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How Futile are Mindless Assessments of Roundoff
in Floating-Point Computation ?

80: Abstract & Introduction

The plummeting price of floating-point computation has brought more of it to vastly expanding
populations unwittingly, but ever fewer of its authors and users are adequately enabled to debug it
by their education and experience. Rounding errors are especially refractory. They areinvisible
inaprogram’'stext (if they weren't their names would drown everything else); and error-analysis
attracts few students and affords fewer career paths. Though none of several schemes advocated
as substitutes for error-analysis can be trusted fully, two or three work well enough often enough
to justify the expense of their incorporation in full-featured Programming Development Systems.
One schemeis so cheap and so effective that every debugger can support it: It reruns precompiled
subprograms in the three redirected rounding modes mandated by 1EEE Standard 754 (1985).

The several “Mindless’ schemesin question are surveyed very briefly in 81. They include
Interval Arithmetic, and recomputation with increasing precision, or with redirected rounding,
or with randomized rounding, or with randomly perturbed input data. The few schemes | think
worth considering are discussed in 810, to which systems programmers and language designers
and implementers can jump right now to avoid reading mathematical error-analyses of examples
intended to disparage the other schemes.

The examplesin 82 and 83 frustrate all schemes that attempt to assess the effects of roundoff
without at least breaking a program into smaller subprograms to be assessed individually. Both
examples malfunction because of infinitesimally narrow spikes, one deserved, another not. More
spikes, but now broad enough to be detectable during debugging, appear in 84 aong with abug
that has persisted in MATLAB’s log2(...) for over adecade. Two more such bugs appear in 85
along with an attempt to explain their ominous persistence as a consequence of false doctrine. A
fatal flaw in recomputation with randomized rounding isillustrated in 86. Glib diagnoses that
attribute numerical distressto cancellation, to division by small divisors, or to accumulations of
hordes of rounding errors are contradicted by an examplein 87 that ismore nearly representative
of how roundoff causes numerical distress. The user’s point of view isillustratred by a case study
in 88. Terse geometrical argumentsin 89 explain how naive use of Interval Arithmetic so often
deprives this costly and valuable scheme of itsvalue. 810 describes the debugging tools | think
worth having, and 811 ismy concluding Jeremiad predicting doom if they are not to be had.
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81: Five Schemes
Of al the many ways in which floating-point computation can go astray, only roundoff, which
should rarely have to be taken serioudly, is considered seriously in what follows.

Can the effect of roundoff upon a floating-point computation be assessed without submitting it to
amathematically rigorousand (if feasible at all) time-consuming error-analysis? In general, No.

This mathematical fact of computational life has not deterred advocates of schemes like these:

*1 Repeat the computation in arithmetics of increasing precision, increasing it until
asmany as desired of the results' digits agree.

*2 Repeat the computation in arithmetic of the same precision but rounded differently,
say Down, andthen Up, and maybe Towards Zero too, besides To Nearest,
and compare three or four results.

*3 Repeat the computation afew times in arithmetic of the same precision rounding
operations randomly, some Up, some Down, and treat results statistically.

*4 Repeat the computation afew timesin arithmetic of the same precision but with
dlightly different input data each time, and see how widely results spread.

*5 Perform the computation in Significance Arithmetic, or in Interval Arithmetic.

Here are brief summaries of the respective schemes' prospects:

1 Though not foolproof, increasing precision is extremely likely to work well provided
the manner in which rounding is performed is the same for al precisions; but this
schemeis costly to provide and may run intolerably slowly. For that price we may
be served better by aimost foolproof extendable-precision Interval Arithmetic.

*2 Though far from foolproof, rounding every inexact arithmetic operation (but not
constants) in the same direction for each of two or three directions besides the
default To Nearest isvery likely to confirm accidentally exposed hypersensitivity
to roundoff. When feasible, this scheme offers the best Benefit/Cost ratio.

*3 Repeated recomputation with randomly redirected roundingsisfar more likely than the

previous non-random redirected roundings to mislead users in these two ways:

A few subtle programs that compensate for their own rounding errors may be
thwarted and thus unnecessarily produce excessively inaccurate results.

* Many numerically fragile programs, Gaussian Elimination among them, can be
sent far astray by just one or two among their myriad rounding errors.
Those one or two are too likely to be perturbed the same way at random,
thus producing repeatedly almost identical but utterly wrong results,
unless randomly rounded recomputation is repeated at least several times.

Random rounding is costly to implement, runs slowly and ought to be rerun often.

*4 Only if Backward Error-Analysis has succeeded in proving that aprogram’s rounding
errors alter itsresults about as much asdo all end-figure perturbations of itsinput
data may such perturbations have diagnostic value. Even then such perturbations
can all produce the same utterly wrong result. Or else dightly perturbed data may
produce wildly different but correct resultslike tan(x) at the two floating-point
arguments adjacent to 172 (which is not afloating-point number).
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*5 Significance Arithmetic attemptsto retain, for every intermediate and final resullt,
only those digits deemed uncontaminated by previous rounding or other errors. It
isacoarse kind of Interval Arithmetic doomed to overestimate or underestimate
(or both) the number of significant digitsto an extent proportional to the number
of arithmetic operations between input data and output results.

Interval Arithmetic approximates every variable by an interval whose ends straddle
the variable'strue value. Used naively, thisschemeis cursed by excessively wide
intervals that undermine its credibility when wide intervals are deserved. Swollen
intervals can often be curbed by combining Interval Arithmetic with ordinarily
rounded arithmetic in a computation artfully recast as the determination of the
fixed-point of a sufficiently contractive mapping. “Artful” isfar from “Mindless’.
Far less art may coax success from extendable-precision Interval Arithmetic,
though its price may be high and its performance slow.

Citations for the schemes mentioned above have been omitted for the time being because these
notes are not intended to attack the schemes’ advocates. Each scheme has its advocates, so it
must have worked on at least one example. That’s not the point of these notes. The pointis...

Which schemes will work on your computation without requiring you to error-analyze it?
In general, none. But one or two of these schemes may be worth trying anyway.

| propose to collect examples each of which defeats some scheme(s) mentioned above, and which
collectively defeat all those schemes, including the ones| favor. The collection will grow astime
permits, including perhaps accretions from subsequent contributors.

§2: J-M. Muller’s Recurrence
The futility of all mindless assessments of roundoff’s effect is exposed by a recurrence contrived
by Jean-Michel Muller around 1980 and modified slightly here. Given the function

&E(y, z) := 108 — ( 815 —1500/z )y
and initial values xg:=4 and X, :=4.25, define X1 := E&(Xp, Xy for n=1,2,3, ... inturn.
Our task isto compute xp; for some moderately big preassigned integer N, say N =80.

The sequence {x,} doestendtoalimit; X, - L a n - +c . Intheabsence of an anaysisthat
finds L exactly it can be approximated by computing the sequence {x,} until, say, xy.; differs
negligibly from Xy ; thenthis xy approximates L .

Try to compute xgy or L before reading what follows.

All fast floating-point hardware, all Randomized Arithmetic, and most implementations of
Significance Arithmetic will allege xgg=L =100 very convincingly. The correct limit L =5.

The correct x,=5—-2/(1+ (5/3)") = 8—15/x, 1, SO Xgy = 4.9999999999999999964263. .. .

Tabulated below are values x,, computed first exactly, then by a FORTRAN program carrying 64
sig. bitsand a MATLAB program carrying 53 sig. bitson an Intel 302 (i386/387 IBM PC clone).
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82: M. Muller’ s Recurrence

Table1: TheRecurrence Exactly, thenin 64 Sig, Bits, and thenin 53 Sig. Bits

n True X, FORTRAN'S X, Xn'SYn MATLAB’S Xp, Xn SYn
0 [4 4 0 4 0
1 425 4.25 0 4.25 0
2 | 4.4705882352941... | 4.4705882352941 | 1.4527240931E-23 | 4.4705882352941 | -5.95035788e-20
3 | 4.6447368421052... | 4.6447368421052 | 9.3144142261E-24 | 4.6447368421052 | -7.27269462e-20
4 | 4.7705382436260... | 4.7705382436260 | 9.3879254811E-24 | 4.7705382436250 | -7.26081334e-20
5 |4.8557007125890... | 4.8557007125890 | 9.4011127174E-24 |4.8557007125685 | -7.26054934e-20
6 |4.9108474990827... | 4.9108474990828 | 9.4016062483E-24 | 4.9108474986606 | -7.26062074e-20
7 | 4.9455374041239... | 4.9455374041250 | 9.4016485474E-24 | 4.9455373955305 | -7.26061505e-20
8 |4.9669625817627... | 4.9669625817851 | 9.4016502826E-24 | 4.9669624080410 | -7.26061478e-20
9 | 4.9800457013556... | 4.9800457018084 | 9.4016502839E-24 | 4.9800422042930 | -7.26061478e-20
10 | 4.9879794484783... | 4.9879794575704 | 9.4016502819E-24 | 4.9879092327957 | -7.26061478e-20
11 | 4.9927702880620... | 4.9927704703332 | 9.4016502815E-24 | 4.9913626413145 | -7.26061478e-20
12 | 4.9956558915066... | 4.9956595420973 | 9.4016502814E-24 | 4.9674550955522 | -7.26061478e-20
13 | 4.9973912683813... | 4.9974643422978 | 9.4016502814E-24 | 4.4296904983088 | -7.26061478e-20
14 | 4.9984339439448... | 4.9998961477637 | 9.4016502814E-24 |-7.8172365784593 | -7.26061478e-20
15 |4.9990600719708... | 5.0283045630311 | 9.4016502814E-24 | 168.93916767106 | -7.26061478e-20
16 | 4.9994359371468... | 5.5810310849684 | 9.4016502814E-24 | 102.03996315205 | -7.26061478e-20
17 | 4.9996615241037... | 15.420563287948 | 9.4016502814E-24 | 100.09994751625 | -7.26061478e-20
18 | 4.9997969007134... | 72.577658482982 | 9.4016502814E-24 | 100.00499204097 | -7.26061478e-20
19 |4.9998781354779... | 98.110905976394 | 9.4016502814E-24 | 100.00024957923 | -7.26061478e-20
20 | 4.9999268795046... | 99.903728999705 | 9.4016502814E-24 | 100.00001247862 | -7.26061479e-20
21 | 4.9999561270611... | 99.995181883411 | 9.4016502814E-24 | 100.00000062392 | -7.26061486e-20
22 | 4.9999736760057... | 99.999759084721 | 9.4016502814E-24 | 100.00000003119 | -7.26061591e-20
23 | 4.9999842055202... | 99.999987954271 | 9.4016502815E-24 | 100.00000000156 | -7.26060665e-20
24 | 4.9999905232822... | 99.999999397715 | 9.4016502814E-24 | 100.00000000007 | -7.26058323e-20
25 | 4.9999943139585... | 99.999999969885 | 9.4016502814E-24 | 100.00000000000 | -7.27116855e-20
26 | 4.9999965883712... | 99.999999998494 | 9.4016502728E-24 | 100.00000000000 | -7.11534953e-20
27 | 4.9999979530213... | 99.999999999924 | 9.4016499619E-24 | 100.00000000000 | -4.98074120e-20
28 |4.9999987718123... | 99.999999999996 | 9.4016399662E-24 | 100 Infinity
29 | 4.9999992630872... | 99.999999999999 | 9.4017762549E-24 | 100 Infinity
30 | 4.9999995578522... | 99.999999999999 | 9.4031615325E-24 | 100 Infinity
31 | 4.9999997347113... | 100.00000000000 | 9.3755043286E-24 | 100 Infinity
32 | 4.9999998408267... | 100.00000000000 | 7.9691782475E-24 | 100 Infinity
33 | 4.9999999044960... | 100 Infinity 100 Infinity
34 | 4.9999999426976... | 100 Infinity 100 Infinity
74 | 4.9999999999999... | 100 Infinity 100 Infinity
75 | 4.9999999999999... | 100 Infinity 100 Infinity
Yn Will be explained in a moment.
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Evidently afew intermediate results change when the arithmetic’s precision changes; in genera
such intermediate changes need not imply incorrect final results, aswe shall see soon. Interval
Arithmetic deliversanarrow interval around L =5 instead of aworthless wide interval only if,
aswith ordinary arithmetic, extravagant precision rather beyond 4.3-N sig. bitsis carried.

Why do so many different cal culations produce the same wrong result xgg = 100 ?

To analyze the recurrence ignore X and x; momentarily and substitute X, = yn+1/y, into the
original recurrence X1 := &(Xp, Xn.1) tO g€t Yo = 108y,,41 — 815y, + 1500y, . Thislinear
recurrence can be solved in closed form with the aid of the zeros of its Characteristic Polynomial
73 -1087% + 815z — 1500 = (z-3)(z-5)(z—100) .

