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ABSTRACT

Understanding and recognizing emotions are important and chal-
lenging issues in the metaverse era. Understanding, identifying,
and predicting fear, which is one of the fundamental human emo-
tions, in virtual reality (VR) environments plays an essential role
in immersive game development, scene development, and next-
generation virtual human-computer interaction applications. In
this article, we used VR horror games as a medium to analyze
fear emotions by collecting multi-modal data (posture, audio, and
physiological signals) from 23 players. We used an LSTM-based
model to predict fear with accuracies of 65.31% and 90.47% un-
der 6-level classification (no fear and five different levels of fear)
and 2-level classification (no fear and fear), respectively. We con-
structed a multi-modal natural behavior dataset of immersive human
fear responses (VRMN-bD) and compared it with existing relevant
advanced datasets. The results show that our dataset has fewer limi-
tations in terms of collection method, data scale and audience scope.
We are unique and advanced in targeting multi-modal datasets of
fear and behavior in VR stand-up interactive environments. More-
over, we discussed the implications of this work for communities
and applications. The dataset and pre-trained model are available at
https://github.com/KindOPSTAR/VRMN-bD.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques—Treemaps; Human-centered computing—
Visualization—Visualization design and evaluation methods

1 INTRODUCTION

Emotion is the most powerful motivational force in humans, and it
is significantly correlated with perception, attention, memory and
learning. Moreover, emotions with specific expressive abilities are
a crucial human trait [19]. With the rapid rise and intensive discus-
sion of the metaverse concept, a virtual environment that blends the
physical and digital, driven by the internet, web technologies, virtual
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reality (VR), augmented reality (AR) and mixed reality (MR) [49],
an increasing number of companies, developers and consumers are
showing great expectations and enthusiasm [80]. Among them, VR
technology and consumer-grade VR devices serve as an important
user interface to access the metaverse. Meanwhile, the act of human-
machine interaction in VR has also inspired developers to imagine
more possibilities for the future. The study of affective computing is
not only an important research issue in the field of human-computer
interaction [62], but also an essential research topic for the metaverse.
The metaverse, as a post-real world [57], possesses more plasticity
and possibility than the real world. Furthermore, the metaverse is
envisioned not only as a service concept but also as a future space
with diverse socialities. Therefore, it is obvious that the metaverse
should contain various characteristics and emotional expressions.
Among all emotions, fear has a significant impact on human behav-
ior, decision-making, mental health and social life as one of the most
important basic human emotions [47]. The study of how to induce,
enhance [37], diminish, calm [30], and overcome [21] fear in virtual
environments can help people better deal with fearful feelings in the
virtual world.

At present, important issues on fear in the metaverse from include
datasets, perceptions and recognition, simulation, and evaluation.
Datasets, especially natural behavior data, are the basis for the com-
putation of fear. A high-quality dataset is essential for studies on
identification [71], simulation [20], design of stimuli [36], design of
interactions [41] and other machine learning tasks [83]. Perception
and recognition of emotions has been one of the most challenging
issues within the domain of affective computing [93]. The multi-
modal recognition algorithm for fear in virtual environments has
great application potential. First, it has a positive impact on the de-
velopment of VR, where more accurate recognition results may lead
to an enhanced sense of realism and immersion in the metaverse.
Second, such recognition of specific emotions can help improve
human-centered and user-centered designs [45]. Finally, this recog-
nition method might provide a useful reference for identifying other
emotions. Another crucial issue for the metaverse is evaluation.
The evaluation of the fear response is decisive for the enhancement
of relevant issues in the metaverse, such as user experience [73],
social systems [92], usability [98], ethics, morals and justice [7].
In fact, the identification of negative emotions such as fear is more
challenging than the identification of positive emotions because of
self-concealment [48].

In this article, we addressed the following main research questions
(RQs):

ar
X

iv
:2

40
1.

12
13

3v
1 

 [
cs

.H
C

] 
 2

2 
Ja

n 
20

24

https://github.com/KindOPSTAR/VRMN-bD


RQ1 How can a multi-modal nonperforming fear dataset be built
utilizing VR horror games?

RQ2 How can multi-modal data be used to recognize users’ fears?

To address these RQs, we proposed (1) a rigorous user experimen-
tal protocol design to induce participants’ fear utilizing VR horror
games; (2) multi-modal data collection, processing, annotation, and
fusion to build a nonperformance fear dataset; and (3) a prediction
algorithm of fear using multi-modal data. In addition, we also pro-
vided insights into the emotional challenges of the metaverse. In
summary, we made the following main contributions:

(1) A multi-modal natural behavior fear dataset.

(2) A novel approach to fear recognition.

2 RELATED WORK

2.1 Fear-arousing Stimulation
Scholars who support the classification of emotions generally agree
that humans have more than a dozen basic emotions that contain
physiological elements [35, 78]. Six basic emotions identified in
Ekman’s facial-expression research [74] are commonly accepted:
anger, disgust, fear, happiness, sadness and surprise, of which fear is
a strongly unpleasant negative emotion. Fear is defined as a multidi-
mensional response in which a person has an immediate emotional
reaction and subsequent cognitive response to a perceptible threaten-
ing stimulus in the environment. Fear often arises from the presence
or presumed presence of danger. In other words, it is an experience
induced by a stimulus [52].

People are susceptible to experiencing fear when they perceive
significant and personally relevant dangers in real environments [46].
In addition, mediated environments can also evoke fear in people.
Cantor suggests that the link between horror media and the fears
of its viewers can be explained by the principle of stimulus gen-
eration [11]. If real-world stimuli evoke emotions, then the same
stimuli portrayed in media will evoke the same or less stressful
experiences [31]. The Diagnostic and Statistical Manual of Men-
tal Disorders (DSM-IV) [81] framework classifies fear-provoking
factors into five categories: animals (e.g., dogs or spiders); environ-
ment (e.g., fire or floods); blood/injections/injuries (e.g., wounds or
needles); situational factors (e.g., height, confined spaces or more
specific spaces such as a doctor’s office); and other factors (objec-
tively harmless but disturbing stimuli such as distorted faces and
loud noises). These categories serve as references for our selection
of horror games.

