
Dingo: Taming Device Drivers

Leonid Ryzhyk12 Peter Chubb12 Ihor Kuz12 Gernot Heiser123

1NICTA∗ 2The University of New South Wales3Open Kernel Labs
Sydney, Australia

leonid.ryzhyk@nicta.com.au

Abstract
Device drivers are notorious for being a major source of
failure in operating systems. In analysing a sample of real
defects in Linux drivers, we found that a large propor-
tion (39%) of bugs are due to two key shortcomings in
the device-driver architecture enforced by current operating
systems: poorly-defined communication protocols between
drivers and the OS, which confuse developers and lead to
protocol violations, and a multithreaded model of computa-
tion that leads to numerous race conditions and deadlocks.

We claim that a better device driver architecture can help
reduce the occurrence of these faults, and present our Dingo
framework as constructive proof. Dingo provides a formal,
state-machine based, language for describing driver proto-
cols, which avoids confusion and ambiguity, and helps driver
writers implement correct behaviour. It also enforces an
event-driven model of computation, which eliminates most
concurrency-related faults. Our implementation of the Dingo
architecture in Linux offers these improvements, while in-
troducing negligible performance overhead. It allows Dingo
and native Linux drivers to coexist, providing a gradual mi-
gration path to more reliable device drivers.

Categories and Subject Descriptors D.4.4 [Operating
systems]: Input/Output; D.3.2 [Language Classifications]:
Specialized application languages

General Terms Languages, Reliability, Verification

Keywords Concurrent Programming, Device Drivers,
Domain-Specific Languages, Fault Avoidance, Reliability.

∗ NICTA is funded by the Australian Government’s Department of Communications,
Information Technology, and the Arts and the Australian Research Council through
Backing Australia’s Ability and the ICT Research Centre of Excellence programs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’09, April 1–3, 2009, Nuremberg, Germany.
Copyright c© 2009 ACM 978-1-60558-482-9/09/04. . . $5.00

1. Introduction
While accounting for about 70% of OS code, drivers typ-
ically contain several times more errors per line of code
than other system components [Chou 2001] and, according
to recent studies, are responsible for up to 70% of system
failures [Ganapathi 2006, Murphy 2004]. With the introduc-
tion of advanced hardware capabilities such as hot-plugging,
power management, and vectored I/O, device drivers have
increased in complexity and hence become even more error-
prone.

This paper explores the factors that contribute to driver
complexity and lead to buggy drivers. In analysing bugs
found in real Linux drivers, we discover and demonstrate
quantitatively that a large proportion of these factors result
from the way drivers interface with the OS, and can be
eliminated or mitigated by a better design of the driver-OS
interface.

Specifically, we identify two shortcomings of the driver
architecture common in modern operating systems: poorly-
defined communication protocols between drivers and the
OS, which confuse developers and lead to protocol viola-
tions, and a multithreaded model of computation that leads
to numerous race conditions and deadlocks. To address these
issues, we developed Dingo1—a device-driver architecture
aimed at simplifying development and reducing the number
of software defects in drivers.

In order to reduce protocol errors, driver protocols in
Dingo are specified using a state-machine-based formal lan-
guage called Tingu.2 Tingu allows a clear and unambigu-
ous description of requirements for driver behaviour, provid-
ing intuitive guidelines to driver programmers. The primary
purpose of Tingu specifications is to serve as documenta-
tion helping driver developers avoid errors; however they can
also be used as properties against which driver implementa-
tion can be formally validated either statically or at runtime.
Presently we only support runtime validation by compiling
driver protocol specifications into a runtime observer thatde-
tects protocol violations committed by the driver.

1 A Dingo is an Australian wild dog.
2 Tingu is an Australian aboriginal name for a Dingo cub.

Dingo addresses concurrency issues by defining an event-
driven model of computation for drivers, where the driver in-
teracts with the system through a series of atomic operations.
This model avoids the synchronisation complexity of a mul-
tithreaded model, and eliminates many concurrency bugs.

We have implemented the Dingo architecture and several
device drivers in Linux. We show that Dingo eliminates most
concurrency errors and reduces the likelihood of protocol
errors, while introducing negligible performance overhead.

Our work complements previous research on device
driver reliability. Most existing approaches offer static[En-
gler 2000, Chou 2005, Ball 2006, Fähndrich 2006] or run-
time [Mérillon 2000, Swift 2002, Herder 2006, Zhou 2006]
techniques to detect and isolate driver faults. As we will see
in Section 10, while improving driver reliability, these tech-
niques only deal with certain types of faults and come at
the cost of significant performance overhead and increased
design complexity. In contrast, the goal of Dingo is to elim-
inate the root causes that lead to faults rather than to deal
with their consequences.

Section 2 presents an analysis of driver bugs in Linux.
Section 3 then introduces the Dingo device driver architec-
ture and Sections 4 and 5 provide details of our event-driven
model and the Tingu language. We present the implementa-
tion of Dingo and its evaluation in Sections 8 and 9, review
related work in Section 10, and conclude in Section 11.

2. Analysis of driver bugs
In this paper we deal with drivers in general-purpose sys-
tems such as Linux and Windows. In particular we are con-
cerned with the factors that lead to software faults in drivers.
To this end we have analysed the code of existing drivers to
determine the types and causes of the most common faults.
The findings from this study help to direct our efforts in im-
proving driver reliability to where they are likely to achieve
most. Before discussing the study further, we introduce the
key concepts related to device drivers.

2.1 The place of drivers in the OS

A device driver is the part of the OS that is responsible for di-
rectly controlling hardware devices. On the one hand it com-
municates with the hardware device itself through device
registers, DMA, and interrupts. On the other hand it commu-
nicates with the operating system, which provides the driver
with access to other drivers and support services such as syn-
chronisation primitives and resource management, and uses
the driver through higher layers of the system software stack,
including file systems, network stacks and so on.

A driver’s communication with the hardware and OS
must follow a protocol that determines correct timing, or-
der, and format of interactions. We distinguish between the
device protocol, which regulates communication with the
hardware device, and the software protocol, which regulates
communication with the OS. Each device has a unique de-

Ethernet family protocol

USB family protocol
Support services protocols

timers, etc
memory mgmt,

Support services:

device
controller

USB−to−Eth

TCP/IP stack

USB−to−Eth driver

USB bus driver

USB bus

Figure 1. Example USB-to-Ethernet controller driver and
its software environment.

vice protocol defined by the manufacturer. Drivers conceal
this device diversity from the OS by implementing standard
software protocols, common to a family of devices, e.g. Eth-
ernet, audio, etc. These protocols are defined by the OS. The
OS also defines protocols for accessing the support services
that it provides. These protocols and services are collectively
referred to as the operating system’s driver framework.

Figure 1 shows an example of a USB-to-Ethernet con-
troller driver and the software protocols that it implements
and uses. The driver implements the Ethernet family proto-
col that exports the network interface functionality to theOS
network stack. Since the device in question is connected to
the USB bus, it cannot be accessed by the driver directly.
Instead, device protocol messages must be encapsulated in-
side USB data packets submitted to the USB bus driver via
the USB family protocol. Such driver stacking is common in
operating system I/O frameworks and reflects the structure
of the underlying I/O bus hierarchy.

2.2 A study of driver bugs in Linux

In this study, we analysed a sample of real defects found
in a selection of Linux drivers. Our analysis made use of
the accessibility of a complete kernel development history,
including detailed descriptions of every change (http://

linux.bkbits.net). This allowed us to easily identify and
categorise a large number of driver bugs. A similar study of
Windows drivers would enable an interesting comparison,
since Windows defines a substantially different driver archi-
tecture than UNIX-like systems. Unfortunately, we were not
able to conduct such an investigation, because information
about bugs found in Windows drivers is not publicly avail-
able.