Consequently the general solution x,, of the original recurrenceis

X, = (a-3"1 + 35" + v.100MY)/(a-3" + 5" +y-100") for n=0,1,2,3, ...
in which constants a, (3, y arenot all zero. They may be chosen to match any two prescribed
values Xg and X; ; choices a =3=1 and y=0 match our prescribed xy:=4 and x; :=4.25,
and then would yield x, = (3™ +5™%)/(3" + 5" if no rounding errors were committed. But
roundoff perturbs computed values x,,. Then they are closely approximated at least initially by

X, = (3™ + 5™ + v .100™)/(3" + 5" +y,-100")  for n=3,4,5, ...
= 100 - (95 + 97-(3/5)")/( 20"y, + 1 + (3/5)")
inwhich vy, isatiny nonzero near-constant resembling arounding error in anumber near 0.001 .
This changesthelimit x, - L from L =5 to L =100 . Intheforegoing tabulation y,, was

obtained from the formula vy, := ( (x5 —3)-3" + (X, —5)-5" )/( (2100 - x,,)-100") .

What if the recurrence started at x; := 4.25 and X, := 8 —15/xg=76/17 ? At first sight neither
Xgo Nor limit L should change. However, 76/17 = 4.4705882352941... cannot be represented
exactly asafloating-point number, so it must be rounded off, thuschanging xgy and L to 100.
Though not what was intended, thisisthe correct result for theinitial x, stored inthe computer.

Exact rational arithmetic can compute xgy perfectly, getting

206795153138256918939565417139009598365577843034794672964/ 41350030627651383817474849310671104336332210648235594113
if enough digits are carried. Arithmetic must carry morethan 2.33:N bits, or 0.7:N decimal
digits, to compute x\ exactly asaquotient of integers solely from the recurrence; thetimetaken

grows like N for some constant ¢ between roughly 2.5 and 3 depending upon how multi-
word multiplication isimplemented.

In the absence of roundoff the sequence {x,;} generated by the recurrence X1 := E&(Xp, Xn-1)
would approach alimit L(x,, X,—) that is adiscontinuous function of any two consecutive
members of the sequence. Wefind L(3, 3) = 3; otherwise L(x,y) =5 on the hyperbolawhose
equationis (x—-8)y +15=0; and L(X,y) =100 everywhereelse. Although xy for any fixed
large N isanearly-constant bilinear rational function of (X, Xg) , it spikesviolently as (x4, Xg)

moves across the hyperbola very near which the function takesboth 0 and « asvalues. Without
knowing in advance where to look, arandom search for such a spike will almost never find it.
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MATLAB Plot of xgy asafunctionof x, near 76/17 for fixed x; =17/4 :

X80 vs. X2 when X1 =4.25
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The horizontal axis runsover —1e-98 < x,—76/17 < +1e-98. No floating-point numbers x, liein that interval.
Xgo="5 when x,—76/17=0, and Xgg =+ When x,—76/17 = —2.241902748434...e-100 .

83: A Smooth Surprise
Exampleslike JM. Muller's seem pathological and thus largely irrelevant to people who intend
to compute only well-behaved smooth functions of their data, not spiky functionslike Xgy nor

discontinuous functions like limit L(x, y) above. The next example may surprise those people.

Itisarelatively ssimple function G(x) which takesthevalue 1 for al real arguments x . That
G(x) =1 has been confirmed instantly by an automated algebra system DERIVE 4.1 from the
Soft Warehouse Inc., Honolulu HI, rununder DOS onan Intel i386-based PC (25 MHz., 15
MB of DRAM), so the confirmation cannot be very complicated. However, this confirmation
assumes arithmetic with real numbers to be performed always exactly. If arithmetic is performed
approximately but sufficiently accurately, the computed value of G(x) isamost always zero
instead of 1! Thishappensfor all sufficiently large arithmetic precisions, and not because
gargantuan numbers cancel; none of these need arise during the computation.

When G(n) isevaluatedat n=1, 2,3, ...,9999, say, in floating-point arithmetic of any ample
preassigned finite precision, the computed values of G(n) are almost aways zero. There are
exceptions. When the arithmetic rounds every operation to 24 sig. bitsin conformity with |EEE
Standard 754 (corresponding to Java's fl oat arithmetic) then G(1) = G(7) = G(2048) = 1;
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but otherwise 9996 computed values G(n) =0. All 9999 computed values G(n) =0 when
arithmetic isrounded to 53 sig. bits (Java's doubl e) or to 64 sig. bits (IEEE 754's Double-
Extended) ona Pentium. The HP-28S and other Hewlett-Packard programmable calculators
that round their decimal floating-point arithmetic correctly to 12 sig. dec. get G(2) = G(42) = 1
but otherwise compute 9997 values G(n) =0. DERIVE'S approximate arithmetic is neither
binary nor decimal floating-point but akind of rational arithmetic whose “Precision”, though
specified roughly in sig. dec., isenforced by truncating continued fractions somehow. When
requested to compute G(n) with 64 sig. dec. of Precision, DERIVE got 9998 values G(n) =0
and G(159) =1. A request for 72 sig. dec. got G(133) = G(4733) = G(4862) = G(4888) = 1
and only 9996 values G(n) =0. A request for 84 sig. dec. got al 9999 values G(n) =0.

Why does G(n) behave so perversely? G(x) isdefined by a short program like the following:
Redl variables X, vy, z ;
Real Function T(z) := { If z=0 then 1 else (exp(2) —1)/z} ;
Real Function Q(y) := |y —V(y*+1) | - U(y +V(y*+1)) ;
Real Function G(x) := T(Q(X)?) ;
For Integer n=11t09999 do Display{ n, G(n)} end.

Absent roundoff, Q(y) =0 for al real (but not all complex) numbers y. If y=>1, roundoff
bestows upon Q(y) atiny value of the order of arounding error in y . Itishardly ever zero.

Absent roundoff, T(z) isasmooth infinitely differentiable function of z; infact

T@) =[ote®dw = 3 oy 2™t .
But roundoff causes the one-line program for T(z) to malfunction when z istiny. In extremis,
when z istinier than arounding error in 1 but not zero, the computed exp(z) roundsto 1 and
then the computed T(z) vanishes, asdoes G(n) . Unless n vastly exceeds 9999, inaccuracy in
program G comes entirely from its inaccurate subprogram T ; and increasing arithmetic’s
precision uniformly everywhere in the program almost never cures G’s inaccuracy.

Thetroublewith T(z) and G(x) isnot their intended behavior but rather the unfortunate (i.e.,
numerically unstable) way they have been computed from expressions programmed correctly for
exact arithmetic though incorrectly for rounded arithmetic. Two questions are brought to mind:

How can distress caused by roundoff be diagnosed reliably? How can it be cured?

“Ahal” saysan observer; “Thedistressis caused by massive cancellation.” No; cancellation
never causes numerical inaccuracy. After cancellation Q(y) isrightly tiny unless y ishuge;
and soon we shall see acure for inaccuracy in T(z) despite massive cancellationin (exp(z) —1) .

In general, cancellationisat worst the Bearer of Bad Tidings, namely that prior rounding errors
discarded digits whose absence now isregretted. Some computations, like root-finding, succeed
because of massive cancellation. Other computations can go utterly awry with no subtraction, no
cancellation, aswe shall seein 87's example. Cancellation needn’t signify numerical distress.

“Ahal” saysanother observer; “Thedistressis caused by atiny divisor.” Not necessarily, though
T(2) doessuffer from atiny divisor z becauseit isthewrong tiny divisor, aswe shall see soon.
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Tiny divisors bodeill only if, in producing huge quotients that later mostly cancel, they make us
wish divisors and quotients had been computed more accurately. No huge quotientsoccur in T .
Other computations can go utterly awry with no divisions, no small divisors, aswe shall seein
87's example. Small divisors needn’t signify numerical distress.

Someone without access to the formulafor T(z) may try to narrow suspicion to it by rerunning
the program with roundoff redirected Up and again redirected Down, and then comparing the
threeresults. The outcome depends upon how exp(...) isimplemented. If exp(z) rounds Up to
1.000...001, computed valuesof T(z) and G(n) will diverge enough to arouse suspicion, and
this usually happens when n isbig enough: 2 isbig enough for 24 sig. bits, 3028891 for 53,
5e9 for 64. Otherwise, if theimplementation of exp(z) beginsas many do with atest like ...
If |z| < RoundoffThreshold/4 then Return( 1.0) else...,
then redirected roundings may change nothing, and then miscomputed values G(n) =0 must be
almost always too consistent to arouse suspicion about their accuracy.

There are waysto compute T(z) = (exp(z) —1)/z accurately enough. They figurein financial
calculations. Hereisan easy way, albeit tricky:

Real Function T(Real 2z) :

T :=exp(z) ; ... rounded, of course.

If (T =1 Return( T) ; ... when |[z| is very tiny.
If (T =0) Return( T:=-1/z ) ; .. when exp(z) underflows.
Return( T:=( T-1)/log(T) ) ; ... in all other cases.

End T .

Thisway works because the computed value of exp(z) isactualy exp(z+R) where |3 amounts
to at most arounding error or two invaluesnear 1. Consequently the value computed for T(z)
isactually very nearly T(z+R) rounded off; itsrelative error isroughly B-T'(2)/T(z) , which can

easily be proved to lie between 0 and R by differentiating the formula T(z) = [;* € dw. In

effect the program’s possibly tiny divisor | og(T) compensatesfor the rounding error in exp( z)
preceding a possibly massive cancellationin (exp(z) —1) provided the arithmetic, regardless of
itsprecision, roundsthe program’sdifference (T — 1) properly and deliversits | og(T) to near-
full working relative accuracy. Then substituting this program T(z) for the one-line expression
giveninitially to define T(z) producesthe correct G(n) =1 for all n not too enormous.

Ironically, if multi-precision Interval Arithmetic were used naively to compute G(n) either from
itsinitial formula or from its accurate program, the results at every precision would be intervals
so excessively wide as could not distinguish the accurate program from the inaccurate one.

This chillingly simple example G(n) undermines confidence in all five of the mindless schemes
to which these notes are devoted, and casts deserved doubt upon oft-uttered glib diagnoses of
“Cancellation” and “Small Divisors’ as concomitants of numerical distress. Still, fairness
requires an admission that this exampleisatypical. It was contrived to thwart the first and fifth
schemes, namely repeated recomputation with ordinary or Interval Arithmetic of ever increasing
precision. Numerical distress due solely to roundoff is relieved too often by increased precision
for its use when avail able to be deterred by this example despite its worrisome simplicity.
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84: Some More Spikes, and MATLAB’S log2
Some spikes are deserved; others are accidents of roundoff. Both kinds have been difficult to
detect. Hereisadeceptively simple looking function whose graph deserves a spike:

Spike(x) := 1+ x% +log(| 1 + 3-(1x) [)/80..

55

Spike(X)

But whereisit? 1s 1 15 2

1003 points X

The plot above was obtained from 1003 points x =1/2+n/669 for n=1,2,3,...,1003. The
plot below was obtained from 1000 nearby points x =1/2+n/666 for n=0,1,2,...,999:

Spike(x) 1= 1 + x? + log(] 1 + 3-(1-) [)/80.

55

Spike(X)

Why is the spike so short? bs 1 15 2

Since Spike(4/3) = —o we expect the spike to plunge down into an abyss, but it doesn’'t. Below
isaplot of Spike(x) at the 1025 8-byte floating-point arguments x adjacentto x = 4/3, which
isnot one of them. The argument nearest 4/3 differsfromit by (1/3)ulp; an ulp isa Unitin
the Last Place the arithmetic carries. Thus Spike(x)'s computed values are aways finite. Its
spike istoo thin and shallow to be discovered by uninformed random search unaided by luck.

Ancient Greeks used to say “ Better to be lucky than clever.”
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Spike(x) := 1+ x% + log(| 1 + 3-(1-x) [)/80 .
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Here 1.333333333333220 < x < 1.333333333333447 . The spikeis barely discernible much farther from x = 4/3 .

Some undeserved and unwanted spikes, accidents of roundoff in software or firmware, have

eluded discovery and diagnosis for many years. For example, no spike should mar the graph of
logy(X)/(x=1) = (1 —(x=1)/2 + (x=1)%/3 = (x=1)3/4 + ... )/log(2)

plotted at arguments x near but not 1. However, hereisaspike that has persisted since 1994 in

three MATLAB versions 4.2 to 6.5 onal my computers (this graph came froman IBM PC) :
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Here and in the next three graphs 0.9999999999998863 < x < 1.000000000000114 .
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MATLAB'S eps =22 =2e-16 isan ulp of 8-byte numbersbetween 1 and 2. Thegraph
plots log2(x)/(x-1) at 1536 consecutive floating-point arguments x straddling 1. A spike
exposes errorsashbig as 4% in MATLAB’s log2(x) at arguments x very dlightly bigger than 1.
(Thrice bigger errors occur on some other computers.) Why do 48 sig. bits get lost?

