
Virtualization and Containerization of Application
Infrastructure: A Comparison

Thijs Scheepers
University of Twente

Enschede, The Netherlands
m.j.scheepers@student.utwente.nl

ABSTRACT
Modern cloud infrastructure uses virtualization to isolate
applications, optimize the utilization of hardware resources
and provide operational flexibility. However, conventional
virtualization comes at the cost of resource overhead.
Container-based virtualization could be an alternative as
it potentially reduces overhead and thus improves the uti-
lization of datacenters. This paper presents the results of
a marco-benchmark performance comparison between the
two implementations of these technologies, namely Xen
and LXC, as well as a discussion on their operational flex-
ibility.

Keywords
Hypervisor, Virtualization, Cloud computing, Application
infrastructure, LXC, Xen, Container-based virtualization

1. INTRODUCTION
According to Zhang et al. [20] virtualization technology
is an essential part of modern cloud infrastructure, such
as Amazon’s Elastic Compute Cloud (EC2) and Google’s
App Engine. These days, most cloud computing datacen-
ters run hypervisors on top of their physical machines. A
hypervisor is a piece of computer software that creates
and runs virtual machines. With these hypervisors, and
the virtual machines that run on them, system adminis-
trators are able to optimize the use of available physical
resources and confine individual parts of application in-
frastructure. A typical setup is displayed schematically in
Figure 1. With the use of virtualization, resources can be
consumed more effectively than conventional bare-metal
setups, which use physical machines for isolating different
parts of application infrastructure. Still efficiency could be
increased even further. A hypervisor will run multiple ker-
nels on a single physical machine, therefore the isolation of
applications and processes is expensive. Mills [14] stated
that 1,500 terawatt-hours of power per year is used to
power cloud computing datacenters, that is about 10% of
the worlds energy consumption, and this number is climb-
ing. If compute resources could be used more efficiently
that could have a big impact.

The cloud computing paradigm, as described by Buyya

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
21st Twente Student Conference on IT June 23rd, 2014, Enschede, The
Netherlands.
Copyright 2014, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

Figure 1. A schematic overview of virtual ma-
chines in a datacenter.

et al. [7], expects hypervisors to provide isolation and
portability. The Xen [4] hypervisor is a popular technol-
ogy and widely used at the moment.

With recent developments around Docker [2] and LXC [3]
there now seems to be a viable alternative to the hyper-
visor and traditional virtualization for application infras-
tructures. Linux Containers (LXC) is a kernel technol-
ogy that is able to run a multitude of processes, each in
their own isolated environment. This technique is called
container-based virtualization. Docker is a tool that makes
it easy to package an application and all of its depen-
dencies into such containers. Merkel [13] explains that
“Docker is . . . the lightweight and nimble cousin of virtual
machines”.

There is a school of thought, popular within the Linux
community, that claims that hypervisors originally were
developed due to the Linux kernel’s inability to provide
superior resource isolation and effective scalability [11].
The container could be the solution.

The multiple kernels running on a hypervisor use a rather
large fraction of the machines physical resources. LXC
does not seem to have this problem. Combined with the
tooling Docker provides, they provide the flexibility a mod-
ern system administrator expects, like easy provisioning
and image construction. The way LXC isolates processes
could reduce overhead on major software deployments in
deployment time, application portability as well as physi-
cal resource usage. With a kernel feature, LXC is able to
isolate processes and allocate resources without the use of
hardware emulation. The technology is leveraged by the
Docker and CoreOS [1] software, which enables the cre-
ation of complex and portable application infrastructures.
Where Docker provides LXC with the deployment tooling
it needs, CoreOS provides the underlying host operating
system and makes it possible to setup a cluster of machines
on which containers can be managed and migrated.

By using a single kernel per bare-metal machine, container-
based virtualization could shift the cloud paradigm away
from hypervisor-based virtual machines.