For our study, we selected 13 drivers for different types
of devices (Table 1).3 We selected drivers for devices on
different buses (USB, IEEE 1394, and PCI) since we ex-
pected each to pose different issues for driver development.

3 Among the 13 drivers, there are 4 USB-to-Ethernet controller drivers (top
4 entries in Table 1). We required statistics for several similar drivers for
the evaluation in Section 9. Otherwise, we made our selection of drivers
maximally diverse.

We then built a bug database for these drivers by analysing
all changes made to the drivers during the six-year period
from 2002 to 2008. In all we recorded 498 defects in this
database.

In order to identify the main sources of complexity in
device drivers, we distinguish between errors caused by the
complexity of interacting with the device, errors caused by
the complexity of interacting with the operating system, and
generic programming errors. Specifically, we distinguished
the following categories of driver software faults:
Device protocol violations occur when the driver behaves
in a way that violates the required hardware protocol, and
typically result in a failure of the hardware to provide its
required service. These include putting the device into an in-
correct state, mis-interpreting device state, incorrectly pars-
ing or generating data exchanged with the device, issuing
a sequence of commands to the device that violates the de-
vice protocol, specifying incorrect timeout values for device
operations, and endianness violations. Device protocol vio-
lations constitute 38% of the overall defects (Table 1).

According to our study, at least one third of the faults
in device-control logic are caused by poorly documented
device behaviour. Such faults are particularly common when
device documentation is not readily available, and the driver
is produced by reverse engineering a driver from another OS.

A portion of these faults are also caused by devices whose
behaviour deviates from the hardware interface standards
that they are meant to implement. Similar faults are due
to devices that violate their documented behaviour. In both
these cases, drivers that expect hardware to behave according
to the standards or documentation will function incorrectly
and must be fixed by adding appropriate workarounds.
Software protocol violations occur when the driver per-
forms an operation that violates the required protocol with
the OS. This includes all violations of expected order-
ing, format or timing in interactions between the OS and
the driver. These faults are particularly common in error-
handling paths and code paths handling uncommon situa-
tions such as hot-unplug and power management requests,
which are often insufficiently tested.

Examples of ordering violations include forgetting to wait
for a completion callback from an asynchronous data request
(data protocol violation), trying to resume a suspended de-
vice before restoring its PCI power state (power manage-
ment protocol violation), and forgetting to release a resource
or releasing resources in the wrong order (resource owner-
ship protocol violation). Examples of format violations in-
clude incorrectly modifying a data structure shared with the
OS, incorrectly initialising a driver descriptor before passing
it to the OS, and falsely returning a success status from an
operation that failed.

Software protocol violations constitute 20% of the overall
driver defects. Statistics for the frequencies of different types
of protocol violations are shown in Table 2.

Type of faults #

Ordering violations
Driver configuration protocol violation 16
Data protocol violation 9
Resource ownership protocol violation 8
Power management protocol violation 8
Hot unplug protocol violation 5

Format violations
Incorrect use of OS data structures 29
Passing an incorrect argument to an OS service19
Returning invalid error code 7

Table 2. Types of software protocol violations.

Concurrency faults occur when a driver incorrectly syn-
chronises multiple threads of control executing within it,
causing a race condition or a deadlock.

Unlike the previous bug categories, concurrency bugs are
not related to a particular aspect of the driver functionality,
but rather to the model of computation enforced by the OS
on device drivers. Any non-trivial device driver is involved
in several concurrent activities, including handling I/O re-
quests, processing interrupts, and dealing with power man-
agement and hot-plugging events. Most operating systems
are designed to run these activities in separate threads that
invoke the driver in parallel. This multithreaded model of
computation requires the driver to protect itself from race
conditions using a variety of synchronisation primitives.In
addition, a driver in the kernel environment has to keep track
of the synchronisation context in which it is invoked. For in-
stance, a driver running in the context of an interrupt handler
is not allowed to perform any potentially blocking opera-
tions.

Concurrency management accounts for 19% of the total
number of bugs. In Figure 2 we see that the rate of con-
currency bugs is higher in USB drivers (26.5%) and IEEE
1394 drivers (23.5%) than in PCI drivers (9%). USB and
IEEE 1394 buses support hot-plugging, which introduces a
device disconnect event to the driver interface. Disconnect
happens asynchronously to all other activities, causing race
conditions in all USB and IEEE 1394 drivers covered by our
study. In addition, since these buses are not memory mapped,
communication with the device is based on asynchronous
messages, which adds another degree of concurrency to the
driver logic.

Statistics for different types of concurrency faults are
shown in Table 3. From this we see that concurrency faults
are mostly introduced in situations where a sporadic event,
such as a hot-unplug notification or a configuration request,
occurs while the driver is handling a stream of data requests.
Generic programming faults This category of bugs in-
cludes common coding errors, such as memory allocation er-
rors, typos, missing return value checks, and program logic
errors. These errors account for the remaining 23% of de-
fects.

Name Description Total faults
Device prot.
violations

S/W protocol
violations

Concurrency
faults

Generic faults

USB drivers
rtl8150 rtl8150 USB-to-Ethernet adapter 16 3 2 7 4
catc el1210a USB-to-Ethernet adapter 2 1 0 1 0
kaweth kl5kusb101 USB-to-Ethernet adapter 15 1 2 8 4
usb net generic USB network driver 45 16 9 6 14
usb hub USB hub 67 27 16 13 11
usb serial USB-to-serial converter 50 2 17 13 18
usb storage USB Mass Storage devices 23 7 5 10 1

IEEE 1394 drivers
eth1394 generic ieee1394 Ethernet driver 22 6 6 4 6
sbp2 sbp-2 transport protocol 46 18 10 12 6

PCI drivers
mthca InfiniHost InfiniBand adapter 123 52 22 11 38
bnx2 bnx2 network driver 51 35 4 5 7
i810 fb i810 frame buffer device 16 4 5 2 5
cmipci cmi8338 soundcard 22 17 3 1 1

Total 498 189 (38%) 101 (20%) 93 (19%) 115 (23%)

Table 1. Classified counts of driver faults. The maxima in each row arein bold face. The highlighted cells summarise the
types of faults that we focus on in the rest of the paper.

USB IEEE1394 PCI total

Driver types

0%

20%

40%

60%

80%

100%

%
 o

f
D

e
fe

c
ts

device protocol violations

concurrency faults

s/w protocol violations

generic faults

Figure 2. Summary of software faults by driver type.

Type of faults #

Race or deadlock in configuration functions 29
Race or deadlock in the hot-unplug handler 26
Calling a blocking function in an atomic context 21
Race or deadlock in the data path 7
Race or deadlock in power management functions5
Using uninitialised synchronisation primitive 2
Imbalanced locks 2
Calling an OS service without an appropriate lock1

Table 3. Types of concurrency faults.

3. Dingo device driver architecture
Our driver defect study has revealed areas where better OS
support could improve driver reliability. In particular two
categories of faults are directly related to how the driver in-
teracts with the OS: concurrency faults and software proto-
col violations. Together, these faults constitute 39% of the
defects in our study, and are clearly a significant source of
problems for drivers.

To address these issues, we developed Dingo, a new ar-
chitecture for device drivers that simplifies interaction with
the OS and allows driver developers to focus on the main
task of a driver: controlling the hardware. Dingo achieves
this via two improvements over traditional driver architec-
tures. First, Dingo reduces the amount of concurrency that
the driver must handle by replacing the driver’s traditional
multithreaded model of computation with an event-driven
model. This model eliminates the majority of concurrency-
related driver faults without impacting the performance. Sec-
ond, Dingo provides a formal language for describing driver
software protocols, which avoids confusion and ambiguity,
and helps driver writers implement correct protocols.

