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Abstract:

 

Java’s  floating-point arithmetic is blighted by  

 

five

 

  gratuitous mistakes:

 

1.

 

  Linguistically legislated exact reproducibility is at best mere wishful thinking.

 

2.

 

  Of two traditional policies for mixed precision evaluation,  Java  chose the worse.

 

3.

 

  Infinities  and  NaNs  unleashed without the protection of  floating-point traps and flags
mandated by  IEEE Standards 754/854  belie  Java’s  claim to robustness.

 

4.

 

  Every programmer’s prospects for success are diminished by  Java’s  refusal to grant access
to capabilities built into over  95%  of today's floating-point hardware.

 

5.

 

  Java  has rejected even mildly disciplined infix operator overloading,  without which extensions
to arithmetic with everyday mathematical types like complex numbers,  intervals,  matrices,
geometrical objects and arbitrarily high precision become extremely inconvenient.

 

To leave these mistakes uncorrected would be a tragic 

 

 sixth

 

  mistake. 

 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 

The following pages expand upon material presented on  Sunday morning 1 March 1998  partly to 
rebut  Dr. James Gosling’s  keynote address  “Extensions to Java for Numerical Computation”  the 
previous morning  (Sat. 28 Feb.);  see his   

 

http://java.sun.com/people/jag/FP.html

 

 .

For a better idea of what is in store for us in the future unless we can change it,  see
      

 

http://www.sun.com/smi/Press/sunflash/9803/sunflash.980324.17.html

 

   and
      

 

http://math.nist.gov/javanumerics/issues.html#LanguageFeatures

 

 .
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We agree with  James Gosling  about some things like …

 

• Some kind of infix operator overloading will have to be added to  Java.

• Some kind of  Complex  class will have to be added to  Java.

• Some changes to the  JVM  are unavoidable.

• “ 95%  of the folks out there are completely clueless about floating-point.”  ( J.G.,  28 Feb. 1998 )
( 

 

Maybe more than

 

  95% ?)

 

…  and disagree with him about other things like …

 

•“ A proposal to enhance  Java’s  numerics would split the  Java  community into three parts:

 

1.

 

  Numerical Analysts,  who would unanimously be enthusiastically  FOR  it,

 

2.

 

  Others,  who would be vehemently  AGAINST  it,   and

 

3.

 

  Others who wouldn’t care.”    ( J.G.,  28 Feb. 1998 )

 

Actually,  Numerical Analysts  would be as confused as everyone else and even more divided.

 

•  Complex arithmetic like  Fortran’s ?    

 

That’s not the best way.

 

  

 

The

 

  C9X  

 

proposal is better.

 

• “Loose Numerics” ?  

 

Sloppy numerics

 

!

 

  IEEE 754 Double-Extended  

 

supported properly is better.

 

• …  and many more …



 

How Java’s Floating-Point Hurts Everyone Everywhere

 

June 18, 1998 5:32 am                                                     Work in Progress  —  Subject to Supersession                                                                             Page 5

 

To cure  Java’s  numerical deficiencies,  we too propose to modify it

 

but not the way  Gosling  would modify it.

 

We call our modified  Java  language  “ Borneo.”

 

Borneo’s  design was constrained to be  

 

Upward Compatible

 

  with  Java :
  •  Compiling  Java  programs with  Borneo  semantics should leave integer arithmetic unchanged

and should change floating-point arithmetic at most very slightly.
  •  Any old  Java  class already compiled to bytecode should be unable to tell whether other

bytecode was compiled under  Java’s  semantics or  Borneo’s.
  •  Borneo  is designed to require the least possible change to the  Java Virtual Machine  ( JVM )

that can remedy  Java’s  floating-point deficiencies.
  •  Borneo  adds to  Java  as little infix operator overloading,  exception flag and trap handling,

control over rounding directions and choice of precisions as is essential for good floating-point
programming.  If you wish not to know about them,  don’t mention them in your program.

For more information about  Borneo :    

 

http://www.cs.berkeley.edu/~darcy/Borneo

 

 .

For more information about  Floating-Point :    

 

http://www.cs.berkeley.edu/~wkahan

 

 .

 

What follows is  NOT  about  Borneo.

 

What follows explains why  Java  has to be changed.  By  Sun.   Urgently.
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  +––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––+
  |                                                                        |
  |                                            Anne  and  Pete  use the    |
  |                                            same program.               |
  |                                            But they do not use the     |
  |                                            same platform.              |
  | See  Pat.                                  How?  How can this be?      |
  | Pat  wrote one program.                                                |
  | It can run on all platforms.               They have  100% Pure Java.  |
  |                                            It works with the platforms |
  | Pat  used  100% Pure Java (TM)             they have.                  |
  | to write the program.                                                  |
  |                                            Anne  and  Pete  are happy. |
  | Run  program,  run!                        They can work.              |
  |                                            Work,  work,  work!         |
  |                                                                        |
  |                                                                        |
  |                       mul–ti–plat–form lan–guage                       |
  |                         no non  Java (TM)  code                        |
  |                    write once,  run a–ny–where (TM)                    |
  |                                                                        |
  |                             100% Pure JAVA                             |
  |                            Pure and Simple.                            |
  |                                 ...                                    |
  +––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––+

 

This parody of puffery promoting  100% Pure Java

 



 

  for everyone everywhere filled page  C6  in 
the  

 

San Franisco Chronicle

 

  Business Section  of  Tues. May 6, 1997.

It was paid for and copyrighted by  

 

Sun Microsystems

 

.
Behind  Sun’s  corporate  facade must have twinkled a wicked sense of humor.
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Whom does  Sun  expect to use  Java ?
Everybody.

 

Everybody falls into one of two groups:

 

1.

 

  A roundup of the usual suspects

 

These numerical experts,  engineers,  scientists,  statisticians,  …  are used to programming in  C,  
Fortran,   Ada,  …  or to using programs written in those languages.  Among their programs are 
many that predate  IEEE Standard 754 (1985)  for Binary Floating-Point Arithmetic;  these 
programs,  many written to be  “Portable”  to the computers of the  1970s,  demand no more from 
floating-point than  Java  provides,  so their translation into  Java  is almost mechanical.

 

2.

 

  Everybody else

 

“ 95%  of the folks out there are completely clueless about floating-point.”  ( J.G.,  28 Feb. 1998 )  
Their numerical inexpertise will not deter clever folks from writing  Java  programs that depend 
upon floating-point arithmetic to perform parts of their computations:
• Materials lists and blueprints for roofing,  carpentry,  plumbing,  wiring,  painting.
• Numerically controlled machine tools and roboticized manufacturing,  farming and recycling.
• Customizable designs for home-built furniture,  sailboats,  light aircraft,  go-karts,  irrigation.
• Navigation for sailboats,  light aircraft and spaceships while their pilots doze at the wheel.
• Economic and financial forecasts,  estimated yield on investments,  and portfolio management.
• Predictions of supply and demand,  predictive inventory management,  just-in-time delivery.
• …

There is no end to this list.
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Q & A  about selling computing to Everyone Everywhere:

 

What would happen to the market for automobiles if transmissions and chokes were not automatic,  and if brakes 
and steering were not not power-assisted?  Would all drivers be dextrous and strong,  or would there be fewer cars 
and more chauffeurs as in  “the good old days” ?  What if standards for vehicular body-strength,  lights,  brakes,  
tires,  seat-belts,  air-bags,  safety-glass, …  were relaxed?  Would cheaper cars and trucks compensate us for the 
cost of caring for more cripples?

Are such questions irrelevant to our industry?  What will happen to the market for our computer hard- and software 
if we who design them fail to make them as easy to use as we can and also robust in the face of misuse?  Misuse is 
unavoidable.  Our industry’s vigor depends upon a vast army of programmers to cope with innumerable messy 
details some of which,  like floating-point,  are also complicated;  and  …

 

In every army large enough,  someone fails to get the message,  or gets it wrong,  or forgets it.

 

Most programmers never take a competent course in  Numerical Analysis,  or else forget it.  Over  “ 95%  of the 
folks out there are completely clueless about floating-point.”  ( J.G.,  28 Feb. 1998 )  Amidst an overabundance of  
Java Beans

 



 

  and  Class Libraries,  we programmers usually hasten to do our job without finding the information 
we need to cope well with floating-point’s complexities.  Like  Coleridge’s  

 

Ancient Mariner

 

   afloat in

 

“ Water,  water every where,  nor any drop to drink ”

 

we are awash in  (mis- and dis-)information.  To filter what we need from the world-wide web,  we must know first 
that we need the information,  then its name.  No  “ Open Sesame! ”  reveals what we need to know and no more.

We trust 

 

some

 

  information:  Experience tells us how programmers are likely to use floating-point.  Modern error-
analysis tells us how to enhance our prospects for success.  It’s more than merely a way for experts to validate  ( we 
hope )  the software we distribute through prestigious numerical libraries like  LAPACK  and  

 

fdlibm

 

.  Error-
analysis tells us how to design floating-point arithmetic,  like  IEEE Standard 754,  moderately tolerant of well-
meaning ignorance among programmers though not yet among programming language designers and implementors.
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Java  has evolved …

 

…  from a small language targeted towards   TV-set-top boxes  and networked toaster-ovens

…  to a large language and operating system targeted towards Everybody
Everything
Everywhere

 

…  to challenge  Microsoft’s  hegemony.

 

Microsoft  is vulnerable because its flaky  Windows  system is not one system but many.  Would-be 
vendors of software for  MS Windows

 



 

  have to cope with innumerable versions,  a legacy of 
partially corrected bugs,  unresolved incompatibilities,  … .  Software often fails to install or later 
malfunctions because diversity among Windows  systems has become unmanageable by the smaller 
software developers who cannot afford to pretest their work upon every kind of  Windows  system.

Java’s  “ Write Once,  Run Anywhere

 



 

 ”   tantalizes software vendors with the prospect of 
substantially less debugging and testing than they have had to undertake in the past.

This prospect has been invoked spuriously to  

 

rationalize

 

  Java’s  adherence to bad floating-point 
design decisions that mattered little in  Java’s  initial niche market but now can’t be reconciled with  
Java’s  expanded scope.  Later we shall see why  Java’s  expanded market would be served better by 
actual conformity to the letter and spirit of IEEE Standard 754 for Binary Floating-Point Arithmetic.
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Pure Java’s  Two Cruel Delusions:

 

“ Write Once,  Run Anywhere

 



 

 ”  and
Linguistically Enforced Exact Reproducibility of all Floating-Point Results

These  

 

do

 

  figure among ideals that should influence our decisions.  So does  Universal Peace.
But some ideals are better approached than reached,  and best not approached too directly.

( How do you feel about  Universal Death  as a direct approach to  Universal Peace ? )

Pure Java’s  two cruel delusions are inconsistent with three facts of computing life:

•  Rush-to-Market  engenders mistakes,  bugs,  versions,  incompatibilities,  conflicts,  …  as in
Java’s  oft revised  AWT  ( Window interface ),   disputes between  Sun  and  Microsoft,  … .
Intentionally and unintentionally divergent implementations of the  JVM  will exist inevitably.

•  Compliance with standards that reinforce commercial disparities can be enforced only by the kind
of power to punish heretics for which emperors and popes used to yearn.  JavaSoft  lacks even
the power to prevent heretic versions of  Java  from becoming preponderant in some markets.

•  A healthy balance between  Stability  and  Progress  requires an approach to the  Management of
Change  more thoughtful than can be expected from business entities battling for market share.

Perfect uniformity and stability,  if taken literally,  are promises beyond Java’s power to fulfill.

 

Suppose

 

 for argument’s sake that the two cruel delusions were not delusions.  Suppose they became 
actuality at some moment in time.  This situation couldn’t last long.  To understand why consider …

 

Complex Arithmetic Classes.
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Complex Arithmetic Classes.

 

Why More than One?

 

JavaSoft  would promulgate its  100% Pure Java

 



 

 Complex Arithmetic Class Library,  and the  
Free Software Foundation  would promulgate another  ( you’d have to install it yourself ),  and the  
Regents of the University of California  would offer  Kahan’s Complex Arithmetic Class Library.

How would  Kahan’s  differ from  JavaSoft’s ?   In line with the  C9X  proposal before  ANSI X3J11,  
he includes an  Imaginary Class  and allows complex variables to be written as  x + 

 

ı

 

*y   or  x + y*

 

ı

 

  
( where  

 

ı

 

 := 

 

√

 

(–1)  is the declared imaginary unit )  instead of sticking to  Fortran-like  (x, y)  as  
James Gosling  has proposed.  Kahan’s  imaginary class allows real and complex to mix without 
forcing coercions of real to complex.  Thus his classes avoid a little wasteful arithmetic  ( with zero 
imaginary parts )  that compilers can have trouble optimizing away.  Other than that,  with overloaded 
infix arithmetic operators,  you can’t tell the difference between  Kahan’s  syntax and  Gosling’s.

 

Imagine now

 

  that you are developing software intended to work upon your customer’s  Complex  
functions,  perhaps to compute their contour integrals numerically and to plot them in interesting 
ways.  Can you assume that your market will use only  JavaSoft’s  Complex  classes?  Why should 
you have to test your software’s compatibility with  

 

all

 

  the competing  Complex  classes?  Wouldn’t 
you rather write just once,  debug just once,  and then run anywhere that the official  Pure JavaSoft  
Complex Classes are in use,  and ignore potential customers who use those heretic alternatives?

 

But some heresies cannot be ignored.
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Example:   

 

Borda’s Mouthpiece

 

,   a classical two–dimensional fluid flow

 

Define 

 

 complex analytic functions

     ,    and             .

 

Plot  the values taken by  F(z)   as complex variable   z   runs along eleven rays

z = r·i ,   z = r·e4i·π/10,   z = r·e3i·π/10,   z = r·e2i·π/10,   z = r·ei·π/10,   z = r
and their  Complex Conjugates,  taking positive   r   from near  0  to near  +∞ .

These rays are streamlines of an ideal fluid flowing in the right half-plane into a sink at the origin.  The left half-
plane is filled with air flowing into the sink.  The vertical axis is a free boundary;  its darker parts are walls inserted 
into the flow without changing it.  The function  F(z)  maps this flow  conformally  to a flow with the sink moved to  
–∞  and the walls,  pivoting around their innermost ends,  turned into the left half-plane but kept straight to form the 
parallel walls of a long channel.  ( Perhaps the  Physics  is idealized excessively,  but that doesn’t matter here.)

The expected picture,  “ Borda’s Mouthpiece,”  should show eleven streamlines of an ideal fluid flowing 
into a channel under pressure so high that the fluid’s surface tears free from the inside of the channel.

g z( ) z
2

z z
2

1+⋅+= F z( ) 1 g z( ) g z( )( )log+ +=
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Borda’s Mouthpiece

            Correctly plotted Streamlines                                Streamlines should not cut across each other !

   Plotted using  C9X–like  Complex and Imaginary              Misplotted using  Fortran–like  Complex

An  Ideal Fluid  under high pressure escapes to the left through a channel with straight horizontal sides.  
Inside the channel,  the flow's boundary is  free,—  it does not touch the channel walls.  But when  –0  is 
mishandled,   as  Fortran-style  Complex  arithmetic must mishandle it,  that streamline of the flow along and 
underneath the lower channel wall is misplotted across the inner  mouth of the channel and,  though it does 
not show above,  also as a short segment in the upper wall at its inside end.  Both plots come from the same 
program using different  Complex Class  libraries,  first with and second without an  Imaginary Class.