1



Table 1. Virtualization technologies

Full Para Container-based

KVM Xen LXC
VMWare OpenVZ
VirtualBox VServer
UML

LXC differs in a lot of ways from the traditional hyper-
visor. This paper will focus on two differences: physical
resource impact and operational flexibility. This paper is
structured as follows:

In Section 2 we will elaborate on the working of the Xen
hypervisor, LXC, Docker and CoreOS. Next, in Section 3
we discuss related work and the contribution of this paper.

We will compare the physical performance of a single ma-
chine, running the same application using two different
isolation techniques. Namely, isolation through virtual-
ization and through containerization. Do containers re-
ally have a performance benefit, and if so, how significant
is that benefit? These questions will be answered in Sec-
tion 4 by analyzing the results of several benchmarks.

There are still several research challenges when talking
about cloud computing. Among others, improving auto-
mated service provisioning, machine migrations and server
consolidation [20]. In Section 5, we discuss these and show
how Xen and Docker are able to help with these challenges
and how their solutions differ.

Finally, in Section 6 the results of the performance com-
parison as well as the operational comparison will be dis-
cussed and related.

2. BACKGROUND
Modern application infrastructure techniques and method-
ologies incentivize an accelerated adoption of cloud com-
puting technologies as well as various virtualization tech-
nologies. For example the DevOps [10] software develop-
ment methodology and techniques that require scriptable
infrastructure.

The virtualization technologies that have emerged mostly
focus on the Linux kernel and can be split up into three
categories: full-virtualization, para-virtualization and
container-based virtualization. Para-virtualization modi-
fies the kernel of virtual machines slightly to optimize for
performance in the virtual environment. Full-virtualization
does not require kernel adjustments. Container-based vir-
tualization does not use a kernel at all.

Table 1 shows a selection of various technologies and their
categorization. These are the kind of technologies used in
IaaS (infrastructure as a service) solutions and PaaS (plat-
form as a service) solutions like Amazone Elastic Compute
Cloud, Google App Engine, DotCloud and Open Shift.
Since application infrastructure can be diverse, there is no
single best solution for all of these services. Rather, each
service or application has its own specific requirements.

We will be comparing two different technologies with a dif-
ferent architectures: Xen, a para-virtualization hypervisor
and LXC, a container-based isolation linux kernel feature.
In this section we will briefly explain both architectures.
In the following sections we will go in depth on their per-
formance and operational flexibility.

2.1 Xen
The Xen hypervisor is based on para-virtualization. A

Figure 2. A schematic overview of a machine run-
ning the Xen hypervisor.

virtual machine on the Xen hypervisor could run a mod-
ified kernel in order to provide better performance and
reduce overhead. The hypervisor is installed directly into
the bootloader.

The virtual machines, running on top of the hypervisor,
are called domains or guests. A special domain, called
domain0, controls the system (Dom0). This domain has
the capability to setup the environment. It could contain
tools for the setup of networking, provisioning of new vir-
tual machines and migrating them.

The other domains are what is called underprivileged to
domain0. Therefore they are called DomU. These DomU
domains can either be para-virtualized (PV) or hardware-
assisted (HVM). The PV-domains require a optimized ker-
nel, whereas the HVM-domains require no kernel modifi-
cation but do require x86’s virtualization support (Intel
VT-X, AMD-SVM). This architecture support is not re-
quired when running a PV virtual machine.

Since Xen only provides the hypervisor technology, we
still need a management operating system to be installed
on Dom0. The XenServer is an implementation for the
Dom0 management system. It provides extended tooling
to provision, manage, monitor and migrate virtual ma-
chines. This is the domain on which XenServer could be
installed. With domain0 being a virtual environment, a
XenServer installation is itself running on a virtual ma-
chine. Figure 2 shows a schematic overview of a machine
running the Xen hypervisor with XenServer installed on
Dom0.

Xen has been in development for more than 12 years and
thus can be considered a mature technology. Xen technol-
ogy is widely used, for example by Amazone Web Services,
Google, Rackspace, Oracle, Cisco and Citrix [5].

