
Efficient lmpl?met:tation of the Smalltalk-80 S sty_.~_qLn "

I.. Peter I)cutsch
Xerox PARC, Software Concepts Group

Allan M. Schiffman
Fairchild I.ahoratory hw Artificial Intelligence Research

ABS'I'I{ACr

The Smalltalk-80* programming language includes dynamic
storage allocation, fuU upward limargs, and universally
polymorphic procedures; file Smalllalk-80 programming system
features interactive exect, tion wiflt incremental compilation, and
implementation portability. These features of modern
programming systems are among the most difficult tu implement
efficiently, even individually. A new implemelltation of the
Small/alk-80 system, hnsted on a sinall microprocessor-based
computer, achieves high performance while retaining' complete
(object code) compatibility with existing implementations. This
paper discusses the most significant optimization techniques
developod over the course of the project, many of which are
applicable to other languages. T h e key idea is to represent
certain nmtime state (both code and data) in more than one
form. and to convert between fo~xns when needed.

*Smalhalk-80 is a trademark of the Xerox Corporalion.

B A C K G R O U N I)

The Smalltalk-80 system is an object-oriented programming
language and interactive programming environment. The
Smalltalk-80 language inclodes many of the most difficult-to-
implement features of modern progralnming languages: dynamic
storage allocation, full upward funargs, and call-time binding of
procedure names to actual procedures based on dynamic type
information, sometimes called message-pa~#tg. The interactive
environment includes a full complement of programming tools:
compiler, debugger, editor, window system, and so on, all written
in the Smalltalk-80 language itself. A detailed overview of the
system appears in [SCG 8l]. [Goldberg 83] is a technical
refcrcncc for both file nnn-interactive programmer and the
system implcmentor; [Goldberg 841 is a reference manual for the
interactive system.

SPE('IAL l)l I,'FICULTil,;S

The standard Smalltalk-80 system implementation is based
on an ideal virtual machine or v-machine. The compiler
generates code for this machine, and the implementor's
documentation describes the system as an interpreter for the v-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the. title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-125-3/84/001/0297 $00.75

machine instruction set, similar to the Pascal P-system [Ammann
75] [Ammann 77]. One unusual feature of the Smalltalk-80 v-
machine is that it makes runtime state such as procedure
activations visible to tile programmer as data objects. This is
similar to tile "spaghetti stack" model of Interlisp [XSIS 83l, but
more straightforward: Intcrlisp uses a programmer-visible
iudircction mechanism to reference pr~x:edure activations,
whe~'cas Ihe Sinalltalk-80 programmer treats procedure
actiwttioas just like any other data objects.

The Sinalltalk-80 language approaches programming with
generic data types through message-passing and dynamic typing.
To invoke a pl'Occdure (method in Smalltalk-80 terminology), a
message is sent to a data object (the receiver), which selects the
method to be c×ecuted. 'Ibis means that a method address must
bc found at runtime. At a given lexical point in the code, only
die message name (selector) is known. To perform a message-
send, the data type (class) of file receiver is extracted, and the
selector is used as a hash index into a table of the message
dicliottary of the class, which maps selectors to methods. The
task of melhod-lookup is complicated by the inherilance property
of classes -- a cla~ may be defined as a subclass to another,
inheriting all of the methods of the supcrclass. If the initial
method-lookup fails, the lookup algorithm tries again usirlg the
message dictionary of the superclass of the receiver's class,
continuing in this way up the class hierarchy until a method
cnrresponding to the selector is found or the top of the
inheritance hierarchy is reached.

The Smalltalk-80 language uses the organization of objects
into classes to provide strong information hiding. Only the
methods associated with a given class (and its subclasses) can
access directly the state nf an instance of that class. All access
from "outside" must be through messages. Ik'cause of this, a
Smalltalk-80 program must often make procedure calls to access
state where I,mguages such as Pascal could compile a direct
access to a tield of a record. This makes the performance of the
method-lookup algorithm even more critical.

