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ABS'I'I{ACr 

The Smalltalk-80* programming language includes dynamic 
storage allocation, fuU upward limargs, and universally 
polymorphic procedures; file Smalllalk-80 programming system 
features interactive exect, tion wiflt incremental compilation, and 
implementation portability. These features of  modern 
programming systems are among the most difficult tu implement 
efficiently, even individually. A new implemelltation of  the 
Small/alk-80 system, hnsted on a sinall microprocessor-based 
computer, achieves high performance while retaining' complete 
(object code) compatibility with existing implementations. This 
paper discusses the most significant optimization techniques 
developod over the course of  the project, many of  which are 
applicable to other languages. T h e  key idea is to represent 
certain nmtime state (both code and data) in more than one 
form. and to convert between fo~xns when needed. 

*Smalhalk-80 is a trademark of the Xerox Corporalion. 

B A C K G R O U N I )  

The Smalltalk-80 system is an object-oriented programming 
language and interactive programming environment. The 
Smalltalk-80 language inclodes many of  the most difficult-to- 
implement features of modern progralnming languages: dynamic 
storage allocation, full upward funargs, and call-time binding of  
procedure names to actual procedures based on dynamic type 
information, sometimes called message-pa~#tg. The interactive 
environment includes a full complement of  programming tools: 
compiler, debugger, editor, window system, and so on, all written 
in the Smalltalk-80 language itself. A detailed overview of  the 
system appears in [SCG 8l]. [Goldberg 83] is a technical 
refcrcncc for both file nnn-interactive programmer and the 
system implcmentor; [Goldberg 841 is a reference manual for the 
interactive system. 

SPE('IAL l)l I,'FICULTil,;S 

The standard Smalltalk-80 system implementation is based 
on an ideal virtual machine or v-machine. The compiler 
generates code for this machine, and the implementor's 
documentation describes the system as an interpreter for the v- 
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machine instruction set, similar to the Pascal P-system [Ammann 
75] [Ammann 77]. One unusual feature of the Smalltalk-80 v- 
machine is that it makes runtime state such as procedure 
activations visible to tile programmer as data objects. This is 
similar to tile "spaghetti stack" model of  Interlisp [XSIS 83l, but 
more straightforward: Intcrlisp uses a programmer-visible 
iudircction mechanism to reference pr~x:edure activations, 
whe~'cas Ihe Sinalltalk-80 programmer treats procedure 
actiwttioas just like any other data objects. 

The Sinalltalk-80 language approaches programming with 
generic data types through message-passing and dynamic typing. 
To invoke a pl'Occdure (method in Smalltalk-80 terminology), a 
message is sent to a data object (the receiver), which selects the 
method to be c×ecuted. 'Ibis means that a method address must 
bc found at runtime. At a given lexical point in the code, only 
die message name (selector) is known. To perform a message- 
send, the data type (class) of  file receiver is extracted, and the 
selector is used as a hash index into a table of  the message 
dicliottary of  the class, which maps selectors to methods. The 
task of  melhod-lookup is complicated by the inherilance property 
of classes -- a cla~ may be defined as a subclass to another, 
inheriting all of  the methods of  the supcrclass. If the initial 
method-lookup fails, the lookup algorithm tries again usirlg the 
message dictionary of  the superclass of the receiver's class, 
continuing in this way up the class hierarchy until a method 
cnrresponding to the selector is found or the top of the 
inheritance hierarchy is reached. 

The Smalltalk-80 language uses the organization of  objects 
into classes to provide strong information hiding. Only the 
methods associated with a given class (and its subclasses) can 
access directly the state nf an instance of  that class. All access 
from "outside" must be through messages. Ik'cause of  this, a 
Smalltalk-80 program must often make procedure calls to access 
state where I,mguages such as Pascal could compile a direct 
access to a tield of  a record. This makes the performance of  the 
method-lookup algorithm even more critical. 