2.2 LXC
Linux Containers (LXC) provides lightweight operating
system virtualization and is relatively new to the other
technologies listed in Table 1. Unlike Xen, LXC does not
require hardware architecture support. LXC is the succes-
sor of VServer and OpenVZ, other container-based virtu-
alization technologies.

The basic principle of a container is that it allows for
processes and their resources to be isolated without any
hardware emulation or hardware requirements. Contain-
ers provide a sort of virtualization platform where every
container can run their own operating system but share
the kernel. So each container has their own filesystem and

2



Figure 3. A schematic overview of a machine run-
ning the CoreOS and LXC containers.

network stack, and every container can run its own Linux
distribution. For example, a CoreOS host can run Ubuntu,
RHEL, Debian, Arch and even other CoreOS containers
simultaneously. These abstractions make a container be-
have like virtual machine with a separate filesystem, net-
working and other operating system resources. But really
they are not, since there is no hardware emulation taking
place. Figure 3 shows a schematic overview of a machine
running the CoreOS and two LXC containers.

Isolation is an important aspect of containers, it is pro-
vided through Linux cgroups and namespaces. Names-
paces are used to isolate resources like; the filesystem, net-
working, user management and process ids. Cgroups are
used for resource allocation and management. For exam-
ple with a cgroup the amount of memory, a container can
use, can be limited. Cgroups are regular Linux process
groups so they can run next to any host OS processes.
One important difference in resource allocation between
LXC and hypervisors is that CPU resources can not be
allocated on a per core basis, rather one should specify a
priority.

2.2.1 Docker
Docker is a tool that makes it easy to package an applica-
tion and all of its dependencies into a container. It does
this by providing a toolset and an unified API for man-
aging kernel-level technologies, such as LXC containers,
cgroups and a copy-on-write filesystem.

Docker relies on AuFS (Advanced Multi-Layered Unifica-
tion Filesystem) as a filesystem for containers. AuFS is
a layered filesystem that can transparently overlay one or
more existing filesystems. AuFS allows Docker to use cer-
tain images as the basis for containers. For example, you
might have an Ubuntu image that can be used as the ba-
sis for many different containers. Thanks to AuFS, only
one copy of the Ubuntu image is required, which results
in savings in storage space and memory consumption, as
well as the faster deployment of containers. Another ben-
efit of using AuFS is the ability to version images. Each
new version is simply a diff 1 of changes from the previous
version, effectively keeping image files to a minimum. This
also means that there always is a complete audit trail of
what has changed from one version of a container to an-
other, just like version control systems used in software
development[13].

2.2.2 CoreOS
CoreOS is a relatively new Linux distribution that has
been architected to provide features needed to run large

modern infrastructure stacks. The distribution provides a
trimmed down Linux kernel to reduce as much overhead
as possible.

CoreOS also provides the fleet and etcd tools with which a
cluster could be setup to provide redundancy and failover.

2.2.3 Future
Both Docker and CoreOS are still in active development
and have not reached a stable release. Both projects cur-
rently recommend not to use the systems in production
environments.

LXC already has a stable release but new features are still
in development. There are plans to add new namespaces
to enhance isolation and security. These include a security
namespaces, device namespaces and time namespaces. Es-
pecially the time namespace is an interesting development,
since it will allow for live host migrations.

Combining LXC with Docker and CoreOS, the whole pack-
age provides a lightweight, clean, full featured base layer
for isolating application infrastructure.

3. RELATED WORK
Virtualization was first introduced in the 1960s by re-
searchers at IBM. The system, IBM developed, has evolved
and is currently still being used in their z/VM hypervisor
for the IBM System Z mainframe.

Ever since IBM first introduced the idea, virtualization
has been a well-covered research topic, especially virtual-
ization for the x86 architecture. There have been several
papers comparing various virtualization technologies:

Quétier et al. [15] compared VServer container technol-
ogy with Xen, UML and VMWare on their ability to scale
and provide resource isolation. They found that VMWare
and UML have strong limitations with respect to overhead
and performance isolation. They also found that Xen suf-
fers from slow inter-virtual machine communication per-
formance.

