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The IBM eServer� z990 microprocessor implements many
features designed to give excellent performance on both newer
and traditional mainframe applications. These features include
a new superscalar instruction execution pipeline, high-
bandwidth caches, a huge secondary translation-lookaside
buffer (TLB), and an onboard cryptographic coprocessor.
The microprocessor maintains zSeries� leadership in RAS
(reliability, availability, serviceability) capabilities that include
state-of-the-art error detection and recovery.

Introduction
The microprocessor in the IBM eServer* z990 was
designed to optimize the performance of both newer and
traditional mainframe applications while maintaining the
outstanding reliability, availability, serviceability (RAS)
features customers expect from IBM mainframes.
Although some high-level concepts of the microprocessor
design are based on those of the IBM eServer z900 and
earlier generations, most of the internal structures and
lower-level details are brand new for the IBM eServer
z990.

Prior CMOS IBM mainframe processors [1– 4] had a
relatively simple microarchitecture and were optimized
for traditional applications that ran on them. These
applications tended to fully exploit the complex
instructions in the z/Architecture* instruction set [5, 6]; a
significant number were written in assembly language (or
at least used it for performance-critical routines); and they
stressed the storage subsystem. Therefore, the instruction
pipeline in these earlier CMOS processors was not
superscalar; that is, they could execute only one
instruction per clock cycle. Instead, they achieved good
performance by using additional hardware to execute the
complex instructions quickly and had a very robust storage
subsystem including large L1 caches and translation-
lookaside buffers (TLBs). As a side note, the processor
in the bipolar technology ES/9000* Type 9021 [7] was one
of the very first commercial superscalar out-of-order-
execution processors in the industry, but when IBM
mainframes made the transition to CMOS, it moved to
a simpler processor design point, since the performance
improvement on applications did not justify the much

more complex design point given clock frequency and
time-to-market requirements.

As the mainframe has evolved, customers are now
running a wide variety of applications and middleware on
these systems. Newer applications are typically written in a
high-level language such as C, C��, or Java**. This code
tends to have characteristics very different from those of
traditional code. Most significantly, it tends to use the
simpler instructions in the instruction set and relatively
infrequently uses the complex instructions for which prior
processors were optimized. When this microprocessor was
originally conceived, a design goal was that it must
execute both traditional and newer types of code with
high performance; therefore, the design team decided
that a superscalar design point was again necessary.

In moving forward to the z990, a number of features in
earlier processors have been maintained. These include
millicode [8], which is the vertical microcode that executes
on the processor, and the recovery unit (R-unit), which
holds the complete microarchitected state of the processor
and is checkpointed1 after each instruction. If a hardware
error is detected, the R-unit is then used to restore the
checkpointed state and execute the error-recovery
algorithm. Additionally, the z990 processor, like its
predecessors, completely duplicates several major
functional units for error-detection purposes and uses
other error-detection techniques (parity, local duplication,
illegal state checking, etc.) in the remainder of the
processor to maintain state-of-the-art RAS characteristics.

1 The term checkpointed here means that the instruction has completed, for the
purpose of error recovery, and there is no need to retry it in the event of an
error [2].
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It also contains several mechanisms for completely
transferring the microarchitected state to a spare
processor in the system in the event of a catastrophic
failure if it determines that it can no longer continue
operating.

Another concern as the mainframe has evolved is
floating-point performance. Since the mid-1960s when the
S/360 architecture was originally defined, IBM mainframes
have implemented a proprietary floating-point arithmetic
based on a hexadecimal data format (HFP). In 1998, the
G5 processor first implemented the IEEE 754 binary
floating-point (BFP) standard [9]. It executed both data
formats using a shared floating-point pipeline. However,
when an application used BFP arithmetic instead of the
traditional format, it received poorer performance; the
BFP pipeline was effectively two cycles longer, and a new
operation could be submitted only every other cycle. Since
applications have recently begun to use BFP arithmetic
as much as the traditional format, BFP arithmetic
performance had to be substantially improved. Therefore,
the z990 processor contains a new floating-point unit [10].
Although the two data formats again share a common
pipeline, the new design provides equal performance for
BFP and HFP operations.

The processor also contains several novel features never
before seen on any general-purpose microprocessor. One
of these is a huge secondary TLB (we call it the TLB2)
that supplies virtual to real address translations in the
event of a miss in the first-level TLBs. If there is a miss
in the TLB2, addresses are translated by means of a
programmable translation engine. Additionally, the
processor contains several sophisticated mechanisms to
minimize performance loss when broadcast purge TLB
operations are required. Another new feature is the
on-board cryptographic coprocessor. This very-high-
performance and low-latency engine was designed to
speed up Web transactions using the Secure Socket Layer
(SSL) protocol. It implements the Data Encryption
Standard (DES) and Secure Hash Algorithm (SHA)
functions.

Overview of superscalar microarchitecture
The microprocessor in the IBM eServer z990 is relatively
uncommon compared with other modern processors
because, although it is superscalar, it executes instructions
in strict architectural order. However, it makes up for this
by having a shorter pipeline and much larger caches and
TLBs compared with other processors, along with other
performance-enhancing features.

In the initial choice of a high-level microarchitecture
for a processor, many factors have to be considered. The
pipeline stages and overall length must be carefully chosen
to achieve the optimal balance between frequency (with all
else being equal, a higher-frequency target requires more

pipeline stages) and the performance penalties associated
with a longer pipeline (mispredicted branch and
dependent data and address usage). The cache and TLB
sizes have to be balanced to achieve good hit rates while
not requiring excessive chip area and the associated
difficulty of maintaining frequency targets that entails.
Finally, and equally important, adding complexity to
achieve performance must be balanced against product
schedules. In the end, we believe that the microarchitecture
of this processor is optimal for the CMOS technology in
which it is implemented, and for the complex instruction
set of the z/Architecture.