4 2 0 2 4 6 8

5

0

5

Y( ),I U

X( ),I U

4 2 0 2 4 6 8

5

0

5

y( ),I U

x( ),I U
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Lifting Flow  past  Joukowski’s Aerofoil

      Correctly Plotted Streamlines                                                 Where is this wing’s bottom ?

   Plotted using  C9X–like  Complex and Imaginary              Misplotted using  Fortran–like  Complex

A circulating component,  necessary to generate lift,  speeds the flow of an idealized fluid above the wing and slows 
it below.  One streamline splits at the wing’s leading edge and recombines at the trailing edge.  But when  –0  is 
mishandled,   as  Fortran-style  Complex  arithmetic must mishandle it,  that streamline goes only over the wing.  
The computation solves numerically nontrivial transcendental equations involving complex logarithms.  Both plots 
come from the same program using different  Complex Class  libraries,  first with and second without an  Imaginary 
Class.  Experienced practitioners programming in  Fortran  or  C++  have learned to replace the split streamline by 
two streamlines,  one above and one below,  separated by as few rounding errors as produce a good-looking plot.
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Why such plots malfunction,  and a very simple way to correct them,  were explained long ago in …

“ Branch Cuts for Complex Elementary Functions,  or  Much Ado About Nothing's Sign Bit ” by  W. Kahan,  ch. 
7 in  The State of the Art in Numerical Analysis   ( 1987 )  ed. by  M. Powell and A. Iserles  for  Oxford U.P.

A  streamline goes astray  when the complex functions  SQRT  and  LOG  are implemented,  as is 
necessary in  Fortran  and in libraries currently distributed with  C/C++  compilers,  in a way that 
disregards the sign of   ± 0.0  in  IEEE 754  arithmetic and consequently  violates  identities   like

SQRT( CONJ( Z ) )   =   CONJ( SQRT( Z ) )      and      LOG( CONJ( Z ) )   =   CONJ( LOG( Z ) )
whenever the  COMPLEX  variable  Z  takes negative real values.  Such anomalies are unavoidable if  
Complex  Arithmetic operates on pairs  (x, y)  instead of notional sums  x + ı·y   of real and imaginary 
variables.  The language of pairs is  incorrect  for  Complex Arithmetic;  it needs the  Imaginary  type.

A  controversial Complex Arithmetic Extension  to the programming language  C  incorporating 
that correction,  among other things,  has been put before  ANSI X3J11,  custodian of the  C  language 
standard,  as part of the  C9X  proposal.  It is controversial because it purports to help programmers 
cope with certain physically important discontinuities by suspending thereat  ( and nowhere else )  the 
logical proposition that    “ x == y ”    implies    “ f(x) == f(y)  ”.   Many a programmer will 
prefer this anomaly to its alternatives.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The moral of this story:  There will always be good reasons  ( and bad )  to call diverse versions of 
hard- and software,  including mathematical software,  by the same name.

Nobody can copyright  “ Complex Class.”
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Besides programs with the same name but designed for slightly different results,
there are programs with the same name designed to produce essentially the same results

as quickly as possible
which must therefore produce slightly different results on different computers.

Roundoff causes results to differ slightly not because different computers round arithmetic differently 
but because they manage memory,  caches and register files differently.

Example:  Matrix multiplication   C := A·B  …   i.e.    cij := ∑k aik·bkj =  ai1·b1j + ai2·b2j + ai3·b3j + …
To keep pipelines full and avoid unnecessary cache misses,  different computer architectures have to perform 
multiplications  aik·bkj  and their subsequent additions in different orders.  In the absence of roundoff the order 

would not affect  C  because addition would be associative.  Order affects accuracy only a little in the presence of 
roundoff because,  for all suitable matrix norms  ||…|| ,   ||C - A·B||/(||A||·||B||)  cannot much exceed the roundoff 
threshold regardless of order,  and this constraint upon  C  suffices for most applications even if

C  varies very noticeably from one computer to another.

Ordering affects speed a lot.  On most processors today,  the most obvious matrix multiply program runs at least 
three times slower than a program with optimal blocking and loop-unrolling.  Optimization depends delicately upon 
processor and cache details.  For matrices of large dimensions,  a code optimized for an  UltraSPARC,  about three 
times faster thereon than an unoptimized code,  runs on a  Pentium Pro  ( after recompilation )  slower than a naive 
code and about six times slower than its optimal code.  Speed degradation becomes worse on multi-processors.

Faster matrix multiplication is usually too valuable to forego for unneeded exact reproducibility.

Conclusion:   Linguistically legislated exact reproducibility is  unenforceable.
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“ The merely  Difficult  we do immediately;  the  Impossible  will take slightly longer.”
—   Royal Navy  maxim adopted during  WW–II  by  American Seabees.

Ever-increasing diversity in hardware and software compounds the difficulty of testing new software 
intended for the widest possible market.  Soon  “Difficult”  must become  “Impossible”  unless the 
computing industry collectively and programmers individually  share  a burden of …

Self-Discipline:

Modularize designs,  so that diversity will add to your testing instead of multiplying it.

Know your market,  or target only the markets you know;
exploit only capabilities you know to be available in all of your targeted markets.

Eliminate needless diversity  wherever possible,  though this is easier said than done; …
“ Things should be as simple as possible,  but no simpler.”  —  Albert Einstein.

Java’s  designers,   by pursuing the elimination of diversity beyond the point of over-
simplification,  have turned a very desirable design goal into an expendable fetish.

They have mixed up two ideas:
Exact Reproducibility,    needed by some floating-point programmers sometimes,  and
Predictability within Controllable Limits,    needed by all programmers all the time.

By pushing  Exact Reproducibility of Floating-Point  to an illogical extreme,  the designers ensure it 
will be disparaged,  disregarded and finally jettisoned,  perhaps carrying  Predictability  away too in 
the course of a  “ Business Decision ”  that could all too easily achieve what the  British  call

“ Throwing  Baby  out with the bath water.”
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The essence of programming is  Control.
Control  requires  Predictability,  which  should be  Java’s  forte.
Java  would impose  “ Exact Reproducibility ”  upon  Floating-Point  to make it  Predictable.

But  “ Exact Reproducibility ”  is  JavaSoft’s  euphemism for  “ Do as  Sun’s SPARCs  do.”
Thus it denies programmers the choice of better floating-point running on most other hardware.
Denied better choices,  the programmer is not exercising  Control  but being controlled.

Throwing  Baby  out with the bath water:
When  “Exact Reproducibility”  of floating-point becomes too burdensome to implementors whose 
first priority is high speed,  they will jettison  Exact Reproducibility  and,  for lack of sound guidance,  
they will most likely abandon  Predictability  along with it.  That’s happening now.  That’s what  
Gosling’s  “ Loose Numerics ”  amounts to;  a better name for it is  “ Sloppy Numerics.”

To achieve  Floating-Point  Predictability:
Limit programmers’  choices to what is reasonable and necessary as well as parsimonious,  and
Limit language implementors’ choices so as always to honor the programmer’s choices.

To do so,   language designers must understand floating-point well enough to  validate†  their 
determination of  “what is reasonable and necessary,”  or else must entrust that determination to 
someone else with the necessary competency.  But  Java’s  designers neglected timely engagement of  
Sun’s  in-house numerical expertise,  which would have prevented their floating-point blunders.

† Footnote:  “Validate  ”  a programming language’s design?  The thought appalls people who think such design
    is a  Black Art.   Many people still think  Floating-Point  is a  Black Art.   They are wrong too.
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Java  purports to  fix what ain’t broken  in  Floating-point.
Floating-point arithmetic hardware conforming to  IEEE Standard 754,  as does practically all today’s 
commercially significant hardware on desktops,  is already among the least diverse things,  hard- or 
software,  so ubiquitous in computers.  Now  Java,  mistakenly advertised as conforming to  IEEE 754  
too,  pretends to lessen its diversity by adding another one to the few extant varieties of floating-point.

How many significantly different floating-point hardware architectures matter today?
  Four :

  #0:  Signal processors that may provide  float  and/or  float-extended  but not  double .

  #1:  RISC-based computers that provide  4-byte float  and  8-byte double  but nothing wider.

  #2:  Power-PC;  MIPS R-10000;  H-P  8000 :   same as  #1   plus  fused  multiply-add operation.

  #3:  Intel x86, Pentium;  clones by  AMD and Cyrix;  Intel 80960KB;  new  Intel/HP  IA-64;   and
Motorola 680x0 and 88110 :   the same as  #1  plus a  10+-byte   long double .

Over  95%  of the computers on desktops have architecture #3 .  Most of the rest have  #2 .  Both  #3  
and  #2  can be and are used in restricted ways that match  #1  as nearly as matters.  All of  #1, #2, #3  
support  Exception Flags  and  Directed Roundings,  capabilities mandated by  IEEE Standard 754  
but generally omitted from architecture  #0  because they have little value in its specialized market.

Java  would add a fifth floating-point architecture  #0.5  between  #0  and  #1 .

It omits from architecture  #1  the  Exception Flags  and  Directed Roundings  IEEE 754  requires.
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Java  linguistically confuses the issues about floating-point  Exceptions:

Java,  like  C++ ,  misuses the word    “ Exception ”     to mean what  IEEE 754  calls a    “ Trap.”
Java  has no words for the five floating-point  Events  that  IEEE 754  calls  “Exceptions” :

  Invalid Operation,     Overflow,      Division-by-Zero,     Underflow,     Inexact Result

These events are  not  errors  unless they are handled badly.

They are called  “Exceptions”  because to any policy for handling them,  imposed in advance upon all 
programmers by the computer system,  some programmers will have good reasons to take exception.

IEEE 754  specifies a  default  policy for each exception,  and allows system implementors the option 
of offering programmers an alternative policy,  which is to  Trap  ( jump )  with specified information 
about the exception to a programmer-selected trap-handler.  We shall not go into traps here;  they 
would complicate every language issue without adding much more than speed,  and little of that,  to 
what flags add to floating-point programming.  ( Borneo  would provide some support for traps.)

IEEE 754  specifies five   flags,  one named for each exception:

Invalid Operation,     Overflow,      Division-by-Zero,     Underflow,     Inexact Result

A flag is a type of global variable raised as a side-effect of exceptional floating-point operations.  Also 
it can be sensed,  saved,  restored and lowered by a program.  When raised it may,  in some systems,  
serve an extra-linguistic diagnostic function by pointing to the first or last operation that raised it.

Java  lacks these flags and cannot conform to  IEEE 754  without them.
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  Invalid Operation,     Overflow,      Division-by-Zero,     Underflow,     Inexact Result

IEEE 754  specifies a  default  policy for each of these kinds of floating-point exception:
   ı   Signal the event by raising an appropriate one of the five flags,  if it has not already been raised.
   ıı  (Pre)substitute a default value for what would have been the result of the exceptional operation:

   ııı  Resume execution of the program as if nothing exceptional had occurred.

With these default values,  IEEE 754’s  floating-point becomes an  Algebraically Completed  system;  
this means the computer’s every algebraic operation produces a well-defined result for all operands.

Why should computer arithmetic be  Algebraically Completed ?

What’s wrong with the  Defaults  specified for these  Exceptions  by  IEEE 754 ?

Why does  IEEE 754  specify a flag for each of these kinds of exception?

The next three pages answer these three questions and a fourth:   What should  Java  do ?.

Name of Flag
and Exception

(Pre)substituted
Default Value

Invalid Operation Not-a-Number  (NaN), which arithmetic propagates;  or
a huge integer on overflowed flt.pt. —› integer conversion

Overflow ±∞  approximately,  depending on Rounding Direction

Division-by-Zero ±∞   …  Infinity  exactly from finite operands.

Underflow Gradual Underflow to a Subnormal (very tiny) value

Inexact Result Rounded or Over/Underflowed result as usual
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Why should computer arithmetic be  Algebraically Completed ?
Otherwise some exceptions would have to trap.  Then robust programs could avert loss of control only by 
precluding those exceptions  ( at the cost of time wasted pretesting operands to detect rare hazards )  or else by 
anticipating them all  and providing handlers for their traps.  Either way is tedious and,  because of a plethora of 
visible or invisible branches,  prone to programming mistakes that lose control after all.  For example,  …

A Cautionary Tale of the  Ariane 5   ( http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html )

In  June1996  a satellite-lifting rocket named Ariane 5   turned cartwheels shortly after launch and scattered itself,   a 
payload worth over half a billion dollars,  and the hopes of  European  scientists over a marsh in  French Guiana.  A 
commission of inquiry with perfect hindsight blamed the disaster upon inadequate testing of the rocket’s software.

What software failure could not be blamed upon inadequate testing ?

The disaster can be blamed just as well upon a programming language  ( Ada )  that disregarded the default 
exception-handling specifications in  IEEE Standard 754 for Binary Floating-Point Arithmetic.  Here is why:

Upon launch,  sensors reported acceleration so strong that it caused  Conversion-to-Integer Overflow  in software 
intended for recalibration of the rocket’s inertial guidance while on the launching pad.  This software could have 
been disabled upon rocket ignition but leaving it enabled had mistakenly been deemed harmless.  Lacking a handler 
for its unanticipated overflow trap,  this software trapped to a system diagnostic that dumped its debugging data into 
an area of memory in use at the time by the programs guiding the rocket’s motors.  At the same time control was 
switched to a backup computer,  but it had the same data.  This was misinterpreted as necessitating strong corrective 
action:  the rocket’s motors swivelled to the limits of their mountings.  Disaster ensued.

Had overflow merely obeyed the  IEEE 754  default policy,  the recalibration software would have raised a flag and 
delivered an invalid result both to be ignored by the motor guidance programs,  and the  Ariane 5  would have 
pursued its intended trajectory.

The moral of this story:   A trap too often catches creatures it was not set to catch.
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  Invalid Operation,     Overflow,      Division-by-Zero,     Underflow,     Inexact Result

What’s wrong with the  Default  values specified for these  Exceptions  by  IEEE 754 ?

Its is not the only useful way to  Algebraically Complete  the real and complex number systems.
( Were there just one we’d all learn it in school and  Over/Undeflow  would be the only floating-point exceptions.)

Other ways?  For instance,  instead of two infinities with  1/(–0) = –∞ < ( every finite real number ) < +∞ = 1/(+0) ,  
a completion with just one  ∞ = –∞ = 1/0  has its uses.  Another completion has no  ∞ ,  just  NaN .  There are 
illegitimate completions too,  like  APL’s  0/0 = 1 .  Every legitimate completion must have this property:

In the absence of roundoff and over/underflow,  evaluations of an algebraic expression that differ because the 
customary commutative,  distributive,  associative and cancellation laws have been applied can yield at most two 
values and,  if two,  one must be  NaN .  For instance,  2/(1+1/x) = 2  at  x = ∞  but  (2·x)/(x+1)  is  NaN .

By majority vote a committee chose the particular completion specified by  IEEE 754  because it was 
deemed less strange than others and more likely to render exceptions ignorable.  It ensures that,  although  Invalid 
Operations  and  Overflows  can rarely be ignored for  long,  in their absence  Underflows  can usually be ignored,  
and  Division-by-Zero  and  Inexact  can almost always be ignored.  Java  too has adopted the  IEEE 754  completion 
as if there were nothing exceptional about it.

