
Augmenting Su�x Trees� with Applications

Yossi Matias� �� S� Muthukrishnan� ��� S�uleyman Cenk S� ahinalp
� � � �� and

Jacob Ziv� y

� Tel�Aviv University� and Bell Labs� Murray Hill
� Bell Labs� Murray Hill

� University of Warwick and University of Pennsylvania
� Technion

Abstract� Information retrieval and data compression are the two main
application areas where the rich theory of string algorithmics plays a
fundamental role� In this paper� we consider one algorithmic problem
from each of these areas and present highly e�cient �linear or near linear
time� algorithms for both problems� Our algorithms rely on augmenting
the su�x tree� a fundamental data structure in string algorithmics� The
augmentations are nontrivial and they form the technical crux of this
paper� In particular� they consist of adding extra edges to su�x trees�
resulting in Directed Acyclic Graphs �DAGs�� Our algorithms construct
these �su�x DAGs� and manipulate them to solve the two problems
e�ciently�

� Introduction

In this paper� we consider two algorithmic problems� one from the area of Data
Compression and the other from Information Retrieval� Our main results are
highly e�cient �linear or near linear time� algorithms for these problems� All
our algorithms rely on the su�x tree �McC��	� a versatile data structure in com

binatorial pattern matching� Su�x trees� with suitably simple augmentations�
have found numerous applications in string processing �Gus���CR�
	� In our
applications too� we augment the su�x tree with extra edges and additional
information� In what follows� we describe the two problems and provide some
background information� before presenting our results�

� Department of Computer Science� Tel�Aviv University� Tel�Aviv� �		
�� Israel� and
Bell Labs� Murray Hill� NJ�

	
�� USA� matias�math�tau�ac�il� Partly supported
by Alon Fellowship�

�� Bell Labs� Murray Hill� NJ�

	
�� USA� muthu�research�bell�labs�com�
� � � Department of Computer Science� University of Warwick� Coventry� CV��
AL� UK�

and Center for BioInformatics� University of Pennsylvania� Philadelphia� PA� �	����
USA� cenk�dcs�warwick�ac�uk� Partly supported by ESPRIT LTR Project no�
�
��� � ALCOM IT�

y Department of Electrical Engineering� Technion� Haifa ��

� Israel�
jz�ee�technion�ac�il�

��� Problems and Background

We consider the document listing problem of interest in Information Retrieval
and the HYZ compression problem from context
based Data Compression�

The Document Listing Problem� We are given a set of documents T �
fT�� � � � � Tkg for preprocessing� Given a query pattern P � the problem is to output
a list of all the documents that contain P as a substring�

This is di�erent from the standard query model where we are required to
output all the occurrences of P � The standard problem can be solved in time
proportional to the number of occurrences of P in T using a su�x tree� In
contrast� our goal in solving the document listing problem is to generate the
output with a running time that depends on the number of documents that
contain P � Clearly� the latter may be substantially smaller than the former if P
occurs multiple times in the documents�

A related query is where we are required to merely report the number of
documents that contain P � An algorithm that solves this problem in O�jP j�
time is given in �Hui��	� which is based on data structures for computing lowest
common ancestor �LCA� queries�

The document listing problem is of great interest in information retrieval
and has independently been formulated in many scenarios �see pages ��

��� in
�Gus��	 for a �morbid� application�� for example in discovering gene homologies
�Gus��	�

The HYZ Compression Problem� Formally the ��� ��
HYZ compression problem
is as follows� We are given a binary string T of length t� We are asked to re

place disjoint blocks �substrings� of size � with desirably shorter codewords� The
codewords are selected in a way that it would be possible for a corresponding de

compression algorithm to compute the original T out of the string of codewords�
This is done as follows� Say the �rst i� � such blocks have been compressed� To
compute the codeword cj for block j� we �rst determine its context� The context
of a block T �i � l	 is the longest substring T �k � i � �	� k � i� of size at most �
such that T �k � l	 occurs earlier in T � The codeword cj is the ordered pair h�� �i
where � is the length of the context of block j and � is rank of block j with
respect to the context� according to some predetermined ordering� For instance�
one can use the lexicographic ordering of all distinct substrings of size exactly �
that follow any previous occurrence of the context of block j in the string� The
��� ��
HYZ compression scheme is based on the intuition that similar symbols
in data appear in similar contexts� At the high level� it achieves compression by
sorting context
symbol pairs in lexicographic order� and encoding each symbol
according to its context and its rank� Thus it is a context�based scheme�

The ��� ��
HYZ compression problem has been proposed recently in �Yok��	
and �HZ���HZ��	� The case considered in �Yok��	 is one where � � O��� and �

is unbounded� During the execution of this algorithm� the average length of a
codeword for representing a �
sized block is shown to approach the conditional
entropy for the block� H�C�� within an additive term of c� logH�C� � c� for

constants c� and c�� provided that the input is generated by a limited order
Markovian source�� An independent result �HZ���HZ��	 is more general since
it applies to all ergodic sources and yields essentially the best possible non

asymptotic compression even for a moderate amount of memory �at least for
some ergodic sources�� Of relevance to us is the fact that even with limited
context of � � O�log t�� this scheme achieves the optimal compression �in terms
of the conditional entropy� provided � � log log t� and in fact� this is true for all
ergodic sources��

Lempel
Ziv compression schemes and their variants �ZL���ZL���Wel�
	 that
are popular in practice �and are used in tools such as UNIX compress� compact�

gnuzip� pkzip� winzip� the gif image compression format and the current
modem compression standard V
�bis� do not achieve optimality under the re

�ned notion of informational content �namely� conditional entropy� stated above�
Hence� the HYZ compression scheme is more powerful�

Lempel
Ziv schemes and their variants are popular because they have �e�

cient� online�linear time implementations �RPE��	� However� such e�cient al

gorithms for the HYZ compression scheme have not been known thus far� Our
paper addresses the problem of e�ciently implementing the ��� ��
HYZ com

pression scheme��

��� Our Results

We present the following algorithmic results in this paper� Throughout we as

sume that the strings are drawn from a binary alphabet�

�� For the document listing problem� we present an algorithm that preprocesses
the k documents in linear time �that is� O�

P
i ti�� and space� The time to

answer a query with pattern P is O�jP j log k�out� where out is the number
of documents that contain P � The algorithm relies on an augmentation of
the su�x tree that we call the Su�x�DAG��

� See �Yok	�� for the de�nition of the conditional entropy� its relevance in context�
dependent compression schemes and details of the limited order Markovian source
in the claim�

� See �HZ	��HZ	�� for requirements on the source type and the result� In particular�
this results are valid for large n but they are not asymptotic in nature � unlike� for
example� �ZL

� � and hence might be of additional practical interest�

� There are many other context�based data compression methods in the literature
�CW���BW	��WRF	��� These have not been shown to be optimal under re�ned
information�theoretic notion such as the conditional entropy� Experimental studies
have con�rmed that these context�based methods compress English text better than
Lempel�Ziv variants �BCW	
�� However� these context�based methods are either not
very fast �they usually require time and sometimes space superlinear with the size
of the input�� or not online� For a survey and comparison of these methods� see
�BCW	
��

� The analyses in �HZ	��HZ	�� are for binary strings�
� The su�x�DAG data structure also helps solve the count query in time O�jP j��
which matches the best known complexity �Hui	��� We present a new lemma for

Although this problem is natural� no nontrivial algorithmic results were
known before our paper� The fastest algorithms for solving this problem
run in time proportional to the number of occurrences of the pattern in all
documents� clearly� this could be much larger than the number of documents
that contain P � if P occurs multiple times in a document�

�� For the ��� ��
HYZ compression problem� we provide two algorithms� The
�rst algorithm takes time O�t�� �for compression and decompression� and
works for any maximum context size �� This gives a linear time algorithm
for � � O���� the case considered in �Yok��	� The only previously known
algorithm for solving this problem is in �Yok��	� where for � � O���� the
author presents an O�t�� time algorithm� This algorithm is optimal only for
small contexts� that is� � � O���� and for unbounded �� this running time
O�t���
The second algorithm is tuned for the optimal case identi�ed in �HZ���HZ��	�
we provide an O�t� time algorithm to compress and decompress� provided
that � � log log t� and � � O�log t�� It is the �rst e�cient algorithm for this
problem� Notice that for both cases� our algorithms are optimal�
The �rst algorithm is similar to the McCreight�s method for building the suf