Processor pipeline
The basic pipeline structure is presented in Figure 1,
along with the functions performed by each of the major
units. As shown here, instruction text is presumed to have
been prefetched from the L1 instruction cache (I-cache)
and latched in instruction buffers in the instruction unit
(I-unit). There are two instruction decoders available that
operate in the D1 cycle. Branch prediction is performed
by the branch target buffer (BTB) in the cycles before
decode. The BTB holds both target address and direction
information based on prior branches it has encountered.
There are also static direction-prediction algorithms for
branches not found in the BTB at instruction decode time.

The next cycle is the AA1 cycle in the I-unit, which
corresponds to the C0 cycle in the L1 data cache (D-
cache). In this cycle, an operand address calculation
(Agen) is performed. Note that the z/Architecture
instruction set is not a load-store architecture. It allows
a single instruction to fetch data from storage and
simultaneously perform an arithmetic or logical operation
on it [11], which would be equivalent to two RISC
instructions. Therefore, operand addresses are calculated
earlier in the pipeline compared with most RISC
processors, but this can present performance bottlenecks
in the event of address generation interlocks (AGI), where
the address that is to be computed requires a general
register (GR) that has not yet been updated. To help
reduce AGI stalls, several bypasses are available. Load-
type instructions can bypass data from the C2 cycle back
to the Agen units. The Load Address instruction is
effectively executed in the Agen units themselves,
and results are saved on a stack to be used by future
instructions which may require that updated register value
before the register file is updated after the true execution
cycle. Also, in this AA1 cycle, the I-unit performs
superscalar grouping of instructions for execution. Once
formed in the AA1 cycle, the group stays together until
execution is complete. In parallel, the D-cache has its C0
cycle. Here, the access lookaside buffer (ALB), if the
processor is operating in access register mode, and the
absolute address history table (AAHT) are accessed. The
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AAHT is used to predict the real (or, more precisely,
absolute) address value of virtual address bits when the
cache arrays are accessed in the next cycle [1]. If the
instruction is a branch, this cycle also determines whether
the target address has been predicted correctly by the
BTB, or, if it has not been predicted by the BTB, the
target address is computed.

The following cycle is the C1 cycle in the D-cache,
where the main arrays are accessed. These include the
D-cache TLB, the directory array (sometimes referred to
as the tag array), the page absolute address history table
(PAAHT), and the cache data array itself. The PAAHT
can be thought of as a small and fast TLB that is accessed
in parallel with the main D-cache TLB. There are two
complete pipelines in the D-cache for processing requests.
If all arrays indicate a hit for a given request, data is
latched at the end of this cycle. For fetches, two
independent pieces of cache data, corresponding to the
two pipelines, can be returned to the execution unit in a
single cycle. This cycle also corresponds to the E–1 cycle
in the I-unit and execution units (E-unit, which comprises

the fixed-point unit and floating-point unit), where control
information is passed between units on how to execute
this instruction group.

Following the C1 cycle is the C2 cycle in the D-cache,
where cache data is returned to the E-unit. If there has
been a miss in the TLB in the prior cycle, a request is
sent to the translator unit (X-unit), where virtual-to-real
address translation is performed. If it is a store-type
instruction, the store queue is written with address
and control information to track this store until it is
completed. The C2 cycle also corresponds to the E0 cycle
in the E-unit. Here registers are accessed and controls set
up in preparation for execution.

The next cycle is the E1 cycle, in which arithmetic or
logical results are computed in the fixed-point unit (FXU).
Up to three instructions may be executed simultaneously
in the FXU. If it is a floating-point operation, this is
extended from E1 through E5 corresponding to the five
stages in the floating-point unit (FPU) pipeline. If a
branch instruction is part of the group, this is the cycle in
which it is determined whether the branch direction has

Figure 1

Processor instruction pipeline for most common instructions.
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been predicted correctly. If it is incorrect, the I-unit has
typically prefetched the nonpredicted path and is ready
to decode the correct path two cycles later.

The put-away cycle (PA) is where result(s) from the
E-unit are written on two 64-bit result buses. There are
copies of the general registers in both the E-unit and
I-unit, and these are written on the PA cycle. Store data is
sent to the D-cache on this cycle. Results are also sent
to the R-unit in the PA cycle for comparison and
checkpointing.

The remaining stages of the pipeline are for completing
stores (shown in green in Figure 1) and for checkpointing
results in the R-unit. None of these extra stages affect
performance on mispredicted branches or in the event of
data dependencies; their sole purpose is to allow for error
checking and recovery. Here, results from the mirror E-
unit are compared to ensure that there were no hardware
errors in execution. Traditionally, IBM mainframes have
duplicated these units not only to gain perfect error
checking, but also to improve operating frequency by
eliminating the need to include conventional error-
checking techniques in critical paths. However, it is
somewhat more expensive than traditional error checking
in terms of area and power. In the early phases of the
processor design, it was determined that duplicating the
units for RAS purposes would have an adverse effect on
the processor frequency because of the additional wiring
to and from the duplicated units. Thus, a novel scheme
was invented that runs the mirror units one cycle
later than the main units. This allows the core to be
floorplanned in such a way that the main units, along with
the nonduplicated units, such as the caches, can be packed
closely together, and the duplicated units can be placed
further apart. Since they are running one cycle later, the
frequency impact this would otherwise have is mitigated.
The remainder of the R-unit pipeline generates ECC on
the results, and this data is saved in the checkpoint array
of the R-unit.

A high-level diagram of the major units is shown in
Figure 2. Note that the duplicated I-unit and E-unit are
not shown on the diagram.