But a programmer can have good reasons to take exception to that completion and to every other since 
they jeopardize cancellation laws or other relationships usually taken for granted.  For example,  x/x ≠ 1  if  x  is  0  
or not finite;  x–x ≠ 0 ≠ 0·x  if  x  is not finite.  After non-finite values have been created they may invalidate the 
logic underlying subsequent computation and then disappear:   (finite/Overflow)  becomes  0 ,  (NaN < 7)  becomes  
false , … .  Perhaps no traces will be left to arouse suspicions that plausible final results are actually quite wrong.

Therefore a program  must  be able to detect that non-finite values have been created
in case it has to take steps necessary to compensate for them.
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  Invalid Operation,     Overflow,      Division-by-Zero,     Underflow,     Inexact Result

Why does  IEEE 754  specify a flag for each of these kinds of exception?

Without flags,  detecting rare creations of  ∞  and  NaN  before they disappear requires programmed 
tests and branches that,  besides duplicating tests already performed by the hardware,  slow down the 
program and impel a programmer to make decisions prematurely in many cases.  Worse,  a plethora of 
tests and branches undermines a program’s modularity,  clarity and concurrency. 

With flags,  fewer tests and branches are necessary because they can be postponed to propitious points 
in the program.  They almost never have to appear in lowest-level  methods  nor innermost loops.

Default values and flags were included in  IEEE 754  because they had been  proved necessary   for 
most floating-point programmers even though a few numerical experts could often find complicated 
ways to get around the lack of them.  And,  in the past,  if an expert bungled the avoidance of floating-
point exceptions his program’s  trap  would reveal the bungle to the program’s user.

Without  Traps  nor  Flags,  Java’s  floating-point is  Dangerous .

What should  Java  do instead?
Java  could incorporate a standardized package of native-code flag-handling  methods.  The  Standard Apple 
Numeric Environment (SANE)  did that  (Apple Numerics Manual  2d ed. 1988, Addison-Wesley).   But leaving 
flags out of the language predisposes compile-time optimization to thwart the purpose of flags while rearranging 
floating-point operations and flag-references.  Borneo  would make flags part of the language and let programmers 
specify in a  method’s  signature conventions for copying,  saving,  restoring and merging flags.  Java  should do the 
same.  Of course,  a programmer can disregard all that stuff,  in which case users of his  methods  may be grateful 
for the insights into his oversights that flags reveal afterwards.
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By now  95%  of readers should be aware that there is more to floating-point than is taught in school.

Moreover,  much of what is taught in school about floating-point error-analysis is wrong.

Because they are enshrined in textbooks,  ancient rules of thumb dating from the era of slide-rules and mechanical 
desk-top calculators continue to be taught in an era when numbers reside in computers for a billionth as long as it 
would take for a human mind to notice that those ancient rules don’t always work.  They  never  worked reliably.

13  Prevalent Misconceptions  about  Floating-Point Arithmetic :
 1•  Floating–point numbers are all at least slightly uncertain.
 2•  In floating–point arithmetic,  every number is a  “ Stand–In ”  for  all numbers that differ from it in

 digits beyond the last digit stored,  so  “ 3 ”  and  “ 3.0 E0 ”  and  “ 3.0 D0 ”  are all slightly different.
 3•  Arithmetic much more precise than the data it operates upon is needless,  and wasteful.
 4•  In floating–point arithmetic nothing is ever exactly  0 ;  but if it is,  no useful purpose is served by

 distinguishing  +0  from  -0 .  ( We have already seen on  pp. 13 - 15  why this might be wrong.)

 5•  Subtractive cancellation always causes numerical inaccuracy,  or is the only cause of it.
 6•  A singularity always degrades accuracy when data approach it,  so  “ Ill–Conditioned ”  data or problems

 deserve inaccurate results.
 7•  Classical formulas taught in school and found in handbooks and software must have passed the

  Test of Time,  not merely withstood it.
 8•  Progress is inevitable:  When better formulas are found,  they supplant the worse.
 9•  Modern  “ Backward Error-Analysis ”  explains all error,  or excuses it.
10•  Algorithms known to be  “ Numerically Unstable ”  should never be used.
11•  Bad results are the fault of bad data or bad programmers,  never bad programming language design.
12•  Most features of  IEEE Floating-Point Standard 754  are too arcane to matter to most programmers.
13•  “ ‘ Beauty is truth,  truth beauty.’ — that is all ye know on earth,  and all ye need to know.”     ...  from

   Keats’   Ode on a Grecian Urn  .     ( In other words,  you needn’t sweat over ugly details.)
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“ The trouble with people is not that they  don’t  know
but that they  know  so much that ain’t so.”

… Josh Billings’  Encyclopedia of Wit and Wisdom  (1874)

The foregoing misconceptions about floating-point are quite wrong,  but this is no place to correct 
them all.  Several are addressed in   http://http.cs.berkeley.edu/~wkahan/Triangle.pdf .

Here we try first to upset beliefs in a few of those misconceptions,  and than show how they 
combine with historical accidents to mislead designers of modern programming languages into 
perpetuating the floating-point mistakes built into so many old programming languages.  To succeed 
we must undermine faith in much of the floating-point doctrine taught to language designers.

Consider  “ Catastrophic Cancellation,”  a phrase found in several texts.  Many people believe that …
•  Catastrophically bad numerical results are always due to massive cancellation in subtraction.
•  Massive cancellation in subtraction always results in catastrophically bad numerical results.

Both are utterly mistaken beliefs.

So firmly were they believed in the early  1960s  that  IBM’s /360  and its descendants could trap on a  “Significance 
Exception”  whenever  0.0  was generated by subtracting a number from itself;  the  SIGMA 7  clone could trap 
whenever more than a programmer-chosen number of digits cancelled.  For lack of a good application those traps 
were never enabled.  Besides,  the fastest way to assign  X = 0.0  was to compute  X = X-X  in a register.

The next example is designed to disassociate  “Catastrophic”  from  “Cancellation”  in a reader’s 
mind.  Since,  to most minds,  money matters more than geometry,  the example is distilled from a 
program that computes the rate of return on investment,  though the connection is not obvious.
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We attempt to program the function   A(x) :=  (x–1)/( exp(x–1) – 1 )   as follows:

Real Function  Å( Real X ) ;
      Real Y, Z ;

Y := X – 1.0 ;
Z := EXP(Y) ;
If  Z ≠ 1.0  then  Z := Y/(Z – 1.0) ;
Return  Å := Z ;

    End  Å .

Cancellation appears to turn  Å(X)  into  (roundoff)/(more roundoff)  when  X  is very near  1.0 ,  very 
much as the expression   (x–1)/(exp(x–1) – 1)  for  A(x)  approaches  0/0  as  x  approaches  1 . The 
conventional estimate of the relative error in  Å  is   (roundoff)/(exp(x–1) – 1) .  Does this imply that 
the  function  A(x)  cannot be computed accurately if  x  is too near  1 ?  No.  In fact,  A(x)  has a  
Taylor Series

  A(x) =  1 – (x–1)/2 + (x–1)2/12  – (x–1)4/720 + (x–1)6/30240 – (x–1)8/1209600 + …   for  |x–1| < π
that shows how well the  function  A(x)  behaves for  x  near  1  regardless of the behavior of its 
original  expression.  For arguments  x  close enough to  1  we can compute  A(x)  as accurately as 
needed by using enough terms of this series.  When we do so and compare this computation with the 
program  Å(X)  above,  we discover that the conventional error estimate is too crude:

Despite suggestions above that cancellation might render   Å(X) = (roundoff)/(more roundoff)  
worthless,  it never loses all accuracy.  Å  retains at least half the sig. digits arithmetic carries.  If 
the arithmetic carries,  say,  eight sig. dec.,  Å(X)  is always accurate to at least four.  How come?
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Compute  Å(X)  and plot its error and the conventional crude error bound in  ULPs:

The graph above shows how nearly unimprovable conventional error bounds can be;  but they still tend to  ∞  as  X  
approaches  1 ,  so they still suggest wrongly that  Å(X)  can lose all the digits carried.  To dispel that suggestion we 
must take explicit account of the discrete character of floating-point numbers:  The graph shows the worst error in  

Å(X)  to be about  ±2900 ≈ ±211.5  ULPs  at which point less than half the  24  sig. bits carried got lost,  not all bits.  
This is no fluke;  in general  Å(X)  is provably accurate to at least half the sig. bits carried by the arithmetic.
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At first sight an obvious way to repair the inaccuracy of program  Å(…)   is to put the series  A(X)  into it like this:
Real Function  Á( Real X ) ;
      Real Y, Z ;

Y := X–1.0 ;
If  |Y| < Threshold  then   Z := 1.0 – Y·(1/2 – Y·(1/12 – Y·(1/720 – Y·(1/30240 – …)))) 

else     Z := Y/( EXP(Y) – 1.0 ) ;
Return  Á := Z ;

    End  Á .
Before this program  Á(X)  can be used,  three messy questions need tidy answers:

What value should be assigned to  “ Threshold ”  in this program?
How many terms  “ …–Y·(1/30240 – …)… ”  of the series  A(X)  should this program retain?
How accurate is this program  Á(X) ?

The answers are complicated by a speed/accuracy trade-off that varies with the arithmetic’s precision.

Rather than tackle this complication,  let’s consider a simpler but subtle alternative:
Real Function  Â( Real X ) ;
      Real Y, Z ;

Y := X – 1.0 ;
Z := EXP(Y) ;
If  Z ≠ 1.0  then  Z := LN(Z)/(Z – 1.0) ;
Return  Â := Z ;

    End  Â .
This third program  Â(X)  differs from the first  Å(X)  only  by the introduction of a logarithm into the assignment  
Z := LN(Z)/(Z – 1.0)  instead of  Z := Y/(Z – 1.0) .  This logarithm recovers the worst error,  committed when  
EXP(Y)  was rounded off,  well enough to cancel almost all of it out.  Â(X)  runs somewhat slower than  Á(X) .

This subtle program  Â(X)  is provably always accurate within a few  ULPs  unless  Overflow  occurs.
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What general conclusions do the foregoing examples  ( A,  Å,  A,  Á,  Â )  support?  These three:

1.  Cancellation is not a reliable indication of  ( lost )  accuracy.  Quite often a drastic departure of 
intermediate results  ( like  LN(Z)  above )  from what would have been computed in the absence of 
roundoff is no harbinger of disaster to follow.  Such is the case for matrix computations like inversion 
and eigensystems too;  they can be perfectly accurate even though,  at some point in the computation,  
no intermediate results resemble closely what would have been computed without roundoff.  What 
matters instead is how closely a web of mathematical relationships can be maintained in the face of 
roundoff,  and whether that web connects the program’s output strongly enough to its input no matter 
how far the web sags in between.  Error-analysis can be very unobvious.

2.  Error-analysts do not spend most our time estimating how big some error isn’t.  Instead we spend 
time concocting devious programs,  like the third  Â(X)  above,  that cancel error or suppress it to the 
point where nobody cares any more.  Competent error-analysts are extremely rare.

3.  “ 95%  of the folks out there are completely clueless about floating-point.”  ( J.G.,  28 Feb. 1998 )
They certainly aren’t error-analysts.  They are unlikely to perceive the vulnerability to roundoff of a 
formula or program like the first  Å(X)  above until after something bad has happened,  which is 
more likely to happen first to you who use the program than to him who wrote it.  What can protect 
you from well-meaning but numerically inexpert programmers?   Use Double Precision.   When the 
naive program  Å(X)  is run in arithmetic twice as precise as the data  X  and the desired result,  it 
cannot be harmed by roundoff.  Except in extremely uncommon situations,  extra-precise arithmetic 
generally attenuates risks due to roundoff at far less cost than the price of a competent error-analyst.
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Uh-oh.   The advice  “ Use Double Precision ”  contradicts an ancient  Rule of Thumb,  namely

“ Arithmetic should be barely more precise than the data and the desired result.”

…

This  Rule of Thumb  is wrong.

It was  never  quite right,  but it’s still being built into programming languages and taught in school.
…

Why do so many people still believe in this wrong  Rule of Thumb ?

What’s wrong with this  Rule of Thumb?

How,  when and why did this wrong  Rule of Thumb  get put into so many programming languages?

So it’s wrong.  What should we be doing instead?

The next twelve pages address these questions.
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“ Arithmetic should be barely more precise than the data and the desired result.”
Why do so many people still believe in this wrong  Rule of Thumb ?

It is propagated with a plausible argument whose misuse of language obscures its fallacy.

The argument goes thus:  “ When we try to compute  c := a¤b  for some arithmetic operation  ¤  drawn from  
{ +, –, ·, / },  we actually operate upon inaccurate data  a+∆a  and  b+∆b ,  and therefore must compute instead  
c+∆c = (a+∆a)¤(b+∆b) .  To store more  ‘significant digits’  of  c+∆c  than are accurate seems surely wasteful and 
possibly misleading,  so  c+∆c  might as well be rounded off to no more digits than are  ‘significant’  in whichever 
is the bigger  ( for  { +, – } )  or less precise  ( for  { ·, / } )  of  a+∆a  and  b+∆b .  In both cases,  the larger of the 
precisions of  a+∆a  and  b+∆b  turns out to be at least adequate for  c+∆c .”

To expose the fallacy in this argument we must first cleanse some of the words in it of mud that has accreted after 
decades of careless use.  In the same way as a valuable distinction between  “disinterested”  (≈ impartial )  and  
“uninterested”  (≈ indifferent )  is being destroyed,  misuse is destroying the distinction between  “precision”  and  
“accuracy”.  For instance,  Stephen Wolfram’s Mathematica   misuses  “Precision” and “Accuracy”  to mean  
relative  and absolute   accuracy or precision..  Let’s digress to refresh these words’ meanings:

“Precision”  concerns the tightness of a specification;  “Accuracy”  concerns its correctness.  An utterly inaccurate 
statement like  “You are a louse”  can be uttered quite precisely.  The  Hubble  space-telescope’s mirror was ground 
extremely precisely to an inaccurate specification;  that precision allowed a corrective lens,  installed later by a 
space-walking astronaut,  to compensate for the error.  3.177777777777777  is a rather precise  ( 16 sig. dec)  but 
inaccurate  ( 2 sig. dec.)  approximation to  π = 3.141592653589793… .  Although   “ exp(-10) = 0.0000454 ”   has  
3  sig. dec. of precision it is accurate to almost  6 .  Precision is to accuracy as intent is to accomplishment;  a natural 
disinclination to distinguish them invites first shoddy science and ultimately the kinds of cynical abuses brought to 
mind by  “ People’s Democracy,”  “ Correctional Facility ”  and  “ Free Enterprise.”
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Strictly speaking,  a number can possess neither  precision  nor  accuracy.

A number possesses only its value.

Precision  attaches to the format into which the number is written or stored or rounded.  Better  ( higher or wider )  
precision implies finer resolution or higher density among the numbers representable in that format.  All three of

3 3.0 E0 3.0 D0
have exactly the same value though the first is written like a  2-byte  INTEGER  in  Fortran  or  int  in  C,  the 
second is written like a  4-byte  REAL  in  Fortran  or  8-byte  double  in  C,  and the third is written for  8-byte  
DOUBLE PRECISION  in  Fortran.  To some eyes these numbers are written in order of increasing precision.  To 
other eyes the integer  “ 3 ”  is exact and therefore more precise than any floating-point  “ 3.0 ”  can be.  Precision  
( usually  Relative  precision )  is commonly gauged in  “ significant digits ”  regardless of a number’s significance.