Che et al. [8] compared micro- and macro-performance of
the Xen, KVM and OpenVZ technology. OpenVZ is a
predecessor of LXC and is also based around container-
based isolation.

Wang and Ng [17] presented a measurement study to char-
acterize the impact of virtualization on the networking
performance of the Amazon Elastic Cloud Computing,
which uses Xen. It was found that even when the network
was lightly used, virtualization could introduce significant
delay variation and throughput instability.

Bardac et al. [6] used LXC to deploy a large scale peer-
to-peer BitTorrent network. Host resource analysis and
swarm performance analysis were performed for multiple
swarm configurations. The experiment allowed the identi-
fication of several correlations between virtualization pa-
rameters, such as the influence of uplink traffic shaping on
download capacity and the relation between host switch-
ing capacity and CPU utilization.

Younge et al. [19] evaluated virtualization technologies in
the context of HPC (High performance computing): Xen,
KVM and VirtualBox were compared. It was concluded
that KVM is the best overall choice for HPC since the re-
searchers found that KVM performed significantly better
than Xen and VirtualBox in the HPCC[12] and SPEC[9]
benchmarks.

1Diff is a file comparison utility that outputs the differ-
ences between two files

3



Xavier et al. [18] did similar research on virtualization
in HPC environments. However, he focused solely on
container-based technologies: LXC, OpenVZ and VServer.
The study found that the resource isolation features in
container-based systems are not mature, yet. Performance
on memory and network isolation was poor, CPU on the
other hand was isolated well. Disk I/O performance was
not measured.

Sampathkumar [16] did a comprehensive study where he
compared LXC with Xen as well as KVM. This was done
in order to find the optimal technology to be used in the
Intelligent River middleware system. He did several micro-
benchmarks measuring performance in CPU, memory and
disk I/O. However, networking was outside of the scope of
his research, as was the use of deployment and manage-
ment software. All the software was installed with Ubuntu
as the host operating system. One could argue that this
does not do the specific technologies justice, since every
technology runs better on a Linux distribution tailored to
its needs. The research found that Xen was far better
on isolating resources but at the cost of adding overhead.
LXC, on the other hand, was more performant when look-
ing at disk I/O, RAM as well as CPU. In the end, the
advice was in favor of LXC technology.

3.1 Contribution
Most of these studies draw their conclusions from micro-
benchmarks and focus on the core of the virtualization
technologies—like the hypervisor. Micro-benchmarks are
benchmarks which focus on a single isolated component.
For example the time the PHP interpreter takes to execute
a certain algorithm. Macro-benchmarks on the other hand
are benchmarks that focus on interconnected components,
like an application’s infrastructure as a whole.

The real difference in virtualization technologies can often
be found in the way virtual machines communicate with
one another, and how load on a specific virtual machine
influences the other. The performance benchmarks de-
scribed in this paper are macro-benchmarks. We look at
network latency when virtual machines are communicating
with one another and take the deployment infrastructure
into account.

Virtual machines do not live on their own, they live within
application infrastructure and perform their designated
task. This infrastructure could built on a cluster of physi-
cal machines for example all running CoreOS or XenServer.
These low level software implementations are the core on
which a cloud computing datacenter is built. The devel-
opment of Docker has made the use of LXC considerably
easier.

We will measure the performance of both technologies run-
ning on software tailored to their needs and we will discuss
operational flexibility, which is essential to system admin-
istrators. This is different from previous work since we
look at the application infrastructure as a whole and take
tooling into account. This instead of performing micro-
benchmarks, which are performed on host operating sys-
tems which are not used in real production environments,
since they are not tailored to the specific technology.

4. PERFORMANCE COMPARISON
In order to compare Xen with LXC we have setup XenServer
6.2 and CoreOS 324.3.0 with Docker 0.11.1 on two identi-
cal machines. They are equipped with 4GB of RAM and
an Intel Xeon Quad core CPU with Intel VT-X virtual-
ization support. Both will run two Ubuntu 12.04 virtual
machines or containers.