IMPLEMENTATION OUTLINE 

The purpose of the research de~ribed here was to build a 
Smalltalk-80 system with acceptable performance on a relatively 
inexpensive, microproecssor-based computer; specifically, to 
discover how to implement the basic data and code objects of  
the Smalltalk-80 system in a way that still conformed to the v- 
machine specification, but were more suitable for conventional 
hardware. (As of  early 1982, the only implementations that ran 
at acceptable speed were on non-commercial, user- 
microprogra,nmable roachines, as de~ribed in [Krasner 83] 
[I.ampson 81].) The system specification in [Goldberg 83] 
includes tile definition of internal data structttres and object code 
representation for the virtual machine. Indeed, much of the 
system code depends on these definitions. We chose to take 
these definitions as given, rather than alter the system code. 
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"lhis was motivated partly by a desire to retain object-code 
portability, and pardy by a desire not to complicate the 
description of the SmaUtalk-80 machine model. 

The single principle that underlies all the results reported 
here is dynamic change of representation. By this we mean that 
the same infi)rmation is represented in more than one 
(structurally different) w,~y during its lifetime, being converted 
transparently between representations a:; needed for efficient use 
at any moment. An important special case of this idea is 
caching: one can think of information in a cache as a different 
representation of  the same information (considering contents and 
accessing information together) in the backup memory. In the 
implementation described in this paper, we applied this principle 
to several different kinds of runtime information in the 
Smalltalk-80 system. 

* We dynamically translate v-code (i.e., code in the 
instruction set of  the v-machine) into code that executes 
directly on the hardware without interpretation, the 
native code or n-code. Translated code is cached: it is 
regenerated rather than paged. 

* We represent procedure activation records (contexts in 
Smalltalk-80 parlance) in either a machine-oriented form, 
when they are being used to hold execution state, or in 
the form of  Smalltalk-80 data objects, when they are 
being treated as such. 

* We use several different caches to speed up the 
polymorphic search required at each procedure 
invocation. In the best case, which applies over 90% of  
the time, a Smalltalk-80 procedure invocation requires 
only one comparison operation in addition to a 
conventional procedure linkage. 

* Using the techniques in [Deutsch&Bobrow 76], we 
represent reference count information for automatic 
storage management in a way that eliminates 
approximately 85% of  the reference counting operations 
required by a standard implementation. 

CODE TRANSLATION 

Targeting code to a portable v-machine has been used in 
other language implementations. Usually v-code targeting is 
used only to avoid having multiple (one per target machine) 
code-generation phases of the compiler; a secondary benefit is 
that v-code is usually much more compact than code for any real 
machine. Since the Smalltalk-80 compiler is just one tool 
available in the same interactive environment used for execution, 
and other tools besides the compiler must be able to examine the 
machine state, the v-machine approach is even more attractive in 
reducing the cost o f  rehosting. 

PERFORMANCE ISSU I~ 

To rehost the system, an implementor must emulate the v- 
machine on the target hardware, either in microcode or in 
software. This normally incurs a severe performance penalty 
arising from several factors. 

* Processors have specialized hardware for fetching, 
decoding, and dispatching their own native instruction 
set. This hardware is typically not available to the 
prngrammcr (although it may be available at the 
microprogram level), and therefore not useful to the v- 
machine interpreter in its time-consuming operation of 
instruction fetching, decoding, and dispatching. 

* The v-machine architecture may be substantially 
different from that of the underlying hardware. [:or 
example, many v-machines, including both the P-system 

and Smalltalk-80 v-machines, use a stack-oriented 
architecture for convenience in code generation, but 
most available hardware machines execttte register- 
oriented code much more efficiently than stack-oriented 
code. 

* The basic operations of the v-machine may be 
relatively expensive to implement, even though the 
overall algorithm represeqted by a v-code program may 
not be much more expensive than if it were 
implemented in the hardware instruction set. For 
example, even though a naive interpreter for the 
Smalltalk-80 v-code must perform rcl~:renee counting 
operations every time it pushes a variable value onto the 
stack, a sequence of  several instructions often has no net 
effect on reference counts. 