Many a textbook asserts that a floating-point number represents the set of all numbers that differ from it by no 
more than a fraction of the difference between it and its neighbors with the same floating-point format.  This 
figment of the author’s imagination may influence programmers who read it but cannot otherwise affect computers 
that do not read minds.  A number can represent only itself,  and does that perfectly.

Accuracy  connects a number to the context in which it is used.  Without its context,  accuracy makes no more 
sense than the sentence  “ Rosco is very tall.”  does before we know whether  Rosco  is an edifice,  an elephant,  a 
sailboat,  a pygmy,  a basketball player,  or a boy being fitted with a new suit for his confirmation.  In context,  
better  ( higher )  accuracy implies smaller error.  Error  ( usually  Absolute  error )  is the difference between the 
number you got and the number you desired.  Relative  error is the absolute error in   ln(what you got)   and is 
often approximated by   (absolute error)/(what you got)   and gauged in  “ significant digits.”

To distinguish between  Precision  and  Accuracy  is important.   “ The difference between the right word 
and the almost right word is … the difference between lightning and the lightning bug.”  —  Mark Twain



How Java’s Floating-Point Hurts Everyone Everywhere

June 18, 1998 5:32 am                                                     Work in Progress  —  Subject to Supersession                                                                             Page 34

Precision  and  Accuracy  are related,  indirectly,  through a speed – accuracy trade-off.

Before the mid  1980s,  floating-point arithmetic’s accuracy fell short of its precision on several commercially 
significant computers.  Today only the  Cray X-MP/Y-MP/…/J90  family fails to round every arithmetic operation 
within a fraction of an  ULP,  and only the  IBM /360/370/390  family and its clones have non-binary floating-
point not rounded within half an  ULP.  All other commercially significant floating-point hardware now on and 
under desktops rounds binary within half an  ULP  as required by  IEEE Standard 754  unless directed otherwise.  
That is why we rarely have to distinguish an arithmetic operation’s accuracy from its precision nowadays.  But …

Accuracy < Precision  for  most  floating-point computations,  not  all.
The loss of accuracy can be severe if a problem or its data are  Ill-conditioned,  which means that the correct result 
is hypersensitive to tiny perturbations in its data.  The term  “ Ill-conditioned ”  suggests that the data does not 
deserve an accurate result;  often that sentiment is really  “ sour grapes.”  Data that deserve accurate results can be 
served badly by a naive programmer’s choice of an algorithm  numerically unstable  for that data although the 
program may have delivered satisfactory results for all other data upon which it was tested.  Without a competent 
error-analysis to distinguish this numerical instability from ill-condition,  inaccuracy is better blamed upon  “ bad 
luck.”  Surprisingly many numerically unstable programs,  like  Å(X)  above,  lose up to half the sig. digits carried 
by the arithmetic;  some lose all,  as if the program harbored a grudge against certain otherwise innocuous data.

Despite how most programs behave,  no law limits every program’s output to less accuracy than its arithmetic’s 
precision.  On the contrary,  a program can simulate arithmetic of arbitrarily high precision and thus compute its 
output to arbitrarily high accuracy limited only by over/underflow thresholds,  memory capacity,  cleverness and 
time.  ( Learn how from papers by  David Bailey,  by  Douglas Priest,  and by  Jonathan Shewchuk.)  Since very 
high precision is slow,  a programmer may substitute devious tricks to reach the same goal sooner without ever 
calling high-precision arithmetic subroutines.  His program may become hard to read but,  written in  Fortran  with 
no  EQUIVALENCE  statements or in  Pascal  with no variant records or in  C  with no  union  types or in  Java  
with no bit-twiddling,  and using integer-typed variables only to index into arrays and count repetitions,  it can be 
written in every language to run efficiently enough on all computers commercially significant today except  Crays.
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It would seem then that today’s common programming languages pose no insurmountable obstacles 
to satisfactory floating-point accuracy;  it is limited mainly by a programmer’s cleverness and time.  Ay,  there’s 
the rub.  Clever programmers are rare and costly;  programmers too clever by half are the bane of our industry.  An 
unnecessary obstacle,  albeit surmountable by numerical cleverness,  levies unnecessary costs and risks against 
programs written by numerically inexpert but otherwise clever programmers.  If programming languages are to 
evolve to curb the cost of programming  ( not just the cost of compilers )  then,  as we shall see,  they should 
support arbitrarily high precision floating-point explicitly,  and they should evaluate floating-point expressions 
differently than they do now.  But they don’t.

Current programming languages flourish despite their numerical defects,  as if the ability of a numerical 
expert to circumvent the defects proved that they didn’t matter.  When a programmer learns one of these languages 
he learns also the floating-point misconceptions and faulty rules of thumb implicit in that language without ever 
learning much else about numerical analysis.  Thus does belief persist in the misconceptions and faulty rules of 
thumb despite their contradiction by abundantly many counter-examples about which programmers do not learn.  
Å(X)  above was one simple counter-example;  here is another:

Let   ƒ(x) := ( tan(sin(x)) – sin(tan(x)) )/x7 .  If  x = 0.0200000  is accurate to  6  sig. dec.,  how accurately does it 
determine  ƒ(x)  and how much precision must arithmetic carry to obtain that accuracy from the given expression?  
This  x  determines  ƒ(x) = 0.0333486813  to about  9  sig. dec. but at least  19  must be carried to get that  9 .

The precision declared for storing a floating-point variable,
the accuracy with which its value approximates some ideal,
the precision of arithmetic performed subsequently upon it,
and the accuracy of a final result computed from that value

cannot be correlated reliably using only the rules of a programming language without error-analysis.
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“ Arithmetic should be barely more precise than the data and the desired result.”

What’s wrong with this  Rule of Thumb?

By themselves,  numbers possess neither precision nor accuracy.  In context,  a number can be less 
accurate or  ( like integers )  more accurate than the precision of the format in which it is stored.  Anyway,  to 
achieve results at least about as accurate as data deserve,  arithmetic precision well beyond the precision of data 
and of many intermediate results is often the most efficient choice albeit not the choice made automatically by 
programming languages like  Java.  Ideally,  arithmetic precision should be determined not  bottom-up  ( solely 
from the operand’s precisions )  but rather  top-down  from the provenance of the operands and the purposes to 
which the operation’s result,  an operand for subsequent operations,  will be put.  Besides,  in isolation that 
intermediate result’s  “accuracy”  is often irrelevant no matter how much less than its precision.

What matters in floating-point computation is how closely a web of mathematical relationships can 
be maintained in the face of roundoff,  and whether that web connects the program’s output strongly 
enough to its input no matter how far the web sags in between.  A web of relationships just adequate 
for reliable numerical output is no more visible to the untrained eye than is a spider’s web to a fly.

Under these circumstances,  we must expect most programmers to leave the choice of every floating-
point operation’s precision to a programming language rather than infer a satisfactory choice from a 
web invisible without an error-analysis unlikely to be attempted by most programmers.

Error-analysis is always tedious,  often fruitless;  without it programmers who despair of choosing precision well,  
but have to choose it somehow,  are tempted to opt for speed because they know benchmarks offer no reward for 
accuracy.  The speed-accuracy trade-off is so tricky we would all be better off if the choice of precision could be 
automated,  but that would require error-analysis to be automated,  which is provably impossible in general.
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Why hasn’t error-analysis been automated?  Not for lack of trying.

The closest we can come to automated error-analysis is  Interval Arithmetic.  It is a scheme,  used more 
in  Europe  than in  America,  that approximates every real variable not by a single floating-point number but by a 
pair computed to surely straddle the variable’s true value.  By exploiting  IEEE 754’s  directed roundings,  we can 
implement  Interval Arithmetic  to run no more than a few times slower than ordinary arithmetic;  speed is rarely 
at issue.  More important is that our numerical algorithms must be recast to make use of  Interval Arithmetic  in 
just the right places lest it produce awfully pessimistic error bounds.  Besides,  nobody wants error bounds;  we 
desire final results known to be reliable because their errors have been proved inconsequential.

Therefore we cannot get full value from  Interval Arithmetic  unless it is integrated into our programming 
language along with arithmetic of arbitrarily high precision variable at run-time.  Moreover,  to help recast 
algorithms into forms suitable for  Interval Arithmetic,  we need automated algebra systems,  akin to  Macsyma ,  
Maple   or  Mathematica ,  capable of generating derivatives and divided differences of a program from its text.

It is a daunting investment.

Recurring attempts to invent cheaper substitutes for  Interval Arithmetic  have all failed in the end 
after enough local limited success initially to tantalize their inventors with dreams of glory.

Among these attempts are …
•  Significance Arithmetic,
•  Probabilistic Error-Estimates,   and
•  Repeated Recomputation with Ever Increasing Precision.

The next two pages describe these attempts.
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Significance Arithmetic  is one of those recurring attempts.  It was advocated for floating-point hardware first by  
N. Metropolis  and  R. Ashenhurst  in the late  1950s.  The idea is to store for each number only those significant digits believed to be 
correct and discard the rest.  For instance,  “ 3.140 ”  might be interpreted as the interval of numbers between  3.1395  and  3.1405  in 
the same way as some texts would have us treat all floating-point numbers.  Something like that is built into  Mathematica .  Most 
implementations provide a special way to store those floating-point numbers intended to represent only themselves exactly.  Every 
implementor has to choose for each kind of arithmetic operation a rule whereby the result’s number of significant digits retained is 
determined from the operands’ numbers of significant digits stored.  Some choices tend to be pessimistic;  in the course of many 
arithmetic operations,  retained sig. digits tend to dwindle faster than correct digits would for ordinary floating-point operations.  
Other choices tend to be optimistic;  retained sig. digits tend to accrete faster than correct digits would.  Some choices are pessimistic 
for one computations,  optimistic for another.  Computations can always be contrived for which digits accrete and/or dwindle at the 

rate of at least half a digit too much per operation.  Blind faith in  Significance Arithmetic  is faith misplaced.

Probabilistic error-estimates have an long history of failures.  The hope was that the results of a few repeated 
recomputations,  with random roundoff-like perturbations augmenting roundoff in every arithmetic operation,  would scatter to an 
extent indicative of their errors.  Hardware to do this was first built into the  IBM 7030 Stretch  in the late  1950s.  Alas,  scatter far 
tinier than error has a surprisingly high probability when the error is gross.  See  “The  Improbability of Probabilistic Error Analyses 
for Numerical Computations”  in  http://http.cs.berkeley.edu/~wkahan/improber.ps  for a disparaging critique.

The futility of all such simple-minded attempts to automate error-analysis is exposed by an example contrived by  
Jean-Michel Muller  around  1980  and modified slightly here.  Given   G(y, z) := 108 – ( 815 – 1500/z )/y   and  
initial values  x0 := 4  and  x1 := 4.25 ,  define  xn+1 := G(xn, xn-1)  for  n = 1, 2, 3, …  in turn.  We seek the limit  

L  to which the sequence  {xn}  tends;  xn —› L  as  n —› +∞ .  In the absence of an analysis that finds  L  exactly 

let us compute the sequence  {xn}  until  xN-1  differs negligibly from  xN  or else until  N = 1000 ,  say,  and then 

stop with  xN  as our estimate of  L .  All fast floating-point hardware and every implementation of  Significance 

Arithmetic  or randomized arithmetic will allege  L = 100  very convincingly.  Try it!   The correct limit is  L = 5 .  
Interval Arithmetic  delivers a narrow interval around  L ≈ 5  instead of a worthless wide interval only if it carries 
enormous precision,  rather more than  5N  sig. bits.  However,  changing either  x0 := 4  or  x1 := 4.25  ever so 

slightly changes the true  L  from  5  to  100 .  which may then be miscomputed if  N  is not huge enough.
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Repeated Recomputation with Ever Increasing Precision  is your best bet for removing the obscuration of 
roundoff from a floating-point computation.  The idea is to rerun a program repeatedly,  each time with the same 
input data but with all local and intermediate variables and all constant literals redeclared to higher precision,  until 
successive outputs converge closely enough to overwhelm skepticism.  Each repetition should ideally increase 
precision by a factor near  √2 ;  go from,  say,   8 sig. dec.  to  12  to  16  to  24  to  32  … ,  so after a while each 
repetition will cost roughly as much time as have all previous repetitions.  This prescription is easier to follow in 
languages like  Axiom ,  Derive ,  Macsyma ,  Maple  and Mathematica ,  whose mathematical libraries 
were designed for this purpose,  than to follow in languages like  Lisp,  C++  and  Fortran 9X  that were not 
designed with this prescription in mind.  (“Easier”  does not mean  “easy;”  the aforementioned languages manage 
literal constants and mixed-precision expressions in inconvenient ways that invite mistakes.)

This prescription is impractical in  Java  primarily because it lacks operator overloading.

Ever increasing precision usually works,  but it can be slow.  And it is certainly not foolproof.
For example,  for real variables  x and z  define three continuous real functions  E,  Q and H  thus:

 E(z) :=  if  z = 0  then  1  else  (exp(z) – 1)/z ;    Q(x) :=  | x – √(x2+1) |  –  1/( x + √(x2+1) ) ;    H(x) :=  E( Q(x)2 ) .
Then letting  x = 15.0,  16.0,  17.0,  …, 9999.0  in turn compute  H(x)  in floating-point arithmetic rounded to the 
same precision in all expressions.  No matter how high the precision,  the computation almost always delivers the 
same wrong  H(x) = 0 .  Try it!  In perfect arithmetic  Q(x) = 0  instead of roundoff,  so the correct  H(x) = 1 .

( This  “numerical instability”  can be cured by changing  E(z)  the way  Å(X)  was changed into  Â(X)  above.)

Conclusion:  In general there is no way to automate error-analyses without which we cannot choose 
arithmetic precision aptly nor guarantee the correctness of floating-point results.  For programmers 
who will not perform error-analyses we must build into programming languages the rules of thumb 
that choose precisions in ways that usually work and aren’t too slow.   But  Java  hasn’t done that.
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“ Arithmetic should be barely more precise than the data and the desired result.”

How,  when and why did this wrong  Rule of Thumb  get put into so many programming languages?

It started in  1963.  Before then  IBM’s 709/7090/7094  mainframes had been delivering sums and products of  
SINGLE PRECISION  variables into a  DOUBLE PRECISION  floating-point accumulator that mimicked old electro-
mechanical calculators like the  Friden   designed decades earlier for statisticians and actuaries.  IBM’s  Fortan  
compilers routinely truncated this  DOUBLE  sum or product to  SINGLE  when combining it arithmetically with a  
SINGLE  operand,  but retained the registers’  DOUBLE  value when combining it with a  DOUBLE  variable,   as in 
scalar product accumulation  DSUM = DSUM + SA(I)*SB(I) .  This matched what experienced programmers had 
been doing in assembly language but was unobvious to other programmers.  In  1963  the  Fortran IV  compiler 
released with  IBSYS 13  adopted a strict bottom-up semantics that truncated sums and products of  SINGLEs  
from  DOUBLE  to  SINGLE  immediately,  thus replacing the interpretation  dble(DSUM + SA(I)*SB(J))  rounded 
once by a twice-rounded  dble(DSUM + sngl(SA(I)*SB(I))) .  To obtain the older semantics now programmers 
had to write  DSUM = DSUM + DPROD(SA(I),SB(I))  but few knew that and fewer knew why it had changed.