When a person’s fear is aroused, the following physiological re-
sponses usually occur: 1) physiological changes (e.g., sweaty palms,
increased heart rate or trembling), 2) changes in facial expressions
(e.g., widened eyes, contracted facial muscles or increased tone), 3)
changes in the way information is processed (e.g., more likely to
receive suggested protective measures), and 4) the tendency to take
specific actions (e.g., seeking cover, hiding or running away) [42].
This immediate physiological response can be used as an objec-
tive measure of fear, and physiological signals collected in real
time, such as heart rate [68], heart rate variability [97] and conduc-
tance [85], can all identify individuals’ fear states. These references
of responses in fear provide suggestions for the experimental design
of this study, especially the choice of data modalities.

2.2 VR Horror Games
The illusionary mechanisms provided by VR allow users to react
realistically to VR scenes, effectively providing an immersive expe-
rience. The first is the place illusion (PI), also known as ‘being there’
or ‘presence’, which refers to a sense of being in a real place. The
second is the plausibility illusion (PSI), an illusion that the events be-
ing portrayed are actually happening [76]. VR makes users believe

they are in the environment of the game (PI) experiencing the scene
as it is happening (PSI) [50]. With advances in VR technology, this
illusionary mechanism is achieved primarily through head-mounted
displays combined with precise motion tracking systems, allowing
the user to experience an interactive 3D virtual environment [17].
As a result, players playing horror games through VR experience a
much stronger sense of fear and anxiety than those playing in video
mode [60]. In general, studies based on 3D environments can obtain
better results than 2D stimuli [38]. Further, a study by Somarathna
et al. [79] showed that the fear could be effectively induced in VR
environments, especially games.

Generally, horror games require players to actively respond to
threats to survive. After a fear response is generated, people tend
to use various coping measures to alleviate their fear. A survey by
Lynch and Martins on video games [52] revealed that the stimuli
that participants most often reported triggering their fears in games
were darkness, disfigured humans, zombies and the unknown. Lin’s
proposed theoretical framework [50] for how players react to horror
content in VR contains three strategies. 1) Approach (monitoring)
strategies. At the cognitive level, players always alertly monitor
their surroundings for possible hazards, while at the behavioral level,
they choose to be proactive, for example, by adopting in-game skills
to proactively eliminate hazards. 2) Self-help strategies. While on
the cognitive level, players actively talk to themselves to encour-
age themselves, the behavioral level is where players choose to
express their fears by screaming or shouting. 3) Avoidance strate-
gies. The first of two avoidance strategies is physical and mental
disengagement, where players usually turn their heads, close their
eyes, remove their headphones or crouch down to avoid the sounds
or images that frighten them, and the second is denial, where they
tell themselves the experience is not real [50, 103]. The findings in
these past studies provided references for game selection and data
annotation.

The exploration of horror content in VR can be applied in many
ways. Virtual reality exposure therapy (VRET) is an increasingly
common treatment for anxiety and specific phobias (agoraphobia,
fear of driving, claustrophobia, aviophobia and arachnophobia) [61]
. Commercial games combining horror genres and biofeedback
technology may be a useful stressor for practicing stress management
skills [8, 60]. Additionally, experiencing scares in an entertainment
environment has gained popularity by the market. Through an in-
depth study of the characteristics of horror game content in VR
games and what game elements induce fear in players and to what
extent, this study provides a theoretical basis for fear computing
research and a better product development evaluation tool for VR
content designers and related researchers.

2.3 Affective Computing Methods
2.3.1 Body Gesture based Method

The possibility of emotion recognition through body gesture infor-
mation has been widely acknowledged by researchers [91]. Based
on camera images, Cui et al. [39] extracted the key points of human
posture and used an algorithm to draw a simplified map to identify
the emotional information for various postures. Shi et al. [72] used
the pose estimation algorithm to extract 3D skeleton information
in the IEMOCAP database and proposed a self-attention enhanced
spatial temporal graph convolutional network for emotion recog-
nition of 3D skeletons, which confirmed the ability to recognize
emotion based on 3D skeletons. Similarly, based on bone detection
technology, Tsai et al. [88] trained the ST-GCN recognition model
to effectively identify four emotional states. Sapiński et al. [67]
proposed a method to recognize basic emotional states. It gener-
ates a model of affective action based on features inferred from
the spacial location and the orientation of joints within the tracked
skeleton. It shows the feasibility of automatic emotion recognition
from sequences of body gestures, which can serve as an additional



source of information in multi-modal emotion recognition. However,
emotion recognition based on gestures is mostly used for specific
single gestures, and its performance is greatly degraded for gestures
in natural situations [67]. Bhattacharya et al. [5] presented a novel
classifier network called STEP to classify perceived human emo-
tion from gaits, and this model classified the perceived emotion of
humans into one of four emotions: happy, sad, angry, or neutral.
Fu et al. [22] presented an approach that used a Kinect v2 sensor
to capture whole-body postures and recognize human fear in a VR
environment using a long- and short-term memory model (LSTM).
Previous studies have demonstrated that human emotions can be
effectively recognized through skeletal poses. However, many re-
searchers have claimed that current research is limited by the lack
of video quality and have expressed concerns about the limitations
of using a single modality. Therefore, combining information from
other modalities and better datasets may be effective in improving
performance.

2.3.2 Audio based Method

Speech is one of the most direct and oldest ways for humans to con-
vey emotions, and voice information has been used by researchers
for emotion research for more than 20 years [14]. Additionally,
voices displayed because of fear tend to be strong [89], which seems
to be a high-performance modality to apply to emotion recognition.
AnjaliBhavan et al. [6] proposed a bagged ensemble comprising sup-
port vector machines with a Gaussian kernel for SER. It extracted
Mel-frequency cepstrum coefficients (MFCCs) and spectral cen-
troids to represent emotional speech, followed by a wrapper-based
feature selection method to retrieve the best feature set. Its best
accuracy is 75.69% using the RAVDESS database, which shows its
superiority over other technologies such as AdaBoost. It should be
noted that this work focuses on only acoustic features rather than
speech features. Tzirakis et al. [90] proposed a convolution recurrent
neural network structure for speech emotion recognition. This model
is made of a Convolutional Neural Network (CNN), which extracts
features from the raw signal data and is stacked with a 2-layer LSTM.
The model achieved the best results at the time regarding the consis-
tency correlation coefficient for the RECOLA database. However,
emotion recognition using voice alone is still insufficient because
while voices may have distinctive features during strong emotions
(crying, screaming, anger, etc.), it is often difficult to discriminate
voices expressing nearly neutral emotions [15]. In addition, as
humans become more socially engaged, people are increasingly sup-
pressing the release of emotions through their voices [94]. Therefore,
voices are worth using as valid information for identifying human
emotions but should not be used as the only type of information.

2.3.3 Physiological Signal based Method

The application of physiological signals is considered an effective
emotion recognition method. Many studies use physiological signals
as the signal source for emotion recognition, but few studies use a
physiological signal as the only criterion for emotion recognition. In
previous studies, there have been two research methods for emotion
recognition involving physiological signals. One approach is to
use the combination of multiple physiological signals as the basis
for emotion classification, such as the combination of respiration
(RSP) and heart rate variation (HRV). Another approach is to com-
bine physiological signals with signals from other modalities such
as, facial expressions and voice. Oh et al. [59] used five physio-
logical data, including respiration and heart rate, to optimize the
model based on CNN to classify and identify 6 emotional states.
Santamaria-Granados et al. [66] applied a deep convolutional neural
network on an AMIGOS dataset of physiological signals, which
contains electrocardiograms and galvanic skin responses. It cor-
relates physiological signals with the data of arousal and valence
of the dataset and extracts the features of physiological signals in

the domain of time, frequency, and nonlinearity. It made affective
state prediction possible using physiological signals. The study by
Moghimi et al. [56] demonstrated that physiological signals can
be used effectively for emotion recognition classification tasks in a
gaming environment.

2.3.4 Multi-modal Method
In recent years, this multi-modal analysis approach has received
attention from researchers and is considered a possible future direc-
tion, which is noteworthy. There is evidence that multi-modal data
fusion for emotion recognition is an important approach to address
the limitations of each single-channel analysis mentioned above [24].
Sebastian et al. [70] presented fusion techniques on deep learning
models for improved emotion recognition in multi-modal scenarios.
Intramodality dynamics for each emotion are captured in the neural
network designed for the specific modality.

Based on the existing behavioral emotion recognition, Matsuda
et al. [53] combined behavioral features such as eye movements
and head movements with audiovisual signals, collected human
voice signals during travel, and classified three categories of emo-
tions, positive (excited, happy/pleased and calm/relaxed), negative
(sleepy/tired, bored/depressed, disappointed, dis-tressed/frustrated
and afraid/alarmed), and neutral. Validation of bimodal data com-
bining behavior and sound for emotion recognition in a real-world
setting. Keshari et al. [39] integrated facial expression and upper
body gesture data to achieve higher emotion recognition accuracy
than using single gesture data. In some special work environments,
such as the emotion detection of driving states, some studies have
used the combination of physiological signals and speech signals
to extract and analyze data features for emotion classification in
the corresponding work environment. Studies [1] have shown that
multi-modal data, similar to the combination of speech and physio-
logical signals, are more helpful to improve the recognition ability
of emotion recognition systems than a single modality. In addition,
Siddharthd et al. [75] showed that multi-modal fusion data has the
advantage of the scalability and easy feature extraction.

3 USER EXPERIMENT DESIGN

To address our RQs, we designed a rigorous user experimental
protocol to induce participants’ fear and gather participants’ data
utilizing VR horror games. To address RQ1, we provide a complete
and comprehensive experimental procedure, which also includes the
data acquisition scheme. To address RQ2, we provide a LSTM-based
predictive model.

3.1 Experimental Situation
The experimental site consisted of three areas: the waiting area,
the experimental area, and the director-interview area (see Fig-
ure 1). Waiting area: The waiting area was set up in a separate
room, visually and aurally separated from the experimental and
director-interview areas, where participants confirmed their atten-
dance at the experiment, filled in the informed consent form and
the pretest PANAS-X scale, wore the physiological signal acqui-
sition equipment and waited for the experiment. Experimental
area: The experimental area was built in a 3.5m × 2.8m × 2.6m
(Length × Width × Height) semiopen space partitioned by curtains
and partition with the director-interview area. Experimental partic-
ipants experienced the preinstalled VR games in this area. There
were no obstacles in the space except for the VR equipment nec-
essary for the experiment. There were four Filr cameras set up in
each of the four corners of the experimental area, fixed at a certain
height using a tripod. The VR device used in the experiment is the
HTC Vive (with a per-eye resolution of 1080x1200, a refresh rate
of 90 Hz, and a maximum field of view of about 110◦). Interview
area: The interview area was adjacent to the experimental area but
isolated from it in terms of a realistic view; a set of PC computers



Figure 1: Experimental Places. The upper left corner shows the
monitor computer screen, which included a real-time game screen,
a multi-camera system monitoring screen, and a physiological signal
recording equipment screen. The lower left corner shows the layout
of the real experimental place, including the director-interview area
and the experimental area. The right side shows a plan view of the
full experimental place.

and monitors were set up in this area to run the software required
for various experiments, and the experimental host could view the
situation in the experimental area in real time through the monitors.
In addition, this area contained a subarea called the interview area
for interviewing participants in various stages of the experiment.

