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Abstract. Information retrieval and data compression are the two main
application areas where the rich theory of string algorithmics plays a
fundamental role. In this paper, we consider one algorithmic problem
from each of these areas and present highly efficient (linear or near linear
time) algorithms for both problems. Our algorithms rely on augmenting
the suffiz tree, a fundamental data structure in string algorithmics. The
augmentations are nontrivial and they form the technical crux of this
paper. In particular, they consist of adding extra edges to suffix trees,
resulting in Directed Acyclic Graphs (DAGs). Our algorithms construct
these “suffix DAGs” and manipulate them to solve the two problems
efficiently.

1 Introduction

In this paper, we consider two algorithmic problems, one from the area of Data
Compression and the other from Information Retrieval. Our main results are
highly efficient (linear or near linear time) algorithms for these problems. All
our algorithms rely on the suffiz tree [McC76], a versatile data structure in com-
binatorial pattern matching. Suffix trees, with suitably simple augmentations,
have found numerous applications in string processing [Gus98,CR94]. In our
applications too, we augment the suffix tree with extra edges and additional
information. In what follows, we describe the two problems and provide some
background information, before presenting our results.
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1.1 Problems and Background

We consider the document listing problem of interest in Information Retrieval
and the HYZ compression problem from context-based Data Compression.

The Document Listing Problem. We are given a set of documents T =
{Ty,...,T}} for preprocessing. Given a query pattern P, the problem is to output
a list of all the documents that contain P as a substring.

This is different from the standard query model where we are required to
output all the occurrences of P. The standard problem can be solved in time
proportional to the number of occurrences of P in T using a suffix tree. In
contrast, our goal in solving the document listing problem is to generate the
output with a running time that depends on the number of documents that
contain P. Clearly, the latter may be substantially smaller than the former if P
occurs multiple times in the documents.

A related query is where we are required to merely report the number of
documents that contain P. An algorithm that solves this problem in O(|P])
time is given in [Hui92], which is based on data structures for computing lowest
common ancestor (LCA) queries.

The document listing problem is of great interest in information retrieval
and has independently been formulated in many scenarios (see pages 124-125 in
[Gus98] for a “morbid” application), for example in discovering gene homologies
[Gus98].

The HYZ Compression Problem. Formally the (o, 8)-HY Z compression problem
is as follows. We are given a binary string 7' of length ¢. We are asked to re-
place disjoint blocks (substrings) of size 3 with desirably shorter codewords. The
codewords are selected in a way that it would be possible for a corresponding de-
compression algorithm to compute the original T' out of the string of codewords.
This is done as follows. Say the first ¢ — 1 such blocks have been compressed. To
compute the codeword c¢; for block j, we first determine its context. The context
of a block T'[i : {] is the longest substring T'[k : i — 1],k < 4, of size at most «
such that T[k : I] occurs earlier in T'. The codeword ¢; is the ordered pair (v, A)
where v is the length of the context of block j and A is rank of block j with
respect to the context, according to some predetermined ordering. For instance,
one can use the lexicographic ordering of all distinct substrings of size exactly 3
that follow any previous occurrence of the context of block j in the string. The
(a, B)-HYZ compression scheme is based on the intuition that similar symbols
in data appear in similar contexts. At the high level, it achieves compression by
sorting context-symbol pairs in lexicographic order, and encoding each symbol
according to its context and its rank. Thus it is a context-based scheme.

The (a, 3)-HY Z compression problem has been proposed recently in [Yok96)
and [HZ95,HZ98]. The case considered in [Yok96] is one where # = O(1) and «
is unbounded. During the execution of this algorithm, the average length of a
codeword for representing a (-sized block is shown to approach the conditional
entropy for the block, H(C), within an additive term of ¢; log H(C) + ¢ for



constants ¢; and ¢z, provided that the input is generated by a limited order
Markovian source.! An independent result [HZ95,HZ98] is more general since
it applies to all ergodic sources and yields essentially the best possible non-
asymptotic compression even for a moderate amount of memory (at least for
some ergodic sources). Of relevance to us is the fact that even with limited
context of & = O(logt), this scheme achieves the optimal compression (in terms
of the conditional entropy) provided 8 > loglogt, and in fact, this is true for all
ergodic sources.?