In addition to the main instruction execution flow
described above, several operations take place in other
units. Data compression based on the Lempel–Ziv 2
algorithm [12] is supported in the coprocessor unit. The
design point was significantly enhanced compared with
the prior-generation z900 processor by nearly doubling
performance for most operations. This unit also executes
the z/Architecture instruction Translate (TR) and related
character-translation instructions, at nearly twice the
performance of the z900. Also, the new design point
allows for caching of translation tables across instructions
to improve the startup time for these instructions. This

coprocessor unit includes the new cryptographic engines
that are discussed later.

Dual cores and system interface
A design goal of the IBM eServer z990 system was to
pack as much processing power into a single box as
was practical, while meeting cost targets for the final
product. To this end, it was decided the optimal solution
was to put two complete processor cores on a single
microprocessor chip; this is called a dual-core design
point. Each processor core runs totally independently
of the other; however, they do share a common interface
with the system control element (SCE), as shown in
the figure. The dual-core processor chip significantly
reduces the number of I/O signals to and from the
SCE, improving packaging efficiency.

The interface with the SCE consists of two 16-byte data
buses plus a number of smaller address and control buses.
These data buses operate independently, so that one of
the cores can be using one of the buses while the other
core can be using the other in any combination of fetching
and storing data. Similarly, a single core can be using both
data buses for any combination of fetches and stores.
The logic generally gives priority to fetches over stores,
while ensuring that both processor cores receive equal
bandwidth. Although the processor cores run at twice
the clock frequency of the SCE, the interfaces run at the
slower SCE frequency. The total bandwidth available from
the L2 cache and main memory to both cores on a chip is
in excess of 19 GB per second.

The dual-core design significantly increases the
complexities associated with the RAS implementation.
When one core detects a hardware error and initiates its
recovery process, the other core on the chip is also forced
through a similar recovery sequence, even though no error
occurred on this other core. This is to simplify the error-
recovery protocols on the shared interface to the L2
cache. Both cores complete the recovery process at about
the same time, and they are then allowed to continue
normal operation. If an error is so severe that processing
cannot continue, both cores are placed in the checkstopped2

state at the same time, even though only one core may
have had the error. This scheme simplifies the hardware
implementation in the event that the error was in the
shared interface. However, this design point does require
there to be at least two spare cores available in the
system in all configurations to facilitate transparent
processor sparing [2], which allows the complete state
of a checkstopped core to be moved to a spare core
without software intervention.

2 In a checkstopped state, all processing has been halted.
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Instruction set architecture enhancements
In addition to the numerous new microarchitecture
features in the z990, there are a number of enhancements
to the instruction set architecture that can be used by
compilers and OS software to enhance performance
and add new function. The most significant of these for
application programs is the Long-Displacement Facility,
which adds 44 new instructions and enhances the behavior
of 69 other instructions. Previously, most instruction
formats that accessed storage contained a 12-bit unsigned
displacement field. The Long-Displacement Facility
changes some of these formats to a 20-bit signed
displacement, providing an addressing range of �512 KB
from the base and/or index register value. This larger

range enhances application performance by reducing the
need for multiple base registers and hence allows these
registers to be used for other purposes; there is less saving
and restoring register contents to temporary memory
locations. This extra byte of displacement is placed in a
previously unused byte in the instruction text for those
48-bit instruction formats that had it available. Note that
this new high-order byte is not contiguous with the prior
12-bit displacement field, but this hardly matters, since
only compilers, assemblers, and the hardware itself are
concerned with the actual machine language format of
the instructions.

Another new instruction available for OS usage is
Invalidate DAT (dynamic address translation) Table Entry

Figure 2

Diagram of z990 processor. (DW: doubleword; QW: quadword; ARs: access registers; FPRs: floating-point registers; HW ops: hardware 
executed instructions.)
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(IDTE). Previously, two instructions were available to take
virtual storage away from an application. One invalidated
a single page-table entry and its corresponding entry in
the TLBs. The other could invalidate any type of DAT-
table entry, but then it invalidated all entries in the TLBs.
Unfortunately, this overpurged the TLBs in many cases
and required the relatively lengthy process of retranslating
virtual addresses to refill the TLBs. The new IDTE
instruction purges any number of entries the OS desires,
and then purges the TLBs of just those corresponding
entries, which improves performance significantly.

Instruction execution
The z990 processor executes the vast majority of the
complete z/Architecture instruction set totally in hardware.
The remainder of the instructions are implemented by
millicode. In general, millicode is used for the most
complex instructions and also for the infrequently used
z/Architecture instructions when the cost of a hardware
implementation is not justified. Millicode is also used
to perform a variety of service functions in the system.
From a hardware point of view, there is little difference
in executing millicode instructions or z/Architecture
instructions. There is no separate execution engine for
millicode; instead, it uses the normal instruction pipeline.
Throughout the rest of this paper, the descriptions apply
equally to millicode and z/Architecture instructions.

Instruction fetching and branch prediction
Instructions are fetched from a very large (256-KB)
L1 I-cache. It is four-way set-associative and two-way
interleaved. The interleaving is on 16-byte quadwords
(QW), which allows fetch data to be sent to the I-unit
concurrently with a line-fill operation from the L2 cache.
The corresponding I-cache TLB is also large: 512 total
entries and four-way set-associative.

The I-cache access time is three cycles, with the first
and last cycles consisting primarily of receiving the request
from the I-unit and returning the instruction text to the
I-unit, respectively. Normally, these cycles are completely
hidden and do not affect performance. Instruction fetching
is usually far ahead of instruction decoding. When
a branch is about to complete execution, the I-unit
prefetches I-text down the path that was not predicted
prior to the branch execution. This allows the processor to
be ready to decode the nonpredicted path immediately in
order to minimize the penalty from mispredicted branches.