IMPLEMENTATION OUTLINE

The purpose of the research de~ribed here was to build a
Smalltalk-80 system with acceptable performance on a relatively
inexpensive, microproecssor-based computer; specifically, to
discover how to implement the basic data and code objects of
the Smalltalk-80 system in a way that still conformed to the v-
machine specification, but were more suitable for conventional
hardware. (As of early 1982, the only implementations that ran
at acceptable speed were on non-commercial, user-
microprogra,nmable roachines, as de~ribed in [Krasner 83]
[I.ampson 81].) The system specification in [Goldberg 83]
includes tile definition of internal data structttres and object code
representation for the virtual machine. Indeed, much of the
system code depends on these definitions. We chose to take
these definitions as given, rather than alter the system code.

297

"lhis was motivated partly by a desire to retain object-code
portability, and pardy by a desire not to complicate the
description of the SmaUtalk-80 machine model.

The single principle that underlies all the results reported
here is dynamic change of representation. By this we mean that
the same infi)rmation is represented in more than one
(structurally different) w,~y during its lifetime, being converted
transparently between representations a:; needed for efficient use
at any moment. An important special case of this idea is
caching: one can think of information in a cache as a different
representation of the same information (considering contents and
accessing information together) in the backup memory. In the
implementation described in this paper, we applied this principle
to several different kinds of runtime information in the
Smalltalk-80 system.

* We dynamically translate v-code (i.e., code in the
instruction set of the v-machine) into code that executes
directly on the hardware without interpretation, the
native code or n-code. Translated code is cached: it is
regenerated rather than paged.

* We represent procedure activation records (contexts in
Smalltalk-80 parlance) in either a machine-oriented form,
when they are being used to hold execution state, or in
the form of Smalltalk-80 data objects, when they are
being treated as such.

* We use several different caches to speed up the
polymorphic search required at each procedure
invocation. In the best case, which applies over 90% of
the time, a Smalltalk-80 procedure invocation requires
only one comparison operation in addition to a
conventional procedure linkage.

* Using the techniques in [Deutsch&Bobrow 76], we
represent reference count information for automatic
storage management in a way that eliminates
approximately 85% of the reference counting operations
required by a standard implementation.

CODE TRANSLATION

Targeting code to a portable v-machine has been used in
other language implementations. Usually v-code targeting is
used only to avoid having multiple (one per target machine)
code-generation phases of the compiler; a secondary benefit is
that v-code is usually much more compact than code for any real
machine. Since the Smalltalk-80 compiler is just one tool
available in the same interactive environment used for execution,
and other tools besides the compiler must be able to examine the
machine state, the v-machine approach is even more attractive in
reducing the cost o f rehosting.

PERFORMANCE ISSU I~

To rehost the system, an implementor must emulate the v-
machine on the target hardware, either in microcode or in
software. This normally incurs a severe performance penalty
arising from several factors.

* Processors have specialized hardware for fetching,
decoding, and dispatching their own native instruction
set. This hardware is typically not available to the
prngrammcr (although it may be available at the
microprogram level), and therefore not useful to the v-
machine interpreter in its time-consuming operation of
instruction fetching, decoding, and dispatching.

* The v-machine architecture may be substantially
different from that of the underlying hardware. [:or
example, many v-machines, including both the P-system

and Smalltalk-80 v-machines, use a stack-oriented
architecture for convenience in code generation, but
most available hardware machines execttte register-
oriented code much more efficiently than stack-oriented
code.

* The basic operations of the v-machine may be
relatively expensive to implement, even though the
overall algorithm represeqted by a v-code program may
not be much more expensive than if it were
implemented in the hardware instruction set. For
example, even though a naive interpreter for the
Smalltalk-80 v-code must perform rcl~:renee counting
operations every time it pushes a variable value onto the
stack, a sequence of several instructions often has no net
effect on reference counts.

