

Systems and Technology Group

Power Efficient Processor Design and the Cell Processor

H. Peter Hofstee, Ph. D. hofstee@us.ibm.com Architect, Cell Synergistic Processor Element IBM Systems and Technology Group Austin, Texas

© 2005 IBM Corporation

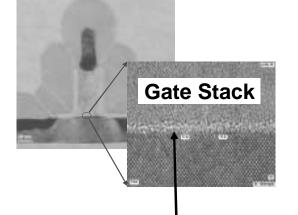
Agenda

- Power Efficient Processor Architecture
- System Trends
- Cell Processor Overview

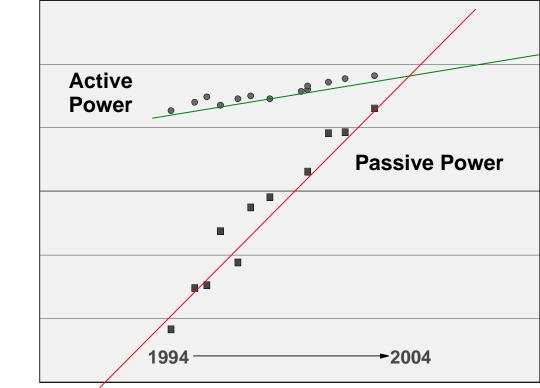
Power Efficient Architecture

Limiters to Processor Performance

- Power wall
- Memory wall
- Frequency wall


-		-		-			
	-	-	-		Ξ.	E	
		-		E	-		
		-					-
_		_		_			

Power Wall (Voltage Wall)


Power components:

- Active power
- Passive power
 - Gate leakage
 - Sub-threshold leakage (sourcedrain leakage)

Power Density (W/cm²)

Gate dielectric approaching a fundamental limit (a few atomic layers)

NET: INCREASING PERFORMANCE REQUIRES INCREASING EFFICIENCY

			- 14		-	÷	
					_	-	
					-	-	
					1	3	
 <u> </u>	_	_	- 1	_		-	_
			F 1			2 E	

Memory wall

- Main memory now nearly 1000 cycles from the processor
 - Situation worse with (on-chip) SMP
- Memory latency penalties drive inefficiency in the design
 - Expensive and sophisticated hardware to try and deal with it
 - Programmers that try to gain control of cache content, but are hindered by the hardware mechanisms
- Latency induced bandwidth limitations
 - Much of the bandwidth to memory in systems can only be used speculatively
 - Diminishing returns from added bandwidth on traditional systems

Frequency wall

- Increasing frequencies and deeper pipelines have reached diminishing returns on performance
- Returns negative if power is taken into account
- Results of studies depend on issue width of processor
 - The wider the processor the slower it wants to be
 - Simultaneous Multithreading helps to use issue slots efficiently
- Results depend on number of architected registers and workload
 - More registers tolerate deeper pipeline
 - Fewer random branches in application tolerates deeper pipelines

Microprocessor Efficiency

Recent History:

- -Gelsinger's law
 - 1.4x more performance for 2x more transistors
- -Hofstee's corollary
 - 1/1.4x efficiency loss in every generation
 - Examples: Cache size, OoO, Superscalar, etc. etc.

Re-examine microarchitecture with performance per transistor as metric

-Pipelining is last clear win

Attacking the Performance Walls

Multi-Core Non-Homogeneous Architecture

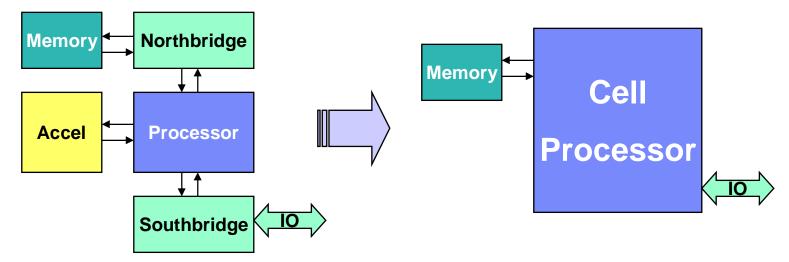
- Control Plane vs. Data Plane processors
- Attacks **Power Wall**

3-level Model of Memory

- Main Memory, Local Store, Registers
- Attacks Memory Wall

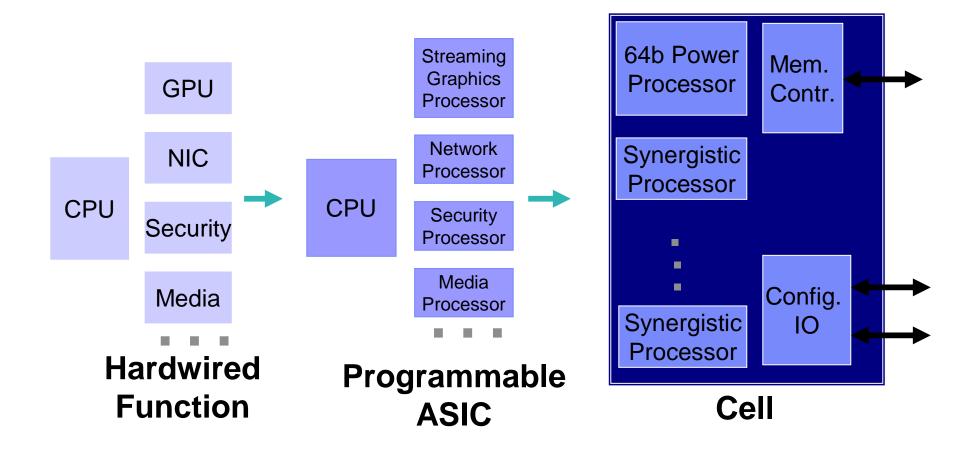
Large Shared Register File & SW Controlled Branching

- Allows deeper pipelines (11FO4 ... helps power!)
- Attacks Frequency Wall



System Trends

© 2005 IBM Corporation


System Trends toward Integration

- Increased integration is driving processors to take on many functions typically associated with systems
 - Integration forces processor developers to address offload and acceleration in the design of the processor
 - Integration of bridge chip functionality
- Virtualization technology is used to support nonhomogeneous environments

Next Generation Processors address Programming Complexity and Trend Towards Programmable Offload Engines with a Simpler System Alternative

			-1		-	1	
					_		
						-	
					1.0	1	
i	_	_	-11	_		- 1-	_

"Outward Facing" Aspects of Cell

Cell is designed to be responsive

... to human user

- Real-time response
- Supports rich visual interfaces

... to network

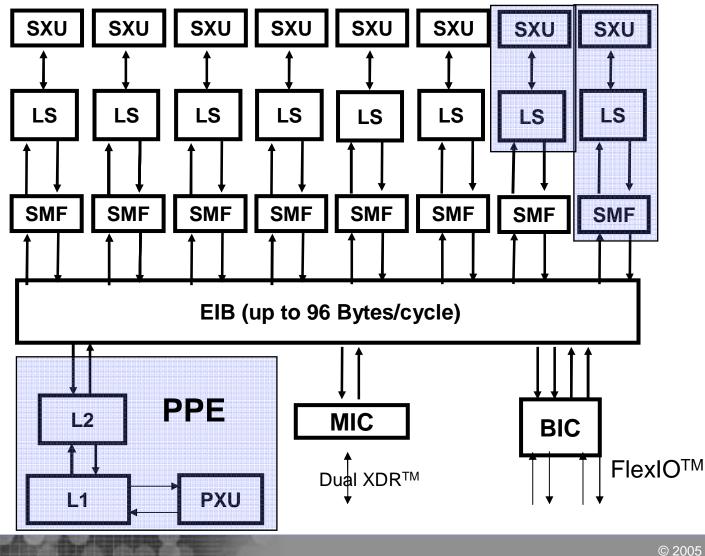
- Flexible, can support new standards
- High-bandwidth
- Content protection, privacy & security
- Contrast to traditional processors which evolved from "batch processing" mentality (inward focused).