Instruction text from the I-cache is temporarily saved in
instruction buffers (I-buffers) prior to being decoded. In
the event that instruction text necessary for decoding the
next instruction has not been prefetched into the I-buffers,
these buffers can be bypassed and instruction text
transferred directly from the I-cache to the instruction
decode registers. There are a total of 16 I-buffers

available, each a quadword wide. These are composed of
eight main buffers for sequential and predicted paths, and
four sets of two buffers for prefetching nonpredicted
paths. Since dynamic branch prediction occurs in the
instruction-fetching portion of the pipeline, not at decode
time, the fetching logic works closely with the branch-
prediction logic to prefetch instruction text down the
predicted instruction stream. The I-buffers, therefore,
hold this predicted stream that includes accounting for
branches that are predicted to be taken.

From a very high-level point of view, the branch-
prediction logic, including the branch target buffer (BTB),
is similar to that used in the prior z900 processor. The
BTB contains a total of 8K entries and is four-way set-
associative. A significant number of branches in the
z/Architecture, especially when older code is being
executed, are not relative and include a base register, an
index register (optional), and a displacement. Therefore,
to achieve acceptable performance it is necessary to
predict the target address in addition to predicting
whether or not a branch is taken. Thus, the target address
is saved in the BTB in addition to the instruction address
of the branch itself. Unlike most other processors, the
BTB keeps only branches that are predicted to be taken
and uses a three-state history: strongly taken, weakly
taken, and invalid entry. Placing only taken branches
(as opposed to including not-taken branches) in the BTB
allows for high direction accuracy on dominantly resolved
taken branches. A static prediction algorithm, based on
the instruction type at decode time, is used to predict
branch direction for those not found in the BTB. Not
placing branches that are dominantly resolved not-taken
in the BTB yields the same result as placing them in the
BTB, since the static algorithm usually predicts them
as not-taken. The performance tradeoff for entering
nondominant resolution versus the additional predicted
taken entries that can be placed in the BTB makes it
advantageous not to write not-taken branches into
the BTB.

There can be up to four unresolved branches active
in the pipeline at once from the decode stage through
put-away, and also up to four prior to decode in the
instruction buffers.

Instruction decoding and superscalar grouping
Two instruction decoders are available, and each of them
can decode any type of instruction. Most instructions
can decode in a single cycle. However, some complex
instructions take more than one cycle; these include
instructions that have two independent storage operands.
Most other types of instructions can decode together as
a pair; the only significant exception is a pair in which
a branch-type instruction is the older instruction.
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If the pipeline is flowing freely with no stalling,
instructions proceed to the superscalar grouping station.
Alternatively, if there are prior stalls in the pipeline such
that older instructions are still waiting at the grouping
station, the newer instructions just decoded move into an
eight-entry instruction queue. This queue contributes to
tighter packing of instructions at execution time and also
allows address generation and cache accesses to be
initiated earlier while the corresponding instructions
wait in this queue.

Up to three instructions may be grouped together for
execution. The largest combination of instructions is a
branch instruction, which must be the oldest instruction
in the group, followed by two other simple instructions.
These simple instructions can consist of any combination
of most single-cycle instructions including arithmetic,
logical, loads, and stores. Two store-type instructions in a
group are not permitted, although any other combinations
of load-type and store-type instructions are allowed. The
idea of requiring a branch instruction to be the oldest in
a group is somewhat counterintuitive, since it would be
more natural to execute a branch instruction after a prior
instruction has set the condition code. However, the
chosen scheme avoids the frequency impact of having to
set the condition code and resolve the branch direction
in the same cycle, given the very short pipeline of this
processor. Our studies showed a very minimal instructions-
per-cycle (IPC) impact with the branch required to be the
oldest instead of a more general scheme in which the
branch can be anywhere in a group, and the frequency
benefit more than made up for the lost IPC.

A number of factors can limit the ability of the
hardware to create efficient execution groups. Address
generation must be completed before, or in the same
cycle in which, the corresponding instruction is grouped.
Therefore, if the newer instruction has an address-
generation register dependency from an older instruction
already in the group, the newer instruction is prevented
from grouping. Also, read-after-write (RAW) register
dependencies are generally not permitted, but this has no
performance impact because the two instructions would
not be able to execute in the same cycle anyway.

However, one type of RAW dependency, called operand
forwarding, is allowed. This permits an older load-type
instruction that is updating a given register to group with
a newer instruction that is using that same register as a
source for execution purposes. The load-type instruction
must be a simple load from storage or a register-to-
register load and not an arithmetic/logical operation.
By simply changing the bus routing at the input to
the execution pipelines, operand forwarding can be
accomplished with minimal complexity and with a
significant IPC improvement.

Another type of allowed RAW dependency we call
condition code forwarding. Unfortunately (for modern
software and hardware), when the original S/360
architecture was defined nearly forty years ago, it included
a special condition code setting for certain arithmetic
instructions if overflow is detected. This makes it difficult
for a C/C�� compiler to implement a common construct
such as the following:

int a, b;

. . .

if ((a�b)�0)

. . .

The problem is that the integer add instruction for the
a�b calculation might possibly overflow and set the
condition code to indicate this. However, the C language
is defined to ignore overflow and just check for a positive
result. Therefore, C/C�� compilers typically insert a
Load And Test instruction immediately following the add
to force the condition code to indicate simply a negative,
positive, or zero result (with no indication of overflow).
The processor optimizes this compiler construct by
allowing grouping of instructions that can set an overflow
condition code followed by a Load And Test instruction,
even though it is a RAW dependency, to simply set the
condition code by suppressing the overflow case. If the
mask in the program status word (PSW) is set to give an
exception on overflow, this must be handled differently.

