
A Mix-Net From Any CCA2 Secure Cryptosystem

Shahram Khazaei1, Tal Moran2, and Douglas Wikström1

1 KTH Royal Institute of Technology
2 IDC Herzliya

Abstract. We construct a provably secure mix-net from any CCA2 secure cryp-
tosystem. The mix-net is secure against active adversaries that statically corrupt
less than λ out of k mix-servers, where λ is a threshold parameter, and it is robust
provided that at most min(λ− 1, k − λ) mix-servers are corrupted.
The main component of our construction is a mix-net that outputs the correct re-
sult if all mix-servers behaved honestly, and aborts with probability 1−O(H−(t−1))
otherwise (without disclosing anything about the inputs), where t is an auxiliary
security parameter and H is the number of honest parties. The running time of
this protocol for long messages is roughly 3tc, where c is the running time of
Chaum’s mix-net (1981).

1 Introduction

A mix-net, introduced by Chaum in 1981 [2], is a tool to provide anonymity for a group
of senders. The main application is electronic voting, in which each sender submits an
encrypted vote and the mix-net then outputs the votes in sorted order. Mix-nets have also
found applications in other areas, e.g., anonymous web browsing [6], payment systems
[13] and even as a building-block for secure multiparty computation [10].

A mix-net is constructed as a cryptographic protocol by invoking a set of mix-
servers, arranged in a series. The original mix-net proposed by Chaum works as follows.
To set up, each mix-server publishes a public key for an encryption system. Each sender
then publishes a “wrapped” message with several layers of encryption: starting with the
innermost layer—an encryption of her plaintext message using the last mix-server’s
public key—and ending with the outermost layer, encrypted using the first mix-server’s
public key. Once all senders have published their encrypted inputs, the mixing stage
begins. In turn, each mix-server receives the encrypted values output from the previous
server, “peels off” a layer of encryption, i.e., decrypts the values using his private key,
sorts the decrypted values and passes them on to the next mix-server in the chain. The
output of the final mix-server is the sorted list of the senders’ original inputs.

Chaum’s mix-net hides the correspondence between the input ciphertexts and the
output plaintexts, but even a single mix-server can undetectably modify the output or
refuse to take part in the protocol (forcing the protocol to abort without output). These
drawbacks have been addressed in previous work. The most widely researched line of
work is based on the idea of re-encryption mixes (originally proposed by Park, Itoh and
Kurosawa [19]); these rely on homomorphic encryption schemes whose ciphertexts can
be “re-randomized”. Using the homomorphic properties of the encryption scheme, it

is possible to generate very efficient zero-knowledge proofs that the mixing was per-
formed correctly (e.g., Neff [16] or Furukawa and Sako [4]). While the state-of-the-art
re-encryption mixes are both provably secure and efficient for short inputs, their reliance
on homomorphic properties limits them to a few specific encryption schemes.

1.1 Our Contribution

In this paper, we propose a new, efficient mix-net protocol that satisfies several highly-
desirable properties:

– Minimal Cryptographic Assumptions. Our protocol can be based on any CCA2-
secure cryptosystem, without requiring additional assumptions. In particular, we
do not require the underlying encryption to have homomorphic properties.
While interesting from a theoretical standpoint, this also has clear advantages in
practice, as it gives greater flexibility in the choice of encryption scheme. For ex-
ample, all currently practical homomorphic encryption schemes are susceptible to
attacks from quantum computers. Although we do not currently know how to build
quantum computers, it is important to take this vulnerability into account when
using a mix-net as part of an electronic election scheme: ballot privacy is often re-
quired to be preserved for decades—these timeframes may be long enough for the
development of a working quantum computer.
Furthermore, the flexibility in the choice of encryption scheme makes it easy to deal
efficiently with long inputs, while there do exist mix-nets that can deal with long
inputs efficiently [11,17,5], these mixes require even more specialized encryption
schemes tailored specifically to that purpose.

– Provable Security. Many of the existing mixing protocols do not have formal proofs
of security. This may seem like a purely theoretical concern, but the history of cryp-
tographic protocols, and mix-nets in particular, shows that there is good reason to
distrust heuristic approaches. A notable example of this is the Randomized Par-
tial Checking (RPC) scheme of Jakobsson, Juels and Rivest [12] (our main “com-
petitor” in the field of generic CCA2-based mixes). The RPC scheme (and related
constructions) have been around for over a decade, and have already been used in
binding elections; however, recent work by Khazaei and Wikström [14] shows that
RPC contains a subtle but serious security flaw, which was consistently missed in
implementations. Other examples abound (see Section 1.2 for more).
In contrast, our protocol is proven secure in the Universal Composability frame-
work [1], a very strong notion of security that holds even when arbitrary addi-
tional protocols are run concurrently. (If a cryptosystem which allows recovering
the randomness from a ciphertext using the secret key is used to implement the
(non zero-knowledge) proof of correct decryption, then the result only holds in the
stand-alone setting.)

– Full Security. The RPC scheme gains efficiency by relaxing slightly the security
requirements. It prevents corrupt mix-servers from undetectably modifying many
inputs of honest senders, but a malicious server can succeed in changing a con-
stant number of inputs with non-negligible probability. For some uses, this may

not be acceptable. RPC also relaxes the privacy guarantees: while the exact cor-
respondence between senders and their inputs is hidden, some information may
still be leaked. Our protocol, with comparable or better efficiency, provides full
simulation-based security.

Our protocol is based on a new technique we call Trip-Wire Tracing (TWT). Our
main idea is to do away with zero-knowledge proofs (that would be costly for a generic
cryptosystem) used by existing protocols to guarantee correctness and replace them
with a virtual “trip wire” system: we insert “fake” inputs into the mix to act as trip
wires for catching misbehaving mix-servers (for more details, see Section 2).

Security Guarantees and Assumptions. The protocol preserves privacy and correctness
against active adversaries that statically corrupt less than λ mix-servers, where λ is a
threshold parameter, and it is robust provided that at most min(λ − 1, k − λ) mix-
servers are corrupted, where k is the number of mix-servers. As for all other mix-nets
in the literature, we assume the existence of an ideal bulletin board functionality (this
is equivalent to a broadcast channel). We also need an ideal functionality for shared
key generation. In the general case (when we can only assume a generic CCA2-secure
cryptosystem without any additional structure), this functionality would have to be im-
plemented using general MPC. However, if the chosen cryptosystem does have a more
efficient shared-key-generation protocol, it can be used instead (in any case, the bulk of
the work can always be carried out offline, in a preliminary key generation phase).

Finally, we need a functionality for proving that a ciphertext is correctly decrypted,
but it suffices that this protocol hides the secret key. This functionality can be realized
trivially if the cryptosystem allows recovery of the randomness (used to form the cipher-
text) using the secret key. In any case this protocol is only used to identify corrupted
parties and mix-servers, so during normal operation it is not used at all.

Limitations of our protocol. Our construction essentially uses privacy to ensure cor-
rectness (by hiding the “trip-wires” from malicious mix servers). Because a threshold
coalition of malicious servers can always violate privacy, our protocol loses correctness
as well in this case. This implies that our protocol cannot be “universally verifiable”
(i.e., verifiable by third parties who do not trust any of the mix servers). In compar-
ison, the state-of-the-art mix-nets based on homomorphic cryptosystems can provide
integrity (but not privacy) even if all mix-servers are corrupt.

We remark that RPC only allows a restricted form of universal verifiability, i.e.,
its relaxed correctness degrades further and allows an adversary that controls all mix-
servers to undetectably replace a notable number of ciphertexts.

1.2 Related Work

The literature on mix-nets and verifiable shuffling is extensive. Below, we mention a
small sample of particularly relevant works. Park, Itoh and Kurosawa [19] introduced
re-encryption mixes as a way to improve efficiency—the size of the ciphertexts and the
amount of work performed by senders does not depend on the number of mix-servers.
Sako and Kilian constructed the first universally-verifiable mix-net [22], where senders

can verify that the entire shuffle was performed correctly (and not just that their own
input was included in the output). Sako and Kilian’s construction was based on cut-and-
choose zero-knowledge proofs; Neff [16] and Furukawa and Sako [4] gave much more
efficient zero-knowledge proofs of shuffle for homomorphic cryptosystems. Many of
the works in the field aim to improve the efficiency of the mix-net. Our construction in-
cludes ideas that appear in several previous papers: Jakobsson used the idea of “dummy
inputs” [9] and “repetition” [8] to increase correctness (although in a different way
than we do). Golle, Zong, Boneh, Jakobsson and Juels [7] considered mix-nets that are
“optimistic” (i.e., can be much more efficient in the case that no errors occur).

On the importance of formal proofs. A recurring tale in the history of mix-net design is
the proposal of a mix-net construction followed by discovery of security flaws. Follow-
ing Chaum’s seminal paper [2], Pfitzmann and Pfitzmann pointed out that Chaumian
mixes are vulnerable to attack if the encryption scheme used is malleable [21]. The
mix-net of Park et al. [19] was also shown to be vulnerable to similar attacks [20].
Jakobsson’s scheme of [8] was broken in [3]. His other scheme [9], was broken by
Mitomo and Kurosawa [15], who also suggested a fix; this in turn, in addition to the
schemes of Jakobsson and Juels [11], of Golle, Zong, Boneh, Jakobsson and Juels [7]
were all shown to be vulnerable (to various attacks) by Wikström [23].

While a formal proof of security is not an iron-clad guarantee that no vulnerabilities
will ever be found (proofs may have subtle errors, and assumptions may be shown to
be wrong), they do significantly improve the trust in the security of a cryptographic
scheme. In fact, the need for some of the components of our protocol only became
evident during the analysis of the protocol.

2 Informal Description of Our Protocol

We begin with an overview of our mix-net protocol and some intuition for why this
protocol is secure. The main component of our construction is a mix-net that outputs
the correct result if all mix-servers behave honestly, and aborts with overwhelming
probability otherwise—without disclosing anything about the inputs. At a high level,
our mix-net with abort protocol is a Chaumian mix-net with added verification. It is
parametrized with an auxiliary security parameter t and uses two Chaumian mix-nets
in sequence (one with “explicit verification” and one with “partial tracing”) and three
additional layers of encryption (labeled as “final”, “repetition” and “outer”). Figure 1
presents a schematic of our protocol.

Each sender encodes her message as a bundle of t ciphertexts: First, she encrypts
her plaintext message using the public key of the “final” layer of encryption and makes
t identical copies of it. Next, each copy is further encrypted using the public key of
the “repetition” encryption layer and then under the public keys of the mix-servers in
the two Chaumian mix-nets. Finally, the t encryptions are concatenated and encrypted
using the public key of the “outer” encryption layer. To generate the final list of inputs
to the mix-net, each mix-server adds a “dummy” encryption of zero to the list of inputs
submitted by the senders (the dummy input is constructed using the same operations as
the real inputs).

Once all parties have submitted their bundles, the decryptions proceed in the reverse
order. If all the parties are honest, there will be t identical copies of each innermost ci-
phertext before the final decryption takes place. In this case the dummies are traced and
removed, the duplicates are ignored, and only one instance of each sender’s innermost
ciphertext is decrypted. We stress that this is only an outline of the protocol. Additional
measures are taken for ensuring correctness and privacy.

decrypt

(outer)
split

Chaum’s mix-net with

explicit verification

Chaum’s mix-net

with partial tracing

decrypt

(repetition)
sort

decrypt

(final)

inputs

dummies

Fig. 1. Execution of Protocol 4 with N = 3 senders, k = 3 mix-servers, and t = 2 repetitions,
where all parties are honest. Each party submits a bundle of two ciphertexts containing identical
innermost ciphertexts. The bundle is decrypted and split into two ciphertexts. All ciphertexts
are then individually shuffled in the two instances of Chaum’s mix-net. Then the first is verified
explicitly (revealing the permutation), the dummy ciphertexts are traced in the second (revealing
the paths of the dummies) and the output is decrypted and verified to contain t copies of each
ciphertext. If all tests passed, then a final round of decryption recovers the plaintexts.

To help give the intuition for our construction, we will describe a sequence of at-
tacks on the Chaumian mix-net and our corresponding modifications to the protocol that
prevent them. The final protocol is a composition of all these modifications. We start
with a “core” Chaumian mix, which ends up—after slight modifications—as the box
labeled “Chaum’s mix-net with partial tracing” in Figure 1. We call a set of ciphertexts
containing identical innermost ciphertexts a copyset.

1. Elementary Error Handling. The first type of attack we consider is the introduc-
tion of “simple” errors that are publicly detectable. Invalid ciphertexts are simply
ignored. If there are duplicates of a ciphertext in the input to a mix-server, then
exactly one copy is considered part of the input and the rest is ignored.

2. Replication. In a Chaumian mix-net, any corrupt mix-server can change the output
undetectably by replacing an output ciphertext with a new one generated by the
malicious server (this new ciphertext can be completely valid, except for not being
a decryption of any input ciphertext). To prevent this attack, each sender submits t
independently formed ciphertexts of her message to the Chaumian mix-net.
To see why this replication technique helps prevent replacement attacks, consider
a corrupt mix-server that appears between two honest mix-servers in the mix-net
chain. In this case, the corrupt mix-server cannot identify which of the ciphertexts
encrypts the same messages due to the following two reasons.

(a) He does not know the secret key of the succeeding honest mix-sever, and hence
he can not fully decrypt the received ciphertexts and distinguish the copysets
based on the final decrypted values.

(b) The preceeding honest mix-server randomly permuted all of the ciphertexts
and hence he does not know which ciphertext originated from which sender.

We prove that, if a CCA2 secure cryptosystem is used, t is sufficiently large, and
all messages are randomly chosen, then no efficient adversary between two honest
mix-servers can replace a proper subset of senders messages without detection.

3. Replication Cryptosystem. In a Chaumian mix-net, the last mix-server learns the
final output before anyone else. Thus, even with the replication trick, the final mix-
server can clearly cheat, since he can identify all copies of a plaintext. To prevent
this attack we modify the protocol by adding an additional “repetition” layer of
encryption, using a public key for which the secret key is shared between the mix-
servers.
Think of this as running the Chaumian mix-net on encrypted inputs rather than
plaintexts, i.e., each sender makes t encryptions of her input with the shared public
key of the “repetition” layer, and then uses the encrypted values as her “plaintexts”.
The output of the Chaumian mix-net is a list of ciphertexts encrypted with the
shared public key, which prevents the last mix-server from identifying identical
plaintexts and replacing all copies of a subset of the plaintexts. At the end of the
mixing, the shared secret key is recovered and decryption is performed publicly. In
Figure 1, this decryption step is the box labeled “decrypt (repetition)” right after
the Chaum’s mix-net with partial tracing.

4. Additional Mix-net with Explicit Verification. The first mix-server knows how to
partition the input messages into copysets (since he receives the messages directly
from the senders), hence he can replace all copies of a given plaintext undetectably.
To prevent this attack, we add a new, unmodified Chaumian mix-net (the box la-
beled “Chaum’s mix-net with explicit verification” in Figure 1) between the senders
and the first mix-server in the “main” mix-net. Recall that the Chaumian mix-net
does not give any correctness guarantees, but it does guarantee privacy if even a
single mix-server is honest. This is exactly what we need to put the first mix-server
in the Chaumian mix-net with partial tracing on an equal footing with the others in
the chain.
We rely on the privacy of the first Chaumian mix-net only to obtain correctness
via replication. Therefore, once the second Chaumian mix-net finishes his process
of mixing, the mix-servers can reveal the secret keys for the first Chaumian mix-
net and verify its correctness completely (hence the name “mix-net with explicit
verification”). If the verification fails, the guilty mix-server is publicly evident.

5. Dummy Values. If a corrupt mix-server in the second Chaumian mix-net wishes to
replace a proper subset of senders’ messages, he must guess the positions of the
copysets, but he can still undetectably replace all of the inputs with his own values.
To prevent this, we have every mix-server add a “dummy” value to the inputs of the
mix-net. These dummy values are treated identically to the senders’ inputs. Thus,
any mix-server attempting to replace the entire list of inputs would also be replac-
ing all dummy values. The mix-servers can “trace forward” the dummy values and
remove them from the final decrypted list if the trace completes successfully. There

is no privacy requirement for the dummy values; therefore, each mix-server can
simply reveal all the randomness used in the encryption of the initial dummy val-
ues. This reveals all the internal layers of encryption in a verifiable way, allowing
everyone to find the corresponding ciphertexts in each stage of the mix-net.

6. Replication Verification and Error Tracing. We need to handle the case where some
of the final values, after recovering the shared secret key of the “repetition” encryp-
tion layer, do not have exactly t copies.
We now add another step to the protocol after decryption using the shared secret:
replication verification (this occurs in the part labeled “sort” in Figure 1) and error
tracing (this is not shown in Figure 1 since we assume all parties are honest). In the
replication verification step, the (honest) mix-servers verify that there are exactly t
duplicates of every output value. This clearly is the case if all servers and senders
are honest. If the verification fails, however, we need to figure out who is to blame
so that we can continue the protocol if it was just a corrupt sender. To do this, we
need to trace errors through the system in two ways:
(a) Backwards Tracing. After determining the messages with more or less than t

duplicates, we trace them backwards to identify their original senders. Since
each mix-server knows his own permutation, the backwards trace is easy to
do: each mix-server in turn (starting from the last one and going backwards)
publishes the “paths” taken by the traced messages along with a proof that the
decryption was performed correctly. If a broken copyset being traced contains
ciphertexts that were introduced by a cheating mix-server (i.e., ciphertexts that
are not valid decryptions of the mix-server’s inputs), the mix-server will not be
able to provide a valid trace and will be identified as a cheater at this point.

(b) Forward Tracing. If all the broken copysets were successfully traced back to
their sender, there are still two remaining possibilities for casting blame:

i. The mix-servers behaved honestly, and bad copysets were submitted by
corrupt senders.

ii. At least one ciphertext submitted by an honest party was replaced by a
corrupted mix-server. (This could be the case even if no cheating was dis-
covered during backwards tracing. To see this, consider the case that a
corrupt mix-server arbitrarily chooses t ciphertexts from honest senders
and replaces them with a valid copyset.)

To distinguish these two cases, we identify the senders from which the broken
copysets originated, and “trace forward” all the messages of these senders. This
is done similarly to the backwards tracing, but in reverse: starting from the first
mix-server and going forwards, each one in turn publishes the paths taken by
the traced messages along with a proof of correct decryption. If a mix-server
cheated, he will not be able to provide a valid trace—hence he will be fingered
as the culprit. On the other hand, if only the identified senders were cheating
(e.g., by not encrypting a valid copyset in the first place), we will be able to
trace the messages all the way to the output.

If the backwards and forward tracings complete successfully without identifying
a mix-server as culprit, the ciphertexts of the corrupt senders are removed from
the output (otherwise, the protocol outputs the identity of a guilty mix-server and
aborts).

7. Final Cryptosystem. As we have described in Step 6, to catch a misbehaving mix-
server we must sometimes trace messages of honest users through the system. Al-
though we abort the protocol in this case, we must still preserve the honest senders’
privacy. Therefore, we protect the senders’ messages with an additional layer of
encryption (the last box labeled “decrypt (final)”). That is, a sender first encrypts
her message under the “final” public key and uses this encrypted message as an
input to the protocol as described so far. This innermost encryption layer is jointly
decrypted only if the protocol does not abort. If the protocol does abort, only the en-
crypted values are revealed and privacy is protected by the final layer of encryption.
The “final” layer of encryption also guarantees that the “plaintexts” of the protocol
we have sketched so far (without the “final” layer) are distinct for all honest senders
(and different from corrupt senders) with overwhelming probability.

8. Outer Cryptosystem. The protocol is still vulnerable to a subtle attack that uses the
error-tracing mechanism itself to violate sender privacy. The problem is that tracing
occurs in two additional indistinguishable cases:
(a) Corrupt senders collude to create “colliding” ciphertexts (i.e., after removing

some layers of encryption, the resulting ciphertexts are identical).
(b) Corrupt mix-server(s) collude with corrupt sender(s) to copy some of an honest

sender’s ciphertexts.
In both cases tracing will complete successfully (since no inputs were replaced in
the middle of the mix-net). Because in the first case the mix-servers are all honest,
we cannot simply abort if this situation occurs. On the other hand, in the second
case, we may be forced to trace an honest ciphertext from beginning to end (we
trace a broken ciphertext back to a corrupt sender, then trace forward all of that
sender’s inputs, which include a copy of an honest ciphertext). Since the corrupt
sender knows the identity of the sender from whom the ciphertext was copied, if
we decrypt that value the honest sender’s privacy is violated.
To prevent this, we add an “outer” layer of encryption (the box labeled “decrypt
(outer)”): under a public-key whose secret key is shared by all the mix-servers,
each sender formes a single “bundled” ciphertext. After all the ciphertext bundles
are received, the mix-servers recover the secret key of the outer cryptosystem and
the bundles are publicly decrypted and “split” into the separate copyset ciphertexts.
This countermeasure works due to the CCA2 security of the cryptosystem: CCA2
security ensures that no corrupt coalition of mix-servers and senders can make par-
tial copies of an honest sender’s copyset: either they copy a bundle in its entirety
(in which case they are removed due to being duplicates) or they create a bundle
that is completely independent of the honest senders’ bundles (in which case the
probability of a collision is negligible).

3 Notation

For an integer e, we denote the set {1, . . . , e} by [1, e]. The security parameter, n,
represented in unary, is an implicit input to all protocols and functionalities. Whenever
we say a quantity ε is negligible, we mean that it is negligible in the security parameter,
i.e., for every c > 0 we have ε(n) < n−c for all but finitely many n. We write x ∈ a

for a list a = (a1, . . . , ae) if and only if x ∈ {a1, . . . , ae}. The length of a is denoted
by |a|. For any index set I ⊂ [1, e] of size `, we write (ai)i∈I = (ai1 , . . . , ai`), where
I = {i1, . . . , i`} with i1 < i2 < · · · < i`. We say that a list b = (b1, . . . , b`) is a subset
of a and write b ⊂ a, if and only if {b1, . . . , b`} ⊂ {a1, . . . , ae} (with multiplicity).
We use Sort(a) to denote the lexicographically sorted list of elements from a (with
multiplicity). We write a \ b for Sort({a1, . . . , ae} \ {b1, . . . , b`}) (with multiplicity in
the set difference). We also write a ◦ b for the concatenated list (a1, . . . , ae, b1, . . . , b`).
We denote by Unique(a) the sorted list where each element of a appears exactly once.

We denote a cryptosystem by CS = (Gen,Enc,Dec), where Gen, Enc, and Dec
denote the key generation algorithm, the encryption algorithm, and the decryption al-
gorithm respectively. To deal with nested encryption as needed in a Chaumian mix-net,
we simply assume that a plaintext of any length can be encrypted, but that indistin-
guishability only holds for plaintexts of the same length. We write c = Encpk (m, r) for
the encryption of a plaintext m using randomness r, and Decsk (c) = m for the decryp-
tion of a ciphertext c. We often view Enc as a probabilistic algorithm and drop r from
our notation. We assume that malformed ciphertexts are decrypted to a special symbol
different from all normal plaintexts.

We extend our notation to lists of plaintexts, ciphertexts and keys as follows. For
a plaintext m = (m1, . . . ,me) and a key pair (pk, sk) with pk = (pk1, . . . , pk `)
and sk = (sk1, . . . , sk `) we write c = Encpk (m), where c = (c1, . . . , ce) with
ci = Encpk1

(Encpk2
(· · ·Encpk`(mi) · · ·)). Similarly, m = Decsk (c) is defined by

mi = Decsk`(Decsk`−1
(· · ·Decsk1(ci) · · ·)). We stress that when we use Enc as a

probabilistic algorithm with a list of messages or public keys, we assume that the ran-
dom values used in each encryption are chosen randomly and independently. We use the
notation a‖b for the concatenation of two bitstrings. We define the function Splitt(a) to
divide a bitstring a, whose length is a multiple of t, into t chunks of equals lengths and
turn it into a list, i.e., (a1, . . . , at) = Splitt(a1‖ . . . ‖at) when |ai|s are equal.

4 Definitions and Conventions

We consider a mix-net employing k mix-serversM1, . . . ,Mk that provide anonymity
for a group of N senders P1, . . . ,PN . Throughout, M and P denote the sets of all
mix-servers and senders respectively. We let JM ⊂ [1, k] and IP ⊂ [1, N] denote the
index sets of corrupted mix-servers and senders respectively. We let J∗ ⊂ JM denote
the index set of mix-servers identified as corrupted so far. This set may grow throughout
an execution.

We present and analyze the main components of our mix-net in the universal com-
posability framework [1], with non-blocking adversaries, i.e., adversaries that do not
block the delivery of messages indefinitely. We use superscripts to distinguish different
functionalities and protocols, for example Fbb for a bulletin board and πc for Chaum’s
mix-net. The ideal adversary (simulator) of the ideal model is denoted by S. When there
is no ambiguity, we use the same notation for dummy parties and real parties.

We use a number of conventions to simplify the exposition. Whenever we say a
party “hands” a message to a functionality, we mean that the party sends the message
to the corresponding dummy party who will then forward it to the functionality. All

our functionalities capture distributed protocols where messages sent to more than one
party can be delayed arbitrarily by the adversary, and all such messages are also given
to the adversary. Thus, when we say that a functionality hands a message to more than
one party, we mean that the message is passed to the adversary, who then schedules the
delivery of the message to the parties. When a party “inputs” a message to a subproto-
col, we mean that he executes the algorithm of the corresponding party with the same
message. A party or protocol is said to “wait for” an input of a given form if any other
input is immediately returned to the sender. Similarly, a party can wait for a message to
appear on the bulletin board. In practice this would be implemented using a time-out,
after which some default value is taken to be the message. Some of our functionalities
give an output before receiving any input, which makes no sense in an event-driven
model like the universal composability framework where execution starts by activat-
ing the environment. This is merely a useful convention, since we can easily fix this
problem by allowing parties to request the given data.

In all of our protocols, security holds only as long as the adversary corrupts less than
λ mix-servers, where 1 ≤ λ ≤ k is a parameter of the protocol. All our functionalities
and protocols may fail to give an output if more than min(λ−1, k−λ) mix-servers are
corrupted. To capture the case λ ≥ k/2 with minimal notational overhead, we simply
assume that even a non-blocking simulator can block messages indefinitely in this case.

We use the subroutine Agree(Tag), parameterized by a label Tag, to simplify the
description of some of our ideal functionalities. The subroutine waits until each mix-
server Mj has submitted a pair (Tag,mj) for some message mj . If at least λ mix-
servers submitted identical mj , then the subroutine returns this value and otherwise it
halts the complete ideal functionality, e.g., the functionality could hand ⊥ to all parties
and ignore inputs from then on. The message mj can be an empty string in which case
the subroutine is only used to capture the robustness property of the functionality. In
Appendix A we give a formal definition of the subroutine Agree(Tag). We use the same
convention for protocols, i.e., if an ideal functionality used by the protocol aborts, then
the protocol aborts as well. These conventions allow us to capture the robustness of a
protocol by requiring a non-blocking simulator for a non-blocking adversary.

4.1 Useful Functionalities

Our results are given in a hybrid model with distributed key generation functionalities of
two types, a bulletin board functionality, and a proof of correct decryption functionality.
In Appendix B, formal descriptions of these functionalities are presented. The first key
generation functionality, Fkg

j , generates a public key pk j such that only the jth mix-
server knows the corresponding secret key sk j . The second functionality, Fdkg, differs
only in that no mix-server learns the secret key sk corresponding to the generated public
key pk . In both functionalities, any subset of λ mix-servers can recover the secret key.
The bulletin board functionality, denoted by Fbb, is used by parties to announce their
messages. That is, a message can be posted by any party and read by any other one. To
simplify the exposition, we simply say that a message is “published” when it appears on
the public bulletin board. The published message can not be deleted or modified once
posted. The proof of correct decryption functionality, Fpd

j , is used to prove that the jth
mix-server has correctly decrypted a known ciphertext into a known plaintext. A subset

of λ mix-servers must agree on the pair of plaintext and ciphertext. Assuming that
the underlying cryptosystem allows the jth mix-server to recover the randomness used
during encryption from the ciphertext itself, the realization of the functionality becomes
trivial. In other words, the proof of correct decryption simply consists of revealing the
randomness used for encryption. Our main result, Theorem 1, holds if this solution is
employed, but only in a standalone model (see the full version of this paper for details).
In any case, proofs of correct decryption are only used to trace ciphertexts to identify
corrupted senders or mix-servers.

4.2 Mix-Nets

We use ideal mix-net functionalities similar to that in [24], but in a slightly simplified
form in that we assume that each sender submits exactly one input. Functionality 1
presents a natural mix-net. Our results are easy to generalize to the case where senders
can submit more than one input (this holds also for Functionality 2 and Functionality 3).

The protocol we construct does not quite implement the natural mix-net. Thus,
we present a relaxed mix-net (Functionality 2) which we are able to securely realize
and then argue that it still provides sufficient guarantees. The relaxed functionality
first hands the adversary (simulator) a public key. Then it waits for inputs from all
the senders, encrypts the messages of the honest senders, and then hands the resulting
ciphertexts in sorted order to the adversary. The adversary is then asked to provide his
own inputs in encrypted form on behalf of corrupted senders. The final output is the
sorted decryption of the union of the ciphertexts computed by the functionality and
those provided by the adversary (after duplicates are removed). For technical reasons
the functionality uses several public keys and encrypts the messages under all keys.

This functionality provides unconditional privacy for honest senders. The relaxation
lies in the ability of an unbounded adversary to adaptively choose the messages of the
corrupted senders based on the set of inputs of the honest senders, but a CCA2-secure
cryptosystem prevents this for efficient adversaries.

We define a mix-net with abort (Functionality 3) that either gives a proper output or
aborts after identifying a mix-server as culprit (with no information about the submitted
messages at all). A relaxed mix-net can be constructed using such a mix-net with abort.
The mix-net with abort waits for inputs from all the senders and then outputs these
messages in encrypted form (as in the relaxed mix-net). Then it allows the mix-servers
to agree on a list of known corrupted mix-servers. Finally, the adversary decides if the
mix-net should abort or not. In the former case, the adversary must provide the index of
a previously unknown corrupted mix-server, and this is forwarded to all mix-servers. In
the latter case, the mix-net outputs the result like in the relaxed mix-net.

In the full version of this paper we describe a protocol using Functionality 3 that
securely realizes Functionality 2. The idea is to use λ instances of Functionality 3.
Each sender submits a copy of his input to all functionalities. The mix-servers then run
them sequentially until one produces an output without aborting. To ensure that this
scheme eventually gives an output, the mix-servers jointly keep track of the identified
corrupted mix-servers.

Functionality 1 (Natural Mix-Net). The natural mix-net functionality Fmn exe-
cuting with dummy senders P , dummy mix-serversM and ideal adversary S pro-
ceeds as follows.
1. Let I = [1, N]. While I 6= ∅:

a) Wait for a message (Message,mi) with mi ∈ {0, 1}n from some dummy
sender Pi with i ∈ I .

b) Set I ← I \ {i} and hand (MessageReceived, i) to S .
2. Hand

(
Mixed,Sort(m1, . . . ,mN)

)
to S andM.

Functionality 2 (Relaxed Mix-Net). The relaxed mix-net functionality Fmn exe-
cuting with dummy senders P , dummy mix-serversM and ideal adversary S pro-
ceeds as follows.
1. Hand

(
PublicKeys, (pk `)

λ
`=1

)
to S, where (pk `, sk `) = Gen(1n).

2. Let I = [1, N]. While I 6= ∅:
a) Wait for a message (Message,mi) with mi ∈ {0, 1}n from some dummy

sender Pi with i ∈ I .
b) Set I ← I \ {i} and hand (MessageReceived, i) to S .

3. Let L` = Sort
((
Encpk`(mi)

)
i∈[1,N]\IP

)
. Hand

(
HonestCiphertexts, (L`)λ`=1

)
to S and wait to get back (CorruptCiphertexts, L′, `∗), where |L′| ≤ |IP | and
1 ≤ `∗ ≤ λ.

4. Hand (SecretKey, sk `∗) to S and
(
Mixed,Sort

(
Decsk`∗ (Unique(L`∗ ◦ L′))

))
to

M.

Functionality 3 (Mix-Net With Abort). The mix-net with abort functionality
Fmna executing with dummy senders P , dummy mix-serversM, and ideal adver-
sary S proceeds as follows.
1. Generate (pk , sk) = Gen(1n) and hand (PublicKey, pk) to S.
2. Let I = [1, N]. Then while I 6= ∅:

a) Wait for a message (Message,mi) with mi ∈ {0, 1}n from some dummy
sender Pi with i ∈ I .

b) Set I ← I \ {i}, let vi = Encpk (mi), and hand (MessageReceived, i) to S.
3. Wait for a common input J∗ ⊂ JM from dummy mix-servers, i.e., J∗ ←

Agree(Culprits).
4. Let L = Sort

(
(vi)i∈[1,N]\IP

)
and wait for a message EncryptPlaintexts

from S. Then hand (HonestCiphertexts, L) to S and wait to receive
(CorruptCiphertexts, L′) where |L′| ≤ |IP |, or (Culprit, d) where d ∈ JM \J∗.
In the latter case, hand (Culprit, d) toM and halt.

5. Hand (SecretKey, sk) to S and
(
Mixed,Sort

(
Decsk (Unique(L ◦ L′))

))
toM.

5 Chaum’s Mix-Net

Consider Chaum’s original mix-net [2] with λmix-servers in the chain. Each mix-server
Mj generates a key pair (pk j , sk j) and a sender wraps her message mi in λ layers

of encryptions and submits a ciphertext ci = Encpk1

(
Encpk2

(
· · ·Encpkλ(mi) · · ·

))
.

Then the mix-servers form an initial list L0 = (ci)i∈[1,N], and sequentially peel off
layers of encryptions after removing the duplicates. That is, for j = 1, . . . , λ, the jth
mix-server computes Lj = Sort

(
Decskj (Unique(Lj−1))

)
. Thus, Unique(Lλ) is the

sorted list of plaintexts without duplicates. This mix-net is neither secure against active
adversaries nor robust, but it nevertheless forms the basis of our constructions. We for-
malize this in Protocol 1 below and later extend it in two different ways in Protocol 2
and Protocol 3. We assume that the main protocol (Protocol 4) keeps track of the set J∗

of indices of identified corrupted mix-server so far, see Step 3 of Protocol 1 below.

Protocol 1 (Chaum’s Mix-Net, πc).
Mix-servers. The jth mix-server Mj proceeds as follows when executing with
functionalities Fbb, and Fkg

1 , . . . ,Fkg
λ .

1. Wait for (PublicKey, pk `) from Fkg
` for ` = 1, . . . , λ. Let pk = (pk1, . . . , pkλ)

and output (PublicKey, pk). Wait for (SecretKey, sk j) from Fkg
j if j ∈ [1, λ].

2. Wait for an input (Culprits, J∗). For ` = 1, . . . , λ: if ` ∈ J∗, then hand Recover
to Fkg

` and wait for a response (SecretKey, sk `).
3. Wait for an input (Ciphertexts, L0). For ` = 1, . . . , λ do the following and

output
(
Mixed,Unique(Lλ)

)
:

(a) If ` ∈ J∗ or ` = j, then set L` = Sort
(
Decsk`(Unique(L`−1))

)
, and

publish (Decryption, L`).
(b) Otherwise, wait untilM` publishes (Decryption, L`) (or we published L`,

since sk ` was recovered), where |L`| = |Unique(L`−1)|.

Protocol 2 and Protocol 3 formalize the two nested mix-nets used in our main pro-
tocol. Recall from Section 2 that the first protocol is an optimistic execution of Chaum’s
mix-net. The privacy of this mix-net is only required to temporarily randomize the input
to the second mix-net. This is needed to argue that it is hard to replace all ciphertexts
submitted by a non-empty proper subset of the honest senders without being identi-
fied as a cheater. When Protocol 3 has completed, the optimistic execution is verified
explicitly by simply recovering the secret keys of all mix-servers.

Protocol 2 (Chaum’s Mix-Net with Explicit Verification, πcev).
Mix-servers. The jth mix-serverMj when executing with functionalities Fbb, and
Fkg

1 , . . . ,Fkg
λ , first runs Chaum’s mix-net (Protocol 1) and then proceeds as follows.

4. Wait for an input Verify. Then for ` = 1, . . . , λ, where ` 6∈ J∗:
(a) If ` = j, then publish (SecretKey, sk j).
(b) If ` 6= j and ` 6∈ J∗, then wait until M` publishes (SecretKey, sk `), and

halt with output (Culprit, `) if sk ` does not correspond to pk ` or if L` 6=
Sort

(
Decsk`(Unique(L`−1))

)
.

5. Halt with output (SecretKey, sk), where sk = (sk1, . . . , skλ).

In our second variant of Chaum’s mix-net (Protocol 3), the mix-servers proceed op-
timistically, but in contrast to Protocol 2 they do not later verify the complete execution

explicitly. Instead, they trace a subset of ciphertexts backwards and forwards through
the mix-net and reveal how they are decrypted in the process. In the main protocol a
small subset of dummy ciphertexts (submitted by the mix-servers) are always traced
forward to show that these were processed correctly. As explained in Section 2, the idea
is that starting from the randomly permuted output of Protocol 2, the adversary must
avoid modifying the traced ciphertexts to avoid detection. In other words, to cheat with-
out detection, a corrupted mix-server can not simply replace all ciphertexts. However,
tracing starts by tracing any ciphertexts that do not have exactly t copies backwards
to distinguish the case where a corrupted sender submits a malformed set of cipher-
texts from the case where a corrupted mix-server processes his input incorrectly. Only
then are the dummies, and possibly additional ciphertexts, traced forwards through the
mix-net.

Protocol 3 (Chaum’s Mix-Net with Partial Tracing, πcpt).
Mix-servers. The jth mix-server Mj , when executing with functionalities Fbb,
Fkg

1 , . . . ,Fkg
λ , and Fpd

1 , . . . ,Fpd
λ , runs Chaum’s mix-net (Protocol 1), hands

(SecretKey, sk j) to Fpd
j if j ∈ [1, λ], and then proceeds as follows.

4. Backward Tracing. Wait for an input (TraceB, Bλ), where Bλ is the list of ci-
phertexts to be traced backwards. For ` = λ, . . . , 1 do the following and then
output (Traced, B0):
(a) ExpandB` to a listB′` by adding the removed duplicates, i.e., the expanded

list B′` includes all copies in L` of every ciphertext occurring in B`.
(b) If ` ∈ J∗ or ` = j, then identify B`−1 ⊂ L`−1 such that B′` =

Decsk`
(
B`−1) and publish (TracedB, B`−1). Otherwise, wait until M`

publishes (TracedB, B`−1) with B`−1 ⊂ L`−1.
(c) If ` /∈ J∗, then hand (Verify, B′`, B`−1) to Fpd

` and halt with (Culprit, `) if
it returns False.

5. Forward Tracing. Wait for an input (TraceF, F0), where F0 is the ciphertexts to
be traced forward. For ` = 1, . . . , λ do the following and then halt with output
(Traced, Fλ):
(a) Let F ′`−1 = Unique(F`−1).
(b) If ` ∈ J∗ or ` = j, then let F` = Decsk`(F

′
`−1) and publish (TracedF, F`).

Otherwise, wait untilM` publishes (TracedF, F`) with F` ⊂ L`.
(c) If ` /∈ J∗, then hand (Verify, F`, F ′`−1) to Fpd

` and halt with (Culprit, `) if
it returns False.

Forward tracing of the dummy ciphertext list F0, a subset of the input listL0 submit-
ted by the mix-servers, is done in the natural way. For ` = 1, . . . , λ, the `th mix-server
computes F` = Decsk`

(
Unique(F`−1)

)
and proves that he did so correctly. The other

mix-servers verify the proof and that F` ⊂ L`.
Backward tracing of a list Bλ, a subset of the output list Unique(Lλ), is more com-

plicated in that we must invert the process of duplicate removal. For ` = λ, . . . , 1,
all mix-servers first expand B` into a list B′` by including all copies in L` of each ci-
phertext in B`, and then the `th mix-server computes B`−1 ⊂ L`−1 such that B′` =

Decsk`
(
B`−1) and proves that this relation holds. Thus, the expansion is the inversion

of how Unique removed duplicates of traced ciphertexts during processing.
The correctness of the decryption for the jth mix-server is verified using the proof

of correct decryption functionality Fpd
j . Notice that for the dummies, it suffices that

each mix-server simply reveals the randomness used to encrypt his own dummy inputs.
However, for senders’ inputs this may not be possible for a general cryptosystem since
the randomness is chosen by the corresponding sender and may not be known to the
decrypting mix-server. Nevertheless, one possible incarnation of our protocol uses a
cryptosystem that allows recovering the randomness used during encryption from the
ciphertext itself during decryption. In this case, the proof of correct decryption used
during tracing simply consists of revealing the randomness.

6 Constructing a Mix-Net With Abort

We are now ready to present the details of our mix-net with abort in Protocol 4. We use
two nested instances of Chaum’s mix-net: one with explicit verification (Protocol 2),
and one with partial tracing (Protocol 3). The lists of public keys of these mix-nets are
denoted by pk cev and pk cpt, each of which contains λ keys. Each sender encrypts her
message mi once using the additional joint “final” public key pk f to form a cipher-
text vi. This layer of encryption hides the inputs of the honest senders if the execu-
tion aborts. The ciphertext vi is then encrypted independently t times with the addi-
tional joint “replication” public key pk r. Recall that this prevents the last mix-server in
Chaum’s mix-net with partial tracing (Protocol 3) from identifying all ciphertexts sub-
mitted by the same sender. The resulting ciphertexts are then encrypted using the lists
pk cpt and pk cev of public keys of the two instances of Chaum’s mix-net. Finally, the
t encryptions are concatenated to form one plaintext chunk and then encrypted using
the “outer” public key pko, which prevents a dishonest sender (with the collusion of
some dishonest mix-servers) from partially copying an honest sender’s submission to
break his privacy. In addition to the ciphertexts submitted by senders, each mix-server
submits a dummy encryption of the zero message computed like a sender’s ciphertext.
These ciphertexts prevent a corrupt mix-server from replacing all ciphertexts instead of
guessing the positions of all ciphertexts submitted by a subset of the senders.

To process the ciphertexts, the mix-servers first remove the “outer” layer of en-
cryption by jointly recovering the corresponding secret key sko. Then they execute the
two instances of Chaum’s mix-net in sequence. We stress that the t ciphertexts of each
sender are processed independently at this stage. Then the secret keys in sk cev (corre-
sponding to pk cev) are recovered and the mix-servers verify the execution of the first
mix-net explicitly. The “replication” secret key sk r corresponding to pk r is then recov-
ered and all ciphertexts are decrypted. Finally, the processing in the second mix-net
is verified for: (1) all ciphertexts of which there are not exactly t copies (backward
tracing), and (2) all dummy ciphertexts submitted by mix-servers and all ciphertexts
intersecting with the ciphertexts traced backwards (forward tracing). If there is any in-
consistency, the corrupted mix-server is identified and the execution aborts. If there is
no inconsistency, then the “final” secret key sk f corresponding to pk f is recovered and
the innermost layer of encryption is removed to reveal the plaintexts.

Theorem 1 captures security of Protocol 4. If we use a cryptosystem that allows
recovering the randomness used for encryption, then our result still holds, but only in
the standalone model where the simulator is allowed to rewind. The full version details
this variation of the scheme.

Protocol 4 (Mix-Net with Abort πmna). This protocol is executed with a bulletin
board Fbb, a mix-net with explicit verification πcev, a mix-net with partial tracing
πcpt, and distributed key generation functionalities Fdkg

o , Fdkg
r and Fdkg

f .

Senders. The ith sender Pi proceeds as follows on input mi ∈ {0, 1}n.
1. Wait until λ of the mix-servers have published identical list

(PublicKeys, pko, pk cev, pk cpt, pk r, pk f). If no such list exists, then abort.
2. Let vi = Encpk f (mi).
3. Let ui,s = Encpkcev(Encpkcpt(Encpkr(vi))), for s = 1, . . . , t.
4. Let ui = Encpko(ui,1‖ · · · ‖ui,t) and publish (Ciphertext, ui).

Mix-servers. The jth mix-serverMj proceeds as follows on input J∗j .
1. Public Keys. Wait for public keys: (PublicKey, pko) from Fdkg

o ,
(PublicKey, pk cev) from πcev, (PublicKey, pk cpt) from πcpt,
(PublicKey, pk r) from Fdkg

r , and (PublicKey, pk f) from Fdkg
f . Then publish

(PublicKeys, pko, pk cev, pk cpt, pk r, pk f). Wait until λ of the mix-servers have
published the same list, or abort if no such list can be found.

2. Input Ciphertexts. Wait until every Pi has published her encrypted mes-
sage (Ciphertext, ui). Let uN+j be an encryption of zero as computed by a
sender and publish (Ciphertext, uN+j). Wait until every M` has published
(Ciphertext, uN+`) and let Lin = Unique(u1, . . . , uN+k).

3. Culprits Agreement. Publish (Culprits, J∗j) and wait until λ of the mix-servers
have published identical (Culprits, J∗), or abort if no such set J∗ can be found.
Input (Culprits, J∗) to πcev and πcpt.

4. Decrypt and Split. Hand Recover to Fdkg
o and wait for a response

(SecretKey, sko). Let Lo =©u∈LinSplitt
(
Decsko(u)

)
.

5. Chaum’s Mix-Net. Input (Ciphertexts, Lo) to πcev and wait for an output
(Mixed, Lcev).

6. Chaum’s Mix-Net. Input (Ciphertexts, Lcev) to πcpt, and wait for an output
(Mixed, Lcpt).

This protocol is completed on the next page.

Theorem 1. Let CS be a CCA2 secure cryptosystem. Then Protocol 4 securely realizes
Functionality 3 with respect to static active adversaries that corrupt less than λ of the
mix-servers and any number of senders, provided that t is chosen such that H−(t−1) is
negligible, where H > 1 is the number of honest parties.

Due to our conventions in Section 4 and the definition of Functionality 3, the theo-
rem also captures the robustness of the protocol, i.e., it gives an output provided that at
most min(λ− 1, k − λ) parties are corrupted.

Protocol 4 (Continued, including verifications.).
7. Verifications.

(a) Explicit Verification. Input Verify to πcev. If it outputs (Culprit, d), then halt
with this output, and otherwise let (SecretKey, sk cev) be the output.

(b) Replication Check. Hand Recover to Fdkg
r and wait for a response

(SecretKey, sk r). Compute Lr = Decskr(Lcpt) and let B be the ciphertexts
in Lcpt that do not have exactly t copies after decryption with sk r.

(c) Backwards Tracing. Input (TraceB, B) to πcpt. If it outputs (Culprit, d),
then halt with this output, and otherwise let (TracedB, B′) be the out-
put. Let L′ be the list of all u ∈ Lin such that πcev on input(
Ciphertexts,Splitt(Decsko(u))

)
would output (Mixed, B′′) with B′ ∩

B′′ 6= ∅.
(d) Forward Tracing. Let F be the list such that πcev on input (Ciphertexts, L′◦

L′′), where L′′ = ©`∈[1,k]Splitt
(
Decsko(uN+`)

)
, would give an output

(Mixed, F). Input (TraceF, F) to πcpt. If it outputs (Culprit, d), then halt
with this output. Otherwise, let (TracedF, F ′) be the output.

8. Final Decryption. Hand Recover to Fdkg
f and wait for a response

(SecretKey, sk f). Let Lr′ = Unique
(
Decskr(Lcpt \ F ′)

)
and halt with output(

Mixed,Sort(Decsk f (Lr′))
)
.

7 Conclusion

We construct a provably secure mix-net that unlike many other mix-nets in the litera-
ture do not require any homomorphic properties from the cryptosystem. This is a clear
advantage for those concerned that quantum computers can be constructed in the future.
In contrast to the only previous proposed mix-net based on any cryptosystem [12], our
construction enjoys not only provable security but also full privacy and correctness. Our
mix-net is fast when there are many senders and plaintexts are large.

References

1. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In FOCS, pages 136–145. IEEE Computer Society, 2001.

2. D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Commun.
ACM, 24(2):84–88, 1981.

3. Y. Desmedt and K. Kurosawa. How to break a practical mix and design a new one. In
B. Preneel, editor, EUROCRYPT, volume 1807 of Lecture Notes in Computer Science, pages
557–572. Springer, 2000.

4. J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In J. Kilian, editor,
CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 368–387. Springer,
2001.

5. J. Furukawa and K. Sako. An efficient publicly verifiable mix-net for long inputs. IEICE
Transactions, 90-A(1):113–127, 2007.

6. E. Gabber, P. B. Gibbons, Y. Matias, and A. J. Mayer. How to make personalized web
browising simple, secure, and anonymous. In R. Hirschfeld, editor, Financial Cryptography,
volume 1318 of Lecture Notes in Computer Science, pages 17–32. Springer, 1997.

7. P. Golle, S. Zhong, D. Boneh, M. Jakobsson, and A. Juels. Optimistic mixing for exit-polls.
In Y. Zheng, editor, ASIACRYPT, volume 2501 of Lecture Notes in Computer Science, pages
451–465. Springer, 2002.

8. M. Jakobsson. A practical mix. In EUROCRYPT, pages 448–461, 1998.
9. M. Jakobsson. Flash mixing. In PODC, pages 83–89, 1999.

10. M. Jakobsson and A. Juels. Mix and match: Secure function evaluation via ciphertexts. In
Okamoto [18], pages 162–177.

11. M. Jakobsson and A. Juels. An optimally robust hybrid mix network. In PODC, pages
284–292, New York, NY, USA, 2001. ACM Press.

12. M. Jakobsson, A. Juels, and R. L. Rivest. Making mix nets robust for electronic voting
by randomized partial checking. In D. Boneh, editor, USENIX Security Symposium, pages
339–353. USENIX, 2002.

13. M. Jakobsson and D. M’Raı̈hi. Mix-based electronic payments. In S. E. Tavares and H. Mei-
jer, editors, Selected Areas in Cryptography, volume 1556 of Lecture Notes in Computer
Science, pages 157–173. Springer, 1998.

14. S. Khazaei and D. Wikström. Randomized partial checking revisited. Cryptology ePrint
Archive, Report 2012/063, 2012. http://eprint.iacr.org/2012/063.

15. M. Mitomo and K. Kurosawa. Attack for flash mix. In Okamoto [18], pages 192–204.
16. C. A. Neff. A verifiable secret shuffle and its application to e-voting. In CCS ’01: Proc. of

the 8th ACM conference on Computer and Communications Security, pages 116–125, New
York, NY, USA, 2001. ACM.

17. M. Ohkubo and M. Abe. A length-invariant hybrid mix. In Okamoto [18], pages 178–191.
18. T. Okamoto, editor. Advances in Cryptology — ASIACRYPT 2000, 6th International Confer-

ence on the Theory and Application of Cryptology and Information Security, Kyoto, Japan,
December 3–7, 2000, Proceedings, volume 1976 of Lecture Notes in Computer Science.
Springer, 2000.

19. C. Park, K. Itoh, and K. Kurosawa. Efficient anonymous channel and all/nothing election
scheme. In EUROCRYPT, pages 248–259, 1993.

20. B. Pfitzmann. Breaking efficient anonymous channel. In EUROCRYPT, pages 332–340,
1994.

21. B. Pfitzmann and A. Pfitzmann. How to break the direct rsa-implementation of mixes. In
EUROCRYPT, pages 373–381, 1989.

22. K. Sako and J. Kilian. Receipt-free mix-type voting scheme — a practical solution to the
implementation of a voting booth. In EUROCRYPT, pages 393–403, 1995.

23. D. Wikström. Five practical attacks for “optimistic mixing for exit-polls”. In M. Matsui and
R. J. Zuccherato, editors, Selected Areas in Cryptography, volume 3006 of Lecture Notes in
Computer Science, pages 160–175. Springer, 2004.

24. D. Wikström. A universally composable mix-net. In M. Naor, editor, TCC, volume 2951 of
Lecture Notes in Computer Science, pages 317–335. Springer, 2004.

A Agreement Subroutine

Subroutine 1 (Agree(Tag)).
1. Set J ← {1, . . . , k}.
2. While J 6= ∅:

a) Wait for a message (Tag,mj) from the dummy mix-serverMj with j ∈ J .
b) Set J ← J \ {j} and hand (TagReceived, j,mj) to S.

3. Return the value in (mj)j∈[1,k] that has been submitted by λ of the mix-servers.
If no such value exists, hand ⊥ toM and halt the main functionality.

http://eprint.iacr.org/2012/063

B Functionalities Implemented by General MPC

Functionality 4 (Key Generation with VSS). The key generation with VSS func-
tionalityFkg

j executing with dummy mix-serversM and ideal adversary S proceeds
as follows.
1. Generate (pk , sk) = Gen(1n), hand (PublicKey, pk) to S and M, and

(SecretKey, sk) toMj , and wait until dummy mix-servers agree to recover, i.e.,
run Agree(Recover).

2. Hand (SecretKey, sk) to S andM.

Functionality 5 (Distributed Key Generation with VSS). The distributed key
generation with VSS functionality Fdkg executing with dummy mix-serversM and
ideal adversary S proceeds as follows.
1. Generate (pk , sk) = Gen(1n).
2. Hand (PublicKey, pk) to S andM, and wait until dummy mix-servers agree to

recover, i.e., run Agree(Recover).
3. Hand (SecretKey, sk) to S andM.

Functionality 6 (Bulletin board). Executing with dummy sendersP , dummy mix-
serversM and ideal adversary S, the bulletin board functionality Fbb keeps a pri-
vate and a publica database and proceeds as follows.

1. Upon receiving a message (Tag,m) from a party P ∈ P ∪M, hand (P,Tag,m)
to S and write (P,Tag,m) on the private database. Ignore any further message
(Tag,m′) from the party P .

2. Upon receiving a message (P,Tag,m) from S, see if (P,Tag,m) already ex-
ists in the private database. If so, then write (P,Tag,m) on the public database.
Ignore any further message (P,Tag,m) from S.

a The contents of the public database is known to all parites. In our protocols, parties need
to wait until a specific party P publishes (Tag,m) on the bulletin board. This means that,
they wait until (P, Tag,m) appears on the public database.

Functionality 7 (Proof of Correct Decryption). The proof of correct decryption
functionality Fpd

j executing with dummy mix-servers M and ideal adversary S
proceeds as follows.
1. Wait for an input (SecretKey, sk) from dummy mix-server Mj and then hand

(SecretKey, j) to S.
2. Wait for a common input (m, c) from dummy mix-servers, i.e., (m, c) =

Agree(Verify), and send True or False to S and M depending on if m =
Decsk (c) or not.

	A Mix-Net From Any CCA2 Secure Cryptosystem