Dingo does not attempt to provide solutions to deal with
the other types of defects identified (i.e., device protocol
violations and generic programming faults) since these are
provoked by factors that lie beyond the influence of the OS
and should be eliminated by complementary means such as
those surveyed in Section 10.
Overview of Dingo Dingo specifies a model for commu-
nication between a driver and its environment. Communi-
cation occurs over ports, which are bidirectional message-
based communication points. In a typical implementation,
ports are represented by function tables and messages are
delivered by invoking the corresponding functions. Dingo
guarantees atomic message delivery resulting in a strict or-
dering of all messages exchanged by drivers.

Each port is associated with a protocol, which specifies a
behavioural contract between the driver and the framework.
It defines the messages that can be exchanged over that port
as well as constraints on the ordering, timing and content of
those messages. Every port has exactly one protocol asso-

ciated with it, however, a driver typically has several ports
over which it communicates.

The Dingo architecture can be implemented as a self-
contained OS driver framework or it can be built on top of
another existing driver framework, providing an improved
interface for developing device drivers within that frame-
work. The latter approach allows Dingo drivers to coexist
with legacy drivers.

4. An event-driven architecture for drivers
The concurrency problems highlighted earlier are not unique
to device drivers. In a multithreaded environment, concur-
rent activities interleave at the instruction level, leading to
non-determinism and state explosion. As a result, many pro-
grammers are generally ineffective in dealing with threads,
which makes multithreading the leading source of bugs in a
variety of applications, including OS kernels.

An alternative to multithreaded concurrency is event-
driven concurrency. In the event model, a program executes
as a series of event-handlers triggered by events from the
environment. Events are strictly serialised, thus replacing
instruction-level interleaving with event-level interleaving.
Serialisation guarantees that the state of the program ob-
served at the start of an event can be modified only by the
current event handler. This simplifies reasoning about the
program behaviour and reduces the potential for race con-
ditions and deadlocks.

Comparison of threads versus events has been the subject
of lasting debate in the systems community [Lauer 1978,
Adya 2002, von Behren 2003]. One point of consensus in
this debate is that different applications may favour differ-
ent models. We argue that in the context of device drivers
the event model eliminates most concurrency-related bugs
and can be implemented in a way that neither complicates
driver development nor incurs a performance penalty. Thus
it should be the preferred model.

One observation in favour of an event-driven approach is
that modern device drivers are already partially event-driven
for performance reasons. In particular, all performance-
critical I/O requests are completed asynchronously: upon re-
ceiving a request, the driver adds it to the hardware queue
and immediately returns control to the caller. Later, it re-
ceives a completion notification from the device and invokes
a completion callback provided by the OS. Asynchronous
handling of requests enables improved performance by par-
allelizing I/O and computation. This interaction pattern of
splitting long-running operations into request and comple-
tion steps is typical for event-driven systems. Thus, while
current drivers do not fully exploit the advantages of the
event-driven model, this style of programming is already fa-
miliar to driver developers.

Event-driven architecture of Dingo As described in Sec-
tion 3, a Dingo driver interacts with the OS via messages.
A message is delivered to a driver by invoking a correspond-

ing message-handler function exported by the driver through
a port. Likewise, a driver can send messages by invoking
corresponding entry points exported by the OS. The main
distinction between Dingo message interfaces and procedu-
ral driver interfaces in conventional systems is that message
handlers are executed in anatomicandnon-blockingman-
ner. The atomicity guarantee means that no new message
can be delivered to a driver while a previous message han-
dler is running. This prohibits simultaneous invocations of a
handler by different threads, as well as recursive calls from
the same thread. Note that the atomicity constraint does not
prevent the driver from being invoked from different threads
or different CPU cores, as long as all invocations are seri-
alised. In return for the luxury of being invoked atomically,
the driver is required to handle messages “quickly”. Specif-
ically, it is not allowed to block or busy wait, because such
behaviour would delay the delivery of subsequent messages.

The event-based architecture affects driver development
in two ways. First, since Dingo serialises execution of the
driver at the message level, there is no need for synchro-
nisation among concurrent message handlers. Therefore,
Dingo drivers do not use spinlocks, mutexes, wait queues, or
other thread-based synchronisation primitives. However,the
driver may have to synchronise tasks that span multiple mes-
sages. For example, when handling two long-running I/O re-
quests that use the same hardware resource, the driver must
ensure that execution of the second request begins after the
first request completes. This is typically achieved by track-
ing the status of the shared resource using a state variable.
The number of cases where such synchronisation is required
is much smaller than in multithreaded drivers (see Table 4 in
Section 9). The event-driven architecture also simplifies the
use of I/O memory barriers. In paticular, barriers that order
accesses to I/O memory from different CPUs can be moved
from the driver into the framework. On architectures that re-
quire barriers to order I/O memory accesses on a single CPU,
the programmer is still responsible for correctly placing such
barriers.

Second, since message handlers are not allowed to block,
there is no way for the driver to freeze its execution waiting
for an event, such as a timeout or a hardware interrupt. In-
stead, the driver has to complete the current message handler
and later resume execution in the context of a new message.
Splitting a single operation into a chain of completions leads
to complex and unmaintainable code—the effect known as
stack ripping [Adya 2002]. The cause of the problem is that
by splitting a function into multiple fragments we lose com-
piler support for automatic stack management and mecha-
nisms that rely on it, such as control structures and local
variables.

Fortunately, one can combine an event-driven model of
computation with automatic stack management. One way to
achieve this has been demonstrated by Tame [Krohn 2007],
a C preprocessor providing event-driven programs with a se-

quential style of programming. We have implemented a sim-
ilar approach in Dingo. Our preprocessor provides several
macros that enable driver control logic to be expressed in the
natural sequential way, avoiding stack ripping. To illustrate
this solution, consider the following excerpt from a Linux
driver, which polls a device status register until its valuesat-
isfies a certain condition. Themsleep function causes the
current thread to block for ten milliseconds before retrying
the read:

do {

msleep (10);

/* read status register */

...

} while (/*condition*/);

Corresponding code in a Dingo driver looks like this:

do {

CALL (timeout (10, ¬if), notif);

/* read status register */

...

} while (/*condition*/);

The CALL construct, when expanded by the preproces-
sor, calls thetimeout function to start a timer, then saves
the state of the current function, including arguments, local
variables and the instruction pointer in a continuation struc-
ture, registers this structure as the handler for thenotif

event and returns from the current message handler. When
the timer triggers thenotif event after 10 milliseconds, the
continuation fires, restores the state of the function and con-
tinues from the next statement followingCALL. The key to
this solution is that the state of the execution stack is stored
in continuation structures and is automatically reconstructed
by CALL statements. The programmer can rely on automatic
stack management and can use local variables and C control
structures in the usual way.

Other constructs supported by the preprocessor include
EMIT, which triggers an event, andAWAIT, which suspends
the program until one of a set of events occurs.

Selectively reintroducing multithreading One limitation
of the event-driven model is that it prevents the program
from exploiting multiprocessor parallelism. This is not an
issue for the vast majority of drivers, which are I/O-bound
rather than CPU-bound. As we will see in Section 9, a
careful implementation of the event model enables event-
based drivers to achieve the same I/O throughput and latency
as multithreaded drivers. However, there exist devices, such
as 10Gb Ethernet or InfiniBand controllers, designed for
very high throughput and low latency, whose performance
could potentially suffer from request serialisation. Although
in our experiments event-based drivers perform well even
for these devices, we would like to allow driver developers
to use multithreading when absolutely necessary.

