
Sequoll: a Framework for
Model Checking Binaries

Bernard Blackham and Gernot Heiser

NICTA and University of New South Wales
Sydney, Australia

Email: {bernard.blackham,gernot}@nicta.com.au

Abstract

Multi-criticality real-time systems require protected-mode operating sys-
tems with bounded interrupt latencies and guaranteed isolation between
components. A tight WCET analysis of such systems requires trustworthy
information about loop bounds and infeasible paths.

We propose sequoll, a framework for employing model checking of binary
code to determine loop counts and infeasible paths, as well as validating
manual infeasible path annotations which are often error-prone. We show that
sequoll automatically determines many of the loop counts in the Mälardalen
WCET benchmarks. We also show that sequoll computes loop bounds and
validates several infeasible path annotations used to reduce the computed
WCET bound of seL4, a high-assurance protected microkernel for multi-
criticality systems.

Keywords

Real time systems; Operating system kernels; Software verification and
validation;

1. Introduction

Multi-criticality real-time systems consolidate mission-
critical with less critical functionality on a single processor, in
order to reduce cost, weight and volume, and improve software
re-use. Examples include the integrated modular avionics
architecture [1], and the integration of automotive control
and convenience functionality with Infotainment [2]. Such
systems demand strong isolation between components, and
thus an operating system (OS) which encapsulates applications
in user-mode address spaces. In order to maintain real-time
guarantees, such an OS must have bounded interrupt latencies
under all circumstances.

We have previously proposed using the formally-verified
seL4 microkernel [3] as a platform on which multi-criticality
systems can be implemented, and consequently conducted a
worst-case execution time (WCET) analysis of seL4 [4], [5].

A precise timing analysis of non-trivial programs running
on modern processors is infeasible due to the need to consider
the exponential number of states of both the program and the
machine. A sound WCET analysis therefore requires that con-
servative over-approximations be made in order to reduce the
number of states considered and make the problem tractable.
However, the longer the program the more pessimistic the
approximations tend to become.

Baseline

Validated

Optimal

 0 100 200 300 400 500 600 700

657

481

213

Fig. 1. Computed WCET (in thousands of cycles) of the
seL4 microkernel on the ARM1136 CPU. The baseline
figure uses no infeasible-path analysis, optimal is the best
result achieved with manual annotations, while validated
only eliminates paths confirmed infeasible by sequoll.

seL4 is a non-preemptible kernel, a design required to
make formal verification feasible using current state-of-the-
art verification tools [3]. This design is also preferred for
better average-case performance. Therefore to bound interrupt
response time in seL4, we must analyse much longer code
paths than in the case of a fully-preemptible kernel, where
only short sections of code run with interrupts disabled.

To mitigate the over-approximation in computing seL4’s
WCET, our previous analysis added manual annotations for
excluding paths which were deemed infeasible. The improve-
ments achieved by adding these annotations can be seen
in Figure 1 – a 68 % reduction in the computed WCET.
Additionally, we manually annotated the binary with bounds of
the number of iterations of each loop. However, these manual
annotations are tedious to construct and error-prone. Mistakes
threaten the soundness of the analysis, and undermine the real-
time guarantees desired from a high-assurance kernel.

We propose a framework called sequoll, which aims to fully
automate this analysis and thus eliminate the need to trust
hand-specified annotations. We show that sequoll can compute
most of the loop bounds in seL4 automatically, detect some
unreachable code paths (in the form of “0” loop bounds), and
validate hand-specified infeasible path information.

Sequoll performs model checking on a control flow graph
(CFG) derived from the binary. We restrict sequoll to analysing
single-threaded code as our motivating application of non-
preemptible kernels is inherently single threaded. Using a

Copyright c© 2013 IEEE

symbolic model checker, we can validate properties of the
code such as loop bounds, infeasible paths and more general
invariants of functions. We utilise an existing high-fidelity
specification of the ARM instruction set [6], which avoids
the tedious and error-prone task of expressing semantics of
instructions.

The main contribution of this paper is the use of symbolic
model checking on binaries to automatically compute both
simple and more complex loop bounds, as well as to verify
infeasible path information without additional compiler assis-
tance. We describe the approach in detail in Section 4. The sec-
ond contribution is the demonstration that our approach is ap-
plicable to a real-world, highly-optimised yet non-preemptible
kernel, where we show (Section 5.1) that sequoll determines
the bound of the majority of loops, eliminates most manual
interference in the WCET analysis, and improves the WCET
estimate of seL4 by 27 % over the baseline (Figure 1). We also
evaluate sequoll on the Mälardalen WCET benchmark suite
[7], and show that it computes 64 % of the loop counts, without
any source-level analysis or manual annotations (Section 5.2).
We finally discuss the limitations which currently prevent
the remaining loops and annotations from being analysed
(Section 6).

2. Background

There is a large body of research related to the ideas behind
sequoll – computing loop bounds, modelling instruction set
architectures, reasoning about behavioural guarantees of sys-
tems, and reverse-engineering binaries to obtain control flow
graphs. In this section, we will briefly highlight the state-of-
the-art in each of these areas.

The specific problem of computing loop bounds on bina-
ries has received much attention, particularly from WCET
researchers for whom it is a fundamental hurdle. Manual
annotation is a common but error-prone approach, where
annotations are specified at the source code level, and compil-
ers must ensure these annotations are carried through to the
generated assembly [8]. Pattern matching on the binary can
be used to search for common loop structures, but is fragile
and compiler-specific. The aiT WCET analyser uses dataflow
analysis to identify loop variables and loop bounds for simple
affine loops in binary programs [9]. Abstract interpretation,
polytope modeling and symbolic summation have also been
used to compute loop bounds on high level source code
[10], [11]. The SWEET toolchain for WCET computation
uses abstract execution to compute loop bounds on binaries,
and is aided by tight integration with the compiler toolchain
which improves the knowledge of memory aliasing [12]. The
r-TuBound tool uses pattern-based recurrence solving and
program flow refinement to compute loop bounds, and also
requires tight compiler integration [13].