If the v-code were translated to n-code after normal 
compilation of a source program to v-code, the interpreter's 
overhead could be eliminated and some optimizations become 
possible. One technique for eliminating part of the overhead of  
interpretation is threaded code [Bell 73] [Moore 741. In this 
approach, v-code consists o f  an actual sequence of  subroutine 
calls on runtime routines. This technique does reduce the 
o~;erhead for fetching and dispatching v-code instructions, 
although it does not help with operaod decoding, or enable 
optimizations that span more than one v-instruction. We prefer 
to translate v-code to in-line n-code in a more sophisticated way. 

Naive translation from v-code to n-code is a process 
something like macro-expansion. In fact, [Mitchell 71] observed 
that a translator can be derived very simply from an interpreter 
by having the interpreter save its action-routine code in a buffer 
rather than executing it. If the computation performed by 
individual action routines is small relative to the computation 
needed for the interpreter loop, the benefit of  even this simple 
kind of translation will be great. 

Translation-time can also be considered an opportunity for 
peephole optimization or even mapping stack references to 
registers [Pittman 80]. Translation back-ends for portable 
compilers have been implemented [Zellweger 79]. 

DYNAMIC TRANSI,ATION 

Because the Smalltalk-80 v-code is a compact representation 
that captures the basic semantics of  the language, n-code will 
typically take up much more space than v-code. (In the 
implementation discussed in this paper, n-code takes about 5 
times as much space as v-code.) This would place severe stress 
on a virtual memory system if the n-code were being paged. 
However, since n-code is derived algorithmicafiy from v-code, 
there is no need to keep it permanently: it can be recomputed 
when needed, if this is more efficient than swapping it in from 
secondary storage. This leads us to the idea of  translating at 
runtime. (The idea of  dynamic translation appears in [Rau 78], 
where it is applied to translation from v-code to microcode.) 
When a procedure is about to be executed, it must exist in n- 
code form. If it does not, the call faults and the translator takes 
co,ltrol. The translator finds the corresponding v-code routine, 
translates it, and completes the call. Since, as mentioned earlier, 
the translation process is more akin to macro-expansion than 
compilation, translation time for a v-code byte is comparable to 
the time taken to interpret it. 

We consider the translation approach, and dynamic 
translation in partietdar, to be the most interesting part o f  our 
research, since it motivated the work on multiple state 
rcprcsentations described below. A later section of  this paper 
presents the experimental results that support our contention that 
dynamic translation is an effective technique in a substantial 
region of  current technological parameters. 
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MAPPING STNI'E AT RUNTIME 

Since the definition of  the Smalltalk-80 v-machine makes 
runtime state sucl~ as procedure activations visible to the 
progrannner as data objects, an implementation based on n-code 
must find a way to make the state appear to the programmer as 
though it were the state of  a v-machine, regardless of  the actual 
representation. The system must  maintain a mapping of  n- 
machine st.'tte to v-machine state; in particular, it nmst keep the 
v-code a~ailable for inspection. 

How can we guarantee that all attempts to access a quantity 
requiring representation mapping are detected? The structure of  
the Smalltalk-80 language guarantees that the only code that can 
access an object of  a given class directly is the code that 
implements messages sent to that class. 'lllus, the only code that 
can directly access the parts of  an object requiring mapping is 
code associated with that object's class. Recall that all the code 
in the Smalltalk-80 system is written in the Snlalitalk-80 
language, hence compiled into v-code. When we translate a 
p~x~cedure from v-code to n-code that is asst~.'iatcd with a class 
whose representation may require mapping, we generate special 
n-code that calls a subroutine to ensure that the object is 
represented in a form where accesses to its named parts are 
meaningful. 

The most obvious quantity requiring mapping is the return 
address (PC) in an activation record, whicll refers to a location in 
the n-code procedure rather than in the v-code. Although there 
is no simple algorithtnic correspondence between the v-PC and 
the n-PC values, the v-PC need only be available when a 
program attempts to inspect an activation as a data objcct. At 
that moment, the system can consult (or compute) a table 
associated with the procedure that gives the correspondence 
between n- and v-PC rallieS. 