We observe that high-performance devices are designed
to minimise contention and avoid synchronisation in the
data path. As a result, the synchronisation complexity in

their drivers is concentrated in the control path, whereas
the data path is free of synchronisation operations. Based
on this observation, we introduce a hybrid model in Dingo,
which allows concurrency among data requests but not con-
trol requests. In this model, all control messages are seri-
alised with respect to each other and to data messages. How-
ever, multiple data messages are allowed to be handled con-
currently. The driver implementer can choose whether the
driver should run in the fully serialised mode or in the hy-
brid mode. Drivers running in the hybrid mode benefit from
the advantages of the event-driven model without experienc-
ing any added overhead of serialisation. The distinction be-
tween data and control messages is drawn by the protocol
designer who labels messages that can be sent or received
concurrently with a special keyword.

We have implemented both modes for the InfiniBand
driver described in Section 8. Our original implementation
was fully serialised. We found that no changes to the driver
were needed to run it in the hybrid mode, since the data path
of the driver did not require any synchronisation.

5. Tingu: describing driver software
protocols

In Section 2.2 we showed that 20% of driver defects are vi-
olations in the ordering or format of messages exchanged
with the OS. A closer study of driver protocols in Linux
shows that these protocols are not particularly complicated.
We maintain that it is not the protocol complexity that
causes bugs, but rather the fact that they are not adequately
documented, forcing driver developers to guess correct be-
haviour. For example, details of how to react to a hot-unplug
notification in the driver’s different states, or how to handle a
shutdown request that arrives during a transition to the sus-
pend state (and whether such a situation is even possible),
are not easy to find in documentation.

In Dingo, we address this problem by specifying the com-
munication protocols between drivers and the OS using a
formal language. While informal descriptions tend to be in-
complete and can easily become bulky and inconsistent, a
well-chosen formalism can capture protocol constraints con-
cisely and unambiguously, providing driver developers with
clear instructions regarding the required behaviour. Addi-
tionally, by providing a specification of driver protocols,we
enable formal checking of driver correctness, both statically
and at runtime. This is further discussed in Section 7.

The challenge in designing the protocol specification lan-
guage is to satisfy both expressiveness and readability re-
quirements. In order to be useful, driver protocol specifica-
tions must be easily understood by driver developers. This
encourages the use of simple visual formalisms such as finite
state machines (FSM) or UML sequence diagrams. Unfortu-
nately many aspects of driver protocols cannot be expressed
using these simple notations.

One such aspect is the dynamic structure of driver inter-
faces. For instance, the USB family protocol allows client
drivers to create multiple data connections, called pipes,
through the USB bus to their associated devices at runtime.
In the USB-to-Ethernet controller example (Figure 1), such
functionality is used by the Ethernet driver to open several
parallel data and control connections to its associated device.
Each such connection operates in parallel with the others,
and behaves according to its own protocol.

This example also serves to highlight another complica-
tion common to driver protocols, namely protocol dependen-
cies. In the USB driver, the behaviour of each individual pipe
is dependent on the state of the main USB bus protocol. For
instance, no data transactions can be issued through pipes
after the bus has been switched to a low-power mode. Given
that pipes behave according to their own protocols, and that
this behaviour is dependent on the behaviour of the USB bus
as specified by its own protocol, we require a means to de-
scribe dependencies between different protocols.

Our search for a formalism that supports both the required
expressiveness and readability has led to the development of
a new software protocol specification language called Tingu.
The design of Tingu is driven by our experience specifying
and implementing real driver interfaces. In particular, wein-
troduce a construct to the language only if it has proven nec-
essary for modelling the behaviour of several types of drivers
and can not be expressed easily using other constructs. We
give a brief overview of Tingu below; more details can be
found in [Ryzhyk 2007].

Tingu has both a textual and visual component. The tex-
tual component is used to declare elements of a protocol,
such as ports and messages. The visual component is used
to specify protocol behaviour using a subset of the State-
charts [Harel 1987] syntax extended with several new con-
structs that provide support for dynamic port spawning and
protocol dependencies. With dynamic spawning one can
specify a behaviour that leads to creation of a new port at
runtime. The new port is created as a subport of an existing
port and is associated with its own protocol. Protocol depen-
dencies define message ordering constraints across multiple
protocols. This is achieved by allowing several protocols to
constrain occurrences of the same message: the message can
only be sent when it is permitted by all involved protocols.

We illustrate the syntax and semantics of Tingu using
the USB-to-Ethernet driver example introduced earlier. The
following Tingu specification fragment declares the ports
and associated protocols of the driver.

component asix {

ports:

Lifecycle lc;

PowerManagement pm;

EthernetController eth;

USBInterfaceClient usb;

mirror Timer timer;

}

timer

pm

usb

lc

TCP/IP stack

eth

USB bus driver Timer service

USB−to−Eth driver

Figure 3. Ports of the USB-to-Ethernet adapter driver.

The driver provides services to the OS viaLifecycle,
PowerManagement and EthernetController protocols.
It uses theUSBInterfaceClient protocol exported by the
USB bus driver, and theTimer protocol exported by the
OS timer service. Themirror keyword indicates that the
driver implements the client side of the protocol. Figure 3
represents this specification visually and can be viewed as a
refinement of Figure 1.

The following listing declares theLifecycle protocol
and its messages:

protocol Lifecycle {

messages:

in start();

out startComplete();

out startFailed(error_t error);

in stop();

out stopComplete();

in unplugged();//hot-unplug event

}

Figure 4 shows the statechart of theLifecycle protocol.
State transitions represent legal sequences of protocol mes-
sages, with question marks (“?”) in trigger names denoting
incoming messages and exclamation marks (“!”) denoting
outgoing messages. A compact representation of complex
protocols is achieved by organising states into a hierarchy—
a feature provided by Statecharts. Several primitive states
can be clustered into a super-state. A transition originating
from a super-state (e.g., the?unplugged transition in Fig-
ure 4) is enabled when the state machine is in any of its in-
ternal states.

When the driver is created, the protocol state machine
is in its initial state, denoted by a dot and an arrow. The
protocol terminates, i.e., no more messages of this protocol
are allowed, when it reaches one of its final states, denoted
by a circled dot. When all protocols of the driver terminate,
the driver is destroyed.

In Figure 4 some states include timeout annotations in
square brackets. A protocol is violated if, after entry into
such a state, the given amount of time passes without the
triggering of a transition leading to a different state. For
instance, the driver is not allowed to stay in thestarting
state indefinitely. It must either complete initialisationor fail
within five seconds after entering the state.

Some protocol state information is inconvenient to model
using explicit states and is more naturally described by vari-

init

connected

starting [5s]

running

!startComplete

stopping [5s]

?stop

?start

disconnected [5s]

?unplugged

!stopComplete

!stopComplete

!startFailed

Figure 4. TheLifecycle protocol state machine.

running

init

full_power

!lc.startComplete

sleep_prepare [5s]

?sleep [$level>D0]/
power_level = $level

wakeup [5s]

!wakeupComplete

sleeping

!sleeping

?wakeup

?sleep
[$level > power_level]/
power_level = $level

?lc.stop

?lc.stop

!lc.startFailed

?lc.unplugged

Figure 5. ThePowerManagement protocol state machine.

ables. For example, thePowerManagement protocol in Fig-
ure 5 models a device’s current power level using an inte-
ger variable calledpower level. Variables are declared in
a separate textual section inside the protocol specification.