�x tree of the string online� however� we need to appropriately augment each
node with at most � units of information� The second algorithm maintains
a trie on all strings within the speci�ed context size together with �su�x
links� on this trie �as in a su�x tree�� and additionally� auxiliary edges on
each node to some of its descendants� The technical details of the latter al

gorithm are more involved than the former� but in both cases the crux is
to design algorithms for maintaining and utilizing the augmented informa

tion and the structural properties of the su�x links are used extensively to
achieve this�
The e�cient algorithmic results supplement the information
theoretic prop

erties of the HYZ schemes proved in �Yok���HZ���HZ��	� hence these
schemes may prove to be a promising alternative to the existing ones in
practice� We are currently experimenting with our algorithms�

� The Su�x�DAG Data Structure

Consider a set of document strings T � fT�� T�� � � � � Tkg� of respective sizes
t�� t�� � � � � tk to be preprocessed� Our goal is to build a data structure which
would support the following queries on an on
line pattern P of size p� ��� list
query � the list of the documents that contain P � and ��� count query � the
number of documents that contain P �

Theorem �� Given T and P � there is a data structure which responds to a count

query in O�p� time� and a list query in O�p log k � out� time� where out is the

number of documents in T that contain P �

computing count queries in bottom�up fashion� eliminating dependancy on the use
of data structures for handling LCA queries� hence our scheme might work faster in
practice�

Proof Sketch� We build a data structure � that we call the su�x
DAG of doc

uments T�� � � � � Tk� in O�t� � O��tk� time using O�t� space� The su�x
DAG of
T � denoted by SD�T �� contains the generalized su�x tree� GST �T �� of the set
T at its core� A generalized su�x tree of a set of documents is de�ned to be the
compact trie of all the su�xes of each of the documents in T ��Gus��	�� Each
leaf node l in GST �T � is labeled with the list of documents which have a su�x
represented by the path from the root to l in GST �T �� We denote the substring
represented by a path from the root to any given node n by P�n��

The nodes of SD�T � are the nodes of GST �T � themselves� The edges of
SD�T � are of two types� ��� the skeleton edges of SD�T � are the edges ofGST �T ��
��� the supportive edges of SD�T � are de�ned as follows� given any two nodes n�
and n� in SD�T �� there is a pointer edge from n� to n�� if and only if �i� n� is
an ancestor of n�� and �ii� among the su�x trees ST �T��� ST �T��� � � � � ST �Tk� of
respective documents T�� T�� � � � � Tk� there exists at least one� say ST �Ti�� which
has two nodes� n��i and n��i such that P�n�� � P�n��i�� P�n�� � P�n��i�� and
n��i is the parent of n��i� We label such an edge with i� for all relevant documents
Ti�

In order to respond to the count and list queries� we build one of the standard
data structures that support least common ancestor �LCA� queries on SD�T �
in O��� time �SV��	� Also� for each of the internal node n of SD�T �� we keep an
array that stores its supportive edges in pre
order fashion� and the number of
documents which include P�n� as a substring�

The following lemmas state the complexities of the procedures for responding
to list and count queries�

Lemma �� The su�x�DAG is su�cient to respond to the count queries in O�p�
time� and to list queries in O�p log k � out� time�

Proof Sketch� The procedure for responding to count queries is as follows� With
P � trace down GST �T � until the highest level node n is reached for which P is
a pre�x of P�n�� We simply return the number of documents that contain P�n�
as a substring� recall that this information is stored in node n�

The procedure for responding to list queries is as follows� We locate node n
�de�ned above� in SD�T � and traverse SD�T � backwards from n to the root�
At each node u on the path� we determine all supportive edges out of u have
their endpoints in the subtree rooted at n� The key observation is that all such
edges will form a consecutive segment in the array of supportive edges residing
with node u� This segment can be identi�ed with two binary searches using an
oracle that determines if a given edge has its endpoint in the subtree rooted at
node n� Performing an LCA query with the endpoint of that edge and node n
provides such an oracle taking O��� time� We can prove that the maximum size
of the array of supportive edges attached to any node is at most kj�j� where
j�j � O��� is the size of the alphabet of the string� Thus this procedure takes
O�log k� time at each node u on the path from n to the root to identify the
segment of supportive edges� the entire segment of such edges is output at each
node u� The output of all such segments contains duplicates� however� we can

prove that the total size of the output is O�outj�j� � O�out�� where out is the
number of occurrences of P in t� We provide the proof of the observations above
in the full version of this paper� ut

Lemma �� The su�x�DAG of the document set T can be constructed in O�t�
time and O�t� space�

Proof Sketch� The construction of the generalized su�x tree GST �T � with
all su�x links� and a data structure to support constant time LCA queries are
standard �see �CR�
	�� What remains is to describe for each node n of SD�T ��
��� how its supportive edges are constructed� ��� how its supportive edge array
is built� and ��� how the number of documents that include P�n� is computed�

The supportive edges with� say� label i� can be built by emulating McCreight�s
construction for ST �Ti� �the su�x tree of Ti� on SD�T �� Notice that for each
node in ST �Ti�� there is a corresponding node in SD�T � with the appropriate
su�x link� This implies that one can iteratively construct the supportive edges
by using the su�x links as follows� Suppose that at some given step of the
construction� a supportive edge between two nodes n� and n� with label i has
been established� Let the su�x links from n� and n� reach nodes n�� and n��
respectively� Then� either there is a supportive edge between n�

�
and n�

�
� or there

exists one intermediate node to which there is a supportive edge from n�
�
� and

there exists one intermediate node from which there is a supportive edge to n���
The time to compute such intermediate nodes can be charged to the number of
characters in the substring represented by the path between n� and n� in Ti� We
leave the details of the non
trivial construction of the supportive edge arrays to
the full paper�

Given a node n of GST �T �� the number of documents� ��n�� which contain
the substring of n� can be computed as follows� The only information we use
about each node n is ��� the number of supportive edges from n to its descen

dants� � � �n�� and ��� the number of supportive edges to n from its ancestors�
� � �n�� ut

Lemma �� For any node n� ��n� � �n��children of n��n���� � �n��� � �n��

Proof� The proof follows from the following key observations�

� if a document Ti includes the substrings of more than one descendant of n�
then there should exist a node in ST �Ti� whose substring is identical to that
of n�

� given two supportive edges from n to n� and n�� the path from n to n� and
the path from n to n� do not have any common edges�

ut

This concludes the proof of the lemma for su�x
DAG construction and hence
the proof of the theorem� ut

We note that using the su�x
DAG structure and additional edges between
the arrays of supportive edges at endpoints of the edges� we can prove the fol

lowing� There is an algorithm that preprocesses T in O�t log log t� time and O�t�
space following which a list query can be answered in time O�p � out�� The
details will be presented in the �nal version�

� The Compression Algorithms

Consider a compression scheme with parameters � and �� We refer to it as C��� �
and whenever � and � will be understood we may use C instead� The input to
C��� is a string T of t characters� In this discussion� we assume that the alphabet
is binary� however our results trivially generalize to any constant size alphabet�
We denote by T �i	� the ith character of T �� � i � t�� and by T �i � j	 the
substring of T which begins at T �i	 and ends at T �j	� The parameters � and �

are �possibly constant� functions of t�

Recall the compression scheme from Section ���� The compression scheme
C��� performs compression by partitioning the input T into contiguous sub

strings� or blocks of � characters� and replacing each block by a corresponding
codeword� To compute the codeword cj for block j� C��� �rst computes the con�
text for block j� The context of a block T �i � l	 is the longest substring T �k � i��	
for k � i� for which T �k � l	 occurs earlier in T � If the context size exceeds �� the
context is truncated to contain only the � rightmost characters� The codeword
cj is the ordered pair h�� �i� We denote by � the size of the context for block j�
We denote by � the lexicographic order of block j amongst all possible substrings
of size � immediately following earlier occurrences of the context of block j��

Our results are as follows�

Theorem �� There is an algorithm to implement the compression scheme C���

which runs in O�t�� time and requires O�t�� space� independent of ��

Proof� We employ McCreight�s method for the construction of the su�x tree�
during which we augment the su�x tree as follows� For each node v� we store
an array of size � in which for each i � �� � � � � �� we store the number of distinct
paths rooted at v �ending at a node or within an edge� of precisely i characters
minus the number of such distinct paths of precisely i� � characters� note that
these numbers may be negative�

We now show how to e�ciently construct this data structure�

Lemma �� There is an algorithm to construct the augmented su�x tree of T in

O�t�� time�

� For instance� for T �
�

��
�
 � � � and � � �� � � �� the context of block 	 �which
consists of T �	� �
 only� is T �
 � �� �
�� since
�
 appears earlier but �
�
 does
not� The two substrings which follow earlier occurrences of this context are T ��� �

and T ��� � �� The lexicographic order of block 	 among these substrings is ��

Proof� Consider the su�x tree construction due to McCreight� While inserting
a new node v into the su�x tree� we update the subtree information� if necessary�
of the ancestors of v which are at most � characters higher than v� The number
of these ancestors whose information will need to be changed is at most �� We
can argue that at most one of the � �elds of information at any ancestor of v
needs to be updated� That completes the proof� ut