Rieder et al. has shown that it is straight-forward to deter-
mine loop counts at the C source-code level through model
checking [14]. However, attempting to automatically find a
correspondence between source code and its compiled binary,

in the presence of arbitrary compiler optimisations, is difficult
and not fully solved by any single approach [15].

Using model checking on binaries is significantly harder
than at the source level because there is less syntactic informa-
tion available such as data types and structure layout, and there
is limited information on what memory can potentially alias.
Our work has similarities to Cassez’s methods to compute
WCET [16], but we do not attempt to compute the overall
WCET using a model checker. Although seL4 is a small
microkernel (∼8,000 LoC), using model checking for WCET
computation does not (yet) scale to programs of this size.

Eliminating infeasible paths is also crucial for WCET
analysis, as such paths may dramatically worsen the pessimism
of WCET estimates. Several techniques have been proposed
to detect infeasible paths, including abstract execution [12],
conflict detection [17] and pattern matching [18]. We do not
directly address the problem of detecting infeasible paths in
this paper, but instead seek to validate manually-specified
infeasible paths. This task is computationally less expensive
in the general case, whereas many techniques for detecting
infeasible paths do not scale for larger programs.

Model checkers can be used to perform static analysis
of high-level languages, with a number of popular free and
commercial tools available. For example, BLAST performs
model checking on C sources using counter-example guided
abstraction refinement (CEGAR) in order to check for desired
safety properties [19].

Closely related to our work is that of Thakur et al. on the
MCVETO framework for directed proof generation [20]. They
use model checking on an abstraction of arbitrary program bi-
naries to determine if specific target instructions are reachable.
Sequoll instead reasons about paths which may be infeasible
in order to refine WCET analysis.

In addition to model checking, symbolic execution is be-
coming a popular option for exploring paths through a pro-
gram. Symbolic execution groups together all inputs which
may take the same path through a program. This technique
is employed by TRACER [21] to analyse C code and also
by S2E [22], a selective symbolic execution platform. These
techniques aim to analyse the properties and behaviour of a
program or system under all possible input conditions.

Although symbolic execution would be a suitable alternative
for our analysis, we still chose to write sequoll based upon
model checking as we ultimately intend to integrate invariants
based on formal proofs of the code. Model checking supports a
more natural expression of such invariants, and has previously
been used in conjunction with formal proof [23].

Conceptually, both loop bounds and infeasible paths could
be proven within the verification of seL4. In practice, seL4’s
proofs heavily rely on a functional model of the code in which
“paths” are ill-defined. Although proving loop bounds is pos-
sible, it is not immediately useful, as compiler optimisations
can (and do) affect these in the binary.

To reconstruct control flow graphs from binaries, various
solutions have been presented and implemented in binary static
analysis frameworks such as Jakstab [24], BINCOA [25] and

Copyright c© 2013 IEEE

int movs r3, r0
popcount(uint32_t x) moveq r0, r3
{ bxeq lr
int c = 0; mov r0, #0
while (x != 0) { loop:
if (x & 1) tst r3, #1
c++; addne r0, r0, #1

x = x >> 1; lsrs r3, r3, #1
} bne loop
return c; bx lr

}

Fig. 2. A sample C function with no explicit loop variable,
and the function compiled to ARM assembly.

MCVETO [20]. These frameworks implement an intermediate
assembly language, for which translators are written for each
architecture. To date, none exist for the ARM architecture.

3. The Problem

Sequoll was motivated by the desire to validate user-
provided annotations about local code properties which were
needed to perform a WCET analysis. Without independent
(and, ideally, automatic) validation, such manual annotations
significantly weaken the high degree of dependability we
expect from the kernel.

Specifically, we seek to (a) automatically compute loop
counts, and (b) verify claims of path infeasibility. We focus
on binaries in order to avoid limiting compiler optimisations
and to remain independent of any specific toolchain.

3.1. Loop bounds

The difficulty in determining loop counts in binaries de-
pends heavily on the structure and invariants on the loops.
Compilers may perform optimisations such as loop unrolling,
rotation or reversal; loop variables may be saved to and
restored from global memory; and loops may not have explicit
or obvious loop counters. An example of this last issue can be
seen in the code of Figure 2. This function counts the number
of bits which are set in a word. It can be shown that the
loop executes no more than 32 times, despite there being no
explicit loop counter. We aim to compute loop bounds using
only knowledge available from the binary.

3.2. Infeasible paths

Adding infeasible path information can improve the pre-
cision of WCET analyses considerably. By using knowledge
that specific paths are infeasible, seL4’s WCET estimate can
be reduced by 68 %. In our previous analysis [5] we obtained
this information by iteratively examining the worst-case path
reported by our WCET toolchain manually. If we determined
that it was infeasible, we constructed a constraint annotation

ARM formalisation

Symbolic execution, SSA

Simplification, Slicing

Property of Interest

Sequoll

SSA Representation

Symbolic Model

Semantic

Representation

r1_2 <− r3_2 + 4

Model checker

True/False

next(r1_2) := case

011011...

r1 <− r3 + 4

Program Binary

Reduced CFG

Fig. 3. An overview of the steps performed by sequoll.

to eliminate it. We repeated this until the worst-case path
represented a valid execution.

The infeasible path constraints are used to augment the
system of integer linear equations which is solved to find the
WCET. As such, they take one of the following two forms:

• a conflicts with b in f : specifies that the instructions at
addresses a and b are mutually exclusive, and will not
both execute during an invocation of the function f . If f
is invoked multiple times, a and b can each be executed
under different invocations.

• a is consistent with b in f : specifies that the instructions
at addresses a and b will execute the same number of
times during an invocation of the function f .