We can greatly reduce the size of  the mapping tables for PC 
values by observing that the PC can only be accessed when an 
activation is suspended, i.e., at a procedure call or 
interrupt/process-switch. If we are willing to accept somewhat 
greater latency in a Smalltalk-80 program's response to 
interrupts, we can choose a restricted but sufficient set of  
allowable interrupt points, and only store the mapping tables for 
those points. This is what our implementation does: interrupts 
are only allowed at, and PC m a p  entries are only stored for, all 
prtx:cdure calls and backward branches (the latter since interrupts 
must be allowed inside loops). 

MUI,TIPLE REI)RI'2"iENTA'I'IONS OF CONTEXTS 

As mentioned earlier, the format of  procedure activation 
records are part of  the Smalltalk-80 v-machine specification. 
Contexts are full-fledged data objects; they have identifiable 
fields which can be accessed and they respond' to messages. A 
context is created for every message-send. There is also syntax 
in the language for creating contexts whose activation is deferred, 
cldled block contexts in Smalltalk-80 terminology, which 
correspond to the functional& closures, or funargs of  other 
languages. Most control structures in the Smalltalk-80 system are 
implemented with block contexts. 

The fact that contexts are standard data objects implies that 
they must be created like data objects, i.e., allocated on a heap 
and reclaimed by garbage collection or reference counting. 
Unforttmately. conventional machines are adapted for calling 
sequences that create a new activation record as a stack flame, 
storing suspended state in predefined slots in the frame. 
Actually implementing contexts as heap objects results in a 
serious performance penalty. 

Mcasttrements show that even in Smalltalk-80 programs, 
more than 85% of  all contexts behave like procedure activations 
in conventional languages: they are created by a call, never 

referenced as a data object, and can be freed as soon as control 
returns from them. (Note that any context in which a block 
context is created does not satisfy this criterio,1.) Such contexts 
are candidates for stack-frame representation. (An unpublished 
experimental implementation of  an earlier Smalltalk system used 
linear stacks, but did not deal properly with contexts that 
outlived their callers.) 

Stack allt~cation of contexts solves one o f  the two major 
efficiency problems associated with treating contexts like other 
objects, namely the ovcrbead o f  allocating the contexts 
themselves. [l)ctltmh&llobrow 76] shows how to solve the other 
problem, of reference counting operations apparently being 
required on every store into a local variable. With these two 
problems solved, we can rise the hardware subroutine call, 
return, and store instructions directly. 

Ottr system has several types o f  context representations. A 
message-send creates a new context in a representation optimized 
for execution: a frame is allocated on the machine's stack (with 
some spare slots) by the usual machine instructions. In the 
simple case, where no reference is ever made to the context as a 
data object, the machine's return iristruction simply pops the 
fi'ame off  file stack when control returns fi'om the context. This 
kind of  context, which lives its life as a stack frame, we call 
volatile. 

At the other extreme, we store contexts in a format 
compliant with the virtual machine specification, which can be 
manipttlated as data items. We call this representation stable. 

The third representation of  a context, called hybrid, is a stack 
frame that incorporates header information to make it look partly 
like an ordinary data object. A volatile context is converted to 
hybrid when a pointer is generated to it. Since this makes it 
possible fi~r programs to refer to the context as an object, we fill 
in slots in the frame corresponding to the header fields in an 
ordinary object. This pseudo-object is tagged as being of  a class 
we name "l)ummyContext." A block o f  memory is allocated, 
and its address is stored in the context in case the context must 
be stabilized in the future. Since there may be pointers to this 
context, it cannot be returned fiom in a normal way, so the 
return address is copied to another slot in the frame and 
replaced with the address of  a clean-up routine that stabilizes the 
context on return. 

When a message is sent to a hybrid context, the send fails 
(there are no procedures defined for the DummyContext class), 
and a routine is called to convert the hybrid context to the 
stabilized form. At this point PC mappitlg comes into play; the 
n-PC in the activation is converted to a v-PC for the stabilized 
representation. Poi,lters to the hybrid context are switched to 
refer to the stable context (this is simple in our system, which 
uses an indirection table for all objects). After the context has 
been stabilized, tile failed mess,age is re-sent to the stable form. 