The next graph plots ( log2(x) —log(x)/log(2) )/eps . It would be zero in the absence of roundoff.

0.6

0.5

0.3

(LOG2(X) - LOG(X)/ILOG(2) ) / eps

0.1

-0.1 1 1 1 1 I
—-600 -400 —-200 0 200 400 600

(X-1)/eps
Since |log2(x)|/feps should not exceed 1478, the errors plotted above should not exceed 3000-eps < 7e-13. Instead
huge errors’ amplitudes suggest that MATLAB's log2(x) comes from aformulathat approximates log,(f-V2) over

1/2< f <1, after which logy(x/v2) + 1/2 was expected to deliver log2(x) for x slightly bigger than 1. Delivered
instead were the rounding errorsin log,(x/V2) after the rest of it cancelled with +1/2 . Better results would be
obtained from that formulaif it were shifted to approximate log,(f) over 1/V2< f<v2.

The foregoing graphs obtained from MATLAB 6.5 on a Wintel PC exhibit what appears at first
sight to be akind of raggedness often associated with misbehavior induced by roundoff. Closer
inspection reveals regularities. In general, raggedness and roundoff do not always accompany
each other. Here are plots of the same expressions at the same arguments as before but now by
MATLAB 5.2 onan AppleiMac (Power PC G3 processor):

LOG2(X)/(X — 1) (LOG2(X) — LOG(X)/ILOG(2) )/eps
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Mindless

Instead of oscillation we see a smooth spike and asingle jump. Arethey likely to be attributed to
roundoff by someone who is unsure about how the functions plotted are supposed to behave?
Analogous graphs plotted on an old Apple Quadra 950 (Motorola 68040 processor) show the
same smooth spike and single jump except for noticeably smaller amplitudes. These differences
should suggest roundoff as the culprit to anyone who reran exactly the same computation with
exactly the same data on those different computers. How common is such obsessive repetition?

Something else about all foregoing spiky examples is uncommon: We (think we) know which
spikes are deserved and why. More often, albeit still too rarely, anumerical result comes under
suspicion because of some anomaly discerned, perhapsfaintly, before a spike's existenceis
suspected. An example of such an anomaly isthe pimplein thefirst graph of Spike(x) plotted
above— the graph with no spike. Many an anomaly like that emanates from a program to whose
source-text full accessisdenied. Anexampleis MATLAB's log2(...) ; itisa “built-in function”
whose a gorithm cannot be displayed by MATLAB’s user. And when a program’s source text can
be displayed, ascan Spike(...)'s, “full access’ may overstate how much of the program will be
comprehended. Let’'s not embarrass the educational establishment by asking ...
What percentage of college graduates
who have passed obligatory Math. courses
can supply correct valuesfor log(1) and log(0) ?

Consider instead the predicament faced by the user of apartially opaque program after it produces
apossibly dubious result from ostensibly innocuous data. What can this user do to dispel some of
the fog of numerical uncertainty? If recompilation isnot an option neither are multi-precision nor
Interval arithmetic, nor randomized rounding on atypica PC. Two possible options remain:

One possibility is repeated execution with slightly altered input data. In general such aterations
would pose a challenge: Alter too little and nothing would change; ater too much and results
could change too much to convey information of diagnostic value. For our examples, after their
spikes have been located, altering the data by an ulp or two will provide food for thought.

Another possibility is repeated execution with redirected rounding. This can be accomplished in
MATLAB 6.5 ona PC by invoking the command “ syst em dependent (' setround', r#)”
with r# =+inf toround Up, towards +c , or

=—inf toround Down, towards —o, or

=0 toround Towards Zero, or

=0.5 toround To Nearest, the default.

Let'stry all possibilities. Here are some results computed by MATLAB 6.5 ona Wintel PC :
Table2: Spike(x)

Rounding ... X = 1.333333333333333037 | 1.333333333333333259 | x = 1.333333333333333481
To Nearest 2.344560789927811 2.327232110413813 2.335896450170813
Towards +co 2.344560789927812 2.327232110413813 2.335896450170813
Towards —o 2.344560789927811 2.327232110413813 2.335896450170813
Towards O 2.344560789927811 2.327232110413813 2.335896450170813

Arguments x specified as x=4/3—eps, 4/3 and 4/3+eps came out as shown because “4/3" is (4—eps)/3.

Prof. W. Kahan

WORK IN PROGRESS,

COMMENTSARE INVITED.

Page 12/37



Mindless November 1, 2004 6:59 am 85: An Old Hand Accuses Division

Redirected roundingsinside Spike(...) have amost no effect upon its computed value. This
corroborates (it doesn’'t prove) that Spike(...)'s spikeat x = 4/3 isdeserved. Changing the
17th sig. dec. of x changed the 3rd sig. dec. of Spike(x), soitsspike must be pretty sharp.
However, too few numerical samples were plotted to hint at the spike's infinite depth.

Table3: MATLAB 6.5s 10g2(x)/(x-1)

Rounding ... Xx=1-eps/2 x=1+eps
To Nearest 1.442695040888963 15
Towards +oo 1.442695040888964 2
Towards —oo 1.442695040888963 05
Towards 0 1.442695040888963 2

Redirected roundingstestify to abug in MATLAB 6.5's 1 0g2(..) : Itsrounding errorsruin all but
thefirst few sig. bits of itsvalue at arguments x barely bigger than 1. Arguments x barely less
than 1 produce values near 1/log(2) = 1.4426950408889634... asthey should. Thistable can
be sent (it has been) as convincing evidence of abug to MATLAB’s author. While awaiting a
helpful response, MATLAB’S user can substitute “ | og(x)/1o0g(2) ” for “1o0g2(x) ” inhis
arithmetic expressions unless he expects “ | og2(2~n) ” to reproduce every integer n exactly
unless over/underflow interferes. A slower more accurate programismy | g2(x) posted at
http://www.cs.berkel ey.edu/~wkahan/LOG10HAFRTXT .

85: An Old Hand Accuses Division
Many an Old Hand at floating-point computation will point to what causes troublein 83's
Smooth Surprise immediately; he will blamethetiny divisor z in
T(@):={If z=0 then 1 else (exp(2)-1)/z} .
It isan instance of a hazard the Old Hand rememberswell, namely conditional statements like
.. If x=y then ... dse .../(Xx~y).
These used to malfunction routinely when the two predicates “ x =y ” and “ x-y=0" had
inconsistent boolean values on many computers and/or with some compilersin the 1970s. On
CDC 6x00s division-by-zero could thwart T(z), logic notwithstanding, unless “ If z=0.0"
werereplaced by “ If z21.0=0.0" . None of that happens now, at least not on machines that
conform fully to 1EEE Standard 754 (1985) as amost all do now. Many algorithms that used to
malfunction mysteriously or dramatically, depending upon the hardware and/or compiler, now
work about as well asthey deserve. How well do they deserve to work, and who decides?

“Use every man after hisdesert, and who should ’scape whipping?”  Hamlet, act |1 sc. i .
The nearly universal adoption of IEEE 754 inthe 1980s replaced previous fuzzy mental models
of floating-point arithmetic by a sharper mathematical model from which reasonble expectations

of computational behavior could more easily be inferred and proved, at least in principle. By
enhancing computed results' predictability, IEEE 754 enhanced aso their achievable quality.

For example take the revised program for T(z) above, which can be rewritten in one line thus:
T(2) :={ If exp(z) =0 then —1/z elseif exp(z) =1 then 1 ese (exp(z) —1)/log(exp(2)) } .
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This version has the same division as before except for two extrarounding errors which, when z
istoo tiny, turn the quotient into Roundoff/Roundoff in the eyes of the Old Hand. And Interval
Arithmetic evaluation of that quotient would confirm hisfear of itsindeterminacy. But we know
now that itsindeterminacy isillusory. Instead arounding error in the numerator’s exp(z) is offset
by the same one in the denominator to produce an amost fully accurate quotient provided
log(x) = (x-1)-(1 — (x-1)/2 + (x-1)?/3 - (x-1)%/4+ ... ), when |x-1|<1,

is computed as accurately as we have every right to expect nowadays, namely well within a unit
in the last digit carried by the arithmetic.

Of course, therevised version of 83's T(z) isatrick.

“A trick used three times becomes a standard technique” (G. PAlya).
A similar trick figures often in financial calculations involving mortgages, bonds, leases and
loans. Frequently they entail computation of the Future Value function

FV(N, x):= { If x=0 then N ese ((1+x)N-1)/x }

in which the number of payment periods [N| isamoderately big integer, and the periodic interest
or discount rate x =i/100, expressed as afraction instead of a percentage i, isfairly small in
magnitude unless usury isinforce. If |x| istoo tiny the foregoing expression for FV canloseall
itssig. digitsto roundoff asdid the original T(z) above, andinthe sameway obviousto the Old
Hand. Thisis not the place to explain how thetrick rescues FV . Instead, to tantalize the Old
Hand, hereisasimpler revised (unlessthe compiler “optimizes’ parentheses away) expression
for the same function:

FV(N,x):= { If (1+x)=1 then N ese ((1+x)N-1)/((1+x)-1) }.
To Old Hands an expression with two extrarounding errorsin its divisor seems more likely than
the original to lose all digits carried when |x| istiny, yet nowadaysit can be proved to lose at
most half the sig. digits carried by arithmetic provided integer |N| isnot immoderately big.

This phenomenon, losing at most half the digits carried to roundoff, occurs surprisingly often.
Half full, or half empty? Some applications cannot tolerate so great aloss when it carries awvay
anticipated propertieslike smoothness, monotonicity and symmetry too. Other applications, like
|east-squares linear regression to statistical datain thelife and socia sciences, need no more than
seven sig. dec. in their results and achieve that accuracy fastest by carrying over twice as many
sig. dec. during their arithmetic. Either way, the phenomenon raises doubts about glib diagnoses
of “Small Divisors’ and “Cancellation” as invariable concomitants of numerical distress.

Programmers who still fear division can compute FV well for moderately big positive integers N without any

division at all, and with about twice as much work as would be required to compute (1+x)N alone by means solely
of multiplications and additions. The algorithm’s derivation via Divided Differences isleft as an exercise.

Thereisjust one reason to fear floating-point division: It can beslow. A hardware designer, after
noticing how many fewer divisions occur than multiplications and add/subtractions, may have
“optimized” hisdesign in away that causes divisions to run too slowly.

Unless a programmer loses his nerve, he need no longer fear that Division-by-Zero will derail
his program. For instance, Secant Iteration solvesareal or complex equation f(z) =0 for areal
or complex scalar unknown z by generating a sequence of presumably improving guesses

Xn = Xn — (X = Xn_g) CFO)(F () = F(Xn1) ) ) -
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The program reactsto an c produced by Division-by-Zero (since 0/0 and 0-c0 areruled out by
prior tests) the same way it reactsto awildly aberrant X, caused any other way: Replace an

aberrant X4, by another guess moderated by the history of recent iterations.

Some divisions by zero must be averted. The ways we did that three decades ago are no longer
the only ways. Moreover, newer ways can produce better results more easily than older waysdid.
Hereisan example: For all finite x >0 consider the function
f(x) == { if x<1 then —arctan(log(x))/arccos(x)?

elseif x=1 then 1/2

else arctan(log(x))/arccosh(x)? } .
It has a smooth graph. Itissmooth as x passesthrough 1 becausethis f(x) hasaconvergent
Taylor Series therethat will be exhibited inamoment. As x - 0+ thegraphrisesto f(0) = 2/1t
sharply because f'(0) =—oo . A graph computed from the foregoing formulafor f(x) appears
below. Itlooks perfectly smooth as x passesthrough 1, but appearances deceive. Actualy, old
386-MATLAB runningona PC lost 26 of the 53 sig. bitsit carried during the computation of
f(x) at arguments x nextto 1. The graph’sresolution istoo coarseto reveal theloss.

f(x) plotted by 386-MATLAB v. 3.5m (1992)
0.65—

0.55- :

0.5+ b

0.45+- :

f(x)

0.4+ b

0.35F :

0.25F :

0.2+

To expose 386-MATLAB’s errorswe must first compute f(x) correctly around x =1 using its
series. A brief look at nineterms of its Taylor series
f(142) = %_1 12,1243 8221 4 46969 5, 948249251 6 208838923 7_ 14025530287 s

~Z Z +——=7 — zZ — V4 zZ - Z —
6 20° 9457 T 113400 ~ 1247400 10216206000 3831077250 ~ 521026506000
computed by MAPLE® persuades us of two things:

» At most afew leading termsinvolve integers small enough to be computed by hand.
» The series converges slowly; itsradius of convergenceis 1 since f'(1+ (=1)) =—o.
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Thus the series serves to check any other program’s accuracy only in a narrow neighborhood of
f(x)’s removable singularity at x =1+z=1, where f(1) = 1/2. Below isagraph of the error,
the difference between 386-MATLAB’s f(x) anditsseries, plotted at 401 consecutive floating-

point arguments x running from 1—100eps to 1+ 200-eps , where eps = 22 = 2.2,,-16.