IBM  wished to wean programmers from old  7094  habits in anticipation of its  System/360’s  utterly different 
multi-register floating-point architecture revealed in  1964.  The new semantics appealed also to  CDC  because 
their  CDC 6600,  designed by  Seymour Cray with eight  SINGLE PRECISION  floating-point registers almost as 
wide as  IBM’s  DOUBLE PRECISION,  ran faster that way.  Compiler writers liked the new simpler semantics;  it 
helped fit fast one-pass compilers entirely into the core memories of that era,  and its determination of arithmetic 
precision bottom-up complied with a  “ context-free ”  paradigm adopted by computer linguists.  Although earlier 
computers and their languages had been designed by people who expected to use them daily,  by  1963  design had 
fallen to computer- and language- “architects”  who did not have to use their handiwork to earn their daily bread.

What is an  Architect ?  He designs a house for another to build and someone else to inhabit.

In  1966  delegates from  IBM’s  user-group  SHARE  heard  Gene Amdahl,
architect of  System/360,  admit about its floating-point that …
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“ If we had known then what we know now,  we wouldn’t have done it that way.”

Error-analysts like  Hirondo Kuki  who warned about the new architectures’ impact upon floating-point were not 
heeded until too late.  Besides,  we were fully occupied developing portable numerical software to run on a now 
madly proliferating diversity of competing computer arithmetics;  bottom-up arithmetic semantics was the least of 
our concerns.  In  1967  some of  System/360’s  floating-point hardware defects were repaired,  but not  Fortran’s.

In  1988  ANSI C  copied  Fortran’s  mistake.  Before then  Kernighan-Ritchie  C  had evaluated all 
floating-point expressions in  double  regardless of whether operands were  floats  or  doubles.  This was the 
right thing to do albeit for the wrong reason:  the old  DEC PDP-11  on which  C  had first been developed a 
decade earlier ran faster that way.  But  CDC’s  descendants from  Cray’s  6600  and the newer  CRAY  machines 
ran much slower that way because their  double  arithmetic had to be simulated in software.  Besides,  their  
float  was almost as wide as everyone else’s  double,  so  Cray’s  double was a luxury rarely needed.  And 
compiler writers taught to revere  “ context free ”  felt more comfortable with  Fortran-like  bottom-up semantics.  
Consequently when  ANSI X3J11  allowed  ( but did not oblige )  C  compilers to use  Fortran-style bottom-up 
semantics instead of  Kernighan-Rirchie  all-double,  CRAY’s  C  was not the only compiler to switch.  This 
switch degraded some programs’ accuracy sometimes severely on some machines.  Usually,  severe degradation 
occurred only for rare seemingly random data.  The cure was the insertion of  (double)  casts in a few places in 
a few programs,  but hardly any programs were corrected that way.  Vendors prefer that software users accept 
aberrations due to roundoff as  Acts of God  instead of errors induced by historically accidental language defects.

Example:  Should removal of algebraically redundant parentheses correct a  “ programmer’s error ” ?
  ( Such parentheses are usually best left in place,  but here is a floating-point exception of an entirely different kind.)

A  Java  programmer wrote   “ C=(F-32)*(5/9) ”   instead of   “ C=(F-32)*5/9 ”   to convert
Fahrenheit  F  to  Celsius  C ;  see  comp.lang.java.help  for  1997/07/02 .  It could have been  C
or  Fortran.  Is the joke on the programmer?  Or on us for perpetuating ancient blunders blindly?
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“ Arithmetic should be barely more precise than the data and the desired result.”

So it’s  wrong.  What should we be doing instead?

We must institute better rules for the determination of arithmetic precision than the bottom-up rule 
inferred naively from a  “ context free ”  principle that is at best a linguistic idealization.

Ideally,  floating-point precision should be determined by the programmer from an error-analysis 
that takes account of operands’ provenances and the purpose that each operation’s result will serve.  
Sometimes this ideal is achievable.  Then the programmer must be able to use type-declarations, 
similar to those that determine the meanings of expressions involving integers,  characters,  arrays  
and other classes,  to express his intent succintly without superfluous locutions  ( like casts )  that 
obscure mathematical formulas.  And the compiler must honor his stated intent scrupulously,  taking 
only those liberties the programmer has licensed explicitly.  Such liberties  ( optimizations )  will be 
described later;  they exclude  “ loose numerics ”  that would undermine a programmer’s control.

“ 95%  of the folks out there are completely clueless about floating-point.”  ( J.G.,  28 Feb. 1998 )  
Error-analysis is no option for them.  For them,  programming languages must determine floating-
point precision by default from rules of thumb that,  taking both accuracy and speed into account, 
optimize prospects for successful use of their programs.  Such rules of thumb are on the next page.

What about taking account of cost?  It matters for embedded systems sold in millions,  for  PDAs,  for clever 
credit cards,  …  that simulate floating-point in firmware to reduce hardware costs.  If they perform little floating-
point,  its speed doesn’t matter.  Otherwise they use floating-point hardware enough to justify the space it occupies 
on chip;  signal processing is like that.  We assume full hardware support for  Java’s  or  Borneo’s  floating-point.
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Four  Rules of Thumb  for  Best Use  of  Modern Floating-point Hardware

0. All  Rules of Thumb  but this one are fallible.  Good reasons to break rules arise occasionally.

1. Store large volumes of data and results no more precisely than you need and trust.
Storing superfluous digits wastes memory holding them and time copying them.

2. Evaluate arithmetic expressions and,  except possibly for gargantuan arrays,  declare temporary
    ( local )  variables  all  with the widest finite precision that is not too slow nor too narrow.   Here
     “too narrow”  applies only when a declared variable in a floating-point expression or assignment is more
     precise than the hardware can support at full speed,  and then arithmetic throughout the expression has to be at
     least as precise as that variable even if slowed by the simulation of its wider precision in software.  This is also
     the precision to which to round infinitely precise literal constants and integer-typed variables.  Otherwise
     expressions containing only  float  variables should be evaluated,  in the style of  Kernighan-Ritchie  C ,  in
     double  or,  better,  long double  if the hardware supports it at full speed.  Of course explicit casts and
     assignments to a narrower precision must round superfluous digits away as the programmer directs.

3. Objects represented by numbers should ideally have one parsimonious  representation,  called
“fiducial”  and rounded according to rule  1,  from which all other representations and attributes
are computed according to rule  2.  For instance,  a triangle can be represented fiducially by  float
vertices from which edges are computed in  double,  or by  float  edges from which vertices are
computed in  double.  Computing either from the other in  float  may render them inconsistent if the
triangle is too obtuse.  In general,  a good fiducial representation can be hard to determine.  Moreover,  an
object in motion may require two representations,  a  float  fiducial snapshot and a moving  double.
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Example:  Given the angles of declination and right ascension of two very distant stars,  what angle 
do they subtend at the eye of an astronaut floating slowly in space not too far from the solar system?

Let  D  be the given declination and  A  the right ascension,  in degrees,  for one star;  they satisfy  
–180˚ ≤ A ≤ 180˚  and  –90˚ ≤ D ≤ 90˚ .  Similarly let  D+d  and  A+a  be given for the other star.   
Then a well-known formula for the angle  V  the stars subtend at the eye is

V =  2·arcsin √( sin2(d/2) + cos(D+d)·cos(D)·sin2(a/2) ) .

This formula is easy to derive and serves earth-bound astronomers well because their  V  is usually a small angle.  
However,  an astronaut might be interested in angles  V  very near  180˚  for which this formula loses about half the 
sig. digits arithmetic carries.  Try it!  The loss can occur despite that every term inside   √(…)  is positive,  so … 
Don’t blame cancellation;  there isn’t any.   This formula just doesn’t like  V  too near  180˚ .

Given  float  data  A, a, D, d,  Java’s  ( and  ANSI C’s )  Fortran-like  semantics will let  float  V  be computed 
far less accurately than the data deserve at some future time when trigonometric functions for  float  precision are 
added to the  java.lang.Math  library.  ( Currently it has only  double.)  At that time the formula above for  V  
( written  V = (float)(2*asin…)  in  Java )  may malfunction in subtle ways that could not show up when its 
program was first written and tested.  How likely will this malfunction,  if it occurs,  be diagnosed correctly?

Once written and tested,  can the program serve safely  Everywhere,  including outer space?

It would be safe enough if  Java  used old-fashioned  Kernighan-Ritchie C  floating-point semantics.

( A better way to compute  V  is from a formula fully accurate for all data,  if such can be found.  It does exist:

V =  2·arctan √( ( (TD+ta+1)·td + ta )/( ((td+1)·ta + 1)·TD + 1 ) )   wherein  TD = tan2(D+d/2) ,  td = tan2(d/2)  and  

ta = tan2(a/2) .  It’s fast too.  Would you have found it?  Can you prove it?  How much time will you need? )
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What can’t be proved right
about floating-point

is very likely wrong.

Java’s  treatment of  Floating-Point  is provably wrong-headed.

The mistakes must be corrected by  Sun
lest  Java’s  claim to leadership be undermined

and its mission jeopardized.

Only if  100% Pure Java   is acknowledged to be better  Java
can it compete against  Microsoft’s  J++ .

The first step with the least cost and biggest payoff is to

abandon  Fortran-like  bottom-up  floating-point semantics,  and

adopt  Kernighan-Ritchie C  floating-point semantics.
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It is bizarre that a programming language,  promulgated to  Everyman  to program  Everything  to run  
Everywhere,  has floating-point syntax and semantics that is so disadvantageous to the overwhelming 
majority of programmers and users of the overwhelming majority of computers on desktops.  Java’s  
floating-point semantics can’t be blamed upon unawareness of old-fashioned  Kernighan-Ritchie C .

Three  Williams
contend for
  Java’s
numerics

William K.

William G.
William J.

 Java
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A  Java  Technicality
Overloaded  methods  selected according to the types,  float  or  double,  of their arguments:

Currently  Java  widens a  float  argument to  double  if this is the type that a  method  expects,  according to its  
signature.  If the selection of the  method  depends upon whether its argument is  float  or  double,  then a 
way to inhibit that widening must be available to a programmer who intends to select that  method’s  float  
version.  Borneo  has introduced a convention that  Java  too can adopt for the purpose:  inhibit widening of an 
argument with an explicit  (float)  cast.  For example,  tan(x)  should delivers a  double  result no matter 
whether  x  is  float  or  double,  but  tan((float)x)  should deliver a  float  result provided a suitable  
tan  method  is available.  Thus,  a programmer who gives no thought to the question gets the safer default.

The adoption of old-fashioned  Kernighan-Ritchie C  semantics for floating-point entails no change to 
the  JVM,  very little change to the  Java  language,  and some changes in the behavior of pre-existing  
Java  programs after they are recompiled.  These last changes will almost never be significantly 
disadvantageous.  Accuracy will almost always improve.  Speed may drop  20%,  most likely on  Sun 
SPARCs.  On  DEC Alphas  and  Intel  processors and their clones speed will change imperceptably,  
and it may increase on older  Power PCs,  because their register architectures favor  double.

There is no substantial downside risk associated with  Java’s  adoption of old-fashioned  Kernighan-
Ritchie C  semantics for floating-point,  and it could improve the reliability of  Java’s  floating-point 
computation awesomely.  Here follows an elaborate eight-page example:

Three-dimensional rectilinear geometry.
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Matrix Notation for 3-Dimensional Euclidean Geometry
Lines,  Planes and Cross–Products:

Let bold-faced lower-case letters  p, q, r, …, x, y, z  stand for real 3-dimensional column-vectors.  

Then row vector  pT = [p1, p2, p3]  is the transpose of column vector  p ,  and  pT·q  is the scalar 

product  p•q  of row  pT  and column  q .   Euclidean length  ||p|| = √(pT·p) .

Do not confuse the scalar  pT·q = qT·p    with the  3–by–3  matrices  (“dyads”)  p·qT ≠ q·pT  nor with 
the vector cross-product  p×q = –q×p .

As we shall see,  cross-products are so important as to justify introducing a notation  p¢ ,  pronounced  

“ p–cross,”  for a  3–by–3  skew-symmetric  ( p¢T = -p¢ )  matrix defined by the vector cross-product 

thus:  p×q = p¢·q .  Explicitly the matrix  p¢  is

The main advantage of a matrix notation for these geometrical entities is that matrix multiplication is 

associative:  pT·q¢·r = (pT·q¢)·r = pT·(q¢·r) = p•(q×r)  and  p¢·q¢·r = (p¢·q¢)·r = p¢·(q¢·r) = p×(q×r)  
unlike scalar and cross-products;   (p•q)·r ≠ p·(q•r)  and    (p×q)×r ≠ p×(q×r) .  Besides legibility,  
this matrix notation promotes simpler expressions,  shorter proofs,  and easier operator overloading in 
programming languages.

0 p3– p2

p3 0 p– 1

p2– p1 0



How Java’s Floating-Point Hurts Everyone Everywhere

June 18, 1998 5:32 am                                                     Work in Progress  —  Subject to Supersession                                                                             Page 49

For Readers Reluctant to Abandon  •  and  ×  Products

( Other readers can skip this page.)

We’re not abandoning familiar locutions;  we’re just writing most of them shorter.  Compare the 

Triple Product formula  (p×q)×r =  q·p•r – p·q•r  with its matrix equivalent  (p¢·q)¢ =  q·pT – p·qT ,  

or  Jacobi’s Identity  p×(q×r) + q×(r×p) = –r×(p×q)  with its equivalent  p¢·q¢ – q¢·p¢ = (p¢·q)¢ ,  or  

Lagrange’s Identity  (t×u)•(v×w) = t•v·u•w – u•v·t•w  with  (t¢·u)T·(v¢·w) = det([t, u]T·[v, w]) ,  for 
succintness and ease of proof.  Some things don’t change much;   p×q = –q×p   becomes  

p¢·q = –q¢·p ,  so  p¢·p = o  ( the zero vector ),   and   p•(q×r)  =  pT·q¢·r  =  det([p, q, r]) .

The notations’ difference becomes pronounced as problems become more complicated.  For instance,  

given a unit vector  p  ( with  ||p|| = 1 )  and a scalar  ψ ,  what orthogonal matrix  R = (RT)–1  rotates  
Euclidean  3–space through an angle  ψ  radians around the axis  p ?  In other words,  R·x  is to 
transform a vector  x  by rotating it through an angle  ψ  about an axis  p  fixed through the origin  o .