The process of creating these annotations is error-prone,
yet it is a trusted part of the WCET computation. Being
able to validate these annotations will substantially increase
the confidence in the WCET results, improving suitability for
critical hard real-time applications.

4. Anatomy of Sequoll

The primary inputs to sequoll are a program binary and a
property of interest such as a loop bound or an infeasible path
constraint. From this we generate a model which is tested by
a model checker. Figure 3 gives an overview of the key steps
required to produce this model. In this section, we cover the
techniques we use in sequoll to generate a suitable model from
the binary.

Our motivation stems from WCET analysis of the seL4
microkernel, whose code has some restrictions that make
verification tractable. We carry some of these restrictions to

Copyright c© 2013 IEEE

Machine code: E2813002
Disassembly: add r3, r1, #2

Semantics: r3 ← r1 + 2
r15 ← r15 + 4

Machine code: E8AD0028
Disassembly: stmia r13!, {r3, r5}

Semantics: mem r13 ← r3<7:0>
mem (r13 + 1) ← r3<15:8>
mem (r13 + 2) ← r3<23:16>
mem (r13 + 3) ← r3<31:24>
mem (r13 + 4) ← r5<7:0>
mem (r13 + 5) ← r5<15:8>
mem (r13 + 6) ← r5<23:16>
mem (r13 + 7) ← r5<31:24>
r13 ← r13 + 8
r15 ← r15 + 4

Fig. 4. Example instruction semantics from the formali-
sation of the ARM ISA. Note that ARM maps the program
counter onto general-purpose register r15.

sequoll, because they simplify our implementation. In partic-
ular, we assume that program binaries:

• do not contain recursive functions;
• do not contain self-modifying code;
• do not make use of function pointers; and
• are not affected by interrupts, signals, or other asyn-

chronous control flow.
These hold for a large class of programs, particularly critical

code running on top of the real-time OS. For example, the OS
shields applications from the visible effects of interrupts (other
than the rate of progress).

We have implemented sequoll in around 10,000 lines of
code, excluding external tools such as the model checker.

4.1. Decoding instruction semantics

A prerequisite to performing static analysis on binary code
is a representation of the semantics of instructions. Producing
this is typically a complex, error-prone task and requires care-
ful validation, as any inconsistencies can impact the soundness
of our analysis.

We mitigate these issues and reduce engineering effort by
reusing Fox & Myreen’s formalisation of the ARM instruction
set written in the HOL4 theorem prover [6]. This formalisation
has been extensively tested against hardware, and is used in a
number of other projects [26].

For a given instruction and system state, it can generate a
precise set of semantics. We handle conditional instructions by
adding any conditions to a set of preconditions under which the
instruction may execute. We can obtain a simple representation
even for quite complex instructions, as the example in Figure 4
shows.

Due to the use of this formalisation, we currently only
support binaries for the ARM architecture. However, specifi-

cations of other architectures could be substituted, as all other
concepts used in sequoll are architecture-independent.

4.2. Control flow graph reconstruction

Extracting the control flow graph of a program is a difficult
task in the general case. However, the restrictions listed above
considerably simplify the task.

Given the entry point to the program, sequoll explores
all reachable instructions. Although we preclude the use of
function pointers at the source level, the binary may still
contain indirect branches (i.e. those via a register) which
require extra work to resolve. Computing the possible des-
tinations of function pointers is a much more challenging
task as it requires reasoning globally across the entire binary,
whereas the indirect branches generated by compilers can
almost always be resolved locally.

We use a simple symbolic execution engine to determine the
destination of indirect branches. It performs value analysis and
tracks loads and stores into memory. This allows us to resolve:

• function returns – these typically involve storing the
function’s return address into stack memory and later
reading it back either directly into the program counter,
or via another register;

• indirect branches via literal loads – i.e. where the desti-
nation address is stored as data, interspersed within the
instruction stream in the binary;

• switch statements – these presently require some
compiler-specific pattern matching to decode, as in the
general case this is also a difficult problem.

We expand function calls in the control flow graph through
virtual inlining. This is necessary in order to compute loop
bounds that are dependent on function arguments or calling
context (e.g. in memcpy).

Although this analysis normally works for compiled pro-
grams, more sophisticated compiler optimisations or hand-
crafted assembler code can conceivably result in binaries
where our simple symbolic execution engine fails. More
comprehensive analyses exist and these could be implemented
and substituted within sequoll if required [20], [27], [28].

Figure 5 shows the control-flow graph for our simple
example from Figure 2.

4.3. Loop identification

Given the control flow graph of a program, we can iden-
tify loops and classify them as reducible or irreducible. A
reducible loop has a single entry point from outside the
loop body, whereas irreducible loops may have multiple entry
points [29]. Irreducible loops are problematic for any WCET
analysis that relies on specifying loop bounds relative to a
unique entry point. They also lead to ambiguity in program
structure, such as the relationship between nested loops [30].

We currently restrict sequoll to analysing reducible loops
and failing when an irreducible loop is encountered. If re-
quired, irreducible loops could be handled by duplicating them

Copyright c© 2013 IEEE

1 start

2 movs r3, r0
r3_1 ← r0_0
psrZ_1 ← (r3_1 = 0)

3 moveq r0, r3 r0_1 ← if (psrZ_1, r3_1, r0_0)

4 bxeq lr

0 return

5 mov r0, #0 r0_2 ← 0

6 tst r3, #1
r0_3 ← Φ(r0_4, r0_2)
r3_2 ← Φ(r3_3, r3_1)
psrZ_2 ← (r3_2 & 1) = 1

7 addne r0, r0, #1 r0_4 ← if (!psrZ_2, r0_3 + 1, r0_3)

8 lsrs r3, r3, #1
r3_3 ← r3_3 << 1
psrZ_3 ← (r3_3 = 0)

9 bne -#12

10 bx lr

Fig. 5. The control flow graph of the assembly code in
Figure 2, and its SSA representation. The nodes outlined
in red are those in the computed slice to deduce the upper
bound of the iteration count of the loop at node 6.

in the CFG – once for each entry edge. We have not done this
in sequoll as it adds unnecessary complexity for our use cases.