ULPs of Error in 386-MATLAB 3.5's f(x)
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The error ismeasured in ULPs (Unitsinthe Last Place) of thevaluesof f(x), whencean

ULP={ if x>1 then eps/2=1.1/10% else eps/4} . Notethescale (x 10’ ULPs) of the
vertical axis. Theworst error is 74055679.7 ULPs a x =1 —eps/2.

What caused those errors? To assist diagnosis, wereran the computation of 386-MATLAB'’s f(X)

in Directed Rounding Modes (Scheme 2 in 81). Theresultsin Table4 expose hypersensitivity
to roundoff enough to arouse suspicion but not yet enough for conviction.

Table4: 386-MATLAB’s f(x) computed with Directed Roundings
Direction f(1—eps/2) f(1+eps)

To Nearest : || 0.5000000041109161 | 0.4999999960408469

To Zero : || 0.5000000041036400 | 0.5000000065775587

To +o0: || 0.5001221042336121 | 0.9999999552965182

To —oo : || 0.5000000041036401 | 0.5000000065775587

To sharpen the focus of diagnosis, we reran separately the subprograms used in 386-MATLAB’S
f(x) with the same inputs as revea ed the hypersensitivities exposed in Table 4. 386-MATLAB'’S
| og and at an were almost indifferent to directions of rounding, but Table5 below shows how
its acos and acosh turned out both hypersensitive and wrong in almost half their sig. bits.
Suspicions aroused by evidence of hypersensitivity were confirmed by comparison with correctly
computed values of arccos(l—eps/2) and arccosh(l+eps) . Notethat theerrorsin MATLAB’S
acos and acosh werefar tinier than the variations caused by redirected roundings. Actua errors
had to be determined the hard way: Compute correct values somehow and then compare.
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Table5: 386-MATLAB’s acos and acosh with Redirected Roundings

Direction 10%.acos(1-eps/2) 108.acosh(1+eps)

To Nearest : || 1.490116113259023 2.107342433887993

To Zero : || 1.490116113269865 2.107342411683533

To +oo: || 1.489934203216439 1.490116152691456

To —oo : || 1.490116113269865 2.107342411683533
Correct value: || 1.49011611938476564 | 2.10734242554470155

MATLAB'’S acos isa “builtin” function whose source-text has been inaccessibleto MATLAB’S
users for decades. MATLAB 3.5 (1991) on 680x0-based Macintoshes, and MATLAB versions
4.2 (1997) and later on Macs and PCs have enjoyed accurate implementations of acos.

MATLAB’S acosh hasbeenimplemented inaccurately asan .m file, and therefore accessible and
aterable, from early versionsin 1984 until version 5.2 (1998). Accurate implementations of
acosh were built into versions 5.3 (1999) and later on PCs.

When acos, acosh, atan and | og areeach accurate within lessthan an ulp, theformulafor
f(X) given above trandliterates into a program whose error can reasonably be expected never to
exceed afew ulps. Such expectations are consistent with this graph of the program’s error plotted
at 1025 consecutive floating-point arguments x between 1—256-eps and 1+ 512-eps :

ULPsof Error in PC MATLAB 6.5's f(x)
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Compare this graph’s and the previous graph’s vertical scales. Here satisfactorily small ragged
rounding errors confirm that division by tiny divisors need not cause numerical distressif they are
correlated properly with their numerators. But now this and previous graphs raise worrisome
guestions about the diagnosis and persistence of erroneous numerical software. ...

Why have erroneous implementations of fundamental functionslike acos, acosh and | og2
persisted in MATLAB for so many years? Have their errors escaped notice by MATLAB'S many
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myriads of users? It'spossible. | noticed these errors only after slightly excessive discrepancies
among results from old and new versions of MATLAB on PCs, Power Macs and my old Quadra
aroused my curiosity during the preparation of numerical exercises for students. Not everyone
gets an opportunity to compare numerical results from so many sources. Not everyone wants one.

With one thermometer you always know the temperature; with two of them you rarely know it.

The longevity of inaccuracies in numerical software by and for numerical adepts has ominous
implications. Numerical software does not have to be very complicated to be difficult to debug by
experts, practically impossible to debug by amateurs. Numerical software from numerically
naive programmers, no matter how competent they are in other fields, must often be much less
accurate than programmers and users believe. How often? How much? How would we know?

Another possibility, Unnecessarily Low Expectations, may explain the persistence of erroneous
numerical software. Old Hands at numerical computation may recall that in the 1950s floating-
point arithmetic’s errors were generally deemed impossible to analyze. John von Neumann had
recommended against building floating-point into computersin 1947. But by 1960 numerical
analysts, particularly James H. Wilkinson, were promulgating explanations for floating-point
errors under the heading of Backward Error-Analysis. It went like this:

Many numerical programs are hypersensitive to roundoff for at least some dataif not all. Some
are deemed Numerically Stable when their results are scarcely worse than if their data had been
perturbed by afew ulps first and then computation had been performed exactly without roundoff.
For example, the solution of matrix equations A-Z=B by Gaussian Elimination with Pivotal
Exchanges is numerically stable in this sense except for pathological cases. Eigensystems of all
symmetric matrices and of all but pathological nonsymmetric matrices can be computed by stable
algorithms replacing a plethora of unstable algorithms advocated in the literature before 1960. A
small Residual istypical of algorithms stablein the backward sense: Even if wrong, the matrix

X by which Gaussian Elimination approximates the solution Z = A™-B almost always has a
small residual A-X—B satisfying an inequality like

IA(X=2)|l = IAX=B|| < yn3Ze-(JJAI{IXI| + 1B]|)
wherein y isamoderate constant, n isthedimensionof A, and € isarounding error threshold
like MATLAB’s eps. “Almost adways’ allows for pathological exceptions like matrices A so
nearly singular that Gaussian Elimination may well be thwarted for lack of a nonzero pivot.

The success of Backward Error-Analysis at explaining floating-point errors has been mistaken
by many an Old Hand asan excuse to do and expect no better. Since MATLAB’S | 0g2( x)
computes log,(x-(1 + &) for some unknown |ag < eps he could deem it numerically stablein
the sense of Backward Error-Analysis. Likewisefor old acos(x) = arccos(x-(1+ &)) and old
acosh(x) = arccosh(x-(1+ a")) . Totolerate such errorsfor doctrinal reasonswould beillogical,
unnecessary, and pernicious. lllogical because Backward Error-Analysis explains but does not
excuse. Unnecessary because accurate implementations of those functions for 1EEE 754 have
been available for decades on Macs and PCs; other computers could usethe Math. library
released in the 1980s with 4.3 BSD Berkeley UNIX and now refined and promulgated for use
with Java as fdlibm, the freely distributed math. library maintained by afew U.C. Berkeley
graduates now working for Sun Microsystems. MATLAB uses fdlibm nowadays.
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Tolerating unnecessary backward errorsin the math. library isperniciousin so far asit obstructs
the numerical removal of mathematically removable singularities. Our example f(x) above will
illustrate what goeswrong. Suppose log, arccos and arccosh were implemented no better than
amistaken Old Hand might expect; suppose (oversimplified) that their implementations were

LOG(x) =log(x-(1+a), ACOS(x) = arccos(x-(1 +ad)) and ACOSH(x) =arccosh(x:(1+&"))
wherein |agd<e, |e8|<e and |[&8' | <€ :=(roundoff threshold) . Thetiny perturbations ag &8 and
&' are accidents of roundoff and therefore uncorrelated for all we know. They would induce
uncertainties (bounds upon errors) amounting roughly (oversimplified) to ...

| LOG(X) —log(x) | < ¢,
| ACOSH(x) —arccosh(x) | < ex/V(x*-=1) , and
| ACOS(x) —arccos(x) | < ex|/V(1-x?) .

The oversimplifications affect the first two inequalities when |log(x)| ishuge, and the last two
when [x —1| isnot much bigger than €, but neither of these cases will matter to what follows.

<
<

The obvious implementation of function f(x) asaprogram f(x) lookslikethis:
f(x) := { if x <1 then —~ATAN(LOG(x))/ACOS(x)?

elseif x=1 then 1/2

else ATAN(LOG(x))/ACOSH(x)? } .
And this program produced all the graphs of f(x) displayed above. But if the math, library were
so inaccurate asan Old Hand might mistakenly expect, the program’srelative uncertainty at
arguments x near 1.0 (but not so near that |x — 1| isnot much bigger than €) would be roughly

|10 = F() /f(x) < e(3+2/x-1]).

Thus, program f(x) couldloseal but afew sig. bits, for al the Old Hand knew.

But the Old Hand knew how to avoid most of that loss by using N terms of the Taylor series
_11 1 2, 124 3 8221 4 46969 5 948249251 6

fO0) = 5-50x-D)—550- D"+ e -1 ~ 73500~ 1" ~ Tozazo*~ 1) * Topiez0e000 D ¥

when |x-1| < ©y for some suitably chosen small integer N and threshold ©y . Hisprogram

f(x) looked likethis:

f(x) := { if x<1-Oy then —ATAN(LOG(x))/ACOS(x)?
eseif x> 1+0y then ATAN(LOG(X))/ACOSH(x)?

else (N termsof the seriesfor f(x) around x=1) }.
By chosing threshold ©y properly he got his program’s relative uncertainty down to roughly

1) = () () < min{ e(3+2/x-1]), 2&+2uy k-1 }
wherein py i1sthe magnitude of the coefficient of thefirst omitted term iuN-(x—l)N inthe series.
A rough estimate adequate for our purposesis py = 1/20, correct within an order of magnitude

unless N is37o0r81. Given N, aproperly chosen ©y makes a-(3+2/G)N)=28+2uN-G)NN,

which happens nearly enough when Oy = (¢/ uN)ll (N*+1) | and then the program’s uncertainty

peaks at roughly 2e-(1 + (¢/py) YN ) when x =1+ @y . Thebottom lineisthis:

The Old Hand's program f(x) lost almost 1/(N+1) of the sig. bits carried, whereas
the obvious program f(x) losesjust afew sig. bits nowadays. For similar accuracy,
N had to be a substantial fraction of the number of sig. bits carried by the arithmetic.
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Worse than this extrawork is that the Old Hand's old ways imposed a superfluous burden upon
the conscientious programmer, the one who tries to achieve fully accurate results over aswide a
range of valid inputs as possible. Thisisthe kind of person we hope is programming the design,
construction and control of our transportation, our bridges and buildings, our chemical and
pharmaceutical processes, etc. To burn such programmers out prematurely seems perverse.

86: Repeated Randomized Rounding

Roundoff isnot random. Table3 in 84 suggeststhat just afew rounding errors, probably one or
two, did most of the damageto MATLAB’s log2(...) ; and theplotsin 84 of the scaled error
(log2(x) — log(x)/10g(2))/eps exhibit regular rather than random behavior as x increasespast 1.

Roundoff is not random, yet mathematical models that pretend roundoff is random have their
uses, and abuses. Such amodel can be exploited by a numerical analyst during an error-analysis
of her program which then she can test upon randomly sampled data for which accurate results are
known or computable by a (presumably) slower program. If her program’s actual errorstoo far
exceed what her analysis led her to expect, she will know something iswrong with her program
or her error-analysis of it. Diagnosis and correction can ensue. Thisisagood use of statistics.

Statistics get abused when an engineer, economist or ... using that program relies naively upon
aprobabilistic estimate of the error in the program’s output for his particular input data. Results
from dlightly different randomly perturbed data can be interpreted properly only in the light of an
adequate understanding of both the function desired and the function computed by the program.
How much should the desired function vary when its datais varied? If the computed function
varies not much more than that, hasit been shifted, as 83's G(x) got shifted, by far more than
the variations? Has all perturbed datafallen on the wrong side of astep liketheonein 84's last
graph? Only error-analysis of the program can answer these last two questions. It's not mindless.