Lempel-Ziv compression schemes and their variants [ZL77,ZL78,Wel84] that
are popular in practice (and are used in tools such as UNIX compress, compact,
gnuzip, pkzip, winzip, the gif image compression format and the current
modem compression standard V42bis) do not achieve optimality under the re-
fined notion of informational content (namely, conditional entropy) stated above.
Hence, the HYZ compression scheme is more powerful.

Lempel-Ziv schemes and their variants are popular because they have (effi-
cient) online/linear time implementations [RPE81]. However, such efficient al-
gorithms for the HYZ compression scheme have not been known thus far. Our
paper addresses the problem of efficiently implementing the («, 3)-HYZ com-
pression scheme.?

1.2 Our Results

We present the following algorithmic results in this paper. Throughout we as-
sume that the strings are drawn from a binary alphabet*

1. For the document listing problem, we present an algorithm that preprocesses
the & documents in linear time (that is, O(>_,%;)) and space. The time to
answer a query with pattern P is O(|P|logk + out) where out is the number
of documents that contain P. The algorithm relies on an augmentation of
the suffix tree that we call the Suffiz-DAG.?

! See [Yok96] for the definition of the conditional entropy, its relevance in context-
dependent compression schemes and details of the limited order Markovian source
in the claim.

See [HZ95,HZ98] for requirements on the source type and the result. In particular,
this results are valid for large n but they are not asymptotic in nature — unlike, for
example, [ZL77] — and hence might be of additional practical interest.

There are many other context-based data compression methods in the literature
[CW84,BW94 WRF95]. These have not been shown to be optimal under refined
information-theoretic notion such as the conditional entropy. Experimental studies
have confirmed that these context-based methods compress English text better than
Lempel-Ziv variants [BCW90]. However, these context-based methods are either not
very fast (they usually require time and sometimes space superlinear with the size
of the input), or not online. For a survey and comparison of these methods, see
[BCW90].

The analyses in [HZ95,HZ98] are for binary strings.

The suffix-DAG data structure also helps solve the count query in time O(|P|),
which matches the best known complexity [Hui92]. We present a new lemma for

M)

[SLE



Although this problem is natural, no nontrivial algorithmic results were
known before our paper. The fastest algorithms for solving this problem
run in time proportional to the number of occurrences of the pattern in all
documents; clearly, this could be much larger than the number of documents
that contain P, if P occurs multiple times in a document.

2. For the («, 3)-HYZ compression problem, we provide two algorithms. The
first algorithm takes time O(t3) (for compression and decompression) and
works for any maximum context size a. This gives a linear time algorithm
for = O(1), the case considered in [Yok96]. The only previously known
algorithm for solving this problem is in [Yok96], where for 8 = O(1), the
author presents an O(t«) time algorithm. This algorithm is optimal only for
small contexts, that is, @ = O(1), and for unbounded «, this running time
O(t?).

The second algorithm is tuned for the optimal case identified in [HZ95,HZ98]:
we provide an O(t) time algorithm to compress and decompress, provided
that 8 = loglogt, and a = O(logt). It is the first efficient algorithm for this
problem. Notice that for both cases, our algorithms are optimal.

The first algorithm is similar to the McCreight’s method for building the suf-
fix tree of the string online; however, we need to appropriately augment each
node with at most 8 units of information. The second algorithm maintains
a trie on all strings within the specified context size together with “suffix
links” on this trie (as in a suffix tree), and additionally, auxiliary edges on
each node to some of its descendants. The technical details of the latter al-
gorithm are more involved than the former, but in both cases the crux is
to design algorithms for maintaining and utilizing the augmented informa-
tion and the structural properties of the suffix links are used extensively to
achieve this.

The efficient algorithmic results supplement the information-theoretic prop-
erties of the HYZ schemes proved in [Yok96,HZ95,HZ98]; hence these
schemes may prove to be a promising alternative to the existing ones in
practice. We are currently experimenting with our algorithms.

2 The Suffix-DAG Data Structure

Consider a set of document strings T = {T3,T»,..., Tk}, of respective sizes
ti,ta,...,t; to be preprocessed. Our goal is to build a data structure which
would support the following queries on an on-line pattern P of size p: (1) list
query — the list of the documents that contain P, and (2) count query — the
number of documents that contain P.

Theorem 1. Given T and P, there is a data structure which responds to a count
query in O(p) time, and a list query in O(plogk + out) time, where out is the
number of documents in T that contain P.

computing count queries in bottom-up fashion, eliminating dependancy on the use
of data structures for handling LCA queries, hence our scheme might work faster in
practice.