Given a node E as a possible candidate for a loop entry
point, we define a loop as the largest strongly connected com-
ponent (SCC) that includes E, such that E dominates all other
nodes within the loop. If no such SCC exists, then E does not
induce a loop. This gives a one-to-one relationship between
entry points and loops (under the reducibility criterion).

Sequoll finds reducible loops via a depth-first search, iden-
tifying for every instruction its inner-most loop, and recon-
structing the loop nests of the program.

4.4. SSA transformation

We convert the program to single static assignment (SSA)
form, as this simplifies later stages of our analysis. A program

sp1 ← sp0 + 8 sp1 ← sp0 + 8
sp2 ← sp1 + 16 sp2 ← sp0 + 24
sp3 ← sp1 + 16 =⇒ sp3 ← sp0 + 24
sp4 ← φ(sp2, sp3) sp4 ← sp0 + 24
sp5 ← sp4 − 24 sp5 ← sp0

Fig. 6. Using constant propagation, sequoll can convert
all stack pointer references to precise offsets relative to an
initial stack pointer. This enables the stack to be treated
independently from memory in the analysis of seL4.

in SSA form has the property that each variable is assigned
to at most once. Using SSA makes it much simpler to track
the dependencies between variables. Where program paths
merge with potentially different values for a variable, a special
function known as a φ function is used to represent the choice
of values based on path.

The primary advantage of using SSA representation is that
it can greatly reduce the number of states required for model-
checking; we describe this further in Section 4.7. We use
standard techniques to convert the program’s representation
into SSA form [31].

Figure 5 shows the SSA representation of our example from
Figure 2 (with the irrelevant portions elided). Multiple edges
reach node 6 in this diagram, and hence φ functions define
the values of r0 and r3.

4.5. Simplification

Once transformed to SSA form, there are many opportuni-
ties to simplify expressions within the analysis. For example,
a program increments and decrements the stack pointer as
it pushes or pops data on the stack. As Figure 6 shows,
constant propagation often allows us to condense these chains
of arithmetic to a simple expression, specifying the offset
against the original stack pointer.

The φ functions generated by SSA transformation can also
be simplified if all possible values are equivalent. This is
particularly pertinent for the stack pointer, which generates a
significant number of φ functions as its value is frequently
modified. However, the relative offset of the stack pointer
is typically consistent for any program point, regardless of
execution history or any other program state.

If all pointer accesses were to known addresses, we could
convert all accessed memory locations into simple variables,
allowing us to track and simplify them further. Unfortunately,
memory addresses cannot always be determined, and they
frequently depend on function inputs. This impacts even on
those memory addresses which we can determine, due to the
possibility of pointer aliasing: a write to an unknown address
may affect a later read from a known address.

However, there are cases where we may know that memory
accesses do not alias. For example, C/C++ compilers provide
the restrict keyword, which lets programmers hint that a mem-
ory region has no aliases. Similarly, the formal verification of
seL4 guarantees that the C code will never take a pointer to a

Copyright c© 2013 IEEE

local variable [3]. This ensures that stack memory will never
alias with any other pointers.

Using this knowledge about seL4, we can treat each byte
of stack memory as a local variable, thereby eliminating all
accesses to stack memory from our model. This allows sequoll
to track and analyse parameters passed via the stack. It also
eliminates the pushing and popping of callee-saved registers,
frequently emitted in function prologues and epilogues, from
later analysis.

We also resolve accesses to read-only memory, such as
constants loaded using PC-relative addressing.

4.6. Program slicing

Often, the property we wish to check involves a small
portion of the entire program. We can speed up the analy-
sis significantly by computing a smaller, equivalent program
which preserves the property of interest, precisely what the
technique of program slicing achieves [32]. Given a property
of interest, known as the slice criterion, we recursively follow
all data-flow and control-flow dependencies to compute an
equivalent program with respect to this property.

We select the slice criteria based on the variables or control
flow nodes relevant to our desired property. For instance, to
compute loop bounds, we count the maximum number of times
that the head of a loop may execute. Here the slice criterion
simply consists of the loop head node (containing the first
instruction in the loop). The slicing algorithm will begin by
finding the control-flow dependencies for the loop head. This
will include any conditional statements outside the loop which
may prevent its execution, as well as any nodes inside the loop
which may conditionally exit it.

It is possible that we over-approximate the slice, however
it is guaranteed to be equivalent with regard to the slice
criteria. Slices that are too large can make model checking
prohibitively expensive. The simplification step described in
Section 4.5 helps to minimise the size of the slice.

Some loops are bounded only because of earlier conditions
on the path leading to them. Consider the code below –
the loop is only bounded because it does not execute if the
preceding condition fails. The slicing algorithm will identify
the relevant parts of the execution history and preserve those
in the slice.

if (c < 100) {
for (i = 0; i < c; i++) {

...
}

}

The trail of dependencies leading up to the head of the
loop can be quite long, with much of it irrelevant for a tight
bound. Consider a loop with two possible exit conditions –
one exits the loop when an iteration count variable exceeds
a hard-coded upper bound, while a second tests the iteration
count variable against a complex expression computed before
the loop. If we only care about the hard-coded upper bound

1 2,4

2 6,8,9

3 0

Fig. 7. The reduced control flow graph, equivalent to the
slice shown in Figure 5. Each node also list the nodes of
Figure 5 which it represents.

then we can prune the slice to ignore the computation of the
complex expression, significantly speeding up the analysis.

For this purpose, we allow the user to pass in a parameter
specifying a region of interest – this is a subset of nodes of the
control-flow graph that are considered by the slice, excluding
statements outside the region. We convert variables that are
modified outside the region of interest, but used inside, into
non-deterministic inputs.