To gauge how badly roundoff affects a computed result, recomputation with perturbed rounding
errors makes sense. Lest afew such recomputations produce biased results, randomly perturbed
rounding errors seem appropriate. The hopeisthat the recomputed results mean approximate the
“True Result” that would be obtained if al rounding errors assumed their mean value (zero
presumably), and that the recomputed results’ variance can be used to estimate the probability of
too large a gap between their mean and that True Result. This hope is misplaced.

Alas, randomized rounding has afatal flaw. It has had to be rediscovered the hard way by well-
intentioned advocates of recrudescing proposals ever since randomized rounding wasfirst (so far
as| know) proposed for the IBM 7030 “Stretch” inthe late 1950s. The fatal flaw arises out of
conditions inadequate to sustain two bedrock principles of Statistics:

» The Law of Large Numbers. As ever more independent unbiased random samples are drawn
from a population, the samples’ mean and variance will approach the population’s.

» The Central Limit Theorem: If sufficiently many independent random variates have variances
not too dissimilar, the variates sum will be arandom variate distributed approximately
Normally with mean the sum of their means, and variance the sum of their variances.
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Regardless of whether alarge number of rounding errors contribute to each recomputed result, a
large number of these results (each isone sample) must be computed to satisfy the Law of Large
Numbers. But nobody is eager to spend alot of time on alarge number of recomputations.

Regardless of whether alarge number of rounding errors contribute to each result, they arefar
lesslikely than men to be “all ... created equal and independent” as asserted in Jefferson’s first
draft of the Declaration of Independence. Quite often a computed result’s error is dominated by
so few as one or two rounding errors, asis MATLAB’s log2(...) . Eventhe solution of a huge
system of linear equations by Gaussian Elimination, incurring millions of rounding errors, is
often perturbed predominantly by two rounding errors incurred in the first pass of elimination,
especially when the system of equationsis hypersensitive to roundoff because of “ill-condition”.
An exampleis exhibited below. In general, the one or two most injurious rounding errors are no
easier to distinguish from the others than are pickpocketsin a crowd at the racetrack. In short,

Without an error-analysis, the Central Limit Theorem cannot be
relied upon to estimate from the variance of afew recomputed results
how likely istheir mean to differ vastly from the True Result.

Our exampleisdrawn from ascheme called “CESTAC” patentedin Europe by J.Vignes inthe
late 1970s. It added +1, —1 or O chosen randomly to thelast bit of every arithmetic operation.
A better scheme circumvents Vignes patent by randomly toggling UP or DOWN the directed
rounding, mandated by IEEE Standard 754 for Binary Floating-Point Arithmetic, before each
arithmetic operation. Stephan G. Popovitch seemsto have done that in hisversion of CESTAC
called “ProSolveur”. It attemptsto solve small systems of equationsonan IBM PC using three
randomly rounded computations to assay the accuracies of results. Then ProSolveur displays
only thosefiguresit “believes’ to be correct. Of the many ways ProSolveur can go astray, only
one of those we believe characteristic of CESTAC is exposed by the simple example exhibited
below. Hereis Prosolveur’s welcoming screen:

(c) Copyright 1987 - LA COVWANDE ELECTRONI QUE - Tous droits réservés

PROSOLVEUR

» ProSolveur Version 1.1 par Stephan G POPOVI TCH «

Frappez une touche pour continuer

ProSolveur’s user enters algebraic equations symbolically to be solved numerically, indicates
which symbols represent data (parameters) and which are unknowns (“inconnus’ in French),
and supplies values for the data. Then ProSolveur displaysitsresults and the user’s data and
equations in two panels under headings of which only the following need be explained:
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st Entry’s Status, p = parameter (datum), i =“inconnu” (unknown).
entrée Initialy, user'sguess, if any; afterwards, Prosolveur’'s “résultat”.
(%) Percentage uncertainty ProSolveur attributesto entré or résultat.
unité Unit ($, Km, Kg, sec., ...) if onehasbeen chosen by the user.
résultat Prosolveur’s result displayed to asmany sig. dec. as Prosolveur deems correct.
id Line number identifying an equation or a comment beginning with “*”.
fichier Name of the disk(ette) file containing the line identified.
2x2 Problem submitted thriceto ProSolveur :
st entrée + (9 nom unité résul t at
p 4194304. 000 A
[ X
p 4194303. 000 B
! y
p 4194302. 000 C
p 3. 000 p
i X
i Y
l H
[ 3
id équati on fichier
(1) << ? >>
(2) A*x + B*y =0 2X2
(3) B*x + Cy = p 2X2
(4) A*X + B*Y = 0 2X2
(5) B*X + CY =p 2X2
(6) A*p + BB =0 2X2
(7) B*u + CRB =p 2X2

no des équations du systéeme a résoudre : 2:7

The command line beneath the panel above displaysthe id numbers of equations ProSolveur
has been asked to solve, and also its warning messagesif any. Our example, the smplest of
many, exposes afailure mode by asking ProSolveur to solve six repetitive linear equations:

Results delivered by ProSolveur :

st entrée + (9 nom unité résul t at

p 4194304. 000 A

[ 1. 3E+007 1 X 1. 3E+7

p 4194303. 000 B

[ - 1. 3E+007 1 y -1. 3E+7

p 4194302. 000 C

p 3. 000 p

[ 1. 2E+007 1 X 1. 2E+7

[ -1. 2E+007 1 Y -1. 2E+7

[ 12509610. 504 M 1. 2509611E+7
[ -12509613. 487 R -1. 2509613E+7

Since the determinant of the equationsis A-C—-B-B =-1, theideal results (with no rounding
error) for thisill-conditioned (hypersensitive to roundoff) linear system should be
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x =X =pu=23B=12582909 and y =Y =R =-3A=-12582912 .
ProSolveur's awesomely optimistic claims for the accuracies of its computed 1 and 3 indicate
that the three “random” samplesdrawn by ProSolveur arefar too few because they were drawn
fromanearly discrete rather than continuously distributed population. The only rounding errors
that matter in this computation are the two committed during the computation of B-(B/A) , after
which C—-B-(B/A) mostly cancelsto avery rough approximation of 1/A without generating
any more error. There are only two ways to perturb each of those two crucia rounding errors, so
the probability that both would repeat in all three samplesis 1/16 . Thisisthe probability that
ProSolveur will say that its error istoo small to estimate, below 0.00001% , when actualy its
error isabout 57000 times bigger than that for our example’s calculation. If the Central Limit

Theorem applied, the probability of such a big error would be not 1/16 but below 10770000

More instances of ProSolveur's naively excessive optimism have been posted at
http://www.cs.berkel ey.edu/~wkahan/improberr.pdf .

Applied mindlessly, recomputation with randomized roundings provides no reliable estimate of
the probability of rare errorsfar larger than were anticipated. And without knowing whether such
gross errors have occurred, how can their cost be predicted? What good is a probabilistic error
estimate that cannot support the calculation of a price worth paying for insurance against the
possibly calamitous cost of intolerably large errors? Even if a procedure produces probabilistic
estimates that have turned out about right in numerous test cases each susceptible to confirmation,
these ostensibly successful tests are misleading without afair appraisal of the incidence of failure,
and also of the existence of failure modes overlooked by the tests' designers.

Imponderable probabilities multiplied by imponderable costs of calamitous errors should not be
allowed to paralyze us. Lifeistoo full of imponderables. Probabilistic error estimates deserve to
be trusted for any computation whose error-anaysis vindicates them. But these are not mindless.

We have yet to consider the possibility that probabilistic rounding may have ruined a subprogram
that was designed to work and works well only if rounding is performed as specified or expected

by the programmer. Many of the math. library’s “built-in” functionslike pow(x, y) =x¥ and
floor arelikethat. If presumed utterly trustworthy (not being debugged), such subprograms
innards must be sheltered from schemes that rerun distrusted programs in altered rounding modes.

Even with pivotal exchanges, Gaussian Elimination is not utterly trustworthy. Scattered results from redirected
roundings can be due to an ill-conditioned (nearly singular) matrix like the one presented aboveto Prosolveur, or
else due to poor scaling or other rare accidents which Backward Error-Analysis explains but does not excuse.

Let us not confuse randomized rounding during recomputation with systematically redirected
rounding during recomputation as exemplified in 84's Table3 for MATLAB’s log2(...) . The
two recomputation schemes have different purposes. Systematically redirected rounding explores
the behavior of a software module suspected of hypersensitivity to roundoff at a particular set of
input data. Such exploration is unlikely to prove anything with mathematical certainty. Instead
such exploration is highly likely to strengthen suspicion if it is deserved, or to allay suspicion and
guide searches for the source of a numerical anomaly elsewhere.
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87. Cancellation isNot the Culprit
Diagnosiswould be easier if a program’s numerical instability in the face of roundoff werevisible

to the naked eye in the program’s text, unlike its computed results erroneous for some perhaps
infinitessimal range of data. The “Usual Suspects’, subtractions susceptible to cancellations and
divisions susceptible to small divisors, were nearly exonerated during the explanation of 83's
Smooth Surprise, the function G(x) =1 for which zero is almost always computed. Neither
cancellation nor small divisors need be concomitants of numerical distress. Another suspect,
arithmetic operations so numerous that their hordes of rounding errors threaten to overwhelm the
desired result, can hardly ever carry out such athreat. Instead, floating-point computation may

go utterly awry without ...
* Subtractions (hence no cancellation)

 Divisions (hence no small divisors), nor
* Very many arithmetic operations (hence no hordes of rounding errors).

Next isan examplewith only 256 arithmetic operations, and yet it loses all the figures carried by
every commercially significant computer’s floating-point hardware no matter how many sig. dec.
or bitsare carried. (The current maximum isbelow 36 sig. dec., 120 sig. bits). Worss, ...

Most numerical computations that go awry because of roundoff
behave more nearly like this next example than like our others.

Define a floating-point-valued function H(X) for nonnegative floating-point arguments X thus:

Y :=W..VWVX ; ... 128 consecutive sguare roots ...
H = ((...((Y®)??...)??. ... 128 consecutive squares.

A naive expectationisthat H(X) should match X except perhapsinitslast threesig. dec. or last
nine sig. bits. Something utterly else happens. What followsisaplot of H(X) versus X as

computed by arithmetic rounded to 53 sig. bits:
H(X) := ((...((Y(X)®)?)?...)%)? where Y(X):=VW..VWVX , 128timeseach

128 sgquares of 128 sorts

.................................................................

-0.2
(o] 0.5 1 1.5 2 2.5 3 3.5 4

Matlab 3.5 on a Mac Quadra (68040) rounded to DOUBLE
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The samething happenson Sun SPARCs, onrecent (for 25 years) hp calculators, on PCs and
recent (since 1995) Macintoshes using recent versions (5 or later) of MATLAB, and so on.

How can this graph be explained? Of course H(0.0) = 0.0 and H(1.0) = 1.0 becausethen H

—128

commits no rounding errors. Otherwise Y must be arounded approximation to X? . Let's
suppose that the computer rounds every square root correctly (error smaller than 0.5 inthelast
digit retained). If X >1 then Y =1 exactly; doyouseewhy? Andthen H =1 exactly too. On
the other hand, if 0<X <1 then Y =0.999...999 or the the arithmetic’s binary floating-point
number next lessthan 1; do you see why? And then raising that number Y to the power 2128
Underflows (do you seewhy?) to 0.0, whichisreturned as H(X) .

However, some computers and calculators do something else; hereistheir graph of H(X) :

19 128 squares of 128 sgrts

0.8 _
0.6H _
0.4 -
0.2} _

-0.2

0 0.5 1 15 2 2.5 3 3.5 4

Matlab 3.5 on a Mac Quadra (68040) double-rounded to DOUBLE
Why? The previous page's analysisimpliesthat sgrt(x) must sometimes return something else
than (Vx correctly rounded ) on computers that produce the last graph. Instead, if s=1—p is

the floating-point number next lessthan 1, namely s=1—-eps/2 in MATLAB, s=0.9999...999
in decimal arithmetic, then sgrt(s) must return 1.0 instead of s on those computers. Actually

Vs=1-p/2—p?/8— ... fallssonearly halfway between s and 1 that sqrt(s) can be extremely
nearly correctly rounded and yet be rounded wrongly up instead of down. Most computers did
thisuntil the late 1980s when |EEE Standard 754 for Binary Floating-Point became ubiquitous.