Proof Sketch. We build a data structure , that we call the suffix-DAG of doc-
uments T4, ..., Ty, in O(t) = O(Xt) time using O(t) space. The suffix-DAG of
T, denoted by SD(T), contains the generalized suffix tree, GST(T), of the set
T at its core. A generalized suffix tree of a set of documents is defined to be the
compact trie of all the suffixes of each of the documents in T ([Gus98]). Each
leaf node | in GST(T) is labeled with the list of documents which have a suffix
represented by the path from the root to [ in GST(T). We denote the substring
represented by a path from the root to any given node n by P(n).

The nodes of SD(T) are the nodes of GST(T) themselves. The edges of
SD(T) are of two types: (1) the skeleton edges of SD(T') are the edges of GST'(T');
(2) the supportive edges of SD(T) are defined as follows: given any two nodes n1
and ng in SD(T), there is a pointer edge from n; to ng, if and only if (i) ny is
an ancestor of ny, and (ii) among the suffix trees ST(T1), ST (T%),. .., ST (T}) of
respective documents T, T5, . . ., Tk, there exists at least one, say ST (T;), which
has two nodes, n1; and ns ; such that P(n1) = P(ni1;), P(n2) = P(ns,;), and
n1; is the parent of ns ;. We label such an edge with ¢, for all relevant documents
T;.

In order to respond to the count and list queries, we build one of the standard
data structures that support least common ancestor (LCA) queries on SD(T)
in O(1) time [SV88]. Also, for each of the internal node n of SD(T'), we keep an
array that stores its supportive edges in pre-order fashion, and the number of
documents which include P(n) as a substring.

The following lemmas state the complexities of the procedures for responding
to list and count queries.

Lemma 1. The suffiz-DAG is sufficient to respond to the count queries in O(p)
time, and to list queries in O(plogk + out) time.

Proof Sketch. The procedure for responding to count queries is as follows. With
P, trace down GST(T) until the highest level node n is reached for which P is
a prefix of P(n). We simply return the number of documents that contain P(n)
as a substring; recall that this information is stored in node n.

The procedure for responding to list queries is as follows. We locate node n
(defined above) in SD(T') and traverse SD(T) backwards from n to the root.
At each node u on the path, we determine all supportive edges out of u have
their endpoints in the subtree rooted at n. The key observation is that all such
edges will form a consecutive segment in the array of supportive edges residing
with node u. This segment can be identified with two binary searches using an
oracle that determines if a given edge has its endpoint in the subtree rooted at
node n. Performing an LCA query with the endpoint of that edge and node n
provides such an oracle taking O(1) time. We can prove that the maximum size
of the array of supportive edges attached to any node is at most k|X|, where
| Y| = O(1) is the size of the alphabet of the string. Thus this procedure takes
O(logk) time at each node uw on the path from n to the root to identify the
segment of supportive edges; the entire segment of such edges is output at each
node u. The output of all such segments contains duplicates, however, we can



prove that the total size of the output is O(out|X|) = O(out), where out is the
number of occurrences of P in t. We provide the proof of the observations above
in the full version of this paper. a

Lemma 2. The suffiz-DAG of the document set T can be constructed in O(t)
time and O(t) space.

Proof Sketch. The construction of the generalized suffix tree GST(T') with
all suffix links, and a data structure to support constant time LCA queries are
standard (see [CR94]). What remains is to describe for each node n of SD(T),
(1) how its supportive edges are constructed, (2) how its supportive edge array
is built, and (3) how the number of documents that include P(n) is computed.

The supportive edges with, say, label 7, can be built by emulating McCreight’s
construction for ST(T;) (the suffix tree of T;) on SD(T'). Notice that for each
node in ST (T;), there is a corresponding node in SD(T') with the appropriate
suffix link. This implies that one can iteratively construct the supportive edges
by using the suffix links as follows: Suppose that at some given step of the
construction, a supportive edge between two nodes n; and n, with label i has
been established. Let the suffix links from n; and ns reach nodes n} and n)
respectively. Then, either there is a supportive edge between n} and nj, or there
exists one intermediate node to which there is a supportive edge from nj, and
there exists one intermediate node from which there is a supportive edge to n.
The time to compute such intermediate nodes can be charged to the number of
characters in the substring represented by the path between n; and n, in T;. We
leave the details of the non-trivial construction of the supportive edge arrays to
the full paper.