Figure 4. The total amount of requests processed
within 800 seconds. (More is better)

Figure 5. Progression of the request time for the
first 600 seconds. (Less is better)

Figure 6. Progression of the request time for 800
seconds. (Less is better)

4



The virtual machines running on the XenServer host use
a para-virtualized kernel and have XenServer Tools in-
stalled for further optimization through drivers especially
designed for running on Xen. On Xen both virtual ma-
chines get access to two CPU cores.

The first virtual machine gets access to 2 GB of mem-
ory and runs Apache 2.2, PHP 5.3 and WordPress 3.9.
It functions as an application server. The second virtual
machine gets access to 1 GB of memory and runs MySQL
5.5 with a database filled with the default sample content
WordPress provides. This machine functions as database
server. With these technologies we run an installation of
WordPress on the LAMP application stack with separate
application and database servers.

Two separate benchmarks have been performed, the first
benchmark focused on the application’s performance when
it is used by an increasing number of users. The second
benchmark focused specifically on the interaction between
the two machines.

For the first benchmark, we used JMeter to generate a
large number of simultaneous requests. Using top2, NewRelic
server monitoring and XenServer software the performance
on the host system will be monitored.

4.1 Application benchmark
The application test is a macro-benchmark. Our applica-
tion setup will present a WordPress blog filled with the de-
fault sample content provided with the installation. When
a request is made to the blog, the WordPress software
needs to fetch data from the database and return with a
response. We will use JMeter to send an increasing num-
ber of simultaneous requests. We use an increasing num-
ber to know on with number of simultaneous requests the
server runs out of memory and start experiencing severe
performance problems.

Within 800 seconds JMeter attempted to perform as many
requests as it could, with an increasing amount of concur-
rent requests. Only requests which resulted in a successful
response were counted. At t = 0ms the testing software
started with 1 concurrent request and would send a new
request once the previous finished. The number of concur-
rent requests was increased linearly, until at 720 seconds
it reached 100 concurrent requests.

One of the purposes of this benchmark was to check when
significant performance loss, due to resource shortage, would
happen.

Figure 4 shows the number of requests that were success-
ful within 800 seconds. The figure shows that CoreOS
was able to process far more requests within the 800 sec-
onds, more than four times as many as Xen. This was un-
expected since Sampathkumar [16] showed, in his micro-
benchmarks, that LXC outperformed Xen by 7% not by
306%. This difference could be attributed to the differ-
ent ways CPU isolation is handled, where Xen isolates per
CPU core, LXC uses isolation based on cgroup priority.
With this LXC could be able to use the available CPU
resources more effectively and we think this could be the
cause of this difference.

Figure 5 shows that Xen takes more time to process a
single request. The trend line drawn in-between the data
points takes the average of 30 data points. A flatter line
suggests a more consistent performance. So Figure 5 shows
that Xen does not perform as consistently as LXC, even

2Top is an activity monitor utility for Unix, similar to the
Windows task manager.

Figure 7. Time in ms to complete a one SQL SE-
LECT query. (Less is better)

when it has physical memory available.

When the number of connections increased beyond what
the server could handle with physical memory, the host
starts swapping memory between its hard disk and physi-
cal memory—Figure 6 clearly shows this effect. After 610
seconds (85 concurrent connections) the Xen setup starts
this process. And after 655 seconds (91 concurrent con-
nections) the LXC setup runs out of memory. This means
that the memory overhead Xen introduces, in respect to
LXC, could be used to process 6 more concurrent requests
with LXC.

Furthermore Figure 6 shows that LXC handles the thrash-
ing more consistently. However, Xen is able to continue
serving the responses faster and with less failed responses.
Failed responses are identified using HTTP status codes,
for example 502 Bad Gateway. The downward slope after
700 seconds is caused by failed requests, since the graph
only shows successful requests. After 707 seconds the ap-
plication running on LXC starts to throw errors. This is
expected since Sampathkumar [16] has already shown that
Xen is considerably better at isolating than LXC. In par-
ticular, in situations where the required resources exceed
the available ones.