A stable context is not suitable for execution. Before a 
stabilized context can be resumed, it is reconstituted on the stack 
as hybrid. Again, this means that the n-PC must be 
reconstructed fi'om tile v-PC. Usually the v-PC does not change 
during the stable period, so our system includes a one-element 
cache ill each n-code procedure for tile most recent v-PC/n-PC 
pair, to avoid having to run the mapping algorithm. 

Block contexts are "~boro" in stable form, since the whole 
purpose of  closures is to provide a representation for an 
execution context which can be invoked later. 

IN-I,INE CACI lING OF METHOI)  Ai)I)R I~JSES 

Mess~tge-passing is applied down to the simplest operations 
in Smalltalk. The system provides a variety of  predefined 
classes: the most basic operations on.elementary data types (such 
as addition of integers) are performed by primitives implemented 
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by the kernel of  die system, rather Ih;in by Smalltalk routines, 
but there is no distinction drawn at the language level. Since 
mes.~ge-sends are so ubiquitous, they must bc fast: the operation 
6f method-lookup is both expensive and critical. 

All existing Smalltalk-80 implementations accelerate method- 
lookup by using a method cache, a hash table of  pooular method 
addresses indexed by the pair (receiver class, message selector). 
This simple technique typically improves system perfi~rmance by 
20-30%. More extensive measurements of  this improvement 
appear in [Krasner 83]. 

Further performance improvements are suggested by the 
observation of  dynamic locality of lype usage. That is, at a given 
point in code, the receiver is often the same class as the receiver 
at the same point when the code was last exect,ted. If wc cache 
the looked-up method address at the point of send, subsequent 
execution of the send code has the method address at hand, and 
method-lookup can be avoided if the class of  the receiver is the 
same as it was at the previous execution of  this particular send. 
Of course, the class of  the receiver may have changed, and must 
be checked against the class corresponding to the cached method 
address. 

In the implementation described here, the translator 
generates n-code for sends unlit~ked -- as a call to the method- 
lookup routine, with the selector as an in-line argument. The 
method-lookup routine l inks the call by finding the receiver 
class, storing it in-line at the call point, and doing the method- 
lookup (like other implementations, it uses a selector/class- 
method cache). When the n-code method address is found, it is 
placed in-line with a call instruction, overwriting the former call 
to the lookup routine. "['he call is then re-executed. (Of course, 
there may be no corresponding n-code method, in which case the 
translator is called firsL) Note that this is a kind of  dynamic 
code modification, which is generally condemned in modern 
practice. The n-method address can just as well be placed out- 
of-line and accessed indirectly; c~de modificatioll is more 

• cl~cicnt, and we are using it in a weIFconfined way. 

The entry code of  an n-code method checks the stored 
recei~crclass from the point of call against the actoal receiver 
class. If they do not match, relinking must ¢~:cur, just as if the 
call had not yet been linked. 

Since linked sends have n'code method addresses bound in- 
line, this address must be invalidated if the called n-code method 
is being discarded from memory. The idea of" scanning all n- 
code routines to invalidated linked addresses was initially so 
daunting that we almost rejected the scheme. However, since n- 
code only exists in main memory, invalidation cannot produce 
time-consuming page faults. Furthermore. since the PC mapping 
tables described earlier contain precisely the addresses of  calls in 
the n-code, no searching of  the n-code is required: it is only 
necessary to go through the mapping tables and overwrite the 
call instructions to which the entries point. (A scheme similar to 
this may be found in [Moon 73].) 

For a few special selectors like + ,  the translator generates 
in-line code fi~r the common case along with the standard send 
code. For example. -I- generates a class check to verity that both 
argnments are small integers, native code for integer addition, 
and an overflow check on the result. If any of the checks fail, 
the send code is execrated. This is a space-time tradeoff justified 
by measurements that indicate that the ovcrwhehning majority of  
arithmetic operations invoh'c only small integers, even though 
they are (in principle) polymorphic like all other operations in 
the language. 