In order to preserve soundness, the chosen region of interest
must maintain an important property: the region must have a
unique entry node and this node must be a dominator of all
other nodes in the region. If this property is not met, it may be
possible to execute the region of interest without executing the
entry node, invalidating any results established by the model
checker.

We construct a reduced control flow graph representing only
the nodes in the program slice, and collapse all consecutive
nodes into one node where possible (i.e. any sequence of nodes
with no branches originating from or destined for any nodes
in between).

For loops with a fixed iteration count, the reduced control
flow graph can have as few as three nodes. Figure 7 shows
the reduced control flow graph of our example code from
Figure 2; in this case, 11 nodes were reduced to three. More
complex loop structures will obviously introduce more nodes,
but our evaluation (Table 1) shows that in most cases the graph
remains very small.

4.7. Translation to a symbolic model

The final step in processing the binary is to convert the
reduced graph of our program slice into a symbolic model,
which can be checked by a model checker. We use the
NuSMV model checker which supports assertions expressed
in temporal logic such as linear temporal logic (LTL) or
computational tree logic (CTL). These logics are able to
express useful properties such as “the value of some variable
is always less than k” or “state A is not reachable until state

Copyright c© 2013 IEEE

B has occurred”.
We convert variables in our SSA representation into one of

three types of expressions in the model:
• stateful variables: these variables are updated by transi-

tions in the model and contribute to the state space which
the model checker must explore;

• frozen variables: these variables retain their value
throughout the program, and also contribute to the state
space which must be explored; and

• definitions: these incur no state of themselves, and act
merely as syntactic sugar for building larger models.

We translate the variables of the reduced control flow graph
into a symbolic model as follows:

• Variables that are used but not defined anywhere in the
SSA representation are inputs to the program. These are
converted to frozen variables.

• Both φ functions and memory reads are converted to
stateful variables in the model.

• All other SSA variables become definitions, as they
themselves do not need to incur any state in the model.

The key observation here is that there are only two cases
in which the program’s execution may diverge, requiring
the model checker to explore multiple states. The first is
at memory reads when the result is unknown, either due
to potential aliasing or otherwise being unable to identify a
corresponding memory store.

The second case is when multiple paths can be taken
through the control flow graph. Perhaps somewhat unintu-
itively, we only need to consider points where program paths
converge rather than diverge. Given a node with multiple
incoming edges, the choice of incoming edge implicitly defines
which outgoing edges were taken earlier in the execution. This
fits naturally with the SSA representation of φ functions which
assign variables only at converging nodes.

For the example in Figure 5, we only need to create a single
stateful variable for the expression r3 2 ← φ(r3 3, r3 1).
This is defined in the model checker as follows:

next(r3_2) := case
n=1: r3_1;
n=2: r3_3;
TRUE: r3_2;

esac;

This intuitive syntax states that when visiting node 1 (in
the reduced control flow graph of Figure 7), r3_1 should
be assigned to r3_2; similarly at node 2, r3_3 should be
assigned. The variable retains its value at all other nodes.

The input variable r0_0 is specified as a frozen variable.
All other information needed for the program slice is specified
as definitions which incur no additional state.

psrZ_3 := r3_3 = 0;
psrZ_1 := r3_1 = 0;
r3_3 := r3_2 >> 1;
r3_1 := r0_0;

In addition to the SSA variables, we represent the reduced
control flow graph of the program slice as an additional stateful

variable. The transitions between nodes are represented in the
model by conditional assignments to this stateful variable. For
example, the reduced control flow graph in Figure 7 becomes:

init(n) := 1;
next(n) := case

n=1 & !psrZ_1: 2;
n=1 & psrZ_1: 3;
n=2 & !psrZ_3: 2;
n=2 & psrZ_3: 3;
n=3: 3;

esac;

4.8. Loop bound checking

To solve the example loop bound from Figure 2, we assign
a stateful variable C in the model checker which counts the
number of times the loop entry node executes. The variable
is reset to zero at nodes outside the loop that are immediate
predecessors of the loop entry node.

Although the model checker cannot directly compute the
loop bound for us, we can ask the model checker a statement
of the form “is C ≤ k?”. We can then perform a binary search
to find the smallest value of k for which the statement holds
true. This value is the maximum number of times that the loop
may iterate.

4.9. Path feasibility testing

As described in Section 3.2, we express the path infeasibility
constraints in terms of pairs of instructions which either con-
flict with each other (are mutually exclusive), or are consistent
with each other (both execute the same number of times).

These constraints translate naturally to expressions suitable
for model checking, as follows. For conflict constraints, we
create boolean flags a and b for the two instructions of interest.
These flags are set to true when the respective node is visited.
We can then express the infeasibility condition as the assertion
that a and b are never simultaneously true. For consistency
constraints, we use execution counters instead of flags, and
assert that all paths finish with both counters equal.

5. Evaluation

5.1. seL4

Our primary motivation for developing sequoll was to
validate annotations on our timing analysis of the seL4 mi-
crokernel, hence this is the obvious test case.

We use sequoll to automatically compute the loop bounds
on all loops within the seL4 binary, which contains 32 loops
in 11 functions. Regions of interest were specified on many
of these loops – in particular, loops where there were exit
conditions with long chains of data dependencies that have no
effect on the worst-case iteration count. Sequoll succeeds in
computing precise bounds on 18 loops (56 %). The analysis on
the remaining loops presently fails for one of several reasons,
which we discuss in detail in Section 6:

Copyright c© 2013 IEEE

• one loop is only bounded thanks to an invariant main-
tained by its environment;

• one loop sequoll cannot analyse due to complex exit
conditions;

• on 12 loops, all of identical structure, sequoll fails to
determine a bound due to poor memory aliasing analysis;

Of the 18 loops, 13 loop bounds are computed within 10
seconds each, three further loops within one minute, and two
more complex bounds in 28 minutes – 99% of which is spent
performing SSA transformation and simplification. This step is
slow primarily because of the expensive live variable analysis
on the inlined control flow graph, which consists of over one
million nodes. The analysis of seL4 used at most 6 GiB of
memory.