An ostensibly simple formula  R := exp(ψ·p¢)   uses the skew-symmetric cross-product matrix  p¢  
defined before.  Here  exp(…)  is  not  the  array  exponential that is applied elementwise,  but is the  
matrix  exponential;  think of  R = R(ψ)  as a matrix-valued function of  ψ  that solves the differential 

equation  dR/dψ = p¢·R = R·p¢  starting from  R(0) = I ,  the identity matrix.  Computed from  p  and  

ψ  directly,   R =  I  +  2·( cos(ψ/2)·I + (sin(ψ/2)·p¢) )·(sin(ψ/2)·p¢) .   Rewriting this expression with 

solely  •  and  ×  products doesn’t improve it.  Try it!   Surely  R = exp(ψ·p¢)  must be preferred.
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Geometric Operations as Overloaded Operators in  Java/Borneo

We contemplate defining classes of  3-dimensional real  ( float,  double,  and  long double  
too when available )  rows,  columns and matrices interpreted as vectors and geometrical mappings.  
Java’s  infix operators  +, –, *, /  are to be overloaded to combine these geometrical objects with each 
other and with scalars,  subject to restrictions of the kind taught in sound courses on  Linear Algebra.

In  Java-like  Borneo  programs we can write  l(x)  for  ||x||  for both rows and columns  x ,  and write  

Trp(p)  for  pT  and  Crs(p)  for  p¢ .  However,  to allow  Trp  and  Crs  and the like to be called 
without prepending a class or package name,  Java/Borneo  classes that use them would have to 
include a host of  “wrapper”  static  methods like

static colvector Trp(rowvector rT)  { return rT.Trp() ; }  .
Alternatively,  we can use postfix locutions like  x.l( )  and  p.Trp( )  and  p.Crs( )  and suffer the 
annoyance of  Java’s  redundant  ( )  in silence as the price paid for freedom from wrappers.

We must  not  write  p*q  for the scalar product  p•q  nor the cross-product  p×q  lest they become 
non-associative invitations to blunder.  Instead we write the scalar product  p•q  as  Trp(p)*q  for  

pT·q ,  and the cross-product  p×q  as  Crs(p)*q  for  p¢·q .  If you like  Dot(p, q)  and  Cross(p, q)  
respectively,  or  p.Dot(q)  and  p.Cross(q) ,  use them instead;  but we avoid them because our 
mathematical matrix notation from the previous two pages transliterates so immediately to our  Java-
like  notation with overloaded operators described on this page,  and  vice-versa.

In what follows,  computational solutions to several common geometrical problems are presented in 
our mathematical matrix notation because it is slightly easier to read than  Java  could ever be.
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Applications of Cross-Products to Nearest-Point Problems

Cross-products  p×q ,  or  p¢·q  in our matrix notation,  figure prominently instead of determinants to 
provide neat textbook solutions of many commonplace geometrical problems.  For example,  given 

the equations   pT·x = π ,  bT·x = ß ,  wT·x = Ω   of three planes,  their point of intersection is

z =  ( π·b¢·w + ß·w¢·p + Ω·p¢·b )/(pT·b¢·w)  .

Neat formulas are more memorable and therefore more likely to be used by programmers than are 
ugly numerical algorithms like  Gaussian Elimination  even if the latter are numerically more stable.  
Gaussian Elimination  is also faster than the foregoing formula,  but a programmer can easily fix that 

by rewriting   z =  ( (b¢·w)·π + p¢·(b·Ω - w·ß) )/(pT·(b¢·w))   and reusing a common subexpression.  
Still,  this not so stable numerically as  Gaussian Elimination  with pivotal exchanges.

Like  Beauty,  the neatness of a formula and often its speed lie more easily in the eye of the beholding 
programmer than does numerical stability.  Textbook formulas don’t show off roundoff.  The reader 
will not easily determine which are numerically unstable among the next page’s neat solutions for 
seven commonplace geometrical problems each of the following  Nearest-Point  kind:

Given a point  y  and specifications for a geometrical object  G ,  we seek a point  z  in  G  nearest  y .

We expect the line segment joining  y  and  z  to stick out of  G  perpendicularly.  If two formulas for  
z  are offered below they suffer differently from rounding errors;  the first formula suffers less than 
the second whenever  ||z–y|| << ||y||  and the second less than the first whenever   ||z|| << ||y|| .  Unless 
parentheses indicate otherwise,  associative products  A·B·C  should be evaluated in whichever order,  
(A·B)·C  or  A·(B·C) ,  requires fewer arithmetic operations;  doing so below diminishes roundoff too.
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1.  Given the equation  pT·x = π  of a plane  ∏ ,  the point  z  in  ∏  nearest  y  is

z =  y – p·(pT·y – π)/||p||2   =   ( p·π – p¢·p¢·y )/||p||2  .

2.  Given three points  u,  u+v  and  u+w  through which one plane  ∏  passes,  the point  z  in  ∏  

nearest  y  is    z =  y – p·pT·(y – u)/||p||2   =   u – p¢·p¢·(y – u)/||p||2   wherein   p = v¢·w .

3.  Given three points  u,  v  and  w  through which one plane  ∏  passes,  the point  z  in  ∏  nearest  

y  is    z =  y – p·pT·(y – u)/||p||2  =  u – p¢·p¢·(y – u)/||p||2   wherein   p = (v – u)¢·(w – u) .  The order 
of  u,  v  and  w  is permutable in each formula separately.  To diminish roundoff in  p  choose  u  to 
maximize  ||v – w|| ;  in  z  choose  u  to minimize  ||y – u||  in the first formula,  ||u||  in the second.

4.  Given two points  u  and  u+v  through which one line  £  passes,  the point  z  in  £  nearest  y  is

z =  y + v¢·v¢·(y – u)/||v||2   =   ( v·vT·y – v¢·v¢·u )/||v||2   =   u + v·vT·(y – u)/||v||2  .

5.  Given two points  u  and  u+v  through which one line  £  passes,  and two points  y  and  y+w  

through which another line  ¥  passes,  the point nearest  £  in  ¥  is   x =  y – w·pT·v¢·(y – u)/||p||2   

wherein  p = v¢·w .  Nearest  ¥   in  £   is    z =  x – p·pT·(y – u)/||p||2   =   u – v·pT·w¢·(y – u)/||p||2 .

6.  Given two points  u  and  w  through which one line  £  passes,  the point  z  in  £  nearest  y  is

z =  y + v¢·v¢·(y – u)/||v||2  =   ( v·vT·y – v¢·v¢·u )/||v||2   =   u + v·vT·(y – u)/||v||2  wherein  v = w – u .  
Since  u  and  w  are permutable,  choose  u  to minimize  ||y – u||  in the first and last formulas,  and 
to minimize  ||u||  in the middle formula,  which is best if  ||z|| << ||u||  too.

7.  Given the two equations  pT·x = π  and  bT·x = ß  of a line  £ ,  the point  z  in  £  nearest  y  is

     z =  y + v¢·( p·(ß–bT·y) – b·(π–pT·y) )/||v||2   =   ( v·vT·y + v¢·(p·ß–b·π) )/||v||2   wherein   v = p¢·b .
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We have just seen seven neat solutions for commonplace geometrical problems that

Java’s  floating-point expression-evaluation turns into

Numerical Junk.

HOW ?        WHY ?

Java  gets us into trouble that old-fashioned  Kernighan-Ritchie C  avoided by rounding everything by 
default to  double  unless an explicit cast specified otherwise.

Java  gets us into trouble because it rounds all subexpressions involving exclusively  float  
operands to  float  precision.

Let’s see how it happens: …
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HOW ?     An example shows how  Java-like  floating-point malfunctions:

7.  Given the two equations  pT·x = π  and  bT·x = ß  of a line  £ ,  the point  z  in  £  nearest  y  is

     z =  y + v¢·( p·(ß–bT·y) – b·(π–pT·y) )/||v||2  =  ( v·vT·y + v¢·(p·ß–b·π) )/||v||2  wherein   v = p¢·b .

Try data    pT = [ 38006,  23489,  14517 ] ,   π = 8972 ,    bT = [ 23489,  14517,  8972 ] ,   ß = 5545 ,   

and  yT = [ 1,  –1,  1 ] ,  all stored exactly as  floats .  This data will cause trouble because it defines  
£  as the intersection of two nearly parallel planes,  so tiny changes in data can change  z  drastically.

When all arithmetic is performed naively in  float  the two formulas above for  z  yield respectively  

z1
T = [ 1,  1,  –1 ]    and    z2

T = [ 1.000000054,  1.000000054,  –1.500000148 ]    instead of the 

correct   zT = [ 1/3,  2/3,  –4/3 ]   which is computed correctly rounded when all intermediate results  
( subexpressions )  are evaluated in  double  before  z  is rounded back to  float .

Naively computed  z1  and  z2  are not so far from  z  as to be obviously wrong if  z  were unknown,  
and yet too far away to be acceptable for most purposes.  Worst of all,  the distances from both planes 
that intersect in  £  to  z1  is about  0.81 ,  to  z2  about  0.65 ,  so neither  z1  nor  z2  can be correct 
solutions for problem  7  with slightly different data.  The naive results are geometrically impossible.

Computed entirely in  float  arithmetic upon  float  data,  every neat solution to problems  1 - 7  is 
numerically unstable.  Skilled numerical analysts can reformulate them as constrained least-squares 
problems and solve them to acceptable accuracy using only  float  arithmetic,  but not so quickly nor 
so accurately as  double  works above.  The neat solutions are fine if computed extra-precisely.
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WHY ?   Bilinear forms vulnerable to  roundoff  followed by  cancellation  occur frequently:

Scalar products:           p•b  =  pT·b  =   .

Linear combinations:       p·ß – b·π  =   .

Cross products:           p×b  =  p¢·b  =   .

These entities are  geometrically redundant;  they are so correlated that   (p·ß – b·π)•(p×b) = 0   for 
all  data  {p, π, b, ß} .  Even if data are  “accurate”  to few sig. digits and computed entities to fewer,  
their geometrical redundancy must be conserved as accurately as possible.  We can tolerate slightly 
inaccurate results interpretable as realizable geometrical objects slightly different from our original 
intent,  but not geometrically impossible objects like a  p×b  too far from orthogonal to  p  and  b .

Therefore these bilinear forms must be computed carrying somewhat more precision than in the data,  
thereby preserving geometrical redundancy despite “losses” of several digits to cancellation.  At any 
precision,  prolonged chains of computation risk losing geometrical redundancy.  The wider is the 
precision,  the longer is that loss postponed and the more often prevented,  provided that extra-precise 
arithmetic does not run intolerably slowly.  And extra precision usually costs less than error-analysis.

p1 b1⋅ p2 b2⋅ p3 b3⋅+ +

p1 β⋅ b1– π⋅

p2 β⋅ b2– π⋅

p3 β⋅ b3– π⋅

p2 b3⋅ p3– b2⋅

p3 b1⋅ p1– b3⋅

p1 b2⋅ p2– b1⋅
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Dynamic Directed Rounding Modes
All hardware conforming to  IEEE Standard 754 for Binary Floating-Point Arithmetic  must  ( and all 
do )  afford the programmer a way to specify  Dynamically  one of four  Rounding Modes:
      Round to Nearest   ( the default ),   and three  Directed Rounding Modes —
                Round towards  0  ( truncate ),   Round Up  ( towards  +∞ ),  Round Down  ( towards  –∞ ) .
That these modes are  Dynamic  means they are selected by setting two bits in a control word in the floating-point 
hardware.  Programmers should regard a rounding mode as a global variable implicitly influencing every floating-
point operation not protected from that influence by a  Static  assignment of its rounding mode.  For these static 
assignments the  DEC Alpha  provides two bits in the op-code of every floating-point operation to achieve the same 
effect as other machines accomplish by saving,  setting and some time later restoring the control word’s bits.

Alpha’s  and  Java’s  designers seem to have had none but arcane uses,  like  Interval Arithmetic  and 
error-bounding,  in mind for the directed rounding modes.  That may be why  Java  forbade them.
That mind-set is almost right.  Most programmers,  and all programmers most the time,  have no use for directed 
rounding modes.  Consequently almost all programs include no mention of them and should be compiled to get the 
default rounding mode from the control word’s two bits.  However …

“Almost all true is entirely a lie.”  —  a  Yiddish  folk-saying.

Many a programmer will encounter a compelling reason to run the same subprogram four times,  each 
time choosing a different rounding mode to govern the way all but the statically rounded arithmetic 
operations in the subprogram are rounded,  and then compare the subprogram’s four outputs.  Why?

Numerical Instability.
It may be suspected as the cause of dubious output from a program comprising several subprograms 
of diverse provenances,  pedigrees and perspicuities.  How is numerical instability to be debugged?
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Debugging Numerical Instability:
It is difficult even for experts.  We try first to blame the instability upon one subprogram.  If this can 
be done,  and if the subprogram is our own,  we hope we can fix it;  and if the subprogram came from 
someone else we hope  he  can fix it.  Either way,  let’s start by trying to determine whom to blame.

Into our program comprising several subprograms let us insert two kinds of modifications:
•  Display,  file or print intermediate values put out from some subprograms into others.
•  Rerun some or all subprograms in all four rounding modes and compare intermediate values.

Doubts fall first upon the first subprogram(s),  if any,   whose outputs vary much more than expected.

Of course this scheme can’t be foolproof since error-analysis can’t be automated in general;  see pp. 38-39  and  41  
for three examples and  p. 35  for perhaps another that defy this scheme.  And after the scheme casts suspicion upon 
a subprogram we must analyze it and rule out other causes before we condemn it as unstable.  Among other reasons 
for violent roundoff-induced fluctuations in a subprogram’s output,  and ways to cope with them,  are …

•  The function computed accurately by the subprogram has a singularity so near the data that it amplifies
tiny changes in data into violent fluctuations of the function;  therefore don’t let its data change.

•  The fluctuations don’t matter so long as they conform to some constraint;  try to find it and determine some
measures of departure from that constraint to display/file/print instead.  It’s easier said than done.

•  By design,  the subprogram malfunctions under any but the default mode,  so don’t change that.  ( Rare.)

Despite these  caveats,  reruns with directed roundings focus attention where it belongs far more often 
than not.  This scheme works for examples on  pp. 27, 44, 51 - 55,  and the next several examples:

a

b cA

C B∆

Needle–like Triangle
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Example:   Computing the area  ∆  of a needle-like triangle

A classical formula due to  Heron of Alexandria,
∆ =  √(s·(s–a)·(s–b)·(s–c))   where   s = (a+b+c)/2  ,

is the formula still taught in schools despite its numerical instability for needle-like triangles.

In the  1950s and 1960s  computer programmers rearranged his formula to stabilize it as follows:  First sort  a, b, c  
so that  a ≥ b ≥ c ;  this costs at most three comparisons.  If  c-(a-b) < 0  then the data are not side-lengths of a real 
triangle;  otherwise compute its area

∆ =  √( (a+(b+c))·(c–(a–b))·(c+(a–b))·(a+(b–c)) )/4 .
Don’t remove parentheses from this formula!  It can’t give rise to  √(< 0) .  It works on all but  Cray’s  computers.
Nowadays only error-analysts and a few programmers know this stable formula though it is explained on  p. 153 
in Floating-Point Computation by P. Sterbenz (1973) Prentice-Hall,  and in  “ Miscalculating Area and Angles of 
a Needle-like Triangle ”  http://http.cs.berkeley.edu/~wkahan/Triangle.ps ,  and elsewhere.

Let’s compare both formulas on two nearby needle-like triangles,  and compare also the effects of the 
different  Directed Rounding Modes  mandated by  IEEE 754  but forbidden to us by  Java.  Since all 
data are  floats,  we also compare the effect of  Java’s  all-float  arithmetic semantics with that of  
Kernighan-Ritchie C  all-double  arithmetic upon evaluations of  Heron’s  unstable  formula.

The  1st   triangle’s   a = 12345679. ,  b = 12345678. ,  c = 1.01233995 ,   Condition no. ≈ 500000000.
The  2nd  triangle’s   a = 12345679. ,  b = 12345679. ,  c = 1.01233995 ,   Condition no. = 2 .
Infinitesimal relative perturbations in the data get amplified by the  Condition number  when they are transmitted to  
∆ .  The  1st  triangle is ill-conditioned;  the  2nd  is well-conditioned and deserves an accurately computed  ∆ .

a

b cA

C B∆

Needle–like Triangle
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Table:  Sensitivity to Rounding of two different formulas to calculate
 the  Area  ∆  of a Triangle  from the  Lengths of its Sides

( calculations performed upon  4-byte  float  data ).

Note that only incorrect results change drastically when the rounding mode changes,  and
that old-fashioned  Kernighan-Ritchie C  gets fine results from an  “unstable”  formula.

Rounding
mode

Heron’s Formula

( unstable in  float )

Better Formula

(stable in  float )

Heron’s Formula

( all subexpressions
double  like  K-R C)

a=12345679  >   b=12345678  >   c=1.01233995  >  a–b

to nearest 0.0 972730.06 972730.06

to +∞ 17459428.0 972730.25 972730.06

to –∞ 0.0 972729.88 972730.00

to 0 –0.0 972729.88 972730.00

a=12345679  ≥   b=12345679  >   c=1.01233995  >  a-b

to nearest 12345680.0 6249012.0 6249012.0

to +∞ 12345680.0 6249013.0 6249012.5

to –∞ 0.0 6249011.0 6249012.0

to 0 0.0 6249011.0 6249012.0

s a b c

s s a s b s c

= + +

⋅ − ⋅ − ⋅ −

(( ) ) /

( ) ( ) ( )

2 ( ( )) ( ( )) ( ( )) ( ( ))a b c c a b c a b a b c+ + ⋅ − − ⋅ + − ⋅ + −
4
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Heron’s  formula is one of many schoolbook trigonometric formulas that dislike certain triangles:

C =  arccos( (a2 + b2 – c2)/(2·a·b) )  =  2·arctan( √( (s-a)·(s-b)/(s·(s-c)) ) )

c =  √( a2 + b2 - 2·a·b·cos C )

B = arcsin( (b/a)·sin A )    …  This formula may deliver the smaller of two angles  B’  and  B” ,
and dislikes triangles with  B  too near  90˚ .

These classical formulas have withstood  the  Test of Time,  not passed  it.
Their unnecessary inaccuracies could be detected with the aid of directed roundings.,  but …

What is a  Java  programmer to do?  With  float  data,  he runs some risk that  Java’s  floating-point 
will get wretched results from a program that delivered fine results under old-fashioned  Kernighan-
Ritchie C .  His hardware includes the tools he most needs to debug wretched results but  Java  denies 
him their use.  Maybe better formulas lurk in places like  “ Miscalculating … Triangle ”  cited above,  
but what are his chances of finding them?  What are our chances if he doesn’t,  and we use his code?

a

b cA

C B∆

Needle-like Triangle

For better formulas than these classical formulas see
“ Miscalculating Area and Angles of a Needle-like Triangle “
http://http.cs.berkeley.edu/~wkahan/Triangle.ps

C

a

a

b
A

B'

B"

B = B',   not  B"
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Java’s  designers blundered  if they deemed features of  IEEE Standard 754 for Binary Floating-
Point Arithmetic  that they did not appreciate to be features usable by none but numerical experts.

The facts are quite the opposite.

In  1977  those features were designed into the  Intel 8087  to serve the widest possible market,  Java’s  
market —  Everybody Everywhere.  A few years later similar features and more were built into the  
Motorola 68881/2  to go with the  68020 and 68030,  and live on in the  68040 and 88110,  but they 
are fading from the marketplace. Today  Intel’s  floating-point architecture,  now borne by  Pentiums  
and their clones,  is the most nearly ubiquitous of all architectures.,  And yet one of its numerically 
most valuable features continues to be under-utilized for lack of linguistic support.  That feature is …

IEEE 754  double-extended precision,  also known as  long double.

This format occupies  10  bytes,  carries  64 sig. bits of precision and  15  bits of exponent range.  The  
Motorola  chips stored it in  12  bytes,  allocating two for future expansion explicitly foretold by  
IEEE 754.  But the programming language community appears not to understand how nor why this 
format is intended to be used.

How:   long double  is intended to support  double and float  the way
  double  supports  float  in  Kernighan-Ritchie C .

Why: Extra-precise arithmetic attenuates the risk of chagrin due to roundoff.  This
 risk is impossible to estimate well enough to determine insurance premiums;
 it is usually too small for most of us to notice,  too big for all of us to ignore.
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How much does extra precision attenuate the risk of chagrin due to roundoff?

Consider some algorithm that has been programmed to solve a problem for all input data,  except 
perhaps a set of measure zero in data-space,  and that would achieve this goal if the program were 
executed with infinite precision at infinite speed.  For example,  Gaussian Elimination  with pivotal 
exchanges would solve all square systems of linear equations except those whose determinant 
vanishes,  which happens on a surface in the space of all square matrices of any particular dimension.

Because we compute with finite precision,  there is a population of data sets for which the problem 
has a solution but the program computes it too inaccurately,  whence arises chagrin due to roundoff.

For data of any precision fixed in advance,  increasing the precision of the program’s arithmetic 
shrinks the population of data whence arises chagrin.  The rate of shrinkage depends upon the 
algorithm under consideration.  Typically,  that population shrinks by about  1/2  for every extra bit of 
arithmetic precision carried until a  Law of Diminishing Returns  set in.  Typically,  carrying  11  extra 
bits of arithmetic precision shrinks the risk of chagrin by a factor smaller than  0.0005 ,  enough to 
change a program’s or a computer’s perceived reliability from  Bad  to  Good.

( Atypical algorithms exist for which the rate of shrinkage is different,  better like  1/4  per extra bit for some,  worse 
like  1/√2  per extra bit for those that lose half the bits carried,  …,  no shrinkage at all for a contrived few.)

For instance,  Heron’s  classical formula for  Area  ∆  goes bad for a tiny fraction of triangular shapes.  
If the shapes are plotted in a plane region,  these shapes whence comes chagrin lie in a narrow ribbon:
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Map  Triangles  to  Points in the Plane  by taking side–lengths  ( a, b, c )  as  Barycentric Coordinates:

When  Heron’s  formula is computed,  every extra sig. bit of arithmetic precision carried halves the width of 
the boundary layer thus halving the population of triangles whose areas are computed too inaccurately.

a = 0 = b-c

c = 0 = a-bb = 0 = c-a

b > c+ac > a+b

a > b+c

Every point  (a,b,c)  in this 
triangle represents a family 
of  Similar  triangles.

Every triangle  Similar  to a
given generic triangle maps
to six of these points.

Points near the boundary
(thickened here)  represent
Needle-like triangles.

Points between the center and
the hyperbolic arcs represent
triangles with all angles acute
and utterly well-conditioned
areas  ∆(a,b,c) .

But  ∆(a,b,c)  is computed by
Heron’s formula inaccurately
at points in the thickened 
boundary layer regardless of
how well-  or  ill-conditioned
∆  may be at that point.
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The revised formula for  ∆  with sorted  a, b, c  is accurate at all triangles.  Everybody  should use it.

But they won’t.

The better formula has been published at least four times but not where most programmers who might need it are 
likely to look it up.  Heron’s  formula is what they will almost surely find insteadin their school books.

In general,  programmers who use a little  ( or a lot of )  floating-point arithmetic may be very clever at things they 
care about,  but not at error-analysis of floating-point.  ( Not even the great  John von Neumann  got it quite right.)  
And all of us shall occasionally run their programs unwittingly,  and be thus exposed to risks of which they were 
unaware.  Extra-precise arithmetic,  if not too slow,  is the easiest way to attenuate those risks in practically  all 
computations,  not just the examples presented in this document,  and to solve numerous other problems too. …

Extra Precision as a Way to Conserve Interest Rates’ Monotonicity
A little-known requirement for certain financial computations of  Rates of Return  is  Monotonicity.  
This means that if a small change in data causes a computed result to change,  its change should not go in the wrong 
direction.  For instance,  if the return on an investment is increased,  its computed rate of return must not decrease;  
if the repayments on a loan are diminished,  its computed interest rate must not increase.  The conservation of 
monotonicity becomes more challenging as it becomes more important during computations designed to optimize 
rates of return.  These rates satisfy equations that can have more than one root,  and then the choice of the right root 
can be spoiled if monotonicity is lost to roundoff.  Roundoff affects an equation’s solution both during the 
equation’s computation and in the accuracy criterion that stops the equation-solving iteration.  To prevent changes in 
results from becoming artifacts of roundoff instead of consequences of changed data,  equations must be solved 
more accurately than might naively have been thought adequate.  Experience indicates  11 extra bits suffice here.

By far the easiest way to conserve monotonicity is to compute extra-precisely,  carrying enough extra 
precision  ( say  11 bits )  to keep roundoff’s effect utterly negligible compared with the effect of end-
figure perturbations in data,  provided of course that extra-precise computation does not run too slow.
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The floating–point arithmetics on  AMD/Cyrix/Intel  chips in  PCs,  and on  Motorola  chips  in old†  
Macintoshes  and  Sun IIIs,  were designed to attenuate the risks you face and to help you diagnose 
them.  They were designed to evaluate at full speed every subexpression to  10+-byte Extended 
Precision  thereby attenuating the incidence of dangerously inaccurate results by orders of magnitude.
DEC’s Alpha  chip,  and  PowerPC  chips used on current  Power Macs  and  IBM RS/6000s,  were designed to 
evaluate at full speed every subexpression to  8-byte  Double-Precision,  like old-fashioned  K-R C ,  to somewhat 
attenuate the risks you face.  All these chips were designed to help you debug inaccuracy by rerunning subprograms,  
whose source-code you can’t or won’t change,  unchanged but in different rounding modes upon data that produce 
suspicious results.  Attenuating risks does not eliminate them nor does the foregoing diagnostic technique work 
every time.  Still, …

these hardware designs do improve your chances.  But not with  Java  programs.

Speed Above All Else
Forced to choose between speed and safety,  most people choose speed.  This is the only conclusion 
consistent with what happens on our highways.  Even people who distrust  Our Government  ( for no 
apparent reason )  trust the accuracy of computer arithmetic,  so they too choose speed above all else.  
Knowing what most programmers will do,  those of us who design computer systems have to design 
them in ways that enhance rather than detract from the programmer’s prospects for success lest his 
failure turn into our failure.  Therefore prudence,  if not  due diligence,  obliges programming 
language implementors to evaluate all floating-point expressions by default in the widest precision 
that does not run too slow,  unless the programmer has gone to some trouble to demand otherwise.

†Footnote:  Post hoc,  ergo propter hoc.  ( What occurred must have been caused by whatever just preceded it.)  The decline of  Apple 
Computers  dates from their abandonment of the superior floating-point architecture of the  Motorola 680x0  processor in favor of the 
faster but numerically inferior  Power PC.  Intel’s,  the only floating-point left that offers that superiority,  is ubiquitous.  Coincidence?
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How many floating-point formats run fast on most desktop hardware today?
Three :

IEEE 754 Single IEEE 754 Double IEEE 754 Double-Extended
4-byte  float  8-byte  double 10+-byte  long double .
   24 sig. bits    53 sig. bits    64+ sig. bits
    7-bit exponent      11-bit exponent      15+-bit exponent

Over  95%  of the hardware on desktops support all three as recommended by  IEEE 754,  though the  
10+-byte  format may be stored in  10,  12  or  16  bytes in memory to avert word-alignment penalties.

Java,  like  Microsoft,  forbids the majority of us that have the  10+-byte  format from using it.
We paid for it but we can’t benefit from it.

Some computers have set aside room in their instruction-sets for currently unimplemented  16-byte  Quadruple 
Precision  floating-point.  Too slow to use much now,  it will run practically as fast as  float  and  double  
some day when it is implemented on-chip like them.  It will invade a lot of chip area,  so we are trying to postpone 
its arrival by devising adequately fast and accurate numerical algorithms that use tricks instead of  Quadruple.  Its 
day will come anyway.  And then programs that use the  10+-byte  long double  format properly will,  after 
recompilation to use  Quadruple  instead,  continue to work at least as well as they ever did.  Meanwhile,  a few 
compilers support slow software-simulated  Quadruple;  and a few support a variety of not-so-slow  16-byte  
Doubled-double  formats that are rounded in ways too perverse to qualify as  IEEE 754 Double-Extended  formats.

Linguistic support for three floating-point types,  the third somewhat variable,  instead of just two will 
impose a substantial burden upon compiler writers.  Do any applications benefit enough from extra 
precision to pay for it?  Yes;  elastic deformations of thin sheets.  Here is an oversimplified example. 
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Cantilever Calculation
A uniform steel spar is clamped horizontal at one end and loaded with a mass at the other.  How far 
does the spar bend under load?

The calculation is  discretized:  For some integer  N  large enough  ( typically in the thousands )  we compute 
approximate deflections    {  x0 = 0 ,   x1,  x2,  x3,  ...,  xN–1,   xN ≈ deflection at tip}   at  uniformly spaced 
stations along the spar.  Discretization errors,  the differences between these approximations and true 

deflections,  tend to  0  like 1/N2 .  These  xj 's  are the components of a column vector  x  that satisfies a 
system   A·x = b   of linear equations in which column vector  b  represents the load  ( the mass at the end 
plus the spar’s own weight )  and the matrix  A  looks like this for  N = 10 :

 A

9 4– 1 o o o o o o o

4– 6 4– 1 o o o o o o

1 4– 6 4– 1 o o o o o

o 1 4– 6 4– 1 o o o o

o o 1 4– 6 4– 1 o o o

o o o 1 4– 6 4– 1 o o

o o o o 1 4– 6 4– 1 o

o o o o o 1 4– 6 4– 1

o o o o o o 1 4– 5 2–

o o o o o o o 1 2– 1

=
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The loss of accuracy to roundoff during  Gaussian  elimination  ( triangular factorization ) poses a
Dilemma:

Discretization error  —> 0  like  1/N2 ,  so for realistic results we want  N  big.

Roundoff is amplified by  O(N4) ,  so for accurate results we want  N  small.

Accuracy loses very roughly  4 log2N  sig. bits to roundoff.  For realistic problems  ( crash-testing car 
bodies,  aircraft wings,  ...),   typically  N > 10000 .  With  double  arithmetic carrying the usual  53  
sig. bits  ( about  16 sig. dec.)  we must expect to lose almost all accuracy to roundoff occasionally.

Iterative Refinement  mollifies the dilemma:

Compute the  residual  r := A·x – b  for  x .
This residual tells how much the alleged solution dissatisfies the equation we wish to solve.

Solve  A·∆x = r  for a  correction  ∆x .
By reusing the same triangular factors as were used to  “solve”  A·x = b  for

a solution  x   contaminated by roundoff,  we compute  ∆x  very quickly.

Update  x  to  x – ∆x  in the hope of reducing its  error  x – A–1b ,  or its residual  r ,  or both.
When  N  is big,  the error can be enormous even though the residual looks negligible.