A state transition label may include a guard, indicating
whether the transition is enabled, and an action that updates
protocol variables upon triggering of the transition. For ex-
ample, consider the state machine of thePowerManagement

protocol in Figure 5. The transition from statefull power

to sleep prepare is triggered by asleep message. The
guard expression in square brackets specifies that thelevel

argument of the message must be greater than theD0 con-
stant, corresponding to the zero power saving mode; the ac-
tion associated with the transition updates the value of the
power level variable to reflect the new power state.

Figure 5 also illustrates the use of protocol dependencies.
When dealing with power management, a device cannot
be transferred to a low-power mode until it has completed
initialisation. This rule can be expressed as a dependency
between theLifecycle andPowerManagement protocols:
The PowerManagement state machine may acceptsleep
messages only after astartCompletemessage, which is an

plugged

sleeping enabled

!pm.sleeping

?pm.wakeup

!pipeOpen/
new pipe ($address)

altsetting_selecting [5s]

!altsettingSelect

?altsettingSelectComplete

?altsettingSelectFailed

?lc.unplugged!lc.stopComplete !lc.startFailed

Figure 6. The USBInterfaceClient protocol. Message
directions are shown relative to the driver using the USB
bus driver. For example, analtsettingSelect message
is sent to the bus driver in order to select and alterna-
tive interface configuration. The bus driver replies with an
altsettingSelectCompletemessage.

output message of theLifecycle protocol. This is shown in
Figure 5 with the transition frominit to full power.

Finally, we illustrate the use of dynamic spawning with
the example of theUSBInterfaceClient protocol, which
describes the service provided by the USB bus driver. As
mentioned above, USB data transfers are performed via USB
data pipes. The behaviour of an individual pipe is specified
by theUSBPipeClient protocol. Since the USB bus allo-
cates these pipes dynamically, the driver determines which
pipes it will use at runtime. A new pipe is created when a
pipeOpen message is sent, as shown in Figure 6. This mes-
sage takes a pipe address and a pointer to a port as argu-
ments. In response to this message, the USB transport al-
locates a pipe and binds it to the provided port, so that the
driver can immediately start using the pipe through this port.

One aspect of the driver interface currently not captured
by Tingu protocols is I/O buffer management. For instance,
Linux defines a complex API for manipulating network
packet descriptors, including operations for cloning, merg-
ing, padding packets, etc. These interfaces do not fit well
into the state machine framework of Tingu. Rather they can
be formalised using abstract data types (ADT) or a related
formalism. While Tingu does provide limited support for
ADT’s, a full description of such interfaces written using
the present version of the language would lead to bulky un-
intuitive specifications, which would defeat the purpose of
Tingu. As such, these APIs continue to be specified using C
header files and informal documentation.

6. From protocols to implementation
Tingu protocols specify the externally visible driver be-
haviour and do not enforce any particular internal struc-
ture. In practice, however, the driver developer will typically
closely follow the structure of the specification, maintaining
correspondence between the driver code and protocol states.

transmit

disabled

enable [5s]?enable

disable [5s]
!disableComplete

enabled

txq_stalled !txPacketDone

txq_running

!txStartQueue !txStopQueue

?txPacket !txPacketDone

!txPacketAbort

!enableComplete

?disable

1 2

7

8 9

10 11

12

5

34

disconnected
?lc.unplugged !lc.stopComplete

6

Figure 7. A fragment of theEthernetController proto-
col. Numbers above transition labels are for reference only
and are not part of the protocol specification.

In this approach, driver protocol specifications are viewedas
the first approximation of the driver design, which is refined
into the implementation by adding device interaction code.

Figures 7 and 8 show a fragment of theEthernet-
Controller protocol that describes the packet transmission
interface of an Ethernet driver and a simplified version of
the corresponding fragment of the AX88772 driver code.
Specifically, we focus on the state labeledtxq running.
According to Figure 7, in this state the driver must be pre-
pared to handle one of the following messages from the OS:
txPacket instructing the driver to queue a packet for trans-
mission,disable requesting the driver to disable the device
receive and transmit circuitry, andlc.unplugged notifying
the driver about a hot-unplug event. It is allowed to send one
of the following messages:txPacketDone to notify the OS
about successful transmission of a packet,txPacketAbort

to report an error that occurred while sending a packet, and
txStopQueue to prevent the OS from sending new packets
until more buffer space becomes available in the controller.

In accordance with this specification, when the driver ar-
rives in statetxq running, it pauses, waiting for one of the
enabled external messages using theAWAIT/IF/ELIF con-
struct (line 4 in Figure 8). The first three events listed in the
AWAIT statement correspond to theEthernetController
protocol events summarised above. Since the driver partic-
ipates in several different protocols, it must be prepared to
handle messages belonging to all its protocols. In this exam-
ple, the last event (pipeXferComplete) in theAWAIT state-
ment corresponds to aUSBPipeClient protocol message,
which is generated by the USB data pipe when it has com-
pleted transferring packet data to the controller.

Note that events given as arguments toAWAIT are
language-level entities that are internal to the driver, and
are distinct from protocol messages, which comprise the ex-
ternal interface of the driver. A message is delivered to the
driver via a function invocation. It can then be transformed
into an event using theEMIT construct, which instantiates an

1 void ax88772_txLoop(ax88772 * drv)

2 {

3 ...

4 AWAIT(txPacket,disable,unplugged,

5 pipeXferComplete)

6 {

7 IF(txPacket){ /*transition #10*/

8 /* start packet transfer over USB*/

9 ...

10

11 if(/*out of buffer space?*/) {

12 /*transition #9*/

13 eth->txStopQueue(eth);

14 };

15 }

16 ELIF(disable){ /*transition #3*/

17 /*abort all outstanding USB transfers*/

18 pipe->abort(pipe);

19

20 /*wait for the abort to complete*/

21 AWAIT(pipeAbortComplete){

22 /*transition #4*/

23 eth->disableComplete(eth);

24 };

25 }

26 ELIF(unplugged){ /*transition #5*/

27 /*wait for the USB pipe to abort all

28 outstanding transfers*/

29 AWAIT(pipeAbortComplete);

30

31 /*transition #6*/

32 lc->stopComplete(lc);

33 }

34 ELIF(pipeXferComplete){/*USB xfer complete*/

35 if(/*transfer successful?*/)

36 /*transition #11*/

37 eth->txPacketDone(eth,

38 pipeXferComplete.pkt);

39 else

40 /*transition #12*/

41 eth->txPacketAbort(eth,

42 pipeXferComplete.pkt);

40 };

43 };

44 ...

45};

Figure 8. A fragment of the AX88772 driver.

event and resumes execution of anyAWAIT or CALL state-
ment waiting for this event.

Figure 8 shows how the driver handles each input event
and indicates the correspondence between messages ex-
changed by the driver through theEthernetController
protocol and state transitions in Figure 7.

This example illustrates how protocol specifications can
be mapped into driver implementation with the help of
the event-based constructs supported by the preprocessor.

Presently, this mapping must be done manually by the driver
developer. Automating it is part of the ongoing work.

7. Detecting failures at runtime
Tingu specifications help driver developers avoid protocol
violations, but do not eliminate them completely. These
faults can be dealt with using static or runtime verifica-
tion. The Tingu compiler fully automates runtime verifica-
tion by generating a driverprotocol observerfrom the Tingu
specification of its ports. The generated observer can be at-
tached transparently to the driver. It intercepts all messages
exchanged by the driver and keeps track of the state of all
its protocols. Whenever the driver or the OS sends an illegal
message or fails to send any messages within the time inter-
val specified by a timeout state, the observer notifies the OS
about the failure and outputs the current state of all driver
protocols and the sequence of events leading to the failure.