3.2 VR Horror Games Selection and Usage
In this experiment, the researchers chose three VR horror games
from the Steam platform, Game 1 (Richie’s Plank Experience [87]),
Game 2 (Phasmophobia [23]), and Game 3 (Emily Wants To
Play [34]), which were thought to stimulate apparent fear. Fig-
ure 2 shows a schematic diagram of these games. The researchers
chose to experiment with VR horror game rules as follows: 1) the
game process is a linear script to control the game progress, length,
and the same variables as much as possible; 2) neither short nor
long-expected game time, each game processes within 5-20 minutes
to avoid the failure or fading of emotional arousal caused by the
length of the game; 3) the operation rules of the selected game are
simple and can allow novices to learn quickly, and the game does not
contain combinations of buttons and complex puzzles. 4) whether
there are necessary elements to stimulate specific emotional fear;
and 5) based on the player’s overall rating. Table 1 shows the metrics
for each game based on the above criteria and whether the researcher
provided spurious targets for controlling the flow of the experiment
and triggering specific effects at the time of the experiment for refer-
ence. Considering the individual differences of the participants, to
reduce the variables that were difficult to control in the game experi-
ment, the researcher concealed or tampered with some real goals and
provided a convincing false purpose to drive the participants to play
the game [43], which in turn made the plot progression of Game 2
and Game 3 independent of the player’s behavior in the game. For
example, in Game 2, players are asked to explore as many locations
as possible to find a nonexistent red bear toy, while a brown bear
can indeed be found in the game. This confusing task is set up to
allow participants to explore as many dark environments as possible
and trigger more potentially horrific game events. In Game 1, the
player’s actions based on the real game objectives did not branch the
progress of the game, and therefore only the unique objectives were
presented to the participants without changing the gameplay.

4 DATA COLLECTION AND DATASET CONSTRUCTION

4.1 Data Collection and Pre-processing
Our contributed dataset contains data from a total of three modalities:
posture, audio and physiological signals. Four Filr cameras in the
experimental area recorded the complete VR experimental process,

Figure 2: Examples of game posters and screenshots of the actual
game. The first image on the left is the "Richie’s Plank Experience"
poster, the second image on the left is the "Richie’s Plank Experience"
in-game screenshot, the third image on the left is the "Phasmophobia"
poster, the third image on the left is the "Phasmophobia" in-game
screenshot, the first image on the right is the "Emily Wants To Play"
in-game screenshot, and the first image on the right is the "Emily
Wants To Play" poster.

with a single camera resolution of 1280 x 720. After calibrating the
internal and external parameters of the camera, the human skeletal
points were extracted using OpenPose [12] and reconstructed to
obtain 3D keypoints. OpenPose takes RGB images as input in a
single view camera and each key skeleton point in the image as
output. OpenPose provides 25 key points, and Table 2 explains in
detail the 25 key joints of the human body corresponding to the 25
key points. After 3D reconstruction of skeleton point data using
a multiview camera system, 25 keypoints were represented by 3D
coordinates (x-, y-, z-axis) with 75 factors in total. Missing values
in 3D keypoints were further processed using interpolation. Figure 3
shows the views of each single camera in the experiment and the
3D pose estimation results. Participants wore wireless microphones
on their lapels to record any vocals, and the audio was recorded at
a bit rate of 128 kbps, covering the entire VR experiment process.
Full game graphics and game sounds were recorded through the
Xbox Game Bar. The physiological signal recording device (the
Zephyr™ BioHarness™ [29]) continuously recorded the heart rate
and respiratory rate at a sampling rate of once every two seconds.
The physiological data sampling rate provided by the device might
not be perfect, but it is usable in this context [13, 58]. Moreover, be-
cause this study employs multi-modal data, it reduces the limitations
of relying on single modality data. At this stage, we filled in the
missing values in the 3D skeletal points and aligned the data from
different modalities according to the start and end timestamps, and
split into three groups according to the different games.

Figure 3: Human skeletal point calibration. Four Filr camera views (on
two sides) and 3-D reconstructed skeletal point view (in the center).
The alignment of each view and the reconstructed 3-D results were
re-layout, but without modifying the content. The numbers in the mid
figure represent the coordinates of the skeletal points, and the details
are shown in the following Table 2.

Then, we re-layout the recording of game footage with sounds,
multicamera views, 3D keypoint reconstruction, and visualizations
of physiological data, and merge them into one video aligned at the
first frame. Meanwhile, we add a reference line based on video time



Table 1: The selected games and their reference factors.

Game
No. Name of game Game (task) duration

(approximately) Ease of Learning Types of Fears Simulated
(fear of)

Player’s overall rating
(positive rate - total user reviews)i Spurious targets

1 Richie’s Plank
Experience 5 - 10 mins Very Easy

Heights, Falling,
Spider, Dentists,

Jump scary

Very Positive
(81% - 567) No false goals

2 Phasmophobia 20 mins Easy
Claustrophobic/Darkness,

Solitude, Paranormal,
Death and Near-Death

Overwhelmingly Positive
(96% - 489,650)

A false goal
and some false tips

3 Emily Wants To Play 5 - 10 mins Very Easy
Claustrophobic/Darkness,
Paranormal, Jump scary,

Thunderstorm, Dolls

Mostly Positive
(78% - 1,694)

A false goal
and some false tips

iData collection date is September 18, 2023

Table 2: Openpose (skeleton) keypoints data. Each key point corre-
sponds to the example shown in Figure 3. "R" means right, and "L"
means left.

No. 0 1 2 3 4 5 6 7 8
Name Nose Neck RShoulder RElbow RWrist LShoulder LElbow LWrist MidHip
No. 9 10 11 12 13 14 15 16 17

Name RHip RKnee RAnkle LHip LKnee LAnkle REye LEye REar
No. 18 19 20 21 22 23 24

Name LEar LBigToe LSmallToe LHeel RBigToe RSmallToe RHeel

to the visualizations of the physiological data for future annotation
purposes.

4.2 Data Report of Participant
We recruited those who were interested in participating in the VR
experiment as participants through social media groups and nearby
universities in China, but for health and safety reasons, the eligible
candidates for this experiment were controlled to be between 18-30
years old and self-reported to be in good physical health, mentally fit,
and free of diseases or medical histories such as heart disease, visual
problems, and vertigo. All participants were paid a certain amount
of cash as thanks. All participants were given the option to stay after
the experimental period for a free experience with VR games for
additional time (with no special restrictions) without interfering with
the experiment or the typical research environment. This experiment
was processed under approval of university IRB. Informed consent
was obtained from all participants.