Our best (manual) analysis eliminated 35 infeasible paths by
manually adding appropriate constraint annotations, reducing
the computed WCET bound from 657,000 cycles to 213,000
cycles, a 67 % improvement. Of these, sequoll validated 4,
which was sufficient to reduce the bound to 481,000 cycles (a
26 % improvement), see Figure 1.

One of our manual constraints turned out to be wrong,
as we found through sequoll! Fortunately, this somewhat
embarrassing fact had no effect on the WCET estimate, but
serves as a clear warning about the fickle nature of annotations
derived from path inspections.

Of the remaining 30 constraints,
• 11 relate to infeasible paths which depend on values

read from memory that can potentially alias. The loss
of information makes it impossible to determine if these
paths are truly infeasible.

• 19 depend on invariants which are not possible to ascer-
tain from the binary.

5.2. WCET Benchmarks

We use the Mälardalen WCET benchmark suite [7] to
further evaluate sequoll’s ability to deduce loop bounds. We
compile the C sources for the ARMv6 architecture, using
gcc 4.4.1 and the -O2 optimisation level. We omit benchmarks
using floating-point arithmetic, as the ARM formalisation [6]
does not presently support the instructions used for hardware
floating point. We also omit the RECURSION benchmark, as
our analysis does not presently support recursive functions.
Finally, we do not analyse two programs containing irreducible
(multiple-entry) loops, as “iteration count” is ill-defined on
these structures. However, this does not preclude them from
being checked for other properties.

Table 1 presents the results. Because of the compiler’s
aggressive optimisation, loops present in the C code were
sometimes partially unrolled, completely unrolled or occasion-
ally duplicated. Hence, the total number of loops listed in
Table 1 differs in many cases from those evident in the C
code.

The benchmark binaries we analysed have a total of 66
loops. Of these, sequoll computed the bounds of 41 auto-
matically (62 %). Sequoll could compute the bound of one

TABLE 1. Results of evaluating sequoll on programs
from the Mälardalen WCET benchmark suite. Each

benchmark lists the number of successfully computed
loop bounds, and the maximum number of stateful

variables and CFG nodes used.

max max
Benchmark # successful state vars CFG nodes
ADPCM 5/6 6 12
BS 1/1 10 10
BSORT100 2/3 17 21
CNT 1/1 6 5
COMPRESS 1/7 4 3
COVER 3/3 4 122
CRC 2/2 6 10
DUFF irreducible loops
EDN irreducible loops
EXPINT 2/3 4 8
FAC 2/2 8 12
FDCT 1/1 4 3
FIBCALL 1/1 4 3
FIR 1/2 4 4
INSERTSORT 1/2 4 3
JANNE COMPLEX 0/2 4 3
JFDCTINT 2/2 4 3
LCDNUM no loops (unrolled by gcc)
MATMULT 5/5 9 7
NDES 6/6 9 12
NS 0/1
NSICHEU 1/1 4 3
PRIME 0/4
STATEMATE 0/1
UD 5/9 5 7

further loop (in EXPINT) after specifying a region of interest,
as described in Section 4.6.

Analysis of the remaining 24 loops fails for a number of
reasons. We assume failure when the model checker either
exhausts system memory or shows no signs of progress within
12 hours. Note that some loops fail for multiple causes, and
we count those under each cause:

• Memory accesses: 9 failures are due to loop bounds
subject to memory aliasing, as discussed above.

• Complex early exits: 7 loops clearly have fixed upper
bounds, but can exit early in certain cases. The conditions
for early exit depend on complex expressions, such as
tests for divisibility in the PRIME benchmark. These ex-
pressions generate dozens of stateful variables, preventing
the model checker from solving them in a timely fashion.

• Complex loop bounds: 8 loops have bounds which are
complex expressions. Most of these are inner loops,
where the state of the outer loop determines the iteration
count. Our model checker fails to determine these loop
bounds within several hours.

• Software division: 6 loops fail because their loop bounds
depend on the result of an integer division – on our ARM
platform, integer division is emulated in software, and the
routines are far too complex for our model checker.

Analysis time: 28 of the 41 loops are computed by the model
checker within five seconds each, and 39 within one minute.
Two computations take significantly longer to run: analysis
of one loop in BSORT100 takes 14 minutes, and one loop in

Copyright c© 2013 IEEE

ADPCM requires 9 hours. Both of these cases are due to a loop
exit condition which requires the model checker to explore the
state space across two nested loops simultaneously. The loop
in ADPCM also has an upper bound of 999 – the largest of
any of our benchmark results.

As the loop bounds increase, the model checker requires
more time to explore the state space, and the binary search
for the loop bound requires more iterations. Thus, in general,
smaller loop bounds will inherently be faster to compute.

Note that these durations do not include the time required by
the ARM formalisation to generate the instruction semantics.
This step is particularly slow in its current version, taking
around one second per instruction. We mitigate this by caching
the instructions as they are generated, so that subsequent
analyses of the same binary are much faster.

The analysis phase of sequoll used at most 300 MiB of
memory for all benchmarks, whilst the NuSMV model checker
consumed up to 1.5 GiB.

6. Discussion

While the results so far are encouraging, we would ideally
like to automate all loop analysis. Here we take a closer look
at what we can do to improve the success rate.

• Potentially aliasing memory accesses affect loops and in-
feasible paths fairly frequently. In the problematic loops,
the binary computes the upper bound and stores it into
memory, where it vanishes from the view of our analysis.
Improved alias analysis may resolve this and result in
the automatic computation of the bounds of all affected
loops (12 in seL4 and 11 in the WCET benchmarks).
Applied to infeasible path detection on seL4, this alone
would improve the WCET estimate from 27 % to 54 %
over the baseline. Techniques such as those developed for
MCVETO [20] are appropriate candidates, as they can be
used to identify aliasing conditions relevant to specific
properties of interest, and operate on compiled binaries.

• Complex early exits within single loop nests we could
handle by considering each exit edge individually – the
lowest result of any successfully analysed exit edge can
be used as a safe upper bound. This works in single loop
nests, as following any exit edge precludes the loop from
iterating further. It is also suitable for simple inner loops
where there are no dependencies on variables defined
by outer loops, as the iteration count of an inner loop
can be computed without regard to outer loop iterations.
However, it is unsound for inner loops with dependencies
on the outer loops, as the exit edge taken may vary with
each execution of the loop.

• Complex loop bounds may be out of reach of model
checkers for now, notwithstanding advances in model
checking technology. Other techniques such as symbolic
execution may be more appropriate to solve these.

• We could deal with software division by catching calls to
the software emulation routines and replacing them with
the model checker’s native division operator.

• Loop bounds and infeasible paths which depend on
invariants maintained in the code’s environment cannot
be computed by local static analysis. A good example of
this (from seL4) is equivalent to the following C code:

uint32_t i = 1 << b;
if (i > 256)

i = 256;
while (i != 0) {

/* ... */
i -= 4;

}

Although there appears to be a loop variable with an
upper bound, there exist values of the input b for which
this loop will never terminate (b ≤ 1 or b ≥ 32). An
invariant from the seL4 proof states that b is always in
the range [4, 31]. Thus the loop is safe in its context of
use, but our analysis tool is unable to deduce this fact.
In fact, any sound method of detecting infeasible paths
could not discover this without effectively reproducing a
substantial part of the seL4 proof.
In principle we can address such cases by importing
invariants from the formal verification of the kernel into
sequoll. Using such information is an interesting chal-
lenge for future research. On top of what is achievable by
alias analysis, this would achieve a near-optimal WCET
(68 % better than baseline) with a very strong level of
confidence.

Finally we observe that there are very few infeasible paths
in the Mälardalen benchmarks, as these are mostly single-path
programs. However, sequoll in fact detected some infeasible
paths as loops with an iteration count of 0 (due to virtual
inlining, some loops became unreachable). This indicates that
this approach could be extended to automatically detect some
of the infeasible paths. To make this useful for reducing
the overestimation of WCET, the search for infeasible paths
should be guided by a WCET analysis.

7. Conclusions

We have presented sequoll, a framework for verifying local
properties of binaries such as loop counts and path infeasibility
information. Using symbolic model checking on program
binaries can avoid a major source of human error, and in turn
strengthens the assurances on a WCET analysis.

We evaluated sequoll on the seL4 microkernel, a challenging
target due to its non-preemptible design, resulting in long code
paths to be analysed. We were able to automatically compute
the majority of loops and found that almost all failures could
be avoided by the use of a more sophisticated memory aliasing
analysis. We also validated several of the infeasible path
constraints, gaining a 27 % improvement in WCET, without
trusting any user annotations.

We also used the Mälardalen benchmark suite, where se-
quoll computes 64 % of the loop bounds from the binary alone,
alias analysis being again the dominating limitation. However,
some issues still remain on complex loops.

Copyright c© 2013 IEEE

The speed of the ARM formalisation is problematic for
larger programs, contributing to the majority of the computa-
tion time (although its results can be cached). Future versions
of the ARM formalisation aim to improve its speed, however
the construction within an LCF-style theorem prover inher-
ently limits its performance. Work is under way to formalise
the ARMv7 instruction set using a domain-specific language,
which can be retargeted for different environments such as
theorem provers and other analysis tools [33]. Once this work
comes to fruition, we can easily substitute the results into
sequoll, or indeed any other formalisation.

Future work will focus on eliminating further sources of
human error, by improving memory alias analysis and incor-
porating formally-proven invariants of the source code into the
model.

Combining seL4’s machine-checked proof of correctness
with a high-confidence timing analysis will create a foundation
for mixed-criticality hard real-time systems with an unprece-
dented level of trustworthiness.

Acknowledgements

NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Council
through the ICT Centre of Excellence program.

References

[1] Avionics Application Software Standard Interface, Nov 2012, ARINC
Standard 653.

[2] A. Hergenhan and G. Heiser, “Operating systems technology for con-
verged ECUs,” in 6th Emb. Security in Cars Conf. (escar). Hamburg,
Germany: ISITS, Nov 2008.

[3] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “seL4: Formal verification of an OS kernel,”
in 22nd SOSP. Big Sky, MT, USA: ACM, Oct 2009, pp. 207–220.

[4] B. Blackham, Y. Shi, S. Chattopadhyay, A. Roychoudhury, and
G. Heiser, “Timing analysis of a protected operating system kernel,”
in 32nd RTSS, Vienna, Austria, Nov 2011, pp. 339–348.

[5] B. Blackham, Y. Shi, and G. Heiser, “Improving interrupt response
time in a verifiable protected microkernel,” in 7th EuroSys Conf., Bern,
Switzerland, Apr 2012, pp. 323–336.

[6] A. Fox and M. Myreen, “A trustworthy monadic formalization of the
ARMv7 instruction set architecture,” in 1st ITP, ser. LNCS, M. Kauf-
mann and L. C. Paulson, Eds., vol. 6172. Edinburgh, UK: Springer-
Verlag, Jul 2010, pp. 243–258.

[7] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Mälardalen
WCET benchmarks – past, present and future,” in 10th WS Worst-Case
Execution-Time Analysis. Brussels, Belgium: OCG, Jul 2010, pp. 137–
147.

[8] A. Metzner, “Why model checking can improve WCET analysis,” in
Computer Aided Verification, ser. LNCS, R. Alur and D. Peled, Eds.
Springer-Verlag, 2004, vol. 3114, pp. 298–301.