We now show that the resulting date structure facilitates the implementation
of the compression scheme C in desired time and space bounds�

Lemma �� The augmented su�x tree is su�cient to compute the codeword for

each block of input T in amortized O���� time�

Proof Sketch� Recall that the codeword for a block j consists of the pair h�� �i�
where � is the context size and � is the lexicographic order of block j among
substrings following its context� The computation of � can be performed by
locating the node in the su�x tree which represents the longest pre�x of the
context� This can be achieved in an inductive fashion by using the su�x links of
McCreight in amortized O��� time �details omitted��

The computation of � can be performed as follows� We traverse the path
between nodes v and w in the su�x tree� The node v represents the longest
pre�x of the context of block j� The node w� a descendant of v� represents the
longest pre�x of the substring formed by concatenating the context of block j to
block j itself� During this traversal� we compute the size of the relevant subtrees
representing substrings lexicographically smaller and lexicographically greater
than the substring represented by this path�

We present the details of the amortization argument used in the computation
of �� and the details of subtree traversal used in the computation of � in the full
version� ut

This completes the proof of the theorem� ut
For � � O��� as in �Yok��	� the algorithm above takes linear time indepen

dent of ��
We now turn our focus to our second algorithm for implementing the com

pression method C��� for the optimal choice of parameters � � O�log t� and
� � log log t� In what follows� we restrict ourselves to the case of � � log t� Later
we will describe how to extend this to larger ��

Theorem �� There is an algorithm to implement the compression method C���
for � � log t and � � log log t in O�t� time using O�t� space�

Proof Sketch� Our algorithm is based on a su�x tree
like data structure which
supports the following feature� Consider a node v in the su�x tree and the set
of descendants of v which are � characters apart from v� Our data structure
enables one to compute the lexicographic order of the path between any such
descendant and the node v� Once the lexicographic order of a given node w is
known� the codeword of the block represented by the path between v and w of
size � is easily computed�

Our algorithm exploits the fact that the context size is bounded� and it seeks
similarities between su�xes of the input up to a small size� For this purpose�
we build the trie of the log t
sized pre�xes of all su�xes of the input T � We
note that this data structure is similar to a su�x tree except that �i� every edge
contains exactly one character� and �ii� for any pair of su�xes� it represents
common pre�xes of size at most log t� We will refer this data structure as the
limited su�x trie of input T � In order to support the lexicographic order queries
we augment the limited su�x trie by keeping a search data structure for each
node v to maintain is descendants which are � characters away from v�

The lemma below states that one can compute the codeword of any input
block in optimal O��� time with our data structure�

Lemma �� The augmented limited su�x trie of input T is su�cient to compute

the codeword for any input block j in O��� time�

Proof Sketch� Given a block j of the input� suppose that the node v represents
its context and that among the descendants of v� the node w represents the
substring obtained by concatenating the context of block j and block j itself�
Because � � log log t� the maximum number of elements in the search data
structure for v is �� � O�log t�� There is a simple data structure that maintains
k elements and computes the rank of any given element in O�log k� time� hence�
one can compute the lexicographic order of node w in only O�log log t� � O���
time� We leave the details of the proof to the full paper� ut

Lemma �� The augmented limited su�x trie of input T can be built and main�

tained in O�t� time and space�

Proof Sketch� The depth of our augmented limited su�x trie is bounded by
log t� hence the total number of nodes in the trie is only O�t�� This suggests that
one can adapt McCreight�s su�x tree construction in O�t� time
 without being
penalized for building a su�x trie rather than a su�x tree�

To complete the proof what we need to do is to show that it is possible to
construct and maintain the search data structures of all nodes in O�t� time� This
follows from the fact that each node v in our data structure is inserted to the
search data structure of at most one of its ancestors� Therefore� the total number
of elements maintained by all search data structures is O�t�� The insertion time
of an element e to a search data structure� provided that the element e� in the
data structure which is closest to e in rank� is O���� As the total number of nodes
to be inserted in the data structure is bounded by O�t�� one can show that the
total time for insertion of nodes in the search data structures is O�t��

We leave the details of how the limited su�x trie is built and how the search
data structures are constructed to the full paper� ut