Protocol observers have proved useful in testing and de-
bugging device drivers during the development cycle. They
can also be combined with any of the failure isolation and
recovery solutions described in Section 10 to enhance the
resilience of a production system to driver failures.

Static verification of drivers against protocol specifica-
tions is currently not implemented. One way to achieve this
is to translate Tingu into a language supported by an existing
model checker [Engler 2000, Chou 2005, Ball 2006]. Such
translation is possible because these languages incorporate
similar concepts to Tingu, but using textual rather than vi-
sual syntax. However we do not currently have experimen-
tal evidence proving or disproving the feasibility of this ap-
proach. In particular, it is unclear whether existing model
checkers are sufficiently powerful to validate complex be-
haviours captured by Tingu protocols.

8. Implementation
Dingo on Linux We have implemented the Dingo driver
architecture on Linux by constructing adapters between the
multithreaded driver protocols defined by Linux and the
event-driven protocols expected by Dingo drivers. This ap-
proach allows Dingo and native Linux drivers to coexist in
the same system, offering a gradual migration path to more
reliable device drivers.

Since the Linux driver interface is multithreaded, the
Dingo adapter must serialise calls from Linux into the driver.
While this could be achieved using a mutex, this solution
would negatively affect performance on multiprocessor ma-
chines, where all CPUs trying to access the driver would
have to wait for the current call to complete. Our solution
is to use a request queue per driver. Calls that arrive while
the driver is executing a message handler are queued, allow-
ing the caller to continue execution. Requests in the queue
are processed after the message handler completes execu-
tion. The request queue is protected by a spinlock. To sup-

sync. objects # crit. sections
Linux Dingo Linux Dingo

AX88772 8 2 19 2
InfiniHost 24 6 51 10

Table 4. The use of synchronisation primitives by Linux
and Dingo drivers.

port the hybrid model discussed in Section 4, adapters can
be configured to disable serialisation for selected messages.

Messages sent by the driver to the OS are translated to
corresponding Linux calls. To ensure non-blocking seman-
tics of messages, calls that may block are scheduled for de-
layed execution in the context of a kernel worker thread.

We have implemented adapters for the USB, Ethernet,
and InfiniBand protocols as well as for generic protocols
such as lifecycle, power management, and the timer service.
Since our driver protocols are closely modelled after the
corresponding Linux protocols, adapter implementation is
fairly straightforward. In order to explore the reliability and
performance implications of the Dingo driver architecture,
we built two drivers for Linux: an AX88772 100Mb/s USB-
to-Ethernet adapter driver and a Mellanox InfiniHostTM III
Ex 10Gb/s dual-port InfiniBand controller driver.
Dingo on OKL4 We have also implemented the Dingo
driver architecture on top of the commercial OKL4 micro-
kernel. This implementation serves as a research vehicle for
further exploration of a formal approach to device drivers.
On OKL4, we have implemented drivers for the PCI-based
RTL8139 Ethernet controller, the OHCI USB host controller
driver, and the USB root hub.

9. Evaluation
We evaluate the Dingo architecture with respect to three
characteristics: complexity of driver development, impact on
driver reliability, and performance.

9.1 Code complexity

Our Dingo drivers for the AX88772 and InfiniHost devices
are based on the corresponding Linux drivers, which allows
us to directly compare the two implementations. The main
difference we identified is that Dingo dramatically reduces
the amount of synchronisation code in drivers. As pointed
out in Section 4, event-driven drivers still need to synchro-
nise activities that interleave at the message level, but sit-
uations where such synchronisation is necessary are un-
common, compared to multithreaded drivers. Table 4 sum-
marises the use of synchronisation primitives in Dingo and
Linux drivers. It shows the total number of synchronisa-
tion objects used by the Dingo and Linux versions of the
AX88772 and InfiniHost drivers, as well as the total number
of code sections protected by these objects.

We also found that our event-based preprocessor was ef-
fective in addressing the stack-ripping problem. Whenever
a Linux driver performs a blocking call to wait for an I/O

completion or a timeout, the Dingo driver achieves the same
effect using theCALL construct. Thus, Dingo drivers imple-
ment the complete functionality of Linux drivers without in-
crease in code size or complexity.

Finally, we found that formally modelling driver proto-
cols leads to simpler protocols and hence simpler drivers.
For instance, in Linux drivers it is possible to receive a shut-
down request while the driver is trying to put the device to a
low-power state, which is a situation that requires complex
code and increases the likelihood of introducing bugs. In
Dingo many such situations are simply ruled out in the proto-
col and can, therefore, never occur. For example, this specific
situation has been ruled out in thePowerManagement state
machine in Figure 5. Such protocol restrictions are enforced
by the Dingo runtime framework, which relieves the driver
developer from handling these tricky corner cases and, as
we will see in the following section, prevents bugs, without
sacrificing useful functionality.

9.2 Reliability

In order to measure the effect of the Dingo architecture
on the rate of software faults in drivers, we evaluated the
AX88772 and InfiniHost drivers against a sample of bugs
found in similar Linux drivers. For every bug studied, we
determined whether an analogous bug could be reproduced
in a Dingo driver. Some bugs simply cannot occur in Dingo,
for example, most race conditions cannot be reproduced due
to the event-atomicity guarantee. Likewise, Dingo protocols
rule out some corner-case situations along with bugs that
occur when handling them.

For those bugs that can be reproduced in Dingo, we estab-
lished whether the incorrect behaviour caused by the bug is
explicitly forbidden by driver protocols. We note that, while
Dingo does not eliminate bugs caused by incorrect imple-
mentation of a protocol, the probability of introducing such
bugs in Dingo is smaller than in Linux due to the presence of
a clear and complete specification of the protocol. If, how-
ever, a protocol violation bug slips into the driver implemen-
tation, it can be detected using runtime or static verification,
as discussed in Section 7.

We used bugs from the four USB-to-Ethernet adapter
drivers from Table 1 and analysed them against the Dingo
implementation of the AX88772 driver. We also used the
123 bugs found in the Linux InfiniHost driver and analysed
them against the Dingo version of the same driver. Of the
201 bugs found in these drivers, we selected the 61 that
belonged to the types of bugs that we are targeting, namely
concurrency faults (29) and software protocol violations (32)
and that were applicable to the AX88772 and InfiniHost
drivers (some Ethernet driver bugs were not applicable to the
AX88772 driver due to differences in the device interface).

The results of the evaluation are summarised in Table 5.
Of the 61 selected faults, 36 fell in the category of faults
not expressible in Dingo. Of the remaining possible faults
13 were protocol violations whose likelihood is reduced

Eliminated Reduced Unchanged
by design likelihood likelihood

Concurrency faults 27 2 0
S/W prot. violations 9 11 12

Total 36 13 12

Table 5. Categorisation of faults based on their potential
occurrence in Dingo.

in Dingo. Being manually introduced in the corresponding
Dingo driver, these faults could be identified by the runtime
failure detector during testing. Finally, 12 bugs were deemed
equally likely to occur in Dingo drivers and native Linux
drivers. These bugs were software protocol violations that
were not captured by Dingo protocols. They included sit-
uations where incorrect data was passed to the driver, and
where the driver returned invalid data. While the appropriate
format restrictions could be expressed in the current version
of Tingu, this would compromise the clarity of the specifica-
tion and defeat the goal of defining driver protocols formally.

9.3 Performance

We evaluated the performance overhead of the Dingo driver
model using the AX88772 and InfiniHost drivers. Since our
implementation is based on equivalent Linux drivers, this
enables a fair comparison of the Dingo and Linux models.
All benchmarks were run using a Linux 2.6.27 kernel on
an 8-way (4 physical CPUs with 2 hardware threads each)
Itanium 2 1.7GHz with 8GB of RAM.