In this benchmark we did not give the containers access
to the surplus of memory, the difference in host operat-
ing system footprint provided. The basic footprint of a
clean setup for XenServer used 906MB memory for run-
ning the domain0 virtual machine. If we compare this to
161MB footprint of a clean CoreOS installation, the differ-
ence would be 745MB, which could be used for handling
additional requests.

4.2 Inter-virtual machine communication
benchmark

In order to test inter-virtual machine communication with
a real world application stack we performed two more
benchmarks. The first was a PHP-script querying the
database to test inter-virtual machine communication. The
script was executed on a different virtual machine than the
database. The results are shown in Figure 7. These show
that LXC experiences less overhead when querying the
database. This overhead consists of overhead in network-
ing and CPU utilization, since these are the main resources
consumed by running this benchmark. The results corre-
sponds with the conclusion of Wang and Ng [17] which
states that the virtual networking used with Xen intro-
duces overhead.

A far more interesting benchmark is the performance of
inter-virtual machine communication under stress. With

5



Figure 8. Time in ms to complete 10.000 SQL
INSERT queries. (Less is better)

another PHP-script, we will be inserting randomly gen-
erated data into the database. The script was set up so
that the generation of the data utilized all the available
resources. Figure 8 shows that the same script took 16
seconds to complete on the Xen setup. While it took 335
seconds on the LXC setup. This clearly shows LXC’s in-
ability to successfully isolate resources.

With the results of these benchmarks we can confirm that
the conclusions of Sampathkumar [16] and Wang and Ng
[17] still hold in the environments tailored to the specific
technologies. However, the difference in resource isolation
ability and overhead reduction seem to be more extreme.

5. OPERATIONAL COMPARISON
While optimal performance and stability is a noble goal,
we believe that ease of use and performant tooling is equally
as important. Especially since the rise of the new DevOps
[10] software development methodology, which encourages
the use of scripting and automation when designing ap-
plication infrastructure. The use of virtualization and the
development of infrastructure APIs has enabled this.

Both LXC and Xen have various tooling options and could
be used to automate deployment and design infrastruc-
ture. However, how these tools work differs. Table 2
shows how we have judged various components of the tool-
ing. The table distinguishes between CoreOS, which uses
Docker and LXC, XenServer and Amazone’s EC2, which
also uses Xen and provides virtual machines as a public
cloud service. EC2 has other, and in some cases more
comprehensive, tooling options than XenServer. We will
discuss each component.

Section 4.1 shows that XenServer has a significantly larger
memory footprint than CoreOS. We could not determine
the footprint on EC2, but one could assume this is similar
to XenServer since EC2 relies on the same technological
basis.

5.1 Provisioning
Provisioning is the setup of a new machine to make it ready
for use. For example, the virtual machine in the Word-
Press benchmark was provisioned by installing Apache,
PHP, WordPress and monitoring software.

Docker provides the building of container-images with Dock-
erfiles, which, in essence, exists of a base image and a set of
commands to be executed. Each executed command cre-
ates a new image, so the resulting image is incrementally
built by executing a single command on a new base image.
Each new image is simply a diff of changes from the pre-

Table 2. Oparational flexibility comparison

CoreOS XenServer EC2

Technology footprint + - N/A
Image creation + 0 0
Service discovery + 0 +
Cluster configuration 0 + +
High availabilty + + +
Startup time + 0 0
Machine migration - + +

vious image, effectively keeping image files to a minimum.

The Dockerfile enables branching of images, since every
resulting image can serve as a new base image for a new
Dockerfile. For example, you could have an ubuntu-

essentials image which contains monitoring software.
An ubuntu-application image and an ubuntu-database

image could both use the same ubuntu-essentials image
as base image. This adds flexibility but also enables rapid
image creation.

XenServer and IaaS solutions provide snapshots as well as
images. But these can not easily be constructed from a
single script and duplicate the entire image data. There-
fore one could argue that Docker provides a better format
for image creation.