Execution pipelines
After grouping, instructions move to the E-unit for
execution. Several execution pipelines are available for
instructions:

● B pipeline – Executes branches; consists of control logic
that simply resolves whether or not a branch is taken.

● X pipeline – General-purpose execution pipeline for
simple instructions. Also, executes access-register-type
instructions and millicode special instructions.

● Y pipeline – General-purpose execution pipeline for
simple instruction (does not handle access-register-type
or millicode special instructions).

● Z pipeline – Consists of dedicated special hardware for
complex instructions including fixed-point multiplies and
decimal instructions. In other cases, a virtual Z pipeline
is created by logically combining the X and Y pipelines
into a 16-byte-wide dataflow for processing Move
Character and other storage-to-storage instructions.
Instructions that use the Z pipeline always execute
alone.

● FPU pipeline – Dedicated unit for processing all
floating-point instructions including both IEEE BFP
arithmetic and traditional IBM hexadecimal arithmetic.
Fixed-point divide instructions are also executed here.
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Figure 3 is a diagram of the FXU showing the execution
pipes and some of the dataflow switching. The Z pipeline
is shown both as a dedicated logic section and as a virtual
grouping of the X and Y pipelines. The two result buses
can have independent arithmetic/logical results or stores
on them associated with the X and Y pipelines. The buses
can also contain a single 16-byte result associated with the
Z pipeline.

Unlike many processors, there is no load-use or result-
use penalty (except that RAW-register-dependent
instructions are not allowed to group together). In other
words, when a register is loaded from storage, that data
is immediately available in the next cycle to be used as
an operand in a dependent instruction; or, in the case of
operand forwarding, it is even available in the same cycle.
For arithmetic/logical results, this data is also available for
use in an instruction in the next cycle. These features
provide a significant performance boost without the
complexity that an out-of-order execution processor would
otherwise have to have in order to attempt to hide these
latencies.

Data cache loads and stores
The z990 is the first z/Architecture processor, including
its predecessor architectures S/360 through ESA/390, to
allow storage operand accesses out of their architectural

conceptual sequence. Even the bipolar ES/9000 Type 9021
processor, which performed fairly aggressive out-of-order
execution, still accessed storage in-order. Prefetching
storage operands early and out-of-order allows the
processor to hide much of the cache-miss latencies that
other processors hide via out-of-order execution, but with
a considerably simpler design point.

The z/Architecture presents some significant challenges
to a processor which attempts to perform out-of-order
storage accesses. It has one of the strongest sets of storage
ordering and consistency rules of any popular instruction
set, particularly when dealing with multiprocessing (MP)
environments. These strict rules provide some significant
benefits to software, since they implicitly eliminate some
potential bugs that can occur when programming in an
MP environment. On the other hand, they make it difficult
to implement the hardware for a processor that performs
well, and particularly for one that attempts to do out-of-
order storage accesses.

The design philosophy of the storage-management
algorithms in the z990 processor was to internally violate
the architecture rules to achieve optimal performance.
Then, a significant amount of complex logic was added
to determine whether software running on this processor
or another processor in an MP system might be able to
observe the hardware not following the storage ordering
and consistency rules. If this logic detects that observation
of an architectural violation might be possible, the
hardware invokes mechanisms that allow the processor
to return to an architecturally correct state. In the end,
as far as software is concerned, the processor obeys all
of the storage rules as defined for the z/Architecture.

There are several distinct parts to the operand storage
accessing logic. Operand fetch and store requests are
initially generated in the I-unit and are then sent to the
D-cache for processing. Data is returned from the cache
to the operand buffers, which are physically located in the
FXU. Store operations involve a store queue, which holds
address and control information, and a store buffer, which
holds the actual data.

D-cache structure
Operand fetch and store requests are generated by the
Agen units. For most simple instructions, two independent
storage requests can be made in a single cycle to the D-
cache. The basic piece of operand data fetched or stored
is an eight-byte doubleword (DW). For instructions that
access more than one DW, or for an operand that spans a
DW boundary address, multiple storage requests are made
to the D-cache.

Like the I-cache, the data cache is also large at 256 KB,
four-way set-associative, with a line size of 256 bytes. It
has four independent interleaves based on address bits,
each a DW wide, which may be accessed simultaneously.

Figure 3

Diagram of FXU. (int mult: integer multiplier; decimal: decimal 
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Any combination of fetch, store, and line-fill operations
from the L2 cache may be occurring simultaneously. The
TLB associated with the D-cache is 512 total entries and
is four-way set-associative.

The D-cache structure is shown in Figure 4. Two
independent pipelines are available in the D-cache for
processing requests; one corresponds to even cache lines
and the other to odd cache lines. Requests are steered to
one or the other based on bit 55 of the logical address.
However, if two simultaneous requests have the same
address bit 55, in some cases (for example, if the hardware
determines that the two requests are for the same cache
line) one of the requests is routed to the “wrong”
pipeline, and in many cases it can also access the
cache with no performance penalty. A given request
is simultaneously searched in the PAAHT, TLB, and
directory arrays to determine whether there is a hit. In the
same cycle the request goes to the cache data arrays from
which the fetched data will come, on the presumption that

there will be a hit in the other arrays. If there is a miss in
the PAAHT, there will be a two-cycle penalty to obtain
the correct translation from the TLB. A miss in the TLB
will cause a request to be sent to the secondary TLB and,
if it hits, will result in a seven-cycle penalty. If there is a
miss in the D-cache itself, the request is forwarded to the
L2 cache for servicing. In the event of a miss (PAAHT,
TLB, or cache directory), the request is recycled in the AP
buffers until the request is satisfied.