Something else again can happen on the old Apple Mac Quadra's 68040 and on |Intel-based
PCs and their clones though they conform to IEEE 754. It isadoublerounding. First sqrt(s) is
rounded correctly to 64 sig. bitsin one of a set of floating-point registers intended to evaluate al
subexpressions to this wider precision regardiess of the narrower precisions, 53 or 24 sig. bits,
of many operands. Normally this extra precision would be advantageousin so far asit attenuates
roundoff in al subexpressions, literal constants and local variables before they are rounded back
to 53 or 24 sig. bitsin 8-byte or 4-byte variables stored in memory for subsequent display or
communication. Alas, the programming language community and especially Bill Gates at
Microsoft and Bill Joy at Sun Microsystems failed to appreciate the importance of that extra
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precision and consequently declined to support it, so it isthreatened with atrophy now. But all
that isa story for another day; see my web page's “How Java's Floating-Point Hurts Everyone
Everywhere”, .../JAVAhurt.pdf , and “Marketing vs. Mathematics’, .../MktgMath.pdf , and
“MATLAB’sLossis Nobody’'s Gain”, .../MxMulEps.pdf .

When older versions of MATLAB first round sgrt(1 —eps/2) to 64 sig. bitsin one of those extra-
precise but anonymous floating-point registers, theresultis 1 —eps/4 correctly but temporarily.
Thisresultisthen stored inan 8-byte memory cell rounded to 53 sig. bits; it rounds correctly to
1.0, which explainsthe last graph with a step at zero.

Version 6.5 of MATLAB can set bits that control rounding precision in the PC’s floating-point
registersto mimic SPARCs and other workstations' 8-byte floating-point, thus rounding
sgrt(8-byte) onceto 53 sig. bits. Thisversion getsthe graph withthestepat x =1 . To benefit
from extra precision during the multiplication of non-sparse matricesin MATLAB 6.5 on PCs,
invoke “ syst em dependent (* set preci sion’, 64) ”. Then sqrt(8-bytes) will get rounded
correctly twice, producing the graph with a step at zero.

Why should we care that an extravagantly complicated computation of H(X) = X misbehavesin
obscure ways because of roundoff? Because most computations deemed “numerically unstable”
malfunction in asimilar way, usually exposed by casual tests. Commonplace instances include
differential equation solvers and eigensystem solvers. And because their malfunctions have so
much in common, an explanation for them in general mathematical terms deserves our attention.

Suppose a floating-point program F(X) isintended to compute afunction f(x). The program
F(X) you seeisnot the program you get. Instead you get afunction f(x, r) inwhich r isa
column of rounding errors, one for every arithmetic operationin F(X) susceptible to roundoff.
Of course, r isunknown but tiny; and if F(X) isalgebraically correct then f(x, 0) = f(x) .
Consequently, inmost cases, f(x, r) = f(x) + (af/0r),—qr + O(r)z. Here of/or isthe Jacobian
matrix of first partial derivativesof f(x, r) with respect to variablesin r. If of/dr isnot huge,
the execution of program F(X) will produce f(x, r) with anerror f(x, r) — f(x) = (of/or)-r thatis
tolerable because every elemement of r issotiny. Otherwise, when the error f(x, r) — f(x) is
intolerably big, it must be so big because some elements of df(x, r)/or are gargantuan.

How can df/dr become gargantuan? It can do so only if x comesclose, in some sense, to a
Sngularity of f(x,r) where of/dor would becomeinfinite. Thissingularity of f need not be a
singularity of the function f, but instead an artifact of the formula chosen for the program F .
For example, thepprogram T(z) :={ If z=0 then 1 else (exp(z) —1)/z} thatfiguredin §3's
Smooth Surprise has adivision-by-zero singularity at z=0 which, though ostensibly removed
by the branch, can still exert abaleful influence if roundoff disconnects the numerator from the
tiny divisor. Another exampleisan o — o singularity approached when aprogram F computes
an innocuous function f asthe difference between two gargantuan numbers whose cancellation
leaves only the ghosts of digitslost previously. Some singularities can turn out to be benign, asis
thedivision by atiny log(...) inthe accurate but tricky version of T(z) in §3.

Whether malignant or benign, c —c and .../0 arenot the only kinds of singularities. On the
contrary, singularitiesin general are far too diverse to be classified mathematically. Thisiswhy
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“Neither cancellation nor small divisors need be concomitants of numerical distress’;
many other kinds of singularities cause numerical distress more often. Asin our example H :

_N 2N
Absent roundoff, our example H(x) := (x2 ) for N =128 would compute H(x) =x. Only

one rounding error r dominates the computation, and by ignoring the others we can approximate
N

—N 2
the computed value of H by the expression h(x, r) = %r D<2 E whose ah/dr = 2N-h(x, r) .

Therefore error h(x, r) —h(x, 0) = 2N.rx; andwhen N =128 we find that the relative error in
h(x, r) isarounding error r (perhaps not so bigas 2722~ 1071%) amplified by 2128 =10%.

The singularity occurswhen parameter N = 128 (whichfiguresin program H and expression h
but notin h(x, 0) = x) isreplaced by N =+ . Thisreplacement seemsdrastic at first; actually
it isaconsequence of asingularity so strong that its effect isfelt when N isbig but not very big.

In general, singularities whose nearness amplifies roundoff intolerably tend to be unobvious. If
they were always obvious, error-analysts would be mostly unemployed. Such is not the case.

How can somebody innocent of error-analysis at least detect if not correct miscalculation due to
roundoff? Oneway isto study error-analysis; agood text on the subject is Nicholas J. Higham's
book “Accuracy and Stability of Numerical Algorithms™ 2d. ed. (2002, SIAM, Philadelphia),
thoughitisabout 700 pageslong. Another way isto rerun asuspected subprogram under diverse
rounding modes and compare results. Rerunning our example program H(X) with rounding
directed Down reproduces the first graph with astepupfrom 0 to 1 at X =1. Rounding
directed Up produces anew graph that stepsup from 1 to o (dueto Overflow) at X > 1.
These graphs reveal the hypersensitivity of H(X) to roundoff unmistakably and with little effort.

88: BitsLost in Space

Imagine plans for unmanned astronomical observatories in outer space. They needed software to
compute their locations relative to stars and planets whose positions are listed in a computerized
ephemeris. Three vendors tendered programs for that purpose. To assess their accuracies without
becoming bogged down in the messy mathematics of error-analyses, we have presented the same
test data to the different vendors' programs and compared their results. Compared with what?
Were we able ourselves to generate software that computed accurate results, we would not have
to purchase one of these programs. Their three results matched nearly enough for almost all our
millions of tests, but afew tests have exposed substantial disagreements. Now what shall we do?

Presented here is a case study that may shed light upon that question by focussing upon a small
subprogram that computes subtended angles from spherical polar coordinates of pairs of celestial
objects listed in the ephemeris. Computed angles will be compared with observed angles to help
adjust or determine an observatory’s location in space, but these procedures and corrections for
the finite speed of light coming from the planets are all omitted here for the sake of simplicity.

First some notation. Directions to distant stars are specified by angles named as follows:
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Names of Angles used for Spherical Polar Coordinates
Angle Symbols| Relative to Horizon | Relative to Ecliptic Plane| Relative to Equatorial Plane
0, © Azimuth Right Ascension Longitude
@, O Elevation Declination Latitude

These angles must satisfy —1t< 0 < 11 and —172 < @< 12 in Radian measure, —180° < 6 < 180°
and —90° < @< 90° indegrees. Similarly for © and @ . Radianswill be used in what follows
because the observatories' instruments resolve anglesin radianswith 3 bitsto theleft and 24
bits to the right of the binary point; displayed in decimal they would look like “X.XXXXXXX" .

Two stars whose coordinates are (6, @) and (©, @) subtend an angle y at the observer’s eye.
This Y isafunction (6O, @, @) that dependsupon 8 and © only through their difference
|6—@ | mod 21t. The three implementations of thisfunction ) to be compared are called u, v
and w . They run at roughly the same speed. They perform all their computations in arithmetic
conforming to |EEE Standard 754's specificationsfor single precision (4 byteswide, 24 sig. bits
worth more than six sig. dec.), the same precision as the data from the ephemeris, so the reader
of this case study need not fear drowning in digits. Still, in order that anyone so inclined may
recover al binary data and results exactly, afull nine sig. dec. will be displayed here. All results
were computed on the same Intel Pentium processor aswill be installed in the observatories.

Table6: Three Subprograms u, v and w Approximate Subtended Angle (6-0, @, D).

0-0O:

0.00123456784

0.000244140625

0.000244140625

1.92608738

2.58913445

3.14160085

1| 0.300587952

0.000244140625

0.785398185

-1.57023454

1.57074428

1.10034931

1|/ 0.299516767

0.000244140654

0.785398245

-1.57079506

-1.56994033

-1.09930503

:1/0.00158221229

0.0

0.000345266977

0.000598019978

3.14082050

3.14055681

:1|0.00159324868

0.000244140610

0.000172633489

0.000562231871

3.14061618

3.14061618

q_j:
q_j:
qJ:

Si<|cl|lB|le

:1|0.00159324868

0.000244140610

0.000172633489

0.000562231871

3.14078044

3.14054847

Table 6 above exhibits only afew atypical test results from u(6-0, @, @), v(6-0, @, ®) and
w(6—0, @, P) . They have agreed to at least six sig. dec. for aimost all of millions of randomly
generated test arguments. But the few atypical discrepancies are of the worst kind, intolerably
bigger than the known uncertainties in the observatories’ instruments and ephemeris, yet too
small to be obvious. Which if any of subprograms u, v and w dare we trust?

Because the three subprograms under test agreed so closely for amost all inputs, we inferred that
their different formulas were algebraically equivalent in the absence of roundoff to which their
sengitivities differed. To assess these sensitivities we reran the subprograms in different directed
rounding modes with exactly the same atypical data. Table 7 below exhibitstypical results for
some of the atypical data. Results from redirected roundings resembled symptoms of numerical
instability due to roundoff at the data tested on subprograms u and v . Subprogram w seemed
stable. Could it betrusted? Unfortunately, our tests could not prove any of the subprograms
correct. All that was proved was that at |east two of the three seemed intolerably hypersensitiveto
rounding errors. Thiswas worth knowing if only because it dropped the number of subprograms
we thought worth further testing down to one.
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Table7: Three Subprograms u, v and w Run with Redirected Roundings.

0-0O: 0.000244140625 2.58913445
Q: 0.000244140625 1.57074428
b 0.000244140654 -1.56994033
Y = u : || 0.000598019920 | NaN arccos(>1) | 0.000598019920 | 3.14061594 | 3.14067936 | 3.14082050
Y = v :|{0.000244140581 | 0.000244140683 | 0.000244140581 | 3.14039660 | 3.14159274 | 3.14039660
Y = w :||0.000244140610 | 0.000244140683 | 0.000244140610 | 3.14078045 | 3.14078069 | 3.14078045
Rounded To Zero To +Infinity To —Infinity To Zero To +Infinity | To—Infinity

When advised of our tests’ results, all three vendors revised their subprograms to perform all
floating-point arithmetic in some higher precision while keeping the subprograms’ input data and
output resultsin single precision (4 byteswide) asbefore. Now all those tests find no significant
differences among the three vendors' revised programs’ results, though they al run alittle slower
than the original programs. And they all get results that agree to at least six sig. dec. with results
from the original program w . Now what should we do?

Of course the foregoing story isimaginary. It is probably impossible because, alas, compilers
and Programming Development Systems generally obstruct rather than aid attempts to diagnose
afloating-point program’s numerical distress by rerunning its subprogramsin redirected rounding
modes and/or in different precisions. Diagnostic proceedures that ought to be mindless aren't.

Still, if only to satisfy our curiosity, let usimagine what might cometo light if the vendors were
obliged to describe the algorithms used by their subprograms, or if these were reverse-engineered
after disassembly. Here are the formulas that produced the foregoing tabul ated results:

* Subprogram u:

P(6-0, @, D) = u(8-0, @ ®) := arccos( sin(Q)-sin(P) + cos(@)-cos(P)-cos(6-0O) ) .
Thisformula, programmed by a computer science graduate who figured it out with the aid of his
freshman Calculus text, canlose al figuresthe arithmetic carrieswhen u nears zero, and can
lose almost half the figures carried when u nears 1. Should he have forseen these errors? How?

* Subprogram v :

Y(6-0, ¢, ®) = v(8-0, ¢, ®) := 2arcsin(V( sin*((¢-P)/2) + (cos(¢) cos(®)) sin*((6-©)/2) )) .
Thisformula, supplied by an astronomer, losesamost half the figures carried when v nears T1t.
Thelossis dueto the singularity (infinite derivative) in arcsin(...) whenitsvalueis 172.