5.2 Service discovery
Service discovery is the mechanism used to find and con-
nect to other servers within your application infrastruc-
ture. For example, an application server should be able
to find the database server and connect to it, without the
need for manual configuration. Another example would
be, that a load balancer should be able to find all the avail-
able application servers. And if a new application server
is started it should be discovered by the load balancer and
added to its pool.

IaaS solutions that use Xen like EC2 use metadata ser-
vices, which every virtual machine can access by send-
ing an HTTP request to a specific URL. XenServer itself
does not support this out-of-the-box. This does not have
to be a problem, since one could architect infrastructure
that leverarges service discovery without an out-of-the-box
metadata service. However, a metadata service does pro-
vide an easier solution.

CoreOS uses a metadata service called etcd. The service
runs on the host machine and can be clustered. Correct
clustering does require some configuration. Our experi-
ence is that debugging a wrongly configured cluster is not
always convenient. Since CoreOS has not reached a pro-
duction ready state we cannot say how convenient this will
be in the final release.

5.3 High availability and failover mechanisms
A good application architecture should contain failover
mechanisms and distribute virtual machines over a num-
ber of physical machines, preferably in separate locations.
This way, if one physical machine fails, due to for example
a hardware error, the application will continue to run.

XenServer provides comprehensive high availability fea-
tures. A XenServer cluster could be set up on which run-
ning virtual machines can be migrated from one host to
the other.

CoreOS uses a service, called fleet, to set constraints on
the manner containers are distributed within a cluster. For

6



example, if the cluster contains two database containers,
mirroring each other to provide redundancy, it is impor-
tant that these containers are not placed on the same phys-
ical machine. With fleet a system administrator is able to
set constraints on which containers can run on the same
machine and which can not. The service can also used to
migrate containers from one physical machine to another.
However, the running containers will not be migrated due
to current limitations in LXC. Rather the container will
be stopped on the old server and a similar container will
start on the new server. This means, the memory used in
the old container will be lost. This could be an issue for
applications that rely on memory, for storing sessions or
other ephemeral data. If the application is architected in
a way that it can handle the loss of memory, a container
migration with fleet should be fairly similar to a virtual
machine migration with XenServer.

The time it takes to start up a new server with Xen could
take a couple of minutes, where the same process with
LXC and Docker takes less than a second. This is impor-
tant for failover mechanisms that rely on the starting of
new virtual machines or containers.

With all of these features both Xen and CoreOS seem well
equipped to provide operational flexibility for complex ap-
plication infrastructures. CoreOS does address some of the
problems Xen has, it reduces the overhead in image size
and it can start new services within a second. CoreOS does
not support the migration of live machines. This could be
a drawback depending on the application infrastructure.

6. CONCLUSION
This paper presented the results of a comparison between
the Xen and LXC virtualization technologies, using them
to run several components of an application. A macro-
benchmark has been performed, which was set up using
tailored operating systems and with networking between
two virtual machines. Since performance is not everything
the operational flexibility of the technologies has also been
discussed.

Both hypervisor-based and container-based virtualization
can provide portability, isolation and optimize the utiliza-
tion of hardware resources. The technologies are both the
right choice for different use cases. If it is important that
resources are distributed equally and performance should
be less dependent on other tasks, executed on the same
system, Xen is a good option. However, if you want to get
the most out of your hardware or if you wish to execute
a lot of small isolated processes, LXC is a better option,
since it introduces less overhead and is more performant.

The CoreOS, Docker, LXC stack has a lot of potential.
If the technology could be improved to provide better re-
source isolation, which seems to be its only major flaw,
it could drastically reduce overhead on major server de-
ployments, even in public clouds. This could lead to more
efficient use of datacenter resources and thus reduce the
electricity needed for running cloud applications, as de-
scribed by Mills [14].

For now Xen could be a good option on public IaaS clouds.
Because the customer can not influence the exact server
on which his virtual machine will be running. The cus-
tomer also has no knowledge on the workload of other
virtual machines. Virtual machines, running on Xen, are
not fully independent from the resource consumption of
other machines on the system. However this is far better
than when using LXC.