[9] C. Cullmann and F. Martin, “Data-flow based detection of loop bounds,”
in 7th WS Worst-Case Execution-Time Analysis, 2007.

[10] P. Lokuciejewski, D. Cordes, H. Falk, and P. Marwedel, “A fast and
precise static loop analysis based on abstract interpretation, program
slicing and polytope models,” in 7th IEEE Symp. Code Generation &
Optimization. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 136–146.

[11] R. Blanc, T. A. Henzinger, T. Hottelier, and L. Kovács, “ABC: algebraic
bound computation for loops,” in 16th Int. Conf. Logic for Progr.,
Artificial Intelligence & Reasoning. Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 103–118.

[12] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper, “Automatic
derivation of loop bounds and infeasible paths for WCET analysis
using abstract execution,” in 27th RTSS. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 57–66.

[13] J. Knoop, L. Kovàcs, and J. Zwirchmayr, “r-TuBound: Loop bounds
for WCET analysis (tool paper),” in Logic for Programming, Artificial
Intelligence, and Reasoning, ser. LNCS, N. Bjrner and A. Voronkov,
Eds. Springer Berlin / Heidelberg, 2012, vol. 7180, pp. 435–444.

[14] B. Rieder, P. Puschner, and I. Wenzel, “Using model checking to derive
loop bounds of general loops within ANSI-C applications for mea-
surement based WCET analysis,” in Intelligent Solutions in Embedded
Systems, 2008 International Workshop on, Jul 2008, pp. 1–7.

[15] I. Narasamdya and A. Voronkov, “Finding basic block and variable
correspondence,” in Proceedings of the 12th international conference
on Static Analysis, ser. SAS’05. Berlin, Heidelberg: Springer-Verlag,
2005, pp. 251–267.

[16] F. Cassez, “Timed games for computing WCET for pipelined processors
with caches,” in 11th Int. Conf. Applic. Concurrency to Syst. Design.
IEEE Comp. Soc., Jun 2011, pp. 195–204.

[17] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen, “Efficient detec-
tion and exploitation of infeasible paths for software timing analysis,”
in 43rd DAC. New York, NY, USA: ACM, 2006, pp. 358–363.

[18] M. N. Ngo and H. B. K. Tan, “Detecting large number of infeasible
paths through recognizing their patterns,” in 6th ESEC. New York,
NY, USA: ACM, 2007, pp. 215–224.

[19] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, “The software
model checker BLAST: Applications to software engineering,” Int. J.
Softw. Tools for Technology Transfer, vol. 9, no. 5, pp. 505–525, 2007.

[20] A. V. Thakur, J. Lim, A. Lal, A. Burton, E. Driscoll, M. Elder,
T. Andersen, and T. W. Reps, “Directed proof generation for machine
code,” in 22nd CAV, 2010, pp. 288–305.

[21] J. Jaffar, V. Murali, J. A. Navas, and A. E. Santosa, “TRACER:
A symbolic execution tool for verification,” in 24th CAV. Berlin,
Heidelberg: Springer-Verlag, 2012.

[22] V. Chipounov, V. Kuznetsov, and G. Candea, “The S2E platform: Design,
implementation, and applications,” ACM Trans. Comp. Syst., vol. 30,
no. 1, pp. 2:1–2:49, Feb 2012.

[23] M. Daum, S. Maus, N. Schirmer, and M. N. Seghir, “Integration of a
software model checker into Isabelle,” in 12th Int. Conf. Logic for Progr.,
Artificial Intelligence & Reasoning. Berlin, Heidelberg: Springer-
Verlag, 2005, pp. 381–395.

[24] J. Kinder and H. Veith, “Jakstab: A static analysis platform for binaries,”
in 20th CAV. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 423–427.

[25] S. Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary, and A. Vincent,
“The BINCOA framework for binary code analysis,” in 23rd CAV.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 165–170.

[26] L. Zhao, G. Li, B. De Sutter, and J. Regehr, “ARMor: fully verified
software fault isolation,” in 11th EMSOFT. New York, NY, USA:
ACM, 2011, pp. 289–298.

[27] J. Kinder, F. Zuleger, and H. Veith, “An abstract interpretation-based
framework for control flow reconstruction from binaries,” in 10th Int.
Conf. Verification, Model Checking & Abstract Interpretation. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 214–228.

[28] S. Bardin, P. Herrmann, and F. Védrine, “Refinement-based CFG re-
construction from unstructured programs,” in 12th Int. Conf. Verifica-
tion, Model Checking & Abstract Interpretation. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 54–69.

[29] R. E. Tarjan, “Testing flow graph reducibility,” J. Comp. & Syst. Sci.,
vol. 9, no. 3, pp. 355–365, 1974.

[30] P. Havlak, “Nesting of reducible and irreducible loops,” ACM Trans.
Progr. Lang. & Syst., vol. 19, no. 4, pp. 557–567, Jul 1997.

[31] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control
dependence graph,” ACM Trans. Progr. Lang. & Syst., vol. 13, pp. 451–
490, October 1991.

[32] M. Weiser, “Program slicing,” IEEE Trans. Softw. Engin., vol. SE-10,
no. 4, pp. 352–357, Jul 1984.

[33] A. Fox, “Directions in ISA specification,” in 3rd ITP, ser. LNCS.
Princeton, New Jersey: Springer-Verlag, Aug 2012.

Copyright c© 2013 IEEE

	Introduction
	Background
	The Problem
	Loop bounds
	Infeasible paths

	Anatomy of Sequoll
	Decoding instruction semantics
	Control flow graph reconstruction
	Loop identification
	SSA transformation
	Simplification
	Program slicing
	Translation to a symbolic model
	Loop bound checking
	Path feasibility testing

	Evaluation
	seL4
	WCET Benchmarks

	Discussion
	Conclusions
	References