Data fetches and operand buffers
The complications of out-of-order storage accesses
manifest themselves most clearly in the design of the
operand buffers. These buffers hold operands that have
been prefetched, but their corresponding instruction may
not be ready for execution. There are eight DW buffers
available for normal operand fetches. An additional four
DW buffers are available for the second operand of
storage-to-storage-type instructions.

Figure 4

D-cache diagram.

DW data DW data DW data DW data

Late

selects

A and B

L1-D cache

interleaves

Logical address

queue

PAAHT TLB

L1 directory L1 directory

Linefetch queue

(abs adr)

Compare

Compare

Compare Compare Compare

Compare

Compare
Linefetch queue

(abs adr)

Pipe select

TLB miss

Absolute

address

Absolute

address

Wrong PAAHT guess Wrong PAAHT guess

Late select

A

PAAHTTLB

TLB miss

Late select

B

Pipe

A

Pipe

B

Interleave 0 Interleave 1 Interleave 2 Interleave 3

To operand buffers and store buffers

A�B?

L2 fetch in progress L2 fetch in progressL2 data and

E-unit results

AAHT

ALB

Agen AAHT

ALB

Agen

I-unit I-unit

Logical

address

Logical

address

AP2

AP1

AP0

AP2

AP1

AP0

C0 cycle

C1 cycle

C2 cycle

Request info Request info

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 T. J. SLEGEL ET AL.

303



Logic in the D-cache constantly monitors cross-
interrogate (XI) requests received from the L2 cache to
determine whether another processor might be storing
into an operand that has already been prefetched into the
operand buffers, hence allowing observation of an out-
of-order fetch. If this is detected, the operand buffers
implement a mechanism of refetching the data to ensure
that the latest copy is being used. The entire pipeline is
then flushed to clean up the state of any other prefetched
instructions. Since the processor does not implement out-
of-order execution, it has no natural mechanisms for
nullifying a partially completed instruction that operates
on more than a single DW of data. Hence, there is the
added complexity of refetching operands to complete the
instruction without violating any architectural rules. In
this mode, a request is initiated for a single DW of data,
and no further fetch requests are initiated until data is
returned for this earlier fetch request. Fortunately, since
this mode of operation seldom has to be invoked, there is
no measurable IPC impact.

Data stores
The D-cache implements a write-through policy with
store-type data being written into the cache while the off-
chip L2 cache implements a write-back policy. Store data
is aligned with a DW boundary in the FXU and FPU and
then sent to the D-cache, where it is written to the cache.
In parallel the store data is copied into one of four 32-
DW store buffers. These buffers are ECC-protected
and hold the data of an entire instruction until it is
checkpointed, when it can be released and sent to the L2
cache (the maximum amount of store data for a single
hardware-implemented instruction is 256 bytes). From the
time a store request is originally generated by the I-unit,
information associated with the request is held in a store
queue until all of the data has been sent to the L2 cache.

The z990 also implements the concept known as silent
stores. If the DW of data being stored is identical to the
value of that DW already in memory for that same
address, there is no need to actually perform the new
store operation. When a store queue entry is initially
formed, the contents of the DW are read from the D-cache
and saved in a special buffer. This buffer must also be
monitored for XI requests from other processors so
that this is truly the most recent copy of the data in the
system. Later, when the store is actually performed from
the FXU or FPU, the new store data is compared to the
old data read previously. If they match, the store is not
sent to the L2 cache, although it is still written into the
L1 D-cache. With up to 16 processors storing in a shared
L2 cache using a write-through L1 policy, silent stores
significantly reduce the amount of traffic and increase
system performance.

Unlike most RISC architectures, the z/Architecture
requires, in general, that stores into the instruction stream
(self-modifying code) behave as a program expects; that is,
even if a program modifies the very next instruction, the
processor must execute the new version of that instruction.
This requirement presents tremendous challenges to
designers and requires considerable complex hardware to
implement. The z990 processor tracks instruction fetches
on a 256-byte-cache-line basis. If any store takes place in a
cache line that has been fetched from the I-cache and all
instructions contained in it have not yet been completed,
the entire pipeline is flushed as soon as the store
completes. Obviously, this scheme can adversely affect
performance for self-modifying code,3 or for a program
that keeps data in the same cache line as instructions.
However, some scheme such as this is necessary to achieve
correct architectural results.

TLB2 and the programmable translator
We have found that many applications that run on zSeries
systems can obtain significantly better performance by
using much larger TLBs than are common in the industry.
Part of this is due to the characteristics of the applications
themselves, but another factor is that many customers run
numerous z/OS* and Linux** images simultaneously in a
logically partitioned (LPAR) environment. With Linux,
each image has its own virtual machine environment
created by z/VM* and actively uses numerous virtual
pages. Obviously, since each virtual page requires a TLB
entry, very large TLBs are required to avoid thrashing
when context switches are performed among the operating
systems and virtual machines.

TLB2
The z990 microprocessor provides a TLB arrangement
which advantageously uses two buffers: a relatively small
first-level TLB1 and a larger second-level TLB2. The
second-level TLB feeds address translation information to
the first-level TLB when the desired virtual address is not
contained in the first-level TLB. The TLB2 comprises two
four-way set-associative subunits: one, called the Combined
Region Segment Table Entry (CRSTE) TLB2, covers the
higher-level address-translation levels; the other one,
the Page Table Entry (PTE) TLB2, covers the lowest
translation level. An advantage of this scheme is that the
output of the CRSTE TLB2 is a valid page-table origin
when a match is found for the higher address bits and a
valid entry was built before. In this case, since all accesses
to the higher-level translation tables (region and segment
tables) are bypassed, there is a considerable performance

3 Self-modification of code is rarely done.
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gain when there is a hit in the CRSTE TLB2 but a miss in
the PTE TLB2. With this feature, the start address of the
page table can be found within one cycle and can be used
for the last table access to obtain the absolute address.
A diagram of the TLB2 is shown in Figure 5.