E X P E R I M E N T A L  R F, SULTS 

Three aspects of  our results deserve experimental validation: 
the use of stable and volatile context representations, the use of  

the one-clement in-line cache and linked sends for accelerating 
method-lookup, and the technique of v-codc to n-code 
translation (specifically, dynamic translation). 

CON'I'I£XT R I':PRF~SENTATIONS 

The dramatic drop in reference counting overhead obtained 
by treating contexts specially has been documented elsewhere 
(e.g., [Krasqcr 83], section 19). We also obtain a striking 
efficiency improvement by allocating contexts oil a stack, and by 
keeping their contents in execution-oriented form. Off`setting 
these advantages, in our implementation there is an added 
overhead of converting coqtcxts between volatile/hybrid and 
stable fi}rms, and of ensuring that a context accessed as a data 
object (either by sending it a message or directly while running a 
method ilnplcmentcd in a context class) is in stable form. 

3'o evaluate the perfi~rmance advantage of  linear context. 
allocation and volatile rcpresentatinn, we compared our code for 
allocating and deallocating contexts against code based on a 
hypothetical design that used the standard object representation 
for contexts, but did not reference-count their contcnts. This 
code appears to take about 8 times as hmg to exccutc, which 
would nlakc it consume 12°o of total execution time compared to 
1.5% for our present code. 

I,ess than 10CO of all co,~texts cvcr exist in othcr than volatile 
fibrin, l~lock contexts, which arc created in stable fi~rm, and their 
cnclosing context, which must be madc hybrid so the block 
context can refer to it, account for two-thirds of these: nearly all 
of the remainder arise fi'om an implcmcntation detail rcgarding 
linkiqg togcther fixed-size stack segments. [n all of  our 
measured examples, the time rcquired for thc conversion 
between the stable and volatile form was under 3CO of total 
execution time. 

If the receiver of a message is not a hybrid context, there is 
no overhead for making the check bccausc it happens as part of 
the normal mcthnd-k)okup (recall that hybrid contexts appear to 
be objects of  a special class DummyContcxt with no associated 
methods). Only when method-loukup fails is a check made 
whether the receiver was actually a DummyCoqtext. In the 
normal operation of the system, mcssagcs are only sent to 
contexts by thc debugger and for cleanup during dcstruction of  a 
process, so the overall impact is negligible. 

As di~usscd above, methods associated with context classes 
must be translated specially, so that each rcfcrence to an instance 
variablc chccks to makc snrc the rcccivcr is in stable form. The 
time required for this check is negligible. 

IN-LINE CACIIE AND ],INKED SENDS 

Independent measurements by us and by a group at U.C. 
Bcrkcley confirm that the one-element in-line cache is cffective 
about 95% of  the time. Measuremcnts reported in [Krasner 83] 
indicate that a more conventional global cache of  a reasonable 
size is effective about 85-90% of the time. It may be that an in- 
linc cache tends to lower the effectiveness of  the global cache, 
since most of  thc Iookups that would socceed in the global cache 
are now handled by the in-line cache, but we have no direct 
evidence on this point. 

Adding an in-line cache to the simple translator described 
below improved overall performance by only 9%. On a 
benchmark consisting ahnost entirely of  message sends where the 
in-'line cache is guaranteed valid, the in-line cache only improved 
pcrforlnanc¢ by 11%. 'l'llc improvement obtained by adding an 
in-line cache to the optimizing translator was also about L0%. 
Our original hand-analysis indicated that the overall 
improvement should be closer to 20%, and we cannot yet account 
for the discrepancy. The code produced by the optimizing 
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translator for the activate-and-return benchmark is a remarkable 
47% faster than the code from the simple translator with the in- 
line cache, s'lggesting that operations other than the overhead 
eliminated by the in-line cacl~e still dominates overall execution 
time. 