If the v-code were translated to n-code after normal
compilation of a source program to v-code, the interpreter's
overhead could be eliminated and some optimizations become
possible. One technique for eliminating part of the overhead of
interpretation is threaded code [Bell 73] [Moore 741. In this
approach, v-code consists o f an actual sequence of subroutine
calls on runtime routines. This technique does reduce the
o~;erhead for fetching and dispatching v-code instructions,
although it does not help with operaod decoding, or enable
optimizations that span more than one v-instruction. We prefer
to translate v-code to in-line n-code in a more sophisticated way.

Naive translation from v-code to n-code is a process
something like macro-expansion. In fact, [Mitchell 71] observed
that a translator can be derived very simply from an interpreter
by having the interpreter save its action-routine code in a buffer
rather than executing it. If the computation performed by
individual action routines is small relative to the computation
needed for the interpreter loop, the benefit of even this simple
kind of translation will be great.

Translation-time can also be considered an opportunity for
peephole optimization or even mapping stack references to
registers [Pittman 80]. Translation back-ends for portable
compilers have been implemented [Zellweger 79].

DYNAMIC TRANSI,ATION

Because the Smalltalk-80 v-code is a compact representation
that captures the basic semantics of the language, n-code will
typically take up much more space than v-code. (In the
implementation discussed in this paper, n-code takes about 5
times as much space as v-code.) This would place severe stress
on a virtual memory system if the n-code were being paged.
However, since n-code is derived algorithmicafiy from v-code,
there is no need to keep it permanently: it can be recomputed
when needed, if this is more efficient than swapping it in from
secondary storage. This leads us to the idea of translating at
runtime. (The idea of dynamic translation appears in [Rau 78],
where it is applied to translation from v-code to microcode.)
When a procedure is about to be executed, it must exist in n-
code form. If it does not, the call faults and the translator takes
co,ltrol. The translator finds the corresponding v-code routine,
translates it, and completes the call. Since, as mentioned earlier,
the translation process is more akin to macro-expansion than
compilation, translation time for a v-code byte is comparable to
the time taken to interpret it.

We consider the translation approach, and dynamic
translation in partietdar, to be the most interesting part o f our
research, since it motivated the work on multiple state
rcprcsentations described below. A later section of this paper
presents the experimental results that support our contention that
dynamic translation is an effective technique in a substantial
region of current technological parameters.

298

MAPPING STNI'E AT RUNTIME

Since the definition of the Smalltalk-80 v-machine makes
runtime state sucl~ as procedure activations visible to the
progrannner as data objects, an implementation based on n-code
must find a way to make the state appear to the programmer as
though it were the state of a v-machine, regardless of the actual
representation. The system must maintain a mapping of n-
machine st.'tte to v-machine state; in particular, it nmst keep the
v-code a~ailable for inspection.

How can we guarantee that all attempts to access a quantity
requiring representation mapping are detected? The structure of
the Smalltalk-80 language guarantees that the only code that can
access an object of a given class directly is the code that
implements messages sent to that class. 'lllus, the only code that
can directly access the parts of an object requiring mapping is
code associated with that object's class. Recall that all the code
in the Smalltalk-80 system is written in the Snlalitalk-80
language, hence compiled into v-code. When we translate a
p~x~cedure from v-code to n-code that is asst~.'iatcd with a class
whose representation may require mapping, we generate special
n-code that calls a subroutine to ensure that the object is
represented in a form where accesses to its named parts are
meaningful.

The most obvious quantity requiring mapping is the return
address (PC) in an activation record, whicll refers to a location in
the n-code procedure rather than in the v-code. Although there
is no simple algorithtnic correspondence between the v-PC and
the n-PC values, the v-PC need only be available when a
program attempts to inspect an activation as a data objcct. At
that moment, the system can consult (or compute) a table
associated with the procedure that gives the correspondence
between n- and v-PC rallieS.