There were 23 participants (P1-P23, 9 males and 14 females),
aged between 18 and 28 years old (median age = 21) and with-
out significant congenital disorders. In total, 95%(22) participants
completed Game 1, 60%(14) participants completed Game 2, and
56%(13) of participants completed Game 3. The main reason for
participants not completing the game was early withdrawal because
of sensory overload. One person quit early due to intense discomfort
caused by 3D vertigo/cybersickness, and we did not use data from
this participant. The rest all reported early exit due to feeling too
scary. In the cases of early withdrawal due to sensory overload,
one person occurred during the game (shouted to stop at the very
beginning of Game 2), and all the rest ended after the previous game
interview (did not start the next game).

4.3 Data Annotation
We built an ancillary tool for helping manual annotation in the Win-
dows platform. The tool allows annotators to annotate multi-modal
data and improve the consistency and workability of the annotation
process. The tool contained the area of monitoring, the annota-
tion toolbar, and the labeled records. The data were annotated by
watching video of participants’ game views, multiview physical
movements and the chart of physiological data combined with game
sounds and microphone sounds by timestamp (in milliseconds). An-
notators could use this annotation tool to replay video clips and
change the annotation level (repetitive ratings). The annotated data

included two categories (nonfear and fear), with 6 levels (this refer-
ences the study by Fu et al. [22], where level 0 = nonfear, and levels
1-5, fear level from the lowest to highest). Among them, nonfear
emotions (level 0) were automatically filled after annotation and no
special manual annotation was needed.

We recruited 5 annotators, and each reformatted video had at
least 2 annotators. Before starting the annotation, a tutorial session
and a simulated annotation using the sample were conducted for
all the annotators to allow them to fully understand the usage of
the annotation tool. We introduced some ground truths about body
gestures [16], screaming [69] and physiological signals [51] of fear
conditioning to annotators during the simulation annotation. Also,
the annotator considers the participant’s self-report in the annotation
process. After completing the annotation, we used absolute majority
voting to obtain the final annotation results. If the absolute majority
system failed, the final annotation results were equal to the nearest
whole number of the average of all annotation levels (less than 1 to
make up for 1). Finally, the annotation results were merged with the
multi-modal dataset aligned by timestamp.

Here, we did not include participants’ subjective fear ratings re-
ported in real time in the dataset directly. Although self-reports
have been used in numerous studies, there are some obvious limi-
tations [4, 65] that do not fit our dataset. Again, because collecting
continuous user self-reports in VR environments, especially in mo-
tion, in a transient and precise manner poses a significant challenge
in the form of user distraction [100].

4.4 Data Analysis and Feature Extraction
To exploit deep learning methods to predict fear levels, we structured
these unstructured data through feature extraction for each modality.
Then, we synchronized them according to the frame index, which
was the simplest component of the video.

For the video model: we adopted OpenPose to learn 25 key
human skeletal points in 3D spatial coordinates (d=75). Considering
that these skeleton features were likely to contain a massive amount
of redundant information, we therefore took the PCA approach to
reduce the dimension from 75 to 33 while retaining 98% of the
information as key features for each frame.

For audio information: Game audio and microphone audio were
extracted together and converted into a digital audio signal, and
a sample of audio features is shown in Figure 4. The features
used 7 metrics to represent the data: the zero-crossing rate, spec-
tral centroid, spectral bandwidth, spectral rolloff, chroma features,
rmse and MFCC. These metrics not only reflect the audio in terms
of frequency, but also indicate human voices through the MFCC
specifically. To align with skeletal features, we processed the audio
features into framewise instead of secondwise features in 26 dimen-
sions, of which 20 dimensions were MFCC features, and took the
average of the audio features to align with the image frame rate.

Similarly, we transformed the physiological data to describe the
heart rate and breathing frequency of a participant per frame rather
than per minute. The physiological data were aligned with the image



frame rate using the average interpolation of adjacent data to obtain
a complete dataset containing audio features and physiological data
based on 3D keypoint data. Then, we concatenated the features in
three modals as well as the target labels in accordance with the frame
index to compose the complete feature data.

Figure 4: Example of Digital Audio Information, where the top left
is the audio waveform plot, the top right is the spectral csentroid
visualization, the bottom left is the zero-crossing rate (ZCR) visualiza-
tion, and the bottom right is the Mel-frequency cepstral coefficients
(MFCC).

4.5 Dataset Construction
The video and audio durations of the dataset were 9 hours, 28 min-
utes and 58 seconds and contained 967079 frames in total. Our
dataset consisted of 61 dimensions of 3-modal features and 3 di-
mensions of fear level labels. Among the features, 33 dimensions
were extracted from 3D keypoints, 26 dimensions described audio
characteristics, and 2 dimensions were related to physiological data.
The labels contained the results of 2 annotators and their average
score. After data annotation, we obtained a glimpse of the distri-
bution of fear levels in the entire dataset. According to Table 4,
participants barely showed any indications of being scared 58.18%
of the time, which was labeled as level 0. The proportion of the
remaining fear categories decreased with increasing level. Thus, the
difficulty of the prediction task was increased to a certain extent
due to the uneven distribution of the dataset. This also led to the
attention mechanism being added to the model, which is discussed
in the following section.

Table 3: Description of our dataset. The first row indicates two different
tasks (6- and 2-classification). The second row indicates emotion
reference labels. In the third row, 0 to 5 are the fear levels(level 0 =
non-fear; levels 1-5, fear level from the lowest to highest, or 1 = fear).
The fourth row shows the number of fear annotated data in the dataset
for each level. The fifth row represents the ratio of fear-annotated
data of each level to the total dataset. Rows six to eight present the
average heart rate and standard deviation for the different levels of fear
annotated data. Row nine to eleven present the average respiratory
rate and standard deviation for the different levels of fear annotated
data. Rows twelve to fourteen introduce acceleration, referring to
the average 3D skeletal point acceleration and its standard deviation,
considering its movement in all three spatial dimensions (x-, y-, and z-
axes). This acceleration is calculated from the individual accelerations
in each of these dimensions. All values are rounded to two decimal
places.