* Subprogram w :
P00, @, ®) =w(6-0, @, ®) := 2-arctan( Vg/r) wherein
t:=tan?((0-0)/2), p:=tan®((@-P)/2), P:=tan?((e+P)/2),
g=P+t+1)p+t, and r:=((ptl)t+1)P+1.
Thisformula, of undetermined provenance, conservesamost all the arithmetic’s accuracy for al
valid angles input in radians, for which no tan(...) can beinfinite. For anglesin degrees use
P00, @ ) =w(0-0, @ ®) :={ If p+tP+t =0 then 180°—@-d else 2-arctan(Vg/r)} .
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Only subprogram w should be accepted for use by an observatory whose position in outer space
is often determinable most accurately when it liesin or very near a straight line segment joining a
planet to a star, in which case the angle they subtend at the observatory will be Tt or very near it.

More examples of numerically unstable classical trigonometrical formulas and stable substitutes
for them are posted on my web page. See “Miscalculating Area and Angles of a Needle-like
Triangle”, http://www.cs.berkwley.edu/~wkahan/Triangle.pdf , and “What has the Volume of a
Tetrahedron to do with Computer Programming Languages?’, .../VtetLang.pdf .

89: Bloated Coffins

Interval Arithmetic (IA) isagood thing if implemented properly and integrated properly into a
popular programming language. |A aids searches for zeros and extrema of functions of vector
arguments, and is an almost indispensible tool for coping with tolerances in the computer-aided
design of manufactured devices. Occasionally 1A facilitates a mathematical proof. If intended
also to assess roundoff’ s degradation of computed results, 1A should be integrated with multi-
precision floating-point arithmetic. Then IA’s error estimates can serve to predict how much
extra precision will suffice to recompute a desired result at least as accurately as desired even if
usually such predictions greatly overestimate the smallest adequate amount of extra precision.

A aways over-estimates errors accrual, too often so extravagantly as to undermine its own
credibility asdid The Little Boy Who Cried “Wolf!”. How this happens will be discussed below
not to disparage 1A but to explain why its users are so likely to be disappointed if they use it
mindlessly. Insinuating 1A successfully into a computation usualy atersits algorithm for the
purpose, perhaps recasting the computation with the aid of unobvious perturbation analyses into
aself-correcting iteration. Thisisnot mindless; it isalong story for another day. Today’s story
isalong sad account of over-optimistic expectations, disappointments and frustration.

First some notation: Lower-case letterslike X, vy, ... will be used here to represent noninterval
variables, sometimescalled “points’ bethey scalars or vectors. Bold upper-case letters X, Y,
. will be used here to represent regions over which the corresponding lower-case variables
range. For instance, if ascalarinterval X =[x, X] is constructed to contain the scalar variable

x withintherange x < x < x, weshall write “ x O X “. The same goes for avector X of
intervals when it contains a vector point x [1 X , but in thiscasewe shall cal X “acoffin” as
an abbreviation for “arectangular parallelepiped with edges parallel to the coordinate axes’.
The diameter D(X) isthe diameter of the smallest circle, sphere or hypersphere that contains
X ; when X =[x, x] isascaar interval its diameter isjust itswidth: D(X) = x—x .

Therange of afunction f(x) as x rangesover X will bedenoted by f(X). Thisiswhat we
wish A would compute. Instead, if aprogram f(x) writtento compute f(x) isrewrittento
producean |A program F(X) it should, if rewritten correctly, satisfy acontainment relation
F(X) O f(X) . A mindless but correct rewriting merely replaces every lower-case point variable
in program f(x) by itsupper-case interval analog, and replaces every arithmetic operation upon
point variables by its analogous |A operation. Thismay be easier said than done. When done,
F(X) O f(X) ; but al too often diameter D(F(X)) exceeds D(f(X)) by orders of magnitude.
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For example, take f(x) :=4x-(1-x) . Rewriting aprogram f(x) := 4-x-(1-x) mindlessly turns
itinto F(X) :=4-X-(1-X) . Sincewe careabout IA’s overestimates of roundoff’s effects, let's
consider aninterval X =[x-h, x+h] whosewidth 2h amountsto severa rounding errorsin

numbersnear x . Inparticular take x =05 and h< 22 sothat X =[0.5—h, 0.5+ h] = 1-X
and then F(X) = [1-4h+4h?, 1+4h+4h?] in the absence of additional roundoff that could only
widenit. Now D(F(X)) = 8h isover 22! timesbigger than D(f(X)) = D([1-4h?, 1]) = 4h? .
Worse, arccos(f(X)) = [0, arccos(1-4h?)] but ACOS(F(X)) isthwarted by an arccos(>1) .

This F(X) =4-X-(1-X) istoo wide because IA took no account of the anti-correlaton between
thefactors X and 1-X ; they might aswell be independent variables X and Y each with the

interval value [0.5—h, 0.5+ h] . A different program f(x) :=1— (2-x—1)2 computes f(x) well
when x isnear 0.5; itsmindlessly rewritten analog F(X) := 1—(2-X-1)?= f(X) too provided
subexpression (2-X—1)2 compilesto acall toaproper 1A implementation of (...)2, not to an
uncorrelated product (...)-(...) . Now F(]0.5—h, 0.5+ h]) = f([0.5—h, 0.5+ h]) . However,

now roundoff during the computation of this F([0, h*]) = [0, f(h*)+r] , inwhich r isatleasta

unit in the last place of 1.0, caninflate D(F([0, h*])) = f(h*)+r = D(f([0, h*])) +r by orders of
magnitude. If extravagant inflation isto be prevented for every interval argument X , the 1A
analog of f(x) =4-x-(1-x) must employ a more complicated formulalike ...
F(X) :=If (X isnear enoughto [0, 0] ) then 4-X:(1—X)

elseif (X isnear enoughto [1,1]) then F(1-X)

dse 1—(2:X-1)2.
In general, thedomainof f(x) must be partitioned into subdomains over each of which an apt
choice of expression F(X) can keep D(F(X)) from exceeding D(f(X)) excessively, we hope.

Another phenomenon bloats |A’s intervals when they estimate functions of more than one real
variable: Coffins have too few shapes. For example, consider multiplying a complex interval

Z :=[V2-h, V2+h] + i[-h, h] by acomplex constant ¢ :=(1 + 1)/v2 . Evenif roundoff during 1A
multiplication is negligible, 1A produces aproduct P =[1-hv2, 1+hv2] + 1[1-hV2, 1+hV2]
which barely contains ¢-Z but has diameter D(P) = 4h rather bigger than D(c-Z) = 2v2h.
Thisinflation occurs because the coffin Z (actually a square with sides of length 2h parallel to
the real and imaginary axes) getsturned into adiamond c-Z of the same size. The smallest
coffin that contains the diamond is acoffin P with bigger sides of length 2v2h . Inflationslike
this become compounded during lengthy computations, producing coffins bloated by factors
that can grow as fast as exponentially with the number of 1A operations.

Soon after R.E. Moore introduced A inthe 1950s, P. Henrici sought away to retard the
inflations of coffins during complex 1A; he replaced them by circles. Just asareal interval

X = [x-h, x+th] can berewritten X =x + h interms of acenter-point x and haf-width h, so
can acircular disk C inthe complex plane be written C := ¢+ po interms of a center-point

¢, radius p, andtheunitdisk o. Solong asradii were nearly infinitessmal, asthey should
beif due solely to roundoff, and provided no singularity was approached too closely, complex
circle-arithmetic attenuated excessive bloating far better than complex A with coffins could
during simple computations. But complicated complex computations continued to suffer from
exponentially excessive bloating for reasons that will become apparent shortly.
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While seeking IA bounds for solutions of differential equationsin the 1960s, F. Kriickeberg
sought away to retard inflations of coffins, he replaced them by more general parallelepipeds.
Write P =p + Su to represent a parallelepiped centered at point p with shape determined by a
linear map (matrix) S acting on the unit cube u . Just when S isdiagonal is P acoffin. If

S= B —j then P isadiamond-shaped parallelogram like ¢ but twice as high aswide.

IA becomes far more costly with parallelepipeds than with coffins. Given aprogram f(x) that
computes avector-valued function f(x) of avector argument x, and given P=p+ Su, the
computation of a containing parallelepiped F(P) :=f(p) + Tu O f(P) = f(p + Su) reducesto a
determination of matrix T viasymbolic aswell as numerical operations upon program f. In
the simplest case, and provided D(Su) istiny enough, T =f'(p)-SV wherein the coffin

Vu O (f (p)-S)™-(f(P)—f(p)) and f'(p) isthe Jacobian matrix of first partial derivatives of
program f(x) at x :=p. Inother cases, wheretheinverse of f'(p)-S does not exist or when
D(Su) isnotsotiny, T becomesdlightly arbitrary and much more complicated to determine.
The labor can be automated, at least in principle, and thus rendered mindless or very nearly so.

However the labor is worthwhile only in specia cases because in general, in the absence of
contraindications inferred from error-analyses, 1A with parallelepipeds tends to bloat amost as
excessively asdoes |A exclusively with coffins. Bloating is due to geometrical restrictions.

Three forces tend to inflate circumscribing regions computed by the foregoing 1A schemes.
The first force has aready been discussed; it arises from regions restricted to shapes, like
coffing', that are too simple. A second force is generated by regions convexity if they are not
tiny enough. The third force is generated when circumscribing regions are tiny enough but
possess sharp edges or corners. The next example will illustrate how the latter two forces act.

Suppose x representstheinitial position and velocity of aplanet in orbit about astar, and f(x)
isthis planet’ s position and velocity after ayear. This planet’s position and velocity after K
yearsis f(K)(x) = f(f(f(...f(X)...))) composed K times. If asmall X isconvex and roughly
spherical, f(X) isbanana-shaped because planets slightly closer to the star orbit slightly faster.
Then f(K)(X) tendsto aspiral aligned aong the orbit, ultimately (as K - o) resembling a
ring of Saturn. A computes a convex circumscribing region F(X) O f(X) . Some points

x O F(X) liecloser to the star than any pointsin f(X), and consequently travel faster than they
should, thus exaggerating the length and curvature of f(F(X)) compared with f(f(X)). As K

increases, FK)(X) compounds that exaggeration. Soon the shape of f(FK)(X)) so resembles
theletter C that convex F(FK)(X)) enclosing f(FK)(X)) encloses the star too, whereupon
f(F(K+1)(X)) explodes. Thisishow the mere convexity of F ultimately forces excessive bloat.

If D(X) istoo tiny for mere convexity to bloat F(X) much, athird force threatens to bloat it.
Hereishow: Suppose P=p+ Su isapardleepipedand f(x) = f(p) + f'(p)-(x—) + ..., SO
that f(P)=f(p) + f'(p)-Su + ... isvery nearly a parallelepiped too. However, parallepiped
F(P) must enclose the first two terms plus contributions from higher order terms “...” aswell
as computational errors; F(P) O f(p) + f'(p)-Su + Af(P) O f(P) inwhich Af(P) boundsthese
two contributionsand “ +” isthe Minkowsi Sum: X+Y :={x+y foradl xOX and yOY }.
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When D(Su) issotiny that D(Af(P)) israther smaller than D(f'(p)-Su) , we might expect
F(P) to have nearly the same shapeas f'(p)-Su and adlightly bigger diameter, thus enclosing
f(P) tightly. Something else happens because the orbit function f(x) mapsamost every near-
infinitesimal paralelepiped X to aflattened parallelepiped f(X) resembling atwo-bladed axe-
head, and as K increases f)(X) tendsto aneedle-shaped parallelepiped. When P=p+Su,
though very tiny, isneedle-shaped sois f(p) + f'(p)-Su but the error-term Af(P) isnot needle-
shaped though it istinier again. Below is a picture showing how the addition of arelatively tiny
error-term Af(P) tothe needle f(p) + f'(p)-Su thickensit enough to force F(P), thesum’'s
smallest enclosing parallelepiped, to extend too far beyond f(P) .

Enlarged Extension of a Slightly Thickened Needle

fR+ s = ——

MF(P) = O

)+ 1'(P)-Su + AF(P) =

F(P) =

The narrower the needle, the greater isthe extension, often amounting to orders of magnitude
beyond D(Af(P)) . Thisishow sharp edges and cornersforce A with general parallelepipeds
to bloat excessively. Thisforce has usually been strong enough to frustrate the application of

A that originally motivated it, namely error-bounds provably valid but not too excessive for
trajectories and orbits obtained as solutions of differential equations with given initial conditions.

No simple (much less mindless) way is known to defeat all three geometrical forces that thwart
applications of 1A. In 1968 | replaced parallelepipeds by ellipsoids to get rid of sharp edges
and corners, thereby suppressing inflationary forces enough that bloating grew by factors like
V(number of arithmetic operations) instead of exponentially so long as computed error-bounds
stayed small enough not to be bloated by the force of mere convexity. Flattened and needle-
shaped ellipsoids still occurred, and their associated ill-conditioned matrices required extra-
precise arithmetic and other costly expedients, none of them remotely mindless. For abrief
outline of ellipsoidal computations see “Ellipsoidal Error Bounds for Trajectory Calculations’
posted at http://www.cs.berkel ey.edu/~wkahan/Math128/Ellipsoi.pdf.