For the AX88772 driver we measured throughput and la-
tency for a varying number of concurrent network connec-
tions using the Netperf benchmark suite. Figure 9 shows re-
sults of the latency test. The Dingo driver achieved the same
latency as its Linux counterpart, while introducing a small
CPU overhead due to the protocol translation and request
queuing inside the Dingo framework. Importantly, this over-
head does not increase while going from 1 to 32 clients on a
multiprocessor system. The throughput benchmark showed
no difference in performance between the drivers. We omit
these throughput results due to space limitations.

We used the InfiniHost driver as our second example due
to its extreme performance requirements. The InfiniBand in-
terconnect architecture is designed for very high throughput
and low latency. Despite the use of zero-copy techniques,
it still puts substantial pressure on the CPU, especially for
small transfers. Furthermore, InfiniBand supports traffic iso-
lation among multiple concurrent connections; therefore the
InfiniBand stack in Linux is designed to avoid synchronisa-
tion among data streams.

We compared the performance of the native Linux driver
and the Dingo driver running in the fully serialised and hy-
brid modes. We used the IP-over-InfiniBand Linux module
to send IP traffic through the InfiniBand link, and measured
throughput and latency with Netperf. To achieve traffic isola-

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35

C
P

U
 U

til
iz

at
io

n
(%

)

Number of Connections

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35

R
ou

nd
-t

rip
 la

te
nc

y
(u

se
c)

Number of Connections

Native Driver Dingo

Figure 9. AX88772 UDP latency results. The top graph
shows aggregate CPU utilisation over all connections (rang-
ing from 0% to 800% on the 8-way system). The bottom
graph shows average UDP echo latency across all connec-
tions.

tion, we configured 32 independent network interfaces, one
for each client, on top of the InfiniHost controller.

As shown in Figure 10, all three versions of the driver
achieve the same latency. The serialised Dingo driver shows
a small increase in CPU utilisation due to request queuing.
In throughput benchmarks (Figure 11), the Dingo driver in
serialised mode showed 10% throughput degradation in the
worst case, and less than 3% throughput degradation and no
CPU overhead in the hybrid mode (in the points where the
hybrid driver consumes more CPU than the native one, it
sustains proportionally higher throughput). In all cases the
performance of Dingo drivers scaled as well as the native
Linux driver. This shows that the Dingo hybrid mode allows
drivers to take full advantage of multiprocessing capabilities.

These experimental results indicate that the reliability
improvement offered by the Dingo architecture does not
come at the cost of performance.

10. Related work
Research on driver reliability Drivers have long been
recognised as the biggest threat to system stability. A variety
of techniques have been proposed for dealing with driver
bugs. These techniques can be classified as either runtime
or static techniques.

Runtime techniques detect, isolate and recover from
driver failures at runtime, rather than eliminating the bugs

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35

C
P

U
 U

til
iz

at
io

n
(%

)

Number of Connections

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35

R
ou

nd
-t

rip
 la

te
nc

y
(u

se
c)

Number of Connections

Dingo: serialised mode
Dingo: hybrid mode

Native Driver

Figure 10. InfiniHost UDP latency benchmark results. The
top graph shows aggregate CPU utilisation; the bottom graph
shows average UDP echo latency.

that cause these failures. Most existing runtime failure de-
tection techniques focus on detecting and isolating memory
access violations. One way to deal with these failures is to
encapsulate drivers in user-level processes and rely on the
memory protection hardware to identify illegal memory ac-
cesses. This approach was pioneered in microkernel-based
systems [Forin 1991, Liedtke 1991] and has more recently
made its way into mainstream systems [Leslie 2005]. In par-
ticular, Linux, Windows, and Mac OS X allow many types of
drivers to be implemented at the user level [Nakatani 2002,
Microsoft 2007, Apple Inc.]. A variation of this approach
was implemented in Nooks [Swift 2002], which provides
memory protection for in-kernel driver.

An alternative to hardware-based isolation is software-
based isolation. SafeDrive [Zhou 2006] enforces type and
memory safety for in-kernel drivers written in C with source
annotations through a combination of runtime and compile-
time checks. Using binary rewriting, XFI [Erlingsson 2006]
enforces coarse-grained protection for arbitrary modules
similar to that provided by hardware-based mechanisms.

Success achieved in detecting other types of failures
has been more modest. In particular, detecting device
protocol violations is difficult, because formal specifica-
tions of device protocols are rarely available. Languages
like Devil [Mérillon 2000], NDL [Conway 2004], and
HAIL [Sun 2005] offer a compromise solution. They allow
the driver developer to create a formal specification of the
device interface based on the informal description found in

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35

C
P

U
 U

til
iz

at
io

n
(%

)

Number of Connections

 0

 1000

 2000

 3000

 4000

 5000

 0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

M
ib

/s
)

Number of Connections

Dingo: serialised mode
Dingo: hybrid mode

Native Driver

Figure 11. InfiniHost TCP throughput benchmark results.
The top graph shows aggregate CPU utilisation; the bottom
graph shows average UDP echo latency.

the device datasheet. This specification can be enforced via
a combination of code generation, compile-time and runtime
checks. This research is complimentary to Dingo, which fo-
cuses on formalising the software interface of the driver.

Verifying software protocol conformance at runtime re-
quires a formal specification of the interface between the
driver and the OS. Such specifications do not exist in current
systems, which has led Nooks and MINIX 3 [Herder 2006]
to implement a limited form of checking by validating only
some call arguments and detecting non-responsive drivers.
As discussed in Section 7, Dingo enables runtime detection
of a much broader class of protocol violations.

Once a failure has been detected, a recovery mechanism
must take compensatory action to hide it from the rest of
the system. While Nooks has demonstrated the feasibility
of driver recovery, a systematic solution applicable to many
types of drivers does not currently exist. MINIX 3 avoids this
problem by delegating recovery to the client of the driver.

Static techniques aim to eliminate driver bugs by
analysing the source code of the driver. Unlike runtime tech-
niques, analysis is performed at build time, and incurs no
runtime overhead. Model checking tools like SLAM [Ball
2006], the Stanford Checker [Engler 2000] and Cover-
ity [Chou 2005] have been used to find hundreds of de-
fects in Windows and Linux drivers. While this approach has
achieved much success in finding bugs, many of the more
complex faults are still beyond its reach. In addition, exist-
ing techniques are ineffective in finding most concurrency

faults—to find such faults requires dealing with a state space
explosion caused by the multiple threads of control. The use
of a model checker requires defining a set of rules that a cor-
rect driver should obey. In particular, Tingu protocol specifi-
cations could be used as such rules, which provides a bridge
between our work and research into model checking.

The Singularity [Fähndrich 2006] project takes a no-
compromise approach, building from scratch an OS that is
amenable to static analysis. In particular, it allows the for-
mal specification of driver software protocols and the static
enforcement of protocol compliance. These improvements
are tightly coupled with the Sing# language and cannot be
used for drivers written in other languages or for other OSs.

Neither runtime nor static solutions provide full protec-
tion against driver bugs. Therefore, an approach, such as
Dingo, that helps driver developers produce better code, con-
taining fewer bugs, has the potential to improve both driver
and overall system reliability.

Software protocol specification languagesA number of
protocol specification languages already exist, most notice-
ably UML Protocol State Machines (PSM) [OMG 2005].
Our motivation for developing yet another language was that
existing languages proved inadequate for expressing realistic
driver protocols clearly and compactly. In particular, neither
PSM nor other languages we investigated allow the expres-
sion of protocol dependencies, and dynamic port creation.