I)YNAMIC COIIE "I'IIANSLATION 

Our implementation of the Smalltalk-80 v-machine is 
designed to be easily switchable between different execution 
strategies. We have implemented a straightforward interpreter, a 
simple translator with almost no optimization, and a more 
sophisticated translator. Both translators exist in two variants, 
with and without the in-line cache described above. Switching 
between strategies simply requires relinking the implementation 
with a different set of modules; the price in execution speed paid 
for this flexibility is negligible. 

Our first experiment in code translation was a simple 
translator that does little peephole optimization and always 
generates exactly 4 n-bytes per v-byte. Clhe latter restriction 
eliminated the need for the PC mapping tables described earlier.) 

Our second experiment was a translator that does significant 
peephole nptilnization. The code it generates keeps the top 
element of the v-machine stack in a machine register whenever 
possible, and implements all v-instructions in-line except sends 
and a few rare instructions like load current context. Even 
arithmetic and relational operations are implemented in-line, with 
a call on an nttt-of-line routine if the operands arc not small 
integers. The resulting code is bulky but fast. 

To estimate the space required by translated methods, we 
have observed that the average v-method consists of 55% pointers 
(literal constants, message selectot.'s, and references to global 
variables) and 45% v-instructions. Since our simple translator 
expands each v-code byte to 4 n-code bytes, the expansion factor 
for the method as a whole is .55+(.45*4)=2.35. The version of 
the simple translator that uses an in-line cache simply triples the 
size of the pointer area, leaving room for a cached class and n- 
method pointer regardless of whether the pointer is a selector or 
something else. This expands the total size of methods by a 
factor of (3*.55)+(4*.45)=3.45. The observed expansion factors 
for the optimizing translators appear in the table below. 

We ran the standard set of Smalltalk-80 benchmarks 
described in [Krasner 83], section 9, using each of our five 
execution strategies. The normalized results are summarized in 
the following table: 

Strategy Space Ti.me 

Interpreter 1.00 1.000 

Simple translator, 2.35 0.686 
no in-line cache 

Simple translator 3.45 0.625 
with in-line cache 

Optimizing translator, 5.0 0.564 
no in-line cache 

Optimizing translator 5,03 0.515 
with in-line cache 

The space figure fi)r the optimizing translator without the in- 
line cache could be reduced at the expense of further sh)wing the 
code down. 

With respcct to paging behavior in a virtual memory 
environment, we would like to compare the following three 
execution strategies: 

* Pure interpretation: only v-code exists; it is brought 
into main memory as needed. 

* Static translation: n-code is generated simultaneously 
with v-code. Only n-code is needed at execution time. 
N-code is brought into memory as needed, 

* Dynamic translation: n-code is kept in a cache in main 
memory: v-code is brought into memory for translation 
as needed. 

Note that space taken by n-code in main memory trades off 
against space for data. When main memory space is needed 
(either fi)r n-code or for da~0, we have the option of replacing 
data pages or discarding n-code. Unfortunately, since the work 
described here has been carried out in a non-virtual memory 
environment, we have no experimental results on this topic. 

CONCLUSIONS AND RELATED WORK 

Perhaps the most intportant observation from our research is 
that we have demonstrated that it is possible to implement an 
interactive system based on a demanding high-level language. 
with only a modest increase in memory requirements and 
without the use of any of the special hardware (special-purpose 
mierocude, tagged memory architecture, garbage collection co- 
processor) often advocated for such systems, and with resulting 
perfonnanee that users judge excellent. We have achieved this 
by careful optimization of the observed common cases and by 
the plentiful use of caches and other changes of representation. 

A related research project [Patterson 83] is investigating a 
Smalllalk-80 implementation that uses only n-code, on a specially 
designed VI,SI processor called SOAR. As discussed above, this 
implementation requires rewriting the compiler, debugger, and 
other tools that manipulate compiled code and contexts, We 
expect some interesting comparisons between the two approaches 
sometime in 1984, when the SOAR implementation becomes 
operational. 

We believe the techniques described in this paper are 
applicable in varying degrees to other late-bound languages such 
as I,isp, and to portable V-code-based language implementations 
such as the Pascal P-system, but we have no current plans to 
investigate these other languages. 
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