6-classification 2-classification
Non-fear Fear Non-fear Fear

0 1 2 3 4 5 Total 0 1 Total
Count 562681 284204 78099 31466 10202 427 967079 562681 404398 967079
Radio 58.18% 29.39% 8.08% 3.25% 1.05% 0.04% 100% 58.18% 41.82% 100%

Heart rate
Mean 94.39 97.42 97.26 98.09 104.30 92.62 94.39 97.61
Std 17.11 17.50 17.92 16.15 21.24 4.80 17.11 17.61

Breath rate
Mean 15.89 16.71 17.82 17.91 18.38 16.86 15.89 17.06
Std 5.61 5.24 5.77 5.74 5.73 5.31 5.61 5.42

Acceleration
Mean 0.28 0.09 0.09 0.09 0.09 0.12 0.28 0.09
Std 51.08 0.28 0.57 0.07 0.55 0.12 51.08 0.35

5 MULTI-MODAL FEAR PREDICTION MODELING

To address RQ2, we adopted LSTM as our base model because
LSTM can fully learn features in temporal dynamics and improve
classification accuracy [75]. Building on this foundation, we ex-
tended the model by applying an additional backward layer of LSTM
to enable learning in two directions. At the same time, the attention
layer was introduced to generate the attention score through which
frames that contain less useful information could be identified. Then,
we showed the predicted results based on four different models
according to our experimental data in 6- & 2-classification tasks.

5.1 Bidirectional LSTM + Attention Model

The goal of our model was to predict fear levels for each frame
based on a comprehensive integration of a sequence of multi-modal
data. This includes skeletal points, audio features, and physiological
data recorded in the same period of time. To this end, we adopted
LSTM as our base model. On this basis, we extended the model
by applying a backward layer of LSTM to learn in two directions.
Thus, the model would be able to utilize information both from the
past and future. In addition, the attention layer were also adopted to
capture the most significant semantic information in the sequence.
The attention mechanism operates by computing attention scores for
each frame in the sequence.

As shown in Figure 5, the entire network consisted of 4 layers. In
general, we now input a sequence of features representing l succes-
sive frames into the network and obtained the output as the fear level
of the first frame in the sequence. These features encompass skeletal
data, audio cues, and physiological responses, collectively providing
a comprehensive dataset for analysis. The sequence could provide
the information concerning the acceleration of human motions and
the change of audio and physiological signals. Between the input
and output layers, we established the BLSTM layer and the attention
layer. In the BLSTM layer, there were two hidden states ht and ĥt for
both directions using the hidden state from the previous step and the
input. This bi-directional processing is crucial for understanding the
temporal context of fear responses, as it accounts for the progression
and regression of emotional states. Following the BLSTM layer, the
attention mechanism takes center stage. It computes attention scores
for each frame by applying a learned transformation to the BLSTM
outputs. The attention score calculation formula is:

ut = tanh(statet ×weightW ) , (1)

where ut is the intermediate representation at time step t, statet
is the output state of the LSTM at time step t, and weightw is the
learned weight matrix for transforming the LSTM output state.

a∗t = ut ×weightpro j , (2)

where a∗t represents the raw attention scores at time step t, ut is
the intermediate representation computed as per Equation 1, and
weightpro j is another learned weight matrix used for projecting the
intermediate representation onto the attention scores.

These scores are then normalized using the softmax function:

ati =
exp(a∗ti)

∑
l
i=0 exp(a∗ti)

, (3)

where a∗ti represents the normalized attention score for the ith
frame of sequence t. These scores signify the relative importance of
each frame in the context of the entire sequence.

The model then computes a weighted sum of the BLSTM outputs,
using the normalized attention scores as weights. This step effec-
tively aggregates the sequence information, with a higher emphasis
on frames deemed more relevant by the attention mechanism:



O∗
t =

l

∑
i=0

atiOti , (4)

where O∗
t is the weighted output for sequence t. This attention-

focused approach allows our model to be more sensitive and precise
in predicting the fear level associated with each frame.

Finally, we utilized full connected (FC) layers to finish the classifi-
cation job. Meanwhile, overfitting was a common issue in optimizing
the model. To address the challenge of overfitting,we incorporated
dropout as a regularization technique in the FC layers. Dropout
randomly disables a fraction of neurons during the training process,
which helps in preventing the model from becoming too dependent
on specific features, thus enhancing its generalization capabilities.

Figure 5: The architecture of BLSTM+attention model. Xt , Yt indicate
the input and output on step t of the model. ht and ĥt stand for the
hidden states of forward layer and backward layer for each step. Ot is
the corresponding output of BLSTM model.

5.2 Prediction Results
During the experiments, we randomly split the dataset into training
(80%), validation (10%) and test (10%) sets. The validation set was
used to tune the hyperparameters, and we evaluated the model on
the test set. To optimize the model, we tested models on different
parameters.

We applied different combinations of these parameters to the
LSTM, LSTM+attention, BLSTM and BLSTM + attention. Mean-
while, the performance was evaluated by 3 metrics: accuracy, recall
and F1 score. According to Table 4, we found that the attention
mechanism and the backforwad layer in BLSTM enhanced the pre-
dictive ability of the network to a certain extent for 6-classification
task.

In general, the BLSTM+attention reached the highest score on
all three metrics for the 6-classification task, up to 65.31% accuracy.
The best result was obtained when the learning rate was 0.0001, the
dropout rate was 0.5, the batch size was 256, the sequence length was
16, and we trained the model for 50 epochs. In addition, we perform
a simple recoding of the dataset into a 2-classification task to test the
performance of models in both fear and non-fear recognition tasks,
and the accuracy is up to 90.47%.

