rosen, “Data Flow Analysis for Procedural Lan-
guages,” J . ACM 26, 322-344 (1979).

79. Jeffrey M. Barth, “Interprocedural Data Flow Analysis
Based on Transitive Closure,” Conference Record of the
Fourth ACM Symposium On Principles of Programming
Languages, Santa Monica, CA, January 1977, pp. 119-131.

80. John Banning, “An Efficient Way to Find the Side Effects of
Procedure Calls and Aliases of Variables,” Conference
Record of the Sixth Annual ACM Symposium on Principles
of Programming Languages, San Antonio, TX, January

81. F. E. Allen, J. L. Carter, J. Fabri, J. Ferrante, W. H.

NY, 1%9, pp. 239-307.

1972, pp. 1-30.

172-202 (1976).

dam, 1974, pp. 398-402.

1979, pp. 29-41.
547

F. E. ALLEN

Hamson, P. G. Loewner, and L. H. Trevillyan, “The

695-715 (1980).
Experimental Compiling System,” ZBM J . Res. Develop. 24,

82. William Harrison, “A New Strategy for Code Generation-
the General Purpose Optimizing Compiler,” ZEEE Trans.
Software Engineering SE-3, 243-250 (1977).

83. William E. Weihl, “Interprocedural Data Flow Analysis in
the Presence of Pointers, Procedure Variables and Label
Variables,” Conference Record of rhe Seventh Annual ACM
Symposium on Principles of Programming Languages, Las
Vegas, NV, January 1980, pp. 83-94.

84. D. B. Lomet, “Data Flow Analysis in the Presence of
Procedure Calls,” IBM J . Res. Develop. 21, 559-571 (1977).

85. W. H. E. Day, “Compiler Assignment of Data Items to
Registers,” ZBM Sysr. J . 9, 281-317 (1970).

86. R. Sethi, “Complete Register Allocation Problems,” SZAM
J . Computing 4, 226-248 (1975).

87. John Cocke and Peter W. Markstein, “Measurement of
Program Improvement Algorithms,” ZFIP 80 Proceedings
Information Processing, S. H. Lavington, Ed., North-Hol-
land Publishing Co., Amsterdam, 1980, pp. 221-228.

548

F. E. ALLEN

88. Jacob T. Schwartz, “On hogramming (An Interim Report
on the SETL Project) Installment I: Generalities,” Technical
Report, Computer Science Department, Courant Institute of
Mathematical Sciences, New York University, New York,
1973.

89. Donald E. Knuth, “A History of Writing Compilers,”
Computers and Automation 11, 8-14 (1%2).

Received October 23, 1980; revised February 24, 1981

The author is located at the ZBM Thomas J . Watson
Research Center, Yorktown Heights, New York 10598.

IBM 1. RES. DEVELOP. VOL. 25 NO. 5 SEPTEMBER 1981