Cell Overview

		- 14	-	÷	
			_	-	
			1.5	3	
		10			

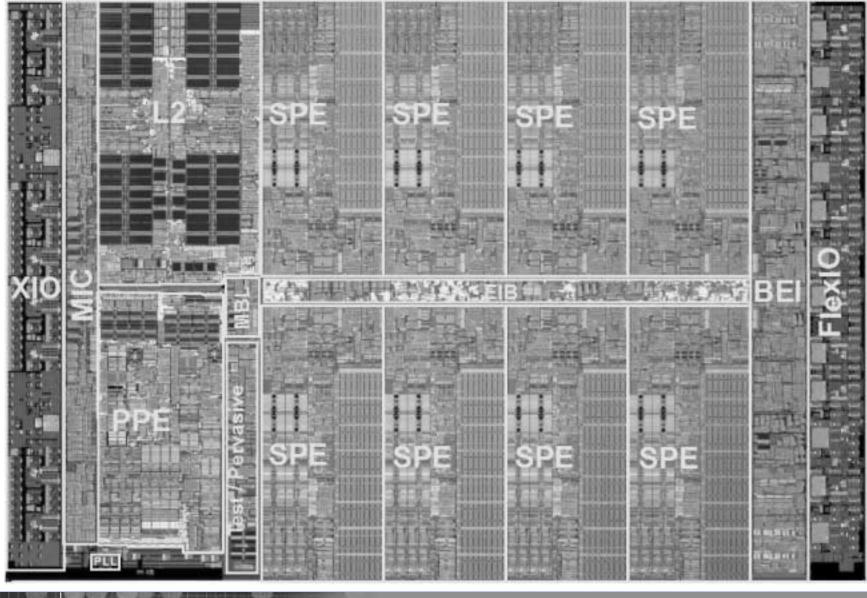
Key Attributes of Cell

- Cell is Multi-Core
 - − Contains 64-bit Power Architecture TM
 - Contains 8 Synergistic Processor Elements (SPE)
- Cell is a Flexible Architecture
 - Multi-OS support (including Linux) with Virtualization technology
 - Path for OS, legacy apps, and software development


Cell is a Broadband Architecture

- SPE is RISC architecture with SIMD organization and Local Store
- 128+ concurrent transactions to memory per processor
- Cell is a Real-Time Architecture
 - Resource allocation (for Bandwidth Measurement)
 - Locking Caches (via Replacement Management Tables)
- Cell is a Security Enabled Architecture
 - SPE dynamically reconfigurable as secure processors

Cell Chip Block Diagram


SPU SPE

Cell Prototype Die (Pham et al, ISSCC 2005)

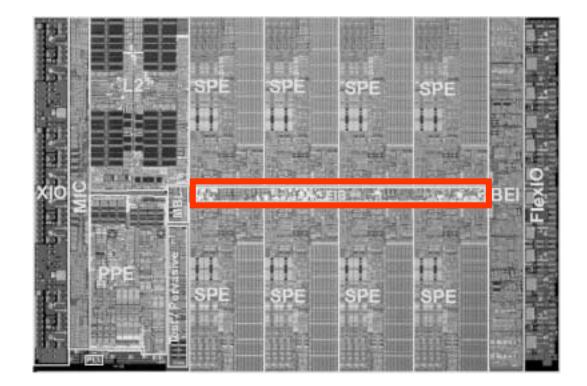
© 2005 IBM Corporation

				-		
 1	-	E	-1	-1	-	1
				12		
			10	10.0		

Cell Highlights

- Observed clock speed
 - > 4 GHz
- Peak performance (single precision)

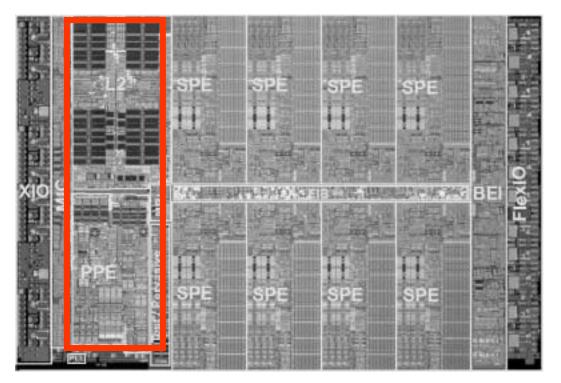
-> 256 GFlops


- Peak performance (double precision)
 - ->26 GFlops
- Area
- Technology
- Total # of transistors

221 mm2 90nm SOI 234M

Element Interconnect Bus

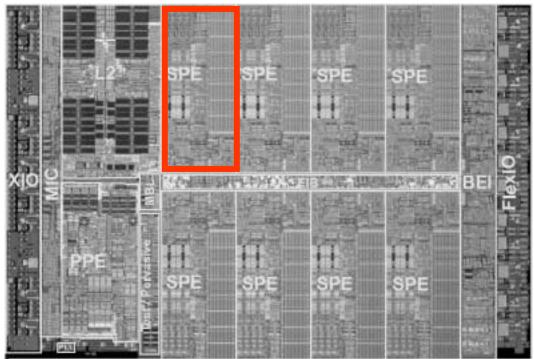
- EIB data ring for internal communication
 - Four 16 byte data rings, supporting multiple transfers
 - 96B/cycle peak bandwidth
 - Over 100 outstanding requests