This completes the proof of the theorem� ut
We use several new ideas to extend the result above to � � O�log t�� or more

generally� to the arbitrary � case� These include encoding all possible � length
paths into a constant number of machine words of size log t� and performing

bit
wise operations on these words� The �nal step involves showing how a table
indexed by all machine words can be built which will replace bit operations on
machine words by mere table lookups� The end result is an O�t� time and space
compression and uncompression algorithm for general � and � � log log t�

� Acknowledgements

We thank an anonymous referee for very fruitful suggestions�

References

�BCW	
� T� Bell� T� Cleary� and I� Witten� Text Compression� Academic Press� �		
�
�Bro	�� G� S� Brodal� Finger search trees with constant insertion time� InACM�SIAM

Symposium on Discrete Algorithms� �		��
�BW	�� M� Burrows and D� J� Wheeler� A block sorting lossless data compression

algorithm� Technical Report ���� DEC SRC� �		��
�CR	�� M� Crochemore and W� Rytter� Text Algorithms� Oxford Press� �		��
�CW��� J� G� Cleary and I� H� Witten� Data compression using adaptive coding and

partial string matching� IEEE Transactions on Communications� �������	��
�
�� �	���

�Gus	�� D� M� Gus�eld� Algorithms on Strings� Trees� and Sequences� AddisonWesley�
�		��

�Hui	�� J� Hui� Color set size problem with applications to string matching� In
Combinatorial Pattern Matching� �		��

�HZ	�� Y� Hershkovits and J� Ziv� On sliding window universal data compres�
sion with limited memory� In Information Theory symposium� pages �
����
September �		��

�HZ	�� Y� Hershkovits and J� Ziv� On sliding window universal data compression
with limited memory� IEEE Trans� on Information Theory� ������
�� Jan�
uary �		��

�McC
�� E� M� McCreight� A space economical su�x tree construction algorithm�
Journal of the ACM� �����������
�� April �	
��

�RPE��� M� Rodeh� V� Pratt� and S� Even� Linear algorithm for data compression via
string matching� Journal of the ACM� ������������ January �	���

�SV��� B� Schieber and U� Vishkin� On �nding lowest common ances�
tors�simpli�cation and parallelization� SIAM Journal of Computing� �
������
����� �	���

�Wel��� T�A� Welch� A technique for high�performance data compression� IEEE

Computer� pages ���	� January �	���
�WRF	�� M� J� Weinberger� J� J� Rissanen� and M� Feder� A universal �nite memory

source� IEEE Transactions on Information Theory� �������������� �		��
�Yok	�� H� Yokoo� An adaptive data compression method based on context sorting�

In IEEE Data Compression Conference� �		��
�ZL

� J� Ziv and A� Lempel� A universal algorithm for sequential data compression�

IEEE Transactions on Information Theory� IT���������
����� May �	

�
�ZL
�� J� Ziv and A� Lempel� Compression of individual sequences via variable�

rate coding� IEEE Transactions on Information Theory� IT���������
�����
September �	
��

A Appendix

In this section we demonstrate the construction of the su�x
DAG of a set of
documents by means of �gures�

T3: abab
T2: abca
T1: abcb

T: {

a

#

b b

ST(T1)

c
b

#

c
b
#

c
b

#

a

b
c

a

b
c
a

a
c

#

ST(T2)
a

b

#

b

a
b #

ST(T3)

#

#
#

a
b

#

Fig� �� The independent su�x trees of a given set of documents�

3 1 2 2 3 1,3 1 2 2 1

a

b

c

b

a

b

c

a b
b a

#

c

b a

SK(T)

#

#

##
#

#

a
b

#

3

Fig� �� The generalized su�x tree of the set of documents in Figure ��

legend: skeleton edge

pointer edge

number of documents in the subtree and the pointer array

SD(T)

3 1 2 2 3 1,3 1 2 2 1

a

b

a

b

c
#

b

a

b

c

a b
b a

#

c

1

1,3

3 2
2

1,3

3

1,3
b a

1
2 2

1

2

SD(T)

-

-

-

3 1 2 2 3 1,3 1 2 2 1

a

b

a

b

c
#

b

a

b

c

a b
b a

#

c

b a

2,2

3,1

1,3,2,1,3,2,1

3,1,3,1

3

2

3

3

3

2

2

3

3

Fig� �� The su�x�DAG of the set of documents in Figure ��

