
Universal Acceptance
Quick Guide

What Does “Universal Acceptance” Mean?

Software and online services
support Universal Acceptance
when they offer the capabilities
listed above for all domains
and email names.

ACCEPT

VALIDATE

STORE

PROCESS

DISPLAY

1ASCII is the character encoding historically used on the Internet, defined in the
Internet standard RFC 20 (https://tools.ietf.org/html/rfc20). Unicode is defined
by the Unicode Consortium (http://unicode.org).

Some software does not recognize or correctly process all domain names and all email
addresses. Domain names can include strings in the top-level position that are longer
than the older familiar ones, and domain names and email addresses can now use
characters drawn from a much larger Unicode-based repertoire than traditional
ASCII1. Universal Acceptance (UA) is the state in which all valid domain names and
email addresses are accepted, validated, stored, processed, and displayed
correctly and consistently.

The Universal Acceptance Steering Group (UASG) is a community-led initiative
working on creating awareness and identifying and resolving problems
associated with the universal acceptance of all domain names and email
addresses. Its goal is to help ensure a consistent and positive experience for
Internet users globally. It is supported by ICANN (the Internet Corporation
for Assigned Names and Numbers) and has participants from more than
200 organisations around the world, including Afilias, Apple, CNNIC,
GoDaddy, Google, Microsoft, and Verisign. For more information on the
UASG and recent developments, visit: www.uasg.tech.

This Quick Guide describes the UASG Recommendations for achieving
Universal Acceptance in the five contexts—Accept, Validate, Store, Process,
and Display—in which systems encounter domain names and email
addresses. It is intended for executives and managers responsible for
Information Technology or Software Product Engineering activities. It
presents the UASG Recommendations at a high level without some of the
detail that would be important to a software architect or engineer. For
those details consult UASG 007, “Introduction to Universal Acceptance.”

Accept is the process by
which a domain name or an
email address is received
from a user interface, file, or
API (application program
interface) to be used by a
software application or
online service.

Input fields should be large enough to accept any valid input. Depending
on how it is encoded, a domain name can require as many as 670 bytes. An
email address can have a local part (the part before the @-sign) of up to 64
bytes in addition to a domain name, for a total length of up to 735 bytes.
Applications and services should accept UTF-82 encoded domain names
and email addresses, and should recognize that the number of bytes
occupied by the UTF-8 encoding may be greater than the number of
displayed characters.
An IDN can be entered and displayed either in its original script or in an
ASCII version designed for backward compatibility; for example 测试 and
xn--0zwm56d. The Unicode encoding of the original script is called a
U-label3; the equivalent ASCII-compatible encoding is called an A-label.
Every A-label corresponds to one U-label and vice-versa. Software should
accept both A-labels and U-labels, but convert A-labels to U-labels for
display and for any processing that does not require A-labels.
In almost all cases an entered domain name or email address should be
converted into Unicode Normalization Form C (NFC)4 before further
processing. Because NFC is not perfectly lossless, in rare circumstances it
may be necessary to defer normalization until further processing has
established the specific context(s) in which it should be applied.

UASG Recommendations
ACCEPT

2UTF-8 encodes each Unicode code point as a sequence of one to four bytes. It is defined in RFC 3629.

3Conversion between U-labels and A-labels is accomplished by the “Punycode” algorithm defined in RFC 3492 and RFC 5891.

4See Unicode Standard Annex #15, “Unicode Normalization Forms” (https://www.unicode.org/reports/tr15/tr15-47.html).

Validate is the process to
check an email address or
domain name for correct
syntax and, when appropriate,
that a name that is expected
to exist in the DNS actually
does. Validation techniques
may need updating to work
with modern domain names
and email addresses.

VALIDATE
UASG Recommendations

Input should be validated in a manner appropriate for its intended use. All
domain names should be validated against the Internationalized Domain
Names in Applications standard, currently IDNA20085. This ensures that
the name is syntactically valid.

If an input string is expected to be an existing entry in the DNS, validate it
with a DNS lookup.

If an input string is expected to be a valid domain name that might not
(yet) be in the DNS, it may still be possible to validate part of it. For
example, the top-level domain (TLD) name can be checked against the
authoritative list of valid TLD names maintained by the Internet Assigned
Numbers Authority (IANA)6.

To validate an email address, validate the domain part as described
above. Because the local part of an email address is defined only by the
mail system that receives mail, it is generally not possible to validate it.
Asking the user to enter the email address twice may detect typing errors.

In most cases, all of the components of a domain name or email address
(except the TLD name if it is not an IDN) should be in a single script (e.g.,
Arabic or Han) or closely related scripts (e.g., Japanese Kanji, Katakana,
Hiragana, and Romaji). Use Unicode Technical Standard #39, “Unicode
Security Mechanisms
(https://www.unicode.org/reports/tr39/#Restriction_Level_Detection), to
check that the scripts in a Unicode sequence follow good practice.

5See IETF RFCs 5890, 5891, 5892, 5893, and 5894 for the
definition of IDNA2008.

6See “List of Top-Level Domains”
(https://www.icann.org/resources/pages/tlds-2012-02-25-en).

STORE

Store refers to the temporary
or long-term storage of
domain names and email
addresses, which should be
stored in well-defined formats
regardless of the expected
duration of the storage.

In almost all cases domain names and email addresses should be
normalized according to Unicode Normalization Form C (NFC) before
storing. Because NFC is not perfectly lossless, in rare circumstances it
may be necessary to defer normalization until further processing has
established the specific context(s) in which it should be applied.

In most applications, domain names and email addresses should be
stored in files and databases encoded as UTF-8, the most common and
best-supported Unicode encoding. In some cases, where software has
to interoperate with legacy databases, it may be easier to use the same
encoding as the database.

Within application code, the most appropriate representation of
Unicode depends on the programming environment. Many common
programming languages including the python and perl scripting
languages have built-in support for Unicode and automatic conversion
to or from UTF-8 on input and output.

Applications should choose a consistent internal representation—either
U-labels or A-labels—for IDNs. Because every U-label can be
transformed into a unique A-label and vice-versa, either form is
acceptable.

UASG Recommendations

PROCESS

Processing occurs whenever
an email address or domain
name is used by an applica-
tion or service to perform an
activity (e.g., searching or
sorting a list) or changed into
an alternative format (e.g.,
from a legacy encoding into
UTF-8). Additional validation
may occur during processing.

As Unicode evolves, upgrade software when practical to use the most
recent version of the standard and any available graphics and fonts.
Consider that user devices, software libraries, and web standards may
not support the most recent version, and therefore may display newly
allocated characters incorrectly, as a generic box (), or not at all.

When APIs that support UTF-8 input or output are available, use them
rather than APIs that do not. Use standard well-debugged libraries,
such as the GNU libidn2
(https://www.gnu.org/software/libidn/#libidn2), to process and validate
IDNs; do not “roll your own.”

Scripts that are written right-to-left require special considerations
when they are used in domain names and email addresses. Some of
those considerations are addressed in IDNA7 (for domain names) and
an Annex to the Unicode Standard8 (for email addresses).

When creating registries or other data structures that include script or
language information, allow for as many as possible, ideally all that the
Unicode Standard supports9. Be aware that some languages can be
written using different scripts, and that some scripts can be used to
write many different languages.

UASG Recommendations

This Quick Guide describes the UASG Recommendations for achieving
Universal Acceptance in the five contexts—Accept, Validate, Store, Process,
and Display—in which systems encounter domain names and email
addresses. It is intended for executives and managers responsible for
Information Technology or Software Product Engineering activities. It
presents the UASG Recommendations at a high level without some of the
detail that would be important to a software architect or engineer. For
those details consult UASG 007, “Introduction to Universal Acceptance.”

7See RFC 5893, “Right-to-Left Scripts for Internationalized Domain Names for Applications (IDNA)”
(https://tools.ietf.org/html/rfc5893).

8See UAX#9, “Unicode Bidirectional Algorithm” (http://unicode.org/reports/tr9).

9See the Unicode “Supported Scripts” (http://unicode.org/standard/supported.html).

Display occurs whenever an
email address or domain
name is rendered visually by
a user interface. Displaying
domain names and email
addresses is usually straight-
forward when the scripts
used and any required
rendering mechanisms are
supported in the underlying
operating system and strings
are stored in an encoding
defined by the Unicode
Standard. Application-specif-
ic transformations may be
required otherwise.

DISPLAY

Consider that although modern software and devices can display nearly all
Unicode code points, older systems may have limited support, and require
that applications manage some of their old fonts. Also, when Unicode adds
new code points, devices and applications will not display them until their
font libraries have been updated.
Display IDNs in their native character form unless there is a specific
requirement to display them as A-labels.
Domain names and email addresses can be displayed in left-to-right (LTR)
text, as in English or Russian, or right-to-left (RTL) text, as in Arabic or
Hebrew. Because Unicode assigns directionality attributes to individual
code points—not to code point sequences—some mixed LTR and RTL
(“bidirectional”) text makes sense to users, and some does not. Use the
Unicode restriction levels criteria10 to flag potentially misleading strings.
Internet users read and speak many different languages. In some cases it
may be necessary to design applications separately for different languages
or language groups.

UASG Recommendations

10See Unicode Technical Standard #39, “Unicode Security Mechanisms”
(https://www.unicode.org/reports/tr39/#Restriction_Level_Detection), for its Moderately Restrictive and Highly Restrictive
restriction levels to check that the scripts in a Unicode sequence follow good practice.

For additional technical details on Universal Acceptance, visit: www.uasg.tech.

Become Universal Acceptance-Ready

UASG005-160302-EN

Source Code Reviews & Unit
Testing

Software and systems that have
been developed or upgraded to
support Universal Acceptance
should be reviewed and tested to
ensure correctness and to find and
fix bugs. As part of the UASG
awareness efforts, the group is
reaching out to application
developers and online service
providers to encourage them to
perform universal acceptance source
code reviews and testing and share a
list of criteria which can be used to
develop standardized test cases.

Testing

UASG is also developing a list of web
sites, applications, email addresses,
and domain names usable for
testing. In some cases, tests can be
automated and run without manual
intervention. A real-world example is
the recent gTLD investigation
performed by APNIC Labs on behalf
of ICANN:
https://tinyurl.com/new-gtld-ua.
UASG is investigating methods of
automated testing for universal
acceptance and will share findings as
they are available.

Further Reading
These documents have further information on
Universal Acceptance, Unicode, and
Internationalized Domain Names.

UASG 007, “Introduction to Universal
Acceptance”
(https://uasg.tech/documents).

RFC 5894, “Internationalized Domain
Names for Applications (IDNA):
Background, Explanation, and Rationale”
(https://www.rfc-editor.org/info/rfc5894).

“International typography on the Web,” a
graphical summary showing problems and
issues handling different languages on the
Web
(https://w3c.github.io/typography/gap-anal
ysis/language-matrix.html).

A note on terminology
One of the difficulties with achieving Universal Acceptance is that many terms and concepts that are familiar to people accustomed to simple scripts with a small number of
distinct “alphabetic” characters, such as the Latin script, can lead to a great deal of confusion when applied to writing systems that utilize different principles. Incorporating a
wide variety of writing systems into the field of internationalized domain names (IDNs) has required the invention of new terms and the use of familiar terms (such as
“character”) in special and very specific ways. This Quick Guide tries to avoid such terms or to define them when they are used, but an examination of other materials,
including some of the documents referenced here, is likely to require a deeper understanding of the terminology.