Power Processor Element

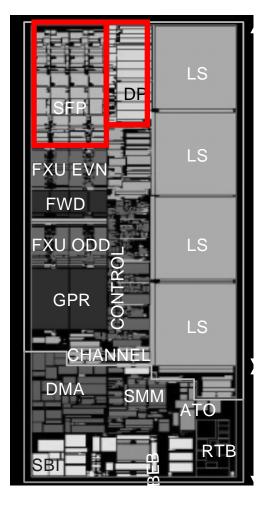
PPE handles operating system and control tasks

- − 64-bit Power ArchitectureTM with VMX
- In-order, 2-way hardware Multi-threading
- Coherent Load/Store with 32KB I & D L1 and 512KB L2



Synergistic Processor Element

SPE provides computational performance


- Dual issue, up to 16-way 128-bit SIMD
- Dedicated resources: 128 128-bit RF, 256KB Local Store
- Each can be dynamically configured to protect resources
- Dedicated DMA engine: Up to 16 outstanding request

Systems and Technology Group

SPE Highlights

14.5mm2 (90nm SOI)

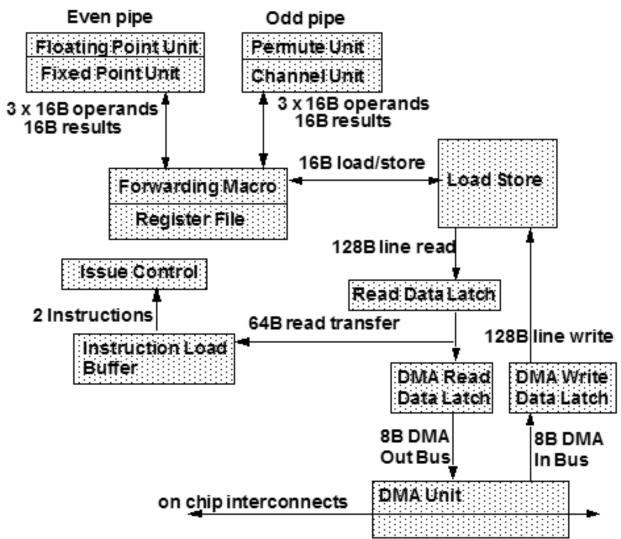
User-mode architecture

- No translation/protection within SPU
- DMA is full Power Arch protect/x-late

Direct programmer control

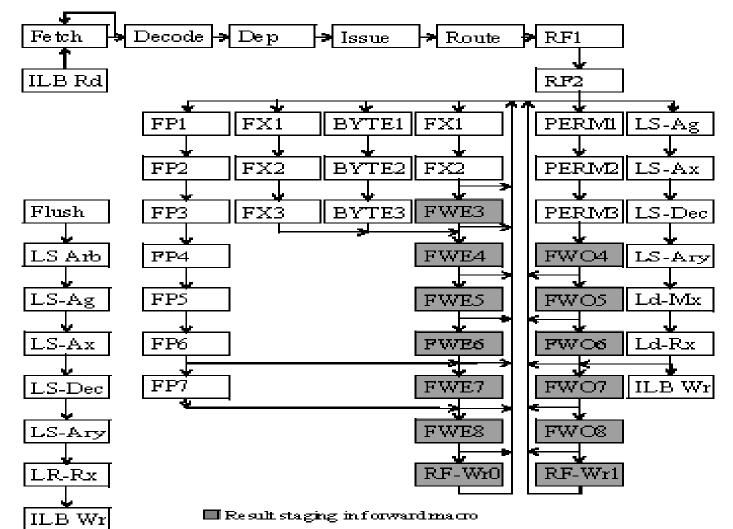
- DMA/DMA-list
- Branch hint

VMX-like SIMD dataflow

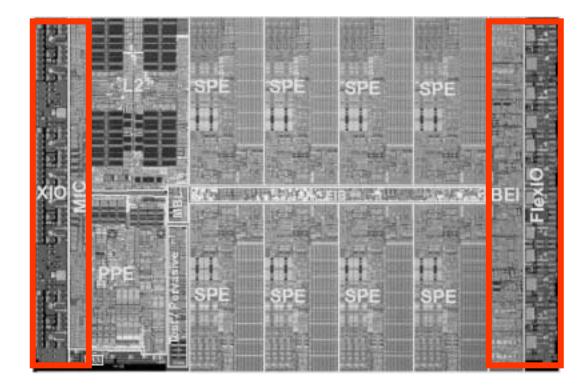

- Broad set of operations
- Graphics SP-Float
- IEEE DP-Float (BlueGene-like)
- Unified register file
 - 128 entry x 128 bit