The linkage of the CRSTE to the PTE TLB2 is
established by means of seven bits of the segment index
from the full 64-bit virtual address. These bits serve as an
index address covering the address range of the CRSTE
TLB2; the same information is used as tag information in
the PTE TLB2 and is used as a quick reference for any
lookup operation in order to find the absolute address
of the relevant virtual address translation.

Programmable translator
The z/Architecture provides software with numerous
different modes for defining virtual address spaces. These
modes offer tremendous flexibility and make software
running on zSeries processors very robust, but they also
impose complexities on a processor implementing the
z/Architecture. The translator unit comprises a new
control concept to ease the implementation of the
complicated algorithms for dynamic address and access-
register translation in a virtual guest environment. Instead
of a hardware state machine that has been used in prior
processors, the overall control of the unit is accomplished
by an embedded programmable processor called a
picoengine with its control program stored in a small
RAM, called picocode RAM. The programmable translator
has, essentially, the same performance as prior translator
designs that were implemented purely in hardware.

The main advantages of the picoengine-based translator
are as follows:

● All dataflow control functions are programmable. If a
bug is found late in the development cycle, it can easily
be fixed with a simple change to the contents of the
picocode RAM. This RAM is loaded during the power-
on reset phase of the system.

● New translation modes can be added to the instruction
set architecture after the processor is committed to
silicon.

● Design changes do not affect the cycle time of the
control logic; in general, they can be implemented as
picocode change.

● The picoengine is composed of standard logical building
blocks (picocode RAM, branch decoder, etc.), which
simplifies the problem analysis.

● Error checking is much easier to implement than in a
complex state machine, since simple parity checking of
the picocode RAM provides good coverage of the state
controls. The remainder of the engine is checked using
traditional methods.

A diagram of the picocode engine is shown in Figure 6.
When the caches miss in their TLB1s for a virtual address,
the request is sent to the TLB2 and translator unit. If
the request also misses in the TLB2, the translator unit
decodes the request to obtain the starting address for
one of the numerous translation algorithms stored in the
picocode RAM. The picocode instructions are horizontally
organized and are executed in one microprocessor clock
cycle. They are of two different types: Either they control
the multiplexers of the dataflow part (three-stage
pipelined dataflow control) or they are used as branch
instructions to transfer control to one out of four
different branch targets (four-way branch decoder) if
a preset condition is met. If no condition is met, or if
the instruction type is a control instruction, the next
sequential instruction (NSI) address stored in RAM is
used to access the next instruction. Subroutine execution
is supported by means of a hard-wired branch address
decoder combined with a branch-return stack. When
the translation operation is completed, the results are

Figure 5

TLB2 diagram. (PTO: page table origin.)
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returned and are stored in the TLB2 and the TLB1
from which the request originated.

TLB purge operations
One of the drawbacks associated with large TLBs is the
inordinately large performance loss when they must be
purged. Several instructions in the z/Architecture require
the TLBs to be purged of all entries or of selected entries.
The Purge TLB (PTLB) and Compare And Swap And
Purge (CSP) instructions respectively cause the TLBs
to be completely purged on this processor or on all
processors in the system. The Invalidate Page Table Entry
(IPTE), Set Storage Key Extended (SSKE), and the new
Invalidate DAT Table Entry (IDTE) instructions cause
TLB entries to be selectively purged on all processors
in the system. When TLBs on all processors have to be
purged, it causes the entire system to be quiesced; this
quiesced state is necessary so that the TLBs on all
processors can be updated atomically with the resource
being modified. This is called a broadcast purge operation.

A z990 system can have up to 64 physical processors
installed (with up to 48 being normal processors accessible
to a customer) and up to 60 logical partitions (LPARs). It
has been shown on a prior-generation 16-way z900 system
that up to ten percent of all time was spent idling by
processors in the quiesced state or waiting for the last
processor to reach a quiesced state. This problem had
been evident for some time and was partially solved on
the G5 processor [3]. Although those earlier mechanisms
were implemented on the z900, it still had this very
significant performance loss due to quiesce effects. To
make matters worse, the performance loss grows with the
square of the number of processors. Therefore, the z990
processor implements several new features to combat
this system-quiesce performance loss for TLB purge
operations.

The first new feature is that each TLB2 entry stored
in the higher-level subunit is tagged with an identifier to
indicate which LPAR partition created that entry. This
allows several improvements to purge instructions:

● It is possible to keep the entries for several different
LPARs in the TLB2 at one time. This significantly
improves performance when numerous z/OS or Linux
images are running on the system.

● A PTLB requires only those entries in the TLB2 that
were formed by the currently active LPAR partition to
be purged. On broadcast purge CSP instructions, only
those entries must be purged in which there is a match
between the LPAR identifier stored in the TLB2 and
the LPAR partition of the quiesce initiator processor.
Similar limited purges are implemented for IPTE and
SSKE.

Another new feature is LPAR partition filtering for
broadcast purge operations. Previously, all processors had
to wait for the last processor to respond to the broadcast
quiesce. The enhancement added to the G5 processor
generation was that after responding, a processor could
continue with normal work subject to the restriction
that it had to stop if it missed in its TLB. After the last
processor responds to the quiesce request, the restrictions
are lifted. With partition filtering, when a processor
initiates a broadcast purge operation, only those other
processors which are currently operating in the same
LPAR partition as the initiator respond to the broadcast
immediately. Other processors perform the TLB purge
operation when they are not doing other useful work. But
the real gain is that fewer processors have to respond and
hence overall system performance is increased.