LXC is currently used at DotCloud in their PaaS environ-

ment. Since DotCloud can monitor the workload of sev-
eral containers on several machines, and since it has con-
trol over specific parts of the infrastructure, it can migrate
containers which are experiencing performance problems
to other machines. So, LXC is a good option for a PaaS
environment like DotCloud as well as in private clouds.

When a stable versions of Docker and CoreOS become
available and LXC has implemented the new namespaces
and improved isolation, it would be interesting to do the
same benchmarks again and see how the results differ.

7. REFERENCES
[1] Coreos. URL http://coreos.com/. Accessed: 2013-05-30.

[2] Docker. URL https://www.docker.io/. Accessed: 2013-05-30.

[3] Lxc, linux conainers. URL http://linuxcontainers.org/. Ac-
cessed: 2013-05-30.

[4] Xen project, . URL http://www.xenproject.org/. Accessed:
2013-05-30.

[5] Xen project membebers, . URL http://www.xenproject.org/
project-members.html. Accessed: 2013-05-30.

[6] Mircea Bardac, Razvan Deaconescu, and Adina Magda Flo-
rea. Scaling peer-to-peer testing using linux containers. In
Roedunet International Conference (RoEduNet), 2010 9th,
pages 287–292, 2010.

[7] Rajkumar Buyya, Chee Shin Yeo, and Srikumar Venugopal.
Market-oriented cloud computing: Vision, hype, and reality
for delivering it services as computing utilities. In High Perfor-
mance Computing and Communications, 2008. HPCC’08.
10th IEEE International Conference on, pages 5–13, 2008.

[8] Jianhua Che, Yong Yu, Congcong Shi, and Weimin Lin. A
synthetical performance evaluation of openvz, xen and kvm. In
Services Computing Conference (APSCC), 2010 IEEE Asia-
Pacific, pages 587–594, 2010.

[9] John L Henning. Spec cpu2000: Measuring cpu performance
in the new millennium. Computer, 33(7):28–35, 2000.

[10] Michael Hüttermann. DevOps for Developers, volume 1.
Springer, 2012.

[11] Michael Kerrisk. Lce: The failure of operating systems and
how we can fix it, 2012.

[12] Piotr Luszczek and J Dongarra. Hpc challenge benchmark,
2005.

[13] Dirk Merkel. Docker: Lightweight linux containers for consis-
tent development and deployment. Linux J., 2014(239), 2014.
ISSN 1075-3583.

[14] Mark Mills. The cloud begins with coal. Technical report,
2003.

[15] Benjamin Quétier, Vincent Neri, and Franck Cappello. Scala-
bility comparison of four host virtualization tools. Journal of
Grid Computing, 5(1):83–98, 2007.

[16] Sampathkumar. Virtualizing intelligent river(r): A compara-
tive study of alternative virtualization technologies. Clemson
University, 2013.

[17] Guohui Wang and TS Eugene Ng. The impact of virtualiza-
tion on network performance of amazon ec2 data center. In
INFOCOM, 2010 Proceedings IEEE, pages 1–9, 2010.

[18] Miguel G Xavier, Marcelo V Neves, Fabio D Rossi, Tiago C
Ferreto, Timoteo Lange, and Cesar AF De Rose. Performance
evaluation of container-based virtualization for high perfor-
mance computing environments. In Parallel, Distributed and
Network-Based Processing (PDP), 2013 21st Euromicro In-
ternational Conference on, pages 233–240, 2013.

[19] Andrew J Younge, Robert Henschel, James T Brown, Gre-
gor von Laszewski, Judy Qiu, and Geoffrey C Fox. Analysis
of virtualization technologies for high performance computing
environments. In Cloud Computing (CLOUD), 2011 IEEE
International Conference on, pages 9–16, 2011.

[20] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing:
state-of-the-art and research challenges. Journal of internet
services and applications, 1(1):7–18, 2010.

7