6 DATASET ADVANCEMENT

We compared the dataset proposed in this paper with seven other
datasets proposed in previous studies (see Table 5). Compared to
previous studies, our dataset is unique, and has following advantages,
because (1) our dataset contains more interactive behaviors in VR
environments than watching videos [77, 82, 84, 99, 101] or playing
2D games [44]. (2) Only we provide the full body pose features.
(3) We provide up to 6 categories of data for a specific emotion
(fear). (4) We are the only dataset other than Soleymani et al. [77]

Table 4: Comparison of the Approaches. The first row indicates two
different tasks (6- and 2-classification). The second row indicates the
model used. In this study, we focus on showing BLSTM+attention
under 6-classification task. The third row indicates the accuracy of
the model, where the accuracy of BLSTM+attention (6-classification)
is 65.31%. The fourth row indicates the recall of the model, where
the recall of BLSTM+attention (6-classification) is 65.31%. The fifth
row indicates the F1 value of the model, where the F1 value of
BLSTM+attention (6-classification) is 67.46%. In addition, a refer-
ence to the results of the 2-classification task is provided on the right
side of the table. All models were trained, tested and validated using
the same dataset provided in this experiments.

6-classification task 2-classification task
LSTM LSTM+attention BLSTM BLSTM+attention LSTM BLSTM+attention

Accuracy 60.22% 59.41% 61.90% 65.31% 90.47% 76.96%
Recall 59.69% 60.20% 61.74% 65.31% 90.47% 82.65%

F1 61.34% 62.34% 63.96% 67.46% 90.47% 83.09%

that provides audio features. (5) The largest data size in the VR
game environment. (6) We are the only multi-modal database other
than Granato et al. [27] that provides more interaction behaviors in
VR environments. (7) We do not require participants to make self-
reported annotations during the game, as a momentary and precise
manner reporting would divide the user’s attention in VR [100].
However, we still provide self-reported data at the end of the game
to assist data annotation.

In addition, we must acknowledge that the work has certain limi-
tations, which are further discussed in section 7.1. However, we have
four main aspects to support HCI and related communities [96] thus
far: (1) provides a specific approach to constructing multi-modal sen-
timent datasets. This paper presents a detailed construction process
for a complete dataset, including experimental setup, data collection,
annotation, analysis, and validation. By referring to the already vali-
dated construction process presented in this paper, future researchers
can more easily construct multi-modal sentiment datasets in VR
environments or in other environments. (2) provides an advanced
multi-modal emotion dataset in VR fear game environments that
contains continuous time series samples and rich features. Future
researchers can use this dataset to test algorithm performance or as a
reference for application development. (3) confirm the effectiveness
of predicting fear emotion in virtual environments by combining
body posture, audio, and physiological data. (4) Provides an anno-
tation tool with a visual interface. This tool can effectively assist
in the annotation of raw data, significantly reducing annotators’
operational difficulty and annotation errors caused by asynchrony.

7 DISCUSSIONS AND INSIGHT

By reviewing past research and combining current trends in tech-
nology and society, we discovered that there is still a serious lack
of discussion of emotional issues in the metaverse. VR, as one of
the most likely metaverse building environments, was the focus of
future research and development. Emotion was a part of effectively
enhancing the realistic and social sense of the meta-universe. Hence,
studies on user psychology and behavior in virtual scenarios are nec-
essary. In this section, we first discuss the limitations of this paper.
Then, we also discussed the challenges associated with emotions in
the metaverse.

7.1 Limitations
Our work has the following limitations. (1) We did not use
EDA/GSR in our experiments, although it can be effective in iden-
tifying emotions [2, 28, 51]. The lack of mobility of GSR devices
can create barriers to player interaction and degrade the gaming
experience in VR gaming environments [18]. Fortunately, we un-
derstand that there is much cutting-edge research on the use of
gestures [32, 40], which makes it possible to abandon the use of joy-
stick controllers in the future. Similarly, EEG signals are considered



Table 5: Comparison of datasets: The table shows seven representative datasets in the relevant fields from 2012 to 2022 and the basic information
of our proposed dataset.

Author Soleymani et al. [77] Xue et al. [99] Granato et al. [27] Yu et al. [101] Tabbaa et al. [84] Kutt et al. [44] Suhaimi et al. [82] Ours (VRMN-bD)
Year 2012 2015 2020 2021 2021 2022 2022 2023

Samples 538
32 participant

∗
8 delected videos

2 games
for each

participant

120 trials ∗ 25
participants ∗ 4 s 312 ≈7650 mins ≈20000 rows

568 mins
and 58 seconds
(967079 rows)

Data Fusion Late Fusion Pre-Fusion Pre-Fusion Single channelγ Pre-Fusion Dataset onlyγ Pre-Fusion Pre-Fusion
Subjectα 27 32 33 25 26 102 32 23

Stimulation
Method 2D Video 360◦ VR Video

2D Game
and VR Gameβ VR Video 360◦ VR Video 2D Game,

Image and Audio 360◦ VR Video VR Game

Active
Interactions × × ✓ × × ✓ × ✓

Continuous
/Discrete C C+D C C C C C C+D

Modality

Audio ✓ × × × × × × ✓

Body × × × × × × × ✓ (33 features
3 dimensionsδ )

Face ✓ (20 features) × × × × × × ×
Eye ✓ ✓ × × ✓ × × ×
EEG ✓ × ✓ ✓ × × ✓ ×
GSR × ✓ ✓ × ✓ ✓ × ×

HR\HRV\ECG ✓ ✓ ✓ × ✓ ✓ × ✓
BR ✓ × ✓ × × × × ✓

Acceleration × ✓ × × × ✓ ✓ ✓

Other − SKT, BVP EMG − − − gyroscope screen
recording

Annotation
Method Self-report Self-report Self-report Self-report Self-report Self-report Pre-labeling Annotation

Expression
Classification

SBE plus Anxiety
and Amusement Valence-Arousal Valence-Arousal positive, neutral

and negative
SEB plus Calm

and Anxious SEB plus Contempt happy, scared,
calm, and bored Fear

Valence Level
of Classificationε 3+3 5 5 (in greneral) 1 9 3+3+3 1 6

SBE = Seven Basic Emotions (anger, disgust, fear, happy, sad, surprise, and neutral).
α The final number of participants
β Racing games: participants do not need to stand up and other actions.
γ Not applicable because of reasons.
δ Contains 98% of information.
ε Maximum level.