256kB Local Store

- Combined I & D
- 16B/cycle L/S bandwidth
- 128B/cycle DMA bandwidth



SPE Organization (Flachs et al, ISSCC 2005)


SPE PIPELINE (Flachs et al, ISSCC 2005)

		-11	-	1	
			_	-	
			1.0		

I/O and Memory Interfaces

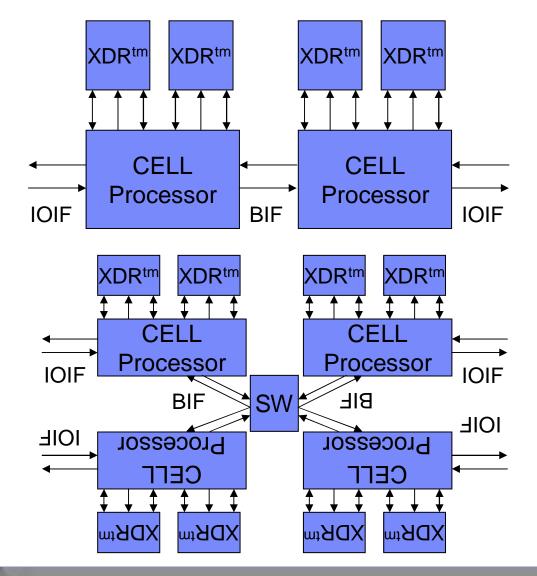
- I/O Provides wide bandwidth
 - Dual XDR[™] controller (25.6GB/s @ 3.2Gbps)
 - Two configurable interfaces (76.8GB/s @6.4Gbps)
 - Flexible Bandwidth between interfaces
 - Allows for multiple system configurations

		E			1	- 1
				1	- 12	
	_	c	c	- 12		

Systems and Technology Group

XDRtm

IOIF1


CELL

Processor

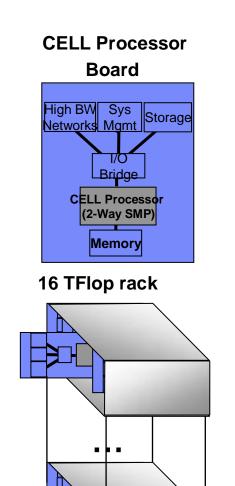
Cell Processor Can Support Many Systems

- Game console systems
- Workstations (CPBW)
- HDTV
- Home media servers
- Supercomputers

XDRtm

IOIF0

Cell Processor Based Workstation (CPBW) (Sony Group and IBM)


First Prototype "Powered On"

16 Tera-flops in a rack (est.)

- (equals 1 Peta-flop in 64 racks)

Optimized for Digital Content Creation, including

- Computer entertainment
- Movies
- Real-time rendering
- Physics simulation

Cell Processor Example Application Areas

- Cell is a processor that excels at processing of rich media content in the context of broad connectivity
 - Digital content creation (games and movies)
 - Game playing and game serving
 - Distribution of (dynamic, media rich) content
 - Imaging and image processing
 - Image analysis (e.g. video surveillance)
 - Next-generation physics-based visualization
 - Video conferencing (3D?)
 - Streaming applications (codecs etc.)
 - Physical simulation & science

Summary

- Cell ushers in a new era of leading edge processors optimized for digital media and entertainment
- Desire for realism is driving a convergence between supercomputing and entertainment
- New levels of performance and power efficiency beyond what is achieved by PC processors
- Responsiveness to the human user and the network are key drivers for Cell
- Cell will enable entirely new classes of applications, even beyond those we contemplate today

Acknowledgements

- Cell is the result of a deep partnership between SCEI/Sony, Toshiba, and IBM
- Cell represents the work of more than 400 people starting in 2001
- More detailed papers on the Cell implementation and the SPE micro-architecture can be found in the ISSCC 2005 proceedings