Finally, the z990 implements address filtering for certain
broadcast purge operations. When a processor receives a
broadcast IPTE purge request, it saves the page index
portion of the address; then it resumes normal processing
subject to the restriction above. However, if it misses
in the TLB and has to translate a virtual address, it is
allowed to continue as long as the page index (or indices
in the event of a pageable guest) needed for translation
does not match the page index that was saved from the
prior broadcast IPTE. If they do not match, the processor
continues executing instructions. A similar mechanism is
implemented for broadcast SSKE purge operations, but
here a portion of the absolute address is saved and
compared in the event of a storage key miss in the TLB.

Cryptographic coprocessor
IBM mainframes have supported hardware-accelerated
execution of cryptographic operations since the
introduction of the Integrated Cryptographic Facility
(ICRF) for the ES/9000 Type 9021 in bipolar technology.
The ICRF provided support for Data Encryption Standard
(DES), Message Authentication Code (MAC), and
Personal Identification Number (PIN) algorithms.
Encrypted keys were managed and stored by means
of an external piece of hardware.

When IBM mainframes moved to CMOS technology,
the ICRF was migrated and enhanced to include state-of-
the-art algorithms and to provide support for the public
key security architecture (PKA), the base of almost all
secure Internet applications. Prior to the advent of the
Internet, hardware assistance for encryption was practical
only on specialized servers inside large commercial
institutions, primarily in the banking industry. With
the increasing prevalence of encrypted electronic
communications on the Internet, microprocessors
performing encryption without hardware assistance spend
a very significant amount of processing time executing the
software routines for these operations. However, all of
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the IBM hardware assist engines developed previously
had the downside of significant startup latency costs to
communicate with the hardware external to the processor.
This was particularly costly for short cryptographic
operations in which the startup latency would be a
significant fraction of the overall transaction.

For the z990, it was decided that the microprocessor
core itself had to include clear key cryptographic engines
to make the execution of the most frequently used
functions more efficient. PKA requires three types of
cryptographic functions. Those functions best suited
to implementation on the core are symmetric key
encryption/decryption and secure hashing. DES was
chosen as the symmetric function and (Secure Hash
Algorithm) SHA-1 was selected for secure hash. The
third component of the PKA, an asymmetric encryption
function that allows the symmetric keys to be transmitted
securely via a network not guaranteed to be secure, does
not provide appreciable advantage because the function
is used relatively infrequently compared to the others.

New z/Architecture instructions were defined that allow
software to access these functions. These include Convert
Message In CBC Mode (KMC), Convert Message In ECB
Mode (KM), Convert Message Authentication Code
(KMAC), Compute Middle Message Digest (KIMD),
and Computer Last Message Digest (KLMD).

Figure 7 shows a diagram of the cryptographic
coprocessor. Dataflow to and from the cryptographic
engines makes use of components shared with the
compression and character-translation engines. Shared
32-DW-deep first-in, first-out (FIFO) registers are used
for all of the coprocessor functions.

When a cryptographic instruction is encountered,
the corresponding millicode routine is executed. A
coprocessor command register is written that activates
the appropriate cryptographic engine. Millicode then
writes the input FIFO with initial vectors and (for DES
operations) one, two, or three keys. The engine has a
defined handshake protocol to interact with the FIFO, and
loads that startup information into corresponding registers
within the engine. Millicode provides the input FIFO with
operand data from storage and polls the output FIFO for
results to be stored. Millicode writes the control register
to let the engine know when the last operand has been
delivered to the FIFO. After the last data has been
processed, the engine sets the status register to indicate
that the final results are available in the output FIFO. This,
along with the indication in the status register that the FIFO
is depleted, marks the end of the instruction execution.

To achieve a high degree of RAS, the SHA engine has
parity checking on the dataflow. For the DES engine, due
to the nonregular structure of the algorithm, it was more
practical to duplicate the logic and compare results. In

the event that a hardware error is detected during a
cryptographic operation, the instruction can be re-
executed starting from the last checkpoint.

The DES engine bandwidth is 3.8 Gb/s and the SHA-1
engine bandwidth is 3.1 Gb/s. These performance levels
compare favorably with ASIC designs, and are
unprecedented in a microprocessor core.

Concluding remarks
The z990 microprocessor is manufactured in IBM CMOS
9S technology. This 0.13-�m technology includes silicon-
on-insulator (SOI) transistors and eight levels of copper
interconnection wiring. The chip, containing two complete
processors, measures approximately 19 mm � 14 mm.
It contains roughly 121 million transistors, of which
84 million are in array structures and the remainder in
combinatorial logic. At its 1.2-GHz shipping frequency,
the chip (with both cores operating) consumes 55 W of
power. A micrograph of the chip is shown in Figure 8,
with the various units labeled for microprocessor core 0.
Core 1 is an exact replica, but is rotated 180 degrees with
the two cores arranged in a “staircase” layout around the
shared L2 interface logic.

The processor provides a dramatic performance
increase over its predecessor, the z900, and excels at both
traditional mainframe applications and newer applications.
It also maintains its leadership over all competitive servers
by providing virtually complete error-detection and error-
recovery capabilities. The logical and physical design
points of the microprocessor are also very flexible; we
anticipate that they will be usable for the next-generation
IBM eServer after it has been remapped into an even
more advanced CMOS technology and further functional

Figure 7

Diagram of cryptographic coprocessor.

C
-b

u
s 

(f
ro

m
 F

X
U

)

Cryptographic

coprocessor

control

Common

coprocessor interface

Command

Status

Command

Status

I-FIFO O-FIFO32 DW

DES SHA-1

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 T. J. SLEGEL ET AL.

307



and performance enhancements have been added to the
basic design point.
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Figure 8

Micrograph of z990 processor chip.
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