to be an effective channel for sensing human emotions, but based
on the large conflict in wear compatibility between existing EEG
devices and VR devices (especially VR head-mounted displays),
using both devices at the same time can affect the quality of EEG
signals due to player movements that cause the EEG to move or
fall off and affect the VR gaming experience due to disruption of
movement [33, 99]. Thus, although the above devices were not used
in the construction of the dataset, a more realistic process of player
experience was recorded. This dataset, because of its extremely high
confidence level, could help in the development of wearable devices
for virtual reality activities in the future. (2) We did not consider
eyetracking in our experiments, although previous work has demon-
strated a correlation between eye movements and emotion [26], and
the potential for higher accuracy in multi-class emotion recognition
tasks [77,84]. However, with the current technology, eyetracking VR
devices are difficult to generalize in terms of cost [10, 54], which is
beyond the current scope. We will investigate this work in the future.
This problem will likely be solved as the usability and performance
of wearable devices improve. However, wireless physiological mea-
surements are still a recognized limitation [55] at this time. (3)
Although a large number of strategies were used in this study to try
to avoid individual differences, there is currently no effective way to
completely eliminate individual differences. Among them, the algo-
rithm is more difficult to recognize the low-fear annotation section.
For this reason, the accuracy improved substantially after re-coding
the multi-classification (6-classification) task into a 2-classification
task. (4) We understand that running machine learning models con-
sumes significant computational resources and that our proposed
model and parameters may not be optimal solutions. Therefore, we
plan to open-source the dataset for future research. In addition, we
note the surprise/shock brought to the scientific community by the
popularity of AI tools built on large language models (LLMs) since
2019, especially ChatGPT [9, 63]. The tuning of models and their
parameters for better performance through AI iterations has been
achieved, and therefore the authors wish to emphasize the impor-
tance of datasets rather than the models themselves. (5) 3D vertigo
is an important flaw in the VR experience [25] that can reduce the

sense of presence in the VR experience [95]. To best avoid the
effect of 3D vertigo symptoms, we applied strategies to minimize
the effects, such as selecting participants who self-reported "no"
3D vertigo for this study, and we did not find significant 3D vertigo
symptoms for other participants during the experiment process. In
addition, we have added intervals in different games to avoid 3D
vertigo symptoms [64]. We let participants play each game for no
more than 20 minutes, and the shorter experience was an effective
measure to avoid 3D vertigo symptoms [3]. However, it is still a
challenge to avoid 3D vertigo symptoms especially for a long-term
experience [86]. (6) The demographics of the participants may be a
limitation. The participants were all from the Chinese population,
which might introduce bias in the dataset, particularly due to dif-
ferent acquired fears and reactions in fear states caused by diverse
cultural backgrounds and habits, and this could limit the ability to
generalize the results to other groups of people. (7) The dataset
proposed in this study is rich in information, yet this paper does not
include all possible and interesting related research, especially those
proven but in need of further exploration, such as studies on specific
features (like postural acceleration) in relation to types of fear, re-
search on the relationship between gender and levels of fear [102],
and studies on the impact of social environment and psychological
factors on behavior in playing VR horror games.

7.2 Insights for Researchers and Game Developers

In machine learning, the importance of high-quality datasets was
obvious, especially in the context of the recent popularity of LLMs.
The high-quality fear sentiment dataset constructed in this paper
allowed developers to skip the complex and tedious data collection
and thus study the specific problem directly (e.g., further modeling).
The constructed model for identifying human fear emotions in VR
environments would enable developers to verify the player’s fear
level in the game easily and further understand the player’s fear
response, which helped the design of game flow, hardware devices,
security, etc. In real application development, researchers or develop-
ers can use our already trained models to understand players’ fearful
emotions and test whether games and applications successfully elicit



fear from users. Furthermore, developers can use our research to
design games and applications with different pacing, difficulty, or
styles. We hope that the provided methods for collecting, processing,
and applying time-series-based data, especially predictive models,
offer the possibility to further consider the player experience to dy-
namically adjust the application scenario, difficulty and atmosphere.
In addition, one of the purposes of our study using VR as a mediator
is to consider the sense of realism and immersion. In other words,
the player’s response is closer to the actual scene. Therefore, the
predictive models and theoretical contributions have a robust ap-
plication in real life, such as creating an architectural atmosphere
(e.g., haunted houses, escape rooms), therapy (overcoming fear),
and understanding or scenario reenactment (real-life fears).

8 CONCLUSION AND FUTURE WORK

Emotions have a significant impact on social life and human devel-
opment. The development of VR and metaverse discussions have
brought the topic of emotions in VR environments to unprecedented
attention. People want to create a metaverse with more possibilities,
and emotions in the virtual environment add more opportunities and
humanity to this new "world". Emotions have a significant impact
on social life and human development. The development of VR
and metaverse discussions have brought unprecedented attention to
the topic of emotions in VR environments. Our research addresses
human fear emotions in virtual environments, providing an effective
way to apply multi-modal data to identify fear emotions. To ad-
dress these issues, we provide the complete experimental procedure,
which includes game selection, experimental steps, data collection
and labeling methods, dataset construction, and prediction model
training. Overall, we provide a high-quality multi-modal (videos,
audio, and physiological signals) immersive human fear responses
dataset (VRMN-bD) and a fear prediction model with an accuracy of
up to 65.31% under 6-classifications, and accuracy of up to 90.47%
under 2-classifications task. We also provide a visual annotation tool
for multi-modal data as a part of contribution to the research.

In addition to further optimizing the model and addressing the
previously mentioned limitations, we hope to conduct future re-
search on fear emotions and behavior strategies in other interesting
scenarios. Moreover, we aim to extend this research to other types
of emotions, and to compare and analyze fear and other emotional
experiences in VR environments. This could help in identifying
deeper relationships between various human emotions, especially
in the context of the future metaverse. We plan to expand the num-
ber and diversity of participants in future studies, increasing the
number of participants and considering unique horror elements in
different cultural contexts, as well as the specific understanding and
responses to fear among different groups of people. Finally, the
dataset, pre-trained model, and more information are available at
https://github.com/KindOPSTAR/VRMN-bD.
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