We can greatly reduce the size of the mapping tables for PC
values by observing that the PC can only be accessed when an
activation is suspended, i.e., at a procedure call or
interrupt/process-switch. If we are willing to accept somewhat
greater latency in a Smalltalk-80 program's response to
interrupts, we can choose a restricted but sufficient set of
allowable interrupt points, and only store the mapping tables for
those points. This is what our implementation does: interrupts
are only allowed at, and PC m a p entries are only stored for, all
prtx:cdure calls and backward branches (the latter since interrupts
must be allowed inside loops).

MUI,TIPLE REI)RI'2"iENTA'I'IONS OF CONTEXTS

As mentioned earlier, the format of procedure activation
records are part of the Smalltalk-80 v-machine specification.
Contexts are full-fledged data objects; they have identifiable
fields which can be accessed and they respond' to messages. A
context is created for every message-send. There is also syntax
in the language for creating contexts whose activation is deferred,
cldled block contexts in Smalltalk-80 terminology, which
correspond to the functional& closures, or funargs of other
languages. Most control structures in the Smalltalk-80 system are
implemented with block contexts.

The fact that contexts are standard data objects implies that
they must be created like data objects, i.e., allocated on a heap
and reclaimed by garbage collection or reference counting.
Unforttmately. conventional machines are adapted for calling
sequences that create a new activation record as a stack flame,
storing suspended state in predefined slots in the frame.
Actually implementing contexts as heap objects results in a
serious performance penalty.

Mcasttrements show that even in Smalltalk-80 programs,
more than 85% of all contexts behave like procedure activations
in conventional languages: they are created by a call, never

referenced as a data object, and can be freed as soon as control
returns from them. (Note that any context in which a block
context is created does not satisfy this criterio,1.) Such contexts
are candidates for stack-frame representation. (An unpublished
experimental implementation of an earlier Smalltalk system used
linear stacks, but did not deal properly with contexts that
outlived their callers.)

Stack allt~cation of contexts solves one o f the two major
efficiency problems associated with treating contexts like other
objects, namely the ovcrbead o f allocating the contexts
themselves. [l)ctltmh&llobrow 76] shows how to solve the other
problem, of reference counting operations apparently being
required on every store into a local variable. With these two
problems solved, we can rise the hardware subroutine call,
return, and store instructions directly.

Ottr system has several types o f context representations. A
message-send creates a new context in a representation optimized
for execution: a frame is allocated on the machine's stack (with
some spare slots) by the usual machine instructions. In the
simple case, where no reference is ever made to the context as a
data object, the machine's return iristruction simply pops the
fi'ame off file stack when control returns fi'om the context. This
kind of context, which lives its life as a stack frame, we call
volatile.

At the other extreme, we store contexts in a format
compliant with the virtual machine specification, which can be
manipttlated as data items. We call this representation stable.

The third representation of a context, called hybrid, is a stack
frame that incorporates header information to make it look partly
like an ordinary data object. A volatile context is converted to
hybrid when a pointer is generated to it. Since this makes it
possible fi~r programs to refer to the context as an object, we fill
in slots in the frame corresponding to the header fields in an
ordinary object. This pseudo-object is tagged as being of a class
we name "l)ummyContext." A block o f memory is allocated,
and its address is stored in the context in case the context must
be stabilized in the future. Since there may be pointers to this
context, it cannot be returned fiom in a normal way, so the
return address is copied to another slot in the frame and
replaced with the address of a clean-up routine that stabilizes the
context on return.

When a message is sent to a hybrid context, the send fails
(there are no procedures defined for the DummyContext class),
and a routine is called to convert the hybrid context to the
stabilized form. At this point PC mappitlg comes into play; the
n-PC in the activation is converted to a v-PC for the stabilized
representation. Poi,lters to the hybrid context are switched to
refer to the stable context (this is simple in our system, which
uses an indirection table for all objects). After the context has
been stabilized, tile failed mess,age is re-sent to the stable form.

A stable context is not suitable for execution. Before a
stabilized context can be resumed, it is reconstituted on the stack
as hybrid. Again, this means that the n-PC must be
reconstructed fi'om tile v-PC. Usually the v-PC does not change
during the stable period, so our system includes a one-element
cache ill each n-code procedure for tile most recent v-PC/n-PC
pair, to avoid having to run the mapping algorithm.

Block contexts are "~boro" in stable form, since the whole
purpose of closures is to provide a representation for an
execution context which can be invoked later.

IN-I,INE CACI lING OF METHOI) Ai)I)R I~JSES

Mess~tge-passing is applied down to the simplest operations
in Smalltalk. The system provides a variety of predefined
classes: the most basic operations on.elementary data types (such
as addition of integers) are performed by primitives implemented

299

by the kernel of die system, rather Ih;in by Smalltalk routines,
but there is no distinction drawn at the language level. Since
mes.~ge-sends are so ubiquitous, they must bc fast: the operation
6f method-lookup is both expensive and critical.

All existing Smalltalk-80 implementations accelerate method-
lookup by using a method cache, a hash table of pooular method
addresses indexed by the pair (receiver class, message selector).
This simple technique typically improves system perfi~rmance by
20-30%. More extensive measurements of this improvement
appear in [Krasner 83].

Further performance improvements are suggested by the
observation of dynamic locality of lype usage. That is, at a given
point in code, the receiver is often the same class as the receiver
at the same point when the code was last exect,ted. If wc cache
the looked-up method address at the point of send, subsequent
execution of the send code has the method address at hand, and
method-lookup can be avoided if the class of the receiver is the
same as it was at the previous execution of this particular send.
Of course, the class of the receiver may have changed, and must
be checked against the class corresponding to the cached method
address.

In the implementation described here, the translator
generates n-code for sends unlit~ked -- as a call to the method-
lookup routine, with the selector as an in-line argument. The
method-lookup routine l inks the call by finding the receiver
class, storing it in-line at the call point, and doing the method-
lookup (like other implementations, it uses a selector/class-
method cache). When the n-code method address is found, it is
placed in-line with a call instruction, overwriting the former call
to the lookup routine. "['he call is then re-executed. (Of course,
there may be no corresponding n-code method, in which case the
translator is called firsL) Note that this is a kind of dynamic
code modification, which is generally condemned in modern
practice. The n-method address can just as well be placed out-
of-line and accessed indirectly; c~de modificatioll is more

• cl~cicnt, and we are using it in a weIFconfined way.

The entry code of an n-code method checks the stored
recei~crclass from the point of call against the actoal receiver
class. If they do not match, relinking must ¢~:cur, just as if the
call had not yet been linked.

Since linked sends have n'code method addresses bound in-
line, this address must be invalidated if the called n-code method
is being discarded from memory. The idea of" scanning all n-
code routines to invalidated linked addresses was initially so
daunting that we almost rejected the scheme. However, since n-
code only exists in main memory, invalidation cannot produce
time-consuming page faults. Furthermore. since the PC mapping
tables described earlier contain precisely the addresses of calls in
the n-code, no searching of the n-code is required: it is only
necessary to go through the mapping tables and overwrite the
call instructions to which the entries point. (A scheme similar to
this may be found in [Moon 73].)

For a few special selectors like + , the translator generates
in-line code fi~r the common case along with the standard send
code. For example. -I- generates a class check to verity that both
argnments are small integers, native code for integer addition,
and an overflow check on the result. If any of the checks fail,
the send code is execrated. This is a space-time tradeoff justified
by measurements that indicate that the ovcrwhehning majority of
arithmetic operations invoh'c only small integers, even though
they are (in principle) polymorphic like all other operations in
the language.

E X P E R I M E N T A L R F, SULTS

Three aspects of our results deserve experimental validation:
the use of stable and volatile context representations, the use of

the one-clement in-line cache and linked sends for accelerating
method-lookup, and the technique of v-codc to n-code
translation (specifically, dynamic translation).

CON'I'I£XT R I':PRF~SENTATIONS

The dramatic drop in reference counting overhead obtained
by treating contexts specially has been documented elsewhere
(e.g., [Krasqcr 83], section 19). We also obtain a striking
efficiency improvement by allocating contexts oil a stack, and by
keeping their contents in execution-oriented form. Off`setting
these advantages, in our implementation there is an added
overhead of converting coqtcxts between volatile/hybrid and
stable fi}rms, and of ensuring that a context accessed as a data
object (either by sending it a message or directly while running a
method ilnplcmentcd in a context class) is in stable form.

3'o evaluate the perfi~rmance advantage of linear context.
allocation and volatile rcpresentatinn, we compared our code for
allocating and deallocating contexts against code based on a
hypothetical design that used the standard object representation
for contexts, but did not reference-count their contcnts. This
code appears to take about 8 times as hmg to exccutc, which
would nlakc it consume 12°o of total execution time compared to
1.5% for our present code.

I,ess than 10CO of all co,~texts cvcr exist in othcr than volatile
fibrin, l~lock contexts, which arc created in stable fi~rm, and their
cnclosing context, which must be madc hybrid so the block
context can refer to it, account for two-thirds of these: nearly all
of the remainder arise fi'om an implcmcntation detail rcgarding
linkiqg togcther fixed-size stack segments. [n all of our
measured examples, the time rcquired for thc conversion
between the stable and volatile form was under 3CO of total
execution time.

If the receiver of a message is not a hybrid context, there is
no overhead for making the check bccausc it happens as part of
the normal mcthnd-k)okup (recall that hybrid contexts appear to
be objects of a special class DummyContcxt with no associated
methods). Only when method-loukup fails is a check made
whether the receiver was actually a DummyCoqtext. In the
normal operation of the system, mcssagcs are only sent to
contexts by thc debugger and for cleanup during dcstruction of a
process, so the overall impact is negligible.

As di~usscd above, methods associated with context classes
must be translated specially, so that each rcfcrence to an instance
variablc chccks to makc snrc the rcccivcr is in stable form. The
time required for this check is negligible.

IN-LINE CACIIE AND],INKED SENDS

Independent measurements by us and by a group at U.C.
Bcrkcley confirm that the one-element in-line cache is cffective
about 95% of the time. Measuremcnts reported in [Krasner 83]
indicate that a more conventional global cache of a reasonable
size is effective about 85-90% of the time. It may be that an in-
linc cache tends to lower the effectiveness of the global cache,
since most of thc Iookups that would socceed in the global cache
are now handled by the in-line cache, but we have no direct
evidence on this point.

Adding an in-line cache to the simple translator described
below improved overall performance by only 9%. On a
benchmark consisting ahnost entirely of message sends where the
in-'line cache is guaranteed valid, the in-line cache only improved
pcrforlnanc¢ by 11%. 'l'llc improvement obtained by adding an
in-line cache to the optimizing translator was also about L0%.
Our original hand-analysis indicated that the overall
improvement should be closer to 20%, and we cannot yet account
for the discrepancy. The code produced by the optimizing

300

translator for the activate-and-return benchmark is a remarkable
47% faster than the code from the simple translator with the in-
line cache, s'lggesting that operations other than the overhead
eliminated by the in-line cacl~e still dominates overall execution
time.

I)YNAMIC COIIE "I'IIANSLATION

Our implementation of the Smalltalk-80 v-machine is
designed to be easily switchable between different execution
strategies. We have implemented a straightforward interpreter, a
simple translator with almost no optimization, and a more
sophisticated translator. Both translators exist in two variants,
with and without the in-line cache described above. Switching
between strategies simply requires relinking the implementation
with a different set of modules; the price in execution speed paid
for this flexibility is negligible.

Our first experiment in code translation was a simple
translator that does little peephole optimization and always
generates exactly 4 n-bytes per v-byte. Clhe latter restriction
eliminated the need for the PC mapping tables described earlier.)

Our second experiment was a translator that does significant
peephole nptilnization. The code it generates keeps the top
element of the v-machine stack in a machine register whenever
possible, and implements all v-instructions in-line except sends
and a few rare instructions like load current context. Even
arithmetic and relational operations are implemented in-line, with
a call on an nttt-of-line routine if the operands arc not small
integers. The resulting code is bulky but fast.

To estimate the space required by translated methods, we
have observed that the average v-method consists of 55% pointers
(literal constants, message selectot.'s, and references to global
variables) and 45% v-instructions. Since our simple translator
expands each v-code byte to 4 n-code bytes, the expansion factor
for the method as a whole is .55+(.45*4)=2.35. The version of
the simple translator that uses an in-line cache simply triples the
size of the pointer area, leaving room for a cached class and n-
method pointer regardless of whether the pointer is a selector or
something else. This expands the total size of methods by a
factor of (3*.55)+(4*.45)=3.45. The observed expansion factors
for the optimizing translators appear in the table below.

We ran the standard set of Smalltalk-80 benchmarks
described in [Krasner 83], section 9, using each of our five
execution strategies. The normalized results are summarized in
the following table:

Strategy Space Ti.me

Interpreter 1.00 1.000

Simple translator, 2.35 0.686
no in-line cache

Simple translator 3.45 0.625
with in-line cache

Optimizing translator, 5.0 0.564
no in-line cache

Optimizing translator 5,03 0.515
with in-line cache

The space figure fi)r the optimizing translator without the in-
line cache could be reduced at the expense of further sh)wing the
code down.

With respcct to paging behavior in a virtual memory
environment, we would like to compare the following three
execution strategies:

* Pure interpretation: only v-code exists; it is brought
into main memory as needed.

* Static translation: n-code is generated simultaneously
with v-code. Only n-code is needed at execution time.
N-code is brought into memory as needed,

* Dynamic translation: n-code is kept in a cache in main
memory: v-code is brought into memory for translation
as needed.

Note that space taken by n-code in main memory trades off
against space for data. When main memory space is needed
(either fi)r n-code or for da~0, we have the option of replacing
data pages or discarding n-code. Unfortunately, since the work
described here has been carried out in a non-virtual memory
environment, we have no experimental results on this topic.

CONCLUSIONS AND RELATED WORK

Perhaps the most intportant observation from our research is
that we have demonstrated that it is possible to implement an
interactive system based on a demanding high-level language.
with only a modest increase in memory requirements and
without the use of any of the special hardware (special-purpose
mierocude, tagged memory architecture, garbage collection co-
processor) often advocated for such systems, and with resulting
perfonnanee that users judge excellent. We have achieved this
by careful optimization of the observed common cases and by
the plentiful use of caches and other changes of representation.

A related research project [Patterson 83] is investigating a
Smalllalk-80 implementation that uses only n-code, on a specially
designed VI,SI processor called SOAR. As discussed above, this
implementation requires rewriting the compiler, debugger, and
other tools that manipulate compiled code and contexts, We
expect some interesting comparisons between the two approaches
sometime in 1984, when the SOAR implementation becomes
operational.

We believe the techniques described in this paper are
applicable in varying degrees to other late-bound languages such
as I,isp, and to portable V-code-based language implementations
such as the Pascal P-system, but we have no current plans to
investigate these other languages.

ACKNOWLEDGMENTS

Thanks are doe to Mike Braca. who programmed the I/O
kernel of our implementation: Bob Hagmann, who programmed
the optimizing code translator and made many contributions to
the design of the system: and Mark Roberts, who implemented
the disk file system and virtual memory capabilities. Bob
Hagmann, Dan Ingalls, and Paul McCullough contributed
helpfitl comments on this paper. The Smalludk-80 system itself
is owed to PARC SCG. Butler I,ampson gave helpful
suggestions during the early project design phase.

R E FER ENCES

[Ammann 75] Ammann, U., Nod. Jcnsen, K.. Nageli, H.. "The
Pascal (P) Colnpilcr Implementation Notes." Institut Fur
Inlbrmatik, Eidgenossische Tcchni~he IIochschule, Zurich, 1975.

[Ammann 77] Ammann, U., "On code generation in a Pascal
compiler." Software Practice and Experience v7 #3. June/July
1977, pp. 391-423.

[Bell 73] Bell. J. R., "Threaded Code." Communications ofthe
ACM, el6 (1973) pp. 370-372.

[l)eutsch & Bobrow 76] Dcutsch, L. P., Bobrow, D. G., "An
efficient, incremental, real-time garbage collector."
Communications of the ACM, October 1976.

301

[Goldberg 83] Goldberg, A., Robson. I)., "Smalltalk-80: The
i.anguage and its Implementation." Addison-Wesley, Reading,
MA, 1983.

[Goldberg 84] Goldberg. A., "Smalltalk-80: The Interactive
Programming Environment." Addison-Wesley, Reading, MA,
L984.

[Krasner83] Krasner, Glenn. F'd., "Smalltalk-80: Bits of History,
Words of Advice." Addison-Wesley, Reading, MA, 1983.

[[.ampson 81] i.ampson, B. W., Ed., "The I)orado: A ! ligh-
Perfi,'mance Personal Computer." Xerox PARC Report CSL-SL-I,
Palo Alto, CA, January 1981.

[Mitchell 71] Mitchell, J. G., "The Design and Construction of
Flexible and t:fficient Interactive Programming Systems," Ph.I).
dissertation. 1971, NTIS AI) 712-721, in Outstanding I)i:~sertations
in the Computer Sciences, Garland Publishing, New York (1978).

[Moon 73] Moon D., Ed., Maclisp Manual pp. 3-75 to 3-77, MIT AI
Laboratnry Technical Report (1973).

[Moore 74] Ml~ore, C. H., "FORTH: a New Way to Program a
Computer." Astronomy and Astrophysics Supplement, # L5 (1974)
pp 497-511.

[Patters~m 83] Patterson, D., F.d., "Smalltalk on a RISC:
Architectural Investigations (ProceedingsofCS 292R)." University
of California. Berkeley, April 1983.

[Perkins 79] Perkins, I). R., Sites, R. I.., "Machine independent
Pascal code optimization." ACM SIGPI.AN Notices v14 #8
(August 1979) pp. 201-207.

[Pittman 80] Pittman, T.J., "A Practical Optimizer: Zero-Address to
Multi-AddressCode." M.S. thesis, University of California, Santa
Cruz, June 1980.

[Rau 78] Rau. B. R.. "Levels of Representation of Programs and the
Architecture of Universal Host Machines." Prececdings of Micro-
11, Asilomar, CA. November 1978.

[Richards 75] Richards, M., "The portability of the BCPI.
compiler.'" Software, Practice and Experience vl (1971) pp. 135-
146.

[SCG 81] Software Concepts Group, special issue on SmaUtalk.
BY'I3-; Magazine, volume 6, number 8, August 1981.

[XSIS 83] Masinter, 1.. M., Ed., "Intedisp Reference Manual,"
Xerox Special Inforrnation Systems, Pasadena, CA, 1983.

[Zellweger 79] Zellweger, P. T., "Machine-lndependent
Optimization in SOPAIPII.LA.'" The S-! Project 1979 Annual
Report (Chapter 8), i.awrcnce Livermore I.aboratory (1979),

302