SLAM and Singularity have both used formal languages
to specify driver interfaces. They pursue different goals
than Dingo and, as a result, make different language design
choices. SLAM is intended to find bugs in existing drivers.
Its specification language formalises individual driver API
rules but does not provide means to describe the entire
driver-OS interaction in a structured way. The Singularity
channel specification syntax is intended to describe the com-
plete driver behaviour; however its main design objectives
are integration with the implementation language (Sing#)
and compile-time verification, rather than expressivenessor
readability. As a result, it does not support features like pro-
tocol dependencies and protocol variables, which we found
essential for modelling driver behaviours, and does not pro-
vide the means to structure complex protocols. In contrast,
Tingu separates specification from verification. Tingu spec-
ifications aim to serve as guidelines for driver developers,
providing maximum information about the required driver
behaviour. At the same time, they have a well-defined for-
mal semantics and can be used as properties against which
driver implementations can be formally verified.

11. Conclusion
Faulty drivers are a major cause of instability in operating
systems. Our study has shown that concurrency faults and vi-
olations of the protocol between the driver and OS are signif-
icant sources of failures in a variety of drivers. We presented
a driver architecture that improves OS support in these ar-

eas and thus enables simpler and more reliable drivers. We
demonstrated that this architecture can be implemented effi-
ciently in a commodity OS and is effective in reducing real
driver bugs.

Acknowledgments
We would like to thank Herbert Bos, Nicholas FitzRoy-Dale,
Godfrey van der Linden, Sergio Ruocco, our shepherd Petros
Maniatis, and the anonymous reviewers for comments on
earlier versions of this paper.

References
[Adya 2002] A. Adya, J. Howell, M. Theimer, W. Bolosky, and

J. Douceur. Cooperative task management without manual stack
management. In2002 USENIX, pages 289–302, Monterey, CA,
USA, Jun 2002.

[Apple Inc.] Apple Inc. Introduction to I/O Kit fundamentals, Nov
2006.

[Ball 2006] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir
Levin, Jakob Lichtenberg, Con McGarvey, Bohus Ondrusek,
Sriram K. Rajamani, and Abdullah Ustuner. Thorough static
analysis of device drivers. In1st EuroSys Conf., pages 73–85,
Leuven, Belgium, Apr 2006.

[Chou 2005] Andy Chou, Bryan Fulton, and Seth Hallem. Linux
kernel security report, 2005.

[Chou 2001] Andy Chou, Jun-Feng Yang, Benjamin Chelf, Seth
Hallem, and Dawson Engler. An empirical study of operating
systems errors. In18th SOSP, pages 73–88, Lake Louise, Alta,
Canada, Oct 2001.

[Conway 2004] Christopher L. Conway and Stephen A. Ed-
wards. NDL: a domain-specific language for device drivers. In
LCTES’04, pages 30–36, Washington, DC, USA, Jun 2004.

[Engler 2000] Dawson R. Engler, Benjamin Chelf, Andy Chou,
and Seth Hallem. Checking system rules using system-specific,
programmer-written compiler extensions. In4th OSDI, pages
1–16, San Diego, CA, Oct 2000.

[Erlingsson 2006]́Ulfar Erlingsson, Martı́n Abadi, Michael Vrable,
Mihai Budiu, and George C. Necula. XFI: software guards
for system address spaces. In7th OSDI, pages 75–88, Seattle,
Washington, Nov 2006.

[Fähndrich 2006] Manuel Fähndrich, Mark Aiken, Chris Haw-
blitzel, Orion Hodson, Galen C. Hunt, James R. Larus, and
Steven Levi. Language support for fast and reliable message-
based communication in Singularity OS. In1st EuroSys Conf.,
pages 177–190, Leuven, Belgium, Apr 2006.

[Forin 1991] Alessandro Forin, David Golub, and Brian Bershad.
An I/O system for Mach 3.0. InUSENIX Mach Symp., pages
163–176, Monterey, CA, USA, Nov 1991.

[Ganapathi 2006] Archana Ganapathi, Viji Ganapathi, and David
Patterson. Windows XP kernel crash analysis. In20th LISA,
pages 101–111, Washington, DC, USA, 2006.

[Harel 1987] David Harel. Statecharts: A visual formalism for
complex systems. Science of Computer Programming, 8(3):
231–274, Jun 1987.

[Herder 2006] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip
Homburg, and Andrew S. Tanenbaum. MINIX 3: A highly
reliable, self-repairing operating system.Operat. Syst. Rev., 40
(3):80–89, Jul 2006.

[Krohn 2007] Maxwell Krohn, Eddie Kohler, and M. Frans
Kaashoek. Events can make sense. In2007 USENIX, pages
1–14, Santa Clara, CA, USA, Jun 2007.

[Lauer 1978] H. C. Lauer and R. M. Needham. On the duality
of operating system structures. In2nd Int. Symp. Operat. Syst.,
pages 3–19, Rocquerncourt, France, Oct 1978.

[Leslie 2005] Ben Leslie, Peter Chubb, Nicholas Fitzroy-Dale, Ste-
fan Götz, Charles Gray, Luke Macpherson, Daniel Potts, Yuet-
ing (Rita) Shen, Kevin Elphinstone, and Gernot Heiser. User-
level device drivers: Achieved performance.Journal of Com-
puter Science and Technology, 20(5):654–664, Sep 2005.

[Liedtke 1991] Jochen Liedtke, Ulrich Bartling, Uwe Beyer,Diet-
mar Heinrichs, Rudolf Ruland, and Gyula Szalay. Two years of
experience with aµ-kernel based OS.Operat. Syst. Rev., 25(2):
51–62, Apr 1991.

[Mérillon 2000] Fabrice Mérillon, Laurent Réveillère, Charles
Consel, Renaud Marlet, and Gilles Muller. Devil: An IDL for
hardware programming. In4th OSDI, pages 17–30, San Diego,
CA, USA, Oct 2000.

[Microsoft 2007] Microsoft. Architecture of the user-modedriver
framework, 2007.

[Murphy 2004] Brendan Murphy. Automating software failure
reporting.ACM Queue, 2(8):42–48, Nov 2004.

[Nakatani 2002] Bryce Nakatani. User mode drivers, 2002.

[OMG 2005] OMG. UML 2.0 specification, 2005.

[Ryzhyk 2007] Leonid Ryzhyk, Ihor Kuz, and Gernot Heiser. For-
malising device driver interfaces. In4th PLOS, Stevenson,
Washington, USA, Oct 2007.

[Sullivan 1991] Mark Sullivan and Ram Chillarege. Software
defects and their impact on system availability – a study of field
failures in operating systems. In21st IEEE Int. Symp. Fault-
Tolerant Comput., pages 2–9, Montreal, Canada, Jun 1991.

[Sun 2005] Jun Sun, Wanghong Yuan, Mahesh Kallahalla, and
Nayeem Islam. HAIL: a language for easy and correct device
access. In5th EMSOFT, pages 1–9, Jersey City, NJ, USA, Sep
2005.

[Swift 2002] Michael M. Swift, Steven Marting, Henry M. Levy,
and Susan G. Eggers. Nooks: An architecture for reliable device
drivers. In10th SIGOPS Eur. WS, pages 101–107, St Emilion,
France, Sep 2002.

[von Behren 2003] Rob von Behren, Jeremy Condit, and Eric
Brewer. Why events are a bad idea (for high-concurrency
servers). In9th HotOS, pages 19–24, Lihue, Hawaii, USA, May
2003.

[Zhou 2006] Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya
Bagrak, Rob Ennals, Matthew Harren, George Necula, and Eric
Brewer. SafeDrive: Safe and recoverable extensions using
language-based techniques. In7th OSDI, pages 45–60, Seattle,
WA, USA, Nov 2006.