Given a node n of GST(T), the number of documents, #(n), which contain
the substring of n, can be computed as follows: The only information we use
about each node n is (1) the number of supportive edges from n to its descen-
dants, # 1 (n), and (2) the number of supportive edges to n from its ancestors,

# | (n). o

Lemma 3. For any node n, #(n) = Zpicchitdren of n#(M')+# 1T (n)—# 1 (n).

Proof. The proof follows from the following key observations:

— if a document T; includes the substrings of more than one descendant of n,
then there should exist a node in ST'(T;) whose substring is identical to that
of n;

— given two supportive edges from n to n; and ng, the path from n to n; and
the path from n to ns do not have any common edges.

a

This concludes the proof of the lemma for suffix-DAG construction and hence
the proof of the theorem. O



We note that using the suffix-DAG structure and additional edges between
the arrays of supportive edges at endpoints of the edges, we can prove the fol-
lowing. There is an algorithm that preprocesses T in O(tloglogt) time and O(t)
space following which a list query can be answered in time O(p + out). The
details will be presented in the final version.

3 The Compression Algorithms

Consider a compression scheme with parameters o and 3. We refer to it as Cq g,
and whenever a and 8 will be understood we may use C' instead. The input to
Ca,3 is a string T of ¢ characters. In this discussion, we assume that the alphabet
is binary, however our results trivially generalize to any constant size alphabet.
We denote by TT[i], the ith character of 7' (1 < i < t), and by T[i : j] the
substring of T" which begins at T'[i] and ends at T'[j]. The parameters a and
are (possibly constant) functions of ¢.

Recall the compression scheme from Section 1.1. The compression scheme
Ca,p performs compression by partitioning the input 7' into contiguous sub-
strings, or blocks of 8 characters, and replacing each block by a corresponding
codeword. To compute the codeword c; for block j, C, g first computes the con-
text for block j. The context of a block T'[i : I] is the longest substring T'[k : i — 1]
for k < i, for which T'[k : I] occurs earlier in T'. If the context size exceeds «, the
context is truncated to contain only the a rightmost characters. The codeword
¢; is the ordered pair (7, A). We denote by ~ the size of the context for block j.
We denote by A the lexicographic order of block 7 amongst all possible substrings
of size # immediately following earlier occurrences of the context of block 5.5

Our results are as follows.

Theorem 2. There is an algorithm to implement the compression scheme Cy g
which runs in O(tB) time and requires O(t3) space, independent of a.

Proof. We employ McCreight’s method for the construction of the suffix tree,
during which we augment the suffix tree as follows. For each node v, we store
an array of size # in which for each i = 1,..., 3, we store the number of distinct
paths rooted at v (ending at a node or within an edge) of precisely ¢ characters
minus the number of such distinct paths of precisely ¢ — 1 characters; note that
these numbers may be negative.

We now show how to efficiently construct this data structure.

Lemma 4. There is an algorithm to construct the augmented suffix tree of T in

O(tB) time.

6 For instance, for T = 010011010... and a = 2, 8 = 1, the context of block 9 (which
consists of T'[9] = 0 only) is T'[7 : 8] = 01, since 010 appears earlier but 1010 does
not. The two substrings which follow earlier occurrences of this context are T'[3] = 0
and T'[6] = 1. The lexicographic order of block 9 among these substrings is 1.



Proof. Consider the suffix tree construction due to McCreight. While inserting
a new node v into the suffix tree, we update the subtree information, if necessary,
of the ancestors of v which are at most 3 characters higher than v. The number
of these ancestors whose information will need to be changed is at most 3. We
can argue that at most one of the 3 fields of information at any ancestor of v
needs to be updated. That completes the proof. O

We now show that the resulting date structure facilitates the implementation
of the compression scheme C in desired time and space bounds.

Lemma 5. The augmented suffix tree is sufficient to compute the codeword for
each block of input T in amortized O(3?%) time.

Proof Sketch. Recall that the codeword for a block j consists of the pair (v, A),
where v is the context size and A is the lexicographic order of block j among
substrings following its context. The computation of v can be performed by
locating the node in the suffix tree which represents the longest prefix of the
context. This can be achieved in an inductive fashion by using the suffix links of
McCreight in amortized O(3) time (details omitted).

The computation of A can be performed as follows. We traverse the path
between nodes v and w in the suffix tree. The node v represents the longest
prefix of the context of block j. The node w, a descendant of v, represents the
longest prefix of the substring formed by concatenating the context of block j to
block j itself. During this traversal, we compute the size of the relevant subtrees
representing substrings lexicographically smaller and lexicographically greater
than the substring represented by this path.

We present the details of the amortization argument used in the computation
of v, and the details of subtree traversal used in the computation of A in the full
version. a

This completes the proof of the theorem. O

For 8 = O(1) as in [Yok96], the algorithm above takes linear time indepen-
dent of a.

We now turn our focus to our second algorithm for implementing the com-
pression method C, s for the optimal choice of parameters a = O(logt) and
B = loglogt. In what follows, we restrict ourselves to the case of a = logt. Later
we will describe how to extend this to larger «.

Theorem 3. There is an algorithm to implement the compression method C, g
for a =logt and B =loglogt in O(t) time using O(t) space.

Proof Sketch. Our algorithm is based on a suffix tree-like data structure which
supports the following feature. Consider a node v in the suffix tree and the set
of descendants of v which are § characters apart from v. Our data structure
enables one to compute the lexicographic order of the path between any such
descendant and the node v. Once the lexicographic order of a given node w is
known, the codeword of the block represented by the path between v and w of
size (3 is easily computed.



Our algorithm exploits the fact that the context size is bounded, and it seeks
similarities between suffixes of the input up to a small size. For this purpose,
we build the trie of the logt-sized prefixes of all suffixes of the input 7. We
note that this data structure is similar to a suffix tree except that (i) every edge
contains exactly one character, and (ii) for any pair of suffixes, it represents
common prefixes of size at most logt. We will refer this data structure as the
limited suffix trie of input T'. In order to support the lexicographic order queries
we augment the limited suffix trie by keeping a search data structure for each
node v to maintain is descendants which are 3 characters away from v.

The lemma below states that one can compute the codeword of any input
block in optimal O(f8) time with our data structure.

Lemma 6. The augmented limited suffix trie of input T is sufficient to compute
the codeword for any input block j in O(B) time.

Proof Sketch. Given a block j of the input, suppose that the node v represents
its context and that among the descendants of v, the node w represents the
substring obtained by concatenating the context of block j and block j itself.
Because 8 = loglogt, the maximum number of elements in the search data
structure for v is 2% = O(logt). There is a simple data structure that maintains
k elements and computes the rank of any given element in O(log k) time; hence,
one can compute the lexicographic order of node w in only O(loglogt) = O(3)
time. We leave the details of the proof to the full paper. O

Lemma 7. The augmented limited suffix trie of input T can be built and main-
tained in O(t) time and space.

Proof Sketch. The depth of our augmented limited suffix trie is bounded by
log ¢, hence the total number of nodes in the trie is only O(t). This suggests that
one can adapt McCreight’s suffix tree construction in O(¢) time - without being
penalized for building a suffix trie rather than a suffix tree.

To complete the proof what we need to do is to show that it is possible to
construct and maintain the search data structures of all nodes in O(t) time. This
follows from the fact that each node v in our data structure is inserted to the
search data structure of at most one of its ancestors. Therefore, the total number
of elements maintained by all search data structures is O(t). The insertion time
of an element e to a search data structure, provided that the element e’ in the
data structure which is closest to e in rank, is O(1). As the total number of nodes
to be inserted in the data structure is bounded by O(t), one can show that the
total time for insertion of nodes in the search data structures is O(t).

We leave the details of how the limited suffix trie is built and how the search
data structures are constructed to the full paper. O

This completes the proof of the theorem. O

We use several new ideas to extend the result above to a = O(logt), or more
generally, to the arbitrary a case. These include encoding all possible 8 length
paths into a constant number of machine words of size logt, and performing



bit-wise operations on these words. The final step involves showing how a table
indexed by all machine words can be built which will replace bit operations on
machine words by mere table lookups. The end result is an O(¢) time and space
compression and uncompression algorithm for general a and 8 = loglogt.
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A Appendix

In this section we demonstrate the construction of the suffix-DAG of a set of
documents by means of figures.

Fig. 2. The generalized suffix tree of the set of documents in Figure 1.
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Fig. 3. The suffix-DAG of the set of documents in Figure 1.