Repeat as often as necessary.
How often?  That’s a good question.

For details see    “ Roundoff  Degrades  an  Idealized  Cantilever ”  by   W. Kahan  and  Melody Y. Ivory, 
http://http.cs.berkeley.edu/~wkahan/Cantilever.ps ,  from which the following results are extracted.
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The following results were obtained from two iterative refinement programs for  MATLAB v. 4.2  to 
run on several brands of computers.  The computers group naturally into two families,  namely
   1: HP PA-RISC,  IBM RS/6000,  ( ≈ Apple Power-Mac,  Sun SPARC,  SGI MIPS,  DEC Alpha )
   2: Intel-based PCs  and clones,  680x0-based Apple Macs,  ( ≈ 68020-based  Sun III ).

Both programs run on both families of machines though each program was designed for optimal 
results on its respective family:
   1: Refine Residual  program repeats iterative refinement until the residual  r  becomes negligible,

and then uses  r  to estimate an upper bound for the error in  x .
   2: Refine Error  program repeats iterative refinement until the decrement  ∆x  stops diminishing,

and then uses  ∆x  to estimate an upper bound for the error in  x .

Like  Java,  MATLAB 4.2 was intended to get the same results on all machines  except  for steps taken 
to multiply matrices as fast as possible on each machine.  Ultimately  Java  too will have to let fast 
matrix multiply programs exploit concurrency in pipelines,  register files and caches lest performance 
be degraded by factors worse than  3 .  Therefore different machines will deliver different results.

From which family of computers would you expect to get the more accurate results?

Legend: ············· No. of correct sig. bits in initial  x  delivered by  Gaussian Elimination.
––––– No. of correct sig. bits in final  x  delivered by  Iterative Refinement.
-·-·-·-·- No. of sig. bits computed error bound says are correct in final  x .
* * * * No. of steps of  Iterative Refinement  required to get final  x .

Numbers are plotted against the dimension  N  of matrix  A .
The graphs look better printed by a Laser-Printer than displayed by  Adobe Acrobat Reader.
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Although iterative refinement on  RISC-based  workstations soon renders the residual negligible,  the error 
isn’t improved much  ( it may be worsened ),  and the error-bound is about  1000  times too pessimistic.
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On  RISC-based workstations,  iterative refinement designed to attenuate the error usually doesn’t do much 
good and,  as with residual refinement,  the estimated error-bound is roughly  1000  times too pessimistic.
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Whenever iterative refinement on  PCs  and old  Macs  refines the residual it reduces the error too but the 
user can’t know since the error-bound doesn’t change  ( it becomes about a million times too pessimistic ).
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On  PCs  and old  Macs,  iterative refinement designed to attenuate the error succeeds spectacularly,  and the 
estimated error-bound reveals this improvement to the user who can now rely upon it.
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The cheaper  ( and more popular )  machines delivered results more accurate by far.  They can do the 
same for eigensystems iteratively refined from occasionally  ( and inevitably )  inaccurate results of  
MATLAB’s  “eig”  function,  thereby enhancing the designs of optimized control systems.

How do the cheaper  ( and more popular )  machines get the more accurate results?  They accumulate 
matrix products in extra-precise registers  ( 11  extra sig. bits )  at full speed,  though  MATLAB 4.2  affords users no 
access to  long double  variables.  http://http.cs.berkeley.edu/~wkahan/ieee754status/baleful.ps   
presents more details.  On  680x0-based  Macs  the current version  5.2  of  MATLAB  still works that way,  but …
MATLAB 5.2  on  MS Windows  no longer accumulates extra-precisely.  Why not?

Microsoft’s  current compilers seem to have turned off the  11  extra bits of precision in  Intel-based  
PC’s  registers.  You paid for it,  but  Microsoft  denies you its benefits.

Why?  Intel’s 8087  floating-point coprocessor was imminent in  1980  when  Bill Gates  predicted the sockets built 
into the  IBM PC  for it would almost all stay empty.  Actually  8087s  and later  80287s and 387s  filled millions of 
these sockets —  so many that several  ’87  clone makers entered that market.  Cyrix  started that way.  Meanwhile  
Gates’  prophecy shaped  Microsoft’s  policy and practice;  its  Basic,  Fortran  and  C  compilers were optimized for 
software-simulated floating-point without the  ’87s’  long double  format.  Its support by  Borland’s  C  forced  
Microsoft’s  C  grudgingly to support it too for a while but it was dropped later when  Borland  was deemed no 
longer a threat and  Microsoft  had begun the development of  Windows NT  on the  DEC Alpha  chip,  which lacks 
the  long double  format.  Gates’  business decisions took no account of the format’s value to you.

And now  Java  forbids you to mention or use extra-precise  long double  arithmetic,  though  
IEEE Standard 754  recommends its use and over  95%  of computers on desktops have it built into 
their hardware.  You paid for it,  but  Java  denies you its benefits.
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Does this denial make more sense than if  Microsoft  or  Java  similarly forbade you to use your …
XGA or SVGA video display,  projector or printer,  with higher resolution or more colors?
Sound–Board  with higher-fidelity audio or four-way stereo?
Higher resolution pointing device?   3–D  surface sensing or holographic display?
Microphone?    Camera?   Radio?   TV?    Fax  board?  Scanner?
Faster modem or  Ethernet  for faster reaction to competitive situations?
Faster  CPU  capable of supporting higher-resolution  Virtual Reality?
Bigger memory,  and bigger and faster disks?

 … ?

Of course  Java  does not forbid you to use these extraordinary hardware capabilities if you have 
them.  Quite the contrary;  it continually accretes  APIs  and revisions to its  AWT  to cope with them.  
Why should you be denied the same access to better floating-point hardware if you have it?

Was somebody at  JavaSoft  burnt by  Sun’s  numerically benighted compilers on the old  Sun IIIs ?  
Their  Motorola 68020+68881/2  chips’ superb floating-point was crippled by anomalies caused by their compiler’s 
denial,  to programmers for their own declared variables,  of the  long double  register-format in which the 
compiler evaluated all floating-point expressions.  To make matters worse,  the compiler rounded registers down to  
double  when their contents spilled from the register file.   Consequently programmer’s could neither predict nor 
control arithmetic precision.   Will  Jim Gosling’s  “ Loose Numerics”  unleash similar anomalies again?

“Compatibility”  is often intoned to excuse doing nothing to fix floating-point.  But  Java  has already 
inflicted incompatibilities upon  JVM  implementors in the course of passing from version  1.0  to  1.2  
to add features some programmers find useful.  Why should floating-point be denied similar relief?
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How to support extra-precise arithmetic
Upward compatibility from the  Java  language,  and minimal changes to the  JVM,  have led  Borneo  
to follow a different approach than has been put before  ANSI X3J11  in the  C9X  proposal.  A crucial 
requirement for both proposals is  Control.  Exact reproducibility has to be available to a programmer 
who needs it and who exercises the modest self-discipline required to achieve it.  At the same time,  a 
programmer who aims for the widest possible market has to be able to specify what he wishes  not  to 
control,  and in this case his program must able to discover what the compiler has chosen to do.  And 
all this is to be accomplished as parsimoniously as possible without obscurantism or excessive length.  
To keep this document’s length down,  some simplifications and omissions have been perpetrated 
with a view to persuading the reader that extra-precise arithmetic can be insinuated into  Java  without 
destroying its spirit or advantages.  For more details see the  Borneo  specification.

Names for primitive floating-point types or for  Borneo  floating-point  classes:
float =    4-byte  IEEE 754 Single  with  24 sig. bits,  usually hardware supported.
double =    8-byte   IEEE 754 Double  with  53  sig. bits,  usually hardware supported.
long double=  10+-byte IEEE 754 Double Extended  with at least  64  sig. bits etc.

    {  longdouble(k) =    k-byte   IEEE 754 Double Extended  ( for future use only with  k >> 10.)
quadruple =   long double(16)  with  113  sig. bits rounded as  IEEE 754/854  requires.
DoubledDouble =   16-bytes with at least about  106 sig. bits perhaps rounded perversely.  }

indigenous =  the widest floating-point format supported in hardware at full speed
=  long double  =  double extended   on hardware that does it
=  double  on computer hardware that does nothing wider. 
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The  anonymous  declaration
Except for the simplest floating-point expressions,  temporary values are needed to hold intermediate 
results of subexpressions,  conversions from  integer  types or non-binary formats,  and arguments 
passed to subprograms.  If the programmer has not declared the types of these anonymous values 
explicitly,  the language must adopt rules to determine these types.  Java’s  rules are defined by a pass 
strictly bottom-up through the expression tree,  widening the narrower of two operands to match the 
wider before they are combined.  K-R C  widens to  double  everything narrower and contemplates 
nothing wider.  To fit in with  Java’s  linguistic proclivities,  Borneo  allows a programmer to declare 
a minimum width to which everything narrower is to be widened before  Java’s  rules are invoked:

anonymous float follow  Java’s  rules  ( Borneo’s  default;  it must match  Java’s )
anonymous double widen every narrower operand to  double  as does  K-R C
anonymous long double widen every narrower operand to  long double  ( use on Intel )

anonymous indigenous widen every narrower operand to  indigenous.
Of course,  Java  should be repaired promptly to adopt  anonymous double  as its default,  which 
would then become  Borneo’s  default too.  The scope of an  anonymous  declaration is a block.

The  anonymous  declaration is adequate when hardware-supported formats are few.  It functions 
properly with  Java’s  method  resolution only if some subprogram’s arguments explicitly cast to a width narrower 
than the  anonymous  width are not widened again.  This is not what we would have chosen to do had we started 
from scratch.  To diminish the language’s capture cross-section for error when augmented by  Interval Arithmetic  
and dynamically variable arbitrarily high precision,  we should not widen operands but rather control the accuracy 
of  generic  ( in the  Fortran  sense )  operations and functions.  But that is a story for another day.

Gosling’s  “Loose Numerics”  doesn’t offer programmers the control our scheme gives them:  they can 
choose our  anonymous double  for reproducibility or  anonymous indigenous  to exploit hardware fully.
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Optimizations  by the  Compiler
Their purpose is to speed the execution of a program without invalidating its output,  not to achieve 
high ratings on benchmarks that pay scant attention to much about programs besides their speed.  An 
optimization that changes a program’s output in a way not licensed by the language nor by the programmer in the 
text of his program is best deemed a compiler malfunction.  Only two such licenses are worth granting for the 
“optimization”  of floating-point operations.  One licenses associativity;  the other licenses the  fused multiply-
accumulate on  PowerPCs,  HP 8000s  and  MIPS R10000s.

Unlike commutativity  (nowadays),  associativity can be spoiled by roundoff or over/underflow.  For 
that reason,  compilers must always honor the parentheses  ( see the better formula for  ∆  on  p. 58 )  or conventions 
that programmers depend upon to control the order of operations.  However,  matrix multiplication is one of a few 
instances in which associativity  ( here of addition )  is worth licensing to keep pipelines full and caches hit at the 
cost of a usually tolerable change in output;  see p. 16.

The  fused  multiply-accumulate  ( fused mac )  computes expressions of the form  ±x·y ± z  with one 
final rounding error instead of two.  Usually this enhances accuracy slightly as well as speed,  but it 

can cause calamity in a few peculiar situations.  For instance,  √(b2 – a·c)  can signal  Invalid  because of a 

negative computed value for  (b2 – a·c)  even though the predicate  (b2 < a·c)  tests  FALSE .  For this reason,  and to 
match results from computers that lack a fused mac,  compilers must inhibit its use when a programmer withdraws 
an implicit license to use it.  Java  grants no such license now,  but refusing to discuss the fused mac merely ensures 
that it will be used clandestinely to get higher scores on benchmarks with no provision for a programmer to inhibit it 
in the few places where it hurts.  And programmers who wish to program for only machines that have it need a way 
to insist upon it.  In hardware a fused mac can accelerate  DoubledDouble  substantially,  and can compute 
expressions like  a·x – b·y   in the formulas on  p. 55  to nearly full  double  accuracy from  double  operands in 
three operations!  Why should  Java  outlaw special software for special computer configurations?
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Certain optimizations are necessary to prevent old-fashioned  K-R C  semantics from being blamed 
unnecessarily for poor performance.  At first sight,  a frequently occurring assignment   X = Y¤Z  involving  
floats  X, Y, Z  in just one algebraic operation  ¤  appears to require that  Y and Z  be converted to  double,  and 
that  Y¤Z  be computed and rounded to  double,  and then rounded again to  float  to be stored in  X .  The same 
result  X  ( and the same exceptions if any )  are obtained sooner by rounding  Y¤Z  to  float  directly.  In other 
words,  Kernighan-Ritchie C  runs here as fast as does  Java  now,  so performance is no excuse not to change.

Certain  “optimizations”  that work on integers must not be used on floating-point.  These prohibited 
optimizations fall into two categories:  mistaken use of identities,  and invalid statement reordering.

The identities to avoid are the ones that are invalidated by the existence of signed zeros,  infinities and  
NaN.  For instance,  don’t try to  “ simplify ”   0±x ,  x±0 ,  x–x ,  x == x ,  x != x ,  0·x ,  ∞·x ,  0/x ,  
x/0 ,  x/x ,  ∞/x  or  x/∞ .  Practically the only identities left are  x·y = y·x ,  x+y = y+x ,  x–y = –y+x  
but not  –(y–x) ,  and  1·x = x  which is safe only because  Java and Borneo  disallow signaling  NaNs.

Reordering floating-point assignments is dangerous in the presence of floating-point traps,  flags and 
modes.  That is why the flags and modes discussed in this document should be made part of the 
language and thus recognized as floating-point assignments of a sort:  the flags are like global 
variables alterable as side-effects of exceptional operations;  the modes are like global variables that 
influence floating-point operations.  Between references  ( they should be rare )  to flags and modes,  
and within basic blocks,  non-speculative floating-point code rescheduling is permissible except 
perhaps if floating-point traps are enabled.  Perhaps floating-point exceptions are best handled 
without traps,  but that is a topic for another day.
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Conclusions

We think we’ve made our case.  Java’s  floating-point hurts everyone everywhere.  It didn’t have to.

Java’s  floating-point suffers from serious oversights.  The same could be said of several other 
programming languages,  some of them venerable,  but  Java  lacks their historical excuses.

Java’s  oversights undermine its mission,  which is to liberate the world or a large part of it from  
Microsoft’s  hegemony.  This mission is like the conduct of a war on many fronts.  It is a difficult war 
to win but easy to lose to a defeat on any front.  One of these is the floating-point front.

To win,  Java  has to surpass  Microsoft’s  J++  in attractiveness to software developers.   This means 
better design better thought through,  less prone to error,  easier to debug, …  and many other things.

Java’s  floating-point is not an example of better design etc.,  but it can be repaired.  We think we have 
shown how and,  more important,  why.  We think our repairs preserve what is valuable in  Java  at 
least as well as  JavaSoft  has in the course of its updates —  nobody who wishes to avoid our flags,  
indigenous,  anonymous,  and directed roundings has to use them.  But the repairs must be effected 
soon or it will be too late.  In the computing world the costs to everyone everywhere of correcting 
mistakes grow horribly with the passage of time unless the mistakes are part of something that 
doesn’t matter.

(C) 1998  W. Kahan  and  J. Darcy