Evenif 1A’s coffinsare generalized, asthey should be, to include figures like parallel epipeds

and ellipsoids in an attempt to suppress excessive bloating, the attempt will fail too often on
nontrivial computations unless augmented by considerable thought. It’s not a mindless method.
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810: Desperate Debugging

Programming Development Systems offer programmers ways to insert break-points into their
programs and specify conditions under which execution will pause there. Then the programmer
can single-step through his program looking for the first step at which his program went astray.
Though invaluable, these debugging aids often fail to help a programmer diagnose malfunctions
due to roundoff in floating-point software of typical complexity. Two kinds of ignorance interfere
with accurate diagnosis. Oneisignorance of the “correct” path from which the program strayed.
Another isignorance of how far the program should be allowed to stray, sinceit cannot follow the
“correct” path perfectly. The two kinds of ignorance will be treated in turn hereunder.

Higher precision will very often estimate a “correct” path well enough. To thisend, imagine a
debugger that can transform a given subprogram p, whose literal constants and variables X, v,
z, ... have been declared by the programmer to have precisions thought adequate at the time, into
an analogous subprogram P whose corresponding literal constants and variables X, Y, Z, ...
are declared by the debugger to have greater precisions, preferably about twice asgreat. Then the
debugger can execute both programs p and P simultaneously (actually interleaved) with the
same input (or copiesof it if the subprogram will change it) and compare their progress to see
where one of the variables X, y, z, ... first departs excessively fromitsanalog X, Y, Z, ... .

To get all that to work properly, three technicalities must be addressed. First, if subprogram p
invokes other subprograms the programmer must tell the debugger which of them to transform
into higher precision analogs, leaving others unaltered. Second, if subprogram p includes tests-
and-branches dependent upon itsinput, the programmer must tell the debugger which branches P
must follow the sameway p goesregardliess of how the branch would otherwisegoin P. When
P will follow a branch differently than p does, the programmer must tell the debugger to pause,
or elsetell it where to resume comparisons of corresponding variables, or both. The necessity of
these latter options is obvious for the subprogram T(z) that figured in 83's Smooth Surprise.
Less obviousisthe necessity for P to persist longer than p in aconvergent equation-solving
iteration so that P's solution will be computed more accurately than p’s in accordancewith P's
higher precision. However, if the former option, namely forcing P to match p’s branching
despite contrary predicates, appears perverse, consider the following situation:

Gaussian Elimination with Pivotal Exchanges is the method by which most systems of linear
equations are solved. It scans columns to choose an element of biggest magnitude to serve asthe
Pivot (divisor), anditsrow asthe Pivotal Row, for the next pass of the elimination process. On
rare occasions two of a column’s biggest elements can have almost identical magnitudes, and
then both are valid choicesfor pivot. The actual choice may be an accident of roundoff; usualy it
atersintermediate results alot but final results inconsequentially. If the choice atersfinal results
drastically, the equations’ matrix may be nearly singular or €lse the equations and/or unknowns
may have been scaled badly because, perhaps, of ill-chosen units, like kilometersinstead of
microns. Only forcing P tofollow p’s choices of pivots will expose the consequences of these
choices to scrutiny by the method’s programmer or user. Otherwise miscomputed results can be
attributed indiscriminately to “ill-conditioning”, thus quite likely sending someone on afutile
guest for redundancy (linear dependence). |I’ve seen this happen often.

The third technicality runsinto the second kind of ignorance: How far should the debugger allow
p's variablesto deviate from their analogs among P's before bringing deviations to the attention
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of whoever istrying to debug p ? This question has no easy answer. Sometimes early end-figure
deviations propagate into subsequent gross deviations that may or may not dwindle away |ater.

And if they do dwindle away at theend asin 82's Table 1, still results may be aswrong as when
the recurrence startsfrom xg :=4 and x; :=4.25. Or final results may be quite right aswhen the

recurrence starts from x; := 17/4 and x, := 76/17 rounded. An example more representative

than 82's is QR Iteration for computing matrix eigenvalues. Without brancheslike Gaussian
Elimination’s, QR Iteration routinely generates grossly deviant intermediate results and yet
deliversfinal resultsin an array of fairly accurate eigenvalues differing at worst in their ordering
from what would have been delivered had rounding errors been much smaller.

Thereisno easy way to decide when p’s variables have deviated too far from their analogsin P.
Thereis an onerous way, though it seems far-fetched at first. It resembles the computation of
loop-invariants for programs that have nothing to do with floating-point. Here isthe way to do it:

Mark anumber of break-pointsin subprogram p and in the corresponding placesin P. We shall
call these break-points “stages’. At each stage, copy thevaluesof al p’s variablesonto P's
and execute P completely starting from that stage. If that stage’s final results differ too much
from the previous stage’s, something deleterious happened in p between these two stages. Insert
more stages between them to narrow the search for an offending event if there isone. No such
event need exist if successive stages’ final results drift away slowly but ultimately too far, as
happens with numerically unstable programs like H(X) = X whose graph in 87 was a step.

This scheme succeeds as well as it can as soon as two of its stages straddle the shortest piece of
software (maybeall of p) hypersensitive to roundoff at the input datatested. The scheme costs
lots of time and storage, and it can fail on some pathological programslike Muller’s recurrence
in 82 andthe Smooth Surprise’s program G(x) =1 in 83 that ailmost always computes O .
Such fallures arerare. Of all comparably effective schemes | know about, none comes closer
than this one to earning the epithet “mindless’. | wish all Programming Development Systems
provided it even if it runstoo slowly to run on the lengthier floating-point programs.

What runs too slowly won't get run. Consequently, possibly aberrant subprograms p havefirst
to be segregated from the othersin alengthier program by a diagnostic scheme that runs at least
almost asfast asif the lengthier program were not being subjected to close scrutiny. Here speed
matters because, with today’s gigahertz clock-rates, trillions of floating-point operations and
millions of subprogram invocations may have to elapse before afirst observable anomaly occurs.
Redirected rounding during repeated executions of parts of the program in question is the only
scheme | know likely to expose hypersensitivity to roundoff in one of those parts, perhaps one
whose source-code isinaccessible, and to do so at an acceptable speed and bearable cost.

Programming Development Systems and debuggers that support recomputation with redirected
roundings must, as mentioned at the end of 86, expect their usersto specify which subprograms
innards are to be sheltered from redirected roundings. By default, built-in library functions,
including Fortran’s “Intrinsic Functions’, may well be sheltered that way except possibly for
their last arithmetic operation whose result is the function’s output. Directed rounding of this last
result is appropriate when the function is intended to appear “atomic” like multiplication and
addition. For example, if division isnot built into the hardware but is composed from other

Prof. W. Kahan WORK IN PROGRESS, COMMENTSARE INVITED. Page 35/37



Mindless November 1, 2004 6:59 am 811: Conclusion

arithmetic operations, only thefinally delivered quotient should be exposed to directed rounding.
The same goes for sgrt(...), which isbuilt into the hardware on some machines but not others.
Exp(...), log(...), pow(...) and Fortran’s **, and other math. library functions, aswell assome
others known by the programmer to require shelter from redirected roundings, pose a technical
nuisance to acompiler that “inlines’” such functionsto gain alittle extra speed. Then interleaved
floating-point instructions will have to be marked, some to have their rounding redirectable,
others not, in ways dependent upon how the hardware has implemented directed roundings
mandated by |EEE Standard 754 (1985).

Redirected rounding is not so ssmple to support asit first appears. Debuggers can support it
properly only by collaborating closely with the compiler and, in some systems, with dynamic
linkersthat can revise a subprogram asit isloaded into memory. A debugger that surmounts these
technical obstacles offersits usersaway easier, faster and more often successful than al other
known ways to find sources of anomalies triggered by ostensibly innocuous data. Without such a
tool such an anomaly becomes so nearly impossibleto track down that the temptation to ignore it,
and to hope that it is not the sole harbinger of an impending calamity, becomesirresistable.

811: Conclusion
“Only Knowledge ispurely Good, only Ignorance purely Evil.”
Socrates, 470-399 BC.

In a culture so fixated as oursupon TV soundbites and stockmarket prices, we should not be
surprised by atendency to cover up instead of correct errors. Only for baseball does anyone
maintain a public record of errors. Nobody keeps score for errors in numerical software. Nor in
other software, come to think of it. Who triesto keep a count of the Service Packs issued by
Microsoft tofix defectsinversionsof Windows and in previous Service Packs? No wonder that
so much software is reputed to be unreliable. How unreliable? Who knows?

If we keep no records of our mistakes, how can we learn to avoid more of them?

Strangely, our culture is afflicted simultaneously with afascination for bad news and an aversion
toit. Cowed by the National Rifle Association, Congress has forbidden the Bureau of Alcohol,
Tobacco and Firearms from spending money to collect statistics that might explain why gunskill
amost 30000 civiliansinthe U.S.A. eachyear, but hardly any in Canada. Planeloads of
American soldiers returning home in coffins were landed surreptitiously at night to obstruct a
count of heroes each of whom would be celebrated at an isolated sad ceremony scattered around
the country. A few yearsago Californians almost passed a proposition to forbid collecting racial
statistics lest they reveal how well or badly laws against racial discrimination are working.

Ignorance is Bliss for too many of us, Socrates notwithstanding.

Current computers’ software systems provide practically no practicable assistance to diagnose
numerical anomalies encountered occasionally by programmers and users of numerical software.
Whatever isimpracticable is unnecessary too to fulfill obligationsof Due Diligence, so corporate
lawyers may prefer the current situation to one in which widely available diagnostic tools made a
merely difficult task out of one that is now almost impossible. However, engineers probably and
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scientists certainly would prefer to be able with high probability to identify anomal ous software
modules promulgated in libraries and packages. Then these could be circumvented or avoided
while their authors, notified of the evidence for an anomaly, sought aremedy. Or didn’t.

At present only the second of the five schemes explored in these notes offers an economical way
to diagnose anomalies caused by roundoff in precompiled software: Rerun the suspected module
with exactly the same input but with default roundings (those not aready directed by the author
of the module) redirected. Though far from foolproof, this scheme has worked on intermediate
iterates x,, in 82, on T(83), on MATLAB’s log2(84), acosh(85) and acos(85), on Gaussian
Elimination (86), on step H(87), on subtended angle (88), and on innumerable other
examples upon which nothing else so inexpensive could possibly have worked so well.

In the near future | hope that programming languages will by default evaluate all constants and
expressionsin the hardware'swidest floating-point format that does not run too slowly, aswasthe
custom with old-fashioned Kernighan-Ritchie C. Of course, the language hasto alow the
programmer access to variables declared to have thiswidest format, not like C compilers offered
nowadays by Microsoft and formerly by Sun Microsystems when they used M C68020/68882
processors. C99 triesto get itsimplementors and let its users do things right. Routine use of far
more precision than deemed necessary by clever but numerically naive programmers, provided it
does not run too slowly, isthe best way available, with today’s mixture of popular programming
languages with overtaxed underfunded education, to diminish the incidence of roundoff-induced
anomalies below any level of commercia significance even if we knew about every anomaly.

Farther in the future | hope that popular programming languages will support Interval Arithmetic
of arbitrarily high (within limits) precision variable (coarsely) at run-time. Then programmers
will be able easily to prove most their numerical software free from roundoff-induced anomalies
even if it runs occasionally slower than usual. “Occasionaly slower” need not deter the majority
of programmersif, as| expect, processor clock-rates and floating-point arithmetic continue to
outpace memory speeds. The cost of moderate extra demands for processor cycles and memory
cellswill seem picayune compared with the cost of a numerically adept mathematician’s time.

Speedy floating-point arithmetic is dangerous unlessits design takes account of two requirements:
Oneisthe suppression of avoidable anomalies, each perhaps easily tolerable by itself, lest they
accumulate to blight mathematical thought with the Death of a Thousand Cuts. And human
thought isfallible, so computer systems must also help us both to find and fix our errors, and to
render insignificant those we cannot find and fix. In particular, better floating-point debugging
capabilities deserve high priority among computer system designers and implementors concerned
with their own safety, since al of us depend upon the reliability of numerical computations that
pervade our technology, from aircraft to antibiotics, from weather prediction to waste disposal
and treatment.

At present, inaccurate floating-point software of moderate complexity is difficult verging on
impossible to debug. If this state of affairs persists long enough to become generally accepted as
inevitable, the obligationsof Due Diligence will atrophy, and nobody will expect to be held
accountable for unobvious numerical malfunctions. And nobody will be safe from